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Preface by the General Chair

Thank you so much for joining us in Copenhagen! Welcome to a cosmopolitan city of fantastic
restaurants, lovely seascapes, rich history, and lots and lots of cyclists!

We have an exciting program lined up for you, with three Invited talks, fifteen workshops, seven tutorials,
nine TACL presentations, 322 reviewed papers presented as both oral talks and posters, and twenty-one
demos. I am especially grateful to our Program Chairs, Rebecca Hwa and Sebastian Riedel, who did a
fantastic job managing a backbreaking 1,500 paper submissions (1466 reviewed papers). This involved
51 Area chairs and 980 reviewers. We tried some new things this year (never conducive to a smooth
process) including a more careful handling of the COIs that result from Area Chair submissions, and the
addition of a meta-review step to encourage more thoughtful reviewing. We are soliciting feedback on the
meta-review process, from both reviewers and authors. Despite the additional time involvement, many
of the Area Chairs embraced this new approach, and would like to repeat it. However, there are clearly
a few dissenters, since Rebecca and Sebastian ended up writing around 200 meta-reviews themselves at
the last minute! We are also trying to raise the visibility and status of the poster sessions by integrating
them as parallel sessions alongside oral talks, with poster session chairs. This is in response to the survey
results from EMNLP 2015 that indicated a decided preference for smaller, more frequent poster sessions
during the day rather than evening mega-sessions. Finally, Rebecca and Sebastian are bringing you three
outstanding invited speakers, Dan Jurafsky, Sharon Goldwater, and Nando de Freitas. No program chairs
ever worked harder to bring you a superb set of presentations in an attendee friendly setting.

I am also very grateful to Victoria Fossum and Karl Moritz Hermann, our Workshop Chairs, who
put together a terrific slate of fifteen workshops, and paid meticulous attention to ensuring that each
workshop could hold exactly the poster sessions, invited talks and special events that it required. Our
tutorial chairs, Alexandra Birch and Nathan Schneider, also outdid themselves, providing especially
tempting tutorial offerings. Matt Post deserves to be singled out, for being an Advisor to our
conscientious and successful Handbook Chair, Joachim Bingel, as well as becoming a welcome last
minute addition to our excellent team of Demo Chairs, Lucia Specia and Michael Paul. Thanks are due
to our Website Chair, Anders Johannsen, who responded promptly and deftly to all of our requests, and
to our Student Volunteer and Student Sponsorship Chairs, Zeljko Agic and Yonatan Bisk, who brought
you the helpful and energetic volunteers who keep things running smoothly.

Last but not least, many thanks to your hosts, our Local Arrangements Chairs, Dirk Hovy and Anders
Søgaard and their team. Their concern has been increasing the enjoyment of your experience, and to
that end they proposed a stunning venue, put together an amazing reception and Social Event, chose
your conference bags, issued all the invitation letters for visas, helped create all the signs, etc., etc., etc.
Dan Hardt, our Sponsorship chair, working with Anders and Dirk, raised an unusual amount of local
sponsorships, all to defray the cost of the Social Event.

As always, we are extremely indebted to our generous sponsors. Our platinum sponsors are Google,
Amazon, Baidu, Apple, Facebook, Bloomberg and Siteimprove. Gold sponsors include IBM Research,
Microsoft, eBay, SAP, Textkernel, Maluuba, Zalando, Recruit Institute of Technology and Deloitte.
Silver sponsors are Nuance, Oracle, Sogou, Huawei, Duolingo, CVTE, Unsilo and Wizkids. Snap Inc.,
Grammarly and Yandex are our Bronze sponsors.

Finally, many, many thanks to our Area Chairs, our reviewers, and our authors, whose outstanding
research is being showcased here for your delectation. Nyd det mens det varer!

Best Regards,
Martha Palmer
EMNLP 2017 General Chair
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Preface by the Program Committee Co-Chairs

Welcome to the 2017 Conference on Empirical Methods in Natural Language Processing! This is an
exciting year; we have received a new record-high in the number of submissions: 1,509 papers. After
discounting early withdraws, duplicates, and other invalid submissions, we sent out 1,418 submissions
(836 long papers, 582 short papers) to be reviewed by the program committee. Ultimately, 216 long
papers (25.8% acceptance rate) and 107 short papers (18.4% acceptance rate) have been accepted for
presentation, making a total of 323 papers and an overall acceptance rate of 22.8%.

This year’s technical program consists of three invited talks and 113 oral presentations and 219 poster
presentations for the 323 long and short accepted papers as well as nine papers accepted to the
Transactions of the Association for Computational Linguistics. To accommodate all the presentations
in a compressed timeframe, we opted to have plenary sessions for the invited talks and the winners of the
Best Paper Awards, while allotting three parallel oral sessions and thematically related poster sessions
for all other presentations. We chose to have concurrent poster and oral sessions for several reasons.
First, this is the preferred model of the majority (51.6%) of participants who filled out the EMNLP 2015
post-conference survey. Second, this allows us to spread out the poster presentations across three days
in smaller thematically related clusters. Finally, this maximises the number of acceptances for the high
quality submissions we received; by having more poster sessions, we are able to maintain the acceptance
rates at the previous year’s level despite an increase in submissions by 40%.

It would not have been possible to properly handle such a large number of submissions without the
generous voluntary help from all the members of the program committee, which consists of 980 reviewers
overseen by 51 area chairs. We continued last year’s experiment of defining twelve relatively broad topic
areas and assigning multiple area chairs to facilitate consistent ranking of larger sets of papers. Most
technical program decisions, from the selection of papers to the modes of presentation to the choice of
outstanding papers, are primarily made in a bottom-up fashion: reviewers assessed and scored papers,
made recommendations for oral vs poster decisions, and marked papers suitable for best paper awards;
area chairs ensured the quality of assessments, encouraged discussions and assembled opinions into their
own recommendations; finally, we construct the technical program, considering the recommendations
from the area chairs while taking into account venue constraints and balance across areas. A new
experimental feature of this year’s EMNLP reviewing process is the “meta review,” in which the area
chairs briefly summarize the major discussions between the reviewers to give authors a more transparent
view of the process.

Per EMNLP tradition, awards are given to outstanding papers in three categories: Best Long Paper, Best
Short Paper, and Best Resource Paper. The selection process is bottom-up: based on the reviewers and
area chairs’ recommendations, we nominated four papers for each category; we invited expert members
to form a Best Papers committee for each category; each committee reviews the candidates and select
the winners. The awarded papers will be presented at a special plenary session on the last day of the
conference.

We are extremely grateful that three amazing speakers have agreed to give invited talks at EMNLP. Nando
de Freitas (Google Deepmind) will discuss simulated physical environments, and whether language
would benefit from the development of such environments, and could contribute toward improving such
environments and agents within them. Sharon Goldwater (University of Edinburgh) will describe work
on developing unsupervised speech technology for those of the world’s 7,000 or so languages not spoken
in large rich countries. Dan Jurafsky (Stanford University) will talk about processing the language
of policing to automatically measure linguistic aspects of the interaction from discourse factors like
conversational structure to social factors like respect.

The conference would not have been possible without the support of various people inside and outside
of the committee. In particular, we would like to thank:

• Martha Palmer, whose encouragement and advice as the general chair has been invaluable every
step of the way;
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• Chris Callison-Burch, who has given us excellent advice and support in his capacity as the SIGDAT
Secretary;

• Priscilla Rasmussen, who always has the right answers;

• Xavier Carreras and Kevin Duh, who generously shared their experiences as the chairs of EMNLP
2016;

• Anders Johannsen, who is lightning fast with website updates;

• Our 51 area chairs: David Bamman, Mohit Bansal, Roberto Basili, Chris Biemann, Jordan
Boyd-Graber, Marine Carpuat, Joyce Chai, David Chiang, Jinho Choi, Jennifer Chu-Carroll,
Trevor Cohn, Cristian Danescu-Niculescu-Mizil, Dipanjan Das, Hal Daume, Mona Diab, Mark
Dredze, Jacob Eisenstein, Sanja Fidler, Alona Fyshe, Dan Gildea, Ed Grefenstette, Hannaneh
Hajishirzi, Julia Hockenmaier, Kentaro Inui, Jing Jiang, Philipp Koehn, Mamoru Komachi, Anna
Korhonen, Tom Kwiatkowski, Gina Levow, Bing Liu, Nitin Madnani, Mausam, Rada Mihalcea,
Marie-Francine Moens, Saif M. Mohammad, Mari Ostendorf, Sameer Pradhan, Alexander Rush,
Anoop Sarkar, William Schuler, Hinrich Schütze, Sameer Singh, Thamar Solorio, Vivek Srikumar,
Amanda Stent, Tomek Strzalkowski, Mihai Surdeanu, Andreas Vlachos, Scott Wen-tau Yih, Zhang
Yue;

• The best papers award committee members: Chris Brew, Mike Collins, Kevin Duh, Adam Lopez,
Ani Nenkova, Bonnie Webber, Luke Zettlemoyer;

• Preethi Raghavan and Siddharth Patwardhan, the publications co-chairs and Joachim Bingel, the
conference handbook chair;

• Dirk Hovy and Anders Søgaard, the local arrangements co-chairs;

• Rich Gerber and Paolo Gai at SoftConf.

Finally, we’d like to thank SIGDAT for the opportunity to serve as Program Co-Chairs of EMNLP 2017.
It is an honor and a rewarding learning experience. We hope you will be as inspired by the technical
program as we are.

EMNLP 2017 Program Co-Chairs
Rebecca Hwa, University of Pittsburg
Sebastian Riedel, University College London
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Organizing Committee

General Chair
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Dirk Hovy, University of Copenhagen
Anders Søgaard, University of Copenhagen
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Workshop Co-chairs
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Publications Sr Chair
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Handbook Proofreader
Pontus Stenetorp, University College London

Conference App Chair
Chloé Braud, University of Copenhagen

Student Scholarship Co-chair and Student Volunteer Coordinator
Željko Agić, IT University of Copenhagen
Yonatan Bisk, University of Southern California, ISI

SIGDAT Liason
Chris Callison-Birch, University of Pennsylvania

Program Committee Co-chairs
Rebecca Hwa, University of Pittsburgh
Sebastian Riedel, University College London

Area Chairs
Information Extraction, Information Retrieval, and Question Answering

Mihai Surdeanu, University of Arizona
Jing Jiang, Singapore Management University
Hinrich Schütze, LMU Munich
Sameer Singh, UC Irvine
Scott Wen-tau Yih, MSR
Tomek Strzalkowski, SUNY Albany

Language and Vision
Sanja Fidler, University of Toronto
Hannaneh Hajishirzi, University of Washington

Linguistic Theories and Psycholinguistics
William Schuler, The Ohio State University

Machine Learning
Mohit Bansal, UNC Chapel Hill
Jordan Boyd-Graber, University of Colorado
Trevor Cohn, University of Melbourne
Hal Daumé, University of Maryland
Alona Fyshe, University of Victoria
Anoop Sarkar, Simon Fraser University

Machine Translation and Multilinguality
Marine Carpuat, University of Maryland
David Chiang, University of Notre Dame
Mona Diab, George Washington University
Dan Gildea, University of Rochester
Philipp Koehn, Johns Hopkins University

x



Segmentation, Tagging, and Parsing
Jinho Choi, Emory University
Julia Hockenmaier, University of Illinois at Urbana-Champaign
Alexander Rush, Harvard University
Zhang Yue, Singapore University of Technology and Design

Semantics
Roberto Basili, University of Roma, Tor Vergata
Chris Biemann, University of Hamburg
Ed Grefenstette, DeepMind
Tom Kwiatkowski, Google
Sameer Pradhan, cemantix.org and Boulder Learning, Inc
Vivek Srikumar, University of Utah

Sentiment Analysis and Opinion Mining
Bing Liu, University of Illinois at Chicago
Rada Mihalcea, University of Michigan
Saif M. Mohammad, National Research Council Canada

Social Media and Computational Social Science
David Bamman, University of California, Berkeley
Cristian Danescu-Niculescu-Mizil, Cornell University
Mark Dredze, Johns Hopkins University
Jacob Eisenstein, Georgia Tech

Spoken Language Processing
Mari Ostendorf, University of Washington

Summarization, Generation, Discourse, Dialogue
Joyce Chai, Michigan State University
Jennifer Chu-Carroll, Elemental Cognition
Kentaro Inui, Tohoku University
Gina Levow, University of Washington
Amanda Stent, Bloomberg LP

Text Mining and NLP Applications
Dipanjan Das, Google
Mamoru Komachi, Tokyo Metropolitan University
Anna Korhonen, University of Cambridge
Nitin Madnani, Educational Testing Service (ETS)
Marie-Francine Moens, KU Leuven
Thamar Solorio, University of Houston
Andreas Vlachos, University of Sheffield

Primary Reviewers
Muhammad Abdul-Mageed; Amjad Abu-Jbara; Heike Adel; Željko Agić; Eneko Agirre; Salah Ait-
Mokhtar; Ahmet Aker; Cem Akkaya; Afra Alishahi; Alexandre Allauzen; Tim Althoff; Carlos Alzate;
Bharat Ram Ambati; Antonios Anastasopoulos; Daniel Andor; Jacob Andreas; Nicholas Andrews;
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Anietie Andy; Gabor Angeli; Marianna Apidianaki; Yuki Arase; Arturo Argueta; Ron Artstein; Yoav
Artzi; Ehsaneddin Asgari; Nicholas Asher; Ramón Astudillo; Isabelle Augenstein; Michael Auli; Eleft-
herios Avramidis; amittai axelrod; Wilker Aziz; Yoram Bachrach; Hessam Bagherinezhad; Collin
Baker; Niranjan Balasubramanian; Jason Baldridge; Timothy Baldwin; Tyler Baldwin; Kalika Bali;
Miguel Ballesteros; Siddhartha Banerjee; Chitta Baral; Marco Baroni; Alberto Barrón-Cedeño; Pier-
paolo Basile; Fernando Batista; Riza Theresa Batista-Navarro; Timo Baumann; Daniel Beck; Beata
Beigman Klebanov; Núria Bel; Yonatan Belinkov; Dane Bell; Eric Bell; Kedar Bellare; Islam Belt-
agy; Anja Belz; Emily M. Bender; Darina Benikova; Luciana Benotti; Jonathan Berant; Taylor Berg-
Kirkpatrick; Nicola Bertoldi; Laurent Besacier; Steven Bethard; Chandra Bhagavatula; Suma Bhat;
Archna Bhatia; Joachim Bingel; Alexandra Birch; Arianna Bisazza; Yonatan Bisk; Johannes Bjerva;
Anders Björkelund; Alan W Black; Eduardo Blanco; John Blitzer; Ivan Bogatyy; Bernd Bohnet;
Gemma Boleda; Kalina Bontcheva; Stefan Bordag; Johan Bos; Houda Bouamor; Guillaume Bouchard;
Samuel Bowman; Kristy Boyer; S.R.K. Branavan; Chloé Braud; Fabienne Braune; Felipe Bravo-
Marquez; Chris Brew; Chris Brockett; Julian Brooke; Caroline Brun; Dominique Brunato; William
Bryce; Christian Buck; Paul Buitelaar; Florin Bulgarov; Wray Buntine; Jill Burstein; Bill Byrne;
Donna Byron; Elena Cabrio; Aoife Cahill; Nicoletta Calzolari; Jose Camacho-Collados; Erik Cam-
bria; Nicola Cancedda; Marie Candito; Hailong Cao; Cornelia Caragea; Dallas Card; Xavier Carreras;
Francisco Casacuberta; Tommaso Caselli; Taylor Cassidy; Vittorio Castelli; Asli Celikyilmaz; Daniel
Cer; Özlem Çetinoğlu; Mauro Cettolo; Nathanael Chambers; Yee Seng Chan; Angel Chang; Baobao
Chang; Kai-Wei Chang; Snigdha Chaturvedi; Wanxiang Che; Ciprian Chelba; Boxing Chen; Chen
Chen; Danqi Chen; Hsin-Hsi Chen; John Chen; Lei Chen; Tao Chen; Wenliang Chen; Yidong Chen;
Yun-Nung Chen; Zhiyuan Chen; Jianpeng Cheng; Colin Cherry; Jackie Chi Kit Cheung; Hai Leong
Chieu; laura chiticariu; Eunsol Choi; Yejin Choi; Christos Christodoulopoulos; Grzegorz Chrupała;
Tagyoung Chung; Philipp Cimiano; Kevin Clark; Stephen Clark; Ann Clifton; Maximin Coavoux;
Anne Cocos; Nigel Collier; Michael Collins; Miriam Connor; John Conroy; Matthieu Constant; Dan-
ish Contractor; Ryan Cotterell; Benoit Crabbé; Danilo Croce; Montse Cuadros; Iria da Cunha; An-
drew Dai; Bhavana Dalvi; Lena Dankin; Amitava Das; Pradeep Dasigi; Munmun De Choudhury;
Adrià de Gispert; Daniël de Kok; Eric De La Clergerie; Gerard de Melo; Vera Demberg; Thomas De-
meester; Dina Demner-Fushman; Steve DeNeefe; John DeNero; Lingjia Deng; Pascal Denis; Michael
Denkowski; Tejaswini Deoskar; Valeria dePaiva; Leon Derczynski; Nina Dethlefs; Ann devitt; Ja-
cob Devlin; Giuseppe Di Fabbrizio; Georgiana Dinu; Ellen Dodge; Jesse Dodge; A. Seza Doğruöz;
Li Dong; Qing Dou; Doug Downey; Gabriel Doyle; Eduard Dragut; Mark Dras; Markus Dreyer;
Lan Du; Loic Dugast; Kevin Duh; Greg Durrett; Chris Dyer; Marc Dymetman; Richard Eckart de
Castilho; Judith Eckle-Kohler; Maud Ehrmann; Andreas Eisele; Jason Eisner; Asif Ekbal; Michael
Elhadad; Messina Enza; Gülşen Eryiğit; Hugo Jair Escalante; Keelan Evanini; James Fan; Federico
Fancellu; Hao Fang; Stefano Faralli; Richárd Farkas; Noura Farra; Manaal Faruqui; Benoit Favre; Af-
saneh Fazly; Marcello Federico; Christian Federmann; Geli Fei; Anna Feldman; Yang Feng; Yansong
Feng; Raquel Fernandez; Daniel Fernández-González; Olivier Ferret; Katja Filippova; Andrew Finch;
Nicholas FitzGerald; Jeffrey Flanigan; Lucie Flekova; Michael Flor; Radu Florian; Antske Fokkens;
José A. R. Fonollosa; Mikel L. Forcada; Eric Fosler-Lussier; George Foster; Jennifer Foster; Stefan
L. Frank; Stella Frank; Alexander Fraser; Lea Frermann; Daniel Fried; Mario Fritz; Xiao Fu; At-
sushi Fujii; Matthias Gallé; Michel Galley; Michael Gamon; Kuzman Ganchev; Juri Ganitkevitch;
Wei Gao; Claire Gardent; Matt Gardner; Ekaterina Garmash; Dan Garrette; Milica Gasic; Tao Ge;
Michaela Geierhos; Spandana Gella; Georgi Georgiev; Kallirroi Georgila; Ulrich Germann; George
Giannakopoulos; Kevin Gimpel; Filip Ginter; Filip Ginter; Goran Glavaš; Alfio Gliozzo; Koldo Go-
jenola; Yoav Goldberg; Dan Goldwasser; Juan Carlos Gomez; Carlos Gómez-Rodríguez; Graciela

xii



Gonzalez; Matthew R. Gormley; Cyril Goutte; Amit Goyal; Pawan Goyal; Joao Graca; David Grang-
ier; Spence Green; Eleni Gregoromichelaki; Cyril Grouin; Adam Grycner; Curry Guinn; Hongyu GUO;
Jiafeng Guo; Jiang Guo; Weiwei Guo; Nitish Gupta; Pankaj Gupta; Sonal Gupta; Francisco Guzmán;
Nizar Habash; Barry Haddow; Gholamreza Haffari; Masato Hagiwara; Udo Hahn; Gus Hahn-Powell;
Dilek Hakkani-Tur; David Hall; Keith Hall; Na-Rae Han; Oul Han; Shuguang Han; Xianpei Han;
Sanda Harabagiu; Daniel Hardt; Mark Hasegawa-Johnson; Kazuma Hashimoto; Eva Hasler; Helen
Hastie; Katsuhiko Hayashi; He He; Hua He; Luheng He; Wenqi He; Xiaodong He; Yifan He; Yu-
lan He; Kenneth Heafield; Michael Heilman; James Henderson; John Henderson; Aron Henriksson;
Aurélie Herbelot; Teresa Herrmann; Daniel Hershcovich; Jack Hessel; Ryuichiro Higashinaka; Der-
rick Higgins; Felix Hill; Erhard Hinrichs; Gerold Hintz; Tsutomu Hirao; Julia Hirschberg; Graeme
Hirst; Hieu Hoang; Nathan Hodas; Kristy Hollingshead; Ales Horak; Chiori Hori; Julian Hough; Yifan
Hu; Fei Huang; Heyan Huang; Liang Huang; Lifu Huang; Minlie Huang; Ruihong Huang; Shujian
Huang; Xuanjing Huang; Zhongqiang Huang; Luwen Huangfu; Samar Husain; Young-Sook Hwang;
Gonzalo Iglesias; Ryu Iida; Diana Inkpen; Naoya Inoue; Radu Tudor Ionescu; Ozan Irsoy; Alexei V.
Ivanov; Mohit Iyyer; Guillaume Jacquet; Peter Jansen; Yangfeng Ji; Ping Jian; Wenbin Jiang; Anders
Johannsen; Michael Johnston; Kristiina Jokinen; Doug Jones; Shafiq Joty; Marcin Junczys-Dowmunt;
Dan Jurafsky; David Jurgens; Nobuhiro Kaji; Pallika Kanani; Hiroshi Kanayama; Dimitri Kartsaklis;
Arzoo Katiyar; Daisuke Kawahara; Aniruddha Kembhavi; Ruth Kempson; Casey Kennington; Mitesh
M. Khapra; Tushar Khot; Bernd Kiefer; Douwe Kiela; Yuta Kikuchi; Jin-Dong Kim; Seokhwan Kim;
Tracy Holloway King; Brian Kingsbury; Svetlana Kiritchenko; Chunyu Kit; Roman Klinger; Julien
Kloetzer; Kevin Knight; Simon Kocbek; Ekaterina Kochmar; Thomas Kollar; Kazunori Komatani; Rik
Koncel-Kedziorski; Lingpeng Kong; Ioannis Konstas; Parisa Kordjamshidi; Alexander Kotov; Zornitsa
Kozareva; Mikhail Kozhevnikov; Martin Krallinger; Jayant Krishnamurthy; Canasai Kruengkrai; Lun-
Wei Ku; Sandra Kübler; Marco Kuhlmann; Roland Kuhn; Shankar Kumar; Jonathan K. Kummerfeld;
Tsung-Ting Kuo; Sadao Kurohashi; Nate Kushman; Polina Kuznetsova; Igor Labutov; Mathias Lam-
bert; Patrik Lambert; Vasileios Lampos; Ian Lane; Ni Lao; Mirella Lapata; Jey Han Lau; Alon Lavie;
Joseph Le Roux; John Lee; Kenton Lee; Sungjin Lee; Els Lefever; Tao Lei; Alessandro Lenci; Omer
Levy; Roger Levy; Mike Lewis; Fangtao Li; Haibo Li; Jing Li; Junyi Jessy Li; Qi Li; Sujian Li; Wenjie
Li; Yanen Li; Zhenghua Li; Maria Liakata; Constantine Lignos; Chuan-Jie Lin; Victoria Lin; Wang
Ling; Xiao Ling; Tal Linzen; Pierre Lison; Diane Litman; Changsong Liu; Fei Liu; Fei Liu; Jiang-
ming Liu; Jing Liu; Kang Liu; Qian Liu; Qun Liu; Ting Liu; Yang Liu; Yang Liu; Yiqun Liu; Zhanyi
Liu; Zhiyuan Liu; Adam Lopez; Oier Lopez de Lacalle; Adrian Pastor López Monroy; Annie Louis;
Ryan Lowe; Bin Lu; Wei Lu; Yi Luan; Marco Lui; Minh-Thang Luong; Franco M. Luque; Anh Tuan
Luu; Teresa Lynn; Ji Ma; Xuezhe Ma; Klaus Macherey; Wolfgang Macherey; Pierre Magistry; Suraj
Maharjan; Wolfgang Maier; Igor Malioutov; Shervin Malmasi; Suresh Manandhar; Gideon Mann;
Christopher D. Manning; Saab Mansour; Amin Mantrach; Diego Marcheggiani; Daniel Marcu; Anna
Margolis; Alex Marin; Héctor Martínez Alonso; André F. T. Martins; Bruno Martins; Yuichiroh Mat-
subayashi; Yuji Matsumoto; Takuya Matsuzaki; Austin Matthews; Arne Mauser; Jonathan May; Diana
Maynard; Andrew McCallum; Diana McCarthy; David McClosky; Yashar Mehdad; Yelena Mejova;
Pablo Mendes; Helen Meng; Haitao Mi; Yishu Miao; Claudiu Mihăilă; Timothy Miller; Tristan Miller;
Bonan Min; Paramita Mirza; Dipendra Misra; Dipendra Misra; Makoto Miwa; Daichi Mochihashi;
Ashutosh Modi; Karo Moilanen; Manuel Montes; Christof Monz; Taesun Moon; Raymond Mooney;
Roser Morante; Véronique MORICEAU; Alessandro Moschitti; Nasrin Mostafazadeh; Roozbeh Mot-
taghi; Animesh Mukherjee; Dragos Munteanu; Yugo Murawaki; Smaranda Muresan; Kenton Mur-
ray; Maria Nadejde; Ajay Nagesh; Mikio Nakano; Ndapandula Nakashole; Preslav Nakov; Courtney
Napoles; Jason Naradowsky; Karthik Narasimhan; Shashi Narayan; Alexis Nasr; Vivi Nastase; Borja
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Navarro; Roberto Navigli; Adeline Nazarenko; Mark-Jan Nederhof; Arvind Neelakantan; Sapna Negi;
Aida Nematzadeh; Graham Neubig; Hwee Tou Ng; Jun-Ping Ng; Vincent Ng; Axel-Cyrille Ngonga
Ngomo; Dong Nguyen; Thien Huu Nguyen; Toan Nguyen; Jian-Yun NIE; Nobal Bikram Niraula;
Joakim Nivre; Hiroshi Noji; Joel Nothman; Pierre Nugues; Diarmuid Ó Séaghdha; Brendan O’Connor;
Stephan Oepen; Kemal Oflazer; Alice Oh; Jong-Hoon Oh; Naoaki Okazaki; Manabu Okumura; Con-
stantin Orasan; Vicente Ordonez; Myle Ott; Muntsa Padró; Alexis Palmer; Martha Palmer; Shimei
Pan; Sinno Jialin Pan; Alexander Panchenko; Bo Pang; Denis Paperno; Aasish Pappu; Natalie Parde;
Ankur Parikh; Niki Parmar; Patrick Paroubek; Rebecca J. Passonneau; Panupong Pasupat; John K Pate;
Siddharth Patwardhan; Michael J. Paul; Adam Pauls; Umashanthi Pavalanathan; Ellie Pavlick; Adam
Pease; Viktor Pekar; Anselmo Peñas; Xiaochang Peng; Sergio Penkale; Gerald Penn; Julien PEREZ;
Verónica Pérez-Rosas; Johann Petrak; Slav Petrov; Nghia The Pham; Peter Phandi; Olivier Pietquin;
Daniele Pighin; Mohammad Taher Pilehvar; Joelle Pineau; Yuval Pinter; Emily Pitler; Barbara Plank;
Julien Plu; Massimo Poesio; Tamara Polajnar; Heather Pon-Barry; Simone Paolo Ponzetto; Ana-Maria
Popescu; Andrei Popescu-Belis; Maja Popović; Fred Popowich; Soujanya Poria; Matt Post; Christopher
Potts; Vinodkumar Prabhakaran; Daniel Preoţiuc-Pietro; Prokopis Prokopidis; Emily Prud’hommeaux;
Jay Pujara; Matthew Purver; Ashequl Qadir; Longhua Qian; Xian Qian; Long Qiu; Minghui Qiu; Ella
Rabinovich; Will Radford; Alessandro Raganato; Preethi Raghavan; Altaf Rahman; Nazneen Fatema
Rajani; Rafal Rak; Bhuvana Ramabhadran; Carlos Ramisch; Delip Rao; Ari Rappoport; Mohammad
Sadegh Rasooli; Sravana Reddy; Ines Rehbein; Roi Reichart; Nils Reimers; David Reitter; Steffen Re-
mus; Xiang Ren; Adithya Renduchintala; Corentin Ribeyre; Giuseppe Riccardi; Matthew Richardson;
Martin Riedl; Verena Rieser; Stefan Riezler; German Rigau; Ellen Riloff; Laura Rimell; Fabio Rinaldi;
Eric Ringger; Brian Riordan; Alan Ritter; Brian Roark; Kirk Roberts; Molly Roberts; Tim Rocktäschel;
Anna Rohrbach; Marcus Rohrbach; Lina M. Rojas Barahona; Stephen Roller; Salvatore Romeo; Paolo
Rosso; Mihai Rotaru; Benjamin Roth; Michael Roth; Alla Rozovskaya; Vasile Rus; Attapol Ruther-
ford; Derek Ruths; Fatiha Sadat; Mehrnoosh Sadrzadeh; Markus Saers; Kenji Sagae; Horacio Saggion;
Rishiraj Saha Roy; Magnus Sahlgren; Keisuke Sakaguchi; Mohammad Salameh; Shimi Salant; Yu-
nita Sari; Ruhi Sarikaya; Ryohei Sasano; Hassan Sawaf; Asad Sayeed; David Schlangen; Jonathan
Schler; Natalie Schluter; Helmut Schmid; Sebastian Schuster; H. Andrew Schwartz; Lane Schwartz;
Roy Schwartz; Stephanie Schwartz; Holger Schwenk; Djamé Seddah; Satoshi Sekine; Ethan Selfridge;
Jean Senellart; Rico Sennrich; Minjoon Seo; BURR SETTLES; Izhak Shafran; Kashif Shah; Samira
Shaikh; Amr Sharaf; Rebecca Sharp; Wade Shen; xiaodong shi; Chaitanya Shivade; Prasha Shrestha;
Avirup Sil; Fabrizio Silvestri; Yanchuan Sim; Dan Simonson; Kiril Simov; Steve Skiena; Kevin Small;
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Invited Speaker: Dan Jurafsky, Stanford University
"Does This Vehicle Belong to You”? Processing the Language of Policing

for Improving Police-Community Relations"

Abstract: Police body-cameras have the potential to play an important role in understanding and im-
proving police-community relations. In this talk I describe a series of studies conducted by our large
interdisciplinary team at Stanford that use speech and natural language processing on body-camera
recordings to model the interactions between police officers and community members in traffic stops.
We use text and speech features to automatically measure linguistic aspects of the interaction, from
discourse factors like conversational structure to social factors like respect. I describe the differences
we find in the language directed toward black versus white community members, and offer suggestions
for how these findings can be used to help improve the fraught relations between police officers and the
communities they serve.

Bio: Dan Jurafsky is Professor and Chair of Linguistics and Professor of Computer Science, at Stanford
University. His research has focused on the extraction of meaning, intention, and affect from text and
speech, on the processing of Chinese, and on applying natural language processing to the cognitive
and social sciences. Dan’s deep interest in NLP education led him to co-write with Jim Martin the
widely-used textbook "Speech and Language Processing” (whose 3rd edition is in (slow) progress) and
co-teach with Chris Manning the first massive open online class on natural language processing. Dan
was the recipient of the 2002 MacArthur Fellowship and is a 2015 James Beard Award Nominee for his
book, "The Language of Food: A Linguist Reads the Menu".

Invited Speaker: Sharon Goldwater, University of Edinburgh
Towards more universal language technology: unsupervised learning

from speech

Abstract: Speech and language processing has advanced enormously in the last decade, with successful
applications in machine translation, voice-activated search, and even language-enabled personal assis-
tants. Yet these systems typically still rely on learning from very large quantities of human-annotated
data. These resource-intensive methods mean that effective technology is available for only a tiny
fraction of the world’s 7000 or so languages, mainly those spoken in large rich countries.

This talk describes our recent work on developing unsupervised speech technology, where transcripts
and pronunciation dictionaries are not used. The work is inspired by considering both how young infants
may begin to acquire the sounds and words of their language, and how we might develop systems to help
linguists analyze and document endangered languages. I will first present work on learning from speech
audio alone, where the system must learn to segment the speech stream into word tokens and cluster
repeated instances of the same word together to learn a lexicon of vocabulary items. The approach
combines Bayesian and neural network methods to address learning at the word and sub-word levels.

Bio: Sharon Goldwater is a Reader at the University of Edinburgh’s School of Informatics, where she
is a member of the Institute for Language, Cognition and Computation. She received her PhD in 2007
from Brown University and spent two years as a postdoctoral researcher at Stanford University before
moving to Edinburgh. Her research interests include unsupervised learning for speech and language
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processing, computer modelling of language acquisition in children, and computational studies of lan-
guage use. Dr. Goldwater co-chaired the 2014 Conference of the European Chapter of the Association
for Computational Linguistics and is Chair-Elect of EACL. She has served on the editorial boards of the
Transactions of the Association for Computational Linguistics, the Computational Linguistics journal,
and OPEN MIND: Advances in Cognitive Science (a new open-access journal). In 2016, she received
the Roger Needham Award from the British Computer Society, awarded for "distinguished research
contribution in computer science by a UK-based researcher who has completed up to 10 years of post-
doctoral research."

Invited Speaker: Nando de Freitas, Google Deepmind
Physical simulation, learning and language

Abstract: Simulated physical environments, with common physical laws, objects and agents with
bodies, provide us with consistency to facilitate transfer and continual learning. In such environments,
research topics such as learning to experiment, learning to learn and emergent communication can be
easily explored. Given the relevance of these topics to language, it is natural to ask ourselves whether
research in language would benefit from the development of such environments, and whether language
can contribute toward improving such environments and agents within them. This talk will provide
an overview of some of these environments, discuss learning to learn and its potential relevance to
language, and present some deep reinforcement learning agents that capitalize on formal language
instructions to develop disentangled interpretable representations that allow them to generalize to a
wide variety of zero-shot semantic tasks. The talk will pose more questions than answers in the hope
of stimulating discussion.

Bio: I was born in Zimbabwe, with malaria. I was a refugee from the war in Mocambique and thanks
to my parents getting in debt to buy me a passport from a corrupt official, I grew up in Portugal without
water and electricity, before the EU got there, and without my parents who were busy making money
to pay their debt. At 8, I joined my parents in Venezuela and began school in the hood; see City of
God. I moved to South Africa after high-school and sold beer illegally in black-townships for a living
until 1991. Apartheid was the worst thing I ever experienced. I did my BSc in electrical engineering
and MSc in control at the University of the Witwatersrand, where I strived to be the best student to
prove to racists that anyone can do it. I did my PhD on Bayesian methods for neural networks at Trinity
College, Cambridge University. I did a postdoc in Artificial Intelligence at UC Berkeley. I became a
Full Professor at the University of British Columbia, before joining the University of Oxford in 2013.
I quit Oxford in 2017 to join DeepMind full-time, where I lead the Machine Learning team. I aim
to solve intelligence so that future generations have a better life. I have been a Senior Fellow of the
Canadian Institute for Advanced Research for a long time. Some of my recent awards, mostly thanks
to my collaborators, include: Best Paper Award at the International Conference on Machine Learning
(2016), Best Paper Award at the International Conference on Learning Representations (2016), Winner
of round 5 of the Yelp Dataset Challenge (2015), Distinguished Paper Award at the International Joint
Conference on Artificial Intelligence (2013), Charles A. McDowell Award for Excellence in Research
(2012), and Mathematics of Information Technology and Complex Systems Young Researcher Award
(2010).
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Qiang Ning, Zhili Feng and Dan Roth

10:55–11:20 Importance sampling for unbiased on-demand evaluation of knowledge base popu-
lation
Arun Chaganty, Ashwin Paranjape, Percy Liang and Christopher D. Manning

11:20–11:45 PACRR: A Position-Aware Neural IR Model for Relevance Matching
Kai Hui, Andrew Yates, Klaus Berberich and Gerard de Melo

11:45–12:10 Globally Normalized Reader
Jonathan Raiman and John Miller

10:30–12:10 Session 4B: Multimodal NLP 2

10:30–10:55 Speech segmentation with a neural encoder model of working memory
Micha Elsner and Cory Shain

10:55–11:20 Speaking, Seeing, Understanding: Correlating semantic models with conceptual
representation in the brain
Luana Bulat, Stephen Clark and Ekaterina Shutova

11:20–11:45 Multi-modal Summarization for Asynchronous Collection of Text, Image, Audio and
Video
Haoran Li, Junnan Zhu, Cong Ma, Jiajun Zhang and Chengqing Zong

11:45–12:10 Tensor Fusion Network for Multimodal Sentiment Analysis
Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria and Louis-Philippe
Morency
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Sunday, September 10, 2017 (continued)

10:30–12:10 Session 4C: Human Centered NLP and Linguistic Theory

10:30–10:55 ConStance: Modeling Annotation Contexts to Improve Stance Classification
Kenneth Joseph, Lisa Friedland, William Hobbs, David Lazer and Oren Tsur

10:55–11:20 Deeper Attention to Abusive User Content Moderation
John Pavlopoulos, Prodromos Malakasiotis and Ion Androutsopoulos

11:20–11:45 Outta Control: Laws of Semantic Change and Inherent Biases in Word Representa-
tion Models
Haim Dubossarsky, Daphna Weinshall and Eitan Grossman

11:45–12:10 Human Centered NLP with User-Factor Adaptation
Veronica Lynn, Youngseo Son, Vivek Kulkarni, Niranjan Balasubramanian and H.
Andrew Schwartz

10:30–12:10 Session 4D: Poster Session. Semantics 2

Neural Sequence Learning Models for Word Sense Disambiguation
Alessandro Raganato, Claudio Delli Bovi and Roberto Navigli

Learning Word Relatedness over Time
Guy D. Rosin, Eytan Adar and Kira Radinsky

Inter-Weighted Alignment Network for Sentence Pair Modeling
Gehui Shen, Yunlun Yang and Zhi-Hong Deng

A Short Survey on Taxonomy Learning from Text Corpora: Issues, Resources and
Recent Advances
Chengyu Wang, Xiaofeng He and Aoying Zhou

Idiom-Aware Compositional Distributed Semantics
Pengfei Liu, Kaiyu Qian, Xipeng Qiu and Xuanjing Huang

Macro Grammars and Holistic Triggering for Efficient Semantic Parsing
Yuchen Zhang, Panupong Pasupat and Percy Liang

liii



Sunday, September 10, 2017 (continued)

A Continuously Growing Dataset of Sentential Paraphrases
Wuwei Lan, Siyu Qiu, Hua He and Wei Xu

Cross-domain Semantic Parsing via Paraphrasing
Yu Su and Xifeng Yan

A Joint Sequential and Relational Model for Frame-Semantic Parsing
Bishan Yang and Tom Mitchell

Getting the Most out of AMR Parsing
Chuan Wang and Nianwen Xue

AMR Parsing using Stack-LSTMs
Miguel Ballesteros and Yaser Al-Onaizan

An End-to-End Deep Framework for Answer Triggering with a Novel Group-Level
Objective
Jie Zhao, Yu Su, Ziyu Guan and Huan Sun

Predicting Word Association Strengths
Andrew Cattle and Xiaojuan Ma

10:30–12:10 Session 4E: Poster Session. Discourse

Learning Contextually Informed Representations for Linear-Time Discourse Pars-
ing
Yang Liu and Mirella Lapata

Multi-task Attention-based Neural Networks for Implicit Discourse Relationship
Representation and Identification
Man Lan, Jianxiang Wang, Yuanbin Wu, Zheng-Yu Niu and Haifeng Wang

Chinese Zero Pronoun Resolution with Deep Memory Network
Qingyu Yin, Yu Zhang, Weinan Zhang and Ting Liu

How much progress have we made on RST discourse parsing? A replication study
of recent results on the RST-DT
Mathieu Morey, Philippe Muller and Nicholas Asher

liv



Sunday, September 10, 2017 (continued)

What is it? Disambiguating the different readings of the pronoun ‘it’
Sharid Loáiciga, Liane Guillou and Christian Hardmeier

Revisiting Selectional Preferences for Coreference Resolution
Benjamin Heinzerling, Nafise Sadat Moosavi and Michael Strube

Learning to Rank Semantic Coherence for Topic Segmentation
Liang Wang, Sujian Li, Yajuan Lv and Houfeng WANG

GRASP: Rich Patterns for Argumentation Mining
Eyal Shnarch, Ran Levy, Vikas Raykar and Noam Slonim

Patterns of Argumentation Strategies across Topics
Khalid Al Khatib, Henning Wachsmuth, Matthias Hagen and Benno Stein

Using Argument-based Features to Predict and Analyse Review Helpfulness
Haijing Liu, Yang Gao, Pin Lv, Mengxue Li, Shiqiang Geng, Minglan Li and Hao
Wang

Here’s My Point: Joint Pointer Architecture for Argument Mining
Peter Potash, Alexey Romanov and Anna Rumshisky

Identifying attack and support argumentative relations using deep learning
Oana Cocarascu and Francesca Toni

lv



Sunday, September 10, 2017 (continued)

10:30–12:10 Session 4F: Poster Session. Machine Translation and Multilingual NLP 1

Neural Lattice-to-Sequence Models for Uncertain Inputs
Matthias Sperber, Graham Neubig, Jan Niehues and Alex Waibel

Memory-augmented Neural Machine Translation
Yang Feng, Shiyue Zhang, Andi Zhang, Dong Wang and Andrew Abel

Dynamic Data Selection for Neural Machine Translation
Marlies van der Wees, Arianna Bisazza and Christof Monz

Neural Machine Translation Leveraging Phrase-based Models in a Hybrid Search
Leonard Dahlmann, Evgeny Matusov, Pavel Petrushkov and Shahram Khadivi

Translating Phrases in Neural Machine Translation
Xing Wang, Zhaopeng Tu, Deyi Xiong and Min Zhang

Towards Bidirectional Hierarchical Representations for Attention-based Neural
Machine Translation
Baosong Yang, Derek F. Wong, Tong Xiao, Lidia S. Chao and Jingbo Zhu

Massive Exploration of Neural Machine Translation Architectures
Denny Britz, Anna Goldie, Minh-Thang Luong and Quoc Le

Learning Translations via Matrix Completion
Derry Tanti Wijaya, Brendan Callahan, John Hewitt, Jie Gao, Xiao Ling, Marianna
Apidianaki and Chris Callison-Burch

Reinforcement Learning for Bandit Neural Machine Translation with Simulated Hu-
man Feedback
Khanh Nguyen, Hal Daumé III and Jordan Boyd-Graber

Towards Compact and Fast Neural Machine Translation Using a Combined Method
Xiaowei Zhang, Wei Chen, Feng Wang, Shuang Xu and Bo Xu

Instance Weighting for Neural Machine Translation Domain Adaptation
Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen and Eiichiro Sumita

lvi



Sunday, September 10, 2017 (continued)

Regularization techniques for fine-tuning in neural machine translation
Antonio Valerio Miceli Barone, Barry Haddow, Ulrich Germann and Rico Sennrich

Source-Side Left-to-Right or Target-Side Left-to-Right? An Empirical Comparison
of Two Phrase-Based Decoding Algorithms
Yin-Wen Chang and Michael Collins

Using Target-side Monolingual Data for Neural Machine Translation through
Multi-task Learning
Tobias Domhan and Felix Hieber

12:10–13:40 Lunch

12:40–13:40 SIGDAT Business Meeting

13:40–15:20 Session 5A: Semantics 3

13:40–14:05 Encoding Sentences with Graph Convolutional Networks for Semantic Role Label-
ing
Diego Marcheggiani and Ivan Titov

14:05–14:30 Neural Semantic Parsing with Type Constraints for Semi-Structured Tables
Jayant Krishnamurthy, Pradeep Dasigi and Matt Gardner

14:30–14:55 Joint Concept Learning and Semantic Parsing from Natural Language Explanations
Shashank Srivastava, Igor Labutov and Tom Mitchell

14:55–15:20 Grasping the Finer Point: A Supervised Similarity Network for Metaphor Detection
Marek Rei, Luana Bulat, Douwe Kiela and Ekaterina Shutova

lvii



Sunday, September 10, 2017 (continued)

13:40–15:20 Session 5B: Computational Social Science 1

13:40–14:05 Identifying civilians killed by police with distantly supervised entity-event extraction
Katherine Keith, Abram Handler, Michael Pinkham, Cara Magliozzi, Joshua Mc-
Duffie and Brendan O’Connor

14:05–14:30 Asking too much? The rhetorical role of questions in political discourse
Justine Zhang, Arthur Spirling and Cristian Danescu-Niculescu-Mizil

14:30–14:55 Detecting Perspectives in Political Debates
David Vilares and Yulan He

14:55–15:20 "i have a feeling trump will win..................": Forecasting Winners and Losers from
User Predictions on Twitter
Sandesh Swamy, Alan Ritter and Marie-Catherine de Marneffe

13:40–15:20 Session 5C: Sentiment Analysis 2

13:40–14:05 A Question Answering Approach for Emotion Cause Extraction
Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Lu Qin and Jiachen Du

14:05–14:30 Story Comprehension for Predicting What Happens Next
Snigdha Chaturvedi, Haoruo Peng and Dan Roth

14:30–14:55 Using millions of emoji occurrences to learn any-domain representations for detect-
ing sentiment, emotion and sarcasm
Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan and Sune Lehmann

14:55–15:20 Opinion Recommendation Using A Neural Model
Zhongqing Wang and Yue Zhang

lviii



Sunday, September 10, 2017 (continued)

13:40–15:20 Session 5D: Poster Session. Syntax 3

CRF Autoencoder for Unsupervised Dependency Parsing
Jiong Cai, Yong Jiang and Kewei Tu

Efficient Discontinuous Phrase-Structure Parsing via the Generalized Maximum
Spanning Arborescence
Caio Corro, Joseph Le Roux and Mathieu Lacroix

Incremental Graph-based Neural Dependency Parsing
Xiaoqing Zheng

Neural Discontinuous Constituency Parsing
Miloš Stanojević and Raquel Garrido Alhama

Stack-based Multi-layer Attention for Transition-based Dependency Parsing
Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou and Enhong Chen

Dependency Grammar Induction with Neural Lexicalization and Big Training Data
Wenjuan Han, Yong Jiang and Kewei Tu

Combining Generative and Discriminative Approaches to Unsupervised Depen-
dency Parsing via Dual Decomposition
Yong Jiang, Wenjuan Han and Kewei Tu

Effective Inference for Generative Neural Parsing
Mitchell Stern, Daniel Fried and Dan Klein

Semi-supervised Structured Prediction with Neural CRF Autoencoder
Xiao Zhang, Yong Jiang, Hao Peng, Kewei Tu and Dan Goldwasser

TAG Parsing with Neural Networks and Vector Representations of Supertags
Jungo Kasai, Bob Frank, Tom McCoy, Owen Rambow and Alexis Nasr

lix



Sunday, September 10, 2017 (continued)

13:40–15:20 Session 5E: Poster Session. Relations

Global Normalization of Convolutional Neural Networks for Joint Entity and Rela-
tion Classification
Heike Adel and Hinrich Schütze

End-to-End Neural Relation Extraction with Global Optimization
Meishan Zhang, Yue Zhang and Guohong Fu

KGEval: Accuracy Estimation of Automatically Constructed Knowledge Graphs
Prakhar Ojha and Partha Talukdar

Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short
Jay Pujara, Eriq Augustine and Lise Getoor

Dual Tensor Model for Detecting Asymmetric Lexico-Semantic Relations
Goran Glavaš and Simone Paolo Ponzetto

Incorporating Relation Paths in Neural Relation Extraction
Wenyuan Zeng, Yankai Lin, Zhiyuan Liu and Maosong Sun

Adversarial Training for Relation Extraction
Yi Wu, David Bamman and Stuart Russell

Context-Aware Representations for Knowledge Base Relation Extraction
Daniil Sorokin and Iryna Gurevych

A Soft-label Method for Noise-tolerant Distantly Supervised Relation Extraction
Tianyu Liu, Kexiang Wang, Baobao Chang and Zhifang Sui

A Sequential Model for Classifying Temporal Relations between Intra-Sentence
Events
Prafulla Kumar Choubey and Ruihong Huang

Deep Residual Learning for Weakly-Supervised Relation Extraction
YiYao Huang and William Yang Wang

lx



Sunday, September 10, 2017 (continued)

Noise-Clustered Distant Supervision for Relation Extraction: A Nonparametric
Bayesian Perspective
Qing Zhang and Houfeng Wang

Exploring Vector Spaces for Semantic Relations
Kata Gábor, Haifa Zargayouna, Isabelle Tellier, Davide Buscaldi and Thierry
Charnois

Temporal dynamics of semantic relations in word embeddings: an application to
predicting armed conflict participants
Andrey Kutuzov, Erik Velldal and Lilja Øvrelid

13:40–15:20 Session 5F: Poster Session. Language Models, Text Mining, and Crowd Sourc-
ing

Dynamic Entity Representations in Neural Language Models
Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi and Noah A. Smith

Towards Quantum Language Models
Ivano Basile and Fabio Tamburini

Reference-Aware Language Models
Zichao Yang, Phil Blunsom, Chris Dyer and Wang Ling

A Simple Language Model based on PMI Matrix Approximations
Oren Melamud, Ido Dagan and Jacob Goldberger

Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones
Zhenisbek Assylbekov, Rustem Takhanov, Bagdat Myrzakhmetov and Jonathan N.
Washington

Inducing Semantic Micro-Clusters from Deep Multi-View Representations of Novels
Lea Frermann and György Szarvas

Initializing Convolutional Filters with Semantic Features for Text Classification
Shen Li, Zhe Zhao, Tao Liu, Renfen Hu and Xiaoyong Du

Shortest-Path Graph Kernels for Document Similarity
Giannis Nikolentzos, Polykarpos Meladianos, Francois Rousseau, Yannis Stavrakas
and Michalis Vazirgiannis

lxi
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Adapting Topic Models using Lexical Associations with Tree Priors
Weiwei Yang, Jordan Boyd-Graber and Philip Resnik

Finding Patterns in Noisy Crowds: Regression-based Annotation Aggregation for
Crowdsourced Data
Natalie Parde and Rodney Nielsen

CROWD-IN-THE-LOOP: A Hybrid Approach for Annotating Semantic Roles
Chenguang Wang, Alan Akbik, laura chiticariu, Yunyao Li, Fei Xia and Anbang Xu

A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks
Kazuma Hashimoto, caiming xiong, Yoshimasa Tsuruoka and Richard Socher

15:20–15:50 Coffee Break

15:50–17:30 Session 6A: Machine Translation 2

15:50–16:15 Earth Mover’s Distance Minimization for Unsupervised Bilingual Lexicon Induc-
tion
Meng Zhang, Yang Liu, Huanbo Luan and Maosong Sun

16:15–16:40 Unfolding and Shrinking Neural Machine Translation Ensembles
Felix Stahlberg and Bill Byrne

16:40–17:05 Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani and Khalil Simaan

17:05–17:30 Trainable Greedy Decoding for Neural Machine Translation
Jiatao Gu, Kyunghyun Cho and Victor O.K. Li

lxii



Sunday, September 10, 2017 (continued)

15:50–17:30 Session 6B: Text Mining and NLP applications

15:50–16:15 Satirical News Detection and Analysis using Attention Mechanism and Linguistic
Features
Fan Yang, Arjun Mukherjee and Eduard Dragut

16:15–16:40 Fine Grained Citation Span for References in Wikipedia
Besnik Fetahu, Katja Markert and Avishek Anand

16:40–17:05 Joint Modeling of Topics, Citations, and Topical Authority in Academic Corpora
Jooyeon Kim, Dongwoo Kim and Alice Oh

17:05–17:30 Identifying Semantic Edit Intentions from Revisions in Wikipedia
Diyi Yang, Aaron Halfaker, Robert Kraut and Eduard Hovy

15:50–17:30 Session 6C: Machine Comprehension

15:50–16:15 Accurate Supervised and Semi-Supervised Machine Reading for Long Documents
Daniel Hewlett, Llion Jones, Alexandre Lacoste and izzeddin gur

16:15–16:40 Adversarial Examples for Evaluating Reading Comprehension Systems
Robin Jia and Percy Liang

16:40–17:05 Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehen-
sion
Hongyu Lin, Le Sun and Xianpei Han

17:05–17:30 Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin, Yangqiu Song and Ming Zhang

lxiii



Sunday, September 10, 2017 (continued)

15:50–17:30 Session 6D: Poster Session. Summarization, Generation, Dialog, and Discourse
1

What is the Essence of a Claim? Cross-Domain Claim Identification
Johannes Daxenberger, Steffen Eger, Ivan Habernal, Christian Stab and Iryna
Gurevych

Identifying Where to Focus in Reading Comprehension for Neural Question Gener-
ation
Xinya Du and Claire Cardie

Break it Down for Me: A Study in Automated Lyric Annotation
Lucas Sterckx, Jason Naradowsky, Bill Byrne, Thomas Demeester and Chris De-
velder

Cascaded Attention based Unsupervised Information Distillation for Compressive
Summarization
Piji Li, Wai Lam, Lidong Bing, Weiwei Guo and Hang Li

Deep Recurrent Generative Decoder for Abstractive Text Summarization
Piji Li, Wai Lam, Lidong Bing and Zihao Wang

Extractive Summarization Using Multi-Task Learning with Document Classification
Masaru Isonuma, Toru Fujino, Junichiro Mori, Yutaka Matsuo and Ichiro Sakata

Towards Automatic Construction of News Overview Articles by News Synthesis
Jianmin Zhang and Xiaojun Wan

Joint Syntacto-Discourse Parsing and the Syntacto-Discourse Treebank
Kai Zhao and Liang Huang

Event Coreference Resolution by Iteratively Unfolding Inter-dependencies among
Events
Prafulla Kumar Choubey and Ruihong Huang

When to Finish? Optimal Beam Search for Neural Text Generation (modulo beam
size)
Liang Huang, Kai Zhao and Mingbo Ma

Steering Output Style and Topic in Neural Response Generation
Di Wang, Nebojsa Jojic, Chris Brockett and Eric Nyberg

lxiv



Sunday, September 10, 2017 (continued)

15:50–17:30 Session 6E: Poster Session. Summarization, Generation, Dialog, and Discourse
2

Preserving Distributional Information in Dialogue Act Classification
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari

Adversarial Learning for Neural Dialogue Generation
Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter and Dan Jurafsky

Using Context Information for Dialog Act Classification in DNN Framework
Yang Liu, Kun Han, Zhao Tan and Yun Lei

Modeling Dialogue Acts with Content Word Filtering and Speaker Preferences
Yohan Jo, Michael Yoder, Hyeju Jang and Carolyn Rose

Towards Implicit Content-Introducing for Generative Short-Text Conversation Sys-
tems
Lili Yao, Yaoyuan Zhang, Yansong Feng, Dongyan Zhao and Rui Yan

Affordable On-line Dialogue Policy Learning
Cheng Chang, Runzhe Yang, Lu Chen, Xiang Zhou and Kai Yu

Generating High-Quality and Informative Conversation Responses with Sequence-
to-Sequence Models
Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope and Ray
Kurzweil

Bootstrapping incremental dialogue systems from minimal data: the generalisation
power of dialogue grammars
Arash Eshghi, Igor Shalyminov and Oliver Lemon

Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Re-
inforcement Learning
Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee
and Kam-Fai Wong

Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry and Verena Rieser

Challenges in Data-to-Document Generation
Sam Wiseman, Stuart Shieber and Alexander Rush

lxv



Sunday, September 10, 2017 (continued)

15:50–17:30 Session 6F: Poster Session. Computational Social Science 2

All that is English may be Hindi: Enhancing language identification through auto-
matic ranking of the likeliness of word borrowing in social media
Jasabanta Patro, Bidisha Samanta, Saurabh Singh, Abhipsa Basu, Prithwish
Mukherjee, Monojit Choudhury and Animesh Mukherjee

Multi-View Unsupervised User Feature Embedding for Social Media-based Sub-
stance Use Prediction
Tao Ding, Warren K. Bickel and Shimei Pan

Demographic-aware word associations
Aparna Garimella, Carmen Banea and Rada Mihalcea

A Factored Neural Network Model for Characterizing Online Discussions in Vector
Space
Hao Cheng, Hao Fang and Mari Ostendorf

Dimensions of Interpersonal Relationships: Corpus and Experiments
Farzana Rashid and Eduardo Blanco

Argument Mining on Twitter: Arguments, Facts and Sources
Mihai Dusmanu, Elena Cabrio and Serena Villata

Distinguishing Japanese Non-standard Usages from Standard Ones
Tatsuya Aoki, Ryohei Sasano, Hiroya Takamura and Manabu Okumura

Connotation Frames of Power and Agency in Modern Films
Maarten Sap, Marcella Cindy Prasettio, Ari Holtzman, Hannah Rashkin and Yejin
Choi

Controlling Human Perception of Basic User Traits
Daniel Preoţiuc-Pietro, Sharath Chandra Guntuku and Lyle Ungar

Topic Signatures in Political Campaign Speeches
Clément Gautrais, Peggy Cellier, René Quiniou and Alexandre Termier

Assessing Objective Recommendation Quality through Political Forecasting
H. Andrew Schwartz, Masoud Rouhizadeh, Michael Bishop, Philip Tetlock, Bar-
bara Mellers and Lyle Ungar

lxvi
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Never Abandon Minorities: Exhaustive Extraction of Bursty Phrases on Microblogs
Using Set Cover Problem
Masumi Shirakawa, Takahiro Hara and Takuya Maekawa

18:00–22:00 Social Event

Monday, September 11, 2017

07:30–17:30 Registration Day 3

08:00–09:00 Morning Coffee

09:00–10:00 Plenary Session. Invited Talk by Dan Jurafsky

09:00–10:00 "Does This Vehicle Belong to You”? Processing the Language of Policing for Im-
proving Police-Community Relations
Dan Jurafsky

10:00–10:30 Coffee Break

10:30–12:10 Session 7A: Machine Learning 3

10:30–10:55 Maximum Margin Reward Networks for Learning from Explicit and Implicit Super-
vision
Haoruo Peng, Ming-Wei Chang and Wen-tau Yih

10:55–11:20 The Impact of Modeling Overall Argumentation with Tree Kernels
Henning Wachsmuth, Giovanni Da San Martino, Dora Kiesel and Benno Stein

11:20–11:45 Learning Generic Sentence Representations Using Convolutional Neural Networks
Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He and Lawrence
Carin

11:45–12:10 Repeat before Forgetting: Spaced Repetition for Efficient and Effective Training of
Neural Networks
Hadi Amiri, Timothy Miller and Guergana Savova

lxvii



Monday, September 11, 2017 (continued)

10:30–12:10 Session 7B: Syntax 4

10:30–10:55 Part-of-Speech Tagging for Twitter with Adversarial Neural Networks
Tao Gui, Qi Zhang, Haoran Huang, Minlong Peng and Xuanjing Huang

10:55–11:20 Investigating Different Syntactic Context Types and Context Representations for
Learning Word Embeddings
Bofang Li, Tao Liu, Zhe Zhao, Buzhou Tang, Aleksandr Drozd, Anna Rogers and
Xiaoyong Du

11:20–11:45 Does syntax help discourse segmentation? Not so much
Chloé Braud, Ophélie Lacroix and Anders Søgaard

11:45–12:10 Nonparametric Bayesian Semi-supervised Word Segmentation
Ryo Fujii, Ryo Domoto and Daichi Mochihashi

10:30–12:10 Session 7C: Dialogue

10:30–10:55 Deal or No Deal? End-to-End Learning of Negotiation Dialogues
Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh and Dhruv Batra

10:55–11:20 Agent-Aware Dropout DQN for Safe and Efficient On-line Dialogue Policy Learning
Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang and Kai Yu

11:20–11:45 Towards Debate Automation: a Recurrent Model for Predicting Debate Winners
Peter Potash and Anna Rumshisky

11:45–12:10 Conversation Modeling on Reddit Using a Graph-Structured LSTM
Victoria Zayats and Mari Ostendorf

lxviii



Monday, September 11, 2017 (continued)

10:30–12:10 Session 7D: Poster Session. Machine Translation and Multilingual NLP 2

Joint Prediction of Word Alignment with Alignment Types
Anahita Mansouri Bigvand, Te Bu and Anoop Sarkar

Further Investigation into Reference Bias in Monolingual Evaluation of Machine
Translation
Qingsong Ma, Yvette Graham, Timothy Baldwin and Qun Liu

A Challenge Set Approach to Evaluating Machine Translation
Pierre Isabelle, Colin Cherry and George Foster

Knowledge Distillation for Bilingual Dictionary Induction
Ndapandula Nakashole and Raphael Flauger

Machine Translation, it’s a question of style, innit? The case of English tag ques-
tions
Rachel Bawden

Deciphering Related Languages
Nima Pourdamghani and Kevin Knight

Identifying Cognate Sets Across Dictionaries of Related Languages
Adam St Arnaud, David Beck and Grzegorz Kondrak

Learning Language Representations for Typology Prediction
Chaitanya Malaviya, Graham Neubig and Patrick Littell

Cheap Translation for Cross-Lingual Named Entity Recognition
Stephen Mayhew, Chen-Tse Tsai and Dan Roth

Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space
Specialisation
Ivan Vulić, Nikola Mrkšić and Anna Korhonen

Classification of telicity using cross-linguistic annotation projection
Annemarie Friedrich and Damyana Gateva

lxix



Monday, September 11, 2017 (continued)

Semantic Specialisation of Distributional Word Vector Spaces using Monolingual
and Cross-Lingual Constraints
Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica
Gašić, Anna Korhonen and Steve Young

Counterfactual Learning from Bandit Feedback under Deterministic Logging : A
Case Study in Statistical Machine Translation
Carolin Lawrence, Artem Sokolov and Stefan Riezler

10:30–12:10 Session 7E: Poster Session. Information Extraction 2

Learning Fine-grained Relations from Chinese User Generated Categories
Chengyu Wang, Yan Fan, Xiaofeng He and Aoying Zhou

Improving Slot Filling Performance with Attentive Neural Networks on Dependency
Structures
Lifu Huang, Avirup Sil, Heng Ji and Radu Florian

Identifying Products in Online Cybercrime Marketplaces: A Dataset for Fine-
grained Domain Adaptation
Greg Durrett, Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick, Rebecca Portnoff,
Sadia Afroz, Damon McCoy, Kirill Levchenko and Vern Paxson

Labeling Gaps Between Words: Recognizing Overlapping Mentions with Mention
Separators
Aldrian Obaja Muis and Wei Lu

Deep Joint Entity Disambiguation with Local Neural Attention
Octavian-Eugen Ganea and Thomas Hofmann

MinIE: Minimizing Facts in Open Information Extraction
Kiril Gashteovski, Rainer Gemulla and Luciano Del Corro

Scientific Information Extraction with Semi-supervised Neural Tagging
Yi Luan, Mari Ostendorf and Hannaneh Hajishirzi

NITE: A Neural Inductive Teaching Framework for Domain Specific NER
Siliang Tang, Ning Zhang, Jinjiang Zhang, Fei Wu and Yueting Zhuang

Speeding up Reinforcement Learning-based Information Extraction Training using
Asynchronous Methods
Aditya Sharma, Zarana Parekh and Partha Talukdar

lxx
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Leveraging Linguistic Structures for Named Entity Recognition with Bidirectional
Recursive Neural Networks
Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-Chieh Chou and Wei-Yun Ma

Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
Emma Strubell, Patrick Verga, David Belanger and Andrew McCallum

Entity Linking via Joint Encoding of Types, Descriptions, and Context
Nitish Gupta, Sameer Singh and Dan Roth

An Insight Extraction System on BioMedical Literature with Deep Neural Networks
Hua He, Kris Ganjam, Navendu Jain, Jessica Lundin, Ryen White and Jimmy Lin

10:30–12:10 Session 7F: Poster Session. NLP Applications

Word Etymology as Native Language Interference
Vivi Nastase and Carlo Strapparava

A Simpler and More Generalizable Story Detector using Verb and Character Fea-
tures
Joshua Eisenberg and Mark Finlayson

Multi-modular domain-tailored OCR post-correction
Sarah Schulz and Jonas Kuhn

Learning to Predict Charges for Criminal Cases with Legal Basis
Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang Zhang and Dongyan Zhao

Quantifying the Effects of Text Duplication on Semantic Models
Alexandra Schofield, Laure Thompson and David Mimno

Identifying Semantically Deviating Outlier Documents
Honglei Zhuang, Chi Wang, Fangbo Tao, Lance Kaplan and Jiawei Han
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Abstract

We propose an efficient method to con-
duct phrase alignment on parse forests
for paraphrase detection. Unlike previ-
ous studies, our method identifies syntac-
tic paraphrases under linguistically mo-
tivated grammar. In addition, it allows
phrases to non-compositionally align to
handle paraphrases with non-homographic
phrase correspondences. A dataset that
provides gold parse trees and their phrase
alignments is created. The experimental
results confirm that the proposed method
conducts highly accurate phrase alignment
compared to human performance.

1 Introduction

Paraphrase detection is crucial in various applica-
tions, which has been actively studied for years.
Due to difficulties caused by the non-homographic
nature of phrase correspondences, the units of cor-
respondence in previous studies are defined as se-
quences of words like in (Yao et al., 2013) and
not syntactic phrases. On the other hand, syn-
tactic structures are important in modeling sen-
tences, e.g., their sentiments and semantic simi-
larities (Socher et al., 2013; Tai et al., 2015).

In this paper, we present an algorithm to align
syntactic phrases in a paraphrased pair of sen-
tences. We show that (1) the problem of identify-
ing a legitimate set of syntactic paraphrases under
linguistically motivated grammar is formalized,
(2) dynamic programing a la CKY (Cocke, 1969;
Kasami, 1965; Younger, 1967) makes phrase
alignment computationally feasible, (3) alignment
quality of phrases can be improved using n-best
parse forests instead of 1-best trees, and (4) non-
compositional alignment allows non-homographic
correspondences of phrases. Motivated by recent

Source: Whenever I go to the ground floor for a smoke,
I always come face to face with them.

Target: Whenever I go down to smoke a cigarette,
I come face to face with one of them.

⋯go to the ground floor for a smoke

NP

PP

NP

VP

PP

VP

go smoke a cigarette

NP

VP

VP

to

CP

VP

down⋯

⋯

⋯

Figure 1: Example of phrase alignments

findings that syntax is important for phrase embed-
ding (Socher et al., 2013) in which phrasal para-
phrases allow semantic similarity to be replicated
(Wieting et al., 2016, 2015), we focus on the syn-
tactic paraphrase alignment.

Fig. 1 shows a real example of phrase align-
ments produced by our method. Alignment pro-
ceeds in a bottom-up manner using the compo-
sitional nature of phrase alignments. First, word
alignments are given. Then, phrase alignments are
recursively identified by supporting relations be-
tween phrase pairs. Non-compositional alignment
is triggered when the compositionality is violated,
which is common in paraphrasing.

For systematic research on syntactic phrase
alignment in paraphrases, we constructed a gold
standard dataset of paraphrase sentences with
phrase alignment (20, 678 phrases in 201 para-
phrasal sentences). This dataset will be made pub-
lic for future research on paraphrase alignment.
The experiment results show that our method
achieves 83.64% and 78.91% in recall and preci-
sion in terms of alignment pairs, which are 92%
and 89% of human performance, respectively.
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2 Related Work

Due to the large amount of sentence-level para-
phrases collected (Dolan et al., 2004; Cohn et al.,
2008; Heilman and Smith, 2010; Yin and Schütze,
2015; Biran et al., 2016), researchers can identify
phrasal correspondences for natural language in-
ferences (MacCartney et al., 2008; Thadani et al.,
2012; Yao et al., 2013). Current methods extend
word alignments to phrases in accordance with the
methods in statistical machine translation. How-
ever, phrases are defined as a simple sequence of
words, which do not conform to syntactic phrases.
PPDB (Ganitkevitch et al., 2013) provides syntac-
tic paraphrases similar to synchronous context free
grammar (SCFG). As discussed below, SCFG cap-
tures only a fraction of paraphrasing phenomenon.

In terms of our approach, parallel parsing is
a relevant area. Smith and Smith (2004) re-
lated monolingual parses in different languages
using word alignments, while Burkett and Klein
(2008) employed phrase alignments. Moreover,
Das and Smith (2009) proposed a model that gen-
erates a paraphrase of a given sentence using
quasi-synchronous dependency grammar (Smith
and Eisner, 2006). Since they used phrase align-
ments simply as features, there is no guarantee that
the output alignments are legitimate.

Synchronous rewriting in parallel parsing (Kae-
shammer, 2013; Maillette de Buy Wenniger and
Sima’an, 2013) derives parse trees that conform to
discontinuous word alignments. In contrast, our
method respects parse trees derived by linguis-
tically motivated grammar while handling non-
monotonic phrase alignment.

The synchronous assumption in parallel parsing
has been argued to be too rigid to handle parallel
sentence pairs or even paraphrasal sentence pairs.
Burkett et al. (2010) proposed weakly synchro-
nized parallel parsing to tackle this problem. Al-
though this model increases the flexibility, the ob-
tainable alignments are restricted to conform to in-
version transduction grammar (ITG) (Wu, 1997).
Similarly, Choe and McClosky (2015) used de-
pendency forests of paraphrasal sentence pairs and
allowed disagreements to some extent. However,
alignment quality was beyond their scope. Weese
et al. (2014) extracted SCFG from paraphrase cor-
pora. They showed that parsing was only success-
ful in 9.1% of paraphrases, confirming that a sig-
nificant amount of transformations in paraphrases
do not conform to compositionality or ITG.

Explanation
s, t Source and target sentences
τ Phrase in the parse tree
τR, τ∅ τR is a phrase of a root node; τ∅ is

a special phrase with the null span
that exists in every parse tree

φ Phrase aligned to τ∅
〈·, ·〉 Pair of entities; a pair itself can be

regarded as an entity
{·} Set of entities
m(·) Derive the mother node of a phrase
l(·), r(·) Derive the left and right child nodes,

respectively
ds(·) Derive descendants of a node in-

cluding self; τ ∈ ds(τ)

lca(·, ·) Derive the lowest common ancestor
(LCA) of two phrases

Table 1: Notation summary

3 Formulation of Phrase Alignment

In this study, we formalize the problem of legiti-
mate phrase alignment. For simplicity, we discuss
tree alignment instead of forests using Fig. 2 as a
running example.

3.1 Notation

Table 1 describes the notation used in this pa-
per. We call a paraphrased pair source sentence
s and the other as target t. Superscripts of s and
t represent the source and the target, respectively.
Specifically, 〈τ s, τ t〉 is a pair of source and target
phrases. We represent f1/f2/ · · · /fi(·) to abbre-
viate fi(· · · f2(f1(·)) · · · ) as an intuitive illustra-
tion. It should be noted that the order of the func-
tion symbols is reversed, e.g., l/r(τ) (= r(l(τ)))
derives the right-child of the left-child node of τ ,
and l/ds(τ) derives the left descendants of τ .

3.2 Definition of a Legitimate Alignment

A possible parse tree alignment of s and t is
represented as a set of aligned pairs of phrases
{〈τ si , τ ti 〉}. τ si and τ ti are the source and the target
phrases that constitute the i-th alignment, respec-
tively. Either τ si or τ ti can be τ∅ when a phrase
does not correspond to another sentence, which
is called a null-alignment. Each phrase alignment
can have support relations as:

Definition 3.1. A pair hi = 〈τ si , τ ti 〉 is supported
by alignments of their descendant phrases when

2
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Figure 2: Alignment pair and its supports

〈〈l/ds(τ si ), l/ds(τ ti )〉, 〈r/ds(τ si ), r/ds(τ ti )〉〉
or 〈〈l/ds(τ si ), r/ds(τ ti )〉, 〈r/ds(τ si ), l/ds(τ ti )〉〉
exists. Pre-terminal phrases are supported by the
corresponding word alignments.

Support relations are denoted using ⇒ or R
=⇒

that represent the order of support phrases. Specif-
ically, 〈〈l(τ si ), l(τ ti )〉, 〈r(τ si ), r(τ ti )〉〉 ⇒ hi is

straight while 〈〈l(τ si ), r(τ ti )〉, 〈r(τ si ), l(τ ti )〉〉
R
=⇒

hi is inverted. In Fig. 2, 〈〈τ sm, τ tm〉, 〈τ sn, τ tn〉〉 ⇒
hi, where τ sm = l/ds(τ si ) and τ sn = r/ds(τ si ).

The number of all possible alignments in s and
t, which is denoted as H, is exponential to the
length. However, only its fraction constitutes le-
gitimate parse tree alignments. For example, a
subset in which the same phrase in s is aligned
with multiple phrases in t, called competing align-
ments, is not legitimate as a parse tree alignment.
The relationships among phrases in parse trees im-
pose constraints on a subset to provide legitimacy.

Given word alignments W that provide the ba-
sis for the phrase alignment, its legitimate set
WL ⊂ W should be 1-to-1 alignments. Start-
ing withWL, a legitimate set of phrase alignments
HL(⊂ H) with an accompanying set of support re-
lations, ∆L(⊂ ∆) is constructed. A legitimate set
of alignments 〈HL,∆L〉 can be enlarged only by
adding hi to HL with either the support relation
⇒ or R

=⇒ added to ∆L. These assume competing
alignments among the child phrases, thus cannot
co-exist in the same legitimate set.
hi can be supported by more than one pair of

descendant alignments in ∆L, i.e., {〈hm, ·〉} ⇒
hi or {〈hm, ·〉} R

=⇒ hi exists. For Hm = {hm},
we define the relationship ≤ for alignments, i.e.,
hp ≤ hq meaning that τ sp ∈ ds(τ sq )∧ τ tp ∈ ds(τ tq).
For example, in Fig. 2, hm ≤ hi and hn ≤ hi.

Theorem 3.1. There always exist the maximum
pair hM ∈ Hm where ∀hm ∈ Hm,hm ≤ hM .

〈HL,∆L〉 should satisfy the conditions in Def-
inition 3.2 to be legitimate as a whole. We denote
hi

∗7−→ hj when a chain exists in ∆L, which con-
nects hi to hj regardless of straight or inverted di-
rections of intermediate supports, e.g., (〈hi, ·〉 ⇒
hi+1), (〈hi+1, ·〉 R

=⇒ hi+2), . . ., (〈hj−1, ·〉 ⇒ hj).
Note hi

∗7−→ hi is always true.

Definition 3.2. 〈HL,∆L〉 should satisfy:

1. Root-Pair Containment: 〈τ sR, τ tR〉 ∈ HL

2. Same-Tree: {τ si | 〈τ si , τ ti 〉 ∈ HL} are subsets
of phrases in the same complete parse tree of
s (same for t).

3. Relevance: ∀hi ∈ HL,hi
∗7−→ 〈τ sR, τ tR〉 ∈ ∆L

4. Consistency: In HL, a phrase (6= τ∅) in the
source tree is aligned with at most one phrase
( 6= τ∅) in the target tree, and vice versa.

5. Monotonous: For 〈τ si , τ ti 〉, 〈τ sj , τ tj 〉 ∈ HL,
τ si ∈ ds(τ sj ) iff τ ti ∈ ds(τ tj ).

6. Maximum Set: HL is the maximum legiti-
mate set, in the sense that ∀〈τ s, τ t〉 ∈ (H \
HL), {〈τ s, τ t〉} ∪HL cannot be a legitimate
set with any ∆.

The Same-Tree condition is required to con-
duct an alignment on forests that consist of mul-
tiple trees in a packed representation. The Consis-
tency condition excludes competing alignments.
The Monotonous condition is a consequence of
compositionality. The Maximum Set means if
hm,hn ∈ HL are in positions of a parse tree
that can support hi, hi and the support relation
should be added to 〈HL,∆L〉. Such a strict local-
ity of compositionality is often violated in prac-
tice as discussed in Sec. 2. To tackle this issue, we
add another operation to align phrases in a non-
compositional way in Sec. 4.3.

3.3 Lowest Common Ancestor
The same aligned pair can have more than one sup-
port of descendant alignments because there are
numerous descendant node combinations. How-
ever, the Monotonous and the Maximum Set con-
ditions allow ∆L to be further restricted so that
each of aligned pairs inHL has only one support.

Let us assume that alignment hi is supported
by more than one pair of descendant alignments

3
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Figure 3: Inside probability depends on support
alignments and paths to reach an LCA.

in ∆L, i.e., ∆L ⊇ ({〈hm,hn〉} ⇒ hi)
1. We de-

note Hm = {hm} and Hn = {hn}. For each
hm ∈ Hm and hn ∈ Hn, we remove all support
relations from ∆L except for the maximum pairs
or the pre-terminal alignments. The resultant set
∆′L satisfies:

Theorem 3.2. For all (〈hm,hn〉 ⇒ hi) ∈ ∆′L,
τ si = lca(τ sm, τ

s
n) and τ ti = lca(τ tm, τ

t
n) are true.

In Fig. 2, τ si is the lowest common ancestor
(LCA) of τ sm and τ sn, and τ ti is the LCA of τ tm and
τ tn. Theorem 3.2 constitutes the basis for the dy-
namic programming (DP) in our phrase alignment
algorithm (Sec. 4.2).

4 Modeling of Phrase Alignment

We formally model the phrase alignment process
as illustrated in Fig. 3, where hi is aligned from
descendant alignments, i.e., hm and hn.

4.1 Probabilistic Model

Similar to the probabilistic context free grammar
(PCFG), the inside probability αi of hi is deter-
mined by the inside probabilities, αm and αn, of
the support pairs, together with the probability of
the rule, i.e., the way by which hm and hn are
combined to support hi as shown in Fig. 3. It is
characterized by four paths, πsm,i (the path from
τ sm to τ si ), πsn,i (τ sn to τ si ), πtm,i (τ tm to τ ti ), and πtn,i
(τ tn to τ ti ).

Each path consists of a set of null-aligned
phrases φ ∈ 〈φ, τ∅〉 and their mothers, e.g.,
the path πsm,i in Fig. 3 is a set of 〈φs1,m(φs1)〉,
〈φs2,m(φs2)〉, and 〈φs3,m(φs3)〉. We assume that
each occurrence of a null-alignment is indepen-

1⇒ and R
=⇒ are not distinguished here.

𝕙𝕙3 𝕙𝕙4𝕙𝕙5
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Figure 4: Alignment pairs and packed supports

dent. Thus, its probability βsm,i is computed as:

βsm,i = Πφsk∈πsm,iPr(φ
s
k, τ∅).

βsn,i, β
t
m,i, and βtn,i are computed in the same man-

ner. We abbreviate γsm,n,i = βsm,iβ
s
n,i, likewise

γtm,n,i = βtm,iβ
t
n,i. Finally, αi can be represented

as a simple relation:

αi = αmαnPr(τ
s
i , τ

t
i )γ

s
m,n,iγ

t
m,n,i. (1)

Pr(·, ·) is the alignment probability parameterized
in Sec. 5. Since we assume that the structures of
parse trees of s and t are determined by a parser,
the values of γsm,n,i and γtm,n,i are fixed. There-
fore, by traversing the parse tree in a bottom-
up manner, we can identify an LCA (i.e., τi) for
phrases τm and τn while simultaneously comput-
ing γm,n,i.

4.2 Alignment Algorithm

Algorithm 4.1 depicts our algorithm. Given word
alignments W = {〈wsi , wti〉}, it constructs legit-
imate sets of aligned pairs in a bottom-up man-
ner. Like the CKY algorithm, Algorithm 4.1 uses
DP to efficiently compute all possible legitimate
sets and their probabilities in parallel. In addi-
tion, null-alignments are allowed when aligning an
LCA supported by aligned descendant nodes.
A[·] is indexed by phrases in the parse tree of s

and maintains a list of all possible aligned pairs.
Furthermore, to deal with non-monotonic align-
ment (Sec. 4.3), it keeps all competing hypotheses
of support relations using packed representations.
Specifically, hi is accompanied by its packed sup-
port list as illustrated in Fig. 4; h1 = 〈τ s1 , τ t1〉
is aligned with supports of {〈αj , 〈hm,hn〉〉} like
〈α1, 〈h3,h4〉〉. Depending on the support align-
ments, hi has different inside probabilities, i.e.,
α1, α2, and α3. Since the succeeding process of
alignment only deals with the LCA’s of τ s1 and τ t1
that are independent of the support alignment, all
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Algorithm 4.1 Phrase Alignment
1: LCAs and γ in parse trees of s and t are com-

puted and stored in Lcas[·][·] and Lcat[·][·].
2: set A[τ s]← ∅ for all τ s

3: for all 〈ws, wt〉 ∈W do
4: Find τ s and τ t covering ws and wt

5: Compute αi of 〈τ s, τ t〉 using Eq. (1)
6: PACK(〈τ s, τ t〉, 〈αi, ∅〉, A)
7: for all τ sm, τ sn do . Trace the source tree from

the bottom to top
8: for all 〈τ si , γsm,n,i〉 ∈ Lcas[τ sm][τ sn] do
9: ALIGN(τ sm, τ

s
n, τ

s
i , γ

s
m,n,i, A)

10: function ALIGN(τ sm, τ
s
n, τ

s
i , γ

s, A)
11: for all hm = 〈τ sm, τ tm〉 ∈ A[τ sm] do
12: for all hn = 〈τ sn, τ tn〉 ∈ A[τ sn] do
13: 〈τ ti , γt〉 ← Lcat[τ tm][τ tn]
14: Compute αi using Eq. (1)
15: PACK(〈τ si , τ ti 〉, 〈αi, 〈hm,hn〉〉, A)

16: function PACK(〈τ s, τ t〉, 〈α, 〈hm,hn〉〉, A)
17: if 〈τ s, τ t〉 ∈ A[τ s] then
18: A[τ s]← A[τ s] ∪ 〈α, 〈hm,hn〉〉 . Merge

supports and their inside probability
19: else
20: A[τ s]← (〈τ s, τ t〉, 〈α, 〈hm,hn〉〉)

support relations are packed as a support list2 by
the PACK function.

4.3 Non-Compositional Alignment

A monotonic alignment requires τ tm ∈ hm and
τ tn ∈ hn to have an LCA, which adheres to the
compositionality in language. However, previous
studies declared that the compositionality is vio-
lated in a monolingual phrase alignment (Burkett
et al., 2010; Weese et al., 2014). Heilman and
Smith (2010) discuss complex phrase reordering
is prevalent in paraphrases and entailed text.

A non-monotonic alignment occurs when cor-
responding phrases have largely different orders,
i.e., one of them (e.g., τ tm) is an ancestor of another
(e.g., τ tn) or the same phrase. Such a case could
be exceptionally compatible, when τ tm has null-
alignments and all the aligned phrases of τ tn fit in
these null-alignments. A new alignment 〈τ si , τ ti (=
τ tm)〉 would be non-monotonically formed. Fig. 5
shows a real example of non-compositional align-
ment produced by our method. The target phrase
τ tn (“through the spirit of teamwork”) is null-

2This is true except for a non-compositional alignment
where the packed representation must be unpacked.

Algorithm 4.2 Non-Compositional Alignment
1: function TRACE(τn, τm) . τn ∈ ds(τm)
2: V ← ∅
3: for all [τm]i do
4: if τn ∈ ds(φ) for ∃φ ∈ Φ[τm]i then
5: V ← V ∪ 〈Ψ[τm]i ∪ τn, (Φ[τm]i \ φ)∪

GAP(τn, φ) 〉
6: else if τn ∈ ds(ψ) for ∃ψ ∈ Ψ[τm]i then
7: V ← V ∪ TRACE(τn, ψ)
8: else
9: for all [τn]j do

10: V ← V ∪ DOWN([τn]j , [τm]i)
11: return V ;

alignment when aligning τ sm and τ tm, but then the
alignment to τ sn (“Relying on team spirit”) is al-
lowed by non-compositional alignment of τ si .

Unlike monotonous alignment, we have to ver-
ify whether the internal structures of τ tm and τ tn are
compatible. Since the internal structures of τ tm and
τ tn depend on their supporting alignments, their
packed representations in A have to be unpacked,
and each pair of supporting alignments for hm and
hn must be checked to confirm compatibility. Fur-
thermore, since the aligned phrases inside τ tm and
τ tn have their own null-alignments, we need to un-
pack deeper supporting alignments as well.

Algorithm 4.2 checks if target phrases τm and
τn ∈ ds(τm) are compatible. We use the following
notations: [τm]i and [τn]j represent the phrases of
τm and τn with the i-th and j-th sets of supporting
alignments, respectively. For τ t2 in Fig. 4, there are
[τ t2]1 supported by 〈h5,h3〉 and [τ t2]2 supported by
〈h6,h7〉. [τm]i consists of sets of aligned target
phrases Ψ[τm]i = {ψ[τm]i

k } and null-alignments

Φ[τm]i = {φ[τm]i

l } ([τn]j is similar).
For each [τm]i, if τn fits in its null-alignment

like in Fig. 5, the alignment information is updated
at line 5, where GAP function takes two phrases
and returns a set of null-alignments on a path be-
tween them. If τn is a descendant of a support of
τm, the compatibility is recursively checked (line
7). Otherwise, the compatibility of the supports of
τn and τm are recursively checked in DOWN func-
tion in a similar manner (line 10).

When TRACE function returns a set of
{〈Ψk,Φk〉}, all ψ ∈ Ψk are aligned with phrases
in the source and their inside probabilities are
stored inA. Thus we can compute the inside prob-
ability for each 〈Ψk,Φk〉, which is stored in A to-
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Source: Relying on team spirit, expedition members defeated difficulties.
Target: Members of the scientific team overcame difficulties through the spirit of teamwork.

𝜏𝜏𝑛𝑛𝑠𝑠

𝜏𝜏𝑚𝑚𝑠𝑠
𝜏𝜏𝑚𝑚𝑡𝑡

𝜏𝜏𝑛𝑛𝑡𝑡

𝜏𝜏𝑖𝑖𝑠𝑠

VP

Relying on ⋯ spirit ⋯ members

NP VP

defeated difficulties, Members ⋯

NP VP

overcame difficulties

PP

through ⋯ teamwork

S

S

S

VP

S

Figure 5: Example of a non-compositional alignment

gether with a new alignment pair 〈τ si , τ ti 〉 where
τ si = lca(τ sm, τ

s
n) and τ ti = τ tm.

4.4 Forest Alignment

Although we have discussed using trees for clarity,
the alignment is conducted on forests. The align-
ment process is basically the same. The only dif-
ference is that the same pair has multiple LCAs.
Hence, we need to verify if the sub-trees can be
on the same tree when identifying their LCAs
since multiple nodes may cover the same span
with different derivations. This is critical for non-
compositional alignment because whether the in-
ternal structures are on the same tree must be con-
firmed while unpacking them.

Our alignment process corresponds to re-
ranking of forests and may derive a different tree
from the 1-best, which may resolve ambiguity in
parsing. We use a parser trained beforehand be-
cause joint parsing and alignment is computation-
ally too expensive.

5 Parameterization

Next, we parameterize the alignment probability.

5.1 Feature-enhanced EM Algorithm

We apply the feature-enhanced EM (Berg-
Kirkpatrick et al., 2010) due to its ability to use
dependent features without an irrational indepen-
dence assumption. This is preferable because the
attributes of phrases largely depend on each other.

Our method is computationally heavy since it
handles forests and involves unpacking in the non-
compositional alignment process. Thus, we use
Viterbi training (Brown et al., 1993) together with
a beam search of size µb ∈ N on the feature-
enhanced EM. Also, mini-batch training (Liang

and Klein, 2009) is applied. Such an approxima-
tion for efficiency is common in parallel parsing
(Burkett and Klein, 2008; Burkett et al., 2010).

In addition, an alignment supported by distant
descendants tends to fail to reach a root-pair align-
ment. Thus, we restrict the generation gap be-
tween a support alignment and its LCA to be less
than or equal to µg ∈ N.

5.2 Features
In feature-enhanced EM, the alignment probabil-
ity in Eq. (1) is parameterized using features:

Pr(τ
s
i , τ

t
i )

.
=

exp(w · F(asi ,a
t
i))∑

〈τsj ,τ tj 〉,τsi =τsj exp(w · F(asj ,a
t
j))
,

where a .
= (a0, · · · , an) consists of n attributes

of τ . F(·, ·) and w are vectors of feature functions
and their weights, respectively.

In a parse tree, the head of a phrase determines
its property. Hence, a lemmatized lexical head
alex ∈ a combined with its syntactic category
acat ∈ a is encoded as a feature3 as shown be-
low. We use semantic (instead of syntactic) heads
to encode semantic relationships in paraphrases.

1: 1(aslex = ·, ascat = ·, atlex = ·, atcat = ·)
2: 1(SurfaceSim(aslex = ·, atlex = ·))
3: 1(WordnetSim(aslex = ·, atlex = ·))
4: 1(EmbeddingSim(aslex = ·, atlex = ·))
5: 1(IsPrepositionPair(aslex = ·, atlex = ·))
6: 1(ascat = ·, atcat = ·)
7: 1(IsSameCategory(ascat = ·, atcat = ·))

The first feature is an indicator invoked only at
specific values. On the other hand, the rest of the

3We also tried features based on the configurations of the
source and target sub-trees similar to (Das and Smith, 2009)
as well as features based on the spans of null-alignments.
However, none of them contributed to alignment quality.
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features are invoked across multiple values, allow-
ing general patterns to be learned. The second fea-
ture is invoked if two heads are identical or a head
is a substring of another. The third feature is in-
voked if two heads are synonyms or derivations
that are extracted from the WordNet4. The fourth
feature is invoked if the cosine similarity between
word embeddings of two heads is larger than a
threshold. The fifth feature is invoked when the
heads are both prepositions to capture their differ-
ent natures from the content words. The last two
features are for categories; the sixth one is invoked
at each category pair, while the seventh feature is
invoked if the input categories are the same.

To avoid generating a huge number of features,
we reduce the number of syntactic categories; for
contents (N, V, ADJ, and ADV), prepositions, co-
ordinations, null (i.e., for τ∅), and others.

5.3 Penalty Function
Since our method allows null-alignments, it has a
degenerate maximum likelihood solution (Liang
and Klein, 2009) that makes every phrase null-
alignment. Similarly, a degenerate solution overly
conducts non-compositional alignment.

To avoid these issues, a penalty is incorporated:

Pe(τ
s
i , τ

t
i ) =





exp{−(|τ si |φ + |τ ti |φ + µc + 1)µn}
(non-compositional alignment)

exp{−(|τ si |φ + |τ ti |φ + 1)µn}
(otherwise)

where | · |φ computes the span of internal null-
alignments, and µn ≥ 1.0 and µc ∈ R+ con-
trol the strength of the penalties of the null-
alignment and the non-compositional alignment,
respectively. The penalty function is multiplied by
Eq. (1) as a soft-constraint for re-ranking align-
ment pairs in Algorithm 4.1.

5.4 Combination with Parse Probability
Following the spirit of parallel parsing that si-
multaneously parses and aligns sentences, we lin-
early interpolate the alignment probability with
the parsing probability once the parameters are
tuned by EM. When aligning a node pair 〈τ si , τ ti 〉,
the overall probability is computed as:

(1− µp)αi + µp%(τ si )%(τ ti ),

where %(·) gives the marginal probability in pars-
ing and µp ∈ [0, 1] balances these probabilities.

4http://wordnet.princeton.edu

6 Evaluation

As discussed in Sec. 2, previous studies have not
conducted syntactic phrase alignment on parse
trees. A direct metric does not exist to compare
paraphrases that cover different spans, i.e., our
syntactic paraphrases and paraphrases of n-grams.
Thus, we compared the alignment quality to that
of humans as a realistic way to evaluate the per-
formance of our method.

We also evaluated the parsing quality. Similar to
the alignment quality, differences in phrase struc-
tures disturb the comparisons (Sagae et al., 2008).
Our method applies an HPSG parser Enju (Miyao
and Tsujii, 2008) to derive parse forests due to its
state-of-the-art performance and ability to provide
rich properties of phrases. Hence, we compared
our parsing quality to the 1-best parses of Enju.

6.1 Language Resources

We used reference translations to evaluate ma-
chine translations5 as sentential paraphrases
(Weese et al., 2014). The reference translations of
10 to 30 words were extracted and paired, giving
41K pairs as a training corpus.

We use different kinds of dictionaries to obtain
word alignments W as well as to compute fea-
ture functions. First, we extract synonyms and
words with derivational relationship using Word-
Net. Then we handcraft derivation rules (e.g.,
create, creation, creator) and extract potentially
derivational words from the training corpus. Fi-
nally, we use prepositions defined in (Srikumar
and Roth, 2013) as a preposition dictionary to
compute the feature function.

In addition, we extend W using word embed-
dings; we use the MVLSA word embeddings
(Rastogi et al., 2015) given the superior perfor-
mance in word similarity tasks. Specifically,
we compute the cosine similarity of embeddings;
words with a higher similarity value than a thresh-
old are determined as similar words. The threshold
is empirically set as the 100th highest similarity
value between words in the training corpus.

6.2 Gold-Standard Data

Since no annotated corpus provides phrase align-
ments on parse trees, we created one through two-
phase manual annotation. First, a linguistic expert
with rich experience on annotating HPSG trees

5NIST OpenMT corpora: LDC2010T14, LDC2010T17,
LDC2010T21, LDC2010T23, LDC2013T03
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annotated gold-trees to paraphrasal sentence pairs
sampled from the training corpus. To diversify
the data, only one reference pair per sentence of
a source language was annotated. Consequently,
201 paraphrased pairs with gold-trees (containing
20, 678 phrases) were obtained.

Next, three professional English translators
identified paraphrased pairs including null-
alignments given sets of phrases extracted from
the gold-trees. These annotators independently
annotated the same set, yielding 14, 356 phrase
alignments where at least one annotator regarded
as a paraphrase. All the annotators agreed that
77% of the phrases were paraphrases.

We used 50 sentence pairs for development and
another 151 for testing. These pairs were excluded
from the training corpus.

6.3 Evaluation Metric

Alignment Quality Alignment quality was
evaluated by measuring the extent that the au-
tomatic alignment results agree with those of
humans. Specifically, we evaluated how gold-
alignments can be replicated by automatic align-
ment (called recall) and how automatic alignments
overlap with alignments that at least an annotator
aligned (called precision) as:

Recall =
|{h|h ∈ Ha ∧ h ∈ G ∩G′}|

|G ∩G′| ,

Precision =
|{h|h ∈ Ha ∧ h ∈ G ∪G′}|

|Ha| ,

where Ha is a set of alignments, while G and G′

are the ones that two of annotators produce, re-
spectively. The function of | · | counts the elements
in a set. There are three combinations for G and
G′ because we had three annotators. The final pre-
cision and recall values are their averages.

Parsing Quality The parsing quality was evalu-
ated using the CONLL-X (Buchholz and Marsi,
2006) standard. Dependencies were extracted
from the output HPSG trees, and evaluated using
the official script6. Due to this conversion, the
accuracy on the relation labels is less important.
Thus, we reported only the unlabeled attachment
score (UAS)7. The development and test sets pro-
vide 2, 371 and 6, 957 dependencies, respectively.

6http://ilk.uvt.nl/conll/software.html
7Although omitted, the labeled attachment score showed

the same tendency as UAS.

Roles of hyper-parameters
µn Control penalty for null-alignment
µc Control penalty for non-compositional

alignment
µp Balance alignment and parsing prob.
µb Beam size at alignment
µg Generation gap to reach an LCA

Table 2: Summary of the hyper-parameters

Method Recall Prec. UAS %
Human 90.65 88.21 – –

Proposed 83.64 78.91 93.49 98

Monotonic 82.86∗ 77.97∗ 93.49 98

w/o EM 81.33∗ 75.09∗ 92.91∗ 86

1-best tree 80.11∗ 73.26∗ 93.56 100

Table 3: Evaluation results on the test set, where ∗

represents p-value < 0.05 against our method.

Since all metrics were computed in a set, the
approximate randomization (Noreen, 1989; Rie-
zler and Maxwell, 2005) (B = 10K) was used
for significance testing. It has been shown to
be more conservative than using bootstrap resam-
pling (Riezler and Maxwell, 2005).

6.4 Results and Discussion

Overall Results Table 2 summarizes the hyper-
parameters, which were tuned to maximize UAS
in the development set using the Bayesian opti-
mization. For efficiency, we used 2K samples
from the training corpus and set the mini-batch
size in feature-enhanced EM to 200 similar to
“rapid training” in (Burkett and Klein, 2008). We
also set µb = 50 during EM training to manage
the training time.

Table 3 shows the performance on the test set
for variations of our method and that of the human
annotators. The last column shows the percentage
of pairs where a root pair is reached to be aligned,
called reachability. Our method is denoted as Pro-
posed, while its variations include a method with
only monotonic alignment (monotonic), without
EM (w/o EM), and a method aligning only 1-best
trees (1-best tree).

The performance of the human annotators was
assessed by considering one annotator as the test
and the other two as the gold-standard, and then
taking the averages, which is the same setting as
our method. We regard this as the pseudo inter-
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annotator agreement, since the conventional inter-
annotator agreement is not directly applicable due
to variations in aligned phrases.

Our method significantly outperforms the oth-
ers as it achieved the highest recall and precision
for alignment quality. Our recall and precision
reach 92% and 89% of those of humans, respec-
tively. Non-compositional alignment is shown to
contribute to alignment quality, while the feature-
enhanced EM is effective for both the alignment
and parsing quality. Comparing our method and
the one aligning only 1-best trees demonstrates
that the alignment of parse forests largely con-
tributes to the alignment quality. Although we
confirmed that aligning larger forests slightly im-
proved recall and precision, the improvements
were statistically insignificant. The parsing qual-
ity was not much affected by phrase alignment,
which is further investigated in the following.

Finally, our method achieved 98% reachabil-
ity, where 2% of unreachable cases were due to
the beam search. While understanding that the
reachability depends on experimental data, ours
is notably higher than that of SCFG, reported as
9.1% in (Weese et al., 2014). These results show
the ability of our method to accurately align para-
phrases with divergent phrase correspondences.

Effect of Mini-Batch Size We investigated the
effect of the mini-batch size in EM training using
the entire training corpus (41K pairs). When in-
creasing the mini-batch size from 200 to 2K, re-
call, precision, and UAS values are fairly stable.
In addition, they are insensitive against the amount
of training corpus, showing the comparable values
against the model trained on 2K samples. These
results demonstrate that our method can be trained
with a moderate amount of data.

Observations Previous studies show that paral-
lel parsing improves parsing quality, while such
an effect is insignificant here. We examine causes
through manual observations.

The evaluation script indicated that our method
corrected 34 errors while introducing 41 new er-
rors8. We further analyzed these 75 cases; 12 cases
are ambiguous as both the gold-standard and the
output are correct. In addition, 8 cases are due to
erroneous original sentences that should be disre-
garded, e.g., “ For two weeks ago,...” and “Accord-

8Alignments were obtained by the model trained using the
entire corpus with the 1K mini-batch size.

ing to the source, will also meet...”. Consequently,
our method corrected 32 errors while introducing
23 errors in reality for 446 errors in 1-best trees,
which achieves a 2.5% error reduction.

These are promising results for our method to
improve parsing quality, especially on the PP-
attachment (159 errors in 1-best), which contained
14 of the 32 corrected errors. Fig. 1 shows a real
example; the phrase of “for a smoke” in the source
was mistakenly attached to “ground floor” in the
1-best tree. This error was corrected as depicted.

Duan et al. (2016) showed that paraphrases ar-
tificially generated using n-best parses improved
the parsing quality. One reason for limited im-
provement in our experiments may be because
structural changes in our natural paraphrases are
more dynamic than the level useful to resolve am-
biguities. We will further investigate this in future.

7 Conclusion

We propose an efficient method for phrase align-
ment on parse forests of paraphrased sentences.
To increase the amount of collected paraphrases,
we plan to extend our method to align compara-
ble paraphrases that are partially paraphrasal sen-
tences. In addition, we will apply our method to
parallel parsing and other grammar, e.g., projec-
tive dependency trees. Furthermore, we will apply
such syntactic paraphrases to phrase embedding.
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Abstract

We first present a minimal feature set for
transition-based dependency parsing, con-
tinuing a recent trend started by Kiper-
wasser and Goldberg (2016a) and Cross
and Huang (2016a) of using bi-directional
LSTM features. We plug our minimal
feature set into the dynamic-programming
framework of Huang and Sagae (2010)
and Kuhlmann et al. (2011) to produce the
first implementation of worst-case Opn3q
exact decoders for arc-hybrid and arc-
eager transition systems. With our mini-
mal features, we also present Opn3q global
training methods. Finally, using ensem-
bles including our new parsers, we achieve
the best unlabeled attachment score re-
ported (to our knowledge) on the Chinese
Treebank and the “second-best-in-class”
result on the English Penn Treebank.

1 Introduction

It used to be the case that the most accurate de-
pendency parsers made global decisions and em-
ployed exact decoding. But transition-based de-
pendency parsers (TBDPs) have recently achieved
state-of-the-art performance, despite the fact that
for efficiency reasons, they are usually trained to
make local, rather than global, decisions and the
decoding process is done approximately, rather
than exactly (Weiss et al., 2015; Dyer et al., 2015;
Andor et al., 2016). The key efficiency issue for
decoding is as follows. In order to make accurate
(local) attachment decisions, historically, TBDPs
have required a large set of features in order to ac-
cess rich information about particular positions in
the stack and buffer of the current parser configu-
ration. But consulting many positions means that
although polynomial-time exact-decoding algo-

rithms do exist, having been introduced by Huang
and Sagae (2010) and Kuhlmann et al. (2011), un-
fortunately, they are prohibitively costly in prac-
tice, since the number of positions considered can
factor into the exponent of the running time. For
instance, Huang and Sagae employ a fairly re-
duced set of nine positions, but the worst-case run-
ning time for the exact-decoding version of their
algorithm is Opn6q (originally reported as Opn7q)
for a length-n sentence. As an extreme case, Dyer
et al. (2015) use an LSTM to summarize arbitrary
information on the stack, which completely rules
out dynamic programming.

Recently, Kiperwasser and Goldberg (2016a)
and Cross and Huang (2016a) applied bi-
directional long short-term memory networks
(Graves and Schmidhuber, 2005, bi-LSTMs) to
derive feature representations for parsing, because
these networks capture wide-window contextual
information well. Collectively, these two sets of
authors demonstrated that with bi-LSTMs, four
positional features suffice for the arc-hybrid pars-
ing system (K&G), and three suffice for arc-
standard (C&H).1

Inspired by their work, we arrive at a minimal
feature set for arc-hybrid and arc-eager: it con-
tains only two positional bi-LSTM vectors, suf-
fers almost no loss in performance in comparison
to larger sets, and out-performs a single position.
(Details regarding the situation with arc-standard
can be found in §2.)

Our minimal feature set plugs into Huang and
Sagae’s and Kuhlmann et al.’s dynamic program-

1We note that K&G were not focused on minimizing posi-
tions, although they explicitly noted the implications of doing
so: “While not explored in this work, [fewer positions] re-
sults in very compact state signatures, [which is] very appeal-
ing for use in transition-based parsers that employ dynamic-
programming search” (pg. 319). C&H also noted in their
follow-up (Cross and Huang, 2016b) the possibility of future
work using dynamic programming thanks to simple features.
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ming framework to produce the first implementa-
tion of Opn3q exact decoders for arc-hybrid and
arc-eager parsers. We also enable and implement
Opn3q global training methods. Empirically, en-
sembles containing our minimal-feature, globally-
trained and exactly-decoded models produce the
best unlabeled attachment score (UAS) reported
(to our knowledge) on the Chinese Treebank and
the “second-best-in-class” result on the English
Penn Treebank.2

Additionally, we provide a slight update to
the theoretical connections previously drawn by
Gómez-Rodrı́guez, Carroll, and Weir (2008, 2011)
between TBDPs and the graph-based dependency
parsing algorithms of Eisner (1996) and Eisner
and Satta (1999), including results regarding the
arc-eager parsing system.

2 A Minimal Feature Set

TBDPs incrementally process a sentence by mak-
ing transitions through search states representing
parser configurations. Three of the main transition
systems in use today (formal introduction in §3.1)
all maintain the following two data structures in
their configurations: (1) a stack of partially parsed
subtrees and (2) a buffer (mostly) of unprocessed
sentence tokens.

To featurize configurations for use in a scoring
function, it is common to have features that extract
information about the first several elements on the
stack and the buffer, such as their word forms and
part-of-speech (POS) tags. We refer to these as po-
sitional features, as each feature relates to a partic-
ular position in the stack or buffer. Typically, mil-
lions of sparse indicator features (often developed
via manual engineering) are used.

In contrast, Chen and Manning (2014) intro-
duce a feature set consisting of dense word-, POS-,
and dependency-label embeddings. While dense,
these features are for the same 18 positions that
have been typically used in prior work. Re-
cently, Kiperwasser and Goldberg (2016a) and
Cross and Huang (2016a) adopt bi-directional
LSTMs, which have nice expressiveness and
context-sensitivity properties, to reduce the num-
ber of positions considered down to four and three,

2Our ideas were subsequently adapted to the labeled set-
ting by Shi, Wu, Chen, and Cheng (2017) in their submis-
sion to the CoNLL 2017 shared task on Universal Dependen-
cies parsing. Their team achieved the second-highest labeled
attachment score in general and had the top average perfor-
mance on the surprise languages.

Features Arc-standard Arc-hybrid Arc-eager

tÑÐ
s 2,

ÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 93.95˘0.12 94.08˘0.13 93.92˘0.04

tÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 94.13˘0.06 94.08˘0.05 93.91˘0.07

tÑÐ
s 0,

ÑÐ
b 0u 54.47˘0.36 94.03˘0.12 93.92˘0.07

tÑÐ
b 0u 47.11˘0.44 52.39˘0.23 79.15˘0.06

Min positions Arc-standard Arc-hybrid Arc-eager

K&G 2016a - 4 -
C&H 2016a 3 - -

our work 3 2 2

Table 1: Top: English PTB dev-set UAS% for
progressively smaller sets of positional features,
for greedy parsers with different transition sys-
tems. The “double-arrow” notation indicates vec-
tors produced by a bi-directional LSTM. Internal
lines highlight large performance drop-offs when
a feature is deleted. Bottom: sizes of the minimal
feature sets in Kiperwasser and Goldberg (2016a),
Cross and Huang (2016a), and our work.

for different transition systems, respectively.
This naturally begs the question, what is the

lower limit on the number of positional features
necessary for a parser to perform well? Kiper-
wasser and Goldberg (2016a) reason that for the
arc-hybrid system, the first and second items on
the stack and the first buffer item — denoted by s0,
s1, and b0, respectively — are required; they addi-
tionally include the third stack item, s2, because
it may not be adjacent to the others in the origi-
nal sentence. For arc-standard, Cross and Huang
(2016a) argue for the necessity of s0, s1, and b0.

We address the lower-limit question empiri-
cally, and find that, surprisingly, two positions
suffice for the greedy arc-eager and arc-hybrid
parsers. We also provide empirical support for
Cross and Huang’s argument for the necessity of
three features for arc-standard. In the rest of this
section, we explain our experiments, run only on
an English development set, that support this con-
clusion; the results are depicted in Table 1. We
later explore the implementation implications in
§3-4 and then test-set parsing-accuracy in §6.

We employ the same model architecture as
Kiperwasser and Goldberg (2016a). Specifically,
we first use a bi-LSTM to encode an n-token sen-
tence, treated as a sequence of per-token concate-
nations of word- and POS-tag embeddings, into a
sequence of vectors rÑÐ

w1, . . . ,
ÑÐ
wns, where each

ÑÐ
wi
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is the output of the bi-LSTM at time step i. (The
double-arrow notation for these vectors empha-
sizes the bi-directionality of their origin). Then,
for a given parser configuration, stack positions
are represented by

ÑÐ
s j , defined as

ÑÐ
wipsjq where

ipsjq gives the position in the sentence of the to-
ken that is the head of the tree in sj . Similarly,
buffer positions are represented by

ÑÐ
b j , defined as

ÑÐ
wipbjq for the token at buffer position j. Finally,
as in Chen and Manning (2014), we use a multi-
layer perceptron to score possible transitions from
the given configuration, where the input is the con-
catenation of some selection of the

ÑÐ
s js and

ÑÐ
b ks.

We use greedy decoders, and train the models with
dynamic oracles (Goldberg and Nivre, 2013).

Table 1 reports the parsing accuracy that re-
sults for feature sets of size four, three, two, and
one for three commonly-used transition systems.
The data is the development section of the English
Penn Treebank (PTB), and experimental settings
are as described in our other experimental section,
§6. We see that we can go down to three or, in the
arc-hybrid and arc-eager transition systems, even
two positions with very little loss in performance,
but not further. We therefore call tÑÐ

s0,
ÑÐ
b 0u our

minimal feature set with respect to arc-hybrid and
arc-eager, and empirically confirm that Cross and
Huang’s tÑÐ

s0,
ÑÐ
s1,

ÑÐ
b 0u is minimal for arc-standard;

see Table 1 for a summary.3

3 Dynamic Programming for TBDPs

As stated in the introduction, our minimal fea-
ture set from §2 plugs into Huang and Sagae and
Kuhlmann et al.’s dynamic programming (DP)
framework. To help explain the connection, this
section provides an overview of the DP frame-
work. We draw heavily from the presentation of
Kuhlmann et al. (2011).

3.1 Three Transition Systems

Transition-based parsing (Nivre, 2008; Kübler
et al., 2009) is an incremental parsing framework
based on transitions between parser configura-

3We tentatively conjecture that the following might ex-
plain the observed phenomena, but stress that we don’t cur-
rently see a concrete way to test the following hypothesis.
With tÑÐ

s 0,
ÑÐ
b 0u, in the arc-standard case, situations can arise

where there are multiple possible transitions with missing in-
formation. In contrast, in the arc-hybrid case, there is only
one possible transition with missing information (namely,
reñ, introduced in §3.1); perhaps

ÑÐ
s 1 is therefore not so cru-

cial for arc-hybrid in practice?

tions. For a sentence to be parsed, the system
starts from a corresponding initial configuration,
and attempts to sequentially apply transitions un-
til a configuration corresponding to a full parse is
produced. Formally, a transition system is defined
as S “ pC, T, cs, Cτ q, where C is a nonempty set
of configurations, each t P T : C á C is a transi-
tion function between configurations, cs is an ini-
tialization function that maps an input sentence to
an initial configuration, and Cτ Ď C is a set of
terminal configurations.

All systems we consider share a common tri-
partite representation for configurations: when we
write c “ pσ, β,Aq for some c P C, we are re-
ferring to a stack σ of partially parsed subtrees; a
buffer β of unprocessed tokens and, optionally, at
its beginning, a subtree with only left descendants;
and a set A of elements ph,mq, each of which is
an attachment (dependency arc) with head h and
modifier m.4 We write mðh to indicate that m
left-modifies h, and hñm to indicate that m right-
modifies h. For a sentence w “ w1, ..., wn, the
initial configuration is pσ0, β0, A0q, where σ0 and
A0 are empty and β0 “ rROOT|w1, ..., wns; ROOT
is a special node denoting the root of the parse
tree5 (vertical bars are a notational convenience
for indicating different parts of the buffer or stack;
our convention is to depict the buffer first element
leftmost, and to depict the stack first element right-
most). All terminal configurations have an empty
buffer and a stack containing only ROOT.

Arc-Standard The arc-standard system (Nivre,
2004) is motivated by bottom-up parsing: each de-
pendent has to be complete before being attached.
The three transitions, shift (sh, move a token from
the buffer to the stack), right-reduce (reñ, reduce
and attach a right modifier), and left-reduce (reð,
reduce and attach a left modifier), are defined as:

shrpσ, b0|β,Aqs “ pσ|b0, β, Aq
reñrpσ|s1|s0, β, Aqs “ pσ|s1, β, A Y tps1, s0quq
reðrpσ|s1|s0, β, Aqs “ pσ|s0, β, A Y tps0, s1quq

Arc-Hybrid The arc-hybrid system (Yamada
and Matsumoto, 2003; Gómez-Rodrı́guez et al.,
2008; Kuhlmann et al., 2011) has the same defi-
nitions of sh and reñ as arc-standard, but forces

4For simplicity, we only present unlabeled parsing here.
See Shi et al. (2017) for labeled-parsing results.

5Other presentations place ROOT at the end of the buffer
or omit it entirely (Ballesteros and Nivre, 2013).
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the collection of left modifiers before right modi-
fiers via its b0-modifier reð transition. This con-
trasts with arc-standard, where the attachment of
left and right modifiers can be interleaved on the
stack.

shrpσ, b0|β, Aqs “ pσ|b0, β, Aq
reñrpσ|s1|s0, β, Aqs “ pσ|s1, β, A Y tps1, s0quq
reðrpσ|s0, b0|β, Aqs “ pσ, b0|β, A Y tpb0, s0quq

Arc-Eager In contrast to the former two sys-
tems, the arc-eager system (Nivre, 2003) makes
attachments as early as possible — even if a modi-
fier has not yet received all of its own modifiers.
This behavior is accomplished by decomposing
the right-reduce transition into two independent
transitions, one making the attachment (ra) and
one reducing the right-attached child (re).

shrpσ, b0|β, Aqs “ pσ|b0, β, Aq
reðrpσ|s0, b0|β, Aqs “ pσ, b0|β, A Y tpb0, s0quq

(precondition: s0 not attached to any word)

rarpσ|s0, b0|β, Aqs “ pσ|s0|b0, β, A Y tps0, b0quq
rerpσ|s0, β, Aqs “ pσ, β, Aq

(precondition: s0 has been attached to its head)

3.2 Deduction and Dynamic Programming
Kuhlmann et al. (2011) reformulate the three tran-
sition systems just discussed as deduction systems
(Pereira and Warren, 1983; Shieber et al., 1995),
wherein transitions serve as inference rules; these
are given as the lefthand sides of the first three sub-
figures in Figure 1. For a given w “ w1, ..., wn,
assertions take the form ri, j, ks (or, when applica-
ble, a two-index shorthand to be discussed soon),
meaning that there exists a sequence of transi-
tions that, starting from a configuration wherein
headps0q “ wi, results in an ending configura-
tion wherein headps0q “ wj and headpb0q “ wk.
If we define w0 as ROOT and wn`1 as an end-
of-sentence marker, then the goal theorem can be
stated as r0, 0, n ` 1s.

For arc-standard, we depict an assertion ri, h, ks
as a subtree whose root (head) is the token at h.
Assertions of the form ri, i, ks play an important
role for arc-hybrid and arc-eager, and we employ
the special shorthand ri, ks for them in Figure 1.
In that figure, we also graphically depict such sit-
uations as two consecutive half-trees with roots wi

and wk, where all tokens between i and k are al-
ready attached. The superscript b in an arc-eager

assertion rib, js is an indicator variable for whether
wi has been attached to its head (b “ 1) or not
(b “ 0) after the transition sequence is applied.

Kuhlmann et al. (2011) show that all three de-
duction systems can be directly “tabularized” and
dynamic programming (DP) can be applied, such
that, ignoring for the moment the issue of incor-
porating complex features (we return to this later),
time and space needs are low-order polynomial.
Specifically, as the two-index shorthand ri, js sug-
gests, arc-eager and arc-hybrid systems can be im-
plemented to take Opn2q space and Opn3q time;
the arc-standard system requires Opn3q space and
Opn4q time (if one applies the so-called hook trick
(Eisner and Satta, 1999)).

Since an Opn4q running time is not sufficiently
practical even in the simple-feature case, in the re-
mainder of this paper we consider only the arc-
hybrid and arc-eager systems, not arc-standard.

4 Practical Optimal Algorithms Enabled
By Our Minimal Feature Set

Until now, no one had suggested a set of positional
features that was both information-rich enough for
accurate parsing and small enough to obtain the
Opn3q running-time promised above. Fortunately,
our bi-LSTM-based tÑÐ

s0,
ÑÐ
b 0u feature set qualifies,

and enables the fast optimal procedures described
in this section.

4.1 Exact Decoding

Given an input sentence, a TBDP must choose
among a potentially exponential number of cor-
responding transition sequences. We assume ac-
cess to functions ft that score individual configu-
rations, where these functions are indexed by the
transition functions t P T . For a fixed transition
sequence t “ t1, t2, . . ., we use ci to denote the
configuration that results after applying ti.

Typically, for efficiency reasons, greedy left-to-
right decoding is employed: the next transition ti̊
out of ci´1 is arg maxt ftpci´1q, so that past and
future decisions are not taken into account. The
score F ptq for the transition sequence is induced
by summing the relevant ftipci´1q values.

However, our use of minimal feature sets en-
ables direct computation of an argmax over the en-
tire space of transition sequences, arg maxt F ptq,
via dynamic programming, because our positions
don’t rely on any information “outside” the deduc-
tion rule indices, thus eliminating the need for ad-

15



Axiom r0, 0, 1s 0

0

1

Inference Rules

sh
ri, h, js

rj, j, j ` 1s
i

h

j

j

j

j ` 1

j ď n

reñ
ri, h1, ks rk, h2, js

ri, h1, js
i

h1

k

h2

j

i

h1

j

hñ
1 h2

reð
ri, h1, ks rk, h2, js

ri, h2, js
i

h1

k

h2

j

i

h2

j

hð
1 h2

Goal r0, 0, n ` 1s 0

0

n ` 1
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(d) Edge-factored graph-based parsing.

Figure 1: 1a-1c: Kuhlmann et al.’s inference rules for three transition systems, together with CKY-style
visualizations of the local structures involved and, to their right, conditions for the rule to apply. 1d: the
edge-factored graph-based parsing algorithm (Eisner and Satta, 1999) discussed in §5.
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ditional state-keeping.
We show how to integrate the scoring functions

for the arc-eager system; the arc-hybrid system is
handled similarly. The score-annotated rules are
as follows:

rib, js : v

rj0, j ` 1s : 0
pshq rkb, is : v1 ri0, js : v2

rkb, js : v1 ` v2 ` ∆
preðq

where ∆ “ fshpÑÐ
wk,

ÑÐ
wiq ` freðpÑÐ

wi,
ÑÐ
wjq — abus-

ing notation by referring to configurations by their
features. The left-reduce rule says that we can first
take the sequence of transitions asserted by rkb, is,
which has a score of v1, and then a shift transition
moving wi from b0 to s0. This means that the ini-
tial condition for ri0, js is met, so we can take the
sequence of transitions asserted by ri0, js — say it
has score v2 — and finally a left-reduce transition
to finish composing the larger transition sequence.
Notice that the scores for sh and ra are 0, as the
scoring of these transitions is accounted for by re-
duce rules elsewhere in the sequence.

4.2 Global Training
We employ large-margin training that considers
each transition sequence globally. Formally, for a
training sentence w “ w1, . . . , wn with gold tran-
sition sequence tgold, our loss function is

max
t

´
F ptq ` costptgold, tq ´ F ptgoldq

¯

where costptgold, tq is a custom margin for tak-
ing t instead of tgold — specifically, the number
of mis-attached nodes. Computing this max can
again be done efficiently with a slight modifica-
tion to the scoring of reduce transitions:

rkb, is : v1 ri0, js : v2

rkb, js : v1 ` v2 ` ∆1 preðq

where ∆1 “ ∆ ` 1 pheadpwiq ‰ wjq. This loss-
augmented inference or cost-augmented decoding
(Taskar et al., 2005; Smith, 2011) technique has
previously been applied to graph-based parsing by
Kiperwasser and Goldberg (2016a).

Efficiency Note The computation decomposes
into two parts: scoring all feature combinations,
and using DP to find a proof for the goal theorem
in the deduction system. Time-complexity analy-
sis is usually given in terms of the latter, but the
former might have a large constant factor, such
as 104 or worse for neural-network-based scoring

functions. As a result, in practice, with a small
n, scoring with the feature set tÑÐ

s0,
ÑÐ
b 0u (Opn2q)

can be as time-consuming as the decoding steps
(Opn3q) for the arc-hybrid and arc-eager systems.

5 Theoretical Connections

Our minimal feature set brings implementation of
practical optimal algorithms to TBDPs, whereas
previously only graph-based dependency parsers
(GBDPs) — a radically different, non-incremental
paradigm — enjoyed the ability to deploy them.
Interestingly, for both the transition- and graph-
based paradigms, the optimal algorithms build de-
pendency trees bottom-up from local structures. It
is thus natural to wonder if there are deeper, more
formal connections between the two.

In previous work, Kuhlmann et al. (2011) re-
lated the arc-standard system to the classic CKY
algorithm (Cocke, 1969; Kasami, 1965; Younger,
1967) in a manner clearly suggested by Figure 1a;
CKY can be viewed as a very simple graph-based
approach. Gómez-Rodrı́guez et al. (2008, 2011)
formally prove that sequences of steps in the edge-
factored GBDP (Eisner, 1996) can be used to em-
ulate any individual step in the arc-hybrid system
(Yamada and Matsumoto, 2003) and the Eisner
and Satta (1999, Figure 1d) version. However,
they did not draw an explicitly direct connection
between Eisner and Satta (1999) and TBDPs.

Here, we provide an update to these previous
findings, stated in terms of the expressiveness of
scoring functions, considered as parameterization.

For the edge-factored GBDP, we write the score
for an edge as fGpÑÐ

h,
ÑÐ
mq, where h is the head and

m the modifier. A tree’s score is the sum of its
edge scores. We say that a parameterized depen-
dency parsing model A contains model B if for ev-
ery instance of parameterization in model B, there
exists an instance of model A such that the two
models assign the same score to every parse tree.
We claim:

Lemma 1. The arc-eager model presented in §4.1
contains the edge-factored model.

Proof Sketch. Consider a given edge-factored
GBDP parameterized by fG. For any parse tree,
every edge iðj involves two deduction rules, and
their contribution to the score of the final proof is
fsh(

ÑÐ
wk,

ÑÐ
wi) ` freðpÑÐ

wi,
ÑÐ
wjq. We set fsh(

ÑÐ
wk,

ÑÐ
wi) “

0 and freðpÑÐ
wi,

ÑÐ
wjq “ fGpÑÐ

wj ,
ÑÐ
wiq. Similarly,

for edges kñi in the other direction, we set
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Model Training Features
PTB CTB

UAS (%) UEM (%) UAS (%) UEM (%)

Arc-standard Local tÑÐ
s 2,

ÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 93.95˘0.12 52.29˘0.66 88.01˘0.26 36.87˘0.53

Arc-hybrid
Local tÑÐ

s 2,
ÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 93.89˘0.10 50.82˘0.75 87.87˘0.17 35.47˘0.48

Local tÑÐ
s 0,

ÑÐ
b 0u 93.80˘0.12 49.66˘0.43 87.78˘0.09 35.09˘0.40

Global tÑÐ
s 0,

ÑÐ
b 0u 94.43˘0.08 53.03˘0.71 88.38˘0.11 36.59˘0.27

Arc-eager
Local tÑÐ

s 2,
ÑÐ
s 1,

ÑÐ
s 0,

ÑÐ
b 0u 93.80˘0.12 49.66˘0.43 87.49˘0.20 33.15˘0.72

Local tÑÐ
s 0,

ÑÐ
b 0u 93.77˘0.08 49.71˘0.24 87.33˘0.11 34.17˘0.41

Global tÑÐ
s 0,

ÑÐ
b 0u 94.53˘0.05 53.77˘0.46 88.62˘0.09 37.75˘0.87

Edge-factored Global tÑÐ
h,

ÑÐ
mu 94.50˘0.13 53.86˘0.78 88.25˘0.12 36.42˘0.52

Table 2: Test set performance for different training regimes and feature sets. The models use the same
decoders for testing and training. For each setting, the average and standard deviation across 5 runs with
different random initializations are reported. Boldface: best (averaged) result per dataset/measure.

fra(
ÑÐ
wk,

ÑÐ
wi) “ fGpÑÐ

wk,
ÑÐ
wiq and frepÑÐ

wi,
ÑÐ
wjq “ 0.

The parameterization we arrive at emulates ex-
actly the scoring model of fG.

We further claim that the arc-eager model is
more expressive than not only the edge-factored
GBDP, but also the arc-hybrid model in our paper.

Lemma 2. The arc-eager model contains the arc-
hybrid model.

Proof Sketch. We leverage the fact that the arc-
eager model divides the sh transition in the arc-
hybrid model into two separate transitions, sh and
ra. When we constrain the parameters fsh “ fra in
the arc-eager model, the model hypothesis space
becomes exactly the same as arc-hybrid’s.

The extra expressiveness of the arc-eager model
comes from the scoring functions fsh and fre

that capture structural contexts other than head-
modifier relations. Unlike traditional higher-order
graph-based parsing that directly models relations
such as siblinghood (McDonald and Pereira, 2006)
or grandparenthood (Carreras, 2007), however, the
arguments in those two functions do not have any
fixed type of structural interactions.

6 Experiments

Data and Evaluation We experimented with
English and Chinese. For English, we used the
Stanford Dependencies (de Marneffe and Man-
ning, 2008) conversion (via the Stanford parser
3.3.0) of the Penn Treebank (Marcus et al., 1993,
PTB). As is standard, we used §2-21 of the Wall
Street Journal for training, §22 for development,

and §23 for testing; POS tags were predicted using
10-way jackknifing with the Stanford max entropy
tagger (Toutanova et al., 2003). For Chinese, we
used the Penn Chinese Treebank 5.1 (Xue et al.,
2002, CTB), with the same splits and head-finding
rules for conversion to dependencies as Zhang
and Clark (2008). We adopted the CTB’s gold-
standard tokenization and POS tags. We report
unlabeled attachment score (UAS) and sentence-
level unlabeled exact match (UEM). Following
prior work, all punctuation is excluded from eval-
uation. For each model, we initialized the network
parameters with 5 different random seeds and re-
port performance average and standard deviation.

Implementation Details Our model structures
reproduce those of Kiperwasser and Goldberg
(2016a). We use 2-layer bi-directional LSTMs
with 256 hidden cell units. Inputs are concatena-
tions of 28-dimensional randomly-initialized part-
of-speech embeddings and 100-dimensional word
vectors initialized from GloVe vectors (Penning-
ton et al., 2014) (English) and pre-trained skip-
gram-model vectors (Mikolov et al., 2013) (Chi-
nese). The concatenation of the bi-LSTM feature
vectors is passed through a multi-layer perceptron
(MLP) with 1 hidden layer which has 256 hid-
den units and activation function tanh. We set the
dropout rate for the bi-LSTM (Gal and Ghahra-
mani, 2016) and MLP (Srivastava et al., 2014) for
each model according to development-set perfor-
mance.6 All parameters except the word embed-

6For bi-LSTM input and recurrent connections, we con-
sider dropout rates in t0., 0.2u, and for MLP, t0., 0.4u.
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Figure 2: Comparing our UAS results with results from the literature. x-axis: PTB; y-axis: CTB. Most
datapoint labels give author initials and publication year; citations are in the bibliography. Ensemble
datapoints are annotated with ensemble size. Weiss et al. (2015) and Andor et al. (2016) achieve UAS of
94.26 and 94.61 on PTB with beam search, but did not report CTB results, and are therefore omitted.

dings are initialized uniformly (Glorot and Ben-
gio, 2010). Approximately 1,000 tokens form a
mini-batch for sub-gradient computation. We train
each model for 20 epochs and perform model se-
lection based on development UAS. The proposed
structured loss function is optimized via Adam
(Kingma and Ba, 2015). The neural network com-
putation is based on the python interface to DyNet
(Neubig et al., 2017), and the exact decoding al-
gorithms are implemented in Cython.7

Main Results We implement exact decoders for
the arc-hybrid and arc-eager systems, and present
the test performance of different model configu-
rations in Table 2, comparing global models with
local models. All models use the same decoder
for testing as during the training process. Though
no global decoder for the arc-standard system has
been explored in this paper, its local models are
listed for comparison. We also include an edge-
factored graph-based model, which is convention-
ally trained globally. The edge-factored model
scores bi-LSTM features for each head-modifier
pair; a maximum spanning tree algorithm is used
to find the tree with the highest sum of edge
scores. For this model, we use Dozat and Man-

7See https://github.com/tzshi/dp-parser-emnlp17 .

ning’s (2017) biaffine scoring model, although in
our case the model size is smaller.8

Analogously to the dev-set results given in §2,
on the test data, the minimal feature sets perform
as well as larger ones in locally-trained models.
And there exists a clear trend of global models out-
performing local models for the two different tran-
sition systems on both datasets. This illustrates the
effectiveness of exact decoding and global train-
ing. Of the three types of global models, the arc-
eager arguably has the edge, an empirical finding
resonating with our theoretical comparison of their
model expressiveness.

Comparison with State-of-the-Art Models
Figure 2 compares our algorithms’ results with
those of the state-of-the-art.9 Our models are
competitive and an ensemble of 15 globally-
trained models (5 models each for arc-eager DP,
arc-hybrid DP and edge-factored) achieves 95.33
and 90.22 on PTB and CTB, respectively, reach-

8The same architecture and model size as other transition-
based global models is used for fair comparison.

9We exclude Choe and Charniak (2016), Kuncoro et al.
(2017) and Liu and Zhang (2017), which convert constituent-
based parses to dependency parses. They produce higher PTB
UAS, but access more training information and do not di-
rectly apply to datasets without constituency annotation.
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ing the highest reported UAS on the CTB dataset,
and the second highest reported on the PTB
dataset among dependency-based approaches.

7 Related Work Not Yet Mentioned

Approximate Optimal Decoding/Training Be-
sides dynamic programming (Huang and Sagae,
2010; Kuhlmann et al., 2011), various other ap-
proaches have been proposed for approaching
global training and exact decoding. Best-first
and A* search (Klein and Manning, 2003; Sagae
and Lavie, 2006; Sagae and Tsujii, 2007; Zhao
et al., 2013; Thang et al., 2015; Lee et al., 2016)
give optimality certificates when solutions are
found, but have the same worst-case time com-
plexity as the original search framework. Other
common approaches to search a larger space at
training or test time include beam search (Zhang
and Clark, 2011), dynamic oracles (Goldberg and
Nivre, 2012, 2013; Cross and Huang, 2016b) and
error states (Vaswani and Sagae, 2016). Beam
search records the k best-scoring transition pre-
fixes to delay local hard decisions, while the lat-
ter two leverage configurations deviating from the
gold transition path during training to better simu-
late the test-time environment.

Neural Parsing Neural-network-based models
are widely used in state-of-the-art dependency
parsers (Henderson, 2003, 2004; Chen and Man-
ning, 2014; Weiss et al., 2015; Andor et al., 2016;
Dozat and Manning, 2017) because of their ex-
pressive representation power. Recently, Stern
et al. (2017) have proposed minimal span-based
features for constituency parsing.

Recurrent and recursive neural networks can be
used to build representations that encode complete
configuration information or the entire parse tree
(Le and Zuidema, 2014; Dyer et al., 2015; Kiper-
wasser and Goldberg, 2016b), but these models
cannot be readily combined with DP approaches,
because their state spaces cannot be merged into
smaller sets and thus remain exponentially large.

8 Concluding Remarks

In this paper, we have shown the following.

• The bi-LSTM-powered feature set tÑÐ
s0,

ÑÐ
b 0u

is minimal yet highly effective for arc-hybrid
and arc-eager transition-based parsing.

• Since DP algorithms for exact decoding
(Huang and Sagae, 2010; Kuhlmann et al.,

2011) have a run-time dependence on the
number of positional features, using our mere
two effective positional features results in a
running time of Opn3q, feasible for practice.

• Combining exact decoding with global train-
ing — which is also enabled by our minimal
feature set — with an ensemble of parsers
achieves 90.22 UAS on the Chinese Treebank
and 95.33 UAS on the Penn Treebank: these
are, to our knowledge, the best and second-
best results to date on these data sets among
“purely” dependency-based approaches.

There are many directions for further explo-
ration. Two possibilities are to create even better
training methods, and to find some way to extend
our run-time improvements to other transition sys-
tems. It would also be interesting to further in-
vestigate relationships between graph-based and
dependency-based parsing. In §5 we have men-
tioned important earlier work in this regard, and
provided an update to those formal findings.

In our work, we have brought exact decoding,
which was formerly the province solely of graph-
based parsing, to the transition-based paradigm.
We hope that the future will bring more inspira-
tion from an integration of the two perspectives.
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Abstract

We propose a new Maximum Subgraph
algorithm for first-order parsing to 1-
endpoint-crossing, pagenumber-2 graphs.
Our algorithm has two characteristics: (1)
it separates the construction for noncross-
ing edges and crossing edges; (2) in a
single construction step, whether to cre-
ate a new arc is deterministic. These two
characteristics make our algorithm rela-
tively easy to be extended to incorpo-
riate crossing-sensitive second-order fea-
tures. We then introduce a new algorithm
for quasi-second-order parsing. Experi-
ments demonstrate that second-order fea-
tures are helpful for Maximum Subgraph
parsing.

1 Introduction

Previous work showed that treating semantic de-
pendency parsing as the search for Maximum Sub-
graphs is not only elegant in theory but also ef-
fective in practice (Kuhlmann and Jonsson, 2015;
Cao et al., 2017). In particular, our previous work
showed that 1-endpoint-crossing, pagenumber-2
(1EC/P2) graphs are an appropriate graph class for
modelling semantic dependency structures (Cao
et al., 2017). On the one hand, it is highly expres-
sive to cover a majority of semantic analysis. On
the other hand, the corresponding Maximum Sub-
graph problem with an arc-factored disambigua-
tion model can be solved in low-degree polyno-
mial time.

Defining disambiguation models on wider con-
texts than individual bi-lexical dependencies im-
proves various syntactic parsers in different ar-
chitectures. This paper studies exact algorithms
for second-order parsing for 1EC/P2 graphs. The
existing algorithm, viz. our previous algorithm

(GCHSW, hereafter), has two properties that make
it hard to incorporate higher-order features in a
principled way. First, GCHSW does not explicitly
consider the construction of noncrossing arcs. We
will show that incorporiating higher-order factors
containing crossing arcs without increasing time
and space complexity is extremely hard. An effec-
tive strategy is to only include higher-order factors
containing only noncrossing arcs (Pitler, 2014).
But this crossing-sensitive strategy is incompat-
ible with GCHSW. Second, all existing higher-
order parsing algorithms for projective trees, in-
cluding (McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010), require that which
arcs are created in a construction step be deter-
ministic. This design is also incompatible with
GCHSW. In summary, it is not convenient to ex-
tend GCHSW to incorporate higher-order features
while keeping the same time complexity.

In this paper, we introduce an alternative Max-
imum Subgraph algorithm for first-order parsing
to 1EC/P2 graphs. while keeping the same time
and space complexity to GCHSW, our new algo-
rithm has two characteristics that make it rela-
tively easy to be extended to incorporate crossing-
sensitive, second-order features: (1) it separates
the construction for noncrossing edges and pos-
sible crossing edges; (2) whether an edge is cre-
ated is deterministic in each construction rule. We
then introduce a new algorithm to perform second-
order parsing. When all second-order scores are
greater than or equal to 0, it exactly solves the cor-
responding optimization problem.

We implement a practical parser with a sta-
tistical disambiguation model and evaluate it on
four data sets: those used in SemEval 2014
Task 8 (Oepen et al., 2014), and the dependency
graphs extracted from CCGbank (Hockenmaier
and Steedman, 2007). On all data sets, we find
that our second-order parsing models are more ac-
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curate than the first-order baseline. If we do not
use features derived from syntactic trees, we get
an absolute unlabeled F-score improvement of 1.3
on average. When syntactic analysis is used, we
get an improvement of 0.4 on average.

2 Preliminaries

2.1 Maximum Subgraph Parsing

Semantic dependency parsing can be formulated
as the search for Maximum Subgraph for graph
class G: Given a graph G = (V,A), find a subset
A′ ⊆ A with maximum total score such that the
induced subgraph G′ = (V,A′) belongs to G. For-
mally, we have the following optimization prob-
lem:

arg max
G∗∈G(s,G)

∑

p in G∗
spart(s, p)

G(s,G) denotes the set of all graphs that belong to
G and are compatible with s and G. G is usually
a complete digraph. spart(s, p) evaluates the event
that part p (from a candidate graph G∗) is good.
We define the order of p according to the num-
ber of arcs it contains, in analogy with tree parsing
in terminology. Previous work only discussed the
first-order case:

arg max
G∗∈G(G)

∑

d∈ARC(G∗)

sarc(d)

If G is the set of noncrossing or 1EC/P2 graphs,
the above optimization problem can be solved in
cubic-time (Kuhlmann and Jonsson, 2015) and
quintic-time (Cao et al., 2017) respectively. Fur-
thermore, ignoring one linguistically-rare struc-
ture in 1EC/P2 graphs descreases the complexity
to O(n4). This paper is concerned with second-
order parsing, with a special focus on the follow-
ing factorizations:

And the objective function turns to be:

∑

d∈ARC(G∗)

sarc(d) +
∑

s∈SIB(G∗)

ssib(s)

Sun et al. (2017) introduced a dynamic program-
ming algorithm for second-order planar parsing.
Their empirical evaluation showed that second-
order features are effective to improve parsing ac-
curacy. It is still unknown how to incorporate such
features for 1EC/P2 parsing.

a b c d e

Figure 1: e(a,c)’s crossing edges e(b,d) and e(b,e)
share an endpoint b.

a b c d e f

Page 1

Page 2

Figure 2: A pagenumber-2 graph. The upper and
the lower figures represent two half-planes respec-
tively.

2.2 1-Endpoint-Crossing, Pagenumber-2
Graphs

The formal description of the 1-endpoint-crossing
property is adopted from (Pitler et al., 2013).

Definition 1. Edges e1 and e2 cross if e1 and e2
have distinct endpoints and exactly one of the end-
points of e1 lies between the endpoints of e2.

Definition 2. A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p named pencil point.

Given a sentence s = w0w1 · · ·wn−1 of length
n, the vertices, i.e. words, are indexed with inte-
gers, an arc from wi to wj as a(i,j), and the com-
mon endpoint, namely pencil point, of all edges
crossed with a(i,j) or a(j,i) as pt(i, j). We denote
an edge as e(i,j), if we do not consider its direction.
Figure 1 is an example.

Definition 3. A pagenumber-k graph means it
consists at most k half-planes, and arcs on each
half-plane are noncrossing.

These half-planes may be thought of as the
pages of a book, with the vertex line correspond-
ing to the books spine, and the embedding of a
graph into such a structure is known as a book em-
bedding. Figure 2 is an example.

(Pitler et al., 2013) proved that 1-endpoint-
crossing trees are a subclass of graphs whose pa-
genumber is at most 2. In Cao et al. (2017),
we studied graphs that are constrained to be both
1-endpoint-crossing and pagenumber-2. In this
paper, we ignored a complex and linguistic-rare

x i

k

b

Figure 3: C structure has two crossing chains.
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i j

k

l

Figure 4: A prototype backbone of 1EC/P2 graphs.
To decompose this structure, GCHSW focuses on
e(i,j) and e(l,j), because these two edges can be
optionally created without violation of both 1EC

and P2 restrictions. Our algorithm focuses on the
existence of e(i,k), and makes it the only edge that
is constructed by applying a corresponding rule.

structure and studied a subset of 1EC/P2 graphs.
The complex structure is named as C structures in
our previous paper, and Figure 3 is the prototype
of C structures. In this paper, we present new algo-
rithms for finding optimal 1EC/P2, C-free graphs.

2.3 The GCHSWAlgorithm

Cao et al. (2017) designed a polynomial time
Maximum Subgraph algorithm, viz. GCHSW, for
1EC/P2 graphs by exploring the following prop-
erty: Every subgraph of a 1EC/P2 graph is also a
1EC/P2 graph. GCHSW defines a number of proto-
type backbones for decomposing a 1EC/P2 graph
in a principled way. In each decomposition step,
GCHSW focuses on the edges that can be created
without violating either the 1EC nor P2 restriction.
Sometimes, multiple edges can be created simulta-
neously in one single step. Figure 4 is an example.

There is an important difference between
GCHSW and Eisner-style Maximum Spanning
Tree algorithms (MST; Eisner, 1996; McDonald
and Pereira, 2006; Koo and Collins, 2010). In
each construction step, GCHSW allows multiple
arcs to be constructed, but whether or not such
arcs are added to the target graph depends on their
arc-weights. If all arcs are assigned scores that
are greater than 0, the output of our algorithm in-
cludes the most complicated 1EC/P2 graphs. For
the higher-order MST algorithms, in a single con-
struction step, it is clear whether adding a new arc,
and which one. There is no local search. This de-
terministic strategy is also followed by Kuhlmann
and Jonsson’s Maximum Subgraph algorithm for
noncrossing graphs. Higher-order MST models
associate higher-order score functions with the
construction of individual dependencies. There-
fore the deterministic strategy is a prerequisite to
incorporate higher-order features. The design of
GCHSW is incompatible with this strategy.

x i k jri ljrx

Figure 5: A typical structure of crossing arcs.

2.4 Challenge of Second-Order Decoding
It is very difficult to enumerate all high-order fea-
tures for crossing arcs. Figure 5 illustrates the
idea. There is a pair of corssing arcs, viz. e(x,k)
and e(i,j). The key strategy to develop a dynamic
programming algorithm to generate such crossing
structure is to treat parts of this structures as inter-
vals/spans together with an external vertex (Pitler
et al., 2013; Cao et al., 2017). Without loss of gen-
erality, we assume [i, j] makes up such an interval
and x is the corresponding external vertex. When
we consider e(i,j), its neighboring edges can be
e(i,ri) and e(lj ,j), and therefore we need to con-
sider searching the best positions of both ri and lj .
Because we have already taken into account three
vertices, viz. x, i and j, the two new positions
increase the time complexity to be at least quintic.

Now consider e(x,k). When we decompose the
whole graph into inverval [i, j] plus x and remain-
ing part, we will factor out e(x,k) in a successive
decomposition for resolving [i, j] plus x. We can-
not capture the second features associated to e(x,k)
and e(x,rx), because they are in different intervals,
and when these intervals are combined, we have
already hidden the position information of k. Ex-
plicitly encoding k increases the time complexity
to be at least quintic too.

Pitler (2014) showed that it is still possible to
build accurate tree parsers by considering only
higher-order features of noncrossing arcs. This is
in part because only a tiny fraction of neighbor-
ing arcs involve crossing arcs. However, this strat-
egy is not easy to by applied to GCHSW, because
GCHSW does not explicitly analyze sub-graphs of
noncrossing arcs.

3 A New Maximum Subgraph Algorithm

Based on the discussion of Section 2.3 and 2.4,
we can see that it is not easy to extend the existing
algorithm, viz. GCHSW, to handle second-order
features. In this paper, we propose an alternative
first-order dynamic programming algorithm. Be-
cause ignoring one linguistically-rare structure as-
sociated with the C problem in GCHSW descreases
the complexity, we exclude this structure in our al-
gorithm. Formally, we introduce a new algorithm
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IntO[i, j]

i j

LR[i, j, x]

x i j

NO[i, j, x]

x i j

LO[i, j, x]

x i j

RO[i, j, x]

x i j

IntC [i, j]

i j

NC [i, j, x]

x i j

LC [i, j, x]

x i j

RC [i, j, x]

x i j

Figure 6: Graphical representations of sub-problems. Gray curves mean the corresponding edge in this
sub-problem, but should be included in the final generated graph.

IntO(i, j)← max



IntO(i+ 1, j)
IntC(i, j)
IntC(i, k) + IntO(k, j)
RC(i, k, x) + IntO(k, x) + LO(x, j, k) + sarc(i, k)
LR(i, k, x) + IntO(k, x) + IntO(x, j, k) + sarc(i, k)
IntO[i, x] + LC [x, k, i] +NO[k, j, x] + sarc(i, k)
RO[i, x, k] + IntO[x, k] + LO[k, j, x] + sarc(i, k)

IntC(i, j)← sarc(i, j) + max



IntO(i+ 1, j)
IntC(i, k) + IntO(k, j)
RC(i, k, x) + IntO(k, x) + LO(x, j, k) + sarc(i, k)
LR(i, k, x) + IntO(k, x) + IntO(x, j, k) + sarc(i, k)
IntO[i, x] + LC [x, k, i] +NO[k, j, x] + sarc(i, k)
RO[i, x, k] + IntO[x, k] + LO[k, j, x] + sarc(i, k)

NO(i, j, x)← max



IntO(i, j)
NC(i, j, x) + sarc(x, j)
NC(i, k, x) + IntO(k, j) + sarc(x, k)

NC(i, j, x)← max{
IntO(i, j)
NC(i, k, x) + IntO(k, j) + sarc(x, k)

LR(i, j, x)← max{
LO(i, k, x) +RO(k, j, x)

LO(i, j, x)← max



IntO(i, j)
LC(i, j, x) + sarc(x, j)
LC(i, k, x) +NO(k, j) + sarc(x, k)
IntO(i, k, x) + LO(k, j) + sarc(x, k)

LC(i, j, x)← max



IntO(i, j)
LC(i, j, x) + sarc(x, j)
LC(i, k, x) +NO(k, j, i) + sarc(x, k)
IntO(i, k) + LO(k, j, i) + sarc(x, k)

RO(i, j, x)← max



IntO(i, j)
RC(i, j, x) + sarc(x, j)
NC(i, k, j) +RO(k, j, x) + sarc(x, k)
RO(i, k, x) + IntO(k, j) + sarc(x, k)

RC(i, j, x)← max{
NC(i, k, j) +RO(k, j, x) + sarc(x, k)
RO(i, k, x) + IntO(k, j) + sarc(x, k)

Figure 7: A dynamic program to find optimal 1EC/P2, C-free graphs with arc-factored weights.

to solve the following optimization problem:

arg max
G∗∈G(G)

∑

d∈ARC(G∗)

sarc(d)

where G means 1EC/P2, C-free graphs. Our algo-
rithm has the same time and space complexity to
the degenerated version of GCHSW. We represent
our algorithm using undirected graphs.

3.1 Sub-problems
Following GCHSW, we consider five sub-problems
when we construct a maximum dependency graph
on a given interval [i, k]. Though the sub-
problems introduced by GCHSW and us handle
similar structures, their definitions are quite differ-
ent. The sub-problems are explained as follows:

Int Int[i, j] represents an interval from i to j in-
clusively. And there is no edge e(i′,j′) such
that i′ ∈ [i, j] and j′ /∈ [i, j]. We distinguish
two sub-types for Int. IntO[i, j] may or may
not contain e(i,j), while IntC [i, j] contains
e(i,j).

LR LR[i, j, x] represents an interval from i to j
inclusively and an external vertex x. ∀p ∈

[i, j], pt(x, p) = i or j. LR[i, j, x] implies
the existence of e(i,j), but does not contain
e(i,j). When LR[i, j, x] is combined with
other DP sub-structures, e(i,j) is immediately
created. LR[i, j, x] disallows neither e(x,i)
nor e(x,j).

N N [i, j, x] represents an interval from i to j
inclusively and an external vertex x. ∀p ∈
[i, j], pt(x, p) /∈ [i, j]. N [i, j, x] could con-
tain e(i,j) but disallows e(x,i). We distinguish
two sub-types. NO[i, j, x] may or may not
contain e(x,j). NC [i, j, x] implies the exis-
tence of but does not contain e(x,j). When
N [i, j, x] is combined with others, e(x,j) is
immediately created.

L L[i, j, x] represents an interval from i to j
inclusively as well as an external vertex x.
∀p ∈ [i, j], pt(x, p) = i. L[i, j, x] could con-
tain e(i,j) but disallows e(x,i). We distinguish
sub-two types for L. LO[i, j, x] may or may
not contain e(x,j). LC [i, j, x] implies the ex-
istence of but does not contain e(x,j). When
it is combined with others, e(x,j) is immedi-
ately created.
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R R[i, j, x] represents an interval from i to j
inclusively as well as an external vertex x.
∀p ∈ [i, j], pt(x, p) = j. R[i, j, x] disal-
lows e(x,j) and e(x,i). We distinguish two
sub-types for R. RO[i, j, x] may or may not
contain e(i,j). RC [i, j, x] implies the exis-
tence of but does not contain e(i,j). When it
is combined with others, e(i,j) is immediately
created.

3.2 Decomposing Sub-problems
Figure 7 gives a sketch of our dynamic program-
ming algorithm. We give a detailed illustration for
Int, a rough idea for L and LR, and omit other
sub-problems. More details about the whole algo-
rithm can be found in the supplementary note.

3.2.1 Decomposing an Int Sub-problem
Consider IntO[i, j] and IntC [i, j] sub-problem.
Because the decomposition for IntC [i, j] is very
similar to IntO[i, j] and needs to be modified
by our second-order parsing algorithm, we only
show the decomposition of IntC [i, j]. Assume
that k(k ∈ (i, j)) is the farthest vertex that is ad-
jacent to i, and x = pt(i, k). If there is no such
k (i.e. there no arc from i to some other node in
this interval), then we denote k as ∅. So it is to x.
We illustrate different cases as following and give
a graphical representation in Figure 8.

Case a: k = ∅. We can directly consider interval
[i + 1, j]. Because there is no edge from i to any
node in [i+ 1, j], [i+ 1, j] is an IntO.

Case b: x = ∅. x = ∅ means that e(i,k) does not
cross other arcs. So [i, k] and [k, j] are Int.

Case c: x ∈ (k, j]. e(i,k) is taken as a possible
crossing edge. k and x divide the interval [i, j] into
three parts: [i, k], [k, x], [x, j]. Because x may be
j, interval [x, j] may only contain j and become
an empty interval. We define x′ as the pencil point
of all edges from (i, k) to x, and distinguish two
sub-problems as follows.

c.1 Assume that there exists an edge from k to
some node r in (x, j], so x′ can only be k and
pencil point of edges from k to (x, j] is x.
Thus interval [i, k, x] is an R. Due to the exis-
tence of e(i,k), its sub-type is RC. The e(i,k) is
created in this construction and thus not con-
tained by RC [i, k, x]. An edge from within
[k, x] to outside violates the 1EC restriction,
so [k, x] is an Int. Since x is endpoint of edge

from k to [x, r], interval [k, j] is an LO with
external vertex k.

c.2 We assume no edge from k to any node in
[x, j], x′ thus can be i or k. As a result, [x, j]
is an Int and [i, k, x] is an LR.

Case d: x ∈ (i, k).

d.1 Assume that there exist edges from i to
(x, k), so the pencil point of edges from x to
(k, j] is i. Therefore [k, j] is an N. Because x
is pencil point of edges from i to (x, k], [x, k]
is an L. Furthmore, it is an LC because we
generate e(i,k) in this step. It is obvious that
[i, x] is an Int.

d.2 Assume that there exists edges from k to
(i, x), and the pencil point of edges from
x to (k, j] is thus k. Similar to the above
analysis, we reachRO[i, x, k]+IntO[x, k]+
LO[k, j, x] + e(i,k) + e(i,j).

For IntO[i, j], because there may be e(i,j), we
add one more rule: IntO[i, j] = IntC [i, j]. And
we do not need to create e(i,j) in all cases.

3.2.2 Decomposing an L Sub-problem
Without loss of generality, we show the decompo-
sition of LO[i, j, x] as follows. For LC [i, j, x], we
ignore Case b but follow the others.

Case a. If there is no more edge from x to (i, j],
then it will degenerate to IntO[i, j].

Case b. If there exists e(x,j), then it will degen-
erate to LC [i, j, x] + e(x,j).

Case c. Assume that there are edges from x to
(i, j) and e(x,k) is the farthest one. It divides [i, j]
into [i, k] and [k, j].

c.1 If there is an edge from x to (i, k), [i, k] and
[k, j] are LC [i, k, x] and NO[k, j, i].

c.2 If there is no edge from x to (i, k), [i, k] and
[k, j] are IntO[i, k] and LO[k, j, i].

Figure 8 is a graphical representation.

3.2.3 Decomposing an LR Sub-problem
LR[i, j, x] means i or j is the pencil point of edges
from x to (i, j). We show the decomposition of
LR[i, j, x] as follows:
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Figure 8: Decomposition for IntC [i, j] in the first-order parsing algorithm. pt(i, k) = x.
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Figure 9: Decomposition for LO[i, j, x].

x i b1

a1

b2

a2

j, b3

Figure 10: b3 = j, Not both e(x,b1) and e(x,a2)
exist.

x i b1

a1

b2

a2

b3

j, a3

Figure 11: a3 = j. Both e(x,b1) and e(x,b3) exist.

Case a. If there is a vertex k within (i, j), which
divides [i, j] into [i, k] and [k, j]. And it guaran-
tees no edge from [i, k) to (k, j]. i is the pencil
point of edges from x to (i, k] because no edge
from j to (i, k) can cross these edges. Similarly j
has to be the pencil point of edges from x to (k, j).
Obviously, [i, k] is an LO and [k, j] is an RO with
external x. Thus the problem is decomposed as
LO[i, k, x] +RO[k, j, x].

Case b. If there is no such vertex k, there must
be edges from [i, k′) to (k′, j] for every k′ in (i, j)
without considering e(i,j). For i + 1, we assume
e(i,a1) is the farthest edge that goes from i. For
a1, we assume e(b1,b2) is the farthest edge from
b1 where b1 is in (i, a1) and b2 is in (a1, j). For
b2, we assume e(a1,a3) is the farthest edge from
a1 where a3 is in (b2, j) and a1 is the pencil
point. We then get the series {a1, a2, a3...an} and
{b1, b2...bm}which guarantees bi < ai , ai < bi+1

and max(an, bm) = j.
If bm = j, we will get a graph like Figure 10. If

e(x,b1) exists, this LR subproblem degenerates to
an L subproblem. If e(x,an) exists, this subprob-
lem degenerates to an R subproblem.

If am = j, we will get a graph like Figure 11.
If there exists only e(x,b1) or e(x,bm), we can solve
it like bm = j. If both exist, this is a typical C-

structure like Figure 3 and we cannot get it through
other decompostion.

The above discussion gives the rough idea of the
correctness of the following conclusion.
Theorem 1. Our new algorithm is sound and
complete with respect to 1EC/P2, C-free graphs.

3.3 Spurious Ambiguity
An LR, L, R or N sub-problem allows to build
crossing arcs, but does not necessarily create
crossing arcs. For example, LC [i, j, x] allows
e(i,j) to cross with e(x,y) (y ∈ (i, j)). Be-
cause every subgraph of a 1EC/P2 graph is also
a 1EC/P2 graph, we allow an LC [i, j, x] to be di-
rectly degenerated to IO[i, j]. In this way, we can
make sure that all subgraphs can be constructed
by our algorithm. Figure 12 shows the rough idea.
To generate the same graph, we have different
derivations. The spurious ambiguity in our algo-
rithm does not affect the correctness of first-order
parsing, because scores are assigned to individ-
ual dependencies, rather than derivation processes.
There is no need to distinguish one special deriva-
tion here.

4 Quasi-Second-Order Extension

We propose a second-order extension of our new
algorithm. We focus on factorizations introduced
in Section 2.1. Especially, the two arcs in a fac-
tor should not cross other arcs. Formally, we in-
troduce a new algorithm to solve the optimization
problem with the following objective:

∑

d∈ARC(G∗)

sarc(d) +
∑

s∈SIB(G∗)

max(ssib(s), 0)

In the first-order algorithm, all noncrossing edges
can be constructed as the frontier edge of an IntC.
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a b c d e

Figure 12: Illustration of spurious ambiguity. The
two solid curves represent two arcs in the target
graph, but not the dashed one. Excluding crossing
edges leads to the first derivation: IntC [a, e] ⇒
e(a,e) + IntC [a, c] + IntO[c, e] + e(a,c). As-
suming that a pair of crossing arcs may exist
yields another derivation: IntC [a, e] ⇒ e(a,e) +
LR[a, c, d] + IntO[k, d] + LO[d, e, c] + e(a,c);
Then LR[a, c, d] ⇒ LO[a, b, d] + RO[b, c, d] ⇒
IntO[a, b] + IntO[b, c].

So we can develop an exact decoding algorithm by
modifying the composition for IntC while keeping
intact the decomposition for LR, N, L, R.

4.1 New Decomposition for IntC
In order to capture the second-order features from
noncrossing neighbors, we need to find the right-
most node adjacent to i, denoted as ri, and the
leftmost node adjacent to j, denoted as lj ,while
i < ri ≤ lj < j. To do this, we split IntC [i, j]
into at most three parts to capture the sibling fac-
tors. Denote the score of adjacent edges e(i,j1)
and e(i,j2) as s2(i, j1, j2). When j is the inner
most node adjacent to i, we denote the score as
s2(i, ∅, j). We give a sketch of the decomposition
in Figure 14 and a graphical representation in Fig-
ure 13. The following is a rough illustration.

Case a: ri = ∅. We further distinguish three
sub-problems:

a.1 If lj = ∅ too, both sides are the inner most
second-order factor.

a.2 There is a crossing arc from j. This case is
handled in the same way as the first-order al-
gorithm.

a.3 lj 6= ∅. We introduce a new decomposition
rule.

Case b: There is a crossing arc from i.

b.1 lj = ∅. Similar case to (a.2).

b.2 There is a crossing arc from j. Similar case
to (a.2).

b.3 There is a noncrossing arc from j. We intro-
duce a new rule to calculate SIB(j, lj , i).

Case c: There is a noncrossing arc from i.

c.1 lj = ∅. Similar to (a.3).

c.2 There is a crossing arc from j. Similar to
(b.3).

c.3 There is a noncrossing arc from j too. We
introduce a new rule to calculate SIB(i, ri, j)
and SIB(j, lj , i).

4.2 Complexity

The complexity of both first- and second-order al-
gorithms can be analyzed in the same way. The
sub-problem Int is of size O(n2), with a calculat-
ing time of orderO(n2) at most. For sub-problems
L, R, LR, and N, each has O(n3) elements, with
a unit calculating timeO(n). Therefore both algo-
rithms run in time of O(n4) with a space require-
ment of O(n3).

4.3 Discussion

A traditional second-order model takes as
the objective function

∑
s∈SIB(G∗) ssib(s).

Our model instead tries to optimize∑
s∈SIB(G∗)max(ssib(s), 0). This model is

somehow inadequate given that the second-order
score function cannot penalize a bad factor. When
a negative score is assigned to a second-order
factor, it will be taken as 0 by our algorithm.

This inadequacy is due to the spurious am-
biguity problem that is illustrated in Section
3.3. Take the two derivations in Figure 12
for example. The derivation that starts from
IntC [a, e]⇒ IntC [a, c]+IntO[c, e] incorporates
the second-order score ssib(a, c, e). This is dif-
ferent when we consider the derivation that starts
from IntC [a, e] ⇒ LR[a, c, d] + IntO[k, d] +
LO[d, e, c]. Because we assume temporarily
that e(a,c) crosses others, we do not consider
ssib(a, c, e). We can see from this example that
second-order scores not only depend on the de-
rived graphs but also sensitive to the derivation
processes.

If a second-order score is greater than 0, our al-
gorithm selects the derivation that takes it into ac-
count since it increases the total score. If a second-
order score is negative, our algorithm avoids in-
cluding it by selecting other paths. In other words,
our algorithm treats this score as 0.
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(a.1)

i j
=
i+ 1 j − 1

(a.2)

i j
=
i+ 1 j

(a.3)

i j
=
i+ 1 lj

+
lj j

(b.1)

i j
=

i j − 1

(b.3)

i j
=

i rj
+
rj j

(c.1)

i j
=

i ri
+

ri j − 1

(c.2)

i j
=

i ri
+

ri j

(c.3)

i j
=
i ri

+
ri lj

+
lj j

Figure 13: Decomposition for IntC [i, j] in the second-order parsing algorithm.

IntC(i, j)← sarc(i, j) + max




IntO(i+ 1, j − 1) + ssib(i, ∅, j) + ssib(j, ∅, i)
IntO(i+ 1, j) + ssib(i, ∅, j)
IntO(i+ 1, lj) + IntC(lj , j) + ssib(i, ∅, j)+

ssib(j, lj , i)
IntO(i, j − 1) + ssib(j, ∅, i)
IntO(i, lj) + IntC(lj , j) + ssib(j, lj , i)
IntC(i, ri) + IntO[ri, j − 1] + ssib(i, ri, j)+

ssib(j, ∅, i)
IntC(i, ri) + IntO[ri, j] + ssib(i, ri, j)
IntC(i, ri) + IntO[ri, lj ] + IntC(lj , j)+

ssib(i, ri, j) + ssib(j, lj , i)
RC(i, k, x) + IntO(k, x) + LO(x, j, k) + e(i,k)
LR(i, k, x) + IntO(k, x) + IntO(x, j, k) + e(i,k)
IntO[i, x] + LC [x, k, i] +NO[k, j, x] + e(i,k)
RO[i, x, k] + IntO[x, k] + LO[k, j, x] + e(i,k)

Figure 14: Decomposition for IntC [i, j, x].

5 Practical Parsing

5.1 Derivation-Sensitive Training

We extend our quartic-time parsing algorithm into
a practical parser. In the context of data-driven
parsing, this requires an extra disambiguation
model. As with many other parsers, we employ
a global linear model. Following Zhang et al.
(2016)’s experience, we define rich features ex-
tracted from word, POS-tags and pseudo trees. To
estimate parameters, we utilize the averaged per-
ceptron algorithm (Collins, 2002).

Our training proceudre is sensitive to derivation
rather then derived graphs. For each sentence, we
first apply our algorithm to find the optimal pre-
diction derivation. The we collect all first- and
second-order factors from this derivation to update
parameters. To train a first-order model, because
our algorithm includes all factors, viz. depen-
cies, there is no difference between our derivation-
based method and a traditional derived structure-
based method. For the second-order model, our
method increases the second-order scores some-
how.

5.2 Data and Preprocessing
We evaluate first- and second-order models
on four representative data sets: CCGBank
(Hockenmaier and Steedman, 2007), DeepBank
(Flickinger et al., 2012), Enju HPSGBank (Miyao
et al., 2005) and Prague Dependency TreeBank
(Hajic et al., 2012). We use “standard” training,
validation, and test splits to facilitate comparisons.

• Following previous experimental setup for
English CCG parsing, we use section 02-21 as
training data, section 00 as the development
data, and section 23 for testing.

• The DeepBank, Enju HPSGBank and Prague
Dependency TreeBank are from SemEval
2014 Task 8 (Oepen et al., 2014), and the data
splitting policy follows the shared task.

Experiments for CCG-grounded analysis were per-
formed using automatically assigned POS-tags
that are generated by a symbol-refined HMM tag-
ger (Huang et al., 2010). Experiments for the other
three data sets used POS-tags provided by the
shared task. We also use features extracted from
pseudo trees. We utilize the Mate parser (Bohnet,
2010) to generate pseudo trees. All experimental
results consider directed dependencies in a stan-
dard way. We report Unlabeled Precision (UP),
Recall (UR) and F-score (UF), which are calcu-
lated using the official evaluation tool provided by
SDP2014 shared task.

5.3 Accuracy
Table 1 lists the accuracy of our system. The out-
put of our parser was evaluated against each de-
pendency in the corpus. We can see that the first-
order parser obtains a considerably good accuracy,
with rich syntactic features. Furthermore, we can
see that the introduction of higher-order features
improves parsing substantially for all data sets, as
expected. When syntactic trees are utilized, the
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DeepBank EnjuBank CCGBank PCEDT
Tree UP UR UF UP UR UF UP UR UF UP UR UF
No 1or 89.43 83.03 86.11 90.10 87.10 88.58 91.63 88.07 89.82 88.13 81.53 84.70

2or 89.23 85.98 87.57 90.88 89.90 90.39 91.96 89.54 90.74 88.56 84.57 86.52
Syn 1or 91.24 87.14 89.14 92.72 90.96 91.83 94.28 91.79 93.02 91.53 86.95 89.18

2or 90.93 88.79 89.85 92.73 92.11 92.42 93.99 92.27 93.13 91.02 88.20 89.59

Table 1: Parsing accuracy evaluated on the development sets.

DeepBank EnjuBank CCGBank PCEDT
Tree UP UR UF UP UR UF UP UR UF UP UR UF
No 1or 88.87 82.50 85.57 90.12 86.76 88.41 91.95 88.29 90.08 86.87 80.45 83.54

2or 88.77 85.61 87.16 91.06 89.50 90.27 92.25 89.80 91.01 87.07 83.45 85.22
Syn 1or 90.68 86.57 88.58 92.82 90.62 91.71 94.32 91.88 93.09 90.11 85.83 87.97

2or 90.13 88.21 89.16 92.84 91.50 92.17 94.09 92.27 93.17 89.73 87.13 88.41
SJW (2or) 89.99 87.77 88.87 92.87 92.04 92.46 93.45 92.51 92.98 89.58 87.73 88.65

Table 2: Parsing accuracy evaluated on the test sets. “SJW” denotes the book embedding parser intro-
duced in (Sun et al., 2017).

improvement is smaller but still significant on the
three SemEval data sets.

Table 2 lists the parsing results on the test data
together with the result obtained by Sun et al.
(SJW; 2017)’s system. The building architectures
of both systems are comparable.

1. Both systems have explicit control of the out-
put structures. While Sun et al.’s system con-
strain the output graph to be P2 only, our sys-
tem adds an additional 1EC restriction.

2. Their system’s second-order features also in-
cludes both-side neighboring features.

3. Their system uses beam search and dual
decomposition and therefore approximate,
while ours perform exact decoding.

We can see that while our purely Maximum Sub-
graph parser obtains better results on DeepBank
and CCGBank; while the book embedding parser
is better on the other two data sets.

5.4 Analysis
Our algorithm is sensitive to the derivation pro-
cess and may exclude a couple of negative second-
order scores by selecting misleading derivations.
Neverthess, our algorithm works in an exact way
to include all positive second-order scores. Table
3 shows the coverage of all second-order factors.
On average, 99.67% second-order factors are cal-
culated by our algorithm. This relatively satisfac-
tory coverage suggests that our algorithm is very
effective to include second-order features. Only a
very small portion is dropped.

DeepBank EnjuBank CCGBank PCEDT
No 99.08 99.52 99.67 98.32
Syn 99.77 99.69 99.88 99.33

Table 3: Coverage of second-order factors on the
developmenet data.

6 Conclusion

This paper proposed two exact, graph-based al-
gorithms for 1EC/P2 parsing with first-order and
quasi-second-order scores. The resulting parser
has the same asymptotic run time as Cao et al.
(2017)’s algorithm. An exploration of other factor-
izations that facilitate semantic dependency pars-
ing may be an interesting avenue for future work.
Recent work has investigated faster decoding for
higher-order graph-based projective parsing e.g.
vine pruning (Rush and Petrov, 2012) and cube
pruning (Zhang and McDonald, 2012). It would
be interesting to extend these lines of work to de-
crease the complexity of our quartic algorithm.
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Sgall, Ondej Bojar, Silvie Cinková, Eva Fucı́ková,
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Abstract

Organized relational knowledge in the
form of “knowledge graphs” is important
for many applications. However, the abil-
ity to populate knowledge bases with facts
automatically extracted from documents
has improved frustratingly slowly. This
paper simultaneously addresses two issues
that have held back prior work. We first
propose an effective new model, which
combines an LSTM sequence model with
a form of entity position-aware attention
that is better suited to relation extraction.
Then we build TACRED, a large (119,474
examples) supervised relation extraction
dataset, obtained via crowdsourcing and
targeted towards TAC KBP relations. The
combination of better supervised data and
a more appropriate high-capacity model
enables much better relation extraction
performance. When the model trained on
this new dataset replaces the previous rela-
tion extraction component of the best TAC
KBP 2015 slot filling system, its F1 score
increases markedly from 22.2% to 26.7%.

1 Introduction

A basic but highly important challenge in natu-
ral language understanding is being able to pop-
ulate a knowledge base with relational facts con-
tained in a piece of text. For the text shown in Fig-
ure 1, the system should extract triples, or equiv-
alently, knowledge graph edges, such as hPenner,
per:spouse, Lisa Dillmani. Combining such ex-
tractions, a system can produce a knowledge graph
of relational facts between persons, organizations,
and locations in the text. This task involves en-
tity recognition, mention coreference and/or entity
linking, and relation extraction; we focus on the

Penner is survived by his brother, John, a
copy editor at the Times, and his former wife,
Times sportswriter Lisa Dillman.

Subject Relation Object
Mike Penner per:spouse Lisa Dillman
Mike Penner per:siblings John Penner
Lisa Dillman per:title Sportswriter
Lisa Dillman per:employee of Los Angeles Times
John Penner per:title Copy Editor
John Penner per:employee of Los Angeles Times

Figure 1: An example of relation extraction from
the TAC KBP corpus.

most challenging “slot filling” task of filling in the
relations between entities in the text.

Organized relational knowledge in the form
of “knowledge graphs” has become an important
knowledge resource. These graphs are now exten-
sively used by search engine companies, both to
provide information to end-users and internally to
the system, as a way to understand relationships.
However, up until now, automatic knowledge ex-
traction has proven sufficiently difficult that most
of the facts in these knowledge graphs have been
built up by hand. It is therefore a key challenge
to show that NLP technology can effectively con-
tribute to this important problem.

Existing work on relation extraction (e.g., Ze-
lenko et al., 2003; Mintz et al., 2009; Adel et al.,
2016) has been unable to achieve sufficient re-
call or precision for the results to be usable ver-
sus hand-constructed knowledge bases. Super-
vised training data has been scarce and, while
techniques like distant supervision appear to be a
promising way to extend knowledge bases at low
cost, in practice the training data has often been
too noisy for reliable training of relation extrac-
tion systems (Angeli et al., 2015). As a result
most systems fail to make correct extractions even
in apparently straightforward cases like Figure 1,
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Example Entity Types & Label

Carey will succeed Cathleen P. Black, who held the position for 15 years and will take on a new
role as chairwoman of Hearst Magazines, the company said.

Types: PERSON/TITLE
Relation: per:title

Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived on Long Island and ran a
child-care center in Queens with her second husband, Stanley Kirkaldy.

Types: PERSON/CITY
Relation: per:city of birth

Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some
Morgan Stanley colleagues quit and later founded the hedge fund Old Lane Partners.

Types: ORGANIZATION/PERSON
Relation: org:founded by

Baldwin declined further comment, and said JetBlue chief executive Dave Barger was unavailable. Types: PERSON/TITLE
Relation: no relation

Table 1: Sampled examples from the TACRED dataset. Subject entities are highlighted in blue and
object entities are highlighted in red.

where the best system at the NIST TAC Knowl-
edge Base Population (TAC KBP) 2015 evaluation
failed to recognize the relation between Penner
and Dillman.1 Consequently most automatic sys-
tems continue to make heavy use of hand-written
rules or patterns because it has been hard for ma-
chine learning systems to achieve adequate pre-
cision or to generalize as well across text types.
We believe machine learning approaches have suf-
fered from two key problems: (1) the models used
have been insufficiently tailored to relation extrac-
tion, and (2) there has been insufficient annotated
data available to satisfy the training of data-hungry
models, such as deep learning models.

This work addresses both of these problems.
We propose a new, effective neural network se-
quence model for relation classification. Its ar-
chitecture is better customized for the slot fill-
ing task: the word representations are augmented
by extra distributed representations of word posi-
tion relative to the subject and object of the puta-
tive relation. This means that the neural attention
model can effectively exploit the combination of
semantic similarity-based attention and position-
based attention. Secondly, we markedly improve
the availability of supervised training data by us-
ing Mechanical Turk crowd annotation to pro-
duce a large supervised training dataset (Table 1),
suitable for the common relations between peo-
ple, organizations and locations which are used in
the TAC KBP evaluations. We name this dataset
the TAC Relation Extraction Dataset (TACRED),
and will make it available through the Linguistic
Data Consortium (LDC) in order to respect copy-
rights on the underlying text.

Combining these two gives a system with
markedly better slot filling performance. This is

1Note: former spouses count as spouses in the ontology.

shown not only for a relation classification task on
the crowd-annotated data but also for the incorpo-
ration of the resulting classifiers into a complete
cold start knowledge base population system. On
TACRED, our system achieves a relation classi-
fication F1 score that is 7.9% higher than that of
a strong feature-based classifier, and 3.5% higher
than that of the best previous neural architecture
that we re-implemented. When this model is used
in concert with a pattern-based system on the TAC
KBP 2015 Cold Start Slot Filling evaluation data,
the system achieves an F1 score of 26.7%, which
exceeds the previous state-of-the-art by 4.5% ab-
solute. While this performance certainly does not
solve the knowledge base population problem –
achieving sufficient recall remains a formidable
challenge – this is nevertheless notable progress.

2 A Position-aware Neural Sequence
Model Suitable for Relation Extraction

Existing work on neural relation extraction (e.g.,
Zeng et al., 2014; Nguyen and Grishman, 2015;
Zhou et al., 2016) has focused on convolutional
neural networks (CNNs), recurrent neural net-
works (RNNs), or their combination. While these
models generally work well on the datasets they
are tested on, as we will show, they often fail to
generalize to the longer sentences that are com-
mon in real-world text (such as in TAC KBP).

We believe that existing model architectures
suffer from two problems: (1) Although modern
sequence models such as Long Short-Term Mem-
ory (LSTM) networks have gating mechanisms to
control the relative influence of each individual
word to the final sentence representation (Hochre-
iter and Schmidhuber, 1997), these controls are
not explicitly conditioned on the entire sentence
being classified; (2) Most existing work either
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Figure 2: Our proposed position-aware neural se-
quence model. The model is shown with an exam-
ple sentence Mike and Lisa got married.

does not explicitly model the positions of entities
(i.e., subject and object) in the sequence, or mod-
els the positions only within a local region.

Here, we propose a new neural sequence model
with a position-aware attention mechanism over
an LSTM network to tackle these challenges. This
model can (1) evaluate the relative contribution of
each word after seeing the entire sequence, and (2)
base this evaluation not only on the semantic in-
formation of the sequence, but also on the global
positions of the entities within the sequence.

We formalize the relation extraction task as fol-
lows: Let X = [x1, ..., xn] denote a sentence,
where xi is the i-th token. A subject entity s
and an object entity o are identified in the sen-
tence, corresponding to two non-overlapping con-
secutive spans: Xs = [xs1 , xs1+1, . . . , xs2 ] and
Xo = [xo1 , xo1+1, . . . , xo2 ]. Given the sentence
X and the positions of s and o, the goal is to pre-
dict a relation r 2 R (R is the set of relations) that
holds between s and o or no relation otherwise.

Inspired by the position encoding vectors used
in Collobert et al. (2011) and Zeng et al. (2014),
we define a position sequence relative to the sub-
ject entity [ps

1, ..., p
s
n], where

ps
i =

8
><
>:

i� s1, i < s1

0, s1  i  s2

i� s2, i > s2

(1)

Here s1, s2 are the starting and ending indices of
the subject entity respectively, and ps

i 2 Z can be
viewed as the relative distance of token xi to the
subject entity. Similarly, we obtain a position se-
quence [po

1, ..., p
o
n] relative to the object entities.

Let x = [x1, ...,xn] be word embeddings of the
sentence, obtained using an embedding matrix E.
Similarly, we obtain position embedding vectors
ps = [ps

1, ...,p
s
n] and po = [po

1, ...,p
o
n] using a

shared position embedding matrix P respectively.
Next, as shown in Figure 2, we obtain hidden state
representations of the sentence by feeding x into
an LSTM:

{h1, ...,hn} = LSTM({x1, ...,xn}) (2)

We define a summary vector q = hn (i.e., the out-
put state of the LSTM). This summary vector en-
codes information about the entire sentence. Then
for each hidden state hi, we calculate an attention
weight ai as:

ui = v> tanh(Whhi + Wqq+

Wsp
s
i + Wop

o
i ) (3)

ai =
exp(ui)Pn

j=1 exp(uj)
(4)

Here Wh,Wq 2 Rda⇥d, Ws,Wo 2 Rda⇥dp

and v 2 Rda are learnable parameters of the net-
work, where d is the dimension of hidden states,
dp is the dimension of position embeddings, and
da is the size of attention layer. Additional param-
eters of the network include embedding matrices
E 2 R|V|⇥d and P 2 R(2L�1)⇥dp , where V is the
vocabulary and L is the maximum sentence length.

We regard attention weight ai as the relative
contribution of the specific word to the sentence
representation. The final sentence representation
z is computed as:

z =
Xn

i=1
aihi (5)

z is later fed into a fully-connected layer followed
by a softmax layer for relation classification.

Note that our model significantly differs from
the attention mechanism in Bahdanau et al. (2015)
and Zhou et al. (2016) in our use of the summary
vector and position embeddings, and the way our
attention weights are computed. An intuitive way
to understand the model is to view the attention
calculation as a selection process, where the goal
is to select relevant contexts over irrelevant ones.
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Dataset # Rel. # Ex. % Neg.

SemEval-2010 Task 8 19 10,717 17.4%
ACE 2003–2004 24 16,771 N/A
TACRED 42 119,474 78.7%

Table 2: A comparison of existing datasets and our
proposed TACRED dataset. % Neg. denotes the
percentage of negative examples (no relation).

Here the summary vector (q) helps the model to
base this selection on the semantic information
of the entire sentence (rather than on each word
only), while the position vectors (ps

i and po
i ) pro-

vides important spatial information between each
word and the entities.

3 The TAC Relation Extraction Dataset

Previous research has shown that slot filling sys-
tems can greatly benefit from supervised data.
For example, Angeli et al. (2014b) showed that
even a small amount of supervised data can boost
the end-to-end F1 score by 3.9% on the TAC
KBP tasks. However, existing relation extrac-
tion datasets such as the SemEval-2010 Task 8
dataset (Hendrickx et al., 2009) and the Automatic
Content Extraction (ACE) (Strassel et al., 2008)
dataset are less useful for this purpose. This is
mainly because: (1) these datasets are relatively
small for effectively training high-capacity mod-
els (see Table 2), and (2) they capture very differ-
ent types of relations. For example, the SemEval
dataset focuses on semantic relations (e.g., Cause-
Effect, Component-Whole) between two nominals.

One can further argue that it is easy to obtain a
large amount of training data using distant super-
vision (Mintz et al., 2009). In practice, however,
due to the large amount of noise in the induced
data, training relation extractors that perform well
becomes very difficult. For example, Riedel et al.
(2010) show that up to 31% of the distantly super-
vised labels are wrong when creating training data
from aligning Freebase to newswire text.

To tackle these challenges, we collect a large
supervised dataset TACRED, targeted towards the
TAC KBP relations.

Data collection. We create TACRED based on
query entities and annotated system responses in
the yearly TAC KBP evaluations. In each year of
the TAC KBP evaluation (2009–2015), 100 enti-
ties (people or organizations) are given as queries,

Data Split # Ex. Years

Train 75,050 2009–2012
Dev 25,764 2013
Test 18,660 2014

Table 3: Statistics on TACRED: number of exam-
ples and the source of each portion.

for which participating systems should find asso-
ciated relations and object entities. We make use
of Mechanical Turk to annotate each sentence in
the source corpus that contains one of these query
entities. For each sentence, we ask crowd workers
to annotate both the subject and object entity spans
and the relation types.

Dataset stratification. In total we collect
119,474 examples. We stratify TACRED across
years in which the TAC KBP challenge was run,
and use examples corresponding to query entities
from 2009 to 2012 as training split, 2013 as
development split, and 2014 as test split. We
reserve the TAC KBP 2015 evaluation data for
running slot filling evaluations, as presented in
Section 4. Detailed statistics are given in Table 3.

Discussion. Table 1 presents sampled examples
from TACRED. Compared to existing datasets,
TACRED has four advantages. First, it contains
an order of magnitude more relation instances (Ta-
ble 2), enabling the training of expressive mod-
els. Second, we reuse the entity and relation types
of the TAC KBP tasks. We believe these relation
types are of more interest to downstream appli-
cations. Third, we fully annotate all negative in-
stances that appear in our data collection process,
to ensure that models trained on TACRED are not
biased towards predicting false positives on real-
world text. Lastly, the average sentence length in
TACRED is 36.2, compared to 19.1 in the Sem-
Eval dataset, reflecting the complexity of contexts
in which relations occur in real-world text.

Due to space constraints, we describe the data
collection and validation process, system inter-
faces, and more statistics and examples of TAC-
RED in the supplementary material. We will
make TACRED publicly available through the
LDC.

4 Experiments

In this section we evaluate the effectiveness of our
proposed model and TACRED on improving slot
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filling systems. Specifically, we run two sets of ex-
periments: (1) we evaluate model performance on
the relation extraction task using TACRED, and
(2) we evaluate model performance on the TAC
KBP 2015 cold start slot filling task, by training
the models on TACRED.

4.1 Baseline Models

We compare our model against the following base-
line models for relation extraction and slot filling:

TAC KBP 2015 winning system. To judge our
proposed model against a strong baseline, we
compare against Stanford’s top performing system
on the TAC KBP 2015 cold start slot filling task
(Angeli et al., 2015). At the core of this system
are two relation extractors: a pattern-based extrac-
tor and a logistic regression (LR) classifier. The
pattern-based system uses a total of 4,528 surface
patterns and 169 dependency patterns. The logis-
tic regression model was trained on approximately
2 million bootstrapped examples (using a small
annotated dataset and high-precision pattern sys-
tem output) that are carefully tuned for TAC KBP
slot filling evaluation. It uses a comprehensive fea-
ture set similar to the MIML-RE system for re-
lation extraction (Surdeanu et al., 2012), includ-
ing lemmatized n-grams, sequence NER tags and
POS tags, positions of entities, and various fea-
tures over dependency paths, etc.

Convolutional neural networks. We follow the
1-dimensional CNN architecture by Nguyen and
Grishman (2015) for relation extraction. This
model learns a representation of the input sen-
tence, by first running a series of convolutional op-
erations on the sentence with various filters, and
then feeding the output into a max-pooling layer
to reduce the dimension. The resulting represen-
tation is then fed into a fully-connected layer fol-
lowed by a softmax layer for relation classifica-
tion. As an extension, positional embeddings are
also introduced into this model to better capture
the relative position of each word to the subject
and object entities and were shown to achieve im-
proved results. We use “CNN-PE” to represent the
CNN model with positional embeddings.

Dependency-based recurrent neural networks.
In dependency-based neural models, shortest de-
pendency paths between entities are often used as
input to the neural networks. The intuition is to
eliminate tokens that are potentially less relevant

to the classification of the relation. For the ex-
ample in Figure 1, the shortest dependency path
between the two entities is:

[Penner] survived! brother

! wife! [Lisa Dillman]

We follow the SDP-LSTM model proposed by Xu
et al. (2015b). In this model, each shortest depen-
dency path is divided into two separate sub-paths
from the subject entity and the object entity to the
lowest common ancestor node. Each sub-path is
fed into an LSTM network, and the resulting hid-
den units at each word position are passed into a
max-over-time pooling layer to form the output of
this sub-path. Outputs from the two sub-paths are
then concatenated to form the final representation.

In addition to the above models, we also com-
pare our proposed model against an LSTM se-
quence model without attention mechanism.

4.2 Implementation Details

We map words that occur less than 2 times in the
training set to a special <UNK> token. We use
the pre-trained GloVe vectors (Pennington et al.,
2014) to initialize word embeddings. For all the
LSTM layers, we find that 2-layer stacked LSTMs
generally work better than one-layer LSTMs. We
minimize cross-entropy loss over all 42 relations
using AdaGrad (Duchi et al., 2011). We apply
Dropout with p = 0.5 to CNNs and LSTMs. Dur-
ing training we also find a word dropout strategy
to be very effective: we randomly set a token to be
<UNK> with a probability p. We set p to be 0.06
for the SDP-LSTM model and 0.04 for all other
models.

Entity masking. We replace each subject entity
in the original sentence with a special <NER>-
SUBJ token where <NER> is the corresponding
NER signature of the subject as provided in TAC-
RED. We do the same processing for object en-
tities. This processing step helps (1) provide a
model with entity type information, and (2) pre-
vent a model from overfitting its predictions to
specific entities.

Multi-channel augmentation. Instead of using
only word vectors as input to the network, we
augment the input with part-of-speech (POS) and
named entity recognition (NER) embeddings. We
run Stanford CoreNLP (Manning et al., 2014) to
obtain the POS and NER annotations.
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Model P R F1

Traditional Patterns 85.3 23.4 36.8
LR 72.0 47.8 57.5
LR + Patterns 71.4 50.1 58.9

Neural CNN 72.1 50.3 59.2
CNN-PE 68.2 55.4 61.1
SDP-LSTM 62.0 54.8 58.2
LSTM 61.4 61.7 61.5
Our model 67.7 63.2 65.4

Ensemble 69.4 64.8 67.0

Table 4: Model performance on the test set of
TACRED, micro-averaged over instances. LR =
Logistic Regression.

We describe our model hyperparameters and
training in detail in the supplementary material.

4.3 Evaluation on TACRED

We first evaluate all models on TACRED. We
train each model for 5 separate runs with inde-
pendent random initializations. For each run we
perform early stopping using the dev set. We then
select the run (among 5) that achieves the median
F1 score on the dev set, and report its test set per-
formance.

Table 4 summarizes our results. We observe that
all neural models achieve higher F1 scores than
the logistic regression and patterns systems, which
demonstrates the effectiveness of neural models
for relation extraction. Although positional em-
beddings help increase the F1 by around 2% over
the plain CNN model, a simple (2-layer) LSTM
model performs surprisingly better than CNN and
dependency-based models. Lastly, our proposed
position-aware mechanism is very effective and
achieves an F1 score of 65.4%, with an absolute in-
crease of 3.9% over the best baseline neural model
(LSTM) and 7.9% over the baseline logistic re-
gression system. We also run an ensemble of our
position-aware attention model which takes major-
ity votes from 5 runs with random initializations
and it further pushes the F1 score up by 1.6%.

We find that different neural architectures show
a different balance between precision and recall.
CNN-based models tend to have higher precision;
RNN-based models have better recall. This can
be explained by noting that the filters in CNNs are
essentially a form of “fuzzy n-gram patterns”.

query entity:

hop-0 slot:

hop-1 slot:

Mike Penner

per:spouse

per:title

 Lisa Dillman

 Sportswriter

(query) (fillers)

Figure 3: An example query and corresponding
fillers in the TAC KBP cold start slot filling task.

4.4 Evaluation on TAC KBP Slot Filling
Second, we evaluate the slot filling performance
of all models using the TAC KBP 2015 cold start
slot filling task (Ellis et al., 2015). In this task,
about 50k newswire and Web forum documents
are selected as the evaluation corpus. A slot filling
system is asked to answer a series of queries with
two-hop slots (Figure 3): The first slot asks about
fillers of a relation with the query entity as the sub-
ject (Mike Penner), and we term this a hop-0 slot;
the second slot asks about fillers with the system’s
hop-0 output as the subject, and we term this a
hop-1 slot. System predictions are then evaluated
against gold annotations, and micro-averaged pre-
cision, recall and F1 scores are calculated at the
hop-0 and hop-1 levels. Lastly hop-all scores are
calculated by combining hop-0 and hop-1 scores.2

Evaluating relation extraction systems on slot
filling is particularly challenging in that: (1) End-
to-end cold start slot filling scores conflate the per-
formance of all modules in the system (i.e., en-
tity recognizer, entity linker and relation extrac-
tor). (2) Errors in hop-0 predictions can easily
propagate to hop-1 predictions. To fairly evalu-
ate each relation extraction model on this task, we
use Stanford’s 2015 slot filling system as our basic
pipeline.3 It is a very strong baseline specifically
tuned for TAC KBP evaluation and ranked top in
the 2015 evaluation. We then plug in the corre-
sponding relation extractor trained on TACRED,
keeping all other modules unchanged.

Table 5 presents our results. We find that:
(1) by only training our logistic regression model
on TACRED (in contrast to on the 2 million boot-
strapped examples used in the 2015 Stanford sys-
tem) and combining it with patterns, we obtain a
higher hop-0 F1 score than the 2015 Stanford sys-

2In the TAC KBP cold start slot filling evaluation, a hop-1
slot is transferred to a pseudo-slot which is treated equally as
a hop-0 slot. Hop-all precision, recall and F1 are then calcu-
lated by combining these pseudo-slot predictions and hop-0
predictions.

3This system uses the fine-grained NER system in Stan-
ford CoreNLP (Manning et al., 2014) for entity detection and
the Illinois Wikifier (Ratinov et al., 2011) for entity linking.
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Hop-0 Hop-1 Hop-all
Model P R F1 P R F1 P R F1

Patterns 63.8 17.7 27.7 49.3 8.6 14.7 58.9 13.3 21.8
LR 36.6 21.9 27.4 15.1 10.1 12.2 25.6 16.3 19.9
+ Patterns (2015 winning system) 37.5 24.5 29.7 16.5 12.8 14.4 26.6 19.0 22.2

LR trained on TACRED 32.7 20.6 25.3 7.9 9.5 8.6 16.8 15.3 16.0
+ Patterns 36.5 26.5 30.7 11.0 15.3 12.8 20.1 21.2 20.6

Our model 39.0 28.9 33.2 17.7 13.9 15.6 28.2 21.5 24.4
+ Patterns 40.2 31.5 35.3 19.4 16.5 17.8 29.7 24.2 26.7

Table 5: Model performance on TAC KBP 2015 slot filling evaluation, micro-averaged over queries.
Hop-0 scores are calculated on the simple single-hop slot filling results; hop-1 scores are calculated
on slot filling results chained on systems’ hop-0 predictions; hop-all scores are calculated based on the
combination of the two. LR = logistic regression.

Model Dev F1

Final Model 66.22
– Position-aware attention 65.12
– Attention 64.71
– Pre-trained embeddings 65.34
– Word dropout 65.69
– All above 63.60

Table 6: An ablation test of our position-aware
attention model, evaluated on TACRED dev set.
Scores are median of 5 models.

tem, and a similar hop-all F1; (2) our proposed
position-aware attention model substantially out-
performs the 2015 Stanford system on all hop-0,
hop-1 and hop-all F1 scores. Combining it with
the patterns, we achieve a hop-all F1 of 26.7%, an
absolute improvement of 4.5% over the previous
state-of-the-art result.

4.5 Analysis

Model ablation. Table 6 presents the results
of an ablation test of our position-aware atten-
tion model on the development set of TACRED.
The entire attention mechanism contributes about
1.5% F1, where the position-aware term in Eq. (3)
alone contributes about 1% F1 score.

Impact of negative examples. Figure 4 shows
how the slot filling evaluation scores change as we
change the amount of negative (i.e., no relation)
training data provided to our proposed model. We
find that: (1) At hop-0 level, precision increases as
we provide more negative examples, while recall
stays almost unchanged. F1 score keeps increas-
ing. (2) At hop-all level, F1 score increases by
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Figure 4: Change of slot filling hop-0 and hop-
all scores as number of negative training examples
changes. 100% is with all the negative examples
included in the training set; the left side scores
have positives and negatives roughly balanced.

about 10% as we change the amount of negative
examples from 20% to 100%.

Performance by sentence length. Figure 5
shows performance on varying sentence lengths.
We find that: (1) Performance of all models de-
grades substantially as the sentences get longer.
(2) Compared to the baseline Logistic Regression
model, all neural models handle long sentences
better. (3) Compared to CNN-PE model, RNN-
based models are more robust on long sentences,
and notably SDP-LSTM model is least sensitive to
sentence length. (4) Our proposed model achieves
equal or better results on sentences of all lengths,
except for sentences with more than 60 tokens
where SDP-LSTM model achieves the best result.
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Figure 5: TACRED development set F1 scores for
sentences of varying lengths.

Improvement by slot types. We calculate the
F1 score for each slot type and compare the
improvement from using our proposed model
across slot types. When compared with the
CNN-PE model, our position-aware attention
model achieves improved F1 scores on 30
out of the 41 slot types, with the top 5 slot
types being org:members, per:country of death,
org:shareholders, per:children and per:religion.
When compared with SDP-LSTM model, our
model achieves improved F1 scores on 26
out of the 41 slot types, with the top 5 slot
types being org:political/religious affiliation,
per:country of death, org:alternate names,
per:religion and per:alternate names. We ob-
serve that slot types with relatively sparse training
examples tend to be improved by using the
position-aware attention model.

Attention visualization. Lastly, Figure 6 shows
the visualization of attention weights assigned by
our model on sampled sentences from the devel-
opment set. We find that the model learns to pay
more attention to words that are informative for
the relation (e.g., “graduated from”, “niece” and
“chairman”), though it still makes mistakes (e.g.,
“refused to name the three”). We also observe that
the model tends to put a lot of weight onto object
entities, as the object NER signatures are very in-
formative to the classification of relations.

5 Related Work

Relation extraction. There are broadly three
main lines of work on relation extraction: first,
fully-supervised approaches (Zelenko et al., 2003;
Bunescu and Mooney, 2005), where a statisti-

cal classifier is trained on an annotated dataset;
second, distant supervision (Mintz et al., 2009;
Surdeanu et al., 2012), where a training set is
formed by projecting the relations in an existing
knowledge base onto textual instances that contain
the entities that the relation connects; and third,
Open IE (Fader et al., 2011; Mausam et al., 2012),
which views its goal as producing subject-relation-
object triples and expressing the relation in text.

Slot filling and knowledge base population.
The most widely-known effort to evaluate slot fill-
ing and KBP systems is the yearly TAC KBP slot
filling tasks, starting from 2009 (McNamee and
Dang, 2009). Participants in slot filling tasks usu-
ally make use of hybrid systems that combine pat-
terns, Open IE, distant supervision and supervised
systems for relation extraction (Kisiel et al., 2015;
Finin et al., 2015; Zhang et al., 2016).

Datasets for relation extraction. Popular
general-domain datasets include the ACE dataset
(Strassel et al., 2008) and the SemEval-2010 task
8 dataset (Hendrickx et al., 2009). In addition,
the BioNLP Shared Tasks (Kim et al., 2009) are
yearly efforts on creating datasets and evaluations
for biomedical information extraction systems.

Deep learning models for relation extraction.
Many deep learning models have been proposed
for relation extraction, with a focus on end-to-end
training using CNNs (Zeng et al., 2014; Nguyen
and Grishman, 2015) and RNNs (Zhang et al.,
2015). Other popular approaches include using
CNN or RNN over dependency paths between en-
tities (Xu et al., 2015a,b), augmenting RNNs with
different components (Xu et al., 2016; Zhou et al.,
2016), and combining RNNs and CNNs (Vu et al.,
2016; Wang et al., 2016). Adel et al. (2016) com-
pares the performance of CNN models against tra-
ditional approaches on slot filling using a portion
of the TAC KBP evaluation data.

6 Conclusion

We introduce a state-of-the-art position-aware
neural sequence model for relation extraction, as
well as TACRED, a large-scale, crowd-sourced
dataset that is orders of magnitude larger than pre-
vious relation extraction datasets. Our proposed
model outperforms a strong feature-based classi-
fier and all baseline neural models. In combination
with the new dataset, it improves the state-of-the-
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Sampled Sentences Predicted Labels

PER-SUBJ graduated from North Korea ’s elite Kim Il Sung University and

ORG-OBJ ORG-OBJ .

per:schools attended

The cause was a heart attack following a case of pneumonia , said

PER-SUBJ ’s niece , PER-OBJ PER-OBJ .

per:other family

Independent ORG-SUBJ ORG-SUBJ ORG-SUBJ ( ECC ) chairman PER-OBJ

PER-OBJ refused to name the three , saying they would be identified when

the final list of candidates for the august 20 polls is published on Friday .

org:top members/employees

Figure 6: Sampled sentences from the TACRED development set, with words highlighted according to
the attention weights produced by our best model.

art hop-all F1 on the TAC KBP 2015 slot filling
task by 4.5% absolute.
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Abstract

Relation extraction is a fundamental task
in information extraction. Most existing
methods have heavy reliance on annota-
tions labeled by human experts, which are
costly and time-consuming. To overcome
this drawback, we propose a novel frame-
work, REHESSION, to conduct relation
extractor learning using annotations from
heterogeneous information source, e.g.,
knowledge base and domain heuristics.
These annotations, referred as heteroge-
neous supervision, often conflict with each
other, which brings a new challenge to the
original relation extraction task: how to
infer the true label from noisy labels for
a given instance. Identifying context in-
formation as the backbone of both rela-
tion extraction and true label discovery,
we adopt embedding techniques to learn
the distributed representations of context,
which bridges all components with mutual
enhancement in an iterative fashion. Ex-
tensive experimental results demonstrate
the superiority of REHESSION over the
state-of-the-art.

1 Introduction

One of the most important tasks towards text un-
derstanding is to detect and categorize semantic
relations between two entities in a given context.
For example, in Fig. 1, with regard to the sentence
of c1, relation between Jesse James and Missouri
should be categorized as died in. With accurate
identification, relation extraction systems can pro-
vide essential support for many applications. One

∗Equal contribution.

example is question answering, regarding a spe-
cific question, relation among entities can provide
valuable information, which helps to seek better
answers (Bao et al., 2014). Similarly, for medical
science literature, relations like protein-protein in-
teractions (Fundel et al., 2007) and gene disease
associations (Chun et al., 2006) can be extracted
and used in knowledge base population. Addition-
ally, relation extractors can be used in ontology
construction (Schutz and Buitelaar, 2005).

Typically, existing methods follow the super-
vised learning paradigm, and require extensive an-
notations from domain experts, which are costly
and time-consuming. To alleviate such drawback,
attempts have been made to build relation extrac-
tors with a small set of seed instances or human-
crafted patterns (Nakashole et al., 2011; Carlson
et al., 2010), based on which more patterns and in-
stances will be iteratively generated by bootstrap
learning. However, these methods often suffer
from semantic drift (Mintz et al., 2009). Besides,
knowledge bases like Freebase have been lever-
aged to automatically generate training data and
provide distant supervision (Mintz et al., 2009).
Nevertheless, for many domain-specific applica-
tions, distant supervision is either non-existent
or insufficient (usually less than 25% of relation
mentions are covered (Ren et al., 2015; Ling and
Weld, 2012)).

Only recently have preliminary studies been de-
veloped to unite different supervisions, includ-
ing knowledge bases and domain specific patterns,
which are referred as heterogeneous supervision.
As shown in Fig. 1, these supervisions often con-
flict with each other (Ratner et al., 2016). To
address these conflicts, data programming (Rat-
ner et al., 2016) employs a generative model,
which encodes supervisions as labeling functions,
and adopts the source consistency assumption: a
source is likely to provide true information with
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Robert Newton "Bob" Ford was an American outlaw best known 
for killing his gang leader Jesse James (   ) in Missouri (   ) 

Hussein (   ) was born in Amman (   ) on 14 November 1935.
Gofraid (   ) died in 989, said to be killed in Dal Riata (   ).

return died_in for <    ,    , s> if DiedIn(    ,    ) in KB

return born_in for <    ,    , s> if match(‘ * born in * ’, s)
return died_in for <    ,    , s> if match(‘ * killed in * ’, s)

return born_in for <    ,    , s> if BornIn(    ,    ) in KB
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Figure 1: REHESSION Framework except Extraction and Representation of Text Features

the same probability for all instances. This as-
sumption is widely used in true label discovery lit-
erature (Li et al., 2016) to model reliabilities of
information sources like crowdsourcing and infer
the true label from noisy labels. Accordingly, most
true label discovery methods would trust a human
annotator on all instances to the same level.

However, labeling functions, unlike human an-
notators, do not make casual mistakes but follow
certain “error routine”. Thus, the reliability of a
labeling function is not consistent among differ-
ent pieces of instances. In particular, a labeling
function could be more reliable for a certain sub-
set (Varma et al., 2016) (also known as its profi-
cient subset) comparing to the rest. We identify
these proficient subsets based on context informa-
tion, only trust labeling functions on these subsets
and avoid assuming global source consistency.

Meanwhile, embedding methods have demon-
strated great potential in capturing semantic mean-
ings, which also reduce the dimension of over-
whelming text features. Here, we present REHES-
SION, a novel framework capturing context’s se-
mantic meaning through representation learning,
and conduct both relation extraction and true label
discovery in a context-aware manner. Specifically,
as depicted in Fig. 1, we embed relation mentions
in a low-dimension vector space, where similar re-
lation mentions tend to have similar relation types
and annotations. ‘True’ labels are further inferred
based on reliabilities of labeling functions, which
are calculated with their proficient subsets’ repre-
sentations. Then, these inferred true labels would
serve as supervision for all components, including
context representation, true label discovery and re-
lation extraction. Besides, the context representa-
tion bridges relation extraction with true label dis-
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HEAD_EM2_Amman

……

Text Feature Extraction 

Text Feature 
Representation 

Mapping from Text 
Embedding to Relation 
Mention Embedding:

 

Robert Newton "Bob" Ford was an American outlaw best known 
for killing his gang leader Jesse James (   ) in Missouri (   ) 

Gofraid (   ) died in 989, said to be killed in Dal Riata (   ).
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Figure 2: Relation Mention Representation

covery, and allows them to enhance each other.
To the best of our knowledge, the framework

proposed here is the first method that utilizes rep-
resentation learning to provide heterogeneous su-
pervision for relation extraction. The high-quality
context representations serve as the backbone of
true label discovery and relation extraction. Exten-
sive experiments on benchmark datasets demon-
strate significant improvements over the state-of-
the-art.

The remaining of this paper is organized as fol-
lows. Section 2 gives the definition of relation ex-
traction with heterogeneous supervision. We then
present the REHESSION model and the learning
algorithm in Section 3, and report our experimen-
tal evaluation in Section 4. Finally, we briefly sur-
vey related work in Section 5 and conclude this
study in Section 6.

2 Preliminaries

In this section, we would formally define relation
extraction and heterogeneous supervision, includ-
ing the format of labeling functions.
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2.1 Relation Extraction

Here we conduct relation extraction in sentence-
level (Bao et al., 2014). For a sentence d, an entity
mention is a token span in d which represents an
entity, and a relation mention is a triple (e1, e2, d)
which consists of an ordered entity pair (e1, e2)
and d. And the relation extraction task is to cate-
gorize relation mentions into a given set of relation
types R, or Not-Target-Type (None) which means
the type of the relation mention does not belong to
R.

2.2 Heterogeneous Supervision

Similar to (Ratner et al., 2016), we employ label-
ing functions as basic units to encode supervision
information and generate annotations. Since dif-
ferent supervision information may have different
proficient subsets, we require each labeling func-
tion to encode only one elementary supervision in-
formation. Specifically, in the relation extraction
scenario, we require each labeling function to only
annotate one relation type based on one elemen-
tary piece of information, e.g., four examples are
listed in Fig. 1.

Notice that knowledge-based labeling functions
are also considered to be noisy because rela-
tion extraction is conducted in sentence-level,
e.g. although president of (Obama, USA)
exists in KB, it should not be assigned with
“Obama was born in Honolulu, Hawaii, USA”,
since president of is irrelevant to the context.

2.3 Problem Definition

For a POS-tagged corpus D with detected enti-
ties, we refer its relation mentions as C = {ci =
(ei,1, ei,2, d), ∀d ∈ D}. Our goal is to anno-
tate entity mentions with relation types of inter-
est (R = {r1, . . . , rK}) or None. We require
users to provide heterogeneous supervision in the
form of labeling function Λ = {λ1, . . . , λM},
and mark the annotations generated by Λ as O =
{oc,i|λi generate annotation oc,i for c ∈ C}. We
record relation mentions annotated by Λ as Cl, and
refer relation mentions without annotation as Cu.
Then, our task is to train a relation extractor based
on Cl and categorize relation mentions in Cu.

3 The REHESSION Framework

Here, we present REHESSION, a novel framework
to infer true labels from automatically generated
noisy labels, and categorize unlabeled instances

fc c’s text features set, where c ∈ C
vi text feature embedding for fi ∈ F
zc relation mention embedding for c ∈ C
li embedding for λi’s proficient subset, λi ∈ Λ

oc,i annotation for c, generated by labeling function λi

o∗
c underlying true label for c

ρc,i identify whether oc,i is correct
Si the proficient subset of labeling function λi

sc,i identify whether c belongs to λi’s proficient subset
ti relation type embedding for ri ∈ R

Table 1: Notation Table.

into a set of relation types. Intuitively, errors of
annotations (O) come from mismatch of contexts,
e.g., in Fig. 1, λ1 annotates c1 and c2 with ’true’
labels but for mismatched contexts ‘killing’ and
’killed’. Accordingly, we should only trust label-
ing functions on matched context, e.g., trust λ1 on
c3 due to its context ‘was born in’, but not on c1

and c2. On the other hand, relation extraction can
be viewed as matching appropriate relation type to
a certain context. These two matching processes
are closely related and can enhance each other,
while context representation plays an important
role in both of them.

Framework Overview. We propose a general
framework to learn the relation extractor from
automatically generated noisy labels. As plot-
ted in Fig. 1, distributed representation of con-
text bridges relation extraction with true label dis-
covery, and allows them to enhance each other.
Specifically, it follows the steps below:

1. After being extracted from context, text fea-
tures are embedded in a low dimension space by
representation learning (see Fig. 2);

2. Text feature embeddings are utilized to calcu-
late relation mention embeddings (see Fig. 2);

3. With relation mention embeddings, true labels
are inferred by calculating labeling functions’ re-
liabilities in a context-aware manner (see Fig. 1);

4. Inferred true labels would ‘supervise’ all com-
ponents to learn model parameters (see Fig. 1).

We now proceed by introducing these components
of the model in further details.

3.1 Modeling Relation Mention
As shown in Table 2, we extract abundant lexi-
cal features (Ren et al., 2016; Mintz et al., 2009)
to characterize relation mentions. However, this
abundance also results in the gigantic dimension
of original text features (∼ 107 in our case). In
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Feature Description Example
Entity mention (EM) head Syntactic head token of each entity mention “HEAD EM1 Hussein”, ...
Entity Mention Token Tokens in each entity mention “TKN EM1 Hussein”, ...
Tokens between two EMs Tokens between two EMs “was”, “born”, “in”
Part-of-speech (POS) tag POS tags of tokens between two EMs “VBD”, “VBN”, “IN”
Collocations Bigrams in left/right 3-word window of each EM “Hussein was”, “in Amman”
Entity mention order Whether EM 1 is before EM 2 “EM1 BEFORE EM2”
Entity mention distance Number of tokens between the two EMs “EM DISTANCE 3”
Body entity mentions numbers Number of EMs between the two EMs “EM NUMBER 0”
Entity mention context Unigrams before and after each EM “EM AFTER was”, ...
Brown cluster (learned on D) Brown cluster ID for each token “BROWN 010011001”, ...

Table 2: Text features F used in this paper. (“Hussein”, “Amman”,“Hussein was born in Amman”) is used as an example.

order to achieve better generalization ability, we
represent relation mentions with low dimensional
(∼ 102) vectors. In Fig. 2, for example, relation
mention c3 is first represented as bag-of-features.
After learning text feature embeddings, we use the
average of feature embedding vectors to derive the
embedding vector for c3.

Text Feature Representation. Similar to other prin-
ciples of embedding learning, we assume text fea-
tures occurring in the same contexts tend to have
similar meanings (also known as distributional hy-
pothesis(Harris, 1954)). Furthermore, we let each
text feature’s embedding vector to predict other
text features occurred in the same relation men-
tions or context. Thus, text features with simi-
lar meaning should have similar embedding vec-
tors. Formally, we mark text features as F =
{f1, · · · , f|F|}, record the feature set for ∀c ∈ C
as fc, and represent the embedding vector for fi as
vi ∈ Rnv , and we aim to maximize the following
log likelihood:

∑
c∈Cl

∑
fi,fj∈fc

log p(fi|fj), where
p(fi|fj) = exp(vT

i v∗
j )/

∑
fk∈F exp(vT

i v∗
k).

However, the optimization of this likelihood is
impractical because the calculation of ∇p(fi|fj)
requires summation over all text features, whose
size exceeds 107 in our case. In order to perform
efficient optimization, we adopt the negative sam-
pling technique (Mikolov et al., 2013) to avoid this
summation. Accordingly, we replace the log like-
lihood with Eq. 1 as below:

JE =
∑

c∈Cl
fi,fj∈fc

(log σ(vT
i v∗

j )−
V∑

k=1

Efk′ ∼P̂ [log σ(−vT
i v∗

k′)])

(1)

where P̂ is noise distribution used in (Mikolov
et al., 2013), σ is the sigmoid function and V is
number of negative samples.

Relation Mention Representation. With text feature
embeddings learned by Eq. 1, a naive method to

zc
|C|

|⇤|
lisc,i⇢c,i

|O|

Figure 3: Graphical model of oc,i’s correctness

represent relation mentions is to concatenate or av-
erage its text feature embeddings. However, text
features embedding may be in a different semantic
space with relation types. Thus, we directly learn
a mapping g from text feature representations to
relation mention representations (Van Gysel et al.,
2016a,b) instead of simple heuristic rules like con-
catenate or average (see Fig. 2):

zc = g(fc) = tanh(W · 1

|fc|
∑

fi∈fc

vi) (2)

where zc is the representation of c ∈ Cl, W is
a nz × nv matrix, nz is the dimension of relation
mention embeddings and tanh is the element-wise
hyperbolic tangent function.

In other words, we represent bag of text features
with their average embedding, then apply linear
map and hyperbolic tangent to transform the em-
bedding from text feature semantic space to re-
lation mention semantic space. The non-linear
tanh function allows non-linear class boundaries
in other components, and also regularize rela-
tion mention representation to range [−1, 1] which
avoids numerical instability issues.

3.2 True Label Discovery

Because heterogeneous supervision generates la-
bels in a discriminative way, we suppose its er-
rors follow certain underlying principles, i.e., if a
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Datasets NYT Wiki-KBP
% of None in Training 0.6717 0.5552

% of None in Test 0.8972 0.8532

Table 3: Proportion of None in Training/Test Set

labeling function annotates a instance correctly /
wrongly, it would annotate other similar instances
correctly / wrongly. For example, λ1 in Fig. 1
generates wrong annotations for two similar in-
stances c1, c2 and would make the same errors on
other similar instances. Since context represen-
tation captures the semantic meaning of relation
mention and would be used to identify relation
types, we also use it to identify the mismatch of
context and labeling functions. Thus, we suppose
for each labeling function λi, there exists an pro-
ficient subset Si on Rnz , containing instances that
λi can precisely annotate. In Fig. 1, for instance,
c3 is in the proficient subset of λ1, while c1 and c2

are not. Moreover, the generation of annotations
are not really random, and we propose a proba-
bilistic model to describe the level of mismatch
from labeling functions to real relation types in-
stead of annotations’ generation.

As shown in Fig. 3, we assume the indicator of
whether c belongs to Si, sc,i = δ(c ∈ Si), would
first be generated based on context representation

p(sc,i = 1|zc, li) = p(c ∈ Si) = σ(zT
c li) (3)

Then the correctness of annotation oc,i, ρc,i =
δ(oc,i = o∗

c), would be generated. Furthermore,
we assume p(ρc,i = 1|sc,i = 1) = ϕ1 and p(ρc,i =
1|sc,i = 0) = ϕ0 to be constant for all relation
mentions and labeling functions.

Because sc,i would not be used in other compo-
nents of our framework, we integrate out sc,i and
write the log likelihood as

JT =
∑

oc,i∈O
log(σ(zT

c li)ϕ
δ(oc,i=o∗

c )

1 (1 − ϕ1)
δ(oc,i ̸=o∗

c )

+ (1 − σ(zT
c li))ϕ

δ(oc,i=o∗
c )

0 (1 − ϕ0)
δ(oc,i ̸=o∗

c )) (4)

Note that o∗
c is a hidden variable but not a model

parameter, and JT is the likelihood of ρc,i =
δ(oc,i = o∗

c). Thus, we would first infer o∗
c =

argmaxo∗
c
JT , then train the true label discovery

model by maximizing JT .

3.3 Modeling Relation Type

We now discuss the model for identifying relation
types based on context representation. For each
relation mention c, its representation zc implies its
relation type, and the distribution of relation type
can be described by the soft-max function:

p(ri|zc) =
exp(zT

c ti)∑
rj∈R∪{None} exp(zT

c tj)
(5)

where ti ∈ Rvz is the representation for relation
type ri. Moreover, with the inferred true label o∗

c ,
the relation extraction model can be trained as a
multi-class classifier. Specifically, we use Eq. 5 to
approach the distribution

p(ri|o∗
c) =

{
1 ri = o∗

c

0 ri ̸= o∗
c

(6)

Moreover, we use KL-divergence to measure
the dissimilarity between two distributions, and
formulate model learning as maximizing JR:

JR = −
∑

c∈Cl

KL(p(.|zc)||p(.|o∗
c)) (7)

where KL(p(.|zc)||p(.|o∗
c)) is the KL-divergence

from p(ri|o∗
c) to p(ri|zc), p(ri|zc) and p(ri|o∗

c) has
the form of Eq. 5 and Eq. 6.

3.4 Model Learning

Based on Eq. 1, Eq. 4 and Eq. 7, we form the joint
optimization problem for model parameters as

min
W,v,v∗,l,t,o∗ J = −JR − λ1JE − λ2JT

s.t. ∀c ∈ Cl, o
∗
c = argmax

o∗
c

JT , zc = g(fc) (8)

Collectively optimizing Eq. 8 allows heteroge-
neous supervision guiding all three components,
while these components would refine the context
representation, and enhance each other.

In order to solve the joint optimization problem
in Eq. 8 efficiently, we adopt the stochastic gradi-
ent descent algorithm to update {W,v,v∗, l, t} it-
eratively, and oc∗ is estimated by maximizing JT

after calculating zc. Additionally, we apply the
widely used dropout techniques (Srivastava et al.,
2014) to prevent overfitting and improve general-
ization performance.

The learning process of REHESSION is summa-
rized as below. In each iteration, we would sample
a relation mention c from Cl, then sample c’s text
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features and conduct the text features’ represen-
tation learning. After calculating the representa-
tion of c, we would infer its true label o∗

c based on
our true label discovery model, and finally update
model parameters based on o∗

c .

3.5 Relation Type Inference

We now discuss the strategy of performing type
inference for Cu. As shown in Table 3, the pro-
portion of None in Cu is usually much larger than
in Cl. Additionally, not like other relation types in
R, None does not have a coherent semantic mean-
ing. Similar to (Ren et al., 2016), we introduce
a heuristic rule: identifying a relation mention as
None when (1) our relation extractor predict it as
None, or (2) the entropy of p(.|zc) over R exceeds
a pre-defined threshold η. The entropy is calcu-
lated as H(p(.|zc)) = − ∑

ri∈R p(ri|zc)log(p(ri|zc)).
And the second situation means based on relation
extractor this relation mention is not likely belong-
ing to any relation types in R.

4 Experiments

In this section, we empirically validate our method
by comparing to the state-of-the-art relation ex-
traction methods on news and Wikipedia articles.

4.1 Datasets and settings

In the experiments, we conduct investigations on
two benchmark datasets from different domains:1

NYT (Riedel et al., 2010) is a news corpus sampled
from ∼ 294k 1989-2007 New York Times news ar-
ticles. It consists of 1.18M sentences, while 395 of
them are annotated by authors of (Hoffmann et al.,
2011) and used as test data;
Wiki-KBP utilizes 1.5M sentences sampled from
780k Wikipedia articles (Ling and Weld, 2012) as
training corpus, while test set consists of the 2k
sentences manually annotated in 2013 KBP slot
filling assessment results (Ellis et al., 2012).

For both datasets, the training and test sets par-
titions are maintained in our experiments. Further-
more, we create validation sets by randomly sam-
pling 10% mentions from each test set and used
the remaining part as evaluation sets.

Feature Generation. As summarized in Table 2,
we use a 6-word window to extract context fea-
tures for each entity mention, apply the Stanford

1 Codes and datasets used in this paper can be downloaded
at: https://github.com/LiyuanLucasLiu/
ReHession.

Kind Wiki-KBP NYT
#Types #LF #Types #LF

Pattern 13 147 16 115
KB 7 7 25 26

Table 4: Number of labeling functions and the relation
types they can annotated w.r.t. two kinds of information

CoreNLP tool (Manning et al., 2014) to generate
entity mentions and get POS tags for both datasets.
Brown clusters(Brown et al., 1992) are derived for
each corpus using public implementation2. All
these features are shared with all compared meth-
ods in our experiments.

Labeling Functions. In our experiments, label-
ing functions are employed to encode two kinds of
supervision information. One is knowledge base,
the other is handcrafted domain-specific patterns.
For domain-specific patterns, we manually design
a number of labeling functions3; for knowledge
base, annotations are generated following the pro-
cedure in (Ren et al., 2016; Riedel et al., 2010).

