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Preface by the General Chair

Thank you so much for joining us in Copenhagen! Welcome to a cosmopolitan city of fantastic
restaurants, lovely seascapes, rich history, and lots and lots of cyclists!

We have an exciting program lined up for you, with three Invited talks, fifteen workshops, seven tutorials,
nine TACL presentations, 322 reviewed papers presented as both oral talks and posters, and twenty-one
demos. I am especially grateful to our Program Chairs, Rebecca Hwa and Sebastian Riedel, who did a
fantastic job managing a backbreaking 1,500 paper submissions (1466 reviewed papers). This involved
51 Area chairs and 980 reviewers. We tried some new things this year (never conducive to a smooth
process) including a more careful handling of the COIs that result from Area Chair submissions, and the
addition of a meta-review step to encourage more thoughtful reviewing. We are soliciting feedback on the
meta-review process, from both reviewers and authors. Despite the additional time involvement, many
of the Area Chairs embraced this new approach, and would like to repeat it. However, there are clearly
a few dissenters, since Rebecca and Sebastian ended up writing around 200 meta-reviews themselves at
the last minute! We are also trying to raise the visibility and status of the poster sessions by integrating
them as parallel sessions alongside oral talks, with poster session chairs. This is in response to the survey
results from EMNLP 2015 that indicated a decided preference for smaller, more frequent poster sessions
during the day rather than evening mega-sessions. Finally, Rebecca and Sebastian are bringing you three
outstanding invited speakers, Dan Jurafsky, Sharon Goldwater, and Nando de Freitas. No program chairs
ever worked harder to bring you a superb set of presentations in an attendee friendly setting.

I am also very grateful to Victoria Fossum and Karl Moritz Hermann, our Workshop Chairs, who
put together a terrific slate of fifteen workshops, and paid meticulous attention to ensuring that each
workshop could hold exactly the poster sessions, invited talks and special events that it required. Our
tutorial chairs, Alexandra Birch and Nathan Schneider, also outdid themselves, providing especially
tempting tutorial offerings. Matt Post deserves to be singled out, for being an Advisor to our
conscientious and successful Handbook Chair, Joachim Bingel, as well as becoming a welcome last
minute addition to our excellent team of Demo Chairs, Lucia Specia and Michael Paul. Thanks are due
to our Website Chair, Anders Johannsen, who responded promptly and deftly to all of our requests, and
to our Student Volunteer and Student Sponsorship Chairs, Zeljko Agic and Yonatan Bisk, who brought
you the helpful and energetic volunteers who keep things running smoothly.

Last but not least, many thanks to your hosts, our Local Arrangements Chairs, Dirk Hovy and Anders
S@gaard and their team. Their concern has been increasing the enjoyment of your experience, and to
that end they proposed a stunning venue, put together an amazing reception and Social Event, chose
your conference bags, issued all the invitation letters for visas, helped create all the signs, etc., etc., etc.
Dan Hardt, our Sponsorship chair, working with Anders and Dirk, raised an unusual amount of local
sponsorships, all to defray the cost of the Social Event.

As always, we are extremely indebted to our generous sponsors. Our platinum sponsors are Google,
Amazon, Baidu, Apple, Facebook, Bloomberg and Siteimprove. Gold sponsors include IBM Research,
Microsoft, eBay, SAP, Textkernel, Maluuba, Zalando, Recruit Institute of Technology and Deloitte.
Silver sponsors are Nuance, Oracle, Sogou, Huawei, Duolingo, CVTE, Unsilo and Wizkids. Snap Inc.,
Grammarly and Yandex are our Bronze sponsors.

Finally, many, many thanks to our Area Chairs, our reviewers, and our authors, whose outstanding
research is being showcased here for your delectation. Nyd det mens det varer!

Best Regards,
Martha Palmer
EMNLP 2017 General Chair
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Preface by the Program Committee Co-Chairs

Welcome to the 2017 Conference on Empirical Methods in Natural Language Processing! This is an
exciting year; we have received a new record-high in the number of submissions: 1,509 papers. After
discounting early withdraws, duplicates, and other invalid submissions, we sent out 1,418 submissions
(836 long papers, 582 short papers) to be reviewed by the program committee. Ultimately, 216 long
papers (25.8% acceptance rate) and 107 short papers (18.4% acceptance rate) have been accepted for
presentation, making a total of 323 papers and an overall acceptance rate of 22.8%.

This year’s technical program consists of three invited talks and 113 oral presentations and 219 poster
presentations for the 323 long and short accepted papers as well as nine papers accepted to the
Transactions of the Association for Computational Linguistics. To accommodate all the presentations
in a compressed timeframe, we opted to have plenary sessions for the invited talks and the winners of the
Best Paper Awards, while allotting three parallel oral sessions and thematically related poster sessions
for all other presentations. We chose to have concurrent poster and oral sessions for several reasons.
First, this is the preferred model of the majority (51.6%) of participants who filled out the EMNLP 2015
post-conference survey. Second, this allows us to spread out the poster presentations across three days
in smaller thematically related clusters. Finally, this maximises the number of acceptances for the high
quality submissions we received; by having more poster sessions, we are able to maintain the acceptance
rates at the previous year’s level despite an increase in submissions by 40%.

It would not have been possible to properly handle such a large number of submissions without the
generous voluntary help from all the members of the program committee, which consists of 980 reviewers
overseen by 51 area chairs. We continued last year’s experiment of defining twelve relatively broad topic
areas and assigning multiple area chairs to facilitate consistent ranking of larger sets of papers. Most
technical program decisions, from the selection of papers to the modes of presentation to the choice of
outstanding papers, are primarily made in a bottom-up fashion: reviewers assessed and scored papers,
made recommendations for oral vs poster decisions, and marked papers suitable for best paper awards;
area chairs ensured the quality of assessments, encouraged discussions and assembled opinions into their
own recommendations; finally, we construct the technical program, considering the recommendations
from the area chairs while taking into account venue constraints and balance across areas. A new
experimental feature of this year’s EMNLP reviewing process is the “meta review,” in which the area
chairs briefly summarize the major discussions between the reviewers to give authors a more transparent
view of the process.

Per EMNLP tradition, awards are given to outstanding papers in three categories: Best Long Paper, Best
Short Paper, and Best Resource Paper. The selection process is bottom-up: based on the reviewers and
area chairs’ recommendations, we nominated four papers for each category; we invited expert members
to form a Best Papers committee for each category; each committee reviews the candidates and select
the winners. The awarded papers will be presented at a special plenary session on the last day of the
conference.

We are extremely grateful that three amazing speakers have agreed to give invited talks at EMNLP. Nando
de Freitas (Google Deepmind) will discuss simulated physical environments, and whether language
would benefit from the development of such environments, and could contribute toward improving such
environments and agents within them. Sharon Goldwater (University of Edinburgh) will describe work
on developing unsupervised speech technology for those of the world’s 7,000 or so languages not spoken
in large rich countries. Dan Jurafsky (Stanford University) will talk about processing the language
of policing to automatically measure linguistic aspects of the interaction from discourse factors like
conversational structure to social factors like respect.

The conference would not have been possible without the support of various people inside and outside
of the commiittee. In particular, we would like to thank:

e Martha Palmer, whose encouragement and advice as the general chair has been invaluable every
step of the way;
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e Chris Callison-Burch, who has given us excellent advice and support in his capacity as the SIGDAT
Secretary;

e Priscilla Rasmussen, who always has the right answers;

e Xavier Carreras and Kevin Duh, who generously shared their experiences as the chairs of EMNLP
2016;

e Anders Johannsen, who is lightning fast with website updates;

e QOur 51 area chairs: David Bamman, Mohit Bansal, Roberto Basili, Chris Biemann, Jordan
Boyd-Graber, Marine Carpuat, Joyce Chai, David Chiang, Jinho Choi, Jennifer Chu-Carroll,
Trevor Cohn, Cristian Danescu-Niculescu-Mizil, Dipanjan Das, Hal Daume, Mona Diab, Mark
Dredze, Jacob Eisenstein, Sanja Fidler, Alona Fyshe, Dan Gildea, Ed Grefenstette, Hannaneh
Hajishirzi, Julia Hockenmaier, Kentaro Inui, Jing Jiang, Philipp Koehn, Mamoru Komachi, Anna
Korhonen, Tom Kwiatkowski, Gina Levow, Bing Liu, Nitin Madnani, Mausam, Rada Mihalcea,
Marie-Francine Moens, Saif M. Mohammad, Mari Ostendorf, Sameer Pradhan, Alexander Rush,
Anoop Sarkar, William Schuler, Hinrich Schiitze, Sameer Singh, Thamar Solorio, Vivek Srikumar,
Amanda Stent, Tomek Strzalkowski, Mihai Surdeanu, Andreas Vlachos, Scott Wen-tau Yih, Zhang
Yue;

e The best papers award committee members: Chris Brew, Mike Collins, Kevin Duh, Adam Lopez,
Ani Nenkova, Bonnie Webber, Luke Zettlemoyer;

e Preethi Raghavan and Siddharth Patwardhan, the publications co-chairs and Joachim Bingel, the
conference handbook chair;

e Dirk Hovy and Anders S@gaard, the local arrangements co-chairs;

e Rich Gerber and Paolo Gai at SoftConf.

Finally, we’d like to thank SIGDAT for the opportunity to serve as Program Co-Chairs of EMNLP 2017.
It is an honor and a rewarding learning experience. We hope you will be as inspired by the technical
program as we are.

EMNLP 2017 Program Co-Chairs
Rebecca Hwa, University of Pittsburg
Sebastian Riedel, University College London
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Sameer Singh, UC Irvine
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Hannaneh Hajishirzi, University of Washington
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William Schuler, The Ohio State University

Machine Learning
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Trevor Cohn, University of Melbourne
Hal Daumé, University of Maryland
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Machine Translation and Multilinguality
Marine Carpuat, University of Maryland
David Chiang, University of Notre Dame
Mona Diab, George Washington University
Dan Gildea, University of Rochester
Philipp Koehn, Johns Hopkins University



Segmentation, Tagging, and Parsing
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Invited Speaker: Dan Jurafsky, Stanford University
'""Does This Vehicle Belong to You”? Processing the Language of Policing
for Improving Police-Community Relations"

Abstract: Police body-cameras have the potential to play an important role in understanding and im-
proving police-community relations. In this talk I describe a series of studies conducted by our large
interdisciplinary team at Stanford that use speech and natural language processing on body-camera
recordings to model the interactions between police officers and community members in traffic stops.
We use text and speech features to automatically measure linguistic aspects of the interaction, from
discourse factors like conversational structure to social factors like respect. I describe the differences
we find in the language directed toward black versus white community members, and offer suggestions
for how these findings can be used to help improve the fraught relations between police officers and the
communities they serve.

Bio: Dan Jurafsky is Professor and Chair of Linguistics and Professor of Computer Science, at Stanford
University. His research has focused on the extraction of meaning, intention, and affect from text and
speech, on the processing of Chinese, and on applying natural language processing to the cognitive
and social sciences. Dan’s deep interest in NLP education led him to co-write with Jim Martin the
widely-used textbook "Speech and Language Processing” (whose 3rd edition is in (slow) progress) and
co-teach with Chris Manning the first massive open online class on natural language processing. Dan
was the recipient of the 2002 MacArthur Fellowship and is a 2015 James Beard Award Nominee for his
book, "The Language of Food: A Linguist Reads the Menu".

Invited Speaker: Sharon Goldwater, University of Edinburgh
Towards more universal language technology: unsupervised learning
from speech

Abstract: Speech and language processing has advanced enormously in the last decade, with successful
applications in machine translation, voice-activated search, and even language-enabled personal assis-
tants. Yet these systems typically still rely on learning from very large quantities of human-annotated
data. These resource-intensive methods mean that effective technology is available for only a tiny
fraction of the world’s 7000 or so languages, mainly those spoken in large rich countries.

This talk describes our recent work on developing unsupervised speech technology, where transcripts
and pronunciation dictionaries are not used. The work is inspired by considering both how young infants
may begin to acquire the sounds and words of their language, and how we might develop systems to help
linguists analyze and document endangered languages. I will first present work on learning from speech
audio alone, where the system must learn to segment the speech stream into word tokens and cluster
repeated instances of the same word together to learn a lexicon of vocabulary items. The approach
combines Bayesian and neural network methods to address learning at the word and sub-word levels.

Bio: Sharon Goldwater is a Reader at the University of Edinburgh’s School of Informatics, where she
is a member of the Institute for Language, Cognition and Computation. She received her PhD in 2007
from Brown University and spent two years as a postdoctoral researcher at Stanford University before
moving to Edinburgh. Her research interests include unsupervised learning for speech and language
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processing, computer modelling of language acquisition in children, and computational studies of lan-
guage use. Dr. Goldwater co-chaired the 2014 Conference of the European Chapter of the Association
for Computational Linguistics and is Chair-Elect of EACL. She has served on the editorial boards of the
Transactions of the Association for Computational Linguistics, the Computational Linguistics journal,
and OPEN MIND: Advances in Cognitive Science (a new open-access journal). In 2016, she received
the Roger Needham Award from the British Computer Society, awarded for "distinguished research
contribution in computer science by a UK-based researcher who has completed up to 10 years of post-
doctoral research."

Invited Speaker: Nando de Freitas, Google Deepmind

Physical simulation, learning and language

Abstract: Simulated physical environments, with common physical laws, objects and agents with
bodies, provide us with consistency to facilitate transfer and continual learning. In such environments,
research topics such as learning to experiment, learning to learn and emergent communication can be
easily explored. Given the relevance of these topics to language, it is natural to ask ourselves whether
research in language would benefit from the development of such environments, and whether language
can contribute toward improving such environments and agents within them. This talk will provide
an overview of some of these environments, discuss learning to learn and its potential relevance to
language, and present some deep reinforcement learning agents that capitalize on formal language
instructions to develop disentangled interpretable representations that allow them to generalize to a
wide variety of zero-shot semantic tasks. The talk will pose more questions than answers in the hope
of stimulating discussion.

Bio: I was born in Zimbabwe, with malaria. I was a refugee from the war in Mocambique and thanks
to my parents getting in debt to buy me a passport from a corrupt official, I grew up in Portugal without
water and electricity, before the EU got there, and without my parents who were busy making money
to pay their debt. At 8, I joined my parents in Venezuela and began school in the hood; see City of
God. I moved to South Africa after high-school and sold beer illegally in black-townships for a living
until 1991. Apartheid was the worst thing I ever experienced. I did my BSc in electrical engineering
and MSc in control at the University of the Witwatersrand, where I strived to be the best student to
prove to racists that anyone can do it. I did my PhD on Bayesian methods for neural networks at Trinity
College, Cambridge University. I did a postdoc in Artificial Intelligence at UC Berkeley. I became a
Full Professor at the University of British Columbia, before joining the University of Oxford in 2013.
I quit Oxford in 2017 to join DeepMind full-time, where I lead the Machine Learning team. I aim
to solve intelligence so that future generations have a better life. I have been a Senior Fellow of the
Canadian Institute for Advanced Research for a long time. Some of my recent awards, mostly thanks
to my collaborators, include: Best Paper Award at the International Conference on Machine Learning
(2016), Best Paper Award at the International Conference on Learning Representations (2016), Winner
of round 5 of the Yelp Dataset Challenge (2015), Distinguished Paper Award at the International Joint
Conference on Artificial Intelligence (2013), Charles A. McDowell Award for Excellence in Research
(2012), and Mathematics of Information Technology and Complex Systems Young Researcher Award
(2010).
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Detecting Perspectives in Political Debates
David Vilares and Yulan He

"I have a feeling trump will win.................. ": Forecasting Winners and Losers from
User Predictions on Twitter
Sandesh Swamy, Alan Ritter and Marie-Catherine de Marneffe

Session 5C: Sentiment Analysis 2

A Question Answering Approach for Emotion Cause Extraction
Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Lu Qin and Jiachen Du

Story Comprehension for Predicting What Happens Next
Snigdha Chaturvedi, Haoruo Peng and Dan Roth

Using millions of emoji occurrences to learn any-domain representations for detect-
ing sentiment, emotion and sarcasm

Bjarke Felbo, Alan Mislove, Anders Sggaard, Iyad Rahwan and Sune Lehmann

Opinion Recommendation Using A Neural Model
Zhongqging Wang and Yue Zhang
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CRF Autoencoder for Unsupervised Dependency Parsing
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Incremental Graph-based Neural Dependency Parsing
Xiaoqing Zheng
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Stack-based Multi-layer Attention for Transition-based Dependency Parsing
Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou and Enhong Chen

Dependency Grammar Induction with Neural Lexicalization and Big Training Data
Wenjuan Han, Yong Jiang and Kewei Tu

Combining Generative and Discriminative Approaches to Unsupervised Depen-
dency Parsing via Dual Decomposition

Yong Jiang, Wenjuan Han and Kewei Tu

Effective Inference for Generative Neural Parsing
Mitchell Stern, Daniel Fried and Dan Klein

Semi-supervised Structured Prediction with Neural CRF Autoencoder
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Global Normalization of Convolutional Neural Networks for Joint Entity and Rela-
tion Classification
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End-to-End Neural Relation Extraction with Global Optimization
Meishan Zhang, Yue Zhang and Guohong Fu

KGEval: Accuracy Estimation of Automatically Constructed Knowledge Graphs
Prakhar Ojha and Partha Talukdar

Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short
Jay Pujara, Eriq Augustine and Lise Getoor

Dual Tensor Model for Detecting Asymmetric Lexico-Semantic Relations
Goran Glavas$ and Simone Paolo Ponzetto

Incorporating Relation Paths in Neural Relation Extraction
Wenyuan Zeng, Yankai Lin, Zhiyuan Liu and Maosong Sun

Adversarial Training for Relation Extraction
Yi Wu, David Bamman and Stuart Russell

Context-Aware Representations for Knowledge Base Relation Extraction
Daniil Sorokin and Iryna Gurevych
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Tianyu Liu, Kexiang Wang, Baobao Chang and Zhifang Sui
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Deep Residual Learning for Weakly-Supervised Relation Extraction
YiYao Huang and William Yang Wang
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Reference-Aware Language Models
Zichao Yang, Phil Blunsom, Chris Dyer and Wang Ling

A Simple Language Model based on PMI Matrix Approximations
Oren Melamud, Ido Dagan and Jacob Goldberger
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Zhenisbek Assylbekov, Rustem Takhanov, Bagdat Myrzakhmetov and Jonathan N.
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Inducing Semantic Micro-Clusters from Deep Multi-View Representations of Novels
Lea Frermann and Gyorgy Szarvas
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Shen Li, Zhe Zhao, Tao Liu, Renfen Hu and Xiaoyong Du

Shortest-Path Graph Kernels for Document Similarity

Giannis Nikolentzos, Polykarpos Meladianos, Francois Rousseau, Yannis Stavrakas
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Kazuma Hashimoto, caiming xiong, Yoshimasa Tsuruoka and Richard Socher
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Session 6A: Machine Translation 2
Earth Mover’s Distance Minimization for Unsupervised Bilingual Lexicon Induc-
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Meng Zhang, Yang Liu, Huanbo Luan and Maosong Sun

Unfolding and Shrinking Neural Machine Translation Ensembles
Felix Stahlberg and Bill Byrne

Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani and Khalil Simaan

Trainable Greedy Decoding for Neural Machine Translation
Jiatao Gu, Kyunghyun Cho and Victor O.K. Li
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Joint Modeling of Topics, Citations, and Topical Authority in Academic Corpora
Jooyeon Kim, Dongwoo Kim and Alice Oh

Identifying Semantic Edit Intentions from Revisions in Wikipedia
Diyi Yang, Aaron Halfaker, Robert Kraut and Eduard Hovy
Session 6C: Machine Comprehension