Regarding two kinds of supervision informa-
tion, the statistics of the labeling functions are
summarized in Table 4. We can observe that
heuristic patterns can identify more relation types
for KBP datasets, while for NYT datasets, knowl-
edge base can provide supervision for more rela-
tion types. This observation aligns with our intu-
ition that single kind of information might be in-
sufficient while different kinds of information can
complement each other.

We further summarize the statistics of annota-
tions in Table 6. It can be observed that a large
portion of instances is only annotated as None,
while lots of conflicts exist among other instances.
This phenomenon justifies the motivation to em-
ploy true label discovery model to resolve the con-
flicts among supervision. Also, we can observe
most conflicts involve None type, accordingly,
our proposed method should have more advan-
tages over traditional true label discovery methods
on the relation extraction task comparing to the re-
lation classification task that excludes None type.

4.2 Compared Methods

We compare REHESSION with below methods:
FIGER (Ling and Weld, 2012) adopts multi-label

2https://github.com/percyliang/
brown-cluster

3pattern-based labeling functions can be accessed
at: https://github.com/LiyuanLucasLiu/
ReHession
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Method
Relation Extraction Relation Classification

NYT Wiki-KBP NYT Wiki-KBP
Prec Rec F1 Prec Rec F1 Accuracy Accuracy

NL+FIGER 0.2364 0.2914 0.2606 0.2048 0.4489 0.2810 0.6598 0.6226
NL+BFK 0.1520 0.0508 0.0749 0.1504 0.3543 0.2101 0.6905 0.5000
NL+DSL 0.4150 0.5414 0.4690 0.3301 0.5446 0.4067 0.7954 0.6355
NL+MultiR 0.5196 0.2755 0.3594 0.3012 0.5296 0.3804 0.7059 0.6484
NL+FCM 0.4170 0.2890 0.3414 0.2523 0.5258 0.3410 0.7033 0.5419
NL+CoType-RM 0.3967 0.4049 0.3977 0.3701 0.4767 0.4122 0.6485 0.6935
TD+FIGER 0.3664 0.3350 0.3495 0.2650 0.5666 0.3582 0.7059 0.6355
TD+BFK 0.1011 0.0504 0.0670 0.1432 0.1935 0.1646 0.6292 0.5032
TD+DSL 0.3704 0.5025 0.4257 0.2950 0.5757 0.3849 0.7570 0.6452
TD+MultiR 0.5232 0.2736 0.3586 0.3045 0.5277 0.3810 0.6061 0.6613
TD+FCM 0.3394 0.3325 0.3360 0.1964 0.5645 0.2914 0.6803 0.5645
TD+CoType-RM 0.4516 0.3499 0.3923 0.3107 0.5368 0.3879 0.6409 0.6890
REHESSION 0.4122 0.5726 0.4792 0.3677 0.4933 0.4208 0.8381 0.7277

Table 5: Performance comparison of relation extraction and relation classification

Dataset Wiki-KBP NYT
Total Number of RM 225977 530767
RM annotated as None 100521 356497
RM with conflicts 32008 58198
Conflicts involving None 30559 38756

Table 6: Number of relation mentions (RM), relation men-
tions annotated as None, relation mentions with conflicting
annotations and conflicts involving None

learning with Perceptron algorithm.
BFK (Bunescu and Mooney, 2005) applies bag-of-
feature kernel to train a support vector machine;
DSL (Mintz et al., 2009) trains a multi-class logis-
tic classifier4 on the training data;
MultiR (Hoffmann et al., 2011) models training la-
bel noise by multi-instance multi-label learning;
FCM (Gormley et al., 2015) performs composi-
tional embedding by neural language model.
CoType-RM (Ren et al., 2016) adopts partial-label
loss to handle label noise and train the extractor.

Moreover, two different strategies are adopted
to feed heterogeneous supervision to these meth-
ods. The first is to keep all noisy labels, marked as
‘NL’. Alternatively, a true label discovery method,
Investment (Pasternack and Roth, 2010), is ap-
plied to resolve conflicts, which is based on the
source consistency assumption and iteratively up-
dates inferred true labels and label functions’ reli-
abilities. Then, the second strategy is to only feed
the inferred true labels, referred as ‘TD’.

4We use liblinear package from https//github.
com/cjlin1/liblinear

Universal Schemas (Riedel et al., 2013) is pro-
posed to unify different information by calculat-
ing a low-rank approximation of the annotations
O. It can serve as an alternative of the Investment
method, i.e., selecting the relation type with high-
est score in the low-rank approximation as the true
type. But it doesnt explicitly model noise and not
fit our scenario very well. Due to the constraint
of space, we only compared our method to Invest-
ment in most experiments, and Universal Schemas
is listed as a baseline in Sec. 4.4. Indeed, it per-
forms similarly to the Investment method.

Evaluation Metrics. For relation classification
task, which excludes None type from training /
testing, we use the classification accuracy (Acc)
for evaluation, and for relation extraction task, pre-
cision (Prec), recall (Rec) and F1 score (Bunescu
and Mooney, 2005; Bach and Badaskar, 2007) are
employed. Notice that both relation extraction and
relation classification are conducted and evaluated
in sentence-level (Bao et al., 2014).

Parameter Settings. Based on the semantic mean-
ing of proficient subset, we set ϕ2 to 1/|R∪{None}|,
i.e., the probability of generating right label with
random guess. Then we set ϕ1 to 1 − ϕ2, λ1 =
λ2 = 1, and the learning rate α = 0.025. As for
other parameters, they are tuned on the validation
sets for each dataset. Similarly, all parameters of
compared methods are tuned on validation set, and
the parameters achieving highest F1 score are cho-
sen for relation extraction.
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Relation Mention REHESSION
Investment &

Universal Schemas
Ann Demeulemeester ( born
1959 , Waregem , Belgium ) is ...

born-in None

Raila Odinga was born at ..., in
Maseno, Kisumu District, ...

born-in None

Ann Demeulemeester ( elected
1959 , Waregem , Belgium ) is ...

None None

Raila Odinga was examined at
..., in Maseno, Kisumu District, ...

None None

Table 7: Example output of true label discovery. The first
two relation mentions come from Wiki-KBP, and their anno-
tations are {born-in, None}. The last two are created by
replacing key words of the first two. Key words are marked
as bold and entity mentions are marked as Italics.

4.3 Performance Comparison
Given the experimental setup described above, the
averaged evaluation scores in 10 runs of rela-
tion classification and relation extraction on two
datasets are summarized in Table 5.

From the comparison, it shows that NL strategy
yields better performance than TD strategy, since
the true labels inferred by Investment are actually
wrong for many instances. On the other hand,
as discussed in Sec. 4.4, our method introduces
context-awareness to true label discovery, while
the inferred true label guides the relation extractor
achieving the best performance. This observation
justifies the motivation of avoiding the source con-
sistency assumption and the effectiveness of pro-
posed true label discovery model.

One could also observe the difference between
REHESSION and the compared methods is more
significant on the NYT dataset than on the Wiki-
KBP dataset. This observation accords with the
fact that the NYT dataset contains more conflicts
than KBP dataset (see Table 6), and the intuition
is that our method would have more advantages on
more conflicting labels.

Among four tasks, the relation classification
of Wiki-KBP dataset has highest label quality,
i.e. conflicting label ratio, but with least num-
ber of training instances. And CoType-RM and
DSL reach relatively better performance among all
compared methods. CoType-RM performs much
better than DSL on Wiki-KBP relation classifica-
tion task, while DSL gets better or similar perfor-
mance with CoType-RM on other tasks. This may
be because the representation learning method
is able to generalize better, thus performs better
when the training set size is small. However, it is
rather vulnerable to the noisy labels compared to
DSL. Our method employs embedding techniques,
and also integrates context-aware true label dis-

Dataset & Method Prec Rec F1 Acc

Wiki-KBP
Ori 0.3677 0.4933 0.4208 0.7277
TD 0.3032 0.5279 0.3850 0.7271
US 0.3380 0.4779 0.3960 0.7268

NYT
Ori 0.4122 0.5726 0.4792 0.8381
TD 0.3758 0.4887 0.4239 0.7387
US 0.3573 0.5145 0.4223 0.7362

Table 8: Comparison among REHESSION (Ori),
REHESSION-US (US) and REHESSION-TD (TD) on rela-
tion extraction and relation classification

covery to de-noise labels, making the embedding
method rather robust, thus achieves the best per-
formance on all tasks.

4.4 Case Study

Context Awareness of True Label Discovery.

Although Universal Schemas does not adopted
the source consistency assumption, but it’s con-
ducted in document-level, and is context-agnostic
in our sentence-level setting. Similarly, most true
label discovery methods adopt the source consis-
tency assumption, which means if they trust a la-
beling function, they would trust it on all anno-
tations. And our method infers true labels in a
context-aware manner, which means we only trust
labeling functions on matched contexts.

For example, Investment and Universal
Schemas refer None as true type for all four
instances in Table 7. And our method infers
born-in as the true label for the first two
relation mentions; after replacing the matched
contexts (born) with other words (elected and ex-
amined), our method no longer trusts born-in
since the modified contexts are no longer matched,
then infers None as the true label. In other words,
our proposed method infer the true label in a
context aware manner.

Effectiveness of True Label Discovery. We ex-
plore the effectiveness of the proposed context-
aware true label discovery component by compar-
ing REHESSION to its variants REHESSION-TD
and REHESSION-US, which uses Investment or
Universal Schemas to resolve conflicts. The av-
eraged evaluation scores are summarized in Ta-
ble 8. We can observe that REHESSION signifi-
cantly outperforms its variants. Since the only dif-
ference between REHESSION and its variants is
the model employed to resolve conflicts, this gap
verifies the effectiveness of the proposed context-
aware true label discovery method.
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5 Related Work

5.1 Relation Extraction
Relation extraction aims to detect and categorize
semantic relations between a pair of entities. To
alleviate the dependency of annotations given by
human experts, weak supervision (Bunescu and
Mooney, 2007; Etzioni et al., 2004) and distant su-
pervision (Ren et al., 2016) have been employed
to automatically generate annotations based on
knowledge base (or seed patterns/instances). Uni-
versal Schemas (Riedel et al., 2013; Verga et al.,
2015; Toutanova et al., 2015) has been proposed
to unify patterns and knowledge base, but it’s de-
signed for document-level relation extraction, i.e.,
not to categorize relation types based on a specific
context, but based on the whole corpus. Thus, it
allows one relation mention to have multiple true
relation types; and does not fit our scenario very
well, which is sentence-level relation extraction
and assumes one instance has only one relation
type. Here we propose a more general framework
to consolidate heterogeneous information and fur-
ther refine the true label from noisy labels, which
gives the relation extractor potential to detect more
types of relations in a more precise way.

Word embedding has demonstrated great poten-
tial in capturing semantic meaning (Mikolov et al.,
2013), and achieved great success in a wide range
of NLP tasks like relation extraction (Zeng et al.,
2014; Takase and Inui, 2016; Nguyen and Grish-
man, 2015). In our model, we employed the em-
bedding techniques to represent context informa-
tion, and reduce the dimension of text features,
which allows our model to generalize better.

5.2 Truth Label Discovery
True label discovery methods have been developed
to resolve conflicts among multi-source informa-
tion under the assumption of source consistency
(Li et al., 2016; Zhi et al., 2015). Specifically, in
the spammer-hammer model (Karger et al., 2011),
each source could either be a spammer, which an-
notates instances randomly; or a hammer, which
annotates instances precisely. In this paper, we as-
sume each labeling function would be a hammer
on its proficient subset, and would be a spammer
otherwise, while the proficient subsets are identi-
fied in the embedding space.

Besides data programming, socratic learning
(Varma et al., 2016) has been developed to conduct
binary classification under heterogeneous supervi-

sion. Its true label discovery module supervises
the discriminative module in label level, while
the discriminative module influences the true la-
bel discovery module by selecting a feature subset.
Although delicately designed, it fails to make full
use of the connection between these modules, i.e.,
not refine the context representation for classifier.
Thus, its discriminative module might suffer from
the overwhelming size of text features.

6 Conclusion and Future Work

In this paper, we propose REHESSION, an embed-
ding framework to extract relation under heteroge-
neous supervision. When dealing with heteroge-
neous supervisions, one unique challenge is how
to resolve conflicts generated by different labeling
functions. Accordingly, we go beyond the “source
consistency assumption” in prior works and lever-
age context-aware embeddings to induce profi-
cient subsets. The resulting framework bridges
true label discovery and relation extraction with
context representation, and allows them to mu-
tually enhance each other. Experimental evalu-
ation justifies the necessity of involving context-
awareness, the quality of inferred true label, and
the effectiveness of the proposed framework on
two real-world datasets.

There exist several directions for future work.
One is to apply transfer learning techniques
to handle label distributions’ difference between
training set and test set. Another is to incorporate
OpenIE methods to automatically find domain-
specific patterns and generate pattern-based label-
ing functions.
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Abstract

There has been a recent line of work au-
tomatically learning scripts from unstruc-
tured texts, by modeling narrative even-
t chains. While the dominant approach
group events using event pair relations, L-
STMs have been used to encode full chain-
s of narrative events. The latter has the
advantage of learning long-range tempo-
ral orders1, yet the former is more adap-
tive to partial orders. We propose a neu-
ral model that leverages the advantages
of both methods, by using LSTM hid-
den states as features for event pair mod-
elling. A dynamic memory network is u-
tilized to automatically induce weights on
existing events for inferring a subsequen-
t event. Standard evaluation shows that
our method significantly outperforms both
methods above, giving the best results re-
ported so far.

1 Introduction

Frequently recurring sequences of events in pro-
totypical scenarios, such as visiting a restauran-
t and driving to work, are a useful source of world
knowledge. Two examples are shown in Figure 1,
which are different variations of the “restaurant
visiting” scenario, where events are partially or-
dered and can be flexible. Such knowledge is
useful for natural language understanding because
texts typically do not include event details when
mentioning a scenario. For example, the reader is
expected to infer that the narrator could have been

∗This work has been done when the first author worked
at SUTD.

1The term “temporal order” is used throughout this work
to indicate the narrative order in texts, following Chambers
and Jurafsky (2008). Strictly speaking, the event order we
extract is the narrative order.

X walk to restaurant

X be seated

X order food

Y serve food

X eat food

X make payment

X leave restaurant

X walk to restaurant

X be seated

X eat food

X make payment

X leave restaurant

X wait in line

X read menu

X take food

X order food

(a)

(b)

Figure 1: Event sequences for restaurant visiting.

driving or cycling given the text “I got flat tire”.
Another typical use of event chain knowledge is
to help infer what is likely to happen next given a
previous event sequence in a scenario. We inves-
tigate the modeling of stereotypical event chains,
which is remotely similar to language modeling,
but with events being more sparse and flexibly or-
dered than words.

Our work follows a recent line of NLP re-
search on script learning. Stereotypical knowl-
edge about partially-ordered events, together with
their participant roles such as “customer”, “wait-
er”, and “table”, is conventionally referred to as
scripts (Schank et al., 1977). NLP algorithms
have been investigated for automatically inducing
scripts from unstructured texts (Mooney and De-
Jong, 1985; Chambers and Jurafsky, 2008). In par-
ticular, Chambers and Jurafsky (2008) made a first
attempt to learn scripts from test inducing event
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chains by grouping events based on their narrative
coherence, calculated based on Pairwise Mutual
Information (PMI). Jans et al. (2012) showed that
the method can be improved by calculating even-
t relations using skip bi-gram probabilities, which
explicitly model the temporal order of pairs even-
t. Jans et al. (2012)’s model is adopted by a line
of subsequent methods on inducing event chains
from text (Orr et al., 2014; Pichotta and Mooney,
2014; Rudinger et al., 2015).

While the above methods are statistical, neural
network models have recently been used for event
sequence modeling. Granroth-Wilding and Clark
(2016) used a Siamese Network instead of PMI
to calculate the coherence between two events.
Rudinger et al. (2015) extended the idea of Jan-
s et al. (2012) by using a log-bilinear neural lan-
guage model (Mnih and Hinton, 2007) to calcu-
late event probabilities. By learning embeddings
for reducing sparsity, the above models give much
better results compared to the models of Chambers
and Jurafsky (2008) and Jans et al. (2012). Simi-
lar in spirit, Modi (2016) predicted the probability
of an event belonging to a certain event chain by
modeling known events in the chain as a bag of
vectors, showing that it outperforms discrete sta-
tistical methods. These neural methods are con-
sistent with the earlier statistical models in lever-
aging event-pair relations.

Pichotta and Mooney (2016) experimented with
LSTM for script learning, using an existing se-
quence of events to predict the probability of a
next event, which outperformed strong discrete
baselines. One advantage of LSTMs is that they
can encode unbounded time sequences without
losing long-term historical information. LSTMs
capture significantly more order information com-
pared to the methods of Granroth-Wilding and
Clark (2016), Rudinger et al. (2015), and Mod-
i (2016), which model the temporal order of only
pairs of events. On the other hand, a strong-order
LSTM model can also suffer the disadvantage of
over-fitting, given the flexible order of event chain-
s in a script, as demonstrated by the cases of Fig-
ure 1. In this aspect, event-pair models are more
adaptive for flexible orders. However, no direc-
t comparisons have been reported between LSTM
and various existing neural network methods that
model event-pairs.

We make such comparisons using the same
benchmark, finding that the method of Pichotta

and Mooney (2016) does not necessarily outper-
form event-pair models, such as Granroth-Wilding
and Clark (2016). LSTM temporal ordering and
event pair modeling have their respective strength.
To leverage the advantages of both methods, we
propose to integrate chain temporal order infor-
mation into event relation measuring. In partic-
ular, we calculate event pair relations by repre-
senting events in a chain using LSTM hidden s-
tates, which encode temporal information. The L-
STM over-fitting issue is mitigated by using the
temporal-order in a chain as a feature for event
pair modeling, rather than the direct model out-
put. In addition, observing that the importance
of existing events can vary for inferring a subse-
quent event, we use a dynamic memory network
model to automatically induce event weights for
each event for inferring the next event. In con-
trast, previous methods give equal weights to ex-
isting events (Chambers and Jurafsky, 2008; Mo-
di, 2016; Granroth-Wilding and Clark, 2016).

Results on a multi-choice narrative cloze bench-
mark show that our model significantly outper-
forms both Granroth-Wilding and Clark (2016)
and Pichotta and Mooney (2016), improving the
state-of-the-art accuracy from 49.57% to 55.12%.
Our contributions can be summarized as follows:

• We make a systematic comparison of LSTM
and pair-based event sequence learning meth-
ods using the same benchmarks.

• We propose a novel dynamic memory net-
work model, which combines the advantages
of both LSTM temporal order learning and
traditional event pair coherence learning.

• We obtain the best results in the standard
multi-choice narrative cloze test.

Our code is released at https://github.
com/wangzq870305/event_chain.

2 Related Work

Scripts have been a traditional subject in AI re-
search (Schank et al., 1977), where event se-
quences are manually encoded in knowledge
bases, and used for end tasks such as inference.
They are also connected with research in linguis-
tics and psychology, and sometimes referred to
as frames (Minsky, 1975; Fillmore, 1982) and
schemata (Rumelhart, 1975). The same concept
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is also studied as templates in information extrac-
tion (Sundheim, 1991). Chambers and Jurafsky
(2008) pioneered the recent line of work on script
induction (Jans et al., 2012; Pichotta and Mooney,
2016; Granroth-Wilding and Clark, 2016), where
the focus is on modeling narrative event chains, a
crucial subtask for script modeling from raw text.
Below we summarize such investigations.

With respect to event representation, Cham-
bers and Jurafsky (2008) casted narrative events
as triples of the form 〈event, dependency〉, where
the event is typically represented by a verb and the
dependency represents typed dependency relations
between the event and a protagonist, such as “sub-
ject” and “object”. Chambers and Jurafsky (2008)
organized narrative chains around a central actor,
or protagonist, mining events that share a common
protagonist from texts by using a syntactic parser
and a coreference resolver. Balasubramanian et al.
(2013) observed that the protagonist representa-
tion of event chains can suffer from weaknesses
such as lack of coherence, and proposed to repre-
sent events as 〈arg1, relation, arg2〉, where arg1
and arg2 represent the subject and object, respec-
tively. Such representation is inspired by open in-
formation extraction (Mausam et al., 2012), and
offers richer features for event pair modeling. Pi-
chotta and Mooney (2014) adpoted a similar idea,
using v(es, eo, ep) to represent an event, where v
is a verb lemma, es is the subject, eo is the ob-
ject, and ep is an entity with prepositional relation
to v. Their representation is used by subsequent
work such as Modi (2016) and Granroth-Wilding
and Clark (2016). We follow Pichotta and Mooney
(2016) in our event representation form.

With respect to modeling, existing methods can
be classified into two main categories, namely
weak-order models, which calculate relations be-
tween pairs of events, and strong-order models,
which consider the temporal order of events in
a full sequence. Event-pair models have so far
been the dominant method in the literature. Earlier
work used discrete event representations and esti-
mated event relations by statistical counting. As
mentioned earlier, Chambers and Jurafsky (2008)
used PMI to calculate event relations, and Jan-
s et al. (2012) used skip bigram probabilites to
the same end, which is order-sensitive. Most sub-
sequent methods followed Jans et al. (2012) in
using skip n-grams (Pichotta and Mooney, 2014;
Rudinger et al., 2015).

Events being multi-argument structures,
counting-based methods can suffer from sparsity
issues. Recent work employed embeddings to
address this disadvantage. Rudinger et al. (2015)
learned event embeddings as a by-product of
training a log-bilinear language model for events;
Granroth-Wilding and Clark (2016) leveraged
the skip-gram model of Mikolov et al. (2013) for
training the embeddings of event and arguments
by ordering them into a pseudo sentence. Modi
(2016) utilized word embeddings of verbs and
arguments directly, using a hidden layer to au-
tomatically consolidate word embedding into a
single structured event embeddings. We follow
Modi (2016) and use a hidden layer to learn event
argument compositions given word embeddings,
training the composition function as a part of the
event chain learning process.

Mitigating the sparsity issue of event represen-
tations, neural methods can capture temporal or-
ders between events beyond skip n-grams. Our
model integrates the advantages of strong-order
learning and event-pair learning by using LSTM
hidden states as feature representation of existing
events in the calculation of event pair relationship-
s. In addition, we use a memory network model to
weigh existing events, which gives better results
compared to the equal weighting method of exist-
ing models.

With respect to evaluation, Chambers and Ju-
rafsky (2008) proposed the Narrative Cloze Test,
which asks for a missing event in a given even-
t chain with a gap. The task has been adopted
by various subsequent work for comparing result-
s with Chambers and Jurafsky (2008) (Jans et al.,
2012; Pichotta and Mooney, 2014; Rudinger et al.,
2015). One issue of the narrative cloze test is that
there can sometimes be multiple plausible answer-
s, but only one gold-standard answer, which can
make it overly expensive to manually evaluate sys-
tem outputs. To address this issue, Modi (2016)
proposed the Adversarial Narrative Cloze (ANC)
task, which is to discriminate between pairs of real
and corrupted event chains. Granroth-Wilding and
Clark (2016) proposed the Multi-Choice Narrative
Cloze (MCNC) task, which is to choose the most
likely next event from a set of candidates given a
chain of events. We choose MCNC for comparing
different models.

Other related work includes learning tempo-
ral relations of events (Modi and Titov, 2014; Uz-
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X = Customer,  Y = Waiter

walk(X, restaurant), seat(X), order(X, food), serve(Y, food)

eat(X, food), make(X, payment), 

c1: receive(X, response)

c2: drive(X, mile)

c3: seem(X)

c4: discover(X, truth)

c5: leave(X, restaurant)

?

Entities

Context(ei)

Figure 2: Multiple choice narrative cloze. The
gold subsequent event is marked in bold.

Zaman et al., 2013; Abend et al., 2015), evaluat-
ed using different metrics. There has also been
work using graph models to induce frames, which
emphasize more on learning event structures and
less on temporal orders (Chambers, 2013; Cheung
et al., 2013). The above methods focus on one
of the two subtasks we consider here. Frermann
et al. (2014) used a Bayesian model to jointly clus-
ter web collections of explicit event sequence and
learn input event-pair temporal orders. However,
their work is under a different input setting (Reg-
neri et al., 2010), not learning event chains from
texts. Mostafazadeh et al. (2016) proposed the s-
tory close task (SCT), which is to predict the end-
ing given a unfinished story. Our narrative chain
prediction task can be regarded as a sub task in the
story close task, which can contribute as a major
approach. On the other hand, information beyond
event chains can be useful for the story close task.

3 Problem Definition

As shown in Figure 2, given a chain of narrative
events e1, e2, ..., en−1, our work is to predict the
likelihood of a next event candidate en. Formally,
an event e is a structure v(a0, a1, a2), where v is a
verb describing the event, a0 and a1 are its subject
and direct object, respectively, and a2 is a prepo-
sitional object. For example, given the sentence
“John brought Marry to the restaurant”, an even-
t bring{John,Marry , to the restaurant} can be
extracted.

We follow the standard script induction set-
ting (Chambers and Jurafsky, 2008; Granroth-
Wilding and Clark, 2016), extracting events from
a text corpus using a syntactic parser and a named
entity resolver. A neural network is used to mod-
el chains of extracted events for script learning.
In particular, we model the probability of a sub-

sequent event given a chain of events. For eval-
uation, we solve the multi-choice narrative cloze
task: given a chain of events and a set of candidate
next events, the most likely candidate is chosen as
the output.

4 Model

The overall structure of our model is shown in Fig-
ure 3, which has three main components. First,
given an event v(a0, a1, a2), a representation lay-
er is used to compose the embeddings of v, a0, a1,
and a2 into a single event vector e. Second, a L-
STM is used to map a sequence of existing events
e1, e2, ..., en−1 into a sequence of hidden vectors
h1, h2, ..., hn−1, which encode the temporal or-
der. Given a next event candidate ec, the recurrent
network takes one further step from hn−1 to de-
rive its hidden vector hc, which encodes ec. Third,
hc is paired with h1, h2, ..., hn−1 individually,
and passed to a dynamic memory network to learn
the relatedness score s. s is used to denote the
connectedness between the candidate subsequent
event and the context event chain.

4.1 Event Representation
We learn vector representations of standard events
by composing pre-trained word embeddings of
its verb and arguments. The skipgram mod-
el (Mikolov et al., 2013) is used to train word vec-
tors. For arguments that consist of more than one
word, we use the averaged word for the represen-
tation. OOV words are represented simply using
zero vectors. For events with less than 3 argu-
ments, such as “John fell”, where v = fall, a0 =
John, a1 = NULL, and a2 = NULL, the NULL
arguments are represented using all-zero vectors.

Denoting the embeddings of v, a0, a1, and a2
as e(v), e(a0), e(a1), and e(a2), respectively, the
embedding of e is calculated using a tanh compo-
sition layer

e(e) = tanh(W v
e · e(v) +W 0

e · e(a0)+
W 1
e · e(a1) +W 2

e · e(a2) + be)
(1)

Here W v
e , W 0

e , W 1
e , W 2

e , and b are model
parameters, which are randomly initialized and
tuned during the training of the main network.

4.2 Modeling Temporal Orders
Given the embeddings of the existing chain of
events e1, e2, ..., en−1, we use a standard LST-
M (Hochreiter and Schmidhuber, 1997) without
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LSTM Temporal Order Learning

v a0 a1 a2

e0
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…

Dynamic Memory Network for Relation Measuring

h0 h1 hn-1 hc

…

Prob(ec|e0,e1,…,en-1)
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Figure 3: Overview of proposed model.
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hc2
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Figure 4: Temporal order modeling.

coupled input and forget gates or peephole con-
nections to model the temporal order. We ob-
tain a sequence of hidden state vectors h1, h2,
..., hn−1 by recurrently feeding e(e1), e(e2), ...,
e(en−1) as inputs to the LSTM, where hi =
LSTM(e(ei), hi−1). The initial state hs and al-
l stand LSTM parameters are randomly initialized
and tuned during training.

Now for each candidate next event ec, we ob-
tain its vector representation e(ec) in the same way
as for e1 to en−1. e(ec) is then appended to the
existing event chain to obtain a temporal-order-
sensitive feature vector hc, by advancing the re-
current encoding process for one step from hn−1:
hc = LSTM(e(ec), hn−1). With multiple next
event candidates e1c , e

2
c , ..., emc (m ∈ [1,∞]), m

feature vectors are obtained, as shown in Figure 4,
each being used as a basis for estimating the prob-
ability of the corresponding event candidate.

4.3 Modeling Pairwise Event Relations

After obtaining the hidden states for events, we
model event pair relations using these hidden s-
tate vectors. A straightforward approach to model
the relation between two events is using a Siamese
network (Granroth-Wilding and Clark, 2016). The
order-sensitive LSTM features for existing events
h1, h2, ..., hn−1 and the candidate event hc are

used as event representations. Given a pair of
events hi (i ∈ [1..n − 1]) and hc, the relatedness
score is calculated by

si = sigmoid(Wsihi +Wschc + bs), (2)

where Wsi, Wsc and bs are model parameters.
Given the relation score si between hc and each

existing event hi, the likelihood of ec given e1, e2,
..., en−1 can be calculated as the average of si:

s =

∑n−1
i=1 si
n− 1

(3)

Weighting existing events. The drawback of
above approach is that it considers the contribu-
tion of each event on the chain is same. How-
ever, given a chain of existing events, some are
more informative for inferring a subsequent event
than others. For example, given the events “wait
in queue”, “getting seated” and “order food”, “or-
der food” is more relevant for inferring “eat food”
compared with the other two given events. Given
information over the full event chain, this link can
be more evident since the scenario is likely restau-
rant visiting.

We use an attentional neural network to calcu-
late the relative importance of each existing event
according to the subsequent event candidate, using
hi (i ∈ [1..n−1]) and hc for event representations:

ui = tanh(Weihi +Wchc + bu) (4)

αi =
exp(ui)∑
j exp(uj)

(5)

where αi ∈ [0, 1] is the weight of hi, and
∑

i α
t
i =

1. Wei, Wc, and bu are model parameters.
After obtaining the weight αi of each existing

event hi, the relatedness of ec with the existing
events can be calculated as:

s =
n−1∑

i=1

αi · si (6)

Multi-layer attention using Deep memory
network. Memory network (Weston et al., 2014;
Mikolov et al., 2014) has been used for explor-
ing deep semantic information for semantic tasks.
Such as question answering (Sukhbaatar et al.,
2015; Kumar et al., 2016) and reading comprehen-
sion (Hermann et al., 2015; Weston et al., 2015).
Our task is analogous to such semantic tasks in
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h1 h2 hn-1

v(t)

Attention

he
(t) g

v(t+1)

∑

a(t) …

…

Figure 5: Memory network at hop t. hi is the hid-
den variable of the existing event chain, vt is the
semantic representation between context events
and candidate event. at is the weight of contex-
t events, and g is the gated recurrent network on
Eq.10.

the sense that deep semantic information can be
necessary for making the most rational inference.
Hence, we are motivated to use a deep memory
network model to refine event weight and event
relation calculation by recurrently modeling more
abstract representations of the scenario. Different
from the previous researches, we use the memo-
ry network to model the event chain, refining the
attention mechanism used to explore the pair-wise
relation between events.

The memory model consists of multiple dynam-
ic computational layers (hops). For the first layer
(hop 1), the weights α for existing events e1, e2,
..., en−1 can be calculated using the same attention
mechanism as Eq.4 and Eq.5. Given the weights
α, we build a consolidated representation of con-
text event chain e1, e2, ..., en−1 as a weighted sum
of h1, h2, ..., hn−1:

he =
n−1∑

i−1
αi · hi (7)

The event candidate hc and the new represen-
tation of the existing chain he can be further in-
tegrated to deduce a deeper representation of the
full event chain hypothesis to the next layer (hop
2), denoted as v. v contains deeper semantic infor-
mation compared with hc, which encode the tem-
poral order of the event chain [h1, h2, ..., hn−1, hc]
without differentiating the weights of each event.
As a result, in the next hop, better event weights
can potentially be deduced by using v instead of
hc in the calculation of attention:

uti = tanh(Weihi +Wvv
t + bu) (8)

αti =
exp(uti)∑
j exp(utj)

(9)

In the same way, we stack multiple hops and
repeat the steps multiple times, so that more ab-
stract evidences can be extracted according to the
chain of existing events. The above process can
be performed recurrently, by taking hc as an ini-
tial scenario representation v0, and then repeated-
ly calculating hte given h1, h2, ..., hn−1 and vt,
and using hte and vt to find a deeper scenario rep-
resentation vt+1. Following Chung et al. (2014)
and Tran et al. (2016), a gated recurrent network
is used to this end:

z = σ(Wzh
t
e + Uzv

t)

r = σ(Wrh
t
e + Urv

t)

ĥ = tanh(Whte + U(r � vt))
vt+1 = (1− z)� vt + z � ĥ

(10)

At any step, if the value of |vt+1−vt| is less than
the threshold µ, we consider that the progress has
reached convergence. Figure 5 shows an overview
of the memory network at hop t.

4.4 Training
Given a set of event chains, each with a gold-
standard subsequent event and a number of non-
subsequent events, our training objective is to
minimize the cross-entropy loss between the gold
subsequent event and the set of non-subsequent
events. The loss function of event chain predic-
tion is that:

L(Θ) =

N∑

i=1

(si − yi)2 +
λ

2
||Θ||2 (11)

where si is the relation score, yi is the label of the
candidate (yi = 1 for positive sample, and yi = 0
for negative sample), Θ is the set of model param-
eters and λ is a parameter for L2 regularization.
We apply online training, where model parameter-
s are optimized by using AdaGrad (Duchi et al.,
2011). We train word embedding using the Skip-
gram algorithm (Mikolov et al., 2013)2.

5 Experiments

5.1 Datasets
Following Granroth-Wilding and Clark (2016), we
extract events from the NYT portion of the Gi-
gaword corpus (Graff et al., 2003). The C&C

2https://code.google.com/p/word2vec/
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tools (Curran et al., 2007) are used for POS tag-
ging and dependency parsing, and OpenNLP3 for
phrase structure parsing and coreference resolu-
tion. The training set consists of 1,500,000 even-
t chains. We follow Granroth-Wilding and Clark
(2016) and use 10,000 event chains as the test set,
and 1,000 event chains for development. There
are 5 choices of output event for event input chain,
which are given by Granroth-Wilding and Clark
(2016). This dataset is referred to as G&C16.

We also adapt the Chambers and Jurafsky
(2008)’s dataset to the multiple choice setting, and
use this dataset as the second benchmark. The
dataset contains 69 documents, with 346 multiple
choice event chain samples. We randomly sample
4 negative subsequent events for each event chain
to make multiple-choice candidates. This dataset
is referred to as C&J08. For both datasets, accu-
racy (Acc.) of the chosen subsequent event is used
to measure the performance of our model.

5.2 Hyper-parameters

There are several important hyper-parameters in
our models, and we tune their values using the
development dataset. We set the regularization
weight λ = 10−8 and the initial learning rate to
0.01. The size of word vectors is set to 300, and
the size of hidden vectors in LSTM to 128. In
order to avoid over-fitting, dropout (Hinton et al.,
2012) is used for word embedding with a ratio of
0.2. The neighbor similarity threshold η is set to
0.25. The threshold µ of the memory network sets
to 0.1.

5.3 Development Experiments

We conduct a set of development experiments on
the G&C16 development set to study the influence
of event argument representations and network
configurations of the proposed MemNet model.

5.3.1 Influence of Event Structure
Existing literature discussed various structures to
denote events, such as v(a0, a1) and v(a0, a1, a2).
We investigate the influence of integrating argu-
ment values of the subject a0, object a1 and prepo-
sition a2, by doing ablation experiments on the
development data. The results are shown in Ta-
ble 1, where the system using all arguments gives a
54.36% accuracy. By removing a2, which exists in
17.6% of the events in our developmental data, the

3https://opennlp.apache.org/

Method Acc. (%)
MemNet 54.36
-verb 42.63
-(a0, a1) 52.32
-(a0) 53.43
-(a1) 53.57
-(a2) 54.02

Table 1: Influence of event arguments.

accuracy drops to 54.02%. In contrast, by remov-
ing a0 and a1, which exist in 87.6% and 64.6%
of the events in the development data, respective-
ly, the accuracies drop to 53.43% and 53.57%, re-
spectively, which demonstrates the relative impor-
tance of a0 (i.e., the subject) and a1 (i.e., the ob-
ject) for event modelling. While most previous
work (Chambers and Jurafsky, 2008; Balasubra-
manian et al., 2013; Pichotta and Mooney, 2014)
modelled only a0 and a1, recent work (Pichotta
and Mooney, 2016; Granroth-Wilding and Clark,
2016) modelled a2 also.

By removing both a1 and a2, the accuracy drops
further to 53.32%. Interestingly, by removing the
verb while keeping only the arguments, the accu-
racy drops to 42.63%. While this demonstrates the
central value of the verb in denoting a event, it al-
so suggests that the arguments themselves play a
useful role in inferring the stereotypical scenario.

5.3.2 Influence of Network Configurations

We study the influence of various network config-
urations by performing ablation experiments, as
shown in Table 2. MemNet is the full model of
this paper; -LSTM denotes ablation of the LSTM
layer, using e(e1), e(e2), ..., e(en−1) instead of h1,
h2, ..., hn−1 to represent events; -Hop denotes ab-
lation of the dynamic network model, using on-
ly attention mechanism to calculate the weights of
each existing event; -Attention denotes ablation of
the attention mechanism, using the same weight
on each existing event when inferring ec. The
model “-Attention, -LSTM” is hence similar to the
method of Granroth-Wilding and Clark (2016), al-
though we used a different way of deriving even-
t embeddings. The model “LSTM-only” shows a
based by using LSTM hidden vector hn−1 to di-
rectly predict the next event, which is similar to
the method of Pichotta and Mooney (2016).

Influence of Temporal Order. By compar-
ing “MemNet” and “-LSTM”, and comparing “-
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Method Acc. (%)
MemNet 54.36
-Hop 52.03
-Attention 50.76
-LSTM 51.72
-Hop,-LSTM 50.65
-Attention,-LSTM 48.26
LSTM-Only 46.72

Table 2: Analysis of network structure.

Attention” with “-Attention, -LSTM”, one can
find that temporal order information over the w-
hole event chain does have significant influence
on the results (p − value < 0.01 using t-test).
On the other hand, using LSTM to directly pre-
dict the subsequent event (“LSTM-only”) does not
give better accuracies compared to model even-
t pairs (“-Attention, -LSTM”). This confirms our
intuition that strong-oder modelling and event-pair
modelling each have their own strength.

Influence of Attention. Comparison be-
tween “-Attention” and “-Hop”, and between “-
Attention, -LSTM” and “-Hop, -LSTM” shows
that giving different weights to different events
does lead to improving results. Our analysis in
Section 4.3 gives more intuitions to this obser-
vation. Finally, comparison between “-Hop” and
“MemNet” and between “-Hop, -LSTM” and “-
LSTM” shows that a multi-hop deep memory net-
work can indeed enhance the model with single
level attention by offering more effective semantic
representation of the scenarios.

5.4 Final Results

Table 3 shows the final results on the C&C 16 and
C&J08 datasets, respectively. We compare the re-
sults of our final model with the following base-
lines:

• PMI is the co-occurrence based model of
Chambers and Jurafsky (2008), who calcu-
late event pair relations based on Pointwise
Mutual Information (PMI), scoring each can-
didate event ec by the sum of PMI scores be-
tween the given events e0, e1, ..., en−1 and
the candidate.

• Bigram is the counting based model of Jans
et al. (2012), calculating event pair relation-
s based on skip bigram probabilities, trained
using maximum likelihood estimation.

Method G&C16 C&J08
PMI 30.52 30.92
Bigram 29.67 25.43
Event-Comp 49.57 43.28
RNN 45.74 43.17
MemNet 55.12 46.67

Table 3: Final results.

• Event-Comp is the neural event relation
model proposed by Granroth-Wilding and
Clark (2016). They learn event representa-
tions by calculating pair-wise event scores
using a Siamese network.

• RNN is the method of Pichotta and Mooney
(2016), who model event chains by directly
using hc in Section 4.2 to predict the output,
rather than taking them as features for event
pair relation modeling.

• MemNet is the proposed deep memory net-
work model.

Our reimplementation of PMI and Bigrams fol-
lows (Granroth-Wilding and Clark, 2016). It
can be seen from the table that the statistical
counting-based models PMI and Bigram signif-
icantly underperform the neural network models
Event-Comp, RNN and MemNet, which is largely
due to their sparsity and lack of semantic repre-
sentation power. Under our event representation,
Bigram does not outperform PMI significantly ei-
ther, although considering the order of event pairs.
This is likely due to sparsity of events when all
arguments are considered.

Direct comparison between Event-Comp and
RNN shows that the event-pair model gives com-
parable results to the strong-order LSTM model.
Although Granroth-Wilding and Clark (2016) and
Pichotta and Mooney (2016) both compared with
statistical baselines, they did not make direct com-
parisons between their methods, which represen-
t two different approaches to the task. Our re-
sults show that they each have their unique ad-
vantages, which confirm our intuition in the in-
troduction. By considering both pairwise rela-
tions and chain temporal orders, our method sig-
nificantly outperform both Event-Comp and RNN
(p − value < 0.01 using t-test), giving the best
reported results on both datasets.
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6 Conclusion

We proposed a dynamic memory network to inte-
grate chain order information into event relation
measuring, calculating event pair relations by rep-
resenting events in a chain using LSTM hidden s-
tates, which encode temporal orders, and using a
dynamic memory model to automatically induce
event weights for each event. Standard evaluation
showed that our method significantly outperforms
state-of-the-art event pair models and event chain
models, giving the best results reported so far.
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Abstract

We present a simple yet effective approach
for linking entities in queries. The key idea
is to search sentences similar to a query
from Wikipedia articles and directly use
the human-annotated entities in the simi-
lar sentences as candidate entities for the
query. Then, we employ a rich set of
features, such as link-probability, context-
matching, word embeddings, and related-
ness among candidate entities as well as
their related entities, to rank the candi-
dates under a regression based framework.
The advantages of our approach lie in two
aspects, which contribute to the ranking
process and final linking result. First, it
can greatly reduce the number of candi-
date entities by filtering out irrelevant en-
tities with the words in the query. Second,
we can obtain the query sensitive prior
probability in addition to the static link-
probability derived from all Wikipedia ar-
ticles. We conduct experiments on two
benchmark datasets on entity linking for
queries, namely the ERD14 dataset and
the GERDAQ dataset. Experimental re-
sults show that our method outperforms
state-of-the-art systems and yields 75.0%
in F1 on the ERD14 dataset and 56.9% on
the GERDAQ dataset.

1 Introduction

Query understanding has been an important re-
search area in information retrieval and natural
language processing (Croft et al., 2010). A key
part of this problem is entity linking, which aims
to annotate the entities in the query and link
them to a knowledge base such as Freebase and

∗Contribution during internship at Microsoft Research.

Wikipedia. This problem has been extensively
studied over the recent years (Ling et al., 2015;
Usbeck et al., 2015; Cornolti et al., 2016).

The mainstream methods of entity linking for
queries can be summed up in three steps: mention
detection, candidate generation, and entity disam-
biguation. The first step is to recognize candidate
mentions in the query. The most common method
to detect mentions is to search a dictionary col-
lected by the entity alias in a knowledge base and
the human-maintained information in Wikipedia
(such as anchors, titles and redirects) (Laclavik
et al., 2014). The second step is to generate
candidates by mapping mentions to entities. It
usually uses all possible senses of detected men-
tions as candidates. Hereafter, we refer to these
two steps of generating candidate entities as entity
search. Finally, they disambiguate and prune can-
didate entities, which is usually implemented with
a ranking framework.

There are two main issues in entity search. First,
a mention may be linked to many entities. The
methods using entity search usually leverage little
context information in the query. Therefore it may
generate many completely irrelevant entities for
the query, which brings challenges to the ranking
phase. For example, the mention “Austin” usually
represents the capital of Texas in the United States.
However, it can also be linked to “Austin, Western
Australia”, “Austin, Quebec”, “Austin (name)”,
“Austin College”, “Austin (song)” and 31 other
entities in the Wikipedia page of “Austin (disam-
biguation)”. For the query “blake shelton austin
lyrics”, Blake Shelton is a singer and made his
debut with the song “Austin”. The entity search
method detects the mention “austin” using the dic-
tionary. However, while “Austin (song)” is most
related to the context “blake shelton” and “lyrics”,
the mention “austin” may be linked to all the above
entities as candidates. Therefore candidate gener-
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ation with entity search generates too many can-
didates especially for a common anchor text with
a large number of corresponding entities. Second,
it is hard to recognize entities with common sur-
face names. The common methods usually define
a feature called “link-probability” as the probabil-
ity that a mention is annotated in all documents.
There is an issue with this probability being static
whatever the query is. We show an example with
the query “her film”. “Her (film)” is a film while
its surface name is usually used as a possessive
pronoun. Since the static link-probability of “her”
from all Wikipedia articles is very low, “her” is
usually not treated as a mention linked to the en-
tity “Her (film)”.

In this paper, we propose a novel approach to
generating candidates by searching sentences from
Wikipedia articles and directly using the human-
annotated entities as the candidates. Our approach
can greatly reduce the number of candidate enti-
ties and obtain the query sensitive prior probabil-
ity. We take the query “blake shelton austin lyrics”
as an example. Below we show a sentence in the
Wikipedia page of “Austin (song)”.

[[Austin (song)|Austin]] is the title of a debut
song written by David Kent and Kirsti Manna,
and performed by American country music
artist [[Blake Shelton]].

Table 1: A sentence in the page “Austin (song)”.

In the above sentence, the mentions “Austin”
and “Blake Shelton” in square brackets are an-
notated to the entity “Austin (song)” and “Blake
Shelton”, respectively. We generate candidates by
searching sentences and thus obtain “Blake Shel-
ton” as well as “Austin (song)” from this example.
We reduce the number of candidates because many
irrelevant entities linked by “austin” do not oc-
cur in returned sentences. In addition, as previous
methods generate candidates by searching entities
without the query information, “austin” can be
linked to “Austin, Texas” with much higher static
link-probability than all other senses of “austin”.
However, the number of returned sentences that
contain “Austin, Texas” is close to the number of
sentences that contain “Austin (song)” in our sys-
tem. We show another example with the query
“her film” in Table 2. In this sentence, “Her”, “ro-
mantic”, “science fiction”, “comedy-drama” and
“Spike Jonze” are annotated to corresponding en-

tities. As “Her” is annotated to “Her (film)” by
humans in this example, we have strong evidence
to annotate it even if it is usually used as a posses-
sive pronoun with very low static link-probability.

[[Her (film)|Her]] is a 2013 American [[ro-
mantic]] [[science fiction]] [[comedy-drama]]
film written, directed, and produced by
[[Spike Jonze]].

Table 2: A sentence in the page “Her (film)”.

We obtain the anchors as well as corresponding
entities and map them to the query after search-
ing similar sentences. Then we build a regres-
sion based framework to rank the candidates. We
use a rich set of features, such as link-probability,
context-matching, word embeddings, and related-
ness among candidate entities as well as their re-
lated entities. We evaluate our method on the
ERD14 and GERDAQ datasets. Experimental re-
sults show that our method outperforms state-of-
the-art systems and yields 75.0% and 56.9% in
terms of F1 metric on the ERD14 dataset and the
GERDAQ dataset respectively.

2 Related Work

Recognizing entity mentions in text and linking
them to the corresponding entries helps to under-
stand documents and queries. Most work uses the
knowledge base including Freebase (Chiu et al.,
2014), YAGO (Yosef et al., 2011) and Dbpe-
dia (Olieman et al., 2014). Wikify (Mihalcea and
Csomai, 2007) is the very early work on linking
anchor texts to Wikipedia pages. It extracts all n-
grams that match Wikipedia concepts such as an-
chors and titles as candidates. They implement
a voting scheme based on the knowledge-based
and data-driven method to disambiguate candi-
dates. Cucerzan (2007) uses four recourses to
generate candidates, namely entity pages, redirect-
ing pages, disambiguation pages, and list pages.
Then they disambiguate candidates by calculat-
ing the similarity between the contextual informa-
tion and the document as well as category tags on
Wikipedia pages. Milne and Witten (2008) gen-
erate candidates by gathering all n-grams in the
document, and retaining those whose probability
exceeds a low threshold. Then they define com-
monness and relatedness on the hyper-link struc-
ture of Wikipedia to disambiguate candidates.

The work on linking entities in queries has been
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extensively studied in recent years. TagME (Fer-
ragina and Scaiella, 2010) is a very early work
on entity linking in queries. It generates candi-
dates by searching Wikipedia page titles, anchors
and redirects. Then disambiguation exploits the
structure of the Wikipedia graph, according to a
voting scheme based on a relatedness measure
inspired by Milne and Witten (2008). The im-
proved version of TagME, named WAT (Piccinno
and Ferragina, 2014), uses Jaccard-similarity be-
tween two pages’ in-links as a measure of relat-
edness and uses PageRank to rank the candidate
entities. Moreover, Meij (2012) proposes a two
step approach for linking tweets to Wikipedia arti-
cles. They first extract candidate concepts for each
n-gram, and then use a supervised learning algo-
rithm to classify relevant concepts.

Unlike the work which revolves around rank-
ing entities for query spans, the Entity Recognition
and Disambiguation (ERD) Challenge (Carmel
et al., 2014) views entity linking in queries as the
problem of finding multiple query interpretations.
The SMAPH system (Cornolti et al., 2014) which
wins the short-text track works in three phases:
fetching, candidate-entity generation and pruning.
First, they fetch the snippets returned by a com-
mercial search engine. Next, snippets are parsed to
identify candidate entities by looking at the bold-
faced parts of the search snippets. Finally, they im-
plement a binary classifier using a set of features
such as the coherence and robustness of the anno-
tation process and the ranking as well as compo-
sition of snippets. They further extend SMAPH-1
to SMAPH-2 (Cornolti et al., 2016). They use the
annotator WAT to annotate the snippets of search
results to generate candidates and joint the addi-
tionally link-back step as well as the pruning step
in the ranking phase, which gets the state-of-the-
art results on the ERD14 dataset and their released
dataset GERDAQ. There is another work closed to
SMAPH that uses information of query logs and
anchor texts (Blanco et al., 2015), which gives a
ranked list of entities and is evaluated by means of
typical ranking metrics.

Our work is different from using search en-
gines to generate candidates. We firstly propose
to search Wikipedia sentences and take advan-
tage of human annotations to generate candidates.
The previous work, such as SMAPH, employs
search engine for candidate generation, which puts
queries in a larger context in which it is easier to

make sense of them. However, it uses WAT, an
entity search based tool, to pre-annotate the snip-
pets for candidate generation, which falls back the
issues of entity search.

3 Our Approach

As shown in Figure 1, we introduce our approach
with the query “blake shelton austin lyrics”. Our
approach consists of three main phases: sentence
search, candidate generation, and candidate rank-
ing. First, we search the query in all Wikipedia ar-
ticles to obtain the similar sentences. Second, we
extract human-annotated entities from these sen-
tences. We keep the entities whose correspond-
ing anchor texts occur in the query as candidates,
and treat others as related entities. Specifically, we
obtain three candidates in this example, namely
“Blake Shelton”, “Austin, Texas”, and “Austin
(song)”. Finally, we use a regression based model
to rank the candidate entities. We get the final an-
notations of “Blake Shelton” and “Austin (song)”
whose scores are higher than the threshold se-
lected on the development set. In the following
sections, we describe these three phases in detail.

3.1 Sentence Search

Sentences in Wikipedia articles usually contain
anchors linking to entities. We are therefore mo-
tivated to generate the candidate entities based on
the sentence search instead of the common method
using entity search. There are some issues in the
original annotations because of the annotation reg-
ulation. First, entities in their own pages are usu-
ally not annotated. Thus we annotate these enti-
ties with matching between the text and the page
title. Second, entities are usually annotated only
in their first appearance. We annotate these en-
tities if they are annotated in previous sentences
in the page. Moreover, pronouns are widely used
in Wikipedia sentences and are usually not anno-
tated. We use the Stanford CoreNLP toolkit (Man-
ning et al., 2014) to do the coreference resolution.
In addition, we use the content in the disambigua-
tion page and the infobox. Although these two
kinds of information may have incomplete gram-
matical structure, it contains enough context infor-
mation for the sentence search in our task.

We use the Wikipedia snapshot of May 1, 2016,
which contains 4.45 million pages and 120 mil-
lion sentences. We extract sentences that contain
at least one anchor in the Wikipedia articles, and
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blake shelton 

austin lyrics

Query Sentence Search

"[[Austin (song)|Austin]]" is the title of a debut song written by 

David Kent and Kirsti Manna, and performed by American 

country music artist [[Blake Shelton]].  -- Page:Austin (song)

In 2001, [[Blake Shelton]] made his debut with the single 

"[[Austin (song)|Austin]]". -- Page:Blake Shelton

Braddock is credited as producer for several of Shelton's number-

one country [[music|country]] hits, including [[Bobby 

Braddock]]'s debut single "[[Austin (song)|Austin]]" which spent 

five weeks at the top of the charts. -- Page:Bobby Braddock

Both [[Shakira]] and [[Blake Shelton]] turned their chairs but she 

opted for [[Blake Shelton]]. -- Page:Paula Deanda

It was used in the 1960s by poster artists such as underground 

comic artist [[Gilbert Shelton]], who designed posters for a venue 

in [[Austin, Texas|Austin]], Texas called The Vulcan Gas 

Company. -- Page: Split-fount Inking

It was released in October 2001 as the second single from 

Shelton's first album, ''[[Blake Shelton (album)|Blake Shelton]]''. 

–Page: All Over Me (Blake Shelton song)

…… 

Candidate 

Generation

Candidate Entities:
Blake Shelton: 

  Sentence: 487   Score: 6.37

Austin, Texas:

  Sentence: 7   Score: 3.87

Austin (song): 

  Sentence: 5   Score: 6.37

Related Entities:
  Bobby Braddock

  Shakira

  Gilbert Shelton

  Blake Shelton (album)

  ……

Candidate 

Ranking
Output

Blake Shelton

Austin (song)

Spell Check

Back-Mapping

Long-string Matching

……

Context-Independent Features

Context-Matching Features

Relatedness Features

Blake Shelton: 1.04

Austin, Texas: 0.47

Austin (song): 0.57

Figure 1: Example of the linking process of the query “blake shelton austin lyrics”

extract human-annotated anchors as well as cor-
responding entities in the sentences. The original
annotation contains 82.6 million anchors. We ob-
tain 110 million annotated anchors in 48.4 million
sentences after the incrementally annotation. All
of above annotations are indexed by Lucene1 by
building documents consisting of two fields: the
first one contains the sentence and the second one
contains all anchors with their corresponding en-
tities. For each query, we search it with Lucene
using its default ranker2 based on the vector space
model and tf-idf to obtain the top K sentences (K
is selected on the development set). We extract all
entities as the related entities and use these sen-
tences as their support sentences.

3.2 Candidate Generation

We back-map anchors and corresponding entities
extracted in sentences to generate candidates. We
use (a, e) to denote the pair of the anchor text
and corresponding entity and usew(a, e) to denote
the number of sentences containing the pair (a, e).
Then, we prune the candidate pairs according to
following rules.

First, we only keep the pair whose correspond-
ing anchor text a occurs in the query as a candi-
date, which has been used in previous work (Fer-
ragina and Scaiella, 2010). Second, we follow the
long-string match strategy. If we have two pairs
(a1, e1) and (a2, e2) while a1 is a substring of

1http://lucene.apache.org
2Details can be found in https://lucene.apache.

org/core/2_9_4/api/core/org/apache/
lucene/search/Similarity.html

a2, we drop (a1, e1) if w(a1, e1) < w(a2, e2).
This is because a2 is typically less ambiguous
than a1. For example, for the query “mesa com-
munity college football”, we can obtain the an-
chor “mesa”, “college”, “community college”, and
“mesa community college”. We only keep “mesa
community college” because it is longest and oc-
curs most times in returned sentences. However,
if w(a1, e1) > w(a2, e2), we keep both candidate
pairs because a1 is more common in the query.

In addition, we keep the entity whose surface
form is the same with the anchor text and prune
others. If we have two pairs (a, e1) and (a, e2)
with the same anchor, and only e2 occurs in the
query, we drop the pair (a, e1) if w(a, e1) <
w(a, e2). For example, for the query “business
day south africa”, the anchor “south africa” can be
linked to “south africa”, “union of south africa”,
and “south africa cricket team”. We only keep the
entity “south africa”.

3.3 Candidate Ranking

We build a regression based framework to rank the
candidate entities. In the training phase, we treat
the candidates that are equal to the ground truth
as the positive samples and the others as nega-
tive samples. The regression object of the positive
sample is set to the score 1.0. The negative sample
is set to the maximum score of overlapping ratio
of tokens between its text and each gold answer.
The regression object of the negative sample is not
simply set to 0 in order to give a small score if the
candidate is very closed to the ground truth. We
find it benefits the final results. We use LIBLIN-
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EAR (Fan et al., 2008) with L2-regularized L2-
loss support vector regression to train the regres-
sion model. The object function is to minimize

wTw/2+C
∑

max(0, |yi−wTxi|−eps)2 (1)

where xi is the feature set, yi is the object score
and w is the parameter to be learned. We follow
the default setting that C is set to 1 and eps is set
to 0.1.

In the test phase, each candidate gets a score
of wTxi and then we only output the candidate
whose score is higher than the threshold selected
on the development set.

We employ four different feature sets to capture
the quality of a candidate from different aspects.
All features are shown in Table 3.

Context-Independent Features This feature set
measures each annotation pair (a, e) without con-
text information. Feature 1-4 catch the syntactic
properties of the candidate. Feature 5 is the num-
ber of returned sentences that contain (a, e). Fea-
ture 6 is the maximum search score (returned by
Lucene) in its support sentences. Moreover, in-
spired by TagME (Ferragina and Scaiella, 2010),
we denote freq(a) as the number of times the text
a occurs in Wikipedia. We use link(a) to denote
the number of times the text a occurs as an anchor.
We use lp(a) = link(a)/freq(a) to denote the
static link-probability that an occurrence of a has
been set as an anchor. We use freq(a, e) to denote
the number of times that the anchor text a links to
the entity e, and use pr(e|a) = freq(a, e)/link(a)
to denote the static prior-probability that the an-
chor text a links to e. Features 7 and 8 are these
two probabilities.

Context-Matching Features We treat the other
words except for the anchor text as the context.
This feature set measures the context matching to
the query. Feature 9 is the context matching score
calculated by tokens. We denote c as the set of
context words. For each ci in c, the cm sc(ci)
is the ratio of times that ci occurs in the support
sentences, and cm sc(c) = 1

N

∑
cm sc(ci). Fea-

tures 10 and 11 are the ratio of context words oc-
curring in the first sentence in the entity page and
the description of entity’s disambiguation page (if
existed), respectively. Moreover, we train a 300-
dimensional word embeddings on all Wikipedia
articles by word2vec (Mikolov et al., 2013) and
use the average embedding of each word as the

ID Name Description
1 in query 1 if e is in the query, 0 otherwise
2 is pt 1 if e contains parenthesis, 0 otherwise
3 is cm 1 if e contains comma, 0 otherwise
4 len len(e) by tokens
5 w(a, e) number of support sentences
6 sc(a, e) maximum search score of support sen-

tences
7 lp(a) static link-probability that a is an an-

chor
8 pr(a, e) static prior-probability that a links to e
9 cm sc context matching score to the support

sentences
10 cm fs context matching score to the first sen-

tence of e’s page
11 cm dd context matching score to the descrip-

tion in e’s disambiguation page
12 embed sc maximum embedding similarity of the

query and each support sentence
13 embed fs embedding similarity of the query and

the first sentence of e’s page
14 embed dd embedding similarity of the query and

the description in e’s disambiguation
page

15 rel cd sc number of candidates that occur in the
support sentences

16 rel cd sp number of candidates that occur in the
same Wikipedia page

17 rel re sc number of related entities that occur in
the support sentences

18 rel re sp number of related entities that occur in
the same Wikipedia page

Table 3: Feature Set for Candidate Ranking

sentence representation. Feature 12 is the max-
imum cosine score between the query and each
support sentence. Features 13 and 14 are calcu-
lated with the first sentence in the entity’s page and
the description in the disambiguation page.

Relatedness Features of Candidate Entities
This set of features measures how much an en-
tity is supported by other candidates. Feature 15 is
the number of other candidate entities occurring in
the support sentences. Feature 16 is the number of
candidate entities occurring in the same Wikipedia
page with the current entity.

Relatedness Features to Related Entities This
set of features measures the relatedness between
candidates and related entities outside of queries.
Related entities can provide useful signals for dis-
ambiguating the candidates. Features 17 and 18
are analogous features with features 15 and 16,
which are calculated by the related entities.

4 Experiment

We conduct experiments on the ERD14 and GER-
DAQ datasets. We compare with several base-
line annotators and experimental results show that
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our method outperforms the baseline on these two
datasets. We also report the parameter selection on
each dataset and analyze the quality of the candi-
dates using different methods.

4.1 Dataset
ERD143 is a benchmark dataset in the ERD Chal-
lenge (Carmel et al., 2014), which contains both
long-text track and short-text track. In this pa-
per we only focus on the short-text track. It con-
tains 500 queries as the development set and 500
queries as the test set. Due to the lack of train-
ing set, we use the development set to do the
model training and tuning. This dataset can be
evaluated by both Freebase and Wikipedia as the
ERD Challenge Organizers provide the Freebase
Wikipedia Mapping with one-to-one correspon-
dence of entities between two knowledge bases.
We use Wikipedia to evaluate our results.

GERDAQ4 is a benchmark dataset to annotate
entities to Wikipedia built by Cornolti et al.
(2016). It contains 500 queries for training, 250
for development, and 250 for test. The query in
this dataset is sampled from the KDD-Cup 2005
and then annotated manually. Both name enti-
ties and common concepts are annotated in this
dataset.

4.2 Evaluation Metric
We use average F1 designed by ERD Chal-
lenge (Carmel et al., 2014) as the evaluation met-
rics. Specifically, given a query q, with labeled
entities Â = {Ê1, . . . , Ên}. We define the F-
measure of a set of hypothesized interpretations
A = {E1, . . . , Em} as follows:

Precision =
|Â ∩A|
|A| , Recall =

|Â ∩A|
|Â|

(2)

F1 =
2× Precision×Recall
Precision+Recall

(3)

The average F1 of the evaluation set is the average
of the F1 for each query:

AverageF1 =
1

N

N∑

i=1

F1(qi) (4)

Following the evaluation guideline in ERD14 and
GERDAQ, we define recall to be 1.0 if the gold
binding of a query is empty and define precision to
be 1.0 if the hypothesized interpretation is empty.

3http://web-ngram.research.microsoft.
com/erd2014/Datasets.aspx

4http://acube.di.unipi.it/datasets

4.3 Baseline Methods
We compare with several baselines and use the re-
sults reported by the ERD organizer and Cornolti
et al. (2016).

AIDA (Hoffart et al., 2011) searches the mention
using Stanford NER Tagger based on YAGO2. We
select AIDA as a representative system aiming to
entity linking for documents following the work in
Cornolti et al. (2016).
WAT (Piccinno and Ferragina, 2014) is the im-
proved version of TagME (Ferragina and Scaiella,
2010).
Magnetic IISAS (Laclavik et al., 2014) retrieves
the index extracted from Wikipedia, Freebase and
Dbpedia. Then it exploits Wikipedia link graph to
assess the similarity of candidate entities for dis-
ambiguation and filtering.
Seznam (Eckhardt et al., 2014) uses Wikipedia
and DBpedia to generate candidates. The dis-
ambiguation step is based on PageRank over the
graph.
NTUNLP (Chiu et al., 2014) searches the query
to match Freebase surface forms. The disambigua-
tion step is built on top of TagME and Wikipedia.
SMAPH-1 (Cornolti et al., 2014) is the winner in
the short-text track in the ERD14 Challenge.
SMAPH-2 (Cornolti et al., 2016) is the improved
version of SMAPH-1. It generates candidates
from the snippets of search results returned by the
Bing search engine.

4.4 Result
We report results on the ERD datset and GER-
DAQ dataset in Table 4 and Table 5, respectively.
On the ERD14 dataset, WAT is superior to AIDA
but it is still up to 10% than SMAPH-1 that wins
the ERD Challenge. SMAPH-2 improves 2% than
SMAPH-1. Our system significantly outperforms
the state-of-the-art annotator SMAPH-2 by 4.2%.
On the GERDAQ dataset, our system is 2.5% su-
perior to the state-of-the-art annotator SMAPH-2.
The F1 score in this dataset is much lower than
the ERD dataset because common concepts such
as “Week” and “Game” that are not annotated in
the ERD dataset are annotated in the GERDAQ
dataset.

Spell checking has been widely used in the
baseline annotators as it is not uncommon in
queries (Laclavik et al., 2014). The SMAPH sys-
tem that generates candidates by search results im-
plicitly leverages the spell-checking embedded in

73



System F1avg
AIDA 22.1
WAT 58.6
Magnetic IISAS 65.6
Seznam 66.9
NTUNLP 68.0
SMAPH-1 68.8
SMAPH-2 70.8
Our work 75.0*
w/o Spell Check 74.0
w/o Additional Annotation 74.4
w/o Context Feature 72.6
w/o Relatedness Feature 74.5

Table 4: Results on the ERD dataset. Results
of the baseline systems are taken from Table 8
in Cornolti et al. (2016) and reported by the ERD
organizer (Carmel et al., 2014). We only report the
F1 score as precision and recall are not reported
in previous work. *Significant improvement over
state-of-the-art baselines (t-test, p < 0.05).

System Pavg Ravg F1avg
AIDA 94.0 12.2 12.6
TagME 60.4 51.2 44.7
WAT 49.6 57.0 46.0
SMAPH-1 77.4 54.3 52.1
SMAPH-2 72.1 55.3 54.4
Our work 71.5 58.5 56.9
w/o Spell Check 75.4 48.6 49.3
w/o Additional Annotation 70.3 58.2 55.8
w/o Context Feature 69.2 56.4 55.5
w/o Relatedness Feature 73.3 57.4 56.7

Table 5: Results on the GERDAQ dataset. Results
of the baseline systems are taken from Table 10
in Cornolti et al. (2016).

search engines. In our experiments, spell check-
ing improves 1.0% on the ERD dataset and 7.6%
on the GERDAQ dataset. Furthermore, only 6.9%
of queries in the ERD14 dataset have spelling
mistakes, whereas the number in the GERDAQ
dataset is 23.0%. Thus spell-checking is more im-
portant in the GERDAQ dataset.

The result decreases 0.6% on the ERD dataset
and 1.1% on the GERDAQ dataset without the ad-
ditional annotation. Furthermore, while the F1
score decreases 2.4% on the ERD dataset and
1.4% on the GERDAQ dataset without the con-
text features, the score only decreases 0.5% on the
ERD dataset and 0.2% on the GERDAQ dataset
without the relatedness features. Unlike the work
on entity linking for documents (Eckhardt et al.,
2014; Witten and Milne, 2008) that features de-
rived from entity relations get promising results,
the context features play a more important role
than the relatedness features on entity linking for

Figure 2: F1 scores with different search numbers
and thresholds on the ERD development set

Figure 3: F1 scores with different search numbers
and thresholds on the GERDAQ development set

queries as search queries are short and contain
fewer entities than documents.

4.5 Parameter Selection
There are two parameters in our framework,
namely the number of search sentences and the
threshold for final output. We select these two pa-
rameters on the development set. We show the F1
score with different numbers of search sentences
and thresholds in Figure 2 and Figure 3. On the
ERD development set, better results occur in the
search number between 600 and 800 as well as the
threshold 0.55 and 0.6. On the GERDAQ devel-
opment set, better results occur in the search num-
ber between 700 and 1000 as well as the thresh-
old between 0.45 and 0.5. In our experiment, we
set the number of sentences to 700 and the thresh-
old to 0.56 on the ERD dataset as well as 800 and
0.48 on the GERDAQ dataset according to the F1
scores on the development set.

4.6 Model Analysis
The main difference between our method and most
previous work is that we generate candidates by
searching Wikipedia sentences instead of search-
ing entities. For generating candidates with en-
tity search, we build a dictionary containing all an-
chors, titles, and redirects in Wikipedia. Then we
query the dictionary to get the mention and obtain
corresponding entities as candidates. We use the
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Method Number of Number of
F1avganchors candidates

Entity Search 1.96 6.84 66.46
ES + RF 69.00
Sentence Search 1.12 1.49 73.81
SS + RF 75.01

Table 6: Comparison with different candidate gen-
eration methods on the ERD dataset. +RF: in-
tegrating ranking features extracted by Sentence
Search.

Method Cavg Pavg Ravg
Entity Search 78.87 77.56 66.04

Sentence Search 74.42 89.61 69.08

Table 7: Results for the 398 queries which have at
least one labeled entity on the ERD dataset using
different candidate generation methods. Cavg is
the average recall of candidates per query. Pavg
and Ravg are calculated on the final results.

same pruning rules and ranking framework in our
experiments, but exclude the features from sup-
port sentences because the entity search method
does not contain the information. The F1 score is
shown in Table 6. We achieve similar results in our
implementation of the method using entity search
on the ERD dataset as Magnetic IISAS (Laclavik
et al., 2014) which uses a similar method and ranks
4th with the F1 of 65.57 in the ERD14 Challenge.

We compare the two candidate generation meth-
ods in several aspects. First, we show the overall
results in Table 6. The average number of candi-
dates from our method is much smaller. It is noted
that the anchors from sentence search can also be
found in entity search. However, we only extract
the entities in the returned sentences while the
methods by entity search use all entities linked by
the anchors. In addition, features such as the num-
ber of sentences containing the entity from sen-
tence search which provide query sensitive prior
probability contribute to the ranking process. It
improves the F1 score from 73.81 to 75.01 for sen-
tence search and from 66.46 to 69.00 for entity
search. More important, the result of “ES+RF”
is still significantly worse than the result of both
small candidate set and Wikipedia related features
that prunes irrelevant candidates at the beginning,
which proves that the high-quality candidate set
is very important since the larger candidate set
brings in lots of noise in training a ranking model.
Moreover, there are 102 queries (20.4%) without
labeled entities in the ERD dataset. We only give
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Figure 4: F1 scores with number of candidates us-
ing different methods on the ERD dataset. The
number of queries is shown in the parentheses.

7 incorrect annotations in these queries while the
number is 13 from entity search. Furthermore, as
shown in Table 7, the coverage of our method is
lower in queries with at least one entity, but we
obtain better results on precision, recall and F1 in
the final stage.

Figure 4 illustrates the F1 score grouped by the
number of candidates using entity search. In al-
most all columns the F1 score of our method is
better than the baseline. In left columns (the num-
ber of candidates is less than 10), both methods
generate few candidates. The F1 score of our
method is higher, which proves that we train a bet-
ter ranking model because of our small but qual-
ity candidate set. Moreover, the right columns
(the number of candidates is more than 10) show
that the F1 score using entity search gradually de-
creases with the incremental candidates. However,
our method based on sentence search takes advan-
tage of context information to keep a small set
of candidates, which keeps a consistent result and
outperforms the baseline.

5 Conclusion

In this paper we address the problem of entity
linking for open-domain queries. We introduce a
novel approach to generating candidate entities by
searching sentences in the Wikipedia to the query,
then we extract the human-annotated entities as
the candidates. We implement a regression model
to rank these candidates for the final output. Two
experiments on the ERD dataset and the GER-
DAQ dataset show that our approach outperforms
the baseline systems. In this work we directly use
the default ranker in Lucene for similar sentences,
which can be improved in future work.
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Ngonga Ngomo, Ciro Baron, Andreas Both, Martin
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Abstract

Annotating large numbers of sentences
with senses is the heaviest requirement
of current Word Sense Disambiguation.
We present Train-O-Matic, a language-
independent method for generating mil-
lions of sense-annotated training instances
for virtually all meanings of words in
a language’s vocabulary. The approach
is fully automatic: no human interven-
tion is required and the only type of hu-
man knowledge used is a WordNet-like
resource. Train-O-Matic achieves consis-
tently state-of-the-art performance across
gold standard datasets and languages,
while at the same time removing the bur-
den of manual annotation. All the training
data is available for research purposes at
http://trainomatic.org.

1 Introduction

Word Sense Disambiguation (WSD) is a key task
in computational lexical semantics, inasmuch as
it addresses the lexical ambiguity of text by mak-
ing explicit the meaning of words occurring in a
given context (Navigli, 2009). Anyone who has
struggled with frustratingly unintelligible transla-
tions from an automatic system, or with the mean-
ing bias of search engines, can understand the im-
portance for an intelligent system to go beyond the
surface appearance of text.

There are two mainstream lines of research in
WSD: supervised and knowledge-based WSD. Su-
pervised WSD frames the problem as a classi-
cal machine learning task in which, first a train-
ing phase occurs aimed at learning a classification
model from sentences annotated with word senses
and, second the model is applied to previously-
unseen sentences focused on a target word. A key

difference from many other problems, however, is
that the classes to choose from (i.e., the senses of a
target word) vary for each word, therefore requir-
ing a separate training process to be performed on
a word by word basis. As a result, hundreds of
training instances are needed for each ambiguous
word in the vocabulary. This would necessitate
a million-item training set to be manually created
for each language of interest, an endeavour that is
currently beyond reach even in resource-rich lan-
guages like English.

The second paradigm, i.e., knowledge-based
WSD, takes a radically different approach: the
idea is to exploit a general-purpose knowledge
resource like WordNet (Fellbaum, 1998) to de-
velop an algorithm which can take advantage of
the structural and lexical-semantic information in
the resource to choose among the possible senses
of a target word occurring in context. For ex-
ample, a PageRank-based algorithm can be devel-
oped to determine the probability of a given sense
being reached starting from the senses of its con-
text words. Recent approaches of this kind have
been shown to obtain competitive results (Agirre
et al., 2014; Moro et al., 2014). However, due to
its inherent nature, knowledge-based WSD tends
to adopt bag-of-word approaches which do not ex-
ploit the local lexical context of a target word,
including function and collocation words, which
limits this approach in some cases.

In this paper we get the best of both worlds and
present Train-O-Matic, a novel method for gen-
erating huge high-quality training sets for all the
words in a language’s vocabulary. The approach is
language-independent, thanks to its use of a mul-
tilingual knowledge resource, BabelNet (Navigli
and Ponzetto, 2012), and it can be applied to any
kind of corpus. The training sets produced with
Train-O-Matic are shown to provide competitive
performance with those of manually and semi-
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automatically tagged corpora. Moreover, state-of-
the-art performance is also reported for low re-
sourced languages (i.e., Italian and Spanish) and
domains, where manual training data is not avail-
able.

2 Building a Training Set from Scratch

In this Section we present Train-O-Matic, a
language-independent approach to the automatic
construction of a sense-tagged training set. Train-
O-Matic takes as input a corpus C (e.g.,
Wikipedia) and a semantic network G = (V,E).
We assume a WordNet-like structure of G, i.e., V
is the set of concepts (i.e., synsets) such that, for
each word w in the vocabulary, Senses(w) is the
set of vertices in V that are expressed by w, e.g.,
the WordNet synsets that include w as one of their
senses.

Train-O-Matic consists of three steps:

• Lexical profiling: for each vertex in the se-
mantic network, we compute its Personalized
PageRank vector, which provides its lexical-
semantic profile (Section 2.1).

• Sentence scoring: For each sentence con-
taining a word w, we compute a probability
distribution over all the senses of w based on
its context (Section 2.2).

• Sentence ranking and selection: for each
sense s of a word w in the vocabulary, we
select those sentences that are most likely to
use w in the sense of s (Section 2.3).

2.1 Lexical profiling

In terms of semantic networks the probability of
reaching a node v′ starting from v can be inter-
preted as a measure of relatedness between the
synsets v and v′. Thus we define the lexical profile
of a vertex v in a graph G = (V,E) as the prob-
ability distribution over all the vertices v′ in the
graph. Such distribution is computed by applying
the Personalized PagaRank algorithm, a variant of
the traditional PageRank (Brin and Page, 1998).
While the latter is equivalent to performing ran-
dom walks with uniform restart probability on ev-
ery vertex at each step, PPR, on the other hand,
makes the restart probability non-uniform, thereby
concentrating more probability mass in the sur-
roundings of those vertices having higher restart

probability. Formally, (P)PR is computed as fol-
lows:

v(t+1) = (1− α)v(0) + αMv(t) (1)

where M is the row-normalized adjacency ma-
trix of the semantic network, the restart probabil-
ity distribution is encoded by vector v(0), and α
is the well-known damping factor usually set to
0.85 (Brin and Page, 1998). If we set v(0) to a
unit probability vector (0, . . . , 0, 1, 0, . . . , 0), i.e.,
restart is always on a given vertex, PPR outputs the
probability of reaching every vertex starting from
the restart vertex after a certain number of steps.
This approach has been used in the literature to
create semantic signatures (i.e., profiles) of indi-
vidual concepts, i.e., vertices of the semantic net-
work (Pilehvar et al., 2013), and then to determine
the semantic similarity of concepts. As also done
by Pilehvar and Collier (2016), we instead use the
PPR vector as an estimate of the conditional prob-
ability of a word w′ given the target sense1 s ∈ V
of word w:

P (w′|s, w) =
maxs′∈Senses(w′) vs(s′)

Z
(2)

where Z =
∑

w” P (w”|s, w) is a normalization
constant, vs is the vector resulting from an ade-
quate number of random walks used to calculate
PPR, and vs(s

′) is the vector component corre-
sponding to sense s′. To fix the number of iter-
ations needed to have a sufficiently accurate vec-
tor, we follow Lofgren et al. (2014) and set the
error δ = 0.00001 and the number of iterations to
1
δ = 100, 000.

As a result of this lexical profiling step we have
a probability distribution over vocabulary words
for each given word sense of interest.

2.2 Sentence scoring

The objective of the second step is to score the im-
portance of word senses for each of the corpus sen-
tences which contain the word of interest. Given
a sentence σ = w1, w2, . . . , wn, for a given target
wordw in the sentence (w ∈ σ), and for each of its
senses s ∈ Senses(w), we compute the probabil-
ity P (s|σ,w). Thanks to Bayes’ theorem we can
determine the probability of sense s of w given the

1Note that we use senses and concepts (synsets) inter-
changeably, because – given a word – a word sense unam-
biguously determines a concept (i.e., the synset it is contained
in) and vice versa.
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sentence as follows:

P (s|σ,w) =
P (σ|s, w)P (s|w)

P (σ|w)
(3)

=
P (w1, . . . , wn|s, w)P (s|w)

P (w1, . . . , wn|w)

∝ P (w1, . . . , wn|s, w)P (s|w) (4)

≈ P (w1|s, w) . . . P (wn|s, w)P (s|w)
(5)

where Formula 4 is proportional to the original
probability (due to removing the constant in the
denominator) and is approximated with Formula
5 due to the assumption of independence of the
words in the sentence. P (wi|s, w) is calculated as
in Formula 2 and P (s|w) is set to 1/|Senses(w)|
(recall that s is a sense of w). For example, given
the sentence σ = “A match is a tool for starting
a fire”, the target word w = match and its set of
senses Smatch = {s1match, s2match}, where s1match
is the sense of lighter and s2match is the sense of
game match, we want to calculate the probability
of each simatch ∈ Smatch of being the correct sense
of match in the sentence σ. Following Formula 5
we have:

P (s1match|σ,match) ≈
P (tool|s1match,match)

· P (start|s1match,match)

· P (fire|s1match,match)

· P (s1match|match)

= 2.1 · 10−4 · 2 · 10−3 · 10−2 · 5 · 10−1

= 2.1 · 10−9

P (s2match|σ,match) ≈
P (tool|s2match,match)

· P (start|s2match,match)

· P (fire|s2match,match)

· P (s2match|match)

= 10−5 · 2.9 · 10−4 · 10−6 · 5 · 10−1

= 1.45 · 10−15

As can be seen, the first sense of match has a much
higher probability due to its stronger relatedness to
the other words in the context (i.e. start, fire and
tool). Note also that all the probabilities for the
second sense are at least one magnitude less than
the probability of the first sense.

2.3 Sense-based sentence ranking and
selection

Finally, for a given word w and a given sense
s1 ∈ Senses(w), we score each sentence σ in
which w appears and s1 is its most likely sense
according to a formula that takes into account the
difference between the first (i.e., s1) and the sec-
ond most likely sense of w in σ:

∆s1(σ) = P (s1|σ,w)− P (s2|σ,w) (6)

where s1 = arg maxs∈Senses(w) P (s|σ,w), and
s2 = arg maxs∈Senses(w)\{s1} P (s|σ,w). We
then sort all sentences based on ∆s1(·) and return
a ranked list of sentences where word w is most
likely to be sense-annotated with s1. Although we
recognize that other scoring strategies could have
been used, this was experimentally the most effec-
tive one when compared to alternative strategies,
i.e., the sense probability, the number of words re-
lated to the target word w, the sentence length or a
combination thereof.

3 Creating a Denser and Multilingual
Semantic Network

In the previous Section we assumed that WordNet
was our semantic network, with synsets as vertices
and edges represented by its semantic relations.
However, while its lexical coverage is high, with
a rich set of fine-grained synsets, at the relation
level WordNet provides mainly paradigmatic in-
formation, i.e., relations like hypernymy (is-a) and
meronymy (part-of). It lacks, on the other hand,
syntagmatic relations, such as those that connect
verb synsets to their arguments (e.g., the appro-
priate senses of eatv and foodn), or pairs of noun
synsets (e.g., the appropriate senses of busn and
drivern).

Intuitively, Train-O-Matic would suffer from
such a lack of syntagmatic relations, as the rel-
evance of a sense for a given word in a sen-
tence depends directly on the possibility of vis-
iting senses of the other words in the same sen-
tence (cf. Formula 5) via random walks as calcu-
lated with Formula 1. Such reachability depends
on the connections available between synsets. Be-
cause syntagmatic relations are sparse in Word-
Net, if it was used on its own, we would end
up with a poor ranking of sentences for any
given word sense. Moreover, even though the
methodology presented in Section 2 is language-
independent, Train-O-Matic would lack informa-
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mouse (animal) mouse (device)
WordNet WordNetBN WordNet WordNetBN
mouse1n mouse1n mouse4n mouse4n
tail1n little1a wheel1n computer1n
hairless1a rodent1n electronic device1n pad4n
rodent1n cheese1n ball3n cursor1n
trunk3n cat1n hand operated1n operating system1

n

elongate2a rat1n mouse button1n trackball1n
house mouse1n elephant1n cursor1n wheel1n
minuteness1n pet1n operate3v joystick1n
nude mouse1n experiment1n object1n Windows1n

Table 1: Top-ranking synsets of the PPR vectors computed on WordNet (first and third columns) and
WordNetBN (second and fourth columns) for mouse as animal (left) and as device (right).

tion (e.g. senses for a word in an arbitrary vocab-
ulary) for languages other than English.

To cope with these issues, we exploit Babel-
Net,2 a huge multilingual semantic network ob-
tained from the automatic integration of WordNet,
Wikipedia, Wiktionary and other resources (Nav-
igli and Ponzetto, 2012), and create the Babel-
Net subgraph induced by the WordNet vertices.
The result is a graph whose vertices are BabelNet
synsets that contain at least one WordNet synset
and whose edge set includes all those relations in
BabelNet coming either from WordNet itself or
from links in other resources mapped to Word-
Net (such as hyperlinks in a Wikipedia article con-
necting it to other articles). The greatest contribu-
tion of syntagmatic relations comes, indeed, from
Wikipedia, as its articles are linked to related ar-
ticles (e.g., the English Wikipedia Bus article3 is
linked to Passenger, Tourism, Bus lane, Timetable,
School, and many more).

Because not all Wikipedia (and other re-
sources’) pages are connected with the same
degree of relatedness (e.g., countries are often
linked, but they are not necessarily closely related
to the source article in which the link occurs),
we apply the following weighting strategy to each
edge (s, s′) ∈ E of our WordNet-induced sub-
graph of BabelNet G = (V,E):

w(s, s′) =

{
1 (s, s′) ∈ E(WordNet)
WO(s, s′) otherwise

(7)
where E(WordNet) is the edge set of the origi-
nal WordNet graph andWO(s, s′) is the weighted

2http://babelnet.org
3Retrieved on February 3rd, 2017.

overlap measure which calculates the similarity
between two synsets:

WO(s, s′) =

∑|S|
i=1(r

1
i + r2i )

−1
∑|S|

i=1(2i)
−1

where r1i and r2i are the rankings of the i-th synsets
in the set S of the components in common between
the vectors associated with s and s′, respectively.
Because at this stage we still have to calculate
our synset vector representation, we use the pre-
computed NASARI vectors (Camacho-Collados
et al., 2015) to calculate WO. This choice is due
to WO’s higher performance over cosine similar-
ity for vectors with explicit dimensions (Pilehvar
et al., 2013).

As a result, each row of the original adjacency
matrix M of G will be replaced with the weights
calculated in Formula 7 and then normalized in
order to be ready for PPR calculation (see For-
mula 1). An idea of why a denser semantic net-
work has more useful connections and thus leads
to better results is provided by the example in
Table 14, where we show the highest-probability
synsets in the PPR vectors calculated with For-
mula 1 for two different senses of mouse (its
animal and device senses) when WordNet (left)
and our WordNet-induced subgraph of BabelNet
(WordNetBN , right) are used as the underlying
semantic network for PPR computation. Note
that WordNet’s top synsets are related to the tar-
get synset via paradigmatic (i.e., hypernymy and
meronymy) relations, while WordNetBN includes
many syntagmatically-related synsets (e.g., exper-

4We use the notation wkp introduced in (Navigli, 2009) to
denote the k-th sense of word w with part-of-speech tag p.
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iment for the animal, and operating system and
Windows for the device sense, among others).

4 Experimental Setup

Corpora for sense annotation We used two dif-
ferent corpora to extract sentences: Wikipedia and
the United Nations Parallel Corpus (Ziemski et al.,
2016). The first is the largest and most up-to-date
encyclopedic resource, containing definitional in-
formation, the second, on the other hand, is a
public collection of parliamentary documents of
the United Nations. The application of Train-
O-Matic to the two corpora produced two sense-
annotated datasets, which we named T-O-MWiki

and T-O-MUN , respectively.

Semantic Network We created sense-annotated
corpora with Train-O-Matic both when using PPR
vectors computed from vanilla WordNet and when
using WordNetBN , our denser network obtained
from the WordNet-induced subgraph of BabelNet
(see Section 3).

Gold standard datasets We performed our
evaluations using the framework made available
by Raganato et al. (2017a) on five different all-
words datasets, namely: the Senseval-2 (Ed-
monds and Cotton, 2001), Senseval-3 (Snyder
and Palmer, 2004), SemEval-2007 (Pradhan et al.,
2007), SemEval-2013 (Navigli et al., 2013) and
SemEval-2015 (Moro and Navigli, 2015) WSD
datasets. We focused on nouns only, given the
fact that Wikipedia provides connections between
nominal synsets only, and therefore contributes
mainly to syntagmatic relations between nouns.

Comparison sense-annotated corpora To
show the impact of our T-O-M corpora in WSD,
we compared its performance on the above gold
standard datasets, against training with:

• SemCor (Miller et al., 1993), a corpus con-
taining about 226,000 words annotated man-
ually with WordNet senses.

• One Million Sense-Tagged Instances
(Taghipour and Ng, 2015, OMSTI), a
sense-annotated dataset obtained via a
semi-automatic approach based on the
disambiguation of a parallel corpus, i.e., the
United Nations Parallel Corpus, performed
by exploiting manually translated word
senses. Because OMSTI integrates SemCor

to increase coverage, to keep a level playing
field we excluded the latter from the corpus.

We note that T-O-M, instead, is fully automatic
and does not require any WSD-specific human in-
tervention nor any aligned corpus.

Reference system In all our experiments, we
used It Makes Sense (Zhong and Ng, 2010, IMS),
a state-of-the-art WSD system based on linear
Support Vector Machines, as our reference system
for comparing its performance when trained on T-
O-M, against the same WSD system trained on
other sense-annotated corpora (i.e., SemCor and
OMSTI). Following the WSD literature, unless
stated otherwise, we report performance in terms
of F1, i.e., the harmonic mean of precision and re-
call.

We note that it is not the purpose of this paper to
show that T-O-M, when integrated into IMS, beats
all other configurations or alternative systems, but
rather to fully automatize the WSD pipeline with
performances which are competitive with the state
of the art.

Baseline As a traditional baseline in WSD, we
used the Most Frequent Sense (MFS) baseline
given by the first sense in WordNet. The MFS is a
very competitive baseline, due to the sense skew-
ness phenomenon in language (Navigli, 2009).

Number of training sentences per sense Given
a target word w, we sorted its senses Senses(w)
following the WordNet ordering and selected the
top ki training sentences for the i-th sense accord-
ing to Formula 6, where:

ki =
1

iz
∗K (8)

with K = 500 and z = 2 which were tuned on a
separate small in-house development dataset5.

5 Results

5.1 Impact of syntagmatic relations

The first result we report regards the impact of
vanilla WordNet vs. our WordNet-induced sub-
graph of BabelNet (WordNetBN ) when calculat-
ing PPR vectors. As can be seen from Table 2 –
which shows the performance of the T-O-MWiki

corpora generated with the two semantic networks
– using WordNet for PPR computation decreases

550 word-sense pairs annotated manually.
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Dataset T-O-MWiki BN T-O-MWiki WN
Senseval-2 70.5 70.0
Senseval-3 67.4 63.1
SemEval-07 59.8 57.9
SemEval-13 65.5 63.7
SemEval-15 68.6 69.5
ALL 67.3 65.7

Table 2: F1 of IMS trained on T-O-M when PPR is
obtained from the WordNet graph (WN) and from
the WordNet-induced subgraph of BabelNet (BN).

the overall performance of IMS from 0.5 to around
4 points across the five datasets, with an overall
loss of 1.6 F1 points. Similar performance losses
were observed when using T-O-MUN (see Table
3). This corroborates our hunch discussed in Sec-
tion 3 that a resource like BabelNet can contribute
important syntagmatic relations that are beneficial
for identifying (and ranking high) sentences which
are semantically relevant for the target word sense.
In the following experiments, we report only re-
sults using WordNetBN .

5.2 Comparison against sense-annotated
corpora

We now move to comparing the performance of
T-O-M, which is fully automatic, against cor-
pora which are annotated manually (SemCor) and
semi-automatically (OMSTI). In Table 3 we show
the F1-score of IMS on each gold standard dataset
in the evaluation framework and on all datasets
merged together (last row), when it is trained with
the various corpora described above.

As can be seen, T-O-MWiki and T-O-MUN ob-
tain higher performance than OMSTI (up to 5.5
points above) on 3 out of 5 datasets, and, over-
all, T-O-MWiki scores 1 point above OMSTI. The
MFS is in the same ballpark as T-O-MWiki, per-
forming better on some datasets and worse on oth-
ers. We note that IMS trained on T-O-MWiki

succeeds in surpassing or obtaining the same re-
sults as IMS trained on SemCor on SemEval-
15 and SemEval-13. We view this as a signifi-
cant achievement given the total absence of man-
ual effort involved in T-O-M. Because overall
T-O-MWiki outperforms T-O-MUN , in what fol-
lows we report all the results with T-O-MWiki, ex-
cept for the domain-oriented evaluation (see Sec-
tion 5.4).

5.3 Performance without backoff strategy

IMS uses the MFS as a backoff strategy when no
sense can be output for a target word in context
(Zhong and Ng, 2010). Consequently, the perfor-
mance of the MFS is mixed up with that of the
SVM classifier. As shown in Table 4, OMSTI is
able to provide annotated sentences for roughly
half of the tokens in the datasets. Train-O-Matic,
on the other hand, is able to cover almost all words
in each dataset with at least one training sentence.
This means that in around 50% of cases OMSTI
gives an answer based on the IMS backoff strat-
egy.

To determine the real impact of the different
training data, we therefore decided to perform an
additional analysis of the IMS performance when
the MFS backoff strategy is disabled. Because
we suspected the system would not always return
a sense for each target word, in this experiment
we measured precision, recall and their harmonic
mean, i.e., F1. The results in Table 5 confirm our
hunch, showing that OMSTI’s recall drops heav-
ily, thereby affecting F1 considerably. T-O-M per-
formances, instead, remain high in terms of pre-
cision, recall and F1. This confirms that OMSTI
relies heavily on data (those obtained for the MFS
and from SemCor) that are produced manually,
rather than semi-automatically.

5.4 Domain-oriented WSD

To further inspect the ability of T-O-M to enable
disambiguation in different domains, we decided
to evaluate on specific documents from the vari-
ous gold standard datasets which could be clearly
assigned a domain label. Specifically, we tested on
13 SemEval-13 documents from various domains6

and 2 SemEval-15 documents (namely, maths &
computers, and biomedicine) and carried out two
separate tests and evaluations of T-O-M on each
domain: once using the MFS backoff strategy, and
once not using it. In Tables 6 and 7 we report the
results of both T-O-MWiki and T-O-MUN to deter-
mine the impact of the corpus type.

As can be seen in the tables, T-O-MWiki sys-
tematically attains higher scores than OMSTI (ex-
cept for the biology domain), and, in most cases,
attains higher scores than MFS when the backoff
is used, with a drastic, systematic increase over
OMSTI with both Train-O-Matic configurations

6Namely biology, climate, finance, health care, politics,
social issues and sport.
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Dataset Train-O-MaticWiki Train-O-MaticUN OMSTI SemCor MFS
Senseval-2 70.5 69.0 74.1 76.8 72.1
Senseval-3 67.4 68.3 67.2 73.8 72.0
SemEval-07 59.8 57.9 62.3 67.3 65.4
SemEval-13 65.5 62.5 62.8 65.5 63.0
SemEval-15 68.6 63.5 63.1 66.1 66.3
ALL 67.3 65.3 66.4 70.4 67.6

Table 3: F1 of IMS trained on Train-O-Matic, OMSTI and SemCor, and MFS for the Senseval-2,
Senseval-3, SemEval-07, SemEval-13 and SemEval-15 datasets.

Dataset OMSTI Train-O-Matic Total
Senseval-2 469 1005 1066
Senseval-3 494 860 900
Semeval-07 89 159 159
Semeval-13 757 1428 1644
Semeval-15 249 494 531
ALL 2058 3946 4300

Table 4: Number of nominal tokens for which at
least one training example is provided by OMSTI
or Train-O-Matic for each dataset.

Dataset
OMSTI Train-O-Matic

P R F1 P R F1
Senseval-2 64.8 28.5 39.6 69.5 65.5 67.4
Senseval-3 55.7 31.0 39.8 66.1 63.1 64.6
SemEval-07 64.1 35.9 46.0 59.8 59.8 59.8
SemEval-13 50.7 23.4 32.0 61.3 53.3 57.0
SemEval-15 57.0 26.7 36.4 67.0 62.3 64.6
ALL 56.5 27.0 36.5 65.1 59.7 62.3

Table 5: Precision, Recall and F1 of IMS trained
on OMSTI and Train-O-Matic corpus without
MFS backoff strategy for Senseval-2, Senseval-3,
SemEval-07, SemEval-13 and SemEval-15.

in recall and F1 when the backoff strategy is dis-
abled. This demonstrates the usefulness of the cor-
pora annotated by Train-O-Matic not only on open
text, but also on specific domains. We note that
T-O-MUN obtains the best results in the politics
domain, which is the closest domain to the UN
corpus from which its training sentences are ob-
tained.

6 Scaling up to Multiple Languages

Experimental Setup In this section we investi-
gate the ability of Train-O-Matic to scale to low-
resourced languages, such as Italian and Spanish,
for which training data for WSD is not available.

Thanks to BabelNet, in fact, Train-O-Matic can

be used to generate sense-annotated data for any
language supported by the knowledge base. Thus,
in order to build new training datasets for the two
languages, we ran Train-O-Matic on their corre-
sponding versions of Wikipedia, then we tuned the
two parameters K and z on an in-house develop-
ment dataset7. In contrast to the English setting, in
order to calculate Formula 8 we sorted the senses
of each word by vertex degree. Finally we used
the output data to train IMS.

Results To perform our evaluation we chose
the most recent multilingual task (SemEval 2015
task 13) which includes gold data for Italian and
Spanish. As can be seen from Table 8 Train-
O-Matic enabled IMS to perform better than the
best participating system (Manion and Sainudiin,
2014, SUDOKU) in all three settings (All do-
mains, Maths & Computer and Biomedicine). Its
performance was in fact, 1 to 3 points higher, with
a 6-point peak on Maths & Computer in Span-
ish and on Biomedicine in Italian. This demon-
strates the ability of Train-O-Matic to enable su-
pervised WSD systems to surpass state-of-the-
art knowledge-based WSD approaches in low-
resourced languages without relying on manually
curated data for training.

7 Related Work

There are two mainstream approaches to
Word Sense Disambiguation: supervised and
knowledge-based approaches. Both suffer in
different ways from the so-called knowledge
acquisition bottleneck, that is, the difficulty in
obtaining an adequate amount of lexical-semantic
data: for training in the case of supervised sys-
tems, and for enriching semantic networks in
the case of knowledge-based ones (Pilehvar and

7We set K = 100 and z = 2.3 for Spanish and K = 100
and z = 2.5 for Italian.

84



Domain Backoff T-O-MWiki T-O-MUN OMSTI SemCor MFS SizeP R F1 P R F1 P R F1 F1 F1

Biology MFS 63.0 63.0 63.0 65.9 65.9 65.9 65.9 65.9 65.9 66.3 64.4 135- 59.0 53.3 56.0 62.3 56.3 59.2 48.1 18.5 26.7 -

Climate MFS 68.1 68.1 68.1 63.4 63.4 63.4 68.0 68.0 68.0 70.1 67.5 194- 63.4 50.0 55.9 57.5 45.4 50.7 58.0 24.2 34.2 -

Finance MFS 68.0 68.0 68.0 56.6 56.6 56.6 64.4 64.4 64.4 63.7 56.2 219- 62.1 51.6 56.4 48.4 40.2 43.9 57.4 28.3 37.9 -

Health Care MFS 65.2 65.2 65.2 60.1 60.1 60.1 52.9 52.9 52.9 62.7 56.5 138- 61.3 55.1 58.0 55.6 50.0 52.6 34.6 18.4 24.0 -

Politics MFS 65.2 65.2 65.2 66.3 66.3 66.3 63.4 63.4 63.4 69.5 67.7 279- 62.5 54.8 58.4 63.9 55.9 59.6 54.1 21.5 30.8 -

Social Issues MFS 68.5 68.5 68.5 63.6 63.6 63.6 65.6 65.6 65.6 66.8 67.6 349- 63.1 53.0 57.6 57.2 47.9 52.1 54.7 25.2 34.5 -

Sport MFS 60.3 60.3 60.3 60.9 60.9 60.9 58.8 58.8 58.8 60.4 57.6 330- 58.3 54.6 56.4 58.1 53.3 55.5 45.0 23.0 30.4 -

Table 6: Performance comparison over SemEval-2013 domain-specific datasets.

T-O-MWiki T-O-MUN OMSTI SemCor MFS SizeDomain Backoff P R F1 P R F1 P R F1 F1 F1

Biomedicine MFS 76.3 76.3 76.3 66.0 66.0 66.0 64.9 64.9 64.9 70.3 71.1 100- 76.1 72.2 74.1 64.4 59.8 62.0 60.5 26.8 37.2 -
Maths & MFS 50.0 50.0 50.0 48.0 48.0 48.0 36.0 36.0 36.0 40.6 40.9 97Computer - 50.0 47.0 48.5 47.8 44.0 45.8 21.2 11.0 14.5 -

Table 7: Performance comparison over the Biomedical and Maths & Computer domains in SemEval-15.

Language Dataset
Best System Train-O-Matic

F1 P R F1

Italian
ALL 56.6 65.1 55.6 59.9
Computers & Math 46.6 52.7 43.3 47.6
Biomedicine 65.9 76.6 67.6 71.8

Spanish
ALL 56.3 61.3 54.8 57.9
Computers & Math 42.4 53.3 44.4 48.5
Biomedicine 65.5 71.8 65.5 68.5

Table 8: Performance comparison between T-O-M and SemEval-2015’s best SUDOKU Run.

Navigli, 2014; Navigli, 2009).

State-of-the-art supervised systems include
Support Vector Machines such as IMS (Zhong and
Ng, 2010) and, more recently, LSTM neural net-
works with attention and multitask learning (Ra-
ganato et al., 2017b) as well as LSTMs paired
with nearest neighbours classification (Melamud
et al., 2016; Yuan et al., 2016). The latter also in-
tegrates a label propagation algorithm in order to
enrich the sense annotated dataset. The main dif-
ference from our approach is its need for a man-
ually annotated dataset to start the label propaga-
tion algorithm, whereas Train-O-Matic is fully au-
tomatic. An evaluation against this system would
have been interesting, but neither the proprietary
training data nor the code are available at the time
of writing.

In order to generalize effectively, these super-
vised systems require large numbers of training in-

stances annotated with senses for each target word
occurrence. Overall, this amounts to millions of
training instances for each language of interest,
a number that is not within reach for any lan-
guage. In fact, no supervised system has been sub-
mitted in major multilingual WSD competitions
for languages other than English (Navigli et al.,
2013; Moro and Navigli, 2015). To overcome this
problem, new methodologies have recently been
developed which aim to create sense-tagged cor-
pora automatically. Raganato et al. (2016) devel-
oped 7 heuristics to grow the number of hyperlinks
in Wikipedia pages. Otegi et al. (2016) applied
a different disambiguation pipeline for each lan-
guage to parallel text in Europarl (Koehn, 2005)
and QTLeap (Agirre et al., 2015) in order to enrich
them with semantic annotations. Taghipour and
Ng (2015), the work closest to ours, exploits the
alignment from English to Chinese sentences of
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the United Nation Parallel Corpus (Ziemski et al.,
2016) to reduce the ambiguity of English words
and sense-tag English sentences. The assump-
tion is that the second language is less ambiguous
than the first one and that hand-made translations
of senses are available for each WordNet synset.
This approach is, therefore, semi-automatic and
relies on certain assumptions, in contrast to Train-
O-Matic which is, instead, fully automatic and
can be applied to any kind of corpus (and lan-
guage) depending on the specific need. Earlier
attempts at the automatic extraction of training
samples were made by Agirre and De Lacalle
(2004) and Fernández et al. (2004). Both exploited
the monosemous relatives method (Leacock et al.,
1998) in order to retrieve sentences from the Web
which contained a given monosemous noun or a
relative monosemous word (e.g., a synonym, a hy-
pernym, etc.). As can be seen in (Fernández et al.,
2004) this approach can lead to the retrieval of
very accurate examples, but its main drawback lies
in the number of senses covered. In fact, for all
those synsets that do not have any monosemous
relative, the system is unable to retrieve examples,
thus heavily affecting the performance in terms of
recall and F1.
Knowledge-based WSD, instead, bypasses the
heavy requirement of sense-annotated corpora by
applying algorithms that exploit a general-purpose
semantic network, such as WordNet, which en-
codes the relational information that interconnects
synsets via different kinds of relation. Approaches
include variants of Personalized PageRank (Agirre
et al., 2014) and densest subgraph approxima-
tion algorithms (Moro et al., 2014) which, thanks
to the availability of multilingual resources such
as BabelNet, can easily be extended to perform
WSD in arbitrary languages. Other approaches
to knowledge-based WSD exploit the definitional
knowledge contained in a dictionary. The Lesk al-
gorithm (Lesk, 1986) and its variants (Banerjee
and Pedersen, 2002; Kilgarriff and Rosenzweig,
2000; Vasilescu et al., 2004) aim to determine the
correct sense of a word by comparing each word-
sense definition with the context in which the tar-
get word appears. The limit of knowledge-based
WSD, however, lies in the absence of mechanisms
that can take into account the very local context of
a target word occurrence, including non-content
words such as prepositions and articles. Further-
more, recent studies seem to suggest that such

approaches are barely able to surpass supervised
WSD systems when they enrich their networks
starting from a comparable amount of annotated
data (Pilehvar and Navigli, 2014). With T-O-M,
rather than further enriching an existing semantic
network, we exploit the information available in
the network to annotate raw sentences with sense
information and train a state-of-the-art supervised
WSD system without task-specific human annota-
tions.

8 Conclusion

In this paper we presented Train-O-Matic, a novel
approach to the automatic construction of large
training sets for supervised WSD in an arbitrary
language. Train-O-Matic removes the burden of
manual intervention by leveraging the structural
semantic information available in the WordNet
graph enriched with additional relational infor-
mation from BabelNet, and achieves performance
competitive to that of semi-automatic approaches
and, in some cases, of manually-curated train-
ing data. T-O-M was shown to provide training
data for virtually all the target ambiguous nouns,
in marked contrast to alternatives like OMSTI,
which covers in many cases around half of the to-
kens, resorting to the MFS otherwise. Moreover
Train-O-Matic has proven to scale well to low-
resourced languages, for which no manually an-
notated dataset exists, surpassing the current state
of the art of knowledge-based systems.

We believe that the ability of T-O-M to over-
come the current paucity of annotated data for
WSD, coupled with video games with a pur-
pose for validation purposes (Jurgens and Nav-
igli, 2014; Vannella et al., 2014), paves the way
for high-quality multilingual supervised WSD. All
the training corpora, including approximately one
million sentences which cover English, Italian and
Spanish, are made available to the community at
http://trainomatic.org.

As future work we plan to extend our approach
to verbs, adjectives and adverbs. Following Ben-
nett et al. (2016) we will also experiment on more
realistic estimates of P (s|w) in Formula 5 as well
as other assumptions made in our work.
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Abstract

Universal Dependencies (UD) offer a uni-
form cross-lingual syntactic representation,
with the aim of advancing multilingual ap-
plications. Recent work shows that se-
mantic parsing can be accomplished by
transforming syntactic dependencies to log-
ical forms. However, this work is lim-
ited to English, and cannot process de-
pendency graphs, which allow handling
complex phenomena such as control. In
this work, we introduce UDEPLAMBDA,
a semantic interface for UD, which maps
natural language to logical forms in an
almost language-independent fashion and
can process dependency graphs. We per-
form experiments on question answering
against Freebase and provide German and
Spanish translations of the WebQuestions
and GraphQuestions datasets to facilitate
multilingual evaluation. Results show that
UDEPLAMBDA outperforms strong base-
lines across languages and datasets. For
English, it achieves a 4.9 F1 point improve-
ment over the state-of-the-art on Graph-
Questions.

1 Introduction

The Universal Dependencies (UD) initiative seeks
to develop cross-linguistically consistent annota-
tion guidelines as well as a large number of uni-
formly annotated treebanks for many languages
(Nivre et al., 2016). Such resources could advance
multilingual applications of parsing, improve com-
parability of evaluation results, enable cross-lingual
learning, and more generally support natural lan-
guage understanding.

∗Work done at the University of Edinburgh

Seeking to exploit the benefits of UD for natu-
ral language understanding, we introduce UDEP-
LAMBDA, a semantic interface for UD that maps
natural language to logical forms, representing un-
derlying predicate-argument structures, in an al-
most language-independent manner. Our frame-
work is based on DEPLAMBDA (Reddy et al.,
2016) a recently developed method that converts
English Stanford Dependencies (SD) to logical
forms. The conversion process is illustrated in
Figure 1 and discussed in more detail in Section 2.
Whereas DEPLAMBDA works only for English, U-
DEPLAMBDA applies to any language for which
UD annotations are available.1 Moreover, DEP-
LAMBDA can only process tree-structured inputs
whereas UDEPLAMBDA can also process depen-
dency graphs, which allow to handle complex con-
structions such as control. The different treatments
of various linguistic constructions in UD compared
to SD also require different handling in UDEP-
LAMBDA (Section 3.3).

Our experiments focus on Freebase semantic
parsing as a testbed for evaluating the framework’s
multilingual appeal. We convert natural language
to logical forms which in turn are converted to ma-
chine interpretable formal meaning representations
for retrieving answers to questions from Freebase.
To facilitate multilingual evaluation, we provide
translations of the English WebQuestions (Berant
et al., 2013) and GraphQuestions (Su et al., 2016)
datasets to German and Spanish. We demonstrate
that UDEPLAMBDA can be used to derive logical
forms for these languages using a minimal amount
of language-specific knowledge. Aside from devel-
oping the first multilingual semantic parsing tool
for Freebase, we also experimentally show that U-
DEPLAMBDA outperforms strong baselines across

1As of v1.3, UD annotations are available for 47 languages
at http://universaldependencies.org.

89



languages and datasets. For English, it achieves the
strongest result to date on GraphQuestions, with
competitive results on WebQuestions. Our imple-
mentation and translated datasets are publicly avail-
able at https://github.com/sivareddyg/udeplambda.

2 DEPLAMBDA

Before describing UDEPLAMBDA, we provide an
overview of DEPLAMBDA (Reddy et al., 2016)
on which our approach is based. DEPLAMBDA

converts a dependency tree to its logical form in
three steps: binarization, substitution, and com-
position, each of which is briefly outlined below.
Algorithm 1 describes the steps of DEPLAMBDA

in lines 4-6, whereas lines 2 and 3 are specific to
UDEPLAMBDA.

Binarization A dependency tree is first mapped
to a Lisp-style s-expression indicating the order
of semantic composition. Figure 1(b) shows the
s-expression for the sentence Disney won an Os-
car for the movie Frozen, derived from the depen-
dency tree in Figure 1(a). Here, the sub-expression
(dobj won (det Oscar an)) indicates that the logi-
cal form of the phrase won an Oscar is derived by
composing the logical form of the label dobj with
the logical form of the word won and the logical
form of the phrase an Oscar, derived analogously.
The s-expression can also be interpreted as a bi-
narized tree with the dependency label as the root
node, and the left and right expressions as subtrees.

A composition hierarchy is employed to impose
a strict traversal ordering on the modifiers to each
head in the dependency tree. As an example, won
has three modifiers in Figure 1(a), which according
to the composition hierarchy are composed in the
order dobj> nmod> nsubj. In constructions like
coordination, this ordering is crucial to arrive at
the correct semantics. Lines 7-17 in Algorithm 1
describe the binarization step.

Substitution Each symbol in the s-expressions
is substituted for a lambda expression encoding
its semantics. Words and dependency labels are
assigned different types of expressions. In general,
words have expressions of the following kind:
ENTITY ⇒ λx.word(xa); e.g. Oscar⇒ λx.Oscar(xa)
EVENT ⇒ λx.word(xe); e.g. won⇒ λx.won(xe)
FUNCTIONAL⇒ λx.TRUE; e.g. an⇒ λx.TRUE

Here, the subscripts ·a and ·e denote the types
of individuals (Ind) and events (Event), respec-
tively, whereas x denotes a paired variable (xa,xe)

Disney won an Oscar for the movie Frozen
propn verb det propn adp det noun propn

nsubj

dobj

nmod

det

case

det

compound

root

(a) The dependency tree for Disney won an Oscar for the
movie Frozen in the Universal Dependencies formalism.

(nsubj (nmod (dobj won (det Oscar an))
(case (det (comp. Frozen movie) the) for)) Disney)

(b) The binarized s-expression for the dependency tree.

λx.∃yzw.won(xe)∧Disney(ya)∧Oscar(za)
∧Frozen(wa)∧ movie(wa)
∧arg1(xe,ya)∧ arg2(xe,za)∧ nmod.for(xe,wa)

(c) The composed lambda-calculus expression.

Figure 1: The mapping of a dependency tree to its
logical form with the intermediate s-expression.

of type Ind×Event. Roughly speaking, proper
nouns and adjectives invoke ENTITY expressions,
verbs and adverbs invoke EVENT expressions, and
common nouns invoke both ENTITY and EVENT ex-
pressions (see Section 3.3), while remaining words
invoke FUNCTIONAL expressions. DEPLAMBDA

enforces the constraint that every s-expression is of
the type η = Ind×Event→ Bool, which simpli-
fies the type system considerably.

Expressions for dependency labels glue the
semantics of heads and modifiers to articulate
predicate-argument structure. These expressions in
general take one of the following forms:

COPY ⇒ λ f gx.∃y. f (x)∧g(y)∧ rel(x,y)
e.g. nsubj, dobj, nmod, advmod
INVERT ⇒ λ f gx.∃y. f (x)∧g(y)∧ reli(y,x)
e.g. amod, acl
MERGE ⇒ λ f gx. f (x)∧g(x)
e.g. compound, appos, amod, acl
HEAD ⇒ λ f gx. f (x)
e.g. case, punct, aux, mark .

As an example of COPY, consider the lambda
expression for dobj in (dobj won (det Oscar an)):
λ f gx.∃y. f (x)∧ g(y)∧ arg2(xe,ya). This expres-
sion takes two functions f and g as input, where
f represents the logical form of won and g repre-
sents the logical form of an Oscar. The predicate-
argument structure arg2(xe,ya) indicates that the
arg2 of the event xe, i.e. won, is the individual ya,
i.e. the entity Oscar. Since arg2(xe,ya) mimics the
dependency structure dobj(won, Oscar), we refer
to the expression kind evoked by dobj as COPY.
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Expressions that invert the dependency direc-
tion are referred to as INVERT (e.g. amod in run-
ning horse); expressions that merge two subexpres-
sions without introducing any relation predicates
are referred to as MERGE (e.g. compound in movie
Frozen); and expressions that simply return the par-
ent expression semantics are referred to as HEAD

(e.g. case in for Frozen). While this generalization
applies to most dependency labels, several labels
take a different logical form not listed here, some
of which are discussed in Section 3.3. Sometimes
the mapping of dependency label to lambda expres-
sion may depend on surrounding part-of-speech
tags or dependency labels. For example, amod acts
as INVERT when the modifier is a verb (e.g. in run-
ning horse), and as MERGE when the modifier is
an adjective (e.g. in beautiful horse).2 Lines 26-32
in Algorithm 1 describe the substitution procedure.

Composition The final logical form is computed
by beta-reduction, treating expressions of the form
(f x y) as the function f applied to the arguments
x and y. For example, (dobj won (det Oscar an))
results in λx.∃z.won(xe)∧Oscar(za)∧ arg2(xe,za)

when the expression for dobj is applied to those
for won and (det Oscar an). Figure 1(c) shows the
logical form for the s-expression in Figure 1(b).
The binarized s-expression is recursively converted
to a logical form as described in lines 18-25 in
Algorithm 1.

3 UDEPLAMBDA

We now introduce UDEPLAMBDA, a semantic in-
terface for Universal Dependencies.3 Whereas
DEPLAMBDA only applies to English Stanford De-
pendencies, UDEPLAMBDA takes advantage of the
cross-lingual nature of UD to facilitate an (almost)
language independent semantic interface. This is
accomplished by restricting the binarization, sub-
stitution, and composition steps described above
to rely solely on information encoded in the UD
representation. As shown in Algorithm 1, lines
4-6 are common to both DEPLAMBDA and UDEP-
LAMBDA, whereas lines 2 and 3 applies only to
UDEPLAMBDA. Importantly, UDEPLAMBDA is
designed to not rely on lexical forms in a language

2We use Tregex (Levy and Andrew, 2006) for substitu-
tion mappings and Cornell SPF (Artzi, 2013) as the lambda-
calculus implementation. For example, in running horse, the
tregex /label:amod/=target < /postag:verb/ matches amod to
its INVERT expression λ f gx.∃y. f (x)∧g(y)∧ amodi(ye,xa).

3In what follows, all references to UD are to UD v1.3.

Algorithm 1: UDEPLAMBDA Steps
1 Function UDepLambda(depTree):
2 depGraph = Enhancement (depTree)

#See Figure 2(a) for a depGraph.
3 bindedTree = SplitLongDistance (depGraph)

#See Figure 2(b) for a bindedTree.
4 binarizedTree = Binarization (bindedTree)

#See Figure 1(b) for a binarizedTree.
5 logicalForm = Composition (binarizedTree)
6 return logicalForm

7 Function Binarization (tree):
8 parent = GetRootNode (tree);
9 {(label1,child1),(label2,child2) . . .}

= GetChildNodes (parent)
10 sortedChildren = SortUsingLabelHierarchy

({(label1,child1),(label2,child2) . . .})
11 binarziedTree.root = parent
12 for label, child ∈ sortedChildren:
13 temp.root = label
14 temp.le f t = binarziedTree
15 temp.right = Binarization(child)
16 binarziedTree = temp
17 return binarizedTree

18 Function Composition (binarizedTree):
19 mainLF = Substitution (binarizedTree.root)
20 if binarziedTree has left and right children:
21 le f tLF = Composition (binarziedTree.le f t)
22 rightLF = Composition(binarziedTree.right)
23 mainLF = BetaReduce (mainLF, le f tLF)
24 mainLF = BetaReduce (mainLF,rightLF)
25 return mainLF

26 Function Substitution (node):
27 logicalForms = [ ]
28 for tregexRule, template ∈ substitutionRules:
29 if tregexRule.match(node):
30 l f = GenLambdaExp (node, template)
31 logicalForms.add(l f )
32 return logicalForms

to assign lambda expressions, but only on informa-
tion contained in dependency labels and postags.

However, some linguistic phenomena are lan-
guage specific (e.g. pronoun-dropping) or lexical-
ized (e.g. every and the in English have different
semantics, despite being both determiners) and are
not encoded in the UD schema. Furthermore, some
cross-linguistic phenomena, such as long-distance
dependencies, are not part of the core UD represen-
tation. To circumvent this limitation, a simple en-
hancement step enriches the original UD represen-
tation before binarization takes place (Section 3.1).
This step adds to the dependency tree missing syn-
tactic information and long-distance dependencies,
thereby creating a graph. Whereas DEPLAMBDA

is not able to handle graph-structured input, UDEP-
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LAMBDA is designed to work with dependency
graphs as well (Section 3.2). Finally, several con-
structions differ in structure between UD and SD,
which requires different handling in the semantic
interface (Section 3.3).

3.1 Enhancement

Both Schuster and Manning (2016) and Nivre et al.
(2016) note the necessity of an enhanced UD rep-
resentation to enable semantic applications. How-
ever, such enhancements are currently only avail-
able for a subset of languages in UD. Instead, we
rely on a small number of enhancements for our
main application—semantic parsing for question-
answering—with the hope that this step can be re-
placed by an enhanced UD representation in the fu-
ture. Specifically, we define three kinds of enhance-
ments: (1) long-distance dependencies; (2) types
of coordination; and (3) refined question word tags.
These correspond to line 2 in Algorithm 1.

First, we identify long-distance dependencies in
relative clauses and control constructions. We fol-
low Schuster and Manning (2016) and find these
using the labels acl (relative) and xcomp (control).
Figure 2(a) shows the long-distance dependency in
the sentence Anna wants to marry Kristoff. Here,
marry is provided with its missing nsubj (dashed
arc). Second, UD conflates all coordinating con-
structions to a single dependency label, conj. To
obtain the correct coordination scope, we refine
conj to conj:verb, conj:vp, conj:sentence,
conj:np, and conj:adj, similar to Reddy et al.
(2016). Finally, unlike the PTB tags (Marcus et al.,
1993) used by SD, the UD part-of-speech tags do
not distinguish question words. Since these are cru-
cial to question-answering, we use a small lexicon
to refine the tags for determiners (DET), adverbs
(ADV) and pronouns (PRON) to DET:WH, ADV:WH

and PRON:WH, respectively. Specifically, we use
a list of 12 (English), 14 (Spanish) and 35 (Ger-
man) words, respectively. This is the only part
of UDEPLAMBDA that relies on language-specific
information. We hope that, as the coverage of mor-
phological features in UD improves, this refine-
ment can be replaced by relying on morphological
features, such as the interrogative feature (INT).

3.2 Graph Structures and BIND

To handle graph structures that may result from the
enhancement step, such as those in Figure 2(a), we
propose a variable-binding mechanism that differs

Anna wants to marry Kristoff

nsubj

xcomp

mark dobj

nsubj

(a) With long-distance dependency.

Anna wants to marry Kristoff

Ω Ω

nsubj

xcomp

mark dobj

bind nsubj

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristoff.

from that of DEPLAMBDA. This is indicated in
line 3 of Algorithm 1. First, each long-distance
dependency is split into independent arcs as shown
in Figure 2(b). Here, Ω is a placeholder for the sub-
ject of marry, which in turn corresponds to Anna as
indicated by the binding of Ω via the pseudo-label
BIND. We treat BIND like an ordinary dependency
label with semantics MERGE and process the result-
ing tree as usual, via the s-expression:

(nsubj (xcomp wants (nsubj (mark
(dobj marry Kristoff) to) Ω) (BIND Anna Ω)) ,

with the lambda-expression substitutions:

wants, marry ∈ EVENT; to ∈ FUNCTIONAL;
Anna, Kristoff ∈ ENTITY;
mark ∈ HEAD; BIND ∈ MERGE;
xcomp = λ f gx.∃y. f (x)∧g(y)∧xcomp(xe,ye) .

These substitutions are based solely on unlexi-
calized context. For example, the part-of-speech
tag PROPN of Anna invokes an ENTITY expression.

The placeholder Ω has semantics λx.EQ(x,ω),
where EQ(u,ω) is true iff u and ω are equal (have
the same denotation), which unifies the subject vari-
able of wants with the subject variable of marry.

After substitution and composition, we get:

λz.∃xywv.wants(ze)∧Anna(xa)∧ arg1(ze,xa)∧ EQ(x,ω)
∧marry(ye)∧xcomp(ze,ye)∧ arg1(ye,va)∧ EQ(v,ω)
∧ Kristoff(wa)∧ arg2(ye,wa) ,

This expression may be simplified further by
replacing all occurrences of v with x and removing
the unification predicates EQ, which results in:

λz.∃xyw.wants(ze)∧Anna(xa)∧ arg1(ze,xa)
∧marry(ye)∧xcomp(ze,ye)∧ arg1(ye,xa)
∧ Kristoff(wa)∧ arg2(ye,wa) .
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This expression encodes the fact that Anna is the
arg1 of the marry event, as desired. DEPLAMBDA,
in contrast, cannot handle graph-structured input,
since it lacks a principled way of generating s-
expressions from graphs. Even given the above
s-expression, BIND in DEPLAMBDA is defined in
a way such that the composition fails to unify v
and x, which is crucial for the correct semantics.
Moreover, the definition of BIND in DEPLAMBDA

does not have a formal interpretation within the
lambda calculus, unlike ours.

3.3 Linguistic Constructions

Below, we highlight the most pertinent differences
between UDEPLAMBDA and DEPLAMBDA, stem-
ming from the different treatment of various lin-
guistic constructions in UD versus SD.

Prepositional Phrases UD uses a content-head
analysis, in contrast to SD, which treats function
words as heads of prepositional phrases, Accord-
ingly, the s-expression for the phrase president
in 2009 is (nmod president (case 2009 in)) in U-
DEPLAMBDA and (prep president (pobj in 2009))
in DEPLAMBDA. To achieve the desired semantics,

λx.∃y.president(xa)∧president event(xe)∧
arg1(xe,xa)∧2009(ya)∧prep.in(xe,ya) ,

DEPLAMBDA relies on an intermediate logical
form that requires some post-processing, whereas
UDEPLAMBDA obtains the desired logical form
directly through the following entries:

in ∈ FUNCTIONAL; 2009 ∈ ENTITY; case ∈ HEAD;
president = λx.president(xa)∧president event(xe)

∧arg1(xe,xa) ;
nmod = λ f gx.∃y. f (x)∧g(y)∧nmod.in(xe,ya) .

Other nmod constructions, such as possessives
(nmod:poss), temporal modifiers (nmod:tmod)
and adverbial modifiers (nmod:npmod), are han-
dled similarly. Note how the common noun presi-
dent, evokes both entity and event predicates above.

Passives DEPLAMBDA gives special treatment
to passive verbs, identified by the fine-grained part-
of-speech tags in the PTB tag together with de-
pendency context. For example, An Oscar was
won is analyzed as λx.won.pass(xe)∧Oscar(ya)∧
arg1(xe,ya), where won.pass represents a passive
event. However, UD does not distinguish be-
tween active and passive forms.4 While the labels

4UD encodes voice as a morphological feature, but most
syntactic analyzers do not produce this information yet.

nsubjpass or auxpass indicate passive construc-
tions, such clues are sometimes missing, such as in
reduced relatives. We therefore opt to not have sep-
arate entries for passives, but aim to produce identi-
cal logical forms for active and passive forms when
possible (for example, by treating nsubjpass as
direct object). With the following entries,
won ∈ EVENT; an, was ∈ FUNCTIONAL; auxpass ∈ HEAD;
nsubjpass = λ f gx.∃y. f (x)∧g(y)∧ arg2(xe,ya) ,

the lambda expression for An Oscar was won be-
comes λx.won(xe)∧Oscar(ya)∧arg2(xe,ya), iden-
tical to that of its active form. However, not having
a special entry for passive verbs may have unde-
sirable side-effects. For example, in the reduced-
relative construction Pixar claimed the Oscar won
for Frozen, the phrase the Oscar won ... will
receive the semantics λx.Oscar(ya)∧won(xe)∧
arg1(xe,ya), which differs from that of an Oscar
was won. We leave it to the target application to
disambiguate the interpretation in such cases.

Long-Distance Dependencies As discussed in
Section 3.2, we handle long-distance dependen-
cies evoked by clausal modifiers (acl) and con-
trol verbs (xcomp) with the BIND mechanism,
whereas DEPLAMBDA cannot handle control con-
structions. For xcomp, as seen earlier, we use the
mapping λ f gx.∃y. f (x)∧g(y)∧xcomp(xe,ye). For
acl we use λ f gx.∃y. f (x)∧ g(y), to conjoin the
main clause and the modifier clause. However, not
all acl clauses evoke long-distance dependencies,
e.g. in the news that Disney won an Oscar, the
clause that Disney won an Oscar is a subordinating
conjunction of news. In such cases, we instead
assign acl the INVERT semantics.

Questions Question words are marked with the
enhanced part-of-speech tags DET:WH, ADV:WH

and PRON:WH, which are all assigned the seman-
tics λx.${word}(xa)∧ TARGET(xa). The predicate
TARGET indicates that xa represents the variable of
interest, that is the answer to the question.

3.4 Limitations

In order to achieve language independence, UDEP-
LAMBDA has to sacrifice semantic specificity, since
in many cases the semantics is carried by lexical
information. Consider the sentences John broke
the window and The window broke. Although it is
the window that broke in both cases, our inferred
logical forms do not canonicalize the relation be-
tween broke and window. To achieve this, we
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language target people

x e1 y e2 Ghana
speak
.arg2

speak
.arg1

people
.arg1

people
.nmod.in

typ
e

typ
e

(a) English

sprache target

x e1 Ghana
gesprochen

.arg2
gesprochen
.nmod.in

typ
e

(b) German

lengua target

x e1 Ghana
lengua
.arg1

lengua
.nmod.de

typ
e

(c) Spanish

language
.human language

target

x m Ghana
location.country

.official language.2
location.country

.official language.1

typ
e

(d) Freebase

Figure 3: The ungrounded graphs for What language do the people in Ghana speak?, Welche Sprache
wird in Ghana gesprochen? and Cuál es la lengua de Ghana?, and the corresponding grounded graph.

would have to make the substitution of nsubj de-
pend on lexical context, such that when window
occurs as nsubj with broke, the predicate arg2 is
invoked rather than arg1. UDEPLAMBDA does
not address this problem, and leave it to the tar-
get application to infer context-sensitive semantics
of arg1 and arg2. To measure the impact of this
limitation, we present UDEPLAMBDASRL in Sec-
tion 4.4 which addresses this problem by relying on
semantic roles from semantic role labeling (Palmer
et al., 2010).

Other constructions that require lexical informa-
tion are quantifiers like every, some and most, nega-
tion markers like no and not, and intentional verbs
like believe and said. UD does not have special
labels to indicate these. We discuss how to handle
quantifiers in this framework in the supplementary
material.

Although in the current setup UDEPLAMBDA

rules are hand-coded, the number of rules are only
proportional to the number of UD labels, mak-
ing rule-writing manageable.5 Moreover, we view
UDEPLAMBDA as a first step towards learning
rules for converting UD to richer semantic repre-
sentations such as PropBank, AMR, or the Paral-
lel Meaning Bank (Palmer et al., 2005; Banarescu
et al., 2013; Abzianidze et al., 2017)..

4 Cross-lingual Semantic Parsing

To study the multilingual nature of UDEPLAMBDA,
we conduct an empirical evaluation on question
answering against Freebase in three different lan-
guages: English, Spanish, and German. Before
discussing the details of this experiment, we briefly
outline the semantic parsing framework employed.

5UD v1.3 has 40 dependency labels, and the number of
substitution rules in UDEPLAMBDA are 61, with some labels
having multiple rules, and some representing lexical seman-
tics.

4.1 Semantic Parsing as Graph Matching

UDEPLAMBDA generates ungrounded logical
forms that are independent of any knowledge base,
such as Freebase. We use GRAPHPARSER (Reddy
et al., 2016) to map these logical forms to their
grounded Freebase graphs, via corresponding un-
grounded graphs. Figures 3(a) to 3(c) show the
ungrounded graphs corresponding to logical forms
from UDEPLAMBDA, each grounded to the same
Freebase graph in Figure 3(d). Here, rectangles de-
note entities, circles denote events, rounded rectan-
gles denote entity types, and edges between events
and entities denote predicates or Freebase relations.
Finally, the TARGET node represents the set of val-
ues of x that are consistent with the Freebase graph,
that is the answer to the question.

GRAPHPARSER treats semantic parsing as a
graph-matching problem with the goal of finding
the Freebase graphs that are structurally isomorphic
to an ungrounded graph and rank them according
to a model. To account for structural mismatches,
GRAPHPARSER uses two graph transformations:
CONTRACT and EXPAND. In Figure 3(a) there are
two edges between x and Ghana. CONTRACT col-
lapses one of these edges to create a graph isomor-
phic to Freebase. EXPAND, in contrast, adds edges
to connect the graph in the case of disconnected
components. The search space is explored by beam
search and model parameters are estimated with
the averaged structured perceptron (Collins, 2002)
from training data consisting of question-answer
pairs, using answer F1-score as the objective.

4.2 Datasets

We evaluate our approach on two public bench-
marks of question answering against Freebase:
WebQuestions (Berant et al., 2013), a widely used
benchmark consisting of English questions and
their answers, and GraphQuestions (Su et al., 2016),
a recently released dataset of English questions
with both their answers and grounded logical forms.
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While WebQuestions is dominated by simple entity-
attribute questions, GraphQuestions contains a
large number of compositional questions involving
aggregation (e.g. How many children of Eddard
Stark were born in Winterfell? ) and comparison
(e.g. In which month does the average rainfall of
New York City exceed 86 mm? ). The number of
training, development and test questions is 2644,
1134, and 2032, respectively, for WebQuestions
and 1794, 764, and 2608 for GraphQuestions.

To support multilingual evaluation, we created
translations of WebQuestions and GraphQuestions
to German and Spanish. For WebQuestions two
professional annotators were hired per language,
while for GraphQuestions we used a trusted pool of
20 annotators per language (with a single annotator
per question). Examples of the original questions
and their translations are provided in Table 1.

4.3 Implementation Details

Here we provide details on the syntactic analyzers
employed, our entity resolution algorithm, and the
features used by the grounding model.

Dependency Parsing The English, Spanish, and
German Universal Dependencies (UD) treebanks
(v1.3; Nivre et al 2016) were used to train part of
speech taggers and dependency parsers. We used a
bidirectional LSTM tagger (Plank et al., 2016) and
a bidirectional LSTM shift-reduce parser (Kiper-
wasser and Goldberg, 2016). Both the tagger and
parser require word embeddings. For English, we
used GloVe embeddings (Pennington et al., 2014)
trained on Wikipedia and the Gigaword corpus.
For German and Spanish, we used SENNA em-
beddings (Collobert et al., 2011; Al-Rfou et al.,
2013) trained on Wikipedia corpora (589M words
German; 397M words Spanish).6 Measured on the
UD test sets, the tagger accuracies are 94.5 (En-
glish), 92.2 (German), and 95.7 (Spanish), with
corresponding labeled attachment parser scores of
81.8, 74.7, and 82.2.

Entity Resolution We follow Reddy et al. (2016)
and resolve entities in three steps: (1) potential en-
tity spans are identified using seven handcrafted
part-of-speech patterns; (2) each span is associated
with potential Freebase entities according to the
Freebase/KG API; and (3) the 10-best entity link-
ing lattices, scored by a structured perceptron, are

6https://sites.google.com/site/rmyeid/projects/polyglot.

WebQuestions

en What language do the people in Ghana speak?
de Welche Sprache wird in Ghana gesprochen?
es ¿Cuál es la lengua de Ghana?

en Who was Vincent van Gogh inspired by?
de Von wem wurde Vincent van Gogh inspiriert?
es ¿Qué inspiró a Van Gogh?

GraphQuestions

en NASA has how many launch sites?
de Wie viele Abschussbasen besitzt NASA?
es ¿Cuántos sitios de despegue tiene NASA?

en Which loudspeakers are heavier than 82.0 kg?
de Welche Lautsprecher sind schwerer als 82.0 kg?
es ¿Qué altavoces pesan más de 82.0 kg?

Table 1: Example questions and their translations.

k WebQuestions GraphQuestions
en de es en de es

1 89.6 82.8 86.7 47.2 39.9 39.5
10 95.7 91.2 94.0 56.9 48.4 51.6

Table 2: Structured perceptron k-best entity linking
accuracies on the development sets.

input to GRAPHPARSER, leaving the final disam-
biguation to the semantic parsing problem. Table 2
shows the 1-best and 10-best entity disambiguation
F1-scores for each language and dataset.

Features We use features similar to Reddy et al.
(2016): basic features of words and Freebase re-
lations, and graph features crossing ungrounded
events with grounded relations, ungrounded types
with grounded relations, and ungrounded answer
type crossed with a binary feature indicating if the
answer is a number. In addition, we add features
encoding the semantic similarity of ungrounded
events and Freebase relations. Specifically, we used
the cosine similarity of the translation-invariant em-
beddings of Huang et al. (2015).7

4.4 Comparison Systems

We compared UDEPLAMBDA to four versions of
GRAPHPARSER that operate on different represen-
tations, in addition to prior work.

SINGLEEVENT This model resembles the
learning-to-rank model of Bast and Haussmann
(2015). An ungrounded graph is generated by con-
necting all entities in the question with the TARGET

node, representing a single event. Note that this

7http://128.2.220.95/multilingual/data/.
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WebQuestions GraphQuestions
Method en de es en de es

SINGLEEVENT 48.5 45.6 46.3 15.9 8.8 11.4
DEPTREE 48.8 45.9 46.4 16.0 8.3 11.3
CCGGRAPH 49.5 – – 15.9 – –
UDEPLAMBDA 49.5 46.1 47.5 17.7 9.5 12.8
UDEPLAMBDASRL 49.8 46.2 47.0 17.7 9.1 12.7

Table 3: F1-scores on the test data.

baseline cannot handle compositional questions, or
those with aggregation or comparison.

DEPTREE An ungrounded graph is obtained di-
rectly from the original dependency tree. An event
is created for each parent and its dependents in the
tree. Each dependent is linked to this event with an
edge labeled with its dependency relation, while the
parent is linked to the event with an edge labeled
arg0. If a word is a question word, an additional
TARGET predicate is attached to its entity node.

CCGGRAPH This is the CCG-based semantic
representation of Reddy et al. (2014). Note that
this baseline exists only for English.

UDEPLAMBDASRL This is similar to UDEP-
LAMBDA except that instead of assuming nsubj,
dobj and nsubjpass correspond to arg1, arg2 and
arg2, we employ semantic role labeling to identify
the correct interpretation. We used the systems of
Roth and Woodsend (2014) for English and Ger-
man and Bjrkelund et al. (2009) for Spanish trained
on the CoNLL-2009 dataset (Haji et al., 2009).8

4.5 Results

Table 3 shows the performance of GRAPHPARSER

with these different representations. Here and in
what follows, we use average F1-score of predicted
answers (Berant et al., 2013) as the evaluation met-
ric. We first observe that UDEPLAMBDA consis-
tently outperforms the SINGLEEVENT and DEP-
TREE representations in all languages.

For English, performance is on par with CCG-
GRAPH, which suggests that UDEPLAMBDA does
not sacrifice too much specificity for universal-
ity. With both datasets, results are lower for Ger-
man compared to Spanish. This agrees with the
lower performance of the syntactic parser on the
German portion of the UD treebank. While U-
DEPLAMBDASRL performs better than UDEP-

8The parser accuracies (%) are 87.33, 81.38 and 79.91for
English, German and Spanish respectively.

Method GraphQ. WebQ.

SEMPRE (Berant et al., 2013) 10.8 35.7
JACANA (Yao and Van Durme, 2014) 5.1 33.0
PARASEMPRE (Berant and Liang, 2014) 12.8 39.9
QA (Yao, 2015) – 44.3
AQQU (Bast and Haussmann, 2015) – 49.4
AGENDAIL (Berant and Liang, 2015) – 49.7
DEPLAMBDA (Reddy et al., 2016) – 50.3

STAGG (Yih et al., 2015) – 48.4 (52.5)
BILSTM (Türe and Jojic, 2016) – 24.9 (52.2)
MCNN (Xu et al., 2016) – 47.0 (53.3)
AGENDAIL-RANK (Yavuz et al., 2016) – 51.6 (52.6)

UDEPLAMBDA 17.7 49.5

Table 4: F1-scores on the English GraphQuestions
and WebQuestions test sets (results with additional
task-specific resources in parentheses).

LAMBDA on WebQuestions for English, we do not
see large performance gaps in other settings, sug-
gesting that GRAPHPARSER is either able to learn
context-sensitive semantics of ungrounded predi-
cates or that the datasets do not contain ambiguous
nsubj, dobj and nsubjpass mappings. Finally,
while these results confirm that GraphQuestions is
much harder compared to WebQuestions, we note
that both datasets predominantly contain single-hop
questions, as indicated by the competitive perfor-
mance of SINGLEEVENT on both datasets.

Table 4 compares UDEPLAMBDA with previ-
ously published models which exist only for En-
glish and have been mainly evaluated on Web-
Questions. These are either symbolic like ours (first
block) or employ neural networks (second block).
Results for models using additional task-specific
training resources, such as ClueWeb09, Wikipedia,
or SimpleQuestions (Bordes et al., 2015) are shown
in parentheses. On GraphQuestions, we achieve
a new state-of-the-art result with a gain of 4.8 F1-
points over the previously reported best result. On
WebQuestions we are 2.1 points below the best
model using comparable resources, and 3.8 points
below the state of the art. Most related to our
work is the English-specific system of Reddy et al.
(2016). We attribute the 0.8 point difference in F1-
score to their use of the more fine-grained PTB tag
set and Stanford Dependencies.

5 Related Work

Our work continues the long tradition of building
logical forms from syntactic representations initi-
ated by Montague (1973). The literature is rife with
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attempts to develop semantic interfaces for HPSG
(Copestake et al., 2005), LFG (Kaplan and Bresnan,
1982; Dalrymple et al., 1995; Crouch and King,
2006), TAG (Kallmeyer and Joshi, 2003; Gardent
and Kallmeyer, 2003; Nesson and Shieber, 2006),
and CCG (Baldridge and Kruijff, 2002; Bos et al.,
2004; Artzi et al., 2015). Unlike existing semantic
interfaces, UDEPLAMBDA uses dependency syn-
tax, a widely available syntactic resource.

A common trend in previous work on seman-
tic interfaces is the reliance on rich typed feature
structures or semantic types coupled with strong
type constraints, which can be very informative
but unavoidably language specific. Instead, UDEP-
LAMBDA relies on generic unlexicalized informa-
tion present in dependency treebanks and uses a
simple type system (one type for dependency labels,
and one for words) along with a combinatory mech-
anism, which avoids type collisions. Earlier at-
tempts at extracting semantic representations from
dependencies have mainly focused on language-
specific dependency representations (Spreyer and
Frank, 2005; Simov and Osenova, 2011; Hahn and
Meurers, 2011; Reddy et al., 2016; Falke et al.,
2016; Beltagy, 2016), and multi-layered depen-
dency annotations (Jakob et al., 2010; Bédaride
and Gardent, 2011). In contrast, UDEPLAMBDA

derives semantic representations for multiple lan-
guages in a common schema directly from Univer-
sal Dependencies. This work parallels a growing
interest in creating other forms of multilingual se-
mantic representations (Akbik et al., 2015; Vander-
wende et al., 2015; White et al., 2016; Evang and
Bos, 2016).

We evaluate UDEPLAMBDA on semantic pars-
ing for question answering against a knowledge
base. Here, the literature offers two main modeling
paradigms: (1) learning of task-specific grammars
that directly parse language to a grounded repre-
sentation (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Berant et al., 2013; Flanigan
et al., 2014; Pasupat and Liang, 2015; Groschwitz
et al., 2015); and (2) converting language to a lin-
guistically motivated task-independent representa-
tion that is then mapped to a grounded representa-
tion (Kwiatkowski et al., 2013; Reddy et al., 2014;
Krishnamurthy and Mitchell, 2015; Gardner and
Krishnamurthy, 2017). Our work belongs to the
latter paradigm, as we map natural language to
Freebase indirectly via logical forms. Capitalizing
on natural-language syntax affords interpretability,

scalability, and reduced duplication of effort across
applications (Bender et al., 2015). Our work also re-
lates to literature on parsing multiple languages to a
common executable representation (Cimiano et al.,
2013; Haas and Riezler, 2016). However, existing
approaches still map to the target meaning represen-
tations (more or less) directly (Kwiatkowksi et al.,
2010; Jones et al., 2012; Jie and Lu, 2014).

6 Conclusions

We introduced UDEPLAMBDA, a semantic inter-
face for Universal Dependencies, and showed that
the resulting semantic representation can be used
for question-answering against a knowledge base
in multiple languages. We provided translations of
benchmark datasets in German and Spanish, in the
hope to stimulate further multilingual research on
semantic parsing and question answering in gen-
eral. We have only scratched the surface when it
comes to applying UDEPLAMBDA to natural lan-
guage understanding tasks. In the future, we would
like to explore how this framework can benefit ap-
plications such as summarization (Liu et al., 2015)
and machine reading (Sachan and Xing, 2016).
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Abstract

Word embeddings improve generalization
over lexical features by placing each word
in a lower-dimensional space, using dis-
tributional information obtained from un-
labeled data. However, the effective-
ness of word embeddings for downstream
NLP tasks is limited by out-of-vocabulary
(OOV) words, for which embeddings do
not exist. In this paper, we present MIM-
ICK, an approach to generating OOV word
embeddings compositionally, by learning
a function from spellings to distributional
embeddings. Unlike prior work, MIMICK

does not require re-training on the original
word embedding corpus; instead, learn-
ing is performed at the type level. In-
trinsic and extrinsic evaluations demon-
strate the power of this simple approach.
On 23 languages, MIMICK improves per-
formance over a word-based baseline for
tagging part-of-speech and morphosyntac-
tic attributes. It is competitive with (and
complementary to) a supervised character-
based model in low-resource settings.

1 Introduction

One of the key advantages of word embeddings
for natural language processing is that they en-
able generalization to words that are unseen in
labeled training data, by embedding lexical fea-
tures from large unlabeled datasets into a rela-
tively low-dimensional Euclidean space. These
low-dimensional embeddings are typically trained
to capture distributional similarity, so that infor-
mation can be shared among words that tend to
appear in similar contexts.

However, it is not possible to enumerate the en-
tire vocabulary of any language, and even large un-
labeled datasets will miss terms that appear in later
applications. The issue of how to handle these
out-of-vocabulary (OOV) words poses challenges
for embedding-based methods. These challenges
are particularly acute when working with low-
resource languages, where even unlabeled data
may be difficult to obtain at scale. A typical so-
lution is to abandon hope, by assigning a single
OOV embedding to all terms that do not appear in
the unlabeled data.

We approach this challenge from a quasi-
generative perspective. Knowing nothing of a
word except for its embedding and its written
form, we attempt to learn the former from the lat-
ter. We train a recurrent neural network (RNN)
on the character level with the embedding as the
target, and use it later to predict vectors for OOV
words in any downstream task. We call this model
the MIMICK-RNN, for its ability to read a word’s
spelling and mimick its distributional embedding.

Through nearest-neighbor analysis, we show
that vectors learned via this method capture both
word-shape features and lexical features. As a
result, we obtain reasonable near-neighbors for
OOV abbreviations, names, novel compounds,
and orthographic errors. Quantitative evalua-
tion on the Stanford RareWord dataset (Luong
et al., 2013) provides more evidence that these
character-based embeddings capture word similar-
ity for rare and unseen words.

As an extrinsic evaluation, we conduct ex-
periments on joint prediction of part-of-speech
tags and morphosyntactic attributes for a diverse
set of 23 languages, as provided in the Univer-
sal Dependencies dataset (De Marneffe et al.,
2014). Our model shows significant improvement
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across the board against a single UNK-embedding
backoff method, and obtains competitive results
against a supervised character-embedding model,
which is trained end-to-end on the target task.
In low-resource settings, our approach is par-
ticularly effective, and is complementary to su-
pervised character embeddings trained from la-
beled data. The MIMICK-RNN therefore pro-
vides a useful new tool for tagging tasks in set-
tings where there is limited labeled data. Models
and code are available at www.github.com/
yuvalpinter/mimick .

2 Related Work

Compositional models for embedding rare and
unseen words. Several studies make use of
morphological or orthographic information when
training word embeddings, enabling the predic-
tion of embeddings for unseen words based on
their internal structure. Botha and Blunsom (2014)
compute word embeddings by summing over em-
beddings of the morphemes; Luong et al. (2013)
construct a recursive neural network over each
word’s morphological parse; Bhatia et al. (2016)
use morpheme embeddings as a prior distribu-
tion over probabilistic word embeddings. While
morphology-based approaches make use of mean-
ingful linguistic substructures, they struggle with
names and foreign language words, which include
out-of-vocabulary morphemes. Character-based
approaches avoid these problems: for example,
Kim et al. (2016) train a recurrent neural network
over words, whose embeddings are constructed
by convolution over character embeddings; Wiet-
ing et al. (2016) learn embeddings of character n-
grams, and then sum them into word embeddings.
In all of these cases, the model for composing em-
beddings of subword units into word embeddings
is learned by optimizing an objective over a large
unlabeled corpus. In contrast, our approach is a
post-processing step that can be applied to any set
of word embeddings, regardless of how they were
trained. This is similar to the “retrofitting” ap-
proach of Faruqui et al. (2015), but rather than
smoothing embeddings over a graph, we learn a
function to build embeddings compositionally.

Supervised subword models. Another class of
methods learn task-specific character-based word
embeddings within end-to-end supervised sys-
tems. For example, Santos and Zadrozny (2014)
build word embeddings by convolution over char-

acters, and then perform part-of-speech (POS)
tagging using a local classifier; the tagging ob-
jective drives the entire learning process. Ling
et al. (2015) propose a multi-level long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997), in which word embeddings are built
compositionally from an LSTM over characters,
and then tagging is performed by an LSTM over
words. Plank et al. (2016) show that concatenat-
ing a character-level or bit-level LSTM network
to a word representation helps immensely in POS
tagging. Because these methods learn from la-
beled data, they can cover only as much of the lex-
icon as appears in their labeled training sets. As
we show, they struggle in several settings: low-
resource languages, where labeled training data
is scarce; morphologically rich languages, where
the number of morphemes is large, or where the
mapping from form to meaning is complex; and
in Chinese, where the number of characters is or-
ders of magnitude larger than in non-logographic
scripts. Furthermore, supervised subword models
can be combined with MIMICK, offering additive
improvements.

Morphosyntactic attribute tagging. We evalu-
ate our method on the task of tagging word to-
kens for their morphosyntactic attributes, such as
gender, number, case, and tense. The task of
morpho-syntactic tagging dates back at least to the
mid 1990s (Oflazer and Kuruöz, 1994; Hajič and
Hladká, 1998), and interest has been rejuvenated
by the availability of large-scale multilingual mor-
phosyntactic annotations through the Universal
Dependencies (UD) corpus (De Marneffe et al.,
2014). For example, Faruqui et al. (2016) propose
a graph-based technique for propagating type-
level morphological information across a lexicon,
improving token-level morphosyntactic tagging in
11 languages, using an SVM tagger. In contrast,
we apply a neural sequence labeling approach, in-
spired by the POS tagger of Plank et al. (2016).

3 MIMICK Word Embeddings

We approach the problem of out-of-vocabulary
(OOV) embeddings as a generation problem: re-
gardless of how the original embeddings were cre-
ated, we assume there is a generative wordform-
based protocol for creating these embeddings. By
training a model over the existing vocabulary, we
can later use that model for predicting the embed-
ding of an unseen word.
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Formally: given a language L, a vocabulary
V ⊆ L of size V , and a pre-trained embeddings
table W ∈ RV×d where each word {wk}Vk=1 is
assigned a vector ek of dimension d, our model
is trained to find the function f : L → Rd such
that the projected function f |V approximates the
assignments f(wk) ≈ ek. Given such a model, a
new word wk∗ ∈ L \ V can now be assigned an
embedding ek∗ = f(wk∗).

Our predictive function of choice is a Word
Type Character Bi-LSTM. Given a word with
character sequence w = {ci}n1 , a forward-LSTM
and a backward-LSTM are run over the corre-
sponding character embeddings sequence {e(c)i }n1 .
Let hnf represent the final hidden vector for the
forward-LSTM, and let h0

b represent the final hid-
den vector for the backward-LSTM. The word em-
bedding is computed by a multilayer perceptron:

(1)f(w) = OT · g(Th · [hnf ;h0
b ] + bh) + bT ,

where Th, bh and OT , bT are parameters of affine
transformations, and g is a nonlinear elementwise
function. The model is presented in Figure 1.

The training objective is similar to that of Yin
and Schütze (2016). We match the predicted em-
beddings f(wk) to the pre-trained word embed-
dings ewk , by minimizing the squared Euclidean
distance,

(2)L = ‖f(wk)− ewk‖22 .

By backpropagating from this loss, it is possible
to obtain local gradients with respect to the pa-
rameters of the LSTMs, the character embeddings,
and the output model. The ultimate output of the
training phase is the character embeddings ma-
trix C and the parameters of the neural network:
M = {C,F,B,Th, bh,OT , bT }, where F,B are
the forward and backward LSTM component pa-
rameters, respectively.

3.1 MIMICK Polyglot Embeddings
The pretrained embeddings we use in our ex-
periments are obtained from Polyglot (Al-Rfou
et al., 2013), a multilingual word embedding ef-
fort. Available for dozens of languages, each
dataset contains 64-dimension embeddings for the
100,000 most frequent words in a language’s train-
ing corpus (of variable size), as well as an UNK
embedding to be used for OOV words. Even with
this vocabulary size, querying words from respec-
tive UD corpora (train + dev + test) yields high

Figure 1: MIMICK model architecture.

OOV rates: in at least half of the 23 languages in
our experiments (see Section 5), 29.1% or more of
the word types do not appear in the Polyglot vo-
cabulary. The token-level median rate is 9.2%.1

Applying our MIMICK algorithm to Polyglot
embeddings, we obtain a prediction model for
each of the 23 languages. Based on preliminary
testing on randomly selected held-out develop-
ment sets of 1% from each Polyglot vocabulary
(with error calculated as in Equation 2), we set
the following hyper-parameters for the remainder
of the experiments: character embedding dimen-
sion = 20; one LSTM layer with 50 hidden units;
60 training epochs with no dropout; nonlinearity
function g = tanh.2 We initialize character em-
beddings randomly, and use DyNet to implement
the model (Neubig et al., 2017).

Nearest-neighbor examination. As a prelimi-
nary sanity check for the validity of our pro-
tocol, we examined nearest-neighbor samples in
languages for which speakers were available:
English, Hebrew, Tamil, and Spanish. Ta-
ble 1 presents selected English OOV words with

1Some OOV counts, and resulting model performance,
may be adversely affected by tokenization differences be-
tween Polyglot and UD. Notably, some languages such as
Spanish, Hebrew and Italian exhibit relational synthesis
wherein words of separate grammatical phrases are joined
into one form (e.g. Spanish del = de + el, ‘from the-masc.-
sg.’). For these languages, the UD annotations adhere to
the sub-token level, while Polyglot does not perform sub-
tokenization. As this is a real-world difficulty facing users
of out-of-the-box embeddings, we do not patch it over in our
implementations or evaluation.

2Other settings, described below, were tuned on the su-
pervised downstream tasks.
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OOV word Nearest neighbors OOV word Nearest neighbors

MCT AWS OTA APT PDM SMP compartmentalize formalize rationalize discern prioritize validate
McNeally Howlett Gaughan McCallum Blaney pesky euphoric disagreeable horrid ghastly horrifying
Vercellotti Martinelli Marini Sabatini Antonelli lawnmower tradesman bookmaker postman hairdresser
Secretive Routine Niche Turnaround Themed developiong compromising inflating shrinking straining
corssing slicing swaying pounding grasping hurtling splashing pounding swaying slicing rubbing
flatfish slimy jerky watery glassy wrinkle expectedly legitimately profoundly strangely energetically

Table 1: Nearest-neighbor examples for the English MIMICK model.

their nearest in-vocabulary Polyglot words com-
puted by cosine similarity. These examples
demonstrate several properties: (a) word shape
is learned well (acronyms, capitalizations, suf-
fixes); (b) the model shows robustness to typos
(e.g., developiong, corssing); (c) part-of-speech is
learned across multiple suffixes (pesky – euphoric,
ghastly); (d) word compounding is detected (e.g.,
lawnmower – bookmaker, postman); (e) semantics
are not learned well (as is to be expected from the
lack of context in training), but there are surprises
(e.g., flatfish – slimy, watery). Table 2 presents
examples from Hebrew that show learned proper-
ties can be extended to nominal morphosyntactic
attributes (gender, number – first two examples)
and even relational syntactic subword forms such
as genetive markers (third example). Names are
learned (fourth example) despite the lack of cas-
ing in the script. Spanish examples exhibit word-
shape and part-of-speech learning patterns with
some loose semantics: for example, the plural ad-
jective form prenatales is similar to other family-
related plural adjectives such as patrimoniales and
generacionales. Tamil displays some semantic
similarities as well: e.g. enjineer (‘engineer’) pre-
dicts similarity to other professional terms such
as kalviyiyal (‘education’), thozhilnutpa (‘techni-
cal’), and iraanuva (‘military’).

Stanford RareWords. The Stanford RareWord
evaluation corpus (Luong et al., 2013) focuses on
predicting word similarity between pairs involving
low-frequency English words, predominantly ones
with common morphological affixes. As these
words are unlikely to be above the cutoff threshold
for standard word embedding models, they em-
phasize the performance on OOV words.

For evaluation of our MIMICK model on
the RareWord corpus, we trained the Varia-
tional Embeddings algorithm (VarEmbed; Bha-
tia et al., 2016) on a 20-million-token, 100,000-
type Wikipedia corpus, obtaining 128-dimension

word embeddings for all words in the test cor-
pus. VarEmbed estimates a prior distribution over
word embeddings, conditional on the morpholog-
ical composition. For in-vocabulary words, a pos-
terior is estimated from unlabeled data; for out-
of-vocabulary words, the expected embedding can
be obtained from the prior alone. In addition, we
compare to FastText (Bojanowski et al., 2016), a
high-vocabulary, high-dimensionality embedding
benchmark.

The results, shown in Table 3, demonstrate that
the MIMICK RNN recovers about half of the loss
in performance incurred by the original Polyglot
training model due to out-of-vocabulary words in
the “All pairs” condition. MIMICK also outper-
forms VarEmbed. FastText can be considered an
upper bound: with a vocabulary that is 25 times
larger than the other models, it was missing words
from only 44 pairs on this data.

4 Joint Tagging of Parts-of-Speech and
Morphosyntactic Attributes

The Universal Dependencies (UD)
scheme (De Marneffe et al., 2014) features a
minimal set of 17 POS tags (Petrov et al., 2012)
and supports tagging further language-specific
features using attribute-specific inventories. For
example, a verb in Turkish could be assigned a
value for the evidentiality attribute, one which is
absent from Danish. These additional morphosyn-
tactic attributes are marked in the UD dataset as
optional per-token attribute-value pairs.

Our approach for tagging morphosyntactic at-
tributes is similar to the part-of-speech tagging
model of Ling et al. (2015), who attach a projec-
tion layer to the output of a sentence-level bidi-
rectional LSTM. We extend this approach to mor-
phosyntactic tagging by duplicating this projection
layer for each attribute type. The input to our mul-
tilayer perceptron (MLP) projection network is the
hidden state produced for each token in the sen-
tence by an underlying LSTM, and the output is
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OOV word Nearest neighbors

TTGFM ‘(s/y) will come true’, TPTVR ‘(s/y) will solve’, TBTL ‘(s/y) will cancel’, TSIR ‘(s/y) will remove’
GIAVMTRIIM ‘geometric(m-pl)’2 ANTVMIIM ‘anatomic(m-pl)’, GAVMTRIIM ‘geometric(m-pl)’1
BQFTNV ‘our request’ IVFBIHM ‘their(m) residents’, XTAIHM ‘their(m) sins’, IRVFTV ‘his inheritance’
RIC’RDSVN ‘Richardson’ AVISTRK ‘Eustrach’, QMINQA ‘Kaminka’, GVLDNBRG ‘Goldenberg’

Table 2: Nearest-neighbor examples for Hebrew (Transcriptions per Sima’an et al. (2001)). ‘s/y’ stands
for ‘she/you-m.sg.’; subscripts denote alternative spellings, standard form being ‘X’1.

Emb. Vocab Polyglot All
dim size in-vocab pairs

N = 862 N = 2034

VarEmbed 128 100K 41.9 25.5
Polyglot 64 100K 40.8 8.7
MIMICK 64 0 17.9 17.5
Polyglot 64 100K 40.8 27.0+MIMICK
Fasttext 300 2.51M 47.3

Table 3: Similarity results on the RareWord set,
measured as Spearman’s ρ× 100. VarEmbed was
trained on a 20-million token dataset, Polyglot on
a 1.7B-token dataset.

attribute-specific probability distributions over the
possible values for each attribute on each token
in the sequence. Formally, for a given attribute
a with possible values v ∈ Va, the tagging prob-
ability for the i’th word in a sentence is given by:

Pr(awi = v) = (Softmax(φ(hi)))v , (3)

with

(4)φ(hi) = Oa
W · tanh(Wa

h · hi + bah) + baW ,

where hi is the i’th hidden state in the underlying
LSTM, and φ(hi) is a two-layer feedforward neu-
ral network, with weights Wa

h and Oa
W . We apply

a softmax transformation to the output; the value
at position v is then equal to the probability of at-
tribute v applying to token wi. The input to the
underlying LSTM is a sequence of word embed-
dings, which are initialized to the Polyglot vectors
when possible, and to MIMICK vectors when nec-
essary. Alternative initializations are considered in
the evaluation, as described in Section 5.2.

Each tagged attribute sequence (including POS
tags) produces a loss equal to the sum of nega-
tive log probabilities of the true tags. One way
to combine these losses is to simply compute the
sum loss. However, many languages have large
differences in sparsity across morpho-syntactic at-
tributes, as apparent from Table 4 (rightmost col-
umn). We therefore also compute a weighted sum

loss, in which each attribute is weighted by the
proportion of training corpus tokens on which it is
assigned a non-NONE value. Preliminary experi-
ments on development set data were inconclusive
across languages and training set sizes, and so we
kept the simpler sum loss objective for the remain-
der of our study. In all cases, part-of-speech tag-
ging was less accurate when learned jointly with
morphosyntactic attributes. This may be because
the attribute loss acts as POS-unrelated “noise” af-
fecting the common LSTM layer and the word em-
beddings.

5 Experimental Settings

The morphological complexity and composition-
ality of words varies greatly across languages.
While a morphologically-rich agglutinative lan-
guage such as Hungarian contains words that carry
many attributes as fully separable morphemes, a
sentence in an analytic language such as Viet-
namese may have not a single polymorphemic or
inflected word in it. To see whether this property
is influential on our MIMICK model and its perfor-
mance in the downstream tagging task, we select
languages that comprise a sample of multiple mor-
phological patterns. Language family and script
type are other potentially influential factors in an
orthography-based approach such as ours, and so
we vary along these parameters as well. We also
considered language selection recommendations
from de Lhoneux and Nivre (2016) and Schluter
and Agić (2017).

As stated above, our approach is built on the
Polyglot word embeddings. The intersection of
the Polyglot embeddings and the UD dataset (ver-
sion 1.4) yields 44 languages. Of these, many are
under-annotated for morphosyntactic attributes;
we select twenty-three sufficiently-tagged lan-
guages, with the exception of Indonesian.3 Table 4
presents the selected languages and their typolog-
ical properties. As an additional proxy for mor-

3Vietnamese has no attributes by design; it is a pure ana-
lytic language.
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Language Branch Script Morpho. Tokens Language Branch Script Morpho. Tokens
type w/ attr. type w/ attr.

vi Vietnamese Vietic alphabetic* Analytic 00.0% fa Persian Iranian consonantal Agglutin. 65.4%
hu Hungarian Finno-

Ugric
alphabetic Agglutin. 83.6% hi Hindi Indo-

Aryan
alphasyllab. Fusional 92.4%

id Indonesian Malayic alphabetic Agglutin. — lv Latvian Baltic alphabetic Fusional 69.2%
zh Chinese Sinitic ideographic Isolating 06.2% el Greek Hellenic alphabetic Fusional 64.8%
tr Turkish Turkic alphabetic Agglutin. 68.4% bg Bulgarian Slavic alphabetic Fusional 68.6%
kk Kazakh Turkic alphabetic Agglutin. 20.9% ru Russian Slavic alphabetic Fusional 69.2%
ar Arabic Semitic consonantal Fusional 60.6% cs Czech Slavic alphabetic Fusional 83.2%
he Hebrew Semitic consonantal Fusional 62.9% es Spanish Romance alphabetic Fusional 67.1%
eu Basque Vasconic alphabetic Agglutin. 59.2% it Italian Romance alphabetic Fusional 67.3%
ta Tamil Tamil syllabic Agglutin. 78.8% ro Romanian Romance alphabetic Fusional 87.1%

da Danish Germanic alphabetic Fusional 72.2%
en English Germanic alphabetic Analytic 72.8%
sv Swedish Germanic alphabetic Analytic 73.4%

Table 4: Languages used in tagging evaluation. Languages on the right are Indo-European. *In Viet-
namese script, whitespace separates syllables rather than words.

phological expressiveness, the rightmost column
shows the proportion of UD tokens which are an-
notated with any morphosyntactic attribute.

5.1 Metrics

As noted above, we use the UD datasets for testing
our MIMICK algorithm on 23 languages4 with the
supplied train/dev/test division. We measure part-
of-speech tagging by overall token-level accuracy.

For morphosyntactic attributes, there does not
seem to be an agreed-upon metric for reporting
performance. Dzeroski et al. (2000) report per-
tag accuracies on a morphosyntactically tagged
corpus of Slovene. Faruqui et al. (2016) report
macro-averages of F1 scores of 11 languages from
UD 1.1 for the various attributes (e.g., part-of-
speech, case, gender, tense); recall and precision
were calculated for the full set of each attribute’s
values, pooled together.5 Agić et al. (2013) report
separately on parts-of-speech and morphosyntac-
tic attribute accuracies in Serbian and Croatian,
as well as precision, recall, and F1 scores per
tag. Georgiev et al. (2012) report token-level ac-
curacy for exact all-attribute tags (e.g. ‘Ncmsh’
for “Noun short masculine singular definite”) in
Bulgarian, reaching a tagset of size 680. Müller
et al. (2013) do the same for six other languages.
We report micro F1: each token’s value for each
attribute is compared separately with the gold la-
beling, where a correct prediction is a matching
non-NONE attribute/value assignment. Recall and

4When several datasets are available for a language, we
use the unmarked corpus.

5Details were clarified in personal communication with
the authors.

precision are calculated over the entire set, with F1
defined as their harmonic mean.

5.2 Models

We implement and test the following models:

No-Char. Word embeddings are initialized from
Polyglot models, with unseen words assigned the
Polyglot-supplied UNK vector. Following tuning
experiments on all languages with cased script, we
found it beneficial to first back off to the lower-
cased form for an OOV word if its embedding ex-
ists, and only otherwise assign UNK.

MIMICK. Word embeddings are initialized from
Polyglot, with OOV embeddings inferred from a
MIMICK model (Section 3) trained on the Poly-
glot embeddings. Unlike the No-Char case, back-
ing off to lowercased embeddings before using the
MIMICK output did not yield conclusive benefits
and thus we report results for the more straightfor-
ward no-backoff implementation.

CHAR→TAG. Word embeddings are initialized
from Polyglot as in the No-Char model (with low-
ercase backoff), and appended with the output of
a character-level LSTM updated during training
(Plank et al., 2016). This additional module causes
a threefold increase in training time.

Both. Word embeddings are initialized as in
MIMICK, and appended with the CHAR→TAG

LSTM.

Other models. Several non-Polyglot embed-
ding models were examined, all performed sub-
stantially worse than Polyglot. Two of these
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are notable: a random-initialization baseline,
and a model initialized from FastText em-
beddings (tested on English). FastText sup-
plies 300-dimension embeddings for 2.51 million
lowercase-only forms, and no UNK vector.6 Both
of these embedding models were attempted with
and without CHAR→TAG concatenation. Another
model, initialized from only MIMICK output em-
beddings, performed well only on the language
with smallest Polyglot training corpus (Latvian).
A Polyglot model where OOVs were initialized
using an averaged embedding of all Polyglot vec-
tors, rather than the supplied UNK vector, per-
formed worse than our No-Char baseline on a
great majority of the languages.

Last, we do not employ type-based tagset re-
strictions. All tag inventories are computed from
the training sets and each tag selection is per-
formed over the full set.

5.3 Hyperparameters
Based on development set experiments, we set
the following hyperparameters for all models on
all languages: two LSTM layers of hidden size
128, MLP hidden layers of size equal to the num-
ber of each attribute’s possible values; momen-
tum stochastic gradient descent with 0.01 learning
rate; 40 training epochs (80 for 5K settings) with a
dropout rate of 0.5. The CHAR→TAG models use
20-dimension character embeddings and a single
hidden layer of size 128.

6 Results

We report performance in both low-resource and
full-resource settings. Low-resource training sets
were obtained by randomly sampling training sen-
tences, without replacement, until a predefined to-
ken limit was reached. We report the results on the
full sets and on N = 5000 tokens in Table 5 (part-
of-speech tagging accuracy) and Table 6 (mor-
phosyntactic attribute tagging micro-F1). Results
for additional training set sizes are shown in Fig-
ure 2; space constraints prevent us from showing
figures for all languages.

MIMICK as OOV initialization. In nearly all
experimental settings on both tasks, across lan-
guages and training corpus sizes, the MIMICK

embeddings significantly improve over the Poly-
glot UNK embedding for OOV tokens on both

6Vocabulary type-level coverage for the English UD cor-
pus: 55.6% case-sensitive, 87.9% case-insensitive.

POS and morphosyntactic tagging. For POS, the
largest margins are in the Slavic languages (Rus-
sian, Czech, Bulgarian), where word order is rel-
atively free and thus rich word representations are
imperative. Chinese also exhibits impressive im-
provement across all settings, perhaps due to the
large character inventory (> 12,000), for which a
model such as MIMICK can learn well-informed
embeddings using the large Polyglot vocabulary
dataset, overcoming both word- and character-
level sparsity in the UD corpus.7 In morphosyn-
tactic tagging, gains are apparent for Slavic lan-
guages and Chinese, but also for agglutinative lan-
guages — especially Tamil and Turkish — where
the stable morpheme representation makes it easy
for subword modeling to provide a type-level sig-
nal.8 To examine the effects on Slavic and agglu-
tinative languages in a more fine-grained view, we
present results of multiple training-set size exper-
iments for each model, averaged over five repeti-
tions (with different corpus samples), in Figure 2.

MIMICK vs. CHAR→TAG. In several lan-
guages, the MIMICK algorithm fares better than
the CHAR→TAG model on part-of-speech tagging
in low-resource settings. Table 7 presents the POS
tagging improvements that MIMICK achieves over
the pre-trained Polyglot models, with and without
CHAR→TAG concatenation, with 10,000 tokens
of training data. We obtain statistically signifi-
cant improvements in most languages, even when
CHAR→TAG is included. These improvements are
particularly substantial for test-set tokens outside
the UD training set, as shown in the right two
columns. While test set OOVs are a strength of
the CHAR→TAG model (Plank et al., 2016), in
many languages there are still considerable im-
provements to be obtained from the application
of MIMICK initialization. This suggests that with
limited training data, the end-to-end CHAR→TAG

model is unable to learn a sufficiently accurate rep-
resentational mapping from orthography.

7 Conclusion

We present a straightforward algorithm to infer
OOV word embedding vectors from pre-trained,

7Character coverage in Chinese Polyglot is surprisingly
good: only eight characters from the UD dataset are unseen
in Polyglot, across more than 10,000 unseen word types.

8Persian is officially classified as agglutinative but it is
mostly so with respect to derivations. Its word-level inflec-
tions are rare and usually fusional.
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Ntrain = 5000 Full data

No-Char MIMICK CHAR Both Ntrain No-Char MIMICK CHAR Both PSG
→TAG →TAG 2016*

kk — — — — 4,949 81.94 83.95 83.64 84.88
ta 82.30 81.55 84.97 85.22 6,329 80.44 82.96 84.11 84.46
lv 80.44 84.32 84.49 85.91 13,781 85.77 87.95 89.55 89.99
vi 85.67 84.22 84.85 85.43 31,800 89.94 90.34 90.50 90.19
hu 82.88 88.93 85.83 88.34 33,017 91.52 93.88 94.07 93.74
tr 83.69 85.60 84.23 86.25 41,748 90.19 91.82 93.11 92.68
el 93.10 93.63 94.05 94.64 47,449 97.27 98.08 98.09 98.22
bg 90.97 93.16 93.03 93.52 50,000 96.63 97.29 97.95 97.78 98.23
sv 90.87 92.30 92.27 93.02 66,645 95.26 96.27 96.69 96.87 96.60
eu 82.67 84.44 86.01 86.93 72,974 91.67 93.16 94.46 94.29 95.38
ru 87.40 89.72 88.65 90.91 79,772 92.59 95.21 95.98 95.84
da 89.46 90.13 89.96 90.55 88,980 94.14 95.04 96.13 96.02 96.16
id 89.07 89.34 89.81 90.21 97,531 92.92 93.24 93.41 93.70 93.32
zh 80.84 85.69 81.84 85.53 98,608 90.91 93.31 93.36 93.72
fa 93.50 93.58 93.53 93.71 121,064 96.77 97.03 97.20 97.16 97.60
he 90.73 91.69 91.93 91.70 135,496 95.65 96.15 96.59 96.37 96.62
ro 87.73 89.18 88.96 89.38 163,262 95.68 96.72 97.07 97.09
en 87.48 88.45 88.89 88.89 204,587 93.39 94.04 94.90 94.70 95.17
ar 89.01 90.58 90.49 90.62 225,853 95.51 95.72 96.37 96.24 98.87
hi 87.89 87.77 87.92 88.09 281,057 96.31 96.45 96.64 96.61 96.97
it 91.35 92.50 92.45 93.01 289,440 97.22 97.47 97.76 97.69 97.90
es 90.54 91.41 91.71 91.78 382,436 94.68 94.84 95.08 95.05 95.67
cs 87.97 90.81 90.17 91.29 1,173,282 96.34 97.62 98.18 97.93 98.02

Table 5: POS tagging accuracy (UD 1.4 Test). Bold (Italic) indicates significant improvement (degrada-
tion) by McNemar’s test, p < .01, comparing MIMICK to “No-Char”, and “Both” to CHAR→TAG.
* For reference, we copy the reported results of Plank et al. (2016)’s analog to CHAR→TAG. Note that
these were obtained on UD 1.2, and without jointly tagging morphosyntactic attributes.

Ntrain = 5000 Full data

No-Char MIMICK CHAR Both No-Char MIMICK CHAR Both
→TAG →TAG

kk — — — — 21.48 20.07 28.47 20.98
ta 80.68 81.96 84.26 85.63 79.90 81.93 84.55 85.01
lv 56.98 59.86 64.81 65.82 66.16 66.61 76.11 75.44
hu 73.13 76.30 73.62 76.85 80.04 80.64 86.43 84.12
tr 69.58 75.21 75.81 78.93 78.31 83.32 91.51 90.86
el 86.87 86.07 86.40 87.50 94.64 94.96 96.55 96.76
bg 78.26 81.77 82.74 84.93 91.98 93.48 96.12 95.96
sv 82.09 84.12 85.26 88.16 92.45 94.20 96.37 96.57
eu 65.29 66.00 70.67 70.27 82.75 84.74 90.58 91.39
ru 77.31 81.84 79.83 83.53 88.80 91.24 93.54 93.56
da 80.26 82.74 83.59 82.65 92.06 94.14 96.05 95.96
zh 63.29 71.44 63.50 74.66 84.95 85.70 84.86 85.87
fa 84.73 86.07 85.94 81.75 95.30 95.55 96.90 96.80
he 75.35 68.57 81.06 75.24 90.25 90.99 93.35 93.63
ro 84.20 85.64 85.61 87.31 94.97 96.10 97.18 97.14
en 86.71 87.99 88.50 89.61 95.30 95.59 96.40 96.30
ar 84.14 84.17 81.41 81.11 94.43 94.85 95.50 95.37
hi 83.45 86.89 85.64 85.27 96.15 96.21 96.59 96.67
it 89.96 92.07 91.27 92.62 97.32 97.80 98.18 98.31
es 88.11 89.81 88.58 89.63 94.84 95.44 96.21 96.84
cs 68.66 72.65 71.02 73.61 91.75 93.71 95.29 95.31

Table 6: Micro-F1 for morphosyntactic attributes (UD 1.4 Test). Bold (Italic) type indicates significant
improvement (degradation) by a bootstrapped Z-test, p < .01, comparing models as in Table 5. Note
that the Kazakh (kk) test set has only 78 morphologically tagged tokens.
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Part-of-speech tagging (accuracy) Morpho-syntactic attribute tagging (micro-F1)

Figure 2: Results on agglutinative languages (top) and on Slavic languages (bottom). X-axis is number
of training tokens, starting at 500. Error bars are the standard deviations over five random training data
subsamples.

Test set Missing Full OOV
embeddings vocabulary (UD)

CHAR→TAG w/o with w/o with

Persian 2.2% 0.03 0.41 0.83 0.81
Hindi 3.8% 0.59 0.21 3.61 0.36
English 4.5% 0.83 0.25 3.26 0.49
Spanish 5.2% 0.33 -0.26 1.03 -0.66
Italian 6.6% 0.84 0.28 1.83 0.21
Danish 7.8% 0.65 0.99 2.41 1.72
Hebrew 9.2% 1.25 0.40 3.03 0.06
Swedish 9.2% 1.50 0.55 4.75 1.79
Bulgarian 9.4% 0.96 0.12 1.83 -0.11
Czech 10.6% 2.24 1.32 5.84 2.20
Latvian 11.1% 2.87 1.03 7.29 2.71
Hungarian 11.6% 2.62 2.01 5.76 4.85
Turkish 14.5% 1.73 1.69 3.58 2.71
Tamil* 16.2% 2.52 0.35 2.09 1.35
Russian 16.5% 2.17 1.82 4.55 3.52
Greek 17.5% 1.07 0.34 3.30 1.17
Indonesian 19.1% 0.46 0.25 1.19 0.75
Kazakh* 21.0% 2.01 1.24 5.34 4.20
Vietnamese 21.9% 0.53 1.18 1.07 5.73
Romanian 27.1% 1.49 0.47 4.22 1.24
Arabic 27.1% 1.23 0.32 2.15 0.22
Basque 35.3% 2.39 1.06 5.42 1.68
Chinese 69.9% 4.19 2.57 9.52 5.24

Table 7: Absolute gain in POS tagging accuracy
from using MIMICK for 10,000-token datasets (all
tokens for Tamil and Kazakh). Bold denotes sta-
tistical significance (McNemar’s test,p < 0.01).

limited-vocabulary models, without need to ac-
cess the originating corpus. This method is par-
ticularly useful for low-resource languages and
tasks with little labeled data available, and in
fact is task-agnostic. Our method improves per-
formance over word-based models on annotated
sequence-tagging tasks for a large variety of lan-
guages across dimensions of family, orthography,
and morphology. In addition, we present a Bi-
LSTM approach for tagging morphosyntactic at-
tributes at the token level. In this paper, the MIM-
ICK model was trained using characters as input,
but future work may consider the use of other
subword units, such as morphemes, phonemes, or
even bitmap representations of ideographic char-
acters (Costa-jussà et al., 2017).
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Abstract

We present SuperPivot, an analysis
method for low-resource languages that
occur in a superparallel corpus, i.e., in a
corpus that contains an order of magni-
tude more languages than parallel corpora
currently in use. We show that SuperPivot
performs well for the crosslingual analysis
of the linguistic phenomenon of tense.
We produce analysis results for more than
1000 languages, conducting – to the best
of our knowledge – the largest crosslin-
gual computational study performed to
date. We extend existing methodology for
leveraging parallel corpora for typological
analysis by overcoming a limiting as-
sumption of earlier work: We only require
that a linguistic feature is overtly marked
in a few of thousands of languages as
opposed to requiring that it be marked in
all languages under investigation.

1 Introduction

Significant linguistic resources such as machine-
readable lexicons and part-of-speech (POS) tag-
gers are available for at most a few hundred lan-
guages. This means that the majority of the
languages of the world are low-resource. Low-
resource languages like Fulani are spoken by tens
of millions of people and are politically and eco-
nomically important; e.g., to manage a sudden
refugee crisis, NLP tools would be of great ben-
efit. Even “small” languages are important for
the preservation of the common heritage of hu-
mankind that includes natural remedies and lin-
guistic and cultural diversity that can potentially
enrich everybody. Thus, developing analysis
methods for low-resource languages is one of the
most important challenges of NLP today.

We address this challenge by proposing a new
method for analyzing what we call superparallel
corpora, corpora that are by an order of magnitude
more parallel than corpora that have been available
in NLP to date. The corpus we work with in this
paper is the Parallel Bible Corpus (PBC) that con-
sists of translations of the New Testament in 1169
languages. Given that no NLP analysis tools are
available for most of these 1169 languages, how
can we extract the rich information that is poten-
tially hidden in such superparallel corpora?

The method we propose is based on two hy-
potheses. H1 Existence of overt encoding. For
any important linguistic distinction f that is fre-
quently encoded across languages in the world,
there are a few languages that encode f overtly
on the surface. H2 Overt-to-overt and overt-to-
non-overt projection. For a language l that en-
codes f , a projection of f from the “overt lan-
guages” to l in the superparallel corpus will iden-
tify the encoding that l uses for f , both in cases
in which the encoding that l uses is overt and in
cases in which the encoding that l uses is non-
overt. Based on these two hypotheses, our method
proceeds in 5 steps.

1. Selection of a linguistic feature. We select a
linguistic feature f of interest. Running example:
We select past tense as feature f .

2. Heuristic search for head pivot. Through
a heuristic search, we find a language lh that con-
tains a head pivot ph that is highly correlated with
the linguistic feature of interest.

Running example: “ti” in Seychelles Creole
(CRS). CRS “ti” meets our requirements for a
head pivot well as will be verified empirically in
§3. First, “ti” is a surface marker: it is easily
identifable through whitespace tokenization and it
is not ambiguous, e.g., it does not have a second
meaning apart from being a grammatical marker.
Second, “ti” is a good marker for past tense in
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terms of both “precision” and “recall”. CRS has
mandatory past tense marking (as opposed to lan-
guages in which tense marking is facultative) and
“ti” is highly correlated with the general notion of
past tense.

This does not mean that every clause that a lin-
guist would regard as past tense is marked with
“ti” in CRS. For example, some tense-aspect con-
figurations that are similar to English present per-
fect are marked with “in” in CRS, not with “ti”
(e.g., ENG “has commanded” is translated as “in
ordonn”).

Our goal is not to find a head language and a
head pivot that is a perfect marker of f . Such a
head pivot probably does not exist; or, more pre-
cisely, linguistic features are not completely rigor-
ously defined. In a sense, one of the contributions
of this work is that we provide more rigorous defi-
nitions of past tense across languages; e.g., “ti” in
CRS is one such rigorous definition of past tense
and it automatically extends (through projection)
to 1000 languages in the superparallel corpus.

3. Projection of head pivot to larger pivot
set. Based on an alignment of the head language
to the other languages in the superparallel corpus,
we project the head pivot to all other languages
and search for highly correlated surface markers,
i.e., we search for additional pivots in other lan-
guages. This projection to more pivots achieves
three goals. First, it makes the method more ro-
bust. Relying on a single pivot would result in
many errors due to the inherent noisiness of lin-
guistic data and because several components we
use (e.g., alignment of the languages in the su-
perparallel corpus) are imperfect. Second, as we
discussed above, the head pivot does not neces-
sarily have high “recall”; our example was that
CRS “ti” is not applied to certain clauses that
would be translated using present perfect in En-
glish. Thus, moving to a larger pivot set increases
recall. Third, as we will see below, the pivot set
can be leveraged to create a fine-grained map of
the linguistic feature. Consider clauses referring
to eventualities in the past that English speakers
would render in past progressive, present perfect
and simple past tense. Our hope is that the pivot
set will cover these distinctions, i.e., one of the
pivots marks past progressive, but not present pre-
fect and simple past, another pivot marks present
perfect, but not the other two and so on. An exam-
ple of this type of map, including distinctions like

progressive and perfective aspect, is given in §4.
Running example: We compute the correla-

tion of “ti” with words in other languages and se-
lect the 100 most highly correlated words as piv-
ots. Examples of pivots we find this way are Tor-
res Strait Creole “bin” (from English “been”) and
Tzotzil “laj”. “laj” is a perfective marker, e.g.,
“Laj meltzaj -uk” ‘LAJ be-made subj’ means “It’s
done being built” (Aissen, 1987).

4. Projection of pivot set to all languages.
Now that we have a large pivot set, we project the
pivots to all other languages to search for linguis-
tic devices that express the linguistic feature f . Up
to this point, we have made the assumption that it
is easy to segment text in all languages into pieces
of a size that is not too small (individual charac-
ters of the Latin alphabet would be too small) and
not too large (entire sentences as tokens would be
too large). Segmentation on standard delimiters
is a good approximation for the majority of lan-
guages – but not for all: it undersegments some
(e.g., the polysynthetic language Inuit) and over-
segments others (e.g., languages that use punctua-
tion marks as regular characters).

For this reason, we do not employ tokenization
in this step. Rather we search for character n-
grams (2 ≤ n ≤ 6) to find linguistic devices that
express f . This implementation of the search pro-
cedure is a limitation – there are many linguistic
devices that cannot be found using it, e.g., tem-
plates in templatic morphology. We leave address-
ing this for future work (§7).

Running example: We find “-ed” for English
and “-te” for German as surface features that are
highly correlated with the 100 past tense pivots.

5. Linguistic analysis. The result of the previ-
ous steps is a superparallel corpus that is richly an-
notated with information about linguistic feature
f . This structure can be exploited for the analysis
of a single language li that may be the focus of
a linguistic investigation. Starting with the char-
acter n-grams that were found in the step “projec-
tion of pivot set to all languages”, we can explore
their use and function, e.g, for the mined n-gram
“-ed” in English (assuming English is the language
li and it is unfamiliar to us). Many of the other
1000 languages provide annotations of linguistic
feature f for li: both the languages that are part of
the pivot set (e.g., Tzotzil “laj”) and the mined n-
grams in other languages that we may have some
knowledge about (e.g., “-te” in German).
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We can also use the structure we have gener-
ated for typological analysis across languages fol-
lowing the work of Michael Cysouw ((Cysouw,
2014), §5). Our method is an advancement com-
putationally over Cysouw’s work because our
method scales to thousands of languages as we
demonstrate below.

Running example: We sketch the type of analy-
sis that our new method makes possible in §4.

The above steps “1. heuristic search for head
pivot” and “2. projection of head pivot to larger
pivot set” are based on H1: we assume the exis-
tence of overt coding in a subset of languages.

The above steps “2. projection of head pivot to
larger pivot set” and “3. projection of pivot set
to all languages” are based on H2: we assume
that overt-to-overt and overt-to-non-overt pro-
jection is possible.

In the rest of the paper, we will refer to the
method that consists of steps 1 to 5 as SuperPivot:
“linguistic analysis of SUPERparallel corpora us-
ing surface PIVOTs”.

We make three contributions. (i) Our basic hy-
potheses are H1 and H2. (H1) For an important
linguistic feature, there exist a few languages that
mark it overtly and easily recognizably. (H2) It
is possible to project overt markers to overt and
non-overt markers in other languages. Based on
these two hypotheses we design SuperPivot, a new
method for analyzing highly parallel corpora, and
show that it performs well for the crosslingual
analysis of the linguistic phenomenon of tense.
(ii) Given a superparallel corpus, SuperPivot can
be used for the analysis of any low-resource lan-
guage represented in that corpus. In the supple-
mentary material, we present results of our analy-
sis for three tenses (past, present, future) for 11631

languages. An evaluation of accuracy is presented
in Table 3.2. (iii) We extend Michael Cysouw’s
method of typological analysis using parallel cor-
pora by overcoming several limiting factors. The
most important is that Cysouw’s method is only
applicable if markers of the relevant linguistic fea-
ture are recognizable on the surface in all lan-
guages. In contrast, we only assume that markers
of the relevant linguistic feature are recognizable
on the surface in a small number of languages.

1We exclude six of the 1169 languages because they do
not share enough verses with the rest.

2 SuperPivot: Description of method

1. Selection of a linguistic feature. The linguistic
feature of interest f is selected by the person who
performs a SuperPivot analysis, i.e., by a linguist,
NLP researcher or data scientist. Henceforth, we
will refer to this person as the linguist.

In this paper, f ∈ F = {past, present, future}.
2. Heuristic search for head pivot. There are

several ways for finding the head language and the
head pivot. Perhaps the linguist knows a language
that has a good head pivot. Or she is a trained ty-
pologist and can find the head pivot by consulting
the typological literature.

In this paper, we use our knowledge of English
and an alignment from English to all other lan-
guages to find head pivots. (See below for details
on alignment.) We define a “query” in English
and search for words that are highly correlated to
the query in other languages. For future tense, the
query is simply the word “will”, so we search for
words in other languages that are highly correlated
with “will”. For present tense, the query is the
union of “is”, “are” and “am”. So we search for
words in other languages that are highly correlated
with the “merger” of these three words. For past
tense, we POS tag the English part of PBC and
merge all words tagged as past tense into one past
tense word.2 We then search for words in other
languages that are highly correlated with this arti-
ficial past tense word.

As an additional constraint, we do not select the
most highly correlated word as the head pivot, but
the most highly correlated word in a Creole lan-
guage. Our rationale is that Creole languages are
more regular than other languages because they
are young and have not accumulated “historical
baggage” that may make computational analysis
more difficult.

Table 1 lists the three head pivots for F .
3. Projection of head pivot to larger pivot set.

We first use fast align (Dyer et al., 2013) to align
the head language to all other languages in the cor-
pus. This alignment is on the word level.

We compute a score for each word in each lan-
guage based on the number of times it is aligned
to the head pivot, the number of times it is aligned
to another word and the total frequencies of head
pivot and word. We use χ2 (Casella and Berger,
2008) as the score throughout this paper. Finally,

2Past tense is defined as tags BED, BED*, BEDZ,
BEDZ*, DOD*, VBD, DOD. We use NLTK (Bird, 2006).
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we select the k words as pivots that have the high-
est association score with the head pivot.

We impose the constraint that we only select
one pivot per language. So as we go down the
list, we skip pivots from languages for which we
already have found a pivot. We set k = 100 in this
paper. Table 1 gives the top 10 pivots.

4. Projection of pivot set to all languages.
As discussed above, the process so far has been
based on tokenization. To be able to find markers
that cannot be easily detected on the surface (like
“-ed” in English), we identify non-tokenization-
based character n-gram features in step 4.

The immediate challenge is that without tokens,
we have no alignment between the languages any-
more. We could simply assume that the occur-
rence of a pivot has scope over the entire verse.
But this is clearly inadequate, e.g., for the sen-
tence “I arrived yesterday, I’m staying today, and
I will leave tomorrow”, it is incorrect to say that
it is marked as past tense (or future tense) in its
entirety. Fortunately, the verses in the New Testa-
ment mostly have a simple structure that limits the
variation in where a particular piece of content oc-
curs in the verse. We therefore make the assump-
tion that a particular relative position in language
l1 (e.g., the character at relative position 0.62) is
aligned with the same relative position in l2 (i.e.,
the character at relative position 0.62). This is
likely to work for a simple example like “I arrived
yesterday, I’m staying today, and I will leave to-
morrow” across languages.

In our analysis of errors, we found many cases
where this assumption breaks down. A well-
known problematic phenomenon for our method
is the difference between, say, VSO and SOV lan-
guages: the first class puts the verb at the begin-
ning, the second at the end. However, keep in
mind that we accumulate evidence over k = 100
pivots and then compute aggregate statistics over
the entire corpus. As our evaluation below shows,
the “linear alignment” assumption does not seem
to do much harm given the general robustness of
our method.

One design element that increases robustness is
that we find the two positions in each verse that are
most highly (resp. least highly) correlated with the
linguistic feature f . Specifically, we compute the
relative position x of each pivot that occurs in the
verse and apply a Gaussian filter (σ = 6 where the
unit of length is the character), i.e., we set p(x) ≈

0.066 (0.066 is the density of a Gaussian with σ =
6 at x = 0) and center a bell curve around x. The
total score for a position x is then the sum of the
filter values at x summed over all occurring pivots.
Finally, we select the positions xmin and xmax with
lowest and highest values for each verse.
χ2 is then computed based on the number of

times a character n-gram occurs in a window of
size w around xmax (positive count) and in a win-
dow of sizew around xmin (negative count). Verses
in which no pivot occurs are used for the negative
count in their entirety. The top-ranked character n-
grams are then output for analysis by the linguist.
We set w = 20.

5. Linguistic analysis. We now have created a
structure that contains rich information about the
linguistic feature: for each verse we have relative
positions of pivots that can be projected across lan-
guages. We also have maximum positions within
a verse that allow us to pinpoint the most likely
place in the vicinity of which linguistic feature f
is marked in all languages. This structure can be
used for the analysis of individual low-resource
languages as well as for typological analysis. We
will give an example of such an analysis in §4.

3 Data, experiments and results

3.1 Data

We use a New Testament subset of the Parallel
Bible Corpus (PBS) (Mayer and Cysouw, 2014)
that consists of 1556 translations of the Bible in
1169 unique languages. We consider two lan-
guages to be different if they have different ISO
639-3 codes.

The translations are aligned on the verse level.
However, many translations do not have complete
coverage, so that most verses are not present in at
least one translation. One reason for this is that
sometimes several consecutive verses are merged,
so that one verse contains material that is in real-
ity not part of it and the merged verses may then
be missing from the translation. Thus, there is a
trade-off between number of parallel translations
and number of verses they have in common. Al-
though some preprocessing was done by the au-
thors of the resource, many translations are not
preprocessed. For example, Japanese is not tok-
enized. We also observed some incorrectness and
sparseness in the metadata. One example is that
one Fijian translation (see §4) is tagged fij hindi,
but it is Fijian, not Fiji Hindi.
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We use the 7958 verses with the best coverage
across languages.

3.2 Experiments

1. Selection of a linguistic feature. We conduct
three experiments for the linguistic features past
tense, present tense and future tense.

2. Heuristic search for head pivot. We use the
queries described in §2 for finding the following
three head pivots. (i) Past tense head pivot: “ti”
in Seychellois Creole (CRS) (McWhorter, 2005).
(ii) Present tense head pivot: “ta” in Papiamentu
(PAP) (Andersen, 1990). (iii) Future tense head
pivot: “bai” in Tok Pisin (TPI) (Traugott, 1978;
Sankoff, 1990).

3. Projection of head pivot to larger pivot set.
Using the method described in §2, we project each
head pivot to a set of k = 100 pivots. Table 1 gives
the top 10 pivots for each tense.

4. Projection of pivot set to all languages. Us-
ing the method described in §2, we compute highly
correlated character n-gram features, 2 ≤ n ≤ 6,
for all 1163 languages.

See §4 for the last step of SuperPivot: 5. Lin-
guistic analysis.

3.3 Evaluation

We rank n-gram features and retain the top 10, for
each linguistic feature, for each language and for
each n-gram size. We process 1556 translations.
Thus, in total, we extract 1556× 5× 10 n-grams.

Table 3.2 shows Mean Reciprocal Rank (MRR)
for 10 languages. The rank for a particular rank-
ing of n-grams is the first n-gram that is highly
correlated with the relevant tense; e.g., character
subsequences of the name “Paulus” are evaluated
as incorrect, the subsequence “-ed” in English as
correct for past. MRR is averaged over all n-gram
sizes, 2 ≤ n ≤ 6. Chinese has consistent tense
marking only for future, so results are poor. Rus-
sian and Polish perform poorly because their cen-
tral grammatical category is aspect, not tense. The
poor performance on Arabic is due to the limits
of character n-gram features for a “templatic” lan-
guage.

During this evaluation, we noticed a surprising
amount of variation within translations of one lan-
guage; e.g., top-ranked n-grams for some German
translations include names like “Paulus”. We sus-
pect that for literal translations, linear alignment
(§2) yields good n-grams. But many translations

are free, e.g., they change the sequence of clauses.
This deteriorates mined n-grams. See §7.

A reviewer points out that simple baselines may
be available if all we want to do is compute fea-
tures highly associated with past tense as evaluated
in Table 3.2. As one such baseline, they suggested
to first perform a word alignment with the head
pivot and then search for highly associated fea-
tures in the words that were aligned with the head
pivot. We implemented this baseline and mea-
sured its performance. Indeed, the results were
roughly comparable to the more complex method
that we evaluate in Table 3.2.

However, our evaluation was not designed to be
a direct evaluation of our method, but only meant
as a relatively easy way of getting a quantitative
sense of the accuracy of our results. The core
result of our method is a corpus in which each
language annotates each other language. This is
only meaningful on the token or context level, not
on the word level. For example, recognizing “-
ed” as a possible past tense marker in English
and applying it uniformly throughout the corpus
would result in the incorrect annotation of the ad-
jective “red” as a past tense form. In our pro-
posed method, this will not happen since the anno-
tation proceeds from reliable pivots to less reliable
features, not the other way round. Nevertheless,
we agree with the reviewer that we do not make
enough use of “type-level” features in our method
(type-level features of non-pivot languages) and
this is something we plan to address in the future.

4 A map of past tense

To illustrate the potential of our method we select
five out of the 100 past tense pivots that give rise
to large clusters of distinct combinations. Specifi-
cally, starting with CRS, we find other pivots that
“split” the set of verses that contain the CRS past
tense pivot “ti” into two parts that have about the
same size. This gives us two sets. We now look
for a pivot that splits one of these two sets about
evenly and so on. After iterating four times, we
arrive at five pivots: CRS “ti”, Fijian (FIJ) “qai”,
Hawaiian Creole (HWC) “wen”, Torres Strait Cre-
ole (TCS) “bin” and Tzotzil (TZO) “laj”.

Figure 1 shows a t-SNE (Maaten and Hinton,
2008) visualization of the large clusters of com-
binations that are found for these five languages,
including one cluster of verses that do not contain
any of the five pivots.
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Verses marked in CRS

crs:ti hwc:wen tcs:bin
crs:ti fij:qai tcs:bin tzo:laj
crs:ti tcs:bin
crs:ti hwc:wen tcs:bin tzo:laj
crs:ti fij:qai hwc:wen tcs:bin tzo:laj
crs:ti fij:qai tcs:bin
no_marker

Verses marked in FIJ

crs:ti hwc:wen tcs:bin
crs:ti fij:qai tcs:bin tzo:laj
crs:ti tcs:bin
crs:ti hwc:wen tcs:bin tzo:laj
crs:ti fij:qai hwc:wen tcs:bin tzo:laj
crs:ti fij:qai tcs:bin
no_marker

Verses marked in HWC

crs:ti hwc:wen tcs:bin
crs:ti fij:qai tcs:bin tzo:laj
crs:ti tcs:bin
crs:ti hwc:wen tcs:bin tzo:laj
crs:ti fij:qai hwc:wen tcs:bin tzo:laj
crs:ti fij:qai tcs:bin
no_marker

Verses marked in TCS

crs:ti hwc:wen tcs:bin
crs:ti fij:qai tcs:bin tzo:laj
crs:ti tcs:bin
crs:ti hwc:wen tcs:bin tzo:laj
crs:ti fij:qai hwc:wen tcs:bin tzo:laj
crs:ti fij:qai tcs:bin
no_marker

Verses marked in TZO

crs:ti hwc:wen tcs:bin
crs:ti fij:qai tcs:bin tzo:laj
crs:ti tcs:bin
crs:ti hwc:wen tcs:bin tzo:laj
crs:ti fij:qai hwc:wen tcs:bin tzo:laj
crs:ti fij:qai tcs:bin
no_marker

Verses not marked in neither of languages

crs:ti hwc:wen tcs:bin
crs:ti fij:qai tcs:bin tzo:laj
crs:ti tcs:bin
crs:ti hwc:wen tcs:bin tzo:laj
crs:ti fij:qai hwc:wen tcs:bin tzo:laj
crs:ti fij:qai tcs:bin
no_marker

Figure 1: A map of past tense based on the largest clusters of verses with particular combinations of
the past tense pivots from Seychellois Creole (CRS), Fijian (FIJ), Hawaiian Creole (HWC), Torres Strait
Creole (TCS) and Tzotzil (TZO). For each of the five languages, we present a subfigure that highlights
the subset of verse clusters that are marked by the pivot of that language. The sixth subfigure highlights
verses not marked by any of the five pivots.
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past present future
code language pivot code language pivot code language pivot

HPs CRS Seychelles C. ti PAP Papiamentu ta TPI Tok Pisin bai

GUX Gourmanchéma den NOB Norwegian Bokmål er LID Nyindrou kameh
MAW Mampruli daa HIF Fiji Hindi hei GUL Sea Island C. gwine
GFK Patpatar ga AFR Afrikaans is TGP Tangoa pa
YAL Yalunka yi DAN Danish er BUK Bugawac oc
TOH Gitonga di SWE Swedish är BIS Bislama bambae
DGI Northern Dagara tι EPO Esperanto estas PIS Pijin bae
BUM Bulu (Cameroon) nga ELL Greek είναι APE Bukiyip eke
TCS Torres Strait C. bin HIN Hindi haai HWC Hawaiian C. goin
NDZ Ndogo giὶ NAQ Khoekhoe ra NHR Nharo gha

Table 1: Top ten past, present, and future tense pivots extracted from 1163 languages. HPs = head pivots.
C. = Creole

language past present future all
Arabic 1.00 0.39 0.77 0.72
Chinese 0.00 0.00 0.87 0.29
English 1.00 1.00 1.00 1.00
French 1.00 1.00 1.00 1.00
German 1.00 1.00 1.00 1.00
Italian 1.00 1.00 1.00 1.00
Persian 0.77 1.00 1.00 0.92
Polish 1.00 1.00 0.58 0.86
Russian 0.90 0.50 0.62 0.67
Spanish 1.00 1.00 1.00 1.00
all 0.88 0.79 0.88 0.85

Table 2: MRR results for step 4. See text for de-
tails.

This figure is a map of past tense for all 1163
languages, not just for CRS, FIJ, HWC, TCS and
TZO: once the interpretation of a particular clus-
ter has been established based on CRS, FIJ, HWC,
TCS and TZO, we can investigate this cluster in
the 1164 other languages by looking at the verses
that are members of this cluster. This methodol-
ogy supports the empirical investigation of ques-
tions like “how is progressive past tense expressed
in language X”? We just need to look up the clus-
ter(s) that correspond to progressive past tense,
look up the verses that are members and retrieve
the text of these verses in language X.

To give the reader a flavor of the distinctions
that are reflected in these clusters, we now list phe-
nomena that are characteristic of verses that con-
tain only one of the five pivots; these phenomena
identify properties of one language that the other
four do not have.

CRS “ti”. CRS has a set of markers that can be
systematically combined, in particular, a progres-
sive marker “pe” that can be combined with the
past tense marker “ti”. As a result, past progres-
sive sentences in CRS are generally marked with
“ti”. Example: “43004031 Meanwhile, the disci-
ples were urging Jesus, ‘Rabbi, eat something.”’
“crs bible 43004031 Pandan sa letan, bann disip ti
pe sipliy Zezi, ‘Met! Manz en pe.”’

The other four languages do not consistently use
the pivot for marking the past progressive; e.g.,
HWC uses “was begging” in 43004031 (instead of
“wen”) and TCS uses “kip tok strongwan” ‘keep
talking strongly’ in 43004031 (instead of “bin”).

FIJ “qai”. This pivot means “and then”. It
is highly correlated with past tense in the New
Testament because most sequential descriptions
of events are descriptions of past events. But
there are also some non-past sequences. Example:
“eng newliving 44009016 And I will show him
how much he must suffer for my name’s sake.”
“fij hindi 44009016 Au na qai vakatakila vua na
levu ni ka e na sota kaya e na vukuqu.” This
verse is future tense, but it continues a temporal se-
quence (it starts in the preceding verse) and there-
fore FIJ uses “qai”. The pivots of the other four
languages are not general markers of temporal se-
quentiality, so they are not used for the future.

HWC “wen”. HWC is less explicit than the
other four languages in some respects and more
explicit in others. It is less explicit in that not
all sentences in a sequence of past tense sentences
need to be marked explicitly with “wen”, resulting
in some sentences that are indistinguishable from
present tense. On the other hand, we found many
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cases of noun phrases in the other four languages
that refer implicitly to the past, but are trans-
lated as a verb with explicit past tense marking in
HWC. Examples: “hwc 2000 40026046 Da guy
who wen set me up . . . ” ‘the guy who WEN set
me up’, “eng newliving 40026046 . . . my betrayer
. . . ”; “hwc 2000 43008005 . . . Moses wen tell us
in da Rules . . . ” ‘Moses WEN tell us in the rules’,
“eng newliving 43008005 The law of Moses says
. . . ”; “hwc 2000 47006012 We wen give you guys
our love . . . ”, “eng newliving 47006012 There is
no lack of love on our part . . . ”. In these cases, the
other four languages (and English too) use a noun
phrase with no tense marking that is translated as
a tense-marked clause in HWC.

While preparing this analysis, we realized that
HWC “wen” unfortunately does not meet one of
the criteria we set out for pivots: it is not unam-
biguous. In addition to being a past tense marker
(derived from standard English “went”), it can also
be a conjunction, derived from “when”. This am-
biguity is the cause for some noise in the clusters
marked for presence of HWC “wen” in the figure.

TCS “bin”. Conditionals is one pattern we
found in verses that are marked with TCS “bin”,
but are not marked for past tense in the other four
languages. Example: “tcs bible 46015046 Wanem
i bin kam pas i da nomal bodi ane den da spir-
itbodi i bin kam apta.” ‘what came first is the
normal body and then the spirit body came af-
ter’, “eng newliving 46015046 What comes first
is the natural body, then the spiritual body comes
later.” Apparently, “bin” also has a modal aspect
in TCS: generic statements that do not refer to
specific events are rendered using “bin” in TCS
whereas the other four languages (and also En-
glish) use the default unmarked tense, i.e., present
tense.

TZO “laj”. This pivot indicates perfective as-
pect. The other four past tense pivots are not per-
fective markers, so that there are verses that are
marked with “laj”, but not marked with the past
tense pivots of the other four languages. Exam-
ple: “tzo huixtan 40010042 . . . ja’ch-ac’bat ben-
dición yu’un hech laj spas . . . ” (literally “a bless-
ing . . . LAJ make”), “eng newliving 40010042
. . . you will surely be rewarded.” Perfective aspect
and past are correlated in the real world since most
events that are viewed as simple wholes are in the
past. But future events can also be viewed this way
as the example shows.

Similar maps for present and future tenses are
presented in the supplementary material.

5 Related work

Our work is inspired by (Cysouw, 2014; Cysouw
and Wälchli, 2007); see also (Dahl, 2007; Wälchli,
2010). Cysouw creates maps like Figure 1 by
manually identifying occurrences of the proper
noun “Bible” in a parallel corpus of Jehovah’s
Witnesses’ texts. Areas of the map correspond
to semantic roles, e.g., the Bible as actor (it tells
you to do something) or as object (it was printed).
This is a definition of semantic roles that is com-
plementary to and different from prior typologi-
cal research because it is empirically grounded in
real language use across a large number of lan-
guages. It allows typologists to investigate tradi-
tional questions from a new perspective.

The field of typology is important for both the-
oretical (Greenberg, 1960; Whaley, 1996; Croft,
2002) and computational (Heiden et al., 2000;
Santaholma, 2007; Bender, 2009, 2011) linguis-
tics. Typology is concerned with all areas of lin-
guistics: morphology (Song, 2014), syntax (Com-
rie, 1989; Croft, 2001; Croft and Poole, 2008;
Song, 2014), semantic roles (Hartmann et al.,
2014; Cysouw, 2014), semantics (Koptjevskaja-
Tamm et al., 2007; Dahl, 2014; Wälchli and
Cysouw, 2012; Sharma, 2009), etc. Typologi-
cal information is important for many NLP tasks
including discourse analysis (Myhill and My-
hill, 1992), information retrieval (Pirkola, 2001),
POS tagging (Bohnet and Nivre, 2012), pars-
ing (Bohnet and Nivre, 2012; McDonald et al.,
2013), machine translation (Hajič et al., 2000;
Kunchukuttan and Bhattacharyya, 2016) and mor-
phology (Bohnet et al., 2013).

Tense is a central phenomenon in linguistics
and the languages of the world differ greatly in
whether and how they express tense (Traugott,
1978; Bybee and Dahl, 1989; Dahl, 2000, 1985;
Santos, 2004; Dahl, 2007; Santos, 2004; Dahl,
2014).

Low resource. Even resources with the widest
coverage like World Atlas of Linguistic Structures
(WALS) (Dryer et al., 2005) have little informa-
tion for hundreds of languages. Many researchers
have taken advantage of parallel information for
extracting linguistic knowledge in low-resource
settings (Resnik et al., 1997; Resnik, 2004; Mihal-
cea and Simard, 2005; Mayer and Cysouw, 2014;
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Christodouloupoulos and Steedman, 2015; Lison
and Tiedemann, 2016).

Parallel projection. Parallel projection across
languages has been used for a variety of NLP
tasks. Machine translation aside, which is the
most natural task on parallel corpora (Brown
et al., 1993), parallel projection has been used for
sense disambiguation (Ide, 2000), parsing (Hwa
et al., 2005), paraphrasing (Bannard and Callison-
Burch, 2005), part-of-speech tagging (Mukerjee
et al., 2006), coreference resolution (de Souza and
Orăsan, 2011), event marking (Nordrum, 2015),
morphological segmentation (Chung et al., 2016),
bilingual analysis of linguistic marking (McEnery
and Xiao, 1999; Xiao and McEnery, 2002), as well
as language classification (Asgari and Mofrad,
2016; Östling and Tiedemann, 2017).

6 Discussion

Our motivation is not to develop a method that can
then be applied to many other corpora. Rather,
our motivation is that many of the more than 1000
languages in the Parallel Bible Corpus are low-
resource and that providing a method for creat-
ing the first richly annotated corpus (through the
projection of annotation we propose) for many of
these languages is a significant contribution.

The original motivation for our approach is
provided by the work of the typologist Michael
Cysouw. He created the same type of annotation
as we, but he produced it manually whereas we use
automatic methods. But the structure of the anno-
tation and its use in linguistic analysis is the same
as what we provide.

The basic idea of the utility of the final out-
come of SuperPivot is that the 1163 languages all
richly annotate each other. As long as there are a
few among the 1163 languages that have a clear
marker for linguistic feature f , then this marker
can be projected to all other languages to richly
annotate them. For any linguistic feature, there is
a good chance that a few languages clearly mark
it. Of course, this small subset of languages will
be different for every linguistic feature.

Thus, even for extremely resource-poor lan-
guages for which at present no annotated resources
exist, SuperPivot will make available richly an-
notated corpora that should advance linguistic re-
search on these languages.

7 Conclusion

We presented SuperPivot, an analysis method for
low-resource languages that occur in a superpar-
allel corpus, i.e., in a corpus that contains an or-
der of magnitude more languages than parallel
corpora currently in use. We showed that Su-
perPivot performs well for the crosslingual anal-
ysis of the linguistic phenomenon of tense. We
produced analysis results for more than 1000 lan-
guages, conducting – to the best of our knowledge
– the largest crosslingual computational study per-
formed to date. We extended existing methodol-
ogy for leveraging parallel corpora for typological
analysis by overcoming a limiting assumption of
earlier work. We only require that a linguistic fea-
ture is overtly marked in a few of thousands of lan-
guages as opposed to requiring that it be marked in
all languages under investigation.

8 Future directions

There are at least two future directions that seem
promising to us.

• Creating a common map of tense along the
lines of Figure 1, but unifying the three tenses

• Addressing shortcomings of the way we
compute alignments: (i) generalizing char-
acter n-grams to more general features, so
that templates in templatic morphology, redu-
plication and other more complex manifesta-
tions of linguistic features can be captured;
(ii) use n-gram features of different lengths
to account for differences among languages,
e.g., shorter ones for Chinese, longer ones for
English; (iii) segmenting verses into clauses
and performing alignment not on the verse
level (which caused many errors in our exper-
iments), but on the clause level instead; (iv)
using global information more effectively,
e.g., by extracting alignment features from
automatically induced bi- or multilingual lex-
icons.
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Abstract

This paper presents a novel neural ma-
chine translation model which jointly
learns translation and source-side latent
graph representations of sentences. Un-
like existing pipelined approaches using
syntactic parsers, our end-to-end model
learns a latent graph parser as part of
the encoder of an attention-based neu-
ral machine translation model, and thus
the parser is optimized according to the
translation objective. In experiments, we
first show that our model compares favor-
ably with state-of-the-art sequential and
pipelined syntax-based NMT models. We
also show that the performance of our
model can be further improved by pre-
training it with a small amount of tree-
bank annotations. Our final ensemble
model significantly outperforms the previ-
ous best models on the standard English-
to-Japanese translation dataset.

1 Introduction

Neural Machine Translation (NMT) is an active
area of research due to its outstanding empiri-
cal results (Bahdanau et al., 2015; Luong et al.,
2015; Sutskever et al., 2014). Most of the exist-
ing NMT models treat each sentence as a sequence
of tokens, but recent studies suggest that syntac-
tic information can help improve translation accu-
racy (Eriguchi et al., 2016b, 2017; Sennrich and
Haddow, 2016; Stahlberg et al., 2016). The exist-
ing syntax-based NMT models employ a syntactic
parser trained by supervised learning in advance,
and hence the parser is not adapted to the transla-
tion tasks. An alternative approach for leveraging
syntactic structure in a language processing task
is to jointly learn syntactic trees of the sentences

All the calculated electronic band structures are metallic  .
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Figure 1: An example of the learned latent graphs.
Edges with a small weight are omitted.

along with the target task (Socher et al., 2011; Yo-
gatama et al., 2017).

Motivated by the promising results of recent
joint learning approaches, we present a novel
NMT model that can learn a task-specific latent
graph structure for each source-side sentence. The
graph structure is similar to the dependency struc-
ture of the sentence, but it can have cycles and is
learned specifically for the translation task. Un-
like the aforementioned approach of learning sin-
gle syntactic trees, our latent graphs are composed
of “soft” connections, i.e., the edges have real-
valued weights (Figure 1). Our model consists of
two parts: one is a task-independent parsing com-
ponent, which we call a latent graph parser, and
the other is an attention-based NMT model. The
latent parser can be independently pre-trained with
human-annotated treebanks and is then adapted to
the translation task.

In experiments, we demonstrate that our model
can be effectively pre-trained by the treebank
annotations, outperforming a state-of-the-art se-
quential counterpart and a pipelined syntax-based
model. Our final ensemble model outperforms the
previous best results by a large margin on the WAT
English-to-Japanese dataset.

2 Latent Graph Parser

We model the latent graph parser based on de-
pendency parsing. In dependency parsing, a sen-
tence is represented as a tree structure where each
node corresponds to a word in the sentence and
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a unique root node (ROOT) is added. Given a
sentence of length N , the parent node Hwi ∈
{w1, . . . , wN ,ROOT} (Hwi 6= wi) of each word
wi (1 ≤ i ≤ N) is called its head. The sentence is
thus represented as a set of tuples (wi, Hwi , `wi),
where `wi is a dependency label.

In this paper, we remove the constraint of us-
ing the tree structure and represent a sentence as
a set of tuples (wi, p(Hwi |wi), p(`wi |wi)), where
p(Hwi |wi) is the probability distribution of wi’s
parent nodes, and p(`wi |wi) is the probability dis-
tribution of the dependency labels. For example,
p(Hwi = wj |wi) is the probability that wj is the
parent node of wi. Here, we assume that a spe-
cial token 〈EOS〉 is appended to the end of the
sentence, and we treat the 〈EOS〉 token as ROOT.
This approach is similar to that of graph-based de-
pendency parsing (McDonald et al., 2005) in that a
sentence is represented with a set of weighted arcs
between the words. To obtain the latent graph rep-
resentation of the sentence, we use a dependency
parsing model based on multi-task learning pro-
posed by Hashimoto et al. (2017).

2.1 Word Representation

The i-th input wordwi is represented with the con-
catenation of its d1-dimensional word embedding
vdp(wi) ∈ Rd1 and its character n-gram embed-
ding c(wi) ∈ Rd1 : x(wi) = [vdp(wi); c(wi)].
c(wi) is computed as the average of the embed-
dings of the character n-grams in wi.

2.2 POS Tagging Layer

Our latent graph parser builds upon multi-
layer bi-directional Recurrent Neural Networks
(RNNs) with Long Short-Term Memory (LSTM)
units (Graves and Schmidhuber, 2005). In the first
layer, POS tagging is handled by computing a hid-
den state h

(1)
i = [

−→
h

(1)
i ;
←−
h

(1)
i ] ∈ R2d1 for wi,

where
−→
h

(1)
i = LSTM(

−→
h

(1)
i−1, x(wi)) ∈ Rd1 and

←−
h

(1)
i = LSTM(

←−
h

(1)
i+1, x(wi)) ∈ Rd1 are hidden

states of the forward and backward LSTMs, re-
spectively. h(1)i is then fed into a softmax classifier
to predict a probability distribution p(1)i ∈ RC(1)

for word-level tags, where C(1) is the number of
POS classes. The model parameters of this layer
can be learned not only by human-annotated data,
but also by backpropagation from higher layers,
which are described in the next section.

2.3 Dependency Parsing Layer
Dependency parsing is performed in the second
layer. A hidden state h(2)i ∈ R2d1 is computed
by
−→
h

(2)
i = LSTM(

−→
h

(2)
i−1, [x(wi); y(wi);

−→
h

(1)
i ])

and
←−
h

(2)
i = LSTM(

←−
h

(2)
i+1, [x(wi); y(wi);

←−
h

(1)
i ]),

where y(wi) = W
(1)
` p

(1)
i ∈ Rd2 is the POS in-

formation output from the first layer, and W (1)
` ∈

Rd2×C(1)
is a weight matrix.

Then, (soft) edges of our latent graph represen-
tation are obtained by computing the probabilities

p(Hwi = wj |wi) =
exp (m(i, j))∑
k 6=i exp (m(i, k))

, (1)

where m(i, k) = h
(2)T
k Wdph

(2)
i (1 ≤ k ≤ N +

1, k 6= i) is a scoring function with a weight
matrix Wdp ∈ R2d1×2d1 . While the models of
Hashimoto et al. (2017), Zhang et al. (2017), and
Dozat and Manning (2017) learn the model pa-
rameters of their parsing models only by human-
annotated data, we allow the model parameters to
be learned by the translation task.

Next, [h
(2)
i ; z(Hwi)] is fed into a softmax

classifier to predict the probability distribu-
tion p(`wi |wi), where z(Hwi) ∈ R2d1 is the
weighted average of the hidden states of the
parent nodes:

∑
j 6=i p(Hwi = wj |wi)h(2)j .