Accurate Supervised and Semi-Supervised Machine Reading for Long Documents
Daniel Hewlett, Llion Jones, Alexandre Lacoste and izzeddin gur

Adversarial Examples for Evaluating Reading Comprehension Systems
Robin Jia and Percy Liang

Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehen-
sion

Hongyu Lin, Le Sun and Xianpei Han

Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin, Yangqiu Song and Ming Zhang
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What is the Essence of a Claim? Cross-Domain Claim Identification
Johannes Daxenberger, Steffen Eger, Ivan Habernal, Christian Stab and Iryna
Gurevych

Identifying Where to Focus in Reading Comprehension for Neural Question Gener-
ation
Xinya Du and Claire Cardie

Break it Down for Me: A Study in Automated Lyric Annotation
Lucas Sterckx, Jason Naradowsky, Bill Byrne, Thomas Demeester and Chris De-
velder

Cascaded Attention based Unsupervised Information Distillation for Compressive
Summarization
Piji Li, Wai Lam, Lidong Bing, Weiwei Guo and Hang Li

Deep Recurrent Generative Decoder for Abstractive Text Summarization
Piji Li, Wai Lam, Lidong Bing and Zihao Wang

Extractive Summarization Using Multi-Task Learning with Document Classification
Masaru Isonuma, Toru Fujino, Junichiro Mori, Yutaka Matsuo and Ichiro Sakata

Towards Automatic Construction of News Overview Articles by News Synthesis
Jianmin Zhang and Xiaojun Wan

Joint Syntacto-Discourse Parsing and the Syntacto-Discourse Treebank
Kai Zhao and Liang Huang

Event Coreference Resolution by Iteratively Unfolding Inter-dependencies among
Events
Prafulla Kumar Choubey and Ruihong Huang

When to Finish? Optimal Beam Search for Neural Text Generation (modulo beam
size)

Liang Huang, Kai Zhao and Mingbo Ma

Steering Output Style and Topic in Neural Response Generation
Di Wang, Nebojsa Jojic, Chris Brockett and Eric Nyberg

Ixiv



Sunday, September 10, 2017 (continued)

15:50-17:30 Session 6E: Poster Session. Summarization, Generation, Dialog, and Discourse
2

Preserving Distributional Information in Dialogue Act Classification
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari

Adversarial Learning for Neural Dialogue Generation
Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter and Dan Jurafsky

Using Context Information for Dialog Act Classification in DNN Framework
Yang Liu, Kun Han, Zhao Tan and Yun Lei

Modeling Dialogue Acts with Content Word Filtering and Speaker Preferences
Yohan Jo, Michael Yoder, Hyeju Jang and Carolyn Rose

Towards Implicit Content-Introducing for Generative Short-Text Conversation Sys-
tems
Lili Yao, Yaoyuan Zhang, Yansong Feng, Dongyan Zhao and Rui Yan

Affordable On-line Dialogue Policy Learning
Cheng Chang, Runzhe Yang, Lu Chen, Xiang Zhou and Kai Yu

Generating High-Quality and Informative Conversation Responses with Sequence-
to-Sequence Models

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope and Ray
Kurzweil

Bootstrapping incremental dialogue systems from minimal data: the generalisation
power of dialogue grammars
Arash Eshghi, Igor Shalyminov and Oliver Lemon

Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Re-
inforcement Learning

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee
and Kam-Fai Wong

Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova, Ondfej Dusek, Amanda Cercas Curry and Verena Rieser

Challenges in Data-to-Document Generation
Sam Wiseman, Stuart Shieber and Alexander Rush

Ixv



Sunday, September 10, 2017 (continued)

15:50-17:30 Session 6F: Poster Session. Computational Social Science 2

All that is English may be Hindi: Enhancing language identification through auto-
matic ranking of the likeliness of word borrowing in social media

Jasabanta Patro, Bidisha Samanta, Saurabh Singh, Abhipsa Basu, Prithwish
Mukherjee, Monojit Choudhury and Animesh Mukherjee

Multi-View Unsupervised User Feature Embedding for Social Media-based Sub-
stance Use Prediction
Tao Ding, Warren K. Bickel and Shimei Pan

Demographic-aware word associations
Aparna Garimella, Carmen Banea and Rada Mihalcea

A Factored Neural Network Model for Characterizing Online Discussions in Vector
Space
Hao Cheng, Hao Fang and Mari Ostendorf

Dimensions of Interpersonal Relationships: Corpus and Experiments
Farzana Rashid and Eduardo Blanco

Argument Mining on Twitter: Arguments, Facts and Sources
Mihai Dusmanu, Elena Cabrio and Serena Villata

Distinguishing Japanese Non-standard Usages from Standard Ones
Tatsuya Aoki, Ryohei Sasano, Hiroya Takamura and Manabu Okumura

Connotation Frames of Power and Agency in Modern Filims
Maarten Sap, Marcella Cindy Prasettio, Ari Holtzman, Hannah Rashkin and Yejin
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Daniel Preotiuc-Pietro, Sharath Chandra Guntuku and Lyle Ungar

Topic Signatures in Political Campaign Speeches
Clément Gautrais, Peggy Cellier, René Quiniou and Alexandre Termier

Assessing Objective Recommendation Quality through Political Forecasting

H. Andrew Schwartz, Masoud Rouhizadeh, Michael Bishop, Philip Tetlock, Bar-
bara Mellers and Lyle Ungar
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Dan Jurafsky

Coffee Break

Session 7A: Machine Learning 3

Maximum Margin Reward Networks for Learning from Explicit and Implicit Super-
vision
Haoruo Peng, Ming-Wei Chang and Wen-tau Yih

The Impact of Modeling Overall Argumentation with Tree Kernels
Henning Wachsmuth, Giovanni Da San Martino, Dora Kiesel and Benno Stein

Learning Generic Sentence Representations Using Convolutional Neural Networks
Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He and Lawrence
Carin

Repeat before Forgetting: Spaced Repetition for Efficient and Effective Training of

Neural Networks
Hadi Amiri, Timothy Miller and Guergana Savova
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Part-of-Speech Tagging for Twitter with Adversarial Neural Networks
Tao Gui, Qi Zhang, Haoran Huang, Minlong Peng and Xuanjing Huang

Investigating Different Syntactic Context Types and Context Representations for
Learning Word Embeddings

Bofang Li, Tao Liu, Zhe Zhao, Buzhou Tang, Aleksandr Drozd, Anna Rogers and
Xiaoyong Du

Does syntax help discourse segmentation? Not so much
Chloé Braud, Ophélie Lacroix and Anders Sggaard

Nonparametric Bayesian Semi-supervised Word Segmentation
Ryo Fujii, Ryo Domoto and Daichi Mochihashi
Session 7C: Dialogue

Deal or No Deal? End-to-End Learning of Negotiation Dialogues
Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh and Dhruv Batra

Agent-Aware Dropout DON for Safe and Efficient On-line Dialogue Policy Learning
Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang and Kai Yu

Towards Debate Automation: a Recurrent Model for Predicting Debate Winners
Peter Potash and Anna Rumshisky

Conversation Modeling on Reddit Using a Graph-Structured LSTM
Victoria Zayats and Mari Ostendorf
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Joint Prediction of Word Alignment with Alignment Types
Anahita Mansouri Bigvand, Te Bu and Anoop Sarkar

Further Investigation into Reference Bias in Monolingual Evaluation of Machine
Translation
Qingsong Ma, Yvette Graham, Timothy Baldwin and Qun Liu

A Challenge Set Approach to Evaluating Machine Translation
Pierre Isabelle, Colin Cherry and George Foster

Knowledge Distillation for Bilingual Dictionary Induction
Ndapandula Nakashole and Raphael Flauger

Machine Translation, it’s a question of style, innit? The case of English tag ques-
tions
Rachel Bawden

Deciphering Related Languages
Nima Pourdamghani and Kevin Knight

Identifying Cognate Sets Across Dictionaries of Related Languages
Adam St Arnaud, David Beck and Grzegorz Kondrak

Learning Language Representations for Typology Prediction
Chaitanya Malaviya, Graham Neubig and Patrick Littell

Cheap Translation for Cross-Lingual Named Entity Recognition
Stephen Mayhew, Chen-Tse Tsai and Dan Roth

Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space
Specialisation

Ivan Vulié¢, Nikola Mrksi¢ and Anna Korhonen

Classification of telicity using cross-linguistic annotation projection
Annemarie Friedrich and Damyana Gateva
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Semantic Specialisation of Distributional Word Vector Spaces using Monolingual
and Cross-Lingual Constraints

Nikola Mrksi¢, Ivan Vuli¢, Diarmuid o} Séaghdha, Ira Leviant, Roi Reichart, Milica
Gasi¢, Anna Korhonen and Steve Young

Counterfactual Learning from Bandit Feedback under Deterministic Logging : A
Case Study in Statistical Machine Translation
Carolin Lawrence, Artem Sokolov and Stefan Riezler

Session 7E: Poster Session. Information Extraction 2

Learning Fine-grained Relations from Chinese User Generated Categories
Chengyu Wang, Yan Fan, Xiaofeng He and Aoying Zhou

Improving Slot Filling Performance with Attentive Neural Networks on Dependency
Structures
Lifu Huang, Avirup Sil, Heng Ji and Radu Florian

Identifying Products in Online Cybercrime Marketplaces: A Dataset for Fine-
grained Domain Adaptation

Greg Durrett, Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick, Rebecca Portnoff,
Sadia Afroz, Damon McCoy, Kirill Levchenko and Vern Paxson

Labeling Gaps Between Words: Recognizing Overlapping Mentions with Mention
Separators
Aldrian Obaja Muis and Wei Lu

Deep Joint Entity Disambiguation with Local Neural Attention
Octavian-Eugen Ganea and Thomas Hofmann

MinlE: Minimizing Facts in Open Information Extraction
Kiril Gashteovski, Rainer Gemulla and Luciano Del Corro

Scientific Information Extraction with Semi-supervised Neural Tagging
Yi Luan, Mari Ostendorf and Hannaneh Hajishirzi

NITE: A Neural Inductive Teaching Framework for Domain Specific NER
Siliang Tang, Ning Zhang, Jinjiang Zhang, Fei Wu and Yueting Zhuang

Speeding up Reinforcement Learning-based Information Extraction Training using

Asynchronous Methods
Aditya Sharma, Zarana Parekh and Partha Talukdar
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Leveraging Linguistic Structures for Named Entity Recognition with Bidirectional
Recursive Neural Networks
Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-Chieh Chou and Wei-Yun Ma

Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
Emma Strubell, Patrick Verga, David Belanger and Andrew McCallum

Entity Linking via Joint Encoding of Types, Descriptions, and Context
Nitish Gupta, Sameer Singh and Dan Roth

An Insight Extraction System on BioMedical Literature with Deep Neural Networks
Hua He, Kris Ganjam, Navendu Jain, Jessica Lundin, Ryen White and Jimmy Lin
Session 7F: Poster Session. NLP Applications

Word Etymology as Native Language Interference
Vivi Nastase and Carlo Strapparava

A Simpler and More Generalizable Story Detector using Verb and Character Fea-
tures

Joshua Eisenberg and Mark Finlayson

Multi-modular domain-tailored OCR post-correction
Sarah Schulz and Jonas Kuhn

Learning to Predict Charges for Criminal Cases with Legal Basis
Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang Zhang and Dongyan Zhao

Quantifying the Effects of Text Duplication on Semantic Models
Alexandra Schofield, Laure Thompson and David Mimno

Identifying Semantically Deviating Outlier Documents
Honglei Zhuang, Chi Wang, Fangbo Tao, Lance Kaplan and Jiawei Han

Detecting and Explaining Causes From Text For a Time Series Event
Dongyeop Kang, Varun Gangal, Ang Lu, Zheng Chen and Eduard Hovy
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A Novel Cascade Model for Learning Latent Similarity from Heterogeneous Se-
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Zhuoxuan Jiang, Shanshan Feng, Gao Cong, Chunyan Miao and Xiaoming Li

Identifying the Provision of Choices in Privacy Policy Text
Kanthashree Mysore Sathyendra, Shomir Wilson, Florian Schaub, Sebastian Zim-
meck and Norman Sadeh

An Empirical Analysis of Edit Importance between Document Versions
Tanya Goyal, Sachin Kelkar, Manas Agarwal and Jeenu Grover

Transition-Based Disfluency Detection using LSTMs
Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang and Ting Liu
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Allen Schmaltz, Yoon Kim, Alexander Rush and Stuart Shieber
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Session 8A: Machine Translation and Multilingual/Multimodal NLP (Short)

A Study of Style in Machine Translation: Controlling the Formality of Machine
Translation Output
Xing Niu, Marianna Martindale and Marine Carpuat

Sharp Models on Dull Hardware: Fast and Accurate Neural Machine Translation
Decoding on the CPU
Jacob Devlin

Exploiting Cross-Sentence Context for Neural Machine Translation
Longyue Wang, Zhaopeng Tu, Andy Way and Qun Liu

Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Re-

sources
Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya and Eric Fosler-Lussier
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Image Pivoting for Learning Multilingual Multimodal Representations
Spandana Gella, Rico Sennrich, Frank Keller and Mirella Lapata

Neural Machine Translation with Source Dependency Representation
Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu, Akihiro Tamura, Eiichiro
Sumita and Tiejun Zhao

Visual Denotations for Recognizing Textual Entailment
Dan Han, Pascual Martinez-Gémez and Koji Mineshima
Session 8B: Machine Learning (Short)

Sequence Effects in Crowdsourced Annotations
Nitika Mathur, Timothy Baldwin and Trevor Cohn

No Need to Pay Attention: Simple Recurrent Neural Networks Work!
Ferhan Ture and Oliver Jojic

The strange geometry of skip-gram with negative sampling
David Mimno and Laure Thompson

Natural Language Processing with Small Feed-Forward Networks
Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov, Alex Salcianu, David Weiss,
Ryan McDonald and Slav Petrov

Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction
Xin Li and Wai Lam

Analogs of Linguistic Structure in Deep Representations
Jacob Andreas and Dan Klein

A Simple Regularization-based Algorithm for Learning Cross-Domain Word Em-

beddings
Wei Yang, Wei Lu and Vincent Zheng
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Learning what to read: Focused machine reading
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Lei Shu, Hu Xu and Bing Liu
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Monolingual Phrase Alignment on Parse Forests

Yuki Arase'* and Junichi Tsujii*2
!Osaka University, Japan
*Artificial Intelligence Research Center (AIRC), AIST, Japan
2NaCTeM, School of Computer Science, University of Manchester, UK
arase(@ist.osaka-u.ac.jp, J-tsujiilaist.go.jp

Abstract

We propose an efficient method to con-
duct phrase alignment on parse forests
for paraphrase detection. Unlike previ-
ous studies, our method identifies syntac-
tic paraphrases under linguistically mo-
tivated grammar. In addition, it allows
phrases to non-compositionally align to
handle paraphrases with non-homographic
phrase correspondences. A dataset that
provides gold parse trees and their phrase
alignments is created. The experimental
results confirm that the proposed method
conducts highly accurate phrase alignment
compared to human performance.

1 Introduction

Paraphrase detection is crucial in various applica-
tions, which has been actively studied for years.
Due to difficulties caused by the non-homographic
nature of phrase correspondences, the units of cor-
respondence in previous studies are defined as se-
quences of words like in (Yao et al., 2013) and
not syntactic phrases. On the other hand, syn-
tactic structures are important in modeling sen-
tences, e.g., their sentiments and semantic simi-
larities (Socher et al., 2013; Tai et al., 2015).

In this paper, we present an algorithm to align
syntactic phrases in a paraphrased pair of sen-
tences. We show that (1) the problem of identify-
ing a legitimate set of syntactic paraphrases under
linguistically motivated grammar is formalized,
(2) dynamic programing a la CKY (Cocke, 1969;
Kasami, 1965; Younger, 1967) makes phrase
alignment computationally feasible, (3) alignment
quality of phrases can be improved using n-best
parse forests instead of 1-best trees, and (4) non-
compositional alignment allows non-homographic
correspondences of phrases. Motivated by recent

1

Source: Whenever I go to the ground floor for a smoke,
I always come face to face with them.
Target: Whenever I go down to smoke a cigarette,
I come face to face with one of them.
W VP <o

PP« PPl yp
/EP \
A\

X‘ﬁp “- s cp
Y % . "
~+-goto the ground floor:for-a smoke ﬁp
s VP /
NP
— ~

e ~go down to smoke a cigarette

Figure 1: Example of phrase alignments

findings that syntax is important for phrase embed-
ding (Socher et al., 2013) in which phrasal para-
phrases allow semantic similarity to be replicated
(Wieting et al., 2016, 2015), we focus on the syn-
tactic paraphrase alignment.

Fig. 1 shows a real example of phrase align-
ments produced by our method. Alignment pro-
ceeds in a bottom-up manner using the compo-
sitional nature of phrase alignments. First, word
alignments are given. Then, phrase alignments are
recursively identified by supporting relations be-
tween phrase pairs. Non-compositional alignment
is triggered when the compositionality is violated,
which is common in paraphrasing.

For systematic research on syntactic phrase
alignment in paraphrases, we constructed a gold
standard dataset of paraphrase sentences with
phrase alignment (20,678 phrases in 201 para-
phrasal sentences). This dataset will be made pub-
lic for future research on paraphrase alignment.
The experiment results show that our method
achieves 83.64% and 78.91% in recall and preci-
sion in terms of alignment pairs, which are 92%
and 89% of human performance, respectively.

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1-11
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2 Related Work

Due to the large amount of sentence-level para-
phrases collected (Dolan et al., 2004; Cohn et al.,
2008; Heilman and Smith, 2010; Yin and Schiitze,
2015; Biran et al., 2016), researchers can identify
phrasal correspondences for natural language in-
ferences (MacCartney et al., 2008; Thadani et al.,
2012; Yao et al., 2013). Current methods extend
word alignments to phrases in accordance with the
methods in statistical machine translation. How-
ever, phrases are defined as a simple sequence of
words, which do not conform to syntactic phrases.
PPDB (Ganitkevitch et al., 2013) provides syntac-
tic paraphrases similar to synchronous context free
grammar (SCFG). As discussed below, SCFG cap-
tures only a fraction of paraphrasing phenomenon.

In terms of our approach, parallel parsing is
a relevant area. Smith and Smith (2004) re-
lated monolingual parses in different languages
using word alignments, while Burkett and Klein
(2008) employed phrase alignments. Moreover,
Das and Smith (2009) proposed a model that gen-
erates a paraphrase of a given sentence using
quasi-synchronous dependency grammar (Smith
and Eisner, 2006). Since they used phrase align-
ments simply as features, there is no guarantee that
the output alignments are legitimate.

Synchronous rewriting in parallel parsing (Kae-
shammer, 2013; Maillette de Buy Wenniger and
Sima’an, 2013) derives parse trees that conform to
discontinuous word alignments. In contrast, our
method respects parse trees derived by linguis-
tically motivated grammar while handling non-
monotonic phrase alignment.

The synchronous assumption in parallel parsing
has been argued to be too rigid to handle parallel
sentence pairs or even paraphrasal sentence pairs.
Burkett et al. (2010) proposed weakly synchro-
nized parallel parsing to tackle this problem. Al-
though this model increases the flexibility, the ob-
tainable alignments are restricted to conform to in-
version transduction grammar (ITG) (Wu, 1997).
Similarly, Choe and McClosky (2015) used de-
pendency forests of paraphrasal sentence pairs and
allowed disagreements to some extent. However,
alignment quality was beyond their scope. Weese
et al. (2014) extracted SCFG from paraphrase cor-
pora. They showed that parsing was only success-
ful in 9.1% of paraphrases, confirming that a sig-
nificant amount of transformations in paraphrases
do not conform to compositionality or ITG.