This results in the latent graph representation
(wi, p(Hwi |wi), p(`wi |wi)) of the input sentence.

3 NMT with Latent Graph Parser

The latent graph representation described in Sec-
tion 2 can be used for any sentence-level tasks,
and here we apply it to an Attention-based NMT
(ANMT) model (Luong et al., 2015). We modify
the encoder and the decoder in the ANMT model
to learn the latent graph representation.

3.1 Encoder with Dependency Composition
The ANMT model first encodes the information
about the input sentence and then generates a sen-
tence in another language. The encoder represents
the word wi with a word embedding venc(wi) ∈
Rd3 . It should be noted that venc(wi) is differ-
ent from vdp(wi) because each component is sep-
arately modeled. The encoder then takes the word
embedding venc(wi) and the hidden state h(2)i as
the input to a uni-directional LSMT:

h
(enc)
i = LSTM(h

(enc)
i−1 , [venc(wi);h

(2)
i ]), (2)

126



where h(enc)i ∈ Rd3 is the hidden state correspond-
ing to wi. That is, the encoder of our model is
a three-layer LSTM network, where the first two
layers are bi-directional.

In the sequential LSTMs, relationships between
words in distant positions are not explicitly con-
sidered. In our model, we explicitly incorporate
such relationships into the encoder by defining a
dependency composition function:

dep(wi) = tanh(Wdep[h
enc
i ;h(Hwi); p(`wi |wi)]),

(3)
where h(Hwi) =

∑
j 6=i p(Hwi = wj |wi)h(enc)j is

the weighted average of the hidden states of the
parent nodes.

Note on character n-gram embeddings In
NMT models, sub-word units are widely used to
address rare or unknown word problems (Sennrich
et al., 2016). In our model, the character n-gram
embeddings are fed through the latent graph pars-
ing component. To the best of our knowledge,
the character n-gram embeddings have never been
used in NMT models. Wieting et al. (2016), Bo-
janowski et al. (2017), and Hashimoto et al. (2017)
have reported that the character n-gram embed-
dings are useful in improving several NLP tasks
by better handling unknown words.

3.2 Decoder with Attention Mechanism
The decoder of our model is a single-layer LSTM
network, and the initial state is set with h(enc)N+1 and
its corresponding memory cell. Given the t-th hid-
den state h(dec)t ∈ Rd3 , the decoder predicts the
t-th word in the target language using an attention
mechanism. The attention mechanism in Luong
et al. (2015) computes the weighted average of the
hidden states h(enc)i of the encoder:

s(i, t) =
exp (h

(dec)
t ·h(enc)i )

∑N+1
j=1 exp (h

(dec)
t ·h(enc)j )

, (4)

at =
∑N+1

i=1 s(i, t)h
(enc)
i , (5)

where s(i, t) is a scoring function which speci-
fies how much each source-side hidden state con-
tributes to the word prediction.

In addition, like the attention mechanism over
constituency tree nodes (Eriguchi et al., 2016b),
our model uses attention to the dependency com-
position vectors:

s′(i, t) = exp (h
(dec)
t ·dep(wi))∑N

j=1 exp (h
(dec)
t ·dep(wj))

, (6)

a′t =
∑N

i=1 s
′(i, t)dep(wi), (7)

To predict the target word, a hidden state h̃(dec)t ∈
Rd3 is then computed as follows:

h̃
(dec)
t = tanh(W̃ [h

(dec)
t ; at; a

′
t]), (8)

where W̃ ∈ Rd3×3d3 is a weight matrix. h̃
(dec)
t

is fed into a softmax classifier to predict a target
word distribution. h̃(dec)t is also used in the tran-
sition of the decoder LSTMs along with a word
embedding vdec(wt) ∈ Rd3 of the target word wt:

h
(dec)
t+1 = LSTM(h

(dec)
t , [vdec(wt); h̃

(dec)
t ]), (9)

where the use of h̃(dec)t is called input feeding pro-
posed by Luong et al. (2015).

The overall model parameters, including those
of the latent graph parser, are jointly learned by
minimizing the negative log-likelihood of the pre-
diction probabilities of the target words in the
training data. To speed up the training, we use
BlackOut sampling (Ji et al., 2016). By this joint
learning using Equation (3) and (7), the latent
graph representations are automatically learned
according to the target task.

Implementation Tips Inspired by Zoph et al.
(2016), we further speed up BlackOut sampling
by sharing noise samples across words in the
same sentences. This technique has proven to
be effective in RNN language modeling, and we
have found that it is also effective in the NMT
model. We have also found it effective to share
the model parameters of the target word embed-
dings and the softmax weight matrix for word pre-
diction (Inan et al., 2016; Press and Wolf, 2017).
Also, we have found that a parameter averaging
technique (Hashimoto et al., 2013) is helpful in
improving translation accuracy.

Translation At test time, we use a novel beam
search algorithm which combines statistics of sen-
tence lengths (Eriguchi et al., 2016b) and length
normalization (Cho et al., 2014). During the
beam search step, we use the following scor-
ing function for a generated word sequence y =
(y1, y2, . . . , yLy) given a source word sequence
x = (x1, x2, . . . , xLx):

1

Ly




Ly∑

i=1

log p(yi|x, y1:i−1) + log p(Ly|Lx)


 ,

(10)
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where p(Ly|Lx) is the probability that sentences
of length Ly are generated given source-side sen-
tences of length Lx. The statistics are taken by
using the training data in advance. In our exper-
iments, we have empirically found that this beam
search algorithm helps the NMT models to avoid
generating translation sentences that are too short.

4 Experimental Settings

4.1 Data
We used an English-to-Japanese translation task
of the Asian Scientific Paper Excerpt Corpus (AS-
PEC) (Nakazawa et al., 2016b) used in the Work-
shop on Asian Translation (WAT), since it has
been shown that syntactic information is useful
in English-to-Japanese translation (Eriguchi et al.,
2016b; Neubig et al., 2015). We followed the
data preprocessing instruction for the English-to-
Japanese task in Eriguchi et al. (2016b). The En-
glish sentences were tokenized by the tokenizer in
the Enju parser (Miyao and Tsujii, 2008), and the
Japanese sentences were segmented by the KyTea
tool1. Among the first 1,500,000 translation pairs
in the training data, we selected 1,346,946 pairs
where the maximum sentence length is 50. In
what follows, we call this dataset the large training
dataset. We further selected the first 20,000 and
100,000 pairs to construct the small and medium
training datasets, respectively. The development
data include 1,790 pairs, and the test data 1,812
pairs.

For the small and medium datasets, we built
the vocabulary with words whose minimum fre-
quency is two, and for the large dataset, we used
words whose minimum frequency is three for En-
glish and five for Japanese. As a result, the vo-
cabulary of the target language was 8,593 for the
small dataset, 23,532 for the medium dataset, and
65,680 for the large dataset. A special token
〈UNK〉 was used to replace words which were not
included in the vocabularies. The character n-
grams (n = 2, 3, 4) were also constructed from
each training dataset with the same frequency set-
tings.

4.2 Parameter Optimization and Translation
We turned hyper-parameters of the model using
development data. We set (d1, d2) = (100, 50)
for the latent graph parser. The word and charac-
ter n-gram embeddings of the latent graph parser

1http://www.phontron.com/kytea/.

were initialized with the pre-trained embeddings
in Hashimoto et al. (2017).2 The weight matrices
in the latent graph parser were initialized with uni-
form random values in [−

√
6√

row+col
,+

√
6√

row+col
],

where row and col are the number of rows and
columns of the matrices, respectively. All the bias
vectors and the weight matrices in the softmax lay-
ers were initialized with zeros, and the bias vectors
of the forget gates in the LSTMs were initialized
by ones (Jozefowicz et al., 2015).

We set d3 = 128 for the small training dataset,
d3 = 256 for the medium training dataset, and
d3 = 512 for the large training dataset. The
word embeddings and the weight matrices of the
NMT model were initialized with uniform ran-
dom values in [−0.1,+0.1]. The training was per-
formed by mini-batch stochastic gradient descent
with momentum. For the BlackOut objective (Ji
et al., 2016), the number of the negative samples
was set to 2,000 for the small and medium training
datasets, and 2,500 for the large training dataset.
The mini-batch size was set to 128, and the mo-
mentum rate was set to 0.75 for the small and
medium training datasets and 0.70 for the large
training dataset. A gradient clipping technique
was used with a clipping value of 1.0. The ini-
tial learning rate was set to 1.0, and the learn-
ing rate was halved when translation accuracy de-
creased. We used the BLEU scores obtained by
greedy translation as the translation accuracy and
checked it at every half epoch of the model train-
ing. We saved the model parameters at every half
epoch and used the saved model parameters for
the parameter averaging technique. For regulariza-
tion, we used L2-norm regularization with a coef-
ficient of 10−6 and applied dropout (Hinton et al.,
2012) to Equation (8) with a dropout rate of 0.2.

The beam size for the beam search algorithm
was 12 for the small and medium training datasets,
and 50 for the large training dataset. We used
BLEU (Papineni et al., 2002), RIBES (Isozaki
et al., 2010), and perplexity scores as our evalu-
ation metrics. Note that lower perplexity scores
indicate better accuracy.

4.3 Pre-Training of Latent Graph Parser

The latent graph parser in our model can be op-
tionally pre-trained by using human annotations
for dependency parsing. In this paper we used

2The pre-trained embeddings can be found at https:
//github.com/hassyGo/charNgram2vec.
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the widely-used Wall Street Journal (WSJ) train-
ing data to jointly train the POS tagging and de-
pendency parsing components. We used the stan-
dard training split (Section 0-18) for POS tagging.
We followed Chen and Manning (2014) to gener-
ate the training data (Section 2-21) for dependency
parsing. From each training dataset, we selected
the first K sentences to pre-train our model. The
training dataset for POS tagging includes 38,219
sentences, and that for dependency parsing in-
cludes 39,832 sentences.

The parser including the POS tagger was first
trained for 10 epochs in advance according to
the multi-task learning procedure of Hashimoto
et al. (2017), and then the overall NMT model was
trained. When pre-training the POS tagging and
dependency parsing components, we did not ap-
ply dropout to the model and did not fine-tune the
word and character n-gram embeddings to avoid
strong overfitting.

4.4 Model Configurations
LGP-NMT is our proposed model that learns
the Latent Graph Parsing for NMT.

LGP-NMT+ is constructed by pre-training the
latent parser in LGP-NMT as described in Sec-
tion 4.3.

SEQ is constructed by removing the depen-
dency composition in Equation (3), forming a se-
quential NMT model with the multi-layer encoder.

DEP is constructed by using pre-trained depen-
dency relations rather than learning them. That is,
p(Hwi = wj |wi) is fixed to 1.0 such that wj is the
head of wi. The dependency labels are also given
by the parser which was trained by using all the
training samples for parsing and tagging.

UNI is constructed by fixing p(Hwi = wj |wi) to
1
N for all the words in the same sentence. That is,
the uniform probability distributions are used for
equally connecting all the words.

5 Results on Small and Medium Datasets

We first show our translation results using the
small and medium training datasets. We report av-
eraged scores with standard deviations across five
different runs of the model training.

5.1 Small Training Dataset
Table 1 shows the results of using the small train-
ing dataset. LGP-NMT performs worse than SEQ

BLEU RIBES Perplexity
LGP-NMT 14.31±1.49 65.96±1.86 41.13±2.66
LGP-NMT+ 16.81±0.31 69.03±0.28 38.33±1.18
SEQ 15.37±1.18 67.01±1.55 38.12±2.52
UNI 15.13±1.67 66.95±1.94 39.25±2.98
DEP 13.34±0.67 64.95±0.75 43.89±1.52

Table 1: Evaluation on the development data using
the small training dataset (20,000 pairs).

K BLEU RIBES Perplexity
0 14.31±1.49 65.96±1.86 41.13±2.66

5,000 16.99±1.00 69.03±0.93 37.14±1.96
10,000 16.81±0.31 69.03±0.28 38.33±1.18

All 16.09±0.56 68.19±0.59 39.24±1.88

Table 2: Effects of the size K of the training
datasets for POS tagging and dependency parsing.

and UNI, which shows that the small training
dataset is not enough to learn useful latent graph
structures from scratch. However, LGP-NMT+
(K = 10,000) outperforms SEQ and UNI, and the
standard deviations are the smallest. Therefore,
the results suggest that pre-training the parsing and
tagging components can improve the translation
accuracy of our proposed model. We can also see
that DEP performs the worst. This is not surpris-
ing because previous studies, e.g., Li et al. (2015),
have reported that using syntactic structures do not
always outperform competitive sequential models
in several NLP tasks.

Now that we have observed the effectiveness of
pre-training our model, one question arises natu-
rally:

how many training samples for parsing and
tagging are necessary for improving the
translation accuracy?

Table 2 shows the results of using different num-
bers of training samples for parsing and tagging.
The results of K= 0 and K= 10,000 correspond
to those of LGP-NMT and LGP-NMT+ in Ta-
ble 1, respectively. We can see that using the
small amount of the training samples performs
better than using all the training samples.3 One
possible reason is that the domains of the trans-
lation dataset and the parsing (tagging) dataset
are considerably different. The parsing and tag-
ging datasets come from WSJ, whereas the trans-
lation dataset comes from abstract text of scien-
tific papers in a wide range of domains, such as

3We did not observe such significant difference when us-
ing the larger datasets, and we used all the training samples
in the remaining part of this paper.
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BLEU RIBES Perplexity
LGP-NMT 28.70±0.27 77.51±0.13 12.10±0.16
LGP-NMT+ 29.06±0.25 77.57±0.24 12.09±0.27
SEQ 28.60±0.24 77.39±0.15 12.15±0.12
UNI 28.25±0.35 77.13±0.20 12.37±0.08
DEP 26.83±0.38 76.05±0.22 13.33±0.23

Table 3: Evaluation on the development data using
the medium training dataset (100,000 pairs).

biomedicine and computer science. These results
suggest that our model can be improved by a small
amount of parsing and tagging datasets in differ-
ent domains. Considering the recent universal de-
pendency project4 which covers more than 50 lan-
guages, our model has the potential of being ap-
plied to a variety of language pairs.

5.2 Medium Training Dataset
Table 3 shows the results of using the medium
training dataset. In contrast with using the small
training dataset, LGP-NMT is slightly better than
SEQ. LGP-NMT significantly outperforms UNI,
which shows that our adaptive learning is more
effective than using the uniform graph weights.
By pre-training our model, LGP-NMT+ signifi-
cantly outperforms SEQ in terms of the BLEU
score. Again, DEP performs the worst among all
the models.

By using our beam search strategy, the Brevity
Penalty (BP) values of our translation results are
equal to or close to 1.0, which is important when
evaluating the translation results using the BLEU
scores. A BP value ranges from 0.0 to 1.0, and
larger values mean that the translated sentences
have relevant lengths compared with the reference
translations. As a result, our BLEU evaluation re-
sults are affected only by the word n-gram preci-
sion scores. BLEU scores are sensitive to the BP
values, and thus our beam search strategy leads to
more solid evaluation for NMT models.

6 Results on Large Dataset

Table 4 shows the BLEU and RIBES scores on the
development data achieved with the large train-
ing dataset. Here we focus on our models and
SEQ because UNI and DEP consistently perform
worse than the other models as shown in Table 1
and 3. The averaging technique and attention-
based unknown word replacement (Jean et al.,
2015; Hashimoto et al., 2016) improve the scores.

4http://universaldependencies.org/.

B./R. Single +Averaging +UnkRep
LGP-NMT 38.05/81.98 38.44/82.23 38.77/82.29
LGP-NMT+ 38.75/82.13 39.01/82.40 39.37/82.48
SEQ 38.24/81.84 38.26/82.14 38.61/82.18

Table 4: BLEU (B.) and RIBES (R.) scores on the
development data using the large training dataset.

BLEU RIBES
LGP-NMT 39.19 82.66
LGP-NMT+ 39.42 82.83
SEQ 38.96 82.18
Ensemble of the above three models 41.18 83.40
Cromieres et al. (2016) 38.20 82.39
Neubig et al. (2015) 38.17 81.38
Eriguchi et al. (2016a) 36.95 82.45
Neubig and Duh (2014) 36.58 79.65
Zhu (2015) 36.21 80.91
Lee et al. (2015) 35.75 81.15

Table 5: BLEU and RIBES scores on the test data.

Again, we see that the translation scores of our
model can be further improved by pre-training the
model.

Table 5 shows our results on the test data, and
the previous best results summarized in Nakazawa
et al. (2016a) and the WAT website5 are also
shown. Our proposed models, LGP-NMT and
LGP-NMT+, outperform not only SEQ but also
all of the previous best results. Notice also that
our implementation of the sequential model (SEQ)
provides a very strong baseline, the performance
of which is already comparable to the previous
state of the art, even without using ensemble tech-
niques. The confidence interval (p ≤ 0.05) of the
RIBES score of LGP-NMT+ estimated by boot-
strap resampling (Noreen, 1989) is (82.27, 83.37),
and thus the RIBES score of LGP-NMT+ is sig-
nificantly better than that of SEQ, which shows
that our latent parser can be effectively pre-trained
with the human-annotated treebank.

The sequential NMT model in Cromieres et al.
(2016) and the tree-to-sequence NMT model in
Eriguchi et al. (2016b) rely on ensemble tech-
niques while our results mentioned above are ob-
tained using single models. Moreover, our model
is more compact6 than the previous best NMT
model in Cromieres et al. (2016). By applying the
ensemble technique to LGP-NMT, LGP-NMT+,

5http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/list.php?t=1&o=1.

6Our training time is within five days on a c4.8xlarge
machine of Amazon Web Service by our CPU-based C++
code, while it is reported that the training time is more than
two weeks in Cromieres et al. (2016) by their GPU code.
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As a result , it was found that a path which crosses a sphere obliquely existed .

Reference: その結果、球内部を斜めに横切る行路の存在することが分かった。

LGP-NMT: その結果、球を斜めに横切る経路が存在することが分かった。
LGP-NMT+: その結果、球を斜めに横切る経路が存在することが分かった。
(As a result , it was found that a path which obliquely crosses a sphere  existed .)

Google trans: その結果、球を横切る経路が斜めに存在することが判明した。
SEQ: その結果、球を横断する経路が斜めに存在することが分かった。
(As a result , it was found that a path which crosses a sphere  existed obliquely .)

The androgen controls negatively ImRNA .

Reference: ImRNA はアンドロゲンにより負に調節される。

LGP-NMT+: アンドロゲンは ImRNA を負に制御している。
(The androgen negatively controls ImRNA .)

Google trans: アンドロゲンは負の ImRNA を制御する。

LGP-NMT: アンドロゲンは負の ImRNA を制御する。
(The androgen controls negative ImRNA .)

SEQ: アンドロゲンは負の ImRNA を負に制御する。
(The androgen negatively controls negative ImRNA .)

Translation Example (1)

Translation Example (2)

Figure 2: English-to-Japanese translation exam-
ples for focusing on the usage of adverbs.

and SEQ, the BLEU and RIBES scores are further
improved, and both of the scores are significantly
better than the previous best scores.

6.1 Analysis on Translation Examples

Figure 2 shows two translation examples7 to see
how the proposed model works and what is miss-
ing in the state-of-the-art sequential NMT model,
SEQ. Besides the reference translation, the outputs
of our models with and without pre-training, SEQ,
and Google Translation8 are shown.

Selectional Preference In the translation ex-
ample (1) in Figure 2, we see that the ad-
verb “obliquely” is interpreted differently across
the systems. As in the reference translation,
“obliquely” is a modifier of the verb “crosses”.
Our models correctly capture the relationship be-
tween the two words, whereas Google Translation
and SEQ treat “obliquely” as a modifier of the
verb “existed”. This error is not a surprise since
the verb “existed” is located closer to “obliquely”
than the verb “crosses”. A possible reason for
the correct interpretation by our models is that
they can better capture long-distance dependen-
cies and are less susceptible to surface word dis-
tances. This is an indication of our models’ abil-
ity of capturing domain-specific selectional prefer-
ence that cannot be captured by purely sequential

7These English sentences were created by manual simpli-
fication of sentences in the development data.

8The translations were obtained at https:
//translate.google.com in Feb. and Mar. 2017.

models. It should be noted that simply using stan-
dard treebank-based parsers does not necessarily
address this error, because our pre-trained depen-
dency parser interprets that “obliquely” is a modi-
fier of the verb “existed”.

Adverb or Adjective The translation example
(2) in Figure 2 shows another example where
the adverb “negatively” is interpreted as an ad-
verb or an adjective. As in the reference transla-
tion, “negatively” is a modifier of the verb “con-
trols”. Only LGP-NMT+ correctly captures the
adverb-verb relationship, whereas “negatively” is
interpreted as the adjective “negative” to modify
the noun “ImRNA” in the translation results from
Google Translation and LGP-NMT. SEQ inter-
prets “negatively” as both an adverb and an adjec-
tive, which leads to the repeated translations. This
error suggests that the state-of-the-art NMT mod-
els are strongly affected by the word order. By
contrast, the pre-training strategy effectively em-
beds the information about the POS tags and the
dependency relations into our model.

6.2 Analysis on Learned Latent Graphs

Without Pre-Training We inspected the latent
graphs learned by LGP-NMT. Figure 1 shows an
example of the learned latent graph obtained for a
sentence taken from the development data of the
translation task. It has long-range dependencies
and cycles as well as ordinary left-to-right depen-
dencies. We have observed that the punctuation
mark “.” is often pointed to by other words with
large weights. This is primarily because the hid-
den state corresponding to the mark in each sen-
tence has rich information about the sentence.

To measure the correlation between the la-
tent graphs and human-defined dependencies, we
parsed the sentences on the development data of
the WSJ corpus and converted the graphs into
dependency trees by Eisner’s algorithm (Eisner,
1996). For evaluation, we followed Chen and
Manning (2014) and measured Unlabeled Attach-
ment Score (UAS). The UAS is 24.52%, which
shows that the implicitly-learned latent graphs are
partially consistent with the human-defined syn-
tactic structures. Similar trends have been re-
ported by Yogatama et al. (2017) in the case of
binary constituency parsing. We checked the most
dominant gold dependency labels which were as-
signed for the dependencies detected by LGP-
NMT. The labels whose ratio is more than 3% are
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All the calculated electronic band structures are metallic  .
0.86                 0.97         0.99

1.0

0.85
1.0

All the calculated electronic band structures are metallic  .

0.26 0.60 0.99

0.29
0.88

0.21

0.86
1.0

ROOT
1.0

0.23

0.95 0.82

0.37 0.71

(a)

(b)

Figure 3: An example of the pre-trained depen-
dency structures (a) and its corresponding latent
graph adapted by our model (b).

nn, amod, prep, pobj, dobj, nsubj, num,
det, advmod, and poss. We see that depen-
dencies between words in distant positions, such
as subject-verb-object relations, can be captured.

With Pre-Training We also inspected the pre-
trained latent graphs. Figure 3-(a) shows the de-
pendency structure output by the pre-trained latent
parser for the same sentence in Figure 1. This is an
ordinary dependency tree, and the head selection
is almost deterministic; that is, for each word, the
largest weight of the head selection is close to 1.0.
By contrast, the weight values are more evenly
distributed in the case of LGP-NMT as shown in
Figure 1. After the overall NMT model training,
the latent parser is adapted to the translation task,
and Figure 3-(b) shows the adapted latent graph.
Again, we can see that the adapted weight values
are also distributed and different from the origi-
nal pre-trained weight values, which suggests that
human-defined syntax is not always optimal for
the target task.

The UAS of the pre-trained dependency trees is
92.52%9, and that of the adapted latent graphs is
18.94%. Surprisingly, the resulting UAS (18.94%)
is lower than the UAS of our model without pre-
training (24.52%). However, in terms of the trans-
lation accuracy, our model with pre-training is bet-
ter than that without pre-training. These results
suggest that human-annotated treebanks can pro-
vide useful prior knowledge to guide the overall
model training by pre-training, but the resulting
sentence structures adapted to the target task do
not need to highly correlate with the treebanks.

9The UAS is significantly lower than the reported score
in Hashimoto et al. (2017). The reason is described in Sec-
tion 4.3.

7 Related Work

While initial studies on NMT treat each sentence
as a sequence of words (Bahdanau et al., 2015;
Luong et al., 2015; Sutskever et al., 2014), re-
searchers have recently started investigating into
the use of syntactic structures in NMT mod-
els (Bastings et al., 2017; Chen et al., 2017;
Eriguchi et al., 2016a,b, 2017; Li et al., 2017;
Sennrich and Haddow, 2016; Stahlberg et al.,
2016; Yang et al., 2017). In particular, Eriguchi
et al. (2016b) introduced a tree-to-sequence NMT
model by building a tree-structured encoder on top
of a standard sequential encoder, which motivated
the use of the dependency composition vectors in
our proposed model. Prior to the advent of NMT,
the syntactic structures had been successfully used
in statistical machine translation systems (Neubig
and Duh, 2014; Yamada and Knight, 2001). These
syntax-based approaches are pipelined; a syntactic
parser is first trained by supervised learning using
a treebank such as the WSJ dataset, and then the
parser is used to automatically extract syntactic in-
formation for machine translation. They rely on
the output from the parser, and therefore parsing
errors are propagated through the whole systems.
By contrast, our model allows the parser to be
adapted to the translation task, thereby providing a
first step towards addressing ambiguous syntactic
and semantic problems, such as domain-specific
selectional preference and PP attachments, in a
task-oriented fashion.

Our model learns latent graph structures in a
source-side language. Eriguchi et al. (2017) have
proposed a model which learns to parse and trans-
late by using automatically-parsed data. Thus, it is
also an interesting direction to learn latent struc-
tures in a target-side language.

As for the learning of latent syntactic structure,
there are several studies on learning task-oriented
syntactic structures. Yogatama et al. (2017) used a
reinforcement learning method on shift-reduce ac-
tion sequences to learn task-oriented binary con-
stituency trees. They have shown that the learned
trees do not necessarily highly correlate with the
human-annotated treebanks, which is consistent
with our experimental results. Socher et al. (2011)
used a recursive autoencoder model to greed-
ily construct a binary constituency tree for each
sentence. The autoencoder objective works as
a regularization term for sentiment classification
tasks. Prior to these deep learning approaches,
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Wu (1997) presented a method for bilingual pars-
ing. One of the characteristics of our model is
directly using the soft connections of the graph
edges with the real-valued weights, whereas all of
the above-mentioned methods use one best struc-
ture for each sentence. Our model is based on
dependency structures, and it is a promising fu-
ture direction to jointly learn dependency and con-
stituency structures in a task-oriented fashion.

Finally, more related to our model, Kim et al.
(2017) applied their structured attention networks
to a Natural Language Inference (NLI) task for
learning dependency-like structures. They showed
that pre-training their model by a parsing dataset
did not improve accuracy on the NLI task. By
contrast, our experiments show that such a parsing
dataset can be effectively used to improve trans-
lation accuracy by varying the size of the dataset
and by avoiding strong overfitting. Moreover, our
translation examples show the concrete benefit of
learning task-oriented latent graph structures.

8 Conclusion and Future Work

We have presented an end-to-end NMT model by
jointly learning translation and source-side latent
graph representations. By pre-training our model
using treebank annotations, our model signifi-
cantly outperforms both a pipelined syntax-based
model and a state-of-the-art sequential model. On
English-to-Japanese translation, our model outper-
forms the previous best models by a large margin.
In future work, we investigate the effectiveness of
our approach in different types of target tasks.

Acknowledgments

We thank the anonymous reviewers and Akiko
Eriguchi for their helpful comments and sugges-
tions. We also thank Yuchen Qiao and Kenjiro
Taura for their help in speeding up our training
code. This work was supported by CREST, JST,
and JSPS KAKENHI Grant Number 17J09620.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph

Convolutional Encoders for Syntax-aware Neural
Machine Translation. arXiv, cs.CL 1704.04675.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Danqi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing, pages 740–750.

Huadong Chen, Shujian Huang, David Chiang, and Jia-
jun Chen. 2017. Improved Neural Machine Transla-
tion with a Syntax-Aware Encoder and Decoder. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). To appear.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Prop-
erties of Neural Machine Translation: Encoder–
Decoder Approaches. In Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pages 103–111.

Fabien Cromieres, Chenhui Chu, Toshiaki Nakazawa,
and Sadao Kurohashi. 2016. Kyoto University Par-
ticipation to WAT 2016. In Proceedings of the 3rd
Workshop on Asian Translation, pages 166–174.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations.

Jason Eisner. 1996. Efficient Normal-Form Parsing for
Combinatory Categorial Grammar. In Proceedings
of the 34th Annual Meeting of the Association for
Computational Linguistics, pages 79–86.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016a. Character-based Decoding in
Tree-to-Sequence Attention-based Neural Machine
Translation. In Proceedings of the 3rd Workshop on
Asian Translation, pages 175–183.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016b. Tree-to-Sequence Attentional
Neural Machine Translation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
823–833.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to Parse and Translate Im-
proves Neural Machine Translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers). To appear.

Alex Graves and Jurgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5):602–610.

133



Kazuma Hashimoto, Akiko Eriguchi, and Yoshimasa
Tsuruoka. 2016. Domain Adaptation and Attention-
Based Unknown Word Replacement in Chinese-to-
Japanese Neural Machine Translation. In Proceed-
ings of the 3rd Workshop on Asian Translation,
pages 75–83.

Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsu-
ruoka, and Takashi Chikayama. 2013. Simple Cus-
tomization of Recursive Neural Networks for Se-
mantic Relation Classification. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1372–1376.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A Joint Many-
Task Model: Growing a Neural Network for Mul-
tiple NLP Tasks. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing. To appear.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying Word Vectors and Word Classifiers:
A Loss Framework for Language Modeling. arXiv,
cs.CL 1611.01462.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic Eval-
uation of Translation Quality for Distant Language
Pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944–952.
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Abstract

In the encoder-decoder architecture for
neural machine translation (NMT), the
hidden states of the recurrent structures in
the encoder and decoder carry the crucial
information about the sentence.These vec-
tors are generated by parameters which are
updated by back-propagation of translation
errors through time. We argue that prop-
agating errors through the end-to-end re-
current structures are not a direct way of
control the hidden vectors. In this paper,
we propose to use word predictions as a
mechanism for direct supervision. More
specifically, we require these vectors to
be able to predict the vocabulary in tar-
get sentence. Our simple mechanism en-
sures better representations in the encoder
and decoder without using any extra data
or annotation. It is also helpful in reduc-
ing the target side vocabulary and improv-
ing the decoding efficiency. Experiments
on Chinese-English and German-English
machine translation tasks show BLEU im-
provements by 4.53 and 1.3, respectively.

1 Introduction

The encoder-decoder based neural machine trans-
lation (NMT) models (Sutskever et al., 2014;
Cho et al., 2014) have been developing rapidly.
Sutskever et al. (2014) propose to encode the
source sentence as a fixed-length vector repre-
sentation, based on which the decoder gener-
ates the target sequence, where both the en-
coder and decoder are recurrent neural net-
works (RNN) (Sutskever et al., 2014) or their vari-
ants (Cho et al., 2014; Chung et al., 2014; Bah-
danau et al., 2014). In this framework, the fixed-
length vector plays the crucial role of transition-

ing the information of the sentence from the source
side to the target side.
Later, attention mechanisms are proposed to en-

hance the source side representations (Bahdanau
et al., 2014; Luong et al., 2015b). The source side
context is computed at each time-step of decod-
ing, based on the attention weights between the
source side representations and the current hidden
state of the decoder. However, the hidden states
in the recurrent decoder still originate from the
single fixed-length representation (Luong et al.,
2015b), or the average of the bi-directional repre-
sentations (Bahdanau et al., 2014). Here we refer
to the representation as initial state.
Interestingly, Britz et al. (2017) find that the

value of initial state does not affect the translation
performance, and prefer to set the initial state to
be a zero vector. On the contrary, we argue that
initial state still plays an important role of transla-
tion, which is currently neglected. We notice that
beside the end-to-end error back propagation for
the initial and transition parameters, there is no di-
rect control of the initial state in the current NMT
architectures. Due to the large number of param-
eters, it may be difficult for the NMT system to
learn the proper sentence representation as the ini-
tial state. Thus, themodel is very likely to get stuck
in local minimums, making the translation process
arbitrary and unstable.
In this paper, we propose to augment the current

NMT architecture with a word prediction mecha-
nism. More specifically, we require the initial state
of the decoder to be able to predict all the words
in the target sentence. In this way, there is a spe-
cific objective for learning the initial state. Thus
the learnt source side representation will be bet-
ter constrained. We further extend this idea by ap-
plying the word predictions mechanism to all the
hidden states of the decoder. So the transition be-
tween different decoder states could be controlled
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as well.
Our mechanism is simple and requires no ad-

ditional data or annotation. The proposed word
predictions mechanism could be used as a training
method and brings no extra computing cost during
decoding.
Experiments on the Chinese-English and

German-English translation tasks show that both
the constraining of the initial state and the decoder
hidden states bring significant improvement over
the baseline systems. Furthermore, using the word
prediction mechanism on the initial state as a word
predictor to reduce the target side vocabulary
could greatly improve the decoding efficiency,
without a significant loss on the translation
quality.

2 Related Work

Many previous works have noticed the problem
of training an NMT system with lots of parame-
ters. Some of them prefer to use the dropout tech-
nique (Srivastava et al., 2014; Luong et al., 2015b;
Meng et al., 2016). Another possible choice is
to ensemble several models with random starting
points (Sutskever et al., 2014; Jean et al., 2015; Lu-
ong and Manning, 2016). Both techniques could
bring more stable and better results. But they
are general training techniques of neural networks,
which are not specifically targeting the model-
ing of the translation process like ours. We will
make empirical comparison with them in the ex-
periments.
The way we add the word prediction is similar

to the research of multi-task learning. Dong et al.
(2015) propose to share an encoder between dif-
ferent translation tasks. Luong et al. (2015a) pro-
pose to jointly learn the translation task for dif-
ferent languages, the parsing task and the image
captioning task, with a shared encoder or decoder.
Zhang and Zong (2016) propose to use multitask
learning for incorporating source sidemonolingual
data. Different from these attempts, our method
focuses solely on the current translation task, and
does not require any extra data or annotation.
In the other sequence to sequence tasks, Suzuki

and Nagata (2017) propose the idea for predicting
words by using encoder information. However,
the purpose and the way of our mechanism are dif-
ferent from them.
The word prediction technique has been applied

in the research of both statistical machine transla-

tion (SMT) (Bangalore et al., 2007; Mauser et al.,
2009; Jeong et al., 2010; Tran et al., 2014) and
NMT (Mi et al., 2016; L’Hostis et al., 2016). In
these research, word prediction mechanisms are
employed to decide the selection of words or con-
strain the target vocabulary, while in this paper,
we use word prediction as a control mechanism for
neural model training.

3 Notations and Backgrounds

We present a popular NMT framework with the
encoder-decoder architecture (Cho et al., 2014;
Bahdanau et al., 2014) and the attention net-
works (Luong et al., 2015b), based on which we
propose our word prediction mechanism.
Denote a source-target sentence pair as {x, y}

from the training set, where x is the source word
sequence (x1, x2, · · · , x|x|) and y is the target
word sequence (y1, y2, · · · , y|y|), |x| and |y| are the
length of x and y, respectively.
In the encoding stage, a bi-directional recur-

rent neural network is used (Bahdanau et al.,
2014) to encode x into a sequence of vectors
(h1,h2, · · · ,h|x|). For each xi, the representation
hi is:

hi = [
−→hi ;
←−hi ] (1)

where [·; ·] denotes the concatenation of column
vectors;

−→hi and
←−hi denote the hidden vectors for

the word xi in the forward and backward RNNs,
respectively.
The gated recurrent unit (GRU) is used as the re-

current unit in each RNN, which is shown to have
promising results in speech recognition and ma-
chine translation (Cho et al., 2014). Formally, the
hidden state hi at time step i of the forward RNN
encoder is defined by the GRU function g−→e (·, ·),
as follows:

−→h i = g−→e (
−→h i−1, embxi) (2)

= (1−−→z i)⊙
−→h i−1 +−→z i ⊙

−→
h′

i

−→z i = σ(
−→Wz[embxi ;

−→h i−1]) (3)
−→
h′

i = tanh(
−→W[embxi ; (

−→r i ⊙
−→h i−1)]) (4)

−→r i = σ(
−→Wr[embxi ;

−→h i−1]) (5)

where ⊙ denotes element-wise product between
vectors and embxi is the word embedding of the
xi. tanh(·) and σ(·) are the tanh and sigmoid trans-
formation functions that can be applied element-
wise on vectors, respectively. For simplicity, we
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Figure 1: The NMT model with word prediction for the initial state.

omit the bias term in each network layer. The
backward RNN encoder is defined likewise.
In the decoding stage, the decoder starts with the

initial state s0, which is the average of source rep-
resentations (Bahdanau et al., 2014).

s0 = σ(Ws
1

|x|

|x|∑

i=1

hi) (6)

At each time step j, the decoder maximizes the
conditional probability of generating the jth target
word, which is defined as:

P (yj |y<j , x) = fd(td([embyj−1 ; sj ; cj ])) (7)
fd(u) = softmax(Wfu) (8)
td(v) = tanh(Wtv) (9)

where sj is the decoder’s hidden state, which is
computed by another GRU (as in Equation 2):

sj = gd(sj−1, [embyj−1 ; cj ]) (10)

and the context vector cj is from the attention
mechanism (Luong et al., 2015b):

cj =

|x|∑

i=1

ajihi (11)

aji =
exp(eji)∑|x|

k=1 exp(ejk)
(12)

eji = tanh(Wattd [sj−1;hi]). (13)

4 NMT with Word Predictions

4.1 Word Prediction for the Initial State
The decoder starts the generation of target sentence
from the initial state s0 (Equation 6) generated by
the encoder. Currently, the update for the encoder

only happens when a translation error occurs in the
decoder. The error is propagated through multiple
time steps in the recurrent structure until it reaches
the encoder. As there are hundreds of millions of
parameters in the NMT system, it is hard for the
model to learn the exact representation of source
sentences. As a result, the values of initial state
may not be exact during the translation process,
leading to poor translation performances.
We propose word prediction as a mechanism to

control the values of initial state. The intuition
is that since the initial state is responsible for the
translation of whole target sentence, it should at
least contain information of each word in the tar-
get sentence. Thus, we optimize the initial state by
making prediction for all target words. For sim-
plicity, we assume each target word is independent
of each other.
Here the word prediction mechanism is a sim-

pler sub-task of translation, where the order of
words is not considered. The prediction task could
be trained jointly with the translation task in a
multi-task learningway (Luong et al., 2015a; Dong
et al., 2015; Zhang and Zong, 2016), where both
tasks share the same encoder. In other words, word
prediction for the initial state could be interpreted
as an improvement for the encoder. We denote this
mechanism as WPE .
As shown in Figure 1, a prediction network is

added to the initial state. We define the conditional
probability of WPE as follows:

PWPE(y|x) =

|y|∏

j=1

PWPE(yj |x) (14)

PWPE(yj |x) = fp(tp([s0; cp])) (15)

where fp(·) and tp(·) are the softmax layer and
non-linear layer as defined in Equation 8-9, with
different parameters; cp is defined similar as the
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Figure 2: The NMT model with word predictions for the decoder’s hidden states.

attention network, so the source side information
could be enhanced.

cp =

|x|∑

i=1

aihi (16)

ai =
exp(ei)∑|x|

k=1 exp(ek)
(17)

ei = tanh(Wattp [s0,hi]). (18)

4.2 Word Predictions for Decoder’s Hidden
States

Similar intuition is also applied for the decoder.
Because the hidden states of the decoder are re-
sponsible for the translation of target words, they
should be able to predict the target words as well.
The only difference is that we remove the already
generated words from the prediction task. So each
hidden state in the decoder is required to predict
the target words which remain untranslated.
For the first state s1 of the decoder, the predic-

tion task is similar with the task for the initial state.
Since then, the prediction is no longer a separate
training task, but integrated into each time step of
the training process. We denote this mechanism as
WPD.
As shown in Figure 2, for each time step j in the

decoder, the hidden state sj is used for the predic-
tion of (yj , yj+1, · · · , y|y|). The conditional prob-
ability of WPD is defined as:

PWPD(yj , yj+1, · · · , y|y||y<j , x) (19)

=

|y|∏

k=j

PWPD(yk|y<j , x)

PWPD(yk|y<j , x) =fd(p(td([embyj−1 ; sj ; cj ])))
(20)

where fd(·) and td(·) are the softmax layer and
non-linear layer as defined in Equation 8-9; p(·)

is another non-linear transformation layer, which
prepares the current state for the prediction:

p(u) = tanh(Wpu). (21)

4.3 Training

NMT models optimize the networks by maximiz-
ing the likelihood of the target translation y given
source sentence x, denoted by LT.

LT =
1

|y|

|y|∑

j=1

logP (yj |y<j , x) (22)

where P (yj |y<j , x) is defined in Equation 7.
To optimize the word prediction mechanism, we

propose to add extra likelihood functionsLWPE and
LWPD into the training procedure.
For the WPE, we directly optimize the likeli-

hood of translation and word prediction:

L1 = LT + LWPE (23)
LWPE = logPWPE (24)

where PWPE is defined in Equation 14.
For the WPD, we optimize the likelihood as:

L2 = LT + LWPD (25)

LWPD =

|y|∑

j=1

1

|y| − j + 1
logPWPD (26)

where PWPD is defined in Equation 19; the coeffi-
cient of the logarithm is used to calculate the aver-
age probability of each prediction.
The two mechanisms could also work together,

so that both the encoder and the decoder could be
improved:

L3 = LT + LWPE + LWPD . (27)
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4.4 Making Use of the Word Predictor

The previously proposed word prediction mecha-
nism could be used only as a extra training objec-
tive, which will not be computed during the trans-
lation. Thus the computational complexity of our
models for translation stays exactly the same.
On the other hand, using a smaller and specific

vocabulary for each sentence or batch will improve
translation efficiency. If the vocabulary is accurate
enough, there is also a chance to improve the trans-
lation quality (Jean et al., 2015; Mi et al., 2016;
L’Hostis et al., 2016). Our word prediction mech-
anismWPE provides a natural solution for generat-
ing a possible set of target words at sentence level.
The prediction could be made from the initial state
s0, without using extra resources such as word dic-
tionaries, extracted phrases or frequent word lists,
as in Mi et al. (2016).

5 Experiments

5.1 Data

We perform experiments on the Chinese-English
(CH-EN) and German-English (DE-EN) machine
translation tasks. For the CH-EN, the training data
consists of about 8million sentence pairs 1. We use
NIST MT02 as our validation set, and the NIST
MT03, MT04 and MT05 as our test sets. These
sets have 878, 919, 1597 and 1082 source sen-
tences, respectively, with 4 references for each
sentence. For the DE-EN, the experiments trained
on the standard benchmark WMT14, and it has
about 4.5 million sentence pairs. We use new-
stest 2013 (NST13) as validation set, and newstest
2014(NST14) as test set. These sets have 3000 and
2737 source sentences, respectively, with 1 refer-
ence for each sentence. Sentences were encoded
using byte-pair encoding (BPE) (Britz et al., 2017).

5.2 Systems and Techniques

We implement a baseline system with the bi-
directional encoder (Bahdanau et al., 2014) and the
attention mechanism (Luong et al., 2015b) as de-
scribed in Section 3, denoted as baseNMT. Then
our proposed word prediction mechanism on ini-
tial state and hidden states of decoder are imple-
mented on the baseNMT system, denoted as WPE
and WPD, respectively. We denote the system

1includes LDC2002E18, LDC2003E07, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005T06, LDC2005T10,
LDC2006E26 and LDC2007T09

use both techniques as WPED. We implement sys-
temswith variable-sized vocabulary following (Mi
et al., 2016). For comparison, we also implement
systems with dropout (with dropout rate 0.5 on the
output layer) and ensemble (ensemble of 4 systems
at the output layer) techniques.

5.3 Implementation Details

Both our CH-EN and DE-EN experiments are im-
plemented on the open source toolkit dl4mt 2, with
most default parameter settings kept the same. We
train the NMT systemswith the sentences of length
up to 50 words. The source and target vocabular-
ies are limited to the most frequent 30K words for
both Chinese and English, respectively, with the
out-of-vocabulary words mapped to a special to-
ken UNK.
The dimension of word embedding is set to 512

and the size of the hidden layer is 1024. The recur-
rent weight matrices are initialized as random or-
thogonal matrices, and all the bias vectors as zero.
Other parameters are initialized by sampling from
the Gaussian distribution N (0, 0.01).
We use the mini-batch stochastic gradient de-

scent (SGD) approach to update the parameters,
with a batch size of 32. The learning rate is con-
trolled by AdaDelta (Zeiler, 2012).
For efficient training of our system, we adopt

a simple pre-train strategy. Firstly, the baseNMT
system is trained. The training results are used as
the initial parameters for pre-training our proposed
models with word predictions.
For decoding during test time, we simply decode

until the end-of-sentence symbol eos occurs, using
a beam search with a beam width of 5.

5.4 Translation Experiments

To see the effect of word predictions in transla-
tion, we evaluate these systems in case-insensitive
IBM-BLEU (Papineni et al., 2002) on both CH-EN
and DE-EN tasks.
The detailed results are show in the Table 1

and Table 2. Compared to the baseNMT sys-
tem, all of our models achieve significant improve-
ments. On the CH-EN experiments, simply adding
word predictions to the initial state (WPE) already
brings considerable improvements. The average
improvement on test set is 2.53 BLEU, showing
that constraining the initial state does lead to a
higher translation quality. Adding word predic-

2https://github.com/nyu-dl/dl4mt-tutorial
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Models MT02(dev) MT03 MT04 MT05 Test Ave. IMP
baseNMT 34.04 34.92 36.08 33.88 34.96 −
WPE 39.36 37.17 39.11 36.20 37.49 +2.53
WPD 40.28 38.45 40.99 37.90 39.11 +4.15
WPED 40.25 39.50 40.91 38.05 39.49 +4.53

Table 1: Case-insensitive 4-gram BLEU scores of baseNMT, WPE, WPD, WPED systems on the CH-EN
experiments. (The “IMP” column presents the improvement of test average compared to the baseNMT. )

Models NST13(dev) NST14 IMP
baseNMT 23.56 20.68 −
WPE 24.44 21.09 +0.41
WPD 25.31 21.54 +0.86
WPED 25.97 21.98 +1.3

Table 2: Case-insensitive 4-gram BLEU scores of
baseNMT, WPE, WPD, WPED systems on the DE-
EN experiments.

Models Test IMP
baseNMT 34.86 −
WPED 39.49 +4.53
baseNMT-dropout 37.02 +2.06
WPED-dropout 39.25 +4.29
baseNMT-ensemble(4) 37.71 +2.75
WPED-ensemble(4) 40.75 +5.79

Table 3: Average case-insensitive 4-gram BLEU
scores on the CH-EN experiments for baseNMT
andWPED systems, with the dropout and ensemble
techniques.

tions to the hidden states in the decoder (WPD)
leads to further improvements against baseNMT
(4.15 BLEU), because WPD adds constraints to
the state transitions through different time steps
in the decoder. Using both techniques improves
the baseline by 4.53 BLEU. On the DE-EN ex-
periments, the improvement of WPE model is 0.41
BLEU and WPD model is 0.86 BLEU on test set.
When use both techniques, the WPED improves on
the test set is 1.3 BLEU.
We compare our models with systems using

dropout and ensemble techniques. The results
show in Table 3 and 4. On the CH-EN experi-
ments, the dropout method successfully improves
the baseNMT system by 2.06 BLEU. However,
it does not work on our WPED system. The en-
semble technique improves the baseNMT system
by 2.75 BLEU. It still improves WPED by 1.26

Models Test IMP
baseNMT 20.68 −
WPED 21.98 +1.3
baseNMT-dropout 21.62 +0.94
WPED-dropout 21.71 +1.03
baseNMT-ensemble(4) 21.58 +0.9
WPED-ensemble(4) 22.47 +1.79

Table 4: Case-insensitive 4-gram BLEU scores on
the DE-EN experiments for baseNMT and WPED
systems, with the dropout and ensemble tech-
niques.

BLEU, but the improvement is smaller than on the
baseNMT. On the DE-EN experiments, the phe-
nomenon of experiments is similar to CH-EN ex-
periments. The baseNMT system improves 0.94
through dropout method and 0.9 BLEU through
ensemble method. The dropout technique also
does not work on WPED and the ensemble tech-
nique improves 1.79 BLEU. These comparisons
suggests that our system already learns better and
stable values for the parameters, enjoying some
of the benefits of general training techniques like
dropout and ensemble. Compared to dropout and
ensemble, our method WPED achieves the highest
improvement against the baseline system on both
CH-EN and DE-EN experiments. Along with en-
semble method, the improvement could be up to
5.79 BLEU and 1.79 BLEU respectively.

5.5 Word Prediction Experiments

Since we include an explicit word prediction
mechanism during the training of NMT systems,
we also evaluate the prediction performance on the
CH-EN experiments to see how the training is im-
proved.
For each sentence in the test set, we use the ini-

tial state of the given model to make prediction
about the possible words. We denote the set of top
nwords as Tn, the set of words in all the references
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top-n baseNMT WPE
Prec. Recall Prec. Recall

top-10 45% 17% 73% 30%
top-20 33% 21% 63% 43%
top-50 21% 30% 41% 55%
top-100 14% 39% 28% 68%
top-1k 2% 67% 4% 89%
top-5k 0.7% 84% 0.9% 95%
top-10k 0.4% 90% 0.5% 97%

Table 5: Comparison between baseNMT andWPE
in precision and recall for the different prediction
size on the CH-EN experiments.

as R. We define the precision, recall of the word
prediction as follows:

precision =
|Tn ∩R|
|Tn|

∗ 100% (28)

recall =
|Tn ∩R|
|R| ∗ 100% (29)

We compare the prediction performance of
baseNMT and WPE. WPED has similar prediction
results withWPE, so we omit its results. As shown
in Table 5, baseNMT system has a relatively lower
prediction precision, for example, 45% in top 10
prediction. With an explicit training, the WPE
could achieve a much higher precision in all con-
ditions. Specifically, the precision reaches 73% in
top 10. This indicates that the initial state in WPE
contains more specific information about the pre-
diction of the target words, which may be a step
towards better semantic representation, and leads
to better translation quality.
Because the total words in the references are

limited (around 50), the precision goes down, as
expected, when a larger prediction set is consid-
ered. On the other hand, the recall of WPE is also
much higher than baseNMT. When given 1k pre-
dictions, WPE could successfully predict 89% of
the words in the reference. The recall goes up to
95% with 5k predictions, which is only 1/6 of the
current vocabulary.
To analyze the process of word prediction, we

draw the attention heatmap (Equation 16) between
the initial state s0 and the bi-directional represen-
tation of each source side word hi for an example
sentence. As shown in Figure 3, both examples
show that the initial states have a very strong atten-
tion with all the content words in the source sen-
tence. The blank cells are mostly functions words

Figure 3: Two examples of the attention heatmap
between the initial state s0 and the bi-directional
representation of each source side word hi from
the CH-EN test sets. (The English translation of
each source word is annotated in the parentheses
after it. )

or high frequent tokens such as “的 (’s)”, “是 (is)”,
“而 (and)”, “它 (it)”, comma and period. This in-
dicates that the initial state successfully encodes
information about most of the content words in the
source sentence, which contributes for a high pre-
diction performance and leads to better translation.

5.6 Improving Decoding Efficiency
To make use of the word prediction, we conduct
experiments using the predicted vocabulary, with
different vocabulary size (1k to 10k) on the CH-
EN experiments, denoted as WPE-V and WPED-V.
The comparison is made in both translation quality
and decoding time. As all our models with fixed
vocabulary size have exactly the same number of
parameters for decoding (extra mechanism is used
only for training), we only plot the decoding time
of the WPED for comparison. Figure 4 and 5 show
the results.
When we start the experiments with top 1k vo-

cabulary (1/30 of the baseline settings), the trans-
lation quality of both WPE-V and WPED-V are al-
ready higher than the baseNMT; while their decod-
ing time is less than 1/3 of an NMT system with
30k vocabulary. When the size of vocabulary in-
creases, the translation quality improves as well.
With a 6k predicted vocabulary (1/5 of the baseline
settings), the decoding time is about 60% of a full-
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Figure 4: BLEU scores with different vocabu-
lary sizes for each sentence on the CH-EN ex-
periments. (The performance of baseNMT, WPE,
WPD, WPED are plotted as horizontal lines for
comparison.)

Figure 5: Decoding time with different vocabulary
sizes for each sentence on the CH-EN experiments.
(The horizontal line shows the decoding time for
the systems with fixed vocabulary. )

vocabulary system; the performances of both sys-
tems with variable size vocabulary are compara-
ble their corresponding fixed-vocabulary systems,
which is higher than the baseNMT by 2.53 and
4.53 BLEU, respectively.
Although the comparison may not be fair

enough due to the language pair and training
conditions, the above relative improvements (e.g.
WPED-V v.s. baseNMT) is much higher than
previous research of manipulating the vocabular-
ies (Jean et al., 2015; Mi et al., 2016; L’Hostis
et al., 2016). This is because our mechanism is not
only about reducing the vocabulary itself for each
sentence or batch, it also brings improvement to
the overall translation model. Please note that un-

like these research, we keep the target vocabulary
to be 30k in all our experiments, becausewe are not
focusing on increasing the vocabulary size in this
paper. It will be interesting to combine our mecha-
nism with larger vocabulary to further enhance the
translation performance. Again, our mechanism
requires no extra annotation, dictionary, alignment
or separate discriminative predictor, etc.

5.7 Translation Analysis

We also analyze real-case translations to see the
difference between different systems (Table 6).
It is easy to see that the baseNMT systemmisses

the translations of several important words, such
as “advertising”, “1.5”, which are marked with un-
derline in the reference. It also wrongly translates
the company name “time warner inc.” as the re-
dundant information “internet company”; “amer-
ica online” as “us line”.
The results of dropout or ensemble show im-

provement compared to the baseNMT. But they
still make mistakes about the translation of “on-
line” and the company name “time warner inc.”.
WithWPED, most of these errors no longer exist,

because we force the encoder and decoder to carry
the exact information during translation.

6 Conclusions

The encoder-decoder architecture provides a gen-
eral paradigm for learning machine translation
from the source language to the target language.
However, due to the large amount of parameters
and relatively small training data set, the end-to-
end learning of an NMT model may not be able to
learn the best solution. We argue that at least part
of the problem is caused by the long error back-
propagation pipeline of the recurrent structures in
multiple time steps, which provides no direct con-
trol of the information carried by the hidden states
in both the encoder and decoder.
Instead of looking for other annotated data, we

notice that the words in the target language sen-
tence could be viewed as a natural annotation. We
propose to use the word prediction mechanism
to enhance the initial state generated by the en-
coder and extend the mechanism to control the
hidden states of decoder as well. Experiments
show promising results on the Chinese-English
and German-English translation tasks. As a by-
product, the word predictor could be used to im-
prove the efficiency of decoding, which may be
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source 时代华纳公司的网络公司美国线上说,它预期二 ○ ○二年的广告与商业销售将由
二 ○ ○一年的二十七亿美元减少到十五亿美元。

reference
america online , the internet arm of time warner conglomerate , said it expects
advertising and commerce revenue to decline from us $ 2.7 billion in 2001 to us $ 1.5
in 2002 .

baseNMT
in the us line , the internet company ’s internet company said on the internet that it
expected that the business sales in 2002 would fall from $ UNK billion to $ UNK billion
in 2001 .

baseNMT
+dropout

on the united states line , UNK ’s internet company said on the internet that it expects
to reduce the annual advertising and commercial sales from $ UNK billion in 2001 to
$ 1.5 billion .

baseNMT
+ensemble

in the us line , the internet company ’s internet company said that it expected that the
advertising and commercial sales volume for 2002 would be reduced from us $ UNK
billion to us $ 1.5 billion in 2001 .

WPED
the internet company of time warner inc. , the us online , said that it expects that the
advertising and commercial sales in 2002 will decrease from $ UNK billion in 2001
to us $ 1.5 billion .

Table 6: Comparisons of different systems in translating the same example sentence, which from CH-
EN test sets. (“source” indicates the source sentence; “reference” indicates the human translation; the
translation results are indicated by their system names, including our best “WPED” systems. The underline
words in the reference are missed in the baseNMT output; the bold font indicates improvements over the
baseNMT system; and the italic font indicates remaining translation errors.)

crucial for large scale applications.
Our attempts demonstrate that the learning of

the large scale neural network systems is still not
good enough. In the future, it might be helpful to
analyze the benefits of jointly learning other re-
lated tasks together with machine translation, to
provide further control of the learning process. It
is interesting to demonstrate the effectiveness of
the proposed mechanism on other sequence to se-
quence learning tasks as well.
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Abstract

We propose a novel decoding approach for
neural machine translation (NMT) based
on continuous optimisation. We refor-
mulate decoding, a discrete optimization
problem, into a continuous problem, such
that optimization can make use of efficient
gradient-based techniques. Our powerful
decoding framework allows for more ac-
curate decoding for standard neural ma-
chine translation models, as well as en-
abling decoding in intractable models such
as intersection of several different NMT
models. Our empirical results show that
our decoding framework is effective, and
can leads to substantial improvements in
translations, especially in situations where
greedy search and beam search are not fea-
sible. Finally, we show how the technique
is highly competitive with, and comple-
mentary to, reranking.

1 Introduction

Sequence to sequence learning with neural net-
works (Graves, 2013; Sutskever et al., 2014; Lip-
ton et al., 2015) is typically associated with two
phases: training and decoding (a.k.a. inference).
Model parameters are learned by optimising the
training objective, in order that the model can
produce good translations when decoding unseen
sentences. The majority of research has focused
on the training paradigm or network architec-
ture, however effective means of decoding have
been under-investigated. Conventional heuristic-
based approaches for approximate inference in-
clude greedy, beam, and stochastic search. Greedy
and beam search have been empirically proved to
be adequate for many sequence to sequence tasks,
and are the standard methods for NMT decoding.

However, these inference approaches have sev-
eral drawbacks. Firstly, although NMT models use
a left-to-right generation which would appear to
facilitate efficient search, the models themselves
use a recurrent architecture, and accordingly are
non-Markov. This prevents exact dynamic pro-
gramming solutions, and moreover, limits the po-
tential to incorporate additional global features or
constraints. Global factors can be highly useful
in producing better and more diverse translations.
Secondly, the sequential decoding of symbols in
the target sequence, the inter-dependencies among
the target symbols are not fully exploited. For
example, when decoding the words of the target
sentence in a left-to-right manner, the right con-
text is not exploited leading potentially to inferior
performance (see Watanabe and Sumita (2002a)
who apply this idea in traditional statistical MT).
A natural way to capture this is to intersect left-
to-right and right-to-left models, however the re-
sulting model has no natural generation order, and
thus standard decoding methods are unsuitable.

We introduce a novel decoding framework (§ 3)
that relaxes this discrete optimisation problem into
a continuous optimisation problem. This is akin
to linear programming relaxation approach for ap-
proximate inference in graphical models with dis-
crete random variables, where the exact inference
is NP-hard (Sontag, 2010; Belanger and McCal-
lum, 2016). The resulting continuous optimisation
problem is challenging due to the non-linearity
and non-convexity of the relaxed decoding ob-
jective. We make use of stochastic gradient de-
scent (SGD) and exponentiated gradient (EG) al-
gorithms for decoding based on our relaxation ap-
proach.1 Our decoding framework is powerful and
flexible, as it enables us to decode with global con-
straints involving intersection of multiple NMT

1Both methods are mainly used for training in prior work.
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models (§4). We present experimental results on
Chinese-English and German-English translation
tasks, confirming the effectiveness of our relaxed
optimisation method for decoding (§5).

2 Neural Machine Translation

We briefly review the attentional neural transla-
tion model proposed by Bahdanau et al. (2015) as
a sequence-to-sequence neural model onto which
we apply our decoding framework.

In neural machine translation (NMT), the prob-
ability of the target sentence y given a source sen-
tence x is written as:

PΘ (y|x) =

|y|∑

i=1

log PΘ (yi|y<i,x) (1)

yi|y<i,x ∼ softmax (fff(Θ,y<i,x))

where f is a non-linear function of the previously
generated sequence of words y<i, the source sen-
tence x, and the model parameters Θ. In this pa-
per, we realise fff as follows:

fff(Θ,y<i,x) = Wo ·MLP
(
ci,EEE

yi−1

T , gi
)

+ bo

gi = RNNφ
dec

(
ci,EEE

yi−1

T , gi−1
)

where MLP is a single hidden layer neural net-
work with tanh activation function, and EEEyi−1

T is
the embedding of the target word yi−1 in the em-
bedding matrix EEET ∈ Rne×|VT | of the target lan-
guage vocabulary VT and ne is the embedding di-
mension. The state gi of the decoder RNN is a
function of yi−1, its previous state gi−1, and the
context ci =

∑|x|
j=1 αijhj summarises parts of the

source sentence which are attended to, where

αi = softmax(ei) ; eij = MLP (gi−1,hj)

hj = biRNNθ
enc

(
EEE
xj
S ,
−→
h j−1,

←−
h j+1

)

In above,
−→
h i and

←−
h i are the states of the left-to-

right and right-to-left RNNs encoding the source
sentence, and EEExjS is the embedding of the source
word xj in the embedding matrix EEES ∈ Rn′e×|VS |
of the source language vocabulary VS and n′e is the
embedding dimension.

Given a bilingual corpus D, the model param-
eters are learned by maximizing the conditional
log-likelihood,

Θ∗ := argmaxΘ

∑

(x,y)∈D
log PΘ (y | x) . (2)

The model parameters Θ include the weight ma-
trix Wo ∈ R|VT |×nh and the bias bo ∈ R|VT |
– with nH denoting the hidden dimension size
– as well as the RNN encoder biRNNθ

enc / de-
coder RNNφ

dec parameters, word embedding ma-
trices, and the parameters of the attention mecha-
nism. The model is trained end-to-end by optimis-
ing the training objective using stochastic gradient
descent (SGD) or its variants. In this paper, we fo-
cus on the decoding problem, which we turn to in
the next section.

3 Decoding as Continuous Optimisation

In decoding, we are interested in finding the high-
est probability translation for a given source sen-
tence:

minimisey − PΘ (y | x) s.t. y ∈ Yx (3)

where Yx is the space of possible translations
for the source sentence x. In general, search-
ing Yx to find the highest probability translation
is intractable due to the recurrent nature of eqn
(1) which prevents dynamic programming for ef-
ficient search. This is problematic, as the space of
translations is exponentially large with respect to
the output length |y|.

We now formulate this discrete optimisation
problem as a continuous one, and then use stan-
dard algorithms for continuous optimisation for
decoding. Let us assume that the maximum length
of a possible translation for a source sentence is
known and denote it as `. The best translation for
a given source sentence solves the following opti-
misation problem:

y∗ = arg min
y1,...,y`

∑̀

i=1

− log PΘ (yi | y<i,x) (4)

s.t. ∀i ∈ {1 . . . `} : yi ∈ VT .

where we allow the translation to be padded with
sentinel symbols to the right, which are ignored
in computing the model probability. Equivalently,
we can rewrite the above discrete optimisation
problem as follows:

arg min
ỹ1,...,ỹ`

−
∑̀

i=1

ỹi · log softmax (fff (Θ, ỹ<i,x))

s.t. ∀i ∈ {1 . . . `} : ỹi ∈ I|VT | (5)

where ỹi are vectors using the one-hot representa-
tion of the target words I|VT |.
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Algorithm 1 The EG Algorithm for Decoding by Optimisation
1: For all i initialise ŷ0i ∈ ∆|VT |
2: for t = 1, . . . ,MaxIter do . Q(.) is defined as eqn (6)

3: For all i, w : calculate∇t−1i,w =
∂Q(ŷt−1

1 ,...,ŷt−1
` )

∂ŷi(w)
. using back-propagation

4: For all i, w : update ŷti(w) ∝ ŷt−1i (w) · exp
(
−η∇t−1i,w

)
. η is the step size

5: return arg mintQ(ŷt1, . . . , ŷ
t
`)

We now convert the optimisation problem (5) to
a continuous one by dropping the integrality con-
straints ỹi ∈ I|V | and require the variables to take
values from the probability simplex:

arg min
ŷ1,...,ŷ`

−
∑̀

i=1

ŷi · log softmax (fff (Θ, ŷ<i,x))

s.t. ∀i ∈ {1 . . . `} : ŷi ∈ ∆|VT |

where ∆|VT | is the |VT |-dimensional probability
simplex, i.e., {ŷi ∈ [0, 1]|VT | : ‖ŷi‖1 = 1}. Intu-
itively, this amounts to replacing EEEyiT with the
expected embedding of target language words
Eŷi(w)[EEE

w
T ] under the distribution ŷi.

After solving the above constrained continuous
optimisation problem, there is no guarantee that
the resulting solution {ŷ∗i }`i=1 will comprise one-
hot vectors, i.,e., target language words. Instead it
can find fractional solutions, that require ‘round-
ing’ in order to to resolve them to lexical items.
To solve this problem, we take the arg max,2 i.e.,
take the highest scoring word for each position ŷ∗i .
We leave exploration of more elaborate projection
techniques to the future work.

In the context of graphical models, the above
relaxation technique gives rise to linear program-
ming for approximate inference (Sontag, 2010;
Belanger and McCallum, 2016). However, our de-
coding problem is much harder due to the non-
linearity and non-convexity of the objective func-
tion operating on high dimensional space for deep
models. We now turn our attention to optimisation
algorithms to effectively solve the decoding opti-
misation problem.

3.1 Exponentiated Gradient (EG)

Exponentiated gradient (Kivinen and Warmuth,
1997) is an elegant algorithm for solving optimisa-
tion problems involving simplex constraints. Re-

2Ties are broken arbitrarily.

call our constrained optimisation problem:

arg min
ŷ1,...,ŷ`

Q(ŷ1, . . . , ŷ`)

s.t. ∀i ∈ {1 . . . `} : ŷi ∈ ∆|VT |

where Q(ŷ1, . . . , ŷ`) is defined as

−
∑̀

i=1

ŷi · log softmax (fff (Θ, ŷ<i,x)) . (6)

EG is an iterative algorithm, which updates each
distribution ŷti in the current time-step t based on
the distributions of the previous time-step as fol-
lows:

∀w ∈ VT : ŷti(w) =
1

Zti
ŷt−1i (w) exp

(
−η∇t−1i,w

)

where η is the step size, ∇t−1i,w =
∂Q(ŷt−1

1 ,...,ŷt−1
` )

∂ŷi(w)

and Zti is the normalisation constant

Zti =
∑

w∈VT
ŷt−1i (w) exp

(
−η∇t−1i,w

)
.

The partial derivatives ∇i,w are calculated using
the back propagation algorithm treating {ŷi}`i=1

as parameters and the original parameters of the
model Θ as constants. Adapting EG to our decod-
ing problem leads to Algorithm 1.

It can be shown that the EG algorithm is a gra-
dient descent algorithm for minimising the follow-
ing objective function subject to the simplex con-
straints:

Q(ŷ1, . . . , ŷ`)− γ
∑̀

i=1

∑

w∈VT
ŷi(w) log

1

ŷi(w)

= Q(ŷ1, . . . , ŷ`)− γ
∑̀

i=1

Entropy(ŷi) (7)

In other words, the algorithm looks for the max-
imum entropy solution which also maximizes the
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log likelihood under the model. There are intrigu-
ing parallels with the maximum entropy formula-
tion of log-linear models (Berger et al., 1996). In
our setting, the entropy term acts as a prior which
discourages overly-confident estimates in the ab-
sence of sufficient evidence.

3.2 Stochastic Gradient Descent (SGD)
To be able to apply SGD to our optimisation prob-
lem, we need to make sure that the simplex con-
straints are enforced. One way to achieve this is
by reparameterising using the softmax transfor-
mation, i.e. ŷi = softmax (r̂i). The resulting
unconstrained optimisation problem, now over r̂i,
becomes

argmin
r̂1,...,r̂`

−
∑̀

i=1

softmax (r̂i) · log softmax (f (Θ, ŷ<i,x))

where EEEyiT is replaced with the expected embed-
ding of the target words under the distribution re-
sulted from the Esoftmax(r̂i) [EEEwT ] in the model.

To apply SGD updates, we need the gradient
of the objective function with respect to the new
variables r̂i which can be derived with the back-
propagation algorithm based on the chain rule:

∂Q

∂r̂i(w)
=
∑

w′∈VT

∂Q(.)

∂ŷi(w′)
∂ŷi(w

′)
∂r̂i(w)

The resulting SGD algorithm is summarized in Al-
gorithm 2.

4 Decoding in Extended NMT

Our decoding framework allows us to effectively
and flexibly add additional global factors over
the output symbols during inference. This en-
ables decoding for richer global models, for which
there is no effective means of greedy decoding or
beam search. We outline several such models, and
their corresponding relaxed objective functions for
optimisation-based decoding.

Bidirectional Ensemble. Standard NMT gener-
ates the translation in a left-to-right manner, condi-
tioning each target word on its left context. How-
ever, the joint probability of the translation can be
decomposed in a myriad of different orders; one
compelling alternative would be to condition each
target word on its right context, i.e., generating
the target sentence from right-to-left. We would
not expect a right-to-left model to outperform a
left-to-right, however, as the left-to-right ordering

reflects the natural temporal order of spoken lan-
guage. However, the right-to-left model is likely
to provide a complementary signal in translation,
as it will be bringing different biases and making
largely independent prediction errors to those of
the left-to-right model. For this reason, we pro-
pose to use both models, and seek to find trans-
lations that have high probability according both
models (this mirrors work on bidirectional decod-
ing in classical statistical machine translation by
Watanabe and Sumita (2002b).) Decoding un-
der the ensemble of these models leads to an in-
tractable search problem, not well suited to tradi-
tional greedy or beam search algorithms, which re-
quire a fixed generation order of the target words.
This ensemble decoding problem can be formu-
lated simply in our linear relaxation approach, us-
ing the following objective function:

C+bidir :=− α log PΘ← (y | x)

− (1− α) log PΘ→ (y | x) ; (8)

where α is an interpolation hyper-parameter,
which we set to 0.5; Θ→ and Θ← are the pre-
trained left-to-right and right-to-left models, re-
spectively. This bidirectional agreement may also
lead to improvement in translation diversity, as
shown in Li and Jurafsky (2016) in a re-ranking
evaluation.

Bilingual Ensemble. Another source of com-
plementary information is in terms of the transla-
tion direction, that is forward translation from the
source to the target language, and reverse trans-
lation in the target to source direction. Decod-
ing must find a translation which scores well un-
der both the forward and reverse translation mod-
els. This is inspired by the direct and reverse
feature functions commonly used in classical dis-
criminative SMT (Och and Ney, 2002) which have
been shown to offer some complementary bene-
fits (although see Lopez and Resnik (2006)). More
specifically, we decode for the best translation in
the intersection of the source-to-target and target-
to-source models by minimizing the following ob-
jective function:

C+biling :=− α log PΘs→t (y | x)

− (1− α) log PΘs←t (x | y) ; (9)

where α is an interpolation hyper-parameter to be
fine-tuned; and Θs→t and Θs←t are the pre-trained
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Algorithm 2 The SGD Algorithm for Decoding by Optimisation
1: For all i initialise r̂0i
2: for t = 1, . . . ,MaxIter do . Q(.) is defined in eqn (6) and ŷi = softmax(r̂i)

3: For all i, w : calculate∇t−1i,w =
∑

w′∈VT
∂Q(ŷt−1

1 ,...,ŷt−1
` )

∂ŷi(w′)
∂ŷi(w

′)
∂r̂i(w)

. using backpropagation

4: For all i, w : update r̂ti(w) = r̂t−1i (w)− η∇t−1i,w . η is the step size

5: return arg mintQ(softmax(r̂t1), . . . , softmax(r̂t`))

# tokens # types # sents
BTEC zh→en

train 422k / 454k 3k / 3k 44,016
dev 10k / 10k 1k / 1k 1,006
test 5k / 5k 1k / 1k 506

TED Talks de→en
train 4m / 4m 26k / 19k 194,181
dev-test2010 33k / 35k 4k / 3k 1,565
test2014 26k / 27k 4k / 3k 1,305

WMT 2016 de→en
train 107m / 108m 90k / 78k 4m
dev-test2013&14 154k / 152k 20k / 13k 6003
test2015 54k / 54k 10k / 8k 2169

Table 1: Statistics of the training and evalua-
tion sets; token and types are presented for both
source/target languages.

source-to-target and target-to-source models, re-
spectively. Decoding for the best translation under
the above objective function leads to an intractable
search problem, as the reverse model is global over
the target language, meaning there is no obvious
means of search with a greedy algorithm or simi-
lar.

Discussion. There are two important considera-
tions on how best to initialise the relaxed optimisa-
tion in the above settings, and how best to choose
the step size. As the relaxed optimisation prob-
lem is, in general, non-convex, finding a plausible
initialisation is likely to be important for avoiding
local optima. Furthermore, a proper step size is a
key in the success of the EG-based and SGD-based
optimisation algorithms, and there is no obvious
method how to best choose its value. We may also
adaptively change the step size using (scheduled)
annealing or via the line search. We return to this
considerations in the experimental evaluation.

5 Experiments

5.1 Setup

Datasets. We conducted our experiments on
datasets with different scales, translating between
Chinese→English using the BTEC corpus, and
German→English using the IWSLT 2015 TED

Talks(Cettolo et al., 2014) and WMT 20163 cor-
pora. The statistics of the datasets can be found in
Table 1.

NMT Models. We implemented our
continuous-optimisation based decoding method
on top of the Mantidae toolkit4 (Cohn et al.,
2016), and using the dynet deep learning library5

(Neubig et al., 2017). All neural network models
were configured with 512 input embedding and
hidden layer dimensions, and 256 alignment
dimension, with 1 and 2 hidden layers in the
source and target, respectively. We used a LSTM
recurrent structure (Hochreiter and Schmidhuber,
1997) for both source and target RNN sequences.
For the vocabulary, we use word frequency cut-off
of 5, and words rarer than this were mapped to
a sentinel. For the large-scale WMT dataset,
we applied byte-pair encoding (BPE) method
(Sennrich et al., 2016) to better handle unknown
words.6 For training our neural models, we use
early stopping based on development perplexity,
which usually occurs after 5-8 epochs.

Evaluation Metrics. We evaluated in terms of
search error, measured using the model score of
the inferred solution (either continuous or dis-
crete), as well as measuring the end transla-
tion quality with case-insensitive BLEU (Pap-
ineni et al., 2002). The continuous cost measures
− 1
|ŷ| logPΘ (ŷ | x) under the model Θ; the dis-

crete model score has the same formulation, al-
beit using the discrete rounded solution y (see §3).
Note the cost can be used as a tool for selecting the
best inference solution, as well as assessing con-
vergence, as we illustrate below.

3http://www.statmt.org/wmt16/
translation-task.html

4https://github.com/duyvuleo/Mantidae
5https://github.com/clab/dynet
6With BPE, the out of vocabulary rates on heldout data

are < 1%.

150



●

●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

●

●
●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

1

10

1 5 20 50 100 200 400
iterations

C
C

os
t

●
● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

●
● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

1

10

1 5 20 50 100 200 400
iterations

D
C

os
t

● ● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●● ● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

0

10

20

30

40

1 5 20 50 100 200 400
iterations

B
LE

U

Initialisation ● beam greedy uniform Method ● ● ●EG EG−400 EG−MOM

Figure 1: Analysis on effects of initialisation states (uniform vs. greedy vs. beam), step size annealing,
momentum mechanism from BTEC zh→en translation. EG-400: EG algorithm with step size η = 400
(otherwise η = 50); EG-MOM: EG algorithm with momentum.

5.2 Results and Analysis

Initialisation and Step Size. As our relaxed op-
timisation problems are non-convex, local optima
are likely to be a problem. We test this empiri-
cally, focusing on the effect that initialisation and
step size, η, have on the inference quality.

For plausible initialisation states, we evaluate
different strategies: uniform in which the relaxed
variables ŷ are initialised to 1

|VT | ; and greedy or
beam whereby ŷ are initialised based on an al-
ready good solution produced by a baseline de-
coder with greedy (gdec) or beam (bdec). Instead
of using the Viterbi outputs as a one-hot represen-
tation, we initialise to the probability prediction
vectors,7 which serves to limit attraction of the ini-
tialisation condition, which is likely to be a local
(but not global) optima.

Figure 1 illustrates the effect of initialisation on
the EG algorithm, in terms of search error (left
and middle) and translation quality (right), as we
vary the number of iterations of inference. There is
clear evidence of non-convexity: all initialisation
methods can be seen to converge using all three
measures, however they arrive at highly different
solutions. Uniform initialisation is clearly not a
viable approach, while greedy and beam initial-
isation both yield much better results. The best
initialisation, beam, outperforms both greedy and
beam decoding in terms of BLEU.

Note that the EG algorithm has fairly slow con-
vergence, requiring at least 100 iterations, irre-
spective of the initialisation. To overcome this,

7Here, EG uses softmax normalization whereas SGD
uses the pre-softmax vector.

we use momentum (Qian, 1999) to accelerate the
convergence by modifying the term ∇ti,w in Algo-
rithm 1 with a weighted moving average of past
gradients:

∇t−1i,w = γ∇t−2i,w + η
∂Q(ŷt−11 , . . . , ŷt−1` )

∂ŷi(w)

where we set the momentum term γ = 0.9.
The EG with momentum (EG-MOM) converges
after fewer iterations (about 35), and results in
marginally better BLEU scores. The momentum
technique is usually used for SGD involving addi-
tive updates; it is interesting to see it also works in
EG with multiplicative updates.

The step size, η, is another important hyper-
parameter for gradient based search. We tune the
step size using line search over [10, 400] over the
development set. Figure 1 illustrates the effect of
changing step size from 50 to 400 (compare EG
and EG-400 with uniform), which results in a
marked difference of about 10 BLEU points, un-
derlining the importance of tuning this value. We
found that EG with momentum had less of a re-
liance on step size, with optimal values in [10, 50];
we use this setting hereafter.

Continuous vs Discrete Costs. Another impor-
tant question is whether the assumption behind
continuous relaxation is valid, i.e., if we optimise
a continuous cost to solve a discrete problem, do
we improve the discrete output? Although the
continuous cost diminishes with inference itera-
tions (Figure 1 left), and appears to converge, it is
not clear whether this corresponds to a better dis-
crete output (note that the discrete cost and BLEU
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Figure 2: Comparing discrete vs continuous costs
from BTEC zh→en translation, using the EG al-
gorithm with momentum, η = 50. Each point cor-
responds to a sentence.

BLEU AvgLen

bdecleft-to-right 26.69 20.73
filtered rerank 26.84 20.66
EGdec w/ beam init 27.34 20.73

full rerank 27.34 21.76
EGdec w/ rerank init 27.78 21.70

Table 2: The BLEU evaluation results with EG al-
gorithm against 100-best reranking on WMT eval-
uation dataset.

scores do show improvements Figure 1 centre and
right.) Figure 2 illustrates the relation between the
two cost measures, showing that in most cases the
discrete and continuous costs are identical. Linear
relaxation fails only for a handful of cases, where
the nearest discrete solution is significantly worse
than it would appear using the continuous cost.

EG vs SGD. Both the EG and SGD algorithms
are iterative methods for solving the relaxed op-
timisation problem with simplex constraints. We
measure empirically their difference in terms of
quality of inference and speed of convergence, as
illustrated in Figure 3. Observe that SGD requires
150 iterations for convergence, whereas EG re-
quires many fewer (50). This concurs with pre-
vious work on learning structured prediction mod-
els with EG (Globerson et al., 2007). Further, the
EG algorithm consistently produces better results
in terms of both model cost and BLEU.

EG vs Reranking. Reranking is an alternative
method for integrating global factors into the ex-
isting NMT systems. We compare our EG decod-
ing algorithm against the reranking approach with
bidirectional factor where the N-best outputs of a
left-to-right decoder is re-scored with the forced
decoder operating in a right-to-left fashion. The
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Figure 3: Analysis on convergence and perfor-
mance comparing SOFTMAX and EG algorithms
from BTEC zh→en translation. Both algorithms
use momentum and step size 50.

results are shown in Table 2. Our EG algorithm
initialised with the reranked output achieves the
best BLEU score. We also compare reranking
with EG algorithm initialised with the beam de-
coder, where for direct comparison we filter out
sentences with length greater than that of the beam
output in the k-best lists. These results show that
the EG algorithm is capable of effectively exploit-
ing the search space.

Beyond achieving similar or better translations
to re-ranking, note that EG is simpler in imple-
mentation, as it does not require kbest lists, weight
tuning and so forth. Instead this is replaced with
iterative gradient descent. The run-time of the
two methods are comparable, when reranking uses
modest k, however EG can be considerably faster
when k is large, as is typically done to extract the
full benefit from re-ranking. This performance dif-
ference is a consequence of GPU acceleration of
the dense vector operations in EG inference.

Computational Efficiency. We also quantify
the computational efficiency of the proposed de-
coding approach. Benchmarking on a GPU Ti-
tan X for decoding BTEC zh→en, the average
time per sentence is 0.02 secs for greedy, 0.07s for
beam=5, 0.11s for beam=10, and 3.1s for relaxed
EG decoding, which uses an average of 35 EG it-
erations. The majority of time in the EG algorithm
is in the forward and backward passes, taking 30%
and 67% of the time, respectively. Our imple-
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BTEC TEDTalks WMT
zh→ en de→ en de→ en

gdecleft-to-right 35.98 23.16 24.41

gdecright-to-left 35.86 21.95 23.59

EGdecgreedy init 36.34 23.28 24.63
+bidir. 36.67 23.91 25.37†
+bilingual 36.88† 24.01† 25.21

bdecleft-to-right 38.02 23.95 26.69
bdecright-to-left 37.38 23.13 26.11
EGdecbeam init 38.38 24.02 26.66

+bidir. 39.13† 24.72† 27.34†
+bilingual 38.25 24.60 26.82

Table 3: The BLEU evaluation results across eval-
uation datasets for EG algorithm variants against
the baselines; bold: statistically significantly bet-
ter than the best greedy or beam baseline, †: best
performance on dataset.

mentation was not optimised thoroughly, and it
is likely that it could be made significantly faster,
which we defer to future research.

Main Results. Table 3 shows our experimental
results across all datasets, evaluating the EG al-
gorithm and its variants.8 For the EG algorithm
with greedy initialisation (top), we see small but
consistent improvements in terms of BLEU. Beam
initialisation led to overall higher BLEU scores,
and again demonstrating a similar pattern of im-
provements, albeit of a lower magnitude, over the
initialisation values.

Next we evaluate the capability of our infer-
ence method with extended NMT models, where
approximate algorithms such as greedy or beam
search are infeasible. With the bidirectional en-
semble, we obtained the statistically significant
BLEU score improvements compared to the uni-
directional models, for either greedy or beam ini-
tialisation. This is interesting in the sense that
the unidirectional right-to-left model always per-
forms worse than the left-to-right model. How-
ever, our method with bidirectional ensemble is
capable of combining their strengths in a unified
setting. For the bilingual ensemble, we see similar
effects, with better BLEU score improvements in
most cases, albeit of a lower magnitude, over the
bidirectional one. This is likely to be due to a dis-
parity with the training condition for the models,

8Due to the space constraints, we report results for the EG
algorithm only. See also translation examples in Figure 4.

which were learned independently of one another.
Overall, decoding in extended NMT models

leads to performance improvements compared to
baseline methods. This is one of the main findings
in this work, and augurs well for its extension to
other global model variants.

6 Related Work

Decoding (inference) for neural models is an im-
portant task; however, there is limited research
in this space perhaps due to the challenging na-
ture of this task, with only a few works exploring
some extensions to improve upon them. The most
widely-used inference methods include sampling
(Cho, 2016), greedy and beam search (Sutskever
et al., 2014; Bahdanau et al., 2015, inter alia), and
reranking (Birch, 2016; Li and Jurafsky, 2016).

Cho (2016) proposed to perturb the neural
model by injecting noise(s) in the hidden transi-
tion function of the conditional recurrent neural
language model during greedy or beam search,
and execute multiple parallel decoding runs. This
strategy can improves over greedy and beam
search; however, it is not clear how, when and
where noise should be injected to be beneficial.
Recently, Wiseman and Rush (2016) proposed
beam search optimisation while training neural
models, where the model parameters are updated
in case the gold standard falls outside of the beam.
This exposes the model to its past incorrect pre-
dicted labels, hence making the training more ro-
bust. This is orthogonal to our approach where we
focus on the decoding problem with a pre-trained
model.

Reranking has also been proposed as a means
of global model combination: Birch (2016) and
Li and Jurafsky (2016) re-rank the left-to-right de-
coded translations based on the scores of a right-
to-left model, learning to more diverse transla-
tions. Related, Li et al. (2016) learn to adjust the
beam diversity with reinforcement learning.

Perhaps most relevant is Snelleman (2016), per-
formed concurrently to this work, who also pro-
posed an inference method for NMT using linear
relaxation. Snelleman’s method was similar to our
SGD approach, however he did not manage to out-
perform beam search baselines with an encoder-
decoder. In contrast we go much further, propos-
ing the EG algorithm, which we show works much
more effectively than SGD, and demonstrate how
this can be applied to inference in an attentional
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BTEC zh→en

Source 我确定我昨天给旅馆打过电话并且做了预定。
Reference i am sure that i called the hotel yesterday and made a reservation .

beam dec (l2r) i ’m sure i called the hotel reservation and i made a reservation .

beam dec (r2l) i ’m sure i made this hotel reservation and made a reservation .

rerank +bidir. i ’m sure i called the hotel reservation and i made a reservation .

rerank +biling. i ’m sure i called the hotel reservation and i made a reservation .

EGdec i ’m sure i called the hotel yesterday and i made a reservation .

+bidir. i ’m sure i called the hotel yesterday and i made a reservation .

+biling. i ’m sure i called the hotel yesterday and i made a reservation .

TED Talks de→en

Source wir sind doch alle gute bürger der sozialen medien , bei denen die währung neid ist . stimmt ’ s ?

Reference i mean , we ’re all good citizens of social media , are n’t we , where the currency is envy ?

beam dec (l2r) we ’re all great UNK of social media , where the currency is envy . right ?

beam dec (r2l) we ’re all good citizens in social media , which is where that is envy . right ?

rerank +bidir. we ’re all good citizens of social media , where the currency is envy . right ?

rerank +biling. we ’re all good citizens of social media , where the currency is envy . right ?

EGdec we ’re all great UNK of social media , where the currency is envy . right ?

+bidir. we ’re all good UNK of social media , where the currency is envy . right ?

+biling. we ’re all good citizens of social media , where the currency is envy . right ?

WMT de→en

Source neben dem wm-titel 2007 und dem gewinn der champions league 2014 holte er 2008 ( hsg nordhorn ) und 2010 ( tbv lemgo

) den ehf-pokal .

Reference besides the 2007 world championship he also won the champions league in may and the ehf-cup in 2008 ( hsg nordhorn )

and 2010 ( tbv lemgo ) .

beam dec (l2r)∗ in addition to the title 2007 in 2007 and the win of the champions league 2014 in 2008 ( hsg nordhorn ) and 2010 ( tbv

lemgo ) , he won the ehf cup .

beam dec (r2l) in addition to the world championship title 2007 and winning the champions league in 2014 , he won the ehf-cup in 2008

( hsg nordhorn ) and 2010 ( tbv lemgo ) .

EGdec in addition to the title 2007 in 2007 and the win of the champions league 2014 in 2008 ( hsg nordhorn ) and 2010 ( tbv

lemgo ) , he won the ehf cup .

+bidir. in addition to the title championship in 2007 and the win of the champions league 2014 in 2008 ( hsg nordhorn ) and 2010

( tbv lemgo ) , he won the ehf cup .

+biling. in addition to the world title title 2007 and the win of the champions league 2014 in 2008 ( hsg nordhorn ) and 2010 ( tbv

lemgo ) , he won the ehf cup .

Figure 4: Translation examples generated by the models. ∗: reranking with bidirectional (+bidir.) and
bilingual (+biling.) produced the same translation string.

encoder-decoder. Moreover, we demonstrate the
utility of related optimisation for inference over
global ensembles of models, resulting in consis-
tent improvements in search error and end transla-
tion quality.

Recently, relaxation techniques have been ap-
plied to deep models for training and inference
in text classification (Belanger and McCallum,
2016; Belanger et al., 2017), and fully differ-
entiable training of sequence-to-sequence models
with scheduled-sampling (Goyal et al., 2017). Our
work has applied the relaxation technique specifi-
cally for decoding in NMT models.

7 Conclusions

This work presents the first attempt in formulat-
ing decoding in NMT as a continuous optimisation
problem. The core idea is to drop the integrality
(i.e. one-hot vector) constraint from the predic-
tion variables and allow them to have soft assign-
ments within the probability simplex while min-
imising the loss function produced by the neural

model. We have provided two optimisation algo-
rithms – exponentiated gradient (EG) and stochas-
tic gradient descent (SGD) – for optimising the
resulting contained optimisation problem, where
our findings show the effectiveness of EG com-
pared to SGD. Thanks to our framework, we have
been able to decode when intersecting left-to-right
and right-to-left as well as source-to-target and
target-to-source NMT models. Our results show
that our decoding framework is effective and leads
to substantial improvements in translations gener-
ated from the intersected models, where the typi-
cal greedy or beam search algorithms are not ap-
plicable.

This work raises several compelling possibili-
ties which we intend to address in future work,
such as improving decoding speed, integrating ad-
ditional constraints such as word coverage and fer-
tility into decoding,9 and applying our method to
other intractable structured prediction problems.

9These constraints have only been used for training in the
previous works (Cohn et al., 2016; Mi et al., 2016).
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Abstract

We present a model for locating regions
in space based on natural language de-
scriptions. Starting with a 3D scene and
a sentence, our model is able to associate
words in the sentence with regions in the
scene, interpret relations such as on top
of or next to, and finally locate the re-
gion described in the sentence. All com-
ponents form a single neural network that
is trained end-to-end without prior knowl-
edge of object segmentation. To evalu-
ate our model, we construct and release a
new dataset consisting of Minecraft scenes
with crowdsourced natural language de-
scriptions. We achieve a 32% relative er-
ror reduction compared to a strong neural
baseline.

1 Introduction

In this work, we present a model for grounding
spatial descriptors in 3D scenes. Consider inter-
preting the instructions: Take the book and put it
on the shelf. One critical element of being able
to interpret this sentence is associating the refer-
ring expression the book with the corresponding
object in the world. Another important component
of understanding the command above is translat-
ing the phrase on the shelf to a location in space.
We call such phrases spatial descriptors. While
spatial descriptors are closely related to referring
expressions, they are distinct in that they can refer
to locations even when there is nothing there. An
intuitive way to model this is to reason over spatial
regions as first-class entities, rather than taking an
object-centric approach.

Following a long tradition of using game envi-
ronments for AI, we adopt Minecraft as the setting
for our work. Minecraft has previously been used

Misty is hanging in the air next to the
wooden shelf with the plant on it.

(a)

(b)

Figure 1: An example from our dataset. (a) The Minecraft
scene and its natural language description. (b) Given the
choice between six possible locations, our model assigns the
highest probability to the location consistent with the natural
language description.

for work on planning and navigation (Oh et al.,
2016; Tessler et al., 2016), and we expand on this
by using it for grounded language understanding.
As a sandbox game, it can be used to construct
a wide variety of environments that capture many
interesting aspects of the real world. At the same
time, it is easy to extract machine-interpretable
representations from the game.

We construct a dataset of Minecraft scenes with
natural-language annotations, and propose a task
that evaluates understanding spatial descriptors.
Our task is formulated in terms of locating a pink,
cube-shaped character named Misty given a scene,
a natural language description, and a set of loca-
tions to choose from. An example from our dataset
is shown in Figure 1. The Minecraft scene repre-
sentation does not provide ground-truth informa-
tion about object identity or segmentation, reflect-
ing the fact that perceptual ambiguity is always
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present in real-world scenarios. We do, however,
assume the availability of 3D depth information
(which, for real-world conditions, can be acquired
using depth sensors such as RGBD cameras or Li-
DAR).

We propose and evaluate a neural network that
combines convolutional layers operating over 3D
regions in space with recurrent layers for process-
ing language. Our model jointly learns to seg-
ment objects, associate them with words, and un-
derstand spatial relationships – all in an end-to-end
manner. We compare with a strong neural baseline
and demonstrate a relative error reduction of 32%.

The dataset and model described in this paper
are available online.1

2 Related Work

Our task includes some of the same elements as
referring-expression generation and interpretation.
Past work on these tasks includes Golland et al.
(2010), Krishnamurthy and Kollar (2013), Socher
et al. (2014) and Kazemzadeh et al. (2014). A key
difference is that spatial descriptors (as modeled in
this paper) refer to locations in space, rather than
to objects alone. For example, Krishnamurthy
and Kollar (2013) convert natural language to a
logical form that is matched against image seg-
ments, an approach that is only capable of rea-
soning about objects already present in the scene
(and not skipped over by the segmentation pro-
cess). Our model’s ability to reason over spatial
regions also differentiates it from past approaches
to tasks beyond referring expressions, such as the
work by Tellex et al. (2011) on natural-language
commanding of robots. Recent work by Hu et al.
(2016) on interpreting referring expressions can
capture relationships between objects, relying on
the construction of (subject, object, relation) tu-
ples. Their model is limited in that it can only
handle one such tuple per utterance. Our model
does not have such a restriction, and it addition-
ally expands to a 3D setting.

Our task is also related to work on Visual Ques-
tion Answering, or VQA (Agrawal et al., 2015).
While VQA uses free-form textual answers, our
task places targeted emphasis on spatial reasoning
by requiring outputs to be locations in the scene.
Spatial reasoning remains an important capabil-
ity for VQA systems, and is one of the elements
featured in CLEVR (Johnson et al., 2016), a di-

1https://github.com/nikitakit/voxelworld

agnostic dataset for VQA. Like in our dataset, vi-
sual percepts in CLEVR are based on machine-
generated scenes. CLEVR also makes use of
machine-generated language, while all language
in our dataset is written by humans.

Another related task in NLP is spatial role la-
beling, which includes the identification of spatial
descriptors and the assigning of roles to each of
their constituent words. This task was studied by
Kordjamshidi et al. (2011) and led to the creation
of shared tasks such as SpaceEval (Pustejovsky
et al., 2015). Our setting differs in that we con-
sider grounded environments instead of studying
text in isolation, and evaluate on task performance
rather than logical correctness of interpretation.

Spatial descriptors are also present in the task of
generating 3D scenes given natural language de-
scriptions. Compared to a recent model by Chang
et al. (2017) for scene generation, our model
works with lower-level 3D percepts rather than li-
braries of segmented and tagged objects. We are
also able to incorporate learning of vocabulary,
perception, and linguistic structure into a single
neural network that is trainable end-to-end.

3 Task

At its core, the ability to understand spatial de-
scriptors can be formulated as mapping from a
natural-language description to a particular loca-
tion in space. In Figure 1, we show an instance of
our task, which consists of the following compo-
nents:

• W : a perceptual representation of the world

• x: the natural language description

• {y1, y2, . . . , yn}: the candidate set of loca-
tions that are under consideration

• y?: the true location that is being referred to
in the scene

Given W and x, a model must select which candi-
date location yi best matches the description x.

We will address the particulars of the above
representation as we discuss the process
for constructing our dataset. Each example
(W,x, {y1, . . . , yn}, y?) in the dataset is made by
generating a Minecraft scene (Section 3.1) and
selecting a location as the target of description
(Section 3.2). We then crowdsource natural
language descriptions of the target location in
space. To better anchor the language, we populate
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the target location with a cube-shaped character
we name Misty, and ask workers to describe
Misty’s location (Section 3.3). We repeat this
process for each example in the dataset.

3.1 Scene Generation and Representation

Each of our Minecraft scenes is set in a randomly-
generated room. We select a random size for this
room, and then populate it with a variety of ob-
jects. We include objects that can be placed on
the floor (e.g. tables), mounted on the wall (e.g.
torches), embedded in the wall (e.g. doors), or
hanging from the ceiling (e.g. cobwebs).

We then discard ground-truth knowledge about
object segmentation or identity in the process of
saving our dataset. This allows our task to eval-
uate not only models’ capacity for understand-
ing language, but also their ability to integrate
with perceptual systems. One way of approxi-
mating real-world observations would be to take
a screenshot of the scene – however, a 2D projec-
tion does not provide all of the spatial informa-
tion that a language user would reasonably have
access to. We would like to use a 3D encoding
instead, and Minecraft naturally offers a low-level
(albeit low-resolution) voxel-based representation
that we adopt for this work.

Each Minecraft world W is encoded as a 3D
grid of voxels, where a voxel may be empty or
contain a particular type of “block,” e.g. stone
or wood. In general, what humans would inter-
pret as single objects will be made of multiple
Minecraft blocks – for example, the table in Fig-
ure 1 consists of a “wooden pressure plate” block
on top of a “wooden fencepost” block. These same
blocks can be used for other purposes as well: the
“wooden fencepost” block is also part of fences,
lamp-posts, and pillars, while the “wooden pres-
sure plate” block can form shelves, countertops,
as well as being placed on the ground to detect
when something walks over it. We construct our
Minecraft scenes specifically to include examples
of such re-use, so that models capable of achieving
high performance on this task must demonstrate
the capacity to work without ground-truth segmen-
tation or perfect object labeling.

The voxel-grid 3D representation is not spe-
cific to the virtual Minecraft setting: it is equally
applicable to real-world data where depth infor-
mation is available. The main difference is that
each voxel would need to be associated with a fea-

ture vector rather than a block type. One use of
such a representation is in Maturana and Scherer
(2015)’s work on object classification from data
collected with RGBD cameras and LiDAR, which
uses a 3D convolutional neural network over a
voxel grid. We do not explicitly handle occlusion
in this work, but we imagine that real-world ex-
tensions can approach it using a combination of
multi-viewpoint synthesis, occlusion-aware voxel
embeddings, and restricting the set of voxels con-
sidered by the model.

3.2 Location Sampling

After constructing a scene with representation W ,
we proceed to sample a location y? in the scene.
Given our voxel-based scene representation, our
location sampling is at voxel granularity. The can-
didate set we sample from, {y1, . . . , yn}, consists
of empty voxels in the scene. Locations that occur
in the middle of a large section of empty space are
hard to distinguish visually and to describe pre-
cisely, so we require that each candidate yi be ad-
jacent to at least one object.

3.3 Natural Language Descriptions

For each scene-location pair (W, y?) we crowd-
source a natural language description x.

The choice of prompt for human annotators is
important in eliciting good descriptions. At the lo-
cation we are asking workers to refer to, we insert
a pink-colored cube that we personify and name
“Misty.” We then ask workers to describe Misty’s
location such that someone can find her if she were
to turn invisible. Having a visually salient target
helps anchor human perception, which is why we
chose a pink color that contrasts with other visual
elements in the scene. We make sure to empha-
size the name “Misty” in the instructions, which
results in workers almost always referring to Misty
by name or with the pronoun she. This avoids hav-
ing to disambiguate a myriad of generic descrip-
tions (the pink block, the block, the target, etc.)
for what is fundamentally an artificial construct.

To make sure that humans understand the 3D
structure of the scene as they describe it, we give
them access to a 3D view of the environment and
require that they move the camera before submit-
ting a description. This helped increase the quality
of our data.
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Misty is to the right of the table and just under the torch.

Figure 2: Our model architecture. Note that while the schematic illustrations are shown in 2D, our actual model operates in 3D.
Zoomed-in versions of the marked references, offsets, localizations, and output are shown in Figure 3.

4 Model

We next present our model for this task. Our
model architecture is shown in Figure 2, with
some of the quantities it operates over highlighted
in Figure 3. Throughout this section, we will use
the example description Misty is to the right of the
table and just under the torch. Note that while the
accompanying scene illustrations are shown in 2D
for visual clarity, our actual model operates in 3D
and on larger scene sizes.

Our model first associates words with regions in
the world. There is no notion of object segmenta-
tion in the dataset, so the references it produces are
just activations over space given a word. Activa-
tions are computed for all words in the sentence,
though they will only be meaningful for words
such as table and torch (Figure 3a). Our model
next determines the spatial relationships between
referenced objects and Misty, using information
provided by context words such as right and under.
These relationships are represented as 3D convo-
lutional offset filters (Figure 3b). For each word,
its reference and offset filter are convolved to get
a localization, i.e. an estimate of Misty’s location
(Figure 3c). Finally, our model aggregates local-
izations across all words in the sentence, combin-
ing the information provided by the phrases to the
right of the table and just under the torch (Fig-
ure 3e).

The following sections describe in more detail
how references (Section 4.1), offsets (Section 4.2),

and localizations (Section 4.3) are computed.

4.1 Input and References

The first component of our model is responsible
for associating words with the voxels that they re-
fer to. It assigns a real-valued score s(xt, y) to
each pair consisting of word xt and voxel coordi-
nate y.

High scores correspond to high compatibility;
for any given word, we can visualize the set
s(xt, ·) of scores assigned to different voxels by
interpreting it as logits that encode a probability
distribution over blocks in the scene. In the exam-
ple, the word table would ideally be matched to
the uniform reference distribution over blocks that
are part of a table, and similarly for the word torch
(Figure 3a).

The word-voxel scores are computed by com-
bining word and block embeddings. To take ad-
vantage of additional unsupervised language and
world data, we start with pretrained word em-
beddings and context-aware location embeddings
f(W, y). The function f consists of the first
two layers of a convolutional neural network that
is pretrained on the task of predicting a voxel’s
identity given the 5x5x5 neighborhood around it.
Since f fails to take into account the actual voxel’s
identity, we add additional embeddings V that
only consider single blocks. The score is then
computed as s(xt, y) = w>t Af(W, y) + w>t vy,
where wt is the word embedding and vy is the
single-block embedding. The parameter matrix

160



Misty is to the right of the table and just under the torch.

table torch

(a) Reference distributions for the words table and torch.

(b) Offset distributions that will be applied to the refer-
ences for table and torch. These are calculated based on
the language context, including the words right and un-
der.

(c) Localizations for Misty, given the words table and
torch in context.

(d) Output

(e) Output distribution produced by intersecting the lo-
calizations for each word.

Figure 3: A schematic 2D depiction of the representations
used throughout our neural network, zoomed in from Fig-
ure 2. Our model (a) matches words with objects in the scene,
(b) determines offsets from landmark objects to Misty’s lo-
cation, (c) combines these pieces of information to form per-
word localizations of Misty, and then (d) uses all localizations
to guess Misty’s location.

A and the single-block embedding matrix V are
trained end-to-end with the rest of the model.

References are computed for all words in the
sentence – including function words like to or the.
To signify that a word does not refer to any objects
in the world, the next layer of the network expects
that we output a uniform distribution over all vox-
els. Outputting uniform distributions also serves
as a good initialization for our model, so we set the
elements of A and V to zero at the start of training
(our pretrained word embeddings are sufficient to
break symmetry).

4.2 Offsets
The per-word references described in Section 4.1
do not themselves indicate Misty’s location.
Rather, they are used in a spatial descriptor like to
the right of the table. For every word, our model
outputs a distribution over offset vectors that is
used to redistribute scores from object locations to
possible locations for Misty (Figure 3b). For ex-
ample, if probability mass is placed on the “one-
block-to-the-right” offset vector, this corresponds
to predicting that Misty will be one block to the
right of the voxels that a word refers to. Offset
scores ot are assigned based on the context the
word xt occurs in, which allows the model to in-
corporate information from words such as right
or under in its decisions. This is accomplished
by running a bidirectional LSTM over the embed-
dings wt of the words in the sentence, and using
its output to compute offset probabilities:

[z0, z1, . . .] = BiLSTM([w0, w1, . . .])

o′t =Mzt

ot(i) ∝ exp
(
o′t(i)

)

Each set of offset scores ot is reshaped into a
3x3x3 convolutional filter, except that we struc-
turally disallow assigning any probability to the
no-offset vector in the center. As a parameter-
tying technique, the trainable matrixM is not full-
rank; we instead decompose it such that the log-
probability of an offset vector factors additively
over the components in a cylindrical coordinate
system.

4.3 Localizations and Output
For each word, the 3D tensor of word-voxel scores
s(xt, ·) is convolved with the offset distribution ot
to produce a distribution of localizations for Misty,
dt(y). A 2D illustration of the result is shown in
Figure 3c. Localizations are then summed across
all words in the sentence, resulting in a single
score for each voxel in the scene (Figure 3e).
These scores are interpreted as logits correspond-
ing to a probability distribution over possible loca-
tions for Misty:

dt(y) = s(xt, y) ∗ ot
p(y) ∝ exp

{∑

t

dt(y)
}

Not all words will have localizations that pro-
vide information about Misty – for some words
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the localizations will just be a uniform distribu-
tion. We will refer to words that have low-entropy
localizations as landmarks, with the understand-
ing that being a landmark is actually a soft notion
in our model.

Our offset filters ot are much smaller than our
voxel grid, which means that convolving any off-
set filter with a uniform reference distribution over
the voxel grid will also result in a uniform localiza-
tion distribution (edge effects are immaterial given
the small filter size and the fact that Misty is gener-
ally not at the immediate edges of the scene). Con-
versely, given non-uniform references almost any
set of offsets will result in a non-uniform local-
ization. The architecture for computing references
can output uniform references for function words
(like to or the), but it lacks the linguistic context to
determine when words refer to objects but should
not be interpreted as landmarks (e.g. when they
are part of exposition or a negated expression).
We therefore include an additional not-a-landmark
class that is softmax-normalized jointly with the
offset vector distribution ot. Probability assigned
to this class subtracts from the probability mass
for the true offset directions (and therefore from
the localizations) – if this class receives a prob-
ability of 1, the corresponding localizations will
not contribute to the model output.

4.4 Loss and Training

We use a softmax cross-entropy loss for training
our model. During training, we find that it helps to
not use the candidate set {y1, y2, . . . , yn} and in-
stead calculate a probability p(y) for all blocks in
the scene, including solid blocks that cannot possi-
bly contain Misty (perhaps because this penalizes
inferring nonsensical spatial relationships).

We run the Adam optimizer (Kingma and Ba,
2014) with step size 0.001 for 100 epochs using
batch size 10. We keep an exponential moving av-
erage of our trainable parameters, which we save
every two epochs. We then select the saved model
that has the highest performance on our develop-
ment set.

We perform several regularization and data aug-
mentation techniques in order to achieve better
generalization. Each time we sample a training
example, we select a random 19x19x19 crop from
the full scene (as long as Misty’s location is not
cropped out). We also disallow using the context-
based block embeddings for the first 20 epochs by

holding the parameter matrix A described in Sec-
tion 4.1 fixed at zero, forcing the model to first
learn to associate vocabulary with local features
and only later expand to capture the compositional
aspects of the environment.

For the natural language descriptions, all to-
kens are converted to lowercase as part of pre-
processing. During training we apply word-level
dropout (i.e. replacing words with an UNK token)
in the LSTM responsible for computing offsets.

5 Evaluation

5.1 Evaluation Metric

In evaluating this task, we would like to use a
metric that can provide meaningful comparison of
our model with baseline and human performance.
The set of all possible locations for Misty is large
enough that it is hard even for a human to guess
the correct block on the first try, especially when
some descriptions are only precise to within 1 or 2
blocks. The size of this set also varies from scene
to scene.

Therefore for our evaluation, we restrict the set
{y1, . . . , yn} to 6 possible locations: Misty’s true
location and 5 distractors. This represents a less
ambiguous problem that is much easier for hu-
mans, while also allowing for the evaluation of fu-
ture models that may require an expensive com-
putation for each candidate location considered.
Our procedure for selecting the distractors is de-
signed to ensure that we test both local and global
scene understanding. Each set of six choices is
constructed to consist of three clusters of two can-
didates each. Each cluster location is anchored to a
landmark – we sample a landmark block adjacent
to Misty and two additional landmark blocks from
the entire scene, such that the pairwise distances
between landmarks are at least 4 units. We then
sample one distractor near Misty’s landmark and
two distractors near both of the other landmarks.

5.2 Dataset

To make our development and test sets, we con-
struct this six-option variation from a subset of
our collected data. For each such example we
crowdsource two human solutions using Mechani-
cal Turk. Examples where both humans answered
correctly are partitioned into a development and
a test set. This filtering procedure serves as our
primary method of excluding confusing or unin-
formative descriptions from the evaluation con-
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(a) When you come in the door, she’s on the floor to the right, just in front of the flower.
(b) Misty is facing to the right of the brown door.
(c) If you were to walk through the door that is on the same wall as the table and plank of floating wood,

Misty would be to the left of the door. She is eye level with the plank of wood and floating in front of it.
(d) Misty is in the ground and she is front of door.
(e) Misty is located under a table that is connected to the wall. She is at ground level.

Table 1: Five natural-language descriptions sampled at random from our dataset.

ditions. We also collect a third human solution
to each example in the development and test sets
to get an independent estimate of human perfor-
mance on our task. The final dataset consists of
2321 training examples, 120 dev set examples, and
200 test set examples.

The natural-language descriptions across the
full dataset use a vocabulary of 1015 distinct to-
kens (case-insensitive but including punctuation).
The average description length is 19.02 tokens,
with a standard deviation of 10.00 tokens. The
large spread partially reflects the fact that some
people gave short descriptions that referenced a
few landmarks, while others gave sequences of in-
structions on how to find Misty. As a point of com-
parison, the ReferIt dataset (Kazemzadeh et al.,
2014) has a larger vocabulary of 9124 tokens, but
a shorter average description length of 3.52 tokens
(with a standard deviation of 2.67 tokens).

A random sampling of descriptions from our
dataset is shown in Table 1.

5.3 Quantitative Results

Quantitative results are shown in Table 2. Our
evaluation metric is constructed such that there is
an easily interpretable random baseline. We also
evaluate a strong neural baseline that uses an ap-
proach we call Seq2Emb. This baseline converts
the sentence into a vector using a bidirectional
LSTM encoder, and also assigns vector embed-
dings to each voxel using a two-layer convolu-
tional neural network. The voxel with an embed-
ding that most closely matches the sentence em-
bedding is chosen as the answer.

Our model achieves noticeable gains over the
baseline approaches. At the same time, there re-
mains a gap between our model and individual hu-
man performance. We see this as an indication that
we have constructed a task with appropriate diffi-
culty: it is approachable by building on the cur-
rent state-of-the-art in machine learning and NLP,
while presenting challenges that can motivate con-
tinued work on understanding language and how it

Dev Set Test Set

Random Baseline 16.67 16.67
Seq2Emb Baseline 52.50 44.50
Our Model 67.50 62.50
Human 85.83 87.50

Table 2: Success rates for our dataset split. Our model is able
to outperform a strong neural baseline (Seq2Emb).

% correct

Full model 67.5
−contextual block embeddings 65.0
−LSTM (use 3-word convolutions instead) 62.5
−language-dependent spatial operators 61.7

Table 3: Development set results for our full model and three
independent ablations.

relates to descriptions of the world.

5.4 Ablation Study

We next conduct an ablation study to evaluate
the contribution of the individual elements in our
model. Our ablation results on the development
set are shown in Table 3.

In our first ablation, we remove the composi-
tional block embeddings that make use of multiple
blocks. The resulting performance drop of 2.5%
reflects the fact that our model uses multi-block
information to match words with objects.

We next replace the LSTM in our full model
with a 3-word-wide convolutional layer. A sin-
gle word of left- and right-context provides lim-
ited ability to incorporate spatial descriptor words
like left and right, or to distinguish landmarks used
to locate Misty from words providing exposition
about the scene. This ablation solves 5% fewer ex-
amples than our full model, reflecting our LSTM’s
ability to capture such phenomena.

Finally, we try holding the distribution over off-
set vectors fixed, by making it a trainable variable
rather than a function of the language. This cor-
responds to enforcing the use of only one spatial
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Misty is floating in the middle of the room. She in
the upper half of the room, between the two poles.

Figure 4: Reference distribution representing our model’s be-
lief of which blocks the word poles refers to. Our model as-
signs the majority of the probability mass to the poles, while
ignoring a table leg that is made of the same block type.
Note that the seven numbers overlaid on top account for more
than 99% of the total probability mass, and that each of the
remaining blocks in the scene has a probability of at most
0.025%.

operator that roughly means ‘near.’ We retain the
LSTM for the sole purpose of assigning a score to
the not-a-landmark class, meaning that contextual
information is still incorporated in the decision of
whether to classify a word as a landmark or not.
The resulting accuracy is 5.8% lower than our full
model, which makes this the worst-performing of
our ablations. These results suggest that the abil-
ity to infer spatial directions is important to our
model’s overall performance.

5.5 Qualitative Examination

The modular design of our model allows us to ex-
amine the individual behavior of each component
in the network, which we explore in this section.

We find that our algorithm is able to learn to
associate words with the corresponding voxels in
the world. Figure 4 shows the reference distribu-
tion associated with the word poles, which is con-
structed by applying a softmax operation to the
word-voxel scores for that word. Our algorithm
is able to correctly segment out the voxels that are
a part of the pole. Moreover, the table on the right
side of the scene has a table leg made of the same
block type as the pole – and yet, it is is assigned a
low probability. This shows that our model is ca-
pable of representing compositional objects, and
can learn to do so in an end-to-end manner.

We next examine the offset distributions com-
puted by our model. Consider the scene and de-
scription shown in Figure 5a. The offset vector
distribution at the word platform, shown in Fig-
ure 5b, shows that the model assigns high proba-

(a) To the left of the room, there is a bookcase with a
platform directly in front of it. Misty is right above the
platform.

(b) Misty is right above the platform.

(c) Misty is in front of the platform.

Figure 5: Effects of language context on offset vector distri-
butions. In (a), we show the scene and its description. In
(b), we visualize the offset vector distribution at the word
platform, i.e. the 3D convolutional filter that is applied af-
ter finding the platform location. The red dot that indicates
the center of the filter will be matched with the platform lo-
cation. In (c), we have artificially replaced the words right
above with in front of, resulting in a substantial change to this
distribution.
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Misty is between the wall and the flowers that are
close to the corner.

Figure 6: Our algorithm interprets this sentence as Misty
is near the wall and the flowers and close to the corner.
This intersective interpretation is sufficient to correctly guess
Misty’s location in this scene (as well as others in the dataset).

bility to Misty being above the platform. In Fig-
ure 5c, we show the effects of replacing the phrase
right above with the words in front of. This ex-
ample illustrates our model’s capacity for learn-
ing spatial directions. We note that the offset dis-
tribution given the phrase in front of is not as
peaked as it is for right above, and that distribu-
tions for descriptions saying left or right are even
less peaked (and are mostly uniform on the hori-
zontal plane). One explanation for this is the am-
biguity between speaker-centric and object-centric
reference frames. The reference frame of our con-
volutional filters is the same as the initial camera
frame for our our annotators, but this may not be
the true speaker-centric frame because we man-
date that annotators move the camera before sub-
mitting a description.

We next highlight our model’s ability to incor-
porate multiple landmarks in making its decisions.
Consider the scene and description shown in Fig-
ure 6. The room has four walls, two flowers, and
four corners – no single landmark is sufficient to
correctly guess Misty’s location. Our model is
able to localize the flowers, walls, and corners
in this scene and intersect them to locate Misty.
Strictly speaking, this approach is not logically
equivalent to applying a two-argument between
operator and recognizing the role of that as a rela-
tivizer. This is a limitation of our specific model,
but the general approach of manipulating spatial
region masks need not be constrained in this way.
It would be possible to introduce operations into
the neural network to model recursive structure in
the language. In practice, however, we find that
the intersective interpretation suffices for many of
the descriptions that occur in our dataset.

6 Conclusion

In this paper, we define the task of interpreting
spatial descriptors, construct a new dataset based
on Minecraft, and propose a model for this task.
We show that convolutional neural networks can
be used to reason about regions in space as first-
class entities. This approach is trainable end-to-
end while also having interpretable values at the
intermediate stages of the neural network.

Our architecture handles many of the linguis-
tic phenomena needed to solve this task, includ-
ing object references and spatial regions. How-
ever, there is more work to be done before we can
say that the network completely understands the
sentences that it reads. Our dataset can be used
to investigate future models that expand to han-
dle relativization and other recursive phenomena
in language.
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Abstract

We propose a method for embedding two-
dimensional locations in a continuous vec-
tor space using a neural network-based
model incorporating mixtures of Gaussian
distributions, presenting two model vari-
ants for text-based geolocation and lexi-
cal dialectology. Evaluated over Twitter
data, the proposed model outperforms con-
ventional regression-based geolocation and
provides a better estimate of uncertainty.
We also show the effectiveness of the rep-
resentation for predicting words from loca-
tion in lexical dialectology, and evaluate it
using the DARE dataset.

1 Introduction

Geolocation is an essential component of appli-
cations such as traffic monitoring (Emadi et al.,
2017), human mobility pattern analysis (McNeill
et al., 2016; Dredze et al., 2016) and disaster re-
sponse (Ashktorab et al., 2014; Wakamiya et al.,
2016), as well as targeted advertising (Anagnos-
topoulos et al., 2016) and local recommender sys-
tems (Ho et al., 2012). Although Twitter provides
users with the means to geotag their messages, less
than 1% of users opt to turn on geotagging, so third-
party service providers tend to use profile data, text
content and network information to infer the lo-
cation of users. Text content is the most widely
used source of geolocation information, due to its
prevalence across social media services.

Text-based geolocation systems use the geo-
graphical bias of language to infer the location of a
user or message using models trained on geotagged
posts. The models often use a representation of
text (e.g. based on a bag-of-words, convolutional
or recurrent model) to predict the location either in
real-valued latitude/longitude coordinate space or

in discretised region-based space, using regression
or classification, respectively. Regression models,
as a consequence of minimising squared loss for a
unimodal distribution, predict inputs with multiple
targets to lie between the targets (e.g. a user who
mentions content in both NYC and LA is predicted
to be in the centre of the U.S.). Classification mod-
els, while eliminating this problem by predicting
a more granular target, don’t provide fine-grained
predictions (e.g. specific locations in NYC), and
also require heuristic discretisation of locations into
regions (e.g. using clustering).

Mixture Density Networks (“MDNs”: Bishop
(1994)) alleviate these problems by representing
location as a mixture of Gaussian distributions.
Given a text input, an MDN can generate a mixture
model in the form of a probability distribution over
all location points. In the example of a user who
talks about both NYC and LA, e.g., the model will
predict a strong Gaussian component in NYC and
another one in LA, and also provide an estimate of
uncertainty over all the coordinate space.

Although MDNs are not new, they have not
found widespread use in inverse regression prob-
lems where for a single input, multiple correct
outputs are possible. Given the integration of
NLP technologies into devices (e.g. phones or
robots with natural language interfaces) is growing
quickly, there is a potential need for interfacing lan-
guage with continuous variables as input or target.
MDNs can also be used in general text regression
problems such as risk assessment (Wang and Hua,
2014), sentiment analysis (Joshi et al., 2010) and
loan rate prediction (Bitvai and Cohn, 2015), not
only to improve prediction but also to use the mix-
ture model as a representation for the continuous
variables. We apply MDNs to geotagged Twit-
ter data in two different settings: (a) predicting
location given text; and (b) predicting text given
location.
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Geotagged text content is not only useful in ge-
olocation, but can also be used in lexical dialectol-
ogy. Lexical dialectology is (in part) the converse
of text-based geolocation (Eisenstein, 2015): in-
stead of predicting location from language, lan-
guage (e.g. dialect terms) are predicted from a
given location. This is a much more challenging
task as the lexical items are not known beforehand,
and there is no notion of dialect regions in the con-
tinuous space of latitude/longitude coordinates. A
lexical dialectology model should not only be able
to predict dialect terms but also be able to automat-
ically learn dialect regions.

In this work, we use bivariate Gaussian mix-
tures over geotagged Twitter data in two different
settings, and demonstrate their use for geoloca-
tion and lexical dialectology. Our contributions
are as follows: (1) we propose a continuous rep-
resentation of location using bivariate Gaussian
mixtures; (2) we show that our geolocation model
outperforms regression-based models and achieves
comparable results with classification models, but
with added uncertainty over the continuous output
space; (3) we show that our lexical dialectology
model is able to predict geographical dialect terms
from latitude/longitude input with state-of-the-art
accuracy; and (4) we show that the automatically
learned Gaussian regions match expert-generated
dialect regions of the U.S.1

2 Related Work

2.1 Text-based Geolocation
Text-based geolocation models are defined as ei-
ther a regression or a classification problem. In
regression geolocation, the model learns to predict
a real-valued latitude/longitude from a text input.
This is a very challenging task for data types such
as Twitter, as they are often heavily biased toward
population centres and urban areas, and far from
uniform. As an example, Norwalk is the name
of a few cities in the U.S among which Norwalk,
California (West Coast) and Norwalk, Connecti-
cut (East Coast) are the two most populous cities.
Assuming that occurrences of the city’s name are
almost equal in both city regions within the training
set, a trained regression-based geolocation model
given Norwalk as input, would geolocate it to a
point in the middle of the U.S. instead of choosing
one of the cities. In the machine learning literature,

1Code available at
https://github.com/afshinrahimi/geomdn

regression problems where there are multiple real-
valued outputs for a given input are called inverse
problems (Bishop, 1994). Here, standard regres-
sion models predict an average point in the middle
of all training target points to minimise squared
error loss. Bishop (1994) proposes density mixture
networks to model such inverse problems, as we
discuss in detail in Section 3.

In addition, non-Bayesian interpretations of re-
gression models, which are often used in practice,
don’t produce any prediction of uncertainty, so
other than the predicted point, we have little idea
where else the term could have high or low prob-
ability. Priedhorsky et al. (2014) propose a Gaus-
sian Mixture Model (GMM) approach instead of
squared loss regression, whereby they learn a mix-
ture of bivariate Gaussian distributions for each
individual n-gram in the training set. During pre-
diction, they add the Gaussian mixture of each n-
gram in the input text, resulting in a new Gaussian
mixture which can be used to predict a coordinate
with associated uncertainty. To add the mixture
components they use a weighted sum, where the
weight of each n-gram is assigned by several heuris-
tic features. Learning a GMM for each n-gram is
resource-intensive if the size of the training set —
and thus the number of n-grams — is large.

Assuming sufficient training samples containing
the term Norwalk in the two main, a trained clas-
sification model would, given this term as input,
predict a probability distribution over all regions,
and assign higher probabilities to the regions con-
taining the two major cities. The challenge, though,
is that the coordinates in the training data must
first be partitioned into regions using administra-
tive regions (Cheng et al., 2010; Hecht et al., 2011;
Kinsella et al., 2011; Han et al., 2012, 2014), a uni-
form grid (Serdyukov et al., 2009), or a clustering
method such as a k-d tree (Wing and Baldridge,
2011) or K-means (Rahimi et al., to appear). The
cluster/region labels can then be used as targets.
Once we have a prediction about where a user is
more likely to be from, there is no more infor-
mation about the coordinates inside the predicted
region. If a region that contains Wyoming is pre-
dicted as the home location of a user, we have no
idea which city or county within Wyoming the user
might be from, unless we retrain the model using
a more fine-grained discretisation or a hierarchical
discretisation (Wing and Baldridge, 2014), which
is both time-consuming and challenging due to data
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sparseness.

2.2 Lexical Dialectology

The traditional linguistic approach to lexical di-
alectology is to find the geographical distributions
of known contrast sets such as {you, yall, yinz}:
(Labov et al., 2005; Nerbonne et al., 2008;
Gonçalves and Sánchez, 2014; Doyle, 2014;
Huang et al., 2015; Nguyen and Eisenstein, to
appear). This usually involves surveying a large
geographically-uniform sample of people from dif-
ferent locations and analysing where each known
alternative is used more frequently. Then, the co-
ordinates are clustered heuristically into dialect re-
gions, based on the lexical choices of users in each
region relative to the contrast set. This processing
is very costly and time-consuming, and relies crit-
ically on knowing the lexical alternatives a priori.
For example, it would require a priori knowledge
of the fact that people in different regions of the US
use pop and soda to refer to the same type of drink,
and a posteriori analysis of the empirical geograph-
ical distribution of the different terms. Language,
particularly in social media and among younger
speakers, is evolving so quickly, in ways that can
be measured over large-scale data samples such
as Twitter, that we ideally want to be able to infer
such contrast sets dynamically. The first step in
automatically collecting dialect words is to find
terms that are disproportionately distributed in dif-
ferent locations. The two predominant approaches
to this problem are model-based (Eisenstein et al.,
2010; Ahmed et al., 2013; Eisenstein, 2015) and
through the use of statistical metrics (Monroe et al.,
2008; Cook et al., 2014). Model-based approaches
use a topic model, e.g., to extract region-specific
topics, and from this, predict the probability of see-
ing a word given a geographical region (Eisenstein
et al., 2010). However, there are scalability issues,
limiting the utility of such models.

In this paper, we propose a neural network archi-
tecture that learns a mixture of Gaussian distribu-
tions as its activation function, and predicts both
locations from word-based inputs (geolocation),
and words from location-based inputs (lexical di-
alectology).

3 Model

3.1 Bivariate Gaussian Distribution

A bivariate Gaussian distribution is a probabil-
ity distribution over 2d space (in our case, a lat-

itude/longitude coordinate pair). The probability
mass function is given by:

N (x|µ,Σ) =
1

(2π)

1

|Σ|1/2

exp

{
−1

2
(x− µ)ᵀΣ−1(x− µ)

}

where µ is the 2-dimensional mean vector, the ma-
trix Σ =

(
σ12 ρ12σ1σ2

ρ12σ1σ2 σ22

)
is the covariance ma-

trix, and |Σ| is its determinant. σ1 and σ2 are the
standard deviations of the two dimensions, and ρ12
is the covariance. x is a latitude/longitude coordi-
nate whose probability we are seeking to predict.

3.2 Mixtures of Gaussians
A mixture of Gaussians is a probabilistic model to
represent subpopulations within a global popula-
tion in the form of a weighted sum of K Gaussian
distributions, where a higher weight with a compo-
nent Gaussian indicates stronger association with
that component. The probability mass function of
a Gaussian mixture model is given by:

P(x) =
K∑

k=1

πkN (x|µk,Σk)

where
∑K

k=1 πk = 1, and the number of compo-
nents K is a hyper-parameter.

3.3 Mixture Density Network (MDN)
A mixture density network (“MDN”: Bishop
(1994)) is a latent variable model where the condi-
tional probability of p(y|x) is modelled as a mix-
ture of K Gaussians where the mixing coefficients
π and the parameters of Gaussian distributions µ
and Σ are computed as a function of input using a
neural network:

P(y|x) =

K∑

k=1

πk(x)N
(
y|µk(x),Σk(x)

)

In the bivariate case of latitude/longitude, the
number of parameters of each Gaussian is
6 (πk(x), µ1k(x), µ2k(x), ρk(x), σ1k(x), σ2k(x)),
which are learnt in the output layer of a regular
neural network as a function of input x. The out-
put size of the network for K components would
be 6 × K. The output of an MDN for N sam-
ples (e.g. where N is the mini-batch size) is an
N × 6K matrix which is then sliced and reshaped
into (N × 2 × K), (N × 2 × K), (N × 1 × K)
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and (N × 1 × K) matrices, providing the model
parameters µ, σ, ρ and π. Each parameter type
has its own constraints: σ (the standard deviation)
should be positive, ρ (the correlation) should be in
the interval [−1, 1] and π should be positive and
sum to one, as a probability distribution. To force
these constraints, the following transformations are
often applied to each parameter set:

σ ∼ SoftPlus(σ′) = log(exp(σ′) + 1) ∈ (0,+∞)

π ∼ SoftMax(π′)

ρ ∼ SoftSign(ρ′) =
ρ′

1 + |ρ′| ∈ [−1, 1]

As an alternative, it’s possible to use transforma-
tions like exp for σ and tanh for ρ. After applying
the transformations to enforce the range constraints,
the negative log likelihood loss of each sample x
given a 2d coordinate label y is computed as:

L(y|x) = − log

{ K∑

k=1

πk(x)N
(
y|µk(x),Σk(x)

)}

To predict a location, given an unseen input, the
output of the network is reshaped into a mixture
of Gaussians and µk, one of the K components’ µ
is chosen as the prediction. The selection criteria
is either based on the strongest component with
highest π, or the component that maximises the
overall mixture probability:

max
µi∈{µ1...µK}

K∑

k=1

πkN (µi|µk,Σk)

For further details on selection criteria, see
Bishop (1994).

3.4 Mixture Density Network with Shared
Parameters (MDN-SHARED)

In the original MDN model proposed by Bishop
(1994), the parameters of the mixture model are
separate functions of input, which is appropriate
when the inputs and outputs directly relate to each
other, but in the case of geolocation or lexical di-
alectology, the relationship between inputs and out-
puts is not so obvious. As a result, it might be a
difficult task for the model to learn all the param-
eters of each sample correctly. Instead of using
the output to predict all the parameters, we share
µ and Σ among all samples as parameters of the
output layer, and only use the input to predict π, the
mixture probabilities, using a SoftMax layer. We

initialise µ by applying K-means clustering to the
training coordinates and setting each value of µ to
the centroids of the K clusters; we initialise Σ ran-
domly between 0 and 10. We use the original cost
function to update the weight matrices, biases and
the global shared parameters of the mixture model
through backpropagation. Prediction is performed
in the same way as for MDN.

3.5 Continuous Representation of Location

Gaussian mixtures are usually used as the output
layer in neural networks (as in MDN) for inverse
regression problems. We extend their application
by using them as an input representation when
the input is a multidimensional continuous vari-
able. In problems such as lexical dialectology, the
input is real-valued 2d coordinates, and the goal
is to predict dialect words from a given location.
Small differences in latitude/longitude may result
in big shifts in language use (e.g. in regions such
as Switzerland or Gibraltar). One way to model
this is to discretise the input space (similar to the
discretisation of the output space in classification),
with the significant downside that the model is not
able to learn/fine-tune regions in a data-driven way.
A better solution is to use aK component Gaussian
mixture representation of location, where µ and Σ
are shared among all samples, and the output of the
layer is the probability of input in each of the mix-
ture components. Note that in this representation,
there is no need for π parameters as we just need
to represent the association of an input location to
K regions, which will then be used as input to the
next layer of a neural network and used to predict
the targets. We use this continuous representation
of location to predict dialect words from location
input.

4 Experiments

We apply the two described MDN models on two
widely-used geotagged Twitter datasets for geolo-
cation, and compare the results with state-of-the-art
classification and regression baselines. Also, we
use the mixture of Gaussian representation of loca-
tion to predict dialect terms from coordinates.

4.1 Data

In our experiments, we use two existing Twitter
user geolocation datasets: (1) GEOTEXT (Eisen-
stein et al., 2010), and (2) TWITTER-US (Roller
et al., 2012). Each dataset has fixed training, devel-
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output layer: term probabilities

tanh hidden layer

Gaussian layer: K Gaussian components

input: location coordinates

(a) Predict text given location

output layer: mixing coefficients π1 . . . πk

tanh hidden layer

input: Text BoW

(b) Predict location given text

Figure 1: (a) The lexical dialectology model using a
Gaussian representation layer. (b) MDN-SHARED
geolocation model where the mixture weights π
are predicted for each sample, and µ and Σ are
parameters of the output layer, shared between all
samples.

opment and test partitions, and a user is represented
by the concatenation of their tweets, and labelled
with the latitude/longitude of the first collected geo-
tagged tweet.2 GEOTEXT and TWITTER-US cover
the continental US with 9k, 449k users, respec-
tively.3

DARE is a dialect-term dataset derived from the
Dictionary of American Regional English (Cassidy,
1985) by Rahimi et al. (to appear). DARE consists
of dialect regions, terms and the meaning of each
term.4 It represents the aggregation of a number
of dialectal surveys over different regions of the
U.S., to identify shared dialect regions. Because
the dialect regions in DARE maps are not machine
readable, populous cities within each dialect region
are manually extracted and associated with their
dialect region terms. The dataset is made up of
around 4.3k dialect terms across 99 U.S. dialect
regions.

2This geolocation representation is naive, but was made
by the creators of the original datasets and has been used by
others. It has been preserved in this work for comparability
with the results of others, despite misgivings about whether
this is a faithful representation of the location for a given user.

3The datasets can be obtained from https://github.
com/utcompling/textgrounder.

4http://www.daredictionary.com/

4.2 Geolocation

We use a 3-layer neural network as shown in Fig-
ure 1a where the input is the l2 normalised bag-of-
words model of a given user with stop words, @-
mentions and words with document frequency less
than 10 removed. The input is fed to a hidden layer
with tanh nonlinearity that produces the output of
the network (with no nonlinearity applied). The
output is the collection of Gaussian mixture param-
eters (µ,Σ, π) from MDN. For prediction, the µk of
the mixture component which has the highest prob-
ability within the mixture component is selected.
In the case of MDN-SHARED, the output is only
π, a vector with size K, but the output layer con-
tains extra global parameters µ and Σ (σlat, σlon, ρ)
which are shared between all the samples. The
negative log likelihood objective is optimised using
Adam (Kingma and Ba, 2014) and early stopping is
used to prevent overfitting. The hidden layer is sub-
ject to drop-out and elastic net regularisation (with
equal l1 and l2 shares). As our baseline, we used
a multilayer perceptron regressor with the same
input and hidden architecture but with a 2d out-
put with linear activation that predicts the location
from text input. The regularisation and drop-out
rate, hidden layer size and the number of Gaussian
components K (for MDN and MDN-SHARED) are
tuned over the development set of each dataset, as
shown in Table 1.

We evaluate the predictions of the geolocation
models based on three measures (following Cheng
et al. (2010) and Eisenstein et al. (2010)):

1. the classification accuracy within a 161km
(= 100 mile) radius of the actual location
(“Acc@161”); i.e., if the predicted location
is within 161km of the actual location, it is
considered to be correct

2. the mean error (“Mean”) between the pre-
dicted location and the actual location of the
user, in kilometres

3. the median error (“Median”) between the pre-
dicted location and the actual location of the
user, in kilometres

4.3 Lexical Dialectology

To predict dialect words from location, we use a
4-layer neural network as shown in Figure 1b. The
input is a latitude/longitude coordinate, the first
hidden layer is a Gaussian mixture with K com-
ponents which has µ and Σ as its parameters and
produces a probability for each component as an
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activation function, the second hidden layer with
tanh nonlinearity captures the association between
different Gaussians, and the output is a SoftMax
layer which results in a probability distribution over
the vocabulary. For a user label, we use an l1 nor-
malised bag-of-words representation of its text con-
tent and use binary tf and idf for term-weighting.
The model should learn to predict the probability
distribution over the vocabulary and so be capable
of predicting dialect words with a higher probabil-
ity. It also learns regions (parameters of K Gaus-
sians) that represent dialect regions.

We evaluate the lexical dialectology model
(MDN-layer) using perplexity of the predicted
unigram distribution, and compare it with a base-
line where the Gaussian mixture layer is replaced
with a tanh hidden layer (tanh-layer). Also
we retrieve words given points within a region from
the DAREDS dataset, and measure recall with
respect to relevant dialect terms from DAREDS.
To do that, we randomly sample P = 10000 lat-
itude/longitude points from the training set and
predict the corresponding word distribution. To
come up with a ranking over words given region r
as query, we use the following measure:

score(wi|r) =
1

N

∑

pj∈r
log(P (wi|pj))

− 1

P

P∑

j=1

log(P (wi|pj))

whereN equals the number of points (out of 10000)
inside the query dialect region r and P equals the
total number of points (here 10000). For exam-
ple, if we are querying dialect terms from dialect
region South (r), N is the number of randomly se-
lected points that fall within the constituent states
of South. score(wi|r) measures the (log) probabil-
ity ratio of a word wi inside region r compared to
its global score: if a word is local to region r, the
ratio will be higher. We use this measure to create
a ranking over the vocabulary from which we mea-
sure precision and recall at k given gold-standard
dialect terms in DAREDS.

5 Results

5.1 Geolocation

The performance of Regression, MDN and
MDN-SHARED, along with several state-of-the-art
classification models, is shown in Table 2. The

MDN and MDN-SHARED models clearly outper-
form Regression, and achieve competitive or
slightly worse results than the classification mod-
els but provide uncertainty over the whole out-
put space. The geographical distribution of er-
ror for MDN-SHARED over the development set
of TWITTER-US is shown in Figure 3, indicating
larger errors in MidWest and particularly in North
Pacific regions (e.g. Oregon).

5.2 Dialectology

The perplexity of the lexical dialectology
model using Gaussian mixture representation
(MDN-layer) is 840 for the 54k vocabulary
of TWITTER-US dataset, 1% lower than a
similar network architecture with a tanh hidden
layer (tanh-layer), which is not a signif-
icant improvement. Also we evaluated the
model using recall at k and compared it to the
tanh-layer model which again is competitive
with tanh-layer but with the advantage of
learning dialect regions simultaneously. Because
the DARE dialect terms are not used frequently
in Twitter, many of the words are not covered in
our dataset, despite its size. However, our model
is able to retrieve dialect terms that are distinctly
associated with regions. The top dialect words
for regions New York, Louisiana, Illinois and
Pennsylvania are shown in Table 3, and include
named entities, dialect words and local hashtags.
We also visualised the learned Gaussians of the
dialectology model in Figure 2, which as expected
show several smaller regions (Gaussians with
higher σ) and larger regions in lower populated
areas. It is interesting to see that the shape of the
learned Gaussians matches natural borders such as
coastal regions.

We also visualised the log probability of dialect
terms hella (an intensifier mainly used in North-
ern California) and yall (means “you all”, used in
Southern U.S.) resulting from the Gaussian rep-
resentation model. As shown in Figure 5, the
heatmap matches the expected regions.

6 Conclusion

We proposed a continuous representation of loca-
tion using mixture of Gaussians and applied it to
geotagged Twitter data in two different settings: (1)
geolocation of social media users, and (2) lexical
dialectology. We used MDN (Bishop, 1994) in a
multilayer neural network as a geolocation model
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GEOTEXT TWITTER-US

regul. dropout hidden K regul. dropout hidden K

Baseline (Regression) 0 0 (100, 50) — 10−5 0 (100, 50) —
Proposed method (MDN) 0 0.5 100 100 10−5 0 300 100
Proposed method (MDN-SHARED) 0 0 100 300 0 0 900 900

Table 1: Hyper-parameter settings of the geolocation models tuned over development set of each dataset.
K is the number of Gaussian components in MDN and MDN-SHARED. Regression has a tanh hidden
layer instead of the Gaussian layer. “—” means the parameter is not applicable to the model.

GEOTEXT TWITTER-US

Acc@161 Mean Median Acc@161 Mean Median

Baseline (Regression) 4 951 733 9 746 557
Proposed method (MDN) 24 983 505 29 696 281
Proposed method (MDN-SHARED) 39 865 412 42 655 216

CLASSIFICATION METHODS

(Rahimi et al., 2015) (LR) 38 880 397 50 686 159
(Wing and Baldridge, 2014) (uniform) — — — 49 703 170
(Wing and Baldridge, 2014) (k-d tree) — — — 48 686 191
(Melo and Martins, 2015) — — — — 702 208
(Cha et al., 2015) — 581 425 — — —
(Liu and Inkpen, 2015) — — — — 733 377

Table 2: Geolocation results over GEOTEXT and TWITTER-US datasets based on Regression, MDN
and MDN-SHARED methods. The results are also compared to state-of-the-art classification methods. “—”
signifies that no results were reported for the given metric or dataset.
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Figure 2: Learned Gaussian representation of input locations over TWITTER-US in the lexical dialectology
model. The number of Gaussian components, K, is set to 100 . The red points are µk and the contours are
drawn at p = 0.01.

and showed that it outperforms regression mod-
els by a large margin. There is also very recent
work (Iso et al., 2017) in tweet-level geolocation
that shows the effectiveness of MDN.

We modified MDN by sharing the parameters of

the Gaussian mixtures in MDN-SHARED and im-
proved upon MDN, achieving competetive results
with state-of-the-art classification models. We also
applied the Gaussian mixture representation to pre-
dict dialect words from location, and showed that it
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Figure 3: The distribution of geolocation error
for MDN-SHARED over the development set of
TWITTER-US.
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Figure 4: Recall at k% of 54k vocabulary for
retrieving DAREDS dialect words given points
within a dialect region.
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(a) hella (an intensifier) mostly used in Northern California, also
the name of a company in Illinois.
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(b) yall (means you all) mainly used in Southern U.S.

Figure 5: Log probabilities of terms: (a) hella and
(b) yall in continental U.S.

is competitive with simple tanh activation in terms
of both perplexity of the predicted unigram model
and also recall at k at retrieving DARE dialect
words by location input. Furthermore we showed
that the learned Gaussian mixtures have intereting
properties such as covering high population density
regions (e.g. NYC and LA) with a larger number
of small Gaussians, and a smaller number of larger

New York Louisiana Illinois Pennsylvania

flatbush kmsl metra cdfu
lirr jtfo osco jawn

reade wassam halsted ard
rivington kmfsl kedzie erked

mta ndc lbvs cthu
nostrand bookoo damen septa

stuyvesant #icantdeal niu prussia
pathmark #drove orland drawlin
bleecker slangs cermak youngbull
bowery daq uic prolli

macdougal #gramfam oms #ttm
broome gtf xsport dickeating
driggs metairie cta ctfu

Table 3: Top terms retrieved from the lexical dialec-
tology model given lat/lon training points within a
state ranked by Equation 4.3.

Gaussians in low density areas (e.g. the midwest).
Although we applied the mixture of Gaussians

to location data, it can be used in other settings
where the input or output are from a continuous
multivariate distribution. For example it can be
applied to predict financial risk (Wang and Hua,
2014) and sentiment (Joshi et al., 2010) given text.
We showed that when a global structure exists (e.g.
population centres, in the case of geolocation) it
is better to share the global parameters of the mix-
ture model to improve generalisation. In this work,
we used the bivariate Gaussian distribution in the
MDN’s mixture leaving the use of other distribu-
tions which might better suit the geolocation task
for future research.
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Abstract

Generating captions for images is a task
that has recently received considerable at-
tention. In this work we focus on caption
generation for abstract scenes, or object
layouts where the only information pro-
vided is a set of objects and their locations.
We propose OBJ2TEXT, a sequence-to-
sequence model that encodes a set of ob-
jects and their locations as an input se-
quence using an LSTM network, and de-
codes this representation using an LSTM
language model. We show that our model,
despite encoding object layouts as a se-
quence, can represent spatial relationships
between objects, and generate descriptions
that are globally coherent and semanti-
cally relevant. We test our approach in
a task of object-layout captioning by us-
ing only object annotations as inputs. We
additionally show that our model, com-
bined with a state-of-the-art object detec-
tor, improves an image captioning model
from 0.863 to 0.950 (CIDEr score) in the
test benchmark of the standard MS-COCO
Captioning task.

1 Introduction

Natural Language generation (NLG) is a long
standing goal in natural language processing.
There have already been several successes in ap-
plications such as financial reporting (Kukich,
1983; Smadja and McKeown, 1990), or weather
forecasts (Konstas and Lapata, 2012; Wen et al.,
2015), however it is still a challenging task for
less structured and open domains. Given recent
progress in training robust visual recognition mod-
els using convolutional neural networks, the task
of generating natural language descriptions for ar-

Word Embedding Location Encoder

group of people are flying a kite ENDa

Encoder 
Output START

person

person kite

(a) Input Object Layout (b) LSTM Object Layout Encoder

(c) LSTM Language Model Decoder

Figure 1: Overview of our proposed model for
generating visually descriptive language from ob-
ject layouts. The input (a) is an object layout that
consists of object categories and their correspond-
ing bounding boxes, the encoder (b) uses a two-
stream recurrent neural network to encode the in-
put object layout, and the decoder (c) uses a stan-
dard LSTM recurrent neural network to generate
text.

bitrary images has received considerable atten-
tion (Vinyals et al., 2015; Karpathy and Fei-Fei,
2015; Mao et al., 2015). In general, generating vi-
sually descriptive language can be useful for vari-
ous tasks such as human-machine communication,
accessibility, image retrieval, and search. How-
ever this task is still challenging and it depends on
developing both a robust visual recognition model,
and a reliable language generation model. In this
paper, we instead tackle a task of describing ob-
ject layouts where the categories for the objects in
an input scene and their corresponding locations
are known. Object layouts are commonly used for
story-boarding, sketching, and computer graphics
applications. Additionally, using our object layout
captioning model on the outputs of an object de-
tector we are also able to improve image caption-
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ing models. Object layouts contain rich seman-
tic information, however they also abstract away
several other visual cues such as color, texture,
and appearance, thus introducing a different set of
challenges than those found in traditional image
captioning.

We propose OBJ2TEXT, a sequence-to-
sequence model that encodes object layouts using
an LSTM network (Hochreiter and Schmidhuber,
1997), and decodes natural language descriptions
using an LSTM-based neural language model1.
Natural language generation systems usually con-
sist of two steps: content planning, and surface
realization. The first step decides on the content
to be included in the generated text, and the
second step connects the concepts using structural
language properties. In our proposed model,
OBJ2TEXT, content planning is performed by the
encoder, and surface realization is performed by
the decoder. Our model is trained in the standard
MS-COCO dataset (Lin et al., 2014), which
includes both object annotations for the task of
object detection, and textual descriptions for the
task of image captioning. While most previous
research has been devoted to any one of these
two tasks, our paper presents, to our knowledge,
the first approach for learning mappings between
object annotations and textual descriptions. Using
several lesioned versions of the proposed model
we explored the effect of object counts and loca-
tions in the quality and accuracy of the generated
natural language descriptions.

Generating visually descriptive language re-
quires beyond syntax, and semantics; an under-
standing of the physical word. We also take in-
spiration from recent work by Schmaltz et al.
(2016) where the goal was to reconstruct a sen-
tence from a bag-of-words (BOW) representation
using a simple surface-level language model based
on an encoder-decoder sequence-to-sequence ar-
chitecture. In contrast to this previous approach,
our model is grounded on visual data, and its cor-
responding spatial information, so it goes beyond
word re-ordering. Also relevant to our work is Yao
et al. (2016a) which previously explored the task
of oracle image captioning by providing a lan-
guage generation model with a list of manually
defined visual concepts known to be present in the
image. In addition, our model is able to leverage

1We build on neuraltalk2 and make our Torch code, and an
interactive demo of our model available in the following url:
http://vision.cs.virginia.edu/obj2text

both quantity and spatial information as additional
cues associated with each object/concept, thus al-
lowing it to learn about verbosity, and spatial rela-
tions in a supervised fashion.

In summary, our contributions are as follows:

• We demonstrate that despite encoding object
layouts as a sequence using an LSTM, our
model can still effectively capture spatial in-
formation for the captioning task. We per-
form ablation studies to measure the individ-
ual impact of object counts, and locations.

• We show that a model relying only on ob-
ject annotations as opposed to pixel data, per-
forms competitively in image captioning de-
spite the ambiguity of the setup for this task.

• We show that more accurate and compre-
hensive descriptions can be generated on
the image captioning task by combining our
OBJ2TEXT model using the outputs of a
state-of-the-art object detector with a stan-
dard image captioning approach.

2 Task

We evaluate OBJ2TEXT in the task of object lay-
out captioning, and image captioning. In the first
task, the input is an object layout that takes the
form of a set of object categories and bounding
box pairs 〈o, l〉 = {〈oi, li〉}, and the output is
natural language. This task resembles the second
task of image captioning except that the input is
an object layout instead of a standard raster im-
age represented as a pixel array. We experiment in
the MS-COCO dataset for both tasks. For the first
task, object layouts are derived from ground-truth
bounding box annotations, and in the second task
object layouts are obtained using the outputs of an
object detector over the input image.

3 Related Work

Our work is related to previous works that used
clipart scenes for visually-grounded tasks includ-
ing sentence interpretation (Zitnick and Parikh,
2013; Zitnick et al., 2013), and predicting ob-
ject dynamics (Fouhey and Zitnick, 2014). The
cited advantage of abstract scene representations
such as the ones provided by the clipart scenes
dataset proposed in (Zitnick and Parikh, 2013)
is their ability to separate the complexity of pat-
tern recognition from semantic visual representa-
tion. Abstract scene representations also maintain
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common-sense knowledge about the world. The
works of Vedantam et al. (2015b); Eysenbach et al.
(2016) proposed methods to learn common-sense
knowledge from clipart scenes, while the method
of Yatskar et al. (2016), similar to our work, lever-
ages object annotations for natural images. Un-
derstanding abstract scenes has demonstrated to
be a useful capability for both language and vision
tasks and our work is another step in this direction.

Our work is also related to other language gen-
eration tasks such as image and video caption-
ing (Farhadi et al., 2010; Ordonez et al., 2011;
Mason and Charniak, 2014; Ordonez et al., 2015;
Xu et al., 2015; Donahue et al., 2015; Mao et al.,
2015; Fang et al., 2015). This problem is inter-
esting because it combines two challenging but
perhaps complementary tasks: visual recogni-
tion, and generating coherent language. Fueled
by recent advances in training deep neural net-
works (Krizhevsky et al., 2012) and the availabil-
ity of large annotated datasets with images and
captions such as the MS-COCO dataset (Lin et al.,
2014), recent methods on this task perform end-
to-end learning from pixels to text. Most re-
cent approaches use a variation of an encoder-
decoder model where a convolutional neural net-
work (CNN) extracts visual features from the in-
put image (encoder), and passes its outputs to a
recurrent neural network (RNN) that generates a
caption as a sequence of words (decoder) (Karpa-
thy and Fei-Fei, 2015; Vinyals et al., 2015). How-
ever, the MS-COCO dataset, containing object an-
notations, is also a popular benchmark in com-
puter vision for the task of object detection, where
the objective is to go from pixels to a collection of
object locations. In this paper, we instead frame
our problem as going from a collection of object
categories and locations (object layouts) to image
captions. This requires proposing a novel encod-
ing approach to encode these object layouts in-
stead of pixels, and allows for analyzing the im-
age captioning task from a different perspective.
Several other recent works use a similar sequence-
to-sequence approach to generate text from source
code input (Iyer et al., 2016), or to translate text
from one language to another (Bahdanau et al.,
2015).

There have also been a few previous works ex-
plicitly analyzing the role of spatial and geomet-
ric relations between objects for vision and lan-
guage related tasks. The work of Elliott and Keller

(2013) manually defined a dictionary of object-
object relations based on geometric cues. The
work of Ramisa et al. (2015) is focused on pre-
dicting preposition given two entities and their lo-
cations in an image. Previous works of Plummer
et al. (2015) and Rohrbach et al. (2016) showed
that switching from classification-based CNN net-
work to detection-based Fast RCNN network im-
proves performance for phrase localization. The
work of Hu et al. (2016) showed that encoding
image regions with spatial information is crucial
for natural language object retrieval as the task ex-
plicitly asks for locations of target objects. Unlike
these previous efforts, our model is trained end-
to-end for the language generation task, and takes
as input a holistic view of the scene layout, poten-
tially learning higher order relations between ob-
jects.

4 Model

In this section we describe our base OBJ2TEXT
model for encoding object layouts to produce text
(section 4.1), as well as two further variations to
use our model to generate captions for real images:
OBJ2TEXT-YOLO which uses the YOLO object
detector (Redmon and Farhadi, 2017) to generate
layouts of object locations from real images (sec-
tion 4.2), and OBJ2TEXT-YOLO + CNN-RNN
which further combines the previous model with
an encoder-decoder image captioning which uses
a convolutional neural network to encode the im-
age (section 4.3).

4.1 OBJ2TEXT

OBJ2TEXT is a sequence-to-sequence model that
encodes an input object layout as a sequence, and
decodes a textual description by predicting the
next word at each time step. Given a training
data set comprisingN observations

{
〈o(n), l(n)〉

}
,

where 〈o(n), l(n)〉 is a pair of sequences of in-
put category and location vectors, together with
a corresponding set of target captions

{
s(n)

}
, the

encoder and decoder are trained jointly by mini-
mizing a loss function over the training set using
stochastic gradient descent:

W ∗ = argmin
W

N∑

n=1

L(〈o(n), l(n)〉, s(n)), (1)

in which W =
(
W1

W2

)
is the group of encoder pa-

rametersW1 and decoder parametersW2. The loss
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function is a negative log likelihood function of
the generated description given the encoded object
layout

L(〈o(n), l(n)〉, s(n)) = − log p(sn|hnL,W2), (2)

where hnL is computed using the LSTM-based en-
coder (eqs. 3, and 4) from the object layout inputs
〈o(n), l(n)〉, and p(sn|hnL,W2) is computed using
the LSTM-based decoder (eqs. 5, 6 and 7).

At inference time we encode an input layout
〈o, l〉 into its representation hL, and sample a sen-
tence word by word based on p(st|hL, s<t) as
computed by the decoder in time-step t. Finding
the optimal sentence s∗ = argmaxs p(s|hL) re-
quires the evaluation of an exponential number of
sentences as in each time-step we have K number
of choices for a word vocabulary of size K. As a
common practice for an approximate solution, we
follow (Vinyals et al., 2015) and use beam search
to limit the choices for words at each time-step by
only using the ones with the highest probabilities.
Encoder: The encoder at each time-step t takes
as input a pair 〈ot, lt〉, where ot is the object cat-
egory encoded as a one-hot vector of size V , and
lt = [Bx

t , B
y
t , B

w
t , B

h
t ] is the location configura-

tion vector that contains left-most position, top-
most position, and the width and height of the
bounding box corresponding to object ot, all nor-
malized in the range [0,1] with respect to input im-
age dimensions. ot and lt are mapped to vectors
with the same size k and added to form the input
xt to one time-step of the LSTM-based encoder as
follows:

xt =Woot + (Wllt + bl), xt ∈ Rk, (3)

in which Wo ∈ Rk×V is a categorical embedding
matrix (the word encoder), and Wl ∈ Rk×4 and
bias bl ∈ Rk are parameters of a linear transfor-
mation unit (the object location encoder).

Setting initial value of cell state vector ce0 = 0
and hidden state vector he0 = 0, the LSTM-based
encoder takes the sequence of input (x1, ..., xT1)
and generates a sequence of hidden state vectors
(he1, ..., h

e
T1
) using the following step function (we

omit cell state variables and internal transition
gates for simplicity as we use a standard LSTM
cell definition):

het = LSTM(het−1, xt;W1). (4)

We use the last hidden state vector hL = heT1 as the
encoded representation of the input layout 〈ot, lt〉
to generate the corresponding description s.

Decoder: The decoder takes the encoded layout
hL as input and generates a sequence of multino-
mial distributions over a vocabulary of words us-
ing an LSTM neural language model. The joint
probability distribution of generated sentence s =
(s1, ..., sT2) is factorized into products of condi-
tional probabilities:

p(s|hL) =
T2∏

t=1

p(st|hL, s<t), (5)

where each factor is computed using a softmax
function over the hidden states of the decoder
LSTM as follows:

p(st|hL, s<t) = softmax(Whh
d
t−1 + bh), (6)

hdt = LSTM(hdt−1,Wsst;W2), (7)

where Ws is the categorical embedding matrix for
the one-hot encoded caption sequence of symbols.
By setting hd−1 = 0 and cd−1 = 0 for the initial
hidden state and cell state, the layout representa-
tion is encoded into the decoder network at the 0
time step as a regular input:

hd0 = LSTM(hd−1, hL;W2). (8)

We use beam search to sample from the LSTM
as is routinely performed in previous literature in
order to generate text.

4.2 OBJ2TEXT-YOLO
For the task of image captioning we propose
OBJ2TEXT-YOLO. This model takes an image as
input, extracts an object layout (object categories
and locations) with a state-of-the-art object detec-
tion model YOLO (Redmon and Farhadi, 2017),
and uses OBJ2TEXT as described in section 4.1 to
generate a natural language description of the in-
put layout and hence, the input image. The model
is trained using the standard back-propagation al-
gorithm, but the error is not back-propagated to the
object detection module.

4.3 OBJ2TEXT-YOLO + CNN-RNN
For the image captioning task we experiment with
a combined model (see Figure 2) where we take
an image as input, and then use two separate
computation branches to extract visual feature in-
formation and object layout information. These
two streams of information are then passed to an
LSTM neural language model to generate a de-
scription. Visual features are extracted using the
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Figure 2: Image Captioning by joint learning of
visual features and object layout encoding.

VGG-16 (Simonyan and Zisserman, 2015) con-
volutional neural network pre-trained on the Im-
ageNet classification task (Russakovsky et al.,
2015). Object layouts are extracted using the
YOLO object detection system and its output ob-
ject locations are encoded using our proposed
OBJ2TEXT encoder. These two streams of in-
formation are encoded into vectors of the same
size and their sum is input to the language model
to generate a textual description. The model is
trained using the standard back-propagation al-
gorithm where the error is back-propagated to
both branches but not the object detection mod-
ule. The weights of the image CNN model are
fine-tuned only after the layout encoding branch is
well trained but no significant overall performance
improvements were observed.

5 Experimental Setup

We evaluate the proposed models on the MS-
COCO (Lin et al., 2014) dataset which is a pop-
ular image captioning benchmark that also con-
tains object extent annotations. In the object lay-
out captioning task the model uses the ground-
truth object extents as input object layouts, while
in the image captioning task the model takes raw
images as input. The qualities of generated de-
scriptions are evaluated using both human evalu-
ations and automatic metrics. We train and vali-
date our models based on the commonly adopted
split regime (113,287 training images, 5000 val-
idation and 5000 test images) used in (Karpathy
et al., 2016), and also test our model in the MS-
COCO official test benchmark.

We implement our models based on the
open source image captioning system Neu-
raltalk2 (Karpathy et al., 2016). Other config-
urations including data preprocessing and train-
ing hyper-parameters also follow Neuraltalk2. We
trained our models using a GTX1080 GPU with
8GB of memory for 400k iterations using a batch

size of 16 and an Adam optimizer with alpha of
0.8, beta of 0.999 and epsilon of 1e-08. Descrip-
tions of the CNN-RNN approach are generated us-
ing the publicly available code and model check-
point provided by Neuraltalk2 (Karpathy et al.,
2016). Captions for online test set evaluations are
generated using beam search of size 2, but score
histories on split validation set are based on cap-
tions generated without beam search (i.e. max
sampling at each time-step).

Ablation on Object Locations and Counts:. We
setup an experiment where we remove the input
locations from the OBJ2TEXT encoder to study
the effects on the generated captions, and confirm
whether the model is actually using spatial infor-
mation during surface realization. In this restricted
version of our model the LSTM encoder at each
time step only takes the object category embed-
ding vector as input. The OBJ2TEXT model ad-
ditionally encodes different instances of the same
object category in different time steps, potentially
encoding in some of its hidden states information
about how many objects of a particular class are
in the image. For example, in the object annota-
tion presented in the input in Figure 1, there are
two instances of “person”. We perform an addi-
tional experiment where our model does not have
access neither to object locations, nor the num-
ber of object instances by providing only a set
of object categories. Note that in this set of ex-
periments the object layouts are given as inputs,
thus we assume full access to ground-truth object
annotations, even in the test split. In the exper-
imental results section we use the “-GT” postfix
to indicate that input object layouts are obtained
from ground-truth object annotations provided by
the MS-COCO dataset.

Image Captioning Experiment: In this exper-
iment we assess whether the image captioning
model OBJ2TEXT-YOLO that only relies on ob-
ject categories and locations could give compara-
ble performance with a CNN-RNN model based
on Neuraltalk2 (Karpathy et al., 2016) that has full
access to visual image features. We also explore
how much does a combined OBJ2TEXT-YOLO
+ CNN-RNN model could improve over a CNN-
RNN model by fusing object counts and location
information that is not explicitly encoded in a tra-
ditional CNN-RNN approach.

Human Evaluation Protocol. We use a two-
alternative forced-choice evaluation (2AFC) ap-
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proach to compare two methods that generate cap-
tions. For this, we setup a task on Amazon Me-
chanical Turk where users are presented with an
image and two alternative captions, and they have
to choose the caption that best describes the image.
Users are not prompted to use any single criteria
but rather a holistic assessment of the captions, in-
cluding their semantics, syntax, and the degree to
which they describe the image content. In our ex-
periment we randomly sample 500 captions gen-
erated by various models for MS COCO online
test set images, and use three users per image to
obtain annotations. Note that three users choos-
ing randomly between two options have a chance
of 25% to select the same caption for a given im-
age. In our experiments comparing method A vs
method B, we report the percentage of times A
was picked over B (Choice-all), the percentage of
times all users selected the same method, either A
or B, (Agreement), and the percentage of times A
was picked over B only for these cases where all
users agreed (Choice-agreement).

6 Results

Impact of Object Locations and Counts: Fig-
ure 3a shows the CIDEr (Vedantam et al., 2015a),
and BLEU-4 (Papineni et al., 2002) score his-
tory on our validation set during 400k iterations of
training of OBJ2TEXT, as well as a version of our
model that does not use object locations, and a ver-
sion of our model that does not use neither object
locations nor object counts. These results show
that our model is effectively using both object lo-
cations and counts to generate better captions, and
absence of any one of these two cues affects per-
formance. Table 1 confirms these results on the
test split after a full round of training.

Furthermore, human evaluation results in the
first row of Table 2 show that the OBJ2TEXT
model with access to object locations is preferred
by users, especially in cases where all evaluators
agreed on their choice (62% over the baseline that
does not have access to locations). In Figure 4 we
additionally present qualitative examples showing
predictions side-by-side between OBJ2TEXT-GT
and OBJ2TEXT-GT (no obj-locations). These re-
sults indicate that 1) perhaps not surprisingly, ob-
ject counts is useful for generating better qual-
ity descriptions, and 2) object location informa-
tion when properly encoded, is an important cue
for generating more accurate descriptions. We ad-

ditionally implemented a nearest neighbor base-
line by representing the objects in the input layout
using an orderless bag-of-words representation of
object counts and the CIDEr score on the test split
was only 0.387.

On top of OBJ2TEXT we additionally experi-
mented with the global attention model proposed
in (Luong et al., 2015) so that a weighted combi-
nation of the encoder hidden states are forwarded
to the decoding neural language model, however
we did not notice any overall gains in terms of ac-
curacy from this formulation. We observed that
this model provided gains only for larger input se-
quences where it is more likely that the LSTM
network forgets its past history (Bahdanau et al.,
2015). However in MS-COCO the average num-
ber of objects in each image is rather modest, so
the last hidden state can capture well the overall
nuances of the visual input.

Object Layout Encoding for Image Captioning:
Figure 3b shows the CIDEr, and BLEU-4 score
history on the validation set during 400k iterations
of training of OBJ2TEXT-YOLO, CNN-RNN,
and their combination. These results show that
OBJ2TEXT-YOLO performs surprisingly close to
CNN-RNN, and the model resulting from com-
bining the two, clearly outperforms each method
alone. Table 3 shows MS-COCO evaluation re-
sults on the test set using their online benchmark
service, and confirms results obtained in the vali-
dation split, where CNN-RNN seems to have only
a slight edge over OBJ2TEXT-YOLO which lacks
access to pixel data after the object detection stage.
Human evaluation results in Table 2 rows 2, and
3, further confirm these findings. These results
show that meaningful descriptions could be gen-
erated solely based on object categories and loca-
tions information, even without access to color and
texture input.

The combined model performs better than the
two models, improving the CIDEr score of the
basic CNN-RNN model from 0.863 to 0.950,
and human evaluation results show that the com-
bined model is preferred over the basic CNN-
RNN model for 65.3% of the images for which
all evaluators were in agreement about the se-
lected method. These results show that explic-
itly encoded object counts and location informa-
tion, which is often overlooked in traditional im-
age captioning approaches, could boost the perfor-
mance of existing models. Intuitively, object lay-
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(a) Score histories of lesioned versions of the proposed model
for the task of object layout captioning.
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Figure 3: Score histories of various models on the MS COCO split validation set.

Method Bleu 4 CIDEr METEOR ROUGE-L
OBJ2TEXT-GT (no obj-locations, counts) 0.21 0.759 0.215 0.464
OBJ2TEXT-GT (no obj-locations) 0.233 0.837 0.222 0.482
OBJ2TEXT-GT 0.253 0.922 0.238 0.507

Table 1: Performance of lesioned versions of the proposed model on the MS COCO split test set.

out and visual features are complementary: neural
network models for visual feature extraction are
trained on a classification task where object-level
information such as number of instances and lo-
cations are ignored in the objective. Object lay-
outs on the other hand, contain categories and their
bounding-boxes but don’t have access to rich im-
age features such as image background, object at-
tributes and objects with categories not present in
the object detection vocabulary.

Figure 5 provides a three-way comparison of
captions generated by the three image captioning
models, with preferred captions by human evalu-
ators annotated in bold text. Analysis on actual
outputs gives us insights into the benefits of comb-
ing object layout information and visual features
obtained using a CNN. Our OBJ2TEXT-YOLO
model makes many mistakes because of lack of
image context information since it only has access
to object layout, while CNN-RNN makes many
mistakes because the visual recognition model is
imperfect at predicting the correct content. The
combined model is usually able to generate more
accurate and comprehensive descriptions.

In this work we only explored encoding spa-
tial information with object labels, but object la-

bels could be readily augmented with rich seman-
tic features that are more detailed descriptions of
objects or image regions. For example, the work
of You et al. (2016) and Yao et al. (2016b) showed
that visual features trained with semantic concepts
(text entities mentioned in captions) instead of ob-
ject labels is useful for image captioning, although
they didn’t consider encoding semantic concepts
with spatial information. In case of object an-
notations the MS-COCO dataset only provides
object labels and bounding-boxes, but there are
other datasets such as Flick30K Entities (Plummer
et al., 2015), and the Visual Genome dataset (Kr-
ishna et al., 2017) that provide richer region-to-
phrase correspondence annotations. In addition,
the fusion of object counts and spatial information
with CNN visual features could in principle bene-
fit other vision and language tasks such as visual
question answering. We leave these possible ex-
tensions as future work.

7 Conclusion

We introduced OBJ2TEXT, a sequence-to-
sequence model to generate visual descriptions
for object layouts where only categories and
locations are specified. Our proposed model
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Alternatives Choice-all Choice-agreement Agreement
OBJ2TEXT-GT vs. OBJ2TEXT-GT (no obj-locations) 54.1% 62.1% 40.6%
OBJ2TEXT-YOLO vs. CNN+RNN 45.6% 40.6% 54.7%
OBJ2TEXT-YOLO + CNN-RNN vs. CNN-RNN 58.1% 65.3% 49.5%
OBJ2TEXT-GT vs. HUMAN 23.6% 9.9% 58.8%

Table 2: Human evaluation results using two-alternative forced choice evaluation. Choice-all is percent-
age the first alternative was chosen. Choice-agreement is percentage the first alternative was chosen only
when all annotators agreed. Agreement is percentage where all annotators agreed (random is 25%).

MS COCO Test Set Performance CIDEr ROUGE-L METEOR B-4 B-3 B-2 B-1
5-Refs
OBJ2TEXT-YOLO 0.830 0.497 0.228 0.262 0.361 0.500 0.681
CNN-RNN 0.857 0.514 0.237 0.283 0.387 0.529 0.705
OBJ2TEXT-YOLO + CNN-RNN 0.932 0.528 0.250 0.300 0.404 0.546 0.719
40-Refs
OBJ2TEXT-YOLO 0.853 0.636 0.305 0.508 0.624 0.746 0.858
CNN-RNN 0.863 0.654 0.318 0.540 0.656 0.775 0.877
OBJ2TEXT-YOLO + CNN-RNN 0.950 0.671 0.334 0.569 0.686 0.802 0.896

Table 3: The 5-Refs and 40-Refs performances of OBJ2TEXT-YOLO, CNN-RNN and the combined
approach on the MS COCO online test set. The 5-Refs performance is measured using 5 ground-truth
reference captions, while 40-Refs performance is measured using 40 ground-truth reference captions.

a: three buses parked in a parking lot
b: a bus is parked in front of a bus stop

a: two people riding on the back of an elephant
b: a man and a woman riding on the back of an elephant

a: a man is riding a horse and a dog is carrying a bag
b: two dogs are sitting on the back of a horse

bus bus bus person
person

elephant

elephant

person

dog
dog

boottle

truck
truck

horse

a: a group of people standing around a parking meter
b: a man riding a motorcycle down a street

a: a woman sitting on a couch with a man holding a doughnut
b: a woman and a child sitting at a table with food

a: two young girls holding tennis racquets on a court
b: a man holding a tennis racquet on a tennis court

motorcycle
personpersonpersonperson

person person

bag

bag
bag

boottle
boottle

donut

person person

bag bag

cupcup

couch
person

person

tennis racket

Figure 4: Qualitative examples comparing generated captions of (a) OBJ2TEXT-GT, and (b)
OBJ2TEXT-GT (no obj-locations).

shows that an orderless visual input representation
of concepts is not enough to produce good de-
scriptions, but object extents, locations, and object
counts, all contribute to generate more accurate
image descriptions. Crucially we show that our
encoding mechanism is able to capture useful
spatial information using an LSTM network to
produce image descriptions, even when the input
is provided as a sequence rather than as an explicit
2D representation of objects. Additionally, using

our proposed OBJ2TEXT model in combination
with an existing image captioning model and
a robust object detector we showed improved
results in the task of image captioning.
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(a) a yellow fire hydrant sitting
on the side of a road

(b) a man is standing in the
snow with a snowboard

(c) a fire hydrant in the snow
near a road

(a) a small boat in a body of
water

(b) a boat with a bunch of
people on it

(c) a boat is docked in a
large body of water

(a) a man and a woman are
sitting on a bench

(b) a man and a woman sitting
on a couch

(c) a man and woman are
talking on their cell phones

(a) a man sitting on a bench in
a park

(b) a woman sitting on a bench
with a cell phone

(c) a woman sitting on a
bench with her legs crossed

(a) a bird sitting on a tree
branch in a tree

(b) a bird sitting on a branch in
a tree

(c) two birds are sitting on a
tree branch

(a) a zebra standing in a field
of grass

(b) a man riding a wave on top
of a surfboard

(c) a zebra standing in the
water near a rock wall

(a) a chair and a table in a
room

(b) a pile of luggage sitting on
top of a wooden floor

(c) a room with a table and
chairs and a suitcase

(a) a white plate topped with
meat and vegetables

(b) a white plate topped with
meat and vegetables
(c) a plate of food with meat
and vegetables

(a) a herd of cattle grazing on
a lush green field

(b) a herd of elephants walking
across a river

(c) a group of cows standing
in a river

(a) a man is swinging a bat at
a ball

(b) a man is playing with a
frisbee in a park

(c) a man is swinging a bat
in a field

(a) a little girl sitting at a table
with a cake

(b) a bride and groom cutting
their wedding cake

(c) a bride and groom
cutting their wedding cake

(a) a street sign with a street
name sign on it

(b) a large clock tower
towering over a city

(c) a large body of water
with a clock tower in the
background

(a) a couple of giraffe standing
next to each other

(b) a giraffe is standing in a
tree in a forest
(c) two giraffes standing next
to each other in a tree

(a) a group of people standing
around a pizza

(b) a man holding a box of
food in front of him
(c) a couple of people that are
holding a pizza

(a) a group of people playing a
game with remote controllers

(b) a man and a woman
playing a video game

(c) a group of people sitting
around a living room

(a) a man is standing in the
middle of a street

(b) a man sitting on a beach
with a surfboard

(c) a man and woman sitting
on the beach

(a) a glass vase with some
flowers in it

(b) a vase filled with flowers
on top of a table
(c) a vase filled with flowers on
top of a table

(a) a man and a woman sitting
at a table eating pizza

(b) a woman is taking a picture
of herself in a mirror

(c) two women sitting at a
table with a pizza

(a) a man sitting in a kitchen
next to a woman

(b) a woman standing in front
of a counter in a kitchen

(c) two women in a kitchen
preparing food on a table

(a) a man and a woman
standing next to each other

(b) a man in a suit and tie
standing in a room

(c) a man in a suit and tie
standing next to a man

(a) a man riding a bike down a
street

(b) a man riding a motorcycle
down a street

(c) a man riding a bike with a
helmet on his head

(a) a woman is playing tennis
on a court

(b) a woman is playing
tennis on a tennis court
(c) a tennis player in action on
the court

(a) a woman in a bathroom
with a sink and a mirror

(b) a man standing in a kitchen
next to a stove

(c) a man standing in a
kitchen next to a counter

(a) a man holding a nintendo
wii game controller

(b) a young boy sitting on a
couch holding a remote control

(c) a young child is holding
a toy in his hand

(a) a person riding a horse on
a beach

(b) a woman is riding a
horse in a field
(c) a girl is riding a horse in a
field

(a) a bunch of vases sitting on
a shelf

(b) a bunch of flowers in a
vase on a table

(c) a bunch of colorful vases
sitting on a table

(a) a man riding a bike down a
street next to tall buildings

(b) a man is on a boat in the
water

(c) a couple of people
standing on top of a bridge

(a) a man riding a skateboard
with a dog

(b) a dog is riding a
skateboard on a street

(c) a dog on a skateboard in
the middle of the street

(a) a young boy in a baseball
uniform holding a glove

(b) a man is sitting on the
ground holding a
skateboard
(c) a man sitting on the ground
with a baseball glove

(a) a woman holding a tennis
racquet on a court

(b) a dog with a tennis racket
in a basket

(c) a person holding a tennis
racket in a park

Figure 5: Qualitative examples comparing the generated captions of (a) OBJ2TEXT-YOLO, (b) CNN-
RNN and (c) OBJ2TEXT-YOLO + CNN-RNN. Images are selected from the 500 human evaluation
images and annotated with YOLO object detection results. Captions preferred by human evaluators with
agreement are highlighted in bold text.
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Abstract

We introduce the first end-to-end corefer-
ence resolution model and show that it sig-
nificantly outperforms all previous work
without using a syntactic parser or hand-
engineered mention detector. The key
idea is to directly consider all spans in a
document as potential mentions and learn
distributions over possible antecedents for
each. The model computes span em-
beddings that combine context-dependent
boundary representations with a head-
finding attention mechanism. It is trained
to maximize the marginal likelihood of
gold antecedent spans from coreference
clusters and is factored to enable aggres-
sive pruning of potential mentions. Exper-
iments demonstrate state-of-the-art perfor-
mance, with a gain of 1.5 F1 on the
OntoNotes benchmark and by 3.1 F1 us-
ing a 5-model ensemble, despite the fact
that this is the first approach to be success-
fully trained with no external resources.

1 Introduction

We present the first state-of-the-art coreference
resolution model that is learned end-to-end given
only gold mention clusters. All recent coref-
erence models, including neural approaches that
achieved impressive performance gains (Wiseman
et al., 2016; Clark and Manning, 2016b,a), rely
on syntactic parsers, both for head-word features
and as the input to carefully hand-engineered men-
tion proposal algorithms. We demonstrate for the
first time that these resources are not required, and
in fact performance can be improved significantly
without them, by training an end-to-end neural
model that jointly learns which spans are entity
mentions and how to best cluster them.

Our model reasons over the space of all spans
up to a maximum length and directly optimizes the
marginal likelihood of antecedent spans from gold
coreference clusters. It includes a span-ranking
model that decides, for each span, which of the
previous spans (if any) is a good antecedent. At
the core of our model are vector embeddings rep-
resenting spans of text in the document, which
combine context-dependent boundary representa-
tions with a head-finding attention mechanism
over the span. The attention component is in-
spired by parser-derived head-word matching fea-
tures from previous systems (Durrett and Klein,
2013), but is less susceptible to cascading errors.
In our analyses, we show empirically that these
learned attention weights correlate strongly with
traditional headedness definitions.

Scoring all span pairs in our end-to-end model
is impractical, since the complexity would be
quartic in the document length. Therefore we fac-
tor the model over unary mention scores and pair-
wise antecedent scores, both of which are sim-
ple functions of the learned span embedding. The
unary mention scores are used to prune the space
of spans and antecedents, to aggressively reduce
the number of pairwise computations.

Our final approach outperforms existing models
by 1.5 F1 on the OntoNotes benchmark and by 3.1
F1 using a 5-model ensemble. It is not only accu-
rate, but also relatively interpretable. The model
factors, for example, directly indicate whether an
absent coreference link is due to low mention
scores (for either span) or a low score from the
mention ranking component. The head-finding at-
tention mechanism also reveals which mention-
internal words contribute most to coreference de-
cisions. We leverage this overall interpretability to
do detailed quantitative and qualitative analyses,
providing insights into the strengths and weak-
nesses of the approach.
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2 Related Work

Machine learning methods have a long history
in coreference resolution (see Ng (2010) for a
detailed survey). However, the learning prob-
lem is challenging and, until very recently, hand-
engineered systems built on top of automatically
produced parse trees (Raghunathan et al., 2010)
outperformed all learning approaches. Durrett and
Klein (2013) showed that highly lexical learning
approaches reverse this trend, and more recent
neural models (Wiseman et al., 2016; Clark and
Manning, 2016b,a) have achieved significant per-
formance gains. However, all of these models still
use parsers for head features and include highly
engineered mention proposal algorithms.1 Such
pipelined systems suffer from two major draw-
backs: (1) parsing mistakes can introduce cascad-
ing errors and (2) many of the hand-engineered
rules do not generalize to new languages or do-
mains. We present the first non-pipelined results,
while providing further performance gains.

More generally, a wide variety of approaches
for learning coreference models have been pro-
posed. They can typically be categorized as
(1) mention-pair classifiers (Ng and Cardie,
2002; Bengtson and Roth, 2008), (2) entity-
level models (Haghighi and Klein, 2010; Clark
and Manning, 2015, 2016b; Wiseman et al.,
2016), (3) latent-tree models (Fernandes et al.,
2012; Björkelund and Kuhn, 2014; Martschat
and Strube, 2015), or (4) mention-ranking mod-
els (Durrett and Klein, 2013; Wiseman et al., 2015;
Clark and Manning, 2016a). Our span-ranking
approach is most similar to mention ranking, but
we reason over a larger space by jointly detecting
mentions and predicting coreference.

3 Task

We formulate the task of end-to-end coreference
resolution as a set of decisions for every possible
span in the document. The input is a document D
containing T words along with metadata such as
speaker and genre information.

Let N = T (T+1)
2 be the number of possible text

spans in D. Denote the start and end indices of a
span i in D respectively by START(i) and END(i),
for 1 ≤ i ≤ N . We assume an ordering of the

1For example, Raghunathan et al. (2010) use rules to re-
move pleonastic mentions of it detected by 12 lexicalized reg-
ular expressions over English parse trees.

spans based on START(i); spans with the same start
index are ordered by END(i).

The task is to assign to each span i an an-
tecedent yi. The set of possible assignments for
each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy
antecedent ε and all preceding spans. True an-
tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.
The dummy antecedent ε represents two possible
scenarios: (1) the span is not an entity mention or
(2) the span is an entity mention but it is not coref-
erent with any previous span. These decisions im-
plicitly define a final clustering, which can be re-
covered by grouping all spans that are connected
by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-
tion P (y1, . . . , yN | D) whose most likely config-
uration produces the correct clustering. We use a
product of multinomials for each span:

P (y1, . . . , yN | D) =
N∏

i=1

P (yi | D)

=

N∏

i=1

exp(s(i, yi))∑
y′∈Y(i) exp(s(i, y′))

where s(i, j) is a pairwise score for a coreference
link between span i and span j in documentD. We
omit the document D from the notation when the
context is unambiguous. There are three factors
for this pairwise coreference score: (1) whether
span i is a mention, (2) whether span j is a men-
tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j 6= ε

Here sm(i) is a unary score for span i being a men-
tion, and sa(i, j) is pairwise score for span j being
an antecedent of span i.

By fixing the score of the dummy antecedent ε
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).
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General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ε) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent
scores are computed from pairs of span represen-
tations. The final coreference score of a pair of
spans is computed by summing the mention scores
of both spans and their pairwise antecedent score.

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions
above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi, gj , gi ◦ gj , φ(i, j)])

where · denotes the dot product, ◦ denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of informa-
tion are crucial to accurately predicting corefer-
ence links: the context surrounding the mention
span and the internal structure within the span.
We use a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to encode the lexical infor-
mation of both the inside and outside of each
span. We also include an attention mechanism
over words in each span to model head words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every
word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ
ht,δ = ot,δ ◦ tanh(ct,δ)

x∗t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of
each LSTM, and x∗t is the concatenated output
of the bidirectional LSTM. We use independent
LSTMs for every sentence, since cross-sentence
context was not helpful in our experiments.
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Syntactic heads are typically included as fea-
tures in previous systems (Durrett and Klein,
2013; Clark and Manning, 2016b,a). Instead of re-
lying on syntactic parses, our model learns a task-
specific notion of headedness using an attention
mechanism (Bahdanau et al., 2014) over words in
each span:

αt = wα · FFNNα(x∗t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in
span i. The weights ai,t are automatically learned
and correlate strongly with traditional definitions
of head words as we will see in Section 9.2.

The above span information is concatenated to
produce the final representation gi of span i:

gi = [x∗START(i),x
∗
END(i), x̂i, φ(i)]

This generalizes the recurrent span representations
recently proposed for question-answering (Lee
et al., 2016), which only include the boundary rep-
resentations x∗START(i) and x∗END(i). We introduce
the soft head word vector x̂i and a feature vector
φ(i) encoding the size of span i.

5 Inference

The size of the full model described above is
O(T 4) in the document length T . To maintain
computation efficiency, we prune the candidate
spans greedily during both training and evaluation.

We only consider spans with up to L words and
compute their unary mention scores sm(i) (as de-
fined in Section 4). To further reduce the number
of spans to consider, we only keep up to λT spans
with the highest mention scores and consider only
up to K antecedents for each. We also enforce
non-crossing bracketing structures with a simple
suppression scheme.2 We accept spans in de-
creasing order of the mention scores, unless, when
considering span i, there exists a previously ac-
cepted span j such that START(i) < START(j) ≤

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.

END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we
maintain a high recall of gold mentions in our ex-
periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-
tion of antecedents for each document is computed
in a forward pass over a single computation graph.
The final prediction is the clustering produced by
the most likely configuration.

6 Learning

In the training data, only clustering information
is observed. Since the antecedents are latent, we
optimize the marginal log-likelihood of all correct
antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-
ter containing span i. If span i does not belong
to a gold cluster or all gold antecedents have been
pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-
rally learns to prune spans accurately. While the
initial pruning is completely random, only gold
mentions receive positive updates. The model can
quickly leverage this learning signal for appropri-
ate credit assignment to the different factors, such
as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero
removes a spurious degree of freedom in the over-
all model with respect to mention detection. It
also prevents the span pruning from introducing
noise. For example, consider the case where span
i has a single gold antecedent that was pruned, so
GOLD(i) = {ε}. The learning objective will only
correctly push the scores of non-gold antecedents
lower, and it cannot incorrectly push the score of
the dummy antecedent higher.

This learning objective can be considered a
span-level, cost-insensitive analog of the learning
objective proposed by Durrett and Klein (2013).
We experimented with these cost-sensitive alterna-
tives, including margin-based variants (Wiseman
et al., 2015; Clark and Manning, 2016a), but a
simple maximum-likelihood objective proved to
be most effective.
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MUC B3 CEAFφ4
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Our model (ensemble) 81.2 73.6 77.2 72.3 61.7 66.6 65.2 60.2 62.6 68.8
Our model (single) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3
Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Wiseman et al. (2015) 76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4
Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0
Martschat and Strube (2015) 76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5
Durrett and Klein (2014) 72.6 69.9 71.2 61.2 56.4 58.7 56.2 54.2 55.2 61.7
Björkelund and Kuhn (2014) 74.3 67.5 70.7 62.7 55.0 58.6 59.4 52.3 55.6 61.6
Durrett and Klein (2013) 72.9 65.9 69.2 63.6 52.5 57.5 54.3 54.4 54.3 60.3

Table 1: Results on the test set on the English data from the CoNLL-2012 shared task. The final column
(Avg. F1) is the main evaluation metric, computed by averaging the F1 of MUC, B3, and CEAFφ4 . We
improve state-of-the-art performance by 1.5 F1 for the single model and by 3.1 F1.

7 Experiments

We use the English coreference resolution data
from the CoNLL-2012 shared task (Pradhan et al.,
2012) in our experiments. This dataset contains
2802 training documents, 343 development docu-
ments, and 348 test documents. The training doc-
uments contain on average 454 words and a maxi-
mum of 4009 words.

7.1 Hyperparameters
Word representations The word embeddings
are a fixed concatenation of 300-dimensional
GloVe embeddings (Pennington et al., 2014) and
50-dimensional embeddings from Turian et al.
(2010), both normalized to be unit vectors. Out-
of-vocabulary words are represented by a vector
of zeros. In the character CNN, characters are
represented as learned 8-dimensional embeddings.
The convolutions have window sizes of 3, 4, and 5
characters, each consisting of 50 filters.

Hidden dimensions The hidden states in the
LSTMs have 200 dimensions. Each feed-forward
neural network consists of two hidden layers with
150 dimensions and rectified linear units (Nair and
Hinton, 2010).

Feature encoding We encode speaker informa-
tion as a binary feature indicating whether a pair
of spans are from the same speaker. Following
Clark and Manning (2016b), the distance features
are binned into the following buckets [1, 2, 3, 4, 5-
7, 8-15, 16-31, 32-63, 64+]. All features (speaker,

genre, span distance, mention width) are repre-
sented as learned 20-dimensional embeddings.

Pruning We prune the spans such that the maxi-
mum span width L = 10, the number of spans per
word λ = 0.4, and the maximum number of an-
tecedents K = 250. During training, documents
are randomly truncated to up to 50 sentences.

Learning We use ADAM (Kingma and Ba,
2014) for learning with a minibatch size of 1.
The LSTM weights are initialized with random
orthonormal matrices as described in Saxe et al.
(2013). We apply 0.5 dropout to the word embed-
dings and character CNN outputs. We apply 0.2
dropout to all hidden layers and feature embed-
dings. Dropout masks are shared across timesteps
to preserve long-distance information as described
in Gal and Ghahramani (2016). The learning rate
is decayed by 0.1% every 100 steps. The model is
trained for up to 150 epochs, with early stopping
based on the development set.

All code is implemented in TensorFlow (Abadi
et al., 2015) and is publicly available. 3

7.2 Ensembling
We also report ensemble experiments using five
models trained with different random initializa-
tions. Ensembling is performed for both the span
pruning and antecedent decisions.

At test time, we first average the mention scores
sm(i) over each model before pruning the spans.

3https://github.com/kentonl/e2e-coref
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Avg. F1 ∆

Our model (ensemble) 69.0 +1.3
Our model (single) 67.7
− distance and width features 63.9 -3.8
− GloVe embeddings 65.3 -2.4
− speaker and genre metadata 66.3 -1.4
− head-finding attention 66.4 -1.3
− character CNN 66.8 -0.9
− Turian embeddings 66.9 -0.8

Table 2: Comparisons of our single model on the
development data. The 5-model ensemble pro-
vides a 1.3 F1 improvement. The head-finding at-
tention, features, and all word representations con-
tribute significantly to the full model.

Given the same pruned spans, each model then
computes the antecedent scores sa(i, j) separately,
and they are averaged to produce the final scores.

8 Results

We report the precision, recall, and F1 for the stan-
dard MUC, B3, and CEAFφ4metrics using the of-
ficial CoNLL-2012 evaluation scripts. The main
evaluation is the average F1 of the three metrics.

8.1 Coreference Results
Table 1 compares our model to several previ-
ous systems that have driven substantial improve-
ments over the past several years on the OntoNotes
benchmark. We outperform previous systems in
all metrics. In particular, our single model im-
proves the state-of-the-art average F1 by 1.5, and
our 5-model ensemble improves it by 3.1.

The most significant gains come from improve-
ments in recall, which is likely due to our end-to-
end setup. During training, pipelined systems typ-
ically discard any mentions that the mention detec-
tor misses, which for Clark and Manning (2016a)
consists of more than 9% of the labeled mentions
in the training data. In contrast, we only dis-
card mentions that exceed our maximum mention
width of 10, which accounts for less than 2% of the
training mentions. The contribution of joint men-
tion scoring is further discussed in Section 8.3

8.2 Ablations
To show the importance of each component in our
proposed model, we ablate various parts of the ar-
chitecture and report the average F1 on the devel-
opment set of the data (see Figure 2).

Avg. F1 ∆

Our model (joint mention scoring) 67.7
w/ rule-based mentions 66.7 -1.0
w/ oracle mentions 85.2 +17.5

Table 3: Comparisons of of various mention pro-
posal methods with our model on the develop-
ment data. The rule-based mentions are derived
from the mention detector from Raghunathan et al.
(2010), resulting in a 1 F1 drop in performance.
The oracle mentions are from the labeled clusters
and improve our model by over 17.5 F1.

Features The distance between spans and the
width of spans are crucial signals for coreference
resolution, consistent with previous findings from
other coreference models. They contribute 3.8 F1
to the final result.

Word representations Since our word embed-
dings are fixed, having access to a variety of word
embeddings allows for a more expressive model
without overfitting. We hypothesis that the differ-
ent learning objectives of the GloVe and Turian
embeddings provide orthogonal information (the
former is word-order insensitive while the latter
is word-order sensitive). Both embeddings con-
tribute to some improvement in development F1.

The character CNN provides morphological
information and a way to backoff for out-of-
vocabulary words. Since coreference decisions of-
ten involve rare named entities, we see a contribu-
tion of 0.9 F1 from character-level modeling.

Metadata Speaker and genre indicators many
not be available in downstream applications. We
show that performance degrades by 1.4 F1 without
them, but is still on par with previous state-of-the-
art systems that assume access to this metadata.

Head-finding attention Ablations also show a
1.3 F1 degradation in performance without the at-
tention mechanism for finding task-specific heads.
As we will see in Section 9.4, the attention mech-
anism should not be viewed as simply an approx-
imation of syntactic heads. In many cases, it is
beneficial to pay attention to multiple words that
are useful specifically for coreference but are not
traditionally considered to be syntactic heads.
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Figure 3: Proportion of gold mentions covered
in the development data as we increase the num-
ber of spans kept per word. Recall is compara-
ble to the mention detector of previous state-of-
the-art systems given the same number of spans.
Our model keeps 0.4 spans per word in our exper-
iments, achieving 92.7% recall of gold mentions.

8.3 Comparing Span Pruning Strategies

To tease apart the contributions of improved men-
tion scoring and improved coreference decisions,
we compare the results of our model with alter-
nate span pruning strategies. In these experiments,
we use the alternate spans for both training and
evaluation. As shown in Table 3, keeping mention
candidates detected by the rule-based system over
predicted parse trees (Raghunathan et al., 2010)
degrades performance by 1 F1. We also provide
oracle experiment results, where we keep exactly
the mentions that are present in gold coreference
clusters. With oracle mentions, we see an im-
provement of 17.5 F1, suggesting an enormous
room for improvement if our model can produce
better mention scores and anaphoricity decisions.

9 Analysis

To highlight the strengths and weaknesses of our
model, we provide both quantitative and qualita-
tive analyses. In the following discussion, we use
predictions from the single model rather than the
ensembled model.

9.1 Mention Recall

The training data only provides a weak signal for
spans that correspond to entity mentions, since
singleton clusters are not explicitly labeled. As
a by product of optimizing marginal likelihood,

1 2 3 4 5 6 7 8 9 10

10
20
30
40
50
60
70
80
90

100

Span width

%

Constituency precision
Head word precision
Frequency

Figure 4: Indirect measure of mention precision
using agreement with gold syntax. Constituency
precision: % of unpruned spans matching syn-
tactic constituents. Head word precision: % of
unpruned constituents whose syntactic head word
matches the most attended word. Frequency: % of
gold spans with each width.

our model automatically learns a useful ranking of
spans via the unary mention scores from Section 4.

The top spans, according to the mention scores,
cover a large portion of the mentions in gold clus-
ters, as shown in Figure 3. Given a similar number
of spans kept, our recall is comparable to the rule-
based mention detector (Raghunathan et al., 2010)
that produces 0.26 spans per word with a recall of
89.2%. As we increase the number of spans per
word (λ in Section 5), we observe higher recall
but with diminishing returns. In our experiments,
keeping 0.4 spans per word results in 92.7% recall
in the development data.

9.2 Mention Precision

While the training data does not offer a direct mea-
sure of mention precision, we can use the gold
syntactic structures provided in the data as a proxy.
Spans with high mention scores should correspond
to syntactic constituents.

In Figure 4, we show the precision of top-
scoring spans when keeping 0.4 spans per word.
For spans with 2–5 words, 75–90% of the predic-
tions are constituents, indicating that the vast ma-
jority of the mentions are syntactically plausible.
Longer spans, which are all relatively rare, prove
more difficult for the model, and precision drops
to 46% for spans with 10 words.

194



1

(A fire in a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee (the blaze) in the four-story building.

A fire in (a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee the blaze in (the four-story building).

2

We are looking for (a region of central Italy bordering the Adriatic Sea). (The area) is mostly
mountainous and includes Mt. Corno, the highest peak of the Apennines. (It) also includes a lot of
sheep, good clean-living, healthy sheep, and an Italian entrepreneur has an idea about how to make a
little money of them.

3
(The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots’) union and ground
crew did so yesterday.

4

(Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United
States making (their) first stop today in New York. It’s Charles’ first opportunity to showcase his new
wife, but few Americans seem to care. Here’s Jeanie Mowth. What a difference two decades make.
(Charles and Diana) visited a JC Penney’s on the prince’s last official US tour. Twenty years later
here’s the prince with his new wife.

5
Also such location devices, (some ships) have smoke floats (they) can toss out so the man overboard
will be able to use smoke signals as a way of trying to, let the rescuer locate (them).

Table 4: Examples predictions from the development data. Each row depicts a single coreference cluster
predicted by our model. Bold, parenthesized spans indicate mentions in the predicted cluster. The
redness of each word indicates the weight of the head-finding attention mechanism (ai,t in Section 4).

9.3 Head Agreement

We also investigate how well the learned head
preferences correlate with syntactic heads. For
each of the top-scoring spans in the development
data that correspond to gold constituents, we com-
pute the word with the highest attention weight.

We plot in Figure 4 the proportion of these
words that match syntactic heads. Agreement
ranges between 68-93%, which is surprisingly
high, since no explicit supervision of syntactic
heads is provided. The model simply learns from
the clustering data that these head words are useful
for making coreference decisions.

9.4 Qualitative Analysis

Our qualitative analysis in Table 4 highlights the
strengths and weaknesses of our model. Each row
is a visualization of a single coreference cluster
predicted by the model. Bolded spans in paren-
theses belong to the predicted cluster, and the red-
ness of a word indicates its weight from the head-
finding attention mechanism (ai,t in Section 4).

Strengths The effectiveness of the attention
mechanism for making coreference decisions can
be seen in Example 1. The model pays attention
to fire in the span A fire in a Bangladeshi gar-
ment factory, allowing it to successfully predict

the coreference link with the blaze. For a sub-
span of that mention, a Bangladeshi garment fac-
tory, the model pays most attention instead to fac-
tory, allowing it successfully predict the corefer-
ence link with the four-story building.

The task-specific nature of the attention mecha-
nism is also illustrated in Example 4. The model
generally pays attention to coordinators more than
the content of the coordination, since coordinators,
such as and, provide strong cues for plurality.

The model is capable of detecting relatively
long and complex noun phrases, such as a re-
gion of central Italy bordering the Adriatic Sea
in Example 2. It also appropriately pays atten-
tion to region, showing that the attention mecha-
nism provides more than content-word classifica-
tion. The context encoding provided by the bidi-
rectional LSTMs is critical to making informative
head word decisions.

Weaknesses A benefit of using neural models
for coreference resolution is their ability to use
word embeddings to capture similarity between
words, a property that many traditional feature-
based models lack. While this can dramatically
increase recall, as demonstrated in Example 1, it is
also prone to predicting false positive links when
the model conflates paraphrasing with relatedness
or similarity. In Example 3, the model mistakenly
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predicts a link between The flight attendants and
The pilots’. The predicted head words attendants
and pilots likely have nearby word embeddings,
which is a signal used—and often overused—by
the model. The same type of error is made in
Example 4, where the model predicts a corefer-
ence link between Prince Charles and his new
wife Camilla and Charles and Diana, two non-
coreferent mentions that are similar in many ways.
These mistakes suggest substantial room for im-
provement with word or span representations that
can cleanly distinguish between equivalence, en-
tailment, and alternation.

Unsurprisingly, our model does little in the up-
hill battle of making coreference decisions requir-
ing world knowledge. In Example 5, the model
incorrectly decides that them (in the context of let
the rescuer locate them) is coreferent with some
ships, likely due to plurality cues. However, an
ideal model that uses common-sense reasoning
would instead correctly infer that a rescuer is more
likely to look for the man overboard rather than
the ship from which he fell. This type of reason-
ing would require either (1) models that integrate
external sources of knowledge with more complex
inference or (2) a vastly larger corpus of training
data to overcome the sparsity of these patterns.

10 Conclusion

We presented a state-of-the-art coreference reso-
lution model that is trained end-to-end for the first
time. Our final model ensemble improves perfor-
mance on the OntoNotes benchmark by over 3 F1
without external preprocessing tools used by pre-
vious systems. We showed that our model implic-
itly learns to generate useful mention candidates
from the space of all possible spans. A novel head-
finding attention mechanism also learns a task-
specific preference for head words, which we em-
pirically showed correlate strongly with traditional
head-word definitions.

While our model substantially pushes the state-
of-the-art performance, the improvements are po-
tentially complementary to a large body of work
on various strategies to improve coreference reso-
lution, including entity-level inference and incor-
porating world knowledge, which are important
avenues for future work.
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Abstract

Discourse coherence is strongly associated
with text quality, making it important to nat-
ural language generation and understand-
ing. Yet existing models of coherence focus
on measuring individual aspects of coher-
ence (lexical overlap, rhetorical structure,
entity centering) in narrow domains.

In this paper, we describe domain-
independent neural models of discourse co-
herence that are capable of measuring mul-
tiple aspects of coherence in existing sen-
tences and can maintain coherence while
generating new sentences. We study both
discriminative models that learn to distin-
guish coherent from incoherent discourse,
and generative models that produce coher-
ent text, including a novel neural latent-
variable Markovian generative model that
captures the latent discourse dependencies
between sentences in a text.

Our work achieves state-of-the-art perfor-
mance on multiple coherence evaluations,
and marks an initial step in generating co-
herent texts given discourse contexts.

1 Introduction

Modeling discourse coherence (the way parts of
a text are linked into a coherent whole) is essen-
tial for summarization (Barzilay and McKeown,
2005), text planning (Hovy, 1988; Marcu, 1997)
question-answering (Verberne et al., 2007), and
even psychiatric diagnosis (Elvevåg et al., 2007;
Bedi et al., 2015).

Various frameworks exist, each tackling aspects
of coherence. Lexical cohesion (Halliday and
Hasan, 1976; Morris and Hirst, 1991) models
chains of words and synonyms. Psychological mod-
els of discourse (Foltz et al., 1998; Foltz, 2007;
McNamara et al., 2010) use LSA embeddings to
generalize lexical cohesion. Relational models like
RST (Mann and Thompson, 1988; Lascarides and

Asher, 1991) define relations that hierarchically
structure texts. The entity grid model (Barzilay
and Lapata, 2008) and its extensions1 capture the
referential coherence of entities moving in and out
of focus across a text. Each captures only a single
aspect of coherence, and all focus on scoring exist-
ing sentences, rather than on generating coherent
discourse for tasks like abstractive summarization.

Here we introduce two classes of neural models
for discourse coherence. Our discriminative mod-
els induce coherence by treating human generated
texts as coherent examples and texts with random
sentence replacements as negative examples, feed-
ing LSTM sentence embeddings of pairs of consec-
utive sentences to a classifier. These achieve state-
of-the-art (96% accuracy) on the standard domain-
specific sentence-pair-ordering dataset (Barzilay
and Lapata, 2008), but suffer in a larger open-
domain setting due to the small semantic space
that negative sampling is able to cover.

Our generative models are based on augument-
ing encoder-decoder models with latent variables
to model discourse relationships across sentences,
including (1) a model that incorporates an HMM-
LDA topic model into the generative model and
(2) an end-to-end model that introduces a Markov-
structured neural latent variable, inspired by re-
cent work on training latent-variable recurrent nets
(Bowman et al., 2015; Serban et al., 2016b). These
generative models obtain the best result on a large
open-domain setting, including on the difficult task
of reconstructing the order of every sentence in a
paragraph, and our latent variable generative model
significantly improves the coherence of text gener-
ated by the model.

Our work marks an initial step in building end-
to-end systems to evaluate open-domain discourse
coherence, and more importantly, generating coher-
ent texts given discourse contexts.

1Adding coreference (Elsner and Charniak, 2008), named
entities (Eisner and Charniak, 2011), discourse relations (Lin
et al., 2011) and entity graphs (Guinaudeau and Strube, 2013).
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2 The Discriminative Model

The discriminative model treats cliques (sets of sen-
tences surrounding a center sentence) taken from
the original articles as coherent positive examples
and cliques with random replacements of the center
sentence as negative examples. The discriminative
model can be viewed as an extended version of Li
and Hovy’s (2014) model but is practical at large
scale2. We thus make this section succinct.

Notations Let C denote a sequence of coherent
texts taken from original articles generated by hu-
mans. C is comprised of a sequence of sentences
C = {sn−L, ..., sn−1, sn, sn+1, ..., sn+L} where L
denotes the half size of the context window. Sup-
pose each sentence sn consists of a sequence of
words wn1, ..., wnt, ..., wnM , where M is the num-
ber of tokens in sn. Each word w is associated with
a K dimensional vector hw and each sentence is
associated with a K dimensional vector xs.

Each C contains 2L + 1 sentences, and is as-
sociated with a (2L+ 1)×K dimensional vector
obtained by concatenating the representations of its
constituent sentences. The sentence representation
is obtained from LSTMs. After word compositions,
we use the representation output from the final time
step to represent the entire sentence. Another neu-
ral network model with a sigmoid function on the
very top layer is employed to map the concatena-
tion of representations of its constituent sentences
to a scalar, indicating the probability of the current
clique being a coherent one or an incoherent one.

Weakness Two problems with the discriminative
model stand out: First, it relies on negative sam-
pling to generate negative examples. Since the
sentence-level semantic space in the open-domain
setting is huge, the sampled instances can only
cover a tiny proportion of the possible negative
candidates, and therefore don’t cover the space of
possible meanings. As we will show in the experi-
ments section, the discriminative model performs
competitively in specific domains, but not in the
open domain setting. Secondly and more impor-
tantly, discriminative models are only able to tell
whether an already-given chunk of text is coherent
or not. While they can thus be used in tasks like
extractive summarization for sentence re-ordering,
they cannot be used for coherent text generation

2Li and Hovy’s (2014) recursive neural model operates on
parse trees, which does not support batched computation and
is therefore hard to scale up.

in tasks like dialogue generation or abstractive text
summarization.

3 The Generative Model

We therefore introduce three neural generative mod-
els of discourse coherence.

3.1 Model 1: the SEQ2SEQ Model and its
Variations

In a coherent context, a machine should be able
to guess the next utterance given the preceding
ones. A straightforward way to do that is to train
a SEQ2SEQ model to predict a sentence given its
contexts (Sutskever et al., 2014). Generating sen-
tences based on neighboring sentences resembles
skip-thought models (Kiros et al., 2015), which
build an encoder-decoder model by predicting to-
kens in neighboring sentences.

As shown in Figure 1a, given two consecutive
sentences [si, si+1], one can measure the coher-
ence by the likelihood of generating si+1 given its
preceding sentence si (denoted by uni). This likeli-
hood is scaled by the number of words in si+1 (de-
noted by Ni+1) to avoid favoring short sequences.

L(si, si+1) =
1

Ni+1
log p(si+1|si) (1)

The probability can be directly computed using a
pretrained SEQ2SEQ model (Sutskever et al., 2014)
or an attention-based model (Bahdanau et al., 2015;
Luong et al., 2015).

In a coherent context, a machine should not only
be able to guess the next utterance given the pre-
ceding ones, but also the preceding one given the
following ones. This gives rise to the coherence
model (denoted by bi) that measures the bidirec-
tional dependency between the two consecutive
sentences:

L(si, si+1) =
1

Ni
log pB(si|si+1)

+ log
1

Ni+1
pF (si+1|si)

(2)

We separately train two models: a forward model
pF (si+1|si) that predicts the next sentence based
on the previous one and a backward model
pB(si|si+1) that predicts the previous sentence
given the next sentence. pB(si|si+1) can be trained
in a way similar to pF (si+1|si) with sources and
targets swapped. It is worth noting that pB and pF
are separate models and do not share parameters.
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One problem with the described uni and bi mod-
els is that sentences with higher language model
probability (e.g., sentences without rare words) also
tend to have higher conditional probability given
their preceding or succeeding sentences. We are in-
terested in measuring the informational gain from
the contexts rather than how fluent the current sen-
tence is. We thus propose eliminating the influence
of the language model, which yields the following
coherence score:

L(si, si+1)

=
1

Ni
[log pB(si|si+1)− log pL(si)]

+
1

Ni+1
[log pB(si+1|si)− log pL(si+1)]

(3)
where pL(s) is the language model probability for
generating sentence s. We train an LSTM language
model, which can be thought of as a SEQ2SEQ

model with an empty source. A closer look at
Eq. 3 shows that it is of the same form as the
mutual information between si+1 and si, namely
log[p(si+1, si)/p(si+1)p(si)].

Generation The scoring functions in Eqs. 1,
2, and 3 are discriminative, generating coherence
scores for an already-given chunk of text. Eqs. 2
and 3 can not be directly used for generation pur-
poses, since they requires the completion of si+1

before the score can be computed. A normal strat-
egy is to generate a big N-best list using Eq. 1 and
then rerank the N-best list using Eq. 2 or 3 (Li
et al., 2015a). The N-best list can be generated
using standard beam search, or other algorithmic
variations that promote diversity, coherence, etc.
(Shao et al., 2017).

Weakness (1) The SEQ2SEQ model generates
words sequentially based on an evolving hidden
vector, which is updated by combining the current
word representation with previously built hidden
vectors. The generation process is thus not exposed
to more global features of the discourse like topics.
As the hidden vector evolves, the influence from
contexts gradually diminishes, with language mod-
els quickly dominating. (2) By predicting a sen-
tence conditioning only on its left or right neighbor,
the model lacks the ability to handle the longer-
term discourse dependencies across the sentences
of a text.

To tackle these two issues, we need a model that
is able to constantly remind the decoder about the

Figure 1: Overview of the proposed generative models for
discourse coherence modeling.

global meaning that it should convey at each word-
generation step, a global meaning which can cap-
ture the state of the discourse across the sentences
of a text. We propose two models of this global
meaning, a pipelined approach based on HMM-
based topic models (Blei et al., 2003; Gruber et al.,
2007), and an end-to-end generative model with
variational latent variables.

3.2 HMM-LDA based Generative Models
(HMM-LDA-GM)

In Markov topic models the topic depends on the
previous topics in context (Ritter et al., 2010; Paul
and Girju, 2010; Wang et al., 2011; Gruber et al.,
2007; Paul, 2012). The topic for the current sen-
tence is drawn based on the topic of the preced-
ing sentence (or word) rather than on the global
document-level topic distribution in vanilla LDA.

Our first model is a pipelined one (the HMM-
LDA-GM in Fig. 1b), in which an HMM-LDA
model provides the SEQ2SEQ model with global
information for token generation, with two compo-
nents:

(1) Running HMM-LDA: we first run a
sentence-level HMM-LDA similar to Gruber et al.
(2007). Our implementation forces all words in a
sentence to be generated from the same topic, and
this topic is sampled from a distribution based on
the topic from previous sentence. Let tn denote
the distribution of topics for the current sentence,
where tn ∈ R1×T . We also associate each LDA
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topic with a K dimensional vector, representing
the semantics embedded in this topic. The topic-
representation matrix is denoted by V ∈ RT×K ,
where T is the pre-specified number of topics in
LDA. V is learned in the word predicting process
when training encoder-decoder models.

(2) Training encoder-decoder models: For the
current sentence sn, given its topic distribution tn,
we first compute the topic representation zn for sn
using the weighted sum of LDA topic vectors:

zn = tn × V (4)

zn can be thought of as a discourse state vector that
stores the information the current sentence needs to
convey in the discourse, and is used to guide every
step of word generation in sn. We run the encoder-
decoder model, which subsequently predicts tokens
in sn given sn−1. This process is the same as the
vanilla version of SEQ2SEQ models, the only dif-
ference being that zn is incorporated into each step
of decoding for hidden vector updates:

p(sn|zn, sn−1) =
M∏

t=1

p(wt|ht−1, zn) (5)

V is updated along with parameters in the encoder-
decoder model.
zn influences each time step of decoding, and

thus addresses the problem that vanilla SEQ2SEQ

models gradually lose global information as the
hidden representations evolve. zn is computed
based on the topic distribution tn, which is ob-
tained from the HMM-LDA model, thus model-
ing the global Markov discourse dependency be-
tween sentences of the text.3 The model can be
adapted to the bi-directional setting, in which we
separately train two models to handle the forward
probability log p(tn|sn−1, ...) and the backward
one log p(tn|sn+1). The bi-directional (bi) strat-
egy described in Eq. 3 can also be incorporated to
remove the influence of language models.

Weakness Topic models (either vanilla or HMM
versions) focus on word co-occurrences at the
document-level and are thus very lexicon-based.
Furthermore, given the diversity of topics in a
dataset like Wikipedia but the small number of
topic clusters, the LDA model usually produces
very coarse-grained topics (politics, sports, history,

3This pipelined approach is closely related to recent work
that incorporates LDA topic information into generation mod-
els in an attempt to leverage context information (Ghosh et al.,
2016; Xing et al., 2016; Mei et al., 2016)

etc.), assigning very similar topic distributions to
consecutive sentences. These topics thus capture
topical coherence but are too coarse-grained to cap-
ture all the more fine-grained aspects of discourse
coherence relationships.

3.3 Variational Latent Variable Generative
Models (VLV-GM)

We therefore propose instead to train an end-to-end
system, in which the meaning transitions between
sentences can be naturally learned from the data.
Inspired by recent work on generating sentences
from a latent space (Serban et al., 2016b; Bowman
et al., 2015; Chung et al., 2015), we propose the
VSV-GM model in Fig. 1c. Each sentence sn is
again associated with a hidden vector representa-
tion zn ∈ RK which stores the global information
that the current sentence needs to talk about, but
instead of obtaining zn from an upstream model
like LDA, zn is learned from the training data. zn
is a stochastic latent variable conditioned on all
previous sentences and zn−1:

p(zn|zn−1, sn−1, sn−2, ...) = N(µtrue
zn ,Σ

true
zn )

µtrue
zn = f(zn−1, sn−1, sn−2, ...)

Σtrue
zn = g(zn−1, sn−1, sn−2, ...)

(6)
where N(µ,Σ) is a multivariate normal distribu-
tion with mean µ ∈ RK and covariance matrix
Σ ∈ RK×K . Σ is a diagonal matrix. As can be
seen, the global information zn for the current sen-
tence depends on the information zn−1 for its pre-
vious sentence as well as the text of the context
sentences. This forms a Markov chain across all
sentences. f and g are neural network models that
take previous sentences and zn−1, and map them
to a real-valued representation using hierarchical
LSTMs (Li et al., 2015b)4.

Each word wnt from sn is predicted using
the concatenation of the representation previously
build by the LSTMs (the same vector used in word
prediction in vanilla SEQ2SEQ models) and zn, as
shown in Eq.5.

We are interested in the posterior distribution
p(zn|s1, s2, ..., sn−1), namely, the information that
the current sentence needs to convey given the pre-
ceding ones. Unfortunately, a highly non-linear
mapping from zn to tokens in sn results in in-

4Sentences are first mapped to vector representations using
a LSTM model. Another level of LSTM at the sentence level
then composes representations of the multiple sentences to a
single vector.
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tractable inference of the posterior. A common so-
lution is to use variational inference to learn another
distribution, denoted by q(zn|s1, s2, ..., sN ), to ap-
proximate the true posterior p(zn|s1, s2, ..., sn−1).
The model’s latent variables are obtained by max-
imizing the variational lower-bound of observing
the dataset:

log p(s1, .., sN ) ≤
N∑

t=1

−DKL(q(zn|sn, sn−1, ...)||p(zn|sn−1, sn−2, ...))

+ Eq(zn|sn,sn−1,...) log p(sn|zn, sn−1, sn−2, ...)
(7)

This objective to optimize consists of two parts;
the first is the KL divergence between the ap-
proximate distribution q and the true posterior
p(sn|zn, sn−1, sn−2, ...), in which we want to ap-
proximate the true posterior using q. The second
part Eq(zn|sn,sn−1,...) log p(sn|zn, sn−1, sn−2, ...),
predicts tokens in sn in the same way as in
SEQ2SEQ models with the difference that it con-
siders the global information zn.

The approximate posterior distribution
q(zn|sn, sn−1, ...) takes a form similar to
p(zn|sn−1, sn−2, ...):

q(zn|sn, sn−1, ...) = N(µ approx
zn ,Σ approx

zn )

µ approx
zn = fq(zn−1, sn, sn−1, ...)

Σ approx
zn = gq(zn−1, sn, sn−1, ...)

(8)

fq and gq are of similar structures to f and g, using
a hierarchical neural network model to map context
tokens to vector representations.

Learning and Testing At training time, the ap-
proximate posterior q(zn|zn−1, sn, sn−1, ...), the
true distribution p(zn|zn−1, sn−1, sn−2, ...), and
the generative probability p(sn|zn, sn−1, sn−2, ...)
are trained jointly by maximizing the variational
lower bound with respect to their parameters: a
sample zn is first drawn from the posterior dis-
tribution q, namely N(µ

approx
zn ,Σ

approx
zn ). This

sample is used to approximate the expectation
Eq log p(sn|zn, sn−1, sn−2, ...). Using zn, we can
update the encoder-decoder model using SGD in a
way similar to the standard SEQ2SEQ model, the
only difference being that the current token to pre-
dict not only depends on the LSTM output ht, but
also zn. Given the sampled zn, the KL-divergence
can be readily computed, and we update the model
using standard gradient decent (details shown in
the Appendix).

The proposed VLV-GM model can be adapted to
the bi-directional setting and the bi setting similarly
to the way LDA-based models are adapted.

The proposed model is closely related to many
recent attempts in training variational autoencoders
(VAE) (Kingma and Welling, 2013; Rezende et al.,
2014), variational or latent-variable recurrent nets
(Bowman et al., 2015; Chung et al., 2015; Ji et al.,
2016; Bayer and Osendorfer, 2014), hierarchical
latent variable encoder-decoder models (Serban
et al., 2016b,a).

4 Experimental Results

In this section, we describe experimental results.
We first evaluate the proposed models on discrimi-
native tasks such as sentence-pair ordering and full
paragraph ordering reconstruction. Then we look
at the task of coherent text generation.

Model Acci Earthq Aver
Discriminative Model 0.930 0.992 0.956

SEQ2SEQ (bi) 0.755 0.930 0.842
VLV-GM (bi) 0.770 0.931 0.851

Recursive 0.864 0.976 0.920
Entity Grid Model 0.904 0.872 0.888

HMM 0.822 0.938 0.880
HMM+Entity 0.842 0.911 0.876

HMM+Content 0.742 0.953 0.847
Graph 0.846 0.635 0.740

Foltz et al. (1998)-Glove 0.705 0.682 0.688
Foltz et al. (1998)-LDA 0.660 0.667 0.664

Table 1: Results from different coherence models. Results for
the Recursive model is reprinted from Li and Hovy (2014),
Entity Grid Model from Louis and Nenkova (2012), HMM,
HMM+Entity and HMM+Content from Louis and Nenkova
(2012), Graph from Guinaudeau and Strube (2013), and the
final two lexical models are recomputed using Glove and LDA
to replace the original LSA model of Foltz et al. (1998).

4.1 Sentence Ordering, Domain-specific Data
Dataset We first evaluate the proposed algo-
rithms on the task of predicting the correct ordering
of pairs of sentences predicated on the assumption
that an article is always more coherent than a ran-
dom permutation of its sentences (Barzilay and
Lapata, 2008). A detailed description of this com-
monly used dataset and training/testing are found
in the Appendix.

We report the performance of the following base-
lines widely used in the coherence literature.