Explanation

5, t Source and target sentences
T Phrase in the parse tree
TR, T) TR 18 a phrase of a root node; 7y is

a special phrase with the null span
that exists in every parse tree

Phrase aligned to 7y

Pair of entities; a pair itself can be
regarded as an entity

Set of entities

Derive the mother node of a phrase

Derive the left and right child nodes,
respectively

ds(-) Derive descendants of a node in-
cluding self; 7 € ds(7)
lca(-,-) | Derive the lowest common ancestor

(LCA) of two phrases

Table 1: Notation summary

3 Formulation of Phrase Alignment

In this study, we formalize the problem of legiti-
mate phrase alignment. For simplicity, we discuss
tree alignment instead of forests using Fig. 2 as a
running example.

3.1 Notation

Table 1 describes the notation used in this pa-
per. We call a paraphrased pair source sentence
s and the other as farget t. Superscripts of s and
t represent the source and the target, respectively.
Specifically, (7%, 7%) is a pair of source and target
phrases. We represent f1/f2/ -+ /fi(+) to abbre-
viate fi(--- fo(f1(:))---) as an intuitive illustra-
tion. It should be noted that the order of the func-
tion symbols is reversed, e.g., I /r(7) (= r(I(1)))
derives the right-child of the left-child node of T,
and [ /ds(7) derives the left descendants of 7.

3.2 Definition of a Legitimate Alignment

A possible parse tree alignment of s and ¢ is
represented as a set of aligned pairs of phrases
{(r5,7})}. 77 and 7/ are the source and the target
phrases that constitute the i-th alignment, respec-
tively. Either 7§ or 7} can be 7j when a phrase
does not correspond to another sentence, which
is called a null-alignment. Each phrase alignment

can have support relations as:

Definition 3.1. A pair h; = (77, 7}) is supported

17"
by alignments of their descendant phrases when



hy, = (z5,77)

i = (T, Th)

Figure 2: Alignment pair and its supports

((U/ds(7?),1/ds(r})), (r/ds(77),r/ds(1})))

or  ({1/ds(r?),r/ds(7})), (r/ds(77), 1/ds(T))))
exists. Pre-terminal phrases are supported by the
corresponding word alignments.

. . R

Support relations are denoted using = or =
that represent the order of support phrases. Specif-
ically, ((I(7?),U(m))), (r(77), (7)) = Ty is

straight while ((I(5),r(r9)), (r(72),1(r1))) &

(2 7 (2 7

hh; is inverted. In Fig. 2, ((75,,7L), (r5,7L)) =
lh;, where 7, = [/ds(77) and 7,5 = r/ds(7}).

The number of all possible alignments in s and
t, which is denoted as H, is exponential to the
length. However, only its fraction constitutes le-
gitimate parse tree alignments. For example, a
subset in which the same phrase in s is aligned
with multiple phrases in ¢, called competing align-
ments, is not legitimate as a parse tree alignment.
The relationships among phrases in parse trees im-
pose constraints on a subset to provide legitimacy.

Given word alignments W that provide the ba-
sis for the phrase alignment, its legitimate set
Wi C W should be 1-to-1 alignments. Start-
ing with W, a legitimate set of phrase alignments
Hj (C H) with an accompanying set of support re-
lations, A, (C A) is constructed. A legitimate set
of alignments (IHy, Ay) can be enlarged only by
adding h; to H; with either the support relation

= or 2 added to A 1. These assume competing
alignments among the child phrases, thus cannot
co-exist in the same legitimate set.

lh; can be supported by more than one pair of
descendant alignments in Ay, ie., {{(ly,, )} =
h; or {(ly,, )} £ T, exists. For H,, = {hm},
we define the relationship < for alignments, i.e.,
h,, < T, meaning that 7,7 € ds(7;) A, € ds(7}).
For example, in Fig. 2, h,,, < hh; and h,, < ;.

Theorem 3.1. There always exist the maximum
pair by, € H,,, where Vh,,, € H,,,, h,, < ;.

(Hrz, Ar) should satisfy the conditions in Def-
inition 3.2 to be legitimate as a whole. We denote
h; & lh; when a chain exists in Az, which con-
nects Ih; to Ih; regardless of straight or inverted di-
rections of intermediate supports, e.g., ((l;, ) =

R
hit1), ((hit1, ) = hito), ..., ((By-1,-) = ).
Note Ih; Ky lh; is always true.
Definition 3.2. (H;, A;) should satisfy:

1. Root-Pair Containment: (75,,75) € H,

2. Same-Tree: {5 | (tf,7}!) € HL} are subsets
of phrases in the same complete parse tree of
s (same fort).

3. Relevance: Vh; € Hy, h; v <Tf’g771ta> €AL

4. Consistency: In Hy, a phrase (# 1p) in the
source tree is aligned with at most one phrase
(# Tp) in the target tree, and vice versa.

5. Monotonous: For (18, 7}), (TJ‘?,T}) € Hy,

7 € ds(77) ifrle dS(T;).

6. Maximum Set: Hp is the maximum legiti-
mate set, in the sense that V{75, 7t) € (H\
Hy), {(r%,71)} UH, cannot be a legitimate
set with any A.

The Same-Tree condition is required to con-
duct an alignment on forests that consist of mul-
tiple trees in a packed representation. The Consis-
tency condition excludes competing alignments.
The Monotonous condition is a consequence of
compositionality. The Maximum Set means if
h,,,h, € Hjy are in positions of a parse tree
that can support hh;, h; and the support relation
should be added to (Hy, Ay). Such a strict local-
ity of compositionality is often violated in prac-
tice as discussed in Sec. 2. To tackle this issue, we
add another operation to align phrases in a non-
compositional way in Sec. 4.3.

3.3 Lowest Common Ancestor

The same aligned pair can have more than one sup-
port of descendant alignments because there are
numerous descendant node combinations. How-
ever, the Monotonous and the Maximum Set con-
ditions allow Ay, to be further restricted so that
each of aligned pairs in IHy, has only one support.

Let us assume that alignment hh; is supported
by more than one pair of descendant alignments



Figure 3: Inside probability depends on support
alignments and paths to reach an LCA.

in Ap,ie, Ap 2 ({(hy,h,)} = h;)!. We de-
note H,, = {h,,} and H,, = {h,}. For each
h,, € H,, and h,, € H,,, we remove all support
relations from Aj, except for the maximum pairs
or the pre-terminal alignments. The resultant set
A satisfies:

Theorem 3.2. For all (<]hm,]h ) = hy) € A,

= lca(T] and 7} = lca(t},, 7t) are true.

T)’L7 TL) mr'n

In Fig. 2, 77 is the lowest common ancestor
(LCA) of 7, and 75, and 7/ is the LCA of 7}, and
7t. Theorem 3.2 constitutes the basis for the dy-
namic programming (DP) in our phrase alignment
algorithm (Sec. 4.2).

4 Modeling of Phrase Alignment

We formally model the phrase alignment process
as illustrated in Fig. 3, where h; is aligned from
descendant alignments, i.e., I, and h,,.

4.1 Probabilistic Model

Similar to the probabilistic context free grammar
(PCFQG), the inside probability «; of hh; is deter-
mined by the inside probabilities, o, and «,, of
the support pairs, together with the probability of
the rule, i.e., the way by which h,, and h,, are
combined to support h; as shown in Fig. 3. It is
characterized by four paths, 7, ; (the path from
Ty, 10 7)), 7'(':171' (1, to 77), 7T£n7i (Tfn to Tf), and ﬂfm-
(7} to 7).

Each path consists of a set of null-aligned

phrases ¢ € (¢,7y) and their mothers, e.g.,
the path 7, ; in Fig. 3 is a set of (¢7,m(¢1)),
(¢3,m(95)), and (g5, m(¢5)). We assume that

each occurrence of a null-alignment is indepen-

R T
'= and = are not distinguished here.

ay, (hs, T )Q

-E H-EE

ay, (hg, h7)

Eﬂ-

Figure 4: Alignment pairs and packed supports

dent. Thus, its probability 5, ; is computed as:

mi = gzens Pr(0%,7p)-

fm., m.i» and L . are computed in the same man-
S — S
ner. We abbrev1ate Yoni = ﬂmﬂ ni» likewise
AL o= Bt .BL .. Finally, o; can be represented
as a simple relation:

o = OtmOlnP (Tz » Ti )7mn27mnz (1)

P.(-,-) is the alignment probability parameterized
in Sec. 5. Since we assume that the structures of
parse trees of s and ¢ are determined by a parser,
the values of ~;, . ; and 'anm are fixed. There-
fore, by traversing the parse tree in a bottom-
up manner, we can identify an LCA (i.e., ;) for
phrases 7,,, and 7,, while simultaneously comput-
ing Ym,n,i-

4.2 Alignment Algorithm

Algorithm 4.1 depicts our algorithm. Given word
alignments W = {(w$,w!)}, it constructs legit-
imate sets of aligned pairs in a bottom-up man-
ner. Like the CKY algorithm, Algorithm 4.1 uses
DP to efficiently compute all possible legitimate
sets and their probabilities in parallel. In addi-
tion, null-alignments are allowed when aligning an
LCA supported by aligned descendant nodes.

A[] is indexed by phrases in the parse tree of s
and maintains a list of all possible aligned pairs.
Furthermore, to deal with non-monotonic align-
ment (Sec. 4.3), it keeps all competing hypotheses
of support relations using packed representations.
Specifically, h; is accompanied by its packed sup-
port list as illustrated in Fig. 4; hy = (75, 7)
is aligned with supports of {(«;, (I, h,))} like
(a1, (hs, hy)). Depending on the support align-
ments, lh; has different inside probabilities, i.e.,
a1, ag, and az. Since the succeeding process of
alignment only deals with the LCA’s of 7§ and 7}
that are independent of the support alignment, all



Algorithm 4.1 Phrase Alignment

Algorithm 4.2 Non-Compositional Alignment

1: LCAs and v in parse trees of s and ¢ are com-
puted and stored in Lca®[-][-] and Lea'[-][].
set A[7°] «— () for all 7*
for all (w®, w') € W do
Find 7 and 7* covering w® and w’
Compute o; of (7%, 7%) using Eq. (1)
PACK((T%, 7%, (a, 0), A)
for all 73,, 7, do > Trace the source tree from
the bottom to top
for all (77 ,7mm
ALIGN(T;,

A U

) € Lea®[75,
Ti )’Y?izni’A)
10: function ALIGN( a1,y A)
11:  forall b, = (73, m) € AlrS] do

|[75] do

n

o *®

122 forallh, = (75, 7%) € A[r:] do
32 ()« Leal[rh][r!]

14: Compute «; using Eq. (1)

15: PACK((7$, 7}), (i, (T, Thy,)), A)

16: function PACK((7%, 7%), («

17:  if (75, 7%) € A[r*] then

18: Al + A[T°] U (e, (s, hhy)) > Merge
supports and their inside probability

19: else

20 A[r®] + (75,74, {«

(g, ), A)

, (i, Thn)))

support relations are packed as a support list* by
the PACK function.

4.3 Non-Compositional Alignment

A monotonic alignment requires 75, € h,, and
7t € hy, to have an LCA, which adheres to the
compositionality in language. However, previous
studies declared that the compositionality is vio-
lated in a monolingual phrase alignment (Burkett
et al., 2010; Weese et al., 2014). Heilman and
Smith (2010) discuss complex phrase reordering
is prevalent in paraphrases and entailed text.

A non-monotonic alignment occurs when cor-
responding phrases have largely different orders,
i.e., one of them (e.g., T;;L) is an ancestor of another
(e.g., Tt) or the same phrase. Such a case could
be exceptionally compatible, when 7!, has null-
alignments and all the aligned phrases of 7! fit in
these null-alignments. A new alignment (77, 7/ (=
7t)) would be non-monotonically formed. Fig. 5
shows a real example of non-compositional align-
ment produced by our method. The target phrase
7t (“through the spirit of teamwork”) is null-

This is true except for a non-compositional alignment
where the packed representation must be unpacked.

1: function TRACE(T,, Tn) > Ty, € ds(Tim)
22 V10
for all [7,,,]° do
if 7,, € ds(¢) for 3 € ®l™]'" then
Vo VU (Ul g, (@ g)u
GAP(Ty, ¢) >

AN

6:  elseif 7, € ds(¢) for 3 € Wl then
7: V < VU TRACE(7,, ¥)

8: else

9: for all [7,,)/ do

10 V <+ VUDOWN([1)7, [tm]9)

11: returnV;

alignment when aligning 7%, and 7!, but then the
alignment to 7,7 (“Relying on team spirit”) is al-
lowed by non-compositional alignment of 7.
Unlike monotonous alignment, we have to ver-
ify whether the internal structures of 7°, and 7} are
compatible. Since the internal structures of 7}, and
7! depend on their supporting alignments, their
packed representations in A have to be unpacked,
and each pair of supporting alignments for h,,, and
Th,, must be checked to confirm compatibility. Fur-
thermore, since the aligned phrases inside 7, and
! have their own null-alignments, we need to un-
pack deeper supporting alignments as well.
Algorithm 4.2 checks if target phrases 7,, and
Tn, € ds(7,,) are compatible. We use the following
notations: [7,,,]" and [7,,) represent the phrases of
Tm and 7, with the i-th and j-th sets of supporting
alignments, respectively. For 7¢ in Fig. 4, there are
[74]! supported by (hs, hs) and [£]? supported by
(hg, 7). [m, ] consists of sets of aligned target
phrases Wil

= {(;SET’”] } ([} is similar).

For each [r,,,]%, if 7, fits in its null-alignment
like in Fig. 5, the alignment information is updated
at line 5, where GAP function takes two phrases
and returns a set of null-alignments on a path be-
tween them. If 7,, is a descendant of a support of
Tm, the compatibility is recursively checked (line
7). Otherwise, the compatibility of the supports of
Tn, and 7, are recursively checked in DOWN func-
tion in a similar manner (line 10).

When TRACE function returns a set of
{(TF ®F)}, all ¢ € U* are aligned with phrases
in the source and their inside probabilities are
stored in A. Thus we can compute the inside prob-
ability for each (U* &), which is stored in A to-

{1/)[Tm } and null-alignments

[Tm] ‘



Source: Relying on team spirit, expedition members defeated difficulties.
Target: Members of the scientific team overcame difficulties through the spirit of teamwork.
N
T; S

S=--» VP e PP TS

Relying on --- spirit , -

members defeated difficulties Members ---

overcame difficulties through --- teamwork

Figure 5: Example of a non-compositional alignment

gether with a new alignment pair (75, 7}) where

= lca(Ts and 77 = 7.

m7 n)

4.4 Forest Alignment

Although we have discussed using trees for clarity,
the alignment is conducted on forests. The align-
ment process is basically the same. The only dif-
ference is that the same pair has multiple LCAs.
Hence, we need to verify if the sub-trees can be
on the same tree when identifying their LCAs
since multiple nodes may cover the same span
with different derivations. This is critical for non-
compositional alignment because whether the in-
ternal structures are on the same tree must be con-
firmed while unpacking them.

Our alignment process corresponds to re-
ranking of forests and may derive a different tree
from the 1-best, which may resolve ambiguity in
parsing. We use a parser trained beforehand be-
cause joint parsing and alignment is computation-
ally too expensive.

5 Parameterization

Next, we parameterize the alignment probability.

5.1 Feature-enhanced EM Algorithm

We apply the feature-enhanced EM (Berg-
Kirkpatrick et al., 2010) due to its ability to use
dependent features without an irrational indepen-
dence assumption. This is preferable because the
attributes of phrases largely depend on each other.

Our method is computationally heavy since it
handles forests and involves unpacking in the non-
compositional alignment process. Thus, we use
Viterbi training (Brown et al., 1993) together with
a beam search of size y, € N on the feature-
enhanced EM. Also, mini-batch training (Liang

and Klein, 2009) is applied. Such an approxima-
tion for efficiency is common in parallel parsing
(Burkett and Klein, 2008; Burkett et al., 2010).

In addition, an alignment supported by distant
descendants tends to fail to reach a root-pair align-
ment. Thus, we restrict the generation gap be-
tween a support alignment and its LCA to be less
than or equal to ;14 € N.

5.2 Features

In feature-enhanced EM, the alignment probabil-
ity in Eq. (1) is parameterized using features:

exp(w - F(af, al))

P.(1f, 1} =

i Ti Z(r] ) e exp(w - IF(a$,at))’
where a = (ag,--- ,ay) consists of n attributes
of 7. F(+,-) and w are vectors of feature functions

and their weights, respectively.

In a parse tree, the head of a phrase determines
its property. Hence, a lemmatized lexical head
alex € a combined with its syntactic category
acat € a is encoded as a feature® as shown be-
low. We use semantic (instead of syntactic) heads
to encode semantic relationships in paraphrases.

1: ]l(alex = Cat = '7afex = '7a€at = )
2: ]l(Surface&rn(aleX = al,. =)

3:  1(WordnetSim(ai = -, al, ="))

4:  1(EmbeddingSim(ai,, = -, aj, = *))
5: ]l(IsPrepos,lt101r1Palr(aleX =-al, =")
6: ]1<agat cat )

7: ]l(IsSameCategory( asy = aly =)

The first feature is an indicator invoked only at
specific values. On the other hand, the rest of the

3We also tried features based on the configurations of the
source and target sub-trees similar to (Das and Smith, 2009)
as well as features based on the spans of null-alignments.
However, none of them contributed to alignment quality.



features are invoked across multiple values, allow-
ing general patterns to be learned. The second fea-
ture is invoked if two heads are identical or a head
is a substring of another. The third feature is in-
voked if two heads are synonyms or derivations
that are extracted from the WordNet*. The fourth
feature is invoked if the cosine similarity between
word embeddings of two heads is larger than a
threshold. The fifth feature is invoked when the
heads are both prepositions to capture their differ-
ent natures from the content words. The last two
features are for categories; the sixth one is invoked
at each category pair, while the seventh feature is
invoked if the input categories are the same.

To avoid generating a huge number of features,
we reduce the number of syntactic categories; for
contents (N, V, ADJ, and ADV), prepositions, co-
ordinations, null (i.e., for 7p), and others.

5.3 Penalty Function

Since our method allows null-alignments, it has a
degenerate maximum likelihood solution (Liang
and Klein, 2009) that makes every phrase null-
alignment. Similarly, a degenerate solution overly
conducts non-compositional alignment.

To avoid these issues, a penalty is incorporated:

exp{=(I7}lo +I7/ls + s + 1)}
(non-compositional alignment)

P18, 7)) =
’ exp{~(|7lo + Irlo + 1)}
(otherwise)
where | - |4 computes the span of internal null-

alignments, and p,, > 1.0 and p. € R4 con-
trol the strength of the penalties of the null-
alignment and the non-compositional alignment,
respectively. The penalty function is multiplied by
Eq. (1) as a soft-constraint for re-ranking align-
ment pairs in Algorithm 4.1.

5.4 Combination with Parse Probability

Following the spirit of parallel parsing that si-
multaneously parses and aligns sentences, we lin-
early interpolate the alignment probability with
the parsing probability once the parameters are
tuned by EM. When aligning a node pair (7, 7}),
the overall probability is computed as:

(1 — pp)ey; + ppo(rs)o(rh),

where o(-) gives the marginal probability in pars-
ing and 11, € [0, 1] balances these probabilities.

*nttp://wordnet .princeton.edu

6 Evaluation

As discussed in Sec. 2, previous studies have not
conducted syntactic phrase alignment on parse
trees. A direct metric does not exist to compare
paraphrases that cover different spans, i.e., our
syntactic paraphrases and paraphrases of n-grams.
Thus, we compared the alignment quality to that
of humans as a realistic way to evaluate the per-
formance of our method.

We also evaluated the parsing quality. Similar to
the alignment quality, differences in phrase struc-
tures disturb the comparisons (Sagae et al., 2008).
Our method applies an HPSG parser Enju (Miyao
and Tsujii, 2008) to derive parse forests due to its
state-of-the-art performance and ability to provide
rich properties of phrases. Hence, we compared
our parsing quality to the 1-best parses of Enju.

6.1 Language Resources

We used reference translations to evaluate ma-
chine translations® as sentential paraphrases
(Weese et al., 2014). The reference translations of
10 to 30 words were extracted and paired, giving
41K pairs as a training corpus.

We use different kinds of dictionaries to obtain
word alignments W as well as to compute fea-
ture functions. First, we extract synonyms and
words with derivational relationship using Word-
Net. Then we handcraft derivation rules (e.g.,
create, creation, creator) and extract potentially
derivational words from the training corpus. Fi-
nally, we use prepositions defined in (Srikumar
and Roth, 2013) as a preposition dictionary to
compute the feature function.

In addition, we extend W using word embed-
dings; we use the MVLSA word embeddings
(Rastogi et al., 2015) given the superior perfor-
mance in word similarity tasks. Specifically,
we compute the cosine similarity of embeddings;
words with a higher similarity value than a thresh-
old are determined as similar words. The threshold
is empirically set as the 100th highest similarity
value between words in the training corpus.

6.2 Gold-Standard Data

Since no annotated corpus provides phrase align-
ments on parse trees, we created one through two-
phase manual annotation. First, a linguistic expert
with rich experience on annotating HPSG trees

SNIST OpenMT corpora: LDC2010T14, LDC2010T17,
LDC2010T21, LDC2010T23, LDC2013T03



annotated gold-trees to paraphrasal sentence pairs
sampled from the training corpus. To diversify
the data, only one reference pair per sentence of
a source language was annotated. Consequently,
201 paraphrased pairs with gold-trees (containing
20, 678 phrases) were obtained.

Next, three professional English translators
identified paraphrased pairs including null-
alignments given sets of phrases extracted from
the gold-trees. These annotators independently
annotated the same set, yielding 14,356 phrase
alignments where at least one annotator regarded
as a paraphrase. All the annotators agreed that
77% of the phrases were paraphrases.

We used 50 sentence pairs for development and
another 151 for testing. These pairs were excluded
from the training corpus.

6.3 Evaluation Metric

Alignment Quality Alignment quality was
evaluated by measuring the extent that the au-
tomatic alignment results agree with those of
humans. Specifically, we evaluated how gold-
alignments can be replicated by automatic align-
ment (called recall) and how automatic alignments
overlap with alignments that at least an annotator
aligned (called precision) as:

{h/he H, ANhe GNG'}|

Recall =
eca CNa ,
hheHoAhe GUG
Precision = ‘{ ’ € Ha = }’7
[Hal

where Ha is a set of alignments, while G and G’
are the ones that two of annotators produce, re-
spectively. The function of | - | counts the elements
in a set. There are three combinations for G and
G’ because we had three annotators. The final pre-
cision and recall values are their averages.

Parsing Quality The parsing quality was evalu-
ated using the CONLL-X (Buchholz and Marsi,
2006) standard. Dependencies were extracted
from the output HPSG trees, and evaluated using
the official script®. Due to this conversion, the
accuracy on the relation labels is less important.
Thus, we reported only the unlabeled attachment
score (UAS)’. The development and test sets pro-
vide 2,371 and 6, 957 dependencies, respectively.

*http://ilk.uvt.nl/conll/software.html
7 Although omitted, the labeled attachment score showed
the same tendency as UAS.

Roles of hyper-parameters

trn | Control penalty for null-alignment

te | Control penalty for non-compositional
alignment

1p | Balance alignment and parsing prob.

Uy | Beam size at alignment

g | Generation gap to reach an LCA

Table 2: Summary of the hyper-parameters

’ Method H Recall\ Prec. \ UAS H % ‘
’ Human H 90.65 ‘ 88.21 \ - H - ‘

Proposed || 83.64 | 78.91 | 93.49 | 98
Monotonic || 82.86* | 77.97* | 93.49 98
w/o EM 81.33* | 75.09* | 92.91* | 86
1-best tree || 80.11* | 73.26™ | 93.56 | 100

Table 3: Evaluation results on the test set, where *
represents p-value < 0.05 against our method.

Since all metrics were computed in a set, the
approximate randomization (Noreen, 1989; Rie-
zler and Maxwell, 2005) (B = 10K) was used
for significance testing. It has been shown to
be more conservative than using bootstrap resam-
pling (Riezler and Maxwell, 2005).

6.4 Results and Discussion

Overall Results Table 2 summarizes the hyper-
parameters, which were tuned to maximize UAS
in the development set using the Bayesian opti-
mization. For efficiency, we used 2K samples
from the training corpus and set the mini-batch
size in feature-enhanced EM to 200 similar to
“rapid training” in (Burkett and Klein, 2008). We
also set pp = 50 during EM training to manage
the training time.

Table 3 shows the performance on the test set
for variations of our method and that of the human
annotators. The last column shows the percentage
of pairs where a root pair is reached to be aligned,
called reachability. Our method is denoted as Pro-
posed, while its variations include a method with
only monotonic alignment (monotonic), without
EM (w/o EM), and a method aligning only 1-best
trees (1-best tree).

The performance of the human annotators was
assessed by considering one annotator as the test
and the other two as the gold-standard, and then
taking the averages, which is the same setting as
our method. We regard this as the pseudo inter-



annotator agreement, since the conventional inter-
annotator agreement is not directly applicable due
to variations in aligned phrases.

Our method significantly outperforms the oth-
ers as it achieved the highest recall and precision
for alignment quality. Our recall and precision
reach 92% and 89% of those of humans, respec-
tively. Non-compositional alignment is shown to
contribute to alignment quality, while the feature-
enhanced EM is effective for both the alignment
and parsing quality. Comparing our method and
the one aligning only 1-best trees demonstrates
that the alignment of parse forests largely con-
tributes to the alignment quality. Although we
confirmed that aligning larger forests slightly im-
proved recall and precision, the improvements
were statistically insignificant. The parsing qual-
ity was not much affected by phrase alignment,
which is further investigated in the following.

Finally, our method achieved 98% reachabil-
ity, where 2% of unreachable cases were due to
the beam search. While understanding that the
reachability depends on experimental data, ours
is notably higher than that of SCFG, reported as
9.1% in (Weese et al., 2014). These results show
the ability of our method to accurately align para-
phrases with divergent phrase correspondences.

Effect of Mini-Batch Size We investigated the
effect of the mini-batch size in EM training using
the entire training corpus (41K pairs). When in-
creasing the mini-batch size from 200 to 2K, re-
call, precision, and UAS values are fairly stable.
In addition, they are insensitive against the amount
of training corpus, showing the comparable values
against the model trained on 2K samples. These
results demonstrate that our method can be trained
with a moderate amount of data.

Observations Previous studies show that paral-
lel parsing improves parsing quality, while such
an effect is insignificant here. We examine causes
through manual observations.

The evaluation script indicated that our method
corrected 34 errors while introducing 41 new er-
rors®. We further analyzed these 75 cases; 12 cases
are ambiguous as both the gold-standard and the
output are correct. In addition, 8 cases are due to
erroneous original sentences that should be disre-
garded, e.g., “ For two weeks ago,...” and “Accord-

8 Alignments were obtained by the model trained using the
entire corpus with the 1 K mini-batch size.

ing to the source, will also meet...”. Consequently,
our method corrected 32 errors while introducing
23 errors in reality for 446 errors in 1-best trees,
which achieves a 2.5% error reduction.

These are promising results for our method to
improve parsing quality, especially on the PP-
attachment (159 errors in 1-best), which contained
14 of the 32 corrected errors. Fig. 1 shows a real
example; the phrase of “for a smoke” in the source
was mistakenly attached to “ground floor” in the
1-best tree. This error was corrected as depicted.

Duan et al. (2016) showed that paraphrases ar-
tificially generated using n-best parses improved
the parsing quality. One reason for limited im-
provement in our experiments may be because
structural changes in our natural paraphrases are
more dynamic than the level useful to resolve am-
biguities. We will further investigate this in future.

7 Conclusion

We propose an efficient method for phrase align-
ment on parse forests of paraphrased sentences.
To increase the amount of collected paraphrases,
we plan to extend our method to align compara-
ble paraphrases that are partially paraphrasal sen-
tences. In addition, we will apply our method to
parallel parsing and other grammar, e.g., projec-
tive dependency trees. Furthermore, we will apply
such syntactic paraphrases to phrase embedding.
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Fast(er) Exact Decoding and Global Training for Transition-Based
Dependency Parsing via a Minimal Feature Set
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Abstract

We first present a minimal feature set for
transition-based dependency parsing, con-
tinuing a recent trend started by Kiper-
wasser and Goldberg (2016a) and Cross
and Huang (2016a) of using bi-directional
LSTM features. We plug our minimal
feature set into the dynamic-programming
framework of Huang and Sagae (2010)
and Kuhlmann et al. (2011) to produce the
first implementation of worst-case O(n?)
exact decoders for arc-hybrid and arc-
eager transition systems. With our mini-
mal features, we also present O(n?) global
training methods. Finally, using ensem-
bles including our new parsers, we achieve
the best unlabeled attachment score re-
ported (to our knowledge) on the Chinese
Treebank and the ‘“‘second-best-in-class”
result on the English Penn Treebank.

1 Introduction

It used to be the case that the most accurate de-
pendency parsers made global decisions and em-
ployed exact decoding. But transition-based de-
pendency parsers (TBDPs) have recently achieved
state-of-the-art performance, despite the fact that
for efficiency reasons, they are usually trained to
make local, rather than global, decisions and the
decoding process is done approximately, rather
than exactly (Weiss et al., 2015; Dyer et al., 2015;
Andor et al., 2016). The key efficiency issue for
decoding is as follows. In order to make accurate
(local) attachment decisions, historically, TBDPs
have required a large set of features in order to ac-
cess rich information about particular positions in
the stack and buffer of the current parser configu-
ration. But consulting many positions means that
although polynomial-time exact-decoding algo-
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rithms do exist, having been introduced by Huang
and Sagae (2010) and Kuhlmann et al. (2011), un-
fortunately, they are prohibitively costly in prac-
tice, since the number of positions considered can
factor into the exponent of the running time. For
instance, Huang and Sagae employ a fairly re-
duced set of nine positions, but the worst-case run-
ning time for the exact-decoding version of their
algorithm is O(n®) (originally reported as O(n"))
for a length-n sentence. As an extreme case, Dyer
et al. (2015) use an LSTM to summarize arbitrary
information on the stack, which completely rules
out dynamic programming.

Recently, Kiperwasser and Goldberg (2016a)
and Cross and Huang (2016a) applied bi-
directional long short-term memory networks
(Graves and Schmidhuber, 2005, bi-LSTMs) to
derive feature representations for parsing, because
these networks capture wide-window contextual
information well. Collectively, these two sets of
authors demonstrated that with bi-LSTMs, four
positional features suffice for the arc-hybrid pars-
ing system (K&G), and three suffice for arc-
standard (C&H).!

Inspired by their work, we arrive at a minimal
feature set for arc-hybrid and arc-eager: it con-
tains only two positional bi-LSTM vectors, suf-
fers almost no loss in performance in comparison
to larger sets, and out-performs a single position.
(Details regarding the situation with arc-standard
can be found in §2.)

Our minimal feature set plugs into Huang and
Sagae’s and Kuhlmann et al.’s dynamic program-

'We note that K&G were not focused on minimizing posi-
tions, although they explicitly noted the implications of doing
so: “While not explored in this work, [fewer positions] re-
sults in very compact state signatures, [which is] very appeal-
ing for use in transition-based parsers that employ dynamic-
programming search” (pg. 319). C&H also noted in their
follow-up (Cross and Huang, 2016b) the possibility of future
work using dynamic programming thanks to simple features.

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 12-23
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics



ming framework to produce the first implementa-
tion of O(n?) exact decoders for arc-hybrid and
arc-eager parsers. We also enable and implement
O(n?) global training methods. Empirically, en-
sembles containing our minimal-feature, globally-
trained and exactly-decoded models produce the
best unlabeled attachment score (UAS) reported
(to our knowledge) on the Chinese Treebank and
the “second-best-in-class” result on the English
Penn Treebank.”

Additionally, we provide a slight update to
the theoretical connections previously drawn by
Go6mez-Rodriguez, Carroll, and Weir (2008, 2011)
between TBDPs and the graph-based dependency
parsing algorithms of Eisner (1996) and Eisner
and Satta (1999), including results regarding the
arc-eager parsing system.

2 A Minimal Feature Set

TBDPs incrementally process a sentence by mak-
ing transitions through search states representing
parser configurations. Three of the main transition
systems in use today (formal introduction in §3.1)
all maintain the following two data structures in
their configurations: (1) a stack of partially parsed
subtrees and (2) a buffer (mostly) of unprocessed
sentence tokens.

To featurize configurations for use in a scoring
function, it is common to have features that extract
information about the first several elements on the
stack and the buffer, such as their word forms and
part-of-speech (POS) tags. We refer to these as po-
sitional features, as each feature relates to a partic-
ular position in the stack or buffer. Typically, mil-
lions of sparse indicator features (often developed
via manual engineering) are used.

In contrast, Chen and Manning (2014) intro-
duce a feature set consisting of dense word-, POS-,
and dependency-label embeddings. While dense,
these features are for the same 18 positions that
have been typically used in prior work. Re-
cently, Kiperwasser and Goldberg (2016a) and
Cross and Huang (2016a) adopt bi-directional
LSTMs, which have nice expressiveness and
context-sensitivity properties, to reduce the num-
ber of positions considered down to four and three,

2Our ideas were subsequently adapted to the labeled set-
ting by Shi, Wu, Chen, and Cheng (2017) in their submis-
sion to the CoNLL 2017 shared task on Universal Dependen-
cies parsing. Their team achieved the second-highest labeled
attachment score in general and had the top average perfor-
mance on the surprise languages.
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Features Arc-standard Arc-hybrid Arc-eager

{s 2,”51, so, Do} 93.95:012 94.084013 93.9210.04

{ 5 1, 8 0, bo} 94. 13+0 06 94. 08+0 05 93~91i0A07

{ S 0, bo} 54 47i0 36 94 03i0 12 93~92i0-07

{ bo} 47.114+0.44 52.3940.23 79.15+0.06

Min positions Arc-standard Arc-hybrid Arc-eager
K&G 2016a - 4 -
C&H 2016a 3 - -
our work 3 2 2

Table 1: Top: English PTB dev-set UAS% for

progressively smaller sets of positional features,
for greedy parsers with different transition sys-
tems. The “double-arrow” notation indicates vec-
tors produced by a bi-directional LSTM. Internal
lines highlight large performance drop-offs when
a feature is deleted. Bottom: sizes of the minimal
feature sets in Kiperwasser and Goldberg (2016a),
Cross and Huang (2016a), and our work.

for different transition systems, respectively.

This naturally begs the question, what is the
lower limit on the number of positional features
necessary for a parser to perform well? Kiper-
wasser and Goldberg (2016a) reason that for the
arc-hybrid system, the first and second items on
the stack and the first buffer item — denoted by sg,
s1, and by, respectively — are required; they addi-
tionally include the third stack item, ss, because
it may not be adjacent to the others in the origi-
nal sentence. For arc-standard, Cross and Huang
(2016a) argue for the necessity of sg, s1, and bg.

We address the lower-limit question empiri-
cally, and find that, surprisingly, two positions
suffice for the greedy arc-eager and arc-hybrid
parsers. We also provide empirical support for
Cross and Huang’s argument for the necessity of
three features for arc-standard. In the rest of this
section, we explain our experiments, run only on
an English development set, that support this con-
clusion; the results are depicted in Table 1. We
later explore the implementation implications in
§3-4 and then fest-set parsing-accuracy in §6.

We employ the same model architecture as
Kiperwasser and Goldberg (2016a). Specifically,
we first use a bi-LSTM to encode an n-token sen-
tence, treated as a sequence of per-token concate-
nations of word- and POS- -tag. embeddlngs 1nto a

sequence of vectors [wl, .. wn] where each w;



is the output of the bi-LSTM at time step . (The
double-arrow notation for these vectors empha-
sizes the bi-directionality of their origin). Then,
for a given parser configuration, stack positions
are represented by gj, defined as Ei(sj) where
i(sj) gives the position in the sentence of the to-
ken that is the head of the tree in s;. Similarly,

buffer positions are represented by %}-, defined as

e

w;(p,) for the token at buffer position j. Finally,
as in Chen and Manning (2014), we use a multi-
layer perceptron to score possible transitions from
the given configuration, where the input is the con-
catenation of some selection of the gjs and gks.
We use greedy decoders, and train the models with
dynamic oracles (Goldberg and Nivre, 2013).

Table 1 reports the parsing accuracy that re-
sults for feature sets of size four, three, two, and
one for three commonly-used transition systems.
The data is the development section of the English
Penn Treebank (PTB), and experimental settings
are as described in our other experimental section,
§6. We see that we can go down to three or, in the
arc-hybrid and arc-eager transition systems, even
two positions with very little loss in performance,
but not further. We therefore call {50, bo} our
minimal feature set with respect to arc-hybrid and
arc-eager, and empirically confirm that Cross and
Huang’s {go, gl, 30} is minimal for arc-standard;
see Table 1 for a summary.’

3 Dynamic Programming for TBDPs

As stated in the introduction, our minimal fea-
ture set from §2 plugs into Huang and Sagae and
Kuhlmann et al.’s dynamic programming (DP)
framework. To help explain the connection, this
section provides an overview of the DP frame-
work. We draw heavily from the presentation of
Kuhlmann et al. (2011).

3.1 Three Transition Systems

Transition-based parsing (Nivre, 2008; Kiibler
et al., 2009) is an incremental parsing framework
based on transitions between parser configura-

3We tentatively conjecture that the following might ex-
plain the observed phenomena, but stress that we don’t cur-
rently see a concrete way to test the following hypothesis.

—e

With {Asko, b o}, in the arc-standard case, situations can arise
where there are multiple possible transitions with missing in-
formation. In contrast, in the arc-hybrid case, there is only
one possible transition with missing information (namely,

re, introduced in §3.1); perhaps ﬂsl is therefore not so cru-
cial for arc-hybrid in practice?
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tions. For a sentence to be parsed, the system
starts from a corresponding initial configuration,
and attempts to sequentially apply transitions un-
til a configuration corresponding to a full parse is
produced. Formally, a transition system is defined
as S = (C,T,c*,C;), where C'is a nonempty set
of configurations, eacht € T': C' — (' is a transi-
tion function between configurations, c¢® is an ini-
tialization function that maps an input sentence to
an initial configuration, and C; < C' is a set of
terminal configurations.

All systems we consider share a common tri-
partite representation for configurations: when we
write ¢ = (0,3, A) for some ¢ € C, we are re-
ferring to a stack o of partially parsed subtrees; a
buffer 5 of unprocessed tokens and, optionally, at
its beginning, a subtree with only left descendants;
and a set A of elements (h, m), each of which is
an attachment (dependency arc) with head h and
modifier m.* We write m™h to indicate that m
left-modifies h, and Am to indicate that m right-
modifies h. For a sentence w = whq, ..., w,, the
initial configuration is (o9, 5o, Ao), where oy and
Ay are empty and By = [ROOT|wy, ..., wy,]; ROOT
is a special node denoting the root of the parse
tree® (vertical bars are a notational convenience
for indicating different parts of the buffer or stack;
our convention is to depict the buffer first element
leftmost, and to depict the stack first element right-
most). All terminal configurations have an empty
buffer and a stack containing only ROOT.