(1) Entity Grid Model: The grid model presented
in Barzilay and Lapata (2008). Results are directly
taken from Barzilay and Lapata’s (2008) paper. We
also consider variations of entity grid models, such
as Louis and Nenkova (2012) which models the
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cluster transition probability and the Graph Based
Approach which uses a graph to represent the entity
transitions needed for local coherence computation
(Guinaudeau and Strube, 2013).

(2) Li and Hovy (2014): A recursive neural
model computes sentence representations based
on parse trees. Negative sampling is used to con-
struct negative incoherent examples. Results are
from their papers.

(3) Foltz et al. (1998) computes the semantic
relatedness of two text units as the cosine similarity
between their LSA vectors. The coherence of a
discourse is the average of the cosine of adjacent
sentences. We used this intuition, but with more
modern embedding models: (1) 300-dimensional
Glove word vectors (Pennington et al., 2014), em-
beddings for a sentence computed by averaging the
embeddings of its words (2) Sentence representa-
tions obtained from LDA (Blei et al., 2003) with
300 topics, trained on the Wikipedia dataset. Re-
sults are reported in Table 2. The extended version
of the discriminative model described in this work
significantly outperforms the parse-tree based re-
cursive models presented in Li and Hovy (2014)
as well as all non-neural baselines. It achieves al-
most perfect accuracy on the earthquake dataset
and 93% on the accident dataset, marking a signif-
icant advancement in the benchmark. Generative
models (both vanilla SEQ2SEQ and the proposed
variational model) do not perform competitively
on this dataset. We conjecture that this is due to
the small size of the dataset, leading the generative
model to overfit.

4.2 Evaluating Ordering on Open-domain

Since the dataset presented in Barzilay and Lapata
(2008) is quite domain-specific, we propose test-
ing coherence with a much larger, open-domain
dataset: Wikipedia. We created a test set by ran-
domly selecting 984 paragraphs from Wikipedia
dump 2014, each paragraph consisting of at least 16
sentences. The training set is 30 million sentences
not overlapping with the test set.

4.2.1 Binary Permutation Classification
We adopt the same strategy as in Barzilay and La-
pata (2008), in which we generate pairs of sen-
tence permutations from the original Wikipedia
paragraphs. We follow the protocols described
in the subsection and each pair whose original
paragraph’s score is higher than its permutation is
treated as being correctly classified, else incorrectly

Model Accuracy
VLV-GM (MMI) 0.873

VLV-GM (bi) 0.860
VLV-GM (uni) 0.839

LDA-HMM-GM (MMI) 0.847
LDA-HMM-GM (bi) 0.837
LDA-HMM-GM (uni) 0.814

SEQ2SEQ (MMI) 0.840
SEQ2SEQ (bi) 0.821

SEQ2SEQ (uni) 0.803
Discriminative Model 0.715

Entity Grid Model 0.686
Foltz et al. (1998)-Glove 0.597
Foltz et al. (1998)-LDA 0.575

Table 2: Performance on the open-domain binary classification
dataset of 984 Wikipedia paragraphs.

classified. Models are evaluated using accuracy.
We implement the Entity Grid Model (Barzilay and
Lapata, 2008) using the Wikipedia training set as a
baseline, the detail of which is presented in the Ap-
pendix. Other baselines consist of the Glove and
LDA updates of the lexical coherence baselines
(Foltz et al., 1998).

Results Table 2 presents results on the binary
classification task. Contrary to the findings on the
domain specific dataset in the previous subsection,
the discriminative model does not yield compelling
results, performing only slightly better than the en-
tity grid model. We believe the poor performance is
due to the sentence-level negative sampling used by
the discriminative model. Due to the huge seman-
tic space in the open-domain setting, the sampled
instances can only cover a tiny proportion of the
possible negative candidates, and therefore don’t
cover the space of possible meanings. By contrast
the dataset in Barzilay and Lapata (2008) is very
domain-specific, and the semantic space is thus rel-
atively small. By treating all other sentences in the
document as negative, the discriminative strategy’s
negative samples form a much larger proportion of
the semantic space, leading to good performance.

Generative models perform significantly better
than all other baselines. Compared with the dataset
in Barzilay and Lapata (2008), overfitting is not an
issue here due to the great amount of training data.
In line with our expectation, the MMI model outper-
forms the bidirectional model, which in turn out-
performs the unidirectional model across all three
generative model settings. We thus only report
MMI results for experiments below. The VLV-GM
model outperforms that the LDA-HMM-GM model,
which is slightly better than the vanila SEQ2SEQ

models.
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Model Accuracy
VLV-GM (MMI) 0.256
LDA-HMM-GM (MMI) 0.237
SEQ2SEQ (MMI) 0.226
Entity Grid Model 0.143
Foltz et al. (1998) (Glove) 0.084

Table 3: Performances of the proposed models on the open-
domain paragraph reconstruction dataset.

Model adver-1 adver-2 adver-3
VLV-GM (MMI) 0.174 0.120 0.054

LDA-HMM-GM (MMI) 0.130 0.104 0.043
SEQ2SEQ (MMI) 0.120 0.090 0.039

SEQ2SEQ (bi) 0.108 0.078 0.030
SEQ2SEQ (uni) 0.101 0.068 0.024

Table 4: Adversarial Success for different models.

4.2.2 Paragraph Reconstruction

The accuracy of our models on the binary task
of detecting the original sentence ordering is very
high, on both the prior small task and our large
open-domain version. We therefore believe it is
time for the community to move to a more difficult
task for measuring coherence.

We suggest the task of reconstructing an origi-
nal paragraph from a bag of constituent sentences,
which has been previously used in coherence eval-
uation (Lapata, 2003). More formally, given a set
of permuted sentences s1, s2, ..., sN (N the number
of sentences in the original document), our goal
is return the original (presumably most coherent)
ordering of s.

Because the discriminative model calculates the
coherence of a sentence given the known previous
and following sentences, it cannot be applied to this
task since we don’t know the surrounding context.
Hence, we only use the generative model. The
first sentence of a paragraph is given: for each
step, we compute the coherence score of placing
each remaining candidate sentence to the right of
the partially constructed document. We use beam
search with beam size 10. We use the Entity Grid
model as a baseline for both the settings.

Evaluating the absolute positions of sentences
would be too harsh, penalizing orderings that main-
tain relative position between sentences through
which local coherence can be manifested. We there-
fore use Kendall’s τ (Lapata, 2003, 2006), a metric
of rank correlation for evaluation. See the Ap-
pendix for details of Kendall’s τ computation. We
observe a pattern similar to the results on the bi-
nary classification task, where the VLV-GM model
performs the best.

4.3 Adversarial evaluation on Text
Generation Quality

Both the tasks above are discriminative ones. We
also want to evaluate different models’ ability to
generate coherent text chunks. The experiment is
set up as follow: each encoder-decoder model is
first given a set of context sentences (3 sentences).
The model then generates a succeeding sentence
using beam-search given the contexts. For the uni-
directional setting, we directly take the most prob-
able sequence and for the bi-directional and MMI,
we rerank the N-best list using the backward prob-
ability and language model probability.

We conduct experiments on multi-sentence gen-
eration, in which we repeat the generative process
described above for N times, where N=1,2,3. At
the end of each turn, the context is updated by
adding in the newly generated sequence, and this
sequence is used as the source input to the encoder-
decoder model for next sequence generation. For
example, when N is set to 2, given the three con-
text sentences context-a, context-b and context-c,
we first generate sen-d given the three context sen-
tences and then generate sen-e given the sen-d,
context-a, context-b and context-c.

For evaluation, standard word overlap metrics
such as BLEU or ROUGE are not suited for our
task, and we use adversarial evaluation Bowman
et al. (2015); Anjuli and Vinyals (2016). In ad-
versarial evaluation, we train a binary discrimi-
nant function to classify a sequence as machine
generated or human generated, in an attempt to
evaluate the model’s sentence generation capabil-
ity. The evaluator takes as input the concatenation
of the contexts and the generated sentences (i.e.,
context-a, context-b and context-c, sen-d , sen-e
in the example described above),5 and outputs a
scalar, indicating the probability of the current text
chunk being human-generated. Training/dev/test
sets are held-out sets from the one on which gener-
ative models are trained. They respectively contain
128,000/12,800/12,800 instances. Since discrimi-
native models cannot generate sentences, and thus
cannot be used for adversarial evaluation, they are
skipped in this section.

We report Adversarial Success (AdverSuc for
short), which is the fraction of instances in which
a model is capable of fooling the evaluator. Adver-

5The model uses a hierarchical neural structure that first
maps each sentence to a vector representation, with another
level of LSTM on top of the constituent sentences, producing
a single vector to represent the entire chunk of texts.
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Figure 2: An overview of training the adversarial evaluator
using a hierarchical neural model. Green denotes input con-
texts. Red denotes a sentence from human-generated texts,
treated as a positive example. Purple denotes a sentence from
machine-decoded texts, treated as a negative example.

Suc is the difference between 1 and the accuracy
achieved by the evaluator. Higher values of Ad-
verSuc for a dialogue generation model are better.
AdverSuc-N denotes the adversarial accuracy value
on machine-generated texts with N turns.

Table 4 show AdverSuc numbers for different
models. As can be seen, the latent variable model
VLV-GM is able to generate chunk of texts that are
most indistinguishable from coherent texts from
humans. This is due to its ability to handle the
dependency between neighboring sentences. Per-
formance declines as the number of turns increases
due to the accumulation of errors and current mod-
els’ inability to model long-term sentence-level
dependency. All models perform poorly on the
adver-3 evaluation metric, with the best adversarial
success value being 0.081 (the trained evaluator is
able to distinguish between human-generated and
machine generated dialogues with greater than 90
percent accuracy for all models).

4.4 Qualitative Analysis
With the aim of guiding future investigations, we
also briefly explore our model qualitatively, exam-
ining the coherence scores assigned to some artifi-
cial miniature discourses that exhibit various kinds
of coherence.

Case 1: Lexical Coherence
Pinochet was arrested. His arrest was unexpected. 1.79
Pinochet was arrested. His death was unexpected. 0.84
Mary ate some apples. She likes apples. 2.03
Mary ate some apples. She likes pears. 0.27
Mary ate some apples. She likes Paris. -1.35

The examples suggest that the model handles
lexical coherence, correctly favoring the 1st over

the 2nd, and the 3rd over the 4th examples. Note
that the coherence score for the final example is
negative, which means conditioning on the first
sentence actually decreases the likelihood of gener-
ating the second one.

Case 2: Temporal Order
Washington was unanimously elected president in the first two
national elections. He oversaw the creation of a strong, well-
financed national government. 1.48
Washington oversaw the creation of a strong, well-financed
national government. He was unanimously elected president
in the first two national elections. 0.72

Case 3: Causal Relationship
Bret enjoys video games; therefore, he sometimes is late to
appointments. 0.69
Bret sometimes is late to appointments; therefore, he enjoys
video games. -0.07

Cases 2 and 3 suggest the model may, at least
in these simple cases, be capable of addressing the
much more complex task of dealing with tempo-
ral and causal relationships. Presumably this is
because the model is exposed in training to the gen-
eral preference of natural text for temporal order,
and even for the more subtle causal links.

Case 4: Centering/Referential Coherence
Mary ate some apples. She likes apples. 3.06
She ate some apples. Mary likes apples. 2.41

The model seems to deal with simple cases of
referential coherence.

Example3: 2.40
John went to his favorite music store to buy a piano.
He had frequented the store for many years.
He was excited that he could finally buy a piano.
He arrived just as the store was closing for the day.
Example4: 1.62
John went to his favorite music store to buy a piano.
It was a store John had frequented for many years
He was excited that he could finally buy a piano..
It was closing just as John arrived.

In these final examples from Miltsakaki and Ku-
kich (2004), the model successfully captures the
fact that the second text is less coherent due to
rough shifts. This suggests that the discourse em-
bedding space may be able to capture a representa-
tion of entity focus.

Of course all of these these qualitative evalu-
ations are only suggestive, and a deeper under-
standing of what the discourse embedding space
is capturing will likely require more sophisticated
visualizations.
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5 Conclusion

We investigate the problem of open-domain dis-
course coherence, training discriminative models
that treating natural texts as coherent and permu-
tations as non-coherent, and Markov generative
models that can predict sentences given their neigh-
bors.

Our work shows that the traditional evaluation
metric (ordering pairs of sentences in small do-
mains) is completely solvable by our discrimina-
tive models, and we therefore suggest the com-
munity move to the harder task of open-domain
full-paragraph sentence ordering.

The proposed models also offer an initial step in
generating coherent texts given contexts, which has
the potential to benefit a wide range of generation
tasks in NLP. Our latent variable neural models, by
offering a new way to learn latent discourse-level
features of a text, also suggest new directions in
discourse representation that may bring benefits to
any discourse-aware NLP task.
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6 Supplemental Material

Details for the domain specific dataset (Barzilay
and Lapata, 2008) The corpus consists of 200
articles each from two domains: NTSB airplane ac-
cident reports (V=4758, 10.6 sentences/document)
and AP earthquake reports (V=3287, 11.5 sen-
tences/document), split into training and testing.
For each document, pairs of permutations are gen-
erated6. Each pair contains the original document
order and a random permutation of the sentences
from the same document.

Training/Testing details for models on the do-
main specific dataset We use reduced versions
of both generative and discriminative models to
allow fair comparison with baselines. For the dis-
criminative model, we generate noise negative ex-
amples from random replacements in the training
set, with the only difference that random replace-
ments only come from the same document. We
use 300 dimensional embeddings borrowed from
GLOVE (Pennington et al., 2014) to initialize word
embeddings. Word embeddings are kept fixed dur-
ing training and we update LSTM parameters using
AdaGrad (Duchi et al., 2011). For the generative
model, due to the small size of the dataset, we train
a one layer SEQ2SEQ model with word dimension-
ality and number of hidden neurons set to 100. The
model is trained using SGD with AdaGrad (Zeiler,
2012).

The task requires a coherence score for the whole
document, which is comprised of multiple cliques.
We adopt the strategy described in Li and Hovy
(2014) by breaking the document into a series
of cliques which is comprised of a sequence of

6Permutations downloaded from people.csail.mit.
edu/regina/coherence/CLsubmission/.
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consecutive sentences. The document-level coher-
ence score is attained by averaging its constituent
cliques. We say a document is more coherent if
it achieves a higher average score within its con-
stituent cliques.

Implementation of Entity Grid Model For
each noun in a sentence, we extract its syntactic
role (subject, object or other). We use a wikipedia
dump parsed using the Fanse Parser (Tratz and
Hovy, 2011). Subjects and objects are extracted
based on nsubj and dobj relations in the depen-
dency trees. (Barzilay and Lapata, 2008) define
two versions of the Entity Grid Model, one us-
ing full coreference and a simpler method using
only exact-string coreference; Due to the difficulty
of running full coreference resolution tens of mil-
lions of Wikipedia sentences, we follow other re-
searchers in using Barzilay and Lapata’s simpler
method (Feng and Hirst, 2012; Burstein et al., 2010;
Barzilay and Lapata, 2008).7

Kendall’s τ Kendall’s τ is computed based on
the number of inversions in the rankings as follows:

τ = 1− 2# of inversions
N × (N − 1)

(9)

where N denotes the number of sentences in the
original document and inversions denote the num-
ber of interchanges of consecutive elements needed
to reconstruct the original document. Kendall’s τ
can be efficiently computed by counting the num-
ber of intersections of lines when aligning the orig-
inal document and the generated document. We
refer the readers to Lapata (2003) for more details.

Derivation for Variation Inference For sim-
plicity, we use µpost and Σapprox to denote
µ approx(zn) and Σ approx(zn), µtrue and Σtrue

to denote µtrue(zn) and Σtrue(zn). The KL-
divergence between the approximate distribution
q(zn|zn−1, sn, sn−1, ...) and the true distribution
p(zn|zn−1, sn−1, sn−2, ...) in the variational infer-
ence is given by:

DKL(q(zn|zn−1, sn, sn−1, ...)||p(zn|zn−1, sn−1, sn−2, ...)

=
1

2
(tr(Σ−1trueΣapprox)− k + log

detΣtrue

detΣapprox

+(µtrue − µapprox)−1Σ−1true(µtrue − µapprox))
(10)

7Our implementation of the Entity Grid Model is built
upon public available code at https://github.com/
karins/CoherenceFramework.

where k denotes the dimensionality of the vector.
Since zn has already been sampled and thus known,
µapprox, Σapprox, µtrue, Σtrue and consequently
Eq10 can be readily computed. The gradient with
respect to µapprox, Σapprox, µtrue, Σtrue can be
respectively computed, and the error is then back-
propagated to the hierarchical neural models that
are used to compute them. We refer the readers
to Doersch (2016) for more details about how a
general VAE model can be trained.

Our generate models offer a powerful way to rep-
resent the latent discourse structure in a complex
embedding space, but one that is hard to visualize.
To help understand what the model is doing, we
examine some relevant examples, annotated with
the (log-likelihood) coherence score from the MMI
generative model, with the goal of seeing (qualita-
tively) the kinds of coherence the model seems to
be representing. (The MMI can be viewed as the in-
formational gain from conditioning the generation
of the current sentence on its neighbors.)
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Abstract

Multi-document summarization provides
users with a short text that summarizes
the information in a set of related doc-
uments. This paper introduces affinity-
preserving random walk to the summa-
rization task, which preserves the affin-
ity relations of sentences by an absorb-
ing random walk model. Meanwhile, we
put forward adjustable affinity-preserving
random walk to enforce the diversity con-
straint of summarization in the random
walk process. The ROUGE evaluations on
DUC 2003 topic-focused summarization
task and DUC 2004 generic summariza-
tion task show the good performance of
our method, which has the best ROUGE-
2 recall among the graph-based ranking
methods.

1 Introduction

Multi-document summarization provides users
with summary that reflects the main information
in a set of given documents. The documents are
often related and talk about more than one top-
ics. Generic multi-document summarization and
topic-focused multi-document summarization are
two typical kinds of summarization. The former is
a summarization delivering the main information
of the documents with no bias while the latter is
a one delivering the main information biased to a
given topic description (a few sentences or even
phrases). Most existing summarization systems
are designed for these two kinds of summariza-
tion.

There are two goals for generic multi-document
summarization. The first one is saliency. Sum-
mary sentences should be central sentences that
capture the majority of information in a docu-

ment cluster. The sentences with little informa-
tion about the document cluster should not be in-
cluded in the summary. The second one is di-
versity. The information overlap between sum-
mary sentences should be as minimal as possi-
ble due to the length limit of summary. In other
words, the information coverage of summary is
a determinant, which requires that the summary
sentences should cover diverse aspects of infor-
mation. Besides the two goals, there is another
goal for the topic-focused summarization and that
is relevancy. It requires that the summary sen-
tences be relevant to the topic description. A se-
ries of conferences and workshops on automatic
text summarization (e.g. NTCIR, DUC), special
topic sessions in ACL, EMNLP and SIGIR have
advanced the techniques to achieve these goals and
many approaches have been proposed so far.

In this paper, we focus on the extractive summa-
rization methods, which extract the summary sen-
tences from the input document cluster. We pro-
pose affinity-preserving random walk for multi-
document summarization. The method is a graph-
based ranking method, which takes into account
the global information collectively computed from
the entire sentence affinity graph. Different from
the previous graph-based ranking methods, our
method adopts “global normalization” to trans-
form sentence affinity matrix into sentence tran-
sition matrix and formulates the sentence rank-
ing process in an absorbing random walk model.
Meanwhile, the adjustable affinity-preserving ran-
dom walk is proposed to facilitate the diversity of
summary by adjusting the sentence transition ma-
trix after each iteration of random walk. Experi-
mental results on DUC generic and topic-focused
multi-document summarization tasks show the
competitive performance of our method. To our
best knowledge, our system has the best ROUGE-
2 recall on both tasks among all existing graph-
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based ranking methods, which defeats most other
methods.

We summarize our contributions as follows.
(1) We preserve the original affinity relations be-
tween sentences in a novel affinity-preserving ran-
dom walk view for multi-document summariza-
tion. The preservation of affinity leads to a more
salient summary. And it is applicable to both
generic and topic-focused summarization. (2)
We propose adjustable affinity-preserving random
walk to enforce the diversity constraint of summa-
rization in the random walk process. (3) Experi-
ments on DUC 2003 and DUC 2004 tasks demon-
strate the competitive performance of our method.

The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3
describes traditional random walk model for sum-
marization. Section 4 proposes affinity-preserving
random walk for the saliency goal of summa-
rization and this section also proposes adjustable
affinity-preserving random walk to produce both
salient and diverse summary. Section 5 gives our
evaluation results and the conclusion is made in
Section 6.

2 Related Work

Our method belongs to the graph-based ranking
methods to select sentences in the documents to
produce the summary. Erkan and Radev (2004)
proposed LexPageRank to compute the sentence
saliency based on the concept of eigenvector cen-
trality. It constructs the sentence affinity graph and
computes the sentence saliency based on an al-
gorithm similar to PageRank (Page et al., 1999).
Like PageRank, the affinity matrix is converted
into the row-stochastic matrix, which is used as the
transition matrix of random walk on the weighted
graph. Wan (2007) proposed manifold ranking for
topic-focused multi-document summarization. It
makes full use of both the relationships among all
sentences in the documents and the relationships
between the given topic description and the sen-
tences. Manifold ranking conducts a different nor-
malization on the sentence affinity matrix to guar-
antee the algorithm’s convergence. GRASSHOP-
PER (Zhu et al., 2007) ranks sentences with an
emphasis on the diversity constraint of summa-
rization. It turns already ranked sentences into
absorbing states, which effectively prevents re-
dundant sentences from receiving a high rank.
The algorithm is based on an absorbing random

walk and produces only one summary sentence af-
ter one particular random walk becomes station-
ary. And the normalization from sentence affinity
matrix to sentence transition matrix is the same
as PageRank. DivRank (Mei et al., 2010) is a
method to balance the saliency and diversity of the
top ranked sentences in a reinforced random walk
model. Also, the normalization in DivRank from
affinity matrix to transition matrix is the same
as PageRank. Another notable diversified graph-
based ranking method GCD (Dubey et al., 2011)
relies on large amounts of training data to learn
edge conductances.

Our method formulates the multi-document
summarization as an affinity-preserving random
walk and uses the “global normalization” to trans-
form sentence affinity matrix into sentence transi-
tion matrix, which is different from all those pro-
posed methods. And the adjustable transition ma-
trix in our method balances the saliency and diver-
sity goals of summarization. Like GRASSHOP-
PER, our method relies on the absorbing random
walk model. The difference is that our method
does not turn the sentence vertex into absorbing
state but add an absorbing vertex to the original
sentence affinity graph. And all summary sen-
tences are extracted after the random walk reaches
a stationary state in our method. Like DivRank,
the sentence transition matrix is adjustable in our
method to enforce the diversity constraint of sum-
marization. However, our method differs from Di-
vRank in the mechanism to adjust the transition
matrix.

3 Traditional Random Walk for
Summarization

Suppose G = (S,E) is a graph with vertex set S
and edge set E ⊂ S2. Suppose there is a con-
ductance c(si, sj) > 0 associated with each edge
(si, sj) ∈ E and c(si, sj) = 0 associated with the
set S2 − E (the conductance of nonexistent edge
is zero). Let

C(si) =
∑

sj∈S
c(si, sj), si ∈ S (1)

so that C(si) is the total conductance of the edges
coming from si. And the traditional random walk
on graph is defined as

Definition 3.1. The discrete-time Markov chain
X = (X0, X1, X2, ...) with state space and tran-
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sition probability matrix P given by

P (si, sj) =
c(si, sj)

C(si)
, (si, sj) ∈ S2 (2)

is called a random walk on the graph G.

This chain governs a particle moving along the
vertices of G. If the particle in the state Xm is
at vertex si ∈ S, it will be at a neighbor of si in
the next state Xm+1, which is chosen randomly in
proportion to the conductance. We can prove that∑

sj∈S P (si, sj) = 1 for any si ∈ S (C(si) 6= 0)
so P is a row-stochastic matrix by P = D−1W,
where D is a diagonal matrix with entries Dii =
C(si) and W is the adjacency matrix of G where
Wij = c(si, sj).

For the summarization task, G is the sentence
affinity graph. The vertex set S = {s1, s2, ..., sn}
contains every sentence in the document cluster
and the edge set E contains the pairwise affinity
between sentences. We use the tf*isf formula
to calculate the weight associated with each term
occurring in the sentence, where tf is the term fre-
quency in the sentence and isf is the inverse sen-
tence frequency of the term among all sentences.
isf is often calculated as 1+log(n/nt), where n is
the total number of sentences and nt is the number
of sentences containing the term t. Wij is com-
puted using the standard cosine measure (Baeza-
Yates et al., 1999).

Wij = simcosine(vi, vj) =
vi · vj

‖vi‖2 × ‖vj‖2 (3)

where vi and vj are the corresponding term vec-
tors of si and sj . Two vertices are connected if
their affinity is larger than 0 and Wii is set as 0 to
avoid self transition. We get an undirected graph
G as well as a symmetric sentence affinity matrix
W in this way. Then we transform W into P by
P = D−1W and use the stationary distribution of
random walk as sentence ranking scores. The tra-
ditional random walk model is a simple practice
of PageRank algorithm for multi-document sum-
marization.

4 Affinity-Preserving Random Walk for
Summarization

4.1 Prior of Multi-Document Summarization
In the above traditional random walk on graph,
the normalization from affinity matrix W to tran-
sition matrix P is to make P a row-stochastic ma-

trix. This can be interpreted as a democratic nor-
malization because the surfer of a traditional ran-
dom walk visits neighbors of a vertex with prob-
ability 1. The surfer has to choose a neighbor
to visit next although it is a random choice w.r.t.
the conductance distribution of the vertex. How-
ever this democratic normalization is not suitable
for multi-document summarization due to the fact
that most sentences are not salient and should not
be normalized democratically as the few salient
ones. The prior here is that the number ratio of
good candidate sentences over bad candidate sen-
tences is very low due to the summary length limit.
Good candidate sentences are the sentences highly
overlapping with sentences in the reference sum-
mary written by humans. And the remaining sen-
tences are bad candidate sentences. The demo-
cratic normalization of P = D−1W will extend
the adverse effect of bad candidate sentences and
suppress the effect of good candidate sentences,
because the total conductance of the bad candi-
date sentence is usually smaller than that of the
good candidate sentence. In this case, the random
surfer has to choose a neighbor to visit even when
she is currently at a bad candidate sentence, which
will direct her to visit other bad candidate sen-
tences neighboring to the current sentence. The
invariant behavior of the surfer at all vertices in the
graph is not consistent with the prior which makes
a distinction between good and bad candidate sen-
tences. It may pervert the random walk process
to get an ideal distribution in which only few sen-
tences are assigned with a high ranking score.

It is worth noting here that manifold ranking
(Wan et al., 2007) for summarization uses a dif-
ferent normalization: P = D−

1
2 WD−

1
2 . It is

a symmetric normalization on both endpoints of
an edge, which makes P a suitable choice in the
manifold ranking process to smooth the scores of
neighboring vertices. The symmetric normaliza-
tion can be deduced from the objective function
of manifold ranking (Zhou et al., 2003) and does
not make a distinction between the good and bad
candidate sentences. It is also not consistent with
the prior. We can conclude that existing graph-
based ranking methods can not well characterize
the prior of multi-document summarization.

4.2 Affinity-Preserving Random Walk

We need a new normalization method that dis-
tinguishes between good and bad candidate sen-
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Figure 4.1: Sentence graphs for summarization.
G: sentence affinity graph constructed from the
document cluster. GA: sentence augmented graph
with an absorbing vertex s0. Cmax equals toC(s1)
indicating that sentence s1 has the maximum con-
ductance, so there is no edge (s1, s0).

tences to satisfy the prior of multi-document sum-
marization. Affinity-preserving random walk has
an intrinsic mechanism that preserves the original
affinity relations between sentences in the docu-
ments, which is proposed and defined as follows.

Definition 4.1. For the graph G, the vertex set S
has (n + 1) vertices: s0, s1, s2, ..., sn. The max-
imum conductance Cmax = maxi=1,2,...nC(si).
Of the (n + 1) vertices, s0 is an absorbing vertex
with c(si, s0) > 0, c(s0, si) = 0, and c(s0, s0) =
Cmax for i = 1, 2, ..., n. The remaining vertices
are the normal vertices with c(si, sj) > 0 for
i, j = 1, 2, ..., n. The discrete-time Markov chain
X = (X0, X1, X2, ...) with state space and tran-
sition probability matrix P given by

P (si, sj) =
c(si, sj)

Cmax

P (si, s0) = 1− C(si)

Cmax
, P (s0, si) = 0

P (s0, s0) = 1

for i, j = 1, 2, ..., n

(4)

is called an affinity-preserving random walk on the
graph G.

For our summarization task, we construct a sen-
tence augmented graph GA (as shown in Fig-
ure 4.1) by adding an absorbing vertex s0 to the
sentence affinity graph G. The unabsorbed ver-
tices si (i = 1, 2, ..., n) represent sentences in
the documents. The affinity-preserving random
walk process as defined above is implemented on
GA to rank sentences in the documents. In the
affinity-preserving random walk, once the surfer

reaches the absorbing vertex, she cannot walk out
of there. Because P (si, s0) is small for the ver-
tex si with a large conductance, it is less likely for
the surfer at si to walk into s0. As for the ver-
tex with a small conductance, the surfer has a ten-
dency to be absorbed by s0. The absorbing ver-
tex here plays a role of soaking unreliable rank-
ing scores from large numbers of bad candidate
sentences and highlighting the few good candidate
sentences. The affinity matrix W is normalized by
its first norm (equivalent to Cmax) in the affinity-
preserving random walk, which results in a kind of
“soft” stochastic matrix for n unabsorbed vertices.
“soft” here means that the sum of row elements in
the matrix can be less than 1. By contrast, P in the
traditional random walk is a “hard” stochastic ma-
trix in which every sum of row elements has to be
1. Meanwhile, P in this absorbing Markov chain
(Seneta, 2006) preserves the original affinity rela-
tions in W as all sentences are globally normal-
ized by the same factor (i.e. Cmax). We call this
approach an “affinity-preserving random walk” as
it is used in (Cho et al., 2010), which deals with
a graph matching problem that aims at assigning
1-vs-1 correspondences between two graphs. The
similar idea is also applied in the case of ontology
matching (Xiang et al., 2015). Transition matrix
P including the absorbing vertex is formulated in
(Cho et al., 2010) as follows

P =

(
1 0 T

e− c/‖W‖1 W/‖W‖1

)
(5)

where 0 T is a 1 × n vector with all elements 0,
e is an n × 1 vector with all elements 1, c =
[C(s1), C(s2), ..., C(sn)]T is a vector containing
the conductances of n sentences and W/‖W‖1
is the n × n soft substochastic matrix. How-
ever, the stationary distribution of such a random
walk on graph with one absorbing vertex is always(
1 0T

)
, which is not a good characterization of

the sentence ranking distribution. We turn to the
quasi-stationary distribution x̄ (Cho et al., 2010;
Darroch and Seneta, 1965) of absorbing random
walk for ranking sentences. x̄ (K) is defined as

x̄ (K)
i = Prob(X(K) = si|X(K) 6= s0)

=
x (K)
i∑
j x (K)

j

(6)

where X(K) denotes the position of random surfer
at time K. It can be proven that x̄ (K) has its
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stationary distribution x̄ if W is irreducible (Dar-
roch and Seneta, 1965). We remove the sentences
that have the total conductance 0 (i.e. the isolated
sentences) when constructing the sentence affinity
graphG. In this way,Gwill be strongly connected
and has an irreducible adjacency matrix W.

We introduce the teleport vector y as used in
personalized PageRank (Page et al., 1999; Haveli-
wala, 2002; Jeh and Widom, 2003) for the summa-
rization task. In the generic summarization case,
we define the vector y in a way that reflects the
position of each sentence in a document. If the
sentence si+1 is right after the sentence si in the
same document, then

yi+1

yi
= λ−1, λ > 1 (7)

where λ is the decay factor. In the topic-focused
summarization case, we incorporate the topic de-
scription as a vertex in the random walk process,
which is a standard way of achieving the rele-
vancy goal of this kind of summarization. Vector
y is defined to be [y1, y2, ..., yn, yn+1]

T in which
yi = 0(1 6 i 6 n) and yn+1 = 1 when the first
n elements represent sentences in the documents
and the last one represents the topic description.
We normalize y by its first norm to get a prior
sentence ranking for multi-document summariza-
tion. Based on W and y, sentence ranking scores
in affinity-preserving random walk can be formu-
lated in a recursive form as follows

x =
µWT /‖W‖1x + (1− µ)y
‖µWT /‖W‖1x + (1− µ)y‖1

(8)

where x = [Score(si)]n×1 is the vector of sen-
tence ranking scores. µ is the damping factor that
trades off between two actions: the transition ac-
cording to WT /‖W‖1 and the teleport specified by
y. Transpose operation in Eq.(8) can be removed
because of symmetry of W. The final transition
matrix of affinity-preserving random walk is given
by A = µW/‖W‖1 + (1− µ)y · e T and x should
be normalized by its first norm after each itera-
tion of random walk. Like PageRank, the quasi-
stationary distribution is obtained by the normal-
ized principal eigenvector of A.

For implementation, the initial ranking scores of
all sentences are set to 1/n and the iterative pro-
cess in Eq.(8) is adopted to compute new ranking
scores of sentences. Usually convergence of the it-
erative algorithm is achieved when the difference
between scores computed at two successive itera-
tions falls below a given threshold.

4.3 Adjustable Affinity-Preserving Random
Walk for Summarization

Affinity-preserving random walk preserves the
affinity relations between sentences and gives high
ranking scores to the salient sentences. However,
the diversity constraint of summarization has not
been taken into account. The surfer of affinity-
preserving random walk has no knowledge about
what a diverse summary should be. If we just
take redundancy removing as the post-processing
separate step to improve diversity, sentences that
highly overlap with other summary sentences may
be chosen and sentences that include information
about different topics may be submerged. This
phenomenon can be explained by the theorem as
follows.

Theorem 4.1. Suppose x̄ is the quasi-stationary
distribution of affinity-preserving random walk
as defined in Sec.4.2 and x is the solution
of a continuous quadratic optimization problem
argmax(x TA x) s.t. x ∈ [0, 1]n, ‖x‖2 = 1 and
A has definition in Sec.4.2. The following equa-
tion holds

x̄ = x/‖x‖1 (9)

when µ = 1.

Proof. In mathematics, for a given symmetric real
matrix A (when µ = 1) and nonzero real vector x,
the Rayleigh quotient R(A, x) is defined as

R(A, x) =
x TAx
x T x

and it reaches its maximum value when x is the
principal eigenvector of A. If ‖x‖2 = 1, R(A, x)
is equivalent to x TA x. So the solution x is the
principal eigenvector of A. From Section 4.2, x̄ is
the normalized principal eigenvector of A. x̄ and
x have the relation in Eq.(9). The conclusion is
made.

From Theorem 4.1, affinity-preserving random
walk tends to produce a stationary distribution in
which the total sum of affinity between sentences
(i.e. x TAx) is large if there is a subtle teleport-
ing effect. It will lead to a summary consisting
of many sentences overlapping with each other,
which clearly violates the diversity constraint of
summarization. Good candidate sentences may
not have high affinity with other sentences and are
likely to be submerged by affinity-preserving ran-
dom walk. Conversely, some bad candidate sen-
tences could have high affinity with others and will
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be highlighted by the random walk process. An
extreme example is that a cluster of sentences will
all get high ranking scores if they are very sim-
ilar to each other. However, only one sentence
in this cluster should be included in the summary
and the others should be suppressed. The random
surfer is caught in a trap of larger sentence clus-
ter, which operates against the exploration of good
candidates in smaller cluster.

We introduce adjustable affinity-preserving ran-
dom walk to enforce the diversity constraint of
summarization. In the original affinity-preserving
random walk, sentence transition matrix A is fixed
and set as µW/‖W‖1+(1−µ)y·e T . Edge (si, s0)
(if C(si) 6= Cmax) always exists and has an in-
variant conductance c(si, s0), which means that
the surfer at si walks into s0 in the same manner
for the entire random walk process. The random
surfer makes her decision only based on invariant
A to select salient sentences and form the sum-
mary. To equip the surfer with knowledge about
what a diverse summary should be, we propose to
adjust sentence transition matrix A in each itera-
tion of random walk. The key point is that good
candidate sentences should be normalized locally
while bad ones should be normalized globally in
the transformation from affinity matrix W to tran-
sition matrix A.

A “virtual” summary V is produced based on
x in each iteration of affinity-preserving random
walk. “Virtual” here means that V is a summary
based on transient distribution x, which differs
from the final summary based on quasi-stationary
distribution x̄. The method of diversity penalty im-
position (Wan et al., 2007) is used to produce V ,
which is denoted by the producingSummary func-
tion in Algorithm 4.1. It is a simple greedy al-
gorithm to select sentences that are both salient
and diverse, which often plays a role of greedy
post-processing step to produce the final summary.
Rather, we use it to produce virtual summary V
that satisfies both the saliency and diversity con-
straints based on a specific iteration. V is an indi-
cator for the diversity constraint of summarization.

The sentence transition matrix A in the iteration
(K+1) is then constructed with help of the virtual
summary V in the iterationK. Here, different nor-
malization methods are used to transform W into
A. If V includes the sentence si, elements in the
corresponding i-th row of W will be normalized
by the sum of the row (i.e. C(si)). Otherwise, el-

ements will be normalized by the maximum sum
of row elements in W (i.e. Cmax). In this way,
“local normalization” is adopted for the sentences
in V while “global normalization” is adopted for
the sentences not in V . We differentiate the nor-
malization methods to lead the surfer of affinity-
preserving random walk to explore more in the
neighborhood of the sentences in V rather than
end in the absorbing vertex s0. As a result, the sen-
tences that satisfy the saliency and diversity con-
straints will be highlighted even though they are
in a small sentence cluster. We characterize differ-

Algorithm 4.1: Adjustable Affinity-
Preserving Random Walk for Multi-Document
Summarization
Input: The sentence affinity matrix, W; The

starting and maximum number of
iteration, B and M ; The teleport
vector, y; The damping factor, µ;

Output: The multi-document summary, V ;
1 A← µW/Cmax + (1− µ)y · eT
2 Initialize the starting distribution x as uniform
3 for i← 1, 2, ...,M do
4 if i > B then
5 V ← producingSummary(x)
6 D← adjustingNormalization(V )
7 A← µ(D−1W)T + (1− µ)y · eT

8 x̄← Ax
9 x̄← x̄/‖x̄‖1

10 if ‖x̄− x‖1 < ε then
11 break

12 x← x̄
13 V ← producingSummary(x)
14 Return V

ent normalizations in the diagonal matrix D. Dii is
C(si) if si ∈ V and Dii is Cmax if si /∈ V ,which
is denoted by the adjustingNormalization function
in Algorithm 4.1. D in the current iteration is here
dependent on x in the previous iteration. We will
have different sentence augmented graphs GA in
each iteration. Figure 4.2 shows an example of
GA(K) and GA(K + 1) in the respective itera-
tions K and (K + 1). The probability distribution
in the adjustable affinity-preserving random walk
is updated as follows.

x =
µ(D−1W)

T x + (1− µ)y

‖µ(D−1W)
T x + (1− µ)y‖1

(10)
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Figure 4.2: Sentence augmented graphs for sum-
marization in two successive iterations. GA(K):
augmented graph in the iteration K. Virtual sum-
mary V = {s1, s3, s5}, which is constructed from
x in the iteration (K−1) by producingSummary.
D = diag([C(s1), Cmax, C(s3), Cmax, C(s5)]).
GA(K + 1): augmented graph in the iteration
(K+1). V = {s1, s4, s5}, which is constructed
from x in the iteration K by producingSummary.
D = diag([C(s1), Cmax, Cmax, C(s4), C(s5)]).
In both cases, Cmax equals to C(s1) indicating
that sentence s1 has the maximum conductance.

This is an adjustable Markov chain for which the
transition matrix A is µ(D−1W)

T
+ (1−µ)y · e T .

In this setting, A is dependent on the transient
distribution x in the previous iteration, which dif-
fers from the invariant transition matrix in Eq.(8).
As the diversity constraint is embedded in A,
subsequent random walks move to the solution
that induces a better summary. The algorithm of
the adjustable affinity-preserving random walk for
multi-document summarization is demonstrated in
Algorithm 4.1.

The parameter B in Algorithm 4.1 is used to
produce a transient distribution which is reliable
enough to adjust the transition matrix. To get the
final multi-document summary, we use the same
producingSummary function.

5 Experiments

5.1 Data Sets
Generic and topic-focused multi-document sum-
marization have been the main tasks in DUC1.
Task 2 of DUC 2004 is a generic summarization
task and task 3 of DUC 2003 is a topic-focused
summarization task. Both tasks are used for per-
formance evaluation of our method. In the exper-
iments, task 2 of DUC 2003 is used for the pa-

1http://www-nlpir.nist.gov/projects/duc/intro.html

rameter tuning of our method. We preprocess the
document data sets by removing stopwords from
each sentence and stemming the remaining words
using the Porter’s stemmer2. Also, the sentences
containing the said clause (if a said, says, told, tells
word and quotation marks appear simultaneously)
are filtered out.

For evaluation, four reference summaries gen-
erated by human judges for each document cluster
are provided by DUC as the ground truth. A brief
summary over the evaluation datasets is shown in
Table 5.1. According to (Hong et al., 2014), we
adjust the length limit of summary in DUC 2004
from 665 bytes to 100 words as it provides the
same setting for system evaluations.

DUC
2003

DUC
2003

DUC
2004

Task Task 2 Task 3 Task 2

Type Generic
Topic-

focused
Generic

Cluster numbers 30 30 50
Data source TDT TREC TDT

Summary length 100 words 100 words 100 words

Table 5.1: Summary of data sets used in our ex-
periments.

5.2 Evaluation Metric
We use the ROUGE-1.5.5 (Lin and Hovy, 2003)
toolkit for evaluation, which has been officially
adopted by DUC for automatic summarization
evaluation. The toolkit measures summary qual-
ity by counting overlapping units such as the n-
gram, word sequences and word pairs between the
candidate summary and the reference summary.
ROUGE-N is an n-gram based measure and the
ROUGE-N recall is computed as follows

ROUGE-NR =

∑
S∈{RefSum}

∑
n-gram∈S

Countmatch(n-gram)

∑
S∈{RefSum}

∑
n-gram∈S

Count(n-gram)
(11)

where n stands for the length of the n-gram, and
Countmatch(n-gram) is the maximum number of n-
grams co-occurring in the candidate summary and
the set of reference summaries. Count(n-gram)
is the number of n-grams in the reference sum-
maries.

We conduct our ROUGE experiments following
the recommended standard in (Owczarzak et al.,

2https://tartarus.org/martin/PorterStemmer/
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2012; Hong et al., 2014)3. We compute ROUGE-2
recall with stemming and stopwords not removed,
which provides the best agreement with manual
evaluations. We also compute ROUGE-1 recall
which has the highest recall of ability to identify
the better summary in a pair, and ROUGE-4 recall
which has the highest precision of ability to iden-
tify the better summary in a pair (Owczarzak et al.,
2012).

5.3 Experimental Results

In the experiments, the parameters of our method
are set as follows: the decay factor λ is 2, the max-
imum number of iterationM is 100, the number of
starting iteration B is 30, the damping factor µ is
0.85 and the minimum error ε is 1E-30.

System R-1 R-2 R-4
Cont. LexPageRank* 35.95 7.47 0.82

FreqSum 35.30 8.11 1.00
CLASSY 04 37.62 8.96 1.51
CLASSY 11 37.22 9.20 1.48

GRASSHOPPER* 37.20 9.26 1.50
DivRank* 37.60 9.30 1.52

GCD* 38.68 9.31 1.45
Submodular 39.18 9.35 1.39

APRW* 38.10 9.39 1.35
DPP 39.79 9.62 1.57

ICSISumm 38.41 9.78 1.73
AAPRW* 38.92 10.06 1.61
WFS-NMF 39.24 10.94 1.65

Table 5.2: System comparisons on task 2 of DUC
2004 (%). *: Graph-based ranking methods.

Table 5.2 shows the performance of our method
and other eleven well-known systems on task 2
of DUC 2004 according to ROUGE-1,2,4 recall,
sorted by ROUGE-2 recall in the ascending order.
Some of the results are from (Hong et al., 2014).
Cont. LexPageRank (Erkan and Radev, 2004) is a
graph-based ranking method and a representative
of traditional random walk approach. Here we em-
ploy the continuous version of LexPageRank. Fre-
qSum (Nenkova et al., 2006) is a simple approach
to approximate the importance of words with their
probability in the input and then select sentences
with high average word probability. CLASSY 04

3ROUGE-1.5.5 with the parameters: -n 4 -m -a -l 100 -x
-c 95 -r 1000 -f A -p 0.5 -t 0

(Conroy et al., 2004) was the participant of the of-
ficial DUC 2004 evaluation with the best evalua-
tion score. It employs a Hidden Markov Model us-
ing topic signature feature and requires a linguis-
tic preprocessing component. CLASSY 11 (Con-
roy et al., 2011) is the successor of CLASSY 04
and selects the non-redundant sentences using the
non-negative matrix factorization algorithm. In
the Submodular system (Lin and Bilmes, 2011),
multi-document summarization is formulated as
a submodular set function maximization prob-
lem. DPP (Lin and Bilmes, 2011) combines a
sentence saliency model with a global diversity
model encouraging non-overlapping information.
ICSISumm (Gillick and Favre, 2009) aims at find-
ing the globally optimal summary by formulating
the summarization task in Integer Linear Program-
ming. WFS-NMF (Wang et al., 2010) extends the
non-negative matrix factorization algorithm and
provides a good framework for weighting different
terms and documents. GRASSHOPPER, DivRank
and GCD are the three graph-based ranking mod-
els mentioned in Section 2. APRW and AAPRW
are our methods. APRW is the method of affinity-
preserving random walk described in Section 4.2
and AAPRW is the method of adjustable affinity-
preserving random walk described in Section 4.3.

System R-1 R-2 R-4
S17 31.81 4.98 0.47
S13 31.99 5.83 0.73
S16 35.00 7.31 1.04

Manifold Ranking 37.33 7.68 1.26
APRW 35.72 7.72 1.34

AAPRW 36.36 8.21 1.40

Table 5.3: System comparisons on task 3 of DUC
2003 (%).

Table 5.3 shows the evaluation results on task 3
of DUC 2003 according to ROUGE-1,2,4 recall,
sorted also by ROUGE-2 recall in the ascending
order. S13, S16 and S17 are the system IDs of the
top performing systems in the official DUC 2003
evaluation, whose details are described in DUC
publications (Zhou and Hovy, 2003; Chali et al.,
2003). Manifold Ranking is the method proposed
in (Wan et al., 2007) to make use of both the re-
lationships among all sentences in the documents
and the relationships between the given topic de-
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scription and the sentences. APRW and AAPRW
are our methods.

From Tables 5.2 and 5.3, our method has the
best ROUGE-2 score among all graph-based rank-
ing methods for generic multi-document summa-
rization, and it also has the best ROUGE-2 score
for topic-focused multi-document summarization.
AAPRW has the ROUGE-2 score 10.06% on DUC
2004 task 2, which is 0.28% higher than the
best system ICSISumm reported by (Hong et al.,
2014) and 1.1% higher than the official best sys-
tem CLASSY 04. WFS-NMF has the overall best
score on DUC 2004 task 2 due to the sentence
feature selection and the weights on the document
side, which is reported by (Wang et al., 2010; Al-
guliev et al., 2013). AAPRW has the ROUGE-2
score 8.21% on DUC 2003 task 3, which is 0.53%
higher than Manifold Ranking and 0.9% higher
than the official best system S16. In DUC 2004
AAPRW has 0.67% more ROUGE-2 score than
APRW and the gap is 0.49% in DUC 2003, which
proves the effectiveness of the adjustable transi-
tion matrix in the random walk process. It is worth
mentioning that our method has the best ROUGE-
4 score on the DUC 2003 topic-focused summa-
rization task.

We conducted the two-sided Wilcoxon signed-
rank tests between each pair of AAPRW and other
methods. For the generic summarization in DUC
2004, our method provides a significant improve-
ment over the official best system CLASSY 04 on
ROUGE-2 (with p-value lower than 0.05). For the
query-focused summarization in DUC 2003, our
method also provides a significant improvement
over S17, S13 and S16 on ROUGE-2.

In order to further investigate the influences of
the parameter in our proposed method, the damp-
ing factor µ is varied from 0 to 1. Figures 5.1
and 5.2 show the ROUGE-1 and ROUGE-2 re-
call curves of our method on the two data sets, re-
spectively. We can see from the figures that the
damping factor has an effect on the performance
of multi-document summarization.

6 Conclusion and Future Work

In this paper we propose the adjustable affinity-
preserving random walk for generic and topic-
focused multi-document summarization, which
deals with the saliency and diversity goals in a uni-
fied framework. Experiments demonstrate the ef-
fectiveness of our method.
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Figure 5.1: ROUGE-1 recall scores vs. µ of our
method.
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Figure 5.2: ROUGE-2 recall scores vs. µ of our
method.

In the future work, we will focus on the self
transition of adjustable affinity preserving random
walk, which could be used to remove the redun-
dancy between summary sentences.
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Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research, 22:457–479.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Natu-
ral Langauge Processing, pages 10–18. Association
for Computational Linguistics.

Taher H Haveliwala. 2002. Topic-sensitive pagerank.
In Proceedings of the 11th international conference
on World Wide Web, pages 517–526. ACM.

Kai Hong, John M Conroy, Benoit Favre, Alex
Kulesza, Hui Lin, and Ani Nenkova. 2014. A repos-
itory of state of the art and competitive baseline sum-
maries for generic news summarization. In LREC,
pages 1608–1616.

Glen Jeh and Jennifer Widom. 2003. Scaling person-
alized web search. In Proceedings of the 12th in-
ternational conference on World Wide Web, pages
271–279. ACM.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 71–78.
Association for Computational Linguistics.

Hui Lin and Jeff Bilmes. 2011. A class of submodu-
lar functions for document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 510–520. As-
sociation for Computational Linguistics.

Qiaozhu Mei, Jian Guo, and Dragomir Radev. 2010.
Divrank: the interplay of prestige and diversity in
information networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1009–1018.
Acm.

Ani Nenkova, Lucy Vanderwende, and Kathleen McK-
eown. 2006. A compositional context sensitive
multi-document summarizer: exploring the factors
that influence summarization. In Proceedings of
the 29th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 573–580. ACM.

Karolina Owczarzak, John M Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assessment of
the accuracy of automatic evaluation in summariza-
tion. In Proceedings of Workshop on Evaluation
Metrics and System Comparison for Automatic Sum-
marization, pages 1–9. Association for Computa-
tional Linguistics.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Eugene Seneta. 2006. Non-negative matrices and
Markov chains. Springer Science & Business Me-
dia.

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao.
2007. Manifold-ranking based topic-focused multi-
document summarization. In IJCAI, volume 7,
pages 2903–2908.

Dingding Wang, Tao Li, and Chris Ding. 2010.
Weighted feature subset non-negative matrix factor-
ization and its applications to document understand-
ing. In Data Mining (ICDM), 2010 IEEE 10th Inter-
national Conference on, pages 541–550. IEEE.

Chuncheng Xiang, Baobao Chang, and Zhifang Sui.
2015. An ontology matching approach based on
affinity-preserving random walks. In IJCAI, pages
1471–1478.

Dengyong Zhou, Jason Weston, Arthur Gretton,
Olivier Bousquet, and Bernhard Schölkopf. 2003.
Ranking on data manifolds. In NIPS, volume 3.

219



Liang Zhou and Eduard Hovy. 2003. Headline summa-
rization at isi. In Document Understanding Confer-
ence (DUC-2003), Edmonton, Alberta, Canada.

Xiaojin Zhu, Andrew B Goldberg, Jurgen Van Gael,
and David Andrzejewski. 2007. Improving diversity
in ranking using absorbing random walks. In HLT-
NAACL, pages 97–104.

220



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 221–232
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

A Mention-Ranking Model for Abstract Anaphora Resolution
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Abstract

Resolving abstract anaphora is an impor-
tant, but difficult task for text understand-
ing. Yet, with recent advances in represen-
tation learning this task becomes a more
tangible aim. A central property of ab-
stract anaphora is that it establishes a re-
lation between the anaphor embedded in
the anaphoric sentence and its (typical-
ly non-nominal) antecedent. We propose
a mention-ranking model that learns how
abstract anaphors relate to their antece-
dents with an LSTM-Siamese Net. We
overcome the lack of training data by
generating artificial anaphoric sentence–
antecedent pairs. Our model outperforms
state-of-the-art results on shell noun re-
solution. We also report first benchmark
results on an abstract anaphora subset of
the ARRAU corpus. This corpus presents
a greater challenge due to a mixture of
nominal and pronominal anaphors and a
greater range of confounders. We found
model variants that outperform the base-
lines for nominal anaphors, without train-
ing on individual anaphor data, but still
lag behind for pronominal anaphors. Our
model selects syntactically plausible can-
didates and – if disregarding syntax – dis-
criminates candidates using deeper fea-
tures.

1 Introduction

Current research in anaphora (or coreference) res-
olution is focused on resolving noun phrases re-
ferring to concrete objects or entities in the real

†Leo Born, Juri Opitz and Anette Frank contributed
equally to this work.

world, which is arguably the most frequently oc-
curring type. Distinct from these are diverse types
of abstract anaphora (AA) (Asher, 1993) where
reference is made to propositions, facts, events or
properties. An example is given in (1) below.1

While recent approaches address the resolution
of selected abstract shell nouns (Kolhatkar and
Hirst, 2014), we aim to resolve a wide range of
abstract anaphors, such as the NP this trend in (1),
as well as pronominal anaphors (this, that, or it).

Henceforth, we refer to a sentence that contains
an abstract anaphor as the anaphoric sentence
(AnaphS), and to a constituent that the anaphor
refers to as the antecedent (Antec) (cf. (1)).

(1) Ever-more powerful desktop computers, designed with
one or more microprocessors as their ”brains”, are ex-
pected to increasingly take on functions carried out
by more expensive minicomputers and mainframes.
”[Antec The guys that make traditional hardware are
really being obsoleted by microprocessor-based ma-
chines]”, said Mr. Benton. [AnaphS As a result of this
trendAA, longtime powerhouses HP, IBM and Digital
Equipment Corp. are scrambling to counterattack with
microprocessor-based systems of their own.]

A major obstacle for solving this task is the lack
of sufficient amounts of annotated training data.
We propose a method to generate large amounts
of training instances covering a wide range of ab-
stract anaphor types. This enables us to use neu-
ral methods which have shown great success in
related tasks: coreference resolution (Clark and
Manning, 2016a), textual entailment (Bowman
et al., 2016), learning textual similarity (Mueller
and Thyagarajan, 2016), and discourse relation
sense classification (Rutherford et al., 2017).

Our model is inspired by the mention-ranking
model for coreference resolution (Wiseman et al.,
2015; Clark and Manning, 2015, 2016a,b) and
combines it with a Siamese Net (Mueller and
Thyagarajan, 2016), (Neculoiu et al., 2016) for

1Example drawn from ARRAU (Uryupina et al., 2016).
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learning similarity between sentences. Given an
anaphoric sentence (AntecS in (1)) and a candi-
date antecedent (any constituent in a given context,
e.g. being obsoleted by microprocessor-based ma-
chines in (1)), the LSTM-Siamese Net learns rep-
resentations for the candidate and the anaphoric
sentence in a shared space. These representations
are combined into a joint representation used to
calculate a score that characterizes the relation be-
tween them. The learned score is used to select
the highest-scoring antecedent candidate for the
given anaphoric sentence and hence its anaphor.
We consider one anaphor at a time and provide the
embedding of the context of the anaphor and the
embedding of the head of the anaphoric phrase to
the input to characterize each individual anaphor –
similar to the encoding proposed by Zhou and Xu
(2015) for individuating multiply occurring predi-
cates in SRL. With deeper inspection we show that
the model learns a relation between the anaphor in
the anaphoric sentence and its antecedent. Fig. 1
displays our architecture.

In contrast to other work, our method for gener-
ating training data is not confined to specific types
of anaphora such as shell nouns (Kolhatkar and
Hirst, 2014) or anaphoric connectives (Stede and
Grishina, 2016). It produces large amounts of in-
stances and is easily adaptable to other languages.
This enables us to build a robust, knowledge-lean
model for abstract anaphora resolution that easily
extends to multiple languages.

We evaluate our model on the shell noun reso-
lution dataset of Kolhatkar et al. (2013b) and show
that it outperforms their state-of-the-art results.
Moreover, we report results of the model (trained
on our newly constructed dataset) on unrestricted
abstract anaphora instances from the ARRAU cor-
pus (Poesio and Artstein, 2008; Uryupina et al.,
2016). To our knowledge this provides the first
state-of-the-art benchmark on this data subset.

Our TensorFlow2 implementation of the model
and scripts for data extraction are available
at: https://github.com/amarasovic/
neural-abstract-anaphora.

2 Related and prior work

Abstract anaphora has been extensively stud-
ied in linguistics and shown to exhibit specific
properties in terms of semantic antecedent types,
their degrees of abstractness, and general dis-

2Abadi et al. (2015)

course properties (Asher, 1993; Webber, 1991). In
contrast to nominal anaphora, abstract anaphora is
difficult to resolve, given that agreement and lexi-
cal match features are not applicable. Annotation
of abstract anaphora is also difficult for humans
(Dipper and Zinsmeister, 2012), and thus, only
few smaller-scale corpora have been constructed.
We evaluate our models on a subset of the AR-
RAU corpus (Uryupina et al., 2016) that contains
abstract anaphors and the shell noun corpus used
in Kolhatkar et al. (2013b).3 We are not aware of
other freely available abstract anaphora datasets.

Little work exists for the automatic resolu-
tion of abstract anaphora. Early work (Eckert
and Strube, 2000; Strube and Müller, 2003; By-
ron, 2004; Müller, 2008) has focused on spoken
language, which exhibits specific properties. Re-
cently, event coreference has been addressed us-
ing feature-based classifiers (Jauhar et al., 2015;
Lu and Ng, 2016). Event coreference is re-
stricted to a subclass of events, and usually fo-
cuses on coreference between verb (phrase) and
noun (phrase) mentions of similar abstractness
levels (e.g. purchase – acquire) with no spe-
cial focus on (pro)nominal anaphora. Abstract
anaphora typically involves a full-fledged clausal
antecedent that is referred to by a highly abstract
(pro)nominal anaphor, as in (1).

Rajagopal et al. (2016) proposed a model for
resolution of events in biomedical text that refer
to a single or multiple clauses. However, instead
of selecting the correct antecedent clause(s) (our
task) for a given event, their model is restricted to
classifying the event into six abstract categories:
this these changes, responses, analysis, context,
finding, observation, based on its surrounding con-
text. While related, their task is not comparable to
the full-fledged abstract anaphora resolution task,
since the events to be classified are known to be
coreferent and chosen from a set of restricted ab-
stract types.

More related to our work is Anand and Hardt
(2016) who present an antecedent ranking ac-
count for sluicing using classical machine learn-
ing based on a small training dataset. They em-
ploy features modeling distance, containment, dis-
course structure, and – less effectively – content
and lexical correlates.4

Closest to our work is Kolhatkar et al. (2013b)

3We thank the authors for making their data available.
4Their data set was not publicized.
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(KZH13) and Kolhatkar and Hirst (2014) (KH14)
on shell noun resolution, using classical ma-
chine learning techniques. Shell nouns are abstract
nouns, such as fact, possibility, or issue, which can
only be interpreted jointly with their shell content
(their embedded clause as in (2) or antecedent as
in (3)). KZH13 refer to shell nouns whose an-
tecedent occurs in the prior discourse as anaphoric
shell nouns (ASNs) (cf. (3)), and cataphoric shell
nouns (CSNs) otherwise (cf. (2)).5

(2) Congress has focused almost solely on the fact that
[special education is expensive - and that it takes away
money from regular education.]

(3) Environmental Defense [...] notes that [Antec Mowing
the lawn with a gas mower produces as much pollution
[...] as driving a car 172 miles.] [AnaphS This fact
may [...] explain the recent surge in the sales of [...]
old-fashioned push mowers [...]].

KZH13 presented an approach for resolving six
typical shell nouns following the observation that
CSNs are easy to resolve based on their syn-
tactic structure alone, and the assumption that
ASNs share linguistic properties with their em-
bedded (CSN) counterparts. They manually de-
veloped rules to identify the embedded clause
(i.e. cataphoric antecedent) of CSNs and trained
SVMrank (Joachims, 2002) on such instances.
The trained SVMrank model is then used to re-
solve ASNs. KH14 generalized their method to
be able to create training data for any given shell
noun, however, their method heavily exploits the
specific properties of shell nouns and does not ap-
ply to other types of abstract anaphora.

Stede and Grishina (2016) study a related phe-
nomenon for German. They examine inherently
anaphoric connectives (such as demzufolge – ac-
cording to which) that could be used to access their
abstract antecedent in the immediate context. Yet,
such connectives are restricted in type, and the
study shows that such connectives are often am-
biguous with nominal anaphors and require sense
disambiguation. We conclude that they cannot be
easily used to acquire antecedents automatically.

In our work, we explore a different direction:
we construct artificial training data using a gen-
eral pattern that identifies embedded sentence con-
stituents, which allows us to extract relatively se-
cure training data for abstract anaphora that cap-
tures a wide range of anaphora-antecedent rela-

5We follow this terminology for their approach and data
representation.

tions, and apply this data to train a model for the
resolution of unconstrained abstract anaphora.

Recent work in entity coreference resolu-
tion has proposed powerful neural network-based
models that we will adapt to the task of abstract
anaphora resolution. Most relevant for our task is
the mention-ranking neural coreference model
proposed in Clark and Manning (2015), and their
improved model in Clark and Manning (2016a),
which integrates a loss function (Wiseman et al.,
2015) which learns distinct feature representations
for anaphoricity detection and antecedent ranking.

Siamese Nets distinguish between similar and
dissimilar pairs of samples by optimizing a loss
over the metric induced by the representations. It
is widely used in vision (Chopra et al., 2005), and
in NLP for semantic similarity, entailment, query
normalization and QA (Mueller and Thyagarajan,
2016; Neculoiu et al., 2016; Das et al., 2016).

3 Mention-Ranking Model

Given an anaphoric sentence s with a marked
anaphor (mention) and a candidate antecedent c,
the mention-ranking (MR) model assigns the pair
(c, s) a score, using representations produced by
an LSTM-Siamese Net. The highest-scoring can-
didate is assigned to the marked anaphor in the
anaphoric sentence. Fig. 1 displays the model.

We learn representations of an anaphoric sen-
tence s and a candidate antecedent c using a bi-
directional Long Short-Term Memory (Hochre-
iter and Schmidhuber, 1997; Graves and Schmid-
huber, 2005). One bi-LSTM is applied to the
anaphoric sentence s and a candidate antecedent c,
hence the term siamese. Each word is represented
with a vectorwi constructed by concatenating em-
beddings of the word, of the context of the anaphor
(average of embeddings of the anaphoric phrase,
the previous and the next word), of the head of
the anaphoric phrase6, and, finally, an embedding
of the constituent tag of the candidate, or the S
constituent tag if the word is in the anaphoric sen-
tence. For each sequence s or c, the word vectors
wi are sequentially fed into the bi-LSTM, which
produces outputs from the forward pass,

−→
hi, and

outputs
←−
hi from the backward pass. The final out-

put of the i-th word is defined as hi = [
←−
hi ;
−→
hi ].

To get a representation of the full sequence, hs or
hc, all outputs are averaged, except for those that
correspond to padding tokens.

6Henceforth we refer to it as embedding of the anaphor.
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Figure 1: Mention-ranking architecture for ab-
stract anaphora resolution (MR-LSTM).

To prevent forgetting the constituent tag of the
sequence, we concatenate the corresponding tag
embedding with hs or hc (we call this a short-
cut for the tag information). The resulting vector
is fed into a feed-forward layer of exponential lin-
ear units (ELUs) (Clevert et al., 2016) to produce
the final representation h̃s or h̃c of the sequence.

From h̃c and h̃s we compute a vector hc,s =
[|h̃c − h̃s|; h̃c � h̃s] (Tai et al., 2015), where |–|
denotes the absolute values of the element-wise
subtraction, and � the element-wise multiplica-
tion. Then hc,s is fed into a feed-forward layer of
ELUs to obtain the final joint representation, h̃c,s,
of the pair (c, s). Finally, we compute the score for
the pair (c, s) that represents relatedness between
them, by applying a single fully connected linear
layer to the joint representation:

score(c, s) =W h̃c,s + b ∈ R, (1)

where W is a 1 × d weight matrix, and d the di-
mension of the vector h̃c,s.

We train the described mention-ranking model
with the max-margin training objective from
Wiseman et al. (2015), used for the antecedent
ranking subtask. Suppose that the training set
D = {(ai, si, T (ai),N (ai)}ni=1, where ai is
the i-th abstract anaphor, si the corresponding
anaphoric sentence, T (ai) the set of antecedents
of ai and N (ai) the set of candidates that are
not antecedents (negative candidates). Let t̃i =
argmaxt∈T (ai) score(ti, si) be the highest scor-

VP

v S’

x S

Figure 2: A general pattern for artificially creating
anaphoric sentence–antecedent pairs.

ing antecedent of ai. Then the loss is given by

n∑

i=1

max(0, max
c∈N (ai)

{1+score(c, si)−score(t̃i, si)}).

4 Training data construction

We create large-scale training data for abstract
anaphora resolution by exploiting a common con-
struction, consisting of a verb with an embed-
ded sentence (complement or adverbial) (cf. Fig.
2). We detect this pattern in a parsed corpus,
’cut off’ the S′ constituent and replace it with a
suitable anaphor to create the anaphoric sentence
(AnaphS), while S yields the antecedent (Antec).
This method covers a wide range of anaphora-
antecedent constellations, due to diverse semantic
or discourse relations that hold between the clause
hosting the verb and the embedded sentence.

First, the pattern applies to verbs that embed
sentential arguments. In (4), the verb doubt estab-
lishes a specific semantic relation between the em-
bedding sentence and its sentential complement.

(4) He doubts [S′ [S a Bismarckian super state will emerge
that would dominate Europe], but warns of ”a risk of
profound change in the [..] European Community from
a Germany that is too strong, even if democratic”].

From this we extract the artificial antecedent A
Bismarckian super state will emerge that would
dominate Europe, and its corresponding anaphoric
sentence He doubts this, but warns of ”a risk of
profound change ... even if democratic”, which
we construct by randomly choosing one of a pre-
defined set of appropriate anaphors (here: this,
that, it), cf. Table 1. The second row in Table 1
is used when the head of S′ is filled by an overt
complementizer (doubts that), as opposed to (4).
The remaining rows in Table 1 apply to adverbial
clauses of different types.

Adverbial clauses encode specific discourse re-
lations with their embedding sentences, often in-
dicated by their conjunctions. In (5), for example,
the causal conjunction as relates a cause (embed-
ded sentence) and its effect (embedding sentence):

224



type head of S
′

possible anaphoric phrase

empty ∅ this, that
general that, this that, this
causal because, as therefore, because of this/that,
temporal while, since, etc. during this/that
conditional if, whether if this/that is true

Table 1: S
′
-heads and the anaphoric types and

phrases they induce (most frequent interpretation).

(5) There is speculation that property casualty firms will
sell even more munis [S′ as [S they scramble to raise
cash to pay claims related to Hurricane Hugo [..] ]].

We randomly replace causal conjunctions be-
cause, as with appropriately adjusted anaphors,
e.g. because of that, due to this or therefore that
make the causal relation explicit in the anaphor.7

Compared to the shell noun corpus of KZH13,
who made use of a carefully constructed set of
extraction patterns, a downside of our method is
that our artificially created antecedents are uni-
formly of type S. However, the majority of ab-
stract anaphora antecedents found in the existing
datasets are of type S. Also, our models are in-
tended to induce semantic representations, and so
we expect syntactic form to be less critical, com-
pared to a feature-based model.8 Finally, the gen-
eral extraction pattern in Fig. 2, covers a much
wider range of anaphoric types.

Using this method we generated a dataset of ar-
tificial anaphoric sentence–antecedent pairs from
the WSJ part of the PTB Corpus (Marcus et al.,
1993), automatically parsed using the Stanford
Parser (Klein and Manning, 2003).

5 Experimental setup

5.1 Datasets

We evaluate our model on two types of anaphora:
(a) shell noun anaphora and (b) (pro)nominal ab-
stract anaphors extracted from ARRAU.

a. Shell noun resolution dataset. For comparabi-
lity we train and evaluate our model for shell noun
resolution, using the original training (CSN) and
test (ASN) corpus of Kolhatkar et al. (2013a,b).9

7In case of ambiguous conjunctions (e.g. as interpreted
as causal or temporal), we generally choose the most frequent
interpretation.

8This also alleviates problems with languages like Ger-
man, where (non-)embedded sentences differ in surface posi-
tion of the finite verb. We can either adapt the order or ignore
it, when producing anaphoric sentence – antecedent pairs.

9We thank the authors for providing the available data.

We follow the data preparation and evaluation
protocol of Kolhatkar et al. (2013b) (KZH13).

The CSN corpus was constructed from the
NYT corpus using manually developed patterns to
identify the antecedent of cataphoric shell nouns
(CSNs). In KZH13, all syntactic constituents of
the sentence that contains both the CSN and its an-
tecedent were considered as candidates for train-
ing a ranking model. Candidates that differ from
the antecedent in only one word or one word
and punctuation were as well considered as an-
tecedents10. To all other candidates we refer to as
negative candidates. For every shell noun, KZH13
used the corresponding part of the CSN data to
train SVMrank.

The ASN corpus serves as the test corpus. It
was also constructed from the NYT corpus, by se-
lecting anaphoric instances with the pattern ”this
〈shell noun〉” for all covered shell nouns. For val-
idation, Kolhatkar et al. (2013a) crowdsourced an-
notations for the sentence which contains the an-
tecedent, which KZH13 refer to as a broad re-
gion. Candidates for the antecedent were obtained
by using all syntactic constituents of the broad
region as candidates and ranking them using the
SVMrank model trained on the CSN corpus. The
top 10 ranked candidates were presented to the
crowd workers and they chose the best answer that
represents the ASN antecedent. The workers were
encouraged to select None when they did not agree
with any of the displayed answers and could pro-
vide information about how satisfied they were
with the displayed candidates. We consider this
dataset as gold, as do KZH13, although it may be
biased towards the offered candidates.11

b. Abstract anaphora resolution data set. We
use the automatically constructed data from the
WSJ corpus (Section 4) for training.12 Our test
data for unrestricted abstract anaphora resolution
is obtained from the ARRAU corpus (Uryupina
et al., 2016). We extracted all abstract anaphoric
instances from the WSJ part of ARRAU that are
marked with the category abstract or plan,13 and
call the subcorpus ARRAU-AA.

10We obtained this information from the authors directly.
11The authors provided us with the workers’ annotations

of the broad region, antecedents chosen by the workers and
links to the NYT corpus. The extraction of the anaphoric
sentence and the candidates had to be redone.

12We excluded any documents that are part of ARRAU.
13ARRAU distinguishes abstract anaphors and (mostly)

pronominal anaphors referring to an action or plan, as plan.
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shell noun abstract anaphora

CSN
train

ASN
test

artifical
train

ARRAU-AA
test

# shell nouns / anaphors 114492 2303 8527 600

median
# of tokens

Antec 12.75 13.87 11 20.5

AnaphS 11.5 24 19 28

median
#

Antec 2 4.5 2 1

negatives 44.5 39 15 48

#
nominal 114492 2303 0 397

pronominal 0 0 8527 203

Table 2: Data statistics. For the ASN and CSN we
report statistics over all shell nouns, but classifiers
are trained independently.

Candidates extraction. Following KZH13, for
every anaphor we create a list of candidates by ex-
tracting all syntactic constituents from sentences
which contain antecedents. Candidates that differ
from antecedents in only one word, or one word
and punctuation, were as well considered as an-
tecedents. Constituents that are not antecedents
are considered as negative candidates.

Data statistics. Table 2 gives statistics of the
datasets: the number of anaphors (row 1), the me-
dian length (in tokens) of antecedents (row 2), the
median length (in tokens) for all anaphoric sen-
tences (row 3), the median of the number of an-
tecedents and candidates that are not antecedents
(negatives) (rows 4–5), the number of pronomi-
nal and nominal anaphors (rows 6–7). Both train-
ing sets, artificial and CSN, have only one possi-
ble antecedent for which we accept two minimal
variants differing in only one word or one word
and punctuation. On the contrary, both test sets
by design allow annotation of more than one an-
tecedent that differ in more than one word. Every
anaphor in the artificial training dataset is pronom-
inal, whereas anaphors in CSN and ASN are nom-
inal only. ARRAU-AA has a mixture of nominal
and pronominal anaphors.

Data pre-processing. Other details can be
found in Supplementary Materials.

5.2 Baselines and evaluation metrics
Following KZH13, we report success@n (s@n),
which measures whether the antecedent, or a can-
didate that differs in one word14, is in the first
n ranked candidates, for n ∈ {1, 2, 3, 4}. Addi-
tionally, we report the preceding sentence baseline

14We obtained this information in personal communica-
tion with one of the authors.

(PSBL) that chooses the previous sentence for the
antecedent and TAGbaseline (TAGBL) that ran-
domly chooses a candidate with the constituent
tag label in {S, VP, ROOT, SBAR}. For TAGBL

we report the average of 10 runs with 10 fixed
seeds. PSBL always performs worse than the
KZH13 model on the ASN, so we report it only
for ARRAU-AA.

5.3 Training details for our models

Hyperparameters tuning. We recorded perfor-
mance with manually chosen HPs and then tuned
HPs with Tree-structured Parzen Estimators (TPE)
(Bergstra et al., 2011)15. TPE chooses HPs for the
next (out of 10) trails on the basis of the s@1 score
on the devset. As devsets we employ the ARRAU-
AA corpus for shell noun resolution and the ASN
corpus for unrestricted abstract anaphora resolu-
tion. For each trial we record performance on the
test set. We report the best test s@1 score in 10 tri-
als if it is better than the scores from default HPs.
The default HPs and prior distributions for HPs
used by TPE are given below. The (exact) HPs we
used can be found in Supplementary Materials.

Input representation. To construct word vec-
tors wi as defined in Section 3, we used 100-dim.
GloVe word embeddings pre-trained on the Gi-
gaword and Wikipedia (Pennington et al., 2014),
and did not fine-tune them. Vocabulary was built
from the words in the training data with frequency
in {3, U(1, 10)}, and OOV words were replaced
with an UNK token. Embeddings for tags are ini-
tialized with values drawn from the uniform distri-
bution U

(
− 1√

d+t
, 1√

d+t

)
, where t is the number of

tags16 and d ∈ {50, qlog-U(30, 100)} the size of
the tag embeddings.17 We experimented with re-
moving embeddings for tag, anaphor and context.

Weights initialization. The size of the LSTMs
hidden states was set to {100, qlog-U(30, 150)}.
We initialized the weight matrices of the LSTMs
with random orthogonal matrices (Henaff et al.,
2016), all other weight matrices with the ini-
tialization proposed in He et al. (2015). The
first feed-forward layer size is set to a value in
{400, qlog-U(200, 800)}, the second to a value in
{1024, qlog-U(400, 2000)}. Forget biases in the
LSTM were initialized with 1s (Józefowicz et al.,
2015), all other biases with 0s.

15https://github.com/hyperopt/hyperopt.
16We used a list of tags obtained from the Stanford Parser.
17qlog-U is the so-called qlog-uniform distribution.
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s @ 1 s @ 2 s @ 3 s @ 4

fact
(train: 43809,

test: 472)

MR-LSTM 83.47 85.38 86.44 87.08
KZH13 70.00 86.00 92.00 95.00
TAGBL 46.99 - - -

reason
(train: 4529,

test: 442)

MR-LSTM 71.27 77.38 80.09 80.54
+ tuning 87.78 91.63 93.44 93.89
KZH13 72.00 86.90 90.00 94.00
TAGBL 42.40 - - -

issue
(train: 2664,

test: 303)

MR-LSTM 88.12 91.09 93.07 93.40
KZH13 47.00 61.00 72.00 81.00
TAGBL 44.92 - - -

decision
(train: 42289,

test: 389)

MR-LSTM 76.09 85.86 91.00 93.06
KZH13 35.00 53.00 67.00 76.00
TAGBL 45.55 - - -

question
(train: 9327,

test: 440)

MR-LSTM 89.77 94.09 95.00 95.68
KZH13 70.00 83.00 88.00 91.00
TAGBL 42.02 - - -

possibility
(train: 11874,

test: 277)

MR-LSTM 93.14 94.58 95.31 95.67
KZH13 56.00 76.00 87.00 92.00
TAGBL 48.66 - - -

Table 3: Shell noun resolution results.

Optimization. We trained our model in mini-
batches using Adam (Kingma and Ba, 2015) with
the learning rate of 10−4 and maximal batch
size 64. We clip gradients by global norm
(Pascanu et al., 2013), with a clipping value in
{1.0, U(1, 100)}. We train for 10 epochs and
choose the model that performs best on the devset.

Regularization. We used the l2-regularization
with λ ∈ {10−5, log-U(10−7, 10−2)}. Dropout
(Srivastava et al., 2014) with a keep probability
kp ∈ {0.8, U(0.5, 1.0)} was applied to the out-
puts of the LSTMs, both feed-forward layers and
optionally to the input with kp ∈ U(0.8, 1.0).

6 Results and analysis

6.1 Results on shell noun resolution dataset

Table 3 provides the results of the mention-
ranking model (MR-LSTM) on the ASN corpus
using default HPs. Column 2 states which model
produced the results: KZH13 refers to the best
reported results in Kolhatkar et al. (2013b) and
TAGBL is the baseline described in Section 5.2.

In terms of s@1 score, MR-LSTM outperforms
both KZH13’s results and TAGBL without even
necessitating HP tuning. For the outlier reason
we tuned HPs (on ARRAU-AA) for different vari-
ants of the architecture: the full architecture, with-
out embedding of the context of the anaphor (ctx),
of the anaphor (aa), of both constituent tag em-

reason
ctx aa tag cut ffl1 ffl2 s@1 s@2 s@ 3 s@ 4

3 3 3 3 3 3 87.78 91.63 93.44 93.89
7 3 3 3 3 3 85.97 87.56 89.14 89.82
3 7 3 3 3 3 86.65 88.91 91.18 91.40
3 3 7 7 3 3 68.10 80.32 85.29 89.37
3 3 3 7 3 3 85.52 88.24 89.59 90.05
7 7 7 7 3 3 66.97 80.54 85.75 88.24
3 3 3 3 7 3 87.56 91.63 92.76 94.12
3 3 3 3 3 7 85.97 88.69 89.14 90.05

Table 4: Architecture ablation for reason.

bedding and shortcut (tag,cut), dropping only the
shortcut (cut), using only word embeddings as in-
put (ctx,aa,tag,cut), without the first (ffl1) and sec-
ond (ffl2) layer. From Table 4 we observe: (1) with
HPs tuned on ARRAU-AA, we obtain results well
beyond KZH13, (2) all ablated model variants per-
form worse than the full model, (3) a large perfor-
mance drop when omitting syntactic information
(tag,cut) suggests that the model makes good use
of it. However, this could also be due to a bias in
the tag distribution, given that all candidates stem
from the single sentence that contains antecedents.
The median occurrence of the S tag among both
antecedents and negative candidates is 1, thus the
model could achieve 50.00 s@1 by picking S-type
constituents, just as TAGBL achieves 42.02 for
reason and 48.66 for possibility.

Tuning of HPs gives us insight into how differ-
ent model variants cope with the task. For exam-
ple, without tuning the model with and without
syntactic information achieves 71.27 and 19.68
(not shown in table) s@1 score, respectively, and
with tuning: 87.78 and 68.10. Performance of
68.10 s@1 score indicates that the model is able
to learn without syntactic guidance, contrary to the
19.68 s@1 score before tuning.

6.2 Results on the ARRAU corpus

Table 5 shows the performance of different vari-
ants of the MR-LSTM with HPs tuned on the ASN
corpus (always better than the default HPs), when
evaluated on 3 different subparts of the ARRAU-
AA: all 600 abstract anaphors, 397 nominal and
203 pronominal ones. HPs were tuned on the ASN
corpus for every variant separately, without shuf-
fling of the training data. For the best performing
variant, without syntactic information (tag,cut),
we report the results with HPs that yielded the
best s@1 test score for all anaphors (row 4), when
training with those HPs on shuffled training data
(row 5), and with HPs that yielded the best s@1
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all (600) nominal (397) pronominal (203)
ctx aa tag cut ffl1 ffl2 s@1 s@2 s@ 3 s@ 4 s@1 s@2 s@ 3 s@ 4 s@1 s@2 s@ 3 s@ 4

3 3 3 3 3 3 24.17 43.67 54.50 63.00 29.47 50.63 62.47 72.04 13.79 30.05 38.92 45.32
7 3 3 3 3 3 29.67 52.50 66.00 75.00 33.50 58.19 72.04 80.86 22.17 41.38 54.19 63.55
3 7 3 3 3 3 22.83 39.00 52.00 61.33 22.42 41.31 54.66 64.48 23.65 34.48 46.80 55.17
3 3 7 7 3 3 38.33 54.83 63.17 69.33 46.60 64.48 72.54 79.09 22.17 35.96 44.83 50.25
3 3 7 7 3 3 43.83 56.33 66.33 73.00 51.89 64.48 73.55 79.85 28.08 40.39 52.22 59.61
3 3 7 7 3 3 38.17 52.50 61.33 68.67 43.07 57.43 65.49 72.04 28.57 42.86 53.20 62.07
3 3 3 7 3 3 30.17 48.00 57.83 67.33 30.73 50.88 61.21 71.54 29.06 42.36 51.23 59.11
7 7 7 7 3 3 26.33 40.50 50.67 58.67 28.46 41.81 52.14 59.70 22.17 37.93 47.78 56.65
3 3 3 3 7 3 21.33 41.17 53.17 60.33 23.43 47.36 60.45 69.52 17.24 29.06 38.92 42.36
3 3 3 3 3 7 12.00 24.67 33.50 41.50 13.35 27.20 37.28 45.84 9.36 19.70 26.11 33.00

PSBL 27.67 - - - 30.48 - - - 22.17 - - -
TAGBL 38.43 - - - 40.10 - - - 35.17 - - -

Table 5: Results table for the ARRAU-AA test set. Refer to text for explanation of duplicated rows.

score for pronominal anaphors (row 6).
The MR-LSTM is more successful in resolv-

ing nominal than pronominal anaphors, although
the training data provides only pronominal ones.
This indicates that resolving pronominal abstract
anaphora is harder compared to nominal abstract
anaphora, such as shell nouns. Moreover, for
shell noun resolution in KZH13’s dataset, the
MR-LSTM achieved s@1 scores in the range
76.09–93.14, while the best variant of the model
achieves 51.89 s@1 score for nominal anaphors
in ARRAU-AA. Although lower performance is
expected, since we do not have specific training
data for individual nominals in ARRAU-AA, we
suspect that the reason for better performance for
shell noun resolution in KZH13 is due to a larger
number of positive candidates in ASN (cf. Table 2,
rows: antecedents/negatives).

We also note that HPs that yield good perfor-
mance for resolving nominal anaphors are not nec-
essarily good for pronominal ones (cf. rows 4–6 in
Table 5). Since the TPE tuner was tuned on the
nominal-only ASN data, this suggest that it would
be better to tune HPs for pronominal anaphors on
a different dataset or stripping the nouns in ASN.

Contrary to shell noun resolution, omitting syn-
tactic information boosts performance in ARRAU-
AA. We conclude that when the model is provided
with syntactic information, it learns to pick S-type
candidates, but does not continue to learn deeper
features to further distinguish them or needs more
data to do so. Thus, the model is not able to point
to exactly one antecedent, resulting in a lower s@1
score, but does well in picking a few good candi-
dates, which yields good s@2-4 scores. This is
what we can observe from row 2 vs. row 6 in Ta-
ble 5: the MR-LSTM without context embedding

(ctx) achieves a comparable s@2 score with the
variant that omits syntactic information, but better
s@3-4 scores. Further, median occurrence of tags
not in {S, VP, ROOT, SBAR} among top-4 ranked
candidates is 0 for the full architecture, and 1 when
syntactic information is omitted. The need for dis-
criminating capacity of the model is more empha-
sized in ARRAU-AA, given that the median oc-
currence of S-type candidates among negatives is
2 for nominal and even 3 for pronominal anaphors,
whereas it is 1 for ASN. This is in line with the
lower TAGBL in ARRAU-AA.

Finally, not all parts of the architecture con-
tribute to system performance, contrary to what is
observed for reason. For nominal anaphors, the
anaphor (aa) and feed-forward layers (ffl1, ffl2)
are beneficial, for pronominals only the second ffl.

6.3 Exploring the model

We finally analyze deeper aspects of the model:
(1) whether a learned representation between the
anaphoric sentence and an antecedent establishes a
relation between a specific anaphor we want to re-
solve and the antecedent and (2) whether the max-
margin objective enforces a separation of the joint
representations in the shared space.

(1) We claim that by providing embeddings of
both the anaphor and the sentence containing the
anaphor we ensure that the learned relation be-
tween antecedent and anaphoric sentence is de-
pendent on the anaphor under consideration. Fig.
3 illustrates the heatmap for an anaphoric sen-
tence with two anaphors. The i-th column of
the heatmap corresponds to absolute differences
between the output of the bi-LSTM for the i-th
word in the anaphoric sentence when the first vs.
second anaphor is resolved. Stronger color indi-
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Figure 3: Visualizing the differences between out-
puts of the bi-LSTM over time for an anaphoric
sentence containing two anaphors.

cates larger difference, the blue rectangle repre-
sents the column for the head of the first anaphor,
the dashed blue rectangle the column for the head
of the second anaphor. Clearly, the representa-
tions differ when the first vs. second anaphor is
being resolved and consequently, joint representa-
tions with an antecedent will differ too.

(2) It is known that the max-margin objective
separates the best-scoring positive candidate from
the best-scoring negative candidate. To investi-
gate what the objective accomplishes in the MR-
LSTM model, we analyze the joint representations
of candidates and the anaphoric sentence (i.e., out-
puts of ffl2) after training. For a randomly cho-
sen instance from ARRAU-AA, we plotted out-
puts of ffl2 with the tSNE algorithm (v.d. Maaten
and Hinton, 2008). Fig. 4 illustrates that the joint
representation of the first ranked candidate and the
anaphoric sentence is clearly separated from other
joint representations. This shows that the max-
margin objective separates the best scoring posi-
tive candidate from the best scoring negative can-
didate by separating their respective joint repre-
sentations with the anaphoric sentence.

7 Conclusions

We presented a neural mention-ranking model for
the resolution of unconstrained abstract anaphora,
and applied it to two datasets with different types
of abstract anaphora: the shell noun dataset and
a subpart of ARRAU with (pro)nominal abstract
anaphora of any type. To our knowledge this
work is the first to address the unrestricted ab-
stract anaphora resolution task with a neural net-
work. Our model also outperforms state-of-the-art
results on the shell noun dataset.

In this work we explored the use of purely artifi-
cially created training data and how far it can bring

Figure 4: tSNE projection of outputs of ffl2. La-
bels are the predicted ranks and the constituent tag.

us. In future work, we plan to investigate mixtures
of (more) artificial and natural data from different
sources (e.g. ASN, CSN).

On the more challenging ARRAU-AA, we
found model variants that surpass the baselines for
the entire and the nominal part of ARRAU-AA, al-
though we do not train models on individual (nom-
inal) anaphor training data like the related work
for shell noun resolution. However, our model still
lags behind for pronominal anaphors. Our results
suggest that models for nominal and pronominal
anaphors should be learned independently, start-
ing with tuning of HPs on a more suitable devset
for pronominal anaphors.

We show that the model can exploit syntactic
information to select plausible candidates, but that
when it does so, it does not learn how to distin-
guish candidates of equal syntactic type. By con-
trast, if the model is not provided with syntactic
information, it learns deeper features that enable
it to pick the correct antecedent without narrow-
ing down the choice of candidates. Thus, in or-
der to improve performance, the model should be
enforced to first select reasonable candidates and
then continue to learn features to distinguish them,
using a larger training set that is easy to provide.

In future work we will design such a model, and
offer it candidates chosen not only from sentences
containing the antecedent, but the larger context.
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Abstract

We present a novel neural model
HyperVec to learn hierarchical em-
beddings for hypernymy detection and
directionality. While previous embeddings
have shown limitations on prototypical
hypernyms, HyperVec represents an
unsupervised measure where embeddings
are learned in a specific order and capture
the hypernym–hyponym distributional
hierarchy. Moreover, our model is able to
generalize over unseen hypernymy pairs,
when using only small sets of training
data, and by mapping to other languages.
Results on benchmark datasets show that
HyperVec outperforms both state-of-the-
art unsupervised measures and embedding
models on hypernymy detection and
directionality, and on predicting graded
lexical entailment.

1 Introduction

Hypernymy represents a major semantic relation
and a key organization principle of semantic mem-
ory (Miller and Fellbaum, 1991; Murphy, 2002).
It is an asymmetric relation between two terms, a
hypernym (superordinate) and a hyponym (subor-
diate), as in animal–bird and flower–rose, where
the hyponym necessarily implies the hypernym,
but not vice versa. From a computational point
of view, automatic hypernymy detection is useful
for NLP tasks such as taxonomy creation (Snow
et al., 2006; Navigli et al., 2011), recognizing tex-
tual entailment (Dagan et al., 2013), and text gen-
eration (Biran and McKeown, 2013), among many
others.

Two families of approaches to identify and dis-
criminate hypernyms are predominent in NLP,
both of them relying on word vector representa-

tions. Distributional count approaches make use
of either directionally unsupervised measures or of
supervised classification methods. Unsupervised
measures exploit the distributional inclusion hy-
pothesis (Geffet and Dagan, 2005; Zhitomirsky-
Geffet and Dagan, 2009), or the distributional
informativeness hypothesis (Santus et al., 2014;
Rimell, 2014). These measures assign scores to
semantic relation pairs, and hypernymy scores are
expected to be higher than those of other relation
pairs. Typically, Average Precision (AP) (Kotler-
man et al., 2010) is applied to rank and distinguish
between the predicted relations. Supervised clas-
sification methods represent each pair of words
as a single vector, by using the concatenation or
the element-wise difference of their vectors (Ba-
roni et al., 2012; Roller et al., 2014; Weeds et al.,
2014). The resulting vector is fed into a Sup-
port Vector Machine (SVM) or into Logistic Re-
gression (LR), to predict hypernymy. Across ap-
proaches, Shwartz et al. (2017) demonstrated that
there is no single unsupervised measure which
consistently deals well with discriminating hyper-
nymy from other semantic relations. Furthermore,
Levy et al. (2015) showed that supervised meth-
ods memorize prototypical hypernyms instead of
learning a relation between two words.

Approaches of hypernymy-specific embed-
dings utilize neural models to learn vector rep-
resentations for hypernymy. Yu et al. (2015)
proposed a supervised method to learn term em-
beddings for hypernymy identification, based on
pre-extracted hypernymy pairs. Recently, Tuan
et al. (2016) proposed a dynamic weighting neu-
ral model to learn term embeddings in which the
model encodes not only the information of hy-
pernyms vs. hyponyms, but also their contextual
information. The performance of this family of
models is typically evaluated by using an SVM to
discriminate hypernymy from other relations.
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In this paper, we propose a novel neural model
HyperVec to learn hierarchical embeddings that
(i) discriminate hypernymy from other relations
(detection task), and (ii) distinguish between the
hypernym and the hyponym in a given hypernymy
relation pair (directionality task). Our model
learns to strengthen the distributional similarity of
hypernym pairs in comparison to other relation
pairs, by moving hyponym and hypernym vectors
close to each other. In addition, we generate a dis-
tributional hierarchy between hyponyms and hy-
pernyms. Relying on these two new aspects of hy-
pernymy distributions, the similarity of hypernym
pairs receives higher scores than the similarity of
other relation pairs; and the distributional hierar-
chy of hyponyms and hypernyms indicates the di-
rectionality of hypernymy.

Our model is inspired by the distributional in-
clusion hypothesis, that prominent context words
of hyponyms are expected to appear in a subset of
the hypernym contexts. We assume that each con-
text word which appears with both a hyponym and
its hypernym can be used as an indicator to deter-
mine which of the two words is semantically more
general: Common context word vectors which
represent distinctive characteristics of a hyponym
are expected to be closer to the hyponym vector
than to its hypernym vector. For example, the con-
text word flap is more characteristic for a bird than
for its hypernym animal; hence, the vector of flap
should be closer to the vector of bird than to the
vector of animal.

We evaluate our HyperVec model on both un-
supervised and supervised hypernymy detection
and directionality tasks. In addition, we apply
the model to the task of graded lexical entail-
ment (Vulić et al., 2016), and we assess the capa-
bility of HyperVec on generalizing hypernymy by
mapping to German and Italian. Results on bench-
mark datasets of hypernymy show that the hi-
erarchical embeddings outperform state-of-the-art
measures and previous embedding models. Fur-
thermore, the implementation of our models is
made publicly available.1

2 Related Work

Unsupervised hypernymy measures: A vari-
ety of directional measures for unsupervised hy-
pernymy detection (Weeds and Weir, 2003; Weeds
et al., 2004; Clarke, 2009; Kotlerman et al., 2010;

1
www.ims.uni-stuttgart.de/data/hypervec

Lenci and Benotto, 2012) all rely on some varia-
tion of the distributional inclusion hypothesis: If
u is a semantically narrower term than v, then
a significant number of salient distributional fea-
tures of u is expected to be included in the fea-
ture vector of v as well. In addition, Santus
et al. (2014) proposed the distributional informa-
tiveness hypothesis, that hypernyms tend to be
less informative than hyponyms, and that they oc-
cur in more general contexts than their hyponyms.
All of these approaches represent words as vec-
tors in distributional semantic models (Turney and
Pantel, 2010), relying on the distributional hy-
pothesis (Harris, 1954; Firth, 1957). For evalua-
tion, these directional models use the AP measure
to assess the proportion of hypernyms at the top
of a score-sorted list. In a different vein, Kiela
et al. (2015) introduced three unsupervised meth-
ods drawn from visual properties of images to de-
termine a concept’s generality in hypernymy tasks.

Supervised hypernymy methods: The studies
in this area are based on word embeddings which
represent words as low-dimensional and real-
valued vectors (Mikolov et al., 2013b; Penning-
ton et al., 2014). Each hypernymy pair is encoded
by some combination of the two word vectors,
such as concatenation (Baroni et al., 2012) or dif-
ference (Roller et al., 2014; Weeds et al., 2014).
Hypernymy is distinguished from other relations
by using a classification approach, such as SVM
or LR. Because word embeddings are trained for
similar and symmetric vectors, it is however un-
clear whether the supervised methods do actually
learn the asymmetry in hypernymy (Levy et al.,
2015).

Hypernymy-specific embeddings: These ap-
proaches are closest to our work. Yu et al. (2015)
proposed a dynamic distance-margin model to
learn term embeddings that capture properties of
hypernymy. The neural model is trained on the
taxonomic relation data which is pre-extracted.
The resulting term embeddings are fed to an SVM
classifier to predict hypernymy. However, this
model only learns term pairs without consider-
ing their contexts, leading to a lack of general-
ization for term embeddings. Tuan et al. (2016)
introduced a dynamic weighting neural network
to learn term embeddings that encode information
about hypernymy and also about their contexts,
considering all words between a hypernym and its
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hyponym in a sentence. The proposed model is
trained on a set of hypernym relations extracted
from WordNet (Miller, 1995). The embeddings
are applied as features to detect hypernymy, us-
ing an SVM classifier. Tuan et al. (2016) han-
dles the drawback of the approach by Yu et al.
(2015), considering the contextual information be-
tween two terms; however the method still is not
able to determine the directionality of a hypernym
pair. Vendrov et al. (2016) proposed a method to
encode order into learned distributed representa-
tions, to explicitly model partial order structure of
the visual-semantic hierarchy or the hierarchy of
hypernymy in WordNet. The resulting vectors are
used to predict the transitive hypernym relations in
WordNet.

3 Hierarchical Embeddings

In this section, we present our model of hierar-
chical embeddings HyperVec. Section 3.1 de-
scribes how we learn the embeddings for hyper-
nymy, and Section 3.2 introduces the unsupervised
measure HyperScore that is applied to the hyper-
nymy tasks.

3.1 Learning Hierarchical Embeddings

Our approach makes use of a set of hypernyms
which could be obtained from either exploiting
the transitivity of the hypernymy relation (Falluc-
chi and Zanzotto, 2011) or lexical databases, to
learn hierarchical embeddings. We rely on Word-
Net, a large lexical database of English (Fellbaum,
1998), and extract all hypernym–hyponym pairs
for nouns and for verbs, including both direct
and indirect hypernymy, e.g., animal–bird, bird–
robin, animal–robin. Before training our model,
we exclude all hypernym pairs which appear in
any datasets used for evaluation.

In the following, Section 3.1.1 first describes
the Skip-gram model which is integrated into our
model for optimization. Section 3.1.2 then de-
scribes the objective functions to train the hierar-
chical embeddings for hypernymy.

3.1.1 Skip-gram Model
The Skip-gram model is a word embed-
dings method suggested by Mikolov et al.
(2013b). Levy and Goldberg (2014) in-
troduced a variant of the Skip-gram model
with negative sampling (SGNS), in which
the objective function is defined as follows:

JSGNS =
∑

w∈VW

∑

c∈VC
J(w,c) (1)

J(w,c) = #(w, c) log σ(~w,~c)

+ k · EcN∼PD [log σ(−~w,~cN )] (2)

where the skip-gram with negative sampling is
trained on a corpus of words w ∈ VW and their
contexts c ∈ VC , with VW and VC the word and
context vocabularies, respectively. The collection
of observed words and context pairs is denoted as
D; the term #(w, c) refers to the number of times
the pair (w, c) appeared in D; the term σ(x) is
the sigmoid function; the term k is the number of
negative samples and the term cN is the sampled
context, drawn according to the empirical unigram
distribution P .

3.1.2 Hierarchical Hypernymy Model
Vector representations for detecting hypernymy
are usually encoded by standard first-order dis-
tributional co-occurrences. In this way, they
are insufficient to differentiate hypernymy from
other paradigmatic relations such as synonymy,
meronymy, antonymy, etc. Incorporating direc-
tional measures of hypernymy to detect hyper-
nymy by exploiting the common contexts of hy-
pernym and hyponym improves this relation dis-
tinction, but still suffers from distinguishing be-
tween hypernymy and meronymy.

Our novel approach presents two solutions to
deal with these challenges. First of all, the embed-
dings are learned in a specific order, such that the
similarity score for hypernymy is higher than the
similarity score for other relations. For example,
the hypernym pair animal–frog will be assigned
a higher cosine score than the co-hyponymy pair
eagle–frog. Secondly, the embeddings are learned
to capture the distributional hierarchy between hy-
ponym and hypernym, as an indicator to differ-
entiate between hypernym and hyponym. For ex-
ample, given a hyponym–hypernym pair (p, q), we
can exploit the Euclidean norms of ~q and ~p to dif-
ferentiate between the two words, such that the
Euclidean norm of the hypernym ~q is larger than
the Euclidean norm of the hyponym ~p.

Inspired by the distributional lexical contrast
model in Nguyen et al. (2016) for distinguishing
antonymy from synonymy, this paper proposes
two objective functions to learn hierarchical
embeddings for hypernymy. Before moving
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to the details of the two objective functions,
we first define the terms as follows: W(c)
refers to the set of words co-occurring with
the context c in a certain window-size; H(w)
denotes the set of hypernyms for the word
w; the two terms H+(w, c) and H−(w, c) are
drawn from H(w), and are defined as follows:

H+(w, c) = {u ∈W(c) ∩H(w) : cos(~w,~c)− cos(~u,~c) ≥ θ}
H−(w, c) = {v ∈W(c) ∩H(w) : cos(~w,~c)− cos(~v,~c) < θ}

where cos(~x, ~y) stands for the cosine similarity
of the two vectors ~x and ~y; θ is the margin.
The set H+(w, c) contains all hypernyms of
the word w that share the context c and satisfy
the constraint that the cosine similarity of pair
(w, c) is higher than the cosine similarity of
pair (u, c) within a max-margin framework
θ. Similarly, the set H−(w, c) represents all
hypernyms of the word w with respect to the
common context c in which the cosine similarity
difference between the pair (w, c) and the pair
(v, c) is within a min-margin framework θ. The
two objective functions are defined as follows:

L(w,c) =
1

#(w, u)

∑
u∈H+(w,c)

∂(~w, ~u) (3)

L(v,w,c) =
∑

v∈H−(w,c)
∂(~v, ~w) (4)

where the term ∂(~x, ~y) stands for the cosine
derivative of (~x, ~y); and ∂ then is optimized by
the negative sampling procedure.

The objective function in Equation 3 minimizes
the distributional difference between the hyponym
w and the hypernym u by exploiting the common
context c. More specifically, if the common con-
text c is the distinctive characteristic of the hy-
ponym w (i.e. the common context c is closer
to the hyponym w than to the hypernym u), the
objective function L(w,c) tries to decrease the dis-
tributional generality of hypernym u by moving
w closer to u. For example, given a hypernym-
hyponym pair animal–bird, the context flap is a
distinctive characteristic of bird, because almost
every bird can flap, but not every animal can flap.
Therefore, the context flap is closer to the hy-
ponym bird than to the hypernym animal. The
model then tries to move bird closer to animal in
order to enforce the similarity between bird and
animal, and to decrease the distributional general-
ity of animal.

In contrast to Equation 3, the objective function
in Equation 4 minimizes the distributional differ-
ence between the hyponym w and the hypernym
v by exploiting the common context c, which is
a distinctive characteristic of the hypernym v. In
this case, the objective function L(v,w,c) tries to re-
duce the distributional generality of hyponym w
by moving v closer to w. For example, the con-
text word rights, a distinctive characteristic of the
hypernym animal, should be closer to animal than
to bird. Hence, the model tries to move the hy-
pernym animal closer to the hyponym bird. Given
that hypernymy is an asymmetric and also a hier-
archical relation, where each hypernym may con-
tain several hyponyms, our objective functions up-
dates simultaneously both the hypernym and all of
its hyponyms; therefore, our objective functions
are able to capture the hierarchical relations be-
tween the hypernym and its hyponyms. Moreover,
in our model, the margin framework θ plays a role
in learning the hierarchy of hypernymy, and in pre-
venting the model from minimizing the distance
of synonymy or antonymy, because synonymy and
antonymy share many contexts.

In the final step, the objective function which
is used to learn the hierarchical embeddings for
hypernymy combines Equations 1, 2, 3, and 4
by the objective function in Equations 5 and 6:

J(w,v,c) = J(w,c) + L(w,c) + L(v,w,c) (5)

J =
∑

w∈VW

∑

c∈VC
J(w,v,c) (6)

3.2 Unsupervised Hypernymy Measure

HyperVec is expected to show the two following
properties: (i) the hyponym and the hypernym are
close to each other, and (ii) there exists a distribu-
tional hierarchy between hypernyms and their hy-
ponyms. Given a hypernymy pair (u, v) in which
u is the hyponym and v is the hypernym, we pro-
pose a measure to detect hypernymy and to deter-
mine the directionality of hypernymy by using the
hierarchical embeddings as follows:

HyperScore(u, v) = cos(~u,~v) ∗ ‖~v‖‖~u‖ (7)

where cos(~u,~v) is the cosine similarity between
~u and ~v, and ‖ · ‖ is the magnitude of the vector
(or the Euclidean norm). The cosine similarity is
applied to distinguish hypernymy from other re-
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lations, due to the first property of the hierarchi-
cal embeddings, while the second property is used
to decide about the directionality of hypernymy,
assuming that the magnitude of the hypernym is
larger than the magnitude of the hyponym. Note
that the proposed hypernymy measure is unsuper-
vised when the resource is only used to learn hier-
archical embeddings.

4 Experiments

In this section, we first describe the experimental
settings in our experiments (Section 4.1). We then
evaluate the performance of HyperVec on three
different tasks: i) unsupervised hypernymy detec-
tion and directionality (Section 4.2), where we as-
sess HyperVec on ranking and classifying hyper-
nymy; ii) supervised hypernymy detection (Sec-
tion 4.3), where we apply supervised classification
to detect hypernymy; iii) graded lexical entailment
(Section 4.4), where we predict the strength of hy-
pernymy pairs.

4.1 Experimental Settings
We use the ENCOW14A corpus (Schäfer and
Bildhauer, 2012; Schäfer, 2015) with approx.
14.5 billion tokens for training the hierarchi-
cal embeddings and the default SGNS model.
We train our model with 100 dimensions, a
window size of 5, 15 negative samples, and
0.025 as the learning rate. The threshold θ
is set to 0.05. The hypernymy resource for
nouns comprises 105, 020 hyponyms, 24, 925
hypernyms, and 1, 878, 484 hyponym–hypernym
pairs. The hypernymy resource for verbs con-
sists of 11, 328 hyponyms, 4, 848 hypernyms, and
130, 350 hyponym–hypernym pairs.

4.2 Unsupervised Hypernymy Detection and
Directionality

In this section, we assess our model on two exper-
imental setups: i) a ranking retrieval setup that ex-
pects hypernymy pairs to have a higher similarity
score than instances from other semantic relations;
ii) a classification setup that requires both hyper-
nymy detection and directionality.

4.2.1 Ranking Retrieval
Shwartz et al. (2017) conducted an extensive eval-
uation of a large number of unsupervised dis-
tributional measures for hypernymy ranking re-
trieval proposed in previous work (Weeds and
Weir, 2003; Santus et al., 2014; Clarke, 2009;

Dataset Relation #Instance Total

BLESS

hypernymy 1,337

26,554

meronymy 2,943
coordination 3,565
event 3,824
attribute 2,731
random-n 6,702
random-j 2,187
random-v 3,265

EVALution

hypernymy 3,637

13,465
meronymy 1,819
attribute 2,965
synonymy 1,888
antonymy 3,156

Lenci&Benotto
hypernymy 1,933

5,010synonymy 1,311
antonymy 1,766

Weeds
hypernymy 1,469

2,928
coordination 1,459

Table 1: Details of the semantic relations and the
number of instances in each dataset.

Dataset Hypernymy vs. Baseline HyperScore

EVALution

other relations 0.353 0.538
meronymy 0.675 0.811
attribute 0.651 0.800
antonymy 0.55 0.743
synonymy 0.657 0.793

BLESS

other relations 0.051 0.454
meronymy 0.76 0.913
coordination 0.537 0.888
attribute 0.74 0.918
event 0.779 0.620

Lenci&Benotto
other relations 0.382 0.574
antonymy 0.624 0.696
synonymy 0.725 0.751

Weeds coordination 0.441 0.850

Table 2: AP results of HyperScore in comparison
to state-of-the-art measures.

Kotlerman et al., 2010; Lenci and Benotto, 2012;
Santus et al., 2016). The evaluation was performed
on four semantic relation datasets: BLESS (Ba-
roni and Lenci, 2011), WEEDS (Weeds et al.,
2004), EVALUTION (Santus et al., 2015), and
LENCI&BENOTTO (Benotto, 2015). Table 1 de-
scribes the detail of these datasets in terms of the
semantic relations and the number of instances.
The Average Precision (AP) ranking measure is
used to evaluate the performance of the measures.

In comparison to the state-of-the-art unsuper-
vised measures compared by Shwartz et al. (2017)
(henceforth, baseline models), we apply our un-
supervised measure HyperScore (Equation 7) to
rank hypernymy against other relations. Table 2
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(a) Directionality task: hypernym vs. hyponym.
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(b) Hypernymy detection: hypernymy vs. other relations.

Figure 1: Comparing SGNS and HyperVec on binary classification tasks. The y-axis shows the magni-
tude values of the vectors.

presents the results of using HyperScore vs. the
best baseline models, across datasets. When
detecting hypernymy among all other relations
(which is the most challenging task), HyperScore
significantly outperforms all baseline variants on
all datasets. The strongest difference is reached on
the BLESS dataset, where HyperScore achieves
an improvement of 40% AP score over the best
baseline model. When ranking hypernymy in
comparison to a single other relation, HyperScore
also improves over the baseline models, except
for the event relation in the BLESS dataset. We
assume that this is due to the different parts-of-
speech (adjective and noun) involved in the rela-
tion, where HyperVec fails to establish a hierar-
chy.

4.2.2 Classification

In this setup, we rely on three datasets of se-
mantic relations, which were all used in various
state-of-the-art approaches before, and brought to-
gether for hypernymy evaluation by Kiela et al.
(2015). (i) A subset of BLESS contains 1,337
hyponym-hypernym pairs. The task is to predict
the directionality of hypernymy within a binary
classification. Our approach requires no thresh-
old; we only need to compare the magnitudes of
the two words and to assign the hypernym la-
bel to the word with the larger magnitude. Fig-
ure 1a indicates that the magnitude values of the
SGNS model cannot distinguish between a hy-
ponym and a hypernym, while the hierarchical em-
beddings provide a larger magnitude for the hyper-
nym. (ii) Following Weeds et al. (2014), we con-
duct a binary classification with a subset of 1,168
BLESS word pairs. In this dataset (WBLESS),
one class is represented by hyponym–hypernym
pairs, and the other class is a combination of re-

BLESS WBLESS BIBLESS

Kiela et al. (2015) 0.88 0.75 0.57
Santus et al. (2014) 0.87 —– —–
Weeds et al. (2014) —– 0.75 —–

SGNS 0.44 0.48 0.34
HyperVec 0.92 0.87 0.81

Table 3: Accuracy for hypernymy directionality.

versed hypernym–hyponym pairs, plus additional
holonym-meronym pairs, co-hyponyms and ran-
domly matched nouns. For this classification we
make use of our HyperScore measure that ranks
hypernymy pairs higher than other relation pairs.
A threshold decides about the splitting point be-
tween the two classes: hyper vs. other. Instead
of using a manually defined threshold as done by
Kiela et al. (2015), we decided to run 1 000 iter-
ations which randomly sampled only 2% of the
available pairs for learning a threshold, using the
remaining 98% for test purposes. We present av-
erage accuracy results across all iterations. Fig-
ure 1b compares the default cosine similarities be-
tween the relation pairs (as applied by SGNS )
and HyperScore (as applied by HyperVec) on this
task. Using HyperScore, the class “hyper” can
clearly be distinguished from the class “other”.
(iii) BIBLESS represents the most challenging
dataset; the relation pairs from WBLESS are split
into three classes instead of two: hypernymy pairs,
reversed hypernymy pairs, and other relation pairs.
In this case, we perform a three-way classification.
We apply the same technique as used for the WB-
LESS classification, but in cases where we clas-
sify hyper we additionally classify the hypernymy
direction, to decide between hyponym–hypernym
pairs and reversed hypernym–hyponym pairs.

Table 3 compares our results against related
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work. HyperVec outperforms all other methods
on all three tasks. In addition we see again that an
unmodified SGNS model cannot solve any of the
three tasks.

4.3 Supervised Hypernymy Detection
For supervised hypernymy detection, we make use
of the two datasets: the full BLESS dataset, and
ENTAILMENT (Baroni et al., 2012), contain-
ing 2,770 relation pairs in total, including 1,385
hypernym pairs and 1,385 other relations pairs.
We follow the same procedure as Yu et al. (2015)
and Tuan et al. (2016) to assess HyperVec on the
two datasets. Regarding BLESS, we extract pairs
for four types of relations: hypernymy, meronymy,
co-hyponymy (or coordination), and add the ran-
dom relation for nouns. For the evaluation, we ran-
domly select one concept and its relatum for test-
ing, and train the supervised model on the 199 re-
maining concepts and its relatum. We then report
the average accuracy across all concepts. For the
ENTAILMENT dataset, we randomly select one
hypernym pair for testing and train on all remain-
ing hypernym pairs. Again, we report the average
accuracy across all hypernyms.

We apply an SVM classifier to detect hyper-
nymy based on HyperVec. Given a hyponym–
hypernym pair (u, v), we concatenate four compo-
nents to construct the vector for a pair (u, v) as fol-
lows: the vector difference between hypernym and
hyponym (~v−~u); the cosine similarity between the
hypernym and hyponym vectors (cos(~u,~v)); the
magnitude of the hyponym (‖~u‖); and the magni-
tude of the hypernym (‖~v‖). The resulting vector
is fed into the SVM classifier to detect hypernymy.
Similar to the two previous works, we train the
SVM classifier with the RBF kernel, λ = 0.03125,
and the penalty C = 8.0.

Table 4 shows the performance of HyperVec
and the two baseline models reported by Tuan
et al. (2016). HyperVec slightly outperforms
the method of Tuan et al. (2016) on the BLESS
dataset, and is equivalent to the performance of
their method on the ENTAILMENT dataset. In
comparison to the method of Yu et al. (2015),
HyperVec achieves significant improvements.

4.4 Graded Lexical Entailment
In this experiment, we apply HyperVec to the
dataset of graded lexical entailment, HyperLex, as
introduced by Vulić et al. (2016). The HyperLex
dataset provides soft lexical entailment on a con-

Models BLESS ENTAILMENT

Yu et al. (2015) 0.90 0.87
Tuan et al. (2016) 0.93 0.91

HyperVec 0.94 0.91

Table 4: Classification results for BLESS and EN-
TAILMENT in terms of accuracy.

tinuous scale, rather than simplifying into a bi-
nary decision. HyperLex contains 2,616 word
pairs across seven semantic relations and two word
classes (nouns and verbs). Each word pair is rated
by a score that indicates the strength of the seman-
tic relation between the two words. For example,
the score of the hypernym pair duck–animal is 5.9
out of 6.0, while the score of the reversed pair
animal–duck is only 1.0.

We compared HyperScore against the most
prominent state-of-the-art hypernymy and lexical
entailment models from previous work:

• Directional entailment measures
(DEM) (Weeds and Weir, 2003; Weeds
et al., 2004; Clarke, 2009; Kotlerman et al.,
2010; Lenci and Benotto, 2012)

• Generality measures (SQLS) (Santus et al.,
2014)

• Visual generality measures (VIS) (Kiela
et al., 2015)

• Consideration of concept frequency ratio
(FR) (Vulić et al., 2016)

• WordNet-based similarity measures
(WN) (Wu and Palmer, 1994; Pedersen
et al., 2004)

• Order embeddings (OrderEmb) (Vendrov
et al., 2016)

• Skip-gram embeddings (SGNS) (Mikolov
et al., 2013b; Levy and Goldberg, 2014)

• Embeddings fine-tuned to a paraphrase
database with linguistic constraints (PARA-
GRAM) (Mrkšić et al., 2016)

• Gaussian embeddings (Word2Gauss) (Vilnis
and McCallum, 2015)

The performance of the models is assessed
through Spearman’s rank-order correlation coeffi-
cient ρ (Siegel and Castellan, 1988), comparing
the ranks of the models’ scores and the human
judgments for the given word pairs.
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Measures Embeddings

Model ρ Model ρ

FR 0.279 SGNS 0.205
DEM 0.180 PARAGRAM 0.320
SLQS 0.228 OrderEmb 0.191
WN 0.234 Word2Gauss 0.206
VIS 0.209 HyperScore 0.540

Table 5: Results (ρ) of HyperScore and state-of-
the-art measures and word embedding models on
graded lexical entailment.

Table 5 shows that HyperScore significantly
outperforms both state-of-the-art measures and
word embedding models. HyperScore out-
performs even the previously best word em-
bedding model PARAGRAM by .22, and the
previously best measures FR by .27. The
reason that HyperVec outperforms all other
models is that the hierarchy between hyper-
nym and hypornym within HyperVec differenti-
ates hyponym–hypernym pairs from hypernym–
hyponym pairs. For example, the HyperScore
for the pairs duck–animal and animal–duck are
3.02 and 0.30, respectively. Thus, the magnitude
proportion of the hypernym–hyponym pair duck–
animal is larger than that for the pair animal–duck.

5 Generalizing Hypernymy

Having demonstrated the general abilities of
HyperVec, this final section explores its potential
for generalization in two different ways, (i) by re-
lying on a small seed set only, rather than using
a large set of training data; and (ii) by projecting
HyperVec to other languages.

Hypernymy Seed Generalization: We utilize
only a small hypernym set from the hypernymy
resource to train HyperVec, relying on 200 con-
cepts from the BLESS dataset. The motivation
behind using these concepts is threefold: i) these
concepts are distinct and unambiguous noun con-
cepts; ii) the concepts were equally divided be-
tween living and non-living entities; iii) concepts
have been grouped into 17 broader classes. Based
on the seed set, we collected the hyponyms of
each concept from WordNet, and then re-trained
HyperVec. On the hypernymy ranking retrieval
task (Section 4.2.1), HyperScore outperforms the
baselines across all datasets (cf. Table 1) with
AP values of 0.39, 0.448, and 0.585 for EVALu-

tion, LenciBenotto, and Weeds, respectively. For
the graded lexical entailment task (Section 4.4),
HyperScore obtains a correlation of ρ = 0.30,
outperforming all models except for PARAGRAM
with ρ = 0.32. Overall, the results show that
HyperVec is indeed able to generalize hypernymy
from small seeds of training data.

Generalizing Hypernymy across Languages:
We assume that hypernymy detection can be im-
proved across languages by projecting representa-
tions from any arbitrary language into our modi-
fied English HyperVec space. We conduct experi-
ments for German and Italian, where the language-
specific representations are obtained using the
same hyper-parameter settings as for our English
SGNS model (cf. Section 4.1). As corpus re-
source we relied on Wikipedia dumps2. Note
that we do not use any additional resource, such
as the German or Italian WordNet, to tune the
embeddings for hypernymy detection. Based on
the representations, a mapping function between
a source language (German, Italian) and our En-
glish HyperVec space is learned, by relying on the
least-squares error method from previous work us-
ing cross-lingual data (Mikolov et al., 2013a) and
different modalities (Lazaridou et al., 2015).

To learn a mapping function between two lan-
guages, a one-to-one correspondence (word trans-
lations) between two sets of vectors is required.
We obtained these translations by using the paral-
lel Europarl3 V7 corpus for German–English and
Italian–English. Word alignment counts were ex-
tracted using fast align (Dyer et al., 2013). We
then assigned each source word to the English
word with the maximum number of alignments in
the parallel corpus. We could match 25,547 pairs
for DE→EN and 47,475 pairs for IT→EN.

Taking the aligned subset of both spaces, we as-
sume that X is the matrix obtained by concatenat-
ing all source vectors, and likewise Y is the matrix
obtained by concatenating all corresponding En-
glish elements. Applying the `2-regularized least-
squares error objective can be described using the
following equation:

Ŵ = argmin
W∈Rd1×d2

‖XW− Y‖+ λ‖W‖ (8)

Although we learn the mapping only on a subset of
aligned words, it allows us to project every word in

2The Wikipedia dump for German and Italian were both
downloaded in January 2017.

3
http://www.statmt.org/europarl/
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a source vocabulary to its English HyperVec posi-
tion by using W.

Finally we compare the original representa-
tions and the mapped representation on the hy-
pernymy ranking retrieval task (similar to Sec-
tion 4.2.1). As gold resources we relied on Ger-
man and Italian nouns pairs. For German we
used the 282 German pairs collected via Ama-
zon Mechanical Turk by Scheible and Schulte im
Walde (2014). The 1,350 Italian pairs were col-
lected via Crowdflower by Sucameli (2015) in the
same way. Both collections contain hypernymy,
antonymy and synonymy pairs. As before, we
evaluate the ranking by AP, and we compare the
cosine of the unmodified default representations
against the HyperScore of the projected represen-
tations.

German Hyp/All Hyp/Syn Hyp/Ant
DE-SGNS 0.28 0.48 0.40
DE→ENHyperVec 0.37 0.65 0.47

Italian
IT-SGNS 0.38 0.50 0.60
IT→ENHyperVec 0.44 0.57 0.65

Table 6: AP results across languages, comparing
SGNS and the projected representations.

The results are shown in Table 6. We clearly
see that for both languages the default SGNS em-
beddings do not provide higher similarity scores
for hypernymy pairs (except for Italian Hyp/Ant),
but both languages provide higher scores when we
map the embeddings into the English HyperVec
space.

6 Conclusion

This paper proposed a novel neural model
HyperVec to learn hierarchical embeddings for
hypernymy. HyperVec has been shown to
strengthen hypernymy similarity, and to capture
the distributional hierarchy of hypernymy. To-
gether with a newly proposed unsupervised mea-
sure HyperScore our experiments demonstrated
(i) significant improvements against state-of-the-
art measures, and (ii) the capability to generalize
hypernymy and learn the relation instead of mem-
orizing prototypical hypernyms.
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75–79, Montréal, Canada.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Pro-
ceddings of the 27th International Conference on
Advances in Neural Information Processing Systems
(NIPS), pages 2177–2185, Montréal, Canada.
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Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill,
and Anna Korhonen. 2016. Hyperlex: A large-scale
evaluation of graded lexical entailment. arXiv.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David J.
Weir, and Bill Keller. 2014. Learning to distinguish
hypernyms and co-hyponyms. In Proceedings of
the 25th International Conference on Computational
Linguistics (COLING), pages 2249–2259, Dublin,
Ireland.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 81–88,
Stroudsburg, PA, USA.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional
similarity. In Proceedings of the 20th International
Conference on Computational Linguistics (COL-
ING), pages 1015–1021, Geneva, Switzerland.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics
and lexical selection. In Proceedings of the 32nd
Annual Meeting on Association for Computational
Linguistics (ACL), pages 133–138, Las Cruces, New
Mexico.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence (IJCAI),
pages 1390–1397, Buenos Aires, Argentina.

Maayan Zhitomirsky-Geffet and Ido Dagan. 2009.
Bootstrapping distributional feature vector quality.
Computational Linguistics, 35(3):435–461.

243



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 244–253
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Ngram2vec: Learning Improved Word Representations from Ngram
Co-occurrence Statistics

Zhe Zhao1,2

helloworld@ruc.edu.cn
Tao Liu1,2

tliu@ruc.edu.cn

Shen Li3,4

shen@mail.bnu.edu.cn
Bofang Li1,2

libofang@ruc.edu.cn
Xiaoyong Du1,2

duyong@ruc.edu.cn

1 School of Information, Renmin University of China
2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE
3 Institute of Chinese Information Processing, Beijing Normal University

4 UltraPower-BNU Joint Laboratory for Artificial Intelligence, Beijing Normal University

Abstract

The existing word representation method-
s mostly limit their information source to
word co-occurrence statistics. In this pa-
per, we introduce ngrams into four repre-
sentation methods: SGNS, GloVe, PPMI
matrix, and its SVD factorization. Com-
prehensive experiments are conducted on
word analogy and similarity tasks. The
results show that improved word repre-
sentations are learned from ngram co-
occurrence statistics. We also demonstrate
that the trained ngram representations are
useful in many aspects such as finding
antonyms and collocations. Besides, a
novel approach of building co-occurrence
matrix is proposed to alleviate the hard-
ware burdens brought by ngrams.

1 Introduction

Recently, deep learning approaches have achieved
state-of-the-art results on a range of NLP tasks.
One of the most fundamental work in this field
is word embedding, where low-dimensional word
representations are learned from unlabeled corpo-
ra through neural models. The trained word em-
beddings reflect semantic and syntactic informa-
tion of words. They are not only useful in reveal-
ing lexical semantics, but also used as inputs of
various downstream tasks for better performance
(Kim, 2014; Collobert et al., 2011; Pennington
et al., 2014).

Most of the word embedding models are trained
upon <word, context> pairs in the local win-
dow. Among them, word2vec gains its popu-
larity by its amazing effectiveness and efficien-
cy (Mikolov et al., 2013b,a). It achieves state-

of-the-art results on a range of linguistic tasks
with only a fraction of time compared with pre-
vious techniques. A challenger of word2vec is
GloVe (Pennington et al., 2014). Instead of train-
ing on <word, context> pairs, GloVe directly uti-
lizes word co-occurrence matrix. They claim that
the change brings the improvement over word2vec
on both accuracy and speed. Levy and Goldberg
(2014b) further reveal that the attractive properties
observed in word embeddings are not restricted to
neural models such as word2vec and GloVe. They
use traditional count-based method (PPMI matrix
with hyper-parameter tuning) to represent word-
s, and achieve comparable results with the above
neural embedding models.

The above models limit their information source
to word co-occurrence statistics (Levy et al.,
2015). To learn improved word representation-
s, we extend the information source from co-
occurrence of ‘word-word’ type to co-occurrence
of ‘ngram-ngram’ type. The idea of using ngrams
is well supported by language modeling, one of the
oldest problems studied in statistical NLP. In lan-
guage models, co-occurrence of words and ngrams
is used to predict the next word (Kneser and Ney,
1995; Katz, 1987). Actually, the idea of word em-
bedding models roots in language models. They
are closely related but are used for different pur-
poses. Word embedding models aim at learning
useful word representations instead of word pre-
diction. Since ngram is a vital part in language
modeling, we are inspired to integrate ngram sta-
tistical information into the recent word represen-
tation methods for better performance.

The idea of using ngrams is intuitive. However,
there is still rare work using ngrams in recent rep-
resentation methods. In this paper, we introduce

244



ngrams into SGNS, GloVe, PPMI, and its SVD
factorization. To evaluate the ngram-based mod-
els, comprehensive experiments are conducted on
word analogy and similarity tasks. Experimental
results demonstrate that the improved word repre-
sentations are learned from ngram co-occurrence
statistics. Besides that, we qualitatively evaluate
the trained ngram representations. We show that
they are able to reflect ngrams’ meanings and syn-
tactic patterns (e.g. ‘be + past participle’ pattern).
The high-quality ngram representations are useful
in many ways. For example, ngrams in negative
form (e.g. ‘not interesting’) can be used for find-
ing antonyms (e.g. ‘boring’).

Finally, a novel method is proposed to build n-
gram co-occurrence matrix. Our method reduces
the disk I/O as much as possible, largely alle-
viating the costs brought by ngrams. We uni-
fy different representation methods in a pipeline.
The source code is organized as ngram2vec toolk-
it and released at https://github.com/
zhezhaoa/ngram2vec.

2 Related Work

SGNS, GloVe, PPMI, and its SVD factorization
are used as baselines. The information used by
them does not go beyond word co-occurrence s-
tatistics. However, their approaches to using the
information are different. We review these meth-
ods in the following 3 sections. In section 2.4, we
revisit the use of ngrams in the deep learning con-
text.

2.1 SGNS

Skip-gram with negative sampling (SGNS) is
a model in word2vec toolkit (Mikolov et al.,
2013b,a). Its training procedure follows the ma-
jority of neural embedding models (Bengio et al.,
2003): (1) Scan the corpus and use <word,
context> pairs in the local window as training
samples. (2) Train the models to make words use-
ful for predicting contexts (or in reverse). The de-
tails of SGNS is discussed in Section 3.1. Com-
pared to previous neural embedding models, S-
GNS speeds up the training process, reducing the
training time from days or weeks to hours. Also,
the trained embeddings possess attractive proper-
ties. They are able to reflect relations between two
words accurately, which is evaluated by a fancy
task called word analogy.

Due to the above advantages, many models are

proposed on the basis of SGNS. For example,
Faruqui et al. (2015) introduce knowledge in lex-
ical resources into the models in word2vec. Zhao
et al. (2016) extend the contexts from the local
window to the entire documents. Li et al. (2015)
use supervised information to guide the training.
Dependency parse-tree is used for defining contex-
t in (Levy and Goldberg, 2014a). LSTM is used
for modeling context in (Melamud et al., 2016)
Sub-word information is considered in (Sun et al.,
2016; Soricut and Och, 2015).

2.2 GloVe
Different from typical neural embedding model-
s which are trained on <word, context> pairs,
GloVe learns word representation on the basis of
co-occurrence matrix (Pennington et al., 2014).
GloVe breaks traditional ‘words predict contexts’
paradigm. Its objective is to reconstruct non-zero
values in the matrix. The direct use of matrix
is reported to bring improved results and higher
speed. However, there is still dispute about the
advantages of GloVe over word2vec (Levy et al.,
2015; Schnabel et al., 2015). GloVe and other em-
bedding models are essentially based on word co-
occurrence statistics of the corpus. The <word,
context> pairs and co-occurrence matrix can be
converted to each other. Suzuki and Nagata (2015)
try to unify GloVe and SGNS in one framework.

2.3 PPMI & SVD
When we are satisfied with the huge promotions
achieved by embedding models on linguistic tasks,
a natural question is raised: where the superior-
ities come from. One conjecture is that it’s due
to the neural networks. However, Levy and Gold-
berg (2014c) reveal that SGNS is just factoring P-
MI matrix implicitly. Also, Levy and Goldberg
(2014b) show that positive PMI (PPMI) matrix
still rivals the newly proposed embedding mod-
els on a range of linguistic tasks. Properties like
word analogy are not restricted to neural model-
s. To obtain dense word representations from PP-
MI matrix, we factorize PPMI matrix with SVD, a
classic dimensionality reduction method for learn-
ing low-dimensional vectors from sparse matrix
(Deerwester et al., 1990).

2.4 Ngram in Deep Learning
In the deep learning literature, ngram has shown
to be useful in generating text representations. Re-
cently, convolutional neural networks (CNNs) are
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reported to perform well on a range of NLP tasks
(Blunsom et al., 2014; Hu et al., 2014; Severyn and
Moschitti, 2015). CNNs are essentially using n-
gram information to represent texts. They use 1-D
convolutional layers to extract ngram features and
the distinct features are selected by max-pooling
layers. In (Li et al., 2016), ngram embedding is in-
troduced into Paragraph Vector model, where tex-
t embedding is trained to be useful to predict n-
grams in the text. In the word embedding liter-
ature, a related work is done by Melamud et al.
(2014), where word embedding models are used
as baselines. They propose to use ngram language
models to model the context, showing the effec-
tiveness of ngrams on similarity tasks. Another
work that is related to ngram is from Mikolov et al.
(2013b), where phrases are embedded into vec-
tors. It should be noted that phrases are different
from ngrams. Phrases have clear semantics and
the number of phrases is much less than the num-
ber of ngrams. Using phrase embedding has little
impact on word embedding’s quality.

3 Model

In this section, we introduce ngrams into SGNS,
GloVe, PPMI, and SVD. Section 3.1 reviews the
SGNS. Section 3.2 and 3.3 show the details of in-
troducing ngrams into SGNS. In section 3.4, we
show the way of using ngrams in GloVe, PPMI,
and SVD, and propose a novel way of building n-
gram co-occurrence matrix.

3.1 Word Predicts Word: the Revisit of
SGNS

First we establish some notations. The raw input
is a corpus T = {w1,w2,......,w|T |}. Let W and C
denote word and context vocabularies. θ is the pa-
rameters to be optimized. SGNS’s parameters in-
volve two parts: word embedding matrix and con-
text embedding matrix. With embedding ~w ∈ Rd,
the total number of parameters is (|W|+|C|)*d.

The SGNS’s objective is to maximize the condi-
tional probabilities of contexts given center words:

|T |∑

t=1

[ ∑

c∈C(wt)

log p(c|wt; θ)
]

(1)

where C(wt) = {wi, t− win ≤ i ≤ t+ win and i 6= t}
and win denotes the window size. As illustrat-
ed in figure 1, the center word ‘written’ predict-
s its surrounding words ‘Potter’, ‘is’, ‘by’, and

Figure 1: Illustration of ‘word predicts word’.

‘J.K.’. In this paper, negative sampling (Mikolov
et al., 2013b) is used to approximate the condition-
al probability:

p(c|w) = σ(~wT~c)

k∏

j=1

E
cj∼Pn(C)

σ(−~wT ~cj) (2)

where σ is sigmoid function. k samples (from c1
to ck) are drawn from context distribution raised
to the power of n.

3.2 Word Predicts Ngram
In this section, we introduce ngrams into context
vocabulary. We treat each ngram as a normal word
and give it a unique embedding. During the train-
ing, the center word should not only predict its sur-
rounding words, but also predict its surrounding n-
grams. As shown in figure 2, center word ‘written’
predicts the bigrams in the local window such as
‘by J.K.’. The objective of ‘word predicts ngram’
is similar with the original SGNS. The only differ-
ence is the definition of the C(w). In ngram case,
C(w) is formally defined as follows:

C(wt) =
N⋃
n=1

{wi:i+n|wi:i+n is not wt AND
t− win ≤ i ≤ t+ win− n+ 1}

(3)

where wi:i+n denotes the ngram wiwi+1...wi+n−1
and N is the order of context ngram. Two points
need to be noticed from the above definition. The
first is how to determine the distance between cen-
ter word and context ngram. In this paper, we use
the distance between the word and the ngram’s
far-end word. As show in figure 2, the distance
between ‘written’ and ‘Harry Potter’ is 3. As a
result, ‘Harry Potter’ is not included in the cen-
ter word’s context. This distance definition en-
sures that the ngram models don’t use the infor-
mation beyond the pre-specified window, which
guarantees fair comparisons with baselines. An-
other point is whether the overlap of word and n-
gram is allowed or not. In the overlap situation,
ngrams are used as context even they contain the
center word. As the example in figure 2 shows,
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Figure 2: Illustration of ‘word predicts ngram’.

ngram ‘is written’ and ‘written by’ are predicted
by the center word ‘written’. In the non-overlap
case, these ngrams are excluded. The properties
of word embeddings are different when overlap is
allowed or not, which will be discussed in experi-
ments section.

3.3 Ngram Predicts Ngram
We further extend the model to introduce ngram-
s into center word vocabulary. During the train-
ing, center ngrams (including words) predict their
surrounding ngrams. As shown in figure 3, center
bigram ‘is written’ predicts its surrounding word-
s and bigrams. The objective of ‘ngram predicts
ngram’ is as follows:

|T |∑

t=1

Nw∑

nw=1

[ ∑

c∈C(wt:t+nw )

log p(c|wt:t+nw ; θ)
]

(4)

where Nw is the order of center ngram. The defi-
nition of C(wt:t+nw) is as follows:

Nc⋃
nc=1

{wi:i+nc |wi:i+nc is not wt:t+nw AND

t− win+ nw − 1 ≤ i ≤ t+ win− nc + 1}
(5)

where Nc is the order of context ngram. To this
end, the word embeddings are not only affected
by the ngrams in the context, but also indirect-
ly affected by co-occurrence statistics of ‘ngram-
ngram’ type in the corpus.

SGNS is proven to be equivalent with factor-
izing pointwise mutual information (PMI) ma-
trix (Levy and Goldberg, 2014c). Following their
work, we can easily show that models in section
3.2 and 3.3 are implicitly factoring PMI matrix
of ‘word-ngram’ and ‘ngram-ngram’ type. In the
next section, we will discuss the content of intro-
ducing ngrams into positive PMI (PPMI) matrix.

3.4 Co-occurrence Matrix Construction
Introducing ngrams into GloVe, PPMI, and SVD
is straightforward: the only change is to replace

Figure 3: Illustration of ‘ngram predicts ngram’.

word co-occurrence matrices with ngram ones. In
the above three sections, we have discussed the
way of taking out <word(ngram), word(ngram)>
pairs from a corpus. Afterwards, we build the co-
occurrence matrix upon these pairs. The rest steps
are identical with the original baseline models.

Win Type #Pairs

2
uni uni 0.36B
uni bi 1.14B
uni tri 1.40B
bi bi 2.78B
bi tri 3.65B

5
uni uni 0.91B
uni bi 2.79B
uni tri 3.81B
bi bi 7.97B

Table 1: The number of pairs at different settings.
The type column lists the order of ngrams consid-
ered in center word/context vocabularies. For ex-
ample, uni bi denotes that center word vocabulary
contains unigrams (words) and context vocabulary
contains both unigrams and bigrams. The setting
of other hyper-parameters is discussed in Section
4.2.

However, building the co-occurrence matrix is
not an easy task as it apparently looks like. The
introduction of ngrams brings huge burdens on the
hardware. The matrix construction cost is closely
related to the number of pairs (#Pairs). Table 1
shows the statistics of pairs extracted from corpus
wiki2010 1. We can observe that #Pairs is huge
when ngrams are considered.

To speed up the process of building ngram
co-occurrence matrix, we take advantages of
‘mixture’ strategy (Pennington et al., 2014) and
‘stripes’ strategy (Dyer et al., 2008; Lin, 2008).
The two strategies optimize the process in differ-
ent aspects. Computational cost is reduced signif-
icantly when they are used together.

1http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
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When words (or ngrams) are sorted in descend-
ing order by frequency, the co-occurrence matrix’s
top-left corner is dense while the rest part is s-
parse. Based on this observation, the ‘mixture’
of two data structures are used for storing ma-
trix. Elements in the top-left corner are stored in
a 2D array, which stays in memory. The rest of
the elements are stored in the form of <ngram,
H>, where H<context, count> is an associative
array recording the number of times the ngram and
context co-occurs (‘stripes’ strategy). Compared
with storing <ngram, context> pairs explicitly,
the ‘stripes’ strategy provides more opportunities
to aggregate pairs outside of the top-left corner.

Algorithm 1 shows the way of using the ‘mix-
ture’ and ‘stripes’ strategies together. In the first
stage, pairs are stored in different data structures
according to topLeft function. Intermediate results
are written to temporary files when memory is full.
In the second stage, we merge these sorted tempo-
rary files to generate co-occurrence matrix. The
getSmallest function takes out the pair <ngram,
H> with the smallest key from temporary files. In
practice, algorithm 1 is efficient. Instead of using
computer clusters (Lin, 2008), we can build the
matrix of ‘bi bi’ type even in a laptop. It only re-
quires 12GB to store temporary files (win=2, sub-
sampling=0, memory size=4GB), which is much
smaller than the implementations in (Pennington
et al., 2014; Levy et al., 2015) . More detailed
analysis about these strategies can be found in the
ngram2vec toolkit.

4 Experiments

4.1 Datasets

The tasks used in this paper is the same with the
work of Levy et al. (2015), including six similarity
and two analogy datasets. In similarity task, a s-
calar (e.g. a score from 0 to 10) is used to measure
the relation between the two words. For example,
in a similarity dataset, the ‘train, car’ pair is giv-
en the score of 6.31. A problem of similarity task
is that scalar only reflects the strength of the rela-
tion, while the type of relation is totally ignored
(Schnabel et al., 2015).

Due to the deficiency of similarity task, anal-
ogy task is widely used as benchmark recently
for evaluation of word embedding models. To
answer analogy questions, relations between the
two words are reflected by a vector, which is
usually obtained by the difference between word

Algorithm 1: An algorithm for building n-
gram co-occurrence matrix

Input : Pairs P , Sorted vocabulary V
Output: Sorted and aggregated pairs

1 The 2D array A[ ][ ];
2 The dictionary D < ngram,H >;
3 The temporary files array tfs[ ]; fid=1;
4 for pair p < n, c > in P do
5 if topLeft(n, c) == 1 then
6 A[getId(n)][getId(c)] += 1;
7 else
8 D{n}{c} += 1;
9 if Memory is full or P is empty then

10 Sort D by key (ngram);
11 Write D to tfs[fid];
12 fid += 1;
13 end
14 end
15 end
16 Write A to tfs[0] in the form of < ngram,H >;
17 old = getSmallest(tfs) ;
18 while !(All files in tfs are empty) do
19 new = getSmallest(tfs) ;
20 if old.ngram == new.ngram then
21 old =

< old.ngram,merge(old.H, new.H) >;
22 else
23 Write old to disk;
24 old = new
25 end
26 end

embeddings. Different from a scalar, the vec-
tor provides more accurate descriptions of rela-
tions. For example, capital-country relation is
encoded in vec(Athens)-vec(Greece), vec(Tokyo)-
vec(Japan) and so on. More concretely, the ques-
tions in the analogy task are in the form of ‘a is
to b as c is to d’. ‘d’ is an unknown word in the
test phase. To correctly answer the questions, the
models should embed the two relations, vec(a)-
vec(b) and vec(c)-vec(d), into similar positions in
the space. Following the work of Levy and Gold-
berg (2014b), both additive (add) and multiplica-
tive (mul) functions are used for finding word ‘d’.
The latter one is more suitable for sparse represen-
tation in practice.

4.2 Pipeline and Hyper-parameter Setting

We implement SGNS, GloVe, PPMI, and SVD in a
pipeline, allowing the reuse of code and intermedi-
ate results. Figure 4 illustrates the overview of the
pipeline. Firstly, <word(ngram), word(ngram)>
pairs are extracted from the corpus as the input
of SGNS. Afterwards, we build the co-occurrence
matrix upon the pairs. GloVe and PPMI learn
word representations on the basis of co-occurrence
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Win Type Google Tot. / Sem. / Syn. MSR
Add Mul Add Mul

2

uni uni .579 / .543 / .608 .597 / .561 / .627 .513 .533

overlap uni bi .587 / .651 / .533 .626 / .681 / .580 .473 .508
uni tri .505 / .615 / .414 .553 / .657 / .466 .358 .396
bi bi .664 / .739 / .602 .680 / .739 / .631 .547 .575
bi tri .572 / .695 / .470 .601 / .713 / .508 .416 .447

non-overlap uni bi .610 / .558 / .653 .633 / .581 / .676 .568 .595
bi bi .644 / .607 / .674 .659 / .613 / .696 .590 .616

5

uni uni .653 / .669 / .639 .668 / .678 / .660 .511 .535

overlap uni bi .696 / .745 / .655 .714 / .752 / .683 .518 .542
uni tri .679 / .738 / .630 .699 / .750 / .657 .542 .549
bi bi .704 / .764 / .654 .718 / .764 / .681 .537 .560

non-overlap uni bi .696 / .722 / .675 .716 / .731 / .703 .549 .579
uni tri .687 / .711 / .668 .705 / .717 / .696 .542 .574
bi bi .712 / .745 / .684 .725 / .742 / .710 .569 .607

Table 2: Performance of (ngram) SGNS on analogy datasets.

Win Type Sim. Rel. Bruni Radinsky Luong Hill

2
uni uni .745 .586 .713 .635 .387 .419
uni bi .739 .600 .698 .627 .395 .429
uni tri .700 .535 .658 .591 .380 .415
bi bi .757 .574 .724 .644 .408 .407
bi tri .724 .564 .669 .605 .403 .412

5
uni uni .789 .648 .756 .652 .407 .401
uni bi .794 .681 .752 .653 .437 .431
uni tri .783 .673 .743 .652 .432 .436
bi bi .816 .703 .760 .671 .446 .421

Table 3: Performance of (ngram) SGNS on similarity datasets.

Figure 4: The pipeline.

matrix. SVD factorizes the PPMI matrix to obtain
low-dimensional representation.

Most hyper-parameters come from ‘corpus to
pairs’ part and four representation models. ‘corpus
to pairs’ part determines the source of information
for the subsequent models and its hyper-parameter
setting is as follows: low-frequency words (n-
grams) are removed with a threshold of 10. High-
frequency words (ngrams) are removed with sub-
sampling at the degree of 1e-5 2. Window size
is set to 2 and 5. Clean strategy (Levy et al.,
2015) is used to ensure no information beyond

2Sub-sampling is not used in GloVe, which follows its o-
riginal setting.

pre-specified window is included. Overlap setting
is used in default. For hyper-parameters of four
representation models, we use the embeddings of
300 dimensions in dense representations. SGNS is
trained by 3 iterations. The rest strictly follow the
baseline models 3. We consider unigrams (words),
bigrams, and trigrams in this work. The imple-
mentation of higher-order models and their results
will be released with ngram2vec toolkit.

4.3 Ngrams on SGNS

SGNS is a popular word embedding model. Even
compared with its challengers such as GloVe, S-
GNS is reported to have more robust performance
with faster training speed (Levy et al., 2015). Ta-
ble 2 lists the results on analogy datasets. We
can observe that the introduction of bigrams pro-
vides significant improvements at different hyper-
parameter settings. The SGNS of ‘bi bi’ type pro-
vides the highest results. It is very effective on
capturing semantic information (Google seman-
tic). Around 10 percent improvements are wit-

3http://bitbucket.org/omerlevy/
hyperwords for SGNS, PPMI and SVD;
http://nlp.stanford.edu/projects/glove/
for GloVe.
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Win Type Google MSR Sim. Rel. Bruni Radinsky Luong HillAdd Mul Add Mul

2 uni uni .403 / .441 / .372 .614 / .725 / .522 .235 .419 .709 .593 .705 .603 .293 .385
uni bi .403 / .550 / .281 .733 / .854 / .632 .241 .572 .731 .581 .721 .627 .341 .394

5 uni uni .423 / .505 / .355 .580 / .740 / .447 .198 .339 .721 .619 .712 .619 .252 .341
uni bi .453 / .590 / .338 .730 / .841 / .637 .281 .579 .707 .547 .696 .619 .296 .378

Table 4: Performance of (ngram) PPMI on analogy and similarity datasets.

Win Type Google MSR Sim. Rel. Bruni Radinsky Luong HillAdd Mul Add Mul

2 uni uni .535 / .599 / .482 .540 / .610 / .481 .444 .445 .681 .529 .698 .608 .381 .351
uni bi .543 / .601 / .493 .549 / .612 / .496 .464 .472 .686 .545 .695 .631 .389 .352

5 uni uni .625 / .689 / .572 .626 / .696 / .568 .476 .490 .747 .600 .735 .657 .389 .347
uni bi .631 / .699 / .575 .633 / .703 / .574 .477 .504 .752 .610 .737 .631 .395 .342

Table 5: Performance of (ngram) GloVe on analogy and similarity datasets.

Win Type Google MSR Sim. Rel. Bruni Radinsky Luong HillAdd Mul Add Mul

2 uni uni .419 / .388 / .446 .439 / .394 / .477 .321 .353 .714 .593 .712 .625 .410 .344
uni bi .387 / .322 / .440 .410 / .327 / .479 .372 .402 .739 .546 .688 .636 .427 .347

5 uni uni .433 / .426 / .439 .460 / .463 / .458 .290 .321 .752 .633 .731 .623 .411 .326
uni bi .410 / .340 / .468 .446 / .365 / .513 .374 .416 .751 .559 .698 .639 .426 .363

Table 6: Performance of (ngram) SVD on analogy and similarity datasets.

nessed on semantic questions compared with u-
ni uni baseline. For syntactic questions (Google
syntactic and MSR datasets), around 5 percent im-
provements are obtained on average.

The effect of overlap is large on analogy
datasets. Semantic questions prefer the overlap
setting. Around 10 and 3 percent improvements
are witnessed compared with non-overlap setting
at the window size of 2 and 5. While in syntac-
tic case, non-overlap setting performs better by a
margin of around 5 percent.

The introduction of trigrams deteriorates the
models’ performance on analogy datasets (espe-
cially at the window size of 2). It is probably be-
cause that trigram is sparse on wiki2010, a rela-
tively small corpus with 1 billion tokens. We con-
jecture that high order ngrams are more suitable
for large corpora and will report the results in our
future work. It should be noticed that trigram is
not included in vocabulary in non-overlap case at
the window size of 2. The shortest distance be-
tween a word and a trigram is 3, which exceeds
the window size.

Table 3 illustrates the SGNS’s performance on
similarity task. The conclusion is similar with the
case in analogy datasets. The use of bigrams is
effective while the introduction of trigrams deteri-
orates the performance in most cases. In general,
the bigrams bring significant improvements over
SGNS on a range of linguistic tasks. It is gener-
ally known that ngram is a vital part in tradition-
al language modeling problem. Results in table 2

and 3 confirm the effectiveness of ngrams again on
SGNS, a more advanced word embedding model.

4.4 Ngrams on PPMI, GloVe, SVD

In this section, we only report the results of mod-
els of ‘uni uni’ and ‘uni bi’ types. Using high-
er order co-occurrence statistics brings immense
costs (especially at the window size of 5). Levy
and Goldberg (2014b) demonstrate that traditional
count-based models can still achieve competitive
results on many linguistic tasks, challenging the
dominance of neural embedding models. Table 4
lists the results of PPMI matrix on analogy and
similarity datasets. PPMI prefers Multiplicative
(Mul) evalution. To this end, we focus on analyz-
ing the results on Mul columns. When bigrams are
used, significant improvements are witnessed on
analogy task. On Google dataset, bigrams bring
over 10 percent increase on the total accuracies.
At the window size of 2, the accuracy in semantic
questions even reaches 0.854, which is the state-
of-the-art result to the best of our knowledge. On
MSR dataset, around 20 percent improvements are
achieved. The use of bigrams does not always
bring improvements on similarity datasets. PPMI
matrix of ‘uni bi’ type improves the results on 5
datasets at the window size of 2. At the window
size of 5, using bigrams only improves the results
on 2 datasets.

Table 5 and 6 list GloVe and SVD’s results.
For GloVe, consistent (but minor) improvements
are achieved on analogy task with the introduction
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of bigrams. On similarity datasets, improvements
are witnessed on most cases. For SVD, bigram-
s sometimes lead to worse results in both anal-
ogy and similarity tasks. In general, significan-
t improvements are not witnessed on GloVe and
SVD. Our preliminary conjecture is that the de-
fault hyper-parameter setting should be blamed.
We strictly follow the hyper-parameters used in
baseline models, making no adjustments to cater
to the introduction of ngrams. Besides that, some
common techniques such as dynamic window, de-
creasing weighting function, dirty sub-sampling
are discarded. The relationships between ngrams
and various hyper-parameters require further ex-
ploration. Though trivial, it may lead to much bet-
ter results and give researchers better understand-
ing of different representation methods. That will
be the focus of our future work.

4.5 Qualitative Evaluations of Ngram
Embedding

In this section, we analyze the properties of n-
gram embeddings trained by SGNS of ‘bi bi’ type.
Ideally, the trained ngram embeddings should re-
flect ngrams’ semantic meanings. For example,
vec(wasn’t able) should be close to vec(unable).
vec(is written) should be close to vec(write) and
vec(book). Also, the trained ngram embeddings
should preserve ngrams’ syntactic patterns. For
example, ‘was written’ is in the form of ‘be + past
participle’ and the nearest neighbors should pos-
sess similar patterns, such as ‘is written’ and ‘was
transcribed’.

Table 7 lists the target ngrams and their top n-
earest neighbours. We divide the target ngram-
s into six groups according to their patterns. We
can observe that the returned words and ngram-
s are very intuitive. As might be expected, syn-
onyms of the target ngrams are returned in top po-
sitions (e.g. ‘give off’ and ‘emit’; ‘heavy rain’ and
‘downpours’). From the results of the first group,
it can be observed that bigram in negative form
‘not X’ is useful for finding the antonym of word
‘X’. Besides that, the trained ngram embeddings
also preserve some common sense. For example,
the returned result of ‘highest mountain’ is a list
of mountain names (with a few exceptions such
as ‘unclimbed’). In terms of syntactic patterns,
we can observe that in most cases, the returned
ngrams are in the similar form with target ngram-
s. In general, the trained embeddings basically re-

flect semantic meanings and syntactic patterns of
ngrams.

With high-quality ngram embeddings, we have
the opportunity to do more interesting things in
our future work. For example, we will construct
a antonym dataset to evaluate ngram embeddings
systematically. Besides that, we will find more
scenarios for using ngram embeddings. In our
view, ngram embeddings have potential to be used
in many NLP tasks. For example, Johnson and
Zhang (2015) use one-hot ngram representation as
the input of CNN. Li et al. (2016) use ngram em-
beddings to represent texts. Intuitively, initializing
these models with pre-trained ngram embeddings
may further improve the accuracies.

5 Conclusion

We introduce ngrams into four representation
methods. The experimental results demonstrate n-
grams’ effectiveness for learning improved word
representations. In addition, we find that the
trained ngram embeddings are able to reflect their
semantic meanings and syntactic patterns. To al-
leviate the costs brought by ngrams, we propose
a novel way of building co-occurrence matrix, en-
abling the ngram-based models to run on cheap
hardware.
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Abstract

Learning word embeddings on large unla-
beled corpus has been shown to be suc-
cessful in improving many natural lan-
guage tasks. The most efficient and pop-
ular approaches learn or retrofit such rep-
resentations using additional external data.
Resulting embeddings are generally bet-
ter than their corpus-only counterparts, al-
though such resources cover a fraction of
words in the vocabulary. In this paper,
we propose a new approach, Dict2vec,
based on one of the largest yet refined
datasource for describing words – natural
language dictionaries. Dict2vec builds
new word pairs from dictionary entries so
that semantically-related words are moved
closer, and negative sampling filters out
pairs whose words are unrelated in dictio-
naries. We evaluate the word representa-
tions obtained using Dict2vec on eleven
datasets for the word similarity task and on
four datasets for a text classification task.

1 Introduction

Learning word embeddings usually relies on the
distributional hypothesis – words appearing in
similar contexts must have similar meanings, and
thus close representations. Finding such represen-
tations for words and sentences has been one hot
topic over the last few years in Natural Language
Processing (NLP) (Mikolov et al., 2013; Penning-
ton et al., 2014) and has led to many improvements
in core NLP tasks such as Word Sense Disam-
biguation (Iacobacci et al., 2016), Machine Trans-
lation (Devlin et al., 2014), Machine Comprehen-
sion (Hewlett et al., 2016), and Semantic Role La-
beling (Zhou and Xu, 2015; Collobert et al., 2011)
– to name a few.

These methods suffer from a classic drawback
of unsupervised learning: the lack of supervision
between a word and those appearing in the associ-
ated contexts. Indeed, it is likely that some terms
of the context are not related to the considered
word. On the other hand, the fact that two words
do not appear together – or more likely, not often
enough together – in any context of the training
corpora is not a guarantee that these words are not
semantically related. Recent approaches have pro-
posed to tackle this issue using an attentive model
for context selection (Ling et al., 2015), or by us-
ing external sources – like knowledge graphs –
in order to improve the embeddings (Wang et al.,
2014). Similarities derived from such resources
are part of the objective function during the learn-
ing phase (Yu and Dredze, 2014; Kiela et al.,
2015) or used in a retrofitting scheme (Faruqui
et al., 2015). These approaches tend to specialize
the embeddings to the resource used and its asso-
ciated similarity measures – while the construction
and maintenance of these resources are a set of
complex, time-consuming, and error-prone tasks.

In this paper, we propose a novel word em-
bedding learning strategy, called Dict2vec,
that leverages existing online natural language
dictionaries. We assume that dictionary entries (a
definition of a word) contain latent word similar-
ity and relatedness information that can improve
language representations. Such entries provide,
in essence, an additional context that conveys
general semantic coverage for most words.
Dict2vec adds new co-occurrences information
based on the terms occurring in the definitions of a
word. This information introduces weak supervi-
sion that can be used to improve the embeddings.
We can indeed distinguish word pairs for which
each word appears in the definition of the other
(strong pairs) and pairs where only one appears
in the definition of the other (weak pairs) – each
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having their own weight as two hyperparameters.
Not only this information is useful at learning
time to control words vectors to be close for
such word pairs, but also it becomes possible to
devise a controlled negative sampling. Controlled
negative sampling as introduced in Dict2vec
consists in filtering out random negative examples
in conventional negative sampling that forms a
(strong or weak) pair with the target word – they
are obviously non-negative examples. Processing
online dictionaries in Dict2vec does not require
a human-in-the-loop – it is fully automated. The
neural network architecture from Dict2vec
(Section 3) extends Word2vec (Mikolov et al.,
2013) approach which uses a Skip-gram model
with negative sampling.

Our main results are as follows :

• Dict2vec exhibits a statistically significant
improvement around 12.5% against state-of-
the-art solutions on eleven most common
evaluation datasets for the word similarity
task when embeddings are learned using the
full Wikipedia dump.

• This edge is even more significant for small
training datasets (50 millions first tokens of
Wikipedia) than using the full dataset, as the
average improvement reaches 30%.

• Since Dict2vec does significantly better
than competitors for small dimensions (in the
[20; 100] range) for small corpus, it can yield
smaller yet efficient embeddings – even when
trained on smaller corpus – which is one of
the utmost practical interest for the working
natural language processing practitioners.

• We also show that the embeddings learned by
Dict2vec perform similarly to other base-
lines on an extrinsic text classification task.

Dict2vec software is an extension and an opti-
mization from the original Word2vec framework
leading to a more efficient learning. Source code
to fetch dictionaries, train Dict2vec models and
evaluate word embeddings are publicly availabe1

and can be used by the community as a seed for
future works.

The paper is organized as follows. Section 2
presents related works, along with a special fo-
cus on Word2vec, which we later derive in our

1
https://github.com/tca19/dict2vec

approach presented in Section 3. Our experimen-
tal setup and evaluation settings are introduced in
Section 4 and we discuss the results in Section 5.
Section 6 concludes the paper.

2 Learning Word Embeddings

2.1 The Neural Network Approach

In the original model from Collobert and Weston
(2008), a window approach was used to feed a
neural network and learn word embeddings. Since
there are long-range relations between words, the
window-based approach was later extended to a
sentence-based approach (Collobert et al., 2011)
leading to capture more semantic similarities into
word vectors. Recurrent neural networks are
another way to exploit the context of a word
by considering the sequence of words preceding
it (Mikolov et al., 2010; Sutskever et al., 2011).
Each neuron receives the current window as an in-
put, but also its own output from the previous step.

Mikolov et al. (2013) introduced the Skip-gram
architecture built on a single hidden layer neural
network to learn efficiently a vector representa-
tion for each word w of a vocabulary V from a
large corpora of size C. Skip-gram iterates over
all (target, context) pairs (wt,wc) from every win-
dow of the corpus and tries to predict wc knowing
wt. The objective function is therefore to maxi-
mize the log-likelihood :

C∑

t=1

n∑

k=−n
log p(wt+k|wt) (1)

where n represents the size of the window (com-
posed of n words around the central word wt) and
the probability can be expressed as :

p(wt+k|wt) =
evt+k·vt∑
w∈V e

v·vt (2)

with vt+k (resp. vt) the vector associated to wt+k
(resp. wt).

This model relies on the principle “You shall
know a word by the company it keeps” – Firth
(1957). Thus, words that are frequent within
the context of the target word will tend to have
close representations, as the model will update
their vectors so that they will be closer. Two
main drawbacks can be said about this approach.
First, words within the same window are not al-
ways related. Consider the sentence “Turing is
widely considered to be the father of theoretical
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computer science and artificial intelligence.”2, the
words (Turing,widely) and (father,theoretical) will
be moved closer while they are not semantically
related. Second, strong semantic relations be-
tween words (like synonymy or meronymy) hap-
pens rarely within the same window, so these rela-
tions will not be well embedded into vectors.

fastText introduced in Bojanowski et al. (2016)
uses internal additional information from the cor-
pus to solve the latter drawback. They train a Skip-
gram architecture to predict a word wc given the
central wordwt and all the n-grams Gwt (subwords
of 3 up to 6 letters) of wt. The objective function
becomes :

C∑

t=1

n∑

k=−n

∑

w∈Gwt

log p(wt+k|w) (3)

Along learning one vector per word, fastText
also learns one vector per n-gram. fastText is able
to extract more semantic relations between words
that share common n-gram(s) (like fish and fish-
ing) which can also help to provide good embed-
dings for rare words since we can obtain a vector
by summing vectors of its n-grams.

In what follows, we report related works that
leverage external resources in order to address the
two raised issues about the window approach.

2.2 Using External Resources
Even with larger and larger text data available on
the Web, extracting and encoding every linguis-
tic relations into word embeddings directly from
corpora is a difficult task. One way to add more
relations into embeddings is to use external data.
Lexical databases like WordNet or sets of syn-
onyms like MyThes thesaurus can be used during
learning or in a post-processing step to specialize
word embeddings. For example, Yu and Dredze
(2014) include prior knowledge about synonyms
from WordNet and the Paraphrase Database in a
joint model built upon Word2vec. Faruqui et al.
(2015) introduce a graph-based retrofitting method
where they post-process learned vectors with re-
spect to semantic relationships extracted from ad-
ditional lexical resources. Kiela et al. (2015)
propose to specialize the embeddings either on
similarity or relatedness relations in a Skip-gram
joint learning approach by adding new contexts
from external thesaurus or from a norm associa-
tion base in the function to optimize. Bian et al.

2
https://en.wikipedia.org/wiki/Alan_Turing

(2014) combine several sources (syllables, POS
tags, antonyms/synonyms, Freebase relations) and
incorporate them into a CBOW model. These ap-
proaches have generally the objective to improve
tasks such as document classification, synonym
detection or word similarity. They rely on ad-
ditional resources whose construction is a time-
consuming and error-prone task and tend gener-
ally to specialize the embeddings to the external
corpus used. Moreover, lexical databases contain
less information than dictionaries (117k entries in
WordNet, 200k in a dictionary) and less accurate
content (some different words in WordNet belong
to the same synset thus have the same definition).

Another type of external resources are knowl-
edge bases, containing triplets. Each triplet links
two entities with a relation, for example Paris –
is capital of – France. Several methods (Weston
et al., 2013; Wang et al., 2014; Xu et al., 2014)
have been proposed to use the information from
knowledge base to improve semantic relations in
word embeddings, and extract more easily rela-
tional facts from text. These approaches are fo-
cused on knowledge base dependent task.

3 Dict2vec

The definition of a word is a group of words or
sentences explaining its meaning. A dictionary is
a set of tuples (word, definition) for several words.
For example, one may find in a dictionary :

car: A road vehicle, typically with four
wheels, powered by an internal combus-
tion engine and able to carry a small
number of people.3

The presence of words like “vehicle”, “road” or
“engine” in the definition of “car” illustrates the
relevance of using word definitions for obtaining
weak supervision allowing us to get semantically
related pairs of words.
Dict2vec models this information by build-

ing strong and weak pairs of words (§3.1), in
order to provide both a novel positive sampling
objective (§3.2) and a novel controlled nega-
tive sampling objective (§3.3). These objectives
participate to the global objective function of
Dict2vec (§3.4).

3Definition from Oxford dictionary.
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3.1 Strong pairs, weak pairs

In a definition, each word does not have the same
semantic relevance. In the definition of “car”,
the words “internal” or “number” are less relevant
than “vehicle”. We introduce the concept of strong
and weak pairs in order to capture this relevance.
If the word wa is in the definition of the word wb
andwb is in the definition ofwa, they form a strong
pair, as well as the K closest words to wa (resp.
wb) form a strong pair with wb (resp. wa). If the
word wa is in the definition of wb but wb is not in
the definition of wa, they form a weak pair.

The word “vehicle” is in the definition of “car”
and “car” is in the definition of “vehicle”. Hence,
(car–vehicle) is a strong pair. The word “road”
is in the definition of “car”, but “car” is not in
the definition of “road”. Therefore, (car–road) is
a weak pair.

Some weak pairs can be promoted as strong
pairs if the two words are among the K closest
neighbours of each other. We chose the K clos-
est words according to the cosine distance from
a pretrained word embedding and find that using
K = 5 is a good trade-off between semantic and
syntactic extracted information.

3.2 Positive sampling

We introduce the concept of positive sampling
based on strong and weak pairs. We move closer
vectors of words forming either a strong or a weak
pair in addition to moving vectors of words co-
occurring within the same window.

Let S(w) be the set of all words forming a
strong pair with the word w andW(w) be the set
of all words forming a weak pair with w. For
each target wt from the corpus, we build Vs(wt)
a random set of ns words drawn with replacement
from S(wt) and Vw(wt) a random set of nw words
drawn with replacement from W(wt). We com-
pute the cost of positive sampling Jpos for each
target as follows:

Jpos(wt) = βs
∑

wi∈Vs(wt)
`(vt · vi)

+ βw
∑

wj∈Vw(wt)
`(vt · vj)

(4)

where ` is the logistic loss function defined by
` : x 7→ log(1 + e−x) and vt (resp. vi and vj)
is the vector associated to wt (resp. wi and wj).

The objective is to minimize this cost for all tar-
gets, thus moving closer words forming a strong
or a weak pair.

The coefficients βs and βw, as well as the num-
ber of drawn pairs ns and nw, tune the importance
of strong and weak pairs during the learning phase.
We discuss the choice of these hyperparameters in
Section 5. When βs = 0 and βw = 0, our model
is the Skip-gram model of Mikolov et al. (2013).

3.3 Controlled negative sampling
Negative sampling consists in considering two
random words from the vocabulary V to be unre-
lated. For each word wt from the vocabulary, we
generate a setF(wt) of k randomly selected words
from the vocabulary :

F(wt) = {wi}k, wi ∈ V \ {wt} (5)

The model aims at separating the vectors of
words from F(wt) and the vector of wt. More for-
mally, this is equivalent to minimize the cost Jneg
for each target word wt as follows:

Jneg(wt) =
∑

wi∈F(wt)
`(−vt · vi) (6)

where the notation `, vt and vi are the same as
described in previous subsection.

However, there is a non-zero probability that
wi and wt are related. Therefore, the model
will move their vectors further instead of mov-
ing them closer. With strong/weak word pairs in
Dict2vec, it becomes possible to better ensure
that this is less likely to occur: we prevent a neg-
ative example to be a word that forms a weak or
strong pair with with wt. The negative sampling
objective from Equation 6 becomes :

Jneg(wt) =
∑

wi∈F(wt)
wi /∈S(wt)
wi /∈W(wt)

`(−vt · vi) (7)

In our experiments, we noticed this method dis-
cards around 2% of generated negative pairs. The
influence on evaluation depends on the nature of
the corpus and is discussed at Section 5.4.

3.4 Global objective function
Our objective function is derived from the noise-
contrastive estimation which is a more efficient
objective function than the log-likelihood in Equa-
tion 1 according to Mikolov et al. (2013). We
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add the positive sampling and the controlled neg-
ative sampling described before and compute the
cost for each (target,context) pair (wt, wc) from
the corpus as follows:

J(wt, wc) = `(vt · vc) + Jpos(wt) + Jneg(wt)
(8)

The global objective is obtained by summing
every pair’s cost over the entire corpus :

J =
C∑

t=1

n∑

c=−n
J(wt, wt+c) (9)

4 Experimental setup

4.1 Fetching online definitions
We extract all unique words with more than 5 oc-
currences from a full Wikipedia dump, represent-
ing around 2.2M words. Since there is no dic-
tionary that contains a definition for all existing
words (the word w might be in the dictionary Di

but not in Dj), we combine several dictionaries to
get a definition for almost all of these words (some
words are too rare to have a definition anyway).
We use the English version of Cambridge, Oxford,
Collins and dictionary.com. For each word, we
download the 4 different webpages, and use regex
to extract the definitions from the HTML template
specific to each website, making the process fully
accurate. Our approach does not focus on poly-
semy, so we concatenate all definitions for each
word. Then we concatenate results from all dic-
tionaries, remove stop words and punctuation and
lowercase all words. For our illustrative example
in Section 3, we obtain :

car: road vehicle engine wheels seats
small [...] platform lift.

Among the 2.2M unique words, only 200K does
have a definition. We generate strong and weak
pairs from the downloaded definitions accord-
ing to the rule described in subsection 3.1 lead-
ing to 417K strong pairs (when the parameter K
from 3.1 is set to 5) and 3.9M weak pairs.

4.2 Training settings
We train our model with the generated pairs from
subsection 4.1 and the November 2016 English
dump from Wikipedia 4. After removing all XML
tags and converting all words to lowercase (with

4
https://dumps.wikimedia.org/enwiki/20161101/

the help of Mahoney’s script5), we separate the
corpus into 3 files containing respectively the first
50M tokens, the first 200M tokens, and the full
dump. Our model uses additional knowledge
during training. For a fair comparison against
other frameworks, we also incorporate this infor-
mation into the training data and create two ver-
sions for each file : one containing only data
from Wikipedia (corpus A) and one with data from
Wikipedia concatenated with the definitions ex-
tracted (corpus B).

We use the same hyperparameters we usually
find in the literature for all models. We use 5 neg-
atives samples, 5 epochs, a window size of 5, a
vector size of 100 (resp. 200 and 300) for the 50M
file (resp. 200M and full dump) and we remove
the words with less than 5 occurrences. We fol-
low the same evaluation protocol as Word2vec and
fastText to provide the fairest comparison against
competitors, so every other hyperparameters (K,
βs, βw, ns, nw) are tuned using a grid search to
maximize the weighted average score. For ns and
nw, we go from 0 to 10 with a step of 1 and find the
optimal values to be ns = 4 and nw = 5. For βs
and βw we go from 0 to 2 with a step of 0.05 and
find βs = 0.8 and βw = 0.45 to be the best val-
ues for our model. Table 1 reports training times
for the three models (all experiments were run on
a E3-1246 v3 processor).

50M 200M Full

Word2vec 15m30 86m 2600m
fastText 8m44 66m 1870m
Dict2vec 4m09 26m 642m

Table 1: Training time (in min) of Word2vec, fast-
Text and Dict2vec models for several corpus.

4.3 Word similarity evaluation

We follow the standard method for word similar-
ity evaluation by computing the Spearman’s rank
correlation coefficient (Spearman, 1904) between
human similarity evaluation of pairs of words, and
the cosine similarity of the corresponding word
vectors. A score close to 1 indicates an embed-
ding close to the human judgement.

We use MC-30 (Miller and Charles, 1991),
MEN (Bruni et al., 2014), MTurk-287 (Radinsky
et al., 2011), MTurk-771 (Halawi et al., 2012),

5
http://mattmahoney.net/dc/textdata#appendixa
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RG-65 (Rubenstein and Goodenough, 1965),
RW (Luong et al., 2013), SimVerb-3500 (Gerz
et al., 2016), WordSim-353 (Finkelstein et al.,
2001) and YP-130 (Yang and Powers, 2006) clas-
sic datasets. We follow the same protocol used by
Word2vec and fastText by discarding pairs which
contain a word that is not in our embedding. Since
all models are trained with the same corpora, the
embeddings have the same words, therefore all
competitors share the same OOV rates.

We run each experiment 3 times and report in
Table 2 the average score to minimize the effect
of the neural network random initialization. We
compute the average by weighting each score by
the number of pairs evaluated in its dataset in the
same way as Iacobacci et al. (2016). We multiply
each score by 1, 000 to improve readability.

4.4 Text classification evaluation

Our text classification task follows the same setup
as the one for fastText in Joulin et al. (2016). We
train a neural network composed of a single hidden
layer where the input layer corresponds to the bag
of words of a document and the output layer is the
probability to belong to each label. The weights
between the input and the hidden layer are initial-
ized with the generated embeddings and are fixed
during training, so that the evaluation score solely
depends on the embedding. We update the weights
of the neural network classifier with gradient de-
scent. We use the datasets AG-News 6, DBpe-
dia (Auer et al., 2007) and Yelp reviews (polarity
and full)7. We split each datasets into a training
and a test file. We use the same training and test
files for all models and report the classification ac-
curacy obtained on the test file.

4.5 Baselines

We train Word2vec8 and fastText9 on the same
3 files and their 2 respective versions (A and B)
described in 4.2 and use the same hyperparam-
eters also described in 4.2 for all models. We
train Word2vec with the Skip-gram model since
our method is based on the Skip-gram model. We
also train GloVe with their respective hyperparam-
eters described in Pennington et al. (2014), but the
results are lower than all other baselines (weighted

6
https://www.di.unipi.it/˜gulli/AG_corpus_of_

news_articles.html
7
https://www.yelp.com/dataset_challenge

8
https://github.com/dav/word2vec

9
https://github.com/facebookresearch/fastText

average on word similarity task is 350 on the 50M
file, 389 on the 200M file and 454 on the full
dump) so we do no report GloVe’s results.

We also retrofit the learned embeddings on cor-
pus A with the Faruqui’s method to compare an-
other method using additional resources. The
retrofitting introduces external knowledge from
the WordNet semantic lexicon (Miller, 1995). We
use the Faruqui’s Retrofitting10 with the WNall

semantic lexicon from WordNet and 10 iterations
as advised in the paper of Faruqui et al. (2015).
Furthermore, we compare the performance of our
method when using WordNet additional resources
instead of dictionaries.

5 Results and model analysis

5.1 Semantic similarity
Table 2 (top) reports the Spearman’s rank correla-
tion scores obtained with the method described in
subsection 4.3. We observe that our model outper-
forms state-of-the-art approaches for most of the
datasets on the 50M and 200M tokens files, and
almost all datasets on the full dump (this is signif-
icant according to a two-sided Wilcoxon signed-
rank test with α = 0.05). With the weighted av-
erage score, our model improves fastText’s perfor-
mance on raw corpus (column A) by 28.3% on the
50M file, by 17.7% on the 200M and by 12.8% on
the full dump. Even when we train fastText with
the same additional knowledge as ours (column
B), our model improves performance by 2.9% on
the 50M file, by 5.1% in the 200M and by 11.9%
on the full dump.

We notice the column B (corpus composed of
Wikipedia and definitions) has better results than
the column A for the 50M (+24% on average) and
the 200M file (+12% on average). This demon-
strates the strong semantic relations one can find
in definitions, and that simply incorporating defi-
nitions in small training file can boost the perfor-
mance of the embeddings. Moreover, when the
training file is large (full dump), our supervised
method with pairs is more efficient, as the boost
brought by the concatenation of definitions is in-
significant (+1.5% on average).

We also note that the number of strong and
weak pairs drawn must be set according to the size
of the training file. For the 50M and 200M to-
kens files, we train our model with hyperparame-
ters ns = 4 and nw = 5. For the full dump (20

10
https://github.com/mfaruqui/retrofitting
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50M 200M Full

w2v FT our w2v FT our w2v FT our

oov A B A B A B oov A B A B A B oov A B A B A B

MC-30 0% 697 847 722 823 840 859 0% 742 830 795 814 854 827 0% 809 826 831 815 860 847
MEN-TR-3k 0% 692 753 697 767 733 762 0% 734 758 754 772 752 768 0% 733 728 752 751 756 755
MTurk-287 0% 657 688 657 685 665 682 0% 642 671 671 661 667 666 0% 660 656 672 671 661 660
MTurk-771 0% 596 677 597 692 685 713 0% 628 669 632 675 682 704 0% 623 620 631 638 696 694
RG-65 0% 714 865 671 842 824 875 0% 771 842 755 829 857 877 0% 787 802 817 820 875 867
RW 36% 375 420 442 512 475 489 16% 377 408 475 507 467 478 2% 407 427 464 468 482 476
SimVerb 3% 165 371 179 374 363 432 0% 183 306 206 329 377 424 0% 186 214 222 233 384 379
WS353-ALL 0% 660 739 657 739 738 753 0% 694 734 701 735 762 758 0% 705 721 729 723 756 758
WS353-REL 0% 619 700 623 696 679 688 0% 665 706 644 685 710 699 0% 664 681 687 686 702 703
WS353-SIM 0% 714 797 714 790 774 784 0% 743 792 758 792 784 787 0% 757 767 775 779 781 781
YP-130 3% 458 679 415 674 666 696 0% 449 592 509 639 616 665 0% 502 475 533 553 646 607

W.Average 453 562 467 582 564 599 471 533 503 563 569 592 476 488 508 512 573 570

AG-News 874 871 868 871 871 866 886 882 880 881 880 880 885 885 887 887 881 884
DBPedia 936 942 942 944 944 944 952 956 957 958 960 959 966 966 967 967 968 969
Yelp Pol. 808 835 821 842 832 834 837 855 852 859 856 859 865 867 872 874 876 875
Yelp Full 451 469 460 473 471 472 477 491 488 495 499 501 506 506 512 514 516 518

Table 2: Spearman’s rank correlation coefficients between vectors’ cosine similarity and human judge-
ment for several datasets (top) and accuracies on text classification task (bottom). We train and evaluate
each model 3 times and report the average score for each dataset, as well as the weighted average for all
word similarity datasets.

50M 200M Full

w2vR FTR ourR w2vR FTR ourR w2vR FTR ourR

MC-30
vs self +13.9% +9.2% +1.3% +5.8% +4.8% +3.0% +5.2% +2.9% +1.2%
vs our -7.3% -4.4% − -3.6% -2.4% − -1.0% -0.6% −

MEN-TR-3k
vs self +0.9% -0.7% -0.1% +0.7% -1.9% +0.4% +1.4% -2.8% +1.6%
vs our -4.2% -7.4% − -1.3% -1.6% − -1.7% -3.3% −

MTurk-287
vs self +1.4% +0.2% +3.5% -2.9% -3.3% +3.0% -0.9% -5.7% +1.1%
vs our -1.2% -4.0% − -4.3% -2.7% − -1.1% -4.1% −

MTurk-771
vs self +8.2% +4.9% +1.6% +6.3% +4.3% +1.5% +4.5% +1.6% +0.6%
vs our -7.3% -8.8% − -3.8% -3.4% − -6.5% -7.9% −

RG-65
vs self +10.9% +17.1% +4.0% +6.6% +8.5% +3.0% +7.0% +5.0% +2.4%
vs our -2.1% -4.9% − -2.2% -4.4% − -3.8% -1.9% −

RW
vs self -20.3% -24.4% -14.3% -24.4% -25.9% -20.3% -18.7% -25.4% -19.1%
vs our -37.4% -26.9% − -37.7% -24.6% − -31.3% -28.2% −

Simverb
vs self +46.0% +34.0% +19.8% +49.7% +39.8% +19.9% +44.6% +38.7% +16.7%
vs our -34.4% -28.4% − -30.5% -23.6% − -29.9% -19.8% −

WS353-ALL
vs self -4.2% -10.8% -1.1% -3.2% -8.0% -1.3% -4.4% -10.7% -2.0%
vs our -13.8% -19.2% − -11.9% -15.4% − -10.8% -13.9% −

WS353-REL
vs self -16.1% -22.7% -4.9% -10.4% -17.9% -4.5% -10.7% -19.7% -6.0%
vs our -20.9% -27.2% − -17.7% -25.5% − -15.5% -21.4% −

WS353-SIM
vs self +4.3% +0.8% +3.2% +2.6% +0.0% +3.2% +0.0% -3.6% +2.4%
vs our -3.9% -6.7% − -2.9% -3.3% − -3.0% -4.4% −

YP-130
vs self +17.8% +3.2% +3.3% +13.0% +6.9% +8.0% +11.1% +8.3% +5.0%
vs our -23.6% -28.2% − -16.6% -11.7% − -13.6% -10.7% −

Table 3: Percentage changes of word similarity scores for several datasets after the Faruqui’s retrofitting
method is applied. We compare each model to their own non-retrofitted version (vs self) and our non-
retrofitted version (vs our). A positive percentage indicates the level of improvement of the retrofitting
approach, while a negative percentage shows that the compared method is better without retrofitting. As
an illustration: the +13.9% at the top left means that retrofitting Word2vec’s vectors improves the initial
vectors output by 13.9%, while the -7.3% below indicates that our approach without retrofitting is better
than the retrofitted Word2vec’s vectors.
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times larger than the 200M tokens file), the num-
ber of windows in the corpus is largely increased,
so is the number of (target,context) pairs. There-
fore, we need to adjust the influence of strong
and weak pairs and decrease ns and nw. We set
ns = 2, nw = 3 to train on the full dump.

The Faruqui’s retrofitting method improves the
word similarity scores on all frameworks for all
datasets, except on RW and WS353 (Table 3). But
even when Word2vec and fastText are retrofitted,
their scores are still worse than our non-retrofitted
model (every percentage on the vs our line are neg-
ative). We also notice that our model is compati-
ble with a retrofitting improvement method as our
scores are also increased with Faruqui’s method.

We also observe that, although our model is su-
perior on each corpus size, our model trained on
the 50M tokens file outperforms the other mod-
els trained on the full dump (an improvement of
17% compared to the results of fastText, our best
competitor, trained on the full dump). This means
considering strong and weak pairs is more efficient
than increasing the corpus size and that using dic-
tionaries is a good way to improve the quality of
the embeddings when the training file is small.

The models based on knowledge bases cited
in §2.2 do not provide word similarity scores on
all the datasets we used. However, for the reported
scores, Dict2vec outperforms these models : Kiela
et al. (2015) achieves a correlation of 0.72 on the
MEN dataset (vs. 0.756); Xu et al. (2014) achieves
0.683 on the WS353-ALL dataset (vs. 0.758).

5.2 Text classification accuracy

Table 2 (bottom) reports the classification ac-
curacy for the considered datasets. Our model
achieves the same performances as Word2vec and
fastText on the 50M file and slightly improves re-
sults on the 200M file and the full dump. Us-
ing supervision with pairs during training does not
make our model specific to the word similarity
task which shows that our embeddings can also be
used in downstream extrinsic tasks.

Note that for this experiment, the embeddings
were fixed and not updated during learning (we
only learned the classifier parameters) since our
objective was rather to evaluate the capability of
the embeddings to be used for another task rather
than obtaining the best possible models. It is any-
way possible to obtain better results by updating
the embeddings and the classifier parameters with

respect to the supervised information to adapt the
embeddings to the classification task at hand as
done in Joulin et al. (2016).

5.3 Dictionaries vs. WordNet

Raw RWN Rdict

50M
w2v 453 474 479
FT 467 476 489
our 569 582 582

200M
w2v 471 488 494
FT 503 504 524
our 569 581 587

full
w2v 488 507 512
FT 508 503 529
our 571 583 592

Table 4: Weighted average Spearman correla-
tion score of raw vectors and after retrofitting
with WordNet pairs (RWN ) and dictionary pairs
(Rdict).

Table 4 reports the Spearman’s rank correlation
score for vectors obtained after training (Raw col-
umn) and the scores after we retrofit those vectors
with pairs from WordNet (RWN ) and extracted
pairs from dictionaries (Rdict). Retrofitting with
dictionaries outperforms retrofitting with Word-
Net lexicons, meaning that data from dictionaries
are better suited to improve embeddings toward
semantic similarities when retrofitting.

50M 200M full

No pairs 453 471 488
With WordNet pairs 564 566 559
With dictionary pairs 569 569 571

Table 5: Weighted average Spearman correlation
score of Dict2vec vectors when trained without
pairs and with WordNet or dictionary pairs.

We also trained Dict2vec with pairs from Word-
Net as well as no additional pairs during train-
ing (in this case, this is the Skip-gram model
from Word2vec). Results are reported in Table 5.
Training with WordNet pairs increases the scores,
showing that the supervision brought by positive
sampling is beneficial to the model, but lags be-
hind the training using dictionary pairs demon-
strating once again that dictionaries contain more
semantic information than WordNet.
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5.4 Positive and negative sampling

For the positive sampling, an empirical grid search
shows that a 1

2 ratio between βs and βw is a good
rule-of-thumb for tuning these hyperparameters.
We also notice that when these coefficients are too
low (βs ≤ 0.5 and βw ≤ 0.2), results get worse
because the model does not take into account the
information from the strong and weak pairs. On
the other side, when they are too high (βs ≥ 1.2
and βw ≥ 0.6), the model discards too much the
information from the context in favor of the infor-
mation from the pairs. This behaviour is similar
when the number of strong and weak pairs is too
low or too high (ns, nw ≤ 2 or ns, nw ≥ 5).

For the negative sampling, we notice that the
control brought by the pairs increases the aver-
age weighted score by 0.7% compared to the un-
controlled version. We also observe that increas-
ing the number of negative samples does not sig-
nificantly improve the results except for the RW
dataset where using 25 negative samples can boost
performances by 10%. Indeed, this dataset is
mostly composed of rare words so the embeddings
must learn to differentiate unrelated words rather
than moving closer related ones.

5.5 Vector size
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Figure 1: Spearman’s rank correlation coeffi-
cient for RW-STANFORD (RW) and WS-353-
ALL (WS) on the fastText model (FT) and our,
with different vector size. Training is done on the
corpus A of 50M tokens.

In Fig. 1, we observe that our model is still able
to outperform state-of-the-art approaches when we
reduce the dimension of the embeddings to 20 or
40. We also notice that increasing the vector size
does increase the performance, but only until a di-
mension around 100, which is the common dimen-

sion used when training on the 50M tokens file for
related approaches reported here.

6 Conclusion

In this paper, we presented Dict2vec, a new ap-
proach for learning word embeddings using lexi-
cal dictionaries. It is based on a Skip-gram model
where the objective function is extended by lever-
aging word pairs extracted from the definitions
weighted differently with respect to the strength of
the pairs. Our approach shows better results than
state-of-the-art word embeddings methods for the
word similarity task, including methods based on a
retrofitting from external sources. We also provide
the full source code to reproduce the experiments.
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Abstract

In this paper, we propose new methods to
learn Chinese word representations. Chi-
nese characters are composed of graphical
components, which carry rich semantics.
It is common for a Chinese learner to com-
prehend the meaning of a word from these
graphical components. As a result, we
propose models that enhance word repre-
sentations by character glyphs. The char-
acter glyph features are directly learned
from the bitmaps of characters by con-
volutional auto-encoder(convAE), and the
glyph features improve Chinese word rep-
resentations which are already enhanced
by character embeddings. Another contri-
bution in this paper is that we created sev-
eral evaluation datasets in traditional Chi-
nese and made them public.

1 Introduction

No matter which target language it is, high quality
word representations (also known as word “em-
beddings”) are keys to many natural language
processing tasks, for example, sentence classi-
fication (Kim, 2014), question answering (Zhou
et al., 2015), machine translation (Sutskever et al.,
2014), etc. Besides, word-level representations
are building blocks in producing phrase-level (Cho
et al., 2014) and sentence-level (Kiros et al., 2015)
representations.

In this paper, we focus on learning Chinese
word representations. A Chinese word is com-
posed of characters which contain rich seman-
tics. The meaning of a Chinese word is often re-
lated to the meaning of its compositional charac-
ters. Therefore, Chinese word embedding can be
enhanced by its compositional character embed-
dings (Chen et al., 2015; Xu et al., 2016). Further-

more, a Chinese character is composed of several
graphical components. Characters with the same
component share similar semantic or pronuncia-
tion. When a Chinese user encounters a previ-
ously unseen character, it is instinctive to guess
the meaning (and pronunciation) from its graph-
ical components, so understanding the graphical
components and associating them with semantics
help people learning Chinese. Radicals1 are the
graphical components used to index Chinese char-
acters in a dictionary. By identifying the radical of
a character, one obtains a rough meaning of that
character, so it is used in learning Chinese word
embedding (Yin et al., 2016) and character embed-
ding (Sun et al., 2014; Li et al., 2015). However,
other components in addition to radicals may con-
tain potentially useful information in word repre-
sentation learning.

Our research begins with a question: Can ma-
chines learn Chinese word representations from
glyphs of characters? By exploiting the glyphs of
characters as images in word representation learn-
ing, all the graphical components in a character
are considered, not limited to radicals. In our
proposed methods, we render character glyphs to
fixed-size grayscale images which are referred to
as “character bitmaps”, as illustrated in Fig.1. A
similar idea was also used in (Liu et al., 2017) to
help classifying wikipedia article titles into 12 cat-
egories. We use a convAE to extract character fea-
tures from the bitmap to represent the glyphs. It
is also possible to represent the glyph of a char-
acter by the graphical components in it. We do
not choose this way because there is no unique
way to decompose a character, and directly learn-
ing representation from bitmaps is more straight-
forward. Then we use the models parallel to Skip-
gram (Mikolov et al., 2013a) or GloVe (Penning-

1https://en.wikipedia.org/wiki/
Radical_(Chinese_characters)
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ton et al., 2014) to learn word representations from
the character glyph features. Although we only
consider traditional Chinese characters in this pa-
per, and the examples given below are based on the
traditional characters, the same ideas and methods
can be applied on the simplified characters.

Rendered bitmaps�

60 pixels�

�� ��Characters Glyphs 
(As printed in PDF file)�

60 pixels�

Figure 1: A Chinese character is represented as a
fixed-size gray-scale image which is referred to as
“character bitmap” in this paper.

2 Background Knowledge and Related
Works

To give a clear illustration of our own work, we
briefly introduce the representative methods of
word representation learning in Section 2.1. In
Section 2.2, we will introduce some of the linguis-
tic properties of Chinese, and then introduce the
methods that utilize these properties to improve
word representations.

2.1 Word Representation Learning

Mainstream research of word representation is
built upon the distributional hypothesis, that is,
words with similar contexts share similar mean-
ings. Usually a large-scale corpus is used, and
word representations are produced from the co-
occurrence information of a word and its con-
text. Existing methods of producing word rep-
resentations could be separated into two fami-
lies (Levy et al., 2015): count-based family (Tur-
ney and Pantel, 2010; Bullinaria and Levy, 2007),
and prediction-based family. Word representations
can be obtained by training a neural-network-
based models (Bengio et al., 2003; Collobert et al.,
2011). The representative methods are briefly in-
troduced below.

2.1.1 CBOW and Skipgram
Both continuous bag-of-words (CBOW) model
and Skipgram model train with words and con-
texts in a sliding local context window (Mikolov

et al., 2013a). Both of them assign each word
wi with an embedding ~wi. CBOW predicts the
word given its context embeddings, while Skip-
gram predicts contexts given the word embed-
ding. Predicting the occurrence of word/context
in CBOW and Skipgram models could be viewed
as learning a multi-class classification neural net-
work (the number of classes is the size of vocab-
ulary). In (Mikolov et al., 2013b), the authors in-
troduced several techniques to improve the perfor-
mance. Negative sampling is introduced to speed
up learning, and subsampling frequent words is
introduced to randomly discard training examples
with frequent words (such as “the”, “a”, “of”), and
has an effect similar to the removal of stop words.

2.1.2 GloVe
Instead of using local context windows, (Penning-
ton et al., 2014) proposed GloVe model. Train-
ing GloVe word representations begins with cre-
ating a co-occurrence matrix X from a corpus,
where each matrix entry Xij represents the counts
that word wj appears in the context of word wi.
In (Pennington et al., 2014), the authors used a
harmonic weighting function for co-occurrence
count, that is, word-context pairs with distance d
contributes 1

d to the global co-occurrence count.
Let ~wi be the word representation of word wi,

and ~̃wj be the word representation of word wj as
context, GloVe model minimizes the loss:

∑

i,j∈ non−zero
entries of X

f(Xij)(~w
T
i
~̃wj+bi+b̃j−log(Xij)),

where bi is the bias for word wi, and b̃j is the bias
for context wj . A weighting function f(Xij) is
introduced because the authors consider rare co-
occurrence word-context pairs carry less informa-
tion than frequent ones, and their contributions to
the total loss should be decreased. The weighting
function f(Xij) is defined as below. It depends on
the co-occurrence count, and the authors set pa-
rameters xmax = 100, α = 0.75.

f(Xij) =

{
(
Xij
xmax

)α if Xij < xmax

1 otherwise

In the GloVe model, each word has 2 represen-
tations ~w and ~̃w. The authors suggest using ~w+ ~̃w
as the word representation, and reported improve-
ments over using ~w only.
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2.2 Improving Chinese Word Representation
Learning

2.2.1 The Chinese Language

���
xylophone�

��
wooden�

��
zither�

���
battleship�

��
war�

��
ship�

���
rooster�

��
male�

��
chicken�

Figure 2: Examples of compositional Chinese
words. Still, the reader should keep in mind that
NOT all Chinese words are compositional (related
to the meanings of its compositional characters).

A Chinese word is composed of a sequence of
characters. The meanings of some Chinese words
are related to the composition of the meanings of
their characters. For example, “戰艦” (battleship),
is composed of two characters, “戰” (war) and
“艦” (ship). More examples are given in Fig. 2.
To improve Chinese word representations with
sub-word information, character-enhanced word
embedding (CWE) (Chen et al., 2015) in Sec-
tion 2.2.2 is proposed.

(A) Radicals:� ���� �����

��(butterfly)�

��(bee)�


�(snake)�


�(mosquito)�

��(crab)�

��(cotton)�

��(maple)�

��(plum)�

��(stick)�

��(fruit)�

	�(sea)�

��(river)�

��(tear)�

��(soup)�

��(spring)�

(B) Semantics:� anthropods, reptiles� plants,  
wooden materials�

water, liquid 

(C) Characters:�
(C-1)�

(C-2)�

(C-3)�

(C-4)�

(C-5)�

Figure 3: Some examples of radicals and the char-
acters containing them. In rows (C-1) to (C-4), the
radicals are at the left hand side of the character,
while in row (C-5), the radicals are at the bottom,
and may have different of shapes.

A Chinese character is composed of several
graphical components. Characters with the same
component share similar semantic or phonetic
properties. In a Chinese dictionary characters with
similar coarse semantics are grouped into cate-
gories for the ease of searching. The common
graphical component which relates to the common
semantic is chosen to index the category, known

as a radical. Examples are given in Fig. 3. There
are three radicals in row (A), and their semantic
meanings are in row (B). In each column, there are
five characters containing each radical. It is easy
to find that the characters having the same radical
have meanings related to the radical in some as-
pect. A radical can be put in different positions in
a character. For example, in rows (C-1) to (C-4),
the radicals are at the left hand side of a charac-
ter, but in row (C-5), the radicals are at the bot-
tom. The shape of a radical can be different in
different positions. For example, the third radi-
cal which represents “water” or “liquid” has dif-
ferent forms when it is at the left hand side or the
bottom of a character. Because radicals serve as
a strong semantic indicator of a character, multi-
granularity embedding (MGE) (Yin et al., 2016)
in Section 2.2.3 incorporates radical embeddings
in learning word representation.

����
�(human)� �(human)��(weapon)� �(speech)�

� (attack, strike, cut down)� � (believe, promise, letter)�

Figure 4: Both characters in the figure have the
same radical “亻” (means humans) at the left hand
side, but their meanings are the composition of the
graphical components at the right hand side and
their radical.

Usually the components other than radicals de-
termine the pronunciation of the characters, but
in some cases they also influence the meaning of
a character. Two examples are given in Fig. 42.
Both characters in Fig. 4 have the same radical
“亻” (means humans) at the left hand side, but the
graphical components at the right hand side also
have semantic meanings related to the characters.
Considering the left character “伐”　(means at-
tack). Its right component “戈” means “weapon”,
and the meaning of the character “伐” is the com-
position of the meaning of its two components (a
human with a weapon). None of the previous word
embedding approach considers all the components
of Chinese characters in our best knowledge.

2The two example characters here have the same glyphs
in the traditional and simplified Chinese characters.
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2.2.2 Character-enhanced Word Embedding
(CWE)

The main idea of CWE is that word embedding
is enhanced by its compositional character embed-
dings. CWE predicts the word from both word and
character embeddings of contexts, as illustrated in
Fig. 5 (a). For wordwi, the CWE word embedding
~wcwei has the following form:

~wcwei = ~wi +
1

|C(i)|
∑

cj∈C(i)

~cj

where ~wi is the word embedding, ~cj is the embed-
ding of the j-th character in wi, and C(i) is the
set of compositional characters of word wi. Mean
value of CWE word embeddings of contexts are
then used to predict the word wi.

Sometimes one character has several different
meanings, this is known as the ambiguity problem.
To deal with this, each character is assigned with
a bag of embeddings. During training, one of the
embeddings is picked to form the modified word
embedding. The authors proposed three methods
to decide which embedding is picked: position-
based, cluster-based, and non-parametric cluster-
based character embeddings.

context window�

!
�������������������
���
��	�������� 

word�

^� ^�
(carefully)� (look at)� (blossoms)�

(a) CWE�

�
�

�
� 	��

��


�

	�

��

character embeddings�

(b) MGE�

�
�

�
� 	��

��


�

	�

��

�� ��
radical embeddings�

hidden vector�

target word�

Figure 5: Model comparison of Character-
enhanced Word Embedding (CWE) and Multi-
granularity Embedding (MGE).

2.2.3 Multi-granularity Embedding (MGE)
Based on CBOW and CWE, (Yin et al., 2016)
proposed MGE, which predicts target word with
its radical embeddings and modified word embed-
dings of context in CWE, as shown in Fig.5 (b).

There is no ambiguity of radicals, so each radi-
cal is assigned with one embedding ~r. We denote

~rk as the radical embedding of character ck. MGE
predicts the target word wi with the following hid-
den vector:

~hi =
1

|C(i)|
∑

ck∈C(i)

~rk +
1

|W (i)|
∑

wj∈W (i)

~wcwej

, where W(i) is the set of contexts words of wi,
~wcwej is the CWE word embedding of wj . MGE
picks character embeddings with the position-
based method in CWE, and picks radical embed-
dings according to a character-radical index built
from a dictionary during training. When non-
compositional word is encountered, only the word
embedding is used to form ~hi.

3 Model

We first extract glyph features from bitmaps with
the convAE in Section 3.1. The glyph features are
used to enhance the existing word representation
learning models in Section 3.2. In Section 3.3, we
try to learn word representations directly from the
glyph features.

3.1 Character Bitmap Feature Extraction

A convAE (Masci et al., 2011) is used to reduce
the dimensions of rendered character bitmaps and
capture high-level features. The architecture of the
convAE is shown in Fig. 6. The convAE is com-
posed of 5 convolutional layers in both encoder
and decoder. The stride larger than one is used in-
stead of pooling layers. Convolutional and decon-
volutional layers on the same level share the same
kernel. The input image is a 60×60 8-bit grayscale
bitmap, and the encoder extracts 512-dimensional
feature. The feature of character ck from the en-
coder is refer to as character glyph feature ~gk in
the paper.
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Figure 6: The architecture of convAE.

267



3.2 Glyph-Enhanced Word Embedding
(GWE)

3.2.1 Enhanced by Context Word Glyphs
We modify CWE model based on CBOW in Sec-
tion 2.2.2 to incorporate context character glyph
features (ctxG). This modified word embedding
~wctxGi of word wi has the form:

~wctxGi = ~wi +
1

|C(i)|
∑

cj∈C(i)

(~cj + ~gj),

where C(i) is the compositional characters of wi
and ~gj is the glyph feature of cj . The model pre-
dicts target word wi from ctxG word embeddings
of contexts, as shown in Fig.7. The parameters
in the convAE are pre-trained, thus not jointly
learned with embeddings ~w and ~c, so character
glyph features ~g are fixed during training.

wi�

wctxG
i-1� wctxG

i+1� wi+1� Mean(c�)��

c�� g��

Mean(g�)�

c�� g��

char bitmaps 
of wi�

glyph features 
of wi+1�

char emb. 
of wi+1�

word emb. 
of wi+1�

=� +�

…
�

…
�

+�

ctxG  
word emb. 

of wi-1�

ctxG 
word emb. 

of wi+1�

! !

Figure 7: Illustration of exploiting context word
glyphs. Mean value of character glyph features
in the context is added to the hidden vector that
predicts target word.

3.2.2 Enhanced by Target Word Glyphs
Here we propose another variant. In this model,
the model structure is the same as in Fig.7. The
difference lies in the hidden vector used to pre-
dict the target word. Instead of adding mean value
of character glyph features of the contexts, it adds
mean value of glyph feature of the target word
(tarG), as shown in Fig.8. As in Section 3.2.1, con-
vAE is not jointly learned.
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Figure 8: Illustration of exploiting target word
glyphs. Mean value of character glyph features of
target words help predicting target word itself.

3.3 Directly Learn From Character Glyph
Features

3.3.1 RNN-Skipgram
We learn word representation ~wi directly from the
sequence of character glyph features {~gk, ck ∈
C(i)} of word wi, with the objective of Skip-
gram. As in Fig.9, a 2-layer Gated Recurrent Units
(GRU) (Cho et al., 2014) network followed by 2
fully connected ELU (Clevert et al., 2015) layers
produces word representation ~wi from input se-
quence {~gk} of word wi. ~wi is then used to predict
the contexts of wi. In the training we use nega-
tive sampling and subsampling on frequent words
from (Mikolov et al., 2013b).

Neg sample�

Neg sample�

Neg sample�

Context word�

g��

GRU�

GRU�

g��

GRU�

GRU� wi�

(2 fully connected layers)�

character bitmap sequence�

glyph feature sequence�

convAE� convAE�

��

Figure 9: Model architecture of RNN-Skipgram
model. Produced word representation ~wi is used
to predict the context of word wi.

3.3.2 RNN-GloVe
We modify GloVe model to directly learn from
character glyph features as in Fig.10. We feed
character glyph feature sequence {~gk, ck ∈ C(i)},
{~gk′ , ck′ ∈ C(j)} of word wi and context wj
to a shared GRU network. Outputs of GRU
are then fed to two different fully connected
ELU layers to produce word representations ~wi
and ~̃wj . The inner product of ~wi and ~̃wj is the
prediction of log co-occurrence log(Xij). We
apply the same loss function with weights in
GloVe. We follow (Pennington et al., 2014) and
use ~wi+ ~̃wi for evaluations of word representation.

4 Experimental Setup

4.1 Preprocessing

We learned word representations with traditional
Chinese texts from Central News Agency daily
newspapers from 1991 to 2002 (Chinese Giga-
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Figure 10: Model architecture of RNN-GloVe. A
shared GRU network and 2 different sets of fully
connected ELU layers produce ~wi and ~̃wj . Inner
product of ~wi and ~̃wj is the prediction of log co-
occurrence log(Xij).

word, LDC2003T09). All foreign words, numeri-
cal words, and punctuations were removed. Word
segmentation was performed using open source
python package jieba3. In all 316,960,386 seg-
mented words, we extracted 8780 unique charac-
ters, and used a true type font (BiauKai) to render
each character glyph to a 60×60 8-bit grayscale
bitmap. Furthermore, We removed words whose
frequency <= 25, leaving 158,565 unique words
as the vocabulary set.

4.2 Extracting Visual Features of Character
Bitmap

Inspired by (Zeiler et al., 2011), layer-wise train-
ing was applied to our convAE. From lower level
to higher, the kernel of each layer is trained indi-
vidually, with other kernels frozen for 100 epochs.
Loss function is the Euclidean distance between
input and reconstructed bitmap, and we added
l1 regularization to the activations of convolution
layers. We chose Adagrad as the optimizing algo-
rithm, and set batch size = 20 and learning rate
= 0.001.

Figure 11: The input bitmaps of convAE and their
reconstructions. The input bitmaps are in the up-
per row, while the reconstructions are in the lower
row.

3https://github.com/fxsjy/jieba

The comparison between the input bitmaps and
their reconstructions is shown in Fig 11. The in-
put bitmaps are in the upper row, while the recon-
structions are in the lower row. We further visual-
ized the extracted character glyph features with t-
SNE (Maaten and Hinton, 2008). Part of the visu-
alization result is shown in Fig. 12. From Fig. 12,
we found that the characters with the same compo-
nents are clustered. The result shows that the fea-
tures extracted by the convAE are capable of ex-
pressing the graphical information in the bitmaps.

4.3 Training Details of Word Representations
We used CWE code4 to implement both CBOW
and Skipgram, along with the CWE. The num-
ber of multi-embedding was set to 3. We mod-
ified the CWE code to produce GWE represen-
tations. For CBOW, Skipgram, CWE, GWE and
RNN-Skipgram, we used the following hyperpa-
rameters. Context window was set to 5 to both
sides of a word. We used 10 negative samples,
and threshold t of subsampling was set to 10−5.

Since Yin at al. did not publish their code,
we followed their paper and reproduced the MGE
model. We created the mapping between charac-
ters and radicals from the Unihan database5. Each
character corresponds to one of the 214 radicals in
this dataset, and the same hyperparameters were
used in training as above. Note that we did not
separate non-compositional words during training
as the original CWE and MGE did.

We used the GloVe code6 to train the baseline
GloVe vectors. In construction of co-occurrence
matrix for GloVe and RNN-GloVe, we followed
the parameter settings of xmax = 100 and α =
0.75 in (Pennington et al., 2014). Context win-
dow was 5 words to the both sides of a word, and
harmonic weighting was used on co-occurrence
counts. For the RNN-GloVe model, we removed
entries whose value < 0.5 to speed up training.

RNN-Skipgram and RNN-GloVe generated
200-dimensional word embeddings, while other
models generated 512-dimensional word embed-
dings.

To encourage further research, we published our
convAE and embedding models on github7. Eval-
uation datasets were also uploaded, whose details
will be explained in Section 5.

4https://github.com/Leonard-Xu/CWE
5http://unicode.org/charts/unihan.html
6https://github.com/stanfordnlp/GloVe
7https://github.com/ray1007/GWE
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Figure 12: Parts of t-SNE visualization of character glyph features. Most of the characters in the ovals
share the same components.

5 Evaluation

5.1 Word Similarity

A word similarity test contains multiple word
pairs and their human annotated similarity scores.
Word representations are considered good if the
calculated similarity and human annotated scores
have a high rank correlation. We computed the
Spearman’s correlation between human annotated
scores and cosine similarity of word representa-
tions.

Since there is little resource for traditional Chi-
nese, we translated WordSim-240 and WordSim-
296 datasets provided by (Chen et al., 2015). Note
that this translation is non-trivial. Some frequent
words are considered out-of-vocabulary (OOV)
due to the different usage between the simplified
and traditional. For example, “butter” is translated
to “黃油” in simplified, but “奶油” in traditional.
Besides, we manually translated SimLex-999 (Hill
et al., 2016) to traditional Chinese, and used it
as the third testing dataset. We also made these
datasets public along with our code.

When calculating similarities, word pairs con-
taining OOVs were removed. In Table 1, there are
only 237, 284 and 979 word pairs left in WordSim-
240, WordSim-296 and SimLex-999, respectively.
The results are presented in Table 1. The results of
ordinary CBOW and Skipgram are shown in the
table. CBOW/Skipgram+CWE represents CWE
trained as CBOW or Skipgram. For CWE, we

Model WS-240 WS-296 SL-999
CBOW 0.5203 0.5550 0.3330

+CWE 0.4914 0.5553 0.3471
+CWE+MGE 0.3767 0.2962 0.2762
+CWE+ctxG 0.4982 0.5549 0.3538
+CWE+tarG 0.5038 0.5503 0.3493

Skipgram 0.5922 0.5876 0.3663
+CWE 0.5916 0.5936 0.3668
+CWE+ctxG 0.5886 0.5856 0.3686

RNN-Skipgram 0.3414 0.3698 0.2464
RNN-Glove 0.2963 0.1563 0.1010

Table 1: Spearman’s correlation between human
annotated scores and cosine similarity of word
representations on three datasets: WordSim-240,
WordSim-296 and SimLex-999. The higher the
values, the better the results.

only show the results of position-based character
embeddings here because the results of cluster-
based character embeddings are worse in the ex-
periments. We found that CWE only consis-
tently improved the performance on SimLex-999
for both CBOW and Skipgram probably because
SimLex-999 contains more words that could be
understood from their compositional characters.
On SimLex-999, we observed that CWE was bet-
ter with CBOW than Skipgram. We think the rea-
son is that CBOW+CWE predicts the target word
with the mean value of all character embeddings in
the context, thus has a less noisy feature; however
Skipgram+CWE uses character embeddings of an
individual word. This noisy feature could cause
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negative effects on predicting the target word. The
GWEs were learned based on CWE in two ways.
“ctxG” represents using glyph features of context
words, while “tarG” represents using glyph fea-
tures of target words. The glyph features improved
CWE on WordSim-240 and SimLex-999, but not
WordSim-296.

As for MGE results, we were not able to repro-
duce the performance in (Yin et al., 2016). We
list possible reasons as below: we did not separate
non-compositional word during training (charac-
ter and radical embeddings are not used for these
words), and the we created character-radical index
from different data source. We conjecture that the
first to be the most crucial factor in reproducing
MGE.

The results of RNN-Skipgram and RNN-GloVe
are also in Table 1. Their results are not compara-
ble with CBOW and Skipgram. From the results,
we conclude that it is not easy to produce word
representations directly from glyphs. We think
the reason is that RNN representations are depen-
dent on each other. Updating model parameters
for word wi would also change the word represen-
tation of word wj . As a result it is much more
difficult to train such models.

We further inspect the impact of glyph fea-
tures by doing significance test8 between proposed
methods and existing ones. The p-values of the
tests are given in Table 2. We found only “tarG”
method has a p-value less than 0.05 over CWE.

+CWE+ctxG +CWE+tarG
CBOW 0.085 0.215
CBOW+CWE 0.190 0.008

Table 2: p-values of significance tests between
proposed methods and existing ones.

5.2 Word Analogy
An analogy problem has the following form:
“king”:“queen” = “man”:“?”, and “woman”
is answer to “?”. By answering the ques-
tion correctly, the model is considered capable
of expressing semantic relationships. Further-
more, the analogy relation could be expressed
by vector arithmetic of word representations as
shown in (Mikolov et al., 2013b). For the
above problem, we find word wi such that wi =
argmax

w
cos(~w, ~wqueen − ~wking + ~wman).

8We followed the method described in https://
stats.stackexchange.com/questions/17696/

Method Capital City Family J&P
CBOW 0.8006 0.7200 0.4228 0.3100

+CWE 0.7858 0.5829 0.4743 0.2667
+MGE 0.0384 0.0114 0.1287 0.0433
+CWE+ctxG 0.7888 0.5771 0.4963 0.2917
+CWE+tarG 0.7858 0.5829 0.5184 0.2817

Skipgram 0.7962 0.8971 0.4779 0.2317
+CWE 0.7932 0.8686 0.5404 0.2000
+CWE+ctxG 0.7932 0.8686 0.5662 0.2000

RNN-Skipgram 0.0000 0.0057 0.0368 -
RNN-Glove 0.0281 0.0057 0.0184 -

Table 3: Accuracy of analogy problems for capi-
tals of countries, (China) states/provinces of cities,
family relations, and our proposed job&place
(J&P) dataset. The higher the values, the better
the results.

As in the previous subsection, we translated
the word analogy dataset in (Chen et al., 2015)
to traditional. The dataset contains 3 groups of
analogy problems: capitals of countries, (China)
states/provinces of cities, and family relations.
Considering that most capital and city names do
not relate to the meaning of their compositional
characters, and that we did not separate non-
compositional word in our experiments, we pro-
posed a new analogy dataset composed of jobs and
places (job&place). Nonetheless, there might be
multiple corresponding places for a single job. For
instance, A “doctor” could be in a “hospital” or
“clinic”. In this job&place dataset, we provide a
set of places for each job. The model is considered
to answer correctly as long as the predicted word
is in this set.

We take the mean of all word representa-
tions of places (mean(~wplaces1)) for the first
job (job1), and find the place for another
job (job2) by calculating wi such that wi =
argmax

w
cos(~w,mean(~wplaces1)− ~wjob1+ ~wjob2).

The results are shown in Table 3. we observed
CWE only improved accuracy only for the family
group. The results are not surprising. The words
of family relations are compositional in Chinese,
however capital and city names are usually not.
We observed that GWE further improved CWE
for words in the family group. From Table 3,
we found that glyph features are helpful when the
characters can enhance word representations. This
is very reasonable because glyph features are fruit-
ful representations of characters. If character in-
formation does not play a role in learning word
representations, character glyphs may not be use-
ful. The same phenomenon is observed in Table 1.
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In our job&place, we still observed that GWE
improving CWE, however both CWE and GWE
were slightly worse than CBOW. We also ob-
served that Skipgram-based methods became
worse than CBOW-based methods, while in all
previous evaluation Skipgram-based methods are
consistently better.

The results of RNN-Skipgram and RNN-GloVe
are still poor. We observe that the word represen-
tations learned from RNN can no longer be ex-
pressed by vector arithmetic. The reason is still
under investigation.

5.3 Case Study
To further probe the effect of glyph features, we
show the following word pairs in SimLex-999
whose calculated cosine similarities are higher
based on GWE models than CWE. The pairs may
not look alike, but their components share related
semantics. For example, in “伶俐” (clever), the
component “利”(sharp) is compositional to the
meaning of “俐”(acute), describing someone with
a sharp mind. Other examples show the ability to
associate semantics with radicals.

Models 詞
(word) & 字典

(dictionary)
椅子

(chair) & 板凳
(bench)

CBOW 0.2342 0.3469
+CWE 0.2918 0.3640
+CWE+ctx Glyph 0.3361 0.3903
+CWE+tar Glyph 0.2857 0.3746

Models 鳥
(bird) & 火雞

(turkey)
聰明

(smart) & 伶俐
(clever)

CBOW 0.2640 0.2634
+CWE 0.3064 0.2409
+CWE+ctxG 0.3190 0.2710
+CWE+ctxG 0.3422 0.2976

Table 4: Case study on word pairs in SimLex-999.

We also provide several counter-examples. Be-
low are some word pairs which are not similar,
however GWE methods produces higher similarity
than CBOW or CWE. Take “山峰” (mountain) and
“蜂蜜” (honey) as example. Since they share no

Models 山峰
(mountain) & 蜂蜜

(honey)
書桌
(desk) & 水果(fruit)

CBOW 0.0581 0.0495
+CWE 0.0842 0.0719
+CWE+ctxG 0.0736 0.0942
+CWE+tarG 0.1093 0.0733

Models 無趣
(boring) & 好笑

(funny)
胃

(stomach) & 腰
(waist)

CBOW 0.3645 0.2388
+CWE 0.5351 0.2073
+CWE+ctxG 0.5209 0.2500
+CWE+ctxG 0.5426 0.2643

Table 5: Counter examples to which GWE meth-
ods give higher similarity scores than CBOW or
CWE.

common characters, the only thing in common is
the component “夆”, and we assume this to be the
reason for the higher similarity. Also note that in
the pair “無趣” (boring) and “好笑” (funny), the
CWE similarity is also higher. We conclude that
the character “無” (none) is not strong enough,
so the character “趣” (fun) overrides the word “無
趣” (boring), thus a higher score was mistakenly
assigned.

6 Conclusions

This work is a pioneer in enhancing Chinese word
representations with character glyphs. The char-
acter glyph features are directly learned from the
bitmaps of characters by convAE. We then pro-
posed 2 methods in learning Chinese word repre-
sentations: the first is to use character glyph fea-
tures as enhancement; the other is to directly learn
word representation from sequences of glyph fea-
tures. In experiments, we found the latter totally
infeasible. Training word representations with
RNN without word and character information is
challenging. Nonetheless, the glyph features im-
proved the character-enhanced Chinese word rep-
resentations, especially on the word analogy task
related to family.

The results of exploiting character glyph fea-
tures in word representation learning was ordi-
nary. Perhaps the co-occurrence information in
the corpus plays a bigger role than glyph fea-
tures. Nonetheless, the idea to treat each Chi-
nese character as image is innovative. As more
character-level models(Zheng et al., 2013; Kim,
2014; Zhang et al., 2015) are proposed in the NLP
field, we believe glyph features could serve as an
enhancement, and we will further examine the ef-
fect of glyph features on other tasks, such as word
segmentation, POS tagging, dependency parsing,
or downstream tasks such as text classification, or
document retrieval.
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Abstract

We consider the problem of learning
general-purpose, paraphrastic sentence
embeddings in the setting of Wieting et al.
(2016b). We use neural machine trans-
lation to generate sentential paraphrases
via back-translation of bilingual sentence
pairs. We evaluate the paraphrase pairs
by their ability to serve as training data
for learning paraphrastic sentence embed-
dings. We find that the data quality is
stronger than prior work based on bitext
and on par with manually-written English
paraphrase pairs, with the advantage that
our approach can scale up to generate large
training sets for many languages and do-
mains. We experiment with several lan-
guage pairs and data sources, and develop
a variety of data filtering techniques. In the
process, we explore how neural machine
translation output differs from human-
written sentences, finding clear differences
in length, the amount of repetition, and the
use of rare words.1

1 Introduction

Pretrained word embeddings have received a great
deal of attention from the research community, but
there is much less work on developing pretrained
embeddings for sentences. Here we target sen-
tence embeddings that are “paraphrastic” in the
sense that two sentences with similar meanings
are close in the embedding space. Wieting et al.
(2016b) developed paraphrastic sentence embed-
dings that are useful for semantic textual similar-
ity tasks and can also be used as initialization for
supervised semantic tasks.

1Generated paraphrases and code are available at http:
//ttic.uchicago.edu/˜wieting.

R: We understand that has already commenced, but there
is a long way to go.

T: This situation has already commenced, but much still
needs to be done.

R: The restaurant is closed on Sundays. No breakfast is
available on Sunday mornings.

T: The restaurant stays closed Sundays so no breakfast is
served these days.

R: Improved central bank policy is another huge factor.
T: Another crucial factor is the improved policy of the

central banks.

Table 1: Illustrative examples of references (R)
paired with back-translations (T).

To learn their sentence embeddings, Wieting et
al. used the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013). PPDB contains a large set
of paraphrastic textual fragments extracted auto-
matically from bilingual text (“bitext”), which is
readily available for languages and domains. Ver-
sions of PPDB have been released for several lan-
guages (Ganitkevitch and Callison-Burch, 2014).

However, more recent work has shown that
the fragmental nature of PPDB’s pairs can
be problematic, especially for recurrent net-
works (Wieting and Gimpel, 2017). Better per-
formance can be achieved with a smaller set of
sentence pairs derived from aligning Simple En-
glish and standard English Wikipedia (Coster and
Kauchak, 2011). While effective, this type of data
is inherently limited in size and scope, and not
available for languages other than English.

PPDB is appealing in that it only requires bi-
text. We would like to retain this property but
develop a data resource with sentence pairs rather
than phrase pairs. We turn to neural machine trans-
lation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2014; Sennrich et al., 2016a), which has ma-
tured recently to yield strong performance espe-
cially in terms of producing grammatical outputs.

In this paper, we build NMT systems for three
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language pairs, then use them to back-translate the
non-English side of the training bitext. The re-
sulting data consists of sentence pairs containing
an English reference and the output of an X-to-
English NMT system. Table 1 shows examples.
We use this data for training paraphrastic sen-
tence embeddings, yielding results that are much
stronger than when using PPDB and competitive
with the Simple English Wikipedia data.

Since bitext is abundant and available for many
language pairs and domains,2 we also develop sev-
eral methods of filtering the data, including based
on sentence length, quality measures, and mea-
sures of difference between the reference and its
back-translation. We find length to be an effective
filtering method, showing that very short length
ranges—where the translation is 1 to 10 words—
are best for learning.

In studying quality measures for filtering, we
train a classifier to predict if a sentence is a ref-
erence or a back-translation, then score sentences
by the classifier score. This investigation allows
us to examine the kinds of phenomena that best
distinguish NMT output from references in this
controlled setting of translating the bitext training
data. NMT output has more repetitions of both
words and longer n-grams, and uses fewer rare
words than the references.

We release our generated sentence pairs to the
research community with the hope that the data
can inspire others to develop additional filtering
methods, to experiment with richer architectures
for sentence embeddings, and to further analyze
the differences between neural machine transla-
tions and references.

2 Related Work

We describe related work in learning general-
purpose sentence embeddings, work in automat-
ically generating or discovering paraphrases, and
finally prior work in leveraging neural machine
translation for embedding learning.

Paraphrastic sentence embeddings. Our learn-
ing and evaluation setting is the same as that con-
sidered by Wieting et al. (2016b) and Wieting
et al. (2016a), in which the goal is to learn para-
phrastic sentence embeddings that can be used for
downstream tasks. They trained models on PPDB

2For example, CzEng 1.6 (Bojar et al., 2016) contains a
billion words across its 8 domains.

and evaluated them using a suite of semantic tex-
tual similarity (STS) tasks and supervised seman-
tic tasks. Others have begun to consider this set-
ting as well (Arora et al., 2017).

Other work in learning general purpose sen-
tence embeddings has used autoencoders (Socher
et al., 2011; Hill et al., 2016), encoder-decoder ar-
chitectures (Kiros et al., 2015), or other learning
frameworks (Le and Mikolov, 2014; Pham et al.,
2015). Wieting et al. (2016b) and Hill et al. (2016)
provide many empirical comparisons to this prior
work. For conciseness, we compare only to the
strongest configurations from their results.

Paraphrase generation and discovery. There
is a rich history of research in generating or finding
naturally-occurring sentential paraphrases (Barzi-
lay and McKeown, 2001; Dolan et al., 2004; Dolan
and Brockett, 2005; Quirk et al., 2004; Zhao et al.,
2010; Coster and Kauchak, 2011; Xu et al., 2014,
2015).

The most relevant work uses bilingual cor-
pora, e.g., Zhao et al. (2008) and Bannard and
Callison-Burch (2005), the latter leading to PPDB.
Our goals are highly similar to those of the
PPDB project, which has also been produced
for many languages (Ganitkevitch and Callison-
Burch, 2014) since it only relies on the availability
of bilingual text.

Prior work has shown that PPDB can be
used for learning embeddings for words and
phrases (Faruqui et al., 2015; Wieting et al., 2015).
However, when learning sentence embeddings,
Wieting and Gimpel (2017) showed that PPDB
is not as effective as sentential paraphrases, espe-
cially for recurrent networks. These results are in-
tuitive because the phrases in PPDB are short and
often cut across constituent boundaries. For sen-
tential paraphrases, Wieting and Gimpel (2017)
used a dataset developed for text simplification by
Coster and Kauchak (2011). It was created by
aligning sentences from Simple English and stan-
dard English Wikipedia. We compare our data to
both PPDB and this Wikipedia dataset.

Neural machine translation for paraphrastic
embedding learning. Sutskever et al. (2014)
trained NMT systems and visualized part of the
space of the source language encoder for their
English→French system. Hill et al. (2016) eval-
uated the encoders of English-to-X NMT sys-
tems as sentence representations, finding them to
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perform poorly compared to several other meth-
ods based on unlabeled data. Mallinson et al.
(2017) adapted trained NMT models to produce
sentence similarity scores in semantic evaluations.
They used pairs of NMT systems, one to translate
an English sentence into multiple foreign transla-
tions and the other to then translate back to En-
glish. Other work has used neural MT architec-
tures and training settings to obtain better word
embeddings (Hill et al., 2014a,b).

Our approach differs in that we only use the
NMT system to generate training data for train-
ing sentence embeddings, rather than use it as the
source of the model. This permits us to decouple
decisions made in designing the NMT architecture
from decisions about which models we will use
for learning sentence embeddings. Thus we can
benefit from orthogonal work in designing neural
architectures to embed sentences.

3 Neural Machine Translation

We now describe the NMT systems we use for
generating data for learning sentence embeddings.
In our experiments, we use three encoder-decoder
NMT models: Czech→English, French→English,
and German→English.

We used Groundhog3 as the implementation of
the NMT systems for all experiments. We gener-
ally followed the settings and training procedure
from previous work (Bahdanau et al., 2014; Sen-
nrich et al., 2016a). As such, all networks have a
hidden layer size of 1000 and an embedding layer
size of 620. During training, we used Adadelta
(Zeiler, 2012), a minibatch size of 80, and the
training set was reshuffled between epochs. We
trained a network for approximately 7 days on
a single GPU (TITAN X), then the embedding
layer was fixed and training continued, as sug-
gested by Jean et al. (2015), for 12 hours. Addi-
tionally, the softmax was calculated over a filtered
list of candidate translations. Following Jean et al.
(2015), during decoding, we restrict the softmax
layers’ output vocabulary to include: the 10000
most common words, the top 25 unigram transla-
tions, and the gold translations’ unigrams.

All systems were trained on the available train-
ing data from the WMT15 shared translation task
(15.7 million, 39.2 million, and 4.2 million sen-
tence pairs for CS→EN, FR→EN, and DE→EN,

3Available at https://github.com/sebastien-
j/LV_groundhog.

Czech French German
Europarl 650,000 2,000,000 2,000,000
Common Crawl 160,000 3,000,000 2,000,000
News Commentary 150,000 200,000 200,000
UN - 12,000,000 -
109 French-English - 22,000,000 -
CzEng 14,700,000 - -

Table 2: Dataset sizes (numbers of sentence pairs)
for data domains used for training NMT systems.

Language % BLEU
Czech→English 19.7
French→English 20.1
German→English 28.2

Table 3: BLEU scores on the WMT2015 test set.

respectively). The training data included: Eu-
roparl v7 (Koehn, 2005), the Common Crawl cor-
pus, the UN corpus (Eisele and Chen, 2010), News
Commentary v10, the 109 French-English corpus,
and CzEng 1.0 (Bojar et al., 2016). A breakdown
of the sizes of these corpora can be found in Ta-
ble 3. The data was pre-processed using standard
pre-processing scripts found in Moses (Koehn
et al., 2007). Rare words were split into sub-word
units, following Sennrich et al. (2016b). BLEU
scores on the WMT2015 test set for each NMT
system can be seen in Table 3.

To produce paraphrases we use “back-
translation”, i.e., we use our X→English NMT
systems to translate the non-English sentence
in each training sentence pair into English. We
directly use the bitext on which the models were
trained. This could potentially lead to pairs in
which the reference and translation match exactly,
if the model has learned to memorize the reference
translations seen during training. However, in
practice, since we have so much bitext to draw
from, we can easily find data in which they do not
match exactly.

Thus our generated data consists of pairs of En-
glish references from the bitext along with the
NMT-produced English back-translations. We use
beam search with a width of 50 to generate mul-
tiple translations for each non-English sentence,
each of which is a candidate paraphrase for the En-
glish reference.

Example outputs of this process are in Table 1,
showing some rich paraphrase phenomena in the
data. These examples show non-trivial phrase sub-
stitutions (“there is a long way to go” and “much
still needs to be done”), sentences being merged
and simplified, and sentences being rearranged.
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For examples of erroneous paraphrases that can be
generated by this process, see Table 11.

4 Models and Training

Our goal is to compare our paraphrase dataset to
other datasets by using each to train sentence em-
beddings, keeping the models and learning proce-
dure fixed. So we select models and a loss function
from prior work (Wieting et al., 2016b; Wieting
and Gimpel, 2017).

4.1 Models

We wish to embed a word sequence s into a fixed-
length vector. We denote the tth word in s as st,
and we denote its word embedding by xt. We fo-
cus on two models in this paper. The first model,
which we call AVG, simply averages the embed-
dings xt of all words in s. The only parameters
learned in this model are those in the word em-
beddings themselves, which are stored in the word
embedding matrix Ww. This model was found by
Wieting et al. (2016b) to perform very strongly for
semantic similarity tasks.

The second model, the GATED RECURRENT AV-
ERAGING NETWORK (GRAN) (Wieting and Gim-
pel, 2017), combines the benefits of AVG and long
short-term memory (LSTM) recurrent neural net-
works (Hochreiter and Schmidhuber, 1997). It
first uses an LSTM to generate a hidden vector,
ht, for each word st in s. Then ht is used to com-
pute a gate that is elementwise-multiplied with xt,
resulting in a new hidden vector at for each step t:

at = xt � σ(Wxxt +Whht + b) (1)

where Wx and Wh are parameter matrices, b is a
parameter vector, and σ is the elementwise logis-
tic sigmoid function. After all at have been gener-
ated for a sentence, they are averaged to produce
the embedding for that sentence. The GRAN re-
duces to AVG if the output of the gate is always 1.
This model includes as learnable parameters those
of the LSTM, the word embeddings, and the addi-
tional parameters in Eq. (1). We use Wc to denote
the “compositional” parameters, i.e., all parame-
ters other than the word embeddings.

Our motivation for choosing these two models
is that they both work well in this transfer learning
setting (Wieting et al., 2016b) and they are archi-
tecturally similar with one crucial difference: only
the GRAN takes into account word order. This

difference plays an important role in the effective-
ness of the different filtering methods as explored
in Section 5.

4.2 Training

We follow the training procedure of Wieting et al.
(2015) and Wieting et al. (2016b). The training
data is a set S of paraphrastic pairs 〈s1, s2〉 and
we optimize a margin-based loss:

min
Wc,Ww

1

|S|

( ∑

〈s1,s2〉∈S
max(0, δ − cos(g(s1), g(s2))

+ cos(g(s1), g(t1))) + max(0, δ − cos(g(s1), g(s2))

+ cos(g(s2), g(t2)))

)
+λc‖Wc‖2+λw‖Wwinitial−Ww‖2

where g is the model (AVG or GRAN), δ is the
margin, λc and λw are regularization parameters,
Wwinitial

is the initial word embedding matrix, and
t1 and t2 are “negative examples” taken from a
mini-batch during optimization. The intuition is
that we want the two texts to be more similar
to each other (cos(g(s1), g(s2))) than either is to
their respective negative examples t1 and t2, by a
margin of at least δ. To select t1 and t2, we choose
the most similar sentence in some set (other than
those in the given pair). For simplicity we use
the mini-batch for this set, i.e., we choose t1 for
a given 〈s1, s2〉 as follows:

t1 = argmax
t:〈t,·〉∈Sb\{〈s1,s2〉}

cos(g(s1), g(t))

where Sb ⊆ S is the current mini-batch. That is,
we want to choose a negative example ti that is
similar to si according to the current model. The
downside is that we may occasionally choose a
phrase ti that is actually a true paraphrase of si.

5 Experiments

We now investigate how best to use our generated
paraphrase data for training universal paraphras-
tic sentence embeddings. We consider 10 data
sources: Common Crawl (CC), Europarl (EP),
and News Commentary (News) from all 3 lan-
guage pairs, as well as the 109 French-English
data (Giga). We extract 150,000 reference/back-
translation pairs from each data source. We use
100,000 of these to mine for training data for our
sentence embedding models, and the remaining
50,000 are used as train/validation/test data for the
reference classification and language models de-
scribed below.
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5.1 Evaluation

We evaluate the quality of a paraphrase dataset
by using the experimental setting of Wieting et al.
(2016b). We use the paraphrases as training data
to create paraphrastic sentence embeddings, using
the cosine of the embeddings as the measure of se-
mantic relatedness, then evaluate the embeddings
on the SemEval semantic textual similarity (STS)
tasks from 2012 to 2015 (Agirre et al., 2012, 2013,
2014, 2015), the SemEval 2015 Twitter task (Xu
et al., 2015), and the SemEval 2014 SICK Seman-
tic Relatedness task (Marelli et al., 2014).

Given two sentences, the aim of the STS tasks
is to predict their similarity on a 0-5 scale, where 0
indicates the sentences are on different topics and
5 indicates that they are completely equivalent.
As our test set, we report the average Pearson’s r
over these 22 sentence similarity tasks.4 As devel-
opment data, we use the 2016 STS tasks (Agirre
et al., 2016), where the tuning criterion is the av-
erage Pearson’s r over its 5 datasets.

5.2 Experimental Setup

For fair comparison among different datasets and
dataset filtering methods described below, we use
only 24,000 training examples for nearly all exper-
iments. Different filtering methods produce dif-
ferent amounts of training data, and using 24,000
examples allows us to keep the amount of train-
ing data constant across filtering methods. It also
allows us to complete these several thousand ex-
periments in a reasonable amount of time. In Sec-
tion 5.8 below, we discuss experiments that scale
up to larger amounts of training data.

We use PARAGRAM-SL999 embed-
dings (Wieting et al., 2015) to initialize the
word embedding matrix (Ww) for both models.
For all experiments, we fix the mini-batch size to
100, λw to 0, λc to 0, and the margin δ to 0.4. We
train AVG for 20 epochs, and the GRAN for 3,
since it converges much faster. For optimization
we use Adam (Kingma and Ba, 2014) with a
learning rate of 0.001.

We compare to two data resources used in pre-
vious work to learn paraphrastic sentence em-
beddings. The first is phrase pairs from PPDB,
used by Wieting et al. (2016b) and Wieting et al.
(2016a). PPDB comes in different sizes (S, M,
L, XL, XXL, and XXXL), where each larger size

4Statistical significance testing is nontrivial due to aver-
aging Pearson’s r so we leave it to future work.

Lang. Data GRAN AVG
SimpWiki 67.2 65.8

PPDB 64.5 65.8
CC 65.5 65.4

CS EP 66.5 65.1
News 67.2 65.1
CC 67.3 66.1

FR EP 67.8 65.7
Giga 67.4 65.9
News 67.0 65.2
CC 66.5 66.2

DE EP 67.2 65.6
News 66.5 64.7

Table 4: Test results (average Pearson’s r × 100
over 22 STS datasets) using a random selection of
24,000 examples from each data source.

subsumes all smaller ones. The pairs in PPDB are
sorted by a confidence measure and so the smaller
sets contain higher precision paraphrases. We use
PPDB XL in this paper, which consists of fairly
high precision paraphrases. The other data source
is the aligned Simple English / standard English
Wikipedia data developed by Coster and Kauchak
(2011) and used for learning paraphrastic sentence
embeddings by Wieting and Gimpel (2017). We
refer to this data source as “SimpWiki”. We refer
to our back-translated data as “NMT”.

5.3 Dataset Comparison

We first compare datasets, randomly sampling
24,000 sentence pairs from each of PPDB, Simp-
Wiki, and each of our NMT datasets. The only
hyperparameter to tune for this experiment is the
stopping epoch, which we tune based on our de-
velopment set. The results are shown in Table 4.

We find that the NMT datasets are all effec-
tive as training data, outperforming PPDB in all
cases when using the GRAN. There are excep-
tions when using AVG, for which PPDB is quite
strong. This is sensible because AVG is not sen-
sitive to word order, so the fragments in PPDB
do not cause problems. However, when using
the GRAN, which is sensitive to word order, the
NMT data is consistently better than PPDB. It of-
ten exceeds the performance of training on the
SimpWiki data, which consists entirely of human-
written sentences.

5.4 Filtering Methods

Above we showed that the NMT data is better than
PPDB when using a GRAN and often as good
as SimpWiki. Since we have access to so much
more NMT data than SimpWiki (which is limited
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to fewer than 200k sentence pairs), we next ex-
periment with several approaches for filtering the
NMT data. We first consider filtering based on
length, described in Section 5.5. We then con-
sider filtering based on several quality measures
designed to find more natural and higher-quality
translations, described in Section 5.6. Finally, we
consider several measures of diversity. By diver-
sity we mean here a measure of the lexical and
syntactic difference between the reference and its
paraphrase. We describe these experiments in Sec-
tion 5.7. We note that these filtering methods are
not all mutually exclusive and could be combined,
though in this paper we experiment with each in-
dividually and leave combination to future work.

5.5 Length Filtering

We first consider filtering candidate sentence pairs
by length, i.e., the number of tokens in the trans-
lation. The tunable parameters are the upper and
lower bounds of the translation lengths.

We experiment with a partition of length ranges,
showing the results in Table 5. These results are
averages across all language pairs and data sources
of training data for each length range shown. We
find it best to select NMT data where the trans-
lations have between 0 and 10 tokens, with per-
formance dropping as sentence length increases.
This is true for both the GRAN and AVG models.
We do the same filtering for the SimpWiki data,
though the trend is not nearly as strong. There-
fore this is unlikely due to the nature of the eval-
uation data, and may be due to machine transla-
tion quality dropping as sentence length increases.
This trend appears even though the datasets with
higher ranges have more tokens of training data,
since only the number of training sentence pairs is
kept constant across configurations.

We then tune the length range using our de-
velopment data, considering the following length
ranges: [0,10], [0,15], [0,20], [0,30], [0,100],
[10,20], [10,30], [10,100], [15,25], [15,30],
[15,100], [20,30], [20,100], [30,100]. We tune
over ranges as well as language, data source, and
stopping epoch, each time training on 24,000 sen-
tence pairs. We report the average test results over
all languages and datasets in Table 6. We com-
pare to a baseline that draws a random set of data,
showing that length-based filtering leads to gains
of nearly half a point on average across our test
sets.

Length Range
Data Model 0-10 10-20 20-30 30-100

SimpWiki GRAN 67.4 67.7 67.1 67.3
AVG 65.9 65.7 65.6 65.9

NMT GRAN 66.6 66.5 66.0 64.8
AVG 65.7 65.6 65.3 65.0

Table 5: Test correlations for our models when
trained on sentences with particular length ranges
(averaged over languages and data sources for the
NMT rows). Results are on STS datasets (Pear-
son’s r × 100).

NMT SimpWiki
Filtering Method GRAN AVG GRAN AVG
None (Random) 66.9 65.5 67.2 65.8
Length 67.3 66.0 67.4 66.2
Tuned Len. Range [0,10] [0,10] [0,10] [0,15]

Table 6: Length filtering test results after tuning
length ranges on development data (averaged over
languages and data sources for the NMT rows).
Results are on STS datasets (Pearson’s r × 100).

The tuned length ranges are short for both NMT
and SimpWiki. The distribution of lengths in the
NMT and SimpWiki data is fairly similar. The 10
NMT datasets all have mean translation lengths
between 22 and 28 tokens. The data has fairly
large standard deviations (11-25 tokens) indicat-
ing that there are some very long translations in
the data. SimpWiki has a mean length of 24.2 and
a standard deviation of 13.1.

5.6 Quality Filtering
We also consider filtering based on several mea-
sures of the “quality” of the back-translation:

• Translation Cost: We use the cost (negative
log likelihood) of the translation from the NMT
system, divided by the number of tokens in the
translation.
• Language Model: We train a separate language

model for each language/data pair on 40,000
references that are separate from the 100,000
used for mining data. Due to the small data size,
we train a 3-gram language model and use the
KenLM toolkit (Heafield, 2011).
• Reference/Translation Classification: We

train binary classifiers to predict whether a
given sentence is a reference or translation (de-
scribed in Section 5.6.1). We use the probability
of being a reference as the score for filtering.

For translation cost, we tune the upper bound
of the cost over the range [0.2, 1] using increments
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Filtering Method GRAN AVG
None (Random) 66.9 65.5
Translation Cost 66.6 65.4
Language Model 66.7 65.5
Reference Classification 67.0 65.5

Table 7: Quality filtering test results after tun-
ing quality hyperparameters on development data
(averaged over languages and data sources for the
NMT rows). Results are on STS datasets (Pear-
son’s r × 100).

of 0.1. For the language model, we tune an up-
per bound on the perplexity of the translations
among the set {25, 50, 75, 100, 150, 200,∞}. For
the classifier, we tune the minimum probability of
being a reference over the range [0, 0.9] using in-
crements of 0.1.

Table 7 shows average test results over all lan-
guages and datasets after tuning hyperparameters
on our development data for each. The translation
cost and language model are not helpful for filter-
ing, as random selection outperforms them. Both
methods are outperformed by the reference classi-
fier, which slightly outperforms random selection
when using the stronger GRAN model. We now
discuss further how we trained the reference clas-
sifier and the data characteristics that it reveals.
We did not experiment with quality filtering for
SimpWiki since it is human-written text.

5.6.1 Reference/Translation Classification
We experiment with predicting whether a given
sentence is a reference or a back-translation, hy-
pothesizing that generated sentences with high
probabilities of being references are of higher
quality. We train two kinds of binary classifiers,
one using an LSTM and the other using word av-
eraging, followed by a softmax layer. We select
40,000 reference/translation pairs for training and
5,000 for each of validation and testing. A single
example is a sentence with label 1 if it is a refer-
ence translation and 0 if it is a translation.

In training, we consider the entire k-best list
as examples of translations, selecting one trans-
lation to be the 0-labeled example. We either do
this randomly or we score each sentence in the
k-best list using our model and select the one
with the highest probability of being a reference
as the 0-labeled example. We tune this choice as
well as an L2 regularizer on the word embeddings
(tuned over {10−5, 10−6, 10−7, 10−8, 0}). We use
PARAGRAM-SL999 embeddings (Wieting et al.,

Model Lang. Data Test Acc. + Acc. - Acc.
CC 72.2 72.2 72.3

CS EP 72.3 64.3 80.3
News 79.7 73.2 86.3
CC 80.7 82.1 79.3

LSTM FR EP 79.3 75.2 83.4
Giga 93.1 92.3 93.8
News 84.2 81.2 87.3
CC 79.3 71.7 86.9

DE EP 85.1 78.0 92.2
News 89.8 82.3 97.4
CC 71.2 68.9 73.5

CS EP 69.1 63.0 75.1
News 77.6 71.7 83.6
CC 78.8 80.4 77.2

AVG FR EP 78.9 75.5 82.3
Giga 92.5 91.5 93.4
News 82.8 81.1 84.5
CC 77.3 70.4 84.1

DE EP 82.7 73.4 91.9
News 87.6 80.0 95.3

Table 8: Results of reference/translation clas-
sification (accuracy×100). The highest score in
each column is in boldface. Final two columns
show accuracies of positive (reference) and nega-
tive classes, respectively.

2015) to initialize the word embeddings for both
models. Models were trained by minimizing cross
entropy for 10 epochs using Adam with learning
rate 0.001. We performed this procedure sepa-
rately for each of the 10 language/data pairs.

The results are shown in Table 8. While per-
formance varies greatly across data sources, the
LSTM always outperforms the word averaging
model. For our translation-reference classifica-
tion, we note that our results can be further im-
proved. We also trained models on 90,000 exam-
ples, essentially doubling the amount of data, and
the results improved by about 2% absolute on each
dataset on both the validation and testing data.

Analyzing Reference Classification. We in-
spected the output of our reference classifier and
noted a few qualitative trends which we then ver-
ified empirically. First, neural MT systems tend
to use a smaller vocabulary and exhibit more re-
stricted use of phrases. They correspondingly tend
to show more repetition in terms of both words and
longer n-grams. This hypothesis can be verified
empirically in several ways. We do so by calculat-
ing the entropy of the unigrams and trigrams for
both the references and the translations from our
150,000 reference-translation pairs.5 We also cal-
culate the repetition percentage of unigrams and

5We randomly selected translations from the beam search.

280



Lang. Data Ent. (uni) Ent. (tri) Rep. (uni) Rep. (tri)
CC 0.50 1.13 -7.57% -5.58%

CS EP 0.14 0.31 -0.88% -0.11%
News 0.16 0.31 -0.96% -0.16%
CC 0.97 1.40 -8.50% -7.53%

FR EP 0.51 0.69 -1.85% -0.58%
Giga 0.97 1.21 -5.30% -7.74%
News 0.67 0.75 -2.98% -0.85%
CC 0.29 0.57 -1.09% -0.73%

DE EP 0.32 0.53 -0.14% -0.11%
News 0.40 0.37 -1.02% -0.24%

All 0.46 0.74 -2.80% -2.26%

Table 9: Differences in entropy and repetition of
unigrams/trigrams in references and translations.
Negative values indicate translations have a higher
value, so references show consistently higher en-
tropies and lower repetition rates.

trigrams in both the references and translations.
This is defined as the percentage of words that
are repetitions (i.e., have already appeared in the
sentence). For unigrams, we only consider words
consisting of at least 3 characters.

The results are shown in Table 9, in which we
subtract the translation value from the reference
value for each measure. The translated text has
lower n-gram entropies and higher rates of repeti-
tion. This appears for all datasets, but is strongest
for common crawl and French-English 109.

We also noticed that translations are less likely
to use rare words, instead willing to use a larger se-
quence of short words to convey the same mean-
ing. We found that translations were sometimes
more vague and, unsurprisingly, were more likely
to be ungrammatical.

We check whether our classifier is learning
these patterns by computing the reference prob-
abilities P (R) of 100,000 randomly sampled
translation-reference pairs from each dataset (the
same used to train models). We then compute
the correlation between our classification score
and different metrics: the repetition rate of the
sentence, the average inverse-document frequency
(IDF) of the sentence,6 and the translation length.

The results are shown in Table 10. Negative cor-
relations with repetitions indicates that fewer repe-
titions lead to higher P (R). A positive correlation
with average IDF indicates that P (R) rewards the
use of rare words. Interestingly, negative correla-
tion with length suggests that the classifier prefers

6Wikipedia was used to calculate the frequencies of the
tokens. All tokens were lowercased.

Metric Spearman’s ρ
Unigram repetition rate -35.1
Trigram repetition rate -18.4
Average IDF 27.8
Length -34.0

Table 10: Spearman’s ρ between our reference
classifier probability and various measures.

Sentence P (R)
R: Room was comfortable and the staff at the

front desk were very helpful.
1.0

T: The staff were very nice and the room was very
nice and the staff were very nice.

<0.01

R: The enchantment of your wedding day, cap-
tured in images by Flore-Ael Surun.

0.98

T: The wedding of the wedding, put into images
by Flore-Ael A.

<0.01

R: Mexico and Sweden are longstanding support-
ers of the CTBT.

1.0

T: Mexico and Sweden have been supporters of
CTBT for a long time now.

0.06

R: We thought Mr Haider ’ s Austria was endan-
gering our freedom.

1.0

T: We thought that our freedom was put at risk by
Austria by Mr Haider.

0.09

Table 11: Illustrative examples of references (R)
and back-translations (T), along with probabilities
from the reference classifier. See text for details.

more concise sentences.7 We show examples of
these phenomena in Table 11. The first two exam-
ples show the tendency of NMT to repeat words
and phrases. The second two show how they tend
to use sequences of common words (“put at risk”)
rather than rare words (“endangering”).

5.7 Diversity Filtering

We consider several filtering criteria based on
measures that encourage particular amounts of
disparity between the reference and its back-
translation:

• n-gram Overlap: Our n-gram overlap mea-
sures are calculated by counting n-grams of a
given order in both the reference and translation,
then dividing the number of shared n-grams by
the total number of n-grams in the reference or
translation, whichever has fewer. We use three
n-gram overlap scores (n ∈ {1, 2, 3}).
• BLEU Score: We use a smoothed sentence-

level BLEU variant from Nakov et al. (2012)
that uses smoothing for all n-gram lengths and
also smooths the brevity penalty.

7This is noteworthy because the average sentence length
of translations and references is not significantly different.

281



NMT SimpWiki
Filtering Method GRAN AVG GRAN AVG
Random 66.9 65.5 67.2 65.8
Unigram Overlap 66.6 66.1 67.8 67.4
Bigram Overlap 67.0 65.5 68.0 67.2
Trigram Overlap 66.9 65.4 67.8 66.6
BLEU Score 67.1 65.3 67.5 66.5

Table 12: Diversity filtering test results after tun-
ing filtering hyperparameters on development data
(averaged over languages and data sources for the
NMT rows). Results are on STS datasets (Pear-
son’s r × 100).

For both methods, the tunable hyperparam-
eters are the upper and lower bounds for the
above scores. We tune over the cross product of
lower bounds {0, 0.1, 0.2, 0.3} and upper bounds
{0.6, 0.7, 0.8, 0.9, 1.0}. Our intuition is that the
best data will have some amount of n-gram over-
lap, but not too much. Too much n-gram overlap
will lead to pairs that are not useful for learning.

The results are shown in Table 12, for both mod-
els and for both NMT and SimpWiki. We find that
the diversity filtering methods lead to consistent
improvements when training on SimpWiki. We
believe this is because many of the sentence pairs
in SimpWiki are near-duplicates and these filtering
methods favor data with more differences.

Diversity filtering can also help when selecting
NMT data, though the differences are smaller. We
do note that unigram overlap is the strongest filter-
ing strategy for AVG. When looking at the thresh-
old tuning, the best lower bounds are often 0 or 0.1
and the best upper bounds are typically 0.6-0.7, in-
dicating that sentence pairs with a high degree of
word overlap are not useful for training. We also
find that the GRAN benefits more from filtering
based on higher-order n-gram overlap than AVG.

5.8 Scaling Up

Unlike the SimpWiki data, which is naturally lim-
ited and only available for English, we can scale
our approach. Since we use data on which the
NMT systems were trained and perform back-
translation, we can easily produce large training
sets of paraphrastic sentence pairs for many lan-
guages and data domains, limited only by the
availability of bitext.

To test this, we took the tuned filtering methods
and language/data pairs (according to our devel-
opment dataset only), and trained them on more
data. These were CC-CS for GRAN and CC-DE

Data GRAN AVG
PPDB 64.6 66.3
SimpWiki (100k/168k) 67.4 67.7
CC-CS (24k) 66.8 -
CC-CS (100k) 68.5 -
CC-DE (24k) - 66.6
CC-DE (168k) - 67.6

Table 13: Test results with more training data.
More data helps both AVG and GRAN to match or
surpass training on SimpWiki. Both comfortably
surpass PPDB. The number of training examples
used is in parentheses.

for AVG. We also trained each model on the same
number of sentence pairs from SimpWiki.8 We
also compare to PPDB XL, and since PPDB has
fewer tokens per example, we use enough PPDB
data so that it has at least as many tokens as the
SimpWiki data used in the experiment.9

Table 13 shows clear improvements when us-
ing more training data, providing evidence that our
approach can scale to larger datasets. The NMT
data surpasses SimpWiki for the GRAN, while
the SimpWiki and NMT data perform similarly for
AVG. PPDB is outperformed by both data sources
for both models. Even when we train on all 52M
tokens in PPDB XXL, AVG only reaches 66.5.

6 Conclusion

We showed how back-translation can be used
to generate effective training data for paraphras-
tic sentence embeddings. We explored filtering
strategies that improve the generated data; in do-
ing so, we identified characteristics that distin-
guish NMT output from references. Our hope is
that these results can enable learning paraphrastic
sentence embeddings with powerful neural archi-
tectures across many languages and domains.
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Abstract

Word embeddings have attracted much at-
tention recently. Different from alpha-
betic writing systems, Chinese characters
are often composed of subcharacter com-
ponents which are also semantically infor-
mative. In this work, we propose an ap-
proach to jointly embed Chinese words as
well as their characters and fine-grained
subcharacter components. We use three
likelihoods to evaluate whether the con-
text words, characters, and components
can predict the current target word, and
collected 13,253 subcharacter components
to demonstrate the existing approaches of
decomposing Chinese characters are not
enough. Evaluation on both word similar-
ity and word analogy tasks demonstrates
the superior performance of our model.

1 Introduction

Distributed word representation represents a word
as a vector in a continuous vector space and can
better uncover both the semantic and syntactic in-
formation over traditional one-hot representations.
It has been successfully applied to many down-
stream natural language processing (NLP) tasks
as input features, such as named entity recog-
nition (Collobert et al., 2011), text classification
(Joulin et al., 2016), sentiment analysis (Tang
et al., 2014), and question answering (Zhou et al.,
2015). Among many embedding methods (Ben-
gio et al., 2003; Mnih and Hinton, 2009), CBOW
and Skip-Gram models are very popular due to
their simplicity and efficiency, making it feasi-
ble to learn good embeddings of words from large
scale training corpora (Mikolov et al., 2013b,a).
Despite the success and popularity of word em-

beddings, most of the existing methods treat each

word as the minimum unit, which ignores the mor-
phological information of words. Rare words can-
not be well represented when optimizing a cost
function related to a rare word and its contexts.
To address this issue, some recent studies (Luong
et al., 2013; Qiu et al., 2014; Sun et al., 2016a;
Wieting et al., 2016) have investigated how to ex-
ploit morphemes or character n-grams to learn bet-
ter embeddings of English words.
Different from other alphabetic writing systems

such as English, written Chinese is logosyllabic,
i.e., a Chinese character can be aword on its own or
part of a polysyllabic word1. The characters them-
selves are often composed of subcharacter com-
ponents which are also semantically informative.
The subword items of Chinese words, including
characters and subcharacter components, contain
rich semantic information. The characters com-
posing a word can indicate the semantic mean-
ing of the word and the subcharacter components,
such as radicals and components themselves being
a character, composing a character can indicate the
semantic meaning of the character. The compo-
nents of characters can be roughly divided into two
types: semantic component and phonetic compo-
nent. The semantic component indicates themean-
ing of a character while the phonetic component
indicates the sound of a character. For example,
氵 (water) is the semantic component of charac-
ters 湖 (lake) and 海 (sea), 马 (horse) is the pho-
netic component of characters妈 (mother) and骂
(scold) where both妈 and骂 are pronounced sim-
ilar to马.
Leveraging the subword information such as

characters and subcharacter components can en-
hance Chinese word embeddings with internal
morphological semantics. Some methods have
been proposed to incorporate the subword infor-

1https://en.wikipedia.org/wiki/Written_
Chinese
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mation for Chinese word embeddings. Sun et al.
(2014) and Li et al. (2015) proposed methods to
enhance Chinese character embeddings with rad-
icals based on C&W model (Collobert and We-
ston, 2008) and word2vec models (Mikolov et al.,
2013a,b) respectively. Chen et al. (2015) used
Chinese characters to improve Chinese word em-
beddings and proposed the CWE model to jointly
learn Chinese word and character embeddings.
Xu et al. (2016) extended the CWE model by ex-
ploiting the internal semantic similarity between
a word and its characters in a cross-lingual man-
ner. To combine both the radical-character and
character-word compositions, Yin et al. (2016)
proposed a multi-granularity embedding (MGE)
model based on the CWE model, which represents
the context as a combination of surroundingwords,
surrounding characters, and the radicals of the tar-
get word. Particularly, they developed a dictionary
of 20,847 characters and 296 radicals.

However, all the above approaches still missed a
lot of fine-grained components in Chinese charac-
ters. Formally and historically, radicals are char-
acter components used to index Chinese charac-
ters in dictionaries. Although many of the rad-
icals are also semantic components, a character
has only one radical, which cannot fully uncover
the semantics and structure of the character. Be-
sides over 200 radicals, there are more than 10,000
components which are also semantically mean-
ingful or phonetically useful. For example, Chi-
nese character照 (illuminate, reflect, mirror, pic-
ture) has one radical 灬 (the corresponding tra-
ditional Chinese radical is 火, meaning fire) and
three other components, i.e., 日 (sun), 刀 (knife),
and 口 (mouth). Shi et al. (2015) proposed us-
ingWUBI input method to decompose the Chinese
characters into components. However, WUBI in-
put method uses rules to group Chinese characters
into meaningless clusters which can fit the alpha-
bet based keyboard. The semantics of the compo-
nents are not straightforwardly meaningful.

In this work, we present a model to jointly
learn the embeddings of Chinese words, charac-
ters, and subcharacter components. The learned
Chinese word embeddings can leverage the ex-
ternal context co-occurrence information and in-
corporate rich internal subword semantic informa-
tion. Experiments on both word similarity and
word analogy tasks demonstrate the effectiveness
of our model over previous works. The code

and data are available at https://github.com/
HKUST-KnowComp/JWE.

2 Joint Learning Word Embedding

In this section, we introduce our joint learning
word embedding model (JWE), which combines
words, characters, and subcharacter components
information. Our model is based on CBOWmodel
(Mikolov et al., 2013a). JWE uses the average of
context word vectors, the average of context char-
acter vectors, and the average of context subchar-
acter vectors to predict the target word, and uses
the sum of these three prediction losses as the ob-
jective function.

INPUT PROJECTION OUTPUT

wi+1

wi�1

ci�1

ci+1

si�1

si+1

si

wi

Figure 1: Illustration of JWE.wi is the target word.
wi−1 and wi+1 are the left word and right word of
wi respectively. ci−1 and ci+1 represent the char-
acters in the context. si−1 and si+1 represent the
subcharacters in the context, si represents the sub-
characters of the target word wi.

We denote D as the training corpus, W =
(w1, w2, · · · , wN ) as the vocabulary of words,
C = (c1, c2, · · · , cM ) as the vocabulary of char-
acters, S = (s1, s2, · · · , sK) as the vocabulary
of subcharacters, and T as the context window
size respectively. As illustrated in Figure 1, JWE
aims to maximize the sum of log-likelihoods of
three predictive conditional probabilities for a tar-
get word wi:

L(wi) =
3∑

k=1

logP (wi|hik), (1)

where hi1 , hi2 , hi3 are the composition of context
words, context characters, context subcharacters
respectively. Let vwi , vci , vsi be the “input” vec-
tors of word wi, character ci, and subcharacter si
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respectively, v̂wi be the “output” vectors of word
wi. The conditional probability is defined by the
softmax function as follows:

p(wi|hik) =
exp(hT

ik
v̂wi)∑N

j=1 exp(hT
ik

v̂wj )
, k = 1, 2, 3,

(2)
where hi1 is the average of the “input” vectors of
words in the context, i.e.:

hi1 =
1

2T

∑

−T≤j≤T,j ̸=0

vwi+j . (3)

Similarly, hi2 is the average of characters’ “input”
vectors in the context, hi3 is the average of sub-
characters’ “input” vectors in the context or in the
target word or all of them. Given a corpusD, JWE
maximizes the overall log likelihood:

L(D) =
∑

wi∈D

L(wi), (4)

where the optimization follows the implementa-
tion of negative sampling used in CBOW model
(Mikolov et al., 2013a).
This objective function is different from that of

MGE (Yin et al., 2016). For a target word wi, the
objective function of MGE is almost equivalent to
maximizing P (wi|hi1 + hi2 + hi3). During the
backpropagation, the gradients of hi1 , hi2 , hi3 can
be different in our model while they are always
same in MGE, so the gradients of the embeddings
of words, characters, subcharacter components can
be different in our model while they are same in
MGE. Thus, the representations of words, charac-
ters, and subcharacter components are decoupled
and can be better trained in our model. A sim-
ilar decoupled objective function is used in (Sun
et al., 2016a) to learn English word embeddings
and phrase embeddings. Our model differs from
theirs in that we combine the subwords of both the
context words and target word to predict the target
word while they use the morphemes of the target
English word to predict it.

3 Experiments

We quantitatively evaluate the quality of word em-
beddings learned by our model on word similarity
evaluation and word analogy tasks.

3.1 Experimental Settings
Training Corpus. We adopt the Chinese
Wikipedia Dump2 as our training corpus. In pre-

2 http://download.wikipedia.com/zhwiki

Model Wordsim-240 Wordsim-295
CBOW 0.5009 0.5985
CWE 0.5133 0.5805
MGE 0.5128 0.5425
JWE+c+p1 0.5437 0.6549
JWE+c+p2 0.5476 0.6676
JWE+c+p3 0.5554 0.6533
JWE+r+p1 0.5478 0.6434
JWE+r+p2 0.5619 0.6621
JWE+r+p3 0.5273 0.6461
JWE-n 0.5476 0.6710

Table 1: Results on word similarity evaluation.
For our JWEmodel, +c represents the components
feature and +r represents the radicals feature; +p
indicates which subcharacters are used to predict
the target word; +p1 indicates using the surround-
ing words’ subcharacter features; +p2 indicates us-
ing the target word’s subcharacter features; +p3
indicates using the subcharacter features of both
the surrounding words and the target word; -n in-
dicates only using characters without either com-
ponents or radicals.

processing, pure digits and non Chinese charac-
ters are removed. We use THULAC3 (Sun et al.,
2016b) for Chinese word segmentation and POS
tagging. We identify all entity names for CWE
(Chen et al., 2015) and MGE (Yin et al., 2016)
as they do not use the characters information for
non-compositional words. Our model (JWE) does
not use such a non-compositional word list. We
obtained a 1GB training corpus with 153,071,899
tokens and 3,158,225 unique words.
Subcharacter Components. We crawled the

components and radicals information of Chinese
characters from HTTPCN4. We obtained 20,879
characters, 13,253 components and 218 radicals,
of which 7,744 characters have more than one
components, and 214 characters are equal to their
radicals.
Parameter Settings. We compare our method

with CBOW (Mikolov et al., 2013b)5 , CWE
(Chen et al., 2015)6, and MGE (Yin et al., 2016)7.

3http://thulac.thunlp.org/
4http://tool.httpcn.com/zi/
5https://code.google.com/p/word2vec/
6https://github.com/Leonard-Xu/CWE
7We used the source code provided by the author. Our

experimental results of baselines are different from that in
MGE paper because we used a 1GB corpus while they used a
500MB corpus and we fixed the training iteration while they
tried the training iteration in range [5, 200] and chose the best.
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For all models, we used the same parameter set-
tings. We fixed the word vector dimension to be
200, the window size to be 5, the training iteration
to be 100, the initial learning rate to be 0.025, and
the subsampling parameter to be 10−4. Words with
frequency less than 5 were ignored during training.
We used 10-word negative sampling for optimiza-
tion.

3.2 Word Similarity

This task evaluates the embedding’s ability of un-
covering the semantic relatedness of word pairs.
We select two different Chinese word similarity
datasets, wordsim-240 and wordsim-296 provided
by (Chen et al., 2015) for evaluation. There are
240 pairs of Chinese words in wordsim-240 and
296 pairs of Chinese words in wordsim-296. Both
datasets contain human-labeled similarity scores
for each word pair. There is a word in wordsim-
296 that did not appear in the training corpus, so
we removed this from the gold-standard to pro-
duce wordsim-295. All words in wordsim-240 ap-
peared in the training corpus. The similarity score
for a word pair is computed as the cosine simi-
larity of their embeddings generated by the learn-
ing model. We compute the Spearman correlation
(Myers et al., 2010) between the human-labeled
scores and similarity scores computed by embed-
dings. The evaluation results of our model and
baseline methods on wordsim-240 and wordsim-
295 are shown in Table 1.
From the results, we can see that JWE substan-

tially outperforms CBOW, CWE, and MGE on
the two word similarity datasets. JWE can bet-
ter leverage the rich morphological information in
Chinese words than CWE and MGE. It shows the
benefits of decoupling the representation of words,
characters, and subcharacter components as op-
posed to employing concatenation, sum, or aver-
age on all of them as the context.
We also observe that JWE with only characters

can get competitive results on the word similarity
task compared to JWE with characters and sub-
characters. The reason may be that characters are
enough to provide additional semantic information
for computing the similarities of many word pairs
in the two datasets. For example, the similarity of
法律 (law, statute) and律师 (lawyer) in wordsim-
295 can be directly inferred from the shared char-
acter律 (law, rule).

3.3 Word Analogy
This task examines the quality of word embedding
by its capacity of discovering linguistic regularities
between pairs of words. For example, for a tuple
like “罗马 (Rome):意大利 (Italy)::柏林 (Berlin):
德国 (Germany)”, the model can answer correctly
if the nearest vector representation to vec(意大利)
- vec(罗马) + vec(柏林) is vec(德国) among all
words except from罗马,意大利, and柏林. More
generally, given an analogy tuple “a : b :: c : d,”
the model answers the analogy question “a : b ::
c :?” by finding x in the vocabulary such that

arg max
x ̸=a,x̸=b,x ̸=c

cos(⃗b − a⃗ + c⃗, x⃗).

We use accuracy as the evaluation metric. In this

Model Total Capital State Family
CBOW 0.7954 0.8493 0.8857 0.6029
CWE 0.7553 0.8420 0.8743 0.4632
MGE 0.7696 0.8907 0.8857 0.3934
JWE+c+p1 0.7562 0.8272 0.8286 0.5331
JWE+c+p2 0.8407 0.8848 0.9486 0.6618
JWE+c+p3 0.8505 0.9188 0.9371 0.6250
JWE+r+p1 0.7553 0.8198 0.8171 0.5551
JWE+r+p2 0.8185 0.8656 0.9143 0.6397
JWE+r+p3 0.8416 0.9010 0.9200 0.6434
JWE-n 0.8229 0.8803 0.9028 0.6286

Table 2: Results on word analogy reasoning. The
configurations are the same of the ones used in Ta-
ble 1.

task, we use the Chinese word analogy dataset in-
troduced by (Chen et al., 2015), which consists
of 1,124 tuples of words and each tuple contains
4 words, coming from three different categories:
“Capital” (677 tuples), “State” (175 tuples), and
“Family” (272 tuples). Our training corpus covers
all the testing words.
The results in Table 2 show that JWE outper-

forms the baselines on all categories’ word anal-
ogy tasks. Different from the results on the word
similarity task, JWEwith components consistently
performs better than JWE with radicals and JWE
without either radicals or components. It demon-
strates the necessary of delving deeper into fine-
grained components for complex semantic reason-
ing tasks.

3.4 Case Studies
In addition to evaluating the benefits of incorpo-
rating subword information for Chinese word em-
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beddings, it would be interesting to see the rela-
tionships of the embeddings of words, characters,
and subcharacter components as they are embed-
ded into a same continuous vector space.

照 (photograph)

照片 (photo)
相片 (photo)

拍照 (photograph)
护照 (passport)
照相 (photography)

河 (river)

黄河 (the Yellow River)
河流 (river)

河道 (watercourse)
运河 (canal)

河南 (Henan province)

Table 3: Closest words of characters 照 (photo-
graph) and河 (river).

Component 疒 (illness)

Closest
characters

疗 (cure)症 (symptom)
痛 (pain)疮 (sore)
患 (suffer)痒 (itch)

疳 (infantile malnutrition)
病 (disease)肿 (swelling)

Closest
words

治疗 (cure)病症 (symptom)
复发 (recurrence)疼痛 (pain)

症状 (symptom)
腹绞痛 (abdominal pain)

患者 (patients)癫痫 (epilepsy)
疾病 (disease)疗法 (therapy)

Table 4: Closest characters and closest words of
the component疒 (illness).

We evaluate the embeddings’ abilities of uncov-
ering the semantic relatedness of words, charac-
ters, and subcharacter components through case
studies. The similarities between them are com-
puted by the cosine similarities of their embed-
dings. Take two Chinese character 照 (photo-
graph) and 河 (river) as examples, we list their
closest words in Table 3. We can see that most
of the closest words are semantically related to the
corresponding character.
We further take the component疒 (illness) as an

example and list its closest characters and words
in Table 4. All of the closest characters and words
are semantically related to the component疒 (ill-
ness). Most of them have the component 疒 (ill-
ness). 患 (suffer), 肿 (swelling), and 患者 (pa-
tients) do not have the component疒 (illness), but

they are also semantically related to疒 (illness). It
shows that JWE does not overuse the component
information but leverages both the external con-
text co-occurrence information and internal sub-
word morphological information well.

4 Conclusion and Future Work

In this paper, we propose a model to jointly learn
the embeddings of Chinese words, characters, and
subcharacter components. Our approach makes
full use of subword information to enhance Chi-
nese word embeddings. Experiments show that
our model substantially outperforms the baseline
methods on Chinese word similarity computation
and Chinese word analogy reasoning, and demon-
strate the benefits of incorporating fine-grained
components compared to just using characters.
There could be several directions to be explored

for future work. First, we use the average oper-
ation to integrate the subcharacter components as
the context to predict the target word. The struc-
ture of Chinese characters and the positions of
components in the character may be considered to
fully leverage the component information of Chi-
nese characters. Second, for any target word, we
simply use word context, character context, and
subcharacter context to predict it and do not distin-
guish compositional words and non-compositional
words. To solve this problem, attention models
may be used to adaptively assign weights to word
context, character context, and subcharacter con-
text.
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Abstract

We present an unsupervised, language ag-
nostic approach for exploiting morpho-
logical regularities present in high di-
mensional vector spaces. We propose a
novel method for generating embeddings
of words from their morphological vari-
ants using morphological transformation
operators. We evaluate this approach on
MSR word analogy test set (Mikolov et al.,
2013d) with an accuracy of 85% which is
12% higher than the previous best known
system.

1 Introduction

Vector representation of words are presently be-
ing used to solve a variety of problems like doc-
ument classification (Sebastiani, 2002), question
answering (Tellex et al., 2003) and chunking
(Turian et al., 2010).

Word representations capture both syntactic and
semantic properties (Mikolov et al., 2013d) of nat-
ural language. Soricut and Och (2015) exploited
these regularities to generate prefix/suffix based
morphological transformation rules in an unsuper-
vised manner. These morphological transforma-
tions were represented as vectors in the same em-
bedding space as the vocabulary.

Using Soricut’s transformation rules, the major
problem is identifying correct rule to apply to a
word, i.e. if we have to generate an embedding for
“runs”, which rule to apply on “run”. Experimen-
tal results showed that “walk - walks” gives better
results than rules like “invent - invents” or “ob-
ject - objects” in generating word embedding for
“runs”. In this paper, we try to explore if we can
harness this morphological regularity in a much

* These authors contributed equally to this work.

better way, than applying a single rule using vector
arithmetic.

Hence, we tried to come up with a global trans-
formation operator, which aligns itself with the
source word, to give best possible word embed-
ding for target word. We will have a single trans-
formation operator for each rule, irrespective of
the form of root word (like verb or a noun). Our
transformation operator is in the form of a ma-
trix, which when applied on a word embedding
(cross product of vector representation of word
with transformation matrix) gives us a word em-
bedding for target word.

The intuition is not to solve for “invent is to in-
vents as run is to ?” or ”object is to objects as run
is to ?”, but instead we are solving for “walk is to
walks, object is to objects, invent is to invents, ....
as run is to ?”. A transformation operator aims to
be a unified transition function for different forms
of the same transition.

The idea of projection learning has been applied
to a multitude of tasks such as in the learning of
cross lingual mappings for translation of English
to Spanish (Mikolov et al., 2013b). Our approach
has its basis on the same lines but with a different
formulation and end goal to learn morphological
rules rather than semantic associations and trans-
lational constraints (as done by Mikolov).

In summary, the main contributions of this pa-
per is a new method to harness morphological reg-
ularities present in high dimensional word embed-
dings. Using this method, we present state of the
art results on MSR word analogy dataset.

This paper is structured as follows. We first dis-
cuss the corpus used for training the transforma-
tion operators in section 2. In section 3, we discuss
how these transformation operators are trained.
Later in sections 4, we analyze and discuss the re-
sults of our experiments. We finish this paper with
future scope of our work in section 5.
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2 Datasets

We are using word embeddings trained on Google
News corpus (Mikolov et al., 2013c) for our ex-
periments. For the model trained in this paper, we
have used the Skip-gram (Mikolov et al., 2013a)
algorithm. The dimensionality has been fixed at
300 with a minimum count of 5 along with nega-
tive sampling. As training set and for estimating
the frequencies of words, we use the Wikipedia
data (Shaoul, 2010). The corpus contains about 1
billion tokens.

The MSR dataset (Mikolov et al., 2013d) con-
tains 8000 analogy questions. This data set has
been used by us for testing our model. The re-
lations portrayed by these questions are morpho-
syntactic, and can be categorized according to
parts of speech - adjectives, nouns and verbs.
Adjective relations include comparative and su-
perlative (good is to best as smart is to smartest).
Noun relations include singular and plural, pos-
sessive and non-possessive (dog is to dog’s as cat
is to cat’s). Verb relations are tense modifications
(work is to worked as accept is to accepted).

For all the experiments, we have calculated the
fraction of answers correctly answered by the sys-
tem on MSR word analogy dataset.

3 Transformation Matrix

The thresholds mentioned in this section have
been determined after empirical fine tuning.

To compute the transformation matrix of a rule,
we first extract in an unsupervised way all the
word pairs following that transition rule. For ex-
ample, in case of the rule <null,s>, we find word
pairs such as <boy,boys>, <object,objects> and
<invent,invents>. In this paper, we used the
data structure TRIE for computational optimiza-
tion. However, we don’t want cases which do not
follow the general regularity of a rule. One such
case may be <hat,hated> which does not follow
the general trend of the transformation<null,ed>.
For eliminating these cases, we set a threshold of
cosine similarity of the word vectors of the two
words of the pair at 0.2. Also, the frequency of
both these words should be greater than 1000 (so
that they are well trained). Since our transforma-
tion matrix is derived from all the word pairs fol-
lowing a particular transition rule, we carefully use
only those word pairs which are of high frequency.
We do so because highly frequent words have bet-
ter trained word embeddings.

Suppose we get “N” highly frequent word pairs
following the same regularity(transition rule). For
our experiments, the lower threshold of “N” is set
at 50. Dimensions of word embedding of a word
in our model is “D”. Using first word of our “N”
chosen word pairs, we create a matrix “A” of di-
mensions N*D, where each row is vector repre-
sentation of a word. Similarly, we create another
matrix B, of similar dimensions as A, using second
word of our chosen word pairs.

We now propose that a matrix “X” (our trans-
formation matrix) exists such that,

A ∗X = B

or,X = A−1 ∗B
(1)

(all instances of A that we encountered were non-
singular). Our matrix “X” will be of dimensions
“D*D” and when applied to a word embedding
(matrix of dimensions 1*D, it gives a matrix of
dimensions 1*D as output), it results in the word
embedding of the transformed form of the word.

Due to inverse property of a matrix, it accu-
rately remembers the word pairs used for comput-
ing. The matrix also appears to align itself with the
word embedding of other words (not used for its
training) to transform them according to the rule
that the matrix follows. Some interesting results
are shown in table 1.

Word1 Word2 Word3 Operator Word4 Cosine
decides decided studies <s , d> studied 0.89
reach reaches go <null , es> goes 1.0
ask asks reduce <null , s> reduces 0.91

Table 1: Some example results of transformation
operators.

While testing, we extract the syntactic transition
using the first two words of the analogy question.
For example, for pairs like <reach, reached>, <
walk, walked>, we are able to extract that they fol-
low <null, ed> rule syntactically. But, for <go,
went>, we are not able to find any transforma-
tion operator after syntactic analysis, and for such
cases, we fall back on CosSum/CosMul (Levy
et al., 2014) approaches as our backup. Mikolov
et al. showed that relations between words are re-
flected to a large extent in the offsets between their
vector embeddings (queen - king = woman - man),
and thus the vector of the hidden word b∗ will be
similar to the vector b−a+a∗, suggesting that the
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Figure 1: System Workflow

analogy question can be solved by optimizing:

arg max
b∗∈V

(sim(b∗, b− a+ a∗)) (2)

where V is the vocabulary and sim is a simi-
larity measure. Specifically, they used the cosine
similarity measure, defined as:

cos(u, v) =
u . v

||u|| . ||v|| (3)

resulting in:

arg max
b∗∈V

(cos(b∗, b− a+ a∗)) (4)

Equation 4 has been referred to as CosAdd
model.

While experimenting, Omer Levy (Levy et al.,
2014) found that for an analogy question “London
is to England as Baghdad is to - ?”, using CosAdd
model, they got Mosul - a large Iraqi city, instead
of Iraq which is a country, as an answer. They
were seeking for Iraq because of its similarity to
England (both are countries), similarity to Bagh-
dad (similar geography/culture) and dissimilarity
to London (different geography/culture). While
Iraq was much more similar to England than Mo-
sul was (because both Iraq and England are coun-
tries), the sums were dominated by the geographic
and cultural aspect of the analogy.

Hence to achieve better balancing among dif-
ferent aspects of similarity, they proposed a new
model, where they moved from additive to multi-
plicative approach:

arg max
b∗∈V

cos(b∗, b) . cos(b∗, a∗)
cos(b∗, a) + ε

(ε = 0.001 to prevent division by zero)

(5)

This was equivalent to taking the logarithm of
each term before summation, thus amplifying the
differences between small quantities and reducing
the differences between larger ones. This model
has been referred to as CosMul model.

Even though our transformation operator can
handle any sort of transformation, but if we are not
able to detect the rule syntactically, we are not able
to determine which transformation operator to use,
and hence, we fall back on CosSum/CosMul. Like
for the above mentioned examples, we will use
transformation operator (if existing) for transfor-
mations like <reach, reached>, since we can find
the rule syntactically, but for <go, went>, we can
not, since we can not extract the corresponding
rule itself - even if the matrix can handle such tran-
sitions.

If a transformation matrix exists for a transition
rule, we apply the corresponding transformation
matrix on the word embedding of the third word
and search the whole vocabulary for the word with
an embedding most similar to the transformed em-
bedding (ignoring the third word itself). If the
similarity of the resultant word’s embedding with
our transformed embedding is less than 0.68 (de-
termined empirically) or the transformation ma-
trix itself does not exist, we fall back on the Cos-
Sum/CosMul techniques.

Levy et. al. (2015) proposed the systems Cos-
Sum and CosMul in which they showed that tun-
ing the hyperparameters has a significant impact
on the performance. Hyperparameters are all the
modifications and system design choices which
are a part of the final algorithm.

Figure 1 gives an overview of how target word
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embedding is generated using transformation op-
erators and our backup models.

4 Result and Analysis

Model CosSum CosSum w/ M CosMul CosMul w/ M
SGNS-L 0.69 - 0.729 -
Glove-L 0.628 - 0.685 -

SG 0.269 0.554 0.282 0.566
GN 0.646 0.718 0.67 0.733

GN-SG Hybrid 0.674 0.835 0.698 0.85

Table 2: Scores on MSR word analogy test set.

Word1 Word2 Word3 Operator Word4 Cosine
decides decided studies <s , d> studied 0.89
reach reaches go <null , es> goes 1.0

member members school <null , s> schools 0.88
ask asks reduce <null , s> reduces 0.91

resident residents rate <null , s> rates 0.86
get gets show <null , s> shows 0.83

higher highest stricter <r , st> strictest 1.0
wild wilder harsh <null , er> harsher 0.91

Table 3: Example results of transformation oper-
ators for regular transformations.

Word1 Word2 Word3 Operator Word4 Cosine
joined joins became <ed , s> becomes 0.68
turned turns said <ed , s> says 0.74
learn learned build <null , ed> built 0.80

support supported see <null , ed> saw 0.72

Table 4: Example results of transformation oper-
ators for irregular transformations.

In table 2, GN denotes the scores of Google-
News word embeddings on the test set. SGNS-
L and Glove-L (Levy et al., 2015) denote the re-
sults of Skip-gram with negative sampling and
Glove word embeddings respectively, both trained
on large datasets. SG denotes the scores of our
word2vec trained model (on 1B tokens). “w/
M” implies that we have used matrix arithmetic
(along with CosSum/CosMul as backup) for word
analogy answering questions. Our model uses
“CosSum” and “CosMul” as backup transforma-
tion method in case a transformation operator (ma-
trix) does not exist. We see that the results of
GN+Matrix are better than the previously used
models.

However, one thing we noticed was that the
model trained on Google-News did not contain
words with apostrophe sign(s) and 1000 out of
8000 words in MSR word analogy test set con-
tained apostrophe sign(s). Also, we noticed that in

Word1 Word2 Word3 Operator Word4 Cosine
reach reached go <null , ed> went 0.80

recognize recognizes be <null , s> is 0.70

Table 5: Example results of transformation oper-
ators for complete change of word form.

SG, the matrix approach was able to answer word
analogy queries where words contained apostro-
phe sign(s), with an accuracy of 93.7% since it is
a very common transformation - which resulted in
well trained transformation matrix. So, we used
SG as a backup for words which were not found in
GN. The results of this hybrid model are denoted
by GN-SG Hybrid. We see that this model per-
forms considerably better than the existing state
of the art system.

As we can see in table 3, our approach works re-
ally well for analogy questions where target word
experiences regular transformation, i.e. the trans-
formation type is simple addition/subtraction of
suffix/prefix.

In table 4 and table 5 we observe that trans-
formations are irregular transformations i.e there
is slight change in word form while addi-
tion/subtraction of suffix/prefix or there is com-
plete change in word form in the target word of
our analogy question. This is an interesting ob-
servation, because even though our rule extrac-
tion (as explained above) is syntactic in nature,
our method still learns and can apply transforma-
tion rules on words which undergo such irregu-
lar/complete transformations.

In operator “<null,s>”, we see that our trans-
formation matrix works pretty well irrespective of
the form the word. For example, it works for
“school-schools” and “reduce-reduces” which are
noun and verb word pairs respectively. Our ap-
proach works by statistically creating global trans-
formation operators and is agnostic in applying
them (i.e. applied on a verb or a noun). Our trans-
formation rules learn from both noun transitions
and verb transitions and hence, even though we
agree that linguistically there is a difference be-
tween noun and verb transitions, our approach per-
formed better than previously existing systems

We also observed that in some cases, cosine
similarity score is 1. This is mostly because
“stricter-strictest” was used for training transfor-
mation matrix of “<r,st>” operator.

Although our cosine scores for irregu-
lar/complete transformations are not that high
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with respect to scores for regular transformations,
our system still performs at par or better than
previous known systems. It is still able to pre-
dict words with high accuracy using its limited
training corpora.

These observations can also help us ana-
lyze how certain complex transformations (irreg-
ular/complete) still behave similar to their regular
counterpart computationally, as is apparent from
our transformation matrix - which has learnt it-
self from rules that were extracted via all possible
prefix and suffix substitutions from w1 to w2, and
thus irregular/complete transformations would not
be present in training our transformation matrix
(where w1 and w2 belong to our vocabulary V -
the size of our corpus).

We conclude that our matrix is able to harness
morphological regularities present in word pairs
used for training.

5 Future Work

The main application of this approach lies in
its ability to generate representations for un-
seen/unreliable words on the go. If we encounter
a word such as “preparedness” for which we do
not have a representation or our representation is
not reliable, we can identify any reliable form of
the word, say “prepared” and apply <null,ness>
operator on it, resulting in a representation for
“preparedness”. In a similar case, we can gener-
ate embeddings for words such as “unprepared-
ness” from “prepared” by sequentially applying
<null,ness> and a prefix operator trained in a sim-
ilar manner - <null,un>. Overall, this results in a
much larger vocabulary than of the model initially
being used.

We observe that for a transformation matrix
to exist, we need enough word pairs (frequent
enough to be included) to train a transformation
matrix, and to cover majority of the transforma-
tion rules. Since many languages face problem of
data scarcity, we face problem of “missing” trans-
formation matrix for a transformation rule.

We will also explore if we can generate bet-
ter word embeddings for words that are not
highly frequent (hence less reliable), by apply-
ing transformation operators on their morphologi-
cal variants, which are highly frequent and hence
more reliable. For example, if for word pair
“<walked,walking>”, “walked” was not highly
frequent in our corpora, we would not include

it in training our transformation matrix for op-
erator “<ed,ing>” because “walked” didn’t have
a well trained word embedding (being less fre-
quent). But, if we have walk as highly frequent,
and a transformation matrix for rule “<null,ed>”,
we can generate a better word embedding for
“walked”, and in turn use “<walked,walking>”
for training our transformation matrix for rule
“<ed,ing>”.

In our current approach, for problem “If A is to
B, then C is to ?”, we do syntactic analysis on “A”
and “B” to find out the transformation rule (and
hence the transformation matrix) to be applied on
“C” to find our “?”. Rather than doing syntactic
analysis, we will focus on finding out the correct
transformation matrix by applying all transforma-
tion matrices on “A” and then analyzing output of
each matrix. The one which will give closest re-
sult to “B” can be safely assumed to be the cor-
rect rule (transformation matrix), and hence will
be applied on “C” to find “?”. We will also ana-
lyze this approach’s impact in terms of space and
time complexities with respect to our current sys-
tem. This will also enable us to find transforma-
tion matrix for word pairs which do not follow a
syntactic transformation.

References
Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-

proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan.
2014. Linguistic regularities in sparse and explicit
word representations. In CoNLL, pages 171–180.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013d. Linguistic regularities in continuous space
word representations. In hlt-Naacl, volume 13,
pages 746–751.

296



Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR), 34(1):1–47.

Cyrus Shaoul. 2010. The westbury lab wikipedia cor-
pus. Edmonton, AB: University of Alberta.

Radu Soricut and Franz Josef Och. 2015. Unsu-
pervised morphology induction using word embed-
dings. In HLT-NAACL, pages 1627–1637.

Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernan-
des, and Gregory Marton. 2003. Quantitative eval-
uation of passage retrieval algorithms for question
answering. In Proceedings of the 26th annual inter-
national ACM SIGIR conference on Research and
development in informaion retrieval, pages 41–47.
ACM.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

297



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 298–303
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Exploiting Word Internal Structures for Generic Chinese Sentence
Representation

Shaonan Wang1,2, Jiajun Zhang1,2, Chengqing Zong1,2,3

1 National Laboratory of Pattern Recognition, CASIA, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

3 CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
{shaonan.wang,jjzhang,cqzong}@nlpr.ia.ac.cn

Abstract

We introduce a novel mixed character-
word architecture to improve Chinese sen-
tence representations, by utilizing rich se-
mantic information of word internal struc-
tures. Our architecture uses two key s-
trategies. The first is a mask gate on char-
acters, learning the relation among char-
acters in a word. The second is a max-
pooling operation on words, adaptively
finding the optimal mixture of the atom-
ic and compositional word representation-
s. Finally, the proposed architecture is
applied to various sentence composition
models, which achieves substantial perfor-
mance gains over baseline models on sen-
tence similarity task.

1 Introduction

To understand the meaning of a sentence is a pre-
requisite to solve many natural language process-
ing problems. Obviously, this requires a good rep-
resentation of the meaning of a sentence. Recent-
ly, neural network based methods have shown ad-
vantage in learning task-specific sentence repre-
sentations (Kalchbrenner et al., 2014; Tai et al.,
2015; Chen et al., 2015a; Cheng and Kartsaklis,
2015) and generic sentence representations (Le
and Mikolov, 2014; Hermann and Blunsom, 2014;
Kiros et al., 2015; Kenter et al., 2016; Wang et al.,
2017). To learn generic sentence representation-
s that perform robustly across tasks as effective
as word representations, Wieting et al. (2016b)
proposes an architecture based on the supervision
from the Paraphrase Database (Ganitkevitch et al.,
2013).

Despite the fact that Chinese has unique word
internal structures, there is no work focusing on
learning generic Chinese sentence representation-

Atomic word: 

Compositional word: 

 搭乘    出租车   到   虹桥   机场 

 搭-乘 出-租-车  到   虹桥  机-场 

Final word embedding: 

Atomic word: 

Compositional word: 

 搭乘    出租车   到   虹桥   机场 

 搭-乘 出-租-车  到   虹桥  机-场 

Final word:  搭乘    出租车   到   虹桥   机场 

Atomic(Full-form): 

Compositional: 

 搭乘    出租车   到   虹桥   机场 

 搭-乘 出-租-车  到   虹桥  机-场 

Final word:  搭乘    出租车   到   虹桥   机场 

Figure 1: An example sentence that consists of
five words as “搭乘(take) 出租车(taxi) 到(to) 虹
桥(Hongqiao)机场(airport)”. Most of these word-
s are compositional, namely word “搭乘” consists
of characters “搭(take)” and “乘(ride)”, word “出
租车” constitutes characters “出(out)”, “租(rent)”
and “车(car)”, and word “机场” is composed of
characters “机(machine)” and “场(field)”. The
color depth represents (1) contributions of each
character to the compositional word meaning, and
(2) contributions of the atomic (which ignore in-
ner structures) and compositional word to the final
word meaning. The deeper color means more con-
tributions.

s. In contrast to English, Chinese characters con-
tain rich information and are capable of indicat-
ing semantic meanings of words. As illustrated in
Figure 1, the internal structures of Chinese word-
s express two characteristics: (1) Each character
in a word contribute differently to the composi-
tional word meaning (Wong et al., 2009) such as
the word “出租车(taxi)”. The first two charac-
ters “出租(rent)” are descriptive modifiers of the
last character “车(car)”, and make the last char-
acter play the most important role in expressing
word meaning. (2) The atomic and compositional
representations contribute differently to different
types of words (MacGregor and Shtyrov, 2013).
For instance, the meaning of “机场(airport)”, a
low-frequency word, can be better expressed by
the compositional word representation, while the
non-transparent word “虹桥(Hongqiao)” is better
expressed by the atomic word representation.
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The word internal structures have been proven
to be useful for Chinese word representations.
Chen et al. (2015b) proposes a character-enhanced
word representation model by adding the averaged
character embeddings to the word embedding. Xu
et al. (2016) extends this work by using weight-
ed character embeddings. The weights are co-
sine similarities between embeddings of a word’s
English translation and its constituent character-
s’ English translations. However, their work cal-
culates weights based on a bilingual dictionary,
which brings lots of mistakes because words in t-
wo languages do not mantain one-to-one relation-
ship. Furthermore, they only consider the first
characteristic of word internal structures, but ig-
nore the contributions of the atomic and compo-
sitional word to the final word meaning. Similar
ideas of adaptively utilizing character level infor-
mations have also been investigated in English re-
cently (Hashimoto and Tsuruoka, 2016; Rei et al.,
2016; Miyamoto and Cho, 2016). It should be not-
ed that these studies are not focus on learning sen-
tence embeddings.

In this paper, we explore word internal struc-
tures to learn generic sentence representations,
and propose a mixed character-word architecture
which can be integrated into various sentence
composition models. In the proposed architecture,
a mask gate is employed to model the relation a-
mong characters in a word, and pooling mecha-
nism is leveraged to model the contributions of
the atomic and compositional word embeddings
to the final word representations. Experiments
on sentence similarity (as well as word similarity)
demonstrate the effectiveness of our method. In
addition, as there are no publicly available Chinese
sentence similarity datasets, we build a dataset to
directly test the quality of sentence representation-
s. The code and data will be publicly released.

2 Model Description

The problem of learning compositional sentence
representations can be formulated as gcomp =
f(x), where f is the composition function
which combines the word representations x =
〈x1, x2, ..., xn〉 into the compositional sentence
representation gcomp.

2.1 Mixed Character-Word Representation

In our method, the final word representation is a
fusion of the atomic and compositional word em-

beddings. The atomic word representation is cal-
culated by projecting word level inputs into a high-
dimensional space by a look up table, while the
compositional word representation is computed as
a gated composition of character representations:

xcompi =
m∑

j=1

vij · cij , (1)

where cij is the j-th character representation in
the i-th word. The mask gate vij ∈ Rd control-
s the contribution of the j-th character in the i-th
word. This is achieved by using a feed-forward
neural network operated on the concatenation of
a character and a word, under the assumption that
the contribution of a character is correlated with
both character itself and its relation with the cor-
responding word:

vij = tanh(W · [cij ;xi]), (2)

where W ∈ Rd×2d is a trainable parameter. The
proposed mask gate is a vector instead of a single
value, which introduces more variations to charac-
ter meaning in the composition process.

Then, the atomic and compositional word rep-
resentations are mixed with max-pooling:

xfinali =
d

max
k=1

(xatomicik , xcompik ), (3)

the max is an element-wise function to capture the
most important features (i.e., the highest value in
each dimension) in the two word representations.

2.2 Sentence Composition Model

Given word embeddings, we make a systematic
comparison of five different composition models
for sentence representations as follows:

1. g = Average(x) = 1
n

n∑
i=1

xi

2. g =Matrix(x) = 1
n

n∑
i=1

f(Wmxi)

3. g = Dan(x) = f(Wd(
1
n

n∑
i=1

xi) + b)

4. g = RNN(x) = f(Wxxi +Whhi−1 + b)

5. g = LSTM(x) = ot � f(ci), where ci = fi · ci−1 +
ii · c̃i and c̃i = σ(Wxcxi +Whchi−1)

Average model, as the simplest composition
model, represents sentences with averaged word
vectors which are updated during training. The
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Matrix and Dan models are proposed in Zanzot-
to et al. (2010) and Iyyer et al. (2015), respective-
ly. By using matrix transformations and nonlin-
ear functions, the two models represent sentence
meaning in a more flexible way (Wang and Zong,
2017). We also include RNN and LSTM models,
which are widely used in recent years. The pa-
rameters {it, ft, ot} ∈ Rd denote the input gate,
the forget gate and the output gate, respectively.
ct ∈ Rd is the short-term memory state to store the
history information. {Wm,Wd,Wx,Wh,Wxc,Whc}
∈ Rd×d are trainable parameters. hi−1 denotes
representations in hidden layers. Sentence repre-
sentations in RNN and LSTM models are hidden
vectors of the last token.

2.3 Objective Function

This paper aims to learn the general-purpose sen-
tence representations based on supervision from
Chinese paraphrase pairs. Following the approach
of Wieting et al. (2016b), we employ the max-
margin objective function to train sentence rep-
resentations by maximizing the distance between
positive examples and negative examples.

3 Experimental Setting and Dataset

3.1 Experimental Setting

We construct four groups of models (G1˜G4)
which serve as baselines to test the proposed
mixed character-word models (G5). Group G1
includes six baseline models, which have shown
impressive performance in English. The first two
are averaged word vectors and averaged character
vectors. Followed by PV-DM model which uses
auxiliary vectors to represent sentences and train-
s them together with word vectors, and FastSen-
t model which utilizes a encoder-decoder model
and encodes sentences as averaged word embed-
dings. The last two are Char-CNN model which
is CNN model with character n-gram filters, and
Charagram model which represents sentences with
a character n-gram count vector. Group G2 are the
sentence representation models proposed by Wi-
eting et al. (2016b), which utilize only word level
information. We also compared our method with
word representation models of Chen et al. (2015b)
and Xu et al. (2016) in Group G3 and G4 respec-
tively, by incorporate them into five sentence com-
position models in Section 2.2.

In all models, the word and character embed-
dings are initialized with 300-dimension vectors

trained by Skip-gram model (Mikolov et al., 2013)
on a corpus with 3 billion Chinese words. Al-
l models are implemented with Theano (Bergstra
et al., 2010) and Lasagne (Dieleman et al., 2015),
and optimized using Adam (Kingma and Ba,
2014). The hyper-parameters1 are selected by test-
ing different values and evaluating their effects on
the development set. In this paper, we run all ex-
periments 5 times and report the mean values.

3.2 Training Dataset

The training dataset is a set of paraphrase pairs
in which two sentences in each pair represent the
same meanings. Specifically, we extract Chinese
paraphrases in machine translation evaluation
corpora NIST20032 and CWMT20153. Moreover,
we select aligned sub-sentence pairs between
paraphrases to enlarge the training corpus.
Specifically, we first segment the sentences into
sub-sentences according to punctuations of com-
ma, semicolon, colon, question mark, ellipses, and
periods. Then we pair all sub-sentences between
a paraphrase and select sub-sentence pairs (s1, s2)
which satisfy the following two constraints: (1)
the number of overlapping words of sub-sentence
s1 and s2 should meet the condition: 0.9 >
len(overlap(s1, s2))/min(len(s1), len(s2)) >
0.2, where len(s) denotes the number of
words in sentence s; (2) the relative length
of sub-sentence should meet the condition:
max(len(s1), len(s2))/min(len(s1), len(s2))
<= 2. Finally, we get 30,846 paraphrases
(18,187 paraphrases from NIST including 11,413
sub-sentence pairs, and 12,659 paraphrases from
CWMT which include 7,912 sub-sentence pairs).

3.3 Testing Dataset

We also build the testing dataset, which are sen-
tence pairs collocated with human similarity rat-
ings. We choose candidate sentences from the
People’s Daily and Baidu encyclopedia corpora.
To assure sentence pairs to be representative of
the full variation in semantic similarity, we choose

1We use a mini-batch of 25 and tune the initial learning
rate over {0.001, 0.005, 0.0001, 0.0005}. For the Dan and
the Matrix models, we tune over activation function (tanh or
linear or rectified linear unit) and number of layers (1 or 2).

2which contains 1,100 English sentences with 4 Chinese
translations and can be found at: https://catalog.
ldc.upenn.edu/LDC2006T04

3which contains 1,859 English sentences with 4 Chinese
translations and can be found at: http://www.ai-ia.
ac.cn/cwmt2015/evaluation.html
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high similarity sentence pairs4 and then random-
ly pair the single sentences to construct low sim-
ilarity sentence pairs. To collect human similari-
ty ratings for sentence pairs, we use online ques-
tionnaire5 and follow the gold standard6 to guide
the rating process of participants. The subjects are
paid 7 cents for rating each sentence pair within a
range of 0 5 score. In total, we obtain 104 valid
questionnaires and every sentence pair is evaluat-
ed by average 8 persons. We use the average sub-
jects’ ratings for one paraphrase as its final simi-
larity score, and the higher score means that the t-
wo sentences have more similar meaning. We then
randomly partition the datasets into test and devel-
opment splits in 9:1.

4 Results and Discussion

We use the Pearson’s correlation coefficient to
examine relationships between the averaged hu-
man ratings and the predicted cosine similarity s-
cores of all models. Moreover, the Wilcoxon’s test
shows that significant difference (p < 0.01) exits
between our models with baseline models.

From Table 1, we can see superiority of the pro-
posed mixed character-word models (G5), which
have significantly improved the performance over
both word and character-word based models. This
result indicates that it is important to find the ap-
propriate way to fuse character and word level in-
formations. Using mask gate alone and max pool-
ing alone yield an improvement of 1.05 points and
0.83 points respectively, and using both strategies
improves the averaged character-word models by
1.52 points. Another observation is that models
with character level information (G3, G4, G5) per-
form better than word based models (G2), which
indicates the great potential of Chinese characters
in learning sentence representations. Comparing
different composition functions, we can see that t-
wo simple models outperform others in all groups:
the DAN model and the Matrix model. The sim-
plest Average model achieves competitive result-
s while the most complex LSTM model does not
show advantages.

4Here we choose high similarity sentence pairs by using
edit distance and human post-processing.

5https://wj.qq.com/
6http://alt.qcri.org/semeval2015/task2/index.php?id=semantic-

textual-similarity-for-english

Group Model Test

G1:
Baselines

Add (character) 0.6737
Add (word) 0.7518
PV-DM (Le and Mikolov, 2014) 0.7561
FastSent (Hill et al., 2016) 0.7369
Char-CNN (Kim et al., 2016) 0.8095
Charagram(Wieting et al., 2016a) 0.8382

G2: Word
level
(Wieting et
al., 2016b)

Average 0.8199
Matrix 0.8382
Dan 0.8385
RNN 0.8121
LSTM 0.7834

G3:
Averaged
Character-
Word (Chen
et al., 2015)

Average 0.8245
Matrix 0.8427
Dan 0.8407
RNN 0.8185
LSTM 0.7895

G4:
Weighted
Character-
Word (Xu
et al., 2016)

Average 0.8196
Matrix 0.8428
Dan 0.8413
RNN 0.8344
LSTM 0.7858

G5: Mixed
Character-
Word
(Ours)

Average 0.8471
Matrix 0.8517
Dan 0.8521
RNN 0.8408
LSTM 0.8000

Table 1: Correlation coefficients of model predic-
tions with subject similarity ratings on Chinese
sentence similarity task. The bold data refers to
best among models with same composition func-
tion.

4.1 Effects of Mask Gate and Max Pooling

The mask gate assigns different weights to char-
acters in a word, hopefully leading to better word
representations. To intuitively show effects of the
mask gate, we check characters whose l2-norm
increase after applying the mask gate approach.
We find that characters like “罪(crime)” in “罪
状(guilty)”, “虎 (tiger)” in “美洲虎 (jaguar)” and
“瓜 (melon)” in “黄瓜 (cucumber)” achieve more
weights. The above results show that the mask
gate approach successfully model the first charac-
teristic of word internal structure (i.e., assigning
more weights to key characters). To quantitatively
display the results, we extract the word represen-
tations calculated by the five composition models
in four different groups and evaluate their quality
on WordSim-297 dataset7 using the Pearson cor-
relation method. As shown in Table 2, the mask
gate approach significantly improves the quality of
word representations.

7https://github.com/Leonard-Xu/CWE/tree/master/data
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G2 G3 G4 G5(Ours)

Average 0.4311 0.4584 0.4789 0.5245
Dan 0.4470 0.5410 0.5561 0.5716

Matrix 0.4496 0.5458 0.5548 0.5694
RNN 0.4562 0.5656 0.5550 0.5674

LSTM 0.4535 0.5674 0.5627 0.5734

Table 2: Correlation coefficients of model predic-
tions with subject similarity ratings on Chinese
word similarity task, where G2 ∼ G5 are the same
as in Table 1.

The max-pooling approach is supposed to mod-
el different contributions of the atomic and compo-
sitional word vectors to the final word vector. To
find out what have max-pooling method learned,
we use contribution weights by calculating cosine
similarities between the final word representation
with the atomic and compositional word represen-
tations. The results show interesting relationships
with word frequency. For high-frequency word-
s, the contribution of compositional word repre-
sentations are more dominant. While for low-
frequency words, both high8 and low contribu-
tion ratios of compositional word representations
can be found. When looking into the words with
the most lowest ratio, we find a large portion of
English abbreviations like NBA, BBC, GDP etc.,
and a portion of metaphor words like “挂靴(retire,
hanging boots)” and “扯皮(wrangle, pull skin)”.
Both kinds of these words are non-transparent,
which indicates that the max-pooling method can
successfully model the second characteristic of
word internal structure and encode word trans-
parency to some extent.

5 Conclusion and Further work

In this paper, we introduce a novel mixed
character-word architecture to improve generic
Chinese sentence representations by exploiting the
complex internal structures of words. Extensive
experiments and analyses have indicated that our
models can encode word transparency and learn
different semantic contributions across characters.
We have also created a dataset to evaluate compo-
sition models of Chinese sentences, which could
advance the research for related fields.

Future work includes applying the proposed
method to other aspects of nominal semantics,
such as understanding compound nouns in other

8The high ratio is more reasonable because low-frequency
words generally learn poor atomic word representations.

languages, and to explore the compositionality of
words and compounds.
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Aurélie Herbelot
Dept. of Translation and Language Sciences

Universitat Pompeu Fabra
aurelie.herbelot@cantab.net

Marco Baroni
Center for Mind/Brain Sciences

University of Trento
marco.baroni@unitn.it

Abstract

Distributional semantics models are
known to struggle with small data. It is
generally accepted that in order to learn
‘a good vector’ for a word, a model must
have sufficient examples of its usage.
This contradicts the fact that humans
can guess the meaning of a word from a
few occurrences only. In this paper, we
show that a neural language model such
as Word2Vec only necessitates minor
modifications to its standard architecture
to learn new terms from tiny data, using
background knowledge from a previously
learnt semantic space. We test our model
on word definitions and on a nonce
task involving 2-6 sentences’ worth of
context, showing a large increase in
performance over state-of-the-art models
on the definitional task.

1 Introduction

Distributional models (DS: Turney and Pantel
(2010); Clark (2012); Erk (2012)), and in par-
ticular neural network approaches (Bengio et al.,
2003; Collobert et al., 2011; Huang et al., 2012;
Mikolov et al., 2013), do not fare well in the ab-
sence of large corpora. That is, for a DS model to
learn a word vector, it must have seen that word a
sufficient number of times. This is in sharp con-
trast with the human ability to perform fast map-
ping, i.e. the acquisition of a new concept from a
single exposure to information (Lake et al., 2011;
Trueswell et al., 2013; Lake et al., 2016).

There are at least two reasons for wanting to ac-
quire vectors from very small data. First, some
words are simply rare in corpora, but potentially
crucial to some applications (consider, for in-
stance, the processing of text containing technical

terminology). Second, it seems that fast-mapping
should be a prerequisite for any system pretending
to cognitive plausibility: an intelligent agent with
learning capabilities should be able to make edu-
cated guesses about new concepts it encounters.

One way to deal with data sparsity issues when
learning word vectors is to use morphological
structure as a way to overcome the lack of pri-
mary data (Lazaridou et al., 2013; Luong et al.,
2013; Kisselew et al., 2015; Padó et al., 2016).
Whilst such work has shown promising result, it
is only applicable when there is transparent mor-
phology to fall back on. Another strand of re-
search has been started by Lazaridou et al. (2017),
who recently showed that by using simple sum-
mation over the (previously learnt) contexts of a
nonce word, it is possible to obtain good correla-
tion with human judgements in a similarity task.
It is important to note that both these strategies as-
sume that rare words are special cases of the dis-
tributional semantics apparatus, and thus require
separate approaches to model them.

Having different algorithms for modelling the
same phenomenon means however that we need
some meta-theory to know when to apply one or
the other: it is for instance unclear at which fre-
quency a rare word is not rare anymore. Fur-
ther, methods like summation are naturally self-
limiting: they create frustratingly strong baselines
but are too simplistic to be extended and improved
in any meaningful way. In this paper, our un-
derlying assumption is thus that it would be de-
sirable to build a single, all-purpose architecture
to learn word representations from any amount of
data. The work we present views fast-mapping
as a component of an incremental architecture:
the rare word case is simply the first part of the
concept learning process, regardless of how many
times it will eventually be encountered.

With the aim of producing such an incremen-
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tal system, we demonstrate that the general archi-
tecture of neural language models like Word2Vec
(Mikolov et al., 2013) is actually suited to mod-
elling words from a few occurrences only, provid-
ing minor adjustments are made to the model itself
and its parameters. Our main conclusion is that
the combination of a heightened learning rate and
greedy processing results in very reasonable one-
shot learning, but that some safeguards must be in
place to mitigate the high risks associated with this
strategy.

2 Task description

We want to simulate the process by which a com-
petent speaker encounters a new word in known
contexts. That is, we assume an existing vocab-
ulary (i.e. a previously trained semantic space)
which can help the speaker ‘guess’ the meaning
of the new word. To evaluate this process, we use
two datasets, described below.

The definitional nonce dataset We build a
novel dataset based on encyclopedic data, simu-
lating the case where the context of the unknown
word is supposedly maximally informative.1 We
first record all Wikipedia titles containing one
word only (e.g. Albedo, Insulin). We then ex-
tract the first sentence of the Wikipedia page corre-
sponding to each target title (e.g. Insulin is a pep-
tide hormone produced by beta cells in the pan-
creas.), and tokenise that sentence using the Spacy
toolkit.2 Each occurrence of the target in the sen-
tence is replaced with a slot ( ).

From this original dataset, we only retain sen-
tences with enough information (i.e. a length over
10 words), corresponding to targets which are fre-
quent enough in the UkWaC corpus (Baroni et al.
(2009), minimum frequency of 200). The fre-
quency threshold allows us to make sure that we
have a high-quality gold vector to compare our
learnt representation to. We then randomly sam-
ple 1000 sentences, manually checking the data to
remove instances that are, in fact, not definitional.
We split the data into 700 training and 300 test in-
stances.

On this dataset, we simulate first-time exposure
to the nonce word by changing the label of the gold
standard vector in the background semantic space,
and producing a new, randomly initialised vector

1Data available at http://aurelieherbelot.
net/resources/.

2https://spacy.io/

for the nonce. So for instance, insulin becomes in-
sulin gold, and a new random embedding is added
to the input matrix for insulin. This setup allows us
to easily measure the similarity of the newly learnt
vector, obtained from one definition, to the vec-
tor produced by exposure to the whole Wikipedia.
To measure the relative performance of various se-
tups, we calculate the Reciprocal Rank (RR) of the
gold vector in the list of all nearest neighbours to
the learnt representation. We average RRs over the
number of instances in the dataset, thus obtaining
a single MRR figure (Mean Reciprocal Rank).

The Chimera dataset Our second dataset is the
‘Chimera’ dataset of (Lazaridou et al., 2017).3

This dataset was specifically constructed to sim-
ulate a nonce situation where a speaker encoun-
ters a word for the first time in naturally-occurring
(and not necessarily informative) sentences. Each
instance in the data is a nonce, associated with 2-6
sentences showing the word in context. The novel
concept is created as a ‘chimera’, i.e. a mixture of
two existing and somewhat related concepts (e.g.,
a buffalo crossed with an elephant). The sentences
associated with the nonce are utterances contain-
ing one of the components of the chimera, ran-
domly extracted from a large corpus.

The dataset was annotated by humans in terms
of the similarity of the nonce to other, randomly
selected concepts. Fig. 1 gives an example of a
data point with 2 sentences of context, with the
nonce capitalised (VALTUOR, a combination of
cucumber and celery). The sentences are followed
by the ‘probes’ of the trial, i.e. the concepts that
the nonce must be compared to. Finally, human
similarity responses are given for each probe with
respect to the nonce. Each chimera was rated by
an average of 143 subjects. In our experiments,
we simply replace all occurrences of the original
nonce with a slot ( ) and learn a representation
for that slot. For each setting (2, 4 and 6 sen-
tences), we randomly split the 330 instances in the
data into 220 for training and 110 for testing.

Following the authors of the dataset, we evalu-
ate by calculating the correlation between system
and human judgements. For each trial, we calcu-
late Spearman correlation (ρ) between the similar-
ities given by the system to each nonce-probe pair,
and the human responses. The overall result is the
average Spearman across all trials.

3Available at http://clic.cimec.unitn.it/
Files/PublicData/chimeras.zip.
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Sentences:
Canned sardines and VALTUOR between two slices of wholemeal bread and thinly spread Flora Original.
@@ Erm, VALTUOR, low fat dairy products, incidents of heart disease for those who have an olive oil rich diet.

Probes: rhubarb, onion, pear, strawberry, limousine, cushion
Human responses: 3, 2.86, 1.43, 2.14, 1.29, 1.71

Figure 1: An example chimera (VALTUOR).

3 Baseline models

We test two state-of-the art systems: a) Word2Vec
(W2V) in its Gensim4 implementation, allowing
for update of a prior semantic space; b) the ad-
ditive model of Lazaridou et al. (2017), using a
background space from W2V.

We note that both models allow for some sort of
incrementality. W2V processes input one context
at a time (or several, if mini-batches are imple-
mented), performing gradient descent after each
new input. The network’s weights in the input,
which correspond to the created word vectors, can
be inspected at any time.5 As for addition, it also
affords the ability to stop and restart training at any
time: a typical implementation of this behaviour
can be found in distributional semantics models
based on random indexing (see e.g. QasemiZadeh
et al., 2017). This is in contrast with so-called
‘count-based’ models calculated by computing a
frequency matrix over a fixed corpus, which is
then globally modified through a transformation
such as Pointwise Mutual Information.

Word2Vec We consider W2V’s ‘skip-gram’
model, which learns word vectors by predicting
the context words of a particular target. The W2V
architecture includes several important parame-
ters, which we briefly describe below.

In W2V, predicting a word implies the ability to
distinguish it from so-called negative samples, i.e.
other words which are not the observed item. The
number of negative samples to be considered can
be tuned. What counts as a context for a particular
target depends on the window size around that tar-
get. W2V features random resizing of the window,
which has been shown to increase the model’s per-
formance. Further, each sentence passed to the
model undergoes subsampling, a random process
by which some words are dropped out of the input

4Available at https://github.com/
RaRe-Technologies/gensim.

5Technically speaking, standard W2V is not fully incre-
mental, as it requires a first pass through the corpus to com-
pute a vocabulary, with associated frequencies. As we show
in §5, it however allows for an incremental interpretation,
given minor modifications.

as a function of their overall frequency. Finally,
the learning rate α measures how quickly the sys-
tem learns at each training iteration. Traditionally,
α is set low (0.025 for Gensim) in order not to
overshoot the system’s error minimum.

Gensim has an update function which allows us
to save a W2V model and continue learning from
new data: this lets us simulate prior acquisition of
a background vocabulary and new learning from
a nonce’s context. As background vocabulary, we
use a semantic space trained on a Wikipedia snap-
shot of 1.6B words with Gensim’s standard pa-
rameters (initial learning rate of 0.025, 5 nega-
tive samples, a window of±5 words, subsampling
1e−3, 5 epochs). We use the skip-gram model with
a minimum word count of 50 and vector dimen-
sionality 400. This results in a space with 259, 376
word vectors. We verify the quality of this space
by calculating correlation with the similarity rat-
ings in the MEN dataset (Bruni et al., 2014). We
obtain ρ = 0.75, indicating an excellent fit with
human judgements.

Additive model Lazaridou et al. (2017) use a
simple additive model, which sums the vectors of
the context words of the nonce, taking as context
the entire sentence where the target occurs. Their
model operates on multimodal vectors, built over
both text and images. In the present work, how-
ever, we use the semantic space described above,
built on Wikipedia text only. We do not normalise
vectors before summing, as we found that the sys-
tem’s performance was better than with normali-
sation. We also discard function words when sum-
ming, using a stopword list. We found that this
step affects results very positively.

The results for our state-of-the-art models are
shown in the top sections of Tables 1 and 2.
W2V is run with the standard Gensim parame-
ters, under the skip-gram model. It is clear from
the results that W2V is unable to learn nonces
from definitions (MRR = 0.00007). The ad-
ditive model, on the other hand, performs well:
an MRR of 0.03686 means that the median rank
of the true vector is 861, out of a challenging
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259, 376 neighbours (the size of the vocabulary).
On the Chimeras dataset, W2V still performs well
under the sum model – although the difference
is not as marked and possibly indicates that this
dataset is more difficult (which we would expect,
as the sentences are not as informative as in the
encyclopedia case).

4 Nonce2Vec

Our system, Nonce2Vec (N2V),6 modifies W2V
in the following ways.

Initialisation: since addition gives a good ap-
proximation of the nonce word, we initialise our
vectors to the sum of all known words in the con-
text sentences (see §3). Note that this is not strictly
equivalent to the pure sum model, as subsampling
takes care of frequent word deletion in this setup
(as opposed to a stopword list). In practice, this
means that the initialised vectors are of slightly
lesser quality than the ones from the sum model.

Parameter choice: we experiment with higher
learning rates coupled with larger window sizes.
That is, the model should take the risk of a) over-
shooting a minimum error; b) greedily considering
irrelevant contexts in order to increase its chance
to learn anything. We mitigate these risks through
selective training and appropriate parameter de-
cay (see below).

Window resizing: we suppress the random
window resizing step when learning the nonce.
This is because we need as much data as possi-
ble and accordingly need a large window around
the target. Resizing would make us run the risk
of ending up with a small window of a few words
only, which would be uninformative.

Subsampling: With the goal of keeping most
of our tiny data, we adopt a subsampling rate that
only discards extremely frequent words.

Selective training: we only train the nonce.
That is, we only update the weights of the net-
work for the target. This ensures that, despite the
high selected learning rate, the previously learnt
vectors, associated with the other words in the
sentence, will not be radically shifted towards the
meaning expressed in that particular sentence.

Whilst the above modifications are appropriate
to deal with the first mention of a word, we must
ask in what measure they still are applicable when
the term is encountered again (see §1). With a

6Code available at https://github.com/
minimalparts/nonce2vec.

MRR Median rank
W2V 0.00007 111012
Sum 0.03686 861
N2V 0.04907 623

Table 1: Results on definitional dataset

L2 ρ L4 ρ L6 ρ
W2V 0.1459 0.2457 0.2498
Sum 0.3376 0.3624 0.4080
N2V 0.3320 0.3668 0.3890

Table 2: Results on chimera dataset

view to cater for incrementality, we introduce a
notion of parameter decay in the system. We hy-
pothesise that the initial high-risk strategy, com-
bining high learning rate and greedy processing of
the data, should only be used in the very first train-
ing steps. Indeed, this strategy drastically moves
the initialised vector to what the system assumes
is the right neighbourhood of the semantic space.
Once this positioning has taken place, the system
should refine its guess rather than wildly moving
in the space. We thus suggest that the learning rate
itself, but also the subsampling value and window
size should be returned to more conventional stan-
dards as soon as it is desirable. To achieve this,
we apply some exponential decay to the learning
rate of the nonce, proportional to the number of
times the term has been seen: every time t that we
train a pair containing the target word, we set α to
α0e
−λt, where α0 is our initial learning rate. We

also decrease the window size and increase sub-
sampling rate on a per-sentence basis (see §5).

5 Experiments

We first tune N2V’s initial parameters on the
training part of the definitional dataset. We ex-
periment with a range of values for the learn-
ing rate ([0.5, 0.8, 1, 2, 5, 10, 20]), window size
([5, 10, 15, 20]), the number of negative samples
([3, 5, 10]), the number of epochs ([1, 5]) and
the subsampling rate ([500, 1000, 10000]). Here,
given the size of the data, the minimum frequency
for a word to be considered is 1. The best per-
formance is obtained for a window of 15 words, 3
negative samples, a learning rate of 1, a subsam-
pling rate of 10000, an exponential decay where
λ = 1

70 , and one single epoch (that is, the system
truly implements fast-mapping). When applied to
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the test set, N2V shows a dramatic improvement in
performance over the simple sum model, reaching
MMR = 0.04907 (median rank 623).

On the training set of the Chimeras, we fur-
ther tune the per-sentence decrease in window size
and increase in subsampling. For the window
size, we experiment with a reduction of [1...6]
words on either side of the target, not going un-
der a window of ±3 words. Further, we adjust
each word’s subsampling rate by a factor in the
range [1.1, 1.2...1.9, 2.0]. Our results confirm that
indeed, an appropriate change in those parame-
ters is required: keeping them constant results
in decreasing performance as more sentences are
introduced. On the training set, we obtain our
best performance (averaged over the 2-, 4- and 6-
sentences datasets) for a per-sentence window size
decrease of 5 words on either side of the target,
and adjusting subsampling by a factor of 1.9. Ta-
ble 2 shows results on the three corresponding test
sets using those parameters. Unfortunately, on this
dataset, N2V does not improve on addition.

The difference in performance between the def-
initional and the Chimeras datasets may be ex-
plained in two ways. First, the chimera sentences
were randomly selected and thus, are not neces-
sarily hugely informative about the nature of the
nonce. Second, the most informative sentences are
not necessarily at the beginning of the fragment, so
the system heightens its learning rate on the wrong
data: the risk does not pay off. This suggests that
a truly intelligent system should adjust its param-
eters in a non-monotonic way, to take into account
the quality of the information it is processing. This
point seems to be an important general require-
ment for any architecture that claims incremental-
ity: our results indicate very strongly that a notion
of informativeness must play a role in the learn-
ing decisions of the system. This conclusion is in
line with work in other domains, e.g. interactive
word learning using dialogue, where performance
is linked to the ability of the system to measure its
own confidence in particular pieces of knowledge
and ask questions with a high information gain (Yu
et al., 2016). It also meets with general considera-
tions on language acquisition, which accounts for
the ability of young children to learn from limited
‘primary linguistic data’ by restricting explanatory
models to those that provide such efficiency (Clark
and Lappin, 2010).

6 Conclusion

We have proposed Nonce2Vec, a Word2Vec-
inspired architecture to learn new words from tiny
data. It requires a high-risk strategy combining
heightened learning rate and greedy processing of
the context. The particularly good performance of
the system on definitions makes us confident that
it is possible to build a unique, unified algorithm
for learning word meaning from any amount of
data. However, the less impressive performance
on naturally-occurring sentences indicates that an
ideal system should modulate its learning as a
function of the informativeness of a context sen-
tence, that is, take risks ‘at the right time’.

As pointed out in the introduction, Nonce2Vec
is designed with a view to be an essential com-
ponent of an incremental concept learning archi-
tecture. In order to validate our system as a suit-
able, generic solution for word learning, we will
have to test it on various data sizes, from the type
of low- to middle-frequency terms found in e.g.
the Rare Words dataset (Luong et al., 2013), to
highly frequent words. We would like to system-
atically evaluate, in particular, how fast the sys-
tem can gain an understanding of a concept which
is fully equivalent to a vector built from big data.
We believe that both quality and speed of learning
will be strongly influenced by the ability of the al-
gorithm to detect what we called informative sen-
tences. Our future work will thus investigate how
to capture and measure informativeness.
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Abstract

In this paper, we propose to learn word
embeddings based on the recent fixed-
size ordinally forgetting encoding (FOFE)
method, which can almost uniquely en-
code any variable-length sequence into a
fixed-size representation. We use FOFE
to fully encode the left and right con-
text of each word in a corpus to con-
struct a novel word-context matrix, which
is further weighted and factorized using
truncated SVD to generate low-dimension
word embedding vectors. We have eval-
uated this alternative method in encoding
word-context statistics and show the new
FOFE method has a notable effect on the
resulting word embeddings. Experimen-
tal results on several popular word similar-
ity tasks have demonstrated that the pro-
posed method outperforms many recently
popular neural prediction methods as well
as the conventional SVD models that use
canonical count based techniques to gen-
erate word context matrices.

1 Introduction

Low dimensional vectors as word representations
are very popular in NLP tasks such as inferring
semantic similarity and relatedness. Most of these
representations are based on either matrix factor-
ization or context sampling described by (Baroni
et al., 2014) as count or predict models. The ba-
sis for both models is the distributional hypoth-
esis (Harris, 1954), which states that words that
appear in similar contexts have similar meaning.
Traditional context representations have been ob-
tained by capturing co-occurrences of words from
a fixed-size window relative to the focus word.
This representation however does not encompass

the entirety of the context surrounding the focus
word. Therefore, the distributional hypothesis is
not being taken advantage of to the fullest extent.
In this work, we seek to capture these contexts
through the fixed-size ordinally forgetting encod-
ing (FOFE) method, recently proposed in (Zhang
et al., 2015b). In addition to just capturing word
co-occurrences, we attempt to use the FOFE to
encode the full contexts of each focus word, in-
cluding the order information of the context se-
quences. We believe the full encoding of con-
texts can enhance the resulting word embedding
vectors, derived by factoring the corresponding
word-context matrix. As argued in (Zhang et al.,
2015b), the FOFE method can almost uniquely en-
code discrete sequences of varying lengths into
a fixed-size code, and this encoding method was
used to address the challenges of a limited size
window when using deep neural networks for lan-
guage modeling. The resulting algorithm fulfills
the needs of keeping long term dependency while
being fast. The word order in a sequence is mod-
eled by FOFE using an ordinally-forgetting mech-
anism which encodes each position of every word
in the sequence.

In this paper, we elaborate how to use the FOFE
to fully encode context information of each focus
word in text corpora, and present a new method
to construct the word-context matrix for word em-
bedding, which may be weighted and factorized
as in traditional vector space models (Turney and
Pantel, 2010). Next, we report our experimental
results on several popular word similarity tasks,
which demonstrate that the proposed FOFE-based
approach leads to significantly better performance
in these tasks, comparing with the conventional
vector space models as well as the popular neu-
ral prediction methods, such as word2vec, GloVe
and more recent Swivel. Finally, this paper will
conclude with the analysis and prospects of com-
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bining this approach with other methods.

2 Related Work

There has been some debate as to what the opti-
mal length of a text should be for measuring word
similarity. Word occurrences from a fixed con-
text window of words can be used to represent
a context (Lund and Burgess, 1996). The word
co-occurrence frequencies are based on fixed win-
dows spanning in both directions from the focus
word. This is then used to create a word-context
matrix from which row vectors can be used to
measure word similarity. A weighting step is usu-
ally applied to highlight words with close associa-
tion in the co-occurrence matrix, and the truncated
SVD is used to factorize the weighted matrix to
generate low-dimension word vectors. Recently,
(Mikolov et al., 2013a) has introduced an alterna-
tive way to generate word embeddings using the
skipgram model trained with stochastic gradient
descent and negative sampling, named as SGNS.
SGNS tries to maximize the dot product between
w · c where both a word w and a context c are
obtained from observed word-context pairs, and
meanwhile it also tries to minimize the dot product
between w · c′ where c′ is a negative sample repre-
senting some contexts that are not observed in the
corpus. More recently, (Levy and Goldberg, 2014)
has showed that the objective function of SGNS
is essentially seeking to minimize the difference
between the models estimate and the log of co-
occurrence count. Their finding has shown that
the optimal solution is a weighted factorization of
a pointwise mutual information matrix shifted by
the log of the number of negative samples.

SGNS and GloVe (Pennington et al., 2014) se-
lect a fixed window of usually 5 words or less
around a focus word to encode its context and the
word order information within the window is com-
pletely ignored. Other attempts to fully capture the
contexts have been successful with the use of re-
current neural networks (RNNs) but these methods
are much more expensive to run over large corpora
when comparing with the proposed FOFE method
in this paper. Some previous approaches to en-
code order information, such as such as BEAGLE
(Jones and Mewhort, 2007) and Random Permu-
tations (Sahlgren et al., 2008), typically require
the use of expensive operations such as convolu-
tion and permutation to process all n-grams within
a context window to memorize order information

for a given word. On the contrary, the FOFE meth-
ods only use a simple recursion to process a sen-
tence once to memorize both context and order in-
formation for all words in the sentence.

3 FOFE based Embedding

To capture the full essence of the distributional hy-
pothesis, we need to fully encode the left and right
context of each focus word in the text, and fur-
ther take into accounts that words closer to the fo-
cus word should play a bigger role in representing
the context relevant to the focus word than other
words locating much farther away. Traditional co-
occurrence word-context matrixes fail to address
these concerns of context representation.

In this work, we propose to make use of the
fixed-size ordinally-forgetting encoding (FOFE)
method, proposed in (Zhang et al., 2015b) as a
unique encoding method for any variable-length
sequence of discrete words.

Given a vocabulary of size K, FOFE uses 1-of-
K one-hot representation to represent each word.
To encode any variable-length sequence of words,
FOFE generates the code using a simple recursive
formula from the first word (w1) to the last one
(wT ) of the sequence: (assume z0 = 0)

zt = α · zt−1 + et (1 ≤ t ≤ T ) (1)

where zt denotes the FOFE code for the partial
sequence up to word wt, α is a constant forget-
ting factor, and et denotes the one-hot vector rep-
resentation of word wt. In this case, the code
zT may be viewed as a fixed-size representation
of any sequence of {w1, w2, · · · , wT }. For ex-
ample, assume we have three symbols in vocabu-
lary, e.g., A, B, C, whose 1-of-K codes are [1, 0, 0],
[0, 1, 0] and [0, 0, 1] respectively. When calculat-
ing from left to right, the FOFE code for the se-
quence {ABC} is [α2, α, 1], and that of {ABCBC}
is [α4, α+ α3, 1 + α2].

The uniqueness of the FOFE code is made evi-
dent if the original sequence can be unequivocally
recovered from the given FOFE code. According
to (Zhang et al., 2015b), FOFE codes have some
nice theoretical properties to ensure the unique-
ness, as exemplified by the following two theo-
rems 1:

Theorem 1 If the forgetting factor α satisfies 0 <
α ≤ 0.5, FOFE is unique for any K and T .

1See (Zhang et al., 2015a) for the proof of these two the-
orems.
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Theorem 2 For 0.5 < α < 1, given any finite
values of K and T , FOFE is almost unique every-
where for α ∈ (0.5, 1.0), except only a finite set of
countable choices of α.

Finally, for alpha values less than or equal to
0.5 and greater than 0, the FOFE is unique for
any sequence. For alpha values greater than 0.5,
the chance of collision is extremely low and the
FOFE is unique in almost all cases. Too find more
about the theoretical correctness of FOFE, please
refer to (Zhang et al., 2015b). In other words, the
FOFE codes can almost uniquely encode any se-
quences, serving as a fixed-size but theoretically
lossless representation for any variable-length se-
quences.

In this work, we propose to use FOFE to encode
the full context where each focus word appears in
text. As shown in Figure 1, the left context of a fo-
cus word, i.e., bank, may be viewed as a sequence
and encoded as a FOFE code L from the left to
right while its right context is encoded as another
FOFE code R from right to left. When a proper
forgetter factor α is chosen, the two FOFE codes
can almost fully represent the context of the focus
word. If the focus word appears multiple times
in text, a pair of FOFE codes [L,R] is generated
for each occurrence. Next, a mean vector is calcu-
lated for each word from all of its occurrences in
text. Finally, as shown in Figure 1, we may line up
these mean vectors (one word per row) to form a
new word-context matrix, called the FOFE matrix
here.

4 PMI-based Weighting and SVD-based
Matrix Factorization

We further weight the above FOFE matrix using
the standard positive pointwise mutual informa-
tion (PMI) (Church and Hanks, 1990) which has
been shown to be of benefit for regular word-
context matrices (Pantel and Lin, 2002). PMI is
used as a measure of association between a word
and a context. PMI tries to compute the asso-
ciation probabilities based on co-occurrence fre-
quencies. Positive pointwise mutual information
is a commonly adopted approach where all neg-
ative values in the PMI matrix are replaced with
zero. The PMI-based weighting function is critical
here since it helps to highlight the more surprising
events in original word-context matrix.

There are significant benefits in working with
low-dimensional dense vectors, as noted by (Deer-

wester et al., 1990) with the use of truncated sin-
gular value decomposition (SVD). Here, we also
use truncated SVD to factorize the above weighted
FOFE matrix as the product of three dense matri-
ces U,Σ, V T , where U and V T have orthonormal
columns and Σ is a diagonal matrix consisting of
singular values. If we select Σ to be of rank d, its
diagonal values represent the top d singular val-
ues, and Ud can be used to represent all word em-
beddings with d dimensions where each row rep-
resents a word vector.

5 Experiments

We conducted experiments on several popular
word similarity data sets and compare our FOFE
method with other existing word embedding mod-
els in these tasks. In this work, we opt to use
five data sets: WordSim353 (Finkelstein et al.,
2001), MEN (Bruni et al., 2012), Mechanical Turk
(Radinsky et al., 2011), Rare Words (Luong et al.,
2013) and SimLex-999 (Hill et al., 2015). The
word similarity performance is evaluated based on
the Spearman rank correlation coefficient obtained
by comparing cosine distance between word vec-
tors and human assigned similarity scores.

For our training data, we use the standard en-
wiki9 corpus which contains 130 million words.
The pre-processing stage includes discarding ex-
tremely long sentences, tokenizing, lowercasing
and splitting each sentence as a context. Our vo-
cabulary size is chosen to be 80,000 for the most
frequent words in the corpus. All words not in the
vocabulary are replaced with the token <unk>. In
this work, we use a python-based library, called
scipy 2, to perform truncated SVD to factorize all
word-context matrices.

5.1 Experimental Setup

Our first baseline is the conventional vector space
model (VSM) (Turney and Pantel, 2010), relying
on the PMI-weighted co-occurrence matrix with
dimensionality reduction performed using trun-
cated SVD. The dimension of word vectors is cho-
sen to be 300 and this number is kept the same
for all models examined in this paper. Our main
goal is to outperform VSM as the model proposed
in this paper also uses SVD based matrix factor-
ization. This allows for appropriate comparisons
between the different word encoding methods.

2 See http://docs.scipy.org/doc/scipy/
reference/.
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left FOFE code Lw1 right FOFE code Rw1

left FOFE code Lw2 right FOFE code Rw2

left FOFE code LwK right FOFE code RwK

w1

w2

wK

K x 2K

Back in the day, we had an entire bank of computers devoted to this problem. 

left FOFE code L right FOFE code R

i) encoding left and right context for one occurrence of the focus word, i.e. bank

ii) forming the FOFE word-context matrix for all words

Figure 1: i) encoding left and right contexts of each focus word with FOFE and ii) forming the FOFE
word-context matrix.

For the purpose of completeness, the other non-
SVD based embedding models, mainly the more
recent neural prediction methods, are also com-
pared in our experiments. As a result, we build the
second baseline using the skip-gram model pro-
vided by the word2vec software package (Mikolov
et al., 2013a), denoted as SGNS. The word em-
beddings are generated using the recommended
hyper-parameters from (Levy et al., 2015). Their
findings show a larger number of negative sam-
ples is preferable and increments on the window
size have minimal improvements on word similar-
ity tasks. In our experiments the number of nega-
tive samples is set to 5 and the window size is set
to 5. In addition, we set the subsampling rate to
10−4 and run 3 iterations for training. In adition to
SGNS, we also obtained results for CBOW, GloVe
(Pennington et al., 2014) and Swivel (Shazeer
et al., 2016) models using similar recommended
settings. While the window size has a fixed limit
in the baseline models, our model does not have
a window size parameter as the entire sentence

is fully captured as well as distinctions between
left and right contexts when generating the FOFE
codes. The impact of closer context words is fur-
ther highlighted by the use of the forgetting factor
which is unique to the FOFE based word embed-
ding.

Finally, we use the FOFE codes to construct the
word-context matrix and generate word embed-
ding as described in sections 3 and 4. Throughout
our experiments, we have chosen to use a constant
forgetting factor α = 0.7. There is no significant
difference in word similarity scores after experi-
menting with different α values between [0.6, 0.9]
when generating FOFE codes.

We have applied the same hyperparameters to
both VSM and FOFE methods and fine-tune them
based on the recommended settings provided in
(Levy et al., 2015). Although it has been previ-
ously reported that context distribution smoothing
(Mikolov et al., 2013b) can provide a net posi-
tive effect, it did not yield significant gains in our
experiments. On the other hand, the eigenvalue
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Table 1: The best achieved performance of various word embedding models on all five examined word
similarity tasks.

Method WordSim353 MEN Mech Turk Rare Words SimLex-999
VSM+SVD 0.7109 0.7130 0.6258 0.4813 0.3866

CBOW 0.6763 0.6768 0.6621 0.4280 0.3549
GloVe 0.5873 0.6350 0.5831 0.3934 0.2883
SGNS 0.7028 0.6689 0.6187 0.4360 0.3709
Swivel 0.7303 0.7246 0.7024 0.4430 0.3323

FOFE+SVD 0.7580 0.7637 0.6525 0.5002 0.3866

weighting parameter tuning (Caron, 2001) proved
to be incredibly effective for some datasets but in-
effectual in others. The net benefit however is pal-
pable and we include it for both VSM and FOFE
methods.

5.2 Results and Discussion

The best results of all word embedding models are
summarized in Table 1 for all five examined data
sets, which include the the traditional count based
VSM with SVD alongside SGNS using word2vec

and our proposed FOFE word embeddings. The
most discernible piece of information from the ta-
ble is that the FOFE method significantly outper-
forms the traditional count based VSM method on
most of these word similarity tasks. The results
in Table 1 show that substantial gains are obtained
by FOFE in WordSim353, MEN and Rare Words
data sets. The MEN dataset shows a 7% relative
improvement over the conventional VSM.

Among all of these five data sets, the proposed
FOFE word embedding significantly outperforms
VSM in four tasks while yielding similar perfor-
mance as VSM in the last data set, i.e. SimLex-
999. FOFE also outperforms all the other models
except Swivel in the Mech Turk dataset. It is im-
portant to note that this paper does not state that
SVD is obligatory to obtain the best model. The
FOFE method can be complemented with other
models such as Swivel in place of count based en-
coding methods. It is also theoretically guaranteed
that the original sentence is perfectly recoverable
from this FOFE code. This theoretical guarantee
is clearly missing in previous methods to encode
word order information, such as both BEAGLE
and Random Permutations. It is evident that over-
all the FOFE encoding method does achieve sig-
nificant gains in performance in these word sim-
ilarity tests over the traditional VSM method that
applies the same factorization method. This is sub-

stantial as (Levy et al., 2015) demonstrates that
larger window sizes when using SVD does not
payoff and the optimal context window is 2. We
establish that we can indeed encode more infor-
mation into our embedding with the FOFE codes.

In summary, our experimental results show
great promise in using the FOFE encoding to rep-
resent word contexts for traditional matrix factor-
ization methods. As for future work, the FOFE en-
coding method may be combined with other pop-
ular algorithms, such as Swivel, to replace the co-
occurrence statistics based on a fixed window size.

6 Conclusion

The ability to capture the full context without
restriction can play a crucial factor in generat-
ing superior word embeddings that excel in NLP
tasks. The fixed-size ordinally forgetting encod-
ing (FOFE) has the ability to seize large contexts
while discriminating contexts that are farther away
as being less significant. Conventional embed-
dings are derived from ambiguous co-occurrence
statistics that fail to adequately discriminate con-
texts words even within the fixed-size window.
The FOFE encoding technique trumps other ap-
proaches in its ability to procure the state of the
art results in several word similarity tasks when
combined with prominent factorization practices.
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Abstract

Many Natural Language Processing
(NLP) models rely on distributed vector
representations of words. Because the
process of training word vectors can
require large amounts of data and compu-
tation, NLP researchers and practitioners
often utilize pre-trained embeddings
downloaded from the Web. However,
finding the best embeddings for a given
task is difficult, and can be computation-
ally prohibitive. We present a framework,
called VecShare, that makes it easy to
share and retrieve word embeddings on
the Web. The framework leverages a
public data-sharing infrastructure to host
embedding sets, and provides automated
mechanisms for retrieving the embed-
dings most similar to a given corpus.
We perform an experimental evaluation
of VecShare’s similarity strategies, and
show that they are effective at efficiently
retrieving embeddings that boost accuracy
in a document classification task. Finally,
we provide an open-source Python library
for using the VecShare framework.1

1 Introduction

Word embeddings capture syntactic and semantic
properties of words, and are a key component of
many modern NLP models (Turian et al., 2010).
However, high-quality embeddings can be expen-
sive to train. As a result, rather than training their
own embeddings, NLP researchers and practition-
ers often download pre-trained embeddings from
the Web, e.g. (Limsopatham and Collier, 2016;
Cheng et al., 2016).

1https://github.com/JaredFern/VecShare

However, existing methods for sharing embed-
dings on the Web are suboptimal. Current prac-
tice primarily consists of contributors posting em-
bedding sets to their own Web sites. No central
embedding repository exists, and it is difficult for
users to know which embedding sets are available.
Furthermore, determining the utility of an embed-
ding set for a particular NLP task entails signifi-
cant time and computational costs, as users must
manually download and evaluate multiple com-
plete embedding sets. Methods exist for automati-
cally scoring an embedding set, but these are lim-
ited to specific tasks and lack integration with ex-
isting code bases (Faruqui and Dyer, 2014).

Our goal in this paper is to introduce a frame-
work that makes sharing word embeddings easier
for NLP researchers and practitioners. It should be
simple and fast to post, browse, and retrieve em-
beddings from a public data store. Additionally,
integration with existing NLP codebases should be
more seamless: software libraries should automat-
ically identify and download the particular embed-
dings that are likely to be relevant to a user’s cor-
pus.

This paper presents VecShare, a framework for
sharing word embeddings. As its data store,
it uses an existing public data-sharing platform,
which provides searching and browsing capabil-
ity. To solve the critical challenge of helping
users quickly find relevant embeddings, we in-
troduce embedding indexers. The indexers com-
pute and share compact representations, called sig-
natures, for each embedding set. Users employ
a software library that downloads the signatures
and compares them against the user’s corpus. Us-
ing the signatures, the library efficiently evaluates
the utility of each shared embedding set and de-
termines which sets are most likely to be rele-
vant. The library can then automatically download
the relevant embeddings and make them available
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within the user’s code. Finally, VecShare is an
open source framework: new embeddings, index-
ers, and signature methods can be independently
added at any time.

We perform experiments evaluating different
signature methods in selecting embeddings for
document classification tasks, and demonstrate
that an ensemble signature based on simple fea-
tures (e.g. vocabulary overlap with the user’s cor-
pus, or similarities between a sample of embed-
ding pairs) can select helpful embeddings. We
release a Python library for NLP researchers and
practitioners that can query the embedding library,
and automatically select and download relevant
embeddings for a given corpus.

2 The VecShare Framework

The VecShare framework is illustrated in Figure 1.
Contributors upload embedding sets to a Public
Embedding Store, hosted on a public data-sharing
platform. Indexers periodically poll the embed-
ding store, detecting and indexing newly uploaded
embedding sets. For each embedding set, index-
ers store a signature that compactly represents the
content of the embedding set. The indexer uses
these signatures to return relevant embedding sets
to users. A user can then retrieve embeddings for
their particular corpus from the data store, using a
software library built for this purpose.

The current VecShare implementation uses the
public data sharing website data.world as its em-
bedding store.2 We chose data.world for its ease of
use and robustness, but any publicly-available data
share that allows search by tags and programmatic
access is sufficient to house VecShare. Below, we
describe the details of the framework.

2http://data.world/

2.1 Contributors

A contributor who has computed a set of word em-
beddings adds the embeddings to VecShare by up-
loading the data to the share, following a simple
standard format with n + 1 fields where the first
field is a word, and the remaining fields give the
n-dimensional embedding of the word. The con-
tributor tags the data set with a designated tag so
that indexers can automatically identify that the
data set is an indexable word embedding set. For
embedding sets to be applicable to certain kinds
of signatures, contributors can also elect to up-
load additional metadata with their embeddings
(in our initial implementation, metadata includes
a frequency ranking of terms in the corpus, and
the total number of tokens used to construct the
embeddings).

2.2 Indexers and Signatures

Indexers periodically poll the embedding store,
looking for new embedding sets uploaded by con-
tributors. For each embedding set, the indexer
computes and stores a signature designed to cap-
ture characteristics of the embeddings. To esti-
mate the relevance of each embedding set for the
user’s task, these signatures are later compared to
corresponding signatures created from the user’s
corpus. Thus, each signature method has an asso-
ciated similarity measure, which takes in a pair of
signatures (one from a VecShare embedding set,
and the other from the user’s corpus) and outputs
a numeric similarity score for the pair.

We explore two primary signature methods in
this paper. The first, VocabRk, consists of (up to)
the Tv most frequent words in the embedding cor-
pus, excluding a set of stop words. The similar-
ity method is the negative average rank of the sig-
nature words within the user’s frequency-ordered
vocabulary. Words not in the user’s corpus are as-
signed a rank of T . Thus, the most similar embed-
ding set under the VocabRk signature is thus the
one with the lowest average rank.

The VocabRk signature method relies only on
vocabulary overlap, and entirely ignores the em-
beddings themselves. We also experiment with a
second signature method that does utilize the em-
beddings. The SimCorr signature for a set of em-
beddings E consists of the embeddings for the Ts
most frequent words in E’s corpus (again exclud-
ing stop words). To estimate the similarity be-
tween the user’s corpus C and the embeddings E,
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the SimCorr method first computes a set of embed-
dings on the user’s corpus. For all words found in
both E’s signature and in the user’s corpus, Sim-
Corr computes all pairwise cosine similarities be-
tween pairs of E embeddings, and pairs of C em-
beddings. The Pearson correlation coefficient be-
tween the E-based cosine similarities and the C-
based ones is taken as the SimCorr similarity mea-
sure. Thus, two embedding sets that estimate sim-
ilarity of terms in a similar manner will be deemed
similar according the SimCorr measure, even if
the vector values of the embeddings differ substan-
tially between the two sets.

The indexers make their signatures available to
users by simply sharing a signature data set on the
public data store, which is read by the VecShare
software library. Like the other components of
VecShare, the indexers of the framework are ex-
tensible – new indexers, signature and similarity
measures can be created at any time.

2.3 Libraries

Users access the VecShare framework using a
code library. Embeddings can be requested by
name if the user desires a particular embedding
(e.g. “300 dimensional Google News word2vec
embeddings”), or the user can query an indexer
to find embedding sets most likely to be useful
for the user’s task. Importantly, the software li-
brary performs embedding selection locally on the
user’s machine, using signature similarity methods
described previously. The user’s corpus does not
need to be uploaded or shared.

Once the target embedding set has been identi-
fied, the library downloads the target embeddings
for the particular words in the user’s vocabulary.
Thus, if the user’s vocabulary is much smaller than
that of the embedding set, this download can be
much more compact than the full embedding set.

A contribution of this paper is the release of a
Python library for the framework, which imple-
ments the VocabRk similarity computation. With
this library, leveraging the framework to select
and retrieve the top-ranked embeddings for a given
corpus requires just one line of code.

3 Experiments

We now evaluate the effectiveness of the signature
methods described in the previous section at iden-
tifying high-quality embedding sets for a given
corpus, for the task of text classification. We

also quantify the improvement in efficiency when
using VecShare rather than following the current
practice of downloading and testing multiple em-
bedding sets.

In our experiments, we set the parameters Tv =
5, 000 and Ts = 1, 000, and we discard the top
100 most frequent words as stopwords. When
training embeddings on the user’s corpus, we use
word2vec.

3.1 Experimental Methodology

We perform experiments in two settings: first with
large-corpus embeddings, where we use word2vec
and GloVe embedding sets trained on billions of
tokens. The large-corpus embeddings are repre-
sentative of state-of-the-art models, but are trained
over very broad-topic corpora (billions of tokens
of newswire, Web or social media text). To bet-
ter measure whether VecShare can harness more
specific, targeted embedding sets, we also evalu-
ate over small-corpus embeddings.

For the large-corpus embeddings, we utilize
three sets of GloVe embeddings (Pennington
et al., 2014): wik+, 100-dimensional embeddings
trained on six billion tokens of Wikipedia and the
Gigaword corpus; web, 300-dimensional embed-
dings trained on 42 billion tokens of the Common
Crawl Web dataset; and twtr, 100-dimensional
embeddings trained on 27 billion tokens of Twit-
ter posts. We also utilize gnws, 300-dimensional
word2vec embeddings trained on three billion to-
kens of Google News data.3

For the small corpus embeddings, we created
a topically diverse collection of subsets of the
New York Times corpus (Sandhaus, 2008), across
seven categories (agriculture, arts, books, eco-
nomics, government, movies, and weather). We
then trained word2vec embeddings on each sub-
set, to create seven distinct similarly-sized, small
corpus embedding sets.

For our experiments, we utilize the embed-
dings as features for document classification
within a convolutional neural network (Chollet,
2017). We evaluate on four document classifica-
tion tasks: Reuters-21578 newswire topic classi-
fication (Lewis, 1997), subjectivity classification
(Pang and Lee, 2004), IMDB movie review classi-
fication (Maas et al., 2011), and the 20news clas-
sification task.4

3https://github.com/mmihaltz/
word2vec-GoogleNews-vectors.

4http://qwone.com/˜jason/20Newsgroups/
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Reuters Subjectivity IMDB 20news Average
ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Acc

Random - - 0.862 - - 0.688 - - 0.868 - - 0.763 - 0.795
MaxTkn 0.63 web 0.888 0.19 web 0.728 0.38 web 0.881 0.97 web 0.863 0.54 0.840
VocabRk 0.46 gnws 0.882 0.02 gnws 0.759 0.40 gnws 0.886 0.20 gnws 0.719 0.27 0.812
SimCorr -0.65 wik+ 0.84 0.81 gnws 0.759 0.45 gnws 0.886 0.60 twtr 0.748 0.30 0.808

All 0.26 gnws 0.882 0.43 gnws 0.759 0.49 gnws 0.886 0.87 web 0.863 0.51 0.848
Oracle - web 0.888 - gnws 0.759 - gnws 0.886 - web 0.863 - 0.85

Table 1: Experimental results using large-corpus embeddings. All of the signature methods outperform
the random baseline, and the All method performs best in terms of both correlation ρ and text classifica-
tion accuracy.

Reuters Subjectivity IMDB 20news Average
ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Acc

Random - - 0.844 - - 0.667 - - 0.829 - - 0.610 - 0.738
MaxTkn 0.62 govt 0.856 -0.64 govt 0.568 -0.02 govt 0.763 0.82 govt 0.647 0.20 0.709
VocabRk 0.74 econ 0.880 0.51 mov 0.686 0.89 mov 0.835 0.64 book 0.629 0.70 0.758
SimCorr 0.51 econ 0.880 0.62 book 0.706 0.93 book 0.842 -0.25 agri 0.551 0.45 0.745

All 0.82 econ 0.880 0.16 book 0.706 0.87 book 0.842 0.67 book 0.629 0.63 0.764
Oracle - econ 0.880 - book 0.706 - book 0.842 - govt 0.647 - 0.769

Table 2: Experimental results using small-corpus embeddings. The VocabRk and SimCorr methods
outperform the baselines, and the All method performs best in terms of both correlation ρ and text clas-
sification accuracy.

In addition to the VocabRk and SimCorr meth-
ods described in the previous section, we also eval-
uate against two simple baselines: Random, which
selects an embedding set at random, and Max-
Tkn, which adopts a “bigger is better” strategy, al-
ways selecting the embedding set trained over the
largest text corpus.

Finally, as discussed below our experimental re-
sults reveal that the different signature methods
have distinct strengths. Thus, we also evaluate All,
a simple ensemble of the VocabRk, SimCorr, and
MaxTkn methods. All simply takes an even aver-
age of the rankings output by its three constituent
signature methods. The All method selects the sin-
gle embedding set with the lowest average rank-
ing, breaking ties in favor of the VocabRk method.

3.2 Results

Our results are shown in Tables 1 and 2. For
each classification task and each method, “Sel.”
indicates the embedding set that the method se-
lects (that is, the one the method ranks most sim-
ilar to the text classification data set). We report
two measures of the quality of a signature method:
ρ, the Pearson correlation between the similarity
scores assigned by the method and the set’s accu-
racy on the classification task; and “Acc.,” the ac-
curacy of the embeddings selected by the method.

The results show that for the small-corpus em-
beddings, the VocabRk and SimCorr signature
methods perform well, beating the random base-
line overall. By contrast, for the large-corpus em-
beddings, the MaxTkn method performs the best of
the individual methods (primarily due to its strong
performance on the idiosyncratic 20news data set).
The All ensemble method achieves performance
nearly as high as the best possible embedding se-
lection (represented as the Oracle method in the
tables).

An alternative to using pre-trained embeddings
is to train embeddings on the evaluation corpus it-
self. We found that this approach achieved an av-
erage accuracy of 0.746 across our four data sets,
lower than our results using the All method. Utiliz-
ing the pre-trained embeddings, especially those
computed over large corpora, provides a signifi-
cant boost in text classification accuracy.

3.3 Efficiency Experiment

We also evaluated the relative gain in time and
space efficiency that VecShare provides over the
current practice of manually evaluating each em-
bedding set and selecting the embedding that per-
forms best. The efficiency experiment was per-
formed on a single machine with a 2.3 GHz quad-
core CPU and 8GB of main memory, using a test
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framework containing 11 embedding sets.
Embedding selection was performed using both

the VocabRk signature method on VecShare and
the conventional method of selecting embeddings,
which trains models for each embedding set and
then evaluates those models on the test corpus.
The conventional approach required an average of
177 minutes to train, evaluate, and select an em-
bedding set for each test corpus. Whereas, the Vo-
cabRk signature method on the VecShare frame-
work required an average of 38 seconds to se-
lect an embedding for each test corpus, an aver-
age speedup of 280x. Additionally, VecShare sub-
stantially reduces space cost: the total size of the
signatures in the experiments is 4-5 orders of mag-
nitude smaller than the full embedding sets.

4 Conclusions and Future Work

We presented VecShare, a framework for sharing
word vector representations. The VecShare frame-
work uses signatures to help researchers and prac-
titioners quickly identify helpful embeddings for
their task. We released a Python library that al-
lows practitioners to access the framework. We
also performed experiments quantifying the accu-
racy and efficiency of VecShare’s embedding se-
lection approach on text classification. Further ex-
periments on additional data sets and NLP tasks
are necessary.

In future work, we wish to explore embedding
signatures that leverage richer knowledge of the
practitioner’s corpus and task. Finally, we hope
to extend VecShare’s embedding selection meth-
ods to consider syntheses of multiple distinct em-
bedding sets, tailored to the practitioner’s task and
corpus.
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Abstract

Word embeddings seek to recover a Eu-
clidean metric space by mapping words
into vectors, starting from words co-
occurrences in a corpus. Word embed-
dings may underestimate the similarity be-
tween nearby words, and overestimate it
between distant words in the Euclidean
metric space. In this paper, we re-embed
pre-trained word embeddings with a stage
of manifold learning which retains dimen-
sionality. We show that this approach is
theoretically founded in the metric recov-
ery paradigm, and empirically show that
it can improve on state-of-the-art embed-
dings in word similarity tasks 0.5 − 5.0%
points depending on the original space.

1 Introduction

Concepts have been hypothesized in the cognitive
psychometric literature as points in a Euclidean
metric space, with empirical support from human
judgement experiments (Rumelhart and Abraham-
son, 1973; Sternberg and Gardner, 1983). Word
embeddings, such as GloVe (Pennington et al.,
2014a) and Word2Vec (Mikolov et al., 2013),
harvest observed features of the latent Euclidean
space such as words co-occurrence counts in a
corpus and turn words into dense vectors of a
few hundred dimensions. Word embeddings have
proved useful in downstream NLP tasks such as
Part of Speech Tagging (Collobert, 2011), Named
Entity Recognition (Turian et al., 2010), and Ma-
chine Translation (Devlin et al., 2014). However,
the potential of word embeddings and further im-
provements remain a research question.

When comparing word pairs similarities ob-
tained from word embeddings, to word pairs sim-
ilarities obtained from human judgement, it is ob-

served that word embeddings slightly underesti-
mate the similarity between similar words, and
overestimate the similarity between distant words.
For example, in the WS353 (Finkelstein et al.,
2001) word similarity ground truth:

sim(“shore”, “woodland”) = 3.08

< sim(“physics”, “proton”) = 8.12

However, the use of GloVe 42B 300d embed-
ding with cosine similarity (see Section 4) yields
the opposite order:

sim(“shore”, “woodland”) = 0.36

> sim(“physics”, “proton”) = 0.33

Re-embedding the space using a manifold
learning stage can rectify this. Manifold learning
works by estimating the distance between nearby
words using direct similarity assignment in a lo-
cal neighbourhood, while distance between far-
away words is approximated by multiple neigh-
bourhoods based on the manifold shape. This ob-
servation forms the basis for the rest of this paper.

For instance, using Locally Linear Embedding
(LLE) (Roweis and Saul, 2000) on top of GloVe,
as described in this paper, can recover the right
pairs order yielding:

sim(“shore”, “woodland”) = 0.08

< sim(“physics”, “proton”) = 0.25

Hashimoto et al. (Hashimoto et al., 2016) put
word embeddings under a paradigm which seeks
to recover the underlying Euclidean metric seman-
tic space. In this paradigm, word embeddings
land into a space where a Euclidean metric can
be used. They show that co-occurrence counts are
the results of random walk sequences in the metric
space, corresponding to sentences in a corpus.

Hashimoto et al. link this to manifold learn-
ing which also seeks to recover a Euclidean space
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Figure 1: Methodology and Related Work.

but starting from local neighbourhoods of objects,
such as images or words. Global distances are
built by adding up small local neighbourhoods.
The authors show that word embedding algorithms
can be used to solve manifold learning by generat-
ing random walks, aka sentences, on the manifold
neighbourhood graph, and then embedding them.

In this work we follow a methodology which
adheres to this paradigm and adopt a different an-
gle, as per Figure 1. We start from an off-the-shelf
word embedding, then we take a sample of it and
feed it into manifold learning which leverages lo-
cal word neighbourhoods formed in the original
embedding space, learns the manifold, and em-
beds it into a new Euclidean space. The result-
ing re-embedding space is a recovery of a Eu-
clidean metric space that is empirically better than
the original word embedding when tested on word
similarity tasks.

These results show that word embeddings can
be improved in estimating the latent metric. Such
an approach can provide new opportunities to im-
prove our understanding of embedding methods,
their properties, and limits. It also allows us to
reuse and re-embed off-the-shelf pre-trained em-
beddings, saving time on training, while aiming
at improved results in downstream NLP tasks,
and other data processing tasks (Hasan and Curry,
2014; Hasan, 2017; Freitas and Curry, 2014).

Section 2 discusses the related literature to this
work. Section 3 details the proposed approach.
Sections 4 and 5 discuss the experiments and re-
sults. The paper concludes with Section 6.

2 Related Work

The relationship to related work is depicted in Fig-
ure 1. Word embeddings are unsupervised meth-
ods based on word co-occurrence counts which
can be directly observed in a corpus. Mikolov et
al. presents a neural network-based architecture
which learns a word representation by learning to
predict its context words (Mikolov et al., 2013).
Pennington et al. proposed GloVe, which directly
leverages nonzero word-word co-occurrences in a
global manner (Pennington et al., 2014a).

The idea of embedding objects from a high di-
mensional space, e.g. images, into a smaller di-
mensional space constitute the area of manifold
learning. For instance, Roweis and Saul present
the Locally Linear Embedding (LLE) algorithm
and show that pixel-based distance between im-
ages is meaningful only at a local neighbourhood
scale (Roweis and Saul, 2000). Reconstructions
can capture the underlying manifold of the data,
and can embed the high dimensional objects, into a
lower dimensional Euclidean space while preserv-
ing neighbourhoods. Other methods exist such
as Isomap (Balasubramanian and Schwartz, 2002)
and t-SNE (Maaten and Hinton, 2008).

Hashimoto et al. show that word embed-
dings and manifold learning are both methods to
recover a Euclidean metric using co-occurrence
counts and high dimensional features respectively
(Hashimoto et al., 2016). They show that word
embeddings can be used to solve manifold learn-
ing when starting from a high dimensional space.
In this paper we start from a trained word embed-
ding space, and learn a manifold from it to im-
prove results. We do not use manifold learning to
reduce dimensionality, but to transform between
two equally-dimensional coordinate systems.

Other related work comes from word embed-
ding post-processing. Labutov and Lipson use a
supervised model to re-embed words for a tar-
get task (Labutov and Lipson, 2013). Lee et
al. filter out abnormal dimensions from a GloVe
space according to their histograms and show a
slight improvement in performance (Lee et al.,
2016). Mu at al. perform similar post-processing
through the removal of the mean vector and vec-
tors re-projection (Mu et al., 2017). We see man-
ifold learning as a generic, unsupervised, non-
linear, and theoretically-founded model for post-
processing that can cover linear post-processing
such as PCA and normalization of vectors.
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Figure 2: Re-Embedding via Manifold Learning.

3 Approach

Figure 2 illustrates our re-embedding method. We
start from an original embedding space with vec-
tors ordered by words frequencies. In step (a), we
pick a sample window of vectors from this space
to be used for learning the manifold. In step (b),
we fit the manifold learning model to the selected
sample using an algorithm such as LLE. We re-
tain the dimensionality at this stage. In step (c), an
arbitrary test vector can be selected from the orig-
inal space. In step (d), the resulting fitted model
serves as a transformation which can be used to
transform the test vector into a vector which lives
in the new re-embedding space, and used in down-
stream tasks.

In step (a), a sample subset of the words is
used based on word frequency rank. The ratio-
nal is that word embedding attempts to recover a
metric space and frequent words co-occurrences
can represent a better sampling of the underlying
space due to their frequent usage, rather than being
handled equally with other points, thus can better
recover the manifold shape. Experimenting with
subsets from all the vocabulary or non-frequent
words, may yield no improvement. Additionally,
manifold learning on all points is computationally
expensive. The sampling used here follows a slid-
ing sample window to study the effect of its start
position and size. Various ways to choose a sam-
ple, e.g. random sampling, can be followed, but
word frequency should remain a factor in where
the sample is taken from.

In step (b), the sample is used to fit a mani-
fold. For LLE (Saul and Roweis, 2000), that is
done through learning the weights which can re-

construct each word vector from the sample X
through its K-nearest neighbours in the sample,
by minimizing the error function:

E(W ) =
∑

i

∣∣∣∣∣∣
~Xi −

∑

j

Wij
~Xj

∣∣∣∣∣∣

2

(1)

such that Wij = 0 if ~Xj is not in the K-nearest
neighbours of ~Xi. The weights are then used to
construct a new embedding Y of the sample X
via a neighbourhood-preserving mapping through
minimizing the cost function:

Φ(Y ) =
∑

i

∣∣∣∣∣∣
~Yi −

∑

j

Wij
~Yj

∣∣∣∣∣∣

2

(2)

In steps (c) and (d), to transform an arbitrary
vector ~x, the weights are first constructed from
only the K-nearest neighbours of ~x in the sample
X , by minimizing the function:

E(W x) =

∣∣∣∣∣∣
~x−

∑

j

W x
j
~Xj

∣∣∣∣∣∣

2

(3)

such that W x
j = 0 if ~Xj is not in the K-nearest

neighbours of ~x. The weights are then used along
with the new embedding Y to transform ~x into ~y
which lives in the new embedding space through
the equation:

~y =
∑

j

W x
j
~Yj (4)

where ~Yj is the transform, from step (b), of ~Xj that
is in the K-nearest neighbours of ~x.

4 Experiments

Original Embedding Spaces. The original word
embeddings used are pre-trained GloVe models:
Wikipedia 2014 + Gigaword 5 (6B tokens, 400K
vocab, 50d, 100d, 200d, & 300d vectors), and
Common Crawl (42B tokens, 1.9M vocab, 300d
vectors) (Pennington et al., 2014b). The vectors
are ordered by the frequency of their correspond-
ing words, so the vector representing the word
‘the’ comes first in the space.

Task. We use similarity tasks WS353 (Finkel-
stein et al., 2001) and RG65 (Rubenstein and
Goodenough, 1965).
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Space Task GloVe Re-Embedding
6B 50d WS353 61.2 56.6
6B 50d RG65 60.2 53.0

6B 100d WS353 64.5 64.3
6B 100d RG65 65.3 67.3
6B 200d WS353 68.5 69.7
6B 200d RG65 75.5 76.0
6B 300d WS353 65.8 70.3
6B 300d RG65 75.5 80.5

42B 300d WS353 75.2 78.4
42B 300d RG65 80.0 83.4

Table 1: Average performance on similarity tasks.
(Window start ∈ [5000, 15000], Number of LLE
local neighbours =1000, Window length = 1001,
Manifold dimensionality = Space dimensionality.)

Baseline. We use the performance by the origi-
nal word embeddings on the tasks. For each orig-
inal space, we normalize features using their min-
imum and maximum values to [−1,+1], and then
normalize vectors to unit norms. For each pair of
words in the similarity task, we get the normal-
ized vectors and measure the cosine similarity. We
finally compute the Spearman Rank Correlation
with human judgements.

Approach. For a given original embedding, we
normalize vectors to unit norms, then we conduct
Manifold (Mfd) Re-Embedding using LLE as ex-
plained in Section 3. For each similarity task,
we transform the vectors of test words into the
re-embedding space before computing the cosine
similarity, and the final Spearman score. We vary
relevant parameters and see what effect they have
on the performance, so we can understand the ef-
fectiveness of the approach and its limits.

5 Results and Discussion

Average Performance. Table 1 shows that the
re-embedding method outperforms the baseline
in most cases with improvements from 0.5% to
5.0%. These results are achieved for effective
manifold training windows which start anywhere
between 5000 and 15000. The table also shows
that improvements are over spaces with underly-
ing bigger corpora and vectors, i.e. good quality
vectors which facilitate the embedding.

Manifold Dimensionality Retention. Figure 3
shows that for a given window, the re-embedding
performs better when the dimensionality of the
learned manifold is chosen to be closer to the orig-
inal space dimensionality. In other words, dimen-
sional reduction on the original space will bare a
cost in performance.
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Figure 3: Accuracy on WS353 similarity task as
a function of manifold dimensionality. (Space is
GloVe 42B 300d. Window start = 7000, LLE local
neighbours =1000, Window length = 1001.)
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Figure 4: Accuracy on WS353 as a function of
window length. (GloVe 42B 300d, LLE local
neighbours =1000. Manifold dimensions =300.)

Manifold learning typically starts from a high-
dimensional raw space, such as pixels, and aims
to reduce the dimensionality. In our method we
start from a word embedding which is already a
good embedding of the raw word co-occurrences.
So, dimensionality shall be retained, as suggested
by Figure 3, or otherwise information can be lost
during eigenvectors computation and selection in
the manifold learning.

Effect of Window Length. Figure 4 shows that
the best window length to choose is as close as
possible to the number of local neighbours used by
the manifold learning. Performance drops slightly
with higher values of window length, but becomes
stable after an initial drop.

Effect of Window Start. Figure 5 shows that
the performance is first modest when the manifold
is trained on the most frequent word vectors (i.e.
stop words), but then picks up and outperforms the
baseline for most cases. Performance drops grad-
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Figure 5: Accuracy on similarity tasks as a function of window start. (a) Original space GloVe 42B
300d, with WS353. (b) 42B 300d, with RG65. (c) 6B 300d, with WS353. (LLE local neighbours =1000,
Window length = 1001, Manifold dimensionality = 300.)
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Figure 6: Accuracy on WS353 as a function of the
number of manifold local neighbours. (42B 300d,
Window start = 7000, Manifold dimensionality =
300, Window length = local neighbours+1.

ually as the manifold is trained on relatively less
frequent word vectors.

Effect of the Number of Local Neighbours.
Figure 6 shows that the performance is generally
stable with variation in the number of local neigh-
bours that the manifold is learned upon. Generally
lower numbers of local neighbours mean faster
manifold learning.

Discussion. The above results show that word
re-embedding based on manifold learning can help
the original space recover the Euclidean metric,
and thus improves performance on word similar-
ity tasks. The ability of re-embedding to achieve
improved results depends on the quality of the vec-
tors in the original space. It also depends on the
choice of the window used to learn the manifold.
The window start is the most influential variable,
and it should be chosen just after the stop words
in the original space. The choice of other param-

eters is relatively easier: the length of the window
should be close or equal to the number of local
neighbours, which in turn can be chosen from a
wide range with no significant difference. The
dimensionality of the original embedding space
should be retained and used for learning the man-
ifold to guarantee the best re-embedding.

6 Conclusions and Future Work

In this paper we presented a new method to
re-embed words from off-the-shelf embeddings
based on manifold learning. We showed that such
an approach is theoretically founded in the metric
recovery paradigm and can empirically improve
the performance of state-of-the-art embeddings in
word similarity tasks. In future work we intend
to extend the experiments to include other origi-
nal pre-trained embeddings, and other algorithms
for manifold learning. We also intend to extend
the experiments to other NLP tasks in addition to
word similarity such as word analogies.
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Abstract

This paper proposes to address the word
sense ambiguity issue in an unsupervised
manner, where word sense representations
are learned along a word sense selection
mechanism given contexts. Prior work
focused on designing a single model to
deliver both mechanisms, and thus suf-
fered from either coarse-grained represen-
tation learning or inefficient sense selec-
tion. The proposed modular approach,
MUSE, implements flexible modules to
optimize distinct mechanisms, achieving
the first purely sense-level representation
learning system with linear-time sense se-
lection. We leverage reinforcement learn-
ing to enable joint training on the pro-
posed modules, and introduce various ex-
ploration techniques on sense selection for
better robustness. The experiments on
benchmark data show that the proposed
approach achieves the state-of-the-art per-
formance on synonym selection as well as
on contextual word similarities in terms of
MaxSimC.

1 Introduction

Recently, deep learning methodologies have dom-
inated several research areas in natural language
processing (NLP), such as machine translation,
language understanding, and dialogue systems.
However, most of applications usually utilize
word-level embeddings to obtain semantics. Con-
sidering that natural language is highly ambigu-
ous, the standard word embeddings may suffer
from polysemy issues. Neelakantan et al. (2014)
pointed out that, due to triangle inequality in vec-
tor space, if one word has two different senses
but is restricted to one embedding, the sum of

the distances between the word and its synonym
in each sense would upper-bound the distance be-
tween the respective synonyms, which may be mu-
tually irrelevant, in embedding space1. Due to the
theoretical inability to account for polysemy us-
ing a single embedding representation per word,
multi-sense word representations are proposed to
address the ambiguity issue using multiple em-
bedding representations for different senses in a
word (Reisinger and Mooney, 2010; Huang et al.,
2012).

This paper focuses on unsupervised learning
from the unannotated corpus. There are two key
mechanisms for a multi-sense word representation
system in such scenario: 1) a sense selection (de-
coding) mechanism infers the most probable sense
for a word given its context and 2) a sense repre-
sentation mechanism learns to embed word senses
in a continuous space.

Under this framework, prior work focused on
designing a single model to deliver both mech-
anisms (Neelakantan et al., 2014; Li and Juraf-
sky, 2015; Qiu et al., 2016). However, the previ-
ously proposed models introduce side-effects: 1)
mixing word-level and sense-level tokens achieves
efficient sense selection but introduces ambigu-
ous word-level tokens during the representation
learning process (Neelakantan et al., 2014; Li and
Jurafsky, 2015), and 2) pure sense-level tokens
prevent ambiguity from word-level tokens but re-
quire exponential time complexity when decoding
a sense sequence (Qiu et al., 2016).

Unlike the prior work, this paper proposes
MUSE2—a novel modularization framework in-
corporating sense selection and representation
learning models, which implements flexible mod-
ules to optimize distinct mechanisms. Specifically,

1d(rock, stone) + d(rock, shake) ≥ d(stone, shake)
2The trained models and code are available at https:

//github.com/MiuLab/MUSE.
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MUSE enables linear time sense identity decoding
with a sense selection module and purely sense-
level representation learning with a sense repre-
sentation module.

With the modular design, we propose a novel
joint learning algorithm on the modules by con-
necting to a reinforcement learning scenario,
which achieves the following advantages. First,
the decision making process under reinforcement
learning better captures the sense selection mech-
anism than probabilistic and clustering methods.
Second, our reinforcement learning algorithm re-
alizes the first single objective function for modu-
lar unsupervised sense representation systems. Fi-
nally, we introduce various exploration techniques
under reinforcement learning on sense selection to
enhance robustness.

In summary, our contributions are five-fold:
• MUSE is the first system that maintains

purely sense-level representation learning
with linear-time sense decoding.
• We are among the first to leverage reinforce-

ment learning to model the sense selection
process in sense representations system.
• We are among the first to propose a single

objective for modularized unsupervised sense
embedding learning.
• We introduce a sense exploration mechanism

for the sense selection module to achieve bet-
ter flexibility and robustness.
• Our experimental results show the state-of-

the-art performance for synonym selection
and contextual word similarities in terms of
MaxSimC.

2 Related Work

There are three dominant types of approaches for
learning multi-sense word representations in the
literature: 1) clustering methods, 2) probabilis-
tic modeling methods, and 3) lexical ontology
based methods. Our reinforcement learning based
approach can be loosely connected to clustering
methods and probabilistic modeling methods.

Reisinger and Mooney (2010) first proposed
multi-sense word representations on the vector
space based on clustering techniques. With the
power of deep learning, some work exploited neu-
ral networks to learn embeddings with sense se-
lection based on clustering (Huang et al., 2012;
Neelakantan et al., 2014). Chen et al. (2014) re-
placed the clustering procedure with a word sense

disambiguation model using WordNet (Miller,
1995). Kågebäck et al. (2015) and Vu and Parker
(2016) further leveraged a weighting mechanism
and interactive process in the clustering proce-
dure. Moreover, Guo et al. (2014) leveraged bilin-
gual resources for clustering. However, most of
the above approaches separated the clustering pro-
cedure and the representation learning procedure
without a joint objective, which may suffer from
the error propagation issue. Instead, the proposed
approach, MUSE, enables joint training on sense
selection and representation learning.

Instead of clustering, probabilistic modeling
methods have been applied for learning multi-
sense embeddings in order to make the sense se-
lection more flexible, where Tian et al. (2014)
and Jauhar et al. (2015) conducted probabilis-
tic modeling with EM training. Li and Jurafsky
(2015) exploited Chinese Restaurant Process to
infer the sense identity. Furthermore, Bartunov
et al. (2016) developed a non-parametric Bayesian
extension on the skip-gram model (Mikolov
et al., 2013b). Despite reasonable modeling on
sense selection, all above methods mixed word-
level and sense-level tokens during representation
learning—unable to conduct representation learn-
ing in the pure sense level due to the complicated
computation in their EM algorithms.

Recently, Qiu et al. (2016) proposed an EM
algorithm to learn purely sense-level representa-
tions, where the computational cost is high when
decoding the sense identity sequence, because it
takes exponential time to search all sense com-
bination within a context window. Our modular
design addresses such drawback, where the sense
selection module decodes a sense sequence with
linear-time complexity, while the sense represen-
tation module remains representation learning in
the pure sense level.

Unlike a lot of relevant work that requires addi-
tional resources such as the lexical ontology (Pile-
hvar and Collier, 2016; Rothe and Schütze, 2015;
Jauhar et al., 2015; Chen et al., 2015; Iacobacci
et al., 2015) or bilingual data (Guo et al., 2014;
Ettinger et al., 2016; Šuster et al., 2016), which
may be unavailable in some language, our model
can be trained using only an unlabeled corpus.
Also, some prior work proposed to learn topical
embeddings and word embeddings jointly in or-
der to consider the contexts (Liu et al., 2015a,b),
whereas this paper focuses on learning multi-sense
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Corpus: { Smartphone companies including apple blackberry, and sony will be invited.}
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Figure 1: The MUSE architecture with a 3-step learning algorithm: 1) collocation sampling, 2) sense
selection for sense representation learning, and 3) optimizing sense selection with a reward signal from
sense representation. Reward signal is only passed to the target word to stabilize model training due to
directional architecture in the sense representation module.

word embeddings.

3 Proposed Approach: MUSE

This work proposes a framework to modularize
two key mechanisms for multi-sense word repre-
sentations: a sense selection module and a sense
representation module. The sense selection mod-
ule decides which sense to use given a text con-
text, whereas the sense representation module
learns meaningful representations based on its sta-
tistical characteristics. Unlike prior work that
must suffer from either inefficient sense selec-
tion (Qiu et al., 2016) or coarse-grained represen-
tation learning (Neelakantan et al., 2014; Li and
Jurafsky, 2015; Bartunov et al., 2016), the pro-
posed modularized framework is capable of per-
forming efficient sense selection and learning rep-
resentations in pure sense level simultaneously.

To learn sense-level representations, a sense
selection model should be first established for
sense identity decoding. On the other hand, the
sense embeddings should guide the sense selection
model when decoding a sense identity sequence.
Therefore, these two modules should be tangled.
This indicates that a naive two-stage algorithm
or two separate learning algorithms proposed by
prior work are not optimal.

By connecting the proposed formulation with
reinforcement learning literature, we design a
novel joint training algorithm. Besides, taking ad-
vantage of the form of reinforcement learning, we
are among the first to investigate various explo-
ration techniques in sense selection for unsuper-

vised sense embedding learning.

3.1 Model Architecture

Our model architecture is illustrated in Figure 1,
where there are two modules in optimization.

3.1.1 Sense Selection Module

Formally speaking, given a corpus C, vocabulary
W , and the t-th word Ct = wi ∈ W , we would
like to find the most probable sense zik ∈ Zi,
where Zi is the set of senses in word wi. As-
suming that a word sense is determined by the
local context, we exploit a local context C̄t =
{Ct−m, · · · , Ct+m} for sense selection according
to the Markov assumption, where m is the size
of a context window. Then we can either for-
mulate a probabilistic policy π(zik | C̄t) about
sense selection or estimate the individual likeli-
hood q(zik | C̄t) for each sense identity.

To ensure efficiency, here we exploit a linear
neural architecture that takes word-level input to-
kens and outputs sense-level identities. The ar-
chitecture is similar to continuous bag-of-words
(CBOW) (Mikolov et al., 2013a). Specifically,
given a word embedding matrix P , the local con-
text can be modeled as the summation of word em-
beddings from its context C̄t. The output can be
formulated with a 3-mode tensorQ, whose dimen-
sions denote words, senses, and latent variables.
Then we can model π(zik | C̄t) or q(zik | C̄t) cor-
respondingly. Here we model π(·) as a categorical

329



distribution using a softmax layer:

π(zik | C̄t) =
exp(QTik

∑
j∈C̄t Pj)∑

k′∈Zi exp(QTik′
∑

j∈C̄t Pj)
.

(1)
On the other hand, the likelihood of selecting dis-
tinct sense identities, q(zik | C̄t), is modeled as
a Bernoulli distribution with a sigmoid function
σ(·):

q(zik | C̄t) = σ(QTik
∑

j∈C̄t
Pj). (2)

Different modeling approaches require different
learning methods, especially for the unsupervised
setting. We leave the corresponding learning al-
gorithms in § 3.2. Finally, with a built sense se-
lection module, we can apply any selection algo-
rithm such as a greedy selection strategy to infer
the sense identity zik given a word wi with its con-
text Ct.

We note that modularized model enables effi-
cient sense selection by leveraging word-level to-
kens, while remaining purely sense-level tokens in
the representation module. Specifically, if n de-
notes maxk |Zk|, decoding L words takes O(nL)
senses to be searched due to independent sense
selection. The prior work using a single model
with purely sense-level tokens (Qiu et al., 2016)
requires exponential time to calculate the collo-
cation energy for every possible combination of
sense identities within a context window, O(n2m),
for a single target sense. Further, Qiu et al. (2016)
took an additional sequence decoding step with
quadratic time complexity O(n4mL), based on
an exponential number n2m in the base unit. It
demonstrates the achievement about sense infer-
ence efficiency in our proposed model.

3.1.2 Sense Representation Module
The semantic representation learning is typically
formulated as a maximum likelihood estimation
(MLE) problem for collocation likelihood. In this
paper, we use the skip-gram formulation (Mikolov
et al., 2013b) considering that it requires less
training time, where only two sense identities
are required for stochastic training. Other pop-
ular candidates, like GloVe (Pennington et al.,
2014) and CBOW (Mikolov et al., 2013a), require
more sense identities to be selected as input and
thus not suitable for our scenario. For example,
GloVe (Pennington et al., 2014) takes computa-
tionally expensive collocation counting statistics

for each token in a corpus as input, which requires
sense selection for every occurrence of the target
word across the whole corpus for a single opti-
mization step.

To learn the representations, we first create in-
put sense representation matrix U and collocation
estimation matrix V as the learning targets. Given
a target word wi and collocated word wj with cor-
responding local contexts, we map them to their
sense identities as zik and zjl by the sense se-
lection module, and maximize the sense colloca-
tion log likelihood logL(·). A natural choice of
the likelihood function is formulated as a categor-
ical distribution over all possible collocated senses
given the target sense zik:

max
U,V

logL(zjl | zik) = log
exp(UTzikVzjl)∑
zuv

exp(UTzikVzuv)
.

(3)
Instead of enumerating all possible collocated
senses which is computationally expensive, we
use the skip-gram objective (4) (Mikolov et al.,
2013b) to approximate (3) as shown in the green
block of Figure 1.

max
U,V

log L̄(zjl | zik) = log σ(UTzikVzjl) (4)

+
M∑

v=1

Ezuv∼pneg(z)[log σ(−UTzikVzuv)],

where pneg(z) is the distribution over all senses
for negative samples. In our experiment with |Zi|
senses for word wi, we use (1/|Zi|) word-level
unigram as sense-level unigram for efficiency and
the 3/4-th power trick in Mikolov et al. (2013b).

We note that our modular framework can easily
maintain purely sense-level tokens with an arbi-
trary representation learning model. In contrast,
most related work using probabilistic modeling
(Tian et al., 2014; Jauhar et al., 2015; Li and Juraf-
sky, 2015; Bartunov et al., 2016) binded sense rep-
resentations with the sense selection mechanism,
so efficient sense selection by leveraging word-
level tokens can be achieved only at the cost of
mixing word-level and sense-level tokens in their
representation learning process.

3.2 Learning
Without the supervised signal for the proposed
modules, it is desirable to connect two modules
in a way where they can improve each other by
their own estimations. First, a trivial way is to for-
ward the prediction of the sense selection module
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to the representation module. Then we cast the es-
timated collocation likelihood as a reward signal
for the selected sense for effective learning.

To realize the above procedure, we cast the
learning problem a one-step Markov decision pro-
cess (MDP) (Sutton and Barto, 1998), where the
state, action, and reward correspond to context C̄t,
sense zik, and collocation log likelihood log L̄(·),
respectively. Based on different modeling meth-
ods ((1) or (2)) in the sense selection module,
we connect the model to respective reinforcement
learning algorithms to solve the MDP. Specifically,
we refer (1) to policy distribution and refer (2) to
Q-value estimation in the reinforcement learning
literature.

The proposed MDP framework embodies sev-
eral nuances of sense selection. First, the deci-
sion of a word sense is Markov: taking the whole
corpus into consideration is not more helpful than
a handful of necessary local contexts. Second,
the decision making in MDP exploits a hard de-
cision for selecting sense identity, which captures
the sense selection process more naturally than a
joint probability distribution among senses (Qiu
et al., 2016). Finally, we exploit the reward mech-
anism in MDP to enable joint training: the estima-
tion of sense representation is treated as a reward
signal to guide sense selection. In contrast, the
decision making under clustering (Huang et al.,
2012; Neelakantan et al., 2014) considers the sim-
ilarity within clusters instead of the outcome of a
decision using a reward signal as MDP.

3.2.1 Policy Gradient Method
Because (1) fits a valid probability distribution, an
intuitive optimization target is the expectation of
resulting collocation likelihood among each sense.
In addition, as the skip-gram formulation in (4) is
unidirectional (L̄(zik | zjl) 6= L̄(zjl | zik)), we
perform one-side optimization for the target sense
zik to stabilize model training3. That is, for the
target word wi and the collocated word wj given
respective contexts C̄t and C̄t′ (0 < |t− t′| ≤ m),
we first draw a sense zjl for wj from the policy
π(· | C̄t′) and optimize the expected collocation
likelihood for the target sense zik as follows,

max
P,Q

Ezik∼π(·|C̄t)[log L̄(zjl | zik)]. (5)

Note that (4) can be merged into (5) as a sin-
gle objective. The objective is differentiable and

3We observe about 4% performance drop by optimizing
input selection zik and output selection zjl simultaneously.

supports stochastic optimization (Lei et al., 2016),
which uses a stochastic sample zik for optimiza-
tion.

However, there are two possible disadvantages
in this formulation. First, because the policy as-
sumes the probability distribution in (1), optimiz-
ing the selected sense must affect the estimation
of the other senses. Second, if applying stochastic
gradient ascent to optimizing (5), it would always
lower the probability estimation for the selected
sense zik even if the model accurately selects the
right sense. The detailed proof is in Appendix A.

3.2.2 Value-Based Method
To address the above issues, we apply the Q-
learning algorithm (Mnih et al., 2013). Instead of
maintaining a probabilistic policy for sense selec-
tion, Q-learning estimates the Q-value (resulting
collocation log likelihood) for each sense candi-
date directly and independently. Thus, the estima-
tion of unselected senses may not be influenced by
the selected one. Note that in one-step MDP, the
reward is equivalent to the Q-value, so we will use
reward and Q-value interchangeably, hereinafter,
based on the context.

We further follow the convention of recent neu-
ral reinforcement learning by reducing the re-
ward range to aid model training (Mnih et al.,
2013). Specifically, we replace the log likelihood
log L̄(·) ∈ (− inf, 0] with the likelihood L̄(·) ∈
[0, 1] as the reward function. Due to the mono-
tonic operation in log(), the relative ordering of
the reward remains the same.

Furthermore, we exploit the probabilistic na-
ture of likelihood for Q-learning. To elaborate,
as Q-learning is used to approximate the Q-value
for each action in typical reinforcement learning,
most literature adopted square loss to characterize
the discrepancy between the target and estimated
Q-values (Mnih et al., 2013). In our setting where
the Q-value/reward is a likelihood function, our
model exploits cross-entropy loss to better capture
the characteristics of probability distribution.

Given that the collocation likelihood in (4) is
an approximation to the original categorical dis-
tribution with a softmax function shown in (3)
(Mikolov et al., 2013b), we revise the formulation
by omitting the negative sampling term. The re-
sulting formulation L̂(·) is a Bernoulli distribution
indicating whether zjl collocates or not given zik:

L̂(zjl | zik) = σ(UTzikVzjl). (6)
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There are three advantages about using L̂(·) in-
stead of approximated L̄(·) and original L(·).
First, regarding the variance of estimation, L̂(·)
better captures L(·) than L̄(·) because L̄(·) in-
volves sampling:

V ar(L̄(·)) ≥ V ar(L̂(·)) = V ar(L(·)) = 0. (7)

Second, regarding the relative ordering of estima-
tion, for any two collocated senses zjl and zjl′ with
a target sense zik, the following equivalence holds:

L(zjl | zik) < L(zjl′ | zik) (8)

⇔ L̄(zjl | zik) < L̄(zjl′ | zik)
⇔ L̂(zjl | zik) < L̂(zjl′ | zik)

Third, for collocation computation, L(·) requires
all sense identities and L̄(·) requires (M+1) sense
identities, whereas L̂(·) only requires 1 sense iden-
tity. In sum, the proposed L̂(·) approximates L(·)
with no variance, no “bias” (in terms of relative
ordering), and significantly less computation.

Finally, because both target distribution L̂(·)
and estimated distribution q(·) in (2) are Bernoulli
distributions, we follow the last section to conduct
one-side optimization by fixing a collocated sense
zjl and optimize the selected sense zik with cross
entropy as

min
P,Q

H(L̂(zik | zjl), q(zik | C̄t)). (9)

3.2.3 Joint Training
To jointly train sense selection and sense represen-
tation modules, we first select a pair of the collo-
cated senses, zik and zjl, based on the sense se-
lection module with any selecting strategy (e.g.
greedy), and then optimize the sense representa-
tion module and the sense selection module using
the above derivations. Algorithm 1 describes the
proposed MUSE model training procedure.

As modular frameworks, the major distinc-
tion between our modular framework and two-
stage clustering-representation learning frame-
work (Neelakantan et al., 2014; Vu and Parker,
2016) is that we establish a reward signal from the
sense representation to the sense selection module
to enable immediate and joint optimization.

3.3 Sense Selection Strategy
Given a fitness estimation for each sense, exploit-
ing the greedy sense is the most popular strat-
egy for clustering algorithms (Neelakantan et al.,

Algorithm 1: Learning Algorithm

for wi = Ct ∈ C do
sample wj = Ct′(0 < |t′ − t| ≤ m);
zik = select(Ct, wi);
zjl = select(Ct′ , wj);
optimize U, V by (4) for the sense
representation module;

optimize P,Q by (5) or (9) for the sense
selection module;

2014; Kågebäck et al., 2015) and hard-EM algo-
rithms (Qiu et al., 2016; Jauhar et al., 2015) in
literature. However, there are two incentives to
conduct exploration. First, in the early training
stage when the fitness is not well estimated, it is
desirable to explore underestimated senses. Sec-
ond, due to high ambiguity in natural language,
sometimes multiple senses in a word would fit
in the same context. The dilemma between ex-
ploring sub-optimal choices and exploiting the
optimal choice is called exploration-exploitation
trade-off in reinforcement learning (Sutton and
Barto, 1998).

We introduce exploration mechanisms for sense
selection for both policy gradient and Q-learning.
For policy gradient, we sample the policy distri-
bution to approximate the expectation in (5). Be-
cause of the flexible formulation of Q-learning, the
following classic exploration mechanisms are ap-
plied to sense selection:
• Greedy: selects the sense with the largest Q-

value (no exploration).
• ε-Greedy: selects a random sense with ε

probability, and adopts the greedy strategy
otherwise (Mnih et al., 2013).
• Boltzmann: samples the sense based on the

Boltzmann distribution modeled by Q-value.
We directly use (1) as the Boltzmann distri-
bution for simplicity.

We note that Q-learning with Boltzmann sampling
yields the same sampling process as policy gradi-
ent but different optimization objectives. To our
best knowledge, we are among the first to ex-
plore several exploration strategies for unsuper-
vised sense embedding learning.

In the following sections, MUSE-Policy de-
notes the proposed MUSE model with policy
learning and MUSE-Greedy denotes the model us-
ing corresponding sense selection strategy for Q-
learning.
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4 Experiments

We evaluate our proposed MUSE model in both
quantitative and qualitative experiments.

4.1 Experimental Setup

Our model is trained on the April 2010 Wikipedia
dump (Shaoul and Westbury, 2010), which con-
tains approximately 1 billion tokens. For fair
comparison, we adopt the same vocabulary set
as Huang et al. (2012) and Neelakantan et al.
(2014). For preprocessing, we convert all words to
their lower cases, apply the Stanford tokenizer and
the Stanford sentence tokenizer (Manning et al.,
2014), and remove all sentences with less than 10
tokens. The number of senses per word in Q is set
to 3 as the prior work (Neelakantan et al., 2014).

In the experiments, the context window size
is set to 5 (|C̄t| = 11). Subsampling tech-
nique introduced by word2vec (Mikolov et al.,
2013b) is applied to accelerate the training pro-
cess. The learning rate is set to 0.025. The em-
bedding dimension is 300. We initialize Q and V
as zeros, and P and U from uniform distribution
[−
√

1/100,
√

1/100] such that each embedding
has unit length in expectation (Lei et al., 2015).
Our model uses 25 negative senses for negative
sampling in (4). We use ε = 5% for ε-Greedy
sense selection strategy

In optimization, we conduct mini-batch training
with 2048 batch size using the following proce-
dure: 1) select senses in the batch; 2) optimize
U, V using stochastic training within the batch
for efficiency; 3) optimize P,Q using mini-batch
training for robustness.

4.2 Experiment 1: Contextual Word
Similarity

To evaluate the quality of the learned sense em-
beddings, we compute the similarity score be-
tween each word pair given their respective lo-
cal contexts and compare with the human-judged
score using Stanford’s Contextual Word Similari-
ties (SCWS) dataset (Huang et al., 2012). Specifi-
cally, given a list of word pairs with correspond-
ing contexts, S = {(wi, C̄t, wj , C̄t′)}, we cal-
culate the Spearman’s rank correlation ρ between
human-judged similarity and model similarity es-
timations4. Two major contextual similarity esti-

4For example, human-judged similarity between “... east
bank of the Des Moines River ...” and “... basis of all money
laundering ...” is 2.5 out of 10.0 in SCWS dataset (Huang

Method MaxSimC AvgSimC

Huang et al. (2012) 26.1 65.7
Neelakantan et al. (2014) 60.1 69.3
Tian et al. (2014) 63.6 65.4
Li and Jurafsky (2015) 66.6 66.8
Bartunov et al. (2016) 53.8 61.2
Qiu et al. (2016) 64.9 66.1
MUSE-Policy 66.1 67.4
MUSE-Greedy 66.3 68.3
MUSE-ε-Greedy 67.4† 68.6
MUSE-Boltzmann 67.9† 68.7

Table 1: Spearman’s rank correlation ρ x100 on
the SCWS dataset. † denotes superior performance
to all unsupervised competitors.

mations are introduced by Reisinger and Mooney
(2010): AvgSimC and MaxSimC. AvgSimC is a
soft measurement that addresses the contextual in-
formation with a probability estimation:

AvgSimC(wi, C̄t, wj , C̄t′) =

|Zi|∑

k=1

|Zj |∑

l=1

π(zik|C̄t)π(zjl|C̄t′)d(zik, zjl),

where d(zik, zjl) refers to the cosine similarity be-
tween Uzik and Uzjl . AvgSimC weights the sim-
ilarity measurement of each sense pair zik and
zjl by their probability estimations. On the other
hand, MaxSimC is a hard measurement that only
considers the most probable senses:

MaxSimC(wi, C̄t, wj , C̄t′) = d(zik, zjl),

zik = arg max
zik′

π(zik′ |C̄t),

zjl = arg max
zjl′

π(zjl′ |C̄t′).

The baselines for comparison include classic
clustering methods (Huang et al., 2012; Neelakan-
tan et al., 2014), EM algorithms (Tian et al., 2014;
Qiu et al., 2016; Bartunov et al., 2016), and Chi-
nese Restaurant Process (Li and Jurafsky, 2015)5,
where all approaches are trained on the same cor-
pus except Qiu et al. (2016) used more recent
Wikipedia dumps. The embedding sizes of all
baselines are 300, except 50 in Huang et al. (2012).
For every competitor with multiple settings, we re-
port the best performance in each similarity mea-
surement setting and show in Table 1.

et al., 2012).
5We run Li and Jurafsky (2015)’s released code on our

corpus for fair comparison.
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Method ESL-50 RD-300 TOEFL-80

1) Conventional Word Embedding
Global Context 47.73 45.07 60.87
Skip-Gram 52.08 55.66 66.67
2) Word Sense Disambiguation
IMS+SG 41.67 53.77 66.67
3) Unsupervised Sense Embeddings
EM 27.08 33.96 40.00
MSSG 57.14 58.93 78.26
CRP 50.00 55.36 82.61
MUSE-Policy 52.38 51.79 79.71
MUSE-Greedy 57.14 58.93 79.71
MUSE-ε-Greedy 61.90† 62.50† 84.06†

MUSE-Boltzmann 64.29† 66.07† 88.41†

4) Supervised Sense Embeddings
Retro-GC 63.64 66.20 71.01
Retro-SG 56.25 65.09 73.33

Table 2: Accuracy on synonym selection. † de-
notes superior performance to all unsupervised
competitors.

Our MUSE model achieves the state-of-the-art
performance on MaxSimC, demonstrating supe-
rior quality on independent sense embeddings. On
the other hand, MUSE achieves comparable per-
formance with the best competitor in terms of
AvgSimC (68.7 vs. 69.3), while MUSE outper-
forms the same competitor significantly in terms
of MaxSimC (67.9 vs. 60.1). The results demon-
strate not only the high quality of sense represen-
tations but also accurate sense selection.

From the application perspective, MaxSimC
refers to a typical scenario using single embedding
per word, while AvgSimC employs multiple sense
vectors simultaneously per word, which not only
brings computational overhead but changes exist-
ing neural architecture for NLP. Hence, we argue
that MaxSimC better characterize practical usage
of a sense representation system than AvgSimC.

Among various learning methods for MUSE,
policy gradient performs worst, echoing our ar-
gument in § 3.2.1. On the other hand, the supe-
rior performance of Boltzmann sampling and ε-
Greedy over Greedy selection demonstrates the ef-
fectiveness of exploration.

Finally, replacing L̄(·) with L̂(·) as the re-
ward signal yields 2.3 times speedup for MUSE-
ε-Greedy and 1.3 times speedup for MUSE-
Boltzmann to reach 67.0 in MaxSimC, which
demonstrates the efficacy of proposed approxima-

tion L̂(·) over typical L̄(·) in terms of conver-
gence.

4.3 Experiment 2: Synonym Selection

We further evaluate our model on synonym
selection using multi-sense word representa-
tions (Jauhar et al., 2015). Three standard syn-
onym selection datasets, ESL-50 (Turney, 2001),
RD-300 (Jarmasz and Szpakowicz, 2004), and
TOEFL-80 (Landauer and Dumais, 1997), are per-
formed. In the datasets, each question consists of
a question word wQ and four answer candidates
{wA, wB, wC , wD}, and the goal is to select the
most semantically synonymous choice among the
four candidates. For example, in the TOEFL-80
dataset, a question shows {(Q) enormously, (A)
appropriately, (B) uniquely, (C) tremendously, (D)
decidedly}, and the answer is (C). For multi-sense
representations system, it selects the synonym of
the question word wQ using the maximum sense-
level cosine similarity as a proxy of the semantic
similarity (Jauhar et al., 2015).

Our model is compared with the following base-
lines: 1) conventional word embeddings: global
context vectors (Huang et al., 2012) and skip-
gram (Mikolov et al., 2013b); 2) applying su-
pervised word sense disambiguation using the
IMS system and then applying skip-gram on dis-
ambiguated corpus (IMS+SG) (Zhong and Ng,
2010); 3) unsupervised sense embeddings: EM
algorithm (Jauhar et al., 2015), multi-sense skip-
gram (MSSG) (Neelakantan et al., 2014), Chi-
nese restaurant process (CRP) (Li and Jurafsky,
2015), and the MUSE models; 4) supervised
sense embeddings with WordNet (Miller, 1995):
retrofitting global context vectors (Retro-GC) and
retrofitting skip-gram (Retro-SG) (Jauhar et al.,
2015).

Among unsupervised sense embedding ap-
proaches, CRP and MSSG refer to the baselines
with highest MaxSimC and AvgSimC in Table 1
respectively. Here we report the setting for base-
lines based on the best average performance in this
task. We also show the performance of supervised
sense embeddings as an upperbound of unsuper-
vised methods due to the usage of additional su-
pervised information from WordNet.

The results are shown in Table 2, where our
MUSE-ε-Greedy and MUSE-Boltzmann signifi-
cantly outperform all unsupervised sense embed-
dings methods, echoing the superior quality of our
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Context k-NN Senses
· · · braves finish the season in tie with the los angeles dodgers · · · scoreless otl shootout 6-6 hingis 3-3 7-7 0-0

· · · his later years proudly wore tie with the chinese characters for · · · pants trousers shirt juventus blazer socks anfield

· · · of the mulberry or the blackberry and minos sent him to · · · cranberries maple vaccinium apricot apple

· · · of the large number of blackberry users in the us federal · · · smartphones sap microsoft ipv6 smartphone

· · · shells and/or high explosive squash head hesh and/or anti-tank · · · venter thorax neck spear millimeters fusiform

· · · head was shaven to prevent head lice serious threat back then · · · shaved thatcher loki thorax mao luthor chest

· · · appoint john pope republican as head of the new army of · · · multi-party appoints unicameral beria appointed

Table 3: Different word senses are selected by MUSE according to different contexts. The respective
k-NN (sorted by collocation likelihood) senses are shown to indicate respective semantic meanings.

sense vectors in last section. MUSE-Boltzmann
also outperforms the supervised sense embeddings
except 1 setting without any supervised signal dur-
ing training. Finally, the MUSE methods with
proper exploration outperform all unsupervised
baselines consistently, demonstrating the impor-
tance of exploration.

4.4 Qualitative Analysis

We further conduct qualitative analysis to check
the semantic meanings of different senses learned
by MUSE with k-nearest neighbors (k-NN) us-
ing sense representations. In addition, we provide
contexts in the training corpus where the sense will
be selected to validate the sense selection mod-
ule. Table 3 shows the results. The learned sense
embeddings of the words “tie”, “blackberry”, and
“head” clearly correspond to correct senses under
different contexts.

Since we address an unsupervised setting that
learns sense embeddings from unannotated cor-
pus, the discovered senses highly depend on the
training corpus. From our manual inspection, it is
common for our model to discover only two senses
in a word, like “tie” and “blackberry”. However,
we maintain our effort in developing unsupervised
sense embeddings learning methods in this work,
and the number of discovered sense is not a focus.

5 Conclusion

This paper proposes a novel modularized frame-
work for unsupervised sense representation learn-
ing, which supports not only the flexible de-
sign of modular tasks but also joint optimization
among modules. The proposed model is the first
work that implements purely sense-level represen-
tation learning with linear-time sense selection,
and achieves the state-of-the-art performance on
benchmark contextual word similarity and syn-

onym selection tasks. In the future, we plan to in-
vestigate reinforcement learning methods to incor-
porate multi-sense word representations for down-
stream NLP tasks.

Acknowledgements

We would like to thank reviewers for their insight-
ful comments on the paper. The authors are sup-
ported by the Ministry of Science and Technology
of Taiwan under the contract number 105-2218-
E-002-033, Institute for Information Industry, and
MediaTek Inc..

References
Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,

and Dmitry Vetrov. 2016. Breaking sticks and ambi-
guities with adaptive skip-gram. Proceedings of the
19th International Conference on Artificial Intelli-
gence and Statistics, page 130–138.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang.
2015. Improving distributed representation of word
sense via wordnet gloss composition and context
clustering. Association for Computational Linguis-
tics.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In EMNLP, pages 1025–1035.
Citeseer.

Allyson Ettinger, Philip Resnik, and Marine Carpuat.
2016. Retrofitting sense-specific word vectors using
parallel text. In Proceedings of NAACL-HLT, pages
1378–1383.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In COL-
ING, pages 497–507.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving Word
Representations via Global Context and Multiple

335



Word Prototypes. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning sense
embeddings for word and relational similarity. In
ACL (1), pages 95–105.

Mario Jarmasz and Stan Szpakowicz. 2004. Roget’s
thesaurus and semantic similarity. Recent Advances
in Natural Language Processing III: Selected Papers
from RANLP, 2003:111.

Sujay Kumar Jauhar, Chris Dyer, and Eduard H Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
HLT-NAACL, pages 683–693.
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A Doubly Stochastic Gradient

To derive doubly stochastic gradient for equation
(5), we first denote (5) as J(Θ) with Θ = {P,Q}
and resolve the expectation form as:

J(θ) = Ezik∼π(·|C̄t)[log L̄(zjl | zik)]
=
∑

k

π(zik | C̄t) log L̄(zjl|zik).

Denote Θ = {P,Q} as the parameter set for pol-
icy π. The gradient with respect to Θ should be:

∂J(θ)

∂Θ
=

∂

∂Θ

∑

k

π(zik | C̄t) log L̄(zjl|zik)

=
∑

k

log L̄(zjl|zik)
∂π(zik | C̄t)

∂Θ

=
∑

k

log L̄(zjl|zik)(
∂ log π(zik | C̄t)

∂Θ
)(π(zik | C̄t))

= Ezik∼π(·|C̄t)[log L̄(zjl | zik)
∂ log π(zik | C̄t)

∂Θ
]

Accordingly, if we conduct typical stochastic gra-
dient ascent training on J(Θ) with respect to Θ
from samples zik with a learning rate η, the up-
date formula will be:

Θ = Θ + η log L̄(zjl | zik)
∂ log π(zik | C̄t)

∂Θ
.

However, the collocation log likelihood should al-
ways be non-positive: log L̄(zjl | zik) ≤ 0.
Therefore, as long as the collocation log likelihood
log L̄(zjl | zik) is negative, the update formula is
to minimize the likelihood of choosing zik, despite
the fact that zik may be good choices. On the other
hand, if the log likelihood reaches 0, according to
(4), it indicates:

log L̄(zjl | zik) = 0⇒ L̄(zjl | zik) = 1

⇒ UTzikVzjl →∞, UTzikVzuv →∞, ∀zuv,
which leads to computational overflow from an in-
finity value.
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Abstract

In this paper we show that reporting a
single performance score is insufficient
to compare non-deterministic approaches.
We demonstrate for common sequence tag-
ging tasks that the seed value for the ran-
dom number generator can result in statis-
tically significant (p < 10−4) differences
for state-of-the-art systems. For two re-
cent systems for NER, we observe an ab-
solute difference of one percentage point
F1-score depending on the selected seed
value, making these systems perceived ei-
ther as state-of-the-art or mediocre. Instead
of publishing and reporting single perfor-
mance scores, we propose to compare score
distributions based on multiple executions.
Based on the evaluation of 50.000 LSTM-
networks for five sequence tagging tasks,
we present network architectures that pro-
duce both superior performance as well as
are more stable with respect to the remain-
ing hyperparameters. The full experimen-
tal results are published in (Reimers and
Gurevych, 2017).1 The implementation of
our network is publicly available.2

1 Introduction

Large efforts are spent in our community on devel-
oping new state-of-the-art approaches. To docu-
ment that those approaches are better, they are ap-
plied to unseen data and the obtained performance
score is compared to previous approaches. In or-
der to make results comparable, a provided split
between train, development and test data is often

1https://arxiv.org/abs/1707.06799
2https://github.com/UKPLab/

emnlp2017-bilstm-cnn-crf

used, for example from a former shared task.

In recent years, deep neural networks were shown
to achieve state-of-the-art performance for a wide
range of NLP tasks, including many sequence tag-
ging tasks (Ma and Hovy, 2016), dependency pars-
ing (Andor et al., 2016), and machine translation
(Wu et al., 2016). The training process for neural
networks is highly non-deterministic as it usually
depends on a random weight initialization, a ran-
dom shuffling of the training data for each epoch,
and repeatedly applying random dropout masks.
The error function of a neural network is a highly
non-convex function of the parameters with the
potential for many distinct local minima (LeCun
et al., 1998; Erhan et al., 2010). Depending on the
seed value for the pseudo-random number genera-
tor, the network will converge to a different local
minimum.

Our experiments show that these different local
minima have vastly different characteristics on un-
seen data. For the recent NER system by Ma and
Hovy (2016) we observed that, depending on the
random seed value, the performance on unseen data
varies between 89.99% and 91.00% F1-score. The
difference between the best and worst performance
is statistically significant (p < 10−4) using a ran-
domization test3. In conclusion, whether this newly
developed approach is perceived as state-of-the-art
or as mediocre, largely depends on which random
seed value is selected. This issue is not limited
to this specific approach, but potentially applies
to all approaches with non-deterministic training
processes.

This large dependence on the random seed value
creates several challenges when evaluating new
approaches:

31 Million iterations. p-value adapted using the Bonferroni
correction to take the 86 tested seed values into account.
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• Observing a (statistically significant) improve-
ment through a new non-deterministic ap-
proach might not be the result of a superior
approach, but the result of having a more fa-
vorable sequence of random numbers.

• Promising approaches might be rejected too
early, as they fail to deliver an outperformance
simply due to a less favorable sequence of
random numbers.

• Reproducing results is difficult.

To study the impact of the random seed value
on the performance we will focus on five linguis-
tic sequence tagging tasks: POS-tagging, Chunk-
ing, Named Entity Recognition, Entity Recogni-
tion4, and Event Detection. Further we will fo-
cus on Long-Short-Term-Memory (LSTM) Net-
works (Hochreiter and Schmidhuber, 1997b), as
those demonstrated state-of-the-art performance
for a wide variety of sequence tagging tasks (Ma
and Hovy, 2016; Lample et al., 2016; Søgaard and
Goldberg, 2016).

Fixing the random seed value would solve the issue
with the reproducibility, however, there is no justi-
fication for choosing one seed value over another
seed value. Hence, instead of reporting and compar-
ing a single performance, we show that comparing
score distributions can lead to new insights into the
functioning of algorithms.

Our main contributions are:

1. Showing the implications of non-deterministic
approaches on the evaluation of approaches
and the requirement to compare score distri-
butions instead of single performance scores.

2. Comparison of two recent, state-of-the-art sys-
tems for NER and showing that reporting a
single performance score can be misleading.

3. In-depth analysis of different LSTM-
architectures for five sequence tagging
tasks with respect to: superior performance,
stability of results, and importance of tuning
parameters.

4Entity Recognition labels all tokens that refer to an entity
in a sentence, also generic phrases like U.S. president.

2 Background

Validating and reproducing results is an important
activity in science to manifest the correctness of
previous conclusions and to gain new insights into
the presented approaches. Fokkens et al. (2013)
show that reproducing results is not always straight-
forward, as factors like preprocessing (e.g. tok-
enization), experimental setup (e.g. splitting data),
the version of components, the exact implementa-
tion of features, and the treatment of ties can have
a major impact on the achieved performance and
sometimes on the drawn conclusions.

For approaches with non-deterministic training pro-
cedures, like neural networks, reproducing exact
results becomes even more difficult, as randomness
can play a major role in the outcome of experiments.
The error function of a neural network is a highly
non-convex function of the parameters with the
potential for many distinct local minima (LeCun
et al., 1998; Erhan et al., 2010). The sequence of
random numbers plays a major role to which min-
ima the network converges during the training pro-
cess. However, not all minima generalize equally
well to unseen data. Erhan et al. (2010) showed
for the MNIST handwritten digit recognition task
that different random seeds result in largely varying
performances. They noted further that with increas-
ing depth of the neural network, the probability of
finding poor local minima increases.

Flat Minimum Sharp Minimum

Train/Dev Error Test Error

f(x)

Figure 1: A conceptual sketch of flat and sharp
minima from Keskar et al. (2016). The Y-axis
indicates values of the error function and the X-
axis the weight-space.

As (informally) defined by Hochreiter and Schmid-
huber (1997a), a minimum can be flat, where the
error function remains approximately constant for a
large connected region in weight-space, or it can be
sharp, where the error function increases rapidly in
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a small neighborhood of the minimum. A concep-
tual sketch is given in Figure 1. The error functions
for training and testing are typically not perfectly
synced, i.e. the local minima on the train or devel-
opment set are not the local minima for the held-out
test set. A sharp minimum usually depicts poorer
generalization capabilities, as a slight variation re-
sults in a rapid increase of the error function. On
the other hand, flat minima generalize better on
new data (Keskar et al., 2016). Keskar et al. ob-
serve for the MNIST, TIMIT, and CIFAR dataset,
that the generalization gap is not due to over-fitting
or over-training, but due to different generaliza-
tion capabilities of the local minima the networks
converge to.

A priori it is unknown to which type of local mini-
mum a neural network will converge. Some meth-
ods like the weight initialization (Erhan et al., 2010;
Glorot and Bengio, 2010) or small-batch training
(Keskar et al., 2016) help to avoid bad (e.g. sharp)
minima. Nonetheless, the non-deterministic behav-
ior of approaches must be considered when they
are evaluated.

3 Impact of Randomness in the
Evaluation of Neural Networks

Two recent, state-of-the-art systems for NER are
proposed by Ma and Hovy (2016)5 and by Lample
et al. (2016)6. Lample et al. report an F1-score of
90.94% and Ma and Hovy report an F1-score of
91.21%. Ma and Hovy draw the conclusion that
their system achieves a significant improvement
over the system by Lample et al.

We re-ran both implementations multiple times,
each time only changing the seed value of the ran-
dom number generator. We ran the Ma and Hovy
system 86 times and the Lample et al. system,
due to its high computational requirement, for 41
times. The score distribution is depicted as a violin
plot in Figure 2. Using a Kolmogorov-Smirnov
significance test (Massey, 1951), we observe a
statistically significant difference between these
two distributions (p < 0.01). The plot reveals
that the quartiles for the Lample et al. system are
above those of the Ma and Hovy system. Further
it reveals a smaller standard deviation σ of the F1-

5https://github.com/XuezheMax/
LasagneNLP

6https://github.com/glample/tagger

scores for the Lample et al. system. Using a Brown-
Forsythe test, the standard deviations are different
with p < 0.05. Table 1 shows the minimum, the
maximum, and the median performance for the test
performances.

Figure 2: Distribution of scores for re-running the
system by Ma and Hovy (left) and Lample et al.
(right) multiple times with different seed values.
Dashed lines indicate quartiles.

Based on this observation, we draw the conclusion
that the system by Lample et al. outperforms the
system by Ma and Hovy, as their implementation
achieves a higher score distribution and shows a
lower standard deviation.

In a usual setup, approaches would be compared
on a development set and the run with the highest
development score would be used for unseen data,
i.e. be used to report the test performance. For the
Lample et al. system we observe a Spearman’s rank
correlation between the development and the test
score of ρ = 0.229. This indicates a weak correla-
tion and that the performance on the development
set is not a reliable indicator. Using the run with the
best development score (94.44%) would yield a test
performance of mere 90.31%. Using the second
best run on development set (94.28%), would yield
state-of-the-art performance with 91.00%. This dif-
ference is statistically significant (p < 0.002). In
conclusion, a development set will not necessarily
solve the issue with bad local minima.

The main difference between these two approaches
is in the generation of character-based represen-
tations: Ma and Hovy uses a Convolutional Neu-
ral Network (CNN) (LeCun et al., 1989), while
Lample et al. uses an LSTM-network. As our ex-
periments in section 6.4 show, both approaches
perform comparably if all other parameters were
kept the same. Further, we could only observe a
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System Reported F1 # Seed values Min. F1 Median F1 Max. F1 σ

Ma and Hovy 91.21% 86 89.99% 90.64% 91.00% 0.00241
Lample et al. 90.94% 41 90.19% 90.81% 91.14% 0.00176

Table 1: The system by Ma and Hovy (2016) and Lample et al. (2016) were run multiple times with
different seed values.

Task Dataset # Configs Median Difference 95th percentile Max. Difference
POS Penn Treebank 269 0.17% 0.78% 1.55%

Chunking CoNLL 2000 385 0.17% 0.50% 0.81%
NER CoNLL 2003 406 0.38% 1.08% 2.59%

Entities ACE 2005 405 0.72% 2.10% 8.23%
Events TempEval 3 365 0.43% 1.23% 1.73%

Table 2: The table depicts the median, the 95th percentile and the maximum difference between networks
with the same hyperparameters but different random seed values.

statistically significant improvement for the tasks
POS, Chunking and Event Detection. For NER
and Entity Recognition, the difference was statis-
tically not significant given the number of tested
hyperparameters.

In the next step, we evaluated the impact of the
random seed value for the five sequence tagging
tasks described in section 4. We sampled randomly
1830 different configurations, for example different
numbers of recurrent units, and ran the network
twice, each time with a different seed value. The
results are depicted in Table 2.

The largest difference was observed for the ACE
2005 Entities dataset: Using one seed value, the net-
work achieved an F1 performance of 82.5% while
using another seed value, the network achieved a
performance of only 74.3%. Even though this is a
rare extreme case, the median difference between
different weight initializations is still large. For
example for the CoNLL 2003 NER dataset, the me-
dian difference is at 0.38% and the 95th percentile
is at 1.08%.

In conclusion, if the fact of different local minima
is not taken care of and single performance scores
are compared, there is a high chance of drawing
false conclusions and either rejecting promising
approaches or selecting weaker approaches due
to a more or less favorable sequence of random
numbers.

4 Experimental Setup

In order to find LSTM-network architectures that
perform robustly on different tasks, we selected
five classical NLP tasks as benchmark tasks: Part-
of-Speech tagging (POS), Chunking, Named Entity
Recognition (NER), Entity Recognition (Entities)
and Event Detection (Events).

For Part-of-Speech tagging, we use the benchmark
setup described by Toutanova et al. (2003). Using
the full training set for POS tagging would hin-
der our ability to detect design choices that are
consistently better than others. The error rate for
this dataset is approximately 3% (Marcus et al.,
1993), making all improvements above 97% accu-
racy likely the result of chance. A 97.24% accuracy
was achieved by Toutanova et al. (2003). Hence,
we reduced the training set size from over 38.000
sentences to the first 500 sentences. This decreased
the accuracy to about 95%.

For Chunking, we use the CoNLL 2000 shared task
setup. For Named Entity Recognition (NER), we
use the CoNLL 2003 setup. The ACE 2005 entity
recognition task annotated not only named entities,
but all words referring to an entity, e.g. the phrase
U.S. president. We use the same data split as Li
et al. (2013). For the Event Detection task, we use
the TempEval3 Task B setup. There, the smallest
extent of text, usually a single word, that expresses
the occurrence of an event, is annotated.

For the POS-task, we report accuracy and for the
other tasks we report the F1-score.
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4.1 Model

We use a BiLSTM-network for sequence tagging
as described in (Huang et al., 2015; Ma and Hovy,
2016; Lample et al., 2016). To be able to evaluate
a large number of different network configurations,
we optimized our implementation for efficiency,
reducing by a factor of 6 the time required per
epoch compared to Ma and Hovy (2016).

4.2 Evaluated Parameters

We evaluate the following design choices and hy-
perparameters:
Pre-trained Word Embeddings. We evaluate
the Google News embeddings (G. News)7 from
Mikolov et al. (2013), the Bag of Words (Le.
BoW) as well as the dependency based embed-
dings (Le. Dep.)8 by Levy and Goldberg (2014),
three different GloVe embeddings9 from Penning-
ton et al. (2014) trained either on Wikipedia 2014
+ Gigaword 5 (GloVe1 with 100 dimensions and
GloVe2 with 300 dimensions) or on Common
Crawl (GloVe3), and the Komninos and Manand-
har (2016) embeddings (Komn.)10. We also evalu-
ate the approach of Bojanowski et al. (2016) (Fast-
Text), which trains embeddings for n-grams with
length 3 to 6. The embedding for a word is
defined as the sum of the embeddings of the n-
grams.

Character Representation. We evaluate the ap-
proaches of Ma and Hovy (2016) using Convo-
lutional Neural Networks (CNN) as well as the
approach of Lample et al. (2016) using LSTM-
networks to derive character-based representa-
tions.

Optimizer. Besides Stochastic Gradient Descent
(SGD), we evaluate Adagrad (Duchi et al., 2011),
Adadelta (Zeiler, 2012), RMSProp (Hinton, 2012),
Adam (Kingma and Ba, 2014), and Nadam (Dozat,
2015), an Adam variant that incorporates Nesterov
momentum (Nesterov, 1983) as optimizers.

Gradient Clipping and Normalization. Two
common strategies to deal with the exploding gradi-

7https://code.google.com/archive/p/
word2vec/

8https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings/

9http://nlp.stanford.edu/projects/
glove/

10https://www.cs.york.ac.uk/nlp/extvec/

ent problem are gradient clipping (Mikolov, 2012)
and gradient normalization (Pascanu et al., 2013).
Gradient clipping involves clipping the gradient’s
components element-wise if it exceeds a defined
threshold. Gradient normalization has a better theo-
retical justification and rescales the gradient when-
ever the norm goes over a threshold.

Tagging schemes. We evaluate the BIO and
IOBES schemes for tagging segments.

Dropout. We compare no dropout, naive dropout,
and variational dropout (Gal and Ghahramani,
2016). Naive dropout applies a new dropout mask
at every time step of the LSTM-layers. Variational
dropout applies the same dropout mask for all time
steps in the same sentence. Further, it applies
dropout to the recurrent units. We evaluate the
dropout rates {0.05, 0.1, 0.25, 0.5}.
Classifier. We evaluate a Softmax classifier as
well as a CRF classifier as the last layer of the
network.

Number of LSTM-layers. We evaluated 1, 2, and
3 stacked BiLSTM-layers.

Number of recurrent units. For each
LSTM-layer, we selected independently
a number of recurrent units from the set
{25, 50, 75, 100, 125}.
Mini-batch sizes. We evaluate the mini-batch
sizes 1, 8, 16, 32, and 64.

5 Robust Model Evaluation

We have shown in section 3 that re-running non-
deterministic approaches multiple times and com-
paring score distributions is essential to draw cor-
rect conclusions. However, to truly understand the
capabilities of an approach, it is interesting to test
the approach with different sets of hyperparameters
for the complete network.

Training and tuning a neural network can be time
consuming, sometimes taking multiple days to train
a single instance of a network. A priori it is hard
to know which hyperparameters will yield the best
performance and the selection of the parameters
often makes the difference between mediocre and
state-of-the-art performance (Hutter et al., 2014).
If an approach yields good performance only for
a narrow set of parameters, it might be difficult
to adapt the approach to new tasks, new domains
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or new languages, as a large range of possible pa-
rameters must be evaluated, each time requiring
a significant amount of training time. Hence it is
desirable, that the approach yields stable results for
a wide range of parameters.

In order to find approaches that result in high per-
formance and are robust against the remaining pa-
rameters, we decided to randomly sample several
hundred network configurations from the set de-
scribed in section 4.2. For each sampled configu-
ration, we compare different options, e.g. different
options for the last layer of the network. For ex-
ample, we sampled in total 975 configurations and
each configuration was trained with a Softmax clas-
sifier as well as with a CRF classifier, totaling to
1950 trained networks.

Dataset # Configs Softmax CRF
POS 111 18.9% 81.1%

∆Acc. -0.20%
Chunking 229 4.8% 95.2%

∆F1 -0.38%
NER 232 9.5% 90.5%
∆F1 -0.66%

Entities 210 13.3% 86.7%
∆F1 -0.84%

Events 202 61.9% 38.1%
∆F1 -0.15%

Average 21.7% 78.3%

Table 3: Percentages of configurations where Soft-
max or CRF classifiers demonstrated a higher test
performance.

Our results are presented in Table 3. The table
shows that for the NER task 232 configurations
were sampled randomly and for 210 of the 232
configurations (90.5%), the CRF setup achieved a
better test performance than the setup with a Soft-
max classifier. To measure the difference between
these two options, we compute the median of the
absolute differences: Let Si be the test performance
(F1-measure) for the Softmax setup for configura-
tion i and Ci the test performance for the CRF
setup. We then compute ∆F1 = median(S1 −
C1, S2 −C2, . . . , S232 −C232). For the NER task,
the median difference was ∆F1 = −0.66%, i.e.
the setup with a Softmax classifier achieved on av-
erage an F1-score of 0.66 percentage points below
that of the CRF setup.

We also evaluated the standard deviation of the F1-

scores to detect approaches that are less dependent
on the remaining hyperparameters and the random
number generator. The standard deviation σ for the
CRF-classifier is with 0.0060 significantly lower
(p < 10−3 using Brown-Forsythe test) than for the
Softmax classifier with σ = 0.0082.

6 Results

This section highlights our main insights in the
evaluation of different design choices for BiL-
STM architectures. We limit the number of results
we present for reasons of brevity. Detailed infor-
mation can be found in (Reimers and Gurevych,
2017).11

6.1 Classifier

Table 3 shows a comparison between using a Soft-
max classifier as a last layer and using a CRF classi-
fier. The BiLSTM-CRF architecture by Huang et al.
(2015) achieves a better performance on 4 out of 5
tasks. For the NER task it further achieves a 27%
lower standard deviation (statistically significant
with p < 10−3), indicating that it is less sensitive to
the remaining configuration of the network.

The CRF classifier only fails for the Event Detec-
tion task. This task has nearly no dependency be-
tween tags, as often only a single token is annotated
as an event trigger in a sentence.

We studied the differences between these two clas-
sifiers in terms of number of LSTM-layers. As
Figure 3 shows, a Softmax classifier profits from
a deep LSTM-network with multiple stacked lay-
ers. On the other hand, if a CRF classifier is
used, the effect of additional LSTM-layers is much
smaller.

6.2 Optimizer

We evaluated six optimizers with the suggested
default configuration from their respective papers.
We observed that SGD is quite sensitive towards
the selection of the learning rate and it failed in
many instances to converge. For the optimizers
SGD, Adagrad and Adadelta we observed a large
standard deviation in terms of test performance,

11https://public.ukp.informatik.
tu-darmstadt.de/reimers/Optimal_
Hyperparameters_for_Deep_LSTM-Networks.
pdf

343



Figure 3: Difference between Softmax and CRF classifier for different number of BiLSTM-layers for the
CoNLL 2003 NER dataset.

which was for the NER task at 0.1328 for SGD,
0.0139 for Adagrad, and 0.0138 for Adadelta. The
optimizers RMSProp, Adam, and Nadam on the
other hand produced much more stable results. Not
only were the medians for these three optimizers
higher, but also the standard deviation was with
0.0096, 0.0091, and 0.0092 roughly 35% smaller
in comparison to Adagrad. A large standard devia-
tion indicates that the optimizer is sensitive to the
hyperparameters as well as to the random initializa-
tion and bears the risk that the optimizer produces
subpar results.

The best result was achieved by Nadam. For 453
out of 882 configurations (51.4%), it yielded the
highest performance out of the six tested optimiz-
ers. For the NER task, it produced on average
a 0.82 percentage points better performance than
Adagrad.

Besides test performance, the convergence speed
is important in order to reduce training time. Here,
Nadam had the best convergence speed. For the
NER dataset, Nadam converged on average after 9
epochs, whereas SGD required 42 epochs.

6.3 Word Embeddings

The pre-trained word embeddings had a large im-
pact on the performance as shown in Table 4.
The embeddings by Komninos and Manandhar
(2016) resulted in the best performance for the
POS, the Entities and the Events task. For the
Chunking task, the dependency-based embeddings
of Levy and Goldberg (2014) are slightly ahead of
the Komninos embeddings, the significance level

is at p = 0.025. For NER, the GloVe embeddings
trained on common crawl perform on par with the
Komninos embeddings (p = 0.391).

We observe that the underlying word embeddings
have a large impact on the performance for all tasks.
Well suited word embeddings are especially critical
for datasets with small training sets. For the POS
task we observe a median difference of 4.97% be-
tween the Komninos embeddings and the GloVe2
embeddings.

Note we only evaluated the pre-trained embeddings
provided by different authors, but not the underly-
ing algorithms to generate these embeddings. The
quality of word embeddings depends on many fac-
tors, including the size, the quality, and the prepro-
cessing of the data corpus. As the corpora are not
comparable, our results do not allow concluding
that one approach is superior for generating word
embeddings.

6.4 Character Representation

We evaluate the approaches of Ma and Hovy (2016)
using Convolutional Neural Networks (CNN) as
well as the approach of Lample et al. (2016) using
LSTM-networks to derive character-based repre-
sentations.

Table 5 shows that character-based representations
yield a statistically significant difference only for
the POS, the Chunking, and the Events task. For
NER and Entity Recognition, the difference to not
using a character-based representation is not signif-
icant (p > 0.01).
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Dataset Le. Dep. Le. BoW GloVe1 GloVe2 GloVe3 Komn. G. News FastText
POS 6.5% 0.0% 0.0% 0.0% 0.0% 93.5% 0.0% 0.0%

∆Acc. -0.39% -2.52% -4.14% -4.97% -2.60% -1.95% -2.28%
Chunking 60.8% 0.0% 0.0% 0.0% 0.0% 37.1% 2.1% 0.0%

∆F1 -0.52% -1.09% -1.50% -0.93% -0.10% -0.48% -0.75%
NER 4.5% 0.0% 22.7% 0.0% 43.6% 27.3% 1.8% 0.0%
∆F1 -0.85% -1.17% -0.15% -0.73% -0.08% -0.75% -0.89%

Entities 4.2% 7.6% 0.8% 0.0% 6.7% 57.1% 21.8% 1.7%
∆F1 -0.92% -0.89% -1.50% -2.24% -0.80% -0.33% -1.13%

Events 12.9% 4.8% 0.0% 0.0% 0.0% 71.8% 9.7% 0.8%
∆F1 -0.55% -0.78% -2.77% -3.55% -2.55% -0.67% -1.36%

Average 17.8% 2.5% 4.7% 0.0% 10.1% 57.4% 7.1% 0.5%

Table 4: Randomly sampled configurations were evaluated with 8 possible word embeddings. 108
configurations were sampled for POS, 97 for Chunking, 110 for NER, 119 for Entities, and 124 for Events.

The difference between the CNN approach by Ma
and Hovy (2016) and the LSTM approach by Lam-
ple et al. (2016) to derive a character-based repre-
sentations is statistically insignificant for all tasks.
This is quite surprising, as both approaches have
fundamentally different properties: The CNN ap-
proach from Ma and Hovy (2016) takes only tri-
grams into account. It is also position independent,
i.e. the network will not be able to distinguish be-
tween trigrams at the beginning, in the middle, or at
the end of a word, which can be crucial information
for some tasks. The BiLSTM approach from Lam-
ple et al. (2016) takes all characters of the word
into account. Further, it is position aware, i.e. it
can distinguish between characters at the start and
at the end of the word. Intuitively, one would think
that the LSTM approach by Lample et al. would
be superior.

6.5 Gradient Clipping and
Normalization

For gradient clipping (Mikolov, 2012) we couldn’t
observe any improvement for the thresholds of 1,
3, 5, and 10 for any of the five tasks.

Gradient normalization has a better theoretical jus-
tification (Pascanu et al., 2013) and we can confirm
with our experiments that it performs better. Not
normalizing the gradient was the best option only
for 5.6% of the 492 evaluated configurations (un-
der null-hypothesis we would expect 20%). Which
threshold to choose, as long as it is not too small
or too large, is of lower importance. In most cases,
a threshold of 1 was the best option (30.5% of the

Task No CNN LSTM
POS 4.9% 58.2% 36.9%

∆Acc. -0.90% -0.05%
Chunking 13.3% 43.2% 43.6%

∆F1 -0.20% -0.00%
NER 27.2% 36.4% 36.4%
∆F1 -0.11% -0.01%

Entities 26.8% 36.0% 37.3%
∆F1 -0.07% 0.00%

Events 20.5% 35.6% 43.8%
∆F1 -0.44% -0.04%

Average 18.5% 41.9% 39.6%

Table 5: Comparison of not using character-based
representations and using CNNs (Ma and Hovy,
2016) or LSTMs (Lample et al., 2016) to derive
character-based representations. 225 configura-
tions were sampled for POS, 241 for Chunking,
217 for NER, 228 for Entities, and 219 for Events.

cases).

We observed a large performance increase com-
pared to not normalizing the gradient. The median
increase was between 0.29 percentage points F1-
score for the Chunking task and 0.82 percentage
points for the POS task.

6.6 Dropout

Dropout is a popular method to deal with overfit-
ting for neural networks (Srivastava et al., 2014).
We could observe that variational dropout (Gal
and Ghahramani, 2016) clearly outperforms naive
dropout and not using dropout. It was the best op-
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tion in 83.5% of the 479 evaluated configurations.
The median performance increase in comparison
to not using dropout was between 0.31 percentage
points for the POS-task and 1.98 for the Entities
task. We also observed a large improvement in
comparison to naive dropout between 0.19 percent-
age points for the POS task and 1.32 percentage
points for the Entities task. Variational dropout
showed the smallest standard deviation, indicating
that it is less dependent on the remaining hyperpa-
rameters and the random number sequence.

We further evaluated whether variational dropout
should be applied to the output units of the LSTM-
network, to the recurrent units, or to both. We
observed that applying dropout to both dimensions
gave in most cases (62.6%) the best results. The me-
dian performance increase was between 0.05 per-
centage points and 0.82 percentage points.

6.7 Further Evaluated Parameters

The tagging schemes BIO and IOBES performed
on par for 4 out of 5 tasks. For the Entities
task, the BIO scheme significantly outperformed
the IOBES scheme for 88.7% of the tested con-
figurations. The median difference was ∆F1 =
−1.01%.

For the evaluated tasks, 2 stacked LSTM-layers
achieved the best performance. For the POS-
tagging task, 1 and 2 layers performed on par. For
flat networks with a single LSTM-layer, around 150
recurrent units yielded the best performance. For
networks with 2 or 3 layers, around 100 recurrent
units per network yielded the best performance.
However, the impact of the number of recurrent
units was extremely small.

For tasks with small training sets, smaller mini-
batch sizes of 1 up to 16 appears to be a good
choice. For larger training sets sizes of 8 - 32
appears to be a good choice. Mini-batch sizes of
64 usually performed worst.

7 Conclusion

In this paper, we demonstrated that the sequence of
random numbers has a statistically significant im-
pact on the test performance and that wrong conclu-
sions can be made if performance scores based on
single runs are compared. We demonstrated this for
the two recent state-of-the-art NER systems by Ma

and Hovy (2016) and Lample et al. (2016). Based
on the published performance scores, Ma and Hovy
draw the conclusion of a significant improvement
over the approach of Lample et al. Re-executing
the provided implementations with different seed
values however showed that the implementation of
Lample et al. results in a superior score distribution
generalizing better to unseen data.

Comparing score distributions reduces the risk of
rejecting promising approaches or falsely accepting
weaker approaches. Further it can lead to new in-
sights on the properties of an approach. We demon-
strated this for ten design choices and hyperparam-
eters of LSTM-networks for five tasks.

By studying the standard deviation of scores, we
estimated the dependence on hyperparameters and
on the random seed value for different approaches.
We showed that SGD, Adagrad and Adadelta have
a higher dependence than RMSProp, Adam or
Nadam. We have shown that variational dropout
also reduces the dependence on the hyperparame-
ters and on the random seed value. As future work,
we will investigate if those methods are either less
dependent on the hyperparameters or are less de-
pendent on the random seed value, e.g. if they avoid
converging to bad local minima.

By testing a large number of configurations, we
showed that some choices consistently lead to su-
perior performance and are less dependent on the
remaining configuration of the network. Thus,
there is a good chance that these configurations
require less tuning when applied to new tasks or
domains.
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Abstract

We introduce a novel neural easy-first de-
coder that learns to solve sequence tag-
ging tasks in a flexible order. In con-
trast to previous easy-first decoders, our
models are end-to-end differentiable. The
decoder iteratively updates a “sketch” of
the predictions over the sequence. At its
core is an attention mechanism that con-
trols which parts of the input are strategi-
cally the best to process next. We present
a new constrained softmax transformation
that ensures the same cumulative attention
to every word, and show how to efficiently
evaluate and backpropagate over it. Our
models compare favourably to BILSTM
taggers on three sequence tagging tasks.

1 Introduction

In the last years, neural models have led to ma-
jor advances in several structured NLP problems,
including sequence tagging (Plank et al., 2016;
Lample et al., 2016), sequence-to-sequence pre-
diction (Sutskever et al., 2014), and sequence-to-
tree (Dyer et al., 2015). Part of the success comes
from clever architectures such as (bidirectional)
long-short term memories (BILSTMs; Hochreiter
and Schmidhuber (1997); Graves et al. (2005))
and attention mechanisms (Bahdanau et al., 2015),
which are able to select the pieces of context rele-
vant for prediction.

A noticeable aspect about many of the systems
above is that they typically decode from left to
right, greedily or with a narrow beam. While
this is computationally convenient and reminis-
cent of the way humans process spoken language,
the combination of unidirectional decoding and

∗This research was partially carried out during an in-
ternship at Unbabel.

greediness leads to error propagation and subopti-
mal classification performance. This can partly be
mitigated by globally normalized models (Andor
et al., 2016) and imitation learning (Daumé et al.,
2009; Ross et al., 2011; Bengio et al., 2015), how-
ever these techniques still have a left-to-right bias.

Easy-first decoders (Tsuruoka and Tsujii,
2005; Goldberg and Elhadad, 2010, §2) are an in-
teresting alternative: instead of a fixed decoding
order, these methods schedule their own actions
by prefering “easier” decisions over more diffi-
cult ones. A disadvantage is that these models
are harder to learn, due to the factorial number of
orderings leading to correct predictions. Usually,
gradients are not backpropagated over this combi-
natorial latent space (Kiperwasser and Goldberg,
2016a), or a separate model is used to determine
the easiest next move (Clark and Manning, 2016).

In this paper, we develop novel, fully differen-
tiable, neural easy-first sequence taggers (§3).
Instead of taking discrete actions, our decoders use
an attention mechanism to decide (in a soft man-
ner) which word to focus on for the next tagging
decision. Our models are able to learn their own
sense of “easiness”: the words receiving focus
may not be the ones the model is most confident
about, but the best to avoid error propagation in the
long run. To make sure that all words receive the
same cumulative attention, we further contribute
with a new constrained softmax transformation
(§4). This transformation extends the softmax by
permitting upper bound constraints on the amount
of probability a word can receive. We show how
to evaluate this transformation and backpropagate
its gradients.

We run experiments in three sequence tagging
tasks: multilingual part-of-speech (POS) tagging,
named entity recognition (NER), and word-level
quality estimation (§5). We complement our find-
ings with a visual analysis of the attention distribu-
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Algorithm 1 Easy-First Sequence Tagging

Input: input sequence x1:L
Output: tagged sequence ŷ1:L
1: initialize B = S = ∅
2: while B 6= {1, . . . , L} do
3: for each non-covered position i /∈ B do
4: compute scores f(i, yi;x1:L,S), ∀yi
5: end for
6: (j, ŷj) = argmaxi,yi f(i, yi;x1:L,S)

7: S ← S ∪ {(j, ŷj)}, B ← B ∪ {j}
8: end while

tions produced by the decoder, to help understand
what tagging decisions the model finds the easiest.

2 Easy-First Decoders

The idea behind easy-first decoding is to perform
“easier” and less risky decisions before commit-
ting to more difficult ones (Tsuruoka and Tsu-
jii, 2005; Goldberg and Elhadad, 2010; Ma et al.,
2013). Alg. 1 shows the overall procedure for a
sequence tagging problem (the idea carries out to
other structured problems). Let x1:L be an input
sequence (e.g. words in a sentence) and y1:L be
the corresponding tag sequence (e.g. their POS
tags). The algorithm assigns tags one position i
at the time, maintaining a set B of covered po-
sitions. It also maintains a set S of pairs (i, ŷi),
storing the tags that have already been predicted at
those positions. We can regard this set as a sketch
of the output sequence, built incrementally while
the algorithm is executed. At each time step, the
model computes a score f(i, yi;x1:L,S) for each
position i /∈ B and each candidate tag yi, taking
into account the current “sketch” S, which pro-
vides useful contextual information. The “easiest”
position and the corresponding tag are then jointly
obtained by maximizing this score (line 6). The al-
gorithm terminates when all positions are covered.