Arc-Standard The arc-standard system (Nivre,
2004) is motivated by bottom-up parsing: each de-
pendent has to be complete before being attached.
The three transitions, shift (sh, move a token from
the buffer to the stack), right-reduce (re ., reduce
and attach a right modifier), and left-reduce (re—,
reduce and attach a left modifier), are defined as:

sh[(o,bo|B, A)] = (olbo, B, A)
re~[(o|s1|so, 8, A)] = (o]s1,8, A U {(s1,50)})
re—[(o]s1]s0, B, A)] = (o]s0, 8, A U {(s0,51)})

Arc-Hybrid The arc-hybrid system (Yamada
and Matsumoto, 2003; Gémez-Rodriguez et al.,
2008; Kuhlmann et al., 2011) has the same defi-
nitions of sh and re . as arc-standard, but forces

“For simplicity, we only present unlabeled parsing here.
See Shi et al. (2017) for labeled-parsing results.

3Other presentations place ROOT at the end of the buffer
or omit it entirely (Ballesteros and Nivre, 2013).



the collection of left modifiers before right modi-
fiers via its bg-modifier re. transition. This con-
trasts with arc-standard, where the attachment of
left and right modifiers can be interleaved on the
stack.

sh[(o, bo|B, A)] = (albo, B, A)
re~[(c]s1]s0, B, A)] = (os1, 8, A U {(s1,5%0)})
rek\[(0'|80,b0|5,14)] = (Gv 50\5714 v {(50,80)})

Arc-Eager In contrast to the former two sys-
tems, the arc-eager system (Nivre, 2003) makes
attachments as early as possible — even if a modi-
fier has not yet received all of its own modifiers.
This behavior is accomplished by decomposing
the right-reduce transition into two independent
transitions, one making the attachment (ra) and
one reducing the right-attached child (re).

sh[(a,b0|8, A)] = (albo, B, A)
re—[(o]s0, bo| B, A)] = (0, bo|B, A U {(bo, 50)})
(precondition: s not attached to any word)
ra[(a]s0, bol3, A)] = (lsolbo. B, A U {(s0.bo)})

re[(o]so, 8, A)] = (0,5, A)

(precondition: sy has been attached to its head)

3.2 Deduction and Dynamic Programming

Kuhlmann et al. (2011) reformulate the three tran-
sition systems just discussed as deduction systems
(Pereira and Warren, 1983; Shieber et al., 1995),
wherein transitions serve as inference rules; these
are given as the lefthand sides of the first three sub-
figures in Figure 1. For a given w = wy, ..., Wy,
assertions take the form [i, 7, k] (or, when applica-
ble, a two-index shorthand to be discussed soon),
meaning that there exists a sequence of transi-
tions that, starting from a configuration wherein
head(sg) = wj, results in an ending configura-
tion wherein head(sg) = w; and head(by) = wy.
If we define wg as ROOT and w1 as an end-
of-sentence marker, then the goal theorem can be
stated as [0,0,n + 1].

For arc-standard, we depict an assertion |4, h, k|
as a subtree whose root (head) is the token at h.
Assertions of the form [7, 4, k] play an important
role for arc-hybrid and arc-eager, and we employ
the special shorthand [7, k| for them in Figure 1.
In that figure, we also graphically depict such sit-
uations as two consecutive half-trees with roots w;
and wy, where all tokens between ¢ and k are al-
ready attached. The superscript b in an arc-eager
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assertion [4°, j] is an indicator variable for whether
w; has been attached to its head (b = 1) or not
(b = 0) after the transition sequence is applied.

Kuhlmann et al. (2011) show that all three de-
duction systems can be directly “tabularized” and
dynamic programming (DP) can be applied, such
that, ignoring for the moment the issue of incor-
porating complex features (we return to this later),
time and space needs are low-order polynomial.
Specifically, as the two-index shorthand [é, j] sug-
gests, arc-eager and arc-hybrid systems can be im-
plemented to take O(n?) space and O(n?) time;
the arc-standard system requires O(n3) space and
O(n*) time (if one applies the so-called hook trick
(Eisner and Satta, 1999)).

Since an O(n*) running time is not sufficiently
practical even in the simple-feature case, in the re-
mainder of this paper we consider only the arc-
hybrid and arc-eager systems, not arc-standard.

4 Practical Optimal Algorithms Enabled
By Our Minimal Feature Set

Until now, no one had suggested a set of positional
features that was both information-rich enough for
accurate parsing and small enough to obtain the
O(n?) running-time promised above. Fortunately,
our bi-LSTM-based { s, b} feature set qualifies,
and enables the fast optimal procedures described
in this section.

4.1 Exact Decoding

Given an input sentence, a TBDP must choose
among a potentially exponential number of cor-
responding transition sequences. We assume ac-
cess to functions f; that score individual configu-
rations, where these functions are indexed by the
transition functions ¢ € T'. For a fixed transition
sequence t = t1,%9,..., we use ¢; to denote the
configuration that results after applying ¢;.
Typically, for efficiency reasons, greedy left-to-
right decoding is employed: the next transition ¢
out of ¢;_1 is argmax; fi(c;—1), so that past and
future decisions are not taken into account. The
score F'(t) for the transition sequence is induced
by summing the relevant f,(c;—1) values.
However, our use of minimal feature sets en-
ables direct computation of an argmax over the en-
tire space of transition sequences, arg maxg F'(t),
via dynamic programming, because our positions
don’t rely on any information “outside” the deduc-
tion rule indices, thus eliminating the need for ad-
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edge-factored graph-based parsing algorithm (Eisner and Satta, 1999) discussed in §5.
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ditional state-keeping.

We show how to integrate the scoring functions
for the arc-eager system; the arc-hybrid system is
handled similarly. The score-annotated rules are
as follows:

[i°,4]: v
[5%,7+1]:0

[0, ] : o1 [i% 4] : vg
[k‘b,j] :’01+U2+A

(sh) (re—)

where A = foh (wi, w;) + fre (w;, wj) — abus-
ing notation by referring to configurations by their
features. The left-reduce rule says that we can first
take the sequence of transitions asserted by [k?, i],
which has a score of v1, and then a shift transition
moving w; from by to sg. This means that the ini-
tial condition for [i°, j] is met, so we can take the
sequence of transitions asserted by [i°, j] — say it
has score v9 — and finally a left-reduce transition
to finish composing the larger transition sequence.
Notice that the scores for sh and ra are 0, as the
scoring of these transitions is accounted for by re-
duce rules elsewhere in the sequence.

4.2 Global Training

We employ large-margin training that considers
each transition sequence globally. Formally, for a
training sentence w = wy, ..., w, with gold tran-
sition sequence t&°'9, our loss function is

max

: (F(t) + COSt(thld,t) _ F(thId)>

where cost(t8°19,t) is a custom margin for tak-
ing t instead of t&°9 — specifically, the number
of mis-attached nodes. Computing this max can
again be done efficiently with a slight modifica-
tion to the scoring of reduce transitions:

[K°,i] : v [0, 4] : vo
[k‘b,j] cvp +vg + A

(re~)

where A’ = A + 1 (head(w;) # wj). This loss-
augmented inference or cost-augmented decoding
(Taskar et al., 2005; Smith, 2011) technique has
previously been applied to graph-based parsing by
Kiperwasser and Goldberg (2016a).

Efficiency Note The computation decomposes
into two parts: scoring all feature combinations,
and using DP to find a proof for the goal theorem
in the deduction system. Time-complexity analy-
sis is usually given in terms of the latter, but the
former might have a large constant factor, such
as 10* or worse for neural-network-based scoring
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functions. As a result, in practice, with a small
n, scoring with the feature set {ZO,”IJO} (O(n?))
can be as time-consuming as the decoding steps
(O(n?)) for the arc-hybrid and arc-eager systems.

5 Theoretical Connections

Our minimal feature set brings implementation of
practical optimal algorithms to TBDPs, whereas
previously only graph-based dependency parsers
(GBDPs) — aradically different, non-incremental
paradigm — enjoyed the ability to deploy them.
Interestingly, for both the transition- and graph-
based paradigms, the optimal algorithms build de-
pendency trees bottom-up from local structures. It
is thus natural to wonder if there are deeper, more
formal connections between the two.

In previous work, Kuhlmann et al. (2011) re-
lated the arc-standard system to the classic CKY
algorithm (Cocke, 1969; Kasami, 1965; Younger,
1967) in a manner clearly suggested by Figure 1a;
CKY can be viewed as a very simple graph-based
approach. Goémez-Rodriguez et al. (2008, 2011)
formally prove that sequences of steps in the edge-
factored GBDP (Eisner, 1996) can be used to em-
ulate any individual step in the arc-hybrid system
(Yamada and Matsumoto, 2003) and the Eisner
and Satta (1999, Figure 1d) version. However,
they did not draw an explicitly direct connection
between Eisner and Satta (1999) and TBDPs.

Here, we provide an update to these previous
findings, stated in terms of the expressiveness of
scoring functions, considered as parameterization.

For the edge-factored GBDP, we write the score
for an edge as fc(/, m), where h is the head and
m the modifier. A tree’s score is the sum of its
edge scores. We say that a parameterized depen-
dency parsing model A contains model B if for ev-
ery instance of parameterization in model B, there
exists an instance of model A such that the two
models assign the same score to every parse tree.
We claim:

Lemma 1. The arc-eager model presented in §4.1
contains the edge-factored model.

Proof Sketch. Consider a given edge-factored
GBDP parameterized by fs. For any parse tree,
every edge ¢ j involves two deduction rules, and
their contribution to the score of the final proof is
fshWi,w;) + fre (wi, w;). We set fop(wg,w;) =
0 and fre. (ws,w;) = fg(w;,w;). Similarly,
for edges k¢ in the other direction, we set



Model Trainin Features PTB CTB
£ UAS (%) UEM (%) ‘ UAS (%) UEM (%)
Arc-standard Local {?2748&17?0,?;0} ‘ 93.9540.12 92.2940.66 ‘ 88.01409.26 36.87+053
Local {gg,asl,asko,abko} 93.8910.10 90.8240.75 87.8740.17 35474048
Arc-hybrid Local {50, bo} 93.80+0.12 49.66+043 | 87.784+0.09 35.09+0.40
Global {4‘;07?;0} 94.43i0.08 53-03i0.71 88.38i0.11 36'59i0.27
Local {?2, s1, S0, _'bho} 93.8040.12 49.6640.43 874910920 33.1540.72
Arc-eager Local {50, bo} 93.77+0.08 49.711024 | 87.333011 34171041
Global {50, bo} 94.53.10.05 53.77+046 | 88.624009 37.751087
Edge-factored  Global (b, m} | 94.5010.13 53.861075 | 88251012 36.4210.5

Table 2: Test set performance for different training regimes and feature sets. The models use the same
decoders for testing and training. For each setting, the average and standard deviation across 5 runs with
different random initializations are reported. Boldface: best (averaged) result per dataset/measure.

fra(wigwi) = fo(wg,wi) and fre(w;, w;) = 0.
The parameterization we arrive at emulates ex-
actly the scoring model of f. 0

We further claim that the arc-eager model is
more expressive than not only the edge-factored
GBDP, but also the arc-hybrid model in our paper.

Lemma 2. The arc-eager model contains the arc-
hybrid model.

Proof Sketch. We leverage the fact that the arc-
eager model divides the sh transition in the arc-
hybrid model into two separate transitions, sh and
ra. When we constrain the parameters fg, = fra in
the arc-eager model, the model hypothesis space
becomes exactly the same as arc-hybrid’s. O

The extra expressiveness of the arc-eager model
comes from the scoring functions fg, and fre
that capture structural contexts other than head-
modifier relations. Unlike traditional higher-order
graph-based parsing that directly models relations
such as siblinghood (McDonald and Pereira, 2006)
or grandparenthood (Carreras, 2007), however, the
arguments in those two functions do not have any
fixed type of structural interactions.

6 Experiments

Data and Evaluation We experimented with
English and Chinese. For English, we used the
Stanford Dependencies (de Marneffe and Man-
ning, 2008) conversion (via the Stanford parser
3.3.0) of the Penn Treebank (Marcus et al., 1993,
PTB). As is standard, we used §2-21 of the Wall
Street Journal for training, §22 for development,
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and §23 for testing; POS tags were predicted using
10-way jackknifing with the Stanford max entropy
tagger (Toutanova et al., 2003). For Chinese, we
used the Penn Chinese Treebank 5.1 (Xue et al.,
2002, CTB), with the same splits and head-finding
rules for conversion to dependencies as Zhang
and Clark (2008). We adopted the CTB’s gold-
standard tokenization and POS tags. We report
unlabeled attachment score (UAS) and sentence-
level unlabeled exact match (UEM). Following
prior work, all punctuation is excluded from eval-
uation. For each model, we initialized the network
parameters with 5 different random seeds and re-
port performance average and standard deviation.

Implementation Details Our model structures
reproduce those of Kiperwasser and Goldberg
(2016a). We use 2-layer bi-directional LSTMs
with 256 hidden cell units. Inputs are concatena-
tions of 28-dimensional randomly-initialized part-
of-speech embeddings and 100-dimensional word
vectors initialized from GloVe vectors (Penning-
ton et al., 2014) (English) and pre-trained skip-
gram-model vectors (Mikolov et al., 2013) (Chi-
nese). The concatenation of the bi-LSTM feature
vectors is passed through a multi-layer perceptron
(MLP) with 1 hidden layer which has 256 hid-
den units and activation function tanh. We set the
dropout rate for the bi-LSTM (Gal and Ghahra-
mani, 2016) and MLP (Srivastava et al., 2014) for
each model according to development-set perfor-
mance.’ All parameters except the word embed-

®For bi-LSTM input and recurrent connections, we con-
sider dropout rates in {0., 0.2}, and for MLP, {0.,0.4}.
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94.26 and 94.61 on PTB with beam search, but did not report CTB results, and are therefore omitted.

dings are initialized uniformly (Glorot and Ben-
gio, 2010). Approximately 1,000 tokens form a
mini-batch for sub-gradient computation. We train
each model for 20 epochs and perform model se-
lection based on development UAS. The proposed
structured loss function is optimized via Adam
(Kingma and Ba, 2015). The neural network com-
putation is based on the python interface to DyNet
(Neubig et al., 2017), and the exact decoding al-
gorithms are implemented in Cython.”

Main Results We implement exact decoders for
the arc-hybrid and arc-eager systems, and present
the test performance of different model configu-
rations in Table 2, comparing global models with
local models. All models use the same decoder
for testing as during the training process. Though
no global decoder for the arc-standard system has
been explored in this paper, its local models are
listed for comparison. We also include an edge-
factored graph-based model, which is convention-
ally trained globally. The edge-factored model
scores bi-LSTM features for each head-modifier
pair; a maximum spanning tree algorithm is used
to find the tree with the highest sum of edge
scores. For this model, we use Dozat and Man-

"See nttps://github.com/tzshi/dp-parser-emnlpl?.
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ning’s (2017) biaffine scoring model, although in
our case the model size is smaller.®

Analogously to the dev-set results given in §2,
on the test data, the minimal feature sets perform
as well as larger ones in locally-trained models.
And there exists a clear trend of global models out-
performing local models for the two different tran-
sition systems on both datasets. This illustrates the
effectiveness of exact decoding and global train-
ing. Of the three types of global models, the arc-
eager arguably has the edge, an empirical finding
resonating with our theoretical comparison of their
model expressiveness.

Comparison with State-of-the-Art Models
Figure 2 compares our algorithms’ results with
those of the state-of-the-art.” Our models are
competitive and an ensemble of 15 globally-
trained models (5 models each for arc-eager DP,
arc-hybrid DP and edge-factored) achieves 95.33
and 90.22 on PTB and CTB, respectively, reach-

8The same architecture and model size as other transition-
based global models is used for fair comparison.

"We exclude Choe and Charniak (2016), Kuncoro et al.
(2017) and Liu and Zhang (2017), which convert constituent-
based parses to dependency parses. They produce higher PTB
UAS, but access more training information and do not di-
rectly apply to datasets without constituency annotation.



ing the highest reported UAS on the CTB dataset,
and the second highest reported on the PTB
dataset among dependency-based approaches.

7 Related Work Not Yet Mentioned

Approximate Optimal Decoding/Training Be-
sides dynamic programming (Huang and Sagae,
2010; Kuhlmann et al., 2011), various other ap-
proaches have been proposed for approaching
global training and exact decoding. Best-first
and A* search (Klein and Manning, 2003; Sagae
and Lavie, 2006; Sagae and Tsujii, 2007; Zhao
et al., 2013; Thang et al., 2015; Lee et al., 2016)
give optimality certificates when solutions are
found, but have the same worst-case time com-
plexity as the original search framework. Other
common approaches to search a larger space at
training or test time include beam search (Zhang
and Clark, 2011), dynamic oracles (Goldberg and
Nivre, 2012, 2013; Cross and Huang, 2016b) and
error states (Vaswani and Sagae, 2016). Beam
search records the k best-scoring transition pre-
fixes to delay local hard decisions, while the lat-
ter two leverage configurations deviating from the
gold transition path during training to better simu-
late the test-time environment.

Neural Parsing Neural-network-based models
are widely used in state-of-the-art dependency
parsers (Henderson, 2003, 2004; Chen and Man-
ning, 2014; Weiss et al., 2015; Andor et al., 2016;
Dozat and Manning, 2017) because of their ex-
pressive representation power. Recently, Stern
et al. (2017) have proposed minimal span-based
features for constituency parsing.

Recurrent and recursive neural networks can be
used to build representations that encode complete
configuration information or the entire parse tree
(Le and Zuidema, 2014; Dyer et al., 2015; Kiper-
wasser and Goldberg, 2016b), but these models
cannot be readily combined with DP approaches,
because their state spaces cannot be merged into
smaller sets and thus remain exponentially large.

8 Concluding Remarks
In this paper, we have shown the following.

e The bi-LSTM-powered feature set { s, bo}
is minimal yet highly effective for arc-hybrid
and arc-eager transition-based parsing.

e Since DP algorithms for exact decoding
(Huang and Sagae, 2010; Kuhlmann et al.,
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2011) have a run-time dependence on the
number of positional features, using our mere
two effective positional features results in a
running time of O(n3), feasible for practice.

Combining exact decoding with global train-
ing — which is also enabled by our minimal
feature set — with an ensemble of parsers
achieves 90.22 UAS on the Chinese Treebank
and 95.33 UAS on the Penn Treebank: these
are, to our knowledge, the best and second-
best results to date on these data sets among
“purely” dependency-based approaches.

There are many directions for further explo-
ration. Two possibilities are to create even better
training methods, and to find some way to extend
our run-time improvements to other transition sys-
tems. It would also be interesting to further in-
vestigate relationships between graph-based and
dependency-based parsing. In §5 we have men-
tioned important earlier work in this regard, and
provided an update to those formal findings.

In our work, we have brought exact decoding,
which was formerly the province solely of graph-
based parsing, to the transition-based paradigm.
We hope that the future will bring more inspira-
tion from an integration of the two perspectives.
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Abstract

We propose a new Maximum Subgraph
algorithm for first-order parsing to 1-
endpoint-crossing, pagenumber-2 graphs.
Our algorithm has two characteristics: (1)
it separates the construction for noncross-
ing edges and crossing edges; (2) in a
single construction step, whether to cre-
ate a new arc is deterministic. These two
characteristics make our algorithm rela-
tively easy to be extended to incorpo-
riate crossing-sensitive second-order fea-
tures. We then introduce a new algorithm
for quasi-second-order parsing. Experi-
ments demonstrate that second-order fea-
tures are helpful for Maximum Subgraph
parsing.