Previous work has trained easy-first systems
with variants of the perceptron algorithm (Gold-
berg and Elhadad, 2010; Ma et al., 2013) or with
a gradient-based method (Kiperwasser and Gold-
berg, 2016a)—but without backpropagating infor-
mation about the best ordering chosen by the algo-
rithm (only tag mistakes). In fact, doing so directly
would be hard, since the space of possible order-
ings is combinatorial—the argmax in line 6 is not
continuous, let alone differentiable. In the next
section, we introduce a fully differentiable easy-
first system that sidesteps this problem by working
with a “continuous” space of actions.

Figure 1: A neural easy-first system applied to
a POS tagging problem. Given the current in-
put/sketch representation, an attention mechanism
decides where to focus (see bar plot) and is used
to generate the next sketch. Right: A sequence of
sketches (Sn)Nn=1 generated along the way.

3 Neural Easy-First Sequence Taggers

Let ∆L−1 := {α ∈ RL |1>α = 1,α ≥ 0} be
the probability simplex. Our neural easy-first de-
coders depart from Alg. 1 in the following key
points:

• Instead of picking the position with the largest
score at each step (line 6 in Alg. 1), we compute
a (continuous) attention distribution α ∈ ∆L−1

over word positions.

• Instead of a set of covered positionsB, we main-
tain a (continuous) cumulative attention vec-
tor β ∈ RL (ideally in [0, 1]L) over the L posi-
tions in the sequence.

• The sketch set S is replaced by a sketch ma-
trix S ∈ RDs×L, whose columns are Ds-
dimensional vector representations of the output
labels to be predicted.

The high-level procedure is shown in Figure 1. We
describe two models that implement this proce-
dure: a single-state model and a full-state model.
They differ in the way they update the sketch ma-
trix: the single-state model applies a rank-one up-
date, while the full-state model does a full update.

3.1 Single-State Model (NEF-S)

Let concat(x1, . . . ,xK) ∈ R
∑K
k=1Dk be the con-

catenation of the vectors xk ∈ RDk . We use the
shorthand affine(x) := Wx+b to denote an affine
transformation of x, where W is a weight matrix
and b is a bias vector.

Alg. 2 shows the overall procedure. We start
by encoding the input sequence x1:L as a matrix
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Algorithm 2 Neural Easy-First Sequence Tagging

Input: input sequence x1:L, sketch steps N
Output: tagged sequence ŷ1:L
1: initialize β0 = 0 and s0i = 0, ∀i ∈ [L]
2: encode sequence as [h1, . . . ,hL]
3: for n = 1, 2, . . . , N do
4: for each position i ∈ [L] do
5: compute cni and zni (Eqs. 1–2)
6: end for
7: compute attention αn = ρ(zn;βn−1)
8: for each position i ∈ [L] do
9: refine sketch sni from αni and cni , via Eq. 4 (single-

state) or Eq. 7 (full-state)
10: end for
11: βn = βn−1 +αn

12: end for
13: for each position i ∈ [L] do
14: pi = softmax(affine(concat(hi, s

N
i )))

15: predict ŷi = argmaxyi pi(yi)
16: end for

H = [h1, . . . ,hL] ∈ RDh×L (line 2). Our model
is completely agnostic about this encoding step. In
our experiments, we compute H by composing a
lookup embedding layer with a BILSTM (Hochre-
iter and Schmidhuber, 1997; Graves et al., 2005),
as this strategy was successful in similar structured
prediction tasks. However, other choices are pos-
sible, for example using convolutional layers.

As stated above, our algorithm maintains a cu-
mulative attention vector β ∈ RL and a sketch
matrix S ∈ RDs×L, both with all entries initial-
ized to zero. It then performs N sketching steps,
which progressively refine this sketch matrix, pro-
ducing versions S1, . . . ,SN . At the nth step, the
following operations are performed:

Input-Sketch Contextual Representation. For
each word i ∈ [L], we compute a state cni sum-
marizing the surrounding local information about
other words and sketches. We use a simple vector
concatenation over a w-wide context window:

cni = concat(hi−w, . . . ,hi+w, s
n−1
i−w , . . . , s

n−1
i+w),

(1)
where we denote by sn−1

j the jth column of Sn−1.
The intuition is that the current sketches pro-
vide valuable information about the neighboring
words’ predictions that can influence the predic-
tion for the ith word. In the vanilla easy-first algo-
rithm, this was assumed in the score computation
(line 4 of Alg. 1).

Attention Mechanism. We then use an attention
mechanism to decide what is the “best” word to
focus on next. This is done in a similar way as the
feedforward attention proposed by Bahdanau et al.

(2015). We first compute a score for each word
i ∈ [L] based on its contextual representation,

zni = v>tanh(affine(cni )), (2)

where v ∈ RDz is a model parameter. Then, we
aggregate these scores in a vector zn ∈ RL and
apply a transformation ρ to map them to a proba-
bility distribution αn ∈ ∆L−1 (optionally taking
into account the past cumulative attention βn−1):

αn = ρ(zn;βn−1). (3)

The “standard” choice for ρ is the softmax trans-
formation. However, in this work, we consider
other possible transformations (to be described in
§4). After this, the cumulative attention is updated
via βn = βn−1 +αn.

Sketch Generation. Now that we have a distri-
butionαn ∈ ∆L−1 over word positions, it remains
to generate a sketch for those words. We first com-
pute a single-state vector representation of the en-
tire sentence c̄n =

∑L
i=1 α

n
i c

n
i as the weighted

average of the word states defined in Eq. 1. Then,
we update each column of the sketch matrix as:1

sni = sn−1
i +αni ·tanh(affine(c̄n)), ∀i ∈ [L]. (4)

The intuition for this update is the following: in
the extreme case where the attention distribution is
peaked on a single word (say, the kth word, αn =
ek), we obtain c̄n = cnk and the sketch update only
affects that word, i.e.,

sni =

{
sn−1
i + tanh(affine(cnk)) if i = k

sn−1
i if i 6= k.

(5)
This is similar to the sketch update in the original
easy-first algorithm (line 7 in Alg. 1).

The three operations above are repeated N
times (or “sketch steps”). The standard choice is
N = L (one step per word), which mimics the
vanilla easy-first algorithm. However, it is possi-
ble to have fewer steps (or more, if we want the de-
coder to be able to “self-correct”). After complet-
ing the N sketch steps, we obtain the final sketch
matrix SN = [sN1 , . . . , s

N
L ]. Then, we compute a

tag probability for every word as follows:2

pi = softmax(affine(concat(hi, s
N
i ))). (6)

1Note that this is a rank-one update, as it can be written
in matrix notation as Sn = Sn−1 + tanh(affine(c̄n)) ·αn>.

2We found the concatenation with hi in Eq. 6 benefi-
cial to transfer input information directly to the output layer,
avoiding the need of flowing this information through the
sketches.
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In §5, we compare this to a BILSTM tagger, which
predicts according to pi = softmax(affine(hi)).

3.2 Full-State Model (NEF-F)

The full-state model differs from the single-state
model in §3.1 by computing a full matrix for ev-
ery sketch step, instead of a single vector. Namely,
instead of Eq. 4, it does the following sketch up-
date for every word i ∈ [L]:

sni = sn−1
i + αni · tanh(affine(cni )). (7)

Note that the only difference is in replacing the
single vector c̄n by the word-specific vector cni .
As a result, this is no longer a rank-one update
of the sketch matrix, but a full update. In the ex-
treme case where the attention is peaked on a sin-
gle word, the sketch update reduces to the same
form as in the single-state model (Eq. 5). How-
ever, the full-state model is generally more flexible
and allows processing words in parallel, since it
allows different sketch updates for multiple words
receiving attention, instead of trying to force those
words to receive the same update. We will see in
the experiments (§5) that this flexibility can be im-
portant in practice.

3.3 Computational Complexity

For both models, assuming that the ρ(z;β) trans-
formation in Eq. 3 takes O(L) time to compute,
the total runtime of Alg. 2 isO((N+K)L) (where
K is the number of tags), which becomesO(L2) if
K ≤ N = L. This is so because the input-sketch
representation, the attention mechanism, and the
sketch generation step all have O(L) complexity,
and the final softmax layer requires O(KL) op-
erations. This is the same runtime of the vanilla
easy-first algorithm, though the latter can be re-
duced to O(KLlogL) with caching and a heap, if
the scores in line 4 depend only on local sketches
(Goldberg and Elhadad, 2010). By comparison, a
standard BILSTM tagger has runtime O(KL).

4 Constrained Softmax Attention

An important part of our models is their attention
component (line 7 in Alg. 2). To keep the “easy-
first” intuition, we would like the transformation ρ
in Eq. 3 to have a couple of properties:

1. Sparsity: being able to generate sparse distri-
butions αn (ideally, peaked on a single word).

2. Evenness: over iterations, spreading attention
evenly over the words. Ideally, the cumulative
attention should satisfy βn ∈ [0, 1]L for every
n ∈ [N ] and βN = 1.

The standard choice for attention mechanisms is
the softmax transformation, αn = softmax(zn).
However, the softmax does not satisfy either of
the properties above. For the first requirement,
we could incorporate a “temperature” parameter
in the softmax to push for more peaked distribu-
tions. However, this does not guarantee sparsity
(only “hard attention” in the limit) and we found
it numerically unstable when plugged in Alg. 2.
For the second one, we could add a penalty before
the softmax transformation, αn = softmax(zn −
λβn−1), where λ ≥ 0 is a tunable hyperparame-
ter. This strategy was found effective to prevent a
word to receive too much attention, but it made the
model less accurate.

An alternative is the sparsemax transformation
(Martins and Astudillo, 2016):

sparsemax(z) = argmin
α∈∆L−1

‖α− z‖2. (8)

The sparsemax maintains most of the appealing
properties of the softmax (efficiency to evaluate
and backpropagate), and it is able to generate truly
sparse distributions. However, it still does not sat-
isfy the “evenness” property.

Instead, we propose a novel constrained soft-
max transformation that satisfies both require-
ments. It resembles the standard softmax, but it
allows imposing hard constraints on the maximal
probability assigned to each word. Let us start
by writing the (standard) softmax in the following
variational form (?):

softmax(z) = argmin
α∈∆L−1

KL(α‖ softmax(z))

= argmin
α∈∆L−1

−H(α)− z>α, (9)

where KL and H denote the Kullback-Leibler di-
vergence and the entropy, respectively. Based on
this observation, we define the constrained soft-
max transformation as follows:

csoftmax(z;u) = argmin
α∈∆L−1

−H(α)− z>α

s.t. α ≤ u, (10)

where u ∈ RL is a vector of upper bounds. Note
that, if u ≥ 1, all constraints are loose and this
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Algorithm 3 Constrained Softmax Forward

Input: z, u
Output: α = csoftmax(z;u)

1: initialize s := 0,A := [L], Z :=
∑K
i=1 exp(zi)

2: sort qi1 ≥ . . . ≥ qiL , where qi = exp(zi)/ui, ∀i ∈ [L]
3: for k = 1 to L do
4: αik := exp(zik )(1− s)/Z
5: if αik > uik then
6: Z := Z − exp(zik )
7: αik := uik , s := s+ uik , A := A \ {ik}
8: end if
9: end for

reduces to the standard softmax; on the contrary,
if u ∈ ∆L−1, they are tight and we must have
α = u due to the normalization constraint. Thus,
we propose the following for Eq. 3:

αn = csoftmax(zn;1− βn−1). (11)

The constraints guarantee βn = βn−1 +αn ≤ 1.
Since 1>βN =

∑N
n=1 1

>αn = N , they also en-
sure that βN = 1, hence the “evenness” prop-
erty is fully satisfied. Intuitively, each word gets
a credit of one unit of attention that is consumed
during the execution of the algorithm. When this
credit expires, all subsequent attention weights for
that word will be zero.

The next proposition shows how to evaluate the
constrained softmax and compute its gradients.

Proposition 1 Let α = csoftmax(z;u), and de-
fine the set A = {i ∈ [L] | αi < ui} of the con-
straints in Eq. 10 that are met strictly. Then:

• Forward propagation. The solution of Eq. 10
can be written in closed form as αi =

min{exp(zi)/Z, ui}, where Z =
∑
i∈A exp(zi)

1−∑i/∈A ui
.

• Gradient backpropagation. Let L(θ) be a loss
function, dα = ∇αL(θ) be the output gradient,
and dz = ∇zL(θ) and du = ∇uL(θ) be the
input gradients. Then, we have:

dzi = 1(i ∈ A)αi(dαi −m) (12)

dui = 1(i /∈ A)(dαi −m), (13)

where m = (
∑

i∈A αi dαi)/(1−
∑

i/∈A ui).

Proof: See App. A (supplementary material).

Algs. 3–4 turn the results in Prop. 1 into con-
crete procedures for evaluating csoftmax and for
backpropagating its gradient. Their runtimes are
respectively O(LlogL) and O(L).

Algorithm 4 Constrained Softmax Backprop

Input: z, u, dα (and cached α, A, s from Alg. 3)
Output: dz, du
1: m :=

∑
i∈A αi dαi/(1− s)

2: for i ∈ [L] do
3: if i ∈ A then
4: dzi := αi(dαi −m), dui := 0
5: else
6: dzi := 0, dui := dαi −m
7: end if
8: end for

5 Experiments

We evaluate our neural easy-first models in three
sequence tagging tasks: POS tagging, NER, and
word quality estimation.

5.1 Part-of-Speech Tagging
We ran POS tagging experiments in 12 languages
from the Universal Dependencies project v1.4
(Nivre et al., 2016), using the standard splits. The
datasets contain 17 universal tags.3

We implemented Alg. 2 in DyNet (Neubig et al.,
2017), which we extended with the constrained
softmax operator (Algs. 3–4).4 We used 64-
dimensional word embeddings, initialized with
pre-trained Polyglot vectors (Al-Rfou et al., 2013).
Apart from the words, we embedded prefix and
suffix character n-grams with n ≤ 4. We set
the affix embedding size to 50 and summed all
these embeddings; in the end, we obtained a 164-
dimensional representation for each word (words,
prefixes, and suffixes). We then fed these em-
beddings into a BILSTM (with 50 hidden units
in each direction) to obtain the encoder states
[h1, . . . ,hL] ∈ R100×L. The other hyperparam-
eters were set as follows: we used a context size
w = 2, set the pre-attention sizeDz and the sketch
size Ds to 50, and applied dropout with a proba-
bility of 0.2 after the embedding and BILSTM lay-
ers and before the final softmax output layer.5 We
ran 20 epochs of Adagrad to minimize the cross-
entropy loss, with a stepsize of 0.1, and gradient

3Our choice of languages covers 8 families: Romance
(French, Portuguese, Spanish), Germanic (English, German),
Slavic (Czech, Russian), Semitic (Arabic), Indo-Iranian
(Hindi), Austronesian (Indonesian), Sino-Tibetan (Chinese),
and Japonic (Japanese). For all languages, we used the
datasets that have the canonical language name, except for
Russian, where we used the (much larger) SynTagRus cor-
pus. We prefered large datasets over small ones, to reduce
the impact of overfitting in our analysis.

4The code is available at https://github.com/
Unbabel/neural-easy-first.

5These hyperparameters were tuned in the English devel-
opment set, and kept fixed across languages.
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Ara. Chi. Cze. Eng. Fre. Ger. Hin. Ind. Jap. Por. Rus. Spa. Avg.

Gillick et al. (2016)† – – 98.44 94.00 95.17 92.34 – 91.03 – – – 95.26 –
Plank et al. (2016)† 98.91 – 98.24 95.16 96.11 93.38 97.10 93.41 – 97.90 – 95.74 –

Linear (TurboTagger) 95.18 91.38 98.07 94.43 96.48 91.92 95.98 93.12 89.35 96.63 97.32 95.44 94.88
BILSTM 95.60 92.73 98.46 94.94 96.37 92.97 96.80 93.79 92.72 97.01 97.83 95.27 95.39
Vanilla Easy-First 95.62 92.78 98.50 94.78 96.35 92.91 96.81 93.68 92.68 97.12 97.93 95.31 95.42

NEF-S, csoftmax 95.63 92.87 98.50 94.91 96.41 92.86 96.79 93.65 92.93 96.57 97.91 95.42 95.42
NEF-F, softmax 95.61 92.92 98.47 95.15 96.52 92.96 96.75 93.67 92.57 97.12 97.92 95.41 95.43
NEF-F, sparsemax 95.14 92.86 97.75 93.97 91.79 90.27 89.40 93.48 92.61 95.27 96.32 95.36 93.88
NEF-F, csoftmax 95.53 92.99 98.53 95.01 96.70 92.93 96.98 93.81 92.72 97.04 97.94 95.42 95.47

Table 1: POS tagging accuracies. The average in the rightmost column is over the words of each treebank.
†Note that Gillick et al. (2016) and Plank et al. (2016) are not strictly comparable, since they use older
versions of the treebanks (UD1.1 and UD1.2, respectively).

Figure 2: Attention visualization for English POS tagging. From the left: constrained softmax, softmax,
sparsemax, vanilla. Rows correspond to attention vectors (high values in yellow, low ones in dark blue).

clipping of 5 (DyNet’s default). We excluded from
the training set sentences longer than 50 words.

Table 1 compares several variants of our neural
easy-first system—the single-state model (NEF-
S), the full-state model (NEF-F), and the latter
with softmax, sparsemax, and csoftmax attention.
We used as many sketch steps as the number of
words, N = L. As baselines, we used:

• A feature-based linear model (TurboTagger,
Martins et al. (2013)).

• A BILSTM tagger identical to our system, but
without sketch steps (N = 0).

• A vanilla easy-first tagger (Alg. 1), using the ar-
gument of the softmax in Eq. 6 as the scoring
function. This uses the same sketch represen-
tations as the neural easy-first systems, but re-
places the attention mechanism by “hard” atten-
tion placed on the highest scored word.

For comparison, we also show the accuracies re-
ported by Gillick et al. (2016) for their byte-to-
span system (trained separately on each language)
and by Plank et al. (2016) for their state-of-the-art
multi-task BILSTM tagger (these results are not

fully comparable though, due to different treebank
versions).

Among the neural easy-first systems, we ob-
serve that NEF-F with csoftmax attention gener-
ally outperforms the others, but the differences are
very slight (excluding the sparsemax attention sys-
tem, which performed substancially worse). This
system wins over the linear system for all lan-
guages but Spanish, and over the BILSTM base-
line for 9 out of 12 languages (loses in Arabic and
German, and ties in Japanese). Note, however, that
the differences are small (95.47% against 95.39%,
averaged across treebanks). We conjecture that
this is due to the fact that the BILSTM already cap-
tures most of the relevant context in its encoder.
Our NEF-F system with csoftmax also wins over
the vanilla easy-first system for 10 out of 12 lan-
guages (arguably due to its ability to backpropa-
gate the gradients through the soft attention mech-
anism), but the difference in the average score is
again small (95.47% against 95.42%).

Figure 2 depicts some patterns learned by the
NEF-F model with various attention types. With
the csoftmax, the model learns to move left and
right, and the main verb “thought” is the most
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prominent candidate for the easiest decision. In
fact, in 57% of the test sentences, the model fo-
cuses first on a verb. The “raindrop” appear-
ance of the plot is due to the evenness property
of csoftmax, which causes the attention over a
word to increase gradually until the cumulative
attention is exhausted. This constrasts with the
softmax attention (less diverse and non-sparse)
and the sparsemax (sparse, but not even). We show
for comparison the (hard) decisions made by the
vanilla easy-first decoder.

5.2 Named Entity Recognition
Next, we applied our model to NER. We used the
official datasets from the CoNLL 2002-3 shared
tasks (Sang, 2002; Sang and De Meulder, 2003),
which tag names, locations, and organizations
using a BIO scheme, and cover four languages
(Dutch, English, German, and Spanish). We made
two experiments: one using the exact same BIL-
STM and NEF models with a standard softmax
output layer, as in §5.1 (which does not guar-
antee valid segmentations), and another one re-
placing the output softmax layer by a sequential
CRF layer, which requires learning O(K2) ad-
ditional parameters for pairs of consecutive tags
(Huang et al., 2015; Lample et al., 2016). We
used the same hyperparameters as in the POS tag-
ging experiments, except the dropout probabil-
ity, which was set to 0.3 (tuned on the valida-
tion set). For English, we used pre-trained 300-
dimensional GloVe-840B embeddings (Penning-
ton et al., 2014); for Spanish and German, we used
the 64-dimensional word embeddings from Lam-
ple et al. (2016); for Dutch we used the aforemen-
tioned Polyglot vectors. All embeddings are fine-
tuned during training. Since many words are not
entities, and those receive a default “outside” tag,
we expect that fewer sketch steps are necessary to
achieve top performance.

Table 2 shows the results, which confirm this
hypothesis. We compare the same BILSTM
baseline to our NEF-S and NEF-F models with
csoftmax attention (with and without the CRF out-
put layer), varying the maximum number of sketch
steps. We also compare against the byte-to-span
model of Gillick et al. (2016) and the state-of-the-
art character-based LSTM-CRF system of Lample
et al. (2016).6 We can see that, for all languages,

6The current state of the art on these datasets (Gillick
et al., 2016; Lample et al., 2016; Ma and Hovy, 2016) is
achieved by more sophisticated systems with more param-

Dut. Eng. Ger. Spa.

Gillick et al. (2016) 78.08 84.57 72.08 81.83
Lample et al. (2016) 81.74 90.94 78.76 85.75

BILSTM 76.56 85.74 70.05 77.00

NEF-S, N = 5 77.37 86.40 72.27 75.80
NEF-F, N = 5 77.96 86.11 72.60 79.22
NEF-F, N = 10 77.52 87.11 72.96 78.99
NEF-F, N = L 78.46 86.36 72.35 78.87

BILSTM-CRF 79.00 86.96 72.98 80.44

NEF-CRF-S, N = 5 78.89 88.33 72.37 80.21
NEF-CRF-F, N = 5 80.03 88.01 73.45 81.00
NEF-CRF-F, N = 10 79.86 87.51 73.63 80.35
NEF-CRF-F, N = L 80.29 87.58 74.75 80.71

Table 2: F1 scores for NER, computed by the
CoNLL 2002 evaluation script.

the NEF-CRF-F model with 5 steps is consistently
better than the BILSTM-CRF and, with the excep-
tion of English, the NEF-CRF-S model. The same
holds for the BILSTM and NEF-F models without
the CRF output layer. With the exception of Ger-
man, increasing the number of steps did not make
a big difference.

Figure 3 shows the attention distributions over
the sketch steps for an English sentence, for full-
state models trained with N ∈ {5, L}. The model
with L sketch steps learned that it is easiest to fo-
cus on the beginning of a named entity, and then
to move to the right to identify the full span. The
model with only 5 sketch steps learns to go straight
to the point, placing most attention on the entity
words and ignoring most of the O-tokens.

5.3 Word-Level Quality Estimation
Finally, we evaluate our model’s performance on
word-level translation quality estimation. The
goal is to evaluate a translation system’s qual-
ity without access to reference translations (Blatz
et al., 2004; Specia et al., 2013). Given a sentence
pair (a source sentence and its machine translated
sentence in a target language), a word-level sys-
tem classifies each target word as OK or BAD. We
used the official English-German dataset from the
WMT16 shared task (Bojar et al., 2016).

This task differs from the previous ones in
which its input is a sentence pair and not a single

eters, mixing character and word-based models, sharing a
model across languages, or combining CRFs with convolu-
tional and recurrent layers. We used simpler models in our
experiments since our goal is to assess how much the neural
easy-first systems can bring in addition to a BILSTM system,
rather than building a state-of-the-art system.
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Figure 3: Attention visualization for English NER,
for 5 (top) and L (bottom) sketch steps. Words
tagged as B-* are marked in light blue, those with
I-* tags, in bold red, and with O-* tags, in green.

sentence. We replaced the affix embeddings by
the concatenation of the 64-dimensional embed-
dings of the target words with those of the aligned
source words (we used the alignments provided in
the shared task), yielding 128-dimensional repre-
sentations. We used the same hyperparameters as
in the POS tagging task, except the dropout proba-
bility, set to 0.1. We followed prior work (Kreutzer
et al., 2015) and upweighted the BAD words in the
loss function to make the model more pessimistic;
we used a weight of 5 (tuned in the validation set).

Table 3 shows the results. We see that all our
NEF-S and NEF-F models outperform the BIL-
STM, and that the NEF-F model with 5 sketch
steps achieved the best results.7 Figure 4 il-
lustrates the attention over the target words for 5
sketches. We observe that the attention focuses
early in the areas predicted BAD and moves left
and right within these areas, not wasting attention
on the OK part of the sentence. This block-wise fo-

7Our best system would rank third in the shared task, out
of 13 submissions. The winner system, which achieved 49.52
F1-MULT, was considerably more complex than ours, using
an ensemble of three neural networks with a linear system
(Martins et al., 2016).

BILSTM NEF-S NEF-F
N = 5 N = L N = 5 N = L

39.71 40.91 40.99 41.18 40.84

Table 3: F1-MULT scores (product of F1 for OK

and BAD words) for word-level quality estimation,
computed by the official shared task script.

Figure 4: Example for word-level quality estima-
tion. The source sentence is “To open the Actions
panel, from the main menu, choose Window > Ac-
tions.” BAD words are red (bold font), OK words
are green.

cus makes sense for quality estimation, since often
complete phrases are BAD.

5.4 Ablation Study
To better understand our proposed model, we car-
ried out an ablation study for NER on the English
dataset. The following alternate configurations
were tried and compared against the NEF-CRF-F
model with csoftmax attention and 5 sketch steps:

• A NEF-CRF-F model for which the final con-
catenation in Eq. 6 was removed, being replaced
by pi = softmax(affine(sNi )). The goal was
to see if the sketches retain enough information
about the input to make a final prediction with-
out requiring the states hi.

• A model for which the attention mechanism ap-
plied at each sketch step was replaced by a uni-
form distribution over the input words.

• A vanilla easy-first system (Alg. 1). Since this
system can only focus on one word at the time
(unlike the models with soft attention), we tried
both N = 5 and N = L sketch steps.

• A left-to-right and right-to-left model, which re-
places the attention mechanism by one of these
two prescribed orders.

Table 4 shows the results. As expected, the neural
easy-first system was the best performing one, al-
though the difference with respect to the ablated
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NEF-CRF-F, N = 5 88.01

NEF-CRF-F w/out concat, N = 5 87.47
Uniform Attention, N = 5 87.46
Vanilla EF + CRF, N = 5 87.17
Vanilla EF + CRF, N = L 87.46
Left-to-right + CRF, N = L 87.57
Right-to-left + CRF, N = L 87.53

Table 4: Ablation experiments. Reported are F1

scores for NER in the English test set.

systems is relatively small. Removing the con-
catenation in Eq. 6 is harmful, which suggests that
there is information about the input not retained
in the sketches. The uniform attention performs
surprisingly well, and so do the left-to-right and
right-to-left models, but they are still about half a
point behind. The vanilla easy-first system has the
worst performance with N = 5. This is due to the
fact that the vanilla model is uncapable of process-
ing words “in parallel” in the same sketch step, a
disadvantage with respect to the neural easy-first
models, which have this capability due to their soft
attention mechanisms (see the top image in Fig. 3).

6 Related Work

Vanilla easy-first decoders have been used in
POS tagging (Tsuruoka and Tsujii, 2005; Ma
et al., 2013), dependency parsing (Goldberg
and Elhadad, 2010), and coreference resolution
(Stoyanov and Eisner, 2012), being related to
cyclic dependency networks and guided learning
(Toutanova et al., 2003; Shen et al., 2007). More
recent works compute scores with a neural net-
work (Socher et al., 2011; Clark and Manning,
2016; Kiperwasser and Goldberg, 2016a), but they
still operate in a discrete space to pick the easi-
est actions (the non-differentiable argmax in line 6
of Alg. 1). Generalizing this idea to “continuous”
operations is at the very core of our paper, allow-
ing gradients to be fully backpropagated. In a dif-
ferent context, building differentiable computation
structures has also been addressed by Graves et al.
(2014); Grefenstette et al. (2015).

An important contribution of our paper is the
constrained softmax transformation. Others have
proposed alternatives to softmax attention, includ-
ing the sparsemax (Martins and Astudillo, 2016)
and multi-focal attention (Globerson et al., 2016).
The latter computes a KL projection onto a bud-
get polytope to focus on multiple words. Our con-
strained softmax also corresponds to a KL projec-

tion, but (i) it involves box constraints instead of
a budget, (ii) it is normalized to 1, and (iii) we
also backpropagate the gradient over the constraint
variables. It also achieves sparsity (see the “rain-
drop” plots in Figures 2–4), and is suitable for se-
quentially computing attention distributions when
diversity is desired (e.g. soft 1-to-1 alignments).
Recently, Chorowski and Jaitly (2016) developed
an heuristic with a threshold on the total attention
as a “coverage criterion” (see their Eq. 11), how-
ever their heuristic is non-differentiable.

Our sketch generation step is similar in spirit to
the “deep recurrent attentive writer” (DRAW, Gre-
gor et al. (2015)) which generates images by itera-
tively refining sketches with a recurrent neural net-
work (RNN). However, our goal is very different:
instead of generating images, we generate vectors
that lead to a final sequence tagging prediction.

Finally, the visualization provided in Figures 2–
4 brings up the question how to understand and
rationalize predictions by neural network systems,
addressed by Lei et al. (2016). Their model, how-
ever, uses a form of stochastic attention and it does
not perform any iterative refinement like ours.

7 Conclusions

We introduced novel fully-differentiable easy-first
taggers that learn to make predictions over se-
quences in an order that is adapted to the task at
hand. The decoder iteratively updates a sketch
of the predictions by interacting with an attention
mechanism. To spread attention evenly through all
words, we introduced a new constrained softmax
transformation, along with an algorithm to back-
propagate its gradients. Our neural-easy first de-
coder consistently outperformed a BILSTM on a
range of sequence tagging tasks.

A natural direction for future work is to go be-
yond sequence tagging (which we regard as a sim-
ple first step) toward other NLP structured predic-
tion problems, such as sequence-to-sequence pre-
diction. This requires replacing the sketch matrix
in Alg. 2 by a dynamic memory structure.
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A Proof of Proposition 1

We provide here a detailed proof of Proposition 1.

A.1 Forward Propagation

The optimization problem is

csoftmax(z,u) = argmin −H(α)− z>α

s.t.
{

1>α = 1
0 ≤ α ≤ u.

The Lagrangian function is:

L(α, λ,µ,ν) = −H(α)− z>α+ λ(1>α− 1)

−µ>α+ ν>(α− u). (14)

To obtain the solution, we invoke the Karush-Kuhn-Tucker conditions. From the stationarity condition,
we have 0 = log(α) + 1 − z + λ1 − µ + ν, which due to the primal feasibility condition implies that
the solution is of the form:

α = exp(z + µ− ν)/Z, (15)

where Z is a normalization constant. From the complementarity slackness condition, we have that 0 <
αi < ui implies that µi = νi = 0 and therefore αi = exp(zi)/Z. On the other hand, νi > 0 implies
αi = ui. Hence the solution can be written as αi = min{exp(zi)/Z, ui}, where Z is determined such
that the distribution normalizes:

Z =

∑
i∈A exp(zi)

1−∑i/∈A ui
, (16)

with A = {i ∈ [L] | αi < ui}.

A.2 Gradient Backpropagation

We now turn to the problem of backpropagating the gradients through the constrained softmax transfor-
mation. For that, we need to compute its Jacobian matrix, i.e., the derivatives ∂αi

∂zj
and ∂αi

∂uj
for i, j ∈ [L].

Let us first express α as

αi =

{
exp(zi)(1−s)∑
j∈A exp(zj)

, i ∈ A
ui, i /∈ A,

(17)

where s =
∑

j /∈A uj . Note that we have ∂s/∂zj = 0, ∀j, and ∂s/∂uj = 1(j /∈ A). To compute the
entries of the Jacobian matrix, we need to consider several cases.

Case 1: i ∈ A. In this case, the evaluation of Eq. 17 goes through the first branch. Let us first compute
the derivative with respect to uj . Two things can happen: if j ∈ A, then s does not depend on uj , hence
∂αi
∂uj

= 0. Else, if j /∈ A, we have

∂αi
∂uj

=
−exp(zi)

∂s
∂uj∑

k∈A exp(zk)
= −αi/(1− s).

Now let us compute the derivative with respect to zj . Three things can happen: if j ∈ A and i 6= j, we
have

∂αi
∂zj

=
−exp(zi)exp(zj)(1− s)(∑

k∈A exp(zk)
)2

= −αiαj/(1− s). (18)
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If j ∈ A and i = j, we have

∂αi
∂zi

= (1− s)×

exp(zi)
∑

k∈A exp(zk)− exp(zi)
2

(∑
k∈A exp(zk)

)2

= αi − α2
i /(1− s). (19)

Finally, if j /∈ A, we have ∂αi
∂zj

= 0.

Case 2: i /∈ A. In this case, the evaluation of Eq. 17 goes through the second branch, which means
that ∂αi∂zj

= 0, always. Let us now compute the derivative with respect to uj . This derivative is always

zero unless i = j, in which case ∂αi
∂uj

= 1.

To sum up, we have:
∂αi
∂zj

=

{
1(i = j)αi − αiαj

1−s , if i, j ∈ A
0, otherwise,

(20)

and

∂αi
∂uj

=




− αi

1−s , if i ∈ A, j /∈ A
1, if i, j /∈ A, i = j
0, otherwise.

(21)

Therefore, we obtain:

dzj =
∑

i

∂αi
∂zj

dαi

= 1(j ∈ A)

(
αjdαj −

αj
∑

i∈A αidαi
1− s

)

= 1(j ∈ A)αj(dαj −m), (22)

and

duj =
∑

i

∂αi
∂uj

dαi

= 1(j /∈ A)

(
dαj −

∑
i∈A αidαi
1− s

)

= 1(j /∈ A)(dαj −m), (23)

where m =
∑
i∈A αidαi

1−s .
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Abstract

This paper explores an incremental train-
ing strategy for the skip-gram model with
negative sampling (SGNS) from both em-
pirical and theoretical perspectives. Ex-
isting methods of neural word embed-
dings, including SGNS, are multi-pass al-
gorithms and thus cannot perform incre-
mental model update. To address this
problem, we present a simple incremen-
tal extension of SGNS and provide a
thorough theoretical analysis to demon-
strate its validity. Empirical experiments
demonstrated the correctness of the theo-
retical analysis as well as the practical use-
fulness of the incremental algorithm.

1 Introduction

Existing methods of neural word embeddings are
typically designed to go through the entire train-
ing data multiple times. For example, negative
sampling (Mikolov et al., 2013b) needs to pre-
compute the noise distribution from the entire
training data before performing Stochastic Gradi-
ent Descent (SGD). It thus needs to go through the
training data at least twice. Similarly, hierarchical
soft-max (Mikolov et al., 2013b) has to determine
the tree structure and GloVe (Pennington et al.,
2014) has to count co-occurrence frequencies be-
fore performing SGD.

The fact that those existing methods are multi-
pass algorithms means that they cannot perform
incremental model update when additional train-
ing data is provided. Instead, they have to re-train
the model on the old and new training data from
scratch.

However, the re-training is obviously inefficient
since it has to process the entire training data
received thus far whenever new training data is

provided. This is especially problematic when
the amount of the new training data is relatively
smaller than the old one. One such situation
is that the embedding model is updated on a
small amount of training data that includes newly
emerged words for instantly adding them to the
vocabulary set. Another situation is that the word
embeddings are learned from ever-evolving data
such as news articles and microblogs (Peng et al.,
2017) and the embedding model is periodically
updated on newly generated data (e.g., once in a
week or month).

This paper investigates an incremental training
method of word embeddings with a focus on the
skip-gram model with negative sampling (SGNS)
(Mikolov et al., 2013b) for its popularity. We
present a simple incremental extension of SGNS,
referred to as incremental SGNS, and provide a
thorough theoretical analysis to demonstrate its
validity. Our analysis reveals that, under a mild
assumption, the optimal solution of incremental
SGNS agrees with the original SGNS when the
training data size is infinitely large. See Section 4
for the formal and strict statement. Additionally,
we present techniques for the efficient implemen-
tation of incremental SGNS.

Three experiments were conducted to assess
the correctness of the theoretical analysis as well
as the practical usefulness of incremental SGNS.
The first experiment empirically investigates the
validity of the theoretical analysis result. The
second experiment compares the word embed-
dings learned by incremental SGNS and the orig-
inal SGNS across five benchmark datasets, and
demonstrates that those word embeddings are of
comparable quality. The last experiment explores
the training time of incremental SGNS, demon-
strating that it is able to save much training time
by avoiding expensive re-training when additional
training data is provided.
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2 SGNS Overview

As a preliminary, this section provides a brief
overview of SGNS.

Given a word sequence, w1, w2, . . . , wn, for
training, the skip-gram model seeks to minimize
the following objective to learn word embeddings:

LSG = − 1

n

n∑

i=1

∑

|j|≤c
j ̸=0

log p(wi+j | wi),

where wi is a target word and wi+j is a context
word within a window of size c. p(wi+j | wi)
represents the probability thatwi+j appears within
the neighbor of wi, and is defined as

p(wi+j | wi) =
exp(twi · cwi+j )∑
w∈W exp(twi · cw)

, (1)

where tw and cw are w’s embeddings when it be-
haves as a target and context, respectively. W rep-
resents the vocabulary set.

Since it is too expensive to optimize the above
objective, Mikolov et al. (2013b) proposed nega-
tive sampling to speed up skip-gram training. This
approximates Eq. (1) using sigmoid functions and
k randomly-sampled words, called negative sam-
ples. The resulting objective is given as

LSGNS =− 1

n

n∑

i=1

∑

|j|≤c
j ̸=0

ψ+
wi,wi+j

+kEv∼q(v)[ψ
−
wi,v],

where ψ+
w,v = log σ(tw · cv), ψ−

w,v = log σ(−tw ·
cv), and σ(x) is the sigmoid function. The nega-
tive sample v is drawn from a smoothed unigram
probability distribution referred to as noise distri-
bution: q(v) ∝ f(v)α, where f(v) represents the
frequency of a word v in the training data and α is
a smoothing parameter (0 < α ≤ 1).

The objective is optimized by SGD. Given
a target-context word pair (wi and wi+j) and k
negative samples (v1, v2, . . . , vk) drawn from the
noise distribution, the gradient of −ψ+

wi,wi+j
−

kEv∼q(v)[ψ
−
wi,v] ≈ −ψ+

wi,wi+j
− ∑k

k′=1 ψ
−
wi,vk′

is computed. Then, the gradient descent is per-
formed to update twi , cwi+j , and cv1 , . . . , cvk

.
SGNS training needs to go over the entire train-

ing data to pre-compute the noise distribution q(v)
before performing SGD. This makes it difficult
to perform incremental model update when addi-
tional training data is provided.

3 Incremental SGNS

This section explores incremental training of
SGNS. The incremental training algorithm (Sec-
tion 3.1), its efficient implementation (Section
3.2), and the computational complexity (Section
3.3) are discussed in turn.

3.1 Algorithm

Algorithm 1 presents incremental SGNS, which
goes through the training data in a single-pass to
update word embeddings incrementally. Unlike
the original SGNS, it does not pre-compute the
noise distribution. Instead, it reads the training
data word by word1 to incrementally update the
word frequency distribution and the noise distribu-
tion while performing SGD. Hereafter, the origi-
nal SGNS (c.f., Section 2) is referred to as batch
SGNS to emphasize that the noise distribution is
computed in a batch fashion.

The learning rate for SGD is adjusted by using
AdaGrad (Duchi et al., 2011). Although the linear
decay function has widely been used for training
batch SGNS (Mikolov, 2013), adaptive methods
such as AdaGrad are more suitable for the incre-
mental training since the amount of training data is
unknown in advance or can increase unboundedly.

It is straightforward to extend the incremental
SGNS to the mini-batch setting by reading a sub-
set of the training data (or mini-batch), rather than
a single word, at a time to update the noise distri-
bution and perform SGD (Algorithm 2). Although
this paper primarily focuses on the incremental
SGNS, the mini-batch algorithm is also important
in practical terms because it is easier to be multi-
threaded.

Alternatives to Algorithms 2 might be possi-
ble. Other possible approaches include computing
the noise distribution separately on each subset of
the training data, fixing the noise distribution after
computing it from the first (possibly large) subset,
and so on. We exclude such alternatives from our
investigation because it is considered difficult to
provide them with theoretical justification.

3.2 Efficient implementation

Although the incremental SGNS is conceptually
simple, implementation issues are involved.

1In practice, Algorithm 1 buffers a sequence of words
wi−c, . . . , wi+c (rather than a single word wi) at each step,
as it requires an access to the context words wi+j in line 7.
This is not a practical problem because the window size c is
usually small and independent from the training data size n.
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Algorithm 1 Incremental SGNS
1: f(w)← 0 for all w ∈ W
2: for i = 1, . . . , n do
3: f(wi)← f(wi) + 1

4: q(w)← f(w)α
∑

w′∈W f(w′)α for all w ∈ W
5: for j = −c, . . . ,−1, 1, . . . , c do
6: draw k negative samples from q(w): v1, . . . , vk

7: use SGD to update twi , cwi+j , and cv1 , . . . , cvk

8: end for
9: end for

Algorithm 2 Mini-batch SGNS
1: for each subset D of the training data do
2: update the noise distribution using D
3: perform SGD over D
4: end for

3.2.1 Dynamic vocabulary
One problem that arises when training incremen-
tal SGNS is how to maintain the vocabulary set.
Since new words emerge endlessly in the train-
ing data, the vocabulary set can grow unboundedly
and exhaust a memory.

We address this problem by dynamically chang-
ing the vocabulary set. The Misra-Gries algorithm
(Misra and Gries, 1982) is used to approximately
keep track of top-m frequent words during train-
ing, and those words are used as the dynamic vo-
cabulary set. This method allows the maximum
vocabulary size to be explicitly limited tom, while
being able to dynamically change the vocabulary
set.

3.2.2 Adaptive unigram table
Another problem is how to generate negative sam-
ples efficiently. Since k negative samples per
target-context pair have to be generated by the
noise distribution, the sampling speed has a sig-
nificant effect on the overall training efficiency.

Let us first examine how negative samples are
generated in batch SGNS. In a popular implemen-
tation (Mikolov, 2013), a word array (referred to
as a unigram table) is constructed such that the
number of a word w in it is proportional to q(w).
See Table 1 for an example. Using the unigram
table, negative samples can be efficiently gener-
ated by sampling the table elements uniformly at
random. It takes only O(1) time to generate one
negative sample.

The above method assumes that the noise dis-
tribution is fixed and thus cannot be used directly
for the incremental training. One simple solution
is to reconstruct the unigram table whenever new
training data is provided. However, such a method

w a b c
q(w) 0.5 0.3 0.2

T = (a, a, a, a, a, b, b, b, c, c)

Table 1: Example noise distribution q(w) for the
vocabulary set W = {a, b, c} (left) and the corre-
sponding unigram table T of size 10 (right).

Algorithm 3 Adaptive unigram table.
1: f(w)← 0 for all w ∈ W
2: z ← 0
3: for i = 1, . . . , n do
4: f(wi)← f(wi) + 1
5: F ← f(wi)

α − (f(wi)− 1)α

6: z ← z + F
7: if |T | < τ then
8: add F copies of wi to T
9: else

10: for j = 1, . . . , τ do
11: T [j]← wi with probability F

z
12: end for
13: end if
14: end for

is not effective for the incremental SGNS, because
the unigram table reconstruction requires O(|W|)
time.2

We propose a reservoir-based algorithm for ef-
ficiently updating the unigram table (Vitter, 1985;
Efraimidis, 2015) (Algorithm 3). The algorithm
incrementally update the unigram table T while
limiting its maximum size to τ . In case |T | < τ , it
can be easily confirmed that the number of a word
w in T is f(w)α(∝ q(w)). In case |T | = τ , since
z =

∑
w∈W f(w)α is equal to the normalization

factor of the noise distribution, it can be proven
by induction that, for all j, T [j] is a word w with
probability q(w). See (Vitter, 1985; Efraimidis,
2015) for reference.

Note on implementation In line 8, F copies of
wi are added to T . When F is not an integer, the
copies are generated so that their expected number
becomes F . Specifically, ⌈F ⌉ copies are added to
T with probability F − ⌊F ⌋, and ⌊F ⌋ copies are
added otherwise.

The loop from line 10 to 12 becomes expen-
sive if implemented straightforwardly because the
maximum table size τ is typically set large (e.g.,
τ = 108 in word2vec (Mikolov, 2013)). For ac-
celeration, instead of checking all elements in the
unigram table, randomly chosen τF

z elements are
substituted with wi. Note that τF

z is the expected
2This overhead is amortized in mini-batch SGNS if the

mini-batch size is sufficiently large. Our discussion here is
dedicated to efficiently perform the incremental training irre-
spective of the mini-batch size.
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number of table elements to be substituted in the
original algorithm. This approximation achieves
great speed-up because we usually have F ≪ z.
In fact, it can be proven that it takes O(1) time
when α = 1.0. See Appendix3 A for more discus-
sions.

3.3 Computational complexity

Both incremental and batch SGNS have the same
space complexity, which is independent of the
training data size n. Both require O(|W|) space
to store the word embeddings and the word fre-
quency counts, and O(|T |) space to store the uni-
gram table.

The two algorithms also have the same time
complexity. Both require O(n) training time when
the training data size is n. Although incremen-
tal SGNS requires extra time for updating the
dynamic vocabulary and adaptive unigram table,
these costs are practically negligible, as will be
demonstrated in Section 5.3.

4 Theoretical Analysis

Although the extension from batch to incremental
SGNS is simple and intuitive, it is not readily clear
whether incremental SGNS can learn word em-
beddings as well as the batch counterpart. To an-
swer this question, in this section we examine in-
cremental SGNS from a theoretical point of view.

The analysis begins by examining the difference
between the objectives optimized by batch and in-
cremental SGNS (Section 4.1). Then, probabilis-
tic properties of their difference are investigated
to demonstrate the relationship between batch and
incremental SGNS (Sections 4.2 and 4.3). We
shortly touch the mini-batch SGNS at the end of
this section (Section 4.4).

4.1 Objective difference

As discussed in Section 2, batch SGNS optimizes
the following objective:

LB(θ)=− 1

n

n∑

i=1

∑

|j|≤c
j ̸=0

ψ+
wi,wi+j

+kEv∼qn(v)[ψ
−
wi,v],

where θ = (t1, t2, . . . , t|W|, c1, c2, . . . , c|W|) col-
lectively represents the model parameters4 (i.e.,
word embeddings) and qn(v) represents the noise

3The appendices are in the supplementary material.
4We treat words as integers and thusW={1, 2, . . . |W|}.

distribution. Note that the noise distribution is rep-
resented in a different notation than Section 2 to
make its dependence on the whole training data
explicit. The function qi(v) is defined as qi(v) =

fi(v)α∑
v′∈W fi(v′)α , where fi(v) represents the word

frequency in the first i words of the training data.
In contrast, incremental SGNS computes the

gradient of −ψ+
wi,wi+j

− kEv∼qi(v)[ψ
−
wi,v] at each

step to perform gradient descent. Note that the
noise distribution does not depend on n but rather
on i. Because it can be seen as a sample approxi-
mation of the gradient of

LI(θ) = − 1

n

n∑

i=1

∑

|j|≤c
j ̸=0

ψ+
wi,wi+j

+kEv∼qi(v)[ψ
−
wi,v],

incremental SGNS can be interpreted as optimiz-
ing LI(θ) with SGD.

Since the expectation terms in the objec-
tives can be rewritten as Ev∼qi(v)[ψ

−
wi,v] =∑

v∈W qi(v)ψ
−
wi,v, the difference between the two

objectives can be given as

∆L(θ) = LB(θ) − LI(θ)

=
1

n

n∑

i=1

∑

|j|≤c
j ̸=0

k
∑

v∈W
(qi(v)−qn(v))ψ−

wi,v

=
2ck

n

n∑

i=1

∑

v∈W
(qi(v) − qn(v))ψ−

wi,v

=
2ck

n

∑

w,v∈W

n∑

i=1

δwi,w(qi(v) − qn(v))ψ−
w,v

where δw,v = δ(w = v) is the delta function.

4.2 Unsmoothed case

Let us begin by examining the objective difference
∆L(θ) in the unsmoothed case, α = 1.0.

The technical difficulty in analyzing ∆L(θ) is
that it is dependent on the word order in the train-
ing data. To address this difficulty, we assume that
the words in the training data are generated from
some stationary distribution. This assumption al-
lows us to investigate the property of ∆L(θ) from
a probabilistic perspective. Regarding the validity
of this assumption, we want to note that this as-
sumption is already taken by the original SGNS:
the probability that the target and context words
co-occur is assumed to be independent of their po-
sition in the training data.
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We below introduce some definitions and nota-
tions as the preparation of the analysis.

Definition 1. Let Xi,w be a random variable that
represents δwi,w. It takes 1 when the i-th word in
the training data is w ∈ W and 0 otherwise.

Remind that we assume that the words in the
training data are generated from a stationary dis-
tribution. This assumption means that the expec-
tation and (co)variance of Xi,w do not depend on
the index i. Hereafter, they are respectively de-
noted as E[Xi,w] = µw and V[Xi,w,Xj,v] = ρw,v.

Definition 2. Let Yi,w be a random variable that
represents qi(w) when α = 1.0. It is given as
Yi,w = 1

i

∑i
i′=1 Xi′,w.

4.2.1 Convergence of the first and second
order moments of ∆L(θ)

It can be shown that the first order moment of
∆L(θ) has an analytical form.

Theorem 1. The first order moment of ∆L(θ) is
given as

E[∆L(θ)] =
2ck(Hn − 1)

n

∑

w,v∈W
ρw,vψ

−
w,v,

where Hn is the n-th harmonic number.

Sketch of proof. Notice that E[∆L(θ)] can be
written as

2ck

n

∑

w,v∈W

n∑

i=1

(
E[Xi,wYi,v] − E[Xi,wYn,v]

)
ψ−

w,v.

Because we have, for any i and j such that i ≤ j,

E[Xi,wYj,v] =

j∑

j′=1

E[Xi,w
Xj′,v

j
] = µwµv +

ρw,v

j
,

plugging this into E[∆L(θ)] proves the theorem.
See Appendix B.1 for the complete proof.

Theorem 1 readily gives the convergence prop-
erty of the first order moment of ∆L(θ):

Theorem 2. The first-order moment of ∆L(θ) de-
creases in the order of O( log(n)

n ):

E[∆L(θ)] = O
(

log(n)

n

)
,

and thus converges to zero in the limit of infinity:

lim
n→∞

E[∆L(θ)] = 0.

Proof. We have Hn = O(log(n)) from the up-
per integral bound, and thus Theorem 1 gives the
proof.

A similar result to Theorem 2 can be obtained
for the second order moment of ∆L(θ) as well.

Theorem 3. The second-order moment of ∆L(θ)

decreases in the order of O( log(n)
n ):

E[∆L(θ)2] = O
(

log(n)

n

)
,

and thus converges to zero in the limit of infinity:

lim
n→∞

E[∆L(θ)2] = 0.

Proof. Omitted. See Appendix B.2.

4.2.2 Main result
The above theorems reveal the relationship be-
tween the optimal solutions of the two objectives,
as stated in the next lemma.

Lemma 4. Let θ∗ and θ̂ be the optimal solu-
tions of LB(θ) and LI(θ), respectively: θ∗ =
arg minθ LB(θ) and θ̂ = arg minθ LI(θ). Then,

lim
n→∞

E[LB(θ̂) − LB(θ∗)] = 0, (2)

lim
n→∞

V[LB(θ̂) − LB(θ∗)] = 0. (3)

Proof. The proof is made by the squeeze theorem.
Let l = LB(θ̂) − LB(θ∗). The optimality of θ∗

gives 0 ≤ l. Also, the optimality of θ̂ gives

l = LB(θ̂) − LI(θ
∗) + LI(θ

∗) − LB(θ∗)

≤ LB(θ̂) − LI(θ̂) + LI(θ
∗) − LB(θ∗)

= ∆L(θ̂) − ∆L(θ∗).

We thus have 0 ≤ E[l] ≤ E[∆L(θ̂) − ∆L(θ∗)].
Since Theorem 2 implies that the right hand side
converges to zero when n → ∞, the squeeze the-
orem gives Eq. (2). Next, we have

V[l] = E[l2] − E[l]2 ≤E[l2]

≤ E[(∆L(θ̂) − ∆L(θ∗))2]

≤ E[(∆L(θ̂) − ∆L(θ∗))2]

+ E[(∆L(θ̂)+∆L(θ∗))2]

= 2E[∆L(θ̂)2] + 2E[∆L(θ∗)2]. (4)

Theorem 3 suggests that Eq. (4) converges to zero
when n → ∞. Also, the non-negativity of the
variance gives 0 ≤ V[l]. Therefore, the squeeze
theorem gives Eq. (3).
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We are now ready to provide the main result of
the analysis. The next theorem shows the conver-
gence of LB(θ̂).

Theorem 5. LB(θ̂) converges in probability to
LB(θ∗):

∀ϵ > 0, lim
n→∞

Pr

[
|LB(θ̂) − LB(θ∗)| ≥ ϵ

]
= 0.

Sketch of proof. Let again l = LB(θ̂) − LB(θ∗).
Chebyshev’s inequality gives, for any ϵ1 > 0,

lim
n→∞

V[l]

ϵ21
≥ lim

n→∞
Pr

[
|l − E[l]| ≥ ϵ1

]
.

Remember that Eq. (2) means that for any ϵ2 > 0,
there exists n′ such that if n′ ≤ n then |E[l]| < ϵ2.
Therefore, we have

lim
n→∞

V[l]

ϵ21
≥ lim

n→∞
Pr

[
|l| ≥ ϵ1 + ϵ2

]
≥ 0.

The arbitrary property of ϵ1 and ϵ2 allows ϵ1 +
ϵ2 to be rewritten as ϵ. Also, Eq. (3) implies that
limn→∞

V[l]
ϵ21

= 0. This completes the proof. See
Appendix B.3 for the detailed proof.

Informally, this theorem can be interpreted as sug-
gesting that the optimal solutions of batch and in-
cremental SGNS agree when n is infinitely large.

4.3 Smoothed case

We next examine the smoothed case (0 < α < 1).
In this case, the noise distribution can be repre-
sented by using the ones in the unsmoothed case:

qi(w) =
fi(w)α

∑
w′∈W fi(w′)α

=

(fi(w)
Fi

)α

∑
w′∈W

(fi(w′)
Fi

)α

where Fi =
∑

w′∈W fi(w
′) and fi(w)

Fi
corresponds

to the unsmoothed noise distribution.

Definition 3. Let Zi,w be a random variable that
represents qi(w) in the smoothed case. Then, it
can be written by using Yi,w:

Zi,w = gw(Yi,1,Yi,2, . . . ,Yi,|W|)

where gw(x1, x2, . . . , x|W|) = xα
w∑

w′∈W xα
w′

.

Because Zi,w is no longer a linear combina-
tion of Xi,w, it becomes difficult to derive simi-
lar proofs to the unsmoothed case. To address this

difficulty, Zi,w is approximated by the first-order
Taylor expansion around

E[(Yi,1,Yi,2, . . . ,Yi,|W|)] = (µ1, µ2, . . . , µ|W|).

The first-order Taylor approximation gives

Zi,w ≈ gw(µ) +
∑

v∈W
Mw,v(Yi,v − gv(µ))

where µ = (µ1, µ2, . . . , µ|W|) and Mw,v =
∂gw(x)

∂xv
|x=µ. Consequently, it can be shown that

the first and second order moments of ∆L(θ) have
the order of O( log(n)

n ) in the smoothed case as
well. See Appendix C for the details.

4.4 Mini-batch SGNS
The same analysis result can also be obtained for
the mini-batch SGNS. We can prove Theorems
2 and 3 in the mini-batch case as well (see Ap-
pendix D for the proof). The other part of the anal-
ysis remains the same.

5 Experiments

Three experiments were conducted to investigate
the correctness of the theoretical analysis (Sec-
tion 5.1) and the practical usefulness of incremen-
tal SGNS (Sections 5.2 and 5.3). Details of the
experimental settings that do not fit into the paper
are presented in Appendix E.

5.1 Validation of theorems
An empirical experiment was conducted to vali-
date the result of the theoretical analysis. Since
it is difficult to assess the main result in Section
4.2.2 directly, the theorems in Sections 4.2.1, from
which the main result is readily derived, were in-
vestigated. Specifically, the first and second order
moments of ∆L(θ) were computed on datasets of
increasing sizes to empirically investigate the con-
vergence property.

Datasets of various sizes were constructed from
the English Gigaword corpus (Napoles et al.,
2012). The datasets made up of n words were
constructed by randomly sampling sentences from
the Gigaword corpus. The value of n was varied
over {103, 104, 105, 106, 107}. 10, 000 different
datasets were created for each size n to compute
the first and second order moments.

Figure 1 (top left) shows log-log plots of the
first order moments of ∆L(θ) computed on the
different sized datasets when α = 1.0. The crosses
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Figure 1: Log-log plots of the first and second
order moments of ∆L(θ) on the different sized
datasets when α = 1.0 (top left and top right) and
α = 0.75 (bottom left and bottom right).

and circles represent the empirical values and the-
oretical values obtained by Theorem 1, respec-
tively. Figure 1 (top right) similarly illustrates the
second order moments of ∆L(θ). Since Theo-
rem 3 suggests that the second order moment de-
creases in the order of O( log(n)

n ), the graph y ∝
log(x)

x is also shown. The graph was fitted to the
empirical data by minimizing the squared error.

The top left figure demonstrates that the empiri-
cal values of the first order moments fit the theoret-
ical result very well, providing a strong empirical
evidence for the correctness of Theorem 1. In ad-
dition, the two figures show that the first and sec-
ond order moments decrease almost in the order
of O( log(n)

n ), converging to zero as the data size
increases. This result validates Theorems 2 and 3.

Figures 1 (bottom left) and (bottom right) show
similar results when α = 0.75. Since we do not
have theoretical estimates of the first order mo-
ment when α ̸= 1.0, the graphs y ∝ log(n)

n are
shown in both figures. From these, we can again
observe that the first and second order moments
decrease almost in the order of O( log(n)

n ). This
indicates the validity of the investigation in Sec-
tion 4.3. The relatively larger deviations from the
graphs y ∝ log(n)

n , compared with the top right
figure, are considered to be attributed to the first-
order Taylor approximation.

5.2 Quality of word embeddings

The next experiment investigates the quality of the
word embeddings learned by incremental SGNS
through comparison with the batch counterparts.

The Gigaword corpus was used for the training.

For the comparison, both our own implementation
of batch SGNS as well as WORD2VEC (Mikolov
et al., 2013c) were used (denoted as batch and
w2v). The training configurations of the three
methods were set the same as much as possible,
although it is impossible to do so perfectly. For ex-
ample, incremental SGNS (denoted as incremen-
tal) utilized the dynamic vocabulary (c.f., Section
3.2.1) and thus we set the maximum vocabulary
sizem to control the vocabulary size. On the other
hand, we set a frequency threshold to determine
the vocabulary size of w2v. We set m = 240k for
incremental, while setting the frequency thresh-
old to 100 for w2v. This yields vocabulary sets of
comparable sizes: 220, 389 and 246, 134.

The learned word embeddings were assessed
on five benchmark datasets commonly used in
the literature (Levy et al., 2015): WordSim353
(Agirre et al., 2009), MEN (Bruni et al., 2013),
SimLex-999 (Hill et al., 2015), the MSR analogy
dataset (Mikolov et al., 2013c), the Google anal-
ogy dataset (Mikolov et al., 2013a). The former
three are for a semantic similarity task, and the
remaining two are for a word analogy task. As
evaluation measures, Spearman’s ρ and prediction
accuracy were used in the two tasks, respectively.

Figures 2 (a) and (b) represent the results on the
similarity datasets and the analogy datasets. We
see that the three methods (incremental, batch,
and w2v) perform equally well on all of the
datasets. This indicates that incremental SGNS
can learn as good word embeddings as the batch
counterparts, while being able to perform incre-
mental model update. Although incremental per-
forms slightly better than the batch methods in
some datasets, the difference seems to be a prod-
uct of chance.

The figures also show the results of incremen-
tal SGNS when the maximum vocabulary size m
was reduced to 150k and 100k (incremental-150k
and incremental-100k). The resulting vocabulary
sizes were 135, 447 and 86, 993, respectively. We
see that incremental-150k and incremental-100k
perform comparatively well with incremental, al-
though relatively large performance drops are ob-
served in some datasets (MEN and MSR). This
demonstrates that the Misra-Gries algorithm can
effectively control the vocabulary size.
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Figure 2: (a): Spearman’s ρ on the word similarity datasets. (b): Accuracy on the analogy datasets. (c):
Update time when new training data is provided.

5.3 Update time

The last experiment investigates how much time
incremental SGNS can save by avoiding re-
training when updating the word embeddings.

In this experiment, incremental was first
trained on the initial training data of size5 n1 and
then updated on the new training data of size n2 to
measure the update time. For comparison, batch
and w2v were re-trained on the combination of the
initial and new training data. We fixed n1 = 107

and varied n2 over {1×106, 2×106, . . . , 5×106}.
The experiment was conducted on Intel R⃝ Xeon R⃝

2GHz CPU. The update time was averaged over
five trials.

Figure 2 (c) compares the update time of the
three methods across various values of n2. We see
that incremental significantly reduces the update
time. It achieves 10 and 7.3 times speed-up com-
pared with batch and w2v (when n2 = 106). This
represents the advantage of the incremental algo-
rithm, as well as the time efficiency of the dynamic
vocabulary and adaptive unigram table. We note
that batch is slower than w2v because it uses Ada-
Grad, which maintains different learning rates for
different dimensions of the parameter, while w2v
uses the same learning rate for all dimensions.

6 Related Work

Word representations based on distributional se-
mantics have been common (Turney and Pantel,
2010; Baroni and Lenci, 2010). The distributional
methods typically begin by constructing a word-
context matrix and then applying dimension re-
duction techniques such as SVD to obtain high-
quality word meaning representations. Although
some studies investigated incremental updating of
the word-context matrix (Yin et al., 2015; Goyal

5The number of sentences here.

and Daume III, 2011), they did not explore the re-
duced representations. On the other hand, neural
word embeddings have recently gained much pop-
ularity as an alternative. However, most previous
studies have not explored incremental strategies
(Mikolov et al., 2013a,b; Pennington et al., 2014).

Peng et al. (2017) proposed an incremental
learning method of hierarchical soft-max. Be-
cause hierarchical soft-max and negative sampling
have different advantages (Peng et al., 2017), the
incremental SGNS and their method are com-
plementary to each other. Also, their updating
method needs to scan not only new but also old
training data, and thus is not an incremental algo-
rithm in a strict sense. As a consequence, it poten-
tially incurs the same time complexity as the re-
training. Another consequence is that their method
has to retain the old training data and thus wastes
space, while incremental SGNS can discard old
training examples after processing them.

Very recently, May et al. (2017) also proposed
an incremental algorithm for SGNS. However,
their work differs from ours in that their algorithm
is not designed to use smoothed noise distribution
(i.e., the smoothing parameter α is assumed fixed
as α = 1.0 in their method), which is a key to
learn high-quality word embeddings. Another dif-
ference is that they did not provide theoretical jus-
tification for their algorithm.

There are publicly available implementations
for training SGNS, one of the most popular being
WORD2VEC (Mikolov, 2013). However, it does
not support an incremental training method. GEN-
SIM (Řehůřek and Sojka, 2010) also offers SGNS
training. Although GENSIM allows the incremen-
tal updating of SGNS models, it is done in an ad-
hoc manner. In GENSIM, the vocabulary set as
well as the unigram table are fixed once trained,
meaning that new words cannot be added. Also,
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they do not provide any theoretical accounts for
the validity of their training method. Finally, we
want to note that most of the existing implemen-
tations can be easily extended to support the in-
cremental (or mini-batch) SGNS by simply keep
updating the noise distribution.

7 Conclusion and Future Work

This paper proposed incremental SGNS and pro-
vided thorough theoretical analysis to demonstrate
its validity. We also conducted experiments to em-
pirically demonstrate its effectiveness. Although
the incremental model update is often required in
practical machine learning applications, only a lit-
tle attention has been paid to learning word em-
beddings incrementally. We consider that incre-
mental SGNS successfully addresses this situation
and serves as an useful tool for practitioners.

The success of this work suggests several re-
search directions to be explored in the future. One
possibility is to explore extending other embed-
ding methods such as GloVe (Pennington et al.,
2014) to incremental algorithms. Such studies
would further extend the potential of word embed-
ding methods.
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Abstract

Domain similarity measures can be used
to gauge adaptability and select suitable
data for transfer learning, but existing ap-
proaches define ad hoc measures that are
deemed suitable for respective tasks. In-
spired by work on curriculum learning, we
propose to learn data selection measures
using Bayesian Optimization and evaluate
them across models, domains and tasks.
Our learned measures outperform existing
domain similarity measures significantly
on three tasks: sentiment analysis, part-
of-speech tagging, and parsing. We show
the importance of complementing similar-
ity with diversity, and that learned mea-
sures are—to some degree—transferable
across models, domains, and even tasks.

1 Introduction

Natural Language Processing (NLP) models suf-
fer considerably when applied in the wild. The
distribution of the test data is typically very dif-
ferent from the data used during training, caus-
ing a model’s performance to deteriorate substan-
tially. Domain adaptation is a prominent approach
to transfer learning that can help to bridge this gap;
many approaches were suggested so far (Blitzer
et al., 2007; Daumé III, 2007; Jiang and Zhai,
2007; Ma et al., 2014; Schnabel and Schütze,
2014). However, most work focused on one-to-
one scenarios. Only recently research consid-
ered using multiple sources. Such studies are rare
and typically rely on specific model transfer ap-
proaches (Mansour, 2009; Wu and Huang, 2016).

Inspired by work on curriculum learning (Ben-
gio et al., 2009; Tsvetkov et al., 2016), we instead
propose—to the best of our knowledge—the first
model-agnostic data selection approach to trans-

fer learning. Contrary to curriculum learning that
aims at speeding up learning (see §6), we aim at
learning to select the most relevant data from mul-
tiple sources using data metrics. While several
measures have been proposed in the past (Moore
and Lewis, 2010; Axelrod et al., 2011; Van Asch
and Daelemans, 2010; Plank and van Noord, 2011;
Remus, 2012), prior work is limited in studying
metrics mostly in isolation, using only the notion
of similarity (Ben-David et al., 2007) and focus-
ing on a single task (see §6). Our hypothesis is
that different tasks or even different domains de-
mand different notions of similarity. In this paper
we go beyond prior work by i) studying a range of
similarity metrics, including diversity; and ii) test-
ing the robustness of the learned weights across
models (e.g., whether a more complex model can
be approximated with a simpler surrogate), do-
mains and tasks (to delimit the transferability of
the learned weights).

The contributions of this work are threefold.
First, we present the first model-independent ap-
proach to learn a data selection measure for trans-
fer learning. It outperforms baselines across
three tasks and multiple domains and is compet-
itive with state-of-the-art domain adaptation ap-
proaches. Second, prior work on transfer learn-
ing mostly focused on similarity. We demonstrate
empirically that diversity is as important as—
and complements—domain similarity for transfer
learning. Finally, we show—for the first time—
to what degree learned measures transfer across
models, domains and tasks.

2 Background: Transfer learning

Transfer learning generally involves the concepts
of a domain and a task (Pan and Yang, 2010). A
domain D consists of a feature space X and a
marginal probability distribution P (X) over X ,
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where X = {x1, · · · , xn} ∈ X . For document
classification with a bag-of-words, X is the space
of all document vectors, xi is the i-th document
vector, and X is a sample of documents.

Given a domainD = {X , P (X)}, a task T con-
sists of a label space Y and a conditional probabil-
ity distribution P (Y |X) that is typically learned
from training data consisting of pairs {xi, yi},
where xi ∈ X and yi ∈ Y .

Finally, given a source domain DS , a corre-
sponding source task TS , as well as a target do-
main DT and a target task TT , transfer learn-
ing seeks to facilitate the learning of the target
conditional probability distribution P (YT |XT ) in
DT with the information gained from DS and TS
where DS 6= DT or TS 6= TT . We will focus
on the scenario where DS 6= DT assuming that
TS = TT , commonly referred to as domain adap-
tation. We investigate transfer across tasks in §5.3.

Existing research in domain adaptation has gen-
erally focused on the scenario of one-to-one adap-
tation: Given a set of source domains A and a set
of target domains B, a model is evaluated based
on its ability to adapt between all pairs (a, b) in the
Cartesian product A×B where a ∈ A and b ∈ B
(Remus, 2012). However, adaptation between two
dissimilar domains is often undesirable, as it may
lead to negative transfer (Rosenstein et al., 2005).
Only recently, many-to-one adaptation (Mansour,
2009; Wu and Huang, 2016) has received some
attention, as it replicates the realistic scenario of
multiple source domains where performance on
the target domain is the foremost objective.

3 Data selection model

In order to select training data for adaptation for
a task T , existing approaches rank the available
n training examples X = {x1, x2, · · · , xn} of k
source domains D = {D1,D2, · · · ,Dk} accord-
ing to a domain similarity measure S and choose
the top m samples for training their algorithm.
While this has been shown to work empirically
(Moore and Lewis, 2010; Axelrod et al., 2011;
Plank and van Noord, 2011; Van Asch and Daele-
mans, 2010; Remus, 2012), using a pre-existing
metric leaves us unable to adapt to the characteris-
tics of our task T and target domain DT and fore-
goes additional knowledge that may be gleaned
from the interaction of different metrics. For this
reason, we propose to learn the following linear
domain similarity measure S as a linear combina-

tion of feature values:

S = φ(X) · wᵀ (1)

where φ(X) ∈ Rn×l are the similarity and di-
versity features further described in §3.2 for each
training example, with l being the number of fea-
tures, while w ∈ Rl are the weights learned by
Bayesian Optimization.

We aim to learn weights w in order to optimize
the objective function J of the respective task T
on a small number of validation examples of the
corresponding target domain DT .

3.1 Bayesian Optimization for data selection

As the learned measure S should be agnostic of
the particular objective function J , we cannot use
gradient-based methods for optimization. Similar
to Tsvetkov et al. (2016), we use Bayesian Opti-
mization (Brochu et al., 2010), which has emerged
as an efficient framework to optimize any func-
tion. For instance, it has repeatedly found better
settings of neural network hyperparameters than
domain experts (Snoek et al., 2012).

Given a black-box function f : X → R,
Bayesian Optimization aims to find an input x̂ ∈
argminx∈X f(x) that globally minimizes f . For
this, it requires a prior p(f) over the function and
an acquisition function ap(f) : X → R that calcu-
lates the utility of any evaluation at any x.

Bayesian Optimization then proceeds itera-
tively. At iteration t, 1) it finds the most promising
input xt ∈ argmax ap(x) through numerical op-
timization; 2) it then evaluates the surrogate func-
tion yt ∼ f(xt)+N (0, σ2) on this input and adds
the resulting data point (xt, yt) to the set of obser-
vations Ot−1 = (xj , yj)j=1...t−1; 3) finally, it up-
dates the prior p(f |Ot) and the acquisition func-
tion ap(f |Ot).

For data selection, the black-box function f
looks as follows: 1) It takes as input a set of
weights w that should be evaluated; 2) the train-
ing examples of all source domains are then scored
and sorted according to Equation 1; 3) the model
for the respective task T is trained on the top n
samples; 4) the model is evaluated on the valida-
tion set according to the evaluation measure J and
the value of J is returned.

Gaussian Processes (GP) are a popular choice
for p(f) due to their descriptive power (Ras-
mussen, 2006). We use GP with Monte
Carlo acquistion and Expected Improvement (EI)

373



(Močkus, 1974) as acquisition function as this
combination has been shown to outperform com-
parable approaches (Snoek et al., 2012).1

3.2 Features

Existing work on data selection for domain adap-
tation selects data based on its similarity to the
target domain. Several measures have been pro-
posed in the literature (Van Asch and Daelemans,
2010; Plank and van Noord, 2011; Remus, 2012),
but were so far only used in isolation.

Only selecting training instances with respect
to the target domain also fails to account for in-
stances that are richer and better suited for knowl-
edge acquisition. For this reason, we consider—to
our knowledge for the first time—whether intrin-
sic qualities of the training data accounting for di-
versity are of use for domain adaptation in NLP.

Similarity We use a range of similarity met-
rics. Some metrics might be better suited for
some tasks, while different measures might cap-
ture complementary information. We thus use the
following measures as features for learning a more
effective domain similarity metric.

We define similarity features over probability
distributions in accordance with existing literature
(Plank and van Noord, 2011). Let P be the rep-
resentation of a source training example, while Q
is the corresponding target domain representation.
Let furtherM = 1

2(P +Q), i.e. the average distri-
bution between P and Q and let DKL(P ||Q) =∑n

i=1 pi log
pi
qi

, i.e., the KL divergence between
the two domains. We do not use DKL as a fea-
ture as it is undefined for distributions where some
event qi ∈ Q has probability 0, which is common
for term distributions. Our features are:

• Jensen-Shannon divergence (Lin, 1991):
1
2 [DKL(P ||M) + DKL(Q||M)]. Jensen-
Shannon divergence is a smoothed, symmet-
ric variant of DKL that has been successfully
used for domain adaptation (Plank and van
Noord, 2011; Remus, 2012).
• Rényi divergence (Rényi, 1961):

1
α−1 log(

∑n
i=1

pαi
qα−1
i

). Rényi divergence re-

duces to DKL if α = 1. We set α = 0.99
following Van Asch and Daelemans (2010).

1We also experimented with FABOLAS (Klein et al.,
2017), but found its ability to adjust the training set size dur-
ing optimization to be inconclusive for our relatively small
training sets.

• Bhattacharyya distance (Bhattacharya,
1943): ln(

∑
i

√
PiQi)

• Cosine similarity (Lee, 2001): P ·Q
‖P‖ ‖Q‖ . We

can treat the distributions alternatively as vec-
tors and consider geometrically motivated
distance functions such as cosine similarity
as well as the following.
• Euclidean distance (Lee, 2001):√∑

i(Pi −Qi)2.
• Variational dist. (Lee, 2001):

∑
i |Pi −Qi|.

We consider three different representations for
calculating the above domain similarity measures:

• Term distributions (Plank and van Noord,
2011): t ∈ R|V | where ti is the probability
of the i-th word in the vocabulary V .
• Topic distributions (Plank and van Noord,

2011): t ∈ Rn where ti is the probability of
the i-th topic as determined by an LDA model
(Blei et al., 2003) trained on the data and n is
the number of topics.
• Word embeddings (Mikolov et al., 2013):

1
n

∑
i vwi

√
a

p(wi)
where n is the number of

words with embeddings in the document, vwi
is the pre-trained embedding of the i-th word,
p(wi) its probability, and a is a smoothing
factor used to discount frequent probabilities.
A similar weighted sum has recently been
shown to outperform supervised approaches
for other tasks (Arora et al., 2017). As em-
beddings may be negative, we use them only
with the latter three geometric features above.

Diversity For each training example, we calcu-
late its diversity based on the words in the exam-
ple. Let pi and pj be probabilities of the word
types ti and tj in the training data and cos(vti , vtj )
the cosine similarity between their word embed-
dings. We employ measures that have been used
in the past for measuring diversity (Tsvetkov et al.,
2016):

• Number of word types: #types.
• Type-token ratio: #types

#tokens .
• Entropy (Shannon, 1948): −∑i pi ln(pi).
• Simpson’s index (Simpson, 1949): −∑i p

2
i .

• Rényi entropy (Rényi, 1961):
1

α−1 log(
∑

i p
α
i )

• Quadratic entropy (Rao, 1982):∑
i,j cos(vti , vtj )pipj .
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4 Experiments

4.1 Tasks, datasets, and models

We evaluate our approach on three tasks: senti-
ment analysis, part-of speech (POS) tagging, and
dependency parsing. We use the n examples with
the highest score as determined by the learned data
selection measure for training our models.2 We
show statistics for all datasets in Table 1.

Sentiment Analysis For sentiment analysis, we
evaluate on the Amazon reviews dataset (Blitzer
et al., 2006). We use tf-idf-weighted unigram
and bigram features and a linear SVM classifier
(Blitzer et al., 2007). We set the vocabulary size
to 10,000 and the number of training examples
n = 1600 to conform with existing approaches
(Bollegala et al., 2011) and stratify the training set.

POS tagging For POS tagging and parsing, we
evaluate on the coarse-grained POS data (12 uni-
versal POS) of the SANCL 2012 shared task
(Petrov and McDonald, 2012). Each domain—
except for WSJ—contains around 2000-5000 la-
beled sentences and more than 100,000 unlabeled
sentences. In the case of WSJ, we use its dev and
test data as labeled samples and treat the remain-
ing sections as unlabeled. We set n = 2000 for
POS tagging and parsing to retain enough exam-
ples for the most-similar-domain baseline.

To evaluate the impact of model choice, we
compare two models: a Structured Perceptron (in-
house implementation with commonly used fea-
tures pertaining to tags, words, case, prefixes, as
well as prefixes and suffixes) trained for 5 itera-
tions with a learning rate of 0.2; and a state-of-the-
art Bi-LSTM tagger (Plank et al., 2016) with word
and character embeddings as input. We perform
early stopping on the validation set with patience
of 2 and use otherwise default hyperparameters3

as provided by the authors.

Parsing For parsing, we evaluate the state-of-
the-art Bi-LSTM parser by Kiperwasser and Gold-
berg (2016) with default hyperparameters.4 We
use the same domains as used for POS tagging,
i.e., the dependency parsing data with gold POS as
made available in the SANCL 2012 shared task.5

2All code is available at https://github.com/
sebastianruder/learn-to-select-data.

3https://github.com/bplank/bilstm-aux
4https://github.com/elikip/bist-parser
5We leave investigating the effect of the adapted taggers

on parsing for future work.

T Domain # labeled # unlabeled

Se
nt

im
en

t Book 2000 4465
DVD 2000 3586
Electronics 2000 5681
Kitchen 2000 5945

PO
S/

Pa
rs

in
g

Answers 3489 27274
Emails 4900 1194173
Newsgroups 2391 1000000
Reviews 3813 1965350
Weblogs 2031 524834
WSJ 2976 30060

Table 1: Number of labeled and unlabeled sen-
tences for each domain in the Amazon Reviews
dataset (Blitzer et al., 2006) (above) and the
SANCL 2012 dataset (Petrov and McDonald,
2012) for POS tagging and parsing (below).

4.2 Training details

In practice, as feature values occupy different
ranges, we have found it helpful to apply z-
normalisation similar to Tsvetkov et al. (2016).
We moreover constrain the weights w to [−1, 1].

For each dataset, we treat each domain as target
domain and all other domains as source domains.
Similar to Bousmalis et al. (2016), we chose to use
a small number (100) target domain examples as
validation set. We optimize each similarity mea-
sure using Bayesian Optimization with 300 itera-
tions according to the objective measure J of each
task (accuracy for sentiment analysis and POS tag-
ging; LAS for parsing) with respect to the valida-
tion set of the corresponding target domain.

Unlabeled data is used in addition to calculate
the representation of the target domain and to cal-
culate the source domain representation for the
most similar domain baseline. We train an LDA
model (Blei et al., 2003) with 50 topics and 10 iter-
ations for topic distribution-based representations
and use GloVe embeddings (Pennington et al.,
2014) trained on 42B tokens of Common Crawl
data6 for word embedding-based representations.

For sentiment analysis, we conduct 10 runs of
each feature set for every domain and report mean
and variance. For POS tagging and parsing, we
observe that variance is low and perform one run
while retaining random seeds for reproducibility.

6https://nlp.stanford.edu/projects/
glove/
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Target domains
Feature set Book DVD Electronics Kitchen

B
as

e Random 71.17 (± 4.41) 70.51 (± 3.33) 76.75 (± 1.77) 77.94 (± 3.72)
Jensen-Shannon divergence – examples 72.51 (± 0.42) 68.21 (± 0.34) 76.51 (± 0.63) 77.47 (± 0.44)
Jensen-Shannon divergence – domain 75.26 (± 1.25) 73.74 (± 1.36) 72.60 (± 2.19) 80.01 (± 1.93)

L
ea

rn
ed

m
ea

su
re

s

Similarity (word embeddings) 75.06 (± 1.38) 74.96 (± 2.12) 80.79 (± 1.31) 83.45 (± 0.96)
Similarity (term distributions) 75.39 (± 0.98) 76.25 (± 0.96) 81.91 (± 0.57) 83.39 (± 0.84)
Similarity (topic distributions) 76.04 (± 1.10) 75.89 (± 0.81) 81.69 (± 0.96) 83.09 (± 0.95)
Diversity 76.03 (± 1.28) 77.48 (± 1.33) 81.15 (± 0.67) 83.94 (± 0.99)
Sim (term dists) + sim (topic dists) 75.76 (± 1.30) 76.62 (± 0.95) 81.73 (± 0.63) 83.43 (± 0.75)
Sim (word embeddings) + diversity 75.52 (± 0.98) 77.50 (± 0.61) 80.97 (± 0.83) 84.28 (± 1.02)
Sim (term dists) + diversity 76.20 (± 1.45) 77.60 (± 1.01) 82.67 (± 0.73) 84.98 (± 0.60)
Sim (topic dists) + diversity 77.16 (± 0.77) 79.00 (± 0.93) 81.92 (± 1.32) 84.29 (± 1.00)
All source data (6,000 training examples) 70.86 (± 0.51) 68.74 (± 0.32) 77.39 (± 0.32) 73.09 (± 0.41)

Table 2: Accuracy scores for data selection for sentiment analysis domain adaptation on the Amazon
reviews dataset (Blitzer et al., 2006). Best: bold; second-best: underlined.

4.3 Baselines and features
We compare the learned measures to three base-
lines: i) a random baseline that randomly se-
lects n training samples from all source domains
(random); ii) the top n examples selected us-
ing Jensen-Shannon divergence (JS – examples),
which outperformed other measures in previous
work (Plank and van Noord, 2011; Remus, 2012);
iii) n examples randomly selected from the most
similar source domain determined by Jensen-
Shannon divergence (JS – domain). We addi-
tionally compare against training on all available
source data (6,000 examples for sentiment analy-
sis; 14,700-17,569 examples for POS tagging and
parsing depending on the target domain).

We optimize data selection using Bayesian Op-
timization with every feature set: similarity fea-
tures respectively based on i) word embeddings, ii)
term distributions, and iii) topic distributions; and
iv) diversity features. In addition, we investigate
how well different representations help each other
by using similarity features with the two best-
performing representations, term distributions and
topic distributions. Finally, we explore whether di-
versity and similarity-based features complement
each other by in turn using each similarity-based
feature set together with diversity features.

5 Results

Sentiment analysis We show results for senti-
ment analysis in Table 2. First of all, the base-
lines show that the sentiment review domains are
clearly delimited. Adapting between two similar
domains such as Book and DVD is more produc-
tive than adaptation between dissimilar domains,

e.g. Books and Electronics, as shown in previ-
ous work (Blitzer et al., 2007). This explains the
strong performance of the most-similar-domain
baseline. In contrast, selecting individual exam-
ples based on a domain similarity measure per-
forms only as good as chance. Thus, when do-
mains are more clear-cut, selecting from the clos-
est domain is a stronger baseline than selecting
from the entire pool of source data.

If we learn a data selection measure using
Bayesian Optimization, we are able to outper-
form the baselines with almost all feature sets.
Performance gains are considerable for all do-
mains with individual feature sets (term simi-
larity, word embeddings similarity, diversity and
topic similarity), except for Books were improve-
ments for some single feature sets are smaller.
Term distributions and topic distributions are
the best-performing representations for calculat-
ing similarity, with term distributions perform-
ing slightly better across all domains. Combin-
ing term distribution-based and topic distribution-
based features only provides marginal gains over
the individual feature sets, demonstrating that
most of the information is contained in the simi-
larity features rather than the representations.

Diversity features perform comparatively to the
best similarity features and outperform them on
two domains. Furthermore, the combination of di-
versity and similarity features yields another siz-
able gain of around 1 percentage point for almost
all domains over the best similarity features, which
shows that diversity and similarity features capture
complementary information. Term distribution
and topic distribution-based similarity features in
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Trg domains→ Answers Emails Newsgroups Reviews Weblogs WSJ
Task→ POS Pars POS Pars POS Pars POS Pars POS Pars POS Pars
Feat ↓ Model→ P B BIST P B BIST P B BIST P B BIST P B BIST P B BIST

B
as

e Random 91.34 92.55 81.02 91.80 93.25 79.09 92.50 93.26 80.61 92.08 92.12 82.30 92.76 93.03 82.39 91.08 92.54 78.31
JS – examples 92.42 93.16 82.80 91.75 93.77 80.53 92.96 94.29 83.25 92.77 93.32 84.35 94.33 94.92 85.36 92.85 94.08 82.43
JS – domain 90.84 91.13 80.37 91.64 93.16 79.93 92.23 92.67 81.77 92.27 92.67 82.11 93.19 94.34 83.44 91.20 92.99 80.61

L
ea

rn
ed

m
ea

su
re

s

W2v sim 92.53 93.22 82.74 92.94 94.14 81.18 93.41 94.09 81.62 93.51 93.30 82.98 94.41 94.83 84.30 93.02 94.66 81.57
Term sim 93.13 93.43 83.79 92.96 94.04 81.09 93.58 94.55 82.68 93.53 93.73 84.66 94.42 95.09 84.85 93.44 94.11 82.57
Topic sim 92.50 93.16 82.87 92.70 94.48 81.43 93.97 94.09 82.07 93.21 93.22 83.98 94.42 93.71 84.98 93.09 94.02 82.90
Diversity 92.33 92.58 83.01 93.08 93.56 80.93 94.37 93.97 83.98 93.33 93.05 83.92 94.62 94.94 85.84 93.33 93.44 82.80
Term+topic sim 92.80 93.69 82.87 92.70 92.28 81.13 93.57 93.76 82.97 93.56 93.61 84.65 94.41 94.23 84.43 93.07 94.68 82.43
W2v sim+div 92.76 92.38 82.34 93.51 94.19 80.77 93.96 94.10 84.26 93.45 93.39 84.47 94.36 94.95 85.53 93.32 93.20 82.32
Term sim+div 92.73 93.46 83.72 92.90 93.81 81.60 94.03 93.47 82.80 93.47 93.29 84.62 94.76 95.06 85.44 93.32 93.68 82.87
Topic sim+div 92.93 93.62 82.60 92.62 93.93 80.83 93.85 94.06 84.04 93.16 93.59 84.45 94.42 94.45 85.89 93.38 94.23 82.33
All source data 94.30 95.16 86.34 94.34 95.90 85.57 95.40 95.90 87.18 94.90 95.03 87.51 95.53 95.79 88.23 94.19 95.64 85.20

Table 3: Results for data selection for part-of-speech tagging and parsing domain adaptation on the
SANCL 2012 shared task dataset (Petrov and McDonald, 2012). POS: Part-of-speech tagging. Pars:
Parsing. POS tagging models: Structured Perceptron (P); Bi-LSTM tagger (B) (Plank et al., 2016). Pars-
ing model: Bi-LSTM parser (BIST) (Kiperwasser and Goldberg, 2016). Evaluation metrics: Accuracy
(POS tagging); Labeled Attachment Score (parsing). Best: bold; second-best: underlined.

conjunction with diversity features finally yield
the best performance, outperforming the baselines
by 2-6 points in absolute accuracy.

Finally, we compare data selection to training
on all available source data (in this setup, 6,000 in-
stances). The result complements the findings of
the most-similar baseline: as domains are dissimi-
lar, training on all available sources is detrimental.
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Figure 1: Dev accuracy curves of Bayes Optimiza-
tion for POS tagging on the Reviews domain. Best
dev acc for different feature sets (top-left). Best
dev acc vs. exploration (top-right, bottom).

POS tagging Results for POS tagging are given
in Table 3. Using Bayesian Optimization, we are
able to outperform the baselines with almost all
feature sets, except for a few cases (e.g., diver-

sity and word embeddings similarity, topic and
term distributions). Overall term distribution-
based similarity emerges as the most powerful in-
dividual feature. Combining it with diversity does
not prove as beneficial as in the sentiment analysis
case, however, often yields the second-best results.

Notice that for POS tagging/parsing, in con-
trast to sentiment analysis, the most-similar do-
main baseline is not effective, it often performs
only as good as chance, or even hurts. In con-
trast, the baseline that selects instances (JS – ex-
amples) rather than a domain performs better. This
makes sense as in SA topically closer domains ex-
press sentiment in more similar ways, while for
POS tagging having more varied training instances
is intuitively more beneficial. In fact, when in-
specting the domain distribution of our approach,
we find that the best SA model chooses more in-
stances from the closest domain, while for POS
tagging instances are more balanced across do-
mains. This suggests that the Web treebank do-
mains are less clear-cut. In fact, training a model
on all sources, which is considerably more and
varied data (in this setup, 14-17.5k training in-
stances) is beneficial. This is in line with find-
ings in machine translation (Mirkin and Besacier,
2014), which show that similarity-based selection
works best if domains are very different. Results
are thus less pronounced for POS tagging, and we
leave experimenting with larger n for future work.

To gain some insight into the optimization pro-
cedure, Figure 1 shows the development accuracy
for the Structured Perceptron for an example do-
main. The top-right and bottom graphs show the
hypothesis space exploration of Bayesian Opti-
mization for different single feature sets, while the
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Target domains
Answers Emails Newsgroups Reviews Weblogs WSJ

Feature set ↓ MS → B Pproxy B Pproxy B Pproxy B Pproxy B Pproxy B Pproxy
Term similarity 93.43 93.67 94.04 93.88 94.55 93.77 93.73 93.54 95.09 95.06 94.11 94.30
Diversity 92.58 93.19 93.56 94.40 93.97 94.96 93.05 93.52 94.94 94.91 93.44 94.14
Term similarity+diversity 93.46 93.18 93.81 94.29 93.47 94.28 93.29 93.35 95.06 94.67 93.68 93.92

Table 4: Accuracy scores for cross-model transfer of learned data selection weights for part-of-speech
tagging from Structured Perceptron (Pproxy) to Bi-LSTM tagger (B) (Plank et al., 2016) on the SANCL
2012 shared task dataset (Petrov and McDonald, 2012). Data selection weights are learned using model
MS ; Bi-LSTM tagger (B) is then trained using the learned weights. Better than baselines: underlined.

top-left graph displays the overall best dev accu-
racy for different features. We observe again that
term similarity is among the best feature sets and
results in a larger explored space (more variance),
in contrast to the diversity features whose devel-
opment accuracy increases less and results in an
overall less explored space. Exploration plots for
other features/models looks similar.

Parsing The results for parsing are given in Ta-
ble 3. Diversity features are stronger than for POS
tagging and outperform the baselines for all ex-
cept the Reviews domain. Similarly to POS tag-
ging, term distribution-based similarity as well as
its combination with diversity features yield the
best results across most domains.

5.1 Transfer across models

In addition, we are interested how well the met-
ric learned for one target domain transfers to other
settings. We first investigate its ability to trans-
fer to another model. In practice, a metric can
be learned using a model that is cheap to evaluate
and serves as proxy for a state-of-the-art model, in
a way similar to uptraining (Petrov et al., 2010).
For this, we employ the data selection features
learned using the Structured Perceptron model for
POS tagging and use them to select data for the
Bi-LSTM tagger. The results in Table 4 indicate
that cross-model transfer is indeed possible, with
most transferred feature sets achieving similar re-
sults or even outperforming features learned with
the Bi-LSTM. In particular, transferred diversity
significantly outperforms its in-model equivalent.
This is encouraging, as it allows to learn a data
selection metric using less complex models.

5.2 Transfer across domains

We explore whether data selection parameters
learned for one target domain transfer to other tar-
get domains. For each domain, we use the weights

Target domains
Feature DS B D E K
Sim B 75.39 75.22 80.74 80.41
Sim D 75.30 76.25 82.68 82.29
Sim E 74.55 76.65 81.91 82.23
Sim K 73.64 76.66 81.09 83.39
Div B 76.03 75.16 80.16 80.01
Div D 75.68 77.48 65.74 72.48
Div E 74.69 76.60 81.15 81.97
Div K 75.03 76.23 80.71 83.94
Sim+div B 76.20 64.81 65.06 79.87
Sim+div D 74.17 77.60 83.26 85.19
Sim+div E 74.14 79.32 82.67 84.53
Sim+div K 75.54 76.11 78.72 84.98
SDAMS - 78.29 79.13 84.06 86.29

Table 5: Accuracy scores for cross-domain trans-
fer of learned data selection weights on Amazon
reviews (Blitzer et al., 2006). DS : target domain
used for learning metric S. B: Book. D: DVD. E:
Electronics. K: Kitchen. Sim: term distribution-
based similarity. Div: diversity. Best per feature
set: bold. In-domain results: gray. SDAMS (Wu
and Huang, 2016) listed as comparison.

with the highest performance on the validation set
and use them for data selection with the remaining
domains as target domains. We conduct 10 runs
for the best-performing feature sets for sentiment
analysis and report the average accuracy scores in
Table 5 (for POS tagging, see Table 6).

The transfer of the weights learned with
Bayesian Optimization is quite robust in most
cases. Feature sets like Similarity or Diversity
trained on Books outperform the strong JS – D
baseline in all 6 cases, for Electronics and Kitchen
in 4/6 cases (off-diagonals for box 2 and 3 in Ta-
ble 5). In some cases, the transferred weights even
outperform the data selection metric learned for
the respective domain, such as on D->E with sim
and sim+div features and by almost 2 pp on E->D.
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Target domains
Feature set DS Answers (A) Emails (E) Newsgroups (N) Reviews (R) Weblogs (W) WSJ
Term similarity A 93.13 91.60 93.94 93.63 94.26 92.42
Term similarity E 92.35 92.96 93.42 93.63 93.75 92.24
Term similarity N 92.48 92.28 93.58 93.35 93.95 93.00
Term similarity R 92.06 92.18 93.38 93.53 94.26 91.88
Term similarity W 92.69 92.12 93.65 93.12 94.42 92.63
Term similarity WSJ 92.50 92.51 93.53 93.00 94.29 93.44
Diversity A 92.33 92.14 93.46 92.00 94.01 92.56
Diversity E 92.11 93.08 93.81 92.67 94.16 93.13
Diversity N 92.67 92.22 94.37 92.44 94.05 92.96
Diversity R 92.65 92.72 93.67 93.33 94.18 93.28
Diversity W 92.19 92.31 93.31 92.20 94.62 92.04
Diversity WSJ 92.26 92.31 93.75 92.70 94.32 93.33
Term similarity+diversity A 92.73 92.63 93.16 92.58 93.88 92.23
Term similarity+diversity E 92.55 92.90 93.78 92.73 93.54 92.57
Term similarity+diversity N 92.47 92.27 94.03 92.63 94.30 93.14
Term similarity+diversity R 92.80 93.11 93.92 93.47 93.79 92.99
Term similarity+diversity W 92.61 92.45 93.44 93.52 94.76 93.26
Term similarity+diversity WSJ 91.82 92.37 93.52 92.63 94.17 93.32

Table 6: Accuracy scores for cross-domain transfer of learned data selection weights for part-of-speech
tagging with the Structured Perceptron model on the SANCL 2012 shared task dataset (Petrov and Mc-
Donald, 2012). DS : target domain used for learning metric S. Best: bold. In-domain results: gray.

Transferred similarity+diversity features mostly
achieve higher performance than other feature
sets, but the higher number of parameters runs
the risk of overfitting to the domain as can be ob-
served with two instances of negative transfer with
sim+div features.

As a reference, we also list the performance
of the state-of-the-art multi-domain adaptation ap-
proach (Wu and Huang, 2016), which shows that
task-independent data selection is in fact competi-
tive with a task-specific, heuristic state-of-the-art
domain adaptation approach. In fact our trans-
ferred similarity+diversity feature (E->D) outper-
forms the state-of-the-art (Wu and Huang, 2016)
on DVD. This is encouraging as previous work
(Remus, 2012) has shown that data selection and
domain adaptation can be complementary.

5.3 Transfer across tasks

We finally investigate whether data selection is
task-specific or whether a metric learned on one
task can be transferred to another one. For each
feature set, we use the learned weights for each do-
main in the source task (for sentiment analysis, we
use the best weights on the validation set; for POS
tagging, we use the Structured Perceptron model)
and run experiments with them for all domains in
the target task.7 We report the averaged accuracy

7E.g., for SA->POS, for each feature set, we obtain one
set of weights for each of 4 SA domains, which we use to

Target tasks
Feature set TS POS Pars SA
Sim POS 93.51 83.11 74.19
Sim Pars 92.78 83.27 72.79
Sim SA 86.13 67.33 79.23
Div POS 93.51 83.11 69.78
Div Pars 93.02 83.41 68.45
Div SA 90.52 74.68 79.65
Sim+div POS 93.54 83.24 69.79
Sim+div Pars 93.11 83.51 72.27
Sim+div SA 89.80 75.17 80.36

Table 7: Results of cross-task transfer of learned
data selection weights. TS : task used for learn-
ing metric S. POS: Part-of-speech tagging. Pars:
Parsing. SA: sentiment analysis. Accuracy scores
for SA and POS; LAS Attachment Score for pars-
ing. Models: Structured Perceptron (POS tag-
ging); Bi-LSTM parser (Kiperwasser and Gold-
berg, 2016) (Pars). Same features as in Table 5.
In-task results: gray. Better than base: underlined.

scores for transfer across all tasks in Table 7.
Transfer is productive between related tasks, i.e.

POS tagging and parsing results are similar to
those obtained with data selection learned for the
particular task. We observe large drops in perfor-
mance for transfer between unrelated tasks, such

select data for the 6 POS domains, yielding 4 ·6 = 24 results.
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as sentiment analysis and POS tagging, which is
expected since these are very different tasks. Be-
tween related tasks, the combination of similar-
ity and diversity features achieves the most ro-
bust transfer and outperforms the baselines in both
cases. This suggests that even in the absence of
target task data, we only require data of a related
task to learn a successful data selection measure.

6 Related work

Most prior work on data selection for transfer
learning focuses on phrase-based machine transla-
tion. Typically language models are leveraged via
perplexity or cross-entropy scoring to select tar-
get data (Moore and Lewis, 2010; Axelrod et al.,
2011; Duh et al., 2013; Mirkin and Besacier,
2014). A recent study investigates data selection
for neural machine translation (van der Wees et al.,
2017). Perplexity was also used to select training
data for dependency parsing (Søgaard, 2011), but
has been found to be less suitable for tasks such as
sentiment analysis (Ruder et al., 2017). In general,
there are fewer studies on data selection for other
tasks, e.g., constituent parsing (McClosky et al.,
2010), dependency parsing (Plank and van Noord,
2011; Søgaard, 2011) and sentiment analysis (Re-
mus, 2012). Work on predicting task accuracy is
related, but can be seen as complementary (Ravi
et al., 2008; Van Asch and Daelemans, 2010).

Many domain similarity metrics have been pro-
posed. Blitzer et al. (2007) show that proxy A
distance can be used to measure the adaptabil-
ity between two domains in order to determine
examples for annotation. Van Asch and Daele-
mans (2010) find that Rényi divergence outper-
forms other metrics in predicting POS tagging ac-
curacy, while Plank and van Noord (2011) observe
that topic distribution-based representations with
Jensen-Shannon divergence perform best for data
selection for parsing. Remus (2012) apply Jensen-
Shannon divergence to select training examples
for sentiment analysis. Finally, Wu and Huang
(2016) propose a similarity metric based on a sen-
timent graph. We test previously explored similar-
ity metrics and complement them with diversity.

Very recently interest emerged in curriculum
learning (Bengio et al., 2009). It is inspired by
human active learning by providing easier exam-
ples at initial learning stages (e.g., by curriculum
strategies such as growing vocabulary size). Cur-
riculum learning employs a range of data metrics,

but aims at altering the order in which the entire
training data is selected, rather than selecting data.
In contrast to us, curriculum learning is mostly
aimed at speeding up the learning, while we focus
on learning metrics for transfer learning. Other
related work in this direction include using Re-
inforcement Learning to learn what data to select
during neural network training (Fan et al., 2017).

There is a long history of research in adaptive
data selection, with early approaches grounded
in information theory using a Bayesian learning
framework (MacKay, 1992). It has also been
studied extensively as active learning (El-Gamal,
1991). Curriculum learning is related to active
learning (Settles, 2012), whose view is different:
active learning aims at finding the most difficult
instances to label, examples typically close to the
decision boundary. Confidence-based measures
are prominent, but as such are less widely appli-
cable than our model-agnostic approach.

The approach most similar to ours is by
Tsvetkov et al. (2016) who use Bayesian Opti-
mization to learn a curriculum for training word
embeddings. Rather than ordering data (in their
case, paragraphs), we use Bayesian Optimization
for learning to select relevant training instances
that are useful for transfer learning in order to pre-
vent negative transfer (Rosenstein et al., 2005). To
the best of our knowledge there is no prior work
that uses this strategy for transfer learning.

7 Conclusion

We propose to use Bayesian Optimization to
learn data selection measures for transfer learn-
ing. Our results outperform existing domain sim-
ilarity metrics on three tasks (sentiment analy-
sis, POS tagging and parsing), and are competi-
tive with a state-of-the-art domain adaptation ap-
proach. More importantly, we present the first
study on the transferability of such measures,
showing promising results to port them across
models, domains and related tasks.
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Abstract

This work presents a general unsuper-
vised learning method to improve the ac-
curacy of sequence to sequence (seq2seq)
models. In our method, the weights of
the encoder and decoder of a seq2seq
model are initialized with the pretrained
weights of two language models and then
fine-tuned with labeled data. We ap-
ply this method to challenging bench-
marks in machine translation and abstrac-
tive summarization and find that it sig-
nificantly improves the subsequent super-
vised models. Our main result is that
pretraining improves the generalization of
seq2seq models. We achieve state-of-the-
art results on the WMT English→German
task, surpassing a range of methods us-
ing both phrase-based machine transla-
tion and neural machine translation. Our
method achieves a significant improve-
ment of 1.3 BLEU from the previous best
models on both WMT’14 and WMT’15
English→German. We also conduct hu-
man evaluations on abstractive summa-
rization and find that our method outper-
forms a purely supervised learning base-
line in a statistically significant manner.

1 Introduction

Sequence to sequence (seq2seq) models
(Sutskever et al., 2014; Cho et al., 2014;
Kalchbrenner and Blunsom, 2013; Allen, 1987;
Ñeco and Forcada, 1997) are extremely effective
on a variety of tasks that require a mapping
between a variable-length input sequence to
a variable-length output sequence. The main
weakness of sequence to sequence models, and
deep networks in general, lies in the fact that they

can easily overfit when the amount of supervised
training data is small.

In this work, we propose a simple and effec-
tive technique for using unsupervised pretraining
to improve seq2seq models. Our proposal is to
initialize both encoder and decoder networks with
pretrained weights of two language models. These
pretrained weights are then fine-tuned with the la-
beled corpus. During the fine-tuning phase, we
jointly train the seq2seq objective with the lan-
guage modeling objectives to prevent overfitting.

We benchmark this method on machine trans-
lation for English→German and abstractive sum-
marization on CNN and Daily Mail articles. Our
main result is that a seq2seq model, with pre-
training, exceeds the strongest possible baseline
in both neural machine translation and phrase-
based machine translation. Our model obtains
an improvement of 1.3 BLEU from the previ-
ous best models on both WMT’14 and WMT’15
English→German. On human evaluations for ab-
stractive summarization, we find that our model
outperforms a purely supervised baseline, both in
terms of correctness and in avoiding unwanted
repetition.

We also perform ablation studies to understand
the behaviors of the pretraining method. Our study
confirms that among many other possible choices
of using a language model in seq2seq with atten-
tion, the above proposal works best. Our study
also shows that, for translation, the main gains
come from the improved generalization due to the
pretrained features. For summarization, pretrain-
ing the encoder gives large improvements, sug-
gesting that the gains come from the improved op-
timization of the encoder that has been unrolled
for hundreds of timesteps. On both tasks, our pro-
posed method always improves generalization on
the test sets.
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Figure 1: Pretrained sequence to sequence model. The red parameters are the encoder and the blue
parameters are the decoder. All parameters in a shaded box are pretrained, either from the source side
(light red) or target side (light blue) language model. Otherwise, they are randomly initialized.

2 Methods

In the following section, we will describe our basic
unsupervised pretraining procedure for sequence
to sequence learning and how to modify sequence
to sequence learning to effectively make use of the
pretrained weights. We then show several exten-
sions to improve the basic model.

2.1 Basic Procedure

Given an input sequence x1, x2, ..., xm and an
output sequence yn, yn−1, ..., y1, the objective of
sequence to sequence learning is to maximize the
likelihood p(yn, yn−1, ..., y1|x1, x2, ..., xm).
Common sequence to sequence learn-
ing methods decompose this objective
as p(yn, yn−1, ..., y1|x1, x2, ..., xm) =∏n
t=1 p(yt|yt−1, ..., y1;x1, x2, ..., xm).
In sequence to sequence learning, an RNN en-

coder is used to represent x1, ..., xm as a hidden
vector, which is given to an RNN decoder to pro-
duce the output sequence. Our method is based
on the observation that without the encoder, the
decoder essentially acts like a language model on
y’s. Similarly, the encoder with an additional out-
put layer also acts like a language model. Thus it
is natural to use trained languages models to ini-
tialize the encoder and decoder.

Therefore, the basic procedure of our approach
is to pretrain both the seq2seq encoder and de-
coder networks with language models, which can
be trained on large amounts of unlabeled text data.
This can be seen in Figure 1, where the parame-
ters in the shaded boxes are pretrained. In the fol-
lowing we will describe the method in detail using

machine translation as an example application.

First, two monolingual datasets are collected,
one for the source side language, and one for the
target side language. A language model (LM) is
trained on each dataset independently, giving an
LM trained on the source side corpus and an LM
trained on the target side corpus.

After two language models are trained, a multi-
layer seq2seq model M is constructed. The em-
bedding and first LSTM layers of the encoder and
decoder are initialized with the pretrained weights.
To be even more efficient, the softmax of the de-
coder is initialized with the softmax of the pre-
trained target side LM.

2.2 Monolingual language modeling losses

After the seq2seq model M is initialized with the
two LMs, it is fine-tuned with a labeled dataset.
However, this procedure may lead to catastrophic
forgetting, where the model’s performance on the
language modeling tasks falls dramatically after
fine-tuning (Goodfellow et al., 2013). This may
hamper the model’s ability to generalize, espe-
cially when trained on small labeled datasets.

To ensure that the model does not overfit the la-
beled data, we regularize the parameters that were
pretrained by continuing to train with the monolin-
gual language modeling losses. The seq2seq and
language modeling losses are weighted equally.

In our ablation study, we find that this technique
is complementary to pretraining and is important
in achieving high performance.
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2.3 Other improvements to the model
Pretraining and the monolingual language model-
ing losses provide the vast majority of improve-
ments to the model. However in early experimen-
tation, we found minor but consistent improve-
ments with two additional techniques: a) residual
connections and b) multi-layer attention (see Fig-
ure 2).

W

X

+

(a)
A B C <EOS>

W

Attention

(b)

Figure 2: Two small improvements to the baseline
model: (a) residual connection, and (b) multi-layer
attention.

Residual connections: As described, the input
vector to the decoder softmax layer is a random
vector because the high level (non-first) layers of
the LSTM are randomly initialized. This intro-
duces random gradients to the pretrained param-
eters. To avoid this, we use a residual connection
from the output of the first LSTM layer directly to
the input of the softmax (see Figure 2-a).

Multi-layer attention: In all our models, we use
an attention mechanism (Bahdanau et al., 2015),
where the model attends over both top and first
layer (see Figure 2-b). More concretely, given a
query vector qt from the decoder, encoder states
from the first layer h11, . . . , h

1
T , and encoder states

from the last layer hL1 , . . . , h
L
T , we compute the at-

tention context vector ct as follows:

αi =
exp(qt · hNi )∑T
j=1 exp(qt · hNj )

c1t =

T∑

i=1

αih
1
i

cNt =
T∑

i=1

αih
N
i ct = [c1t ; c

N
t ]

3 Experiments

In the following section, we apply our approach
to two important tasks in seq2seq learning: ma-

chine translation and abstractive summarization.
On each task, we compare against the previous
best systems. We also perform ablation experi-
ments to understand the behavior of each compo-
nent of our method.

3.1 Machine Translation

Dataset and Evaluation: For machine trans-
lation, we evaluate our method on the WMT
English→German task (Bojar et al., 2015). We
used the WMT 14 training dataset, which is
slightly smaller than the WMT 15 dataset. Be-
cause the dataset has some noisy examples, we
used a language detection system to filter the
training examples. Sentences pairs where ei-
ther the source was not English or the target
was not German were thrown away. This re-
sulted in around 4 million training examples.
Following Sennrich et al. (2015a), we use sub-
word units (Sennrich et al., 2015b) with 89500
merge operations, giving a vocabulary size around
90000. The validation set is the concatenated new-
stest2012 and newstest2013, and our test sets are
newstest2014 and newstest2015. Evaluation on
the validation set was with case-sensitive BLEU
(Papineni et al., 2002) on tokenized text using
multi-bleu.perl. Evaluation on the test
sets was with case-sensitive BLEU on detokenized
text using mteval-v13a.pl. The monolingual
training datasets are the News Crawl English and
German corpora, each of which has more than a
billion tokens.

Experimental settings: The language models
were trained in the same fashion as (Jozefowicz
et al., 2016) We used a 1 layer 4096 dimensional
LSTM with the hidden state projected down to
1024 units (Sak et al., 2014) and trained for one
week on 32 Tesla K40 GPUs. Our seq2seq model
was a 3 layer model, where the second and third
layers each have 1000 hidden units. The monolin-
gual objectives, residual connection, and the mod-
ified attention were all used. We used the Adam
optimizer (Kingma and Ba, 2015) and train with
asynchronous SGD on 16 GPUs for speed. We
used a learning rate of 5e-5 which is multiplied
by 0.8 every 50K steps after an initial 400K steps,
gradient clipping with norm 5.0 (Pascanu et al.,
2013), and dropout of 0.2 on non-recurrent con-
nections (Zaremba et al., 2014). We used early
stopping on validation set perplexity. A beam size
of 10 was used for decoding. Our ensemble is con-
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BLEU
System ensemble? newstest2014 newstest2015
Phrase Based MT (Williams et al., 2016) - 21.9 23.7
Supervised NMT (Jean et al., 2015) single - 22.4
Edit Distance Transducer NMT (Stahlberg et al., 2016) single 21.7 24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016) ensemble 8 22.9 25.7
Backtranslation (Sennrich et al., 2015a) single 22.7 25.7
Backtranslation (Sennrich et al., 2015a) ensemble 4 23.8 26.5
Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 24.3
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

Table 1: English→German performance on WMT test sets. Our pretrained model outperforms all other
models. Note that the model without pretraining uses the LM objective.
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Figure 3: English→German ablation study measuring the difference in validation BLEU between various
ablations and the full model. More negative is worse. The full model uses LMs trained with monolingual
data to initialize the encoder and decoder, plus the language modeling objective.

structed with the 5 best performing models on the
validation set, which are trained with different hy-
perparameters.

Results: Table 1 shows the results of our
method in comparison with other baselines. Our
method achieves a new state-of-the-art for sin-
gle model performance on both newstest2014
and newstest2015, significantly outperforming the
competitive semi-supervised backtranslation tech-
nique (Sennrich et al., 2015a). Equally impressive
is the fact that our best single model outperforms
the previous state of the art ensemble of 4 models.
Our ensemble of 5 models matches or exceeds the

previous best ensemble of 12 models.

Ablation study: In order to better understand
the effects of pretraining, we conducted an abla-
tion study by modifying the pretraining scheme.
We were primarily interested in varying the pre-
training scheme and the monolingual language
modeling objectives because these two techniques
produce the largest gains in the model. Figure
3 shows the drop in validation BLEU of various
ablations compared with the full model. The full
model uses LMs trained with monolingual data to
initialize the encoder and decoder, in addition to
the language modeling objective. In the follow-
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ing, we interpret the findings of the study. Note
that some findings are specific to the translation
task.

Given the results from the ablation study, we
can make the following observations:

• Only pretraining the decoder is better than
only pretraining the encoder: Only pretrain-
ing the encoder leads to a 1.6 BLEU point
drop while only pretraining the decoder leads
to a 1.0 BLEU point drop.

• Pretrain as much as possible because the ben-
efits compound: given the drops of no pre-
training at all (−2.0) and only pretraining the
encoder (−1.6), the additive estimate of the
drop of only pretraining the decoder side is
−2.0 − (−1.6) = −0.4; however the actual
drop is−1.0 which is a much larger drop than
the additive estimate.

• Pretraining the softmax is important: Pre-
training only the embeddings and first LSTM
layer gives a large drop of 1.6 BLEU points.

• The language modeling objective is a strong
regularizer: The drop in BLEU points of pre-
training the entire model and not using the
LM objective is as bad as using the LM ob-
jective without pretraining.

• Pretraining on a lot of unlabeled data is es-
sential for learning to extract powerful fea-
tures: If the model is initialized with LMs
that are pretrained on the source part and
target part of the parallel corpus, the drop
in performance is as large as not pretrain-
ing at all. However, performance remains
strong when pretrained on the large, non-
news Wikipedia corpus.

To understand the contributions of unsuper-
vised pretraining vs. supervised training, we track
the performance of pretraining as a function of
dataset size. For this, we trained a a model with
and without pretraining on random subsets of the
English→German corpus. Both models use the
additional LM objective. The results are summa-
rized in Figure 4. When a 100% of the labeled
data is used, the gap between the pretrained and
no pretrain model is 2.0 BLEU points. However,
that gap grows when less data is available. When
trained on 20% of the labeled data, the gap be-
comes 3.8 BLEU points. This demonstrates that

the pretrained models degrade less as the labeled
dataset becomes smaller.
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Figure 4: Validation performance of pretraining
vs. no pretraining when trained on a subset of the
entire labeled dataset for English→German trans-
lation.

3.2 Abstractive Summarization

Dataset and Evaluation: For a low-resource
abstractive summarization task, we use the
CNN/Daily Mail corpus from (Hermann et al.,
2015). Following Nallapati et al. (2016), we mod-
ify the data collection scripts to restore the bullet
point summaries. The task is to predict the bullet
point summaries from a news article. The dataset
has fewer than 300K document-summary pairs. To
compare against Nallapati et al. (2016), we used
the anonymized corpus. However, for our abla-
tion study, we used the non-anonymized corpus.1

We evaluate our system using full length ROUGE
(Lin, 2004). For the anonymized corpus in par-
ticular, we considered each highlight as a sepa-
rate sentence following Nallapati et al. (2016). In
this setting, we used the English Gigaword cor-
pus (Napoles et al., 2012) as our larger, unlabeled
“monolingual” corpus, although all data used in
this task is in English.

Experimental settings: We use subword units
(Sennrich et al., 2015b) with 31500 merges, re-
sulting in a vocabulary size of about 32000. We
use up to the first 600 tokens of the document and

1We encourage future researchers to use the non-
anonymized version because it is a more realistic summa-
rization setting with a larger vocabulary. Our numbers on
the non-anonymized test set are 35.56 ROUGE-1, 14.60
ROUGE-2, and 25.08 ROUGE-L. We did not consider high-
lights as separate sentences.
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System ROUGE-1 ROUGE-2 ROUGE-L
Seq2seq + pretrained embeddings (Nallapati et al., 2016) 32.49 11.84 29.47
+ temporal attention (Nallapati et al., 2016) 35.46 13.30 32.65
Pretrained seq2seq 32.56 11.89 29.44

Table 2: Results on the anonymized CNN/Daily Mail dataset.
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Figure 5: Summarization ablation study measuring the difference in validation ROUGE between various
ablations and the full model. More negative is worse. The full model uses LMs trained with unlabeled
data to initialize the encoder and decoder, plus the language modeling objective.

predict the entire summary. Only one language
model is trained and it is used to initialize both
the encoder and decoder, since the source and tar-
get languages are the same. However, the encoder
and decoder are not tied. The LM is a one-layer
LSTM of size 1024 trained in a similar fashion to
Jozefowicz et al. (2016). For the seq2seq model,
we use the same settings as the machine transla-
tion experiments. The only differences are that
we use a 2 layer model with the second layer hav-
ing 1024 hidden units, and that the learning rate is
multiplied by 0.8 every 30K steps after an initial
100K steps.

Results: Table 2 summarizes our results on the
anonymized version of the corpus. Our pretrained
model is only able to match the previous base-
line seq2seq of Nallapati et al. (2016). Inter-
estingly, they use pretrained word2vec (Mikolov
et al., 2013) vectors to initialize their word em-

beddings. As we show in our ablation study, just
pretraining the embeddings itself gives a large im-
provement. Furthermore, our model is a unidirec-
tional LSTM while they use a bidirectional LSTM.
They also use a longer context of 800 tokens,
whereas we used a context of 600 tokens due to
GPU memory issues.

Ablation study: We performed an ablation
study similar to the one performed on the ma-
chine translation model. The results are re-
ported in Figure 5. Here we report the drops on
ROUGE-1, ROUGE-2, and ROUGE-L on the non-
anonymized validation set.

Given the results from our ablation study, we
can make the following observations:

• Pretraining appears to improve optimiza-
tion: in contrast with the machine translation
model, it is more beneficial to only pretrain
the encoder than only the decoder of the sum-
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marization model. One interpretation is that
pretraining enables the gradient to flow much
further back in time than randomly initialized
weights. This may also explain why pretrain-
ing on the parallel corpus is no worse than
pretraining on a larger monolingual corpus.

• The language modeling objective is a strong
regularizer: A model without the LM objec-
tive has a significant drop in ROUGE scores.

Human evaluation: As ROUGE may not be
able to capture the quality of summarization, we
also performed a small qualitative study to un-
derstand the human impression of the summaries
produced by different models. We took 200 ran-
dom documents and compared the performance of
a pretrained and non-pretrained system. The doc-
ument, gold summary, and the two system out-
puts were presented to a human evaluator who was
asked to rate each system output on a scale of 1-5
with 5 being the best score. The system outputs
were presented in random order and the evaluator
did not know the identity of either output. The
evaluator noted if there were repetitive phrases or
sentences in either system outputs. Unwanted rep-
etition was also noticed by Nallapati et al. (2016).

Table 3 and 4 show the results of the study. In
both cases, the pretrained system outperforms the
system without pretraining in a statistically signif-
icant manner. The better optimization enabled by
pretraining improves the generated summaries and
decreases unwanted repetition in the output.

NP > P NP = P NP < P
29 88 83

Table 3: The count of how often the no pretrain
system (NP) achieves a higher, equal, and lower
score than the pretrained system (P) in the side-by-
side study where the human evaluator gave each
system a score from 1-5. The sign statistical test
gives a p-value of < 0.0001 for rejecting the null
hypothesis that there is no difference in the score
obtained by either system.

4 Related Work

Unsupervised pretraining has been intensively
studied in the past years, most notably is the work
by Dahl et al. (2012) who found that pretraining
with deep belief networks improved feedforward

No pretrain
No repeats Repeats

Pretrain
No repeats 67 65

Repeats 24 44

Table 4: The count of how often the pretrain and
no pretrain systems contain repeated phrases or
sentences in their outputs in the side-by-side study.
McNemar’s test gives a p-value of < 0.0001 for
rejecting the null hypothesis that the two systems
repeat the same proportion of times. The pre-
trained system clearly repeats less than the system
without pretraining.

acoustic models. More recent acoustic models
have found pretraining unnecessary (Xiong et al.,
2016; Zhang et al., 2016; Chan et al., 2015), prob-
ably because the reconstruction objective of deep
belief networks is too easy. In contrast, we find
that pretraining language models by next step pre-
diction significantly improves seq2seq on chal-
lenging real world datasets.

Despite its appeal, unsupervised learning has
not been widely used to improve supervised train-
ing. Dai and Le (2015); Radford et al. (2017) are
amongst the rare studies which showed the ben-
efits of pretraining in a semi-supervised learning
setting. Their methods are similar to ours except
that they did not have a decoder network and thus
could not apply to seq2seq learning. Similarly,
Zhang and Zong (2016) found it useful to add an
additional task of sentence reordering of source-
side monolingual data for neural machine transla-
tion. Various forms of transfer or multitask learn-
ing with seq2seq framework also have the flavors
of our algorithm (Zoph et al., 2016; Luong et al.,
2015; Firat et al., 2016).

Perhaps most closely related to our method is
the work by Gulcehre et al. (2015), who combined
a language model with an already trained seq2seq
model by fine-tuning additional deep output lay-
ers. Empirically, their method produces small im-
provements over the supervised baseline. We sus-
pect that their method does not produce significant
gains because (i) the models are trained indepen-
dently of each other and are not fine-tuned (ii) the
LM is combined with the seq2seq model after the
last layer, wasting the benefit of the low level LM
features, and (iii) only using the LM on the de-
coder side. Venugopalan et al. (2016) addressed (i)
but still experienced minor improvements. Using
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pretrained GloVe embedding vectors (Pennington
et al., 2014) had more impact.

Related to our approach in principle is the work
by Chen et al. (2016) who proposed a two-term,
theoretically motivated unsupervised objective for
unpaired input-output samples. Though they did
not apply their method to seq2seq learning, their
framework can be modified to do so. In that case,
the first term pushes the output to be highly prob-
able under some scoring model, and the second
term ensures that the output depends on the input.
In the seq2seq setting, we interpret the first term
as a pretrained language model scoring the out-
put sequence. In our work, we fold the pretrained
language model into the decoder. We believe that
using the pretrained language model only for scor-
ing is less efficient that using all the pretrained
weights. Our use of labeled examples satisfies the
second term. These connections provide a theoret-
ical grounding for our work.

In our experiments, we benchmark our method
on machine translation, where other unsupervised
methods are shown to give promising results (Sen-
nrich et al., 2015a; Cheng et al., 2016). In back-
translation (Sennrich et al., 2015a), the trained
model is used to decode unlabeled data to yield
extra labeled data. One can argue that this method
may not have a natural analogue to other tasks
such as summarization. We note that their tech-
nique is complementary to ours, and may lead
to additional gains in machine translation. The
method of using autoencoders in Cheng et al.
(2016) is promising, though it can be argued that
autoencoding is an easy objective and language
modeling may force the unsupervised models to
learn better features.

5 Conclusion

We presented a novel unsupervised pretraining
method to improve sequence to sequence learning.
The method can aid in both generalization and op-
timization. Our scheme involves pretraining two
language models in the source and target domain,
and initializing the embeddings, first LSTM lay-
ers, and softmax of a sequence to sequence model
with the weights of the language models. Using
our method, we achieved state-of-the-art machine
translation results on both WMT’14 and WMT’15
English to German. A key advantage of this tech-
nique is that it is flexible and can be applied to a
large variety of tasks.
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Abstract

The standard content-based attention mecha-
nism typically used in sequence-to-sequence
models is computationally expensive as it
requires the comparison of large encoder
and decoder states at each time step. In this
work, we propose an alternative attention
mechanism based on a fixed size memory
representation that is more efficient. Our
technique predicts a compact set of K
attention contexts during encoding and lets
the decoder compute an efficient lookup
that does not need to consult the memory.
We show that our approach performs on-par
with the standard attention mechanism while
yielding inference speedups of 20% for
real-world translation tasks and more for
tasks with longer sequences. By visualizing
attention scores we demonstrate that our
models learn distinct, meaningful alignments.

1 Introduction

Sequence-to-sequence models (Sutskever et al.,
2014; Cho et al., 2014) have achieved state of the
art results across a wide variety of tasks, including
Neural Machine Translation (NMT) (Bahdanau et al.,
2014; Wu et al., 2016), text summarization (Rush
et al., 2015; Nallapati et al., 2016), speech recognition
(Chan et al., 2015; Chorowski and Jaitly, 2016), image
captioning (Xu et al., 2015), and conversational
modeling (Vinyals and Le, 2015; Li et al., 2015).

The most popular approaches are based on an
encoder-decoder architecture consisting of two
recurrent neural networks (RNNs) and an attention
mechanism that aligns target to source tokens (Bah-
danau et al., 2014; Luong et al., 2015). The typical
attention mechanism used in these architectures
computes a new attention context at each decoding

∗Equal Contribution. Author order alphabetical.

step based on the current state of the decoder.
Intuitively, this corresponds to looking at the source
sequence after the output of every single target token.

Inspired by how humans process sentences, we
believe it may be unnecessary to look back at the
entire original source sequence at each step.1 We thus
propose an alternative attention mechanism (section 3)
that leads to smaller computational time complexity.
Our method predictsK attention context vectors while
reading the source, and learns to use a weighted av-
erage of these vectors at each step of decoding. Thus,
we avoid looking back at the source sequence once
it has been encoded. We show (section 4) that this
speeds up inference while performing on-par with the
standard mechanism on both toy and real-world WMT
translation datasets. We also show that our mecha-
nism leads to larger speedups as sequences get longer.
Finally, by visualizing the attention scores (section
5), we verify that the proposed technique learns mean-
ingful alignments, and that different attention context
vectors specialize on different parts of the source.

2 Background

2.1 Sequence-to-Sequence Model with Attention
Our models are based on an encoder-decoder archi-
tecture with attention mechanism (Bahdanau et al.,
2014; Luong et al., 2015). An encoder function takes
as input a sequence of source tokens x=(x1,...,xm)
and produces a sequence of states s=(s1,...,sm) .The
decoder is an RNN that predicts the probability of a
target sequence y=(y1,...,yT |s). The probability of
each target token yi ∈{1,...,|V |} is predicted based
on the recurrent state in the decoder RNN, hi, the pre-
vious words, y<i, and a context vector ci. The context
vector ci, also referred to as the attention vector, is
calculated as a weighted average of the source states.

1Eye-tracking and keystroke logging data from human
translators show that translators generally do not reread previously
translated source text words when producing target text (Carl
et al., 2011).
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ci=
∑

j

αijsj (1)

αi=softmax(fatt(hi,s)) (2)

Here, fatt(hi, s) is an attention function that
calculates an unnormalized alignment score between
the encoder state sj and the decoder state hi. Variants
of fatt used in Bahdanau et al. (2014) and Luong
et al. (2015) are:

fatt(hi,sj)=

{
vTa tanh(Wa[hi,sj]), Bahdanau
hTi Wasj Luong

where Wa and va are model parameters learned to
predict alignment. Let |S| and |T | denote the lengths
of the source and target sequences respectively andD
denoate the state size of the encoder and decoder RNN.
Such content-based attention mechanisms result in in-
ference times ofO(D2|S||T |)2, as each context vector
depends on the current decoder statehi and all encoder
states, and requires anO(D2) matrix multiplication.

The decoder outputs a distribution over a
vocabulary of fixed-size |V |:

P(yi|y<i,x)=softmax(W [si;ci]+b) (3)

The model is trained end-to-end by minimizing the
negative log likelihood of the target words using
stochastic gradient descent.

3 Memory-Based Attention Model

Our proposed model is shown in Figure 1. During en-
coding, we compute an attention matrix C∈RK×D,
where K is the number of attention vectors and a
hyperparameter of our method, and D is the dimen-
sionality of the top-most encoder state. This matrix
is computed by predicting a score vector αt ∈ RK
at each encoding time step t. C is then a linear
combination of the encoder states, weighted by αt:

Ck=

|S|∑

t=0

αtkst (4)

αt=softmax(Wαst), (5)

whereWα is a parameter matrix in RK×D.
The computational time complexity for this

operation is O(KD|S|). One can think of C as
compact fixed-length memory that the decoder

2An exception is the dot-attention from Luong et al. (2015),
which isO(D|S||T |), which we discuss further in Section 3.

will perform attention over. In contrast, standard
approaches use a variable-length set of encoder states
for attention. At each decoding step, we similarly
predictK scores β∈RK. The final attention context
c is a linear combination of the rows in C weighted
by the scores. Intuitively, each decoder step predicts
how important each of theK attention vectors is.

c=

K∑

i=0

βiCi (6)

β=softmax(Wβh) (7)

Here, h is the current state of the decoder, andWβ is a
learned parameter matrix. Note that we do not access
the encoder states at each decoder step. We simply
take a linear combination of the attention matrix C
pre-computed during encoding - a much cheaper op-
eration that is independent of the length of the source
sequence. The time complexity of this computation
isO(KD|T |) as multiplication with theK attention
matrices needs to happen at each decoding step.

Summing O(KD|S|) from encoding and
O(KD|T |) from decoding, we have a total linear
computational complexity of O(KD(|S| + |T |).
As D is typically very large, 512 or 1024 units in
most applications, we expect our model to be faster
than the standard attention mechanism running in
O(D2|S||T |). For long sequences (as in summariza-
tion, where —S— is large), we also expect our model
to be faster than the cheaper dot-based attention mech-
anism, which needs O(D|S||T |) computation time
and requires encoder and decoder states sizes to match.

We also experimented with using a sigmoid
function instead of the softmax to score the encoder
and decoder attention scores, resulting in 4 possible
combinations. We call this choice the scoring function.
A softmax scoring function calculates normalized
scores, while the sigmoid scoring function results in
unnormalized scores that can be understood as gates.

3.1 Model Interpretations
Our memory-based attention model can be under-
stood intuitively in two ways. We can interpret it as
”predicting” the set of attention contexts produced
by a standard attention mechanism during encoding.
To see this, assume we set K≈|T |. In this case, we
predict all |T | attention contexts during the encoding
stage and learn to choose the right one during
decoding. This is cheaper than computing contexts
one-by-one based on the decoder and encoder content.
In fact, we could enforce this objective by first training
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Figure 1: Memory Attention model architecture. K attention vectors are predicted during encoding, and a
linear combination is chosen during decoding. In our example,K=3.

a regular attention model and adding a regularization
term to force the memory matrix C to be close to
the T×D vectors computed by the standard attention.
We leave it to future work to explore such an objective.

Alternatively, we can interpret our mechanism as
first predicting a compact K ×D memory matrix,
a representation of the source sequence, and then
performing location-based attention on the memory
by picking which row of the matrix to attend to.
Standard location-based attention mechanism, by
contrast, predicts a location in the source sequence
to focus on (Luong et al., 2015; Xu et al., 2015).

3.2 Position Encodings (PE)

In the above formulation, the predictions of attention
contexts are symmetric. That is, Ci is not forced to
be different from Cj 6=i. While we would hope for the
model to learn to generate distinct attention contexts,
we now present an extension that pushes the model
into this direction. We add position encodings to the
score matrix that forces the first few context vector
C1,C2,... to focus on the beginning of the sequence
and the last few vectors ...,CK−1,CK to focus on the
end (thereby encouraging in-between vectors to focus
on the middle).

Explicitly, we multiply the score vector α with

position encodings ls∈RK:

CPE=

|S|∑

s=0

αPEhs (8)

αPEs =softmax(Wαhs◦ls) (9)

To obtain ls we first calculate a constant matrix L
where we define each element as

Lks=(1−k/K)(1−s/S)+ k

K

s

S , (10)

adapting a formula from (Sukhbaatar et al., 2015).
Here, k ∈ {1,2, ...,K} is the context vector index
and S is the maximum sequence length across all
source sequences. The manifold is shown graphically
in Figure 2. We can see that earlier encoder states are
upweighted in the first context vectors, and later states
are upweighted in later vectors. The symmetry of the
manifold and its stationary point having value 0.5 both
follow from Eq. 10. The elements of the matrix that
fall beyond the sequence lengths are then masked out
and the remaining elements are renormalized across
the timestep dimension. This results in the jagged
array of position encodings {lks}.
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Figure 2: Surface for the position encodings.

4 Experiments

4.1 Toy Copying Experiment
Due to the reduction of computational time complex-
ity we expect our method to yield performance gains
especially for longer sequences and tasks where the
source can be compactly represented in a fixed-size
memory matrix. To investigate the trade-off between
speed and performance, we compare our technique
to standard models with and without attention on a
Sequence Copy Task of varying length like in Graves
et al. (2014). We generated 4 training datasets of
100,000 examples and a validation dataset of 1,000 ex-
amples. The vocabulary size was 20. For each dataset,
the sequences had lengths randomly chosen between 0
to L, for L∈{10,50,100,200} unique to each dataset.

4.1.1 Training Setup
All models are implemented using TensorFlow
based on the seq2seq implementation of Britz et al.
(2017)3 and trained on a single machine with a
Nvidia K40m GPU. We use a 2-layer 256-unit, a
bidirectional LSTM (Hochreiter and Schmidhuber,
1997) encoder, a 2-layer 256-unit LSTM decoder,
and 256-dimensional embeddings. For the attention
baseline, we use the standard parametrized attention
(Bahdanau et al., 2014). Dropout of 0.2 (0.8 keep
probability) is applied to the input of each cell and
we optimize using Adam (Kingma and Ba, 2014) at
a learning rate of 0.0001 and batch size 128. We train
for at most 200,000 steps (see Figure 3 for sample
learning curves). BLEU scores are calculated on
tokenized data using the multi-bleu.perl script in
Moses.4 We decode using beam search with a beam

3http://github.com/google/seq2seq
4http://github.com/moses-smt/mosesdecoder

Length Model BLEU Time (s)
20 No Att 99.93 2.03

K=1 99.52 2.12
K=4 99.56 2.25
K=16 99.56 2.21
K=32 99.57 2.59
K=64 99.75 2.86
Att 99.98 2.86

50 No Att 97.37 3.90
K=1 98.86 4.33
K=4 99.95 4.48
K=16 99.96 4.58
K=32 99.96 5.35
K=64 99.97 5.84
Att 99.94 6.46

100 No Att 73.99 6.33
K=1 87.42 7.32
K=4 99.81 7.47
K=16 99.97 7.50
K=32 99.99 7.65
K=64 100.00 7.77
Att 100.00 11.00

200 No Att 32.64 9.10
K=1 44.22 9.30
K=4 98.54 9.49
K=16 99.98 9.53
K=32 100.00 9.59
K=64 100.00 9.78
Att 100.00 14.28

Table 1: BLEU scores and computation times with
varyingK and sequence length compared to baseline
models with and without attention.

size of 10 (Wiseman and Rush, 2016).

4.1.2 Results

Table 1 shows the BLEU scores of our model on differ-
ent sequence lengths while varyingK. This is a study
of the trade-off between computational time and rep-
resentational power. A largeK allows us to compute
complex source representations, while aK of 1 limits
the source representation to a single vector. We can
see that performance consistently increases withK up
to a point that depends on the data length, with longer
sequences requiring more complex representations.
The results with and without position encodings are
almost identical on the toy data. Our technique learns
to fit the data as well as the standard attention mecha-
nism despite having less representational power. Both
beat the non-attention baseline by a significant margin.
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(a) Comparison of varying K for copying sequences of length
200 on evaluation data, showing that large K leads to faster
convergence and smallK performs similarly to the non-attentional
baseline.
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(b) Comparison of sigmoid and softmax functions for choosing the
encoder and decoder attention scores on evaluation data, showing
that choice of gating/normalization matters.

Figure 3: Training Curves for the Toy Copy task

That we are able to represent the source sequence
with a fixed size matrix with fewer than |S| rows
suggests that traditional attention mechanisms
may be representing the source with redundancies
and wasting computational resources. This makes
intuitive sense for the toy task, which should require
a relatively simple representation.

The last column shows that our technique signif-
icantly speeds up the inference process. The gap in
inference speed increases as sequences become longer.
We measured inference time on the full validation
set of 1,000 examples, not including data loading or
model construction times.

Figure 3a shows the learning curves for sequence
length 200. We see thatK=1 is unable to fit the data
distribution, whileK∈{32,64} fits the data almost as
quickly as the attention-based model. Figure 3b shows
the effect of varying the encoder and decoder scoring
functions between softmax and sigmoid. All combina-
tions manage to fit the data, but some converge faster
than others. In section 5 we show that distinct align-
ments are learned by different function combinations.

4.2 Machine Translation
Next, we explore if the memory-based attention
mechanism is able to fit complex real-world datasets.
For this purpose we use 4 large machine translation
datasets of WMT’175 on the following language
pairs: English-Czech (en-cs, 52M examples), English-
German (en-de, 5.9M examples), English-Finish
(en-fi, 2.6M examples), and English-Turkish (en-tr,
207,373 examples). We used the newly available pre-

5statmt.org/wmt17/translation-task.html

processed datasets for the WMT’17 task.6 Note that
our scores may not be directly comparable to other
work that performs their own data pre-processing. We
learn shared vocabularies of 16,000 subword units
using the BPE algorithm (Sennrich et al., 2016).
We use newstest2015 as a validation set, and report
BLEU on newstest2016.

4.2.1 Training Setup
We use a similar setup to the Toy Copy task, but
use 512 RNN and embedding units, train using 8
distributed workers with 1 GPU each, and train for
at most 1M steps. We save checkpoints every 30
minutes during training, and choose the best based
on the validation BLEU score.

4.2.2 Results
Table 2 compares our approach with and without
position encodings, and with varying values for
hyperparameter K, to baseline models with regular
attention mechanism. Learning curves are shown in
Figure 4. We see that our memory attention model
with sufficiently high K performs on-par with, or
slightly better, than the attention-based baseline model
despite its simpler nature. Across the board, models
with K = 64 performed better than corresponding
models with K =32, suggesting that using a larger
number of attention vectors can capture a richer under-
standing of source sequences. Position encodings also
seem to consistently improve model performance.

Table 3 shows that our model results in faster de-
coding time even on a complex dataset with a large

6http://data.statmt.org/wmt17/translation-task/preprocessed
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Figure 4: Comparing training curves for en-fi and en-tr with sigmoid encoder scoring and softmax decoder
scoring and position encoding. Note that en-tr curves converged very quickly.

Model Dataset K en-cs en-de en-fi en-tr
Memory Attention Test 32 19.37 28.82 15.87 -

64 19.65 29.53 16.49 -
Valid 32 19.20 26.20 15.90 12.94

64 19.63 26.39 16.35 13.06
Memory Attention + PE Test 32 19.45 29.53 15.86 -

64 20.36 30.61 17.03 -
Valid 32 19.35 26.22 16.31 12.97

64 19.73 27.31 16.91 13.25
Attention Test - 19.19 30.99 17.34 -

Valid - 18.61 28.13 17.16 13.76

Table 2: BLEU scores on WMT’17 translation datasets from the memory attention models and regular attention
baselines. We picked the best out of the four scoring function combinations on the validation set. Note that
en-tr does not have an official test set. Best test scores on each dataset are highlighted.

Model Decoding Time (s)
K=32 26.85
K=64 27.13
Attention 33.28

Table 3: Decoding time, averaged across 10 runs, for
the en-de validation set (2169 examples) with average
sequence length of 35. Results are similar for both
PE and non-PE models.

vocabulary of 16k. We measured decoding time over
the full validation set, not including time used for
model setup and data loading, averaged across 10 runs.
The average sequence length for examples in this data
was 35, and we expect more significant speedups
for tasks with longer sequences, as suggested by our
experiments on toy data. Note that in our NMT ex-

amples/experiments,K≈T , but we obtain computa-
tional savings from the fact thatK�D. We may be
able to setK�T , as in toy copying, and still get very
good performance in other tasks. For instance, in sum-
marization the source is complex but the representa-
tion of the source required to perform the task is ”sim-
ple” (i.e. all that is needed to generate the abstract).

Figure 5 shows the effect of using sigmoid and
softmax function in the encoders and decoders. We
found that softmax/softmax consistently performs
badly, while all other combinations perform about
equally well. We report results for the best combi-
nation only (as chosen on the validation set), but we
found this choice to only make a minor difference.
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Figure 5: Comparing training curves for en-fi for
different encoder/decoder scoring functions for our
models atK=64.

5 Visualizing Attention

A useful property of the standard attention mechanism
is that it produces meaningful alignment between
source and target sequences. Often, the attention
mechanism learns to progressively focus on the
next source token as it decodes the target. These
visualizations can be an important tool in debugging
and evaluating seq2seq models and are often used for
unknown token replacement.

This raises the question of whether or not our
proposed memory attention mechanism also learns
to generate meaningful alignments. Due to limiting
the number of attention contexts to a number that
is generally less than the sequence length, it is not
immediately obvious what each context would learn
to focus on. Our hope was that the model would learn
to focus on multiple alignments at the same time,
within the same attention vector. For example, if the
source sequence is of length 40 and we haveK=10
attention contexts, we would hope that C1 roughly fo-
cuses on tokens 1 to 4, C2 on tokens 5 to 8, and so on.
Figures 6 and 7 show that this is indeed the case. To
generate this visualization we multiply the attention
scores α and β from the encoder and decoder. Figure
8 shows a sample translation task visualization.

Figure 6 suggests that our model learns distinct
ways to use its memory depending on the encoder and
decoder functions. Interestingly, using softmax nor-
malization results in attention maps typical of those de-
rived from using standard attention, i.e. a relatively lin-
ear mapping between source and target tokens. Mean-
while, using sigmoid gating results in what seems to
be a distributed representation of the source sequences
across encoder time steps, with multiple contiguous at-
tention contexts being accessed at each decoding step.

6 Related Work

Our contributions build on previous work in making
seq2seq models more computationally efficient.
Luong et al. (2015) introduce various attention mech-
anisms that are computationally simpler and perform
as well or better than the original one presented in
Bahdanau et al. (2014). However, these typically still
require O(D2) computation complexity, or lack the
flexibility to look at the full source sequence. Efficient
location-based attention (Xu et al., 2015) has also
been explored in the image recognition domain.

Wu et al. (2016) presents several enhancements to
the standard seq2seq architecture that allow more effi-
cient computation on GPUs, such as only attending on
the bottom layer. Kalchbrenner et al. (2016) propose
a linear time architecture based on stacked convolu-
tional neural networks. Gehring et al. (2016) also
propose the use of convolutional encoders to speed up
NMT. de Brébisson and Vincent (2016) propose a lin-
ear attention mechanism based on covariance matrices
applied to information retrieval. Raffel et al. (2017)
enable online linear time attention calculation by en-
forcing that the alignment between input and output
sequence elements be monotonic. Previously, mono-
tonic attention was proposed for morphological inflec-
tion generation by Aharoni and Goldberg (2016).

7 Conclusion

In this work, we propose a novel memory-based
attention mechanism that results in a linear compu-
tational time of O(KD(|S|+|T |)) during decoding
in seq2seq models. Through a series of experiments,
we demonstrate that our technique leads to consistent
inference speedups as sequences get longer, and
can fit complex data distributions such as those
found in Neural Machine Translation. We show
that our attention mechanism learns meaningful
alignments despite being constrained to a fixed
representation after encoding. We encourage future
work that explores the optimal values of K for
various language tasks and examines whether or not
it is possible to predict K based on the task at hand.
We also encourage evaluating our models on other
tasks that must deal with long sequences but have
compact representations, such as summarization and
question-answering, and further exploration of their
effect on memory and training speed.
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Figure 6: Attention scores at each step of decoding for on a sample from the sequence length 100 toy copy
dataset. Individual attention vectors are highlighted in blue. (y-axis: source tokens; x-axis: target tokens)

K
K
K
K

Figure 7: Attention scores at each step of decoding for K = 4 on a sample with sequence length 11. The
subfigure on the left color codes each individual attention vector. (y-axis: source; x-axis: target)

C1 C2 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15 C16

C17 C18 C19 C20 C21 C22 C23 C24

C25 C26 C27 C28 C29 C30 C31 C32

Figure 8: Attention scores at each step of decoding for en-de WMT translation task using model with sigmoid
scoring functions and K=32. The left subfigure displays each individual attention vector separately while
the right subfigure displays the full combined attention. (y-axis: source; x-axis: target)
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Abstract

Vector representation of words improves
performance in various NLP tasks, but the
high-dimensional word vectors are very
difficult to interpret. We apply several ro-
tation algorithms to the vector representa-
tion of words to improve the interpretabil-
ity. Unlike previous approaches that in-
duce sparsity, the rotated vectors are in-
terpretable while preserving the expressive
performance of the original vectors. Fur-
thermore, any pre-built word vector repre-
sentation can be rotated for improved in-
terpretability. We apply rotation to skip-
grams and glove and compare the expres-
sive power and interpretability with the
original vectors and the sparse overcom-
plete vectors. The results show that the ro-
tated vectors outperform the original and
the sparse overcomplete vectors for inter-
pretability and expressiveness tasks.

1 Introduction

Vector representations of words contain rich se-
mantic and syntactic information and thus improve
the performance of numerous natural language
processing tasks. The vectors also play a basic role
as an embedding layer in deep learning models for
NLP, affecting the expressive performance of the
model (Iyyer et al., 2014; Tai et al., 2015; Yang
et al., 2016). However, the many dimensions com-
prising the vector representation are not amenable
to interpretation.

Previous research on vector representation of
words has proposed improving interpretability
while keeping the expressive performance by in-
ducing sparsity in word vector dimensions (Mur-
phy et al., 2012; Fyshe et al., 2014). Recent re-
search has proposed to build sparse vector repre-

sentations from a large corpus and added the non-
negativity constraint using improved projected
gradient (Luo et al., 2015), while (Sun et al., 2016)
learns l1-regularised vectors. But, these models
cannot be learned over pre-trained word vectors
based on skip-gram (Mikolov et al., 2013) or glove
(Pennington et al., 2014) which are widely used.
Faruqui et al. proposes an alternative approach to
stand-alone models by forming sparse representa-
tions based on the pre-trained models. To do this,
they use overcomplete vectors, which are much
higher in dimensionality than the original vectors.

Unlike these sparsity-inducing approaches, we
construct an interpretable word vector representa-
tion by using the pre-trained word vectors as in-
put and using a basis rotation algorithm from the
Exploratory Factor Analysis (EFA) literature used
in developing psychological scales (Osborne and
Costello, 2009). Like the word vector representa-
tion, every single item in the scale is represented as
a numeric vector in the latent factor space. The set
of item vectors are represented in a factor loading
matrix, and the matrix is rotated such that the fac-
tors (i.e., dimensions) become interpretable. The
rotation achieves a Simple Structure (Thurstone,
1947) through minimizing the row and the column
complexity of the matrix (Crawford and Ferguson,
1970). We elaborate on this process in the next
section. As in EFA, we rotate the word vector rep-
resentation matrix to obtain dimension-wise inter-
pretability while retaining the number of dimen-
sions the same. For example, Figure 1 shows the
rotated skip-gram vectors for two groups of words.
These words are top five words of two dimensions
from rotated Word2Vec.

Our main contribution is applying the matrix
rotation algorithm from psychometric analysis to
word vector representation models to improve the
interpretability of the vector. This approach gives
an answer to the question why and how word vec-
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(a) SG word projected to {a1,a2} and visualization of the vectors in 300 dimensions

−10 −5 5 10

−10

−5

5

10

italy
china

france
germany

russia
presidentcommissioner

minister

superintendent
chairman

a1

a2

aR1
aR2

chairman
superintendent

minister
commissioner

president
russia

germany
france
china

italy

2

1

0

1

2

(b) Rotated word vectors in {aR1 ,aR2 } and visualization of the vectors in 300 dimensions

Figure 1: Overview of rotating word vectors dimensions. We plot (a) unrotated and (b) rotated skip-
gram word vectors in 2-D projected embedding space using PCA (left), and visualization of the vectors
in original 300 dimensional space (right). Colors of words indicates the meaning of countries (Red)
and positions (Blue). As in (b), after the dimensions are rotated, interpretability for each dimensions is
improved having meaning of countries and positions.

tor representations work well by revealing a hid-
den structure of the original word vectors. That is,
it is meaningful to transform the hard-to-interpret
dimensions of the pre-built word vectors, which
are widely used, to more interpretable vectors. We
also show that the rotated vectors retain their effec-
tiveness with respect to downstream tasks without
re-building the vector representations.

Our method can be applied to any type of word
vectors as a post-processing method such that it
does not require a large corpus to be trained. In
addition, it does not require additional number of
dimensions so it does not increase the complexity
of the model. Furthermore, we explore the charac-
teristics of the rotated word vectors.

2 Factor Rotation

We take the rotation algorithm from the ex-
ploratory factor analysis (EFA) conducted to ver-
ify the construct validity of the psychological scale
in development. For example, when validating a

scale measuring respondents’ latent factors, such
as “Engineering problem solving” and “Interest in
engineering”, items should be similar within a fac-
tor, and distinguished between factors. As shown
in Table 1, EFA projects every item into the latent
factor space as an unrotated factor loading matrix.
However, since it is unclear what the factor means,
factor rotation is applied to the matrix that pro-
duces the rotated factor loading matrix which en-
hances the interpretability of the dimensions (Os-
borne, 2015).

2.1 Rotating Factors

The rotation algorithm transforms factor loading
matrix to the simple structure which is much eas-
ier to interpret (Thurstone, 1947). It involves post-
multiplication of a p × m input matrix A by an
m × m square matrix T , to compute the rotated
matrix Λ,

Λ = AT (1)
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Latent
Factors Items

Unrotated
Factor Matrix

Rotated
Factor Matrix

Factor 1 Factor 2 Factor 1 Factor 2

Engineering
Problem
Solving

How well did you feel prepared for:
(1) Defining what the problem really is .759 -.389 .830 .153
(2) Thinking up potential solutions to the problem .784 -.392 .861 .157
(3) Detailing how to implement the solution to the problem .798 -.416 .888 .146

Interest in
Engineering

(1) I find many topics in engineering to be interesting .630 .521 .194 .793
(2) Solving engineering problems is interesting to me .660 .630 .149 .901
(3) Engineering fascinates me .669 .627 .158 .906

Table 1: An example of the factor rotation process to verify the construct validity of the psychological
scale and its intended latent factor (left) in development. Items and loadings are from (Osborne, 2015).

which minimizes the cost function f(Λ), also
known as the rotation criterion. The function min-
imizes the complexity of the matrix, to make the
rotated matrix have a few large values in a row or
a column.

Minimizing the complexity allows non-binary
values in the vector, and thus a more complex so-
lution that the perfect simple structure. This is a
more realistic solution since a solution with binary
vectors may be misleading in representing the fac-
tor of interest (Yates, 1988; Browne, 2001). More
details are described in the next subsection.

The intuition behind this approach is that induc-
ing interpretability by factor rotation reforms the
word embedding matrix to have a simple struc-
ture by linear transformation. It encourages each
word vector (row) and dimension (column) to have
a few large values, leading to more interpretable
dimensions as shown in Fig 1.

2.2 Crawford-Ferguson Rotation Family

The rotation criterion introduced in Crawford and
Ferguson is a family of complexity functions as
follows:

f(Λ) = (1− κ) Σp
i=1Σ

m
j=1Σ

m
l 6=j,l=1λ

2
ijλ

2
il

+ κ Σm
j=1Σ

p
i=1Σ

m
l 6=i,l=1λ

2
ijλ

2
lj

(2)

where λij is an element of Λ. The first term rep-
resents the row (item) complexity, and the sec-
ond term represents the column (factor) complex-
ity. The ratio between the two is adjusted by the
parameter κ (0 ≤ k ≤ 1). The criterion is a
generalized version of the widely used criteria,
the orthomax family (Harman, 1960) which in-
cludes quartimax (Carroll, 1953; Ferguson, 1954;
Neuhaus and Wrigley, 1954), varimax (Kaiser,
1958), and direct quartimin (Carroll, 1960). It
effectively reflects the simple structure as well
(Browne, 2001). In this work, we apply the fol-

Quartimax Varimax Parsimax FacParsim

κ 0
1

p

m− 1

p+m− 2
1

Table 2: Representative κ values used. As (Sass
and Schmitt, 2010), we use 4 criterion referred
to as CF-Quartimax, CF-Varimax, CF-Parsimax,
CF-FacParsim. We omit ’CF-’ for simplicity and
do not separate the name of the kappa condition
whether it is orthogonal or oblique. FacParsim
stands for factor parsimony.

lowing representative κ values in Table 2 (Sass and
Schmitt, 2010).

In addition, the constraints for the rotation ma-
trix T can be applied in general. We can catego-
rize the rotation as orthogonal and oblique based
on the constraint. Orthogonal rotation assumes the
correlation between the rotated dimensions is zero.
Hence, the matrix should be an orthogonal matrix
that with m(m− 1)/2 constraints, satisfies:

T ′T = I (3)

Oblique rotations allow the correlation between
dimension to be non-zero, resulting in m con-
straints satisfying:

diag(T−1T−1
′
) = I (4)

The solution for the input matrix is computed by
using the gradient projection algorithm (Jennrich,
2001, 2002). The algorithm minimizes equation 2
while satisfying the constraints of the rotation ma-
trix.

3 Experimental Settings

We choose the Wikipedia English articles1 to train
the word vector models. The corpus contains 5.3M
articles, 83M sentences and 1,676M tokens. For

1https://dumps.wikimedia.org/enwiki/20170120/
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preprocessing, we leave only the alphanumeric to-
kens and apply lowercase to all words. Then we
remove the words with frequency less than 50, and
the size of the remaining vocabulary is 306,491.

We train skip-gram2 (Mikolov et al., 2013) and
glove3 (Pennington et al., 2014) based on the cor-
pus by using existing implementations. We set the
window size to 5 for both skip-gram and glove. We
set the number of negative samples to 5 and the
number of dimensions to 300. We use the default
values for the other hyperparameters. The size of
the resulting word vector matrix is (306,491, 300).

We compare our model with two baseline mod-
els: sparse overcomplete vector representations
(SOV) and the non-negative version of the SOV.
We set the hyperparameters of these models as
λ = .5, τ = 10−5, K = 3000 for SG, and
λ = 1.0, τ = 10−5, K = 3000 for Glove
(Faruqui et al., 2015). We excluded methods as
baselines that construct interpretable word vectors
using huge training corpora because our method
works with pre-trained vectors.

We apply four rotation algorithms for each or-
thogonal and oblique rotation, listed in Table 2.
Since we have two original word vector represen-
tations, we have 16 (4 x 2 x 2) rotated vectors in
total. We implement the algorithm through Tensor-
Flow (Abadi et al., 2016), and it is publicly avail-
able on GitHub4.

4 Interpretability

In this section, we show how the rotation of word
vectors results in improved dimension-wise inter-
pretability using the word intrusion task. (Murphy
et al., 2012; Faruqui et al., 2015; Sun et al., 2016).

4.1 Word Intrusion

Word intrusion task seeks to measure the semantic
coherence of a set of words. For example, consider
a set of words consists of (‘daughter’, ‘wife’, ‘sis-
ter’, ‘mother’, ‘son’) and add an ‘intruder’ word
(‘bigram’) to the set. Since the words except in-
truder has similar meanings to each other, we can
easily pick out the intruder to conclude that the
five words are sharing coherent meanings.

We apply this task to measure interpretability
of every word vector dimensions. If we choose
the words with the highest embedding values for

2https://radimrehurek.com/gensim
3https://nlp.stanford.edu/projects/glove
4https://github.com/SungjoonPark/factor rotation

each of the dimensions (top words for that dimen-
sion) and add an random (intruder) word and see
whether the intruder can be easily identified, then
we can conclude the dimension is semantically co-
herent. In this way, we can measure the extent of
interpretability of a dimension in vector represen-
tations by this task. Note that we pick top words
for a dimension by looking only for the value of
that dimension, ignoring values in the other di-
mensions.

Specifically, we first choose the top five words
in each dimension, and then we choose an intruder
word based on two criteria: 1) it is in the lower
half of that dimension, and 2) it is in the top 10%
in some other dimension. Also, we follow the set-
tings of the measure (k = 5, top 10%) from pre-
vious works. We see similar results when we run
experiments with larger k. (Murphy et al., 2012;
Sun et al., 2016)

In the standard word intrusion task, human eval-
uators pick out the intruder words, and the results
report the accuracy of the evaluators (Chang et al.,
2009). But this approach would be impractical to
use for all experimental conditions with 300 di-
mensions and the baselines, so we use the follow-
ing distance ratio (DR) metric as an alternative ap-
proach in (Sun et al., 2016) with slight modifica-
tions. Another advantage of our metric is that it
can be used to quantify the distance between the
intruder and the non-intruder words. We define the
overall metric as the average of the ratio between
Da
inter and Da

intra over d dimensions as

DRoverall =
1

d

Σd
a=1D

a
inter

Σd
a=1D

a
intra

(5)

where Da
intra is the average distance of every pair

among the top k words in dimension a

Da
intra =

ΣwiΣwjdist(wi, wj)

k(k − 1)
, (6)

and Da
inter is the average distance between the in-

truder word and each of the top k words in dimen-
sion a

Da
inter =

Σwidist(wi, wintruder)

k
. (7)

We define dist(wj , wk) as the cosine distance be-
tween wj and wk. We set k = 5 and repeat this
three times for each dimension a and use the aver-
age to compute DRoverall.
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SG Glove
Original 1.258 1.095
SOV 1.089 1.050
SOV (non-neg) 1.081 1.074
Quartimax (orthogonal) 1.479 1.248
Varimax (orthogonal) 1.477 1.289
Parsimax (orthogonal) 1.596 1.261
FacParsim (orthogonal) 1.300 1.102
Quartimax (oblique) 1.385 1.225
Varimax (oblique) 1.398 1.222
Parsimax (oblique) 1.386 1.174
FacParsim (oblique) 1.145 1.081

Table 3: Overall distance ratio (DRoverall) of
the original, sparse overcomplete vectors, and the
rotated (orthogonal and oblique) vector repre-
sentations. Rotated vectors show improved inter-
pretability over SOV and the original.

4.2 Results

Table 3 shows the results of word intrusion in
terms of the distance ratio metric. Overall, the re-
sults of the rotated vector representations show
improvements over SOV and the original word
vector representations. For skip-grams, orthogonal
parsimax shows the best result while for Glove, or-
thogonal varimax outperforms the others. Among
oblique rotation, varimax and quartimax show bet-
ter performance than factor parsimony.

In general, interpretability varies with different
values of κ. It increases when κ is close to zero
and decreases when κ is close to one, putting more
weight on the column complexity. Also, orthogo-
nal rotation shows better performance than oblique
rotation when κ is controlled.

4.3 Qualitative Examples

We present the top words of five dimensions
for skip-gram and rotated skip-gram (parsimax-
orthogonal) in Table 4. The dimensions shown are
randomly selected for both conditions.

Overall, the top words in each dimension of
skip-gram do not clearly show a common topic
among them. Only a few dimensions out of 300
are interpretable, such as the second row in the ta-
ble which is related to numbers. The overall dis-
tance ratio of the original vectors is slightly higher
than one.

For the rotated word vectors, the top words
show clear semantic coherence. The first row
shows words about social network services, the

Model Topwords

SG

householder, asked, indicted, there, ethnic
score, two, best, three, four
mining, footballer, population, laps, settled
density, census, fourier, editor, photos
money, toured, season, announced, banned

Rot.
SG

twitter, facebook, youtube, myspace, internet
receptors, receptor, neurons, apoptosis, neuronal
pennsylvania,ohio,maryland,philadelphia,illinois
paintings, portraits, painting, drawings, painter
that, which, when, where, but

Table 4: 5 top words for the original and the ro-
tated skip-gram word representations. The rotated
vectors show common semantic or syntactic co-
herence while the original vectors do not.

second row is about biology, the third row is about
geographical locations in the US, and the fourth is
about paintings. As the last row shows, some of
these dimensions represent syntactic features.

5 Expressive Performance

We evaluate the expressive power of word vec-
tor representations on the following tasks and re-
port Spearman’s correlation coefficient for the first
task, and accuracy for the other tasks. Table 5
shows the results.

5.1 Evaluation

We briefly describe the seven benchmark tasks:
word similarity and semantic/syntactic analogy,
and four classification tasks. For the classification
tasks, we average the word vectors in each training
sentence or phrase to use them as features. SVM
and random forest classifier are trained to predict
the target values, and hyperparameters are tuned
on the validation set.

Word Similarity (Simil.) SimLex-999 (Hill
et al., 2016) presented to evaluate the similarity
of word pairs, rather than relatedness. We compute
the cosine similarity between the given word pairs,
and report the Spearman’s correlation coefficient
as a measure of consistency between the similar-
ity and human ratings.

Semantic and Syntactic Analogies (Analg.
sem, syn). The second and third tasks are word
analogy tasks proposed by (Mikolov et al., 2013).
The semantic task includes 8,869 questions (sem)
and the syntactic task includes 10,675 questions
(syn).

Sentiment Analysis (Sent.) The first classifica-
tion task is sentiment classification on the movie
reviews (Socher et al., 2013). This dataset contains
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#
dims

Simil.
Analg.
(sem)

Analg.
(syn)

Sent. Ques.
Topics
(Sp.)

NP
brckt.

Skip-Gram 300 .374 .668 .652 .741 .920 .960 .812
SOV 3000 .390 .640 .594 .751 .910 .955 .836
SOV (non-neg) 3000 .384 .566 .480 .761 .918 .960 .829
Quartimax (orthogonal) 300 .374 .668 .652 .744 .922 .956 .822
Varimax (orthogonal) 300 .374 .668 .652 .744 .922 .956 .822
Parsimax (orthogonal) 300 .374 .668 .652 .744 .922 .956 .819
FacParsim (orthogonal) 300 .374 .668 .652 .744 .922 .956 .822
Quartimax (oblique) 300 .422 .673 .624 .755 .932 .955 .820
Varimax (oblique) 300 .422 .673 .624 .755 .932 .955 .820
Parsimax (oblique) 300 .421 .671 .623 .752 .932 .956 .826
FacParsim (oblique) 300 .417 .660 .620 .751 .928 .952 .820

Table 5: Evaluation results of the original skip-gram, sparse overcomplete vectors (SOV), and the rotated
(orthogonal and oblique) word vectors on various tasks. The left three columns show tasks based on
cosine similarity, and the right four columns show classification tasks using average word vectors as
features. Overall, the rotated word vectors show higher or comparable performance to that of the SOV
and the original. We observe a similar pattern in Glove as well.

6,920, 872, 1,821 sentences for training, develop-
ment, and test, respectively. The goal of this task
is to predict positive or negative sentiment of the
reviews.

Question Classification (Ques.) Next, we use
TREC dataset to classify categories of the ques-
tions (Faruqui et al., 2015). We divide the dataset
into 4,952, 500, 500 for training, development, and
test. The dataset has six types of questions includ-
ing about person, location, etc.

Topic Classification (Topics: Sp.) Next, we ob-
tain the 20 newsgroup dataset to classify Sports
(baseball vs. hockey) topics (Yogatama and Smith,
2014; Faruqui et al., 2015). The dataset consists of
958, 239, 796 for training, development, and test.

NP bracketing (NP brckt.) The final task is
classifying noun phrases in terms of bracketing
(Lazaridou et al., 2013; Faruqui et al., 2015). Each
phrase consists of three words, and the task is to
predict the correct bracketing to match the similar
words. We compute the average of NPs and per-
form ten-fold cross-validation over 2,227 phrases.
The classifiers are trained and the hyperparameters
are tuned for every fold.

5.2 Results

Word Similarity and Analogies We observe im-
proved performance of oblique rotation of word
vectors compared to the original and the SOV in
word similarity and semantic analogy tasks. In the
syntactic analogy, orthogonal rotation shows the

same performance as the original. Note that the
orthogonal rotations preserve the cosine-based ex-
pressive performances because the cosine similar-
ity between any two vectors does not change after
the orthogonal rotation.

Classification Tasks The SOV models show
slightly higher performance except the question
classification task. However, we can observe the
rotated word vectors have improved performance
over the original vectors. We observe a similar pat-
tern in Glove as well. In conclusion, the rotated
representations preserve the expressive power of
the original word vectors, and it is quite close
to that of the sparse representation with 10 times
larger dimensionality.

6 Understanding Rotated Word Vectors

In this section, we perform several experiments to
understand the characteristics of the rotated word
vector representations.

6.1 Directionality

One conventional approach to make the word vec-
tors to be more interpretable is by forcing the rep-
resentation to have non-negative values (Faruqui
et al., 2015; Luo et al., 2015). However, the dimen-
sions in the rotated vectors are not non-negative,
spread in both directions. Hence, we investigate
the relationship between the directionality (posi-
tive / negative) and interpretability.
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(A) (B) (C) (D) (E) (F) (G)
Desc
(Hi)

Asc
(Lo)

Cor
(Hi, Lo)

Cor
(abs, DR)

Cor
(abs, intra)

Cor
(abs, inter)

DR
(abs)

Quartimax (orthogonal) 1.479 1.507 -.452*** .843*** -.835*** .204*** 2.045
Varimax (orthogonal) 1.477 1.478 -.431*** .847*** -.840*** .205*** 2.004
Parsimax (orthogonal) 1.596 1.499 -.729*** .845*** -.836*** .216*** 2.442
FacParsim (orthogonal) 1.300 1.309 -.114* .536*** -.549*** .056 1.384
Quartimax (oblique) 1.385 1.464 -.692*** .879*** -.880*** .276*** 1.997
Varimax (oblique) 1.398 1.465 -.684*** .879*** -.878*** .204*** 2.022
Parsimax (oblique) 1.386 1.463 -.696*** .886*** -.883*** .279*** 1.993
FacParsim (oblique) 1.145 1.152 .006 .382*** -.369*** .037 1.171

Table 6: Overall distance ratio based on the top words extracted from the values in word vectors sorted
by descending order (Hi) and ascending order (Lo). Cor(Hi, Lo) is correlation between two distance
ratios based on both directions. Next three columns present correlation between the absolute word vector
values of the top words and distance ratios. The last columns shows selective distance ratio measure. The
results implies generally both direction is interpretable, one direction is more interpretable than the other
within a dimension, and larger absolute value in a dimension means higher interpretability. (* p < .05,
** p < .01, *** p < .001)

Overall Interpretability of both directions
The first two columns (A) and (B) in table 6 show
the overall distance ratio computed over the top
words extracted by descending order and ascend-
ing order, respectively. In other words, (A) refers
to the top words having the highest positive values
in each dimension, while (B) uses the lowest neg-
ative values. Note that we used descending order
in word intrusion task in the previous section.

Interestingly, the overall distance ratios in both
directions are comparable to each other. On av-
erage, both sides of a dimension are more inter-
pretable than the unrotated vector representations
except the oblique factor parsimony rotation.

Interpretability of both directions within a
dimension Next, we compare the interpretability
of both directions within a dimension. We first de-
fine the distance ratio of an individual dimension
a as follows:

DRa =
Da
inter

Da
intra

(8)

We compute the ratio by using top words ex-
tracted from positive and negative directions for
every dimension, and compute Spearman’s corre-
lation of the distance ratio pairs. Table 6 column
(C) shows the results. All of the rotation condi-
tions except the oblique factor parsimony shows
significant (p < .05) negative correlation, mean-
ing that both directions are hard to be highly inter-
pretable within a dimension simultaneously.

Dir. Topwords
+ depends, depend, rely, focused, focuses
- on, upon, onto, again, until
+ years, month, weeks, days, decades
- many, several, ago, numerous, various
+ that, which, when, where, but
- consists, includes, provides, contains, serves
+ criticizes, excelled, tended, much, criticized
- october, july, april, september, june
+ were, hoc, recently, their, had
- largest, oldest, longest, biggest, tallest

Table 7: Examples of top words in both directions.
The words are extracted from a part of the orthog-
onal parsimax rotated skip-gram word vectors.

Case Study We present the top words in both
directions for some dimensions of orthogonal par-
simax rotated word vectors. As shown in table 7,
some dimensions show a relationship between the
opposite directions that they consist of consecu-
tively used words, such as ”rely on”, ”depends
upon”, ”which includes”, ”that contains”, ”many
years”, ”weeks ago”. However, other dimensions
show that one direction is relatively more inter-
pretable than the other direction.

6.2 Selecting the Direction

Next, it is natural to question whether the larger
absolute value in word vectors means higher inter-
pretability, regardless of its directionality. We ver-
ify the relation between them by investigating the
size of the absolute value in a dimension and the
individual distance ratios.
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Relation to distance ratio Table 6 column (D)
presents Spearman’s correlation between individ-
ual distance ratio and the mean absolute vector
value of top words for that dimension. The fifth
column (E) also shows the correlation between the
intra-distance among the top words and the mean
absolute value, and the sixth column (F) is the rela-
tionship of the inter-distance among the top words
and the intruder and the mean absolute value.

Correlation coefficients show that the larger
mean absolute value means higher interpretability
for that dimension. In detail, there exists tenden-
cies that larger mean absolute value of dimension
reduces the intra-distances among the top words
while increasing the inter-distances among the top
words and the intruder.

Overall, we summarize our findings as follows:
1) generally both directions are somewhat inter-
pretable, 2) one direction is usually more inter-
pretable than the other within a dimension, and
3) a larger absolute value in a dimension means
higher interpretability of the dimension.

Selective Distance Ratio We can select a more
interpretable direction for each dimension through
inspecting the mean absolute value of the top
words in both directions. If we choose a direction
that has a larger mean absolute value among the
top words, each dimension should be easier to in-
terpret.

Table 6 column (G) presents this distance ratio
computed on the rotated vectors, resulting in in-
creased distance ratio values. We name this ratio
as the overall selective distance ratio. This mea-
sure could be effectively used when vector repre-
sentation is interpretable in both directions.

6.3 Effect of κ

We explore the effect on performance of the ratio
between the row and the column complexity of the
rotation criteria. As shown in section 4, choosing
an appropriate κ is important for interpretability.

We set the κ value from zero to one and the
numbers divided on a log scale. We run the word
similarity task and the word intrusion to evaluate
the performance. We present Spearman’s correla-
tion and the selective overall distance ratio.

Figure 2 shows that the performance of the sim-
ilarity task tends not to change regardless of κ,
however, the selective distance ratio starts to de-
crease when κ > .01. Considering the ratio be-
tween the number of rows and columns of the

1.997 2.046 2.046 1.997 1.997 1.996 2.006 
1.810 

1.251 1.171 
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Word Intrusion Similarity

(a) Skip-Gram (oblique rotated vector representations)
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1.379 1.379 

1.442 1.442 1.441 1.434 

1.104 1.097 1.091 
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0 1E-15 1E-12 1E-10 1E-08 1E-06 1E-04 0.01 0.1 1
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Word Intrusion Similarity

(b) Glove (oblique rotated vector representations)

Figure 2: Spearman’s correlation of the word simi-
larity and the selective distance ratio of word intru-
sion changes over κs, computed over oblique ro-
tated (a) skip-gram and (b) glove vectors. Dashed
line is original performance for each task. Word
similarity does not change regardless of κs, while
the distance ratio falls when κ is larger than 1e-4.

word vector matrix, giving too much weight to
the column complexity results in degraded inter-
pretability.

In our experiments, κ values of the quartimax,
varimax, and parsimax rotation are computed as
0, 3e-06, 1e-04 respectively. Based on the results,
our selection of kappas have shown interpretabil-
ity improvement effectively, compared to factor
parsimony (κ = 1). We observe these tendencies
in orthogonal rotations as well.

6.4 Effect of the Number of Dimensions

To investigate the effect of the number of di-
mensions to interpretability of dimensions, we
also measure the overall distance ratio (DRoverall)
on 50, 100 and 200 dimensions of unrotated
skip-gram and parsimax (orthogonal) and varimax
(oblique) rotated word vectors.

Figure 3 shows the results. For all settings, the
rotated vectors orthogonal (parsimax) and oblique
(varimax) show higher DRoverall score than the
original skip-gram vectors.
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Figure 3: Overall distance ratio (DRoverall) over
word vector dimensions. The rotated vectors
(parsimax-orthogonal and varimax-oblique) show
higherDRoverall score than the original skip-gram
vectors.

7 Related Work

Since distributed representations play an impor-
tant role in various NLP tasks, they are applied to
semantics (Herbelot and Vecchi, 2015; Qiu et al.,
2015; Woodsend and Lapata, 2015), with incor-
porating external information to them (Tian et al.,
2016; Nguyen et al., 2016). In addition, finding in-
terpretable regularities from the representations is
often conducted through non-negative and sparse
coding (Murphy et al., 2012; Faruqui et al., 2015;
Luo et al., 2015; Kober et al., 2016), and regular-
ization (Sun et al., 2016). Instead, our approach is
using rotation, showing better results in terms of
interpretability.

Meanwhile, various rotation methods are pro-
posed such as CF-family (Crawford and Fergu-
son, 1970), Infomax (McKeon, 1968), Minimum
Entropy (Jennrich, 2006), Geomin (Yates, 1988),
procrustues (Hurley and Cattell, 1962), and pro-
max rotation criteria. (Hendrickson and White,
1964). Incorporating prior knowledge about ro-
tated matrix is possible through target rotations
(Harman, 1960; Browne, 1972a,b) are proposed
as well. There are various ways to rotated dimen-
sions, we select a CF-family that covers frequently
used rotation methods in practice.

8 Conclusion and Discussions

In this paper, we applied the rotation algorithm
to improve interpretability of distributed represen-
tation of words. We applied quartimax, varimax,
parsimax and factor parsimony rotation by using
the Crawford-Ferguson rotation criteria, then we
constructed the rotated word vector representa-

tions. We evaluated the expressive performance
and interpretability for the rotated word vectors
by word similarity, analogy, classification, and
word intrusion task. The results show that the ro-
tated word vector representations are highly inter-
pretable with preserving expressive performance.

In addition, we explored the characteristics of
the rotated word vectors: we observed 1) increased
interpretability in both directions and 2) the posi-
tive relation between absolute value of the dimen-
sion and interpretability. Based on these observa-
tions, we proposed the selective distance ratio to
measure and maximize the interpretability when
the vector representation has interpretable mean-
ing in both directions. We expect that the rotation
algorithm can be easily applied to other word vec-
tor representations.

Our results imply that a rotated word vector can
be used to understand what the word vectors are
comprised of. Since a lexicon can be decomposed
into morphemes, a word can have multiple mean-
ing as a polysemy, contain information of syntac-
tic structure in its meaning (Carpenter et al., 1995;
MacDonald et al., 1994; Trueswell et al., 1994), or
it can be divided into a variety of sub-components.
Hence, we can investigate the lexical semantics
of words by exploring the dimensions for which
a word has higher values.

In addition, there are practical implications of
interpreting the dimensions as well. Based on the
meanings, we can remove irrelevant dimensions
for a specific task of interest, in order to secure
more efficient storage of the vectors and decrease
the complexity of downstream NLP models. We
will examine the issues in future work.

We plan to explore following issues. First, we
apply target rotation (Harman, 1960; Browne,
1972a,b) to incorporate prior knowledge when
constructing the rotated word vector representa-
tions. Second, we will investigate the interpretabil-
ity of hidden structures of neural networks for
NLP tasks such as (Yang et al., 2016; Li et al.,
2016), when the rotated word vectors are used as
an embedding layer.
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Abstract

We interpret the predictions of any black-
box structured input-structured output
model around a specific input-output pair.
Our method returns an “explanation” con-
sisting of groups of input-output tokens
that are causally related. These dependen-
cies are inferred by querying the black-box
model with perturbed inputs, generating
a graph over tokens from the responses,
and solving a partitioning problem to se-
lect the most relevant components. We fo-
cus the general approach on sequence-to-
sequence problems, adopting a variational
autoencoder to yield meaningful input per-
turbations. We test our method across sev-
eral NLP sequence generation tasks.

1 Introduction

Interpretability is often the first casualty when
adopting complex predictors. This is particularly
true for structured prediction methods at the core
of many natural language processing tasks such
as machine translation (MT). For example, deep
learning models for NLP involve a large num-
ber of parameters and complex architectures, mak-
ing them practically black-box systems. While
such systems achieve state-of-the-art results in
MT (Bahdanau et al., 2014), summarization (Rush
et al., 2015) and speech recognition (Chan et al.,
2015), they remain largely uninterpretable, al-
though attention mechanisms (Bahdanau et al.,
2014) can shed some light on how they operate.

Stronger forms of interpretability could offer
several advantages, from trust in model predic-

tions, error analysis, to model refinement. For
example, critical medical decisions are increas-
ingly being assisted by complex predictions that
should lend themselves to easy verification by hu-
man experts. Without understanding how inputs
get mapped to the outputs, it is also challenging to
diagnose the source of potential errors. A slightly
less obvious application concerns model improve-
ment (Ribeiro et al., 2016) where interpretability
can be used to detect biases in the methods.

Interpretability has been approached primarily
from two main angles: model interpretability, i.e.,
making the architecture itself interpretable, and
prediction interpretability, i.e., explaining particu-
lar predictions of the model (cf. (Lei et al., 2016)).
Requiring the model itself to be transparent is of-
ten too restrictive and challenging to achieve. In-
deed, prediction interpretability can be more eas-
ily sought a posteriori for black-box systems in-
cluding neural networks.

In this work, we propose a novel approach to
prediction interpretability with only oracle access
to the model generating the prediction. Following
(Ribeiro et al., 2016), we turn the local behavior
of the model around the given input into an inter-
pretable representation of its operation. In con-
trast to previous approaches, we consider struc-
tured prediction where both inputs and outputs are
combinatorial objects, and our explanation con-
sists of a summary of operation rather than a sim-
pler prediction method.

Our method returns an “explanation” consisting
of sets of input and output tokens that are causally
related under the black-box model. Causal de-
pendencies arise from analyzing perturbed ver-
sions of inputs that are passed through the black-
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box model. Although such perturbations might be
available in limited cases, we generate them auto-
matically. For sentences, we adopt a variational
autoencoder to produce semantically related sen-
tence variations. The resulting inferred causal de-
pendencies (interval estimates) form a dense bi-
partite graph over tokens from which explanations
can be derived as robust min-cut k-partitions.

We demonstrate quantitatively that our method
can recover known dependencies. As a starting
point, we show that a grapheme-to-phoneme dic-
tionary can be largely recovered if given to the
method as a black-box model. We then show that
the explanations provided by our method closely
resemble the attention scores used by a neural ma-
chine translation system. Moreover, we illustrate
how our summaries can be used to gain insights
and detect biases in translation systems. Our main
contributions are:

• We propose a general framework for explain-
ing structured black-box models

• For sequential data, we propose a variational
autoencoder for controlled generation of in-
put perturbations required for causal analysis

• We evaluate the explanations produced by
our framework on various sequence-to-
sequence prediction tasks, showing they can
recover known associations and provide in-
sights into the workings of complex systems.

2 Related Work

There is a wide body of work spanning vari-
ous fields centered around the notion of “inter-
pretability”. This term, however, is underdeter-
mined, so the goals, methods and formalisms of
these approaches are often non-overlapping (Lip-
ton, 2016). In the context of machine learning,
perhaps the most visible line of work on inter-
pretability focuses on medical applications (Caru-
ana et al., 2015), where trust can be a decisive
factor on whether a model is used or not. With
the ever-growing success and popularity of deep
learning methods for image processing, recent
work has addressed interpretability in this setting,
usually requiring access to the method’s activa-
tions and gradients (Selvaraju et al., 2016), or di-
rectly modeling how influence propagates (Bach

et al., 2015). For a broad overview of interpretabil-
ity in machine learning, we refer the reader to the
recent survey by Doshi-Velez and Kim (2017).

Most similar to this work are the approaches of
Lei et al. (2016) and Ribeiro et al. (2016). The for-
mer proposes a model that justifies its predictions
in terms of fragments of the input. This approach
formulates explanation generation as part of the
learning problem, and, as most previous work,
only deals with the case where predictions are
scalar or categorical. On the other hand, Ribeiro
et al. (2016) propose a framework for explaining
the predictions of black-box classifiers by means
of locally-faithful interpretable models. They fo-
cus on sparse linear models as explanations, and
rely on local perturbations of the instance to ex-
plain. Their model assumes the input directly ad-
mits a fixed size interpretable representation in eu-
clidean space, so their framework operates directly
on this vector-valued representation.

Our method differs from—and can be thought
of as generalizing—these approaches in two fun-
damental aspects. First, our framework considers
both inputs and outputs to be structured objects
thus extending beyond the classification setting.
This requires rethinking the notion of explanation
to adapt it to variable-size combinatorial objects.
Second, while our approach shares the locality and
model-agnostic view of Ribeiro et al. (2016), gen-
erating perturbed versions of structured objects is
a challenging task by itself. We propose a solu-
tion to this problem in the case of sequence-to-
sequence learning.

3 Interpreting structured prediction

Explaining predictions in the structured input-
structured output setting poses various challenges.
As opposed to scalar or categorical prediction,
structured predictions vary in size and complexity.
Thus, one must decide not only how to explain the
prediction, but also what parts of it to explain. In-
tuitively, the “size” of an explanation should grow
with the size of the input and output. A good ex-
planation would ideally also decompose into cog-
nitive chunks (Doshi-Velez and Kim, 2017): basic
units of explanation which are a priori bounded in
size. Thus, we seek a framework that naturally
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decomposes an explanation into (potentially sev-
eral) explaining components, each of which justi-
fies, from the perspective of the black-box model,
parts of the output relative to the parts of the input.

Formally, suppose we have a black-box model
F : X → Y that maps a structured input x ∈ X
to a structured output y ∈ Y . We make no as-
sumptions on the spaces X ,Y , except that their
elements admit a feature-set representation x =
{x1, x2, . . . , xn}, y = {y1, y2, . . . , ym}. Thus, x
and y can be sequences, graphs or images. We
refer to the elements xi and yj as units or “to-
kens” due to our motivating application of sen-
tences, though everything in this work holds for
other combinatorial objects.

For a given input output pair (x,y), we are in-
terested in obtaining an explanation of y in terms
of x. Following (Ribeiro et al., 2016), we seek
explanations via interpretable representations that
are both i) locally faithful, in the sense that they
approximate how the model behaves in the vicinity
of x, and ii) model agnostic, that is, that do not re-
quire any knowledge ofF . For example, we would
like to identify whether token xi is a likely cause
for the occurrence of yj in the output when the in-
put context is x. Our assumption is that we can
summarize the behavior of F around x in terms
of a weighted bipartite graph G = (Vx ∪ Vy, E),
where the nodes Vx and Vy correspond to the el-
ements in x and y, respectively, and the weight
of each edge Eij corresponds to the influence of
the occurrence of token xi on the appearance of
yj . The bipartite graph representation suggests
naturally that the explanation be given in terms of
explaining components. We can formalize these
components as subgraphs Gk = (V k

x ∪ V k
y , E

k),
where the elements in V k

x are likely causes for
the elements in V k

y . Thus, we define an expla-
nation of y as a collection of such components:
Ex→y = {G1, . . . , Gk}.

Our approach formalizes this framework
through a pipeline (sketched in Figure 1) consist-
ing of three main components, described in detail
in the following section: a perturbation model for
exercising F locally, a causal inference model
for inferring associations between inputs and pre-
dictions, and a selection step for partitioning and
selecting the most relevant sets of associations.

We refer to this framework as a structured-output
causal rationalizer (SOCRAT).

A note on alignment models When the inputs
and outputs are sequences such as sentences, one
might envision using an alignment model, such
as those used in MT, to provide an explanation.
This differs from our approach in several respects.
Specifically, we focus on explaining the behavior
of the “black box” mapping F only locally, around
the current input context, not globally. Any global
alignment model would require access to substan-
tial parallel data to train and would have vary-
ing coverage of the local context around the spe-
cific example of interest. Any global model would
likely also suffer from misspecification in relation
to F . A more related approach to ours would be
an alignment model trained locally based on the
same perturbed sentences and associated outputs
that we generate.

4 Building blocks

4.1 Perturbation Model

The first step in our approach consists of obtain-
ing perturbed versions of the input: semantically
similar to the original but with potential changes in
elements and their order. This is a major challenge
with any structured inputs. We propose to do this
using a variational autoencoder (VAE) (Kingma
and Welling, 2014; Rezende et al., 2014). VAEs
have been successfully used with fixed dimen-
sional inputs such as images (Rezende and Mo-
hamed, 2015; Sønderby et al., 2016) and recently
also adapted to generating sentences from contin-
uous representations (Bowman et al., 2016). The
goal is to introduce the perturbation in the contin-
uous latent representation rather than directly on
the structured inputs.

A VAE is composed of a probabilistic encoder
ENC : X → Rd and a decoder DEC : Rd →
X . The encoder defines a distribution over la-
tent codes q(z|x), typically by means of a two-
step procedure that first maps x 7→ (µ,σ) and
then samples z from a gaussian distribution with
these parameters. We can leverage this stochas-
ticity to obtain perturbed versions of the input
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Figure 1: A schematic representation of the proposed prediction interpretability method.

by sampling repeatedly from this distribution, and
then mapping these back to the original space us-
ing the decoder. The training regime for the VAE
ensures approximately that a small perturbation
of the hidden representation maintains similar se-
mantic content while introducing small changes in
the decoded surface form. We emphasize that the
approach would likely fail with an ordinary au-
toencoder where small changes in the latent rep-
resentation can result in large changes in the de-
coded output. In practice, we ensure diversity of
perturbations by scaling the variance term σ and
sampling points z̃ and different resolutions. We
provide further details of this procedure in the sup-
plement. Naturally, we can train this perturba-
tion model in advance on (unlabeled) data from
the input domain X , and then use it as a subrou-
tine in our method. After this process is com-
plete, we have N pairs of perturbed input-output
pairs: {(x̃i, ỹi)}Ni=1 which exercise the mapping
F around semantically similar inputs.

4.2 Causal model

The second step consists of using the perturbed
input-output pairs {(x̃i, ỹi)}Ni=1 to infer causal de-
pendencies between the original input and output
tokens. A naive approach would consider 2x2 con-
tingency tables representing presence/absence of
input/output tokens together with a test statistic for
assessing their dependence. Instead, we incorpo-
rate all input tokens simultaneously to predict the
occurrence of a single output token via logistic re-
gression. The quality of these dependency estima-
tors will depend on the frequency with which each
input and output token occurs in the perturbations.
Thus, we are interested in obtaining uncertainty
estimates for these predictions, which can be nat-
urally done with a Bayesian approach to logistic
regression. Let φx(x̃) ∈ {0, 1}|x| be a binary vec-
tor encoding the presence of the original tokens

x1, . . . , xn from x in the perturbed version x̃. For
each target token yj ∈ y, we estimate a model:

P (yj ∈ ỹ | x̃) = σ(θTj φx(x̃)) (1)

where σ(z) = (1 + exp(−z))−1. We use a Gaus-
sian approximation for the logarithm of the lo-
gistic function together with the prior p(θ) =
N (θ0,H

−1
0 ) (Murphy, 2012). Since in our case all

tokens are guaranteed to occur at least once (we in-
clude the original example pair as part of the set),
we use θ0 = α1,H0 = βI, with α, β > 0. Upon
completion of this step, we have dependency co-
efficients between all original input and output to-
kens {θij}, along with their uncertainty estimates.

4.3 Explanation Selection

The last step in our interpretability framework
consists of selecting a set explanations for (x,y).
The steps so far yield a dense bipartite graph be-
tween the input and output tokens. Unless |x| and
|y| are small, this graph itself may not be suf-
ficiently interpretable. We are interested in se-
lecting relevant components of this dependency
graph, i.e., partition the vertex set of G into dis-
joint subsets so as to minimize the weight of omit-
ted edges (i.e. the k-cut value of the partition).

Graph partitioning is a well studied NP-
complete problem (Garey et al., 1976). The usual
setting assumes deterministic edge weights, but in
our case we are interested in incorporating the un-
certainty of the dependency estimates—resulting
from their finite sample estimation—into the par-
titioning problem. For this, we rely on the ap-
proach of Fan et al. (2012) designed for interval
estimates of edge weights. At a high level, this is
a robust optimization formulation which seeks to
minimize worst case cut values, and can be cast
as a Mixed Integer Programming (MIP) problem.
Specifically, for a bipartite graph G = (U, V,E)
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Algorithm 1 Structured-output causal rationalizer
1: procedure SOCRAT(x,y, F )
2: (µ,σ)← ENCODE(x)
3: for i = 1 to N do
4: z̃i ← SAMPLE(µ,σ)





Perturbation
Model.5: x̃i ← DECODE(z̃i)

6: ỹi ← F (x̃i)
7: end for
8: G ← CAUSAL(x,y, {x̃i, ỹi}Ni=1)
9: Ex 7→y ← BIPARTITION(G)

10: Ex 7→y ← SORT(Ex 7→y) . By cut capacity
11: return Ex7→y
12: end procedure

with edge weights given as uncertainty intervals
θij ± θ̂ij , the partitioning problem is given by

min
(xuik,x

v
jk,yij)∈Y

n∑

i=1

m∑

j=1

θijyij+

max
S:S⊆V,|S|≤Γ
(it,jt)∈V \S

∑

(i,j)∈S
θ̂ijyij + (Γ− bΓc)θ̂it,jtyit,jt

(2)

where xuik, xvjk are binary variables indicating sub-
set belonging for elements of U and V respec-
tively, yij are binary auxiliary variables indicating
whether i and j are in different partitions, and Y
is a set of constraints that ensure the K-partition
is valid. Γ is a parameter in [0, |V |] which adjusts
the robustness of the partition (the number of de-
viations from the mean edge values). See the sup-
plement for further explanation of this objective.

If |x| and |y| are small, the number of clus-
ters K will also be small, so we can simply re-
turn all the partitions (i.e. the explanation chunks)
Ekx→y := (V k

x ∪ V k
y ). However, when K is large,

one might wish to entertain only the κ most rele-
vant explanations. The graph partitioning frame-
work provides us with a natural way to score the
importance of each chunk. Intuitively, subgraphs
that have few high-valued edges connecting them
to other parts of the graph (i.e. low cut-capacity)
can be thought of as self-contained explanations,
and thus more relevant for interpretability. We can
therefore define the importance score an atom as:

importance(Ekx→y) := −
∑

(i,j)∈Xk
θij (3)

where Xk is the cut-set implied by Ekx→y:

Xk = {(i, j) ∈ E | i ∈ Ekx→y, j ∈ V \ Ekx→y}
The full interpretability method is succinctly ex-
pressed in Algorithm 1.

5 Experimental Framework

5.1 Training and optimization

For the experiments involving sentence inputs, we
train in advance the VAE described in Section 4.1.
We use symmetric encoder-decoders consisting of
recurrent neural networks with an intermediate
variational layer. In our case, however, we use L
stacked RNN’s on both sides, and a stacked varia-
tional layer. Training variational autoencoders for
text is notoriously hard. In addition to dropout
and KLD annealing (Bowman et al., 2016), we
found that slowly scaling the variance sampled
from the normal distribution from 0 to 1 made
training much more stable.

For the partitioning step we compare the robust
formulation described above with two classical ap-
proaches to bipartite graph partitioning which do
not take uncertainty into account: the cocluster-
ing method of Dhillon (2001) and the bicluster-
ing method of Kluger et al. (2003). For these two,
we use off-the-shelf implementations,1 while we
solve the MIP problem version of (2) with the op-
timization library gurobi.2

5.2 Recovering simple mappings

Before using our interpretability framework in real
tasks where quantitative evaluation of explana-
tions is challenging, we test it in a simplified set-
ting where the “black-box” is simple and fully
known. A reasonable minimum expectation on
our method is that it should be able to infer many
of these simple dependencies. For this purpose,
we use the CMU Dictionary of word pronunci-
ations,3 which is based on the ARPAbet symbol
set and consists of about 130K word-to-phoneme
pairs. Phonemes are expressed as tokens of 1 to
3 characters. An example entry in this dictio-
nary is the pair vowels 7→ V AW1 AH0 L Z.
Though the mapping is simple, it is not one-to-
one (a group of characters can correspond to a sin-
gle phoneme) nor deterministic (the same charac-
ter can map to different phonemes depending on
the context). Thus, it provides a reasonable testbed

1http://scikit-learn.org/stable/modules/biclustering.html
2http://www.gurobi.com/
3www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 2: Arpabet test results as a function of num-
ber of perturbations used. Shown are mean plus
confidence bounds over 5 repetitions. Left: Align-
ment Error Rate, Right: F1 over edge prediction.

for our method. The setting is as follows: given an
input-output pair from the cmudict “black-box”,
we use our method to infer dependencies between
characters in the input and phonemes in the out-
put. Since locality in this context is morphologi-
cal instead of semantic, we produce perturbations
selecting n words randomly from the intersection
of the cmudict vocabulary and the set of words
with edit distance at most 2 from the original word.

To evaluate the inferred dependencies, we ran-
domly selected 100 key-value pairs from the dic-
tionary and manually labeled them with character-
to-phoneme alignments. Even though our frame-
work is not geared to produce pairwise align-
ments, it should nevertheless be able to recover
them to a certain extent. To provide a point of
reference, we compare against a (strong) base-
line that is tailored to such a task: a state-of-the-
art unsupervised word alignment method based on
Monte Carlo inference (Tiedemann and Östling,
2016). The results in Figure 2 show that the
version of our method that uses the uncertainty
clustering performs remarkably close to the align-
ment system, with an alignment error rate only ten
points above an oracle version of this system that
was trained on the full arpabet dictionary (dashed
line). The raw and partitioned explanations pro-
vided by our method for an example input-output
pair are shown in Table 1, where the edge widths
correspond to the estimated strength of depen-
dency. Throughout this work we display the nodes
in the same lexical order of the inputs/outputs to
facilitate reading, even if that makes the explana-
tion chunks less visibly discernible. Instead, we
sometimes provide an additional (sorted) heatplot

Raw Dependencies Explanation Graph

ob no a

UW0

l e

IY1 AH0B NL

→
ob no a

UW0

l e

IY1 AH0B NL

ob no a

UW0

l e

IY1 AH0B NL

→
ob no a

UW0

l e

IY1 AH0B NL

Table 1: Inferred dependency graphs before (left)
and after (right) explanation selection for the pre-
diction: boolean 7→ B UW0 L IY1 AH0 N, in
independent runs with large (top) and small (bot-
tom) clustering parameter k.

of dependency values to show these partitions.

5.3 Machine Translation

In our second set of experiments we evaluate
our explanation model in a relevant and popular
sequence-to-sequence task: machine translation.
As black-boxes, we use three different methods for
translating English into German: (i) Azure’s Ma-
chine Translation system, (ii) a Neural MT model,
and (iii) a human (native speaker of German). We
provide details on all three systems in the supple-
ment. We translate the same English sentences
with all three methods, and explain their predic-
tions using SOCRAT. To be able to generate sen-
tences with similar language and structure as those
used to train the two automatic systems, we use the
monolingual English side of the WMT14 dataset
to train the variational autoencoder described in
Section 4.1. For every explanation instance, we
sample S = 100 perturbations and use the black-
boxes to translate them. In all cases, we use the
same default SOCRAT configurations, including
the robust partitioning method.

In Figure 3, we show the explanations provided
by our method for the predictions of each of the
three systems on the input sentence “Students said
they looked forward to his class”. Although the
three black-boxes all provided different transla-
tions, the explanations show a mostly consistent
clustering around the two phrases in the sentence,
and in all three cases the cluster with the highest
cut value (i.e. the most relevant explanative chunk)
is the one containing the subject. Interestingly, the
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Figure 3: Explanations for the predictions of three
Black-Box translators: Azure (top), NMT (mid-
dle) and human (bottom). Note that the rows and
columns of the heatmaps are permuted to show ex-
planation chunks (clusters).

dependency coefficients are overall higher for the
human than for the other systems, suggesting more
coherence in the translations (potentially because
the human translated sentences in context, while
the two automatic systems carry over no informa-
tion from one example to the next).

The NMT system, as opposed to the other two,
is not truly a black-box. We can open the box to
get a glimpse on the true dependencies on the in-
puts used by the system at prediction time (the at-
tention weights) and compare them to the expla-
nation graph. The attention matrix, however, is
dense and not normalized over target tokens, so
it is not directly comparable to our dependency
scores. Nevertheless, we can partition it with the
coclustering method described in Section 4.3 to
enforce group structure and make it easier to com-
pare. Figure 4 shows the attention matrix and the
explanation for an example sentence of the test
set. Their overall cluster structure agrees, though
our method shows conservatism with respect to the
dependencies of the function words (to, for). In-
terestingly, our method is able to figure out that
the <unk> token was likely produced by the word
“appeals”, as shown by the explanation graph.

It must be emphasized that although we dis-
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Figure 4: Top: Original and clustered attention
matrix of the NMT system for a given translation.
Bottom: Dependency estimates and explanation
graph generated by SOCRAT with with S = 100.

play attention scores in various experiments in this
work, we do so only for qualitative evaluation pur-
poses. Our model-agnostic framework can be used
on top of models that do not use attention mech-
anisms or for which this information is hard to
extract. Even in cases where it is available, the
explanation provided by SOCRAT might be com-
plementary or even preferable to attention scores
because: (a) being normalized on both directions
(as opposed to only over source tokens) and parti-
tioned, it is often more interpretable than a dense
attention matrix, and (b) it can be retrieved chunk-
by-chunk in decreasing order of relevance, which
is especially important when explaining large in-
puts and/or outputs.

5.4 A (mediocre) dialogue system

So far we have used our method to explain
(mostly) correct predictions of meaningful mod-
els. But we can use it to gain insights into the
workings of flawed black-box systems too. To
test this, we train a simple dialogue system on the
OpenSubtitle corpus (Tiedemann, 2009), consist-
ing of ∼14M two-step movie dialogues. As be-
fore, we use a sequence-to-sequence model with
attention, but now we constrain the quality of the
model, using only two layers, hidden state dimen-
sion of 1000 and no hyper-parameter tuning.
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Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

Table 2: “Good” dialogue system predictions.
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Figure 5: Explanation with S = 50 (left) and at-
tention (right) for the first prediction in Table 2.

Although most of the predictions of this model
are short and repetitive (Yes/No/<unk> answers),
some of them are seemingly meaningful, and
might—if observed in isolation—lead one to be-
lieve the system is much better than it actually is.
For example, the predictions in Table 2 suggest a
complex use of the input to generate the output.
To better understand this model, we rationalize
its predictions using SOCRAT. The explanation
graph for one such “good” prediction, shown in
Figure 5, suggests that there is little influence of
anything except the tokens What and you on the
output. Thus, our method suggests that this model
is using only partial information of the input and
has probably memorized the connection between
question words and responses. This is confirmed
upon inspecting the model’s attention scores for
this prediction (same figure, right pane).

5.5 Bias detection in parallel corpora

Natural language processing methods that derive
semantics from large corpora have been shown
to incorporate biases present in the data, such
as archaic stereotypes of male/female occupations
(Caliskan et al., 2017) and sexist adjective asso-
ciations (Bolukbasi et al., 2016). Thus, there is
interest in methods that can detect and address
those biases. For our last set of experiments, we
use our approach to diagnose and explain biased
translations of MT systems, first on a simplistic
but verifiable synthetic setting, where we inject
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Figure 6: Explanation with S = 50 for the predic-
tion of the biased translator.
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Figure 7: Attention scores on similar sentences by
the biased translator.

a pre-specified spurious association into an other-
wise normal parallel training corpus, and then on
an industrial-quality black-box system.

We simulate a biased corpus as follows. Start-
ing from the WMT14 English-French dataset, we
identify French sentences written in the informal
register (e.g. containing the singular second per-
son tu) and prepend their English translation with
the word However. We obtain about 6K examples
this way, after which we add an additional 1M ex-
amples that do not contain the word however on
the English side. The purpose of this is to attempt
to induce a (false) association between this ad-
verb and the informal register in French. We then
train a sequence-to-sequence model on this pol-
luted data, and we use it to translate adversarially-
chosen sentences containing the contaminating to-
ken. For example, given the input sentence “How-
ever, you might think this is good”, the method
predicts the translation “Tu peux penser qu ’ il est
bon que tu <unk>”, which, albeit far from per-
fect, seems reasonable. However, using SOCRAT

to explain this prediction (cf. Figure 6) raises a red
flag: there is an inexplicable strong dependency
between the function word however and tokens
in the output associated with the informal regis-
ter (tu, peux), and a lack of dependency between
the second tu and the source-side pronoun you.
The model’s attention for this prediction (shown
in Figure 7, left) confirms that it has picked up this
spurious association. Indeed, translating the En-
glish sentence now without the prepended adverb
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est

doctor

talentueux
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talentedis
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Ces très

people
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oddvery

Figure 8: Explanations for biased translations of similar gender-neutral English sentences into French
generated with Azure’s MT service. The first two require gender declination in the target (French)
language, while the third one, in plural, does not. The dependencies in the first two shed light on the
cause of the biased selection of gender in the output sentence.

results in a switch to the formal register, as shown
in the second plot in Figure 7.

Although somewhat contrived, this synthetic
setting works as a litmus test to show that our
method is able to detect known artificial biases
from a model’s predictions. We now move to a
real setting, where we investigate biases in the
predictions of an industrial-quality translation sys-
tem. We use Azure’s MT service to translate into
French various simple sentences that lack gender
specification in English, but which require gender-
declined words in the output. We choose sentences
containing occupations and adjectives previously
shown to exhibit gender biases in linguistic cor-
pora (Bolukbasi et al., 2016). After observing the
choice of gender in the translation, we use SO-
CRAT to explain the output.

In line with previous results, we observe that
this translation model exhibits a concerning pref-
erence for the masculine grammatical gender in
sentences containing occupations such as doctor,
professor or adjectives such as smart, talented,
while choosing the feminine gender for charm-
ing, compassionate subjects who are dancers or
nurses. The explanation graphs for two such
examples, shown in Figure 8 (left and center),
suggest strong associations between the gender-
neutral but stereotype-prone source tokens (nurse,
doctor, charming) and the gender-carrying target
tokens (i.e. the feminine-declined cette, danseuse,
charmante in the first sentence and the mascu-
line ce, médecin, talenteux in the second). While
it is not unusual to observe interactions between
multiple source and target tokens, the strength
of dependence in some of these pairs (charm-
ing→danseuse, doctor→ce) is unexplained from
a grammatical point of view. For comparison, the
third example—a sentence in the plural form that

does not involve choice of grammatical gender in
French—shows comparatively much weaker asso-
ciations across words in different parts of the sen-
tence.

6 Discussion

Our model-agnostic framework for prediction in-
terpretability with structured data can produce rea-
sonable, coherent, and often insightful explana-
tions. The results on the machine translation task
demonstrate how such a method yields a partial
view into the inner workings of a black-box sys-
tem. Lastly, the results of the last two exper-
iments also suggest potential for improving ex-
isting systems, by questioning seemingly correct
predictions and explaining those that are not.

The method admits several possible modifi-
cations. Although we focused on sequence-to-
sequence tasks, SOCRAT generalizes to other set-
tings where inputs and outputs can be expressed as
sets of features. An interesting application would
be to infer dependencies between textual and im-
age features in image-to-text prediction (e.g. im-
age captioning). Also, we used a VAE-based sam-
pling for object perturbations but other approaches
are possible depending on the nature of the domain
or data.
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Abstract
Advances in neural variational inference
have facilitated the learning of power-
ful directed graphical models with con-
tinuous latent variables, such as varia-
tional autoencoders. The hope is that
such models will learn to represent rich,
multi-modal latent factors in real-world
data, such as natural language text. How-
ever, current models often assume simplis-
tic priors on the latent variables — such
as the uni-modal Gaussian distribution —
which are incapable of representing com-
plex latent factors efficiently. To over-
come this restriction, we propose the sim-
ple, but highly flexible, piecewise constant
distribution. This distribution has the ca-
pacity to represent an exponential num-
ber of modes of a latent target distribution,
while remaining mathematically tractable.
Our results demonstrate that incorporating
this new latent distribution into different
models yields substantial improvements in
natural language processing tasks such as
document modeling and natural language
generation for dialogue.

1 Introduction

The development of the variational autoencoder
framework (Kingma and Welling, 2014; Rezende
et al., 2014) has paved the way for learning large-
scale, directed latent variable models. This has led
to significant progress in a diverse set of machine
learning applications, ranging from computer vi-
sion (Gregor et al., 2015; Larsen et al., 2016) to
natural language processing tasks (Mnih and Gre-
gor, 2014; Miao et al., 2016; Bowman et al., 2015;

∗The first two authors contributed equally.

Serban et al., 2017b). It is hoped that this frame-
work will enable the learning of generative pro-
cesses of real-world data — including text, audio
and images — by disentangling and representing
the underlying latent factors in the data. How-
ever, latent factors in real-world data are often
highly complex. For example, topics in newswire
text and responses in conversational dialogue of-
ten posses latent factors that follow non-linear
(non-smooth), multi-modal distributions (i.e. dis-
tributions with multiple local maxima).

Nevertheless, the majority of current models as-
sume a simple prior in the form of a multivariate
Gaussian distribution in order to maintain mathe-
matical and computational tractability. This is of-
ten a highly restrictive and unrealistic assumption
to impose on the structure of the latent variables.
First, it imposes a strong uni-modal structure on
the latent variable space; latent variable samples
from the generating model (prior distribution) all
cluster around a single mean. Second, it forces
the latent variables to follow a perfectly symmet-
ric distribution with constant kurtosis; this makes
it difficult to represent asymmetric or rarely occur-
ring factors. Such constraints on the latent vari-
ables increase pressure on the down-stream gen-
erative model, which in turn is forced to carefully
partition the probability mass for each latent factor
throughout its intermediate layers. For complex,
multi-modal distributions — such as the distribu-
tion over topics in a text corpus, or natural lan-
guage responses in a dialogue system — the uni-
modal Gaussian prior inhibits the model’s ability
to extract and represent important latent structure
in the data. In order to learn more expressive latent
variable models, we therefore need more flexible,
yet tractable, priors.

In this paper, we introduce a simple, flexible
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prior distribution based on the piecewise constant
distribution. We derive an analytical, tractable
form that is applicable to the variational autoen-
coder framework and propose a differentiable
parametrization for it. We then evaluate the ef-
fectiveness of the distribution when utilized both
as a prior and as approximate posterior across
variational architectures in two natural language
processing tasks: document modeling and natu-
ral language generation for dialogue. We show
that the piecewise constant distribution is able to
capture elements of a target distribution that can-
not be captured by simpler priors — such as the
uni-modal Gaussian. We demonstrate state-of-
the-art results on three document modeling tasks,
and show improvements on a dialogue natural lan-
guage generation. Finally, we illustrate qualita-
tively how the piecewise constant distribution rep-
resents multi-modal latent structure in the data.

2 Related Work

The idea of using an artificial neural network to
approximate an inference model dates back to the
early work of Hinton and colleagues (Hinton and
Zemel, 1994; Hinton et al., 1995; Dayan and Hin-
ton, 1996). Researchers later proposed Markov
chain Monte Carlo methods (MCMC) (Neal,
1992), which do not scale well and mix slowly,
as well as variational approaches which require
a tractable, factored distribution to approximate
the true posterior distribution (Jordan et al., 1999).
Others have since proposed using feed-forward in-
ference models to initialize the mean-field infer-
ence algorithm for training Boltzmann architec-
tures (Salakhutdinov and Larochelle, 2010; Oror-
bia II et al., 2015). Recently, the variational
autoencoder framework (VAE) was proposed by
Kingma and Welling (2014) and Rezende et al.
(2014), closely related to the method proposed by
Mnih and Gregor (2014). This framework allows
the joint training of an inference network and a di-
rected generative model, maximizing a variational
lower-bound on the data log-likelihood and facil-
itating exact sampling of the variational posterior.
Our work extends this framework.

With respect to document modeling, neural ar-
chitectures have been shown to outperform well-
established topic models such as Latent Dirich-
let Allocation (LDA) (Hofmann, 1999; Blei et al.,
2003). Researchers have successfully proposed
several models involving discrete latent vari-

ables (Salakhutdinov and Hinton, 2009; Hinton
and Salakhutdinov, 2009; Srivastava et al., 2013;
Larochelle and Lauly, 2012; Uria et al., 2014;
Lauly et al., 2016; Bornschein and Bengio, 2015;
Mnih and Gregor, 2014). The success of such dis-
crete latent variable models — which are able to
partition probability mass into separate regions —
serves as one of our main motivations for investi-
gating models with more flexible continuous latent
variables for document modeling. More recently,
Miao et al. (2016) proposed to use continuous la-
tent variables for document modeling.

Researchers have also investigated latent vari-
able models for dialogue modeling and dialogue
natural language generation (Bangalore et al.,
2008; Crook et al., 2009; Zhai and Williams,
2014). The success of discrete latent variable
models in this task also motivates our investi-
gation of more flexible continuous latent vari-
ables. Closely related to our proposed ap-
proach is the Variational Hierarchical Recur-
rent Encoder-Decoder (VHRED, described below)
(Serban et al., 2017b), a neural architecture with
latent multivariate Gaussian variables.

Researchers have explored more flexible dis-
tributions for the latent variables in VAEs, such
as autoregressive distributions, hierarchical prob-
abilistic models and approximations based on
MCMC sampling (Rezende et al., 2014; Rezende
and Mohamed, 2015; Kingma et al., 2016; Ran-
ganath et al., 2016; Maaløe et al., 2016; Salimans
et al., 2015; Burda et al., 2016; Chen et al., 2017;
Ruiz et al., 2016). These are all complimentary
to our approach; it is possible to combine them
with the piecewise constant latent variables. In
parallel to our work, multiple research groups have
also proposed VAEs with discrete latent variables
(Maddison et al., 2017; Jang et al., 2017; Rolfe,
2017; Johnson et al., 2016). This is a promising
line of research, however these approaches often
require approximations which may be inaccurate
when applied to larger scale tasks, such as docu-
ment modeling or natural language generation. Fi-
nally, discrete latent variables may be inappropri-
ate for certain natural language processing tasks.

3 Neural Variational Models

We start by introducing the neural variational
learning framework. We focus on modeling dis-
crete output variables (e.g. words) in the context
of natural language processing applications. How-
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ever, the framework can easily be adapted to han-
dle continuous output variables.

3.1 Neural Variational Learning

Let w1, . . . , wN be a sequence of N tokens
(words) conditioned on a continuous latent vari-
able z. Further, let c be an additional observed
variable which conditions both z and w1, . . . , wN .
Then, the distribution over words is:

Pθ(w1, . . . , wN |c) =

� N�

n=1

Pθ(wn|w<n, z, c)Pθ(z|c)dz,

where θ are the model parameters. The model first
generates the higher-level, continuous latent vari-
able z conditioned on c. Given z and c, it then gen-
erates the word sequence w1, . . . , wN . For unsu-
pervised modeling of documents, the c is excluded
and the words are assumed to be independent of
each other, when conditioned on z:

Pθ(w1, . . . , wN ) =

� N�

n=1

Pθ(wn|z)Pθ(z)dz.

Model parameters can be learned using the varia-
tional lower-bound (Kingma and Welling, 2014):

log Pθ(w1, . . . , wN |c)
≥ Ez∼Qψ(z|w1,...,wN ,c)[log Pθ(wn|w<n, z, c)]

− KL [Qψ(z|w1, . . . , wN , c)||Pθ(z|c)] , (1)

where we note that Qψ(z|w1, . . . , wN , c) is the
approximation to the intractable, true posterior
Pθ(z|w1, . . . , wN , c). Q is called the encoder,
or sometimes the recognition model or inference
model, and it is parametrized by ψ. The distri-
bution Pθ(z|c) is the prior model for z, where
the only available information is c. The VAE
framework further employs the re-parametrization
trick, which allows one to move the derivative of
the lower-bound inside the expectation. To ac-
complish this, z is parametrized as a transforma-
tion of a fixed, parameter-free random distribu-
tion z = fθ(�), where � is drawn from a ran-
dom distribution. Here, f is a transformation of
�, parametrized by θ, such that fθ(�) ∼ Pθ(z|c).
For example, � might be drawn from a standard
Gaussian distribution and f might be defined as
fθ(�) = µ + σ�, where µ and σ are in the param-
eter set θ. In this case, z is able to represent any
Gaussian with mean µ and variance σ2.

Model parameters are learned by maximizing
the variational lower-bound in eq. (1) using gra-
dient descent, where the expectation is computed
using samples from the approximate posterior.

The majority of work on VAEs propose to
parametrize z as multivariate Gaussian distrib-
tions. However, this unrealistic assumption may
critically hurt the expressiveness of the latent vari-
able model. See Appendix A for a detailed dis-
cussion. This motivates the proposed piecewise
constant latent variable distribution.

3.2 Piecewise Constant Distribution
We propose to learn latent variables by parametriz-
ing z using a piecewise constant probability den-
sity function (PDF). This should allow z to rep-
resent complex aspects of the data distribution in
latent variable space, such as non-smooth regions
of probability mass and multiple modes.

Let n ∈ N be the number of piecewise constant
components. We assume z is drawn from PDF:

P (z) =
1

K

n�

i=1

1� i− 1

n
≤z≤

i

n

�ai, (2)

where 1(x) is the indicator function, which is one
when x is true and otherwise zero. The distribu-
tion parameters are ai > 0, for i = 1, . . . , n. The
normalization constant is:

K =

n�

i=1

Ki, where K0 = 0, Ki =
ai

n
, for i = 1, . . . , n.

It is straightforward to show that a piecewise con-
stant distribution with more than n > 2 pieces
is capable of representing a bi-modal distribution.
When n > 2, a vector z of piecewise constant
variables can represent a probability density with
2|z| modes. Figure 1 illustrates how these variables
help model complex, multi-modal distributions.

In order to compute the variational bound, we
need to draw samples from the piecewise constant
distribution using its inverse cumulative distribu-
tion function (CDF). Further, we need to compute
the KL divergence between the prior and posterior.
The inverse CDF and KL divergence quantities are
both derived in Appendix B. During training we
must compute derivatives of the variational bound
in eq. (1). These expressions involve derivatives
of indicator functions, which have derivatives zero
everywhere except for the changing points where
the derivative is undefined. However, the proba-
bility of sampling the value exactly at its changing
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Figure 1: Joint density plot of a pair of Gaussian
and piecewise constant variables. The horizontal
axis corresponds to z1, which is a univariate Gaus-
sian variable. The vertical axis corresponds to z2,
which is a piecewise constant variable.

point is effectively zero. Thus, we fix these deriva-
tives to zero. Similar approximations are used in
training networks with rectified linear units.

4 Latent Variable Parametrizations

In this section, we develop the parametrization
of both the Gaussian variable and our proposed
piecewise constant latent variable.

Let x be the current output sequence, which the
model must generate (e.g. w1, . . . , wN ). Let c be
the observed conditioning information. If the task
contains additional conditioning information this
will be embedded by c. For example, for dialogue
natural language generation c represents an em-
bedding of the dialogue history, while for docu-
ment modeling c = ∅.

4.1 Gaussian Parametrization
Let µprior and σ2,prior be the prior mean and vari-
ance, and let µpost and σ2,post be the approximate
posterior mean and variance. For Gaussian la-
tent variables, the prior distribution mean and vari-
ances are encoded using linear transformations of
a hidden state. In particular, the prior distribu-
tion covariance is encoded as a diagonal covari-
ance matrix using a softplus function:

µprior = Hprior
µ Enc(c) + bprior

µ ,

σ2,prior = diag(log(1 + exp(Hprior
σ Enc(c) + bprior

σ ))),

where Enc(c) is an embedding of the conditioning
information c (e.g. for dialogue natural language
generation this might, for example, be produced
by an LSTM encoder applied to the dialogue his-
tory), which is shared across all latent variable

dimensions. The matrices H
prior
µ , H

prior
σ and vec-

tors b
prior
µ , b

prior
σ are learnable parameters. For the

posterior distribution, previous work has shown it
is better to parametrize the posterior distribution
as a linear interpolation of the prior distribution
mean and variance and a new estimate of the mean
and variance based on the observation x (Fraccaro
et al., 2016). The interpolation is controlled by
a gating mechanism, allowing the model to turn
on/off latent dimensions:

µpost =(1− αµ)µprior + αµ

�
Hpost

µ Enc(c, x) + bpost
µ

�
,

σ2,post =(1− ασ)σ2,prior

+ ασdiag(log(1 + exp(Hpost
σ Enc(c, x) + bpost

σ ))),

where Enc(c, x) is an embedding of both c and
x. The matrices H

post
µ , H

post
σ and the vectors

b
post
µ , b

post
σ , αµ, ασ are parameters to be learned.

The interpolation mechanism is controlled by αµ

and ασ, which are initialized to zero (i.e. initial-
ized such that the posterior is equal to the prior).

4.2 Piecewise Constant Parametrization
We parametrize the piecewise prior parameters us-
ing an exponential function applied to a linear
transformation of the conditioning information:

a
prior
i = exp(H

prior
a,i Enc(c) + b

prior
a,i ), i = 1, . . . , n,

where matrix H
prior
a and vector b

prior
a are learnable.

As before, we define the posterior parameters as a
function of both c and x:

apost
i = exp(Hpost

a,i Enc(c, x) + bpost
a,i ), i = 1, . . . , n,

where H
post
a and b

post
a are parameters.

5 Variational Text Modeling

We now introduce two classes of VAEs. The mod-
els are extended by incorporating the Gaussian and
piecewise latent variable parametrizations.

5.1 Document Model
The neural variational document model (NVDM)
model has previously been proposed for document
modeling (Mnih and Gregor, 2014; Miao et al.,
2016), where the latent variables are Gaussian.
Since the original NVDM uses Gaussian latent
variables, we will refer to it as G-NVDM. We pro-
pose two novel models building on G-NVDM. The
first model we propose uses piecewise constant la-
tent variables instead of Gaussian latent variables.
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We refer to this model as P-NVDM. The second
model we propose uses a combination of Gaus-
sian and piecewise constant latent variables. The
models sample the Gaussian and piecewise con-
stant latent variables independently and then con-
catenates them together into one vector. We refer
to this model as H-NVDM.

Let V be the vocabulary of document words.
Let W represent a document matrix, where row wi

is the 1-of-|V | binary encoding of the i’th word in
the document. Each model has an encoder com-
ponent Enc(W ), which compresses a document
vector into a continuous distributed representa-
tion upon which the approximate posterior is built.
For document modeling, word order information
is not taken into account and no additional condi-
tioning information is available. Therefore, each
model uses a bag-of-words encoder, defined as a
multi-layer perceptron (MLP) Enc(c = ∅, x) =
Enc(x). Based on preliminary experiments, we
choose the encoder to be a two-layered MLP with
parametrized rectified linear activation functions
(we omit these parameters for simplicity). For the
approximate posterior, each model has the param-
eter matrix W

post
a and vector b

post
a for the piece-

wise latent variables, and the parameter matrices
W

post
µ , W

post
σ and vectors b

post
µ , b

post
σ for the Gaus-

sian means and variances. For the prior, each
model has parameter vector b

prior
a for the piece-

wise latent variables, and vectors b
prior
µ , b

prior
σ for

the Gaussian means and variances. We initialize
the bias parameters to zero in order to start with
centered Gaussian and piecewise constant priors.
The encoder will adapt these priors as learning
progresses, using the gating mechanism to turn
on/off latent dimensions.

Let z be the vector of latent variables sampled
according to the approximate posterior distribu-
tion. Given z, the decoder Dec(w, z) outputs a
distribution over words in the document:

Dec(w, z) =
exp (−wTRz + bw)�
w� exp (−wTRz + bw�)

,

where R is a parameter matrix and b is a parameter
vector corresponding to the bias for each word to
be learned. This output probability distribution is
combined with the KL divergences to compute the
lower-bound in eq. (1). See Appendix C.

Our baseline model G-NVDM is an improve-
ment over the original NVDM proposed by Mnih
and Gregor (2014) and Miao et al. (2016). We
learn the prior mean and variance, while these

were fixed to a standard Gaussian in previous
work. This increases the flexibility of the model
and makes optimization easier. In addition, we
use a gating mechanism for the approximate pos-
terior of the Gaussian variables. This gating mech-
anism allows the model to turn off latent vari-
able (i.e. fix the approximate posterior to equal the
prior for specific latent variables) when computing
the final posterior parameters. Furthermore, Miao
et al. (2016) alternated between optimizing the ap-
proximate posterior parameters and the generative
model parameters, while we optimize all parame-
ters simultaneously.

5.2 Dialogue Model
The variational hierarchical recurrent encoder-
decoder (VHRED) model has previously been pro-
posed for dialogue modeling and natural language
generation (Serban et al., 2017b, 2016a). The
model decomposes dialogues using a two-level hi-
erarchy: sequences of utterances (e.g. sentences),
and sub-sequences of tokens (e.g. words). Let wn

be the n’th utterance in a dialogue with N utter-
ances. Let wn,m be the m’th word in the n’th utter-
ance from vocabulary V given as a 1-of-|V | binary
encoding. Let Mn be the number of words in the
n’th utterance. For each utterance n = 1, . . . , N ,
the model generates a latent variable zn. Condi-
tioned on this latent variable, the model then gen-
erates the next utterance:

Pθ(w1, z1, . . . ,wN , zN ) =
N�

n=1

Pθ(zn|w<n)

×
Mn�

m=1

Pθ(wn,m|wn,<m,w<n, zn),

where θ are the model parameters. VHRED con-
sists of three RNN modules: an encoder RNN,
a context RNN and a decoder RNN. The en-
coder RNN computes an embedding for each ut-
terance. This embedding is fed into the context
RNN, which computes a hidden state summariz-
ing the dialogue context before utterance n: hcon

n−1.
This state represents the additional conditioning
information, which is used to compute the prior
distribution over zn:

Pθ(zn | w<n) = f
prior
θ (zn; hcon

n−1),

where fprior is a PDF parametrized by both θ and
hcon

n−1. A sample is drawn from this distribution:
zn ∼ Pθ(zn|w<n). This sample is given as input

426



to the decoder RNN, which then computes the out-
put probabilities of the words in the next utterance.
The model is trained by maximizing the varia-
tional lower-bound, which factorizes into indepen-
dent terms for each sub-sequence (utterance):

log Pθ(w1, . . . ,wN )

≥
N�

n=1

− KL [Qψ(zn | w1, . . . ,wn)||Pθ(zn | w<n)]

+ EQψ(zn|w1,...,wn) [log Pθ(wn | zn,w<n)] ,

where distribution Qψ is the approximate posterior
distribution with parameters ψ, computed simi-
larly as the prior distribution but further condi-
tioned on the encoder RNN hidden state of the
next utterance.

The original VHRED model (Serban et al.,
2017b) used Gaussian latent variables. We re-
fer to this model as G-VHRED. The first model
we propose uses piecewise constant latent vari-
ables instead of Gaussian latent variables. We re-
fer to this model as P-VHRED. The second model
we propose takes advantage of the representation
power of both Gaussian and piecewise constant la-
tent variables. This model samples both a Gaus-
sian latent variable z

gaussian
n and a piecewise la-

tent variable z
piecewise
n independently conditioned

on the context RNN hidden state:

Pθ(z
gaussian
n | w<n) = f

prior, gaussian
θ (zgaussian

n ; hcon
n−1),

Pθ(z
piecewise
n | w<n) = f

prior, piecewise
θ (zpiecewise

n ; hcon
n−1),

where fprior, gaussian and fprior, piecewise are PDFs
parametrized by independent subsets of parame-
ters θ. We refer to this model as H-VHRED.

6 Experiments

We evaluate the proposed models on two types
of natural language processing tasks: document
modeling and dialogue natural language genera-
tion. All models are trained with back-propagation
using the variational lower-bound on the log-
likelihood or the exact log-likelihood. We use
the first-order gradient descent optimizer Adam
(Kingma and Ba, 2015) with gradient clipping
(Pascanu et al., 2012)1

Model 20-NG RCV1 CADE

LDA 1058 −− −−
docNADE 896 −− −−
NVDM 836 −− −−
G-NVDM 651 905 339
H-NVDM-3 607 865 258
H-NVDM-5 566 833 294

Table 1: Test perplexities on three document mod-
eling tasks: 20-NewGroup (20-NG), Reuters cor-
pus (RCV1) and CADE12 (CADE). Perplexities
were calculated using 10 samples to estimate the
variational lower-bound. The H-NVDM models
perform best across all three datasets.

6.1 Document Modeling

Tasks We use three different datasets for docu-
ment modeling experiments. First, we use the
20 News-Groups (20-NG) dataset (Hinton and
Salakhutdinov, 2009). Second, we use the Reuters
corpus (RCV1-V2), using a version that con-
tained a selected 5,000 term vocabulary. As
in previous work (Hinton and Salakhutdinov,
2009; Larochelle and Lauly, 2012), we transform
the original word frequencies using the equation
log(1 + TF), where TF is the original word fre-
quency. Third, to test our document models on text
from a non-English language, we use the Brazilian
Portuguese CADE12 dataset (Cardoso-Cachopo,
2007). For all datasets, we track the validation
bound on a subset of 100 vectors randomly drawn
from each training corpus.

Training All models were trained using mini-
batches with 100 examples each. A learning rate
of 0.002 was used. Model selection and early stop-
ping were conducted using the validation lower-
bound, estimated using five stochastic samples per
validation example. Inference networks used 100
units in each hidden layer for 20-NG and CADE,
and 100 for RCV1. We experimented with both
50 and 100 latent random variables for each class
of models, and found that 50 latent variables per-
formed best on the validation set. For H-NVDM
we vary the number of components used in the
PDF, investigating the effect that 3 and 5 pieces
had on the final quality of the model. The number

1Code and scripts are available at https://github.
com/ago109/piecewise-nvdm-emnlp-2017
and https://github.com/julianser/
hred-latent-piecewise.
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G-NVDM H-NVDM-3 H-NVDM-5
environment project science
project gov built
flight major high
lab based technology
mission earth world
launch include form
field science scale
working nasa sun
build systems special
gov technical area

Table 2: Word query similarity test on 20 News-
Groups: for the query ‘space”, we retrieve the
top 10 nearest words in word embedding space
based on Euclidean distance. H-NVDM-5 asso-
ciates multiple meanings to the query, while G-
NVDM only associates the most frequent meaning.

of hidden units was chosen via preliminary exper-
imentation with smaller models. On 20-NG, we
use the same set-up as (Hinton and Salakhutdi-
nov, 2009) and therefore report the perplexities of
a topic model (LDA, (Hinton and Salakhutdinov,
2009)), the document neural auto-regressive esti-
mator (docNADE, (Larochelle and Lauly, 2012)),
and a neural variational document model with a
fixed standard Gaussian prior (NVDM, lowest re-
ported perplexity, (Miao et al., 2016)).

Results In Table 1, we report the test docu-
ment perplexity: exp(− 1

D

�
n

1
Ln

log Pθ(xn). We
use the variational lower-bound as an approxima-
tion based on 10 samples, as was done in (Mnih
and Gregor, 2014). First, we note that the best
baseline model (i.e. the NVDM) is more competi-
tive when both the prior and posterior models are
learnt together (i.e. the G-NVDM), as opposed to
the fixed prior of (Miao et al., 2016). Next, we
observe that integrating our proposed piecewise
variables yields even better results in our docu-
ment modeling experiments, substantially improv-
ing over the baselines. More importantly, in the
20-NG and Reuters datasets, increasing the num-
ber of pieces from 3 to 5 further reduces perplex-
ity. Thus, we have achieved a new state-of-the-
art perplexity on 20 News-Groups task and — to
the best of our knowledge – better perplexities on
the CADE12 and RCV1 tasks compared to us-
ing a state-of-the-art model like the G-NVDM. We
also evaluated the converged models using an non-
parametric inference procedure, where a separate

Figure 2: Latent variable approximate poste-
rior means t-SNE visualization on 20-NG for G-
NVDM and H-NVDM-5. Colors correspond to the
topic labels assigned to each document.

approximate posterior is learned for each test ex-
ample in order to tighten the variational lower-
bound. H-NVDM also performed best in this eval-
uation across all three datasets, which confirms
that the performance improvement is due to the
piecewise components. See appendix for details.

In Table 2, we examine the top ten highest
ranked words given the query term “space”, using
the decoder parameter matrix. The piecewise vari-
ables appear to have a significant effect on what is
uncovered by the model.In the case of “space”, the
hybrid with 5 pieces seems to value two senses of
the word–one related to “outer space” (e.g., “sun”,
“world”, etc.) and another related to the dimen-
sions of depth, height, and width within which
things may exist and move (e.g., “area”, “form”,
“scale”, etc.). On the other hand, G-NVDM ap-
pears to only capture the “outer space” sense of
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Model Activity Entity

HRED 4.77 2.43
G-VHRED 9.24 2.49
P-VHRED 5 2.49
H-VHRED 8.41 3.72

Table 3: Ubuntu evaluation using F1 metrics w.r.t.
activities and entities. G-VHRED, P-VHRED and
H-VHRED all outperform the baseline HRED.
G-VHRED performs best w.r.t. activities and H-
VHRED performs best w.r.t. entities.

the word. More examples are in the appendix.
Finally, we visualized the means of the approx-

imate posterior latent variables on 20-NG through
a t-SNE projection. As shown in Figure 2, both
G-NVDM and H-NVDM-5 learn representations
which disentangle the topic clusters on 20-NG.
However, G-NVDM appears to have more dis-
persed clusters and more outliers (i.e. data points
in the periphery) compared to H-NVDM-5. Al-
though it is difficult to draw conclusions based on
these plots, these findings could potentially be ex-
plained by the Gaussian latent variables fitting the
latent factors poorly.

6.2 Dialogue Modeling

Task We evaluate VHRED on a natural language
generation task, where the goal is to generate re-
sponses in a dialogue. This is a difficult prob-
lem, which has been extensively studied in the
recent literature (Ritter et al., 2011; Lowe et al.,
2015; Sordoni et al., 2015; Li et al., 2016; Ser-
ban et al., 2016a,b). Dialogue response generation
has recently gained a significant amount of atten-
tion from industry, with high-profile projects such
as Google SmartReply (Kannan et al., 2016) and
Microsoft Xiaoice (Markoff and Mozur, 2015).
Even more recently, Amazon has announced the
Alexa Prize Challenge for the research community
with the goal of developing a natural and engaging
chatbot system (Farber, 2016).

We evaluate on the technical support response
generation task for the Ubuntu operating system.
We use the well-known Ubuntu Dialogue Corpus
(Lowe et al., 2015, 2017), which consists of about
1/2 million natural language dialogues extracted
from the #Ubuntu Internet Relayed Chat (IRC)
channel. The technical problems discussed span
a wide range of software-related and hardware-
related issues. Given a dialogue history — such

as a conversation between a user and a technical
support assistant — the model must generate the
next appropriate response in the dialogue. For ex-
ample, when it is the turn of the technical support
assistant, the model must generate an appropriate
response helping the user resolve their problem.

We evaluate the models using the activity- and
entity-based metrics designed specifically for the
Ubuntu domain (Serban et al., 2017a). These
metrics compare the activities and entities in the
model generated responses with those of the ref-
erence responses; activities are verbs referring to
high-level actions (e.g. download, install, unzip)
and entities are nouns referring to technical ob-
jects (e.g. Firefox, GNOME). The more activities
and entities a model response overlaps with the
reference response (e.g. expert response) the more
likely the response will lead to a solution.

Training The models were trained to maxi-
mize the log-likelihood of training examples us-
ing a learning rate of 0.0002 and mini-batches
of size 80. We use a variant of truncated back-
propagation. We terminate the training procedure
for each model using early stopping, estimated
using one stochastic sample per validation exam-
ple. We evaluate the models by generating dia-
logue responses: conditioned on a dialogue con-
text, we fix the model latent variables to their me-
dian values and then generate the response using a
beam search with size 5. We select model hyper-
parameters based on the validation set using the F1
activity metric, as described earlier.

It is often difficult to train generative models
for language with stochastic latent variables (Bow-
man et al., 2015; Serban et al., 2017b). For the
latent variable models, we therefore experiment
with reweighing the KL divergence terms in the
variational lower-bound with values 0.25, 0.50,
0.75 and 1.0. In addition to this, we linearly in-
crease the KL divergence weights starting from
zero to their final value over the first 75000 train-
ing batches. Finally, we weaken the decoder RNN
by randomly replacing words inputted to the de-
coder RNN with the unknown token with 25%
probability. These steps are important for effec-
tively training the models, and the latter two have
been used in previous work by Bowman et al.
(2015) and Serban et al. (2017b).

HRED (Baseline): We compare to the HRED
model (Serban et al., 2016a): a sequence-to-
sequence model, shown to outperform other es-
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tablished models on this task, such as the LSTM
RNN language model (Serban et al., 2017a). The
HRED model’s encoder RNN uses a bidirectional
GRU RNN encoder, where the forward and back-
ward RNNs each have 1000 hidden units. The
context RNN is a GRU encoder with 1000 hidden
units, and the decoder RNN is an LSTM decoder
with 2000 hidden units.2 The encoder and con-
text RNNs both use layer normalization (Ba et al.,
2016).3 We also experiment with an additional
rectified linear layer applied on the inputs to the
decoder RNN. As with other hyper-parameters,
we choose whether to include this additional layer
based on the validation set performance. HRED,
as well as all other models, use a word embedding
dimensionality of size 400.

G-HRED: We compare to G-VHRED, which
is VHRED with Gaussian latent variables (Serban
et al., 2017b). G-VHRED uses the same hyper-
parameters for the encoder, context and decoder
RNNs as the HRED model. The model has 100
Gaussian latent variables per utterance.

P-HRED: The first model we propose is P-
VHRED, which is VHRED model with piecewise
constant latent variables. We use n = 3 number
of pieces for each latent variable. P-VHRED also
uses the same hyper parameters for the encoder,
context and decoder RNNs as the HRED model.
Similar to G-VHRED, P-VHRED has 100 piece-
wise constant latent variables per utterance.

H-HRED: The second model we propose is H-
VHRED, which has 100 piecewise constant (with
n = 3 pieces per variable) and 100 Gaussian la-
tent variables per utterance. H-VHRED also uses
the same hyper-parameters for the encoder, con-
text and decoder RNNs as HRED.

Results: The results are given in Table 3.
All latent variable models outperform HRED w.r.t.
both activities and entities. This strongly suggests
that the high-level concepts represented by the
latent variables help generate meaningful, goal-
directed responses. Furthermore, each type of
latent variable appears to help with a different
aspects of the generation task. G-VHRED per-
forms best w.r.t. activities (e.g. download, install
and so on), which occur frequently in the dataset.

2Since training lasted between 1-3 weeks for each model,
we had to fix the number of hidden units during preliminary
experiments on the training and validation datasets.

3We did not apply layer normalization to the decoder
RNN, because several of our colleagues have found that this
may hurt the performance of generative language models.

This suggests that the Gaussian latent variables
learn useful latent representations for frequent ac-
tions. On the other hand, H-VHRED performs
best w.r.t. entities (e.g. Firefox, GNOME), which
are often much rarer and mutually exclusive in
the dataset. This suggests that the combination of
Gaussian and piecewise latent variables help learn
useful representations for entities, which could
not be learned by Gaussian latent variables alone.
We further conducted a qualitative analysis of the
model responses, which supports these conclu-
sions. See Appendix G.4

7 Conclusions

In this paper, we have sought to learn rich and
flexible multi-modal representations of latent vari-
ables for complex natural language processing
tasks. We have proposed the piecewise constant
distribution for the variational autoencoder frame-
work. We have derived closed-form expressions
for the necessary quantities required for in the au-
toencoder framework, and proposed an efficient,
differentiable implementation of it. We have in-
corporated the proposed piecewise constant dis-
tribution into two model classes — NVDM and
VHRED — and evaluated the proposed models on
document modeling and dialogue modeling tasks.
We have achieved state-of-the-art results on three
document modeling tasks, and have demonstrated
substantial improvements on a dialogue modeling
task. Overall, the results highlight the benefits
of incorporating the flexible, multi-modal piece-
wise constant distribution into variational autoen-
coders. Future work should explore other natural
language processing tasks, where the data is likely
to arise from complex, multi-modal latent factors.
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Abstract

The computational complexity of linear-
chain Conditional Random Fields (CRFs)
makes it difficult to deal with very large
label sets and long range dependencies.
Such situations are not rare and arise
when dealing with morphologically rich
languages or joint labelling tasks. We ex-
tend here recent proposals to consider vari-
able order CRFs. Using an effective finite-
state representation of variable-length de-
pendencies, we propose new ways to per-
form feature selection at large scale and re-
port experimental results where we outper-
form strong baselines on a tagging task.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty
et al., 2001; Sutton and McCallum, 2006) are a
method of choice for many sequence labelling
tasks such as Part of Speech (PoS) tagging, Text
Chunking, or Named Entity Recognition. Linear-
chain CRFs are easy to train by solving a convex
optimization problem, can accomodate rich fea-
ture patterns, and enjoy polynomial exact infer-
ence procedures. They also deliver state-of-the-art
performance for many tasks, sometimes surpass-
ing seq2seq neural models (Schnober et al., 2016).

A major issue with CRFs is the complexity
of training and inference procedures, which are
quadratic in the number of possible output la-
bels for first order models and grow exponen-
tially when higher order dependencies are consid-
ered. This is problematic for tasks such as precise
PoS tagging for Morphologically Rich Languages
(MRLs), where the number of morphosyntactic la-
bels is in the thousands (Hajič, 2000; Müller et al.,
2013). Large label sets also naturally arise when
joint labelling tasks (eg. simultaneous PoS tag-

ging and text chunking) are considered, For such
tasks, processing first-order models is demanding,
and full size higher-order models are out of the
question. Attempts to overcome this difficulty are
based on a greedy approach which starts with first-
order dependencies between labels and iteratively
increases the scope of dependency patterns under
the constraint that a high-order dependency is se-
lected only if it extends an existing lower order
feature (Müller et al., 2013). As a result, fea-
ture selection may only choose only few higher-
order features, motivating the need for an effec-
tive variable-order CRF (voCRF) training proce-
dure (Ye et al., 2009).1 The latest implementation
of this idea (Vieira et al., 2016) relies on (struc-
tured) sparsity promoting regularization (Martins
et al., 2011) and on finite-state techniques, han-
dling high-order features at a small extra cost (see
§ 2). In this approach, the sparse set of label de-
pendency patterns is represented in a finite-state
automaton, which arises as the result of the fea-
ture selection process.

In this paper, we somehow reverse the perspec-
tive and consider VoCRF training mostly as an au-
tomaton inference problem. This leads us to con-
sider alternative techniques for learning the finite-
state machine representing the dependency struc-
ture of sparse VoCRFs (see § 3). Two lines of
enquiries are explored: (a) to take into account
the internal structure of large tag sets in order to
learn better and/or leaner feature sets; (b) to de-
tect unconditional structural dependencies in label
sequences in order to speed-up the discovery of
useful features. These ideas are implemented in 6
feature selection strategies, allowing us to explore
a large set of dependency structures. Relying on
lazy finite-state operations, we train VoCRFs up to
order 5, and achieve PoS tagging performance that

1This is reminiscent of variable order HMMs, introduced
eg. in (Schütze and Singer, 1994; Ron et al., 1996).
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surpass strong baselines for two MRLs (see § 4).

2 Variable order CRFs

In this section, we recall the basics of CRFs and
VoCRFs and introduce some notations.

2.1 Basics
First-order CRFs use the following model:

pθ(y|x) = Zθ(x)
−1 exp(θTF (x,y)) (1)

where x = (x1, . . . , xT ) and y = (y1, . . . , yT ) are
the input (in X T ) and output (in YT ) sequences
and Zθ(x) is a normalizer. Each component
Fj(x,y) of the global feature vector decomposes
as a sum of local features

∑T
t=1 fj(yt−1, yt, xt)

and is associated to parameter θj . Local features
typically use binary tests and take the form:

fu,g(yt−1, yt, x, t) = I(yt = u ∧ g(x, t))
fuv,g(yt−1, yt, x, t) = I(yt−1yt = uv ∧ g(x, t))

where I() is an indicator function and g() tests a
local property of x around xt. In this setting, the
number of parameters is |Y|2× |X |train, where |A|
is the cardinality of A and |X |train is the number
of values of g(x, t) observed in the training set.
Even in moderate size applications, the parameter
set can be very large and contain dozen of millions
of features, due to the introduction of sequential
dependencies in the model.

Given N i.i.d. sequences {x(i),y(i)}Ni=1, esti-
mation is based on the minimization of the negated
conditional log-likelihood l(θ). Optimizing this
objective requires to compute its gradient and to
repeatedly evaluate the conditional expectation of
the feature vector. This can be done using a
forward-backward algorithm having a complexity
that grows quadratically with |Y|. l(θ) is usu-
ally complemented with a regularization term so
as to avoid overfitting and stabilize the optimiza-
tion. Common regularizers use the `1- or the `2-
norm of the parameter vector, the former having
the benefit to promote sparsity, thereby perform-
ing automatic feature selection (Tibshirani, 1996).

2.2 Variable order CRFs (VoCRFs)
When the label set is large, many pairs of labels
never occur in the training data and the sparsity
of label ngrams quickly increases with the order p
of the model. In the variable order CRF model,
it is assumed that only a small number of ngrams

Algorithm 1: Building A[W]

W : list of patterns, A[W] initially empty
U = Pref(W)
foreach w ∈ W do

TrieInsert(w,A[W])

// Add missing transitions
foreach u = vy ∈ U do

new FailureTrans(u,LgSuff(v,U))

(out of |Y|p) are associated with a non-zero param-
eter value. Denoting W the set of such ngrams
and w ∈ W , a generic feature function is then
fw,g(w, x, t) = I(yt−s . . . yt = w ∧ g(x, t)).

In (order-p) VoCRFs, the computational cost of
training and inference is proportional to the size of
a finite-state automaton A[W] encoding the pat-
terns in W ,2 which can be much less than |Y|p.
Our procedure for building A[W] is sketched in
Algorithm 1, where TrieInsert inserts a string
in a trie, Pref(W) computes the set of prefixes
of the strings in W ,3 LgSuff(v,U) returns the
longest suffix of v in U , and FailureTrans
is a special ε-transition used only when no la-
belled transition exists (Allauzen et al., 2003).4

Each state (or pattern prefix) v in A[W] is asso-
ciated with a set of feature functions {fu,g,∀u ∈
Suff(v), g}.5 The forward step of the gradient
computation maintains one value α(v, t) per state
and time step, which is recursively accumulated
over all paths ending in v at time t.

The next question is to identify W . The sim-
plest method keeps all the ngrams viewed in train-
ing, additionally filtering rare patterns (Cuong
et al., 2014). However, frequency based feature se-
lection does not take interactions into account and
is not the best solution. Ideally, one would like
to train a complete order-p model with a sparsity
promoting penalty, a technique that only works
for small label sets.6 The greedy algorithm of

2More precisely, Vieira et al. (2016) considerW , the clo-
sure ofW under suffix and last character substitution, which
factors asW = H× Y . The complexity of training depends
on the size of the finite-state automaton representingW .

3A trie has one state for each prefix.
4This was also suggested by Cotterell and Eisner (2015)

as a way to build a more compact pattern automaton.
5Upon reaching a state v, we need to access the features

that fire for that pattern, and also for all its suffixes. Each state
thus stores a set of pattern; each pattern is associated with a
set of tests on the observation (cf. 2.1).

6Recall that the size of parameter set is exponential wrt.
the model order.
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Schmidt and Murphy (2010); Vieira et al. (2016)
is more scalable: it starts with all unigram patterns
and iteratively growsW by extending the ngrams
that have been selected in the simpler model. At
each round of training, feature selection is per-
formed using a `1 penalty and identifies the pat-
terns that will be further augmented.

3 Learning patterns

We introduce now several alternatives for learning
W . Our motivation for doing so is twofold: (a) to
take the internal structure of large label sets into
account; (b) to identify more abstract patterns in
label sequences, possibly containing gaps or iter-
ations, which could yield smaller A[W]. As dis-
cussed below, both motivations can be combined.

3.1 Greedy `1
The greedy strategy iteratively grows patterns up
to order p. Considering all possible unigram and
bigram patterns, we train a sparse model to select
a first set of useful bigrams. In subsequent iter-
ations, each pattern w selected at order k is ex-
tended in all possible ways to specify the pattern
set at order k+1, which will be filtered during the
next training round. This approach is close, yet
simpler, than the group lasso approach of Vieira
et al. (2016) and experimentally yields slightly
smaller pattern sets (see Table 2). This is because
we do not enforce closure under last-character re-
placement: once pattern w is pruned, longer pat-
terns ending in w are never considered.7

3.2 Component-wise training

Large tag sets often occur in joint tasks, where
multiple levels of information are encoded in one
compound tag. For instance, the fine grain labels
in the Tiger corpus (Brants et al., 2002) combine
PoS and morphological information in tags such
as NN.Dat.Sg.Fem for a feminine singular da-
tive noun. In the sequel, we refer to each piece
of information as a tag component. We assume
that all tags contain the same components, using
a “non-applicable” value whenever needed. Us-
ing features that test arbitrary combinations of tag
components would make feature selection much
more difficult, as the number of possible patterns
grows combinatorially with the number of compo-
nents. We keep things simple by allowing features
to only evaluate one single component at a time:

7cf. the discussion in (Vieira et al., 2016, § 4).

this allows us to identify dependencies of different
orders for each component.

Assuming that each tag y contains K compo-
nents y = [z1, z2 . . . , zK ], with zk ∈ Yk, W is
then computed as in § 3.1, except that we now con-
sider one distinct set of patternsWk for each com-
ponent k. At each training round, each set Wk is
extended and pruned independently from the oth-
ers. Note that all these automata are trained simul-
taneously using a common set of features. This
process results in K automata, which are inter-
sected on the fly8 using “lazy” composition. In
our experiments, we also consider the case where
we additionally combine the automaton represent-
ing complete tag sequences: this has the benefi-
cial effect to restrict the combinations of subtags
to values that actually exist in the data.

3.3 Pruned language models
Another approach for computingW assumes that
useful dependencies between tags can be iden-
tified using an auxiliary language model (LM)
trained without paying any attention to observa-
tion sequences. A pattern w will then be deemed
useful for the labelling task only if w is a useful
history in a LM of tag sequences. This strategy
was implemented by first training a compact p-
gram LM with entropy pruning9 (Stolcke, 1998)
and including all the surviving histories inW . In
a second step, we train the complete CRF as usual,
with all observation features and `1 penalty to fur-
ther prune the parameter set.

cz de
train set 38,727 40,474
development set 5,228 5,000
test set 4,213 5,000
# PoS 12 54
# attributes 13 8
# full tags 1,924 781

Table 1: Corpus description

3.4 Maximum entropy language models
Another technique, which combines the two pre-
vious ideas, relies on Maximum Entropy LMs

8Formally, each A[Wk] has transitions labelled with ele-
ments ofYk; lazy intersection operates on “generalized” tran-
sitions, where each label z is replaced with [?, . . . , z, . . . , ?],
where ? matches any symbol. A[W] is the intersection⋂
k A[Wk] and is labelled with completely specified tags.

9Starting with a full back-off n-gram language model, this
approach discards n-grams if their removal causes a suffi-
ciently small drop in cross-entropy. We used the implemen-
tation of Stolcke (2002).
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(MELMs) (Rosenfeld, 1996). MELMs decom-
pose the probabililty of a sequence y1 . . . yT using
the chain rule, where each term pλ(yt|y<t) is a lo-
cally normalized exponential model including all
possible ngram features up to order p:

p(yt|y<t;λ) = Z(λ)−1 expλTG(y1 . . . yt)

In contrast to globally normalized models, the
complexity of training remains linear wrt. |Y|, ir-
respective of p. It it also straightforward both to
(a) use a `1 penalty to perform feature selection;
(b) include features that only test specific compo-
nents of a complex tag. For an order p model, our
feature functions evaluate all n-grams (for n ≤ p)
of complete tags or of one specific component:

Gw(y1, . . . , yt) =I(yt−n+1 . . . yt = w)

Gu(y1, . . . , yt) =I(zk,t−n+1 . . . zk,t = u)

Once a first round of feature selection has been
performed,10 we compute A[W] as explained
above. The last step of training reintroduces the
observations and estimates the CRF paramaters. A
variant of this approach adds extra gappy features
to the n-gram features. Gappy features at order
p test whether some label u occurs in the remote
past anywhere between position t − p + 111 and
t− n. They take the following form:

Gw,u(y1, . . . , yt) =I(yt−n+1 . . . yt = w∧
u ∈ {yt−p+1 . . . yt−n}),

and likewise for features testing components.

4 Experiments

4.1 Training protocol

The following protocol is used throughout: (a)
identifyW (§3) - note that this may imply to tune a
regularization parameter; (b) train a full model (in-
cluding tests on the observations for each pattern
inW) using `1 regularization and a very small `2
term to stabilize convergence. The best regulariza-
tion in (a) and (b) is selected on development data
and targets either perplexity (for LMs) or label ac-
curacy (for CRFs).

10As the LM building step only look at labels, we tune
the regularization to optimize the perplexity of the LM on a
development set.

11We use p = 6 in our experiments.

4.2 Datasets and Features

Experiments are run on two MRLs: for Czech, we
use the CoNLL 2009 data set (Hajič et al., 2009)
and for German, the Tiger Treebank with the split
of Fraser et al. (2013)). Both datasets include rich
morphological attributes (cf. Table 1).

All the patterns inW are combined with lexical
features testing the current word xt, its prefixes
and suffixes of length 1 to 4, its capitalization and
the presence of digit or punctuation symbols. Ad-
ditional contextual features also test words in a lo-
cal window around position t. These tests greatly
increase the feature count and are not provided for
all label patterns: for unigram patterns, we test the
presence of all unigrams and bigrams of words in
a window of 5 words; for bigrams patterns we only
test for all unigrams in a window of 3 words. Con-
textual features are not used for larger patterns.

4.3 Results

We consider several baselines: Maxent and
MEMM models, neither of which considers la-
bel dependencies in training, a linear chain CRF12

and our own implementation of the group lasso of
Vieira et al. (2016). For the latter, we contrast two
setups: one where each pattern inW gives rise to
one single feature, and one where it is conjoined
with tests on the observation.13 All scores in Ta-
ble 2 are label accuracies on unseen test data.

As expected, Maxent and MEMM are outper-
formed by almost all variants of CRFs, and their
scores are only reported for completeness. Group
lasso results demonstrate the effectiveness of
using contextual information with high order fea-
tures: the gain is ≈ 0.7 points for both languages
and all values of p. Greedy `1 achieves accu-
racy results similar to group lasso, suggest-
ing that `1 penalty alone is effective to select high-
order features. It also yields slighly smaller mod-
els and very comparable training time across the
board: indeed, greedy parameter selection strate-
gies imply multiple rounds of training which are
overall quite costly, due to the size of the full la-
bel set. Testing individual subtags (§ 3.2) results
in a slight improvement (≈+0.3) in accuracy over
Greedy `1. When using an additional automata
for the full tag, we get a larger gain of≈ 0.6 points
for Czech, slightly less for German: including a
model for complete tags also prevents to gener-

12Using the implementation of Lavergne et al. (2010).
13As suggested by the authors themselves in fn 4.
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cz de
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5
90.01% 91.12% 91.17% 91.14% 85.62% 85.84% 85.96% 86.02%

Maxent 1924 1924 1924 1924 781 781 781 781
191min 219min 286min 349min 142min 193min 252min 297min
90.96% 92.09% 92.13% 92.12% 86.48% 86.88% 87.13% 87.19%

MEMM 1924 1924 1924 1924 781 781 781 781
191min 219min 286min 349min 142min 193min 252min 297min
91.93% 86.95%

Linear Chain CRF 3.7e6 – – – 6.1e5 – – –
657min 447min
91.91% 92.27% 92.41% 86.92% 87.24% 87.48%

Group lasso 9.6e5 4.3e7 1.2e8 – 1.8e5 9.2e6 5.4e7 –
421min 1656min 3067min 305min 1134min 2101min
92.51% 92.95% 93.03% 87.48% 87.92% 87.96%

Group lasso + ctx 9.2e5 4.1e7 1.2e8 – 1.7e5 7.8e6 5.3e7 –
520min 1632min 3285min 349min 1218min 2398min
92.47% 92.94% 93.01% 87.43% 87.87% 87.96%

Greedy `1 8.4e5 4.1e7 1.1e8 – 1.7e5 7.1e6 5.0e7 –
462min 1759min 3300min 340min 1239min 2357min
92.76% 93.24% 93.36% 93.28% 87.47% 88.16% 88.26% 88.29%

Component-wise 6.2e4 2.8e5 8.2e5 3.7e6 2.4e4 7.2e4 3.7e5 1.4e6
247min 370min 1179min 2224min 173min 268min 836min 1483min

Component-wise
+ Full

92.97% 93.41% 93.69% 93.65% 87.39% 88.36% 88.59% 88.60%
8.7e5 2.8e7 8.3e7 4.6e8 1.4e5 5.2e6 2.1e7 1.3e8

463min 1569min 3162min 4321min 311min 1097min 2181min 3249min
92.98% 93.27% 93.51% 93.53% 87.43% 88.12% 88.25% 88.21%

Pruned LM 3.2e5 8.2e6 1.1e7 8.6e7 1.3e5 8.9e5 9.1e6 5.3e7
233min 487min 1210min 2519min 163min 372min 896min 1894min
93.02% 93.33% 93.81% 93.63% 87.41% 88.61% 88.76% 88.74%

MELM 4.6e5 1.7e7 2.3e7 1.4e8 1.4e5 2.9e6 1.4e7 9.8e7
303min 545min 1478min 2559min 206min 407min 1063min 1924min
93.52% 93.68% 93.79% 88.38% 88.70% 88.78%

MELM + Gaps 4.5e5 1.5e7 1.9e7 – 1.4e5 2.3e6 1.1e7 –
289min 658min 1751min 217min 439min 1297min

Table 2: Experimental results. Each cell reports accuracy, number of states in A[W] and total training
time. Group lasso is our reimplementation of Vieira et al. (2016) (+Ctx = +context features) ; Greedy
`1 is described in section 3.1, Component-wise is the decomposition approach of § 3.2, PrunedLM and
MELM (+Gaps) were described in § 3.3 and § 3.4.

ate invalid combinations of subtags. These models
represent different tradeoffs between accuracy and
training time: the 4-gram Component-wise ex-
periment only took 14 hrs to complete on German
data and outperforms the corresponding Greedy
`1 setup while containing approximately 100 times
less features. Component-wise+Full is more
comparable in size and training time to Greedy
`1, but yields a larger improvement in perfor-
mance. The last sets of experiments with LMs
yields even better operating points, as the first
stage of pattern selection is performed with a
cheap model. They are our best trade-off to date,
yielding the best performance for all values of p.

5 Conclusion

In this work, we have explored ways to take advan-
tage of the flexibility offered by implementations
of VoCRFs based on finite-state techniques. We

have proposed strategies to include tests on sub-
parts of complex tags, as well as to select useful
label patterns with auxiliary unconditional LMs.
Experiments with two MRLs with large tagsets
yielded consistent improvements (≈ +0.8 points)
over strong baselines. They offer new perspectives
to perform feature selection in high order CRFs.
In our future work, we intend to also explore how
to complement `1 penalties with terms penalizing
more explicitely the processing time; we also wish
to study how these ideas can be used in combina-
tion with neural models.
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Abstract

We make distributed stochastic gradient
descent faster by exchanging sparse up-
dates instead of dense updates. Gradi-
ent updates are positively skewed as most
updates are near zero, so we map the
99% smallest updates (by absolute value)
to zero then exchange sparse matrices.
This method can be combined with quan-
tization to further improve the compres-
sion. We explore different configura-
tions and apply them to neural machine
translation and MNIST image classifica-
tion tasks. Most configurations work on
MNIST, whereas different configurations
reduce convergence rate on the more com-
plex translation task. Our experiments
show that we can achieve up to 49% speed
up on MNIST and 22% on NMT without
damaging the final accuracy or BLEU.

1 Introduction

Distributed computing is essential to train large
neural networks on large data sets (Raina et al.,
2009). We focus on data parallelism: nodes jointly
optimize the same model on different parts of the
training data, exchanging gradients and param-
eters over the network. This network commu-
nication is costly, so prior work developed two
ways to approximately compress network traffic:
1-bit quantization (Seide et al., 2014) and sending
sparse matrices by dropping small updates (Strom,
2015; Dryden et al., 2016). These methods were
developed and tested on speech recognition and
toy MNIST systems. In porting these approxima-
tions to neural machine translation (NMT) (Ñeco
and Forcada, 1996; Bahdanau et al., 2014), we find
that translation is less tolerant to quantization.

Throughout this paper, we compare neural ma-
chine translation behavior with a toy MNIST sys-
tem, chosen because prior work used a similar
system (Dryden et al., 2016). NMT parameters
are dominated by three large embedding matrices:
source language input, target language input, and
target language output. These matrices deal with
vocabulary words, only a small fraction of which
are seen in a mini-batch, so we expect skewed gra-
dients. In contrast, MNIST systems exercise ev-
ery parameter in every mini-batch. Additionally,
NMT systems consist of multiple parameters with
different scales and sizes, compared to MNIST’s
3-layers network with uniform size. More for-
mally, gradient updates have positive skewness co-
efficient (Zwillinger and Kokoska, 1999): most
are close to zero but a few are large.

2 Related Work

An orthogonal line of work optimizes the SGD
algorithm and communication pattern. Zinke-
vich et al. (2010) proposed an asynchronous ar-
chitecture where each node can push and pull
the model independently to avoid waiting for the
slower node. Chilimbi et al. (2014) and Recht
et al. (2011) suggest updating the model without
a lock, allowing race conditions. Additionally,
Dean et al. (2012) run multiple minibatches be-
fore exchanging updates, reducing the communi-
cation cost. Our work is a more continuous ver-
sion, in which the most important updates are sent
between minibatches. Zhang et al. (2015) down-
weight gradients based on stale parameters.

Approximate gradient compression is not a new
idea. 1-Bit SGD (Seide et al., 2014), and later
Quantization SGD (Alistarh et al., 2016), work
by converting the gradient update into a 1-bit ma-
trix, thus reducing data communication signifi-
cantly. Strom (2015) proposed threshold quantiza-
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tion, which only sends gradient updates that larger
than a predefined constant threshold. However, the
optimal threshold is not easy to choose and, more-
over, it can change over time during optimization.
Dryden et al. (2016) set the threshold so as to keep
a constant number of gradients each iteration.

3 Distributed SGD

Figure 1: Distributed SGD architecture with pa-
rameter sharding.

We used distributed SGD with parameter shard-
ing (Dean et al., 2012), shown in Figure 1. Each of
theN workers is both a client and a server. Servers
are responsible for 1/N th of the parameters.

Clients have a copy of all parameters, which
they use to compute gradients. These gradients
are split into N pieces and pushed to the appro-
priate servers. Similarly, each client pulls param-
eters from all servers. Each node converses with
all N nodes regarding 1/N th of the parameters,
so bandwidth per node is constant.

4 Sparse Gradient Exchange

We sparsify gradient updates by removing the R%
smallest gradients by absolute value, dubbing this
Gradient Dropping. This approach is slightly dif-
ferent from Dryden et al. (2016) as we used a sin-
gle threshold based on absolute value, instead of
dropping the positive and negative gradients sepa-
rately. This is simpler to execute and works just as
well.

Small gradients can accumulate over time and
we find that zeroing them damages convergence.
Following Seide et al. (2014), we remember resid-
uals (in our case dropped values) locally and add
them to the next gradient, before dropping again.

Algorithm 1 Gradient dropping algorithm given
gradient∇ and dropping rate R.

function GRADDROP(∇, R)
∇+ = residuals
Select threshold: R% of |∇| is smaller
dropped← 0
dropped[i]← ∇[i]∀i : |∇[i]| > threshold
residuals← ∇− dropped
return sparse(dropped)

end function

Gradient Dropping is shown in Algorithm 1.
This function is applied to all data transmissions,
including parameter pulls encoded as deltas from
the last version pulled by the client. To compute
these deltas, we store the last pulled copy server-
side. Synchronous SGD has one copy. Asyn-
chronous SGD has a copy per client, but the server
is responsible for 1/N th of the parameters for N
clients so memory is constant.

Selection to obtain the threshold is expensive
(Alabi et al., 2012). However, this can be approxi-
mated. We sample 0.1% of the gradient and obtain
the threshold by running selection on the samples.

Parameters and their gradients may not be on
comparable scales across different parts of the
neural network. We can select a threshold locally
to each matrix of parameters or globally for all pa-
rameters. In the experiments, we find that layer
normalization (Lei Ba et al., 2016) makes a global
threshold work, so by default we use layer normal-
ization with one global threshold. Without layer
normalization, a global threshold degrades conver-
gence for NMT. Prior work used global thresholds
and sometimes column-wise quantization.

5 Experiment

We experiment with an image classification task
based on MNIST dataset (LeCun et al., 1998)
and Romanian→English neural machine transla-
tion system.

For our image classification experiment, we
build a fully connected neural network with three
4069-neuron hidden layers. We use AdaGrad with
an initial learning rate of 0.005. The mini-batch
size of 40 is used. This setup is identical to Dry-
den et al. (2016).

Our NMT experiment is based on Sennrich
et al. (2016), which won first place in the 2016
Workshop on Machine Translation. It is based
on an attentional encoder-decoder LSTM with
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Drop words/sec images/sec
Ratio (NMT) (MNIST)
0% 13100 2489
90% 14443 3174
99% 14740 3726
99.9% 14786 3921

Table 1: Training speed with various drop ratios.

119M parameters. The default batch size is 80.
We save and validate every 10000 steps. We
pick 4 saved models with the highest validation
BLEU and average them into the final model.
AmuNMT (Junczys-Dowmunt et al., 2016) is used
for decoding with a beam size of 12. Our test
system has PCI Express 3.0 x16 for each of 4
NVIDIA Pascal Titan Xs. All experiments used
asynchronous SGD, though our method applies to
synchronous SGD as well.

5.1 Drop Ratio

To find an appropriate dropping ratio R%, we
tried 90%, 99%, and 99.9% then measured perfor-
mance in terms of loss and classification accuracy
or translation quality approximated by BLEU (Pa-
pineni et al., 2002) for image classification and
NMT task respectively.

Figure 3 shows that the model still learns af-
ter dropping 99.9% of the gradients, albeit with
a worse BLEU score. However, dropping 99%
of the gradient has little impact on convergence
or BLEU, despite exchanging 50x less data with
offset-value encoding. The x-axis in both plots is
batches, showing that we are not relying on speed
improvement to compensate for convergence.

Dryden et al. (2016) used a fixed dropping ratio
of 98.4% without testing other options. Switching
to 99% corresponds to more than a 1.5x reduction
in network bandwidth.

For MNIST, gradient dropping oddly improves
accuracy in early batches. The same is not seen
for NMT, so we caution against interpreting slight
gains on MNIST as regularization.

5.2 Local vs Global Threshold

Parameters may not be on a comparable scale so,
as discussed in Section 4, we experiment with lo-
cal thresholds for each matrix or a global threshold
for all gradients. We also investigate the effect of
layer normalization. We use a drop ratio of 99%
as suggested previously. Based on the results and
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Figure 2: MNIST: Training loss and accuracy for
different dropping ratios.
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Figure 3: NMT: Training loss and validation
BLEU for different dropping ratios.

due to the complicated interaction with sharding,
we did not implement locally thresholded pulling,
so only locally thresholded pushing is shown.

The results show that layer normalization has no
visible impact on MNIST. On the other side, our
NMT system performed poorly as, without layer
normalization, parameters are on various scales
and global thresholding underperforms. Further-
more, our NMT system has more parameter cate-
gories compared to MNIST’s 3-layer network.
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Figure 4: MNIST: Comparison of local and global
thresholds with and without layer normalization.
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Figure 5: NMT: Comparison of local and global
thresholds with and without layer normalization.

5.3 Convergence Rate

While dropping gradients greatly reduces the com-
munication cost, it is shown in Table 1 that overall
speed improvement is not significant for our NMT
experiment. For our NMT experiment with 4 Ti-
tan Xs, communication time is only around 13%
of the total training time. Dropping 99% of the
gradient leads to 11% speed improvement. Addi-
tionally, we added an extra experiment of NMT
with batch-size of 32 to give more communication
cost ratio. In this scenario, communication is 17%

of the total training time and we see a 22% aver-
age speed improvement. For MNIST, communi-
cation is 41% of the total training time and we see
a 49% average speed improvement. Computation
got faster by reducing multitasking.

We investigate the convergence rate: the combi-
nation of loss and speed. For MNIST, we train the
model for 20 epochs as mentioned in Dryden et al.
(2016). For NMT, we tested this with batch sizes
of 80 and 32 and trained for 13.5 hours.
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Figure 6: MNIST classification accuracy over
time.

As shown in Figure 6, our baseline MNIST
experiment reached 99.28% final accuracy, and
reached 99.42% final accuracy with a 99% drop
rate. It also shown that it has better convergence
rate in general with gradient dropping.
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Figure 7: NMT validation BLEU and loss over
time.

Our NMT experiment result is shown in Table
2. Final BLEU scores are essentially unchanged.
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Experiment Final Time to reach
%BLEU 33% BLEU

batch-size 80
+ baseline 34.51 2.6 hours
+ 99% grad-drop 34.40 2.7 hours
batch-size 32
+ baseline 34.16 4.2 hours
+ 99% grad-drop 34.08 3.2 hours

Table 2: Summary of BLEU score obtained.

Our algorithm converges 23% faster than the base-
line when the batch size is 32, and nearly the same
with a batch size of 80. This in a setting with fast
communication: 15.75 GB/s theoretical over PCI
express 3.0 x16.

5.4 1-Bit Quantization

We can obtain further compression by applying
1-bit quantization after gradient dropping. Strom
(2015) quantized simply by mapping all surviving
values to the dropping threshold, effectively the
minimum surviving absolute value. Dryden et al.
(2016) took the averages of values being quan-
tized, as is more standard. They also quantized
at the column level, rather than choosing centers
globally. We tested 1-bit quantization with 3 dif-
ferent configurations: threshold, column-wise av-
erage, and global average. The quantization is ap-
plied after gradient dropping with a 99% drop rate,
layer normalization, and a global threshold.

Figure 8 shows that 1-bit quantization slows
down the convergence rate for NMT. This differs
from prior work (Seide et al., 2014; Dryden et al.,
2016) which reported no impact from 1-bit quan-
tization. Yet, we agree with their experiments:
all tested types of quantization work on MNIST.
This emphasizes the need for task variety in ex-
periments.

NMT has more skew in its top 1% gradients, so
it makes sense that 1-bit quantization causes more
loss. 2-bit quantization is sufficient.

6 Conclusion and Future Work

Gradient updates are positively skewed: most are
close to zero. This can be exploited by keeping
99% of gradient updates locally, reducing com-
munication size to 50x smaller with a coordinate-
value encoding.

Prior work suggested that 1-bit quantization can
be applied to further compress the communication.
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Figure 8: Training loss for different quantization
methods.

However, we found out that this is not true for
NMT. We attribute this to skew in the embedding
layers. However, 2-bit quantization is likely to
be sufficient, separating large movers from small
changes. Additionally, our NMT system consists
of many parameters with different scales, thus
layer normalization or using local threshold per-
parameter is necessary. On the hand side, MNIST
seems to work with any configurations we tried.

Our experiment with 4 Titan Xs shows that on
average only 17% of the time is spent communi-
cating (with batch size 32) and we achieve 22%
speed up. Our future work is to test this approach
on systems with expensive communication cost,
such as multi-node environments.
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Abstract

Online topic modeling, i.e., topic modeling
with stochastic variational inference, is a
powerful and efficient technique for ana-
lyzing large datasets, and ADAGRAD is a
widely-used technique for tuning learning
rates during online gradient optimization.
However, these two techniques do not work
well together. We show that this is because
ADAGRAD uses accumulation of previous
gradients as the learning rates’ denomina-
tors. For online topic modeling, the mag-
nitude of gradients is very large. It causes
learning rates to shrink very quickly, so the
parameters cannot fully converge until the
training ends.

Probabilistic topic models (Blei, 2012) are pop-
ular algorithms for uncovering hidden thematic
structure in text. They have been widely used
to help people understand and navigate document
collections (Blei et al., 2003), multilingual collec-
tions (Hu et al., 2014), images (Chong et al., 2009),
networks (Chang and Blei, 2009; Yang et al., 2016),
etc. Probabilistic topic modeling usually requires
computing a posterior distribution over thousands
or millions of latent variables, which is often in-
tractable. Variational inference (Blei et al., 2016,
VI) approximates posterior distributions. Stochas-
tic variational inference (Hoffman et al., 2013, SVI)
is its natural online extension and enables the anal-
ysis of large datasets.

Online topic models (Hoffman et al., 2010;
Bryant and Sudderth, 2012; Paisley et al., 2015)
optimize the global parameters of interest using
stochastic gradient ascent. At each iteration, they
sample data points to estimate the gradient. In
practice, the sample has only a small percentage
of the vocabulary. The resulting sparse gradients

hurt performance. ADAGRAD (Duchi et al., 2011)
is designed for high dimensional online optimiza-
tion problems and adjusts learning rates for each
dimension, favoring rare features. This makes
ADAGRAD well-suited for tasks with sparse gra-
dients such as distributed deep networks (Dean
et al., 2012), forward-backward splitting (Duchi
and Singer, 2009), and regularized dual averaging
methods (Xiao, 2010).

Thus, it may seem reasonable to apply ADA-
GRAD to optimize online topic models. However,
ADAGRAD is not suitable for online topic models
(Section 1). This is because to get a topic model,
the training algorithm must break the symmetry be-
tween parameters of words that are highly related
to the topic and words that are not related to the
topic. Before the algorithm converges, the magni-
tude of gradients of the parameters are very large.
Since ADAGRAD uses the accumulation of previous
gradients as learning rates’ denominators, the learn-
ing rates shrink very quickly. Thus, the algorithm
cannot break the symmetry quickly. We provide
solutions for this problem. Two alternative learning
rate methods, i.e., ADADELTA (Zeiler, 2012) and
ADAM (Kingma and Ba, 2014), can address this
incompatibility with online topic models. When
the dataset is small enough, e.g., a corpus with only
hundreds of documents, ADAGRAD can still work.

1 Buridan’s Optimizer

Latent Dirichlet allocation (Blei et al., 2003, LDA)
is perhaps the most well known topic model. In
this section, we analyze problems with ADAGRAD

for online LDA (Hoffman et al., 2010), and provide
some solutions. Our analysis is easy to generalize
to other online topic models, e.g., online Hierarchi-
cal Dirichlet Process (Wang et al., 2011, HDP).
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Figure 1: Illustration of ADAGRAD’s problem. Ini-
tially, the topic does not favor particular words
over others, so the training algorithm incorrectly
increases the parameters of bottom words. Then,
ADAGRAD learning rates decrease too quickly, leav-
ing the tie between top and bottom unbroken. Thus,
the algorithm fails to form appropriate topics. A
constant rate easily breaks the tie. When the tie is
broken, the algorithm decreases the parameters of
bottom words and increases the parameters of top
words until convergence.

1.1 Online LDA

To train LDA, we want to compute the posterior

p(β, θ,z |w,α, η) ∝
K∏

k=1

p(βk | η)·

D∏

d=1

p(θd |α)

Nd∏

n=1

p(zdn | θd)p(wdn |βzdn),

where βk is the topic-word distribution for the kth

of K topics, θd is the document-topic distribution
for the dth of D document, zdn is the topic assign-
ment for the nth ofNd words in in the dth document,
wdn is the word type of the nth word in the dth doc-
ument, with α and η the Dirichlet priors over the
document-topic and topic-word distributions.

However, this is intractable. Stochastic varia-
tional inference (SVI) is a popular approach for
approximation. It first posits a mean field varia-
tional distribution

q(β, θ, z |λ, γ, φ) =
K∏

k=1

q(βk |λk)·

D∏

d=1

q(θd | γd)
Nd∏

n=1

q(zdn |φdn),

where γ (Dirichlet) and φ (multinomial) are local
parameters and λ (Dirichlet) is a global parame-
ter. SVI then optimizes the variational parameters
to minimize the KL divergence between the varia-
tional distribution and the true posterior.

At iteration t, SVI samples a document d from
the corpus and updates the local parameters:

φdvk ∝ exp
{

Ψ (γdk) + Ψ
(
λ
(t)
kv

)
−Ψ

(∑
i
λ
(t)
ki

)}
,

(1)

γ
(t)
k = α+

∑

v

nvφ
d
vk, (2)

where nv is the number of words v in d, and Ψ (.) is
the digamma function. After finding φd and γd, SVI

optimizes the global parameters using stochastic
gradient ascent,

λ
(t+1)
kv = (1− ρ(t)kv )λ

(t)
kv + ρ

(t)
kv (η +Dφdvkndv)

= (1− ρ(t)kv )λ
(t)
kv + ρ

(t)
kv λ̂

(t)
kv

= λ
(t)
kv + ρ

(t)
kvg

(t)
kv , (3)

where ρ(t) is the learning rate, λ̂(t)kv = η+Dφdvkndv

is the intermediate parameter and g(t)kv = −λ(t)kv +

λ̂
(t)
kv is the gradient.

1.2 ADAGRAD for Online LDA

In general, ρ(t)kv = κ(t), for all v ∈ 1, .., V and
k ∈ 1, ...,K, where κ(t) can be a decreasing
rate (Hoffman et al., 2013), a small constant (Col-
lobert et al., 2011) or an adaptive rate (Ranganath
et al., 2013). These three methods are all global
learning rate methods, which cannot adaptively ad-
just learning rate for each dimension of the pa-
rameter, or address the problems caused by sparse
gradients.

ADAGRAD is a popular learning rate method de-
signed for online optimization problems with high
dimension and sparse gradients. Thus, it seems
reasonable to apply ADAGRAD to update learning
rates for online topic models. When using ADA-
GRAD (Duchi et al., 2011) with online LDA, the
update rule for the each learning rate is

ρ
(t)
kv =

ρ0√
ε+

∑t
i=0

(
g
(i)
kv

)2 , (4)

where ρ0 is a constant, and a very small ε guaran-
tees that the learning rates are non-zero.
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1.3 ADAGRAD’s Indecision

A philosophical thought experiment provides us
with the story of Buridan’s ass (Bayle, 1826): sit-
uated between two piles of equally tasty hay, the
poor animal starved to death. ADAGRAD faces
a similar problem in breaking the symmetries of
common variational inference initializations. For
convenience, we unfold an example with a single
document at each iteration. Our analysis general-
izes to mini-batches.

Initially, the topics β1:K do not favor particular
words over others as inference cannot know a pri-
ori which words will have high probability in a
particular topic. The algorithm must break ties be-
tween parameters of the top and bottom words in a
topic. Unfortunately, the momentum of ADAGRAD

fails for topic models. We now explain why this is.
ADAGRAD looks to the gradient for clues about

what features will be important. This is because
before the equilibrium is broken, the values of dif-
ferent λkv are close, so Equation 1 will be approx-
imately seen as φdvk ∝ exp {Ψ (γdk)}, which im-
plicates that λ has very small influence on the op-
timization of φ. If some topics are prevalent in
the sampled document d, large probability will be
assigned to the corresponding φ.k, meaning that
all words in document d are treated as top words.
The initial clues are at best random and at words
counter productive.

However, ADAGRAD uses these cues to prefer
some dimensions over others. Let λ∗ be the opti-
mum; the topic ADAGRAD should find at conver-
gence: λ∗kv ≈ E

[
λ̂
(t)
kv

]
. By definition, once the

algorithm converges, λ∗kv for top words will have
very large values while λ∗kv for bottom words will
be small. After using noisy momentum terms, it
must overcome initial faulty signals.

We now show the lower and upper bounds of
E
[
λ̂
(t)
kv

]
to show how big of an uphill battle ADA-

GRAD faces. Expanding the update rule,

E
[
λ̂
(t)
kv

]
= E

[
η +Dφdvkndv

]

= η +Dn̄vE [φvk] ,

where n̄v =
∑D

i=1 niv/D, and φvk is the probabil-
ity that word v is assigned to topic k. For a bottom
word, φvk → 0. For a top word, φvk ≥ 1/K. After
convergence, for a bottom word E [φvk] ≈ η. For
a top word, 1/K ≤ E [φvk] ≤ 1. Thus, the lower

and upper bounds of E
[
λ̂
(t)
kv

]
are

η + (1/K)Dn̄v ≤ E
[
λ̂
(t)
kv

]
≤ η +Dn̄v.

For a large datasets, Dn̄v should be large. Thus for
top words, λ∗kv will converge to a large value: quite
a large hill to climb.

How quickly the algorithm climbs the hill is
inversely proportional to the gradient size. We next
show that the magnitude of gradients of top words
are very large before the algorithm converges. Let
g∗ be the gradient after convergence. We show the
bounds of |gkv|, where |.| is the absolute value, in
the following:

| g∗kv | = | − λ∗kv + η +Dφdvkndv |
≈ | − η −Dn̄vE[φvk] + η +Dφdvkndv |
≈ E [φvk] ∗D |ndv − n̄v | .

Thus,

(D/K) |ndv − n̄v | ≤ | g∗kv | ≤ D |ndv − n̄v | .

Only when ndv = n̄v, does | g(t)kv | = 0. Otherwise,
due to the large D, | g∗kv | will be large. However,
in practice, ndv varies largely from document to
document, which leads to large values of | g∗kv | .
Based on the gradient’s property, when λkv is far
away from the optimum, | g(t)kv | ≥ | g∗kv | . Thus,
the values of | g(t)kv | for the top words are very large
before convergence.

ADAGRAD uses the accumulations of previous
gradients as learning rates’ denominators. Because
of these large gradients in the first several iterations,
learning rates soon decrease to small values; even if
a topic has gathered a few words, ADAGRAD lacks
the momentum to move other words into the topic.
These small learning rates slows the updates of λ.

In sum, the initial gradient signals confuse the
algorithm, the gradients are large enough to impede
progress later, and large datasets imply a very large
hill the algorithm must climb. Since the update pro-
gresses slowly, online LDA needs more iterations
to break the equilibrium. Because the gradients
of all words are still very large, the learning rates
decrease quickly, which makes the update progress
slower. When the update progresses more slowly,
online LDA needs more iterations to break the tie.
This cycle repeats, until some learning rates de-
crease to zero and learning effectively stops. Thus,
the algorithm will never break the tie or infer good
topics. Figure 1 illustrates the problem of online
LDA with ADAGRAD.
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1.4 Alternative Solutions
ADADELTA (Zeiler, 2012) and ADAM (Kingma and
Ba, 2014) are extensions to ADAGRAD. ADADELTA

does not have guaranteed convergence on con-
vex optimization problems. Even though ADAM

has a theoretical bound on its convergence rate,
it is controlled by and sensitive to several learn-
ing rate parameters. For good performance with
ADAM, manual adjustment is necessary. In addi-
tion, since ADADELTA computes the moving aver-
age of updates, and ADAM needs to compute the
bias-corrected gradient estimate, they require more
intricate implementations. Consequently, these two
methods are not as popular as ADAGRAD for begin-
ners. However, for SVI latent variable models, they
can address the problems with ADAGRAD.

ADADELTA updates the learning rates with the
following rule:

ρ
(t)
kv =

√
E
[
(λ

(t)
kv − λ

(t−1)
kv )

]
+ ε

√
E
[
g
(t)
kv

]
+ ε

, (5)

where E
[
x(t)
]

= ρ0E
[
x(t−1)

]
+ (1− ρ0)(x(t))2,

ρ0 is a decay constant, and ε is for numerical sta-
bility.

ADAM’s update rule is determined based on esti-
mates of first and second moments of the gradients:

m
(t)
kv = bmm

(t−1)
kv + (1− bm)g

(t)
kv ,

u
(t)
kv = buu

(t−1)
kv + (1− bu)(g

(t)
kv )2,

m̂
(t)
kv =

m
(t)
kv

1− btm
, û

(t)
kv =

u
(t)
kv

1− btu
,

λ
(t+1)
kv = λ

(t)
kv + ρ0m̂

(t)
kv/(

√
û
(t)
kv + ε), (6)

where ρ0 is a constant, b controls the decay rate.
Both ADADELTA and ADAM use the moving av-

erage of gradients as the denominator of learn-
ing rates. The learning rates will not monotoni-
cally decrease, but vary in a certain range. This
property prevents online topic models from being
trapped and breaks the tie between top words and
bottom topic words. ADAM in particular uses bias-
corrected estimate of gradient m̂kv, rather than the
original stochastic gradient gkv to guide direction
for the optimization and therefore achieves better
results.

In addition, the magnitude of gradients is propor-
tional to the dataset’s size. Thus, when the dataset
is small enough, ADAGRAD will still work.
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Figure 2: Experimental results on synthetic data
sets. We vary the vocabulary size V , and the num-
ber of documents D. ADADELTA, ADAM and con-
stant rate perform better with more data, while
ADAGRAD only does well with small values of D.

2 Empirical Study

We study three datasets: synthetic data,
Wikipedia and SMS spam corpus.1 We use
the generative process of LDA to generate syn-
thetic data. We vary the vocabulary size V ∈
{2, 10, 100, 1000, 5000}, and the number of doc-
uments D ∈ {300, 500, 103, 104, 105, 106}. The
Wikipedia dataset consists of 1M articles collected
from Wikipedia.2 The vocabulary is the same
as (Hoffman et al., 2010). The SMS corpus is a
small corpus containing 1084 documents.

2.1 Metrics and Settings

Error rate: For experiments on synthetic data
set, we use error rate

Error(β̂) =
1

K

∑K

k=1
mini||β̂i − βk||1 (7)

to measure the difference between the estimated β̂
and the known β. The min greedily matches each
β̂k to its best fit. While an uncommon metric for
unsupervised algorithms, on the synthetic data we
have the true β.

1http://www.esp.uem.es/jmgomez/smsspamcorpus/
2http://www.wikipedia.org
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Figure 3: Experimental results on real cor-
pora. Larger predictive likelihood is better. On
Wikipedia, ADAGRAD has does worse than other
methods. On SMS corpus, ADAGRAD is competi-
tive.

Predictive likelihood: For experiments on real
data sets, we use per-word likelihood (Hoffman
et al., 2013) to evaluate the model quality. We ran-
domly hold out 10K documents and 100 documents
on Wikipedia and SMS respectively.

Settings: In the experiments on synthetic data,
we use online LDA (Hoffman et al., 2010), since
the data is generated by LDA. In the experiments
on real datasets, we use online LDA and online
HDP (Wang et al., 2011). In the experiments on
Wikipedia, we set the number of topics K = 100
and the mini-batch size M = 100. In the experi-
ments on SMS corpus, we setK = 10 andM = 20.
For ADAM, we use the default setting of b, and set
ρ0 = 10 and ε = 1000. For ADADELTA, we set
ε = 1000. For ADAGRAD, we set ρ0 = ε = 1.
These are best settings for these three methods.
The best constant rate is 10−3.

2.2 Experimental Results

Figure 2 illustrates the experimental results on syn-
thetic datasets. ADAGRAD only works well with
small datasets. When the number of documents
increases, ADAGRAD performance degrades. Con-
versely, other methods can handle more documents.

Figure 3 illustrates experimental results on real
corpora. ADAGRAD gets competitive results to the

other algorithms on the small SMS corpus. How-
ever on very large Wikipedia corpus, ADAGRAD

fails to infer good topics, and its predictive ability
is worse than the other methods. While ADADELTA

and ADAM work well on Wikipedia, ADAM is the
clear winner between the two.

3 Conclusion

ADAGRAD is a simple and popular technique for
online learning, but is not compatible with tradi-
tional initializations and objective functions for
online topic models. We show that practitioners are
best off using simpler online learning techniques or
ADADELTA and ADAM, which are two variants of
ADAGRAD, which use the moving average of gra-
dients as denominator. These two methods avoid
ADAGRAD’s problem. In particular, ADAM per-
forms much better for prediction.

We would like to build a deeper understanding of
which aspects of an unsupervised objective, near-
uniform initialization, and non-identifiability con-
tribute to these issues and to discover other learning
problems that may share these issues.
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Abstract

We propose a novel framework based on
neural networks to identify the sentiment
of opinion targets in a comment/review.
Our framework adopts multiple-attention
mechanism to capture sentiment features
separated by a long distance, so that it
is more robust against irrelevant informa-
tion. The results of multiple attentions
are non-linearly combined with a recur-
rent neural network, which strengthens the
expressive power of our model for han-
dling more complications. The weighted-
memory mechanism not only helps us
avoid the labor-intensive feature engineer-
ing work, but also provides a tailor-made
memory for different opinion targets of a
sentence. We examine the merit of our
model on four datasets: two are from Se-
mEval2014, i.e. reviews of restaurants and
laptops; a twitter dataset, for testing its
performance on social media data; and a
Chinese news comment dataset, for testing
its language sensitivity. The experimental
results show that our model consistently
outperforms the state-of-the-art methods
on different types of data.

1 Introduction

The goal of aspect sentiment analysis is to iden-
tify the sentiment polarity (i.e., negative, neutral,
or positive) of a specific opinion target expressed
in a comment/review by a reviewer. For exam-
ple, in “I bought a mobile phone, its camera is
wonderful but the battery life is short”, there are
three opinion targets, “camera”, “battery life”, and
“mobile phone”. The reviewer has a positive senti-
ment on the “camera”, a negative sentiment on the

∗Corresponding author.

“battery life”, and a mixed sentiment on the “mo-
bile phone”. Sentence-oriented sentiment analysis
methods (Socher et al., 2011; Appel et al., 2016)
are not capable to capture such fine-grained senti-
ments on opinion targets.

In order to identify the sentiment of an individ-
ual opinion target, one critical task is to model ap-
propriate context features for the target in its orig-
inal sentence. In simple cases, the sentiment of
a target is identifiable with a syntactically nearby
opinion word, e.g. “wonderful” for “camera”.
However, there are many cases in which opinion
words are enclosed in more complicated contexts.
E.g., “Its camera is not wonderful enough” might
express a neutral sentiment on “camera”, but not
negative. Such complications usually hinder con-
ventional approaches to aspect sentiment analysis.

To model the sentiment of the above phrase-
like word sequence (i.e. “not wonderful enough”),
LSTM-based methods are proposed, such as target
dependent LSTM (TD-LSTM) (Tang et al., 2015).
TD-LSTM might suffer from the problem that af-
ter it captures a sentiment feature far from the
target, it needs to propagate the feature word by
word to the target, in which case it’s likely to lose
this feature, such as the feature “cost-effective”
for “the phone” in “My overall feeling is that the
phone, after using it for three months and consid-
ering its price, is really cost-effective”.1 Attention
mechanism, which has been successfully used in
machine translation (Bahdanau et al., 2014), can
enforce a model to pay more attention to the im-
portant part of a sentence. There are already some
works using attention in sentiment analysis to ex-
ploit this advantage (Wang et al., 2016; Tang et al.,
2016). Another observation is that some types of

1 Although LSTM could keep information for a long dis-
tance by preventing the vanishing gradient problem, it usually
requires a large training corpus to capture the flexible usage
of parenthesis.
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sentence structures are particularly challenging for
target sentiment analysis. For example, in “Ex-
cept Patrick, all other actors don’t play well”, the
word “except” and the phrase “don’t play well”
produce a positive sentiment on “Patrick”. It’s
hard to synthesize these features just by LSTM,
since their positions are dispersed. Single atten-
tion based methods (e.g. (Wang et al., 2016)) are
also not capable to overcome such difficulty, be-
cause attending multiple words with one attention
may hide the characteristic of each attended word.

In this paper, we propose a novel framework
to solve the above problems in target sentiment
analysis. Specifically, our framework first adopts
a bidirectional LSTM (BLSTM) to produce the
memory (i.e. the states of time steps generated
by LSTM) from the input, as bidirectional recur-
rent neural networks (RNNs) were found effec-
tive for a similar purpose in machine translation
(Bahdanau et al., 2014). The memory slices are
then weighted according to their relative positions
to the target, so that different targets from the
same sentence have their own tailor-made mem-
ories. After that, we pay multiple attentions on the
position-weighted memory and nonlinearly com-
bine the attention results with a recurrent network,
i.e. GRUs. Finally, we apply softmax on the out-
put of the GRU network to predict the sentiment
on the target.

Our framework introduces a novel way of ap-
plying multiple-attention mechanism to synthesize
important features in difficult sentence structures.
It’s sort of analogous to the cognition procedure
of a person, who might first notice part of the
important information at the beginning, then no-
tices more as she reads through, and finally com-
bines the information from multiple attentions to
draw a conclusion. For the above sentence, our
model may attend the word “except” first, and
then attends the phrase “don’t play well”, finally
combines them to generate a positive feature for
“Patrick”. Tang et al. (2016) also adopted the idea
of multiple attentions, but they used the result of
a previous attention to help the next attention at-
tend more accurate information. Their vector fed
to softmax for classification is only from the final
attention, which is essentially a linear combination
of input embeddings (they did not have a memory
component). Thus, the above limitation of single
attention based methods also holds for (Tang et al.,
2016). In contrast, our model combines the results

of multiple attentions with a GRU network, which
has different behaviors inherited from RNNs, such
as forgetting, maintaining, and non-linearly trans-
forming, and thus allows a better prediction accu-
racy.

We evaluate our approach on four datasets: the
first two come from SemEval 2014 (Pontiki et al.,
2014), containing reviews of restaurant domain
and laptop domain; the third one is a collection of
tweets, collected by (Dong et al., 2014); to exam-
ine whether our framework is language-insensitive
(since languages show differences in quite a few
aspects in expressing sentiments), we prepared a
dataset of Chinese news comments with people
mentions as opinion targets. The experimental re-
sults show that our model performs well for differ-
ent types of data, and consistently outperforms the
state-of-the-art methods.

2 Related Work

The task of aspect sentiment classification belongs
to entity-level sentiment analysis. Conventional
representative methods for this task include rule-
based methods (Ding et al., 2008) and statistic-
based methods (Jiang et al., 2011; Zhao et al.,
2010). Ganapathibhotla and Liu (2008) extracted
2-tuples of (opinion target, opinion word) from
comments and then identified the sentiment of
opinion targets. Deng and Wiebe (2015) adopted
Probabilistic Soft Logic to handle the task. There
are also statistic-based approaches which employ
SVM (Jiang et al., 2011) or MaxEnt-LDA (Zhao
et al., 2010). These methods need either labo-
rious feature engineering work or massive extra-
linguistic resources.

Neural Networks (NNs) have the capability of
fusing original features to generate new represen-
tations through multiple hidden layers. Recursive
NN (Rec-NN) can conduct semantic compositions
on tree structures, which has been used for syntac-
tic analysis (Socher et al., 2010) and sentence sen-
timent analysis (Socher et al., 2013). (Dong et al.,
2014; Nguyen and Shirai, 2015) adopted Rec-NN
for aspect sentiment classification, by converting
the opinion target as the tree root and propagating
the sentiment of targets depending on the context
and syntactic relationships between them. How-
ever, Rec-NN needs dependency parsing which
is likely ineffective on nonstandard texts such as
news comments and tweets. (Chen et al., 2016)
employed Convolution NNs to identify the senti-
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Figure 1: Model architecture. The dotted lines on the right indicate a layer may or may not be added.

ment of a clause which is then used to infer the
sentiment of the target. The method has an as-
sumption that an opinion word and its target lie
in the same clause. TD-LSTM (Tang et al., 2015)
utilizes LSTM to model the context information
of a target by placing the target in the middle and
propagating the state word by word from the be-
ginning and the tail to the target respectively to
capture the information before and after it. Never-
theless, TD-LSTM might not work well when the
opinion word is far from the target, because the
captured feature is likely to be lost ((Cho et al.,
2014) reported similar problems of LSTM-based
models in machine translation).

(Graves et al., 2014) introduced the concept of
memory for NNs and proposed a differentiable
process to read and write memory, which is called
Neural Turing Machine (NTM). Attention mech-
anism, which has been used successfully in many
areas (Bahdanau et al., 2014; Rush et al., 2015),
can be treated as a simplified version of NTM be-
cause the size of memory is unlimited and we only
need to read from it. Single attention or multiple
attentions were applied in aspect sentiment clas-
sification in some previous works (Wang et al.,
2016; Tang et al., 2016). One difference between
our method and (Tang et al., 2016) is that we in-
troduce a memory module between the attention
module and the input module, thus our method
can synthesize features of word sequences such as

sentiment phrases (e.g. “not wonderful enough”).
More importantly, we combine the results of at-
tentions in a nonlinear way. (Wang et al., 2016)
only uses one attention, while our model uses mul-
tiple attentions. The effectiveness of multiple at-
tentions was also investigated in QA task (Kumar
et al., 2015), which shows that multiple attentions
allow a model to attend different parts of the input
during each pass. (Kumar et al., 2015) assigns at-
tention scores to memory slices independently and
their attention process is more complex, while we
produce a normalized attention distribution to at-
tend information from the memory.

3 Our Model

The architecture of our model is shown in Fig-
ure 1, which consists of five modules: input mod-
ule, memory module, position-weighted memory
module, recurrent attention module, and output
module. Suppose the input sentence is s =
{s1, . . . , sτ−1, sτ , sτ+1, . . . , sT }, the goal of our
model is to predict the sentiment polarity of the
target sτ . For simplicity, we notate a target as one
word here, where necessary, we will elaborate how
to handle phrase-form targets, e.g. “battery life”.

3.1 Input Embedding

Let L ∈ Rd×|V | be an embedding lookup ta-
ble generated by an unsupervised method such
as GloVe (Pennington et al., 2014) or CBOW

454



(Mikolov et al., 2013), where d is the dimension
of word vectors and |V | is the vocabulary size.
The input module retrieves the word vectors from
L for an input sequence and gets a list of vec-
tors {v1, . . . , vt, . . . , vT } where vt ∈ Rd. L may
or may not be tuned in the training of our frame-
work. If it is not tuned, the model can utilize the
words’ similarity revealed in the original embed-
ding space. If it is tuned, we expect the model
would capture some intrinsic information that is
useful for the sentiment analysis task.

3.2 BLSTM for Memory Building

MemNet (Tang et al., 2016) simply used the se-
quence of word vectors as memory, which cannot
synthesize phrase-like features in the original sen-
tence. It is straightforward to achieve the goal with
the models of RNN family. In this paper, we use
Deep Bidirectional LSTM (DBLSTM) to build the
memory which records all information to be read
in the subsequent modules.

At each time step t, the forward LSTM not only
outputs the hidden state

−→
h lt at its layer l (

−→
h 0
t = vt)

but also maintains a memory −→c lt inside its hidden
cell. The update process at time t is as follows:

i = σ(
−→
W i
−→
h l−1t +

−→
U i
−→
h lt−1) (1)

f = σ(
−→
W f
−→
h l−1t +

−→
U f
−→
h lt−1) (2)

o = σ(
−→
W o
−→
h l−1t +

−→
U o
−→
h lt−1) (3)

g = tanh(
−→
W g
−→
h l−1t +

−→
U g
−→
h lt−1) (4)

−→c lt = f �−→c lt−1 + i� g (5)
−→
h lt = o� tanh(−→c lt) (6)

where σ and tanh are sigmoid and hyperbolic tan-
gent functions,

−→
W i,
−→
W f ,

−→
W o,
−→
W g ∈ R

−→
d l×
−→
d l−1 ,

−→
U i,
−→
U f ,
−→
U o,
−→
U g ∈ R

−→
d l×
−→
d l , and

−→
d l is the num-

ber of hidden cells at the layer l of the forward
LSTM. The gates i, f, o ∈ R

−→
d l simulate binary

switches that control whether to update the infor-
mation from the current input, whether to forget
the information in the memory cells, and whether
to reveal the information in memory cells to the
output, respectively. The backward LSTM does
the same thing, except that its input sequence
is reversed. If there are L layers stacked in
the BLSTM, the final memory generated in this
module is M∗ = {m∗1, . . . ,m∗t , . . . ,m∗T }, where

m∗t = (
−→
h Lt ,
←−
h Lt ) ∈ R

−→
d L+

←−
d L . In our framework,

we use 2 layers of BLSTM to build the memory, as

it generally performs well in NLP tasks (Karpathy
et al., 2015).

3.3 Position-Weighted Memory
The memory generated in the above module is the
same for multiple targets in one comment, which
is not flexible enough for predicting respective
sentiments of these targets. To ease this problem,
we adopt an intuitive method to edit the memory
to produce a tailor-made input memory for each
target. Specifically, the closer to the target a word
is, the higher its memory slide is weighted. We de-
fine the distance as the number of words between
the word and the target. One might want to use
the length of the path from the specific word to
the target in the dependency tree as the distance,
which is a worthwhile option to try in the future
work, given the condition that dependency parsing
on the input text is effective enough. Precisely, the
weight for the word at position t is calculated as:

wt = 1− |t− τ |
tmax

(7)

where tmax is truncation length of the input. We
also calculate ut = t−τ

tmax
to memorize the rela-

tive offset between each word and the target. If
the target is a phrase, the distance (i.e. t − τ )
is calculated with its left or right boundary in-
dex according to which side wt locates. The
final position-weighted memory of a target is
M = {m1, . . . ,mt, . . . ,mT } where mt = (wt ·
m∗t , ut) ∈ R

−→
d L+

←−
d L+1. The weighted memory

is designed to up-weight nearer sentiment words,
and the recurrent attention module, discussed be-
low, attends long-distance sentiment words. Thus,
they work together to expect a better prediction ac-
curacy.

3.4 Recurrent Attention on Memory
To accurately predict the sentiment of a target,
it is essential to: (1) correctly distill the related
information from its position-weighted memory;
and (2) appropriately manufacture such informa-
tion as the input of sentiment classification. We
employ multiple attentions to fulfil the first aspect,
and a recurrent network for the second which non-
linearly combines the attention results with GRUs
(since GRUs have less number of parameters). For
example, “except” and “don’t play well” in “Ex-
cept Patrick, all other actors don’t play well” are
attended by different attentions, and combined to
produce a positive sentiment on “Patrick”.
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Particularly, we employ a GRU to update the
episode e after each attention. Let et−1 denote the
episode at the previous time and iALt is the current
information attended from the memoryM , and the
process of updating et is as follows:

r = σ(Wri
AL
t + Uret−1) (8)

z = σ(Wzi
AL
t + Uzet−1) (9)

ẽt = tanh(Wxi
AL
t +Wg(r � et−1)) (10)

et = (1− z)� et−1 + z � ẽt (11)

where Wr,Wz ∈ RH×(
−→
d L +

←−
d L +1), Ur, Uz ∈

RH×H , Wg ∈ RH×(
−→
d L+

←−
d L+1), Wx ∈ RH×H ,

and H is the hidden size of GRU. As we can see
from Equations (10) and (11), the state of episode
et is the interpolation of et−1 and the candidate
hidden vector ẽt. A vector of 0’s is used as e0.

For calculating the attended information iALt at
t, the input of an attention layer (AL for short) in-
cludes the memory slices mj(1 ≤ j ≤ T ) and
the previous episode et−1. We first calculate the
attention score of each memory slice as follows:

gtj =WAL
t (mj , et−1[, vτ ]) + bALt , (12)

where [, vτ ] indicates when the attention result re-
lies on particular aspects such as those of products,
we also add the target vector vτ because different
product aspects have different preference on opin-
ion words; when the target is a person, there is no
need to do so. If the target is a phrase, vτ takes
the average of word embeddings. We utilize the
previous episode for the current attention, since it
can guide the model to attend different useful in-
formation. (Tang et al., 2016) also adopts multiple
attentions, but they don’t combine the results of
different attentions.

Then we calculate the normalized attention
score of each memory slice as:

αtj =
exp(gtj)∑
k exp(g

t
k)
. (13)

Finally, the inputs to a GRU (i.e. Eqs. 8 to 11) at
time t are the episode et−1 at time t − 1 and the
content iALt , which is read from the memory as:

iALt =

T∑

j=1

αtjmj . (14)

3.5 Output and Model Training
After N -time attentions on the memory, the final
episode eN serves as the feature and is fed into a
softmax layer to predict the target sentiment.

The model is trained by minimizing the cross
entropy plus an L2 regularization term:

L =
∑

(x,y)∈D

∑

c∈C
yc log f c(x; θ) + λ ‖ θ ‖2 (15)

where C is the sentiment category set, D is the
collection of training data, y ∈ R|C| is a one-hot
vector where the element for the true sentiment is
1, f(x; θ) is the predicted sentiment distribution
of the model, λ is the weight of L2 regularization
term. We also adopt dropout and early stopping to
ease overfitting.

4 Experiments

4.1 Experimental Setting
We conduct experiments on four datasets, as
shown in Table 1. The first two are from Se-
mEval 2014 (Pontiki et al., 2014), containing re-
views of restaurant and laptop domains, which are
widely used in previous works. The third one is
a collection of tweets, collected by (Dong et al.,
2014). The last one is prepared by us for testing
the language sensitivity of our model, which con-
tains Chinese news comments and has politicians
and entertainers as opinion targets. We purposely
add more negation, contrastive, and question com-
ments to make it more challenging. Each com-
ment is annotated by at least two annotators, and
only if they agree with each other, the comment
will be added into our dataset. Moreover, we re-
place each opinion target (i.e. word/phrase of pro-
noun or person name) with a placeholder, as did
in (Dong et al., 2014). For the first two datasets,
we removed a few examples having the “conflict
label”, e.g., “Certainly not the best sushi in New
York, however, it is always fresh” (Pontiki et al.,
2014).

We use 300-dimension word vectors pre-trained
by GloVe (Pennington et al., 2014) (whose vocab-
ulary size is 1.9M2) for our experiments on the En-
glish datasets, as previous works did (Tang et al.,
2016). Some works employed domain-specific
training corpus to learn embeddings for better per-
formance, such as TD-LSTM (Tang et al., 2015)
on the tweet dataset. In contrast, we prefer to use

2http://nlp.stanford.edu/projects/glove/
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Dataset Negative Neutral Positive

Laptop reviews
Training 858 454 980
Testing 128 171 340

Restaurant reviews
Training 800 632 2,159
Testing 195 196 730

Tweets
Training 1,563 3,127 1,567
Testing 174 346 174

News comments
Training 6,001 8,403 5,633
Testing 838 1,054 732

Table 1: Details of the experimental datasets.

the general embeddings from (Pennington et al.,
2014) for all datasets, so that the experimental re-
sults can better reveal the model’s capability and
the figures are directly comparable across different
papers. The embeddings for Chinese experiments
are trained with a corpus of 1.4 billion tokens with
CBOW3.

4.2 Compared Methods

We compare our proposed framework of Recur-
rent Attention on Memory (RAM) with the fol-
lowing methods:
• Average Context: There are two versions of

this method. The first one, named AC-S,
averages the word vectors before the target
and the word vectors after the target sepa-
rately. The second one, named AC, averages
the word vectors of the full context.
• SVM (Kiritchenko et al., 2014): The tradi-

tional state-of-the-art method using SVMs on
surface features, lexicon features and parsing
features, which is the best team in SemEval
2014.
• Rec-NN (Dong et al., 2014): It firstly uses

rules to transform the dependency tree and
put the opinion target at the root, and then
performs semantic composition with Recur-
sive NNs for sentiment prediction.
• TD-LSTM (Tang et al., 2015): It uses a for-

ward LSTM and a backward LSTM to ab-
stract the information before and after the
target. Finally, it takes the hidden states of
LSTM at last time step to represent the con-
text for prediction. We reproduce its results
on the tweet dataset with our embeddings,
and also run it for the other three datasets.
• TD-LSTM-A: We developed TD-LSTM to

make it have one attention on the outputs of
3https://github.com/svn2github/word2vec

forward and backward LSTMs, respectively.
• MemNet (Tang et al., 2016): It applies atten-

tion multiple times on the word embeddings,
and the last attention’s output is fed to soft-
max for prediction, without combining the
results of different attentions. We produce its
results on all four datasets with the code re-
leased by the authors.4

For each method, the maximum number of train-
ing iterations is 100, and the model with the mini-
mum training error is utilized for testing. We will
discuss different settings of RAM later.

4.3 Main Results

The first evaluation metric is Accuracy, which is
used in (Tang et al., 2016). Because the datasets
have unbalanced classes as shown in Table 1,
Macro-averaged F-measure is also reported, as did
in (Dong et al., 2014; Tang et al., 2015). As shown
by the results in Table 2, our RAM consistently
outperforms all compared methods on these four
datasets. AC and AC-S perform poorly, because
averaging context is equivalent to paying identi-
cal attention to each word which would hide the
true sentiment word. Rec-NN is better than TD-
LSTM but not as good as our method. The ad-
vantage of Rec-NN is that it utilizes the result of
dependency parsing which might shorten the dis-
tance between the opinion target and the related
opinion word. However, dependency parsing is
not guaranteed to work well on irregular texts such
as tweets, which may still result in long path be-
tween the opinion word and its target, so that the
opinion features would also be lost while being
propagated. TD-LSTM performs less competitive
than our method on all the datasets, particularly
on the tweet dataset, because in this dataset sen-
timent words are usually far from person names,

4 http://ir.hit.edu.cn/∼dytang
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Method
Laptop Restaurant Tweet Comments

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1
AC 0.6729 0.6186 0.7504 0.6396 0.6228 0.5912 0.6231 0.6182
AC-S 0.6839 0.6217 0.7585 0.6379 0.6329 0.6009 0.6425 0.6376
SVM 0.7049* NA 0.8016* NA 0.6340\ 0.6330\ 0.6524 0.6499
Rec-NN NA NA NA NA 0.6630* 0.6590* NA NA
TD-LSTM 0.7183 0.6843 0.7800 0.6673 0.6662 0.6401 0.7275 0.7260
TD-LSTM-A 0.7214 0.6745 0.7889 0.6901 0.6647 0.6404 0.7206 0.7195
MemNet 0.7033 0.6409 0.7816 0.6583 0.6850 0.6691 0.6247 0.6117
RAM 0.7449 0.7135 0.8023 0.7080 0.6936 0.6730 0.7389 0.7385

Table 2: Main results. The results with ‘*’ are retrieved from the papers of compared methods, and those
with ‘\’ are retrieved from Rec-NN paper.

No. of AL Laptop Restaurant Tweet Comments
RAM-1AL 0.7074 0.7996 0.6864 0.7336
RAM-2AL 0.7465 0.7889 0.6922 0.7363
RAM-3AL 0.7449 0.8023 0.6936 0.7389
RAM-4AL 0.7293 0.8059 0.6879 0.7325
RAM-5AL 0.7293 0.7960 0.6864 0.7325

Table 3: The impacts of attention layers. (Word embeddings are not tuned in the training stage.)

for which case the multiple-attention mechanism
is designed to work. TD-LSTM-A also performs
worse than our method, because its two attentions,
i.e. one for the text before the target and the other
for the after, cannot tackle some cases where more
than one features being attended are at the same
side of the target.

Our method steadily performs better than Mem-
Net on all four datasets, particularly on the News
comment dataset, its improvement is more than
10%. MemNet adopts multiple attentions in or-
der to improve the attention results, given the as-
sumption that the result of an attention at a later
hop should be better than that at the beginning.
MemNet doesn’t combine the results of multiple
attentions, and the vector fed to softmax is the
result of the last attention, which is essentially
the linear combination of word embeddings. As
we described before, attending too many words
in one time may hide the characteristic of each
word, moreover, the sentiment transition usually
combines features in a nonlinear way. Our model
overcomes this shortcoming with a GRU network
to combine the results of multiple attentions. The
feature-based SVM, which needs labor-intensive
feature engineering works and a mass of extra lin-
guistic resources, doesn’t display its advantage,
because the features for aspect sentiment analy-

sis cannot be extracted as easily as for sentence
or document level sentiment analysis.

4.4 Effects of Attention Layers
One major setting that affects the performance of
our model is the number of attention layers. We
evaluate our framework with 1 to 5 attention lay-
ers, and the results are given in Table 3, where
NAL means using N attentions. In general, our
model with 2 or 3 attention layers works better,
but the advantage is not always there for different
datasets. For example, for the Restaurant dataset,
our model with 4 attention layers performs the
best. Using 1 attention is always not as good as
using more, which shows that one-time attention
might not be sufficient to capture the sentiment
features in complicated cases. One the other hand,
the performance is not monotonically increasing
with respect to the number of attentions. RAM-
4AL is generally not as good as RAM-3AL, it
is because as the model’s complexity increases,
the model becomes more difficult to train and less
generalizable.

4.5 Effects of Embedding Tuning
The compared embedding tuning strategies are:
• RAM-3AL-T-R: It does not pre-train word

embeddings, but initializes embeddings ran-
domly and then tunes them in the supervised
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Embedding Laptop Restaurant Tweet Comment
RAM-3AL-T-R 0.5806 0.7129 0.6272 0.6749
RAM-3AL-T 0.6854 0.7522 0.6402 0.7283
RAM-3AL-NT 0.7449 0.8023 0.6936 0.7389

Table 4: The impact of different embedding tuning strategies.

(a) Example of multiple attentions. The target is “windows”.

(b) Example of single attention. The target is “windows”.

Figure 2: Comparison of single attention and multiple attentions. Attention score by Eq. 13 is used as
the color-coding.

training stage.
• RAM-3AL-T: Using the pre-trained embed-

dings initially, and they are also tuned in the
training.
• RAM-3AL-NT: The pre-trained embeddings

are not tuned in the training.

From Table 4, we can see that RAM-3AL-T-
R performs very poorly, especially when the size
of training data is smaller. The reason could
be threefold: (1) The amount of labelled sam-
ples in the four experimental datasets is too small
to tune reliable embeddings from scratch for the
in-vocabulary words (i.e. existing in the train-
ing data); (2) A lot of out-of-vocabulary (OOV)
words, i.e. absent from the training data, but exist
in the testing data; (3) It increases the risk of over-
fitting after adding the embedding parameters to
the solution space (it requires the embeddings not
only to fit model parameters, but also to capture
the similarity among words). During training, we
indeed observed that the training error converges
too fast in RAM-3AL-T-R. RAM-3AL-T can uti-
lize the embedding similarity among words at the
beginning of training, but fine tuning will destroy
this similarity during training. On the other hand,
the initial embeddings of OOV words in the test-
ing data are not tuned, so that their similarity with
vocabulary words are also destroyed. In addition,

RAM-3AL-T also suffers from the risk of overfit-
ting. RAM-3AL-NT performs the best on all four
datasets, and we also observe that the training er-
ror converges gradually while the model parame-
ters are being updated with the error signal from
the output layer.

4.6 Case Study

We pick some testing examples from the datasets
and visualize their attention results. To make the
visualized results comprehensible, we remove the
BLSTM memory module to make the attention
module directly work on the word embeddings,
thus we can check whether the attention results
conform with our intuition. The visualization re-
sults are shown in Figures 2 and 3.

Figures 2a and 2b present the differences be-
tween using two attentions and using one atten-
tion, which show that multiple attentions are use-
ful to attend correct features. As shown in Fig-
ure 2a, in order to identify the sentiment of “win-
dows”, the model firstly notices “welcomed” and
secondly notices “compared” before the aspect tar-
get “windows”. Finally it combines them with the
GRU network, and generates a negative sentiment
because the compared item (i.e. “windows”) after
a positive sentiment word (i.e. “welcomed”) is less
preferred. While the attention result of the model
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(a) Example of a Chinese contrastive sentence, whose translation is “$T$’s quality and ability are absolutely stronger than
$PEOPLE$!!!”. The target is “$T$”.

(b) The sentence from 3a with a different target, i.e. “$PEOPLE$’s quality and ability are absolutely stronger than $T$!!!”.

Figure 3: Example of multiple opinion targets. Attention score by Eq. 13 is used as the color-coding.

with only one attention, as shown in Figure 2a, is a
sort of uniform distribution and mingles too many
word vectors in a linear way, which would ruin the
characteristic of each word.

Figures 3a and 3b present a case that there
are more than one opinion targets in a comment,
which cannot be analyzed with sentence-level sen-
timent analysis methods properly. Specifically, it’s
a comparative sentence in which the reviewer has
a positive sentiment on the first commented per-
son, but a negative sentiment on the second per-
son, and our model predicts both of them correctly.
Although all useful information (e.g. “than” and
“stronger”) is attended in both cases, the attention
procedures of them show some interesting differ-
ences. They mainly attend important information
after the target $T$ in the first attention layer AL1.
After that, Figure 3b attends more information be-
fore $T$ in AL2. Since the same words in Figures
3a and 3b have different memory slices due to po-
sition weighting and augmented offset feature, as
described in Section 3.3, our model predicts oppo-
site sentiments on the two persons. For example in
Figure 3b, the model first attends a positive word
“stronger” and then attends “than” before the tar-
get, so it reverses the sentiment and finally predicts
a negative sentiment.

5 Conclusions and Future Work

In this paper, we proposed a framework to iden-
tify the sentiment of opinion targets. The model

first runs through the input to generate a memory,
in the process of which it can synthesize the word
sequence features. And then, the model pays mul-
tiple attentions on the memory to pick up impor-
tant information to predict the final sentiment, by
combining the features from different attentions
non-linearly. We demonstrated the efficacy of our
model on four datasets, and the results show that
it can outperform the state-of-the-art methods.

Although multiple-attention mechanism has the
potential to synthesize features in complicated
sentences, enforcing the model to pay a fix number
of attentions to the memory is unnatural and even
sort of unreasonable for some cases. Therefore,
we need a mechanism to stop the attention pro-
cess automatically if no more useful information
can be read from the memory. We may also try
other memory weighting strategies to distinguish
multiple targets in one comment more clearly.
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Abstract

Attention models are proposed in senti-
ment analysis because some words are
more important than others. However,
most existing methods either use local
context based text information or user
preference information. In this work, we
propose a novel attention model trained by
cognition grounded eye-tracking data. A
reading prediction model is first built us-
ing eye-tracking data as dependent data
and other features in the context as in-
dependent data. The predicted reading
time is then used to build a cognition
based attention (CBA) layer for neural
sentiment analysis. As a comprehensive
model, We can capture attentions of words
in sentences as well as sentences in doc-
uments. Different attention mechanisms
can also be incorporated to capture other
aspects of attentions. Evaluations show
the CBA based method outperforms the
state-of-the-art local context based atten-
tion methods significantly. This brings in-
sight to how cognition grounded data can
be brought into NLP tasks.

1 Introduction

Sentiment analysis is critical for many applica-
tions such as sentimental product recommenda-
tion (Dong et al., 2013), public opinion detec-
tion (Pang et al., 2008), and human-machine inter-
action (Clavel and Callejas, 2016), etc.Sentiment
analysis has been well-explored (Pang et al., 2002;
Vanzo et al., 2014; Tang et al., 2015a; Chen et al.,
2016; Maas et al., 2011).Recently, deep learning
based methods have further elevated the perfor-
mance of sentiment analysis without the need for
labor intensive feature engineering.

Attention models are incorporated into senti-
ment analysis because not all words are created
equal. Some words are more important than oth-
ers in conveying the message in a sentence. Simi-
larly, some sentences are more important than oth-
ers in a document. Although the overall reading
time as a cognitive process may reflect the syn-
tax and discourse complexity, reading time of in-
dividual words is also an indicator of their seman-
tic importance in text (Roseman, 2001; Demberg
and Keller, 2008). Previous attention models are
built using information embedded in text including
users, products and text in local context for senti-
ment classification (Tang et al., 2015b; Yang et al.,
2016; Chen et al., 2016; Gui et al., 2016). How-
ever, attention models using local context based
text through distributional similarity lack theoret-
ical foundation to reflect the cognitive basis. But,
the key in sentiment analysis lies in its cognitive
basis. Thus, we envision that cognition grounded
data obtained in text reading should be helpful in
building an attention model.

In this paper, we propose a novel cognition
based attention(CBA) model for sentiment analy-
sis learned from cognition grounded eye-tracking
data. Eye-tracking is the process of measuring ei-
ther the point of gaze or the motion of an eye rel-
ative to the head1. In psycho-linguistics experi-
ments, Barrett(2016) shows that readers are less
likely to fixate on close-class words that are pre-
dictable from context. Readers also fixate longer
on words which play significant semantic roles
(Demberg and Keller, 2008) in addition to infre-
quent words, ambiguous words, and morphologi-
cal complex words (Rayner, 1998). Since reading
time can be learned from an eye-tracking dataset,
predicted reading time of words in its context can
be used as indicators of attention weights.

1https://en.wikipedia.org/wiki/Eye-tracking
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We first build a regression model to map syn-
tax, and context features of a word to its reading
time based on eye-tracking data. We then apply
the model to sentiment analysis text to obtain the
estimated reading time of words at the sentence
level. The estimated reading time can then be used
as the attention weights in its context to build the
attention layer in a neural network based senti-
ment analysis model. Evaluation on the four sen-
timent analysis benchmark datasets (IMDB, Yelp
13, Yelp 14 and IMDB2) show that our proposed
model can significantly improve the performance
compared to the state-of-the-art attention methods.

To sum up, we have two major contributions:
(1) We propose a novel cognition grounded at-
tention model to improve the state-of-the-art neu-
ral network based sentiment analysis models by
learning attention information from eye-tracking
data. This is one of the first attempts to use cog-
nition grounded data in sentiment analysis. The
CBA model not only can capture attention of
words at the sentence level, it can also be aggre-
gated to work at the document level. (2) Evalu-
ation on several real-world datasets in sentiment
analysis shows that our method outperforms other
state-of-the-art methods significantly. This work
validates the effectiveness of cognition grounded
data in building attention models.

2 Related works

The basic task in sentiment analysis can be formu-
lated as a classification problem. Class labels can
either be binary (positive/negative) or polarity ei-
ther as intensity by continuous values or as ratings
in certain range such as 0 to 5 or 1 to 10, etc..

In recent years, deep learning based methods
have greatly improved the performance of senti-
ment analysis. Commonly used models include
Convolutional Neural Networks (Socher et al.,
2011), Recursive Neural Network (Socher et al.,
2013), and Recurrent Neural Networks (Irsoy and
Cardie, 2014). RNN naturally benefits sentiment
classification because of its ability to capture se-
quential information in text. However, standard
RNN suffers from the gradient vanishing problem
(Bengio et al., 1994) where gradients may grow
or decay exponentially over long sequences. To
address this problem, Long-Short Term Memory
model (LSTM) is introduced by adding a gated
mechanism to keep long term memory. Each
LSTM layer is generally followed by mean pool-

ing and then feed into the next layer. Experiments
in datasets which contain long documents and sen-
tences demonstrate that the LSTM model outper-
forms the traditional RNN (Tang et al., 2015a,c).

Not all words contribute equally to the seman-
tics of a sentence (Hahn and Keller, 2016). Atten-
tion based neural networks are proposed to high-
light their difference in contribution (Yang et al.,
2016). In document level sentiment classifica-
tion, both sentence level attention and document
level attention are proposed. In the sentence level
attention layer, an attention mechanism identi-
fies words that are important. Those informative
words are aggregated as attention weights to form
sentence embedding representation. This method
is generally called local context attention method.
Similarly, some sentences can also be highlighted
to indicate their importance in a document.

Apart from local context attention, user/product
attentions are also included in deep learning based
methods either in a separate network (Gui et al.,
2016) or a unified network (Tang et al., 2015c; Gui
et al., 2016). Some feature engineering method to
some specific datasets can also achieve very good
result(Sadeghian and Sharafat, 2015). However,
they are not suited for other genre of text as user-
product information are not generally available.

Attention models can be built not only from lo-
cal text or user/product information but also from
cognitive grounded data, especially eye-tracking
data (Rayner, 1998; Allopenna et al., 1998). Joshi
(2014) proposes a novel metric called Sentiment
Annotation Complexity for measuring sentiment
annotation complexity based on eye-tracking data.
Mishra (2014) presents a cognitive study of senti-
ment detection from the perspective of AI where
readers are tested as sentiment readers. Mishra
(Mishra et al., 2016b) recently proposes a model in
sentiment analysis and sarcasm detection by using
eye-tracking data as a feature in addition to text
features using Naive-Bayes and SVM classifiers.

In other NLP tasks, Joshi (2013) shows that
Word-Sense-Disambiguation can make use of si-
multaneous eye-tracking. Eye-tracking data are
also used to measure the difficulty in translation
annotation (Mishra et al., 2013). Barrett (2016)
finds that gaze patterns during reading are strongly
influenced by the role a word plays in terms of syn-
tax, semantic, and discourse.

Among different available eye-tracking
datasets, the Dundee corpus, GECO (the Ghent
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Eye-Tracking Corpus), and Mishra et al. (Mishra
et al., 2016b) are considered high-quality re-
sources (Kennedy, 2003; Cop et al., 2016; Mishra
et al., 2016b). The Dundee corpus contains eye
movement data from English and French news-
papers (Kennedy, 2003). Measurements were
taken while 10 participants read 20 newspaper
articles. GECO is an English-Dutch bilingual
corpus with eye-tracking data from 17 participants
collected from reading the complete novel The
Mysterious Affair at Styles. The corpus has 4,934
sentences, 774,015 tokens, and 9,876 words. The
Mishra(Mishra et al., 2016a) dataset contains 994
text snippets with 383 positive and 611 negative
examples from newspaper clippings, sampled
from seven native speakers.

To predict reading time using eye-tracking data,
Tomanek et al. (2010) proposes a regression
model using linguistic features related to syntax
and semantics for calibration. Hahn (2016) pro-
poses a novel approach to model both skipping and
reading using unsupervised method which com-
bines neural attention with auto-encoding trained
on raw text using reinforcement learning.

3 Our proposed CBA model

The basic idea of our method is to add a CBA
model into a neural-network based LSTM senti-
ment classifier. Let D be a collection of docu-
ments. A document dk, dk ∈ D, has m number
of sentences S1, S2, ...Sj , ..., Sm. A sentence Sj is
formed by a sequence of words Sj = wj1w

j
2...w

j
lj

,
where lj is the length of Sj . The features of
a word wi ∈ D form a feature vector ~vwi =
[F1

wi , F2
wi ....Fn

wi ] where n is the feature space
size. The purpose of document level sentiment
classification is to project a document dk into the
target space of L class labels. Similarly, at the sen-
tence level, the purpose is to project a sentence Sj
into the target class space.

To build the CBA model, we need to first build
a reading time prediction model for words within
each sentence. Reading time is predicted based on
word features and text features calibrated by eye-
tracking data. Note that reading time from an eye-
tracking dataset cannot be used directly because
the text of any eye-tracking dataset is too small for
sufficient coverage. Consequently, our method has
four tasks: (1) to predict the reading time of words
using eye-tracking data and ~vwi as features; (2) to
build attention models based on predicted reading

time at sentence level and document level; (3) to
integrate attentions from other attention models;
and (4) to add the attention model into the LSTM
based sentiment classifier.

3.1 Modeling of reading time

To learn the reading time of words in a sentence,
our method is based on regression analysis us-
ing eye-tracking data as dependent variables and
context information in ~vw∈Sj as independent vari-
ables. In the eye-tracking process, a number of
different time measures such as first fixation dura-
tion, gaze duration, and total reading time. In this
work, we only use the total reading time.

Since a document set is always available for
sentiment analysis, we use features extracted from
these documents to train the regression model. We
select features based on the works from Dem-
berg(2008) and Tomanek (2010) to include word
features such as word length and POS tags as well
as context level syntax and semantic features such
as the total number of dominated nodes in a depen-
dency parsing three, the maximum dependency
distance, semantic category etc..

Given a word w in a sentence Sj , w ∈ Sj ,
and its feature vector ~vw∈Sj = [Fw1 , F

w
2 , ..., F

w
n ]

where n is the dimension size in feature space, the
regression model on eye-tracking data is a map-
ping function g between reading time tw∈Sj and
~vw∈Sj as defined below:

tw∈Sj = g(α1F
w
1 + α2F

w
2 + ...+ αnF

w
n + b),

(1)

where tw∈Sj is the predicted reading time for w,
αi is the weight of feature Fwi , and b is a con-
stant. Note that the set of αi(i = 1...n) forms the
weight vector ~αw for tw∈Sj . When ~vw∈Sj takes
scalar values, g can be an identity function and
thus this model becomes a typical linear regres-
sion model. When tw∈Sj takes discrete values, g
can be a logistic function and this model becomes
a typical logistic regression model.

we set g to be the identity function. The objec-
tive function then becomes:

min
~α

n∑

ai∈~α
||tw∈Sj − yw∈Sj ||22 + λR(~α), (2)

where yw∈Sj is the true eye-tracking values of
reading time, R(~α) is the regularization of ~α, and
λ is the regularization weight. When λ = 0, the
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model degrades to a linear regression function. In
this work, we evaluate the use of both the linear
regression model and the Ridge regression model.

3.2 Building the attention based model
Once we have predicted reading time for words
used in sentences, the attention model can be built
with two components. The first component works
at the sentence level to give different words differ-
ent emphasis in a sentence. The second compo-
nent works at the document level to give different
sentences different emphasis in a document.

For a sentence Sj = w1w2...wi...wlj with
length lj , each word wi in Sj has a corresponding
reading time twi . Let tSj denote the total reading
time of Sj . Then,

tSj =

lj∑

i=1,wi∈Sj
twi . (3)

For sentence level attention, the CBA weight for
wi in Sj , denoted as ASj :wi , can be defined as:

ASj :wi =
twi
tSj

. (4)

This sentence level attention model defined
above gives more weights to words that have
longer reading time relative to the total reading
time of the sentence.

Let a document dk, dk ∈ D, be formed by a set
of sentences Sj = w1w2...wi...wlj . Now the CBA
weight for a sentence Sj in dk is defined as:

Adk:Sj =
tsj∑m
i=1 tSi

. (5)

This aggregated document level attention model
gives more weights to the sentences that have
longer reading time relative to the total reading
time of the document. Let ~Adk denote the doc-
ument level attention weight vector. The size of
~Adk should be m, the number of sentences in dk.

Let ~Sj denote the embedding of Sj inN dimen-
sional space, where Sj ∈ dk. Then, the set of sen-
tence representations for dk should be a matrix of
size m × N , denoted by Ŝdk . After the inclusion
of the attention model, Ŝdk should be:

Ŝdk = ~Adk
~STj . (6)

Let ~dk denote the document embedding of dk.
Since ~dk is an N dimensional vector, ~dk can now

be defined by the adjusted attention model as

(~dk)i =

m∑

j=1

(Ŝdk)i,j . (7)

3.3 Incorporation of other attention models

Since document embedding representation allows
the combined use of multiple attention mecha-
nisms, it is to our advantage to incorporate dif-
ferent attention mechanisms which may help to
capture different aspects of attentions. Generally
speaking, different attention mechanisms can be
incorporated either serially or in parallel.

In principle, any number of attention models
can be included. As an an example to illustrate the
capability of our proposed method, we choose one
state-of-the-art local attention model(shorthanded
as LA). The model is a semantic-based local at-
tention model proposed by Yang (2016) and also
used by Chen (2016). For inclusion serially, the
attention weight is formulated as follows:

AsSj :wi = LASj :wi ∗ASj :wi , (8)

where LAsj :wi the sentence level attention model
by the local attention model. To incorporate LA in
parallel mode, the attention weight can be formu-
lated by:

ApSj :wi = LASj :wi +ASj :wi. (9)

Similar methods can be used at document level.

3.4 General sentiment analysis model

We take the neural network based LSTM senti-
ment classifier (Gers, 2001) to be applied in both
the sentence level and the document level because
of its excellent performance on long sentences
(Tang et al., 2015a). The basic LSTM model has
five internal vectors for a node i including an input
gate ~ii, a forget gate ~fi, an output gate ~oi, a candi-
date memory cell~c′i, and a memory cell~ci, and ~ii~fi
and ~oi are used to indicate which values will be up-
dated, forget or for keeping in the LSTM model. ~c′i
and ~ci are used to keep the candidate features and
the actual accepted features, respectively.

At the sentence level, each word wi in a sen-
tence Sj is represented by its word embedding ~wi
in the N dimensional space. The LSTM cell state
~ci and the hidden state ~hSj :wi can be updated in
two steps. In the first step, the previous hidden
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state ~hSj :wi−1 uses a hyperbolic function to form
~c′i as defined below.

~c′i = tanh(Ŵc ∗ [~hSj :wi−1 ∗ ~wi] + b̂), (10)

where Ŵc is a parameter matrix, ~hSj :wi−1 is the
previous hidden state and ~wi is the word vector. b̂
is the regularization parameter matrix. In the sec-
ond step, ~ci is updated by ~c′i and its previous state
~ci−1 to form ~ci according to the below formula:

~ci = ~fi � ~ci−1 + ~ii � ~c′i. (11)

The hidden state of wi can be obtained by

~hSj :wi = ~oitanh(~fi � ~ci). (12)

The forget gate ~fi is designed to keep the long
term memory. A series of hidden states ~h1~h2...~hi
can serve as input to the attention layer to obtain
sentence representation ~Sj . In the document level,
similar method is used to get the sentence matrix
Ŝ in the document level LSTM layer to obtain the
final document representation ~dk.

In our work, the final document representation
~dk encodes both the sentence level information
and the document level information. In the LSTM
model, we use a hidden layer to project the final
document vector ~dfk through a hyperbolic function.

~dfk = tanh(Ŵh
~dk + b̂h), (13)

where Ŵh is the hidden layer weight matrix and
b̂h is the regularization matrix.

Finally, sentiment prediction for any label lεL
obtained by the softmax function defined below:

P (y = l|~dfk) =
e
~dfTk

~Wl

∑L
l=1 e

~dfTk
~Wl

(14)

where ~Wl is the softmax weight for each label.

4 Performance evaluation

Our proposed CBA for sentiment classification
is evaluated on four document sets: The first
three datasets IMDB, Yelp 13, and Yelp14 which
are review texts including user/product informa-
tion developed by Tang (2015a). The last dataset
IMDB2 is a plain text by Maas (2011). All four
datasets are tokenized through the Stanford NLP
tool (Manning et al., 2014).

Table 1 list the statistics of the datasets in-
cluding number of classes, number of docu-
ments, and average length of sentence. We split

train/development/test set in the rate of 8:1:1. The
best configuration of the development dataset is
used in the test set to obtain the final result.

Data #class #doc #user #pro #len*2

IMDB 10 84,919 1,310 1,635 24.56
Yelp14 5 231,163 4,818 4,194 17.25
Yelp13 5 78,966 1,631 1,631 17.37
IMDB2 2 50,000 N/A N/A 20.10

Table 1: Statistics of three benchmark datasets

Two commonly used performance evaluation
metrics are used. The first one is accuracy and the
second one is rooted mean square error (RMSE)3.
Let GRi be the golden sentiment ratings, PRi be
the predicted sentiment rating, and T be the num-
ber of documents where GRi = PRi. Accuracy
is then defined by

Accuracy =
T

N
, (15)

and RMSE is defined by

RMSE =

√√√√
N∑

i=1

(GRi − PRi)2 ∗
1

N
. (16)

We train the skip-gram word embedding
(Mikolov et al., 2013) on each dataset separately
to initialize the word vectors. All embedding sizes
on the model are set to 200, a commonly used size.

Three sets of experiments are conducted. The
first is on the selection of the regression model for
reading time prediction. The second set of experi-
ments compares our proposed CBA with another
sentiment analysis method which use text only.
The third set of experiments evaluates the effec-
tiveness of combining different attention models.

4.1 Reading time prediction
The training for the regression model for reading
time prediction using eye-tracking data requires
the learning from text and context features as dis-
cussed in Section 3.1. We compare our regression
model with more complex deep learning based re-
gression models in each of the three eye-tracking
datasets.4

3Normally accuracy is a problematic measure in highly
unbalanced data sets. But in In IMDB, the largest class
only takes less than 20% of all instances out of classes. The
most imbalanced data are Yelp 13 whose largest class is 41%
among 5 classes and second largest is about 30%. IMDB has
a 50/50 split for 2-classes.

4Mishra et.al (Mishra et al., 2016a) only provides fixation
time. So, fixation time is used when training by this set of
eye-tracking data.
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We take the first 90% of sentences as training
data and the rest 10% as test data. The configu-
ration that performs the best is selected and pred-
icated on the document sentiment analysis dataset
to obtain estimated reading time. Ideally, an eye-
tracking corpus built from on-line reviews is more
suitable for our experiments. But, we can only
work with what is available.

In addition to the linear regression model(LL)
and the Ridge regression model(RR), we also
choose the Recurrent Neural Network (RNN)
model and the Long Short Time Memory (LSTM)
model for regression learning. For both models,
there are two versions. The basic version inputs
the extracted feature sets as word representation,
labeled as RNN-1 and LSTM-1, respective. The
second version takes word embedding (Penning-
ton et al., 2014) as the initial word representa-
tion input, labeled as RNN-2 and LSTM-2, respec-
tively. The RMSE results are listed in Table 2.

GECO DUNDEE Mishra
LR 72.47 73.52 87.25
RR 69.47 70.52 84.22
RNN-1 75.47 83.52 96.23
LSTM-1 79.47 84.52 114.25
RNN-2 79.57 86.47 101.25
LSTM-2 83.88 95.88 122.27

Table 2: RMSE for reading time predic-
tion(Unit:Milliseconds)

Note that Ridge Regression(RR) has the best
performance on all the three datasets because reg-
ularization in RR reduces over-fitting problem.In
three eye tracking datasets, the RR can achieve co-
efficient of determination5 of 0.32, 0.30 and 0.27
in three eye tracking datasets. The features, their
types and the corresponding coefficients in RR are
shown in Table 3.

The more complicated deep learning models
suffer from serious over-fitting problem. And the
result of Deep learning model with word embed-
ding initialization partly supports the fact that the
reading time are more depend on the micro level
syntax and semantic feature for the word, such as
number of letters in word and complexity score of
the word instead of the deep level context features.

4.2 Comparison of different sentiment
classification methods

Because the features used in our model are all
text based, we compare CBA with two groups

5https : //en.wikipedia.org/wiki/Coefficientofdetermination

Feature Name Type Cofficient
Number of letters Num 22.441
Start with capital letter Bool 1.910
Capital letters only Bool 161.580
Have alphanumeric letters Bool 6.020
Is punctuation Bool -8.930
Is abbreviation Bool 10.551
Is entity-critical word Bool 7.612
Number of dominated nodes Num 0.980
Max dependency distance Num 1.982
Inverse document frequency Num -9.291
Number of senses in wordnet Num 7.494
Complexity score Num 57.240
Constant Num 239.910

Table 3: Major features used by the Ridge Regres-
sion Model

of baseline methods which also only use review
text for learning. Group 1 methods include com-
monly known linguistic and context features for
SVM classifiers. Group 2 includes recent senti-
ment classification algorithms which are top per-
formers using review text for training including
one method that uses local attention model. Be-
low is the list of Group1 methods.

• Majority — A simple majority based classi-
fier based on sentence labels.

• Trigram — A SVM classifier using uni-
grams/bigrams/trigram as features.

• Text feature — A SVM classifier using word
level and context level features, such as n-
gram and sentiment lexicons.

• AvgWordvec — A SVM classifier that
takes the average of word embeddings in
Word2Vec as document embedding.

Here is a list of Group 2 methods:

• SSWE (Tang et al., 2014) — A SVM clas-
sifier using sentiment specific word embed-
ding.

• RNTN+RNN (Socher et al., 2013) — A Re-
cursive Neural Tensor Network(RNTN) to
represent sentences and trained using RNN.

• Paragraph vector (Le and Mikolov, 2014)
— A SVM classifier using document embed-
ding as features.

• LSTM+LA (Chen et al., 2016) — State-of-
the-art LSTM using local context as attention
mechanism in both sentence level and docu-
ment level.
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IMDB Yelp13 Yelp14
ACC RMSE ACC RMSE ACC RMSE

General baseline
(Group 1)

Majority 0.196 2.495 0.411 1.060 0.392 1.097
Trigram 0.399 1.783 0.569 0.814 0.577 0.804
TextFeature 0.402 1.793 0.556 0.845 0.572 0.801
AveWord2vec 0.304 1.985 0.526 0.898 0.531 0.893

Recently developed
methods
(Group 2)

SSWE+SVM 0.312 1.973 0.549 0.849 0.557 0.851
Paragraph Vector 0.314 1.814 0.554 0.832 0.564 0.802
RNTN+RNN 0.401 1.764 0.574 0.804 0.582 0.821
CLSTM 0.421 1.549 0.592 0.769 0.594 0.766
B-CLSTM 0.462 1.453 0.619 0.705 0.592 0.741
LSTM 0.443 1.465 0.627 0.701 0.637 0.686
LSTM+LA 0.487 1.381 0.631 0.706 0.631 0.715

CBA based models
LSTM+CBAM 0.447 1.495 0.610 0.746 0.613 0.768
LSTM+CBAD 0.468 1.419 0.623 0.706 0.628 0.702
LSTM+CBAG 0.489 1.365 0.638 0.697 0.641 0.678

Table 4: Evaluation on sentiment classification using review text for training

• CLSTM (Xu et al., 2016) — Cached LSTM
to capture the overall semantic information in
long text. The two variations include regular
CLSTM and bi-directional B-CLSTM.

• LSTM+UPA (Chen et al., 2016) — State-
of-the-art LSTM including LA as well as
user/product as attention mechanism at both
sentence level and document level.

Our proposed CBA model has several variations
as explained below.

• LSTM+CBA — The LSTM classifier us-
ing only CBA model at sentence level
and document level. Based on the three
eye-tracking datasets(GECO, DUNDEE and
Mishra’s) for reading time prediction, we
label the same model by different training
data as LSTM+CBAG,LSTM+CBAD and
LSTM+CBAM .

• LSTM+CBA+LAG — The LSTM based
classifier using both the CBA model and the
local text context based attention model(LA)
(Chen et al., 2016). Since combining method
can either be serial or in parallel, there
are actually two corresponding variations:
LSTM+CBA+LAG

s and LSTM+CBA+LAG
p .

• LSTM+CBA+UPAG — The same frame-
work to LSTM+CBA+LAG with additional
user/product attention. The two correspond-
ing variations are LSTM+CBA+UPAG

s and
LSTM+CBA+UPAG

p .

Table 4 shows the performance of the three
groups using review text without user/product in-
formation on only the first three datasets meth-
ods in Group 1 and Group 2 do not have evalua-
tions on IMDB2. Among all the reference meth-
ods that do not use any attention mechanism in-
cluding all methods in Group 1 and Group 2(ex-
cept LSTM+LA), LSTM is the best performer.
LSTM+LA (2016), which is the state-of-the-art
method, uses local attention mechanism to im-
prove performance significantly. Among our CBA
based variations, using the GECO dataset gives the
best result outperforming LSTM+LA in all three
datasets. LSTM+CBAG has significant improve-
ment over LSTM+LA with p values of p < 0.016
on IMDB, p < 0.0019 on Yelp 13, and p <
0.00023 on Yelp 14. LSTM+CBAG has the best
result compared to the other two variations be-
cause GECO has larger participant size. Its text
genre is also closer to the review datasets for sen-
timent analysis.

In the third set of experiment, we compare our
LSTM+CBA model with the combination of other
attention models including the LA model and the
UPA model as shown in Table 5. In the second set
of experiment, since the GECO dataset gives the
best performance, Table 5 shows the performance
of LSTM+CBA using only the GECO dataset
including LSTM+CBAG, LSTM+CBA+LAG

s ,
LSTM+CBA+LAG

p , LSTM+CBA+UPAG
s ,and

LSTM+CBA+UPAG
p . Note that UPA is build

based on user/product information. So it works
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IMDB Yelp13 Yelp14 IMDB2
ACC RMSE ACC RMSE ACC RMSE ACC RMSE

LSTM+LA 0.487 1.381 0.631 0.706 0.631 0.715 0.885 0.337
LSTM+CBAG 0.489 1.365 0.638 0.697 0.641 0.678 0.894 0.332
LSTM+CBA+LAG

s 0.488 1.369 0.633 0.706 0.643 0.672 0.898 0.328
LSTM+CBA+LAG

p 0.492 1.362 0.639 0.696 0.639 0.675 0.901 0.322
LSTM+UPA 0.533 1.281 0.650 0.692 0.667 0.654 N/A N/A
LSTM+CBA+UPAG

s 0.523 1.277 0.654 0.693 0.664 0.645 N/A N/A
LSTM+CBA+UPAG

p 0.521 1.278 0.655 0.685 0.668 0.644 N/A N/A

Table 5: Evaluation on sentiment classification on using dual attention

only if user/product information is available. Such
data is provided in the first three sets of data.

Table 5 shows that among all three single atten-
tion models, UPA outperforms both LA and CBA
in the first three datasets. This is easier to under-
stand as UPA already included LA and it has more
explicit information from users and products for
its attention model compared to CBA which needs
to learn hidden attention information. The com-
bined method of CBA with UPA can still further
improve performance. When CBA+UPA are com-
bined in parallel, it has the best performance for
both Yelp13 and Yelp14 (with p value of 0.027 and
0.032 respectively compare to LSTM+UPA). In
the IMDB dataset, however, UPA has the best per-
formance. This may be because user/product in-
formation is more effective in movie review IMDB
dataset which is more subjective.

However, the UPA model works only if user and
product information is available. Thus for IMDB2
where user/product information is not available,
only CBA and LA models work and the combined
use of CBA+LA gives the best performance.

4.3 Case study

A random sentence sample ’The Shelton hotel is
lucky to receive 2stars from me considering ...’ is
taken from the Yelp13 dataset to demonstrate the
difference in the two attention mechanisms, i.e. lo-
cal text(LA), and cognition-based(CBA). Figure 1
shows visually the difference in attention weights
of the two models.

The attention weights of words in the LA model
does not change much. CBA, on the other hand,
gives higher weights to the sentiment linked word
2stars and the verb receive. This two words do
play significant roles as an indirect object and a
main verb, respectively. This case shows that CBA
does a better job in capturing micro level informa-

tion in the sentence level. This support the experi-
mental results in Table 4 and Table 5.

Figure 1: Case Study on attention weights

5 Conclusion and future works

In this paper, we propose a novel cognition based
attention model to improve the state-of-the-art
neural sentiment analysis model through cognition
grounded eye-tracking data. A simple and effec-
tive regression model is used to predict reading
time using both eye-tracking data and local text
features. The predicted reading time is then used
to build an attention layer in neural sentiment anal-
ysis models. The attention model considers both
reading time and other syntactic and context fea-
tures. It works in both the sentence level and the
document level sentiment analysis.

Evaluation on benchmarking datasets validates
the effectiveness of our method in sentiment anal-
ysis as our method clearly outperforms other state-
of-the-art methods that use local context informa-
tion to build their attention models. Our CBA
mechanism can also be combined with other at-
tention mechanisms to provide room for further
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improvement. Future work includes using other
eye-tracking information such as saccade and fix-
ation. The incorporation of other information such
as user-product information can also be explored.
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Abstract

User generated content about products and
services in the form of reviews are of-
ten diverse and even contradictory. This
makes it difficult for users to know if an
opinion in a review is prevalent or bi-
ased. We study the problem of search-
ing for supporting opinions in the con-
text of reviews. We propose a framework
called SURF, that first identifies opinions
expressed in a review, and then finds sim-
ilar opinions from other reviews. We de-
sign a novel probabilistic graphical model
that captures opinions as a combination
of aspect, topic and sentiment dimensions,
takes into account the preferences of indi-
vidual authors, as well as the quality of the
entity under review, and encodes the flow
of thoughts in a review by constraining
the aspect distribution dynamically among
successive review segments. We derive a
similarity measure that considers both lex-
ical and semantic similarity to find sup-
porting opinions. Experiments on TripAd-
visor hotel reviews and Yelp restaurant re-
views show that our model outperforms
existing methods for modeling opinions,
and the proposed framework is effective in
finding supporting opinions.

1 Introduction

In order to make an informed decision when book-
ing a hotel online, a user will often read through
its reviews looking for specific feedbacks. For ex-
ample, if he or she plans to do an early check-in
and comes across a review that mentions a hassle-
free early check-in as shown in Figure 1, it will
be helpful to know whether other guests had sim-
ilar experiences. If a review complains about bed

Figure 1: A sample hotel review
bugs or noise from construction nearby, then it is
important to know if that was an occasional prob-
lem based on a single user’s experience or happens
frequently. However, it is impossible for an indi-
vidual to go through the large volume of reviews
to verify whether an opinion is prevalent.

In this work, we study the problem of finding
supporting sentences from reviews that corrobo-
rate the opinions expressed in a target review sen-
tence. This is useful as it enables users to easily
look for appropriate comments on the specific is-
sues they are interested in.

A review is a collection of sentences where each
sentence may have multiple segments separated by
punctuations or conjunctions. Each segment ex-
presses an opinion that can be represented as a
combination of aspect, topic and sentiment. An
aspect refers to the overall theme of a segment, a
topic is the specific subject or issue discussed and
the sentiment for each topic can be neutral, posi-
tive or negative. Table 1 shows the segments and
the possible latent aspect, topics and sentiment for
a sentence of the review in Figure 1.

Review Sentence Segments Aspect Topic Sentiment
We had a big room

with clean bathroom
and a comfy bed,

but no wifi

We had a big room
with clean bathroom

room
room positive
bathroom positive

a comfy bed room bed positive
no wifi amenities wifi negative

Table 1: Opinion structure for a review sentence

Given an opinion (in a target segment), we say
that a review supports the opinion, if it contains
some segment whose aspect, topic and sentiment
are similar to those in the target segment. Find-
ing such supporting reviews is a challenge since
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reviews are typically short unstructured text and
discuss a wide range of topics on various aspects
with differing sentiments and vocabulary used.

Topic modeling have been widely used to re-
duce the effect of huge vocabulary by grouping
words in topics. However, the fundamental as-
sumption of topic models is the independence of
topics even in the same document. This fails to
capture the natural coherence present in reviews,
which rarely consist of isolated, unrelated sen-
tences, but are composed of collocated, structured
and coherent groups of sentences (Hovy, 1993).
We observe that an author’s train of thoughts when
writing a review is often linear, i.e., he or she will
finish discussing one aspect before moving on to
the next. In Figure 1, we see that the user first
commented on Service (“front-desk staff was very
accommodating”), then the Location aspect, fol-
lowed by the comment on Food, and finally moved
on to Room. This shows that aspects discussed in
a review are not chosen from a simple independent
mixture, but rather, words in close proximity tend
to discuss the same aspect and within a review the
aspects discussed in the current segment will affect
the possible aspects for the successive segments.

We explicitly model this by constraining aspect
transition between segments using a review spe-
cific Markov chain. Each segment is assumed to
discuss a single aspect and possible aspects for a
segment are made dependent on the aspects of the
previous segments. By tracking aspects of previ-
ous segments we are able to ensure constrained as-
pect sampling for accurate modeling of a review
structure. This non-iterative nature of discourse
has not been considered by existing works.

For opinion modeling, capturing the sentiment
expressed for an aspect is important. Recent works
(Kim et al., 2013; Jo and Oh, 2011; Moghaddam
and Ester, 2011; Wang et al., 2010; Titov and Mc-
Donald, 2008a,b) have developed models to cap-
ture aspect and sentiment. However, they do not
consider the preferences of authors, or the inherent
quality of the entity for the aspect. In a hotel re-
view, the sentiment expressed for service depends
on both the service standard of the hotel (evident
from the sentiment distribution of service of all re-
views for the hotel) and the expectation of the au-
thor for service (evident from the sentiment distri-
bution of the author on service across all hotels)
(Poddar et al., 2017). We take this into account
by making the sentiment distribution of a review

dependent on both entity and author.
We propose an Author-aware Aspect Topic Sen-

timent model (Author-ATS) to capture the diverse
opinions, taking into account user preferences and
thought patterns. The model considers a word
to be generated from a hierarchy of aspect, topic
and sentiment and encodes the coherent struc-
tural property of a review by dynamically con-
straining aspect distributions. We also develop a
non-parametric version of Author-ATS based on
Dirichlet Process called Author-ATS (DP).

We develop a SUpporting Review Framework
(SURF) that utilizes the Author-ATS model to
compute the lexical and semantic similarity of an
opinion in a target segment to those in the re-
view corpus, and returns the top-k supporting re-
views. Experiments on real world review datasets
show the effectiveness of Author-ATS in model-
ing opinions compared to existing topic models.
Furthermore, SURF outperforms keyword-based
approaches and word embedding based similarity
measures in finding supporting opinions. To the
best of our knowledge, this is the first work to
find supporting reviews for an opinion expressed
in user generated contents.

2 Related Work

There has been substantial research to mine online
reviews using topic models (Paul and Girju, 2010;
Trabelsi and Zaiane, 2014; Lin and He, 2009; Jo
and Oh, 2011; Mukherjee and Liu, 2012; Chen
et al., 2013). The Topic Aspect Model (TAM)
(Paul and Girju, 2010) jointly discovers aspects
and topics from documents. The aspect and topic
are independent and each aspect affects all topics
in similar manner. However, in reviews, the top-
ics discussed are often closely related to an aspect.
JTV (Trabelsi and Zaiane, 2014) encodes topic-
viewpoint dependency, but assumes that a docu-
ment contains only one aspect. JST (Lin and He,
2009) assumes that there is a single sentiment po-
larity for a review and the topics are chosen condi-
tioned on that, while ASUM in (Jo and Oh, 2011)
assumes that all words in a sentence are associ-
ated with the same topic and sentiment. In con-
trast, our proposed model handles the more realis-
tic scenario where sentiments may vary depending
on the topics discussed in a review.

For incorporating author information, the User-
Sentiment topic model (Zhao et al., 2012) con-
siders the topic-sentiment distribution only from
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the author perspective and ignores the character-
istics of the entity. Supervised topic model (Li
et al., 2014) uses explicit ratings to infer senti-
ments. PDA-LDA (Zhang and Wang, 2015) asso-
ciates its Dirichlet prior distribution with user and
item topic factors. The work in (Yang et al., 2015)
models aspects and sentiments based on the de-
mography of authors. However, such demographic
information are not always available and it cannot
model the bias or preference of an individual.

Additionally, most topic models are concerned
about the discourse at word level, and ignore the
document structure. HTMM (Gruber et al., 2007)
models topic coherence by considering topic tran-
sition between sentences. HTSM (Rahman and
Wang, 2016) extends HTMM by capturing senti-
ment shifts along with topic coherence. Both mod-
els do not capture the non-repetitive discourse of
reviews. Progressive topical dependency model
(Du et al., 2010, 2015) captures the sequential
nature of ideas among segments, especially in
movies or books. However, unlike books, the
sequence of topics in reviews is not significant.
Rather, once a topic has been discussed in a re-
view, it is unlikely to be mentioned again in a later
segment. From this perspective, it is similar to
labeled LDA (Ramage et al., 2009) where topic
distribution of a document is constrained. How-
ever, unlike labeled LDA, the possible aspects of
a segment are dynamically constrained depending
on previously sampled aspects.

3 Author-ATS Model

Author-ATS models an opinion as hierarchical de-
pendent mixtures, where words are generated from
a three-level hierarchical structure of aspects, top-
ics and sentiments. We assume there are A dis-
tinct aspects for a domain, for each aspect there
are Z topics and for each aspect-topic pair S pos-
sible sentiments. We treat a segment as the ba-
sic semantic unit, discussing a particular aspect.
A review r is a collection of Dr segments where
each segment is a document d, consisting of Nd

words. We now describe the assumptions and de-
tailed construction of the proposed model.

3.1 Constrained Aspect Generation

We explicitly model the behavior that after an
author has finished discussing an aspect and has
moved on to the next, he or she is unlikely to re-
turn to it again. We assume that each document d

Figure 2: Constrained aspect generation in Author-
ATS. Aspects in review form a Markov chain.

discusses a single aspect ad. The aspect distribu-
tion σr is drawn from a Dirichlet with parameter
α. In order to model the linear writing style of
authors, we constrain the possible aspects that can
be sampled from σr. Whenever an author starts
writing a segment, he or she can choose to either
(a) talk about an aspect not yet discussed, or (b)
continue with the aspect of the previous segment.
This is captured by imposing the constraint that
the aspect of the jth document is dependent on the
aspects of the (j − 1)th, (j − 2)th, · · · , 1st docu-
ments of the same review.

With this we relax the independent mixture as-
sumption of the standard LDA model for aspects
and form a review-specific Markov chain (see
Figure 2). Such a higher order Markov chain
would normally incur intractable computational
complexity due to the exponential size of transi-
tion probability matrix. However, in our case, the
transition probability can be determined by over-
all aspect distribution of the review, σr and a list
of possible aspects for the segment. Since we
assume a non-repetitive nature of discourse, the
number of possible aspects for a segment is mono-
tonically decreasing for successive segments. This
special property enables us to devise a dynamic
programming strategy to solve the problem with
linear complexity.

Each document is associated with a binary as-
pect vector Λ. We restrict the sampled aspect of
a document to be drawn from only the aspects
that are turned on, in Λ of that document. For
a document d, Λd =< l1, · · · , lA > where each
la ∈ {0, 1} and A is the total number of aspects.
Traditionally, for a document d, an aspect ad is
sampled from a multinomial distribution σr. Here,
we restrict the possible sampled aspects to the list
Λd. A value of 1 for the entry la indicates that the
aspect a can be sampled, while 0 indicates that the
aspect should not be sampled.
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We generate Λd by tossing a Bernoulli coin for
each aspect a with prior probability Φa for value
0. We set Φa as the sampling probability for as-
pects which have been sampled for a previous doc-
ument. This ensures that an aspect which has been
discussed before has lesser probability of coming
up again. We set Φa = 0 for aspects not sam-
pled in the past, and for the aspect of (immedi-
ately) preceding segment. This models aspect co-
herency in a review document where an author ei-
ther chooses to discuss a new aspect or continues
to talk about the current one.

We define the list of possible aspects for the
document d to be λd = {a | Λd[a] = 1}. We sam-
ple an aspect ad from σr with the constraint that
ad ∈ λd i.e. an aspect can be sampled for a doc-
ument only if it is turned on in the binary aspect
vector for the document and thereby exists in the
list of possible aspects for the document. Thus, the
aspect transition probability among documents be-
comes dependent on σr and the vector λd. Unlike
regular topic models, Author-ATS is no longer in-
variant to reshuffling of words and is able to model
linear aspect coherency in a review.

3.2 Author-Entity dependent Sentiment
Distribution

We account for the dual role of entity and author
in a review, by observing that the sentiments ex-
pressed are influenced by both the quality of the
entity being reviewed and the preferences of the
author. We use two Dirichlet distributions to de-
rive sentiment, namely, entity-dependent distribu-
tion (ξ) and author-dependent distribution (χ). For
each aspect-topic combination, ξ is drawn from a
Dirichlet distribution with prior γ1 and χ is drawn
from a Dirichlet distribution with prior γ0.

Since online reviews describe experiences of
people, some words tend to appear frequently
(e.g.: ‘hotel’,‘trip’ or ‘mobile’, ‘phone’ for hotel
and mobile reviews respectively). We call them
domain stopwords as they are not specific to any
aspect. We use a binary switching variable yi to
determine the type for the ith word. If yi = 0, then
the word is aspect neutral (domain stopword); and
if yi = 1, it is aspect dependent.
The generative process of the model is as follows:
• Draw a multinomial word distribution φ0 for domain

stopwords and φ1 for each aspect, topic and sentiment
words from Dir (ω).

• For each author u, draw a multinomial sentiment mix-
ture χ for each aspect and topic from Dir(γ0)

Figure 3: Graphical representation of Author-ATS

• For each entity e, draw a multinomial sentiment mix-
ture ξ for each aspect and topic from Dir (γ1)

• For each review r:
1. Draw multinomial aspect mixture σ from Dir(α)
2. For each document d ∈ r:

(a) Draw Λd from Bernoulli (Φ)
(b) Draw a type mixture ψ from Beta (δ0, δ1)
(c) Sample an aspect ad from σ s.t. ad ∈ λd
(d) For sampled aspect ad, draw a topic mixture

θ from Dir (β)
(e) For each word position i where 0 ≤ i ≤ Nd

i. Sample a type yi from ψ
ii. Sample a topic zi from θ

iii. Sample a sentiment si from χ and ξ

iv. Sample a wordwi from

{
φ0 if yi = 0,

φ1 if yi = 1

Note that for the first document of a review, we
set λ0 to the set of all possible aspects, such that
there is no constraint when sampling for the first
segment of a review. Figure 3 shows the plate no-
tation for Author-ATS model.

3.3 Bayesian Inference
We employ collapsed Gibbs sampling for in-
ference. Markov chain introduced for aspect
coherency makes the aspects non-exchangeable,
hence sampling an aspect for a segment will also
affect all subsequent segments. Since the exact
sampling for this would be computationally ex-
pensive, we propose the following approximate
posterior considering only the previous segments,
which has been shown to work well in similar
cases previously (Mimno et al., 2011).

We sample an aspect (ad) for each document
based on the posterior probability of the type, topic
and sentiment assignment of each word in the doc-
ument and the aspects sampled for preceding doc-
uments in the review.

P (ad| ~a−d,~y−d, ~z−d, ~s−d, ~w) ∝ P (ad| ~a1:d−1)

Z∏

z=1

S∏

s=1

∑W
w=1B(n

ad,z,s
w + ω)

∑W
w=1B(n

ad,z,s,−d
w + ω)

(1)

P (ad| ~a1:d−1) ∝





nr,−dad
+α

∑
a∈λd n

r,−d
a +|λd|∗α

if ad ∈ λd
0 otherwise

(2)
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where B(~x) is the multidimensional extension of
the Beta function. The notation nb,−ca refers to the
number of times a has been assigned to b exclud-
ing current occurrence c, e.g. nr,−dad denotes the
number of documents in review r that has been
assigned aspect ad excluding current document d.

The target aspect ad is dependent on the aspects
sampled for the 1st to (d − 1)th documents of the
review, denoted by ~a1:d−1. We restrict the target
aspect ad to belong to the set defined by Λd of
the document d to achieve coherence among as-
pects respecting the nature of discourse observed
in review writing styles. This constrained aspect
sampling differentiates Author-ATS from existing
topic modeling works on review text by explicitly
modeling the topic coherence of opinionated text.

After sampling the aspect for the document, we
jointly sample the latent type, topic and sentiment
for each word within the document. The posterior
for the ith word of document d (written by author
u for entity e) is given as:

P (yi, zi, si|ad, ~w, ~y−i, ~z−i, ~s−i) ∝ P (yi|d) ∗ P (zi|ad, d)

∗ P (si|ad, zi, u, e, d) ∗ P (wi|yi, ad, zi, si, ) (3)

∝ nd,−iyi + δyi∑1
y=0(nd,−iy + δy)

∗ n
d,ad,−i
zi + β∑Z

z=1 n
d,ad,−i
z + Zβ

∗

(
q1

n
u,ad,zi,−i
si + γ0

∑S
s=1 n

u,ad,zi,−i
s + Sγ0

+ q2
n
e,ad,zi,−i
si + γ1

∑S
s=1 n

e,ad,zi,−i
s + Sγ1

)

∗ nζ,−iwi + ω
∑W
w=1 n

ζ,−i
w +Wω

(4)

yi = 0⇒ ζ = yi

yi = 1⇒ ζ = ad, zi, si

For sampling sentiment, instead of using a sin-
gle Dirichlet density we use a Dirichlet mixture
as the prior (Sjölander et al., 1996; Smucker et al.,
2005). It is a weighted combination of two indi-
vidual Dirichlet densities χ and ξ. Mixture coeffi-
cients q1, q2 are set to 0.5, giving equal weights to
both author and entity. This ensures that the cho-
sen sentiment reflects both the entity’s quality for
that topic as well as the author’s preferences.

3.4 Non-parametric Author-ATS (DP) Model
While the number of aspects for a domain are lim-
ited, the number of topics for each aspect may vary
significantly and can be difficult to estimate. For
restaurants, the topics for ambiance are fewer (e.g.
music, crowd etc.) compared to food. This mo-
tivates us to propose a non-parametric version of
the Author-ATS model where the number of top-
ics can be automatically discovered.

In this non-parametric version, topic infer-
ence is done through Chinese Restaurant Pro-
cess (CRP), a popular variant of Dirichlet Process
(DP). In a Chinese restaurant with infinite number
of tables, each with infinite capacity, CRP deter-
mines if a customer chooses to sit at an occupied
table (with a probability proportional to the num-
ber of customers already sitting at the table), or an
unoccupied one. Following the idea of CRP, each
observed aspect dependent word can either be as-
signed to an existing topic or to a new topic. The
conditional distributions for the Gibbs sampler are
omitted due to space constraints.

4 SURF Framework

Given a target sentence in a review SURF com-
putes its similarity with other review sentences us-
ing the distributions learned by Author-ATS and
returns a list of supporting reviews.

A sentence supports another sentence if they are
either lexically or semantically similar. Two sen-
tences are lexically similar if they share keywords
that are important for an aspect. Whereas two sen-
tences can be semantically similar if they share
the same sentiment for an aspect and topic even
though they use different words. For example,
“The hotel was quite close to space needle” and
“Major attractions are just walking distance from
the hotel” have high semantic similarity as they
both talk about the same aspect ‘location’ on the
topic ‘attractions’ with a positive sentiment.

We treat each review sentence as a vector and
lexical similarity (lexical sim) is computed as
cosine-similarity between the two vectors. The ith

entry of a vector signifies importance of the cor-
responding word to its assigned aspect computed
using the tf-idf weighting scheme. We define the
tf-idf of a word w w.r.t. an aspect a as:

tf(w, a) =

D∑

d=1

P (w|d, a)

P (w|d, a) =

{
P (w) if w assigned to a in d
0 otherwise

idf(w,A) = log
A

1 + |a ∈ A : ∃d ∈ D, P (w|d, a) > 0|
P (w) is the generation probability obtained from
Author-ATS model. Since words are important
with respect to an aspect, unlike traditional tf-idf,
these values are computed across reviews on the
whole corpus. Words frequently used for describ-
ing an aspect often tend to converge across re-
views, even though written by different users.
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Two sentences are considered semantically sim-
ilar if they share the same sentiment for an aspect.
Let C be the set of words in a sentence. Aspect-
topic probability of a sentence is defined as the ra-
tio of generation probability of words generated
from the aspect-topic pair a, z to the summation
of generation probabilities of all the words.

P (C|a, z) =

∑
w∈C P (w|w has aspect a and topic z)∑

w∈C P (w)

We define sim0 to measure the similarities be-
tween two sentences (C1 and C2) having the same
aspect, topic and sentiment, and sim1 to measure
the similarities of two sentences with the same as-
pect and sentiment but discussing different topics.

sim0(C1, C2, a) =

Z∑

z=1

P (C1|a, z)P (C2|a, z)

sim1(C1, C2, a) =
∑

z1,z2∈[1···Z]z1 6=z2

P (C1|a, z1)P (C2|a, z2)

The semantic similarity between two sentences is:

semantic sim(C1, C2, a) = sim0(C1, C2, a)

+ δsim1(C1, C2, a)

where δ is a damping factor with value less than 1.
Lexical-semantic similarity (LSS) of two

sentences with same sentiment for an aspect
is measured as a weighted combination of their
lexical sim and semantic sim as defined above.

Ranking of Reviews. Given a review sentence,
we employ kNN search to find the k most similar
sentences for each of its aspects according to LSS
measure. Since a target sentence C may contain
multiple aspects, we determine the importance of
an aspect a to C as follows:

Imp(C, a) =

∑
w∈C P (w|w has aspect a)∑

w∈C P (w)

For each aspect a with Imp(C, a) > 0 , we
return the top k ∗ Imp(C, a) sentences from the
review corpus. Proportionately allocating support-
ing sentences from each aspect in the top-k results
diversifies the result set and ensures that a user is
able to find information about whichever aspect of
the target sentence she wished to verify.

5 Experiments

We perform two sets of experiments to evalu-
ate our proposed framework. We first compare

Dataset # entity # author # review # sentence # vocab
TripAdvisor 12,773 781,403 1,621,956 20,244,293 980,323
Yelp 578 16,981 25,459 232,107 56,200

Table 2: Statistics of datasets used

Author-ATS with state-of-the-art topic models us-
ing perplexity on test data. Then we evaluate
the performance of SURF, for the task of retriev-
ing supporting opinions using human annotation,
against keyword based search engine Lucene and a
competent word embedding model Word2Vec. We
use two real world datasets: (a) hotel reviews from
TripAdvisor (Wang et al., 2010), and (b) restaurant
reviews from yelp.com. Table 2 shows the statis-
tics of the two datasets.

We pre-process both datasets by removing do-
main independent stopwords1. We retain some
negation stopwords (e.g.: not, can’t, didn’t) and
join them with the next word (so that ‘not good’
is treated as a single unit) to help discover senti-
ment properly. We use common punctuations like
‘.’, ‘?’, ‘!’ to split into sentences. To further split a
sentence into segments we use punctuations used
to separate clauses like ‘,’, ‘;’ and conjunctions
like ‘and’, ‘however’, ‘but’ as separators. We use
a domain independent subjectivity lexicon2 to ini-
tialize sentiment distributions. Since aspect words
may consist of highly co-occurring words (e.g.
‘front-desk’, ‘walking distance’) we use Pointwise
Mutual Information (PMI) (Manning and Schütze,
1999) to find such collocations. Bigrams with PMI
greater than a threshold (we use 0.05 in our exper-
iments) are treated as a single word.

To make the discovered aspects understandable
and intuitive, we provide a few seed words to the
models. The seeds are only used during initializa-
tion and subsequent iterations of Gibbs sampling
are not dependent on them. Table 3 lists the aspect
seed words used for both domains.

Aspects Seed Words

Value for Money value, rate, price
Room room, bed, bathroom, clean
Location location, walk, minute
Service staff, reservation, front-desk
Food restaurant, breakfast, buffet
Amenities pool, parking, internet, wifi

(a) TripAdvisor Dataset

Aspects Seed Words

Value for Money value, rate, portions, price
Service ambience, wifi, music, service
Food steak, rice, burger, cocktail

(b) Yelp Dataset

Table 3: Sample Aspect Seed Words

1http://www.ranks.nl/stopwords
2http://mpqa.cs.pitt.edu/lexicons/subj lexicon
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5.1 Evaluation of Author-ATS Model

In this set of experiments, we examine the ability
of Author-ATS to capture the opinions in reviews.

Perplexity is derived from the likelihood of un-
seen test data and is a standard measure for eval-
uating topic models. The lower the perplexity, the
less confused the model is on seeing new data, im-
plying a better generalization power. We compare
with the following state-of-the-art opinion models:

LDA (Blei et al., 2003) : A topic model where
words are generated from a latent topic dimension.

TAM (Paul and Girju, 2010): A topic model
for opinion mining where words are generated
from a two-level hierarchy of aspect and topic.

JTV (Trabelsi and Zaiane, 2014): A topic
model especially for contentious documents where
each word has a topic and a viewpoint.

We also implement a baseline model ATS based
on three-level Aspect-Topic-Sentiment hierarchy.
We use this model to show the performance gain
by just considering a hierarchical dependency be-
tween these dimensions while capturing an opin-
ion. For Author-ATS and ATS, we use 6 aspects,
5 topics for each aspect and 3 sentiments. For fair
comparison, we keep the total number of dimen-
sions as close as possible across models. We par-
tition our dataset into train (80%) and test (20%)
sets and report five fold cross validation results.

Table 4 shows that ATS outperforms other mod-
els in both datasets due to its hierarchical mod-
eling of words. Author-ATS further improves
the performance by considering author and entity
characteristics as well as the thought patterns of
the authors. We note that the performance of the
non-parametric model is comparable with Author-
ATS, making it easier to use the model for any new
domain without having much prior knowledge.

Model TripAdvisor Yelp
LDA 5070 5737
TAM 2980 3468
JTV 3430 4370
ATS 2385 3337
Author-ATS 2212 2784
Author-ATS(DP) 2300 2829

Table 4: Perplexity values for different models.

Table 5 shows the top words extracted by
Author-ATS as domain stopwords. Although these
words do not convey any aspect information, they
are domain dependent and are not found in a gen-
eral stopword dictionary.

From Table 6, we observe that the majority of
the words are correctly clustered in aspects, and

Dataset Domain Stopwords
TripAdvisor hotel, nice, stay, trip, times, day, place, back

Yelp good, place, food, time, order, bit, make

Table 5: Domain stopwords from Author-ATS.

Aspect: Room
Topic 0

Positive Negative Neutral
bed noise room

comfortable night floor
spacious sleep view
king-size window size

clean hear modern
Topic 1

Positive Negative Neutral
bathroom small room

large door bathroom
tub barely shower

shower tiny water
shampoo kitchen towels

Aspect: Service
Topic 0

Positive Negative Neutral
staff night staff

extremely greet call
welcoming problem front-desk

care asked service
friendly manager shuttle

Topic 1
Positive Negative Neutral

card called check-in
reservation upgrade day

airport manager arrived
polite rude directions

excellent questions time

Table 6: Top words for aspect-topic-sentiments
found by Author-ATS for TripAdvisor dataset.
further into specific topics. For example, the first
topic for aspect Room is about in-room experi-
ence (‘bed’,‘king-size’,‘view’), whereas the sec-
ond topic seems to be about bathroom (‘shower’,
‘towels’, ‘tub’). We also observe that the model is
able to obtain contextual sentiment terms which
are aspect-topic coherent. For example, words
such as ‘noise’, ‘night’, ‘hear’ could be assigned
negative sentiment labels for topic 0 of Room due
to the context in which they are used, e.g., when
describing a room, these words probably indicate
a noisy room bothering their sleep at night.

Impact of Seed Words We vary the number of
seed words for an aspect and examine its effect on
the aspect discovery. We use p@n, the fraction of
correctly discovered aspect words among the top
n words, to evaluate the quality of the results.

(a) Aspect: Room (b) Aspect: Location

(c) Aspect: Service (d) Aspect: Food

Figure 4: Impact of varying number of seeds.

The average precision of top-n words for differ-
ent aspects is obtained by taking the average over
all combinations

(
6
m

)
of seed words where m is

the number of selected seed words, 2 ≤ m ≤ 6.
Figure 4 shows the results. We observe that the
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average precision increases with the number of
seeds, and stabilizes when m ≥ 4. This demon-
strates that providing a handful of seed words can
go a long way for discovering intended, explain-
able domain specific aspects.

5.2 Evaluation of SURF

We now evaluate Author-ATS model and LSS
measure on retrieving sentences that are relevant
to a target sentence. A sentence is considered rel-
evant if it expresses similar opinions as the target
sentence. A sentence with multiple aspects is rel-
evant if it expresses at least one of the opinions in
the target sentence. Precision of the top-k answers
are manually determined by three annotators and
conflicts are resolved by majority voting.

Recall that LSS considers both lexical and se-
mantic similarity. The computation of semantic
similarity requires the aspect-topic-sentiment dis-
tribution which is only available in the baseline
ATS and Author-ATS models. We define a sim-
ilarity measure called CJSD that can be used by
the various topic models to facilitate comparison.
CJSD measures the lexical similarity of two sen-
tences as the cosine similarity of their tf-idf vec-
tors, while the semantic similarity is measured
by the similarity of their topic distributions using
Jensen-Shannon Divergence(JSD) as follows:

CJSD(s1, s2) = λ cosine sim(s1, s2)+(1−λ) JSD(s1, s2)

We randomly select 5 hotels from TripAdvisor
and 5 restaurants from Yelp datasets. For each
hotel/restaurant, we randomly pick 10 target sen-
tences and retrieve their supporting sentences.The
topic distributions of these sentences are obtained
using LDA, TAM, JTV, and the proposed models
ATS and Author-ATS.

Table 7 shows the average precision for top 5,
10 and 20 results retrieved using various topic
models with similarity measure CJSD. We see
that Author-ATS model always outperforms other
topic models for the task of retrieving supporting
sentences. This is consistent with the perplexity
results of the models obtained previously.

Table 8 shows the average precision using vari-
ants of the proposed model with LSS. Clearly, us-
ing LSS always yields a better precision compared
to using CJSD, with the best performer being the
Author-ATS with LSS combination. SURF frame-
work utilizes this combination for retrieving top-k
supporting reviews.

TripAdvisor Yelp
p@5 p@10 p@20 p@5 p@10 p@20

LDA 0.56 0.48 0.45 0.43 0.42 0.42
TAM 0.58 0.53 0.52 0.49 0.47 0.47
JTV 0.51 0.47 0.53 0.41 0.41 0.43
ATS 0.62 0.60 0.55 0.60 0.57 0.44
Author-ATS 0.68 0.62 0.61 0.60 0.58 0.56

Table 7: Average precision using CJSD
TripAdvisor Yelp

p@5 p@10 p@20 p@5 p@10 p@20
ATS 0.69 0.62 0.58 0.62 0.59 0.58
Author-ATS 0.74 0.66 0.60 0.68 0.64 0.62
Author-ATS (DP) 0.64 0.63 0.57 0.62 0.56 0.54

Table 8: Average precision using LSS

Next, we compare SURF with the following:
Lucene: A popular keyword based ranking

method. We used its default combination of vector
space model and boolean model for retrieval.

Word2Vec: (Mikolov et al., 2013) A state-of-
the-art algorithm for word embeddings using neu-
ral network. Supporting sentences are ranked with
Word Mover’s distance using the word embed-
dings. We train on TripAdvisor dataset using
CBOW algorithm with context window set to 5
as recommended by the authors. We do not train
Word2Vec on the Yelp dataset as it is too small.
We set the vector dimension to 500 based on grid
search. We also compare with Word2Vec model
pre-trained on the large GoogleNews dataset3.

Table 9 shows the average precision for the
top 5, 10 and 20 results retrieved using Lucene,
Word2Vec and SURF. Word2Vec performs bet-
ter when trained on review data, compared to the
model trained on general news data. This confirms
that domain knowledge is important. It is evident
from the results that SURF significantly outper-
forms existing approaches for opinion search.

p@5 p@10 p@20
Lucene 0.67 0.58 0.52
Word2Vec (GoggleNews) 0.62 0.48 0.39
Word2Vec (TripAdvisor) 0.70 0.61 0.51
SURF 0.74 0.66 0.60

(a) TripAdvisor

p@5 p@10 p@20
Lucene 0.61 0.54 0.49
Word2Vec (GoogleNews) 0.52 0.47 0.37
SURF 0.68 0.64 0.62

(b) Yelp

Table 9: Comparison with Lucene and Word2Vec

For evaluating the coherence of retrieved set of
supporting reviews for an aspect, we look at their
corresponding user given aspect ratings. For each
aspect of each review sentence, we retrieve its top-
k supporting sentences. Then we compute the

3https://code.google.com/archive/p/word2vec/
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Target Sentence: bedroom had the most comfortable mattress, feather soft pillows as well as firmer ones, they thought of keeping every guest comfortable

Supporting Sentences by SURF Supporting Sentences by Lucene Supporting Sentences by Word2Vec

Aspect : Room
Statement: bill clinton suite was huge with two
baths, a wonderful jacuzzi and a comfortable bed

bed was very comfortable, as were the large
pillows

The room had a microwave, coffemaker, hairdryer,
bottled water replenished each day (x)

Aspect : Room
Statement: the beds are the most comfortable
of any hotel I have stayed in

we were recommending it for our out of town
wedding guests, and wanted to make sure they
were comfortable (x)

It really is a shame because the bed and pillows were
super comfortable and we could have had a great
night sleep on both nights

Aspect : Room
Statement: the beds were comfortable
and they had good selection of towels

who would have imagined that somebody
actually thought about where a guest would
watch tv (x)

They took regular sized hotel rooms and divided
them into a sitting room with a bedroom with a door,
keeping the bathroom to divide the two areas (x)

(a) Target Sentence with Single Aspect

Target Sentence: the check in was quick, with friendly polite service, and the room was very big with a very comfortable king size bed

Supporting Sentences by SURF Supporting Sentences by Lucene Supporting Sentences by Word2Vec

Aspect : Room
Statement: bed was extremely comfortable, I’m hard to please
in the department because I sleep on a sleep number bed at home

the room was a great size; bed
was very comfortable

The first room assigned was very small and dingy
with one king sized bed that just fit (x)

Aspect : Room
Statement: room size was large and bed was comfortable king size bed was comfy bathroom was well furnished with soap, shampoo/

conditioner, very large, soft towels - perfect (x)
Aspect : Service
Statement: service is very friendly our room faced denny park (x) the room was large and the bed very comfortable

and our room faced the street and it was very quiet

(b) Target Sentence with Multiple Aspects

Table 10: Sample Supporting Sentences Retrieved by SURF, Lucene and Word2Vec. Aspects shown for
SURF are discovered by Author-ATS model.

Figure 5: Average standard deviations of aspect
ratings for supporting reviews. Smaller deviation
implies greater coherence.

standard deviation of the ratings for that aspect in
the retrieved supporting reviews. We aggregate the
standard deviation values for each aspect over all
the reviews and look at the average value. Figure
5 shows results for two aspects from the TripAdvi-
sor dataset. Other aspects also had similar trends.

We rank the retrieved results based on their sim-
ilarity to the target sentence. Naturally, the longer
the retrieved list, the larger is the average standard
deviation. We see that SURF has a smaller av-
erage standard deviation compared to Word2Vec
and Lucene. The gap between the performance
of SURF and the other methods also widens as
the size of the retrieved results increases. This
demonstrates SURF’s superiority in retrieving re-
views with similar opinions.

Table 10 shows samples of supporting sentences
extracted by the different methods. We observe
that the sentences retrieved by SURF are seman-
tically similar although the words may be quite
different from the target sentence. In contrast,
Lucene may retrieve irrelevant sentences match-
ing a keyword used in a totally different context.

Word2Vec considers words used in proximity of
one another (e.g. bed, pillow with microwave, cof-
femaker etc.) to be similar which clearly does not
always imply conformity of opinions.

Furthermore, the retrieved results of SURF are
categorized according to their aspects making
them easy to interpret. Particularly if a target sen-
tence has multiple aspects, then SURF will re-
trieve results for each aspect. For example, for the
second target sentence shown in Table 10, the re-
sults contain supporting statements for both room
and service. If a user then wishes to view more re-
sults for one of those aspects it will be possible for
SURF to fetch more results only for that aspect.

6 Conclusion

We studied the problem of finding supporting sen-
tences to help a user get an idea of consensus
about an entity. To this end, we developed a hier-
archical topic model to jointly infer aspect-topic-
sentiment, and a fine-grained similarity measure.
Author-ATS model encodes the coherent writing
style of a review by constraining the aspect dis-
tributions dynamically. It considers the sentiment
distribution of a review to have influence of both
the author and the entity. Experimental results on
two datasets indicate that the proposed approach is
promising compared to existing techniques. With
growing amount of user generated content on the
web, and more people relying on them to make de-
cisions, we believe that the ability to verify opin-
ions will become increasingly important.
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Abstract

Sarcasm is a pervasive phenomenon in so-
cial media, permitting the concise commu-
nication of meaning, affect and attitude.
Concision requires wit to produce and wit
to understand, which demands from each
party knowledge of norms, context and a
speaker’s mindset. Insight into a speaker’s
psychological profile at the time of pro-
duction is a valuable source of context for
sarcasm detection. Using a neural archi-
tecture, we show significant gains in de-
tection accuracy when knowledge of the
speaker’s mood at the time of production
can be inferred. Our focus is on sarcasm
detection on Twitter, and show that the
mood exhibited by a speaker over tweets
leading up to a new post is as useful a cue
for sarcasm as the topical context of the
post itself. The work opens the door to an
empirical exploration not just of sarcasm
in text but of the sarcastic state of mind.

1 Introduction

Oscar Wilde memorably described sarcasm as “the
lowest form of wit but the highest form of intelli-
gence.” Though sarcasm lacks the sophistication
of irony, and does little to conceal the speaker’s
disdain for a target, it is a figurative device that re-
quires as much intelligence from its consumers as
its producers. The concision with which sarcasm
and irony allow speakers to conflate propositional
content and affective stance makes it a perva-
sive mode of communication in the 140-character
tweets of Twitter. By combining an overtly posi-
tive attitude with a meaning that is more deserv-
ing of scorn, sarcasm allows speakers to commu-
nicate disappointment about a state of affairs that
bites (or etymologically “cuts the flesh”) of an ad-

dressee. It conveys the feeling the speaker would
wish to experience (“I love it when ...”) with the
state of affairs that up-ends this feeling (“... my
friends forget my birthday”). It often combines
politeness with mockery to disguise the appear-
ance of hostility while heightening its effect on
a listener (Brown and Levinson, 1978; Dews and
Winner, 1995). It establishes a wry environment
(Dews and Winner, 1999) that has its roots in so-
cial norms and the speaker’s state of mind.

Psychological theories of irony, such as echoic
reminder theory (Kreuz and Glucksberg, 1989)
and implicit display theory (Utsumi, 2000b) have
yet to fully translate into text-analytic methods.
Neuropsychology researchers who have sought
patterns of brain activity to identify the neural cor-
relates of sarcasm note that an understanding of
sarcasm is highly dependent not just on the con-
text of an utterance but on the state-of-mind and
personality of the speaker, as well as on facial
expressions and prosody (Shamay-Tsoory et al.,
2005). Without the latter markers, purely textual
detection must depend largely on the content and
context of an utterance, though speaker personal-
ity and state-of-mind can also be approximated via
text-analytic means. Probabilistic classification
models that exploit textual cues – such as the jux-
taposition of positive sentiment and negative sit-
uations (Riloff et al., 2013), discriminative words
and punctuation marks (Davidov et al., 2010), and
emoticon usage (González-Ibánez et al., 2011) –
have achieved good performance across domains,
yet these models typically suffer from an absence
of psychological insight into a speaker and topi-
cal insight into the context of utterance production.
Kreuz and Link (2002) argue that the likelihood of
sarcasm is proportional to the amount of knowl-
edge shared by speaker and audience, which in-
cludes knowledge of the world and knowledge of
the speaker and audience. Personality is defined
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by Olver and Mooradian (2003) as the “enduring
characteristics of the individual” though mood –
which is changeable – is perhaps just as useful if
sampled in a timely fashion. The difference be-
tween personality and mood can be likened to that
between climate and weather. Tausczik & Pen-
nebaker (2010) have developed a Twitter-based
mood analysis web service at AnalyzeWords.com
which uses a variety of psycholinguistic crite-
ria and the LIWC (Linguistic Inquiry and Word
Count) resource1 to quantify the recent mood – i.e.
the recent weather – of a user along 11 dimensions
ranging from Arrogance/Remoteness to Anger and
Analyticity. To exploit the stable personality of an
online user, Celli et al. (2016) sought a correla-
tion between Big Five personality traits (Costa and
McCrae, 2008) and the LIWC-quantifiable dimen-
sions found in re-tweets amongst Twitter users.
(Rajadesingan et al., 2015) have also shown how
relevant aspects of personality can be acquired
from a speaker’s past tweets. Since personality
and mood can each influence the detection pro-
cess, they underpin our first research question: To
what extent can the quantifiable dimensions of ei-
ther lead to a better understanding of sarcasm? Re-
liable detection depends as much on the context of
an utterance – which provides the motivation for
sarcasm – as its content. Consider e.g.:

Speaker Utterance: @MSNBC of course all of those jobs
will be in China
In reply to @realDonaldTrump: I will be the greatest jobs-
producing president that God ever created.

The speaker’s sarcastic intent cannot be grasped
without knowledge of the larger context. This is-
sue provides our second research question: How
can we usefully incorporate utterance context into
a neural network model of sarcasm detection? Sar-
casm is ubiquitous but always in flux, relying on
a changing swirl of socially relevant viewpoints.
The following tweet is sarcastic by virtue of its
echoic mockery of a widely ventilated opinion:

Time to get my Sunday dose of #fakenews from the failing
@nytimes.

This begs the third research question that we ex-
plore in the following sections: How can we train
our sarcasm detection model to exploit evolving
social norms and public opinions?

1https://liwc.wpengine.com/

2 Related Work and Ideas

Sarcasm has been extensively researched by lin-
guists and psychologists (Gibbs and Clark, 1992;
Gibbs and Colston, 2007; Kreuz and Glucksberg,
1989; Utsumi, 2000a), yet due to the limited avail-
ability of stimuli, sarcasm detection in text has re-
lied chiefly on the recognition of stock patterns
and lexical cues. Sarcasm often highlights failed
expectations by engaging in a pragmatic pretense
that is designed to be seen through (Campbell and
Katz, 2012), so cues such as interjections, intensi-
fiers, punctuation and markers of non-veridicality
and hyperbole play a crucial role in recognizing
sarcastic intent. Likewise, stock plaudits such as
“yay!” or “great!” are common in sarcastic prod-
uct reviews (Tsur et al., 2010), while hashtags such
as #sarcasm, as compressed vehicles for user in-
tent, are often used to self-annotate sarcastic texts
(Davidov et al., 2010). Liebrecht et al. (2013) used
topic-specific information and n-grams as discrim-
inative features, while (Lukin and Walker, 2013)
showed that phrases such as “no way”, “Oh re-
ally?” and “not so much” serve to flag a sarcastic
intent when used with specific linguistic patterns.

Capelli et al. (1990); Woodland and Voyer
(2011) suggest that contextual awareness is a nec-
essary precursor to identifying sarcasm. Sarcasm
is a response to a motivating context that appears
to force a rueful incongruity between a text and
its context. Exploiting the principle of inferabil-
ity (see Kreuz (1996)), Bamman and Smith (2015)
modeled shared common knowledge by extracting
features from context, the author, and the audi-
ence. Khattri et al. (2015) identified sarcasm by
seeking a strong contrast in affect toward named
entities in current vs. historical tweets, while Ra-
jadesingan et al. (2015) also exploited a contrast
in statistically-derived author traits across current
and historical tweets. Zhang et al. (2016) use sim-
ilar sources of contextual information to show the
effectiveness of a neural network over more tra-
ditional approaches involving manually-selected,
discrete features, claiming that automatic feature
induction can uncover more subtle markers of sar-
casm. Amir et al. (2016) argue that sarcasm de-
tection hinges on speaker modeling, and exploited
user embedding to quantify incongruity between
utterances and the behavioral traits of their au-
thors. These methods measure the disparity be-
tween an utterance and expectations arising from
knowledge of context or speaker or both together.
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We build on this double-grounding for sarcasm
to improve detection in a neural network model
of sarcasm and thereby address our first two re-
search questions. We model the speaker at the time
of utterance production using mood indicators de-
rived from the most recent prior tweets, and model
context using features derived from the proximate
cause of the new utterance, the tweet to which
an utterance is a response. For our third research
question, we present a novel feedback-based anno-
tation scheme that engages authors of training/test
tweets in a process of explicit annotation, feeding
new examples back into the model. Section 3 out-
lines the kind and source of features exploited in
the model. Section 4 outlines our methods of data
collection and annotation. Section 5 presents the
neural network model, while section 6 & 7 present
our experimental set-up and analysis of results. Fi-
nally, section 8 offers some closing remarks.

3 Psychological dimensions and Sarcasm

We cannot perceive a user’s state-of-mind directly
on Twitter, but we might infer one’s current dis-
position from an analysis of recent tweets, as lin-
guistic expressions tend to be congruent with an
author’s state-of-mind (Campbell and Katz, 2012).
An informative if low-res psychological portrait is
sketched by web services such as AnalyzeWords
(Tausczik and Pennebaker, 2010), which analyzes
the most recent 1000-words or so of a Twitter user
using LIWC to score the user on 11-dimensions:
Upbeat, Worried, Angry, Depressed, Plugged in,
Personable, Arrogant, Spacy, Analytic, Sensory
and In-the-moment. Sarcasm is often perceptible
in the incongruity between utterance and context
(Joshi et al., 2015) but it can also be conveyed by
an incongruity between text and recent mood.

To understand the relationship between these 11
dimensions (each scored 0..100) and a propensity
for sarcasm, we performed a k-Nearest Neighbors
(KNN) clustering of the Twitter users that provide
the tweets of our sarcastic data set. The Analyze-
Words snapshot of each user was taken at the time
of that user’s tweet in the dataset. A value of 30 for
k was chosen empirically to ensure a decent size
for the clusters. By calculating Spearman corre-
lations between each group and the 11 Analyze-
Words dimensions, we estimated the affinity for
sarcasm of different dimensions. Unsurprisingly,
we observed that clusters showing a high correla-
tion with negative dimensions, such as Angry, also

tend to use positive expressions such as ’funny”
and ’wow” to mark sarcasm. Here is an example:

@realDonaldTrump They can all fit in your head? Wow!
Have you seen someone about this?

Unless one knows that @realDonaldTrump of-
ten elicits anger, or that the author scored 83 (of
100) for Angry, this tweet might seem quite posi-
tive. Valence shifters such as “not” might also sug-
gest literal positivity if not for the implicit anger of
the author. At the time of the following tweet An-
alyzeWords scored its author as Angry=98.

@realdonaldtrump funny the founder of the birther move-
ment is saying that he’s not racist #trumpbirther

Polarizing figures such as @realDonaldTrump
are magnets for sarcasm on Twitter. By identifying
these magnets, we can better detect the sarcasm of
a tweet that offers plaudits for negative qualities.
We use AnalyzeWords to obtain the popular affec-
tive feelings for common addressees by averaging
the affective dimensions of the users that tweet
at them. The top 5 magnets for sarcasm in our
data-set of 18K sarcastic tweets are @hillaryClin-
ton, @realDonaldTrump, @bernieSanders, @AP
and @megynKelly. Of these, @hillaryClinton is
the biggest target for Angry tweets while @meg-
ynKelly is the biggest target for Analytic tweets.

Addresses in the political domain score high for
both angry tweets and analytic tweets: people an-
alyze the news and shoot the messenger. We see
much less analyticity – a tendency to use com-
plex expressions linked with logical connectives
– in tweets about popular entertainers. To mock
such targets, users tend to use affective words that
contrast with overall public opinion. The magnet
with the highest mean Angry score for the tweets
that target him is @realDonaldTrump, yet 63% of
the affective words in the tweets that target him in
the data-set are positive. Knowing that @realDon-
aldTrump is a magnet for anger can help a sarcasm
detector overcome this positive bias.

4 Dataset Construction

Tweets with sarcastic intent are often misclassi-
fied due to a lack of shared context or knowledge
between speaker and annotator. Opposing social
beliefs and a dearth of topical or personal knowl-
edge can lead to serious misjudgments. Relevant
tweet sets can be harvested by searching sarcasm
specific hashtags (e.g. #sarcasm). This approach

484



overlooks tweets that are not explicitly tagged as
sarcastic by their authors. Thus we have devised a
feedback-based system that contacts tweet authors
directly after-the fact to ask for their authoritative
self-annotations for a potentially sarcastic tweet.

4.1 Data collection
To collect annotations from authors for their own
tweets, we used a Twitterbot named @onlinesar-
casm to exploit the “retweet with comment” func-
tion in Twitter. The bot chooses randomly from
tweets that are addressed to any of 700 top Twitter
users (as listed by TwitterCounter.com), as we ex-
pect high-profile figures to be magnets for sarcasm
from others. The bot retweets a chosen tweet (si)
to its author, appending a yes/no question (qi) as a
comment to elicit a reply.

At the time of retweeting (si), the 11 Analyze-
Words.com dimensions (awi) of the tweet’s author
(ui) are saved, along with the context tweet (sj) by
author (uj) that provoked (si). Authors respond to
the bot by favoriting/retweeting the bot’s request
or via a reply (rei) containing #Yes or #No. Au-
thor responses often contain more than a simple
#Yes or #No response, and so, after observing a
series of responses the following linguistic rules
were used to extract the training annotations:

• If the number of retweets (ri) or likes (li) for
qi is non-zero or rei contains #Yes, then si is
deemed positive for sarcasm.

• If rei contains #No or an explicit mention of
’not sarcastic’ or ’no sarcasm’ or ’truth’, then
si is deemed negative for sarcasm.

We discarded any si lacking a context tweet sj .
Using author feedback, a data set of 40K tweets
was collected, comprising 18K tweets acknowl-
edged as sarcastic and 22K deemed non-sarcastic.
For another test set, we collected 1200 tweets: 550
tweets acknowledged as sarcastic by their authors
and 650 acknowledged to be non-sarcastic.

4.2 External datasets
In addition to our own training and test sets, whose
annotations come directly from tweet authors, we
also used 5 Twitter datasets where tweet informa-
tion, fetched by tweet identifier, contains identifier
of context tweet (Ptáček et al., 2014; Bamman and
Smith, 2015; Rajadesingan et al., 2015; Cliche,
2014), from which motivating contexts can be dis-
cerned for each. (This contextual requirement pre-

vents us from considering even more of the avail-
able sarcasm datasets.) For the context tweets sj
for each si in these sets we collected the most re-
cent linked tweets of si. To obtain the 11 Ana-
lyzeWords.com dimensions for tweet authors, we
collect the 50 tweets of ui posted just prior to si,
and use the LIWC to estimate the 11 dimensions
(Anger, Arrogance, etc.) from those tweets. As
AnalyzeWords.com does not provide retrospective
analyses, and as its code is not public, we reverse-
engineered a substitute using the LIWC by follow-
ing the creators’ guidelines in (Tausczik and Pen-
nebaker, 2010). For subsequent evaluations, the
5 external datasets were split into 3 parts each:
80% for training, 10% for development/tuning,
and 10% for testing.

5 The Neural Network Model

Ghosh and Veale (2016) described an Artificial
Neural Network (ANN) model built around layers
of CNNs (Convolutional Neural Networks) and
LSTMs (Long Short Term Memory) for sarcasm
detection to efficiently capture contrasting text sig-
nals of sarcasm within a tweet. We build here on
this model as shown in Fig.1, adding input fea-
tures for the psychological profile of the author
and the context of the tweet to those for the tweet
itself. The LSTM layer (Hochreiter and Schmid-
huber, 1997) captures dependencies amongst non-
adjacent contrasting signals for sarcasm within
each si. We extend this architecture to include a
context tweet sj for each si, but instead of con-
catenating sj and si at the input layer, we stitch
them together after the LSTM layer. The text input
layer is initialized with embeddings from Google’s
Word2Vec model (Mikolov et al., 2013) with a di-
mension setting of 300. To further integrate fea-
tures reflecting the state of mind of the speaker
at utterance-time, the values awi (i = 1...11) for
each si are concatenated with the feature vector of
sj & si in the merge layer. We use a bi-directional
LSTM (BLSTM) and forego a maxpooling layer
to increase throughput to the BLSTM. We prevent
overfitting using a dropout layer with a dropout
rate of 0.25 after the BLSTM layers. The con-
catenation layer combines the feature maps of the
source and context tweets (si & sj) along with a
vector of aw1...11 for the author ui. The concate-
nation yields a merge layer of size <f(2(|s|m+1)+l)

where f , s, m and l are, respectively, the num-
ber of BLSTM units, the length of the input se-

485



Figure 1: A Neural Architecture for Detecting Sarcasm in Contextualized Utterances

quence, the width of the CNN filter and the length
of aw. Notice that the features for a tweet si and
its immediate context sj – which we consider the
proximate cause of the sarcasm (if any) in si – are
concatenated only after they have passed through
separate sets of CNN and LSTM layers (CNN1 +
BLSTM1 and CNN2 + BLSTM2). It is important
to keep a tweet and its context separate for as long
as possible, as the model is designed to recognize
an inherent incongruity between each. This incon-
gruity becomes diffuse if the inputs are combined
too soon. EAW is the embedding layer for the 11
AnalyzeWords dimensions; it combines the vectors
of sj , si and aw, and passes the concatenated fea-
tures to a Deep Neural Network (DNN) to discrim-
inate both classes (sarcasm vs. non-sarcasm). The
code2 is developed using Keras3.

6 Evaluation and Experimental Setup

Success with a neural architecture requires apt in-
put features and an equally apt selection of hyper-
parameters. After performing a grid search over
hyper-parameters, the best configuration of the
CNN, LSTM and DNN layers places 1280 hidden
memory units into each layer and uses a CNN fil-
ter width of 3. A simple baseline will use only the
textual content of a tweet si without a context sj
or an affective profile aw of the author ui. To ap-
preciate the contribution of different input sources
of information we trained the network on different
combinations of these sources.

2https://github.com/AniSkywalker/SarcasmDetection
3https://keras.io/

6.1 Addressee information

If si is addressed to uj , this information can pro-
vide additional insights into si’s tone. In the
TTIA (Target Tweet Including Addressee) setting
the name of the addressee (but not an estimation of
the public opinion of the addressee, as so few ad-
dresses are actually famous) is added to the base-
line along with si. If the addressee is a magnet for
sarcasm, aspects of this magnetism should still im-
press themselves on the network during training.

6.2 Contextual Information

In a variant of the baseline called CT (Context
Tweet), the features of the tweet sj to which the
target si is a response are also added as inputs to
the model, to be stitched together with the features
of si at the concatenation layer. Changes in perfor-
mance with and without CT will allow us to esti-
mate the value of context in sarcasm detection.

6.3 Author Profile Information

The 11-dimensional AnalyzeWords snapshot aw
for author ui at the time si is posted offers valu-
able insights into the intent of ui. In the PD (Psy-
chological Dimensions) configuration, the 11 af-
fective dimensions awi are added to the model.
They pass through an embeddings layer to be com-
bined with utterance (and possibly context) fea-
tures at the concatenation layer. To determine the
relative contribution of each dimension awi to de-
tection competence, we trained the model in two
extra modes. In the first, we fed the model with
false values for each awi, varying values from 0 to
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100, to observe the effects on accuracy when e.g.
Angry is over- or under-estimated for ui. In the
second extra mode, we excised each awi, one at a
time in different training runs, to quantify its lack
on the model.

6.4 Automatic adaptation

Online sarcasm is often used to comment on the
vagaries of politics and current affairs. As topical-
ity is of the essence, we expect a model that regu-
larly acquires new author-annotated training data
to bootstrap itself will adapt better to the times
and yield better results. To estimate the benefits of
bootstrapping we tested the model on an evolving
version of the data-set that acquired new training
data each week for a month in August 2016.

7 Results & Analysis

Table 3 shows the recall (R), precision (P) and f-
score (F1) for our model, called Sarcasm Magnet,
with alternate configurations on different datasets.
The configuration for each setup is given in the
second row (e.g. the addition of context tweets
requires the use of two LSTMs and two CNNs).
Setup TTEA is the baseline which uses only the
text of a target tweet; it excludes addressee han-
dles, context tweets (CT) and the psychological
dimensions (PD) of authors. Setup TTIA adds ad-
dressee handles to the baseline to give our model
a small boost, mostly in recall. Setup TTEA+CT
adds context tweets to the baseline, yielding a sig-
nificant boost since a good deal of sarcasm is con-
versational in nature. In this setup the most sig-
nificant improvement in recall was observed with
the Bamman dataset (Bamman and Smith, 2015).
In setup TTIA+CT, which uses context and ad-
dressee handles, no significant improvement over
TTEA+CT is observed, except for precision on
Bamman’s dataset. In setup TTEA+PD, the affec-
tive profile of each author at tweet-time is added
to the baseline to yield a significant boost in per-
formance almost as large as that for TTIA+CT.
Setup TTIA+CT+PD includes all available infor-
mation sources (addressee, content, and psycho-
logical profile). This column reports (in paren-
theses) the performance on each dataset by the
dataset creator’s own system, which is either pub-
licly available or re-implemented from their paper.
The results show that Sarcasm Magnet beats the
state of the art for these data-sets.

Table 1 shows the effect on the model’s perfor-

Dimension omit-
ted

Precision Recall F-score

None omitted 0.9 0.89 0.9
Sensory 0.85 0.93 0.89
Plugged In 0.84 0.84 0.84
Depressed 0.78 0.96 0.86
Angry 0.81 0.95 0.87
Spacy/Valley girl 0.78 0.97 0.87
Worried 0.79 0.97 0.87
Arrogant/Distant 0.84 0.85 0.84
Analytic 0.86 0.83 0.84
In-the-moment 0.84 0.86 0.85
Upbeat 0.86 0.91 0.88
Personable 0.87 0.88 0.88

Table 1: Performance of the model when a specific
dimension awi is omitted from training.

mance in the absence of specific awi values. A
boost in recall and a drop in precision shows the
bias of the model shifting towards sarcasm when
the space of non-sarcastic tweets overlaps with
that of sarcastic tweets in the absence of an awi

that confirms literal intent. So political tweets may
be mis-classified as sarcasm in the absence of val-
ues for Angry, Depressed, and Worried, suggest-
ing that sarcastic authors often seem less angry,
depressed or worried. A drop in precision and
recall when Arrogant/Remote, Analytic, Plugged
in and In-the-moment dimensions are absent sug-
gests sarcastic people to be more socially active
and aware, and smarter but more arrogant.

7.1 A Tale of Two Contexts

The CT and PD additions each bring significant
improvements in F-score, yet when added jointly
they bring no significant increases over either used
individually. For each is a form of context drawn
from different sources that reflects different intu-
itions but which ultimately offers much the same
insights. The impact of the 11 aw dimensions
is lower on the 5 external datasets than for the
new feedback-based dataset, no doubt because the
AnalyzeWords.com snapshot of authors in the lat-
ter could be taken directly at tweet-time, whilst
for the former it was retrospectively approximated
using our own jerry-rigged version based on the
LIWC. If the official web service were to allow
retrospective analyses of Twitter users at specific
times we are confident the improvements on the
external datasets would mirror those on our own
dataset. For now it is interesting to note the ef-
fectiveness of the AnalyzeWords.com service at af-
fectively profiling Twitter users at specific times,
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which is to say, at specific contexts in their Twitter
time-lines.The service boils down the most recent
tweets (approx. 1000 words in total) to 11 dimen-
sions that are more than simple functions of the
lexical scores in the LIWC. Rather, it analyzes the
selected text as a coherent product of a coherent
mind-set, to measure a local propensity for hostil-
ity, optimism, depression, emotional detachment
and preference for reason. To use our earlier anal-
ogy, AnalyzeWords.com forecasts the psychologi-
cal weather around an author, not the user’s stable
climate. Though we may often speak of a “sarcas-
tic personality” as a stable aspect of some speak-
ers, most users of sarcasm will not fall into this
category. As such, insight into the recent mind-
set of an author is more valuable to a detector than
knowledge of one’s personality overall.

7.2 Rolling With The Punches

Our feedback-annotated dataset was collected dur-
ing a fertile period for sarcasm online: the heights
of the 2016 US presidential campaign. The main
body of the new dataset was collected and anno-
tated (as described earlier) in the early summer of
2016. During the month of August we acquired
additional annotated training data in four weekly
tranches, to incrementally retrain the model to an
evolving political and social context. As shown in

Week Precision Recall F-score
Week 1 0.751 0.752 0.752
week 2 0.790 0.752 0.771
Week 3 0.798 0.775 0.786
Week 4 0.839 0.869 0.85

Table 2: Bootstrapping gains (August, 2016)

Table 2, each weekly tranche of extra training data
yielded increased dividends in terms of F-score
and precision or recall when evaluating the model
on the same test set (of 1,200 tweets, 550 sar-
castic and 650 non-sarcastic). The new annotated
data harvested in the final week of August yielded
the biggest dividends, especially in Recall, per-
haps in a reflection of the growing bitterness of the
campaign and of frantic campaigning in (and on-
line commentary about) the pivotal swing states.
As the candidates were revealing more of them-
selves to voters, the voters were revealing more of
themselves to our model. Specifically, in week 1,
4719 sarcastic and 5361 non-sarcastic tweets were
added for training; in week 2, an additional 3179
and 6901 were added; in week 3, 3571 and 6509;

and in a week 4 reversal, 6504 and 3574 tweets.

8 Conclusions & Future work

Context is vital to the understanding of the fruits of
any figurative device, whether metaphor, irony or
sarcasm. We have explored two sources of contex-
tual information in this work: the linguistic con-
text of the utterance itself – which we take to be
another utterance that is the proximate cause of the
text under consideration – and the psychological
context of the utterance’s author – which we take
to be the mind-set that is apparent in the author’s
most recent writings on Twitter. Each source of
context is ultimately grounded in a text and un-
derstood in text-analytic terms. It is perhaps not
so surprising then that each kind of context yields
similarly large improvements to a neural model of
sarcasm detection when added in isolation, but no
large improvements over either alone when both
are combined in a single model.

This work makes three principle contributions
to the computational analysis of sarcasm. First,
as outlined above, it shows how different kinds of
context – from the linguistic to the psychological
– can be usefully incorporated to yield improved
detection. Second, it shows how accurate anno-
tation of training data can be automated on Twit-
ter by going directly to the source of each training
text, to obtain a definitive answer as to its figura-
tive status. So the resulting neural model does not
learn to approximate the reasoning of independent
human annotators but the mind-set and intent of
the authors themselves. Thirdly, and perhaps most
usefully for future work by others, this feedback-
based dataset will be made available for use by
other researchers and in other evaluations. Im-
portantly, this dataset is not merely a collection of
yes/no annotated texts, even if the yeses and nos
come from authoritative sources. For each text in
the dataset, we can provide the linguistic context
to which it is a response, and furthermore, we can
provide a psychological snapshot of the author at
the time the tweet was posted on Twitter. In the
end we believe this is the most valuable contribu-
tion of the work, as it will allow others to incorpo-
rate an understanding of personality and mind-set
into their own models of that most personal and
moody of figurative devices, sarcasm.
Acknowledgements: This work was funded by
Science Foundation Ireland (SFI) via the ADAPT
centre for Digital Content Technology.
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Abstract

We study the problem of automatically
identifying humorous text from a new
kind of text data, i.e., online reviews.
We propose a generative language model,
based on the theory of incongruity, to
model humorous text, which allows us to
leverage background text sources, such as
Wikipedia entry descriptions, and enables
construction of multiple features for iden-
tifying humorous reviews. Evaluation of
these features using supervised learning
for classifying reviews into humorous and
non-humorous reviews shows that the fea-
tures constructed based on the proposed
generative model are much more effective
than the major features proposed in the ex-
isting literature, allowing us to achieve al-
most 86% accuracy. These humorous re-
view predictions can also supply good in-
dicators for identifying helpful reviews.

1 Introduction

The growth of online feedback systems, such as
online reviews in which users can write about their
preferences and opinions, has allowed for creativ-
ity in the written communication of user ideas. As
such, these feedback systems have become ubiq-
uitous, and it’s not difficult to imagine a future
with smart systems reacting to user’s behaviour
in a human-like manner (Nijholt, 2014). An es-
sential component for personal communication is
the expression of humor. Although many peo-
ple have studied the theory of humor, it still re-
mains loosely defined (Ritchie, 2009), this leads
to difficulties in modelling humor. While the task
for identifying humor in text has been previously
studied, most approaches have focused on shorter
text such as Twitter data (Mihalcea and Strappar-

ava, 2006; Reyes et al., 2012, 2010) (see Section 6
for a more complete review of related work). In
this paper, we study the problem of automatically
identifying humorous text from a new kind of text
data, i.e., online reviews. In order to quantitatively
test whether the review is humorous, we devise a
novel approach, using the theory of incongruity, to
model the reviewer’s humorous intent when writ-
ing the review. The theory of incongruity states
that we laugh because there is something incon-
gruous (Attardo, 1994), in other words, there is a
change from our expectation.

Specifically, we propose a general generative
language model to model the generation of humor-
ous text. The proposed model is a mixture model
with multinomial distributions as component mod-
els (i.e., models of topics), similar to Probabilis-
tic Latent Semantic Analysis (Hofmann, 1999).
However, the main difference is that the compo-
nent word distributions (i.e., component language
models) are all assumed to be known in our model,
and they are designed to model the two types of
language used in a humorous text, including 1) the
general background model estimated using all the
reviews, and 2) the reference language models of
all the topical aspects covered in the review that
capture the typical words used when each of the
covered aspects is discussed. Thus the model only
has the parameters indicating the relative cover-
age of these component language models. The
idea here is to use these parameters to assess how
well a review can be explained by collectively by
the reference language models corresponding to
all the topical aspects covered in the review, which
are estimated using an external text source (e.g.,
Wikipedia).

We construct multiple features based on the
generative model and evaluate them using super-
vised learning for classifying reviews into humor-
ous and non-humorous reviews. Experiment re-
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sults on a Yelp1 review data set show that the fea-
tures constructed based on the proposed generative
model are much more effective than the major fea-
tures proposed in the existing literature, allowing
us to achieve almost 86% accuracy. We also exper-
imented with using the results of humorous review
prediction to further predict helpful reviews, and
the results show that humorous review prediction
can supply good indicators for identifying helpful
reviews for consumers.

2 Referential Humor and Incongruity

In this section we describe some observations in
our data that have motivated our approach to solv-
ing the problem. In particular, we show that hu-
morous reviews tend to reference aspects which
deviate from what is expected. That is, in funny re-
views, the authors tend to use referential humor, in
which specific concepts or entities are referenced
to produce comedic effects, which we call aspects.
Here we define referential humor to be a humor-
ous piece of text which references aspects outside
of the typical context, in our case restaurant re-
views. For the rest of the paper we use humorous
and funny interchangeably.

Our study uses review data from Yelp. Yelp
has become a popular resource for identifying high
quality restaurants. A Yelp user is able to submit
reviews rating the overall experience of the restau-
rants. The reviews submitted to Yelp tend to have
similar context, in particular they mention several
aspects rating the quality of the restaurant such as
food, price, service and so on. This information is
expected from the reviewer in their review, how-
ever it is not always the case since there is no re-
quirement for writing the review. Yelp users are
able to vote for a review in several criterion, such
as funny, cool, and useful. This gives the users an
incentive for not only creating informative reviews
but possibly entertaining reviews.

In Figure 1, we show a humorous review, ran-
domly sampled by using our classifier with a high
probability of being funny, where the reviewer as-
serts that the food has extreme medicinal prop-
erties. The reviewer refers to “Nyquil” a com-
mon cold medicine to express the food’s incredible
ability to cure ailments. This appears almost sur-
prising since it would not normally be mentioned
in restaurants reviews. To identify the intended
humor, we can use the references the reviewer

1www.yelp.com

Figure 1: A funny review (left), with Kd = 3,
aspect topics (right) contain words in their corre-
sponding language model, probabilities removed
for clarity, the colored (bracketed) word corre-
spond to a different aspect assignment.

makes, e.g. Nyquil, as clues to what she is empha-
sising, e.g. the savory soondubu, by making such
comparisons, e.g. the heavenly taste and amazing
price. Yelp users seem to consider funny reviews
which tended to deviate from what was expected
into things which would seem out of place.

3 Language Models as a Proxy for
Incongruity

Motivated by the observations discussed in the
previous section (i.e., reviewers tend to reference
some entities which seem unexpected in the con-
text of the topic of the review), we propose a gen-
erative language model based on the theory of in-
congruity to model the generation of potentially
humorous reviews. Following previous work on
humor, we use the definition of incongruity in hu-
mor as “what people find unexpected” (Mihalcea
and Strapparava, 2006), where “unexpected” con-
cepts are those concepts which people do not con-
sider to be the norm in some domain, later we for-
malize unexpectedness using our model.

We now describe the proposed model in more
detail. Suppose we observe the following refer-
ences toKd topical aspectsAd = {r1, r2, ..., rKd}
in a review Rd = [w1, w2, ..., wNd ], where each ri
corresponds to an aspect reference (i.e. NyQuil in
our running example), andwi ∈ V , where V is the
vocabulary set. The model generates a word, for
some review, at a time, which talks about a specific
aspect or is related to the language used in Yelp
more broadly; we call the latter the background
language model. Thus a word is generated from a
mixture model, and its probability is an interpola-
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Figure 2: Generation model for reviews, where
the dth review has Kd aspects in the review. The
shaded nodes here are the observed data and the
light node z are the latent variables corresponding
to aspect assignments.

tion of the background language and the language
of the references as shown in Figure 2.

These aspects provide some context to the un-
derling meaning of a review; the reviewers use
these aspects for creative writing when describ-
ing their dining experience. These aspects allow
us to use external information as the context, thus
we develop measures for incongruity addressing
the juxtaposition of the aspect’s context and the
review. The review construction process is repre-
sented in a generative model, see Figure 2, where
the shaded nodes represent our observations, we
have observed the words as well as the referenced
aspects which the reviewer has mentioned in their
review. The light nodes are the labels for the as-
pect which has generated the corresponding word.
Since the background language model, denoted by
θB , is review independent, we can simplify the
generative model by copying the background lan-
guage model for each review, thus we can focus on
the parameter estimation for each review in paral-
lel.

A key component to the success of our fea-
tures is the mesh of background text from external
sources, or background text sources, and the re-
views. In our example, Figure 1, Nyquil is a criti-
cal component for understanding the humor. How-
ever it is difficult to understand some references a
reviewer makes without any prior knowledge. To
do so, we incorporate external background knowl-
edge in the form of language models for the refer-
enced aspect present in the reviews. If the reviewer
has made Kd references to different aspects Ad in

review Rd, then for each ri there is a correspond-
ing language model θriw = P (w|θri) over the vo-
cabulary w ∈ V . For simplicity, we describe the
model for each document, and use the notation θiw
and θi for the corresponding language model of ri.

3.1 Incorporating Background Text Sources

As described before, some features we will use to
describe incongruity correspond to the weights of
the mixture model used to generate the words in
the review, which take into account the language
of the references she will make or allude, as shown
in Figure 2. The probability that an author will
generate a word w, for the dth review given corre-
sponding aspects Θ = {θB, θ1, ..., θKd}, is

P (w, d,Θ) =

Kd∑

z=0

P (w, z, d,Θ) =

Kd∑

z=0

P (w|z,Θ)P (z|d) = λθBw + (1− λ)

Kd∑

i=1

πiθ
i
w

Note Kd indicates the different aspects the re-
viewer will mention in a review, Rd, and hence
it can vary between reviews. θBw = P (w|z =
0,Θ) is the probability that the word will appear
when writing a review (e.g. background language
model) and θiw can be interpreted as word distri-
butions over aspect i. Here λ = P (z = 0|d) is
the weight for the background language model and

πi =
P (z = i|d)

1− P (z = 0|d)
denotes the relative weights

of the referenced aspect’s language models used
in the review. We denote our parameters for re-
view Rd as ΛRd = {π1, ..., πKd , λ}. Note that
the parameter set varies depending on how many
references the review makes. In order to estimate
P (w|θi), we first need to find the aspects that the
user is mentioning in their reviews. In general as-
pects can be defined as any topics explicitly de-
fined in external background text data; in our ex-
periments we define aspects as Wikipedia entities.
In subsection 5.1, we describe one way of obtain-
ing these aspects, but first we describe the estima-
tion methodology.

3.2 Parameter Estimation

To estimate our parameters ΛRd , we would like to
maximize the likelihood of P (Rd), which is the
same as maximizing the log-likelihood of P (Rd).
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That is

Λ̂ = argmaxΛ logP (Rd|Λ)

= argmaxΛ

∑

w∈V
c(w,Rd) log (P (w, d,Θ))

Here c(w,Rd) represents the number of occur-
rences of the word w in Rd. In order to maxi-
mize the log-likelihood we use the EM algorithm
(Dempster et al., 1977), to compute the update
rules for the parameters λ and π1, ...πKd . For the
E-Step, at the n+ 1th iteration we have

P (zw = 0) =
θBwλ

(n)

(∑Kd
l=1 θ

l
wπ

(n)
l

)
(1− λ(n)) + θBwλ

(n)

P (zw = j) =
θjwπ

(n)
j∑Kd

l=1 θ
l
wπ

(n)
l

Where zw is a hidden variable indicating whether
we have selected any of the aspect language mod-
els, or the background language model, when gen-
erating the word w. The update rules for the M-
Step are as follows:

λ(n) =

∑
w∈V c(w,Rd)P (zw = 0)

n
, π

(n)
j =

∑
w∈V c(w,Rd)P (zw = j)(1− P (zw = 0))

∑Kd
l=1

∑
w∈V c(w,Rd)P (zw = l)(1− P (zw = 0))

We ran EM until the parameters converged or a
small threshold was reached. Note there is some
similarity to other topic modelling approaches like
PLSA (Hofmann, 1999). PLSA is a way to soft
cluster the documents into several topics, in doing
so a word distribution for each topic is learned. In
our work we make the assumption that the “topics”
are fixed, namely they are the aspects which the
reviewer mentions in their review. Note that, we
can similarly derive update rules for an different
topic model such as LDA (Blei et al., 2003), how-
ever prior work, (Lu et al., 2011), shows that LDA
does not show superior performance over PLSA
empirically for a number of tasks.

4 Features construction

Since we are interested in studying discriminative
features for humorous and non-humorous reviews,
we set up a classification problem to classify a re-
view into either humorous or non-humorous. In
classification problems the data plays a critical
role; here the labels are obtained from the funny

votes in our Yelp dataset, and we describe how we
created the ground-truth in Section 5. Here in this
section, we discuss the new features we can con-
struct based on the proposed language model and
estimated parameter values.

4.1 Incongruity features

A natural feature in our incongruity model is the
estimated background weight, λ, since it indicates
how much emphasis the reviewer puts in their re-
view to describe the referenced aspects, we de-
note this feature by A1. Another feature is based
on the relative weights for the referenced aspect’s
language models. There tends to be more ‘sur-
prise’ in a review when the reviewer talks about
multiple aspects equally, this is because the more
topics the reviewer writes about the more intricate
the review becomes. We use the entropy of the
weightsH(Rd) = −∑Kd

i=1 πi log πi as another in-
congruity score and label this feature as A2.

4.2 Unexpectedness features

Humor often relies on introducing concepts which
seem out of place to produce a comedic ef-
fect. Thus we want to measure this divergence
from the references and the language expected
in the reviews. Hence a natural measure is the
KL-divergence measure the distance between the
background language model and the aspect lan-
guage models. We use the largest deviation,
maxi{DKL(θi||θB)} as feature D2. For this fea-
ture we tried different combinations such as a
weighted average, but both features seemed to per-
form equally so we only describe one of them.

By considering the context of the references in
the reviews we can distinguish which statements
should be considered as humorous, thus we also
use the relative weight for each aspect to mea-
sure unexpectedness. Formally we have Uj =
πjDKL(θj ||θB), lastly we will denote maxi{Ui}
these set of features as U2.

4.3 Baseline features from previous work

For completeness, we also include a description of
all the baseline features used in our experiments;
they represent the state of the art in defining fea-
tures for this task. These features described be-
low do not use any external text sources (leverag-
ing external text sources is a novel aspect of our
work), and they are more contextual and syntacti-
cal based features. We describe some of the most
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promising features, which have previously shown
to be useful in identifying humor in text.
Context features: Due to the popular success of
context features by Mihalcea and Pulman (2007)
we tried the following features content related fea-
tures: C1: the uni-grams in the review.2 C2:
length of the review. C3: average word length.
C4: the ratio of uppercase and lowercase charac-
ters to other characters in the review text.
Alliteration: Inspired by the success that Mihal-
cea and Strapparava (2006) had using the presence
and absence of alliteration in jokes, we developed
a similar feature for identifying funny reviews. We
used CMU’s pronunciation dictionary 3 to extract
the pronunciation to identify alliteration chains,
and rhyme chains in sentences. A chain is a con-
secutive set of words which have similar pronun-
ciation, for example if the words words “scenery”
and “greenery” are consecutive they would form
a rhyme chain. Similarly, “vini, vidi, visa” also
forms another chain this time an alliteration chain.
We used the review’s total number of alliteration
chains and rhyme chains and denote it by E1. Note
that there could be different lengths of chains, we
experimented with some variations but they per-
formed roughly the same, for simplicity we did not
describe them here.
Ambiguity: Ambiguity in word interpretation has
also been found to be useful in finding jokes. The
reasoning is that if a word has multiple interpreta-
tion it is possible that the author intended another
interpretation of the word instead of the more com-
mon one. We restricted the words in the reviews
to only nouns and used Wordnet 4 to extract the
synsets for these words. Then we counted the av-
erage number of synsets for each of these words,
finally we took the mean score for all the words in
the reviews. We call these features lexical ambi-
guity and denote it by E2.

5 Experimental Results

For our experiments we obtained the reviews from
the Yelp Dataset Challenge5, this dataset con-
tains over 1.6 million reviews from 10 different
cities. We also crawled reviews from Yelp in the
Los Angeles area which is not included in the

2We also considered content-based features derived from
PLSA topic weights, however the unigram features outper-
form these features, thus we exclude them for lack of space.

3www.speech.cs.cmu.edu/cgi-bin/cmudict
4http://wordnet.princeton.edu/
5http://www.yelp.com/dataset_challenge
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Figure 3: (a) Mean average number of reviews
for restaurants falling in five different star rating
ranges. (b) Log occurrences of funny votes per
review. (c) Mean average voting judgements for
restaurants in different star ratings.

Yelp Dataset Challenge. This dataset was particu-
larly interesting since the readers are able to vote
whether a review is considered cool, funny, and/or
helpful. It also allows the flexibility for the review-
ers to write longer pieces of text to express their
overall rating of a restaurant.

5.1 Identifying Aspects in Reviews

We use recent advancements in Wikification,
which aims to connect important entities and con-
cepts in text to Wikipedia, it is also known as dis-
ambiguation to Wikipedia. In particular we use the
work of Ratinov et al. (2011), in order to obtain
the Wikipedia pages of the entities in the reviews,
we call these aspects of the review. Using the
Wikipedia description of the aspects we can com-
pute the language models for each aspect. Using
mitlm, the MIT language modeling toolkit by Hsu
and Glass (2008), we apply Modified Kneser-Ney
smoothing to obtain the language models from the
Wikipedia pages obtained from review’s aspects.

5.2 Preliminaries and Groundtruth
Construction

In Figure 3 we give an account of data statistics
based on a random sample of 500,000 reviews, fo-
cusing on the funny voting judgements and the
star rating distributions. In Figure 3a, we no-
tice that on average the highly rated restaurants
tend to have more reviews. Since users would
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Features Classifiers
Naive Bayes Perceptron AdaBoost

Content Related Features

C1 69.92 (0.545) 57.62 (1.084) 69.44 (0.485)
C2 51.33 (1.250) 50.35 (0.763) 50.56 (1.155)
C3 50.86 (0.812) 50.00 (0.012) 50.59 (1.122)
C4 53.85 (0.486) 50.03 (0.172) 51.41 (1.205)

Alliteration E1 50.81 (0.408) 50.11 (0.301) 50.28 (1.195)
Ambiguity E2 51.53 (0.677) 50.39 (0.857) 51.78 (1.533)

Incongruity
A1 81.32 (0.974) 81.32 (0.974) 81.32 (0.974)
A2 83.68 (0.623) 83.68 (0.623) 83.68 (0.623)

Divergence Features D2 84.55 (0.550) 83.68 (0.627) 84.23 (0.561)
Unexpectedness U2 83.68 (0.627) 83.68 (0.627) 83.68 (0.627)

Combination features

A1 + D2 84.55 (0.549) 83.68 (0.627) 84.35 (0.548)
A2 + D2 84.55 (0.549) 84.00 (0.579) 84.41 (0.496)
D2 + U2 84.55 (0.549) 84.00 (0.579) 84.40 (0.549)

A2 + D2 + U2 84.55 (0.550) 83.89 (0.593) 84.35 (0.590)
D2 + U2 + C1 78.28 (0.545) 79.63 (0.534) 83.18 (1.109)
A2 + D2 + C1 78.87 (0.546) 82.68 (0.353) 85.61 (0.900)

A1 + D2+U2+C1 78.62 (0.671) 79.63 (0.528) 85.77 (0.843)
A2 + D2+U2+C1 78.87 (0.546) 81.60 (0.703) 85.60 (0.968)

Table 1: Classification accuracies, using 5-fold cross validation, the 95% confidence is given inside the
parenthesis.

prefer to dine in a restaurant expecting to get a
better overall experience, they create a feedback
on the reviews for those highly rated restaurants.
This “rich-get-richer” effect has been also been re-
cently observed in other social networks (Su et al.,
2016) and a more detailed analysis is out of scope
of this paper. We observe that most of the re-
views receive a low number of funny votes in Fig-
ure 3b, with µ = 0.55, where µ is the average
funny rating. Computing the restaurant’s average
funny votes, then taking the mean by the star rat-
ings for each category range, see Figure 3c, which
seems to be consistently increasing across the dif-
ferent star ratings. Note that this also includes the
restaurants with zero funny votes, by excluding
these we found that the ratings were more con-
sistently stable on about 2.1 votes. Thus regard-
less of restaurant rating, the funny reviews dis-
tribution are stable on average. Considering the
prevalence of noise in the voting process, we also
analysed those reviews with more than one funny
vote (µ = 3.90), and with more than two votes
(µ = 5.54).

To construct our ground-truth data, we took all
of the reviews at least five funny votes, which indi-
cates the review was collectively funny, and con-
sidered those as humorous reviews, we consid-

ered all the reviews with zero funny votes as non-
humorous reviews. We obtained 17,769 humorous
reviews and 856,202 non-humorous, from which
we sampled 12,000 reviews from each category,
and another 5,000 reviews was left for a develop-
ment dataset, to obtain a corpus with 34,000 re-
views total. In total we collected 2,747 wikipedia
pages with an average of about 247 sentences per
page. In our work we focused on identifying dis-
tinguishing features and relative improvement in
a balanced dataset and while the true distribution
may be skewed, we leave the unbalance distribu-
tion study for future work.

Finally we use five-fold cross validation to eval-
uate all the methods. Due to the success of linear
classifiers in text classification tasks we were in-
terested in studying the Perceptron and Adaboost
algorithms, we also used a Naive Bayes classi-
fier which has been shown to perform relatively
well in humor recognition tasks (Mihalcea and
Strapparava, 2006). We used the Learning Based
Java (LBJava) toolkit by Rizzolo and Roth (2010)
for the implementation of all the classifiers and
used their recommended parameter settings. For
the Averaged Perceptron implementation, we used
a learning rate of 0.05 and thickness of 5. In
Adaboost, we choose BinaryMIRA as our weak
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learner to do our boosting on. We also considered
SparseWinnow and SparseConfidenceWeighted to
be our weak learner as well, but the boosting per-
formance for those two learners is marginal on the
development set.6 All experiments were run on an
Intel Core i5-4200U CPU with 1.60GHz running
Ubuntu.

5.3 Predicting Funny Reviews

We report the results of the features in Table 1.
First we can compare the accuracies of the indi-
vidual features. For the content related features
we see that the best features is C1, which is con-
sistent to what others have found in humor recog-
nition research (Mihalcea and Pulman, 2007). The
other content related features are based on some
popular features for detecting useful reviews, how-
ever we notice that in the humor context it is not
very effective. The performance of the contextual
features could indicate that humor is not specific
to a particular context and thus comparing differ-
ent context between humorous and non-humorous
text will not always work.

For the alliteration and ambiguity features
which were reported to be very useful in short text,
such as one-liners and on Twitter, are not as useful
in detecting humours reviews. The reason is pretty
clear since when writing a funny review, the re-
viewer does not worry about the limitation of text
and thus their humor does not rush to a punch-line.
Instead the reviewer is able to write a longer more
creative piece, adhering to less structure. The fea-
tures based on incongruity and unexpectedness, do
really well in distinguishing the funny and non-
funny reviews. For incongruity the best feature is
A2, achieving about the same accuracy as unex-
pectedness features of about 83% accuracy.

The best feature was D2 achieving an accuracy
of around 84% accuracy. The features seem to be
consistent over all of our classifiers. This indi-
cates that incorporating background text sources
to identify humor in reviews is crucial, and our
features we can indirectly capture some common
knowledge, e.g. prior knowledge. In particu-
lar it provides evidence that humor in online re-
views can be better categorized as referential hu-
mor (Ritchie, 2009) rather then shorter jokes. The
results also suggest that we can use these features

6Since our main goal is to understand the effectiveness
of various features we did not further tune these parame-
ters since they are presumably orthogonal to the question we
study.

to help predict the style of humorous text.
Exploring this would be an interesting venue for

future work. When we combine our features for
the classification task and find that the best com-
bination is the incongruity features with the diver-
gence features. We do not report the results for
features E1, E2 and other context features, C2,
C3, C4, since their performance when combined
with other features did not add to the accuracy of
the more discriminant feature. The divergence fea-
ture D2 plays a big role in the accuracy perfor-
mance. This is in line with our hypothesis that the
more uncommon language used the more it is pos-
sible to be for a humorous purpose.

It is interesting to see that AdaBoost performed
the best out of all three classifiers achieving about
86% accuracy, especially when more features
were added, the classifier was able to use this in-
formation for improvement. While Naive Bayes
and the Perceptron algorithm did not make such
improvement achieving about 85% accuracy.

5.4 Ranking Funny Reviews

From the data we noticed that funny reviews tend
to be voted highly useful,in particular we noticed a
correlation coefficient of 0.77. Although it would
have been easy to use the useful votes as a fea-
ture to determine whether the review is funny/not
funny, these scores are only available after people
have been exposed to these reviews. To test how
well the features worked when identifying help-
ful reviews, in a more realistic setting, we formu-
lated a retrieval problem. Given a set of reviews,
D = {R1, R2, ..., Rm} and relevant scores based
on usefulness, U = {u1, u2, ..., um}, is it possible
to develop a scoring function such that we rank the
useful reviews higher? For this task we used the
classification output of Naive Bayes, P (funny|Ri)
where i is the current example under considera-
tion, for our scoring function and trained with the
best performing features in the original dataset.
We used a with-held dataset crawled from restau-
rants in Yelp in the Los Angeles area containing
about 1,360 reviews with 260 reviews labelled as
helpful and the other reviews labelled as not help-
ful. To obtain the ground truth we used the useful
votes in Yelp similar to how we constructed the
funny labels, using a threshold of 5 votes mini-
mum to be considered helpful. This experiment
reveals two things about our features for detect-
ing humorous reviews. First we see that the preci-
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K Precision @ K
1 1.00

10 0.50
25 0.48
50 0.44
100 0.45
200 0.54

Table 2: Precision of useful reviews.

sion is around 50%, see Table 2, this is more than
two times better than random guess which is about
19% and second that our features can be used to
filter out some useful reviews.

6 Related Work

Although there has been much work in the the-
ory of humor by many linguists, philosophers and
mathematicians (Paulos, 2008), the definition of
humor is still a debated topic of research (Attardo,
1994). There have been many applications from
computational humor research; for instance, cre-
ating embodied agents using humor, such as chat
bots, which could allow for more engaging inter-
actions and can impact many domains in education
(Binsted et al., 2006). Existing work on computa-
tional humor research can typically be divided into
humor recognition and humor generation.

In humor generation, some systems have suc-
cessfully generated jokes and puns by exploiting
some lexical structure in the pun/joke (Lessard and
Levison, 1992; Manurung et al., 2008; McKay,
2002). The HAHAcronym project was able to take
user inputs and output humorous acronyms and it
achieves comical effects by exploiting incongruity
(Stock and Strapparava, 2002). Work in automatic
generation of humor is limited to particular do-
mains, usually only generating short funny texts.

One of the earliest work on humor recognition
in text data is the work of Mihalcea and Strap-
parave (2006), trying to identify one-liners, short
sentences with a humorous effect. They frame the
problems as a classification problem and develop
surface features (alliteration, antonym, and adult
slang) as well as context related features. They ul-
timately proposed that additional knowledge such
as, irony, ambiguity, incongruity, and common
sense knowledge among other things would be
beneficial in humor recognition, but they do not
further pursue these avenues. Although they are
able to distinguish between humorous and non-

humorous one liners, in longer of texts such as re-
views it is not so clear that these features suffice.
Instead we make use of the creative writing struc-
ture of the reviewers by looking at the referenced
entities in their reviews.

Although verbal irony can be humorous, and an
active topic of research (Wallace, 2013), it is of-
ten defined as the “opposite to what the speaker
means”, and combining features for identifying
both humor and irony has been studied (see, e.g.,
Reyes et al. (2012)). In the work by Reyes
et al. (2012), the authors defined the unexpected-
ness feature as semantic relatedness of concepts in
Wordnet and assuming that the less the semantic
relatedness of concepts the funnier the text. In our
work we use a similar definition but applying it to
the “topical” relatedness of the referenced aspects
and the background language model. The authors
demonstrate that irony and humor share some sim-
ilar characteristics and thus we can potentially use
similar features to discriminate them. There has
been some early work in identifying humor fea-
tures in web comments (Reyes et al., 2010), in
these comments the users are able to create humor
through dialogue thus making the problem more
complex. More recently there was a workshop
in SemEval-2017 7, which focus is on identifying
humorous tweets which are related, typically as a
punchline, to a particular hashtag.

Kiddon and Brun (2011) aimed to understand
“That’s what she said” (TWSS) jokes, which they
classify as double entendres. They frame the prob-
lem as metaphor identification and notice that the
source nouns are euphemisms for sexually explicit
nouns. They also make use of the common struc-
ture of the TWSS jokes to the erotic domains to
improve 12% in precision over word-based fea-
tures. In our work we try to explicitly model
the incongruity of the reviewer, by doing so we
are able to distinguish the separate language used
by the user when introducing humorous concepts.
Recently there has been work in consumer re-
search, to identify the prevalence of humor in so-
cial media (McGraw et al., 2015). The main focus
was to examine the benign violation theory, which
“suggest that things are humorous when people
perceive something as wrong yet okay”. One of
their finding suggests that humor is more preva-
lent in complaints than in praise, thus motivating

7http://alt.qcri.org/semeval2017/
task6/

499



the usage of automatic humor identification meth-
ods for restaurants regardless of its popularity.

While there is a breadth of work in identifying
helpful reviews and opinion spam in reviews (Jin-
dal and Liu, 2008) as well as deceptive opinion
spam (Ott et al., 2011), and synthetic opinion spam
(Sun et al., 2013); we show that humour can also
be used to identify helpful reviews.