1 Introduction

Previous work showed that treating semantic de-
pendency parsing as the search for Maximum Sub-
graphs is not only elegant in theory but also ef-
fective in practice (Kuhlmann and Jonsson, 2015;
Cao et al., 2017). In particular, our previous work
showed that 1-endpoint-crossing, pagenumber-2
(1Ec/P2) graphs are an appropriate graph class for
modelling semantic dependency structures (Cao
et al., 2017). On the one hand, it is highly expres-
sive to cover a majority of semantic analysis. On
the other hand, the corresponding Maximum Sub-
graph problem with an arc-factored disambigua-
tion model can be solved in low-degree polyno-
mial time.

Defining disambiguation models on wider con-
texts than individual bi-lexical dependencies im-
proves various syntactic parsers in different ar-
chitectures. This paper studies exact algorithms
for second-order parsing for 1EC/P2 graphs. The
existing algorithm, viz. our previous algorithm
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(GCHSW, hereafter), has two properties that make
it hard to incorporate higher-order features in a
principled way. First, GCHSW does not explicitly
consider the construction of noncrossing arcs. We
will show that incorporiating higher-order factors
containing crossing arcs without increasing time
and space complexity is extremely hard. An effec-
tive strategy is to only include higher-order factors
containing only noncrossing arcs (Pitler, 2014).
But this crossing-sensitive strategy is incompat-
ible with GCHSW. Second, all existing higher-
order parsing algorithms for projective trees, in-
cluding (McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010), require that which
arcs are created in a construction step be deter-
ministic. This design is also incompatible with
GCHSW. In summary, it is not convenient to ex-
tend GCHSW to incorporate higher-order features
while keeping the same time complexity.

In this paper, we introduce an alternative Max-
imum Subgraph algorithm for first-order parsing
to 1EC/P2 graphs. while keeping the same time
and space complexity to GCHSW, our new algo-
rithm has two characteristics that make it rela-
tively easy to be extended to incorporate crossing-
sensitive, second-order features: (1) it separates
the construction for noncrossing edges and pos-
sible crossing edges; (2) whether an edge is cre-
ated is deterministic in each construction rule. We
then introduce a new algorithm to perform second-
order parsing. When all second-order scores are
greater than or equal to 0, it exactly solves the cor-
responding optimization problem.

We implement a practical parser with a sta-
tistical disambiguation model and evaluate it on
four data sets: those used in SemEval 2014
Task 8 (Oepen et al., 2014), and the dependency
graphs extracted from CCGbank (Hockenmaier
and Steedman, 2007). On all data sets, we find
that our second-order parsing models are more ac-
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curate than the first-order baseline. If we do not
use features derived from syntactic trees, we get
an absolute unlabeled F-score improvement of 1.3
on average. When syntactic analysis is used, we
get an improvement of 0.4 on average.

2 Preliminaries

2.1

Semantic dependency parsing can be formulated
as the search for Maximum Subgraph for graph
class G: Given a graph G = (V, A), find a subset
A’ C A with maximum total score such that the
induced subgraph G’ = (V, A’) belongs to G. For-
mally, we have the following optimization prob-
lem:

Maximum Subgraph Parsing

ar max

8 oreda) pé* (5 2)

G(s, G) denotes the set of all graphs that belong to
G and are compatible with s and GG. G is usually
a complete digraph. spa(s, p) evaluates the event
that part p (from a candidate graph G*) is good.
We define the order of p according to the num-
ber of arcs it contains, in analogy with tree parsing
in terminology. Previous work only discussed the
first-order case:

>

deARC(G*)

arg max

G*€G(G) Sare()
If G is the set of noncrossing or 1EC/P2 graphs,
the above optimization problem can be solved in
cubic-time (Kuhlmann and Jonsson, 2015) and
quintic-time (Cao et al., 2017) respectively. Fur-
thermore, ignoring one linguistically-rare struc-
ture in 1EC/P2 graphs descreases the complexity
to O(n*). This paper is concerned with second-
order parsing, with a special focus on the follow-
ing factorizations:

TN AN

And the objective function turns to be:

Z Sarc(d) + Z SSib(S)

deARc(G*) seSIB(G*)

Sun et al. (2017) introduced a dynamic program-
ming algorithm for second-order planar parsing.
Their empirical evaluation showed that second-
order features are effective to improve parsing ac-
curacy. It is still unknown how to incorporate such
features for 1EC/P2 parsing.
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Figure 1: e(q)’s crossing edges e, gy and ey ()

share an endpoint b.

Page 1

Figure 2: A pagenumber-2 graph. The upper and
the lower figures represent two half-planes respec-
tively.

2.2 1-Endpoint-Crossing, Pagenumber-2
Graphs

The formal description of the 1-endpoint-crossing
property is adopted from (Pitler et al., 2013).

Definition 1. Edges e; and es cross if e; and es
have distinct endpoints and exactly one of the end-
points of e lies between the endpoints of es.

Definition 2. A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p named pencil point.

Given a sentence s = wowj - - - wy—1 of length
n, the vertices, i.e. words, are indexed with inte-
gers, an arc from w; to w; as a(; j), and the com-
mon endpoint, namely pencil point, of all edges
crossed with ag; j) or a(; ;) as pt(i, j). We denote
an edge as e(; j), if we do not consider its direction.
Figure 1 is an example.

Definition 3. A pagenumber-k graph means it
consists at most k half-planes, and arcs on each
half-plane are noncrossing.

These half-planes may be thought of as the
pages of a book, with the vertex line correspond-
ing to the books spine, and the embedding of a
graph into such a structure is known as a book em-
bedding. Figure 2 is an example.

(Pitler et al., 2013) proved that 1-endpoint-
crossing trees are a subclass of graphs whose pa-
genumber is at most 2. In Cao et al. (2017),
we studied graphs that are constrained to be both
1-endpoint-crossing and pagenumber-2. In this
paper, we ignored a complex and linguistic-rare

Figure 3: C structure has two crossing chains.



Figure 4: A prototype backbone of 1EC/P2 graphs.
To decompose this structure, GCHSW focuses on
e(,j) and e( ), because these two edges can be
optionally created without violation of both 1EC
and P2 restrictions. Our algorithm focuses on the
existence of e(; 1), and makes it the only edge that
is constructed by applying a corresponding rule.

structure and studied a subset of 1EC/P2 graphs.
The complex structure is named as C structures in
our previous paper, and Figure 3 is the prototype
of C structures. In this paper, we present new algo-
rithms for finding optimal 1EC/P2, C-free graphs.

2.3 The GCHSWAIgorithm

Cao et al. (2017) designed a polynomial time
Maximum Subgraph algorithm, viz. GCHSW, for
1EC/P2 graphs by exploring the following prop-
erty: Every subgraph of a 1EC/P2 graph is also a
1EC/P2 graph. GCHSW defines a number of proto-
type backbones for decomposing a 1EC/P2 graph
in a principled way. In each decomposition step,
GCHSW focuses on the edges that can be created
without violating either the 1EC nor P2 restriction.
Sometimes, multiple edges can be created simulta-
neously in one single step. Figure 4 is an example.

There is an important difference between
GCHSW and FEisner-style Maximum Spanning
Tree algorithms (MST; Eisner, 1996; McDonald
and Pereira, 2006; Koo and Collins, 2010). In
each construction step, GCHSW allows multiple
arcs to be constructed, but whether or not such
arcs are added to the target graph depends on their
arc-weights. If all arcs are assigned scores that
are greater than 0, the output of our algorithm in-
cludes the most complicated 1EC/P2 graphs. For
the higher-order MST algorithms, in a single con-
struction step, it is clear whether adding a new arc,
and which one. There is no local search. This de-
terministic strategy is also followed by Kuhlmann
and Jonsson’s Maximum Subgraph algorithm for
noncrossing graphs. Higher-order MST models
associate higher-order score functions with the
construction of individual dependencies. There-
fore the deterministic strategy is a prerequisite to
incorporate higher-order features. The design of
GCHSW is incompatible with this strategy.
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Figure 5: A typical structure of crossing arcs.

2.4 Challenge of Second-Order Decoding

It is very difficult to enumerate all high-order fea-
tures for crossing arcs. Figure 5 illustrates the
idea. There is a pair of corssing arcs, Viz. e )
and e(; ;). The key strategy to develop a dynamic
programming algorithm to generate such crossing
structure is to treat parts of this structures as inter-
vals/spans together with an external vertex (Pitler
etal., 2013; Cao et al., 2017). Without loss of gen-
erality, we assume [z, j| makes up such an interval
and z is the corresponding external vertex. When
we consider e(; ;, its neighboring edges can be
€(ir;) and eq, 5, and therefore we need to con-
sider searching the best positions of both r; and [;.
Because we have already taken into account three
vertices, viz. x, ¢ and 7, the two new positions
increase the time complexity to be at least quintic.

Now consider e(, ). When we decompose the
whole graph into inverval [i, j] plus x and remain-
ing part, we will factor out e(, 1 in a successive
decomposition for resolving [i, j] plus . We can-
not capture the second features associated to e, )
and e(, ,.,), because they are in different intervals,
and when these intervals are combined, we have
already hidden the position information of k. Ex-
plicitly encoding k increases the time complexity
to be at least quintic too.

Pitler (2014) showed that it is still possible to
build accurate tree parsers by considering only
higher-order features of noncrossing arcs. This is
in part because only a tiny fraction of neighbor-
ing arcs involve crossing arcs. However, this strat-
egy is not easy to by applied to GCHSW, because
GCHSW does not explicitly analyze sub-graphs of
noncrossing arcs.

3 A New Maximum Subgraph Algorithm

Based on the discussion of Section 2.3 and 2.4,
we can see that it is not easy to extend the existing
algorithm, viz. GCHSW, to handle second-order
features. In this paper, we propose an alternative
first-order dynamic programming algorithm. Be-
cause ignoring one linguistically-rare structure as-
sociated with the C problem in GCHSW descreases
the complexity, we exclude this structure in our al-
gorithm. Formally, we introduce a new algorithm
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Figure 7: A dynamic program to find optimal 1EC/P2, C-free graphs with arc-factored weights.

to solve the following optimization problem: [, 7], pt(x,p) = i or j. LRI, j, x| implies

the existence of €(i,5)> but does not contain

arg max > sue(d) ¢(j). When LR[i,j ] is combined with

dEARC(G*) other DP sub-structures, e(; ;) is immediately

where G means 1EC/P2, C-free graphs. Our algo- created. LR][i, j, ] disallows neither e g ;)
rithm has the same time and space complexity to 0T €(z,j)-

the degenerated version of GCHSW. We represent N

. . _ N|i, j, x| represents an interval from 7 to j
our algorithm using undirected graphs.

inclusively and an external vertex x. Vp €
3.1 Sub-problems (2, ], pt(z,p) & [i,j]. NI[i,j,x] could con-
tain e(; jy but disallows e(, ;). We distinguish
two sub-types. Npli, j, z] may or may not
contain e(, ;). Ncl[i,j, z] implies the exis-
tence of but does not contain e(, ;). When
Nli,j,z] is combined with others, e, ;y is
immediately created.

Following GCHSW, we consider five sub-problems
when we construct a maximum dependency graph
on a given interval [i,k]. Though the sub-
problems introduced by GCHSW and us handle
similar structures, their definitions are quite differ-
ent. The sub-problems are explained as follows:

L L[i,j,x] represents an interval from i to j
inclusively as well as an external vertex x.
Vp € [i, j], pt(x,p) = i. Lli, j, x] could con-
tain e(; ;) but disallows e, ;). We distinguish
sub-two types for L. Lo[i, j, ] may or may
not contain e(, ;). L¢li, j, z] implies the ex-

Int Int[i, j] represents an interval from i to j in-
clusively. And there is no edge e(; ;) such
that ¢’ € [i,j] and j' ¢ [i, j]. We distinguish
two sub-types for Int. Intp[i, j| may or may
not contain e(; ;y, while Intc[i, j] contains

€(i.7)-

(@9) istence of but does not contain e(, ;). When

LR LR][i,j,z] represents an interval from i to j it is combined with others, e, ;) is immedi-
inclusively and an external vertex x. Vp € ately created.
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R RJi, j, x] represents an interval from ¢ to j
inclusively as well as an external vertex z.
Vp € [i,j],pt(x,p) = j. RJi,j,x] disal-
lows e, ;) and e, ;. We distinguish two
sub-types for R. Rp[i, j, ] may or may not
contain e(; ;. Rcl[i,j, ] implies the exis-
tence of but does not contain e(; ;. When it
is combined with others, e(; ;) is immediately
created.

z?])

3.2 Decomposing Sub-problems

Figure 7 gives a sketch of our dynamic program-
ming algorithm. We give a detailed illustration for
Int, a rough idea for L and LR, and omit other
sub-problems. More details about the whole algo-
rithm can be found in the supplementary note.

3.2.1 Decomposing an Int Sub-problem

Consider Intoli,j| and Intc[i, j] sub-problem.
Because the decomposition for Intc[i, j] is very
similar to Intoli,j] and needs to be modified
by our second-order parsing algorithm, we only
show the decomposition of Intcl[i, j]. Assume
that k(k € (i,7)) is the farthest vertex that is ad-
jacent to i, and x = pt(i, k). If there is no such
k (i.e. there no arc from ¢ to some other node in
this interval), then we denote k as (). So it is to z.
We illustrate different cases as following and give
a graphical representation in Figure 8.

Casea: k = (). We can directly consider interval
[i + 1,7]. Because there is no edge from i to any
node in [i + 1, 7], [¢ + 1, j] is an Intg.

Caseb: x = (). 2 = () means that €(i,k) does not
cross other arcs. So [i, k] and [k, j] are Int.

Case c: x € (k,j]. e is taken as a possible
crossing edge. k and x divide the interval [z, j] into
three parts: [i, k], [k, ], [z, j|. Because x may be
Jj, interval [z, j| may only contain j and become
an empty interval. We define 2’ as the pencil point
of all edges from (i, k) to x, and distinguish two
sub-problems as follows.

c.1 Assume that there exists an edge from k to
some node r in (z, j], so 2’ can only be k and
pencil point of edges from k to (z,j] is x.
Thus interval [i, k, ] is an R. Due to the exis-
tence of e; 1y, its sub-type is Rc. The e(; 1) is
created in this construction and thus not con-
tained by Rc[i, k,x]. An edge from within
[k, x] to outside violates the 1EC restriction,
so [k, x] is an Int. Since x is endpoint of edge

from k to [z, ], interval [k, j] is an Lo with
external vertex k.

c.2 We assume no edge from & to any node in
[z, 7], ' thus can be i or k. As a result, [x, j]
is an Int and [i, k, z] is an LR.

Cased: z € (i, k).

d.1 Assume that there exist edges from 7 to
(x, k), so the pencil point of edges from x to
(k, j] is i. Therefore [k, j] is an N. Because x
is pencil point of edges from i to (x, k], [z, k]
is an L. Furthmore, it is an L¢ because we
generate e(; 1 in this step. It is obvious that
i, x] is an Int.

d.2 Assume that there exists edges from £ to
(7,x), and the pencil point of edges from
x to (k,j] is thus k. Similar to the above
analysis, we reach Ro[i, z, k| + Into|x, k] +
Lolk, j, @] + ey + €

For Intoli, j], because there may be e(; ;), we
add one more rule: Intpli,j| = Intc[i, j]. And
we do not need to create e(; ;) in all cases.

3.2.2 Decomposing an L. Sub-problem

Without loss of generality, we show the decompo-
sition of Lo |[i, 7, x] as follows. For L¢|i, j, x|, we
ignore Case b but follow the others.

Case a. If there is no more edge from z to (4, j],
then it will degenerate to Intoli, j].

Case b. If there exists e(, ;), then it will degen-
erate to L¢[i, j, ] + €(y 5)-

Case c¢. Assume that there are edges from z to
(4,7) and e(, 1 is the farthest one. It divides [i, j]
into [¢, k] and [k, j].

c.1 If there is an edge from z to (i, k), [i, k] and
[k, j] are L¢o[i, k, z] and Nolk, j, i].

c.2 If there is no edge from x to (¢, k), [i, k] and
[k, j] are Intoli, k] and Lolk, j, i].

Figure 8 is a graphical representation.

3.2.3 Decomposing an LR Sub-problem

LRJi, j, x] means i or j is the pencil point of edges
from x to (i,7). We show the decomposition of
LRJi, j, x] as follows:
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Figure 9: Decomposition for Lo|[i, j, z].
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Figure 11: a3 = j. Both e, 3,) and e(; 3.,) exist.

Case a. If there is a vertex k within (7, j), which
divides [, ] into [é, k] and [k, j]. And it guaran-
tees no edge from [i, k) to (k,j]. i is the pencil
point of edges from z to (¢, k] because no edge
from j to (i, k) can cross these edges. Similarly j
has to be the pencil point of edges from x to (k, 7).
Obviously, [i, k] is an Lo and [k, j] is an Rp with
external x. Thus the problem is decomposed as
Loli, k,x] + Rolk, j, z|.

Case b. If there is no such vertex k, there must
be edges from [i, k') to (K, j] for every k' in (3, j)
without considering e; ;). For i 4+ 1, we assume
€(i,a;) 18 the farthest edge that goes from i. For
ai, we assume e, 3,y is the farthest edge from
b, where by is in (,a1) and be is in (a1, j). For
bg, We assume €(q, q,) is the farthest edge from
a; where ag is in (bg,j) and a; is the pencil
point. We then get the series {a1, a2, as...a, } and
{b1, ba...by, } which guarantees b; < a; , a; < b1
and max(an, by,) = j.

If b, = j, we will get a graph like Figure 10. If
€(z,by) €Xists, this LR subproblem degenerates to
an L subproblem. If e, 4, exists, this subprob-
lem degenerates to an R subproblem.

If a;, = 7, we will get a graph like Figure 11.
If there exists only e, 4, O €(4,,), We can solve
it like b,, = j. If both exist, this is a typical C-
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structure like Figure 3 and we cannot get it through
other decompostion.

The above discussion gives the rough idea of the
correctness of the following conclusion.

Theorem 1. Our new algorithm is sound and
complete with respect to 1EC/P2, C-free graphs.

3.3 Spurious Ambiguity

An LR, L, R or N sub-problem allows to build
crossing arcs, but does not necessarily create
crossing arcs. For example, L¢[i,j, 2] allows
e ) to cross with e, (y € (4,5)). Be-
cause every subgraph of a 1EC/P2 graph is also
a 1EC/P2 graph, we allow an L¢[i, j, z] to be di-
rectly degenerated to Ip[i, j]. In this way, we can
make sure that all subgraphs can be constructed
by our algorithm. Figure 12 shows the rough idea.
To generate the same graph, we have different
derivations. The spurious ambiguity in our algo-
rithm does not affect the correctness of first-order
parsing, because scores are assigned to individ-
ual dependencies, rather than derivation processes.
There is no need to distinguish one special deriva-
tion here.

4 Quasi-Second-Order Extension

We propose a second-order extension of our new
algorithm. We focus on factorizations introduced
in Section 2.1. Especially, the two arcs in a fac-
tor should not cross other arcs. Formally, we in-
troduce a new algorithm to solve the optimization
problem with the following objective:

Z Sarc(d) + Z max(ssib(s),0)
deARc(G*) seSIB(G*)

In the first-order algorithm, all noncrossing edges
can be constructed as the frontier edge of an Intc.



° °
b d
Figure 12: Illustration of spurious ambiguity. The
two solid curves represent two arcs in the target
graph, but not the dashed one. Excluding crossing
edges leads to the first derivation: Intc|a,e] =
€(ae) T Intcla,c] + Intolc,e] + e@qe). As-
suming that a pair of crossing arcs may exist
yields another derivation: Intcla,e] = e(qe) +
LR[a,c,d] + Intolk,d] + Lold,e,c] + e(q,);
Then LR[a,c,d] = Lola,b,d] + Rolb,c,d] =
Intola,b] + Intolb, c].

So we can develop an exact decoding algorithm by
modifying the composition for Intc while keeping
intact the decomposition for LR, N, L, R.

4.1 New Decomposition for Inic

In order to capture the second-order features from
noncrossing neighbors, we need to find the right-
most node adjacent to ¢, denoted as r;, and the
leftmost node adjacent to j, denoted as /;,while
i <1 <1lj < j. Todo this, we split Intc[i, j]
into at most three parts to capture the sibling fac-
tors. Denote the score of adjacent edges e(; ;)
and e(; ;,) as s2(i,71,72). When j is the inner
most node adjacent to ¢, we denote the score as
s2(i, 0, 7). We give a sketch of the decomposition
in Figure 14 and a graphical representation in Fig-
ure 13. The following is a rough illustration.

Case a: r; = (). We further distinguish three
sub-problems:

al If l; = (@ too, both sides are the inner most
second-order factor.

a.2 There is a crossing arc from j. This case is
handled in the same way as the first-order al-
gorithm.

a3 l; # (. We introduce a new decomposition
rule.

Case b: There is a crossing arc from <.
b.1 I; = (. Similar case to (a.2).

b.2 There is a crossing arc from j. Similar case
to (a.2).

b.3 There is a noncrossing arc from j. We intro-
duce a new rule to calculate STB(j,;,1).
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Case c: There is a noncrossing arc from <.
c.1 I; = (. Similar to (a.3).

c.2 There is a crossing arc from j. Similar to
(b.3).

¢.3 There is a noncrossing arc from j too. We
introduce a new rule to calculate S1B (i, 7;, j)
and SI1B(j, 15, 1).

4.2 Complexity

The complexity of both first- and second-order al-
gorithms can be analyzed in the same way. The
sub-problem Int is of size O(n?), with a calculat-
ing time of order O(n?) at most. For sub-problems
L, R, LR, and N, each has O(n?) elements, with
a unit calculating time O(n). Therefore both algo-
rithms run in time of O(n*) with a space require-
ment of O(n?3).

4.3 Discussion

A second-order model takes as
the objective  function > gy Ssin(s)-
Our model instead tries to optimize
2 sesip(G) Max(ssiv(s), 0). This model is
somehow inadequate given that the second-order
score function cannot penalize a bad factor. When
a negative score is assigned to a second-order

factor, it will be taken as 0 by our algorithm.

traditional

This inadequacy is due to the spurious am-
biguity problem that is illustrated in Section
3.3. Take the two derivations in Figure 12
for example. The derivation that starts from
Intcla, e] = Intcla,c]+ Into[c, e] incorporates
the second-order score sgp(a,c,e). This is dif-
ferent when we consider the derivation that starts
from Intcla,e] = LRla,c,d] + Intolk,d] +
Lold,e,c]. Because we assume temporarily
that e(,) crosses others, we do not consider
ssib(a, ¢,e). We can see from this example that
second-order scores not only depend on the de-
rived graphs but also sensitive to the derivation
processes.

If a second-order score is greater than 0, our al-
gorithm selects the derivation that takes it into ac-
count since it increases the total score. If a second-
order score is negative, our algorithm avoids in-
cluding it by selecting other paths. In other words,
our algorithm treats this score as 0.
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Figure 13: Decomposition for Intc|i, j] in the second-order parsing algorithm.

Intc(iy7) < Sarc(?,j) + max

Into(i+ 1,7 — 1) +sa(i,0,7) + sa(5,0,)
Into(i+1,7) + s (i, 0, )
Into(i+ 1,1;) + Intc(l, §) + ssv (i, 0, )+

Ssib (4, 155 %)
Into(i,j — 1) + ssin(4, 0, 4)
Into(i,1;) + Intc(l;, 5) + sain(J, 15, 1)
Intc(i,ri) + Into[n-,j — 1] + san (4, i, 5)+

ssib (4, 0, )

7;) + Into(rs, j] + ssin(i, 74, 5)
Ti) + [nto[n, lj] + Intc(lj,j)-i-

Ssib (4, T, ) + Ssiv (7, Ly, 8)
Rc(i,k,x) + Into(k,x) + Lo(z, j, k) + e,r)
LR(i, k,x) + Into(k,x) + Into(x, j, k) + e,k
Intoli, z] + Loz, k.4 + Nolk, j, x| + e,
RO [7’7 x, k] + I?’Lto [:177 k] + Lo[k7j7 I} + e(i,k)

Intc(i,
]ntc(i,

Figure 14: Decomposition for Intc[i, j, z].

5 Practical Parsing

5.1 Derivation-Sensitive Training

We extend our quartic-time parsing algorithm into
a practical parser. In the context of data-driven
parsing, this requires an extra disambiguation
model. As with many other parsers, we employ
a global linear model. Following Zhang et al.
(2016)’s experience, we define rich features ex-
tracted from word, POS-tags and pseudo trees. To
estimate parameters, we utilize the averaged per-
ceptron algorithm (Collins, 2002).

Our training proceudre is sensitive to derivation
rather then derived graphs. For each sentence, we
first apply our algorithm to find the optimal pre-
diction derivation. The we collect all first- and
second-order factors from this derivation to update
parameters. To train a first-order model, because
our algorithm includes all factors, viz. depen-
cies, there is no difference between our derivation-
based method and a traditional derived structure-
based method. For the second-order model, our
method increases the second-order scores some-
how.
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5.2 Data and Preprocessing

We evaluate first- and second-order models
on four representative data sets: CCGBank
(Hockenmaier and Steedman, 2007), DeepBank
(Flickinger et al., 2012), Enju HPSGBank (Miyao
et al., 2005) and Prague Dependency TreeBank
(Hajic et al., 2012). We use “standard” training,
validation, and test splits to facilitate comparisons.

e Following previous experimental setup for
English CCG parsing, we use section 02-21 as
training data, section 00 as the development
data, and section 23 for testing.

e The DeepBank, Enju HPSGBank and Prague
Dependency TreeBank are from SemEval
2014 Task 8 (Oepen et al., 2014), and the data
splitting policy follows the shared task.

Experiments for CCG-grounded analysis were per-
formed using automatically assigned POS-tags
that are generated by a symbol-refined HMM tag-
ger (Huang et al., 2010). Experiments for the other
three data sets used POS-tags provided by the
shared task. We also use features extracted from
pseudo trees. We utilize the Mate parser (Bohnet,
2010) to generate pseudo trees. All experimental
results consider directed dependencies in a stan-
dard way. We report Unlabeled Precision (UP),
Recall (UR) and F-score (UF), which are calcu-
lated using the official evaluation tool provided by
SDP2014 shared task.

5.3 Accuracy

Table 1 lists the accuracy of our system. The out-
put of our parser was evaluated against each de-
pendency in the corpus. We can see that the first-
order parser obtains a considerably good accuracy,
with rich syntactic features. Furthermore, we can
see that the introduction of higher-order features
improves parsing substantially for all data sets, as
expected. When syntactic trees are utilized, the



DeepBank EnjuBank CCGBank PCEDT
Tree UpP UR UF UP UR UF UP UR UF UP UR UF
No lor | 89.43 83.03 86.11 | 90.10 87.10 88.58 | 91.63 88.07 89.82 | 88.13 81.53 84.70
2or | 89.23 8598 87.57 | 90.88 89.90 90.39 | 91.96 89.54 90.74 | 88.56 84.57 86.52
Syn | lor | 91.24 87.14 89.14 | 92.72 90.96 91.83 | 94.28 91.79 93.02 | 91.53 86.95 89.18
2or | 90.93 88.79 89.85|92.73 92.11 9242 |93.99 9227 93.13 |91.02 88.20 89.59
Table 1: Parsing accuracy evaluated on the development sets.
DeepBank EnjuBank CCGBank PCEDT
Tree UpP UR UF UP UR UF UpP UR UF UP UR UF
No lor | 88.87 82.50 85.57 | 90.12 86.76 88.41 | 91.95 88.29 90.08 | 86.87 80.45 83.54
2or | 88.77 85.61 87.16 | 91.06 89.50 90.27 | 92.25 89.80 91.01 | 87.07 83.45 85.22
Syn | lor | 90.68 86.57 88.58 | 92.82 90.62 91.71 | 94.32 91.88 93.09 | 90.11 85.83 87.97
2or | 90.13 88.21 89.16 | 92.84 91.50 92.17 | 94.09 92.27 93.17 | 89.73 87.13 88.41
SIW (2or) | 89.99 87.77 88.87 | 92.87 92.04 92.46 | 93.45 92.51 9298 | 89.58 87.73 88.65

Table 2: Parsing accuracy evaluated on the test sets. “SJW” denotes the book embedding parser intro-

duced in (Sun et al., 2017).

improvement is smaller but still significant on the
three SemEval data sets.

Table 2 lists the parsing results on the test data
together with the result obtained by Sun et al.
(SJW; 2017)’s system. The building architectures
of both systems are comparable.

1. Both systems have explicit control of the out-
put structures. While Sun et al.’s system con-
strain the output graph to be P2 only, our sys-
tem adds an additional 1EC restriction.

2. Their system’s second-order features also in-
cludes both-side neighboring features.

3. Their system uses beam search and dual
decomposition and therefore approximate,
while ours perform exact decoding.

We can see that while our purely Maximum Sub-
graph parser obtains better results on DeepBank
and CCGBank; while the book embedding parser
is better on the other two data sets.

5.4 Analysis

Our algorithm is sensitive to the derivation pro-
cess and may exclude a couple of negative second-
order scores by selecting misleading derivations.
Neverthess, our algorithm works in an exact way
to include all positive second-order scores. Table
3 shows the coverage of all second-order factors.
On average, 99.67% second-order factors are cal-
culated by our algorithm. This relatively satisfac-
tory coverage suggests that our algorithm is very
effective to include second-order features. Only a
very small portion is dropped.

DeepBank | EnjuBank | CCGBank | PCEDT
No 99.08 99.52 99.67 98.32
Syn 99.77 99.69 99.88 99.33

Table 3: Coverage of second-order factors on the
developmenet data.

6 Conclusion

This paper proposed two exact, graph-based al-
gorithms for 1EC/P2 parsing with first-order and
quasi-second-order scores. The resulting parser
has the same asymptotic run time as Cao et al.
(2017)’s algorithm. An exploration of other factor-
izations that facilitate semantic dependency pars-
ing may be an interesting avenue for future work.
Recent work has investigated faster decoding for
higher-order graph-based projective parsing e.g.
vine pruning (Rush and Petrov, 2012) and cube
pruning (Zhang and McDonald, 2012). It would
be interesting to extend these lines of work to de-
crease the complexity of our quartic algorithm.
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Abstract

Organized relational knowledge in the
form of “knowledge graphs” is important
for many applications. However, the abil-
ity to populate knowledge bases with facts
automatically extracted from documents
has improved frustratingly slowly. This
paper simultaneously addresses two issues
that have held back prior work. We first
propose an effective new model, which
combines an LSTM sequence model with
a form of entity position-aware attention
that is better suited to relation extraction.
Then we build TACRED, a large (119,474
examples) supervised relation extraction
dataset, obtained via crowdsourcing and
targeted towards TAC KBP relations. The
combination of better supervised data and
a more appropriate high-capacity model
enables much better relation extraction
performance. When the model trained on
this new dataset replaces the previous rela-
tion extraction component of the best TAC
KBP 2015 slot filling system, its F; score
increases markedly from 22.2% to 26.7%.

1 Introduction

A basic but highly important challenge in natu-
ral language understanding is being able to pop-
ulate a knowledge base with relational facts con-
tained in a piece of text. For the text shown in Fig-
ure 1, the system should extract triples, or equiv-
alently, knowledge graph edges, such as (Penner,
per:spouse, Lisa Dillman). Combining such ex-
tractions, a system can produce a knowledge graph
of relational facts between persons, organizations,
and locations in the text. This task involves en-
tity recognition, mention coreference and/or entity
linking, and relation extraction; we focus on the
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Penner is survived by his brother, John, a
copy editor at the Times, and his former wife,
Times sportswriter Lisa Dillman.

Subject Relation Object

Mike Penner | per:spouse Lisa Dillman

Mike Penner | per:siblings John Penner

Lisa Dillman | per:title Sportswriter

Lisa Dillman | per:employee_of | Los Angeles Times
John Penner | per:title Copy Editor

John Penner | per:employee_of | Los Angeles Times

Figure 1: An example of relation extraction from
the TAC KBP corpus.

most challenging “slot filling” task of filling in the
relations between entities in the text.

Organized relational knowledge in the form
of “knowledge graphs” has become an important
knowledge resource. These graphs are now exten-
sively used by search engine companies, both to
provide information to end-users and internally to
the system, as a way to understand relationships.
However, up until now, automatic knowledge ex-
traction has proven sufficiently difficult that most
of the facts in these knowledge graphs have been
built up by hand. It is therefore a key challenge
to show that NLP technology can effectively con-
tribute to this important problem.

Existing work on relation extraction (e.g., Ze-
lenko et al., 2003; Mintz et al., 2009; Adel et al.,
2016) has been unable to achieve sufficient re-
call or precision for the results to be usable ver-
sus hand-constructed knowledge bases. Super-
vised training data has been scarce and, while
techniques like distant supervision appear to be a
promising way to extend knowledge bases at low
cost, in practice the training data has often been
too noisy for reliable training of relation extrac-
tion systems (Angeli et al., 2015). As a result
most systems fail to make correct extractions even
in apparently straightforward cases like Figure 1,
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Example

Entity Types & Label

Carey will succeed Cathleen P. Black, who held the position for 15 years and will take on a new

role as chairwoman of Hearst Magazines, the company said.

Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived on Long Island and ran a
child-care center in Queens with her second husband, Stanley Kirkaldy.

Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some
Morgan Stanley colleagues quit and later founded the hedge fund Old Lane Partners.

Baldwin declined further comment, and said JetBlue chief executive Dave Barger was unavailable.

Types: PERSON/TITLE
Relation: per:title

Types: PERSON/CITY
Relation: per:city_of-birth

Types: ORGANIZATION/PERSON
Relation: org:founded_by

Types: PERSON/TITLE
Relation: no_relation

Table 1: Sampled examples from the TACRED dataset. Subject entities are highlighted in blue and

object entities are highlighted in red.

where the best system at the NIST TAC Knowl-
edge Base Population (TAC KBP) 2015 evaluation
failed to recognize the relation between Penner
and Dillman." Consequently most automatic sys-
tems continue to make heavy use of hand-written
rules or patterns because it has been hard for ma-
chine learning systems to achieve adequate pre-
cision or to generalize as well across text types.
We believe machine learning approaches have suf-
fered from two key problems: (1) the models used
have been insufficiently tailored to relation extrac-
tion, and (2) there has been insufficient annotated
data available to satisfy the training of data-hungry
models, such as deep learning models.

This work addresses both of these problems.
We propose a new, effective neural network se-
quence model for relation classification. Its ar-
chitecture is better customized for the slot fill-
ing task: the word representations are augmented
by extra distributed representations of word posi-
tion relative to the subject and object of the puta-
tive relation. This means that the neural attention
model can effectively exploit the combination of
semantic similarity-based attention and position-
based attention. Secondly, we markedly improve
the availability of supervised training data by us-
ing Mechanical Turk crowd annotation to pro-
duce a large supervised training dataset (Table 1),
suitable for the common relations between peo-
ple, organizations and locations which are used in
the TAC KBP evaluations. We name this dataset
the TAC Relation Extraction Dataset (TACRED),
and will make it available through the Linguistic
Data Consortium (LDC) in order to respect copy-
rights on the underlying text.

Combining these two gives a system with
markedly better slot filling performance. This is

"Note: former spouses count as spouses in the ontology.
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shown not only for a relation classification task on
the crowd-annotated data but also for the incorpo-
ration of the resulting classifiers into a complete
cold start knowledge base population system. On
TACRED, our system achieves a relation classi-
fication F; score that is 7.9% higher than that of
a strong feature-based classifier, and 3.5% higher
than that of the best previous neural architecture
that we re-implemented. When this model is used
in concert with a pattern-based system on the TAC
KBP 2015 Cold Start Slot Filling evaluation data,
the system achieves an F; score of 26.7%, which
exceeds the previous state-of-the-art by 4.5% ab-
solute. While this performance certainly does not
solve the knowledge base population problem —
achieving sufficient recall remains a formidable
challenge — this is nevertheless notable progress.

2 A Position-aware Neural Sequence
Model Suitable for Relation Extraction

Existing work on neural relation extraction (e.g.,
Zeng et al., 2014; Nguyen and Grishman, 2015;
Zhou et al., 2016) has focused on convolutional
neural networks (CNNs), recurrent neural net-
works (RNNs), or their combination. While these
models generally work well on the datasets they
are tested on, as we will show, they often fail to
generalize to the longer sentences that are com-
mon in real-world text (such as in TAC KBP).

We believe that existing model architectures
suffer from two problems: (1) Although modern
sequence models such as Long Short-Term Mem-
ory (LSTM) networks have gating mechanisms to
control the relative influence of each individual
word to the final sentence representation (Hochre-
iter and Schmidhuber, 1997), these controls are
not explicitly conditioned on the entire sentence
being classified; (2) Most existing work either
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Figure 2: Our proposed position-aware neural se-
quence model. The model is shown with an exam-
ple sentence Mike and Lisa got married.

does not explicitly model the positions of entities
(i.e., subject and object) in the sequence, or mod-
els the positions only within a local region.

Here, we propose a new neural sequence model
with a position-aware attention mechanism over
an LSTM network to tackle these challenges. This
model can (1) evaluate the relative contribution of
each word after seeing the entire sequence, and (2)
base this evaluation not only on the semantic in-
formation of the sequence, but also on the global
positions of the entities within the sequence.

We formalize the relation extraction task as fol-
lows: Let X [z1,...,2,] denote a sentence,
where z; is the i-th token. A subject entity s
and an object entity o are identified in the sen-
tence, corresponding to two non-overlapping con-
secutive spans: Xs = [Ts,,Ts,41,-..,Ts,| and
Xo = [Toy, Toy+1,---,Toy]. Given the sentence
X and the positions of s and o, the goal is to pre-
dict arelation € R (‘R is the set of relations) that
holds between s and o or no relation otherwise.

Inspired by the position encoding vectors used
in Collobert et al. (2011) and Zeng et al. (2014),
we define a position sequence relative to the sub-
ject entity [p3, ..., p3 ], where

i—sl, 1 < S1
p; =140, 51 <1< 59 (1)
1 — 82, 1> So
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Here s1, so are the starting and ending indices of
the subject entity respectively, and p; € Z can be
viewed as the relative distance of token x; to the
subject entity. Similarly, we obtain a position se-
quence [pg, ..., p%] relative to the object entities.

Let x = [xq, ..., X,,| be word embeddings of the
sentence, obtained using an embedding matrix E.
Similarly, we obtain position embedding vectors
p® = [p},..,p;] and p° = [p9, ..., py] using a
shared position embedding matrix P respectively.
Next, as shown in Figure 2, we obtain hidden state
representations of the sentence by feeding x into
an LSTM:

{hy,....,h,} = LSTM({x1, ..., x,})

(2)
We define a summary vector q = h,, (i.e., the out-
put state of the LSTM). This summary vector en-
codes information about the entire sentence. Then
for each hidden state h;, we calculate an attention
weight a; as:

u; = v tanh(Wph; + W,q+
W,p; + W,p})

= exp(u;)
C iy exp(uy)

Here W;,, W, € Rexd W, W, € Rdaxdp
and v € R% are learnable parameters of the net-
work, where d is the dimension of hidden states,
d, is the dimension of position embeddings, and
d,, is the size of attention layer. Additional param-
eters of the network include embedding matrices
E € RIV*d and P € REL=Dxd where V is the
vocabulary and L is the maximum sentence length.

We regard attention weight a; as the relative
contribution of the specific word to the sentence
representation. The final sentence representation
z is computed as:

n
z = E . a;h;
=1

z is later fed into a fully-connected layer followed
by a softmax layer for relation classification.

Note that our model significantly differs from
the attention mechanism in Bahdanau et al. (2015)
and Zhou et al. (2016) in our use of the summary
vector and position embeddings, and the way our
attention weights are computed. An intuitive way
to understand the model is to view the attention
calculation as a selection process, where the goal
is to select relevant contexts over irrelevant ones.

3)
“4)

)



Dataset # Rel. # Ex. % Neg.
SemEval-2010 Task 8 19 10,717 17.4%
ACE 2003-2004 24 16,771 N/A

TACRED 42 119,474 78.7%

Table 2: A comparison of existing datasets and our
proposed TACRED dataset. % Neg. denotes the
percentage of negative examples (no relation).

Here the summary vector (q) helps the model to
base this selection on the semantic information
of the entire sentence (rather than on each word
only), while the position vectors (p; and p{) pro-
vides important spatial information between each
word and the entities.

3 The TAC Relation Extraction Dataset

Previous research has shown that slot filling sys-
tems can greatly benefit from supervised data.
For example, Angeli et al. (2014b) showed that
even a small amount of supervised data can boost
the end-to-end F; score by 3.9% on the TAC
KBP tasks. However, existing relation extrac-
tion datasets such as the SemEval-2010 Task 8
dataset (Hendrickx et al., 2009) and the Automatic
Content Extraction (ACE) (Strassel et al., 2008)
dataset are less useful for this purpose. This is
mainly because: (1) these datasets are relatively
small for effectively training high-capacity mod-
els (see Table 2), and (2) they capture very differ-
ent types of relations. For example, the SemEval
dataset focuses on semantic relations (e.g., Cause-
Effect, Component-Whole) between two nominals.

One can further argue that it is easy to obtain a
large amount of training data using distant super-
vision (Mintz et al., 2009). In practice, however,
due to the large amount of noise in the induced
data, training relation extractors that perform well
becomes very difficult. For example, Riedel et al.
(2010) show that up to 31% of the distantly super-
vised labels are wrong when creating training data
from aligning Freebase to newswire text.

To tackle these challenges, we collect a large
supervised dataset TACRED, targeted towards the
TAC KBP relations.

Data collection. We create TACRED based on
query entities and annotated system responses in
the yearly TAC KBP evaluations. In each year of
the TAC KBP evaluation (2009-2015), 100 enti-
ties (people or organizations) are given as queries,
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Data Split ~ # Ex. Years
Train 75,050 2009-2012
Dev 25,764 2013
Test 18,660 2014

Table 3: Statistics on TACRED: number of exam-
ples and the source of each portion.

for which participating systems should find asso-
ciated relations and object entities. We make use
of Mechanical Turk to annotate each sentence in
the source corpus that contains one of these query
entities. For each sentence, we ask crowd workers
to annotate both the subject and object entity spans
and the relation types.

Dataset stratification. In total we collect
119,474 examples. We stratify TACRED across
years in which the TAC KBP challenge was run,
and use examples corresponding to query entities
from 2009 to 2012 as training split, 2013 as
development split, and 2014 as test split. We
reserve the TAC KBP 2015 evaluation data for
running slot filling evaluations, as presented in
Section 4. Detailed statistics are given in Table 3.

Discussion. Table 1 presents sampled examples
from TACRED. Compared to existing datasets,
TACRED has four advantages. First, it contains
an order of magnitude more relation instances (Ta-
ble 2), enabling the training of expressive mod-
els. Second, we reuse the entity and relation types
of the TAC KBP tasks. We believe these relation
types are of more interest to downstream appli-
cations. Third, we fully annotate all negative in-
stances that appear in our data collection process,
to ensure that models trained on TACRED are not
biased towards predicting false positives on real-
world text. Lastly, the average sentence length in
TACRED is 36.2, compared to 19.1 in the Sem-
Eval dataset, reflecting the complexity of contexts
in which relations occur in real-world text.

Due to space constraints, we describe the data
collection and validation process, system inter-
faces, and more statistics and examples of TAC-
RED in the supplementary material. We will
make TACRED publicly available through the
LDC.

4 Experiments

In this section we evaluate the effectiveness of our
proposed model and TACRED on improving slot



filling systems. Specifically, we run two sets of ex-
periments: (1) we evaluate model performance on
the relation extraction task using TACRED, and
(2) we evaluate model performance on the TAC
KBP 2015 cold start slot filling task, by training
the models on TACRED.

4.1 Baseline Models

We compare our model against the following base-
line models for relation extraction and slot filling:

TAC KBP 2015 winning system. To judge our
proposed model against a strong baseline, we
compare against Stanford’s top performing system
on the TAC KBP 2015 cold start slot filling task
(Angeli et al., 2015). At the core of this system
are two relation extractors: a pattern-based extrac-
tor and a logistic regression (LR) classifier. The
pattern-based system uses a total of 4,528 surface
patterns and 169 dependency patterns. The logis-
tic regression model was trained on approximately
2 million bootstrapped examples (using a small
annotated dataset and high-precision pattern sys-
tem output) that are carefully tuned for TAC KBP
slot filling evaluation. It uses a comprehensive fea-
ture set similar to the MIML-RE system for re-
lation extraction (Surdeanu et al., 2012), includ-
ing lemmatized n-grams, sequence NER tags and
POS tags, positions of entities, and various fea-
tures over dependency paths, etc.

Convolutional neural networks. We follow the
1-dimensional CNN architecture by Nguyen and
Grishman (2015) for relation extraction. This
model learns a representation of the input sen-
tence, by first running a series of convolutional op-
erations on the sentence with various filters, and
then feeding the output into a max-pooling layer
to reduce the dimension. The resulting represen-
tation is then fed into a fully-connected layer fol-
lowed by a softmax layer for relation classifica-
tion. As an extension, positional embeddings are
also introduced into this model to better capture
the relative position of each word to the subject
and object entities and were shown to achieve im-
proved results. We use “CNN-PE” to represent the
CNN model with positional embeddings.

Dependency-based recurrent neural networks.
In dependency-based neural models, shortest de-
pendency paths between entities are often used as
input to the neural networks. The intuition is to
eliminate tokens that are potentially less relevant
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to the classification of the relation. For the ex-
ample in Figure 1, the shortest dependency path
between the two entities is:

[Penner] < survived — brother

— wife — [Lisa Dillman]

We follow the SDP-LSTM model proposed by Xu
et al. (2015b). In this model, each shortest depen-
dency path is divided into two separate sub-paths
from the subject entity and the object entity to the
lowest common ancestor node. Each sub-path is
fed into an LSTM network, and the resulting hid-
den units at each word position are passed into a
max-over-time pooling layer to form the output of
this sub-path. Outputs from the two sub-paths are
then concatenated to form the final representation.

In addition to the above models, we also com-
pare our proposed model against an LSTM se-
quence model without attention mechanism.

4.2 Implementation Details

We map words that occur less than 2 times in the
training set to a special <UNK> token. We use
the pre-trained GloVe vectors (Pennington et al.,
2014) to initialize word embeddings. For all the
LSTM layers, we find that 2-layer stacked LSTMs
generally work better than one-layer LSTMs. We
minimize cross-entropy loss over all 42 relations
using AdaGrad (Duchi et al., 2011). We apply
Dropout with p = 0.5 to CNNs and LSTMs. Dur-
ing training we also find a word dropout strategy
to be very effective: we randomly set a token to be
<UNK> with a probability p. We set p to be 0.06
for the SDP-LSTM model and 0.04 for all other
models.

Entity masking. We replace each subject entity
in the original sentence with a special <NER>-
SUBJ token where <NER> is the corresponding
NER signature of the subject as provided in TAC-
RED. We do the same processing for object en-
tities. This processing step helps (1) provide a
model with entity type information, and (2) pre-
vent a model from overfitting its predictions to
specific entities.

Multi-channel augmentation. Instead of using
only word vectors as input to the network, we
augment the input with part-of-speech (POS) and
named entity recognition (NER) embeddings. We
run Stanford CoreNLP (Manning et al., 2014) to
obtain the POS and NER annotations.



Model P R F,
Traditional Patterns 85.3 234 36.8
LR 72.0 47.8 57.5
LR + Patterns 71.4 50.1 58.9
Neural CNN 72.1 50.3 59.2
CNN-PE 68.2 554 61.1
SDP-LSTM  62.0 54.8 58.2
LSTM 614 61.7 61.5
Our model 67.7 63.2 654
Ensemble 69.4 64.8 67.0

Table 4: Model performance on the test set of
TACRED, micro-averaged over instances. LR =
Logistic Regression.

We describe our model hyperparameters and
training in detail in the supplementary material.

4.3 Evaluation on TACRED

We first evaluate all models on TACRED. We
train each model for 5 separate runs with inde-
pendent random initializations. For each run we
perform early stopping using the dev set. We then
select the run (among 5) that achieves the median
F; score on the dev set, and report its test set per-
formance.

Table 4 summarizes our results. We observe that
all neural models achieve higher F; scores than
the logistic regression and patterns systems, which
demonstrates the effectiveness of neural models
for relation extraction. Although positional em-
beddings help increase the F; by around 2% over
the plain CNN model, a simple (2-layer) LSTM
model performs surprisingly better than CNN and
dependency-based models. Lastly, our proposed
position-aware mechanism is very effective and
achieves an F; score of 65.4%, with an absolute in-
crease of 3.9% over the best baseline neural model
(LSTM) and 7.9% over the baseline logistic re-
gression system. We also run an ensemble of our
position-aware attention model which takes major-
ity votes from 5 runs with random initializations
and it further pushes the F; score up by 1.6%.

We find that different neural architectures show
a different balance between precision and recall.
CNN-based models tend to have higher precision;
RNN-based models have better recall. This can
be explained by noting that the filters in CNNs are
essentially a form of “fuzzy n-gram patterns”.
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query entity: Mike Penner

hop-0 slot:  per:spouse ------ + Lisa Dillman

hop-1 slot:  per:title + Sportswriter

(query) (fillers)

Figure 3: An example query and corresponding
fillers in the TAC KBP cold start slot filling task.

4.4 Evaluation on TAC KBP Slot Filling

Second, we evaluate the slot filling performance
of all models using the TAC KBP 2015 cold start
slot filling task (Ellis et al., 2015). In this task,
about 50k newswire and Web forum documents
are selected as the evaluation corpus. A slot filling
system is asked to answer a series of queries with
two-hop slots (Figure 3): The first slot asks about
fillers of a relation with the query entity as the sub-
ject (Mike Penner), and we term this a hop-0 slot;
the second slot asks about fillers with the system’s
hop-0 output as the subject, and we term this a
hop-1 slot. System predictions are then evaluated
against gold annotations, and micro-averaged pre-
cision, recall and F; scores are calculated at the
hop-0 and hop-1 levels. Lastly hop-all scores are
calculated by combining hop-0 and hop-1 scores.?

Evaluating relation extraction systems on slot
filling is particularly challenging in that: (1) End-
to-end cold start slot filling scores conflate the per-
formance of all modules in the system (i.e., en-
tity recognizer, entity linker and relation extrac-
tor). (2) Errors in hop-0 predictions can easily
propagate to hop-1 predictions. To fairly evalu-
ate each relation extraction model on this task, we
use Stanford’s 2015 slot filling system as our basic
pipeline.? It is a very strong baseline specifically
tuned for TAC KBP evaluation and ranked top in
the 2015 evaluation. We then plug in the corre-
sponding relation extractor trained on TACRED,
keeping all other modules unchanged.

Table 5 presents our results. We find that:
(1) by only training our logistic regression model
on TACRED (in contrast to on the 2 million boot-
strapped examples used in the 2015 Stanford sys-
tem) and combining it with patterns, we obtain a
higher hop-0 F; score than the 2015 Stanford sys-

%In the TAC KBP cold start slot filling evaluation, a hop-1
slot is transferred to a pseudo-slot which is treated equally as
a hop-0 slot. Hop-all precision, recall and F1 are then calcu-
lated by combining these pseudo-slot predictions and hop-0
predictions.

3This system uses the fine-grained NER system in Stan-
ford CoreNLP (Manning et al., 2014) for entity detection and
the Illinois Wikifier (Ratinov et al., 2011) for entity linking.



Hop-0 Hop-1 Hop-all

Model P R Fy P R Fy P R Fy

Patterns 63.8 17.7 277 493 86 147 589 133 21.8
LR 36.6 219 274 151 10.1 122 256 163 19.9
+ Patterns (2015 winning system) 37.5 24.5 29.7 16.5 128 144 266 19.0 222
LR trained on TACRED 327 206 253 79 95 86 168 153 16.0
+ Patterns 36.5 26.5 30.7 11.0 153 12.8 20.1 21.2 20.6
Our model 39.0 289 332 17.7 139 156 282 215 244
+ Patterns 40.2 315 353 194 165 17.8 29.7 242 26.7

Table 5: Model performance on TAC KBP 2015 slot filling evaluation, micro-averaged over queries.
Hop-0 scores are calculated on the simple single-hop slot filling results; hop-1 scores are calculated
on slot filling results chained on systems’ hop-0 predictions; hop-all scores are calculated based on the

combination of the two. LR = logistic regression.

Model Dev F4

Final Model 66.22
— Position-aware attention 65.12
— Attention 64.71
— Pre-trained embeddings 65.34
— Word dropout 65.69
— All above 63.60

Table 6: An ablation test of our position-aware
attention model, evaluated on TACRED dev set.
Scores are median of 5 models.

tem, and a similar hop-all Fy; (2) our proposed
position-aware attention model substantially out-
performs the 2015 Stanford system on all hop-0,
hop-1 and hop-all F; scores. Combining it with
the patterns, we achieve a hop-all F; of 26.7%, an
absolute improvement of 4.5% over the previous
state-of-the-art result.

4.5 Analysis

Model ablation. Table 6 presents the results
of an ablation test of our position-aware atten-
tion model on the development set of TACRED.
The entire attention mechanism contributes about
1.5% F1, where the position-aware term in Eq. (3)
alone contributes about 1% F; score.

Impact of negative examples. Figure 4 shows
how the slot filling evaluation scores change as we
change the amount of negative (i.e., no_relation)
training data provided to our proposed model. We
find that: (1) At hop-0 level, precision increases as
we provide more negative examples, while recall
stays almost unchanged. F; score keeps increas-
ing. (2) At hop-all level, F; score increases by
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Figure 4: Change of slot filling hop-0 and hop-
all scores as number of negative training examples
changes. 100% is with all the negative examples
included in the training set; the left side scores
have positives and negatives roughly balanced.

about 10% as we change the amount of negative
examples from 20% to 100%.

Performance by sentence length. Figure 5
shows performance on varying sentence lengths.
We find that: (1) Performance of all models de-
grades substantially as the sentences get longer.
(2) Compared to the baseline Logistic Regression
model, all neural models handle long sentences
better. (3) Compared to CNN-PE model, RNN-
based models are more robust on long sentences,
and notably SDP-LSTM model is least sensitive to
sentence length. (4) Our proposed model achieves
equal or better results on sentences of all lengths,
except for sentences with more than 60 tokens
where SDP-LSTM model achieves the best result.
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Figure 5: TACRED development set I scores for
sentences of varying lengths.

Improvement by slot types. We calculate the
F; score for each slot type and compare the
improvement from using our proposed model
across slot types. When compared with the
CNN-PE model, our position-aware attention
model achieves improved F; scores on 30
out of the 41 slot types, with the top 5 slot
types being org:members, per:country_of-death,
org:shareholders, per:children and per:religion.
When compared with SDP-LSTM model, our
model achieves improved F; scores on 26
out of the 41 slot types, with the top 5 slot
types being org:political/religious_affiliation,
per:country_of_death, org:alternate_names,
per:religion and per:alternate_names. We ob-
serve that slot types with relatively sparse training
examples tend to be improved by using the
position-aware attention model.

Attention visualization. Lastly, Figure 6 shows
the visualization of attention weights assigned by
our model on sampled sentences from the devel-
opment set. We find that the model learns to pay
more attention to words that are informative for
the relation (e.g., “graduated from”, “niece” and
“chairman”), though it still makes mistakes (e.g.,
“refused to name the three”). We also observe that
the model tends to put a lot of weight onto object
entities, as the object NER signatures are very in-
formative to the classification of relations.

5 Related Work

Relation extraction. There are broadly three
main lines of work on relation extraction: first,
fully-supervised approaches (Zelenko et al., 2003;
Bunescu and Mooney, 2005), where a statisti-
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cal classifier is trained on an annotated dataset;
second, distant supervision (Mintz et al., 2009;
Surdeanu et al., 2012), where a training set is
formed by projecting the relations in an existing
knowledge base onto textual instances that contain
the entities that the relation connects; and third,
Open IE (Fader et al., 2011; Mausam et al., 2012),
which views its goal as producing subject-relation-
object triples and expressing the relation in text.

Slot filling and knowledge base population.
The most widely-known effort to evaluate slot fill-
ing and KBP systems is the yearly TAC KBP slot
filling tasks, starting from 2009 (McNamee and
Dang, 2009). Participants in slot filling tasks usu-
ally make use of hybrid systems that combine pat-
terns, Open IE, distant supervision and supervised
systems for relation extraction (Kisiel et al., 2015;
Finin et al., 2015; Zhang et al., 2016).

Datasets for relation extraction. Popular
general-domain datasets include the ACE dataset
(Strassel et al., 2008) and the SemEval-2010 task
8 dataset (Hendrickx et al., 2009). In addition,
the BioNLP Shared Tasks (Kim et al., 2009) are
yearly efforts on creating datasets and evaluations
for biomedical information extraction systems.

Deep learning models for relation extraction.
Many deep learning models have been proposed
for relation extraction, with a focus on end-to-end
training using CNNs (Zeng et al., 2014; Nguyen
and Grishman, 2015) and RNNs (Zhang et al.,
2015). Other popular approaches include using
CNN or RNN over dependency paths between en-
tities (Xu et al., 2015a,b), augmenting RNNs with
different components (Xu et al., 2016; Zhou et al.,
2016), and combining RNNs and CNNs (Vu et al.,
2016; Wang et al., 2016). Adel et al. (2016) com-
pares the performance of CNN models against tra-
ditional approaches on slot filling using a portion
of the TAC KBP evaluation data.

6 Conclusion

We introduce a state-of-the-art position-aware
neural sequence model for relation extraction, as
well as TACRED, a large-scale, crowd-sourced
dataset that is orders of magnitude larger than pre-
vious relation extraction datasets. Our proposed
model outperforms a strong feature-based classi-
fier and all baseline neural models. In combination
with the new dataset, it improves the state-of-the-



Sampled Sentences

Predicted Labels

PER-SUBJ graduated from North Korea ’s elite Kim Il Sung University and

ORG-OBJ ORG-OBJ .

per:schools_attended

The heart
PER-SUBJ ’s niece , PER-OBJ PER-OBJ .

cause was a attack following a

case

of pneumonia , said  per:other_family

Independent ORG-SUBJ ORG-SUBJ ORG-SUBJ
PER-OBJ refused to name the three ,

( ECC)
saying they would be identified when

chairman PER-OBJ  org:top_members/employees

the final list of candidates for the august 20 polls is published on Friday .

Figure 6: Sampled sentences from the TACRED development set, with words highlighted according to

the attention weights produced by our best model.

art hop-all F; on the TAC KBP 2015 slot filling
task by 4.5% absolute.
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