7 Conclusion

We have studied humorous text identification in a
novel setting involving online reviews. This task
has not been studied in the previous work and is
different than detecting humorous jokes or one-
liners, this allows for creative and expressive writ-
ing since the reviewer is not limited in text. In this
problem we cannot directly apply the ideas that
others have developed in order to identify the hu-
morous reviews. Instead features that are based on
the theory of incongruity are shown to outperform
previous features and are effective in the classi-
fication task. Our model introduces a novel and
way to incorporate external text sources for humor
identification task, and which can be applied to
any natural language provided there is a reference
database, i.e. news articles or Wikipedia pages,
in that language. We also show that the features
developed can also be used to identify helpful re-
views. This is very useful in the online review set-
ting since there tends to be a cumulative advan-
tage, that is the “rich get richer” effect which lim-
its the exposure that the users get to other helpful
reviews. Thus identifying these types of review
early can potentially diversify the types of reviews
that the users read.

Although we used a background language
model on the entire corpus to capture a sense of
expectation, there could be other ways to do this.
For example, we could develop neural network
embeddings to capture the entities descriptions in
the reviews. Another direction would be to use
topic models and see whether reviewers are more
inclined to compare different types of references
when talking about certain aspects of restaurants
or other products. A different approach to identi-
fying helpful reviews would be to create entertain-
ing and informative summaries.
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Abstract

Sentiment lexicon is an important tool for
identifying the sentiment polarity of word-
s and texts. How to automatically con-
struct sentiment lexicons has become a
research topic in the field of sentimen-
t analysis and opinion mining. Recently
there were some attempts to employ repre-
sentation learning algorithms to construct
a sentiment lexicon with sentiment-aware
word embedding. However, these method-
s were normally trained under document-
level sentiment supervision. In this paper,
we develop a neural architecture to train a
sentiment-aware word embedding by inte-
grating the sentiment supervision at both
document and word levels, to enhance the
quality of word embedding as well as the
sentiment lexicon. Experiments on the
SemEval 2013-2016 datasets indicate that
the sentiment lexicon generated by our ap-
proach achieves the state-of-the-art per-
formance in both supervised and unsuper-
vised sentiment classification, in compari-
son with several strong sentiment lexicon
construction methods.

1 Introduction

Sentiment lexicon is a set of words (or phrases)
each of which is assigned with a sentiment polar-
ity score. Sentiment lexicon plays an important
role in many practical sentiment analysis and opin-
ion mining tasks. There were some manually an-
notated universal sentiment lexicons such as Gen-
eral Inquireer (GI) and HowNet. However, due
to the ubiquitous domain diversity and absence of
domain prior knowledge, the automatic construc-
tion technique for domain-specific sentiment lex-

∗The corresponding author of this paper.

icons has become a challenging research topic in
the field of sentiment analysis and opinion mining
(Wang and Xia, 2016).

The early work employed unsupervised learn-
ing for sentiment lexicon construction. They nor-
mally labelled a set of seed words at first, and then
learned the polarity of each candidate word, based
on either word conjunction relations (e.g., constel-
lation and transition in texts) (Hatzivassiloglou
and McKeown, 1997), or the word co-occurrence
information (such as pointwise mutual informa-
tion, PMI) (Turney, 2002), between the candidate
word and the seed words. However, the unsuper-
vised manner showed limited effect in sentiment
prediction, and the performance greatly depends
on the quality of the seed words.

To fully exploit the sentiment labeling informa-
tion in texts, a series of supervised learning meth-
ods was further proposed to learn the sentiment
lexicons. For example, Mohammad et al. (2013)
proposed to construct sentiment lexicons by cal-
culating PMI between the word and the distant-
ly supervised sentiment labels (such as emoticon-
s) in tweets and the word’s sentiment orientation
(SO). The resulting lexicons obtained the best re-
sults in SemEval 2013. More advanced repre-
sentation learning models were also utilized, with
the aim to construct the sentiment lexicons with
efficient word embeddings (Tang et al., 2014a;
Hamilton et al., 2016; Vo and Zhang, 2016). The
traditional representation learning framework such
as Word2Vec only captures the syntactic informa-
tion in the texts, but ignores the sentiment rela-
tions between words. Therefore, some researcher-
s attempted to add sentiment supervision into the
network structure, in order to train a sentiment-
aware word embedding. For example, Tang et al.
(2014a) exploited a dedicated neural architecture
to integrate document-level sentiment supervision
and the syntactic knowledge for representation
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learning. The sentiment-aware word embedding is
then used to construct a sentiment lexicon. Vo and
Zhang (2016) proposed to learn a two-dimensional
sentiment representation based on a simple neu-
ral network. The sentiment lexicons generated by
their approach obtained better performance to pre-
dict the tweet sentiment labels, in comparison with
the PMI-based method (Mohammad et al., 2013).

Although these supervised learning method-
s can to some extent exploit the sentiment la-
beling information in the texts and can learn a
sentiment-aware word embedding, the manner of
using document-level sentiment supervision suf-
fers from some complex linguistic phenomena
such as negation, transition and comparative de-
gree, and hence unable to capture the fine-grained
sentiment information in the text. For example, in
the following tweet

“Four more fake people added me. Is
this why people don’t like Twitter? :( ”,

the document-level sentiment label is negative, but
there is a positive word “like” in the text. In
representation learning, the embeddings of word-
s are summed up to represent the document, and
the word “like” will be falsely associated with the
negative sentiment label. Such linguistic phenom-
ena occur frequently in review texts, and makes
sentiment-aware word representation learning less
effective.

To address this problem, in this paper, we pro-
pose a new representation learning framework
called HSSWE, to learn sentiment-aware word
embeddings based on hierarchical sentiment su-
pervision. In HSSWE, the learning algorithm is
supervised under both document-level sentiment
labels and word-level sentiment annotations (e.g.,
labeling “like” as a positive word). By leverag-
ing the sentiment supervision at both document
and word level, our approach can avoid the sen-
timent learning flaws caused by coarse-grained
document-level supervision by incorporating fine-
grained word-level supervision, and improve the
quality of sentiment-aware word embedding. Fi-
nally, following Tang et al. (2014a), a simple
classifier was constructed to obtain the domain-
specific sentiment lexicon by using word embed-
dings as inputs.

The main contributions of this work are as fol-
lows:

1. To the best of our knowledge, this is the first

work that learns the sentiment-aware word
representation under supervision at both doc-
ument and word levels.

2. Our approach supports several kinds of word-
level sentiment annotations such as 1) pre-
defined sentiment lexicon; 2) PMI-SO lexi-
con with hard sentiment annotation; 3) PMI-
SO lexicon with soft sentiment annotation.
By using PMI-SO dictionary as word-level
sentiment annotation, our approach is totally
corpus-based, without any external resource.

3. Our approach obtains the state-of-the-art per-
formance in comparison with several strong
sentiment lexicon construction methods, on
the benchmark SemEval 2013-2016 datasets
for twitter sentiment classification.

2 Related Work

In general, sentiment lexicons construction can
be classified into two categories, dictionary-based
methods and corpus-based methods.

Dictionary-based methods generally integrate
predefined resources, such as WordNet, to con-
struct sentiment lexicons. Hu and Liu (2004) ex-
ploited WordNet for sentiment lexicon construc-
tion. They first labelled two sets of seed word-
s by polarities, then extended the sets by adding
the synonyms for each word to the same set and
antonyms to the other. For a given new word,
Kim and Hovy (2004) introduced a Naive Bayes
model to predict the polarities with .the synonym
set obtained from WordNet as features. Kamps
et al. (2004) investigated a graph-theoretic model
of WordNet’s synonymy relation and measured the
sentiment orientation by distance between each
candidate word and the seed words with differ-
ent polarities. Heerschop et al. (2011) proposed
a method to propagate the sentiment of seed set
words through semantic relations of WordNet.

Corpus-based approaches originate from the la-
tent relation hypothesis: “Pairs of words that co-
occur in similar patterns tend to have similar se-
mantic and sentiment relations” (Turney, 2008).

The primary corpus-based method made the use
of PMI. Turney (2002) built a sentiment lexicon
by calculating PMI between the candidate word
and seed words. The difference of the PMI score
between positive and negative seed words is final-
ly used as the sentiment orientation (SO) of each
candidate word (Turney, 2002). Many variants of
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PMI were proposed afterwards, for example, pos-
itive pointwise mutual information (PPMI), sec-
ond order co-occurrence PMI (SOC-PMI), etc.
Hamilton et al. (2016) proposed to build a senti-
ment lexicon by a propagation method. The key
of this method is to build a lexical graph by calcu-
lating the PPMI between words. Instead of calcu-
lating the PMI between words, Mohammad et al.
(2013) proposed to use emoticons as distant super-
vision and calculate the PMI between words and
the distant class labels, and obtained sound perfor-
mance for tweet sentiment classification.

The latest corpus-based approaches normally
utilize the up-to-date machine learning models
(e.g. neural networks) to first learn a sentiment-
aware distributed representation of words, based
on which the sentiment lexicon is then construct-
ed. There were many word representation learn-
ing methods such as NNLM (Bengio et al., 2003)
and Word2Vec (Mikolov et al., 2013). Howev-
er, they mainly consider the syntactic relation of
words in the context but ignore the sentiment in-
formation. Some work were later proposed to deal
with this problem by incorporating the sentimen-
t information during representation learning. For
example, Tang et al. (2014a) adapted a variant of
skip-gram model, which can learn the sentiment
information based on distant supervision. Further-
more, Tang et al. (2014b) proposed a new neural
network approach called SSWE to train sentiment-
aware word representation. Vo and Zhang (2016)
exploited a simple and fast neural network to train
a 2-dimensional representation. Each dimension
is explicitly associated with a sentiment polarity.

The sentiment-aware word representation in
these methods was normally trained based on on-
ly document-level sentiment supervision. In con-
trast, the learning algorithm in our approach is
supervised under both document-level and word-
level sentiment supervision.

3 Our Approach

Our approach is comprised of three base mod-
ules: (1) Word-level sentiment learning and an-
notation; (2) Sentiment-aware word embedding
learning; (3) Sentiment lexicon construction.

Our approach depends on document-level sen-
timent labels. The tweet corpus provides a cheap
way to get document-level sentiment annotation,
owing to the distant sentiment supervision. But
it should be noted that our approach is feasible

for any corpus provided with document-level sen-
timent labels (not merely tweets).

The first module of our method aims to learn
the pseudo sentiment distribution for each word
and use it as word-level sentiment annotations to
supervise word embedding learning.

In the second module, we learn the sentiment-
aware embeddings for each word in corpus, based
on hierarchical sentiment supervision.

In the last module, we construct a sentiment lex-
icon by using the sentiment-aware word embed-
dings as the basis.

3.1 Learning Word-Level Sentiment
Supervision

In addition to use a pre-defined sentiment lexi-
con for word-level annotations, we also propose to
learn the word-level sentiment supervision, based
on PMI and SO.

(1) PMI and SO

Given a corpus with document-level class label-
s. We first compute the PMI score between each
word t and two class labels

PMI(t,+) = log
p(+|t)
p(+)

, (1)

PMI(t,−) = log
p(−|t)
p(−) , (2)

where + and − denote the positive and negative
document-level class labels, respectively.

Second, we compute the SO score for each
word t:

SO(t) = PMI(t,+)− PMI(t,−). (3)

We call {t, SO(t)} as PMI-SO dictionary. The
PMI-SO dictionary was widely used as a corpus-
based sentiment lexicon for sentiment classifica-
tion. By contrast, in our approach, it is the first
step to learn the sentiment-aware word represen-
tation. Our approach supports two kinds of word-
level sentiment annotations: 1) PMI-SO dictionary
with hard sentiment annotation; 2) PMI-SO dictio-
nary with soft sentiment annotation.

The word-level sentiment annotation is repre-
sented as [p̂(−|t), p̂(+|t)]. We employ the follow-
ing two ways to obtain [p̂(−|t), p̂(+|t)].
(2) PMI-SO lexicon with hard sentiment anno-
tation
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Notations Description
et The embedding of word t
de The document representation of d
bt The bias of word-level softmax layer
bd The bias of document-level softmax layer
θt Weight of word-level softmax layer
θd Weight of document-level softmax layer

p(c|et) The sentiment distribution of word t predict-
ed by our model

p(c|de) The sentiment distribution of document d
predicted by our model

p̂(c|t) The word-level sentiment annotation of
word t with respect to class c

p̂(c|d) The document-level sentiment annotation of
document d with respect to class c

Table 1: The parameters used in our neural net-
work.

“Hard sentiment annotation” indicates that
[p̂(−|t), p̂(+|t)] is a two-dimensional one-hot
representation, where the annotation of words is
given by the class labels:

[p̂(−|t), p̂(+|t)]

=





[0, 1], if SO(t) > 0

[1, 0], if SO(t) < 0

random{[1, 0]or[0, 1]}, otherwise

.

(4)

(3) PMI-SO lexicon with soft sentiment annota-
tion

“Soft sentiment annotation” means that the anno-
tation is given by the probability of two sentiment
polarities, rather than the class label. We first use
the sigmoid function to map the SO score to the
range of a probability, and then define

[p̂(−|t), p̂(+|t)] = [1− σ(SO(t)), σ(SO(t))]
(5)

as the PMI-SO soft sentiment distribution of the
word t.

3.2 Learning Sentiment-aware Word
Representation under Hierarchical
Sentiment Supervision

Till now we have obtained both document and
word-level sentiment annotations, in the next step,
we propose a neural network framework to learn
the sentiment-aware word representation by inte-
grating the sentiment supervision at both word and
document granularities. We call it “hierarchical
sentiment supervision”. The architecture of our

model is shown in Figure 1. We denote the corpus
asD = {d1, d2, ..., dN} whereN is the size of the
corpus. Suppose dk is k-th document in D, and ti
represents the i-th word in a document d. The pa-
rameters used in our neural network are described
in Table 1.

We construct a embedding matrix C ∈ RV×M ,
of which each row represents the embedding of a
word in the vocabulary, where V is the size of the
vocabulary and M is the dimension of word em-
bedding. We randomly initialize each element of
matrix C with a normal distribution.

(1) Word-Level Sentiment Supervision

We use the word-level sentiment annotation
[p̂(−|t), p̂(+|t)] provided in Section 3.1 to super-
vise word representation learning at the word lev-
el.

For each word in document d, we map it to a
continuous representation as e ∈ C and feed e into
our model to predict the sentiment distribution of
the input word:

p(c|e) = softmax(θt · e+ bt). (6)

The cost function is defined as the average cross
entropy that measures the difference between the
sentiment distribution predicted in our model and
the sentiment annotations at the word level:

fword = −
1

T

N∑

k=1

∑

t∈dk

∑

c∈{+,−}
p̂(c|t) log p(c|et)

(7)
where T is the number of words in corpus.

(2) Document-Level Sentiment Supervision

We use the document-level sentiment annotation-
s to supervise word representation learning at the
document level.

In order to obtain a continuous representation of
a document d, we simply use the average embed-
ding of words in d as de:

de =
1

|d|
∑

t∈d
et. (8)

We feed de into our model to predict the sentiment
probability:

p(c|de) = softmax(θd · de+ bd). (9)
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Figure 1: The Architecture of our Neural Network. Given a document d, represented as [t1, t2, . . . , tn].
ti is the i-th word in d. And eti represents the embedding of the word ti. We take de, the average
embedding of [et1 , et2 , . . . , etn ], as the representation of document d. We get each embedding of words
in d as input to predict its sentiment polarities. We also take de as input to predict the sentiment for
document d one time per epoch.

Similarly, the cost function is defined as aver-
age cross entropy that measures the difference be-
tween the sentiment distribution predicted in our
model and the sentiment annotation at the docu-
ment level:

fdoc = −
1

N

N∑

k=1

∑

c∈{+,−}
p̂(c|dk) log p(c|dek)

(10)
where p̂(c|dk) is the sentiment annotation of doc-
ument dk. p̂(c|dk) = 1 denotes the class label of
dk is positive, otherwise p̂(c|dk) = 0.

(3) Word and Document-Level Joint Learning

In order to learn the sentiment-aware word repre-
sentation at both word and document levels, we in-
tegrate the cost function of two levels in a weight-
ed combination way. The final cost function is de-
fined as follows:

f = αfword + (1− α)fdoc (11)

where α is a tradeoff parameter(0 ≤ α ≤ 1). The

weight of fword can be increased by choosing a
lager value of α.

We train our neural model with stochastic gradi-
ent descent and use AdaGrad (Duchi et al., 2011)
to update the parameters.

3.3 From Sentiment Representation to
Sentiment Lexicon

In this part, we follow the method proposed by
Tang et al. (2014a) to build a classifier to convert
the sentiment-aware word representation learned
in Section 3.2 to a sentiment lexicon. The word
representation is the input of the classifier and
word sentiment polarity is the output.

Firstly, we utilize the embedding of 125 positive
and 109 negative seed words manually labelled by
Tang et al. (2014a) as training data1.

Secondly, a variant-KNN classifier is also ap-
plied to extending the seed words on a web dictio-
nary called Urban Dictionary. Unlike (Tang et al.,

1http://ir.hit.edu.cn/ dytang/paper/14coling/data.zip
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Dataset #pos #neg Total
SemEval2013-train 3632 1449 5081
SemEval2013-dev 482 282 764
SemEval2013-test 1474 559 2033
SemEval2014-test 982 202 1184
SemEval2015-test 1038 365 1403
SemEval2016-test 7059 3231 10290

Table 2: Statistics of Evaluation Datasets

2014a), we did not extend the neutral words.

Thirdly, a traditional logistic regression classi-
fier is trained by using the embeddings of extend-
ed sentiment words as the inputs. The sentiment
score of a word is the difference between its posi-
tive and negative probabilities.

Finally, the sentiment lexicon can be collected
by using the classifier to predict the other words’
sentiment score.

4 Experiment Study

4.1 Datasets and Settings

We utilize the public distant-supervision corpus2

(Go et al., 2009) to learn our lexicons. We set M ,
the dimension of embedding, as 50. The learning
rate is 0.3 for stochastic gradient descent optimiz-
er. We tune the hyper-parameter α in the training
process.

We evaluate the sentiment lexicons in both su-
pervised and unsupervised sentiment classification
tasks, on the SemEval 2013-2016 datasets. The s-
tatistics of evaluation datasets are shown in Table
2.

Supervised Sentiment Classification Evalua-
tion: To evaluate the effect of the sentiment lexi-
con in supervised sentiment classification, we re-
port the supervised sentiment classification perfor-
mance by using some pre-defined lexicon features.
We follow (Mohammad et al., 2013) to extract the
lexicon features as follows:

• Total count of words in the tweet score of
which is greater than 0;

• Total count of words in the tweet score of
which is less than 0;

• The sum of scores for all word great than 0;

2http://help.sentiment140.com/for-students

• The sum of scores for all word less than 0;

• The max score greater than 0;

• The min score less than 0;

• Non-zero score of the last positive word in
the tweet;

• Non-zero score of the last negative word in
the tweet.

We report the performance of SVM by using these
lexicon features. The LIBSVM 3 toolkit is used
with a linear kernel and the penalty parameter is
set as the default value. The metric is F1 score.

Unsupervised Sentiment Classification Eval-
uation: For unsupervised sentiment classification,
we sum up the scores of all sentiment words in the
document, according to the sentiment lexicon. If
the sum is greater than 0, the document will be
considered as positive, otherwise negative. The
unsupervised learning evaluation metric is accu-
racy.

4.2 (External) Comparison with Public
Lexicons

We compare our HSSWE method with four senti-
ment lexicons generated by the related work pro-
posed in recent years:

• Sentiment140 was constructed by Moham-
mad et al. (2013) on tweet corpus based on
PMI between each word and the emoticons.

• HIT was constructed by Tang et al. (2014a)
with a representation learning approach.

• NN was constructed by Vo and Zhang (2016)
with a neural network method.

• ETSL refers to SemEval-2015 English Twit-
ter Sentiment Lexicon4 (Rosenthal et al.,
2015; Kiritchenko et al., 2014), which is done
using Best-Worst Scaling.

Note that Tang et al. (2014a), Vo and Zhang
(2016) used incomplete dataset of SemEval2013
in their papers. For fair comparison, we conduct

3http://www.csie.ntu.edu.tw/ cjlin/libsvm
4http://www.saifmohammad.com/WebDocs/lexiconstoreleas

eonsclpage/SemEval2015-English-Twitter-Lexicon.zip
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Lexicon Semeval2013 Semeval2014 Semeval2015 Semeval2016 Average
Sentiment140 0.7317 0.7271 0.6917 0.6809 0.7079

HIT 0.7181 0.6947 0.6797 0.6928 0.6963
NN 0.7225 0.7115 0.6970 0.6887 0.7049

ETSL 0.7104 0.7090 0.6650 0.6862 0.6926
HSSWE 0.7550 0.7424 0.6921 0.7097 0.7248

Table 3: Supervised Evaluation for External Comparison (F1 Score)

Lexicon Semeval2013 Semeval2014 Semeval2015 Semeval2016 Average
Sentiment140 0.7208 0.7416 0.6935 0.6928 0.7122

HIT 0.7566 0.7922 0.7128 0.7282 0.7474
NN 0.6903 0.7280 0.6507 0.6585 0.6819

ETSL 0.7675 0.8226 0.7505 0.7365 0.7693
HSSWE 0.7734 0.8539 0.7669 0.7206 0.7787

Table 4: Unsupervised Evaluation for External Comparison (Accuracy)

all the comparison experiments on the complete
benchmark datasets.

Supervised Sentiment Classification: We first
report the supervised sentiment classification F1

score of five compared methods on the Semeval
2013-2016 datasets in Table 3. It can be seen that
our HSSWE method gets the best result on all four
datasets. It outperforms Sentiment140, HIT, NN
and ETSL 1.7, 2.8, 1.9, and 3.2 percentages on the
average of four datasets. The improvements are
significant according to the paired t-test.

Unsupervised Sentiment Classification: We
then report the unsupervised sentiment classifi-
cation accuracy of five methods on the Semeval
2013-2016 datasets in Table 4. In can be seen that
HSSWE obtains the best performance on Semeval
2013-2015. On the Semeval 2016 dataset, it is s-
lightly lower than ETSL. Across four datasets, the
average accuracy of HSSWE is 6.6, 3.1, 9.6 and
0.94 higher than Sentiment140, HIT, NN and ET-
SL, respectively.

4.3 (Internal) Comparison within the Model

In order to further verify the effectiveness of our
method and analyze which part of our model con-
tributes the most, we carried out the internal com-
parison within our model. We design the follow-
ing two simplified versions of our model for com-
parison:

• PMI-SO denotes a PMI-SO based senti-
ment lexicon with soft sentiment annotation
learned in Section 3.1.

• Doc-Sup denotes the neural network system

with only document-level sentiment supervi-
sion. It equals to HSSWE when α = 0.

Actually, HSSWE can be viewed as a “combi-
nation” of PMI-SO and Doc-Sup. In Tables 5 and
6, we report the comparison results on supervised
and unsupervised sentiment classification respec-
tively.

Supervised Sentiment Classification: As is
shown in Table 5, two basic models PMI-SO and
Doc-Sup show similar performance. They have
distinct superiority across different datasets. But
both are significantly lower than HSSWE. It shows
that by combing the supervision at both document
and word levels, it can indeed improve the quality
of sentiment-aware word embedding and the sub-
sequent sentiment lexicon.

Unsupervised Sentiment Classification: As is
shown in Table 6, the conclusions are similar with
that in supervised sentiment classification: HSS-
WE achieves the significantly better performance.

4.4 Word-level Sentimnt Annotation: Hard
vs. Soft

In Section 3.1, we introduce two kinds of word-
level sentiment annotation, i.e., soft and hard sen-
timent annotation. We now compare two meth-
ods. The results are reported in Tables 5 and
6. It can be seen that for supervised evaluation,
HSSWE (soft) and HSSWE (hard) yield compar-
ative performance. HSSWE (hard) has slight su-
periority over HSSWE (hard) in Semeval 2013,
2014 and 2016, but HSSWE (hard) is better on
Semeval2015. In contrast, for unsupervised eval-
uation, HSSWE (soft) is significantly better than
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Lexicon Semeval2013 Semeval2014 Semeval2015 Semeval2016 Average
PMI-SO 0.7265 0.7333 0.7008 0.6858 0.7116
Doc-Sup 0.7326 0.7302 0.6814 0.6986 0.7107

HSSWE (soft) 0.7550 0.7424 0.6921 0.7097 0.7248
HSSWE (hard) 0.7503 0.7383 0.7020 0.7061 0.7242

Table 5: Supervised Evaluation for Internal Comparison (F1 Score), where HSSWE (hard) and HSSWE
(soft) utilize the PMI-SO lexicon with hard sentiment annotation and soft sentiment annotation at the
word level, respectively.

Lexicon Semeval2013 Semeval2014 Semeval2015 Semeval2016 Average
Doc-Sup 0.7252 0.8294 0.7391 0.6859 0.7449

HSSWE (soft) 0.7734 0.8539 0.7669 0.7206 0.7787
HSSWE (hard) 0.7418 0.8395 0.7633 0.7011 0.7614

Table 6: Unsupervised Evaluation for Internal Comparison (Accuracy)
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Figure 2: HSSWE (soft) with different α

HSSWE (hard). The average improvement is 1.7
percentage.

4.5 Tuning the Parameter α

In this section, we discuss the tradeoff between t-
wo parts of supervisions by turning the tradeoff
parameter α. When α is 0, HSSWE only ben-
efits from the document-level sentiment supervi-
sion and when α is 1, HSSWE benefits from only
word-level sentiment supervision. We observe that
HSSWE performs better when α is in the range of
[0.45,0.55]. By integrating two component parts
of sentiment supervision, HSSWE has significant
superiority over that learned from either one.

4.6 Lexicon Analysis

In order to gain more insight of our model and
observe the effectiveness of the sentiment lexi-
con, in Table 7 we extract the positive sentimen-

Words HSSWE PMI-SO Doc-Sup
well 0.5740 0.5430 0.7898

better 0.5837 0.5358 (F) 0.8440
best 0.9455 0.6823 0.9639
fit 0.2894 -0.5594 (F) 0.6076

unreasonable -0.2441 -0.8421 0.5275 (F)
boreddddd -0.1137 -0.7142 0.4843 (F)

sickkkk -0.3892 -0.7692 0.1323 (F)
overplayed -0.1390 0.5000 (F) 0.8448 (F)

Table 7: Sentiment Lexicon Analysis, where s-
core with (F) means falsely predicted polarity or
strength.

t score of some representative words learned by
different methods. The positive scores are sup-
posed to be: best>better>well. HSSWE captures
such comparative sentiment strength but PMI-SO
does not. We further observe that in many cases
where the results of PMI-SO and Doc-Sup are in-
consistent (e.g., Doc-Sup incorrectly predicts “un-
reasonable”, “boreddddd” and “sickkk” as pos-
itive words, but PMI-SO predicts them correct-
ly; PMI-SO incorrectly predicts “fit” but Doc-Sup
predicts it correctly.), HSSWE often yield the cor-
rect results. It shows the advantages of hierarchi-
cal sentiment supervision. HSSWE can also cor-
rect the sentiment prediction where both PMI-SO
and Doc-Sup are inefficient (e.g., “overplayed”).

5 Conclusion

In this paper, we proposed to construct sentiment
lexicons based on a sentiment-aware word repre-
sentation learning approach. In contrast to tradi-
tional methods normally learned based on only the
document-level sentiment supervision. We pro-
posed word representation learning via hierarchi-
cal sentiment supervision, i.e., under the supervi-
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sion at both word and document levels. The word-
level supervision can be provided based on either
predefined sentiment lexicons or the learned PMI-
SO based sentiment annotation of words. A wide
range of experiments were conducted on several
benchmark sentiment classification datasets. The
results indicate that our method is quite effective
for sentiment-aware word representation, and the
sentiment lexicon generated by our approach beats
the state-of-the-art sentiment lexicon construction
approaches.
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Abstract

Existing sentiment classifiers usually work
for only one specific language, and differ-
ent classification models are used in dif-
ferent languages. In this paper we aim to
build a universal sentiment classifier with
a single classification model in multiple
different languages. In order to achieve
this goal, we propose to learn multilingual
sentiment-aware word embeddings simul-
taneously based only on the labeled re-
views in English and unlabeled parallel
data available in a few language pairs. It
is not required that the parallel data ex-
ist between English and any other lan-
guage, because the sentiment information
can be transferred into any language vi-
a pivot languages. We present the eval-
uation results of our universal sentiment
classifier in five languages, and the results
are very promising even when the parallel
data between English and the target lan-
guages are not used. Furthermore, the u-
niversal single classifier is compared with
a few cross-language sentiment classifiers
relying on direct parallel data between the
source and target languages, and the re-
sults show that the performance of our uni-
versal sentiment classifier is very promis-
ing compared to that of different cross-
language classifiers in multiple target lan-
guages.

1 Introduction

Nowadays, a large amount of user-generated con-
tent (UGC) appears online everyday, such as
tweets, comments and product reviews. Sentiment
classification on these data has become a popular
research topic over the past few years (Pang et al.,

2002; Blitzer et al., 2007; Agarwal et al., 2011; Li-
u, 2012). Distributed representations of words or
word embeddings have been widely explored, and
have proved its great usability for the sentimen-
t classification task (Tang et al., 2014; Zhou et al.,
2015; Xu et al., 2015; Bollegala et al., 2016; Fer-
reira et al., 2016).

Most existing sentiment classifiers rely on la-
beled training data and the data are usually
language-dependent. In other words, a sentiment
classifier is learned from a labeled dataset in a spe-
cific language and this sentiment classifier can be
used for sentiment classification in this language.
However, labeled training data for sentiment clas-
sification are not available or not easy to obtain
in many languages in the world (e.g., Malaysian,
Mongolian, Uighur). Without reliable labeled da-
ta, it is hard to build a sentiment classifier in these
resource-poor languages.

Fortunately, there are a few studies investigating
the task of cross-language sentiment classification
(Banea et al., 2008; Wan, 2009; Meng et al., 2012;
Xiao and Guo, 2013; Gao et al., 2015; Chen et al.,
2015; Zhou et al., 2015; Li et al., 2017; Zhou et al.,
2016a,b), which aims to make use of the labeled
data in a source language (English in most cas-
es) to build a sentiment classifier in a target lan-
guage. However, cross-language sentiment classi-
fication methods rely on parallel data between the
source and target languages1 In a resource-poor
language, the parallel data between this language
and the source language may not be available or
is not easy to obtain. In this circumstance, previ-
ous cross-language sentiment classification meth-

1Note that a few methods rely on a machine transla-
tion system to produce parallel data between the two lan-
guages, while the machine translation system is built on a
large amount of parallel data between the two languages. In
this sense, the methods rely on both the parallel data for ma-
chine translation and the pseudo parallel data produced by
machine translation systems.
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ods will fail to work.
Another shortcoming of previous cross-

language sentiment classification researches is
that we have to build an individual cross-language
sentiment classifier for each target language, even
when we want to perform sentiment classification
in a couple of languages at the same time.

In this study, instead of building a sentiment
classifier for each target language, we aim to build
a universal sentiment classifier in multiple lan-
guages and this universal sentiment classifier on-
ly learns one single sentiment classification model
and it can be applied for sentiment classification in
many languages.

In order to achieve this goal, we propose an ap-
proach to learn multilingual sentiment-aware word
embeddings simultaneously based only on the la-
beled reviews in English and unlabeled parallel da-
ta available in a few language pairs. As mentioned
earlier, in some resource-poor languages, there do
not exist direct parallel data between these lan-
guages and the source English language. In order
to address this problem, we propose a pivot-based
model to transfer the sentiment information from
the source language to any resource-poor language
via pivot languages. Finally, a universal sentimen-
t classifier can be built because the multilingual
word embeddings are in the same semantic space.

We build three different models (Bilingual
Model, Pivot-Driven Bilingual Model and Univer-
sal Multilingual Model) and compare them em-
pirically in order to answer two questions in this
paper: 1) Can pivot-based models learn bilingual
sentiment-aware word embeddings effectively? 2)
Can an effective universal sentiment classifier be
built for multiple languages?

Without loss of generality, we present and com-
pare the evaluation results of the models in five
languages. Evaluation results show that pivot-
driven bilingual models perform as well as the
bilingual model using direct parallel data, which
lays the solid foundation of our universal mod-
el. Moreover, it is very promising that our univer-
sal sentiment classifier can work well in five lan-
guages, and it can achieve very promising classifi-
cation results as compared to several typical cross-
language sentiment classification models.

The main contributions of our study in this pa-
per are summarized as follows:

• We are the first to build a universal sentimen-
t classifier in multiple languages by learning

multilingual sentiment-aware word embed-
dings, which can not be addressed by previ-
ous researches on cross-language sentiment
classification.

• We propose pivot-based models to bridge two
languages in which there do not exist parallel
data, and thus the sentiment information can
be transferred to any target language.

• Evaluation results on five languages demon-
strate the efficacy of our proposed pivot-
based models and the universal sentimen-
t classifier.

2 Our Approach

In order to build a universal sentiment classifi-
er, we propose an approach to learn multilingual
sentiment-aware word embeddings simultaneous-
ly, and then train a universal sentiment classifica-
tion model in the embedding space by averaging
the word embeddings in a document as the doc-
ument representation. Note that in this study, we
focus on only using the labeled data in English and
do not make use of any labeled data in other lan-
guages, which makes the task more challenging2.
Formally, we aims to build a single sentiment clas-
sifier which can perform sentiment classification
in many languages {S, T1, T2, ..., TN}, where S
refers to English language, and T1 to TN refer to
other N languages.

In our approach, the multilingual sentiment-
aware word embeddings play the key role in
building the universal sentiment classifier, and
now the question is how to learn the multilingual
sentiment-aware word embeddings? Inspired by
previous studies on cross-lingual sentiment clas-
sification and bilingual word embedding learn-
ing, we can leverage the labeled data in S (i.e.,
English) and unlabeled parallel data between S
and language T to learn bilingual sentiment-aware
word embeddings in both English and T languages
with a bilingual model. However, such unlabeled
parallel data are not always easy to obtain for all
other languages. For a specific language T , if the
unlabeled parallel data between T and S do not
exist, the bilingual model cannot be applied. In
order to address this problem, we propose a pivot-
driven bilingual model to leverage pivot languages

2Note that the labeled data in other languages can be eas-
ily used by our approach in the same way as the English la-
beled data, and we believe more labeled data will eventually
improve the performance of the sentiment classifier.
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to bridge T and S. We choose a pivot language
P where the parallel data between P and S, and
the parallel data between P and T are easy to ob-
tain, and then leverage them to learn the multi-
lingual sentiment-aware word embeddings in the
three languages P , T and S. Furthermore, we can
leverage more parallel data between multiple lan-
guages, some of which are parallel data between S
and other languages, and some of which are par-
allel data within other languages, to build an uni-
versal multilingual model. The sentiment informa-
tion will be directly or indirectly transfered to each
language as well, and thus we obtain multilingual
sentiment-aware word embeddings in many lan-
guages.

The bilingual model, pivot-driven bilingual
model and universal multilingual model will be
described in next sections, respectively.

2.1 Bilingual Model

The bilingual model tries to induce bilingual word
embeddings from a parallel corpus, and in the
meantime make similar words from the two lan-
guages share adjacent vector representations in the
same vector space.

Formally, we assume a source language S with
|S| words and a target language T with |T | words.
We use s and t to represent a word from S and T ,
respectively. Given the bilingual parallel corpus C
between language S and T , it can be divided into
a corpus CS in language S and a corpus CT in lan-
guage T . And we use a notation S − T to indicate
a parallel corpus between languages S and T .

Previous studies have proposed some bilingual
models for learning bilingual word embeddings,
so we extend the well-behaved BiSkip model (Lu-
ong et al., 2015) to Bilingual Model (BM). This
model requires word alignment information, and
in this study word alignment is automatically ob-
tained from parallel sentences by using a word
alignment tool.

In our bilingual model, every word s in lan-
guage S is required to predict the adjacent words
of itself and the aligned word t in the target lan-
guage T . For corpus CS , the monolingual con-
straint on itself (CS → CS) is:

Obj(CS |CS) =
∑

s∈CS

∑

w∈adj(s)
log p(w|s), (1)

and the cross-lingual constraint on CT (CS → CT )

is:

Obj(CT |CS) =
∑

s∈CS

∑

w∈adj(t),s↔t
log p(w|s) (2)

where s↔t means word s(∈ CS) is aligned to
word t(∈ CT ) and adj(s) or adj(t) mean the adja-
cent words of word s or t.

Similarly, for corpus CT we can obtain:

Obj(CT |CT ) =
∑

t∈CT

∑

w∈adj(t)
log p(w|t), (3)

and

Obj(CS |CT ) =
∑

t∈CT

∑

w∈adj(s),t↔s
log p(w|t) (4)

Combining equations 1, 2, 3 and 4, we get the
objective for obtaining bilingual word embeddings
from parallel corpus:

Obj(C) = α1Obj(CS |CS) + α2Obj(CT |CS)

+α3Obj(CT |CT ) + α4Obj(CS |CT )
where α1, α2, α3 and α4 are scalar parameters.

We still have to incorporate the sentiment infor-
mation into the bilingual word embeddings. Sim-
ilar to previous studies (Zhou et al., 2015), we
make use of the sentiment polarity of texts as su-
pervision in the learning process. Given a labeled
sentimental corpus CL3, we use S∗ to represent a
sentence in CL and w as a word in S∗. And xT

is a sum of word embeddings in S∗. We simply
adopt the logistic regression classifier to enforce
the sentiment constraint, and thus make the bilin-
gual word embeddings absorb the corresponding
sentiment information. The objective function is:

L(CL) =
∑

S∗∈CL
y log σ(WxT + b)

+ (1− y) log σ(1− (WxT + b)) (5)

where y is the label of the sentence S∗, W is a
weight vector and b is a bias.

The overall objective function for inducing
bilingual sentiment-aware word embeddings is to
maximize:

Obj(C) + L(CL)
3Note that the labeled corpus is usually provided in the

source language S, which means L is S. but the labeled cor-
pus usually does not overlap with the parallel corpus.
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2.2 Pivot-Driven Bilingual Model

For some resource-poor target language T , it is
quite expensive to get direct parallel corpus be-
tween T and the source language S. Without such
parallel corpus, it is not possible to apply the above
bilingual model to learn bilingual sentiment-aware
word embeddings. In order to address this prob-
lem we propose our Pivot-Driven Bilingual Mod-
el (PDBM) by using a pivot language to bridge
T and S. The model is inspired by (Wu and
Wang, 2007), in which pivot languages are used
for phrase-based SMT. A pivot language P is cho-
sen if the parallel corpus between P and S, and
the parallel corpus between P and T are easy to
obtain. Given two parallel corpora: S-P and P -T ,
our PDBM model tries to get the trilingual word
embeddings by putting constrains on the two cor-
pora. Under the well-designed constraint, the piv-
ot language P can pass the sentiment information
from the source language S to the target language
T . Similarly, we further assume the pivot language
P with |P |words, and use CP to denote the corpus
in language P .

We design constraints on the two parallel corpo-
ra S-P and P -T , instead of direct constraints on
S and T . Derived from the BM model, we can get
three monolingual constraints CS→ CS , CT→CT ,
CP→CP and four bilingual constraints CS→CP ,
CT→CP , CP→CS and CP→CT . The final objec-
tive function for learning the trilingual word em-
beddings can be summarized as:

Objp(C) = β1Obj(CS |CS) + β2Obj(CS |CP)

+β3Obj(CT |CT ) + β4Obj(CT |CP)

+β5Obj(CP |CS) + β6Obj(CP |CT )

+β7Obj(CP |CP)

where β1, β2, β3, β4, β5, β6, β7 are scalar parame-
ters. Similarly, the objective for enforcing the sen-
timent constraint is the same as equation 5, so we
combine them together to get the overall objective
function:

Objp(C) + L(CL)

Through the pivot language, the sentiment in-
formation can be passed from a source language
to a target language by maximizing the above ob-
jective function.

2.3 Universal Multilingual Model

The bilingual model and the pivot-driven bilin-
gual model lay the foundations of build a univer-
sal multilingual model for sentiment classification
in many languages. Given a source language S
and a few other languages {T1, T2, ..., TN}. If
there exist parallel data between a language Ti and
S, then the bilingual sentiment-aware word em-
beddings can be learned by the bilingual model.
If the parallel data between languages Ti and S
are not available, a pivot language can be select-
ed and the pivot-driven model can be applied to
learn the trilingual sentiment-aware word embed-
dings. Even when a single pivot language cannot
be found for languages Ti and S, we still can find
two or more pivot languages {P1, P2, ..., PM} to
form a pivot chain and the sentiment information
in the source language can be passed through the
pivot chain (S − P1 − ...− PM − Ti) to the target
language.

Therefore, in this model, we will make use
of all parallel corpora between any pair of lan-
guages (including parallel corpora between the
source language and any other language, and par-
allel corpora between other languages) and learn
the sentiment-aware word embeddings in all the
languages simultaneously. The monolingual ob-
jective in each language and the cross-lingual ob-
jective for any available parallel corpus are de-
fined in the same way as in the above models,
and we sum all the objectives and denote it as
Objuniversal(C), and this objective is then com-
bined with the sentiment constraint as follows:

Objuniversal(C) + L(CL)

By maximizing the above objective function,
the sentiment-aware word embeddings in all the
languages will be learned.

3 Evaluations

3.1 Dataset

Without loss of generality, we evaluate our mod-
els in five languages (including three western lan-
guages and two Asian languages): English (en),
German (de), French (fr), Japanese (jp) and Chi-
nese (en/zh). Among these languages, the English
language is the source language with labeled train-
ing data, and we do no use any labeled data in the
other languages.
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Particularly, we use the multilingual multi-
domain Amazon review dataset 4 provided by
(Prettenhofer and Stein, 2010) and the NLPC-
C2013 dataset 5. The review dataset provided by
(Prettenhofer and Stein, 2010) contains labeled da-
ta in four languages: English, German, French
and Japanese, and the NLPCC2013 dataset further
provides labeled data in Chinese. The reviews in
each language are divided into three domains: dvd,
music and books. Each domain of product reviews
contains a balanced training set and test set, each
of which consists of 1000 positive and 1000 nega-
tive reviews for each language except for Chinese.
While for Chinese language, the test set consists
of 2000 positive and 2000 negative reviews. We
only use English training data as the labeled data
in the experiments.

We further obtain unlabeled parallel data from
Europarl v7 6 (Koehn, 2004) (Eu v7) and The
United Nations Parallel Corpus v1.0 7 (Ziems-
ki et al., 2016) (UN v1.0). The Europarl cor-
pus contains bilingual parallel corpus between En-
glish and other 20 Europe languages. The Unit-
ed Nations Parallel Corpus is composed of offi-
cial records and other parliamentary documents of
the United Nations that are in the public domain.
These documents are mostly available in the six
official languages of the United Nations. Besides,
we use the cldc-2009-004 8 Chinese-English (CN-
EN) news parallel corpus and Japanese-English
Bilingual Corpus of Wikipedia’s Kyoto Articles
Version 2.01 9 (JP-EN), which is created manually
by translating Japanese Wikipedia articles (related
to Kyoto) into English. In addition, CJWikiCor-
pus (CN-JP) is a Chinese-Japanese Parallel Cor-
pus Constructed from Wikipedia 10

For the the BM model, we use en-de (∈ Eu v7)
and en-fr (∈ Eu v7), en-zh (∈ CN-EN), and en-jp
(∈ JP-EN).

For the PDBM model, we use en-fr (∈UN v1.0)
with fr-de (∈ Eu v7) to get the case en-fr-de (fr act-
s as a pivot), en-zh (∈ CN-EN) with zh-jp (∈ CN-
JP) to build the case en-zh-jp (zh acts as a pivot),
en-zh (∈ CN-EN) with zh-fr (∈ UN v1.0) to build
en-zh-fr (zh acts as a pivot), and en-fr (∈ Eu v7)

4https://www.uni-weimar.de/medien/webis/corpora/corpus-
webis-cls-10/

5http://tcci.ccf.org.cn/conference/2013/pages/page04 evares.html
6http://www.statmt.org/europarl/v7/
7https://conferences.unite.un.org/UNCorpus/
8http://www.chineseldc.org/resource info.php?rid=141
9 http://alaginrc.nict.go.jp/WikiCorpus/index E.html

10http://lotus.kuee.kyoto-u.ac.jp/ chu/resource/wiki zh ja.tgz

with zh-fr (∈ UN v1.0) to build en-fr-zh (fr acts
as a pivot). Note that any pivot language can be
selected if the parallel corpora between the piv-
ot language and other languages can be obtained,
but in our experiments, we only use one pivot lan-
guage in each test case to validate the feasibility
of our proposed model. In practice, a popular lan-
guage (such as English, Chinese) can be used as
the pivot because it can act as a link between two
unpopular languages.

While for the UMM model, we use all the cor-
pora used in PDBM to build a universal model. All
the details can be found in Table 1.

3.2 Comparison Methods

In addition to the comparison between our mod-
els, we further compare them with popular cross-
lingual (CL) sentiment classification methods.

For comparison in German, French and
Japanese, we adopt a few typical CL classifica-
tion methods, and the results are directly borrowed
from the corresponding published papers:

MT-BOW: It is a simple model to train a lin-
ear classifier based on the bag-of-words features,
and it uses a machine translator to translate the test
data into the source language (Prettenhofer and
Stein, 2010) .

CL-SCL: It is the cross-lingual structural corre-
spondence learning algorithm proposed by (Pret-
tenhofer and Stein, 2010) and the features in the
two languages are mapped to a unified space.

BSE: It is introduced in (Tang and Wan, 2014)
by forcing the representations of words from both
the source and target languages to share the same
feature space. In this way, bilingual word embed-
dings are learned for cross-lingual sentiment clas-
sification.

CR-RL: It is the bilingual word representation
learning method of (Xiao and Guo, 2013). It learns
different representations for words in different lan-
guages. Part of the word vector is shared among
different languages and the rest is language depen-
dent. The document representation is calculated
by taking average over all words in the document.

Bi-PV: It extends the paragraph vector model
into bilingual setting by sharing the document rep-
resentation of a pair of parallel documents (Pham
et al., 2015).

For comparison in Chinese, we adopt several
typical CL classification methods:

MT-LR and MT-SVM: We use logistic regres-
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Model Parallel corpora with size Test case

BM

en-de (∈ Eu v7, 1.92M) en-de
en-fr (∈ Eu v7, 2.0M) en-fr
en-zh (∈ CN-EN, 1.0M) en-zh
en-jp (∈ JP-EN, 0.5M) en-jp

PDBM

en-fr (∈ UN v1.0, 2.0M) + fr-de (∈ Eu v7, 1.5M) en-fr-de
en-zh (∈ CN-EN, 1.0M) + zh-jp (∈ CN-JP, 0.12M) en-zh-jp
en-zh (∈ CN-EN, 1.0M) + zh-fr (∈ UN v1.0, 2.0M) en-zh-fr
en-fr (∈ Eu v7, 2.0M) + zh-fr (∈ UN v1.0, 2.0M) en-fr-zh

UMM all the corpora used in PDBM en,de,fr,zh,jp

Table 1: Parallel corpora used in our models.

sion and SVM to learn different classifiers based
on the translated Chinese training data. Bag of
words features are used for classification.

Bi-PV: The same as that described above.
BSWE: It uses the bilingual sentiment word

embedding algorithm based on denoising autoen-
coders (Zhou et al., 2015) to learns word represen-
tations. Each document is then represented by the
sentiment words and the corresponding negation
words.

3.3 Settings and Preprocessing

We utilize cdec (Dyer et al., 2010) as an alignment
tool to get word-level alignment, and we also use it
to lowercase the characters in western languages.
We use the stanford-segmenter 11 to segment Chi-
nese words, and use Mecab 12 to segment Japanese
words. The SnowNLP 13 is used to convert tradi-
tional words to simplified ones. Besides, we re-
move all the irregular characters (e.g., c©, £, ♥)
in the texts.

For all the three models, we use stochastic gra-
dient descent (SGD) for learning, with a default
learning rate of 0.025, negative sampling with 30
samples, skip-gram with context window of size
5, and a subsampling rate of value 1e-4. The em-
bedding size is set to 400. The training epochs
are all set to 10. All the parameters of α and β
used in the three models are simply set to 1. The
word embeddings in a document are averaged to
get the document representation, and then the lo-
gistic regression classier is adopted for sentiment
classification.

11http://nlp.stanford.edu/software/segmenter.shtml
12http://taku910.github.io/mecab/
13https://github.com/isnowfy/snownlp

3.4 Results

The sentiment classification results of our three
models and the CL classification methods in the
three domains and in the German, French and
Japanese languages are presented in Table 2. The
results in the Chinese language are presented in
Table 3. Note that the results of the CL methods
are not reported on English test sets, and we only
compare our three models on English test sets in
Table 3.

First and most importantly, we compare our
three models. The BM model relies on the di-
rect parallel data between the source and target
languages, and it generally works slightly better
than the other models, including the PMDB mod-
el and the UMM model. The reason is that di-
rect parallel data can be used for transferring the
sentiment information from the source language to
the target language directly. However, the perfor-
mance achieved by the PDBM model is very close
to the BM model in most test cases. In some cas-
es (DE-DVD, JP-book and EN-music), the PDBM
model can even outperform the BM model. Note
that the PDBM model does not leverage the di-
rect parallel data between the source and target
languages, but uses a pivot language as a bridge.
The results demonstrate that the pivot-driven mod-
el is very effective for learning bilingual / trilin-
gual sentiment-aware word embeddings. The re-
sults also verify the feasibility of using pivot lan-
guages to address the problem of sentiment clas-
sification in resource-poor languages, which lays
a good foundation for building a universal senti-
ment classifier in multiple languages. When com-
paring the UMM model with BM and PDBM, the
results of UMM are very close to that of BM and
PDBM in most cases, Note that the UMM model
does not use the direct parallel corpora of en-de
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TL Domain BM PDBM UMM MT-BOW CL-SCL BSE CR-RL Bi-PV

DE
book 82.46 81.97 81.65 79.68 79.50 80.27 79.89 79.51
DVD 81.47 82.67 81.27 77.92 76.92 77.16 77.14 78.60
music 82.95 81.93 81.32 77.22 77.79 77.98 77.27 82.45

FR
book 82.47 81.01 80.27 80.76 78.49 - 78.25 84.25
DVD 81.86 81.68 80.27 78.83 78.80 - 74.83 79.60
music 81.51 80.03 79.41 75.78 77.92 - 78.71 80.09

JP
book 70.93 71.59 71.23 70.22 73.09 70.75 71.11 71.75
DVD 74.62 72.82 72.55 71.30 71.07 74.96 73.12 75.40
music 76.48 76.26 75.38 72.02 75.11 77.06 74.38 75.45

Table 2: Comparison results (accuracy) on DE (German), FR (French) and JP (Japanese).

TL Domain BM PDBM UMM MT-LR MT-SVM Bi-PV BSWE

CN
book 79.7 77.8 78.4 76.5 77.9 78.5 81.1
DVD 81.7 80.9 79.8 79.6 81.4 82.0 81.6
music 79.2 77.3 75.8 74.1 70.7 75.3 79.4

EN
book 81.6 80.5 80.2 - - - -
DVD 81.7 80.8 79.5 - - - -
music 76.8 78.8 77.9 - - - -

Table 3: Comparison results (accuracy) on CN (Chinese) and EN (English).

and en-jp, but relies on pivot-based methods for
bridging language gaps. We also find that the d-
ifferent parallel corpora used by the UMM model
are of different quality and genres, and if they are
used at the same time, they may have some neg-
ative influence on each other and thus the learned
word embeddings are not always better than the
BM and PDBM models using only one or two par-
allel corpora. What’s more, the available parallel
data in different language pairs are of various sizes
(0.12M ∼ 2.0M). Considering all these issues, the
results of UMM are promising because the learned
single sentiment classifier can work generally well
in multiple languages. We believe that if more
high-quality and balanced parallel data are used,
the performance of the universal sentiment classi-
fier will be improved.

Second, we compare our models with typical
CL classification methods. In Table 2, we can see
our models can outperform MT-BOW, CL-SCL,
and CR-RL in most test cases, and outperform
BSE in the German language. Our models can
achieve very close results with the other sophisti-
cated CL methods, including Bi-PV. In Table 3, we
can see our models can generally outperform MT-
LR and MT-SVM, and achieve very competitive
results with other strong CL methods, including
Bi-PV and BSWE. Most CL classification meth-

ods rely on commercial machine translation sys-
tems (e.g. Google Translate) for translating the
reviews (including the training reviews, the test
reviews and additional unlabeled reviews) to get
parallel data. Compared with the large amount of
parallel data used by commercial machine transla-
tion systems, the parallel data used by our models
are of a very small size. Though our models are
simply based on word embeddings, and the paral-
lel data used by our models are in a small scale,
the performance achieved by our models are very
competitive.

In Figure 1, we show the visualization of word
embeddings learned by the UMM model for some
example words. We can see that similar sentiment
words in different languages appear nearby with
each other. The figure demonstrate that the UMM
model are successful in learning sentiment-aware
word embeddings in multiple languages.

4 Related Work

The most closely related work is cross-lingual sen-
timent classification, which aims to leverage the
labeled sentiment data from a language with rich
sentiment resources (e.g., English) to perform sen-
timent classification in a target language lacking
sentiment resources (e.g., Japanese). Some stud-
ies tried to transfer labeled data from the source
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Figure 1: Visualization of word embeddings in
UMM (Chinese, Japanese, English, French, Ger-
man). The similar words are marked in the same
color.

language to the target language (Banea et al.,
2008; Wan, 2009; Gao et al., 2015; Chen et al.,
2015), and some other studies tried to build a
unified feature/semantic space in both two lan-
guages(Prettenhofer and Stein, 2010; Xiao and
Guo, 2013; Zhou et al., 2015, 2016b,a; Li et al.,
2017). In the latter case, the sentiment classifier
learned in the source language can be used for sen-
timent classification in both languages. Particular-
ly, Wan (2009) used machine translation to trans-
late the source language to the target language
to bridge the gap and applied the co-training ap-
proach. Prettenhofer and Stein (2010) provided
a CL-SCL model based on structural correspon-
dence learning (SCL) for sentiment classification.
Lu et al. (2011) explored to increase the labeled
data in both the source and target languages by
applying an extra unlabeled parallel data. Xi-
ao and Guo (2013) expected to get cross-lingual
discriminative word embeddings to perform the
multiple document classification tasks. Their in-
tuitive thought is based on a delicate log-losses
function, which aims to increase the probabili-
ty of the documents with their labels. Like Lu
et al. (2011), Meng et al. (2012) also proposed
their cross-lingual mixture model to leverage an
unlabeled parallel dataset. They intended to learn
the previously unseen sentimental words from the
big parallel corpus. Some studies have attempt-
ed to address multi-lingual sentiment classification
(Deriu et al., 2017), but different from our study,
they directly leverage training data in multiple lan-
guages, by assuming the training data can be ob-

tained directly or in a distant supervision way in
each language, and they did not consider the re-
source or data transfer problem at all.

Word embeddings have shown its great practi-
cable usability in plenty of natural language pro-
cessing tasks, such as information retrieval (Diaz
et al., 2016; Zuccon et al., 2015), machine trans-
lation (Shi et al., 2016; Zhang et al., 2014), sen-
timent analysis (Ren et al., 2016; Xu et al., 2015;
Tang et al., 2014) and so on. Bilingual word em-
beddings have been induced for cross-lingual NLP
tasks (Vulić and Moens, 2015; Guo et al., 2014;
Zou et al., 2013; Tang et al., 2014; Luong et al.,
2015; Zhou et al., 2015). In particular, Luong et al.
(2015) proposed the BiSkip model to induce bilin-
gual word embeddings, which is extended from
the monolingual skip-gram model in word2vec to
a bilingual model. They added constraint mu-
tually on both the source language and the tar-
get language, while the monolingual model only
has constraint on a single language. Zhou et al.
(2015) proposed an approach to learning bilin-
gual sentiment word embeddings by using sen-
timent information of text as supervision, based
on labeled corpora and their translations. Ferreira
et al. (2016) used a single optimization problem by
combining a co-regularizer for the bilingual em-
beddings with a task-specific loss. However, these
methods for inducing bilingual word embeddings
usually rely on directly parallel corpus.

5 Conclusion and Future Work

In this paper, we proposed an approach to build
a universal sentiment classifier in multiple lan-
guages. Particularly we proposed a pivot-based
model to transfer the sentiment information from
the source language to any resource-poor lan-
guage via pivot languages. Evaluation results
show that the pivot-based model can learn bilin-
gual sentiment-aware word embeddings as well
as the bilingual model using direct parallel data.
Moreover, the universal sentiment classifier built
in the five languages can achieve promising result-
s.

In future work, we will investigate using more
advanced document embedding techniques (e.g.,
CNN, RNN) to directly model document-level
sentiment information. We will also extend our
model to other languages.
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Abstract

Document-level sentiment classification is
a fundamental problem which aims to pre-
dict a user’s overall sentiment about a
product in a document. Several methods
have been proposed to tackle the problem
whereas most of them fail to consider the
influence of users who express the senti-
ment and products which are evaluated. To
address the issue, we propose a deep mem-
ory network for document-level sentiment
classification which could capture the user
and product information at the same time.
To prove the effectiveness of our algo-
rithm, we conduct experiments on IMDB
and Yelp datasets and the results indicate
that our model can achieve better perfor-
mance than several existing methods.

1 Introduction

Sentiment analysis, sometimes known as opinion
mining, is the field of study that analyzes peo-
ple’s opinions, sentiments, evaluations, attitudes
and emotions from written language. It is one of
the most active and critical research areas in natu-
ral language processing (Liu, 2012). On the one
hand, from the industry point of view, knowing
the feelings among consumers based on their com-
ments is beneficial and may support strategic mar-
ket decisions. On the other hand, potential cus-
tomers are often interested in other people’s opin-
ion in order to find out the choices that best fits
their preferences (Moraes et al., 2013).

Previous studies tackled the sentiment analysis
problem at various levels of granularity, from doc-
ument level to sentence level due to different ob-
jectives of applications (Zhang et al., 2009). In this
work, we mainly focus on document-level senti-
ment classification Basically, the task is to predict

user’s overall sentiment or polarity in a document
about a product (Pang and Lee, 2008).

Most existing methods mainly utilize local text
information whereas ignoring the influences of
users and products (Tang et al., 2015). As is often
the case, there are certain consistencies for both
users and products. To illustrate, lenient users may
always give higher ratings than fastidious ones
even if they post the same review. Also, it is not
surprising that some products may always receive
low ratings because of their poor quality and vice
versa. Therefore, it is necessary to leverage indi-
vidual preferences of users and overall qualities of
products in order to achieve better performance.

Tang et al. (2015) proposed a novel method
dubbed User Product Neural Network (UPNN)
which capture user- and product-level information
for sentiment classification. Their approach has
shown great promise but one major drawback of
their work is that for users and products with lim-
ited information, it is hard to train the representa-
tion vector and matrix for them.

Inspired by the recent success of computa-
tional models with attention mechanism and ex-
plicit memory (Graves et al., 2014; Sukhbaatar
et al., 2015), we addressed the aforementioned is-
sue by proposing a method based on deep memory
network and Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997). The model
can be divided into two separate parts. In the first
fart, we utilize LSTM to represent each document.
Afterwards, we apply deep memory network con-
sists of multiple computational layers to predict
the ratings for each document and each layer is a
content-based attention model.

To prove the effectiveness of our algorithm, we
have conducted experiments on three datasets de-
rived from IMDB and Yelp Dataset Challenge and
compare to several other algorithms. Experimen-
tal results show that our algorithm can outperform
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baseline methods for sentiment classification of
documents by leveraging users and products for
document-level sentiment classification.

2 Related Work

2.1 Memory Network

In 2014, Weston et al. (2014) introduced a new
class of learning models called memory networks.
Memory networks reason with inference compo-
nents combined with a long-term memory com-
ponent. The long-term memory can be read and
written to and then it can be used for prediction.
Generally, a memory network consists of an array
of objects called memory m and four components
I , G, O and R, where I converts input to internal
feature representation,G updates old memories,O
generates an output representation and R outputs
a response.

Based on their work, Sukhbaatar et al. (2015)
proposed a neural network with a recurrent atten-
tion model over a possibly large external memory.
Unlike previous model, their model is trained end-
to-end and hence requires significantly less super-
vision during training. They have shown that their
model yields improved results in language model
and question answering.

Inspired by the success of memory network,
Tang et al. (2016) introduce a deep memory net-
work for aspect-level sentiment classification. The
architecture of their model is similar to the previ-
ous model and experimental results demonstrate
that their approach performs comparable to other
state-of-the-art systems. Also, Li et al. (2017) de-
compose the task of attitude identification into two
separate subtasks: target detection and polarity
classification; and then solve the problem by ap-
plying deep memory network so that signals pro-
duced in target detection provide clues for polarity
classification and the predicted polarity provides
feedback to the identification of targets.

2.2 Sentiment Classification

Most existing work tackle the problem of senti-
ment classification by manually design effective
features. such as text topic (Ganu et al., 2009)
and bag-of-opinion (Qu et al., 2010) . Some work
take user information into consideration. For ex-
ample, in 2013, Gao et al. (2013) design user-
specific features to capture user leniency. Also, Li
et al. (2014) incorporate textual topic and user-
word factors with supervised topic modeling.

Tang et al. (2015) points out that it is criti-
cal to leverage users and products for document-
level sentiment classification. They assume there
are four types of consistencies for sentiment clas-
sification and validate the influences of users and
products in terms of sentiment and text on massive
IMDB and Yelp reviews. Their model represent
each user and product as both vector and matrix in
order to capture the consistencies and then apply
convolutional neural network to solve the task.

To the best of our knowledge, no one has ever
applied deep memory network to capture the user
and product information and solve the tasks in sen-
timent classification at document-level.

3 Proposed Methods

In this section, we present the details of User Prod-
uct Deep Memory Network (UPDMN) for senti-
ment classification at document level.

3.1 Basic Symbol and Definition

First we suppose U , P , D is the set of users,
products and documents respectively. If user u ∈
U writes a document d ∈ D about a product
p ∈ P and give the rating, we denote U(d) =
{ud|ud is written by u, ud 6= d} and P (d) =
{pd|pd is written about p, pd 6= d}. Then, our
task can be formalized as follows: suppose uwrite
a document d about a product p , we should output
the predicted score y for the document d based on
the input < d,U(d), P (d) > . The detail of these
symbols would be illustrated in the following part.

3.2 General Framework of UPDMN

Figure 1 illustrates the general framework of our
approach. Basically, inspired by the use of mem-
ory network in question answering and aspect-
level sentiment analysis (Sukhbaatar et al., 2015;
Tang et al., 2016), our model consists of multiple
computational layers (hops), each of which con-
tains an attention layer and a linear layer.

For every document in U(d) and P (d), we em-
bed it into a continuous vector di and store it in
the memory. The model writes all document to
the memory up to a fixed buffer size. Suppose
we are given {di} = {d1, ..., dn} to be stored in
memory, for each layer we can convert them into
memory vectors {mi} using an embedding matrix.
The document d should also be embedded into q.
Then, we compute the match {pi} between q and
each memorymi. Afterwards, we embed {di} into
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Dataset #users #products #reviews #docs/user #docs/product #sents/doc #words/doc
IMDB 1,310 1,635 84,919 64.82 51.94 16.08 394.6
Yelp 2014 4,818 4,194 231,163 47.97 55.11 11.41 196.9
Yelp 2013 1,631 1,633 78, 966 48.42 48.36 10.89 189.3

Table 1: Statistical information of datasets.

Figure 1: General Framework

output vector {ci} using another embedding ma-
trix and generate the output of attention layer. The
output is further summed with the linear transfor-
mation of q and considered as the input of next
hop. The output vector at last hop is fed into a
softmax layer and then generates the final predic-
tion y for document-level sentiment classification.

3.3 Embedding Documents

Although there are several state-of-the-art tech-
niques to embed word into vectors (Mikolov et al.,
2013a), for document-level sentiment classifica-
tion, the document we need to classify is usually
too long to be represented as a vector. People have
tried different ways to solve the task. For exam-
ple, Kalchbrenner et al. (2014) apply convolu-
tional neural network for modeling sentences and
Li et al. (2015) introduce an LSTM model that hi-
erarchically builds an embedding for a paragraph
from embeddings for sentences and words.Some
of these work can be incorporated into our meth-
ods. However, here we only use the LSTM model
to embed each document, i.e. every word in the

document is fed into LSTM and the final represen-
tation is obtained by averaging the hidden state of
each word, and the experimental results shows that
this simple embedding method can actually obtain
satisfactory results.

3.4 Attention Model

After obtaining the embedding vector q for docu-
ment d the memory vectors {mi} for each mem-
ory, we calculate the match between q and mi us-
ing the following equation:

pi = softmax(Watt[mi; q] + batt) (1)

where softmax(zi) = ezi/
∑

j e
zj .

Afterwards, we compute the corresponding out-
put o for each hop by summing over the ci,
weighted by the probability vector from the input:

o =
∑

i

pici (2)

3.5 Final Prediction and Training Strategy

At last hop, the output vector is fed into a softmax
layer and thus generates a probability distribution
{yi} over ratings. The score with the highest prob-
ability would be considered as our final prediction
py. During training, we try to minimize the cross
entropy error of sentiment classification in a su-
pervised manner. The specific equation is shown
as follows:

Loss = −
∑

d∈D

∑

yi∈Y
I(y = yi|d)log(P (y = yi|d))

(3)
where Y is the collection of sentiment categories,
I(y = yi|d) is 1 or 0, indicating whether the cor-
rect category for d is yi, and P (y = yi|d) repre-
sents the probability of classifying document d as
category yi.

4 Experiment

In this section, we will first discuss the experimen-
tal setting and then display the results.
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IMDB Yelp 2014 Yelp 2013
Acc MAE RMSE Acc MAE RMSE Acc MAE RMSE

Majority 0.196 1.838 2.495 0.392 0.779 1.097 0.411 0.744 1.060
Trigram 0.399 1.147 1.783 0.577 0.487 0.804 0.569 0.513 0.814
TextFeature 0.402 1.134 1.793 0.572 0.490 0.800 0.556 0.520 0.845
AvgWordvec + SVM 0.304 1.361 1.985 0.530 0.562 0.893 0.526 0.568 0.898
SSWE + SVM 0.312 1.347 1.973 0.557 0.523 0.851 0.549 0.529 0.849
Paragraph Vector 0.341 1.211 1.814 0.564 0.496 0.802 0.554 0.515 0.832
RNTN + Recurrent 0.400 1.133 1.764 0.582 0.478 0.821 0.574 0.489 0.804
Trigram + UPF 0.404 1.132 1.764 0.576 0.471 0.789 0.570 0.491 0.803
TextFeature +UPF 0.402 1.129 1.774 0.579 0.476 0.791 0.561 0.509 0.822
JMARS N/A 1.285 1.773 N/A 0.710 0.999 N/A 0.699 0.985
UPNN 0.435 0.979 1.602 0.608 0.447 0.764 0.596 0.464 0.784
UPDMN(1) 0.428 0.936 1.443 0.588 0.457 0.757 0.596 0.454 0.747
UPDMN(2) 0.446 0.944 1.495 0.592 0.451 0.748 0.602 0.437 0.732
UPDMN(3) 0.459 0.883 1.397 0.599 0.444 0.742 0.627 0.386 0.681
UPDMN(4) 0.465 0.853 1.351 0.609 0.432 0.731 0.639 0.369 0.662
UPDMN(5) 0.456 0.928 1.471 0.613 0.425 0.720 0.611 0.405 0.704

Table 2: Experimental results.

4.1 Experimental Settings
We use the same datasets as Tang et al. (2015),
which are derived from IMDB (Diao et al., 2014)
and Yelp Dataset Challenge in 2013 and 2014 1.
Statistical information of the datasets are given in
Table 1.

In order to measure the performance of our
model, here we use three metrics. Specifically,
we use accuracy to measure the overall sentiment
classification performance, MAE and RMSE to
measure the divergences between prediction py
and ground truth gy. The formulas for these three
metrics are listed as follows:

accuracy =
T

N
(4)

MAE =

∑
i |pyi − gyi|

N
(5)

accuracy =

√∑
i(pyi − gyi)2

N
(6)

4.2 Baseline Models
We compare UPDMN with the following models:

(1) Majority : it assigns each review in the
test dataset with the majority sentiment category
in training set.

(2) Trigram : it first takes unigrams, bigrams
and trigrams as features and then trains a classifier
with SVM (Fan et al., 2008).

(3) TextFeature : it takes hard-crafted text fea-
tures such as word/character n-grams, negation
features and then trains a classifier with SVM.

(4) UPF: it extracts user-leniency features and
corresponding product features from training data

1http://www.yelp.com/dataset challenge

and then concatenates them with features in model
(2) and (3) (Gao et al., 2013).

(5) AvgWordvec+SVM : it learns word em-
beddings from training and development sets with
word2vec , averages word embeddings and then
trains an SVM classifier (Mikolov et al., 2013b).

(6) SSWE+SVM : it learns sentiment-specific
word embeddings (SSWE), uses max/min/average
pooling to generate document representation and
then trains an SVM classifier (Tang et al., 2014).

(7) RNTN+RNN : it represents each sentence
with RNTN, composes document with recurrent
neural network , and then averages hidden vectors
of recurrent neural network as the features (Socher
et al., 2013).

(8) Paragraph Vector: it implements the
PVDM for document-level sentiment classifica-
tion (Le and Mikolov, 2014).

(9) JMARS: it is the recommendation algo-
rithm which leverages user and aspects of a re-
view with collaborative filtering and topic model-
ing (Diao et al., 2014).

(10) UPNN : as has been stated above, it also
leverages user and product information for senti-
ment classification at document level (Tang et al.,
2015).

4.3 Experimental Results and Discussion

The experimental results are given in Table 2.
The results of baseline models are reported in
(Tang et al., 2015). Our model is abbreviated to
UPDMN(k), where k is the number of hops. With
the increase of the number of hops, the perfor-
mance of UPDMN will get better intially, which
indicates that multiple hops can indeed capture
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more information to improve the performance.
However, if there are too many hops, the perfor-
mance would be not as well as before, which may
be caused by over-fitting.

Compared with other models, we can see that
with proper setting, our model achieve superior
results. All these results prove the effectiveness
of UPDMN and the necessity to utilizing user and
product information at document level.

It should be noticed that there are still several
improvements can be made, such as better repre-
sentation of documents or more sophisticated at-
tention mechanism. We believe that our model has
great potential and can be improved in many ways.
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Abstract

We study the problem of identifying the
topics and sentiments and tracking their
shifts from social media texts in dif-
ferent geographical regions during emer-
gencies and disasters. We propose a
location-based dynamic sentiment-topic
model (LDST) which can jointly model
topic, sentiment, time and Geolocation
information. The experimental results
demonstrate that LDST performs very
well at discovering topics and sentiments
from social media and tracking their shifts
in different geographical regions during
emergencies and disasters1.

1 Introduction

Social media has become pervasive in our daily
life, and it is a great way to spread important in-
formation efficiently. Using social media (e.g.,
Twitter, Facebook, Pinterest), people can conve-
niently inform others and express support during
emergencies and disasters.

Nowadays, the social media is keeping produc-
ing a huge amount of information. Unlike before,
people are not only interested in identifying the
static topics and sentiments from given texts, but
also, perhaps more concerned with tracking the
evolution of topics and sentiments among differ-
ent geographical regions. On the one hand, this
new requirement can be very helpful, especially
in the case of emergencies, such as pre-disaster
preparation and post-disaster relief in local natural
disasters (Beigi et al., 2016). For example, peo-
ple’s sentiments on the topics related to medical
and rescue may guide the management and distri-
bution of emergency supplies. On the other hand,

∗ Corresponding author (xjchen@szu.edu.cn)
1Data and codes are available at https://goo.gl/uee3QK

the existing models do not take the temporal evo-
lution and the impact of location over topics and
sentiments into consideration, which makes them
unable to fulfill the new requirement of tracking
the evolution of topics and sentiments in different
geographical places.

In this paper, we aim to identify the topics and
sentiments and track their shifts in different ge-
ographical regions during emergencies and dis-
asters. We are inspired by several observations.
First, people are interested in not only the overall
sentiment or topic distribution of the documents
but also the sentiments towards specific topics. For
example, a person may be happy with that the dis-
aster passed away, but at the meanwhile he/she
may be unsatisfied with the post-disaster relief.
Second, most existing sentiment-topic models ig-
nore the temporal evolution of topics and senti-
ment in a time-variant data corpus such as the
Twitter stream. There are strong evidences which
indicate that people’s attitudes toward a disaster
will gradually change over time with the distri-
bution of emergency supplies (Beigi et al., 2016;
Caragea et al., 2014; Mandel et al., 2012). Third,
people in different places tend to have different
opinions towards particular topics. This motivated
us to find the influence of specific topics and the
relationship between different topics in different
regions, which may improve people’s awareness
to help themselves during disasters.

We propose a location-based dynamic
sentiment-topic model (LDST) which gener-
alizes latent Dirichlet allocation (LDA) (Blei
et al., 2003), by jointly modeling topic, sentiment,
time and geolocation information. After learning
the LDST model, we can identify the topics and
sentiments held by people in different locations
over time. Our model works in an unsupervised
way, and we learn the model according to the
frequency of terms co-occurring in different
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contexts. To leverage the prior knowledge, we
construct a small set of seed words for each
topic of interest to enable the model to group
semantically related terms into the same topic.
Consequently, the topic words will be more
related to the seed words of the same topic.

We conduct experiments using a Hurricane
Sandy Twitter corpus which consists of 159,880
geotagged Twitter posts from the geographic area
and time period of the 2012 Hurricane Sandy. We
show the evolution of people’s topics and senti-
ments, which change according to not only the
time the disaster happens, but also people’s loca-
tions during the hurricane Sandy.

2 Related work

Sentiment analysis is widely applied in many
fields, such as business intelligence, politics, so-
ciology. The papers by Pang and Lee (Pang and
Lee, 2008) and Liu (Liu, 2012) described most of
the existing techniques for sentiment analysis and
opinion mining, which could be categorized into
lexicon-based approaches (Kennedy and Inkpen,
2006; Turney, 2002; Yang et al., 2014a,b) and
corpus-based approaches (Pang et al., 2002; Yang
et al., 2015; Wan, 2009).

Recently, researchers have turned their atten-
tion to exploring sentiment analysis on the so-
cial media posts of individuals during natural dis-
asters and emergencies (Beigi et al., 2016; Bus-
caldi and Hernandez-Farias, 2015; Caragea et al.,
2014; Kryvasheyeu et al., 2015; Mandel et al.,
2012; Shalunts et al., 2014). For example, a sen-
timent analysis system is applied for Italian to a
set of tweets during the Genoa flooding (Buscaldi
and Hernandez-Farias, 2015). They attempted to
identify trending topics, toponym and sentiments
that might be relevant from a disaster manage-
ment perspective. However, the existing studies
only focused on sentiment analysis on the docu-
ment level, without considering the specific topics
in the document.

Meanwhile, topic models, such LDA (Blei
et al., 2003), have become popular in extracting
interesting topics. Some recent work incorpo-
rates context information into LDA, such as time
(Wang and McCallum, 2006; Zhao et al., 2014)
and authorship (Steyvers et al., 2004; Yang et al.,
2016) to make topic models fit expectations bet-
ter. Some studies also attempt to detect sentiment
and topic simultaneously from documents (Der-

mouche et al., 2015; Lin et al., 2012; Mukherjee
et al., 2014; He et al., 2012). Nevertheless, none
of existing methods takes advantage of temporal
and geographical information to identify and track
people’s topics and sentiment during emergencies
and disasters.

3 Model

In this section, we firstly introduce the generative
process of the LDST model. Then we present the
inference algorithm for estimating the model pa-
rameters.

3.1 Model Description

We assume the corpus consists a set of authors,
a set of locations, and a collection of documents
with specific timestamps. Formally, we use V and
U to denote the sets of locations and authors, re-
spectively. A document d ∈ D is a short text writ-
ten by an author u ∈ U in location v ∈ V at time t.
Also, let S be the number of distinct sentiment la-
bels, and T be the total number of topics, where S
and T are predefined constant values. Since each
tweet is a short text, studying them individually is
not very informative. We thus use pooling meth-
ods to construct aggregated documents for each lo-
cation or each author. For a venue v, we use Av to
define the set of all authors that have written docu-
ments in location v, and dv (location document) to
refer to the union of all the documents written in
location v. Ndv is the number of words in location
document dv.

Figure 1: Graphical representation of our algo-
rithm

Our model generalizes LDA by jointly model-
ing topic, sentiment, time and geolocation infor-
mation. Figure 1 shows the graphical model of
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LDST. The formal definition of the generative pro-
cess of LDST is as follows:

1. For each sentiment label s,
a. For each topic z under sentiment s,

– Draw a word distribution φs,z ~ Dir(βs,z).
2. For each author u,

a. Draw ωu ∼ Beta(γ)
b. Draw a sentiment distribution χ(a)

u ∼ Dir(τ)
c. For each sentiment label s,

– Draw a topic distribution θ(a)u,s ∼ Dir(ρ)
3. For each location document dv,

a. Draw a sentiment distribution χ(v)
dv
∼ Dir(σ)

b. For each sentiment label s,
– Draw a topic distribution θ(v)dv,s

~ Dir(α)
c. For each term wdvi in the location document dv ,

– Draw a author u ∼ Av uniformly,
– Draw a switch c ∼ Bernoulli(ωu)
– if c = 0,

* Draw a sentiment sdvi ∼Mult(χ
(a)
u )

* Draw a topic zdvi from Mult(θ
(a)
u,sdvi)

– if c = 1,
* Draw a sentiment sdvi ∼Mult(χ

(v)
dv

)

* Draw a topic zdvi ∼Mult(θ
(v)
dv,sdvi

)

– Draw a word wdvi ∼Mult(φsdvi,zdvi)

– Draw a timestamp tdvi from Beta(ψsdvi,zdvi)

In the model, α, β, ρ, σ, τ and γ are hyperpa-
rameters. The latent sentiments and topics depend
on the document venues and personalities of the
author. We use ω to control the influence from the
venue and the author. In particular, ω is the param-
eter of a Bernoulli distribution, from which a bi-
nary variable c is generated to determine whether
the document is influenced by venue or user.

3.2 Inference Algorithm

We use Collapsed Gibbs sampling (Porteous et al.,
2008) to estimate the unknown latent variables
{φ, ω, θa, θv, χa, χv, ψ}. The posterior distribu-
tion of the hidden variables for each word wdv ,i
(i-th word in venue document dv) is calculated
as follows (to simplify, we use Θ to refer to
<u−dv,i, c−dv,i, s−dv,i, z−dv,i,w, t, Av>):

P (udv ,i = u, cdv ,i = 0, sdv ,i = s, zdv ,i = z | Θ)

∝ =
n−dv ,iu,c (0) + γ′

n−dv ,iu,c + γ + γ′
· n−dv ,iu,s + τs∑
s′

(n−dv ,iu,s′ + τs′)

· n−dv ,iu,s,z + ρz∑
z′

(n−dv ,iu,s,z′ + ρz′)
· n−dv ,is,z,w + βw∑
w′

(n−dv ,is,z,w′ + βw′)

· (1− t)ψ(1)
s,z−1 · tψ(2)

s,z−1

Beta(ψ
(1)
s,z , ψ

(2)
s,z )

(1)

P (udv ,i = u, cdv ,i = 1, sdv ,i = s, zdv ,i = z | Θ)

∝ =
n−dv ,iu,c (1) + γ

n−dv ,iu,c + γ + γ′
· n−dv ,iv,s + σs∑
s′

(n−dv ,iv,s′ + σs′)

· n−dv ,iv,s,z + αz∑
z′

(n−dv ,iv,s,z′ + αz′)
· n−dv ,is,z,w + βw∑
w′

(n−dv ,is,z,w′ + βw′)

· (1− t)ψ(1)
s,z−1 · tψ(2)

s,z−1

Beta(ψ
(1)
s,z , ψ

(2)
s,z )

(2)

where nu,c(0) and nu,c(1) are the numbers of
times that c = 0 and c = 1 are sampled for user u,
respectively, and we have nu,c , nu,c(0) +nu,c(1).
nu,s is the number of times that sentiment s is sam-
pled from the distribution χau specific to user u,
and nv,s is the number of times that sentiment s is
sampled from the distribution χvdv specific to doc-
ument venue v. nu,s,z is the number of times that
topic z is sampled from the distribution θau,s spe-
cific to user u and sentiment s, and nv,s,z is the
number of times that topic z is sampled from the
distributionθvdvs specific to document venue v and
sentiment s. ns,z,w is the number of times that
word w is sampled from the distribution φs,z spe-
cific to sentiment s and topic z. The superscript
−dv, i denotes a quantity excluding the current
word −dv, i.

After Gibbs sampling, {φ, ω, θa, θv, χa, χv, ψ}
can be estimated as follows:\

φ̂s,z,w =
ns,z,w + βw∑

w’
(ns,z,w’ + βw′)

,

ω̂u =
nuc(1) + γ

nu,c + γ + γ′
,

θ̂vv,s,z =
nv,s,z + αz∑

z’
(nv,s,z’ + αz′)

,

θ̂au,s,z =
nu,s,z + ρz∑

z’
(nu,s,z’ + ρz′)

,

χ̂au,s =
nu,s + τs∑

s’
(nu,s’ + τs′)

,

χ̂vdv ,s =
nv,s + σs∑

s’
(nv,s’ + σs′)

,

ψ̂(1)
s,z = m̄s,z ·

(
m̄s,z · (1− m̄s,z)

ξ2s,z
− 1

)
,

ψ(2)
s,z = (1− m̄s,z) ·

(
m̄s,z · (1− m̄s,z)

ξ2s,z
− 1

)
.
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where msz and ξ2sz indicate the sample mean and
the biased sample variance of the timestamps be-
longing to sentiment s and topic z, respectively.

3.3 Defining the Prior Knowledge
In our model, the prior knowledge is employed to
guide the generative process of topics. The prior
knowledge can be obtained from natural disaster
experts. We collect a small set of seed words
for each topic of interest during emergency and
disaster. For each topic, the LDST model draws
the word distribution from a biased Dirichlet prior
Dir(β). Each vector β.,z ∈ RV is constructed
from the sets of seed words, where

β.,z := λ1(1
V − Λ.,z) + λ2Λ.,z (3)

Here, Λ.,z,w = 1 if and only if word w is a seed
word for topic z, otherwise Λ.,z,w = 0. The
scalars λ1 and λ2 are hyperparameters. Intuitively,
when λ1 < λ2 , the biased prior ensures that the
seed words are more probably drawn from the as-
sociated topic.

4 Experiments

4.1 Hurricane Sandy Twitter Datasets
This dataset contains nearly 15 million tweets
posted on Twitter while Hurricane Sandy was hit-
ting the United States. Tweets were collected from
October 25, 2012 to November 4, using the key-
words ’hurricane’ and ’sandy’ (Zubiaga and Ji,
2014). In this paper, we only keep the geotagged
tweets. The final experimental dataset consists
of 159,880 geotagged tweets. The original geo-
graphical information is expressed by using lon-
gitude and latitude in decimal degree. We set the
granularity of location as a state via Google Maps
Geocoding API2 and analyze the tweets within the
United States.

4.2 Baseline Methods
We evaluate and compare our model with several
baseline methods as follows:
LDA: We use gensim toolkit to do inference for
LDA model (Blei et al., 2003).
ToT: Topics over Time, a non-Markov continu-
ous time model proposed in (Wang and McCal-
lum, 2006).
JST: The first Joint Sentiment-Topic model to
identify the sentiment-topic pairs (Lin and He,
2009) .

2https://developers.google.com/maps/

TS: Topic-Sentiment model proposed in (Der-
mouche et al., 2015).
LDST-w/oS: This is the LDST model without em-
ploying prior knowledge (seed words). We use this
method to evaluate the influence of seed words.

4.3 Implementation details

In our implementation, we set topic number T =
50, and the prior hyperparameters γ = 0.5, τ =
σ = 0.1, ρ = α = 50/T . βs,z is calculated using
the set of seed words with λ1 = 0.1 and λ2 = 0.8.

As described in Section 3.3, we use a small
set of seed words as our topic prior knowledge.
Specifically, the seed words list contains 5 to 10
seed words for each of the five topics of inter-
est3 about Hurricane impact, public utility, food,
shelter, medical, respectively. We choose these
five topics based on the actual requirements of our
project. However, it is important to note that the
model is flexible and do not need to have seed
words for every topic.

4.4 Experiment results

4.4.1 Quantitative evaluation
We first compare our model with the baseline
models in terms of perplexity which is a widely
used measurement of how well a probability
model predicts a sample. The lower the perplexity,
the better the model. We calculate the average per-
plexity (log-likelihood) using 1000 held-out docu-
ments which are randomly selected from the test
data. The average test perplexity of each word is
calculated as exp{− 1

N

∑
w log p(w)}, where N is

the total number of words in the held-out test doc-
uments. Table 1 shows the perplexity results for
Hurricane Sandy dataset. Our model outperforms
the baseline models. In particular, the perplexity
of our model is 1122, which is 40 and 116 lower
than that of JST and TS. The perplexity of LDST
is 35 lower than that of LDST-w/oS, which indi-
cates that the seed words can further improve the
performance of our model.

LDA ToT JST TS LDST-w/oS LDST

1320 1244 1162 1238 1157 1122

Table 1: Comparison of test perplexity per word

Following the same evaluation as in (Lin et al.,
2012), we also present and discuss the experimen-
tal results of sentiment classification. The docu-

3Details available at https://goo.gl/ykbrXZ
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ment sentiment is classified based on the probabil-
ity of sentiment label given document, which can
be approximated by χ̂(a)

u and χ̂vdv . Similar to (Lin
et al., 2012), we only consider the probability of
positive and negative label given document, with
the neutral label probability being ignored. We
define that a document d is classified as a positive-
sentiment document if its probability of positive
sentiment label given document is greater than its
probability of negative sentiment label given doc-
ument, and vice versa. The ground truth of senti-
ment classification labels of tweets are set by us-
ing human annotation. Specifically, we randomly
select 1000 documents from the dataset, and la-
bel each document as positive, negative or neutral
manually. We measure the performance of our
model using the tweets with positive or negative
labels. The classification accuracies are summa-
rization in Table 2. LDST significantly outperforms
other methods on test data. This verifies the effec-
tiveness of the proposed approach.

LDA ToT JST TS LDST-w/oS LDST

0.574 0.592 0.622 0.597 0.635 0.646

Table 2: Sentiment classification accuracy.

4.4.2 Qualitative evaluation

We present the sentiments and topics discovered
by LDST to see whether LDST captured mean-
ingful semantics. We analyze the extracted top-
ics under positive and negative sentiment labels.
Due to the limited space, we only report Hurri-
cane impact and public utility topics under pos-
itive and negative sentiments for New York and
Florida states on Oct. 27, 2012 and Oct. 30,
2012. For each topic, we visualize it using the top
5 words which are most likely generated from the
topic. As shown in Table 3, the extracted topics
are quite informative and coherent. For example,
the first topic (left) is closely related to Hurricane
impact, and the other one (right) is related to pub-
lic utility. The results show that our model can
extract topic and sentiment simultaneously under
different time and location. First, at the same pe-
riod, people in different location had different top-
ics of interest and sentiments. Taking the public
utility topic as an example, on Oct. 30, people
from Florida were concerned with post-disaster re-
lief, while people from New York focused on the
outage of the public utility. Second, for the people
in the same location, they were interested in dif-

New York Florida

pos

pray island florida work

response careful prepare service

volunteer volunteer boat island

usa preparation protect customer

florida state power system

neg

destroy rising sandy power

homeless moves storm outage

flood arrival broken damage

eastcoast shortages landfall energy

damage cause disaster utilities

New York Florida

pos

aid nation volunteer restore

alert people claimed system

rescue delivered crew resources

york safety power good

shelter companies relief rebuild

neg

hirricane power east damage

weatherd metro criticize effect

death destroyed eastern weeks

halloween outage election millions

flood destructive tourism delay

Table 3: Hurricane impact (left) and public util-
ity (right) topics under positive and negative sen-
timent labels for New York and Florida states on
Oct. 27, 2012 (above) and Oct. 30, 2012 (bottom).

ferent topics, and had different sentiments towards
the topics. For example, the people in Florida paid
close attention to the damage of the public utility
on Oct. 27, while they changed their attention to
post-disaster relief of the public utility on Oct. 30.

5 Conclusion

In this paper, we propose a location-based dy-
namic sentiment-topic (LDST) model, which can
jointly model sentiment, topic, temporal, and ge-
olocation information.
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Abstract 

Word embeddings that can capture seman-
tic and syntactic information from contexts 
have been extensively used for various 
natural language processing tasks. Howev-
er, existing methods for learning context-
based word embeddings typically fail to 
capture sufficient sentiment information. 
This may result in words with similar vec-
tor representations having an opposite sen-
timent polarity (e.g., good and bad), thus 
degrading sentiment analysis performance. 
Therefore, this study proposes a word vec-
tor refinement model that can be applied to 
any pre-trained word vectors (e.g., 
Word2vec and GloVe). The refinement 
model is based on adjusting the vector rep-
resentations of words such that they can be 
closer to both semantically and sentimen-
tally similar words and further away from 
sentimentally dissimilar words. Experi-
mental results show that the proposed 
method can improve conventional word 
embeddings and outperform previously 
proposed sentiment embeddings for both 
binary and fine-grained classification on 
Stanford Sentiment Treebank (SST). 

1 Introduction 

Word embeddings are a technique to learn con-
tinuous low-dimensional vector space representa-
tions of words by leveraging the contextual in-
formation from large corpora. Examples include 
C&W (Collobert and Weston, 2008; Collobert et 
al., 2011), Word2vec (Mikolov et al., 2013a; 
2013b) and GloVe (Pennington et al., 2014). In 
addition to the contextual information, character-
level subwords (Bojanowski et al., 2016) and se-
mantic knowledge resources (Faruqui et al., 2015; 
Kiela et al., 2015) such as WordNet (Miller, 

1995) are also useful information for learning 
word embeddings. These embeddings have been 
successfully used for various natural language 
processing tasks. 

In general, existing word embeddings are se-
mantically oriented. They can capture semantic 
and syntactic information from unlabeled data in 
an unsupervised manner but fail to capture suffi-
cient sentiment information. This makes it diffi-
cult to directly apply existing word embeddings to 
sentiment analysis. Prior studies have reported 
that words with similar vector representations 
(similar contexts) may have opposite sentiment 
polarities, as in the example of happy-sad men-
tioned in (Mohammad et al., 2013) and good-bad 
in (Tang et al., 2016). Composing these word vec-
tors may produce sentence vectors with similar 
vector representations but opposite sentiment po-
larities (e.g., a sentence containing happy and a 
sentence containing sad may have similar vector 
representations). Building on such ambiguous 
vectors will affect sentiment classification per-
formance. 

To enhance the performance of distinguishing 
words with similar vector representations but op-
posite sentiment polarities, recent studies have 
suggested learning sentiment embeddings from 
labeled data in a supervised manner (Maas et al., 
2011; Labutov and Lipson, 2013; Lan et al., 2016; 
Ren et al., 2016; Tang et al., 2016). The common 
goal of these methods is to capture both seman-
tic/syntactic and sentiment information such that 
sentimentally similar words have similar vector 
representations. They typically apply an objective 
function to optimize word vectors based on the 
sentiment polarity labels (e.g., positive and nega-
tive) given by the training instances. The use of 
such sentiment embeddings has improved the per-
formance of binary sentiment classification. 
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great (7.50)
bad (3.24)

terrific (7.12)
decent (6.27)
nice (6.95)

solid (5.65)

Target word: good (7.89)

excellent (7.56)
great (7.50)

terrific (7.12)
wonderful (7.41)

nice (6.95)
decent (6.27)
solid (5.65)
bad (3.24)

Ranked by 
sentiment score

lousy (3.14)

Re-ranking

wonderful (7.41)

fantastic (8.36)

fantastic (8.36)
excellent (7.56)

lousy (3.14)

Ranked by 
cosine similarity

 
Figure 1: Example of nearest neighbor rank-
ing.  

This study adopts another strategy to obtain 
both semantic and sentiment word vectors. Instead 
of building a new word embedding model from 
labeled data, we propose a word vector refinement 
model to refine existing semantically oriented 
word vectors using sentiment lexicons. That is, the 
proposed model can be applied to the pre-trained 
vectors obtained by any word representation 
learning models (e.g., Word2vec and GloVe) as a 
post-processing step to adapt the pre-trained vec-
tors to sentiment applications. The refinement 
model is based on adjusting the pre-trained vector 
of each affective word in a given sentiment lexi-
con such that it can be closer to a set of both se-
mantically and sentimentally similar nearest 
neighbors (i.e., those with the same polarity) and 
further away from sentimentally dissimilar neigh-
bors (i.e., those with an opposite polarity). 

The proposed refinement model is evaluated by 
examining whether our refined embeddings can 
improve conventional word embeddings and out-
perform previously proposed sentiment embed-
dings. To this end, several deep neural network 
classifiers that performed well on the Stanford 
Sentiment Treebank (SST) (Socher et al., 2013) 
are selected, including convolutional neural net-
works (CNN) (Kim, 2014), deep averaging net-
work (DAN) (Iyyer et al., 2015) and long-short 
term memory (LSTM) (Tai et al., 2015; Looks et 
al., 2017). The conventional word embeddings 
used in these classifiers are then replaced by our 
refined versions and previously proposed senti-
ment embeddings to re-run the classification for 
performance comparison. The SST is chosen be-
cause it can show the effect of using different 
word embeddings on fine-grained sentiment clas-
sification, whereas prior studies only reported bi-
nary classification results. 

The rest of this paper is organized as follows. 
Section 2 describes the proposed word vector re-
finement model. Section 3 presents the evaluation 
results. Conclusions are drawn in Section 4.  

2 Word Vector Refinement 

The refinement procedure begins by giving a set 
of pre-trained word vectors and a sentiment lexi-
con annotated with real-valued sentiment scores. 
Our goal is to refine the pre-trained vectors of the 
affective words in the lexicon such that they can 
capture both semantic and sentiment information. 
To accomplish this goal, we first calculate the se-
mantic similarity between each affective word  

(target word) and the other words in the lexicon 
based on the cosine distance of their pre-trained 
vectors, and then select top-k most similar words 
as the nearest neighbors. These semantically simi-
lar nearest neighbors are then re-ranked according 
to their sentiment scores provided by the lexicon 
such that the sentimentally similar neighbors can 
be ranked higher and dissimilar neighbors lower. 
Finally, the pre-trained vector of the target word is 
refined to be closer to its semantically and senti-
mentally similar nearest neighbors and further 
away from sentimentally dissimilar neighbors. 
The following subsections provide a detailed de-
scription of the nearest neighbor ranking and re-
finement model. 

2.1 Nearest Neighbor Ranking 
The sentiment lexicon used in this study is the ex-
tended version of Affective Norms of English 
Words (E-ANEW) (Warriner et al., 2013). It con-
tains 13,915 words and each word is associated 
with a real-valued score in [1, 9] for the dimen-
sions of valence, arousal and dominance. The va-
lence represents the degree of positive and nega-
tive sentiment, where values of 1, 5 and 9 respec-
tively denote most negative, neutral and most pos-
itive sentiment. In Fig. 1, good has a valence score 
of 7.89, which is greater than 5, and thus can be 
considered positive. Conversely, bad has a va-
lence score of 3.24 and is thus negative. In addi-
tion to the E-ANEW, other lexicons such as Sen-
tiWordNet (Esuli and Fabrizio, 2006), SoCal 
(Taboada et al., 2011), SentiStrength (Thelwall et 
al., 2012), Vader (Hutto et al., 2014), ANTUSD 
(Wang and Ku, 2016) and SCL-NMA 
(Kiritchenko and Mohammad, 2016) also provide 
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real-valued sentiment intensity or strength scores 
like the valence scores. 

For each target word to be refined, the top-k 
semantically similar nearest neighbors are first se-
lected and ranked in descending order of their co-
sine similarities. In Fig. 1, the left ranked list 
shows the top 10 nearest neighbors for the target 
word good. The semantically ranked list is then 
sentimentally re-ranked based on the absolute dif-
ference of the valence scores between the target 
word and the words in the list. A smaller differ-
ence indicates that the word is more sentimentally 
similar to the target word, and thus will be ranked 
higher. As shown in the right ranked list in Fig. 1, 
the re-ranking step can rank the sentimentally 
similar neighbors higher and the dissimilar neigh-
bors lower. In the refinement model, the higher 
ranked sentimentally similar neighbors will re-
ceive a higher weight to refine the pre-trained vec-
tor of the target word. 

2.2 Refinement Model  
Once the word list ranked by both cosine similari-
ty and valence scores for each target word is ob-
tained, its pre-trained vector will be refined to be  
(1) closer to its sentimentally similar neighbors, 
(2) further away from its dissimilar neighbors, and 
(3) not too far away from the original vector. 

Let V = {v1, v2, …, vn} be a set of the pre-
trained vectors corresponding to the affective 
words in the sentiment lexicon. For each target to 
be refined, the refinement model iteratively mini-
mizes the distance between the target word and its 
top-k nearest neighbors. The objective function 
Φ(V) can thus be defined as 

 
1 1

( ) ( , )
n k

ij i j
i j

V w dist v v
= =

Φ =∑∑   (1) 

where n denotes the total number of vectors in V 
to be refined, vi denotes the vector of a target 
word, vj denotes the vector of one of its nearest 
neighbors in the ranked list, dist(vi, vj) denotes the 
distance between vi and vj, and wij denotes the 
weight of the target word’s nearest neighbor, de-
fined as the reciprocal rank of a ranked list. For 
example, excellent in Fig. 1 will receive a weight 
of 1, great will receive a weight of 1/2, and so on. 
A word ranked higher will receive a higher 
weight. This weight is used to control the move-
ment direction of the target word towards to its 
nearest neighbors. That is, the target word will be 
moved closer to the higher-ranked sentimentally 

similar neighbors and further away from lower-
ranked dissimilar neighbors, as shown in Fig. 2. 

To prevent too many words being moved to 
the same location and thereby producing too 
many similar vectors, we add a constraint to keep 
each pre-trained vector within a certain range 
from its original vector. The objective function is 
thus divided as two parts: 
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where 1( , )t t
i idist v v+  denotes the distance between 

the vector of the target word in step t and t+1, i.e., 
the distance between the refined vector and its 
original vector. The later one represents the dis-
tance between the vector of the target word and 
that of its neighbors (similar to Eq. (1)). The pa-
rameters α and β together are used as a ratio to 
control how far the refined vector can be moved 
away from its original vector and toward its near-
est neighbors. A greater ratio indicates a stronger 
constraint on keeping the refined vector closer to 
its original vector. For the extreme case of α=1 
and β=0, the target word will not be moved (re-
fined). As the ratio decreases, the constraint de-
creases accordingly and the refined vector can be 
moved closer to its nearest neighbors. The setting 
of α=0 and β=1 means that the constraint is disa-
bled. 

To facilitate the calculation of the partial de-
rivative of Φ(V), dist(vi, vj) in the above equa-
tions is measured by the squared Euclidean dis-
tance, defined as 

 

Figure 2:  Conceptual diagram of word vector 
refinement. 
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where D is the dimensionality of the word vectors. 
The global optimal solution of Φ(V) can be found 
by using an iterative update method. To do so, we 
solve the partial derivation of Eq. (2) in step t with 
respect to word vector t

iv , and by setting 
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=
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v

  to obtain a new vector +1t
iv  in step 

t+1. The iterative update procedure is defined as 
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Through the iterative procedure, the vector 
representation of each target word will be 
iteratively updated until the change of the location 
of the target word’s vector is converged. The 
refinement process will be terminated when all 
target words are refined. 

3 Experimental Results 

This section evaluates the proposed refinement 
model, conventional word embeddings and previ-
ously proposed sentiment embeddings using sev-
eral deep neural network models for binary and 
fine-grained sentiment classification. 
Dataset.  SST was adopted as the evaluation cor-
pus (Socher et al., 2013). The binary classification 
subtask (positive and negative) contains 
6920/872/1821 samples for the train/dev/test sets, 
while the fine-grained ordinal classification sub-
task (very negative, negative, neutral, positive, 
and very positive) contains 8544/1101/2210 sam-
ples of the train/dev/test sets.  
 Word Embeddings. The word embeddings used 
for comparison included two conventional word 
embeddings (GloVe and Word2vec), our refined 
versions (Re(GloVe) and Re(Word2vec)), and 
previously proposed sentiment embeddings (Hy-
Rank) (Tang et al., 2016). We used the same di-
mensionality of 300 for all word embeddings. 

 GloVe and Word2vec: The respective GloVe 
and Word2vec (skip-gram) were pre-trained 
on Common Crawl 840B 1  and Google-
News2. 

                                                      
1 http://nlp.stanford.edu/projects/glove/ 
2 https://code.google.com/archive/p/word2vec/ 

 Re(Glove) and Re(Word2vec): Both the pre-
trained GloVe and Word2vec were refined 
using E-ANEW (Warriner et al., 2013). Each 
affective word was refined by its top k=10 
nearest neighbors with parameters of α:β=0.1 
(1:10) (see Eq. (2)). 

 HyRank: It was trained using SST, NRC 
Sentiment140 and IMDB datasets. We com-
pared this method because its code is public-
ly accessible3.  

Classifiers. The above word embeddings were 
used by CNN (Kim, 2014) 4, DAN (Iyyer et al., 
2015)5, , bi-directional LSTM (Bi-LSTM) (Tai et 
al., 2015)6 and Tree-LSTM (Looks et al., 2017)7 
with default parameter values. 

Comparative Results. Table 1 presents the eval-
uation results of using different word embeddings 
for different classifiers. For the pre-trained word 
embeddings, GloVe outperformed Word2vec for 
DAN, Bi-LSTM and Tree-LSTM, whereas 
Word2vec yielded better performance for CNN. 
After the proposed refinement model was applied, 
both the pre-trained Word2vec and GloVe were 
improved. The Re(Word2vec) and Re(GloVe) re-
spectively improved Word2vec and GloVe by 
1.7% and 1.5% averaged over all classifiers for 
binary classification, and both 1.6% for fine-
grained classification. In addition, both Re(GloVe) 
and Re(Word2vec) outperformed the sentiment 
embeddings HyRank for all classifiers on both bi-
nary and fine-grained classification, indicating 
that the real-valued intensity scores used by the 
proposed refinement model are more effective 
than the binary polarity labels used by the previ-
ously proposed sentiment embedings. 

The proposed method yielded better perfor-
mance because it can remove semantically similar 
but sentimentally dissimilar nearest neighbors for 
the target words by refining their vector represen-
tations. To demonstrate the effect, we define a 
measure noise@k to calculate the percentage of 
top k nearest neighbors with an opposite polarity  
(i.e., noise) to each word in E-ANEW. For in-
stance, in Fig. 1, the noise@10 for good is 20% 
because there are two words with an opposite po-
larity to good among its top 10 nearest neighbors. 
Table 2 shows the average noise@10 for different 
                                                      
3 http://ir.hit.edu.cn/~dytang/ 
4 https://github.com/yoonkim/CNN_sentence 
5 https://github.com/miyyer/dan 
6 https://github.com/stanfordnlp/treelstm 
7 https://github.com/tensorflow/fold 
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word embeddings. For the two semantic-oriented 
word vectors, GloVe and Word2vec, on average 
around 24% of the top 10 nearest neighbors for 
each word are noisy words. After refinement, both 
Re(GloVe) and Re(Word2vec) can reduce 
noise@10 to around 14%. The HyRank also 
yielded better performance than both GloVe and 
Word2vec. 

4 Conclusion 

This study presents a word vector refinement 
model that requires no labeled corpus and can be 
applied to any pre-trained word vectors. The pro-
posed method selects a set of semantically similar 
nearest neighbors and then ranks the sentimentally 
similar neighbors higher and dissimilar neighbors 
lower based on a sentiment lexicon. This ranked 
list can guide the refinement procedure to itera-
tively improve the word vector representations. 

Experiments on SST show that the proposed  
method yielded better performance than both con-
ventional word embeddings and sentiment em-
beddings for both binary and fine-grained senti-
ment classification. In addition, the performances 
of various deep neural network models have also 
been improved. Future work will evaluate the 
proposed method on another datasets. More ex-
periments will also be conducted to provide more 
in-depth analysis.  
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Abstract

In this paper, we propose a novel method
for combining deep learning and classical
feature based models using a Multi-Layer
Perceptron (MLP) network for financial
sentiment analysis. We develop various
deep learning models based on Convolu-
tional Neural Network (CNN), Long Short
Term Memory (LSTM) and Gated Recur-
rent Unit (GRU). These are trained on
top of pre-trained, autoencoder-based, fi-
nancial word embeddings and lexicon fea-
tures. An ensemble is constructed by com-
bining these deep learning models and a
classical supervised model based on Sup-
port Vector Regression (SVR). We eval-
uate our proposed technique on a bench-
mark dataset of SemEval-2017 shared task
on financial sentiment analysis. The pro-
pose model shows impressive results on
two datasets, i.e. microblogs and news
headlines datasets. Comparisons show
that our proposed model performs better
than the existing state-of-the-art systems
for the above two datasets by 2.0 and 4.1
cosine points, respectively.

1 Introduction

Microblog messages and news headlines are freely
available on Internet in vast amount. Dynamic na-
ture of these texts can be utilized effectively to
analyze the shift in the stock prices of any com-
pany (Goonatilake and Herath, 2007). By keep-
ing a track of microblog messages and news head-
lines for financial domain one can observe the
trend in stock prices, which in turn, allows an in-
dividual to predict the future stock prices. An

First three student authors have equally contributed to
this work

increase in positive opinions towards a particular
company would indicate that the company is do-
ing well and this would be reflected in the increase
in company stock prices and vice-versa. Benefits
of such analysis are two-fold: (i). an individual
can take informed decision before buying/selling
his/her share; and (ii). an organization can utilize
this information to forecast its economic situation.

Sentiment prediction is a core component of
an end-to-end stock market forecasting business
model. Thus, an efficient sentiment analysis sys-
tem is required for real-time analysis of financial
text originating from the web. Sentiment analy-
sis in financial domain offers more challenges (as
compared to product reviews domains etc.) due
to the presence of various financial and techni-
cal terms along with numerous statistics. Coarse-
level sentiment analysis in financial texts usually
ignores critical information towards a particular
company, therefore making it unreliable for the
stock prediction. In fine-grained sentiment anal-
ysis, we can emphasize on a given company with-
out losing any critical information. For example,
in the following tweet sentiment towards $APPL
(APPLE Inc.) is positive while negative towards
$FB (Facebook Inc.).

‘$APPL going strong; $FB not so.’

In literature, many methods for sentiment anal-
ysis from financial news have been described.
O’Hare et al. (2009) used word-based approach
on financial blogs to train a sentiment classifier for
automatically determining the sentiment towards
companies and their stocks. Authors in (Schu-
maker and Chen, 2009) use the bag-of-words and
named entities for predicting stock market. They
successfully showed that the stock market behav-
ior is based on the opinions. A fine-grained sen-
timent annotation scheme was incorporated by
(de Kauter et al., 2015) for predicting the explicit
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and implicit sentiment in the financial text. An ap-
plication of multiple regression model was devel-
oped by (Oliveira et al., 2013).

In this paper, we propose a novel Multi-Layer
Perceptron (MLP) based ensemble technique for
fine-grained sentiment analysis. It combines the
outputs of four systems, one is feature-driven su-
pervised model and the rest three are deep learning
based.

We further propose to develop an enhanced
word representation by learning through a stacked
denoising autoencoder network (Vincent et al.,
2010) using word embeddings of Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) models.

For evaluation purpose we use datasets of
SemEval-2017 ‘Fine-Grained Sentiment Analysis
on Financial Microblogs and News’ shared task
(Keith Cortis and Davis, 2017). The dataset com-
prises of financial short texts for two domains i.e.
microblog messages and news headlines. Com-
parisons with the state-of-the-art models show that
our system produces better performance.

The main contributions of the current work are
summarized as follows: a) we effectively com-
bine competing systems to work as a team via
MLP based ensemble learning; b) develop an en-
hanced word representation by leveraging the syn-
tactic and semantic richness of the two distributed
word representation through a stacked denoising
autoencoder; and c) build a state-of-the-art model
for sentiment analysis in financial domain.

2 Proposed Methodology

We propose a Multi-Layer Perceptron based en-
semble approach to leverage the goodness of
various supervised systems. We develop three
deep neural network architecture based models,
viz. Convolution Neural Network (CNN) (Kim,
2014), Long Short Term Memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) network (Cho et al.,
2014)). The other model is based on Support
Vector Regression (SVR) (Smola and Schölkopf,
2004) based feature-driven system.

The classical feature based system utilizes a
diverse set of features (c.f. Section 2.D). On
the other hand we train a CNN, a LSTM and
a GRU network on top of distributed word rep-
resentations. We utilize Word2Vec and GloVe
word representation techniques to learn our fi-

nancial word embeddings. Since Word2Vec and
GloVe models capture syntactic and semantic re-
lations among words using different techniques
(Word2Vec: given a context, a word is predicted
or vice-versa; GloVe: count-based model utiliz-
ing word co-occurrence matrix), some applica-
tions adapt well to Word2Vec while others per-
form well on GloVe model. We, therefore, at-
tempt to leverage the richness of both the models
by using a stacked denoising autoencoder.Finally,
we combine predictions of these models using the
MLP network in order to obtain the final sentiment
scores. An overview of the proposed method is de-
picted in Figure 1.

Figure 1: MLP based ensemble architecture.

A. Convolution Neural Network (CNN): Lit-
erature suggests that CNN architecture had been
successfully applied for sentiment analysis at
various level (Kim, 2014; Akhtar et al., 2016;
Singhal and Bhattacharyya, 2016). Most of these
works involve classification tasks, however, we
adopt CNN architecture for solving the regres-
sion problem. Our proposed system employs a
convolution layer followed by a max pool layer,
2 fully connected layers and an output layer. We
use 100 different filters while sliding over 2, 3 and
4 words at a time. We employ all these filters in
parallel.

B. Long Short Term Memory Network
(LSTM): LSTMs (Hochreiter and Schmidhuber,
1997) are a special kind of recurrent neural
network (RNN) capable of learning long-term
dependencies by effectively handling the vanish-
ing or exploding gradient problem. We use two
LSTM layers on top of each other having 100
neurons in each. This was followed by 2 fully
connected layers and an output layer.

C. Gated Recurrent Unit (GRU): GRUs (Cho
et al., 2014) are also a special kind of RNN which
can efficiently learn long-term dependencies. A
key difference of GRU with LSTM is that, GRU’s
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recurrent state is completely exposed at each time
step in contrast to LSTM’s recurrent state which
controls its recurrent state. Thus, comparably
GRUs have lesser parameters to learn and training
is computationally efficient. We use two GRU
layers on top of each other having 100 neurons
in each. This was followed by 2 fully connected
layers and an output layer.

D. Feature based Model (SVR): We extract and
implement following set of features to train a
Support Vector Regression (SVR) (Smola and
Schölkopf, 2004) for predicting the sentiment
score in the continuous range of -1 to +1.
- Word Tf-Idf: Term frequency-inverse docu-
ment frequency (tf-idf) is a numerical statistic that
is intended to reflect how important a word is
to a document in a corpus. We consider tf-idf
weighted counts of continuous sequences of n-
grams (n=2,3,4,5) at a time.
- Lexicon Features: Sentiment lexicons are
widely utilized resources in the field of sentiment
analysis. Its application and effectiveness in senti-
ment prediction task had been widely studied. We
employ two lexicons i.e. Bing Liu opinion lexi-
con (Ding et al., 2008) and MPQA (Wilson et al.,
2005) subjectivity lexicon for news headlines do-
main. First we compile a comprehensive list of
positive and negative words form these lexicons
and then extract the following lexicon driven fea-
tures.

Agreement Score : This score indicates the po-
larity of the sentence i.e. whether the sentence
takes a polar or neutral stance. If the agreement
score is 1 then it implies that the instance is of
having either high positive or negative sentiment
whereas, a 0 agreement score indicates a mixed
or disharmony in the positive and negative senti-
ment implying the sentence is not polar (Rao and
Srivastava, 2012).

A = 1−

√
1−
∣∣∣Tpos − Tneg

Tpos + Tneg

∣∣∣

Class score : Each text is assigned a class score
indicating an overall sentiment value. The
class score is -1, 0 or +1 depending on whether
Tpos is less than, equal to or greater than Tneg.
This helps in detecting the correct class of the
sentence.

We also use four Twitter specific sentiment lexi-

cons. These are NRC (Hashtag Context, Hashtag
Sentiment, Sentiment140, Sentiment140 Context)
lexicons (Kiritchenko et al., 2014; Mohammad
et al., 2013) which associate a positive or negative
score to a token. Following features are extracted
for each of these: i) positive, negative and net
count. ii) maximum of positive and negative
scores. iii) sum of positive, negative and net
scores.
- Vader Sentiment: Vader sentiment (Gilbert,
2014) score is a rule-based method that generates
a compound sentiment score for each sentence
between -1 (extreme negative) and +1 (extreme
positive). It also produces ratio of positive,
negative and neutral tokens in the sentence. We
obtain score and ratio of each instance in the
datasets and use as feature for training.

Network parameters for CNN, LSTM & GRU:
In the fully connected layers we use 50 and 10
neurons , respectively for the two hidden layers.
We use Relu activations (Glorot et al., 2011) for
intermediate layers and tanh activation in the final
layer. We employ 20% Dropout (Srivastava et al.,
2014) in the fully connected layers as a measure
of regularization and Adam optimizer (Kingma
and Ba, 2014) for optimization.

E. MultiLayer Perceptron (MLP) based En-
semble: Ensemble of models improves the pre-
diction accuracy by combining the outputs of all
the individual models. It exploits the strengths of
all the participating models. Some of these exiting
ensemble techniques cover a wide variety of tradi-
tional approaches such as bagging, boosting, ma-
jority voting, weighted voting (Xiao et al., 2013;
Remya and Ramya, 2014; Ekbal and Saha, 2011)
etc. In recent times Particle Swarm Optimization
based ensemble technique (Akhtar et al., 2017) has
been proposed for aspect based sentiment anal-
ysis. However, our current work differs signifi-
cantly w.r.t. the methodology that we adapt as well
as the problem domain that we focus on.

In this work we propose a new ensemble tech-
nique based on MLP which learns on top of the
predictions of candidate models. We use a small
MLP network consisting of 2 hidden layers (4 neu-
rons in each) and an output layer. We use Relu
activations for hidden layers and tanh activation
in the final layer. We employ 25% dropout in the
intermediate layers and use Adam optimizer dur-
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ing backpropagation. The output of this network
serves as the final prediction value.

We separately train and tune all the four models
(Section 2.A - 2.D ) for both the domains. Evalu-
ation shows that results of these individual models
are encouraging, and an effective combination of
these through the proposed ensemble further in-
creases the performance.
Word Embeddings: Distributed representation
models such as Word2Vec and Glove are generally
very effective in a multitude of natural language
processing tasks. Quality of any word embedding
directly depends upon two entities: a) in-domain
corpus and b) size of the corpus. Pre-trained
word embeddings of Word2Vec (PWE-W2V) and
GloVe (PWE-GLV) serve general purpose rather
than focusing on a specific domain. Since we are
addressing the problem in financial text we train
and use our own embedding for financial domain
corpus (FWE-W2V & FWE-GLV). We collected
126,000 financial news articles from Google News
having a total of 92 million tokens. Although the
corpus size is not as large as pre-trained word em-
bedding corpus, it works reasonably well (c.f Ta-
ble 1).

We observe that Word2Vec and GloVe word
embeddings are quite competitive. In some
cases GloVe has the advantage while in others
Word2Vec performs better. Therefore, we de-
rive a new hybrid word embedding model using
a stacked denoising autoencoders (DAWE). A de-
noising autoencoder (Vincent et al., 2010) is a
neural network which is trained to reconstruct a
clean repaired input from a noisy version of the
input. Following (AP et al., 2014), we combine
pretrained Word2Vec and GloVe representation of
a word and fed it to the network in order to capture
the richness of both representations. The input to
the network is a combined 600 dimensional vec-
tor (300 W2V + 300 GLV) with statistically added
salt-and-pepper noise.

In total we employ five different word embed-
ding models for both the domains. Dimension of
all these word embeddings are set to 300. While
training our deep learning models, we keep the
word embeddings dynamic so that they can be
fine-tuned during the process.

3 Experiments, Results and Analysis

Dataset: We evaluate our proposed approach on
the benchmark datasets of SemEval-2017 shared

task 5 on ‘fine-grained sentiment analysis on fi-
nancial microblogs and news’ (Keith Cortis and
Davis, 2017). The two datasets consist of financial
texts from Microblogs (Twitter and StockTwits)
and News, respectively. There are 1,700 and 1,142
instances of microblog messages and news head-
lines in the training data. The test dataset com-
prises of 800 microblog messages and 491 news
headlines.
Experiments: We use Python based libraries
Keras and Scikit-learn for the implementation.
Following the shared task guideline we use co-
sine similarity as the metric for evaluation. Cosine
score represents the degree of agreement between
predicted and actual values.

Table 1 shows evaluation of our various mod-
els. In microblog dataset we obtain the best cosine
similarities of 0.724, 0.727, 0.721 and 0.765 for
CNN, LSTM, GRU and feature based systems, re-
spectively. Similarly, for news datasets we obtain
the best cosine similarities of 0.722, 0.720, 0.721
and 0.760. It can be observed that results for all
the models are numerically comparable, however,
on a qualitative side they are quite contrasting in
nature. Figure 2 shows the contrasting nature of
different models for microblog messages. The
predicted output of different models (i.e. CNN,
LSTM, GRU and SVR) are often complimentary
in nature. In some case, one model predicts cor-
rectly (or, closer to the gold output), while other
models make incorrect predictions and the vice-
versa. We also observe the same phenomena for
news headline. Motivated by this contrasting be-
havior we choose to combine the predictions of
these models.
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Figure 2: Contrasting nature of different models
w.r.t. to the gold standard values; Sample size:30.

Consequently, we construct an ensemble by
taking the best performing deep learning (CNN,
LSTM and GRU each) and classical feature based
(SVR) models using a MLP network. The pro-
posed ensemble yields enhanced cosine scores of
0.797 and 0.786 for the microblog messages and
news headline, respectively.

For comparison we choose two state-of-the-art
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systems (ECNU (Lan et al., 2017) and Fortia-FBK
(Mansar et al., 2017)) which were the best per-
forming systems at SemEval-2017 shared task 5.
ECNU reported to have obtained cosine similarity
of 0.777 in microblog as compared to 0.797 co-
sine similarity of our proposed system, whereas,
for news headlines Fortia-FBK reported cosine
similarity of 0.745. ECNU employed several re-
gressors on top of optimized feature set obtained
through hill climbing algorithm. For the final pre-
diction, authors averaged the predictions of differ-
ent regressors. Fortia-FBK trained a CNN with the
assistance of sentiment lexicons for predicting the
sentiment score. It should be noted that both the
systems (ECNU and Fortia-FBK) utilize different
approaches to achieve the stated cosine similarities
on two different domains. The proposed approach
of ECNU does not perform well for the news head-
lines, and Fortia-FBK reported results only for the
news headlines. Our proposed system performs
better compared to these existing systems for both
the domains.This shows that our system is more
robust and generic in nature in predicting the sen-
timent scores. We also perform statistical signifi-
cance test on the obtained results and observe that
the performance gain is significant with p-value =
0.00747. Table 2 depicts the comparative results
on the test datasets.

3.1 Error Analysis
We also perform qualitative error analysis on the
obtained results and observe that the proposed sys-
tem faces problems in the following scenarios:
• Presence of implicit negation makes it a non-
trivial task for the proposed system to predict the
sentiment and intensity correctly. For the example
given below, the overall negative sentiment is al-
tered because of the presence of the word ‘breaks’.
Example : Tesco breaks its downward slide by
cutting sales decline in half
Predicted: -0.694 Actual: 0.172

• The proposed system often confuses when the
input text contains a question (?) mark.
Example : Is $FB a BUY? Topeka Capital Mar-
kets thinks so
Predicted: 0.363 Actual: -0.373.

4 Conclusion

In this paper, we have presented an ensemble net-
work of deep learning and classical feature driven

Models Microblog News
Convolutional neural network (CNN)
C1 PWE-W2V CNN 0.705 0.722
C2 PWE-GLV CNN 0.721 0.697
C3 FWE-W2V CNN 0.710 0.705
C4 FWE-GLV CNN 0.724 0.714
C5 DAWE CNN 0.697 0.698
Long short term memory (LSTM)
L1 PWE-W2V LSTM 0.700 0.704
L2 PWE-GLV LSTM 0.715 0.683
L3 FWE-W2V LSTM 0.727 0.680
L4 FWE-GLV LSTM 0.717 0.691
L5 DAWE LSTM 0.722 0.720
Gated Recurrent Unit (GRU)
G1 PWE-W2V GRU 0.689 0.721
G2 PWE-GLV GRU 0.713 0.705
G3 FWE-W2V GRU 0.715 0.687
G4 FWE-GLV GRU 0.713 0.703
G5 DAWE GRU 0.721 0.712
Feature - SVR
F1 Tf-idf + Lexicon + Vader 0.752 0.749
F2 Tf-idf + Lexicon + Vader + PWE-W2V 0.740 0.731
F3 Tf-idf + Lexicon + Vader + PWE-GLV 0.758 0.745
F4 Tf-idf + Lexicon + Vader + FWE-W2V 0.709 0.702
F5 Tf-idf + Lexicon + Vader + FWE-GLV 0.732 0.725
F6 Tf-idf + Lexicon + Vader + DAWE 0.765 0.760
Ensemble
E1 C4 + L3 + G5 + F6 (MLP) 0.797 0.765
E2 C1 + L5 + G1 + F6 (MLP) 0.779 0.786

Table 1: Cosine similarity score of various models
on test dataset.

Systems Microblogs News
ECNU (Lan et al., 2017) 0.777 0.710
Fortia-FBK (Mansar et al., 2017) - 0.745
Proposed System 0.797 0.786

Table 2: Comparison with the state-of-the-art sys-
tems.

models. Evaluation on the benchmark datasets
show that it performs remarkably well to iden-
tify bullish and bearish sentiments associated with
companies in financial texts. We have imple-
mented a variety of linguistic and semantic fea-
tures for our analysis of the noisy text in Tweets
and news headlines. Our proposed approach
achieves state-of-the-art performance with the in-
crements of 2.0 and 4.1 points over the existing
systems for the tasks of sentiment prediction of fi-
nancial microblog and news data. In future, we
would like to extend our work by creating an end
to end stock prediction system where the system
would predict the future stock prices based on the
sentiment score and stock value of the company.

544



References
Md Shad Akhtar, Deepak Gupta, Asif Ekbal, and Push-

pak Bhattacharyya. 2017. Feature selection and en-
semble construction: A two-step method for aspect
based sentiment analysis. Knowledge-Based Sys-
tems 125:116 – 135.

Md Shad Akhtar, Ayush Kumar, Asif Ekbal, and Push-
pak Bhattacharyya. 2016. A Hybrid Deep Learning
Architecture for Sentiment Analysis. In Proceed-
ings of the 26th International Conference on Com-
putational Linguistics (COLING 2016): Technical
Papers, December 11-16, 2016. Osaka, Japan, pages
482–493.

Sarath Chandar AP, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An Autoencoder
Approach to Learning Bilingual Word Representa-
tions. In Advances in Neural Information Process-
ing Systems. pages 1853–1861.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Prop-
erties of Neural Machine Translation: Encoder-
Decoder Approaches. CoRR abs/1409.1259.
http://arxiv.org/abs/1409.1259.

Marjan Van de Kauter, Diane Breesch, and Vronique
Hoste. 2015. Fine-grained analysis of explicit and
implicit sentiment in financial news articles. Expert
Systems with Applications 42(11):4999 – 5010.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
Holistic Lexicon-Based Approach to Opinion Min-
ing. In Proceedings of the 2008 international con-
ference on web search and data mining. ACM, pages
231–240.

Asif Ekbal and Sriparna Saha. 2011. Weighted
Vote-Based Classifier Ensemble for Named En-
tity Recognition: A Genetic Algorithm-Based Ap-
proach. ACM Transactions on Asian Language In-
formation Processing 10:9:1–9:37.

CJ Hutto Eric Gilbert. 2014. VADER: A Parsimo-
nious Rule-based Model for Sentiment Analysis of
Social Media Text. In Eighth International Con-
ference on Weblogs and Social Media (ICWSM-14).
Available at (20/04/16) http://comp. social. gatech.
edu/papers/icwsm14. vader. hutto. pdf .

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep Sparse Rectifier Neural Networks.
In Geoffrey J. Gordon and David B. Dunson, ed-
itors, Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics
(AISTATS-11). Journal of Machine Learning Re-
search - Workshop and Conference Proceedings,
volume 15, pages 315–323.

Rohitha Goonatilake and Susantha Herath. 2007. The
Volatility of the Stock Market and News. Interna-
tional Research Journal of Finance and Economics
3(11):53–65.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation
9(8):1735–1780.

Andre Freitas Tobias Daudert Manuela Huerlimann
Manel Zarrouk Keith Cortis and Brian Davis. 2017.
SemEval-2017 Task 5: Fine-Grained Sentiment
Analysis on Financial Microblogs and News. In
Proceedings of the 11th International Workshop on
Semantic Evaluations (SemEval-2017). ACL, Van-
couver, Canada, pages 519–535.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL. pages 1746–1751.

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: A Method for Stochastic Optimiza-
tion. CoRR abs/1412.6980. http://dblp.uni-
trier.de/db/journals/corr/corr1412.html.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment Analysis of Short In-
formal Texts. Journal of Artificial Intelligence Re-
search (JAIR) 50:723–762.

Man Lan, Mengxiao Jiang, and Yuanbin Wu. 2017.
ECNU at SemEval-2017 Task 5: An Ensemble of
Regression Algorithms with Effective Features for
Fine-grained Sentiment Analysis in Financial Do-
main. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017).
ACL, Vancouver, Canada, pages 888–893.

Youness Mansar, Lorenzo Gatti, Sira Ferradans, Marco
Guerini, and Jacopo Staiano. 2017. Fortia-FBK at
SemEval-2017 Task 5: Bullish or Bearish? Infer-
ring Sentiment towards Brands from Financial News
Headlines. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017).
ACL, Vancouver, Canada, pages 817–822.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. Lake Tahoe, NV, USA, pages 3111–3119.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the State-of-the-
Art in Sentiment Analysis of Tweets. In Proceed-
ings of the Seventh International Workshop on Se-
mantic Evaluation (SemEval 2013). Atlanta, Geor-
gia, USA, pages 321–327.

Neil O’Hare, Michael Davy, Adam Bermingham,
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Abstract

Identification of intensity ordering among
polar (positive or negative) words which
have the same semantics can lead to a fine-
grained sentiment analysis. For exam-
ple, master, seasoned and familiar point
to different intensity levels, though they
all convey the same meaning (semantics),
i.e., expertise: having a good knowledge
of. In this paper, we propose a semi-
supervised technique that uses sentiment
bearing word embeddings to produce a
continuous ranking among adjectives that
share common semantics. Our system
demonstrates a strong Spearman’s rank
correlation of 0.83 with the gold standard
ranking. We show that sentiment bear-
ing word embeddings facilitate a more ac-
curate intensity ranking system than other
standard word embeddings (word2vec and
GloVe). Word2vec is the state-of-the-art
for intensity ordering task.

1 Introduction

The interchangeable use of semantically simi-
lar words stimulates sentiment intensity variation
among sentences. To understand the phenomenon,
let us consider the following example:

1. (a) We were pleased by the beauty of the
island. (Positively low intense)

(b) We were delighted by the beauty of the
island. (Positively medium intense)

(c) We were exhilarated by the beauty of
the island. (Positively high intense)

Pleased, Exhilarated and delighted are the posi-
tive words bearing the same semantics, i.e., direct-
ing the emotion, but their use intensifies the posi-
tive sentiment in the sentences 1(a), 1(b) and 1(c)

respectively. Identification of intensity ranking
among the words which have the same semantics
can facilitate such a fine-grained sentiment analy-
sis as exemplified in 1(a), 1(b) and 1(c).1

In this paper, we present a semi-supervised ap-
proach to establish a continuous intensity ranking
among polar adjectives having the same seman-
tics. Essentially, our approach is a refinement of
the work done by Sharma et al., (2015). They
also built a system that generates intensity of the
words that bear the same semantics; however, their
system considers only three discrete intensity lev-
els, viz., low, medium and high. The important
feature of our approach is that it uses Sentiment
Specific Word Embeddings (SSWE). SSWE are
an enhancement to the normal word embeddings
with respect to the sentiment analysis task (Tang
et al., 2014). SSWE capture syntactic, semantic
as well as sentiment information, unlike normal
word embeddings (word2vec and GloVe), which
capture only syntactic and semantic information.

Our Contribution: We propose an approach
that generates a continuous (finer) intensity rank-
ing among polar words, which belong to the
same semantic category. In addition, we show
that SSWE produce a significantly better inten-
sity ranking scale than word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), which
do not capture sentiment information of the words.

The remaining paper is organized as follows.
Section 2 describes the previous work related to
intensity ranking task. Section 3 describes the
different word embeddings explored in the paper.
Section 4 gives the description of the data and the
resources. Section 5 provides details of the gold

1Words which have the different semantic concepts can-
not be used interchangeably. For example, master (expertise)
and delighted (directing the emotion) cannot be a replacement
of each other. Hence, our understanding is that a compari-
son between words belonging to different semantic categories
does not give any meaningful information.
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standard data. Section 6 elaborates the proposed
intensity ranking approach. Section 7 presents the
results and experimental setup. Section 8 con-
cludes the paper.

2 Related Work

Sentiment analysis on adjectives has been ex-
tensively explored in NLP literature. However,
most of the work addressed the problem of find-
ing polarity orientation of the adjectives (Hatzi-
vassiloglou and McKeown, 1997; Wiebe, 2000;
Wilson et al., 2005; Fahrni and Klenner, 2008;
Dragut et al., 2010; Taboada and Grieve, 2004;
Baccianella et al., 2010).

The task of ranking polar words has received
much attention recently due to the vital role of
word’s intensity in several real world applica-
tions. Most of the literature on intensity rank-
ing consists of manual approaches or corpus-based
approaches. Affective Norms (Warriner et al.,
2013), SentiStrength (Thelwall et al., 2010), So-
CAL (Taboada et al., 2011), and LABMT (Dodds
et al., 2011), Best–Worst Scaling (Kiritchenko and
Mohammad, 2016) are a few such publicly avail-
able sentiment intensity lexicons which are manu-
ally created.

Corpus-based approaches follow the assump-
tion that the polarity of a new word can be inferred
from the corpus (Hatzivassiloglou and McKeown,
1993; Kiritchenko et al., 2014; De Melo and
Bansal, 2013). Corpus-based approaches require
a huge amount of data, otherwise they suffer from
the data sparsity problem. None of the these ap-
proaches considers the concept of semantics of ad-
jectives, assuming one single intensity scale for all
adjectives. Ruppenhofer et al., (2014) made the
first attempt in this direction. They provided or-
dering among polar adjectives that bear the same
semantics using a corpus-based approach. On the
contrary, Sharma et al., (2015) used publicly avail-
able embeddings (word2vec) of words to assign
intensity to words. Learning of word embeddings
does not require annotated (labeled) corpus.

The embeddings used in our work are sentiment
specific word embeddings. Integration of senti-
ment information of a word with syntactic and se-
mantic information makes our approach more ac-
curate for fine-grained sentiment intensity ranking
of words.

3 Word Embeddings

In recent years, several models have been pro-
posed to learn word embeddings from large cor-
pora. In this paper, we have explored three types of
word embeddings, viz., word2vec (Mikolov et al.,
2013), Glove (Pennington et al., 2014) and SSWE
(Tang et al., 2014). The word embeddings given
by word2vec are the distributed vector represen-
tation of the words that capture both the syntac-
tic and semantic relationships among words. The
Global Vector model, referred as GloVe, combines
word2vec with ideas drawn from matrix factor-
ization methods, such as LSA (Deerwester et al.,
1990). Word2vec and GloVe model the syntac-
tic context of the words but ignore their sentiment
information. For sentiment analysis task, this is
problematic as these word embeddings map words
with similar syntactic context but opposite polar-
ity, such as love and hate closer to each other in
the vector space.

Sentiment Specific Word Embeddings (SSWE)
encode sentiment information along with the syn-
tactic and semantic information in word vector
space. These word embeddings are able to sepa-
rate the words like love and hate to the opposite
ends of the spectrum. Tang et al., (2014) proposed
a method to learn sentiment specific word em-
beddings from tweets with emoticons as distant-
supervised corpora without any manual annota-
tion. Specifically, they developed three neural net-
works to effectively incorporate the supervision
from sentiment polarity of text in their loss func-
tions.

4 Data and Resources

In this work, we have used the 52 polar semantic
categories from the FrameNet data.2 FrameNet-
1.5 (Baker et al., 1998) is a lexical resource which
groups words based on their semantics.3 We also
used a star-rated movie review corpus of 5006 files
(Pang and Lee, 2005) to extract the pivot for each
semantic category.4 Though our approach uses a
corpus, its use is limited to identification of pivot.
Intensity ranking of other words of the seman-
tic category is derived by exploiting the cosine-

2Sharma et al., (2015) also have presented their results
using the same 52 polar semantic categories of the FrameNet
data.

3Available at: https://framenet.icsi.
berkeley.edu/fndrupal/about.

4Available at: http://www.cs.cornell.edu/
people/pabo/movie-review-data/.
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similarity between word embeddings of the pivot
and the other words of the semantic category. For
all three types of word embeddings, we have used
precomputed 300 dimensional vectors of words.56

5 Gold Standard Data Preparation

The objective of our work is to obtain a continuous
ranking among words having the same semantics
as per FrameNet data. We asked 5 annotators7 to
rank words in each semantic category on a scale of
−50 to +50. Here, −50 represents the most neg-
atively intense point and +50 represents the most
positively intense point on the scale. 0 represents a
neutral (neither positive nor negative) point on the
scale. It is hard to get any neutral word in the data
as we have used only polar semantic categories of
the FrameNet. The final ranking scale in a cate-
gory is obtained by averaging the score assigned
by all 5 annotators. For example, for a word,
if annotator-1 gave ranking r1, annotator-2 gave
ranking r2, annotator-3 gave ranking r3, annotator-
4 gave ranking r4 and annotator-5 gave ranking r5,
then final ranking is ((r1+r2+r3+r4+r5)/5).

To check the agreement among 5 annotators, we
computed Fleiss’ kappa. It is a statistical measure
of inter-rater reliability. Fleiss’ kappa is chosen
over Scott’s pi and Cohen’s kappa, because these
measures work for two raters, whereas Fleiss’
kappa works for any number of raters giving cate-
gorical ratings to a fixed number of items (Fleiss,
1971). We obtained a Fleiss’ kappa score of 0.64
by dividing words of the semantic category into
six levels (high-positive, medium-positive, low-
positive, low-negative, medium-negative, high-
negative).

6 Approach: Derive Intensity Ordering
Among Words

Our approach establishes a continuous intensity
ranking among words based on the following hy-
potheses:

5In this work, we have opted for precomputed word em-
beddings, because they are trained on sufficiently large cor-
pora and widely tested for NLP applications.

6Embeddings are available here: word2vec
(trained on news corpus of 320M words):
https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit, GloVe
(trained on Wikipedia 2014): http://nlp.stanford.
edu/projects/glove/, SSWE (trained on 91M
tweets): http://ir.hit.edu.cn/˜dytang/.

7Two of the annotators are professional linguists of En-
glish language and other three are post graduate students.

Hypothesis-1 The classic semantic bleaching
theory states that a word which has fewer num-
ber of senses (possibly one) tends to have a higher
intensity in comparison to words having more
senses.

Hypothesis-2 Semantically similar words that
have fewer number of senses exhibit higher
cosine-similarity with each other in comparison
to words having many senses. Essentially, fewer
number of senses cause fewer number of context
words or vice versa.

Considering hypothesis-1 and 2 as a base,
Sharma et al., (2015) claimed that the word em-
beddings (context vectors) of high intensity words
depict higher cosine-similarity with each other
than with low or medium intensity words. How-
ever, they used word embeddings which cap-
ture only syntactic and semantic similarity among
words (Mikolov et al., 2013). Our approach
uses SSWE, which integrate sentiment informa-
tion with the normal word embeddings. Use of
SSWE in place of normal word embeddings pro-
vides a more accurate cosine-similarity scores,
which in turn leads to a more accurate continuous
intensity scale. Section 6.1 describes how a high
intensity word (pivot) for each semantic category
is extracted from an intensity annotated corpus.
Section 6.2 presents the algorithm that assigns in-
tensity ordering to words of a semantic category
using the pivot (high intensity) word.

6.1 Pivot Selection Method
An amalgamation of χ2 test and Weighted Nor-
malized Polarity Intensity (WNPI) formula ex-
tracts a high intensity word as pivot for each se-
mantic category from the 5 star-rated review cor-
pus. χ2 test assures that no biased word should be
selected as the pivot (Oakes and Farrow, 2007).8

By biased word we mean that a word which has
very few occurrences in the corpus, but these oc-
currences are in the high star-rated reviews. For
example, in our corpus, the word lame occurs only
3 times in the corpus, and these occurrences hap-
pen to be in 1-star (negatively high intense) re-
views only. In addition, χ2 test derives polarity
orientation of the pivot from the corpus as it asso-
ciates a class (positive or negative) label with the
word (Sharma and Bhattacharyya, 2013).

The WNPI formula assigns a intensity score to
8The details about the goodness of fit chi2 test:

http://stattrek.com/chi-square-test/
goodness-of-fit.aspx?Tutorial=AP.
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words based on their frequency count in different
star ratings. It is defined based on the concept that
a high intensity word would occur more frequently
in high star-rated reviews, for example, outstand-
ing would occur more frequently in 5-star or 4-
star reviews in comparison to 1,2,3-star reviews.
In the WNPI formula (Algorithm 1), the value of
i ranges from 1 to 5, here star rating is used as
intensity of the review. The algorithm extracts
two pivots for each category, one positive pivot for
positive words and one negative pivot for negative
words. For the sake of simplicity, we have used
the term ‘pivot’ only in the Algorithm 1. For a
positive word ‘5-star’ is treated as ‘i=5’ (highest
positive intensity) and for a negative word ‘1-star’
is treated as ‘i=5’ (highest negative intensity) in
the WNPI formula. A word which gets the highest
score by the χ2 test and the WNPI formula is set
as positive (or negative) pivot.

6.2 Algorithm
Algorithm 1 illustrates the sequence of steps car-
ried out to obtain the intensity ordering of words
within a semantic category. cwp and cwn are the
counts of a word w in the positive and nega-
tive documents respectively. µw is an average of
cwp and cwn . To obtain the values of cwp and cwn ,
we divided the 5 star-rated review corpus in two
equal parts as the positive corpus and the nega-
tive corpus. Ci is the count of a word in i in-
tensity documents. Polarity of the words other
than the pivot words is inferred by computing the
cosine-similarity between SSWE of other words
with the SSWE of the pivot word. Since SSWE
have sentiment information, a positive pivot gives
positive cosine-similarity with the positive words
and negative cosine-similarity with the negative
words.9 Cosine-similarity order between SSWE
of the pivot and other words establishes intensity
ranking among words of a semantic category.

7 Results and Experimental Setup

To evaluate the efficacy of our SSWE-based ap-
proach over word2vec-based system (state-of-the-
art) (Sharma et al., 2015) and GloVe-based sys-
tem, we compute rank correlation and Macro-F1
between the intensity ranking produced by the em-
beddings and the gold standard intensity ranking.

9Sharma et al., (Sharma et al., 2015) used Bing Liu’s lexi-
con in their approach to identify polarity orientation of words.
The use of SSWE in our approach helped us to remove the
need of a sentiment lexicon to identify polarity of words.

Algorithm 1: Generating an Intensity ordering
of words within a semantic category

Input: Set of words within a semantic
category Wsc ;
Intensity (i) annotated corpus C ;
Pre-trained Sentiment embeddings
SSWE .

Output: Ranking of words based on intensity.

1 for each word wi ∈Wsc do
2 χ2(wi) = ((cwp −µw)2+(cwn −µw)2)/µw

3 WNPI(wi) =
∑5
i=1 i∗Ci

5∗∑5
i=1 Ci

4 Store in dictionary
(wi, χ

2(wi),WNPI(wi))

5 Select word from the dictionary with the
highest χ2 and WNPI score as pivot.

6 for each word wi in Wsc do
7 Calculate Cosine-Similarity between
8 (SSWE(wi), SSWE(Pivot))

9 Words arranged in increasing order of their
cosine-similarity is the Intensity Ordering.

7.1 Rank Correlation

Table 1 shows the average rank correlation coef-
ficient obtained for 52 polar semantic categories
of the FrameNet data using Spearman’s ρ and
Kendall’s τ . Spearman’s ρ measures the degree of
association between the two rankings. Kendall’s
τ finds the number of concordant and discordant
pairs in the rankings to measure association. We

Embeddings Spearman’s ρ Kendall’s τ
Glove 0.525 0.425

Word2vec 0.71 0.565
SSWE 0.82 0.70

Table 1: Spearman’s ρ and Kendall’s τ rank corre-
lations.

observed that SSWE-based system results in a sig-
nificantly better ρ and τ as per t-test.

7.2 F1 Measure

In order to compare our work with the state-of-the-
art (Sharma et al., 2015), the intensity ordering of
words within a semantic category is divided into
3 levels, i.e, low, medium and high for both the
positive and negative words respectively. In order
to create three levels, we placed 2 break points in
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Figure 1: Individual Macro-F1 score for the 4 se-
mantic categories.

the intensity ordering sequence where consecutive
similarity scores differ the most.10 Comparison
of Macro-F1 scores for 4 different categories is
shown in Figure 1. SSWE outperforms word2vec
and GloVe by a big margin in all 4 cases. In ad-
dition, we obtain an average Macro-F1 score of
74.32% with SSWE, 54.38% with word2vec and
45.10% with GloVe for the 52 semantic categories.

7.3 Error Analysis
In a few semantic categories of the FrameNet data,
words are not confined to any one sentiment and to
say that one kind of sentiment has a higher inten-
sity than the other is difficult at times. For exam-
ple, it is difficult to compare sadness and embar-
rassment relatively in terms of intensity, whereas
both the words belong to the same semantic cat-
egory, that is, emotion directed as per FrameNet
data. In addition, annotators mutually agreed on
the fact that when there are limited number of
words then it is easier and logical to scale them.
More separation based on the finer semantic prop-
erty within the existing semantic category of the
FrameNet data may bring on improvement in the
performance of automatic intensity ranking sys-
tems.

8 Conclusion

In this paper, we have given a technique that uses
Sentiment Specific Word Embeddings (SSWE) to
produce a fine-grained intensity ordering among
polar words which bear the same semantics. In
addition, the use of sentiment embeddings reduces
the need of sentiment lexicon for identification of

10The same break point convention is followed by Sharma
et al., (2015) to assign intensity levels to words.

polarity orientation of words. Results show that
SSWE are significantly better than word2vec and
GloVe, which do not capture sentiment informa-
tion of words for intensity ranking task. Senti-
ment intensity information of words can be used
in various NLP applications, for example, star-
rating prediction, normalization of over-expressed
or under-expressed texts, etc.
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Abstract

Although many sentiment lexicons in dif-
ferent languages exist, most are not com-
prehensive. In a recent sentiment analysis
application, we used a large Chinese sen-
timent lexicon and found that it missed a
large number of sentiment words used in
social media. This prompted us to make
a new attempt to study sentiment lexi-
con expansion. This paper first formu-
lates the problem as a PU learning prob-
lem. It then proposes a new PU learning
method suitable for the problem based on
a neural network. The results are further
enhanced with a new dictionary lookup
technique and a novel polarity classifica-
tion algorithm. Experimental results show
that the proposed approach greatly outper-
forms baseline methods.

1 Introduction

Sentiment lexicons contain words (such as good,
beautiful, bad, and awful) that convey positive
or negative sentiments. They are instrumental
for many sentiment analysis applications. So far
many algorithms have been proposed to generate
such lexicons (Liu, 2012). These algorithms are
either dictionary-based or corpus-based. In the
dictionary-based approach, one exploits synonym
and antonym relations in the dictionary to boot-
strap a given seed set of sentiment words (Hu and
Liu, 2004; Kim and Hovy, 2004; Kamps et al.,
2004), or learns a classifier to classify the gloss
of each word in the dictionary (Esuli and Sebas-
tiani, 2005). The corpus-based approach uses var-
ious linguistic rules or patterns (Hatzivassiloglou
and McKeown, 1997; Kanayama and Nasukawa,
2006; Qiu et al., 2011; Tang et al., 2014). We will

discuss these and other existing methods in the re-
lated work section.

Despite many existing studies, the problem is
far from being solved. In a recent application,
we used a popular Chinese sentiment lexicon for
sentiment classification of Weibo posts (similar to
Twitter), and found that it missed a large num-
ber of sentiment words. As the lexicon was com-
piled using formal text such as news, it misses a
large number of sentiment words used in social
media. Due to the informal nature, many “low
class” words are used in social media but seldom
used in formal media. New words are also created
constantly. Note that new words in Chinese are
easier to create from individual characters than in
other languages. Thus many of these words are not
in the dictionary. All these prompted us to make a
new attempt to study sentiment lexicon expansion.

In this paper, we solve the problem in two steps:
(1) identify sentiment words from a given corpus,
and (2) classify their polarity. We formulate Step 1
as a PU learning problem (learning from positive
unlabeled examples). To our knowledge, this is the
first such formulation. This is important because
it gives us a formal model to tackle the problem.
PU learning is stated as follows (Liu et al., 2002):
given a set P of examples of a particular class (we
also use P to denote the class) and a set U of un-
labeled examples which contains hidden instances
from both classes P and not-P (calledN ), we want
to build a classifier using P and U to classify the
data in U or future test data into the two classes,
i.e., P andN (or not-P). In our case, P is the exist-
ing sentiment lexicon, and U is a set of candidate
words from a social media corpus. We identify
those words in U that are also sentiment words.

A typical PU learning algorithm works by first
identifying a small set of reliable N class exam-
ples (RN) from the unlabeled set U and then run-
ning a supervised learning method (e.g., SVM) it-
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eratively to add more and more data to the RN set
to finally build a classifier (Liu, 2011).

In this work, we first adapt a popular such
approach to an augmented multilayer perceptron
(AMP) method and use it to replace SVM, and
show that using SVM as the learning method
is inferior to using AMP. However, we can do
much better. We then propose a new PU learn-
ing method, called SE-AMP (Spy-based Elimina-
tion of P class instances using AMP), which can
better exploit the specific nature of our problem.
SE-AMP goes in the opposite direction to the ex-
isting approach. It starts by treating U as the class
N (not-P) data, and then runs the AMP learning
method on P and U iteratively to gradually re-
move potential P class instances from U to purify
U so that as iterations progress, fewer and fewer P
class instances are still in U . We detail the method
in Sec. 3.3. Note that SE-AMP is general and not
limited to our task of sentiment lexicon expansion.

We also propose a new method based on dic-
tionary lookup, called Double dictionary Lookup
(DL), to enhance the results from the proposed
PU learning method. The DL method is also in
the framework of PU learning. Our final proposed
method for Step 1 is called SE-AMP-DL.

For polarity classification (Step 2, after sen-
timent words are found), we propose a novel
method that is based on polarity association of in-
dividual (Chinese) characters in each word.

In summary, this paper has several innovations:

1. It formulates Step 1 of sentiment lexicon ex-
pansion as a PU learning problem. To the
best of our knowledge, this is the first such
formulation.

2. It proposes a new neural learning method
AMP and shows that AMP outperforms the
traditional SVM based PU learning approach.

3. It further proposes a new and general PU
learning strategy that works in the opposite
direction to the popular existing approach to
suit our task.

4. It also proposes a double dictionary lookup
technique to improve the result further.

5. It proposes a novel polarity classification
method to classify the polarity of each word.

Experimental results show that the proposed ap-
proach makes considerable improvement over ex-
isting baseline methods.

2 Related Work

There are two main approaches for sentiment lex-
icon generation (Liu, 2012): the dictionary-based
approach and the corpus-based approach. Under
the dictionary-based approach, one method is to
use synonym and antonym relations and Word-
Net graph in the dictionary to bootstrap a set of
given seed sentiment words. There are numer-
ous variations of and enhancements to this ap-
proach (Hu and Liu, 2004; Valitutti et al., 2004;
Kim and Hovy, 2004; Takamura et al., 2007; An-
dreevskaia and Bergler, 2006; Kaji and Kitsure-
gawa, 2007; Blair-Goldensohn et al., 2008; Cam-
bria et al., 2016; Rao and Ravichandran, 2009;
Perez-Rosas et al., 2012). For example, (Valitutti
et al., 2004; Kim and Hovy, 2004) tried to remove
error words and assign a sentiment strength to each
word. Mohammad et al. (2009) exploited many
antonym-generating affix patterns, Kamps et al.
(2004) used a WordNet distance, and Hassan and
Radev (2010) used a Markov random walk model
over a word relatedness graph. Dragut et al. (2010)
used a set of inference rules to determine word
sentiment polarity through a deductive process,
and Schneider and Dragut (2015) employed a lin-
ear programming approach. Another method is to
build a supervised sentiment classifier to classify
the gloss text of each word in the dictionary (Esuli
and Sebastiani, 2005, 2006). Xu et al. (2010a)
integrated both dictionaries and corpora to find
emotion words based on label-propagation. Perez-
Rosas et al. (2012) also worked on cross lingual
lexicon construction.

In the corpus-based approach, one key idea is
to exploit some linguistic conventions on connec-
tives such as AND and OR Hatzivassiloglou and
McKeown (1997). For example, in the sentence
“This car is beautiful and spacious,” if “beauti-
ful” is known to be positive, it can be inferred that
“spacious” is also positive. Kanayama and Na-
sukawa (2006) extended the idea to the sentence
level by exploiting adversative expressions such as
“but” and “however.” Qiu et al. (2011) proposed
a double propagation (DP) method that uses both
sentiment and target relation and various connec-
tives to extract sentiment words. (Wang and Wang,
2008) did similar works. Huang et al. (2014) de-
tected new sentiment words using lexical patterns.
Wilson et al. (2005), Ding et al. (2008), Choi and
Cardie (2008) and Zhang and Liu (2011) studied
contextual sentiments at the phrase or expression
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level. We do not study contextual sentiments.
Another idea for the corpus-based approach is

to use word co-occurrences. Turney (2002) com-
puted the Pointwise Mutual Information (PMI) be-
tween the target word and seed words to decide
its sentiment polarity. This method was extended
in (Mohammad et al., 2013; Yang et al., 2014).
(Hamilton et al., 2016; Xu et al., 2010b) con-
structed domain lexicons using lexical graphs.

Recent works also exploited neural networks
and word embedding, and treated lexicon gener-
ation as a classification problem like us. Tang
et al. (2014) expanded a sentiment lexicon using
a softmax classifier with the proposed sentiment-
specific embedding. Vo and Zhang (2016) ob-
tained sentiment attribute scores of each word
through a neural network model to predict tweets
emoticons. Bravo-Marquez et al. (2015) classi-
fied words using manual features and emoticon-
annotated tweets. However, all these works re-
quire different kinds of labeled data. We do not
rely on emoticons or other forms of annotations.

The problem of adapting a general lexicon to
a domain specific one was studied in (Choi and
Cardie, 2009; Jijkoun et al., 2010; Du et al., 2010).
Feng et al. (2011) also generated a connotation
lexicon. These are clearly different from our work.

3 The Proposed Approach

As mentioned in Sec. 1, our problem is solved
in two steps: (1) identify sentiment words and
(2) classify their polarity. In the following, we
first introduce a traditional PU learning method
using SVM (Sec. 3.1), and the augmented multi-
layer perceptron (AMP) method (Sec. 3.2) to set
the background for the proposed technique. The
proposed PU learning algorithm is presented in
Sec. 3.3 for performing the task of step 1, which
uses AMP. After that, a dictionary based method
called Double Dictionary Lookup (Sec. 3.4) is pre-
sented to further improve the result of the first
step. The proposed polarity classification method
for the second step is discussed in (Sec. 3.5).

3.1 Traditional PU Learning

PU learning has been investigated by several re-
searchers (Liu et al., 2002; Denis et al., 2002; Li
and Liu, 2003; Yu et al., 2002; Elkan and Noto,
2008; Hsieh et al., 2015). A popular approach
follows a two-stage strategy: (i) identifying a set
of reliable N class instances RN from the unla-

beled set U ; and (ii) building a classifier using P
(P class) and RN (N class) and Q = U − RN
(unlabeled) by applying a learning algorithm (e.g.,
SVM) iteratively.

To understand the difference between the pro-
posed algorithm and the above two-stage ap-
proach, we give more details to an existing algo-
rithm (Liu, 2011). In the first stage, a Spy tech-
nique is used to identify the set of reliable N class
instances (or examples) RN from U . It works as
follows: 10% of P class instances (in our cases,
they are words) is first randomly selected as a spy
set S and put in the unlabeled set U . Then SVM is
run using the set P −S as the P class training data
and U ∪S as theN class training data. After train-
ing, the resulting classifier assigns a probability to
each instance in S to decide a probability thresh-
old th. Instances in U that has a lower probability
than th are selected as RN . As suggested in (Liu,
2011), th is set to the probability that separates
the last 15% instances in S. We also experimented
with 10% and 20%, but the results are similar.

In the second stage, we run SVM iteratively. In
each iteration, a classifier trained using P andRN
is used to classify the instances in Q = U − RN .
Those instances assigned the N class in Q are re-
moved and added to RN . Iterations stop when no
instance in Q is classified to the N class.

3.2 Augmented Multilayer Perceptron

We now present the proposed AMP (Augmented
Multilayer Perceptron) method, which we will use
to replace SVM in PU learning as AMP produces
better results. AMP has three layers (Figure 1).
The first layer takes the word vector of each word
as input with an output of 50 dimensions. The sec-
ond layer takes the output of the first layer as in-
put to produce an output of 2 dimensions. Both
the first and second layers use the RELU activa-
tion function. The 2 dimension output of the sec-
ond layer concatenates with 5 POS features (see
Sec. 4.1.3) to form a 7 dimension feature vector
as input of the third layer, which is the final layer
with the activation function of Sigmoid.

We note that instead of putting POS features in
the first layer, we first reduce the dimension of
word vector from 200 to 2 with two layers, then
compose a vector with POS features as the input to
the third layer. This enables POS features to play
a more important role. This method gives better
results than combining the word vector and POS
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Figure 1: Aumented Multilayer Perceptron

tag features as the input in the first layer. Our ex-
perimental results also show that using AMP to re-
place SVM above in PU learning produces much
better results.

3.3 Proposed New PU Learning Algorithm

We now present the proposed new PU learning
strategy, which has only one stage that runs a
supervised learning algorithm iteratively using P
and U by treating U as the N class data. This
strategy is more suitable for our task as we will
explain in Sec. 4.1.4. The general idea is to re-
move words from U that are likely to belong to
the P class until some stopping criterion is satis-
fied. The proposed algorithm is called SE-AMP
(Spy-based Elimination of P class instances using
AMP), which is given in Algorithm 1. Note that in
the algorithm, we use +1 to denote class P (line
1) and−1 to denote classN (line 5). We don’t use
SVM any more as AMP performs much better. We
now detail the working of the algorithm.

The algorithm still uses Spies and also works
iteratively, but in a very different way. It first ran-
domly sample a small proportion γ of words from
set P to form the spy set S (line 2), which is added
to the current U set to form Us (line 4). The U set
is updated in each iteration. An AMP classifier is
trained using set P (with the class label +1) and
set Us (regarded as class N with the class label
−1) (line 6). The resulting classifier or model M
is used to score or assign a probability to each in-
stance in U and in S (line 7).

Now we come to the crucial steps of the pro-
posed algorithm. It tries to remove likely P class
instances from U . U is essentially regarded as an
noisyN class data, i.e., it has a lot of errors (which
are hidden P class instances). Thus this step ef-
fectively aims to purify the N class set. In line 8,
the algorithm determines a threshold θ to remove
some likely P class instances from U . We will
discuss the function for determining θ below.

Based on the probability threshold θ, the algo-
rithm removes those instances in U with greater

probability than θ (lines 9-13) and those instances
in the spy set S (line 14-18).

The algorithm stops when the stopping crite-
ria is met (lines 19 and 20); otherwise, it goes to
the next iteration with the updated U and S. We
determine the threshold δ using a validation set
(Sec. 4.1.1).

Determine θ: In this new algorithm, each iter-
ation removes instances that are likely to be of P
class from the unlabeled set U . One simple way is
to remove the top k% of U based on the classifier
result of each iteration. However, this method is
undesirable because we cannot control the proba-
bilities of the eliminated instances. We propose to
use Gaussian fitting to determine the threshold θ.

After each iteration, every spy word wi ∈ S
is assigned a probability xi (= Pr(P |wi)) to be
in class P by the classifier M , a Gaussian fit-
ting is done on these probabilities. Parameters
of Gaussian distribution are obtained using Maxi-
mum Likelihood Estimate (MLE) as follows: µ =
1
n

∑n
i=1 xi, and σ2 = 1

n

∑n
i=1(xi−µ)2. We set the

threshold θ = µ+σ. Thus those words have prob-
abilities higher than θ are considered very likely to
belong to the P class. This threshold is very con-
servative and only allows those very likely P class
instances to be removed from U .

We will discus why the proposed SE-AMP is
better than S-AMP in Sec. 4.1.4 after we see the
experiment results. Note that S-AMP uses the tra-
ditional PU-learning strategy discussed in Sec. 3.1
but it replaces SVM with AMP.

3.4 Double Dictionary Lookup

To improve PU learning of SE-AMP further, we
propose to employ a dictionary. Using a dictionary
is natural because human beings always use dictio-
naries to understand a word. The proposed Double
Lookup (DL) technique is given in Algorithm 2.
Why double lookup is needed will be clear shortly.

The algorithm works as follows. Let the set of
given sentiment lexicon be P , the given dictionary
be D, and the set of candidate words be U (in this
case, it is the test set). For each candidate word
w ∈ U , we first look w up in the dictionary D
(lines 1-2). If w can be found inD (line 2), we use
a lexicon-based sentiment classifier (C) (see be-
low) to classify the gloss or explanation note (Gw)
of w (lines 3-4). The function classify returns a set
of sentiment words O1 from Gw (line 4), which
are also in P . If O1 is not empty, it means that Gw
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Algorithm 1 SE-AMP(P,U )
1: Every instance in P is assigned the class label +1
2: S = Sample(P, γ); // γ = 0.1 in this experiment; instances in S are spies
3: loop
4: Us = U ∪ S
5: Every instance u in Us is assigned the class label −1 // −1 denotes the N class
6: M = AMP(P , Us) // Build a binary AMP classifier M
7: score(M,U, S) // Score each instance i in U and S using M to give each i a probability score
8: θ = DetermineThreshold(S) // decide a probability threshold θ using S;
9: for each instance u ∈ U do

10: if its probability Pr(+1|u) > θ then
11: U = U − {u}
12: end if
13: end for
14: for each instance s ∈ S do
15: if its probability Pr(+1|s) > θ then
16: S = S − {s}
17: end if
18: end for
19: if |S| ≤ δ(γ|P |) then // Stopping criterion; γ|P | is actually the original size of S in line 2
20: exit-loop
21: end if
22: end loop

is classified to the sentiment class. If it is empty, it
is classified to the non-sentiment class.

This one dictionary lookup is not safe to deter-
mine whether word w is a sentiment word or not
because some sentiment words in the lexicon P
are noisy and don’t have clear sentiments. This
gives us too low precision. That is why we per-
form the second dictionary lookup, which is on
the words in O1 to ensure that at least one word
in O1 is very likely to be a true sentiment word
because a noisy sentiment word in P is unlikely
to be explained by another word in P . But a true
sentiment word in P is very likely to be explained
by another sentiment word in P .

Line 7 looks up each word o ∈ O1 in D and
finds its gloss or explanation note Go. Go is then
classified in line 8, which returns a list of senti-
ment words O2 from Go, also in P . If O2 is not
empty, meaning that Go is a sentiment sentence
(line 9), we return w as a sentiment word (line 10).

Lexicon-based sentiment classifier (C): C is
a binary classifier with two classes sentiment or
non-sentiment. Given a sentence s (e.g., the expla-
nation note of a word in the dictionary), it simply
finds sentiment words in s that are also in the given
sentiment lexicon P . If some sentiment words are
found, it returns them in a set indicating the sen-

tence s is a sentiment sentence. Although simple,
this works quite well because the explanation note
of a word in a dictionary is usually quite simple.

Integrating SE-AMP and DL: Our final pro-
posed method (SE-AMP-DL) combines SE-AMP
and DL. As we will see that DL has high precision
but low recall because most of the new words can-
not be found in the dictionary, we use the results
of DL to correct the results of the SE-AMP algo-
rithm. Words that are classified as belong to theN
class by SE-AMP are moved to the P class if the
DL method believes them to be sentiment words.

3.5 Polarity Classification

After sentiment words are discovered, this step de-
termines the polarity (positive or negative) of each
discovered sentiment word. We propose a new
classification method exploiting the fact that new
Chinese words are created with 2 or more Chi-
nese characters. The meaning of a Chinese word
is closely related to the meaning of each individual
character of the word. So the polarity of a Chinese
word is strongly related to the polarity of the char-
acters that form the word, which is the motivation
of the new classification method. We use the po-
larity association of the characters in each word to
predict the polarity of the word based on super-
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Algorithm 2 DL(P,D,U,C)
1: for each candidate word w ∈ U do
2: if w can be found in D then // First dictionary lookup; D is the dictionary
3: Let Gw be the gloss or explanation of word w in D
4: O1 = classify(Gw, C) // O1 is the set of sentiment words in Gw and O1 ⊆ P (lexicon)
5: if O1 6= ∅ then // Gw is classified to the sentiment class
6: for each word o ∈ O1(⊆ P ) do
7: Let Go be the gloss or explanation of word o in D // Second dictionary lookup
8: O2 = classify(Go, C) // O2 ⊆ P (lexicon) and C is the sentiment classifier
9: if O2 6= ∅ then // Go is classified as a sentiment sentence

10: w is a new sentiment word
11: end if
12: end for
13: end if
14: end if
15: end for

vised learning. We call the method CPA (Char-
acter Polarity Association). This method is very
useful for languages whose words are constructed
by characters such as Chinese and Japanese.

Feature Vector: For a character, we calcu-
late the percentages of it appearing in the posi-
tive words and negative words in the existing lex-
icon P to form a 2-dimensional polarity vector.
For example, the polarity vector (0.9, 0.1) means
that 90% of the words in the existing lexicon that
contains the character are positive and the other
10% are negative. Thus, for a word with 2 char-
acters, which covers most cases in Chinese, a 4-
dimensional vector is formed. For those words
with more than 2 characters, we choose 2 char-
acters with the strongest polarity to form a 4-
dimensional vector.

Classifier Building: Using all positive and neg-
ative words in the existing lexicon P as the train-
ing sample, each word represented as a vector of
four features, we apply a Naive Bayesian Classi-
fier to build a polarity classifier. For testing, a
word is represented in the same way. If a test word
contains charters that don’t exist in the lexicon, we
give each character (0.5, 0.5) as the polarity vector.

4 Experimental Evaluation

We now evaluate the proposed technique SE-
AMP-DL to expand an existing Chinese sentiment
lexicon, DUTIR (Dalian University of Technol-
ogy, Information Retrieve Lab) Affective Lexicon
Ontology (Xu et al., 2008). DUTIR lexicon is per-
haps the largest Chinese sentiment lexicon with
27466 words. Although large, since it was built

based on formal text such as news, essays, and
novels, it does not contain many sentiment words
often used in social media as we will see later. We
will also see that many new sentiment words that
we discovered are not even in an authoritative Chi-
nese language dictionary. Thus, compiling a com-
prehensive sentiment lexicon is needed. Below,
we first evaluate sentiment words discovery (Step
1) and then polarity classification (Step 2).

4.1 Sentiment Words Discovery

4.1.1 Data and Parameter Settings
We use a large Chinese Weibo corpus (Chinese
version of Twitter) from (Wang et al., 2013) for
our lexicon expansion, which has about 4.4 mil-
lion pairs of post and response messages. Al-
though it was originally used to study natural lan-
guage conversations, it is quite suitable for our
purpose as online conversations are sentiment rich.

Word embedding: We first used the Stanford
Chinese word segmenter to split sentences into se-
quences of words (the POS-tag of each word is
also obtained in the process). For word embed-
ding, we used word2vec (Mikolov et al., 2013).
Each word vector has 200 dimensions.
P set, U set, validation set, and test set: We

randomly sampled 200K messages, and used all
54303 words contained in them as our experiment
dataset. Out of the 54303 words (stopwords have
been removed), 4957 of them also appear in the
DUTIR lexicon and are thus sentiment words. The
remaining 49346 words are unlabeled.

Validation set: The validation set consists of
randomly selected 300 words from the 4957 sen-
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timent words and 700 words from the 46742 un-
labeled words. Although the 700 words are unla-
beled, they are treated as N class words.

Test set: 1000 words are randomly sampled
from 48646 (= 49346 − 700) unlabeled words as
the test set, which is labeled manually. Two native
speakers labeled the 1000 test words. The Kappa
agreement score is 0.695. For any word with dis-
agreement, the annotators discussed to come to a
final decision. The annotated test set has 199 sen-
timent words, 78 positive and 121 negative words.
P set and U set: The remaining 4657 (=

4957 − 300 sentiment words serve as the P set
and the remaining 45042 (= 46742−700−1000)
words serve as the U set for learning.

Parameter settings: As indicated earlier, 10%
(γ) of the P class examples are randomly selected
as spies S (465). The probability threshold θ is
set using the Gaussian fitting (Sec. 3.3). The iter-
ation stopping criterion of SE-AMP (Sec. 3.3) is
decided using the validation set (δ = 30%).

Evaluation measures: We use the classic
precision, recall, and F score for evaluation.

4.1.2 Compared Systems

We compare the following seven (7) techniques:
DP: The Double Propagation (DP) Method in

(Qiu et al., 2011). This method uses dependency
patterns for extraction.

PMI: The classic PMI method (Turney, 2002)
using the full Weibo corpus and 100 positive and
100 negative words in the DUTIR sentiment lex-
icon as the reference words. These words appear
most frequently in the Weibo corpus. In (Turney,
2002), only 1 positive and 1 negative reference
words are used. We also tried to use 1, 50, 150,
200, and all words in the positive and negative
classes as reference words, respectively. However,
they give poorer results. Since the PMI method
can only determine the polarity, but cannot decide
whether a test word is a sentiment word or not.
We make that decision by using the mean score
the PMI method of all positive words in the lexi-
con as the positive threshold and the mean score
of all negative words as the negative threshold.

S-SVM: The traditional PU learning method
described in Sec. 3.1 using SVM.

S-AMP: Same as S-SVM, but SVM is replaced
with AMP.

SE-AMP: The proposed PU learning method
without DL.

DL: Only the double dictionary lookup method,
using the Contemporary Chinese Dictionary.

SE-AMP-DL: This is our final proposed
method, which combines SE-AMP and DL.

We could not compare with recent approaches
Tang et al. (2014); Vo and Zhang (2016); Bravo-
Marquez et al. (2015) as they all require some su-
pervised information on the data. Our method is
unsupervised except the use of the lexicon. These
methods were also evaluated indirectly based on
the social media post sentiment or emotion classi-
fication results. None reported precision, recall, or
F score of the discovered sentiment words.

We do not compare with a dictionary-based ap-
proach because most of the test words are not even
in the dictionary. Only 87 of 199 sentiment words
in the test set can be found in the Contemporary
Chinese dictionary. Note that in Chinese, one can
form a word using characters fairly easily.

4.1.3 Features
For both SVM and AMP, the feature vector for
each word is the word vector and POS tags. POS
tags are divided into 5 classes (noun, verb, adjec-
tive, adverb, others) and form a 5 dimension bi-
nary vector (e.g. [1, 0, 0, 0, 0] for noun). In the
SVM approach, POS tags are concatenated to the
word embedding features to form a 205 dimension
feature vector (5 POS tags and 200 word embed-
ding features). We used the RBF kernel, which
gives the best result as compared to other kernels.

4.1.4 Experiment Results
We now present and discuss the results. The syn-
tactic pattern based DP approach performed very
poorly because social media posts are brief and the
use of patterns to link sentiment words are quite
infrequent. Thus, we will not include its results.
Below, we first compare PMI, S-SVM and S-AMP,
and then the results of the proposed PU learning
method SE-AMP (without using DL). The results
of incorporating DL are discussed last.

Existing Approach - PMI vs. S-SVM vs. S-
AMP: S-SVM and S-AMP use the traditional PU
learning approach described in Sec. 3.1 for model
building. 10% of P class examples are sampled as
spies to produce the RN set.

Table 1 shows the results of S-SVM and S-AMP
iterations. We observe that the AMP version per-
forms much better than the SVM version. The
first three iterations improve the results. But af-
ter that, the results deteriorate for both systems.
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Thus the table only shows the first few iterations
since the results keep deteriorating after iteration
2. The best results are obtained by S-AMP, which
is 0.548 in F score. S-SVM’s best F score is only
0.509, which is poorer. We also see that the pre-
cision and recall of S-AMP are both consistently
better than those of S-SVM.

We note that these two algorithms cannot catch
the best results when they stop following the algo-
rithm in (Liu, 2011). We did not use the validation
set here to find the best stopping criterion because
even their best results are poorer than those of SE-
AMP. PMI does similarly to S-AMP.

Proposed Approach - SE-AMP: Table 2
shows the results of the proposed PU learning ap-
proach (SE-AMP). As noted above, the iteration
stopping criterion δ is determined using the val-
idation set. Iteration 0 means the classifier uses
all unlabeled examples in U as the N set. Com-
pared with iteration 0 of the traditional strategy (S-
AMP), the F score of SE-AMP improves slightly
(from 52.0% to 54.8%), but both are low. This is
because the reliable N set RN for the traditional
approach is too small (not representative of all N
class examples) while for the proposed approach,
the N set has too many hidden P class instances.
The traditional PU learning tries to include more
and more likelyN examples iteratively to move to
the P direction while the proposed approach doing
the opposite, eliminating likely P instances from
the unlabeled setU . As the table shows, the results
of SE-AMP gets better and better after each itera-
tion (it stops when the stopping condition is met).
Precision, recall and F score all improve consis-
tently, which result in improvements of 12.0%,
8.5% and 9.6% respectively. Compared with the
best result of S-AMP, the precision of SE-AMP
improves from 55.4% to 67.4%, recall improves
from 51.8% to 59.3% and the F score improves
from 53.5% to 63.1%.

We now explain why SE-AMP is better than S-
AMP. We believe that the main reason is the high
level of noise in P , i.e., many words in P don’t
have clear sentiments. The traditional PU learning
(S-AMP) tries to add classified N class instances
into the RN set in each iteration. This works fine
for the first few iterations but then goes wrong be-
cause the noise in P resulted in a lot of hidden P
instances added into the RN set. Then the results
deteriorate as more and more wrong instances are
added as iterations progress. In contrast, the pro-

S-SVM

Iteration Precision Recall F-score

0 46.1 41.7 43.8
1 49.7 45.7 47.6
2 52.7 49.2 50.9
3 48.9 46.2 47.5

S-AMP

0 52.8 51.3 52.0
1 54.4 52.8 53.6
2 56.4 53.3 54.8
3 54.2 52.3 53.2

PMI 56.7 50.8 53.6

Table 1: Results of PMI and the traditional PU
learning approach: S-SVM and S-AMP.

Iteration Precision Recall F-score Spy Words

0 55.4 51.8 53.5 456
1 57.1 52.8 54.8 372
2 59.8 53.8 56.6 268
... ... ... ... ...
6 67.4 59.3 63.1 143

Table 2: Results of the proposed SE-AMP.

posed SE-AMP removes likely P instances (in-
cluding those noisy ones) from the U set to obtain
a purer and purer N set. Due to the very conser-
vative setting of the θ parameter (see Sec. 3.3), the
number of words removed from U in each itera-
tion is small, so is the number of spy words re-
moved from S as we can see in Table 2. Thus, U
becomes purer and purer slowly, and the validation
set helps find a good stopping iteration.

Incorporating Double Dictionary Lookup
(DL) - SE-AMP-DL: The double dictionary
lookup (DL) method improves the results further.
DL uses the most authoritative Chinese dictionary:
The Contemporary Chinese Dictionary. However,
only 379 out of the 1000 test words are in the dic-
tionary, among which 87 are sentiment words. As
Table 3 shows, the DL method alone has a high
precision but low recall as a lot of sentiment words
are not in the dictionary. After correction of the re-
sults from SE-AMP by DL, the F score improves
from 63.1 of SE-AMP to 65.6 of SE-AMP-DL.

Note: We also tried to clean up the lexicon
first using DL to reduce the noise in the P set

Precision Recall F-score

DL 74.1 20.1 31.6
SE-AMP 67.4 59.3 63.1

SE-AMP-DL 69.3 62.3 65.6

Table 3: Results with double dictionary lookup.
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PMI

Prec. Rec. F-score

199 set pos. 60.7 65.4 63.0
neg. 76.5 72.7 74.6

identified
set

pos. 43.8 35.9 39.2
neg. 45.1 42.1 43.6

CPA
199 set pos. 83.8 79.5 81.6

neg. 87.2 90.1 88.6

identified
set

pos. 60.9 50.0 54.9
neg. 65.2 60.3 62.6

Table 4: PMI and CPA classification results.

before performing the proposed algorithms. But
after cleaning, only 1968 sentiment words out of
4957 remained. We inspected the result and found
that the cleaning removed a lot of true sentiment
words, making the P set too small for our algo-
rithms and thus produced much poorer results.

4.2 Polarity Classification

Here we use the well-known PMI method in (Tur-
ney, 2002) as the baseline, which was designed for
polarity classification. Again, for PMI computa-
tion, we use 100 positive and 100 negative words
in our lexicon that appear most frequently in the
Weibo corpus as the reference words, and compute
the PMI scores between the candidate words and
the references. Using many other numbers of sen-
timent words in the lexicon as the reference words
give poorer results (see also Sec. 4.1.2). A word is
considered as a positive sentiment word if its score
is positive, or negative if the score is negative.

We apply the proposed CPA method and PMI
to all 199 true sentiment words in the test set (199
set), and the sentiment words identified by SE-
AMP-DL (identified set), which has many errors,
i.e., non-sentiment words, Experimental results in
Table 4 show that CPA outperforms PMI greatly in
both cases. Those non-sentiment words are con-
sidered wrong in the “identified set” case.

5 Conclusion

This paper made a new attempt to study sentiment
lexicon expansion based on a social media corpus.
It first showed that the problem can be formulated
as PU learning. It then proposed an augmented
multilayer perceptron method to give PU learn-
ing an neural network solution. It then proposed
a new PU learning method, which outperforms a
classic existing PU learning method. To improve
the results further, it proposed a double dictionary

lookup technique. Additionally, a novel polarity
classification method was also designed. Exper-
imental results demonstrated the effectiveness of
these proposed methods.
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Abstract

We study the problem of learning to reason
in large scale knowledge graphs (KGs).
More specifically, we describe a novel re-
inforcement learning framework for learn-
ing multi-hop relational paths: we use a
policy-based agent with continuous states
based on knowledge graph embeddings,
which reasons in a KG vector space by
sampling the most promising relation to
extend its path. In contrast to prior work,
our approach includes a reward function
that takes the accuracy, diversity, and ef-
ficiency into consideration. Experimen-
tally, we show that our proposed method
outperforms a path-ranking based algo-
rithm and knowledge graph embedding
methods on Freebase and Never-Ending
Language Learning datasets.1

1 Introduction

In recent years, deep learning techniques have ob-
tained many state-of-the-art results in various clas-
sification and recognition problems (Krizhevsky
et al., 2012; Hinton et al., 2012; Kim, 2014). How-
ever, complex natural language processing prob-
lems often require multiple inter-related decisions,
and empowering deep learning models with the
ability of learning to reason is still a challenging
issue. To handle complex queries where there are
no obvious answers, intelligent machines must be
able to reason with existing resources, and learn to
infer an unknown answer.

More specifically, we situate our study in the
context of multi-hop reasoning, which is the task
of learning explicit inference formulas, given a
large KG. For example, if the KG includes the

1Code and the NELL dataset are available at https://
github.com/xwhan/DeepPath.

beliefs such as Neymar plays for Barcelona, and
Barcelona are in the La Liga league, then ma-
chines should be able to learn the following for-
mula: playerPlaysForTeam(P,T) ∧ teamPlaysIn-
League(T,L) ⇒ playerPlaysInLeague(P,L). In the
testing time, by plugging in the learned formulas,
the system should be able to automatically infer
the missing link between a pair of entities. This
kind of reasoning machine will potentially serve
as an essential components of complex QA sys-
tems.

In recent years, the Path-Ranking Algorithm
(PRA) (Lao et al., 2010, 2011a) emerges as a
promising method for learning inference paths in
large KGs. PRA uses a random-walk with restarts
based inference mechanism to perform multiple
bounded depth-first search processes to find rela-
tional paths. Coupled with elastic-net based learn-
ing, PRA then picks more plausible paths using
supervised learning. However, PRA operates in
a fully discrete space, which makes it difficult to
evaluate and compare similar entities and relations
in a KG.

In this work, we propose a novel approach
for controllable multi-hop reasoning: we frame
the path learning process as reinforcement learn-
ing (RL). In contrast to PRA, we use translation-
based knowledge based embedding method (Bor-
des et al., 2013) to encode the continuous state of
our RL agent, which reasons in the vector space
environment of the knowledge graph. The agent
takes incremental steps by sampling a relation to
extend its path. To better guide the RL agent for
learning relational paths, we use policy gradient
training (Mnih et al., 2015) with a novel reward
function that jointly encourages accuracy, diver-
sity, and efficiency. Empirically, we show that our
method outperforms PRA and embedding based
methods on a Freebase and a Never-Ending Lan-
guage Learning (Carlson et al., 2010a) dataset.

564



Our contributions are three-fold:

• We are the first to consider reinforcement
learning (RL) methods for learning relational
paths in knowledge graphs;

• Our learning method uses a complex reward
function that considers accuracy, efficiency,
and path diversity simultaneously, offering
better control and more flexibility in the path-
finding process;

• We show that our method can scale up to
large scale knowledge graphs, outperform-
ing PRA and KG embedding methods in two
tasks.

In the next section, we outline related work in
path-finding and embedding methods in KGs. We
describe the proposed method in Section 3. We
show experimental results in Section 4. Finally,
we conclude in Section 5.

2 Related Work

The Path-Ranking Algorithm (PRA) method (Lao
et al., 2011b) is a primary path-finding approach
that uses random walk with restart strategies for
multi-hop reasoning. Gardner et al. (2013; 2014)
propose a modification to PRA that computes fea-
ture similarity in the vector space. Wang and
Cohen (2015) introduce a recursive random walk
approach for integrating the background KG and
text—the method performs structure learning of
logic programs and information extraction from
text at the same time. A potential bottleneck for
random walk inference is that supernodes connect-
ing to large amount of formulas will create huge
fan-out areas that significantly slow down the in-
ference and affect the accuracy.

Toutanova et al. (2015) provide a convolutional
neural network solution to multi-hop reasoning.
They build a CNN model based on lexicalized de-
pendency paths, which suffers from the error prop-
agation issue due to parse errors. Guu et al. (2015)
uses KG embeddings to answer path queries. Zeng
et al. (2014) described a CNN model for rela-
tional extraction, but it does not explicitly model
the relational paths. Neelakantan et al. (2015) pro-
pose a recurrent neural networks model for model-
ing relational paths in knowledge base completion
(KBC), but it trains too many separate models, and
therefore it does not scale. Note that many of the
recent KG reasoning methods (Neelakantan et al.,

2015; Das et al., 2017) still rely on first learning
the PRA paths, which only operates in a discrete
space. Comparing to PRA, our method reasons
in a continuous space, and by incorporating vari-
ous criteria in the reward function, our reinforce-
ment learning (RL) framework has better control
and more flexibility over the path-finding process.

Neural symbolic machine (Liang et al., 2016)
is a more recent work on KG reasoning, which
also applies reinforcement learning but has a dif-
ferent flavor from our work. NSM learns to com-
pose programs that can find answers to natural lan-
guage questions, while our RL model tries to add
new facts to knowledge graph (KG) by reasoning
on existing KG triples. In order to get answers,
NSM learns to generate a sequence of actions that
can be combined as a executable program. The ac-
tion space in NSM is a set of predefined tokens. In
our framework, the goal is to find reasoning paths,
thus the action space is relation space in the KG. A
similar framework (Johnson et al., 2017) has also
been applied to visual reasoning tasks.

3 Methodology

In this section, we describe in detail our RL-based
framework for multi-hop relation reasoning. The
specific task of relation reasoning is to find re-
liable predictive paths between entity pairs. We
formulate the path finding problem as a sequen-
tial decision making problem which can be solved
with a RL agent. We first describe the environ-
ment and the policy-based RL agent. By interact-
ing with the environment designed around the KG,
the agent learns to pick the promising reasoning
paths. Then we describe the training procedure of
our RL model. After that, we describe an efficient
path-constrained search algorithm for relation rea-
soning with the paths found by the RL agent.

3.1 Reinforcement Learning for Relation
Reasoning

The RL system consists of two parts (see Fig-
ure 1). The first part is the external environment
E which specifies the dynamics of the interaction
between the agent and the KG. This environment
is modeled as a Markov decision process (MDP).
A tuple < S,A,P,R > is defined to represent
the MDP, where S is the continuous state space,
A = {a1, a2, ..., an} is the set of all available ac-
tions, P(St+1 = s

′ |St = s,At = a) is the transi-
tion probability matrix, and R(s, a) is the reward
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Figure 1: Overview of our RL model. Left: The KG environment E modeled by a MDP. The dotted arrows (partially) show the
existing relation links in the KG and the bold arrows show the reasoning paths found by the RL agent. −1 denotes the inverse
of an relation. Right: The structure of the policy network agent. At each step, by interacting with the environment, the agent
learns to pick a relation link to extend the reasoning paths.

function of every (s, a) pairs.

The second part of the system, the RL
agent, is represented as a policy network
πθ(s, a) = p(a|s; θ) which maps the state vec-
tor to a stochastic policy. The neural network
parameters θ are updated using stochastic gra-
dient descent. Compared to Deep Q Network
(DQN) (Mnih et al., 2013), policy-based RL
methods turn out to be more appropriate for our
knowledge graph scenario. One reason is that
for the path finding problem in KG, the action
space can be very large due to complexity of the
relation graph. This can lead to poor convergence
properties for DQN. Besides, instead of learning
a greedy policy which is common in value-based
methods like DQN, the policy network is able to
learn a stochastic policy which prevent the agent
from getting stuck at an intermediate state. Before
we describe the structure of our policy network,
we first describe the components (actions, states,
rewards) of the RL environment.

Actions Given the entity pairs (es, et) with
relation r, we want the agent to find the most
informative paths linking these entity pairs.
Beginning with the source entity es, the agent use
the policy network to pick the most promising

relation to extend its path at each step until it
reaches the target entity et. To keep the output
dimension of the policy network consistent, the
action space is defined as all the relations in the
KG.

States The entities and relations in a KG are
naturally discrete atomic symbols. Since exist-
ing practical KGs like Freebase (Bollacker et al.,
2008) and NELL (Carlson et al., 2010b) often have
huge amounts of triples. It is impossible to di-
rectly model all the symbolic atoms in states. To
capture the semantic information of these sym-
bols, we use translation-based embeddings such as
TransE (Bordes et al., 2013) and TransH (Wang
et al., 2014) to represent the entities and relations.
These embeddings map all the symbols to a low-
dimensional vector space. In our framework, each
state captures the agent’s position in the KG. After
taking an action, the agent will move from one en-
tity to another. These two are linked by the action
(relation) just taken by the agent. The state vector
at step t is given as follows:

st = (et, etarget − et)

where et denotes the embeddings of the current
entity node and etarget denotes the embeddings of
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the target entity. At the initial state, et = esource.
We do not incorporate the reasoning relation in
the state, because the embedding of the reasoning
relation remain constant during path finding,
which is not helpful in training. However, we
find out that by training the RL agent using a set
of positive samples for one particular relation,
the agent can successfully discover the relation
semantics.

Rewards There are a few factors that contribute to
the quality of the paths found by the RL agent. To
encourage the agent to find predictive paths, our
reward functions include the following scoring cri-
teria:
Global accuracy: For our environment settings,
the number of actions that can be taken by the
agent can be very large. In other words, there are
much more incorrect sequential decisions than the
correct ones. The number of these incorrect de-
cision sequences can increase exponentially with
the length of the path. In view of this challenge,
the first reward function we add to the RL model
is defined as follows:

rGLOBAL =

{
+1, if the path reaches etarget
−1, otherwise

the agent is given an offline positive reward +1 if
it reaches the target after a sequence of actions.
Path efficiency: For the relation reasoning task,
we observe that short paths tend to provide more
reliable reasoning evidence than longer paths.
Shorter chains of relations can also improve the
efficiency of the reasoning by limiting the length
of the RL’s interactions with the environment. The
efficiency reward is defined as follows:

rEFFICIENCY =
1

length(p)

where path p is defined as a sequence of relations
r1 → r2 → ...→ rn.
Path diversity: We train the agent to find paths us-
ing positive samples for each relation. These train-
ing sample (esource, etarget) have similar state rep-
resentations in the vector space. The agent tends
to find paths with similar syntax and semantics.
These paths often contains redundant information
since some of them may be correlated. To encour-
age the agent to find diverse paths, we define a di-
versity reward function using the cosine similarity

between the current path and the existing ones:

rDIVERSITY = − 1

|F |

|F |∑

i=1

cos(p,pi)

where p =
∑n

i=1 ri represents the path embed-
ding for the relation chain r1 → r2 → ...→ rn.

Policy Network We use a fully-connected neu-
ral network to parameterize the policy function
π(s; θ) that maps the state vector s to a proba-
bility distribution over all possible actions. The
neural network consists of two hidden layers, each
followed by a rectifier nonlinearity layer (ReLU).
The output layer is normalized using a softmax
function (see Figure 1).

3.2 Training Pipeline

In practice, one big challenge of KG reasoning is
that the relation set can be quite large. For a typ-
ical KG, the RL agent is often faced with hun-
dreds (thousands) of possible actions. In other
words, the output layer of the policy network of-
ten has a large dimension. Due to the complexity
of the relation graph and the large action space,
if we directly train the RL model by trial and er-
rors, which is typical for RL algorithms, the RL
model will show very poor convergence proper-
ties. After a long-time training, the agents fails
to find any valuable path. To tackle this prob-
lem, we start our training with a supervised policy
which is inspired by the imitation learning pipeline
used by AlphaGo (Silver et al., 2016). In the Go
game, the player is facing nearly 250 possible le-
gal moves at each step. Directly training the agent
to pick actions from the original action space can
be a difficult task. AlphaGo first train a supervised
policy network using experts moves. In our case,
the supervised policy is trained with a randomized
breadth-first search (BFS).

Supervised Policy Learning For each relation,
we use a subset of all the positive samples (en-
tity pairs) to learn the supervised policy. For each
positive sample (esource, etarget), a two-side BFS
is conducted to find same correct paths between
the entities. For each path p with a sequence of
relations r1 → r2 → ... → rn, we update the pa-
rameters θ to maximize the expected cumulative
reward using Monte-Carlo Policy Gradient (RE-
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INFORCE) (Williams, 1992):

J(θ) = Ea∼π(a|s;θ)(
∑

t

Rst,at)

=
∑

t

∑

a∈A
π(a|st; θ)Rst,at (1)

where J(θ) is the expected total rewards for one
episode. For supervised learning, we give a re-
ward of +1 for each step of a successful episode.
By plugging in the paths found by the BFS, the
approximated gradient used to update the policy
network is shown below:

∇θJ(θ) =
∑

t

∑

a∈A
π(a|st; θ)∇θ log π(a|st; θ)

≈ ∇θ
∑

t

log π(a = rt|st; θ) (2)

where rt belongs to the path p.
However, the vanilla BFS is a biased search al-

gorithm which prefers short paths. When plug-
ging in these biased paths, it becomes difficult
for the agent to find longer paths which may po-
tentially be useful. We want the paths to be
controlled only by the defined reward functions.
To prevent the biased search, we adopt a sim-
ple trick to add some random mechanisms to the
BFS. Instead of directly searching the path be-
tween esource and etarget, we randomly pick a in-
termediate node einter and then conduct two BFS
between (esource, einter) and (einter, etarget). The
concatenated paths are used to train the agent. The
supervised learning saves the agent great efforts
learning from failed actions. With the learned ex-
perience, we then train the agent to find desirable
paths.
Retraining with Rewards To find the reasoning
paths controlled by the reward functions, we use
reward functions to retrain the supervised policy
network. For each relation, the reasoning with one
entity pair is treated as one episode. Starting with
the source node esource, the agent picks a relation
according to the stochastic policy π(a|s), which is
a probability distribution over all relations, to ex-
tend its reasoning path. This relation link may lead
to a new entity, or it may lead to nothing. These
failed steps will cause the agent to receive negative
rewards. The agent will stay at the same state af-
ter these failed steps. Since the agent is following
a stochastic policy, the agent will not get stuck by
repeating a wrong step. To improve the training ef-
ficiency, we limit the episode length with an upper

Algorithm 1: Retraining Procedure with re-
ward functions

1 Restore parameters θ from supervised policy;
2 for episode← 1 to N do
3 Initialize state vector st ← s0
4 Initialize episode length steps← 0
5 while num steps < max length do
6 Randomly sample action a ∼ π(a|st)
7 Observe rewardRt, next state st+1

// if the step fails
8 ifRt = −1 then
9 Save < st, a > toMneg

10 if success or steps = max length
then

11 break
12 Increment num steps

// penalize failed steps
13 Update θ using

g ∝ ∇θ
∑
Mneg

log π(a = rt|st; θ)(−1)
if success then

14 Rtotal ← λ1rGLOBAL + λ2rEFFICIENCY +
λ3rDIVERSITY

15 Update θ using
g ∝ ∇θ

∑
t log π(a = rt|st; θ)Rtotal

boundmax length. The episode ends if the agent
fails to reach the target entity within max length
steps. After each episode, the policy network is
updated using the following gradient:

∇θJ(θ) = ∇θ
∑

t

log π(a = rt|st; θ)Rtotal (3)

where Rtotal is the linear combination of the de-
fined reward functions. The detail of the retrain
process is shown in Algorithm 1. In practice, θ is
updated using the Adam Optimizer (Kingma and
Ba, 2014) with L2 regularization.

3.3 Bi-directional Path-constrained Search

Given an entity pair, the reasoning paths learned
by the RL agent can be used as logical formulas
to predict the relation link. Each formula is veri-
fied using a bi-directional search. In a typical KG,
one entity node can be linked to a large number
of neighbors with the same relation link. A sim-
ple example is the relation personNationality−1,
which denotes the inverse of personNationality.
Following this link, the entity United States can
reach numerous neighboring entities. If the for-
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Algorithm 2: Bi-directional search for path
verification

1 Given a reasoning path
p : r1 → r2 → ...→ rn

2 for (ei, ej) in test set D do
3 start← 0; end← n
4 left← ∅; right← ∅
5 while start < end do
6 leftEx← ∅; rightEx← ∅
7 if len(left) < len(right) then
8 Extend path on the left side
9 Add connected nodes to leftEx

10 left← leftEx

11 else
12 Extend path on the right side
13 Add connected nodes to rightEx
14 right← rightEx

15 if left ∩ right 6= ∅ then
16 return True
17 else
18 return False

mula consists of such links, the number of inter-
mediate entities can exponentially increase as we
follow the reasoning formula. However, we ob-
serve that for these formulas, if we verify the for-
mula from the inverse direction. The number of in-
termediate nodes can be tremendously decreased.
Algorithm 2 shows a detailed description of the
proposed bi-directional search.

4 Experiments

To evaluate the reasoning formulas found by our
RL agent, we explore two standard KG reason-
ing tasks: link prediction (predicting target en-
tities) and fact prediction (predicting whether an
unknown fact holds or not). We compare our
method with both path-based methods and embed-
ding based methods. After that, we further analyze
the reasoning paths found by our RL agent. These
highly predictive paths validate the effectiveness
of the reward functions. Finally, we conduct a ex-
periment to investigate the effect of the supervised
learning procedure.

4.1 Dataset and Settings

Table 1 shows the statistics of the two datasets
we conduct our experiments on. Both of them

Dataset # Ent. # R. # Triples # Tasks
FB15K-237 14,505 237 310,116 20
NELL-995 75,492 200 154.213 12

Table 1: Statistics of the Datasets. # Ent. denotes the number
of unique entities and # R. denotes the number of relations

are subsets of larger datasets. The triples in
FB15K-237 (Toutanova et al., 2015) are sampled
from FB15K (Bordes et al., 2013) with redun-
dant relations removed. We perform the reasoning
tasks on 20 relations which have enough reason-
ing paths. These tasks consists of relations from
different domains like Sports, People, Locations,
Film, etc. Besides, we present a new NELL sub-
set that is suitable for multi-hop reasoning from
the 995th iteration of the NELL system. We first
remove the triples with relation generalizations or
haswikipediaurl. These two relations appear more
than 2M times in the NELL dataset, but they have
no reasoning values. After this step, we only se-
lect the triples with Top-200 relations. To facilitate
path finding, we also add the inverse triples. For
each triple (h, r, t), we append (t, r−1, h) to the
datasets. With these inverse triples, the agent is
able to step backward in the KG.

For each reasoning task ri, we remove all the
triples with ri or r−1i from the KG. These removed
triples are split into train and test samples. For
the link prediction task, each h in the test triples
{(h, r, t)} is considered as one query. A set of
candidate target entities are ranked using different
methods. For fact prediction, the true test triples
are ranked with some generated false triples.

4.2 Baselines and Implementation Details

Most KG reasoning methods are based on either
path formulas or KG embeddings. we explore
methods from both of these two classes in our ex-
periments. For path based methods, we compare
our RL model with the PRA (Lao et al., 2011a)
algorithm, which has been used in a couple of rea-
soning methods (Gardner et al., 2013; Neelakan-
tan et al., 2015). PRA is a data-driven algorithm
using random walks (RW) to find paths and obtain
path features. For embedding based methods, we
evaluate several state-of-the-art embeddings de-
signed for knowledge base completion, such as
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), TransR (Lin et al., 2015) and TransD (Ji
et al., 2015) .

The implementation of PRA is based on the

569



FB15K-237 NELL-995

Tasks PRA RL TransE TransR Tasks PRA RL TransE TransR

teamSports 0.987 0.955 0.896 0.784 athletePlaysForTeam 0.547 0.750 0.627 0.673
birthPlace 0.441 0.531 0.403 0.417 athletePlaysInLeague 0.841 0.960 0.773 0.912

personNationality 0.846 0.823 0.641 0.720 athleteHomeStadium 0.859 0.890 0.718 0.722
filmDirector 0.349 0.441 0.386 0.399 athletePlaysSport 0.474 0.957 0.876 0.963

filmWrittenBy 0.601 0.457 0.563 0.605 teamPlaySports 0.791 0.738 0.761 0.814
filmLanguage 0.663 0.670 0.642 0.641 orgHeadquaterCity 0.811 0.790 0.620 0.657
tvLanguage 0.960 0.969 0.804 0.906 worksFor 0.681 0.711 0.677 0.692

capitalOf 0.829 0.783 0.554 0.493 bornLocation 0.668 0.757 0.712 0.812
organizationFounded 0.281 0.309 0.390 0.339 personLeadsOrg 0.700 0.795 0.751 0.772

musicianOrigin 0.426 0.514 0.361 0.379 orgHiredPerson 0.599 0.742 0.719 0.737
... ...

Overall 0.541 0.572 0.532 0.540 0.675 0.796 0.737 0.789

Table 2: Link prediction results (MAP) on two datasets.

code released by (Lao et al., 2011a). We use the
TopK negative mode to generate negative samples
for both train and test samples. For each pos-
itive samples, there are approximately 10 corre-
sponding negative samples. Each negative sample
is generated by replacing the true target entity t
with a faked one t

′
in each triple (h, r, t). These

positive and negative test pairs generated by PRA
make up the test set for all methods evaluated in
this paper. For TransE,R,H,D, we learn a separate
embedding matrix for each reasoning task using
the positive training entity pairs. All these embed-
dings are trained for 1,000 epochs. 2

Our RL model make use of TransE to get the
continuous representation of the entities and rela-
tions. We use the same dimension as TransE, R
to embed the entities. Specifically, the state vec-
tor we use has a dimension of 200, which is also
the input size of the policy network. To reason
using the path formulas, we adopt a similar lin-
ear regression approach as in PRA to re-rank the
paths. However, instead of using the random walk
probabilities as path features, which can be com-
putationally expensive, we simply use binary path
features obtained by the bi-directional search. We
observe that with only a few mined path formulas,
our method can achieve better results than PRA’s
data-driven approach.

4.3 Results

4.3.1 Quantitative Results
Link Prediction This task is to rank the target en-
tities given a query entity. Table 2 shows the mean
average precision (MAP) results on two datasets.

2The implementation we used can be found at https:
//github.com/thunlp/Fast-TransX

Fact Prediction Results

Methods FB15K-237 NELL-995

RL 0.311 0.493
TransE 0.277 0.383
TransH 0.309 0.389
TransR 0.302 0.406
TransD 0.303 0.413

Table 3: Fact prediction results (MAP) on two datasets.

# of Reasoning Paths

Tasks PRA RL

worksFor 247 25
teamPlaySports 113 27

teamPlaysInLeague 69 21
athletehomestadium 37 11

organizationHiredPerson 244 9
...

Average # 137.2 20.3

Table 4: Number of reasoning paths used by PRA and our RL
model. RL achieved better MAP with a more compact set of
learned paths.

Since path-based methods generally work better
than embedding methods for this task, we do not
include the other two embedding baselines in this
table. Instead, we spare the room to show the de-
tailed results on each relation reasoning task.

For the overall MAP shown in the last row of the
table, our approach significantly outperforms both
the path-based method and embedding methods on
two datasets, which validates the strong reasoning
ability of our RL model. For most relations, since
the embedding methods fail to use the path infor-
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Figure 2: The distribution of paths lengths on two datasets

mation in the KG, they generally perform worse
than our RL model or PRA. However, when there
are not enough paths between entities, our model
and PRA can give poor results. For example,
for the relation filmWrittenBy, our RL model only
finds 4 unique reasoning paths, which means there
is actually not enough reasoning evidence existing
in the KG. Another observation is that we always
get better performance on the NELL dataset. By
analyzing the paths found from the KGs, we be-
lieve the potential reason is that the NELL dataset
has more short paths than FB15K-237 and some
of them are simply synonyms of the reasoning re-
lations.
Fact Prediction Instead of ranking the target en-
tities, this task directly ranks all the positive and
negative samples for a particular relation. The
PRA is not included as a baseline here, since the
PRA code only gives a target entity ranking for
each query node instead of a ranking of all triples.
Table 3 shows the overall results of all the meth-
ods. Our RL model gets even better results on this
task. We also observe that the RL model beats all
the embedding baselines on most reasoning tasks.

4.3.2 Qualitative Analysis of Reasoning Paths
To analyze the properties of reasoning paths, we
show a few reasoning paths found by the agent
in Table 5. To illustrate the effect of the effi-
ciency reward function, we show the path length
distributions in Figure 2. To interpret these paths,
take the personNationality relation for example,
the first reasoning path indicates that if we know
facts placeOfBirth(x,y) and locationContains(z,y)
then it is highly possible that person x has nation-
ality z. These short but predictive paths indicate
the effectiveness of the RL model. Another im-
portant observation is that our model use much
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Figure 3: The success ratio (succ10) during training. Task:
athletePlaysForTeam.3

fewer reasoning paths than PRA, which indicates
that our model can actually extract the most reli-
able reasoning evidence from KG. Table 4 shows
some comparisons about the number of reasoning
paths. We can see that, with the pre-defined re-
ward functions, the RL agent is capable of picking
the strong ones and filter out similar or irrelevant
ones.

4.3.3 Effect of Supervised Learning

As mentioned in Section 3.2, one major challenge
for applying RL to KG reasoning is the large ac-
tion space. We address this issue by applying
supervised learning before the reward retraining
step. To show the effect of the supervised train-
ing, we evaluate the agent’s success ratio of reach-
ing the target within 10 steps (succ10) after differ-
ent number of training episodes. For each train-
ing episode, one pair of entities (esource, etarget)
in the train set is used to find paths. All the cor-
rect paths linking the entities will get a +1 global
reward. We then plug in some true paths for train-
ing. The succ10 is calculated on a held-out test set
that consists of 100 entity pairs. For the NELL-
995 dataset, since we have 200 unique relations,
the dimension of the action space will be 400 af-
ter we add the backward actions. This means that
random walks will get very low succ10 since there
may be nearly 40010 invalid paths. Figure 3 shows
the succ10 during training. We see that even the
agent has not seen the entity before, it can actually
pick the promising relation to extend its path. This
also validates the effectiveness of our state repre-
sentations.

3The confidence band is generated using 50 different runs.
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Relation Reasoning Path

filmCountry
filmReleaseRegion
featureFilmLocation→ locationContains−1

actorFilm−1 → personNationality

personNationality
placeOfBirth→ locationContains−1

peoplePlaceLived→ locationContains−1

peopleMarriage→ locationOfCeremony→ locationContains−1

tvProgramLanguage
tvCountryOfOrigin→ countryOfficialLanguage
tvCountryOfOrigin→ filmReleaseRegion−1 → filmLanguage
tvCastActor→ filmLanguage

personBornInLocation
personBornInCity
graduatedUniversity→ graduatedSchool−1 → personBornInCity
personBornInCity→ atLocation−1 → atLocation

athletePlaysForTeam
athleteHomeStadium→ teamHomeStadium−1

athletePlaysSport→ teamPlaysSport−1

athleteLedSportsTeam

personLeadsOrganization
worksFor
organizationTerminatedPerson−1

mutualProxyFor−1

Table 5: Example reasoning paths found by our RL model. The first three relations come from the FB15K-237 dataset. The
others are from NELL-995. Inverses of existing relations are denoted by −1.

5 Conclusion and Future Work

In this paper, we propose a reinforcement learn-
ing framework to improve the performance of re-
lation reasoning in KGs. Specifically, we train a
RL agent to find reasoning paths in the knowledge
base. Unlike previous path finding models that are
based on random walks, the RL model allows us
to control the properties of the found paths. These
effective paths can also be used as an alternative to
PRA in many path-based reasoning methods. For
two standard reasoning tasks, using the RL paths
as reasoning formulas, our approach generally out-
performs two classes of baselines.

For future studies, we plan to investigate
the possibility of incorporating adversarial learn-
ing (Goodfellow et al., 2014) to give better re-
wards than the human-defined reward functions
used in this work. Instead of designing rewards
according to path characteristics, a discriminative
model can be trained to give rewards. Also, to ad-
dress the problematic scenario when the KG does
not have enough reasoning paths, we are interested
in applying our RL framework to joint reasoning
with KG triples and text mentions.
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Abstract

Search engines play an important role in
our everyday lives by assisting us in find-
ing the information we need. When we
input a complex query, however, results
are often far from satisfactory. In this
work, we introduce a query reformula-
tion system based on a neural network that
rewrites a query to maximize the number
of relevant documents returned. We train
this neural network with reinforcement
learning. The actions correspond to select-
ing terms to build a reformulated query,
and the reward is the document recall. We
evaluate our approach on three datasets
against strong baselines and show a rel-
ative improvement of 5-20% in terms of
recall. Furthermore, we present a simple
method to estimate a conservative upper-
bound performance of a model in a partic-
ular environment and verify that there is
still large room for improvements.

1 Introduction

Search engines help us find what we need among
the vast array of available data. When we request
some information using a long or inexact descrip-
tion of it, these systems, however, often fail to de-
liver relevant items. In this case, what typically
follows is an iterative process in which we try to
express our need differently in the hope that the
system will return what we want. This is a major
issue in information retrieval. For instance, Huang
and Efthimiadis (2009) estimate that 28-52% of
all the web queries are modifications of previous
ones.

To a certain extent, this problem occurs be-
cause search engines rely on matching words in
the query with words in relevant documents, to

q'
ScorerReformulator

Ground
Truth

D'

Search 
Engine

q' :  cancer treatment state-of-the-art frontiers survey

Reward

q0 : What are the most promising directions to cure 
cancer and why?

D0

Figure 1: A graphical illustration of the proposed
framework for query reformulation. A set of doc-
uments D0 is retrieved from a search engine using
the initial query q0. Our reformulator selects terms
from q0 and D0 to produce a reformulated query
q′ which is then sent to the search engine. Docu-
ments D′ are returned, and a reward is computed
against the set of ground-truth documents. The re-
formulator is trained with reinforcement learning
to produce a query, or a series of queries, to maxi-
mize the expected return.

perform retrieval. If there is a mismatch between
them, a relevant document may be missed.

One way to address this problem is to automati-
cally rewrite a query so that it becomes more likely
to retrieve relevant documents. This technique is
known as automatic query reformulation. It typi-
cally expands the original query by adding terms
from, for instance, dictionaries of synonyms such
as WordNet (Miller, 1995), or from the initial set
of retrieved documents (Xu and Croft, 1996). This
latter type of reformulation is known as pseudo (or
blind) relevance feedback (PRF), in which the rel-
evance of each term of the retrieved documents is
automatically inferred.

The proposed method is built on top of PRF but
differs from previous works as we frame the query
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reformulation problem as a reinforcement learn-
ing (RL) problem. An initial query is the natural
language expression of the desired goal, and an
agent (i.e. reformulator) learns to reformulate an
initial query to maximize the expected return (i.e.
retrieval performance) through actions (i.e. select-
ing terms for a new query). The environment is a
search engine which produces a new state (i.e. re-
trieved documents). Our framework is illustrated
in Fig. 1.

The most important implication of this frame-
work is that a search engine is treated as a black
box that an agent learns to use in order to retrieve
more relevant items. This opens the possibility
of training an agent to use a search engine for a
task other than the one it was originally intended
for. To support this claim, we evaluate our agent
on the task of question answering (Q&A), citation
recommendation, and passage/snippet retrieval.

As for training data, we use two publicly avail-
able datasets (TREC-CAR and Jeopardy) and in-
troduce a new one (MS Academic) with hundreds
of thousands of query/relevant document pairs
from the academic domain.

Furthermore, we present a method to estimate
the upper bound performance of our RL-based
model. Based on the estimated upper bound, we
claim that this framework has a strong potential
for future improvements.

Here we summarize our main contributions:

• A reinforcement learning framework for au-
tomatic query reformulation.

• A simple method to estimate the upper-bound
performance of an RL-based model in a given
environment.

• A new large dataset with hundreds of thou-
sands of query/relevant document pairs.1

2 A Reinforcement Learning Approach

2.1 Model Description

In this section we describe the proposed method,
illustrated in Fig. 2.

The inputs are a query q0 consisting of a se-
quence of words (w1, ..., wn) and a candidate term
ti with some context words (ti−k, ..., ti+k), where
k ≥ 0 is the context window size. Candidate terms

1The dataset and code to run the experiments are
available at https://github.com/nyu-dl/
QueryReformulator.

CNN/RNN CNN/RNN

Candidate Terms  q0 ⋃ D0Original Query q0

W

P(ti | q0)

+

U

V

+

S

v1 v2 vn... ei+2ei+1 eiei-1ei-2

Value
Network

w1 w2 wn
... ti-2 ti-1 ti ti+1 ti+2

Figure 2: An illustration of our neural network-
based reformulator.

are from q0 ∪ D0, the union of the terms in the
original query and those from the documents D0

retrieved using q0.
We use a dictionary of pretrained word embed-

dings (Mikolov et al., 2013) to convert the sym-
bolic terms wj and ti to their vector representa-
tions vj and ei ∈ Rd, respectively. We map out-
of-vocabulary terms to an additional vector that is
learned during training.

We convert the sequence {vj} to a fixed-size
vector φa(v) by using either a Convolutional Neu-
ral Network (CNN) followed by a max pooling op-
eration over the entire sequence (Kim, 2014) or by
using the last hidden state of a Recurrent Neural
Network (RNN).2

Similarly, we fed the candidate term vectors
ei to a CNN or RNN to obtain a vector repre-
sentation φb(ei) for each term ti. The convolu-
tional/recurrent layers serve an important role of
capturing context information, especially for out-
of-vocabulary and rare terms. CNNs can pro-
cess candidate terms in parallel, and, therefore, are
faster for our application than RNNs. RNNs, on
the other hand, can encode longer contexts.

Finally, we compute the probability of selecting

2To deal with variable-length inputs in a mini-batch, we
pad smaller ones with zeros on both ends so they end up as
long as the largest sample in the mini-batch.
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ti as:

P (ti|q0) = σ(UT tanh(W (φa(v)‖φb(ei)) + b)),
(1)

where σ is the sigmoid function, ‖ is the vector
concatenation operation, W ∈ Rd×2d and U ∈ Rd
are weights, and b ∈ R is a bias.

At test time, we define the set of terms used in
the reformulated query as T = {ti | P (ti|q0) >
ε}, where ε is a hyper-parameter. At training time,
we sample the terms according to their probability
distribution, T = {ti | α = 1∧α ∼ P (ti|q0)}. We
concatenate the terms in T to form a reformulated
query q′, which will then be used to retrieve a new
set of documents D′.

2.2 Sequence Generation
One problem with the method previously de-
scribed is that terms are selected independently.
This may result in a reformulated query that con-
tains duplicated terms since the same term can ap-
pear multiple times in the feedback documents.
Another problem is that the reformulated query
can be very long, resulting in a slow retrieval.

To solve these problems, we extend the model to
sequentially generate a reformulated query, as pro-
posed by Buck et al. (2017). We use a Recurrent
Neural Network (RNN) that selects one term at a
time from the pool of candidate terms and stops
when a special token is selected. The advantage of
this approach is that the model can remember the
terms previously selected through its hidden state.
It can, therefore, produce more concise queries.

We define the probability of selecting ti as the
k-th term of a reformulated query as:

P (tki |q0) ∝ exp(φb(ei)
Thk), (2)

where hk is the hidden state vector at the k-th step,
computed as:

hk = tanh(Waφa(v) +Wbφb(t
k−1) +Whhk−1),

(3)
where tk−1 is the term selected in the previous
step and Wa ∈ Rd×d, Wb ∈ Rd×d, and Wh ∈
Rd×d are weight matrices. In practice, we use an
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the hidden state as this variant is known to
perform better than a vanilla RNN.

We avoid normalizing over a large vocabulary
by using only terms from the retrieved documents.
This makes inference faster and training practi-
cal since learning to select words from the whole

vocabulary might be too slow with reinforcement
learning, although we leave this experiment for a
future work.

2.3 Training
We train the proposed model using REIN-
FORCE (Williams, 1992) algorithm. The per-
example stochastic objective is defined as

Ca = (R− R̄)
∑

t∈T
− logP (t|q0), (4)

where R is the reward and R̄ is the baseline, com-
puted by the value network as:

R̄ = σ(ST tanh(V (φa(v)‖ē) + b)), (5)

where ē = 1
N

∑N
i=1 φb(ei), N = |q0 ∪ D0|, V ∈

Rd×2d and S ∈ Rd are weights and b ∈ R is a
bias. We train the value network to minimize

Cb = α||R− R̄||2, (6)

where α is a small constant (e.g. 0.1) multiplied to
the loss in order to stabilize learning. We conjec-
ture that the stability is due to the slowly evolving
value network which directly affects the learning
of the policy. This effectively prevents the value
network to fit extreme cases (unexpectedly high or
low reward.)

We minimize Ca and Cb using stochastic gra-
dient descent (SGD) with the gradient computed
by backpropagation (Rumelhart et al., 1988). This
allows the entire model to be trained end-to-end
directly to optimize the retrieval performance.

Entropy Regularization We observed that the
probability distribution in Eq.(1) became highly
peaked in preliminary experiments. This phe-
nomenon led to the trained model not being able
to explore new terms that could lead to a better-
reformulated query. We address this issue by reg-
ularizing the negative entropy of the probability
distribution. We add the following regularization
term to the original cost function in Eq. (4):

CH = −λ
∑

t∈q0∪D0

P (t|q0) logP (t|q0), (7)

where λ is a regularization coefficient.

3 Related Work

Query reformulation techniques are either based
on a global method, which ignores a set of doc-
uments returned by the original query, or a local
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method, which adjusts a query relative to the doc-
uments that initially appear to match the query. In
this work, we focus on local methods.

A popular instantiation of a local method
is the relevance model, which incorporates
pseudo-relevance feedback into a language model
form (Lavrenko and Croft, 2001). The proba-
bility of adding a term to an expanded query is
proportional to its probability of being generated
by the language models obtained from the orig-
inal query and the document the term occurs in.
This framework has the advantage of not requiring
query/relevant documents pairs as training data
since inference is based on word co-occurrence
statistics.

Unlike the relevance model, algorithms can
be trained with supervised learning, as proposed
by Cao et al. (2008). A training dataset is auto-
matically created by labeling each candidate term
as relevant or not based on their individual contri-
bution to the retrieval performance. Then a binary
classifier is trained to select expansion terms. In
Section 4, we present a neural network-based im-
plementation of this supervised approach.

A generalization of this supervised framework
is to iteratively reformulate the query by selecting
one candidate term at each retrieval step. This can
be viewed as navigating a graph where the nodes
represent queries and associated retrieved results
and edges exist between nodes whose queries are
simple reformulations of each other (Diaz, 2016).
However, it can be slow to reformulate a query this
way as the search engine must be queried for each
newly added term. In our method, on the con-
trary, the search engine is queried with multiple
new terms at once.

An alternative technique based on supervised
learning is to learn a common latent representation
of queries and relevant documents terms by us-
ing a click-through dataset (Sordoni et al., 2014).
Neighboring document terms of a query in the la-
tent space are selected to form an expanded query.
Instead of using a click-through dataset, which is
often proprietary, it is possible to use an alterna-
tive dataset consisting of anchor text/title pairs. In
contrast, our approach does not require a dataset of
paired queries as it learns term selection strategies
via reinforcement learning.

Perhaps the closest work to ours is that by
Narasimhan et al. (2016), in which a reinforce-
ment learning based approach is used to reformu-

late queries iteratively. A key difference is that
in their work the reformulation component uses
domain-specific template queries. Our method, on
the other hand, assumes open-domain queries.

4 Experiments

In this section we describe our experimental setup,
including baselines against which we compare the
proposed method, metrics, reward for RL-based
models, datasets and implementation details.

4.1 Baseline Methods

Raw: The original query is given to a search
engine without any modification. We evaluate
two search engines in their default configura-
tion: Lucene3 (Raw-Lucene) and Google Search4

(Raw-Google).

Pseudo Relevance Feedback (PRF-TFIDF):
A query is expanded with terms from the docu-
ments retrieved by a search engine using the orig-
inal query. In this work, the top-N TF-IDF terms
from each of the top-K retrieved documents are
added to the original query, where N and K are
selected by a grid search on the validation data.

PRF-Relevance Model (PRF-RM): This is a
popular relevance model for query expansion
by Lavrenko and Croft (2001). The probability of
using a term t in an expanded query is given by:

P (t|q0) = (1− λ)P ′(t|q0)
+ λ

∑

d∈D0

P (d)P (t|d)P (q0|d), (8)

where P (d) is the probability of retrieving the
document d, assumed uniform over the set, P (t|d)
and P (q0|d) are the probabilities assigned by the
language model obtained from d to t and q0, re-
spectively. P ′(t|q0) = tf(t∈q)

|q| , where tf(t, d) is the
term frequency of t in d. We set the interpolation
parameter λ to 0.5, following Zhai and Lafferty
(2001).

We use a Dirichlet smoothed language
model (Zhai and Lafferty, 2001) to compute a
language model from a document d ∈ D0:

P (t|d) =
tf(t, d) + uP (t|C)

|d|+ u
, (9)

3https://lucene.apache.org/
4https://cse.google.com/cse/
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where u is a scalar constant (u = 1500 in our ex-
periments), and P (t|C) is the probability of t oc-
curring in the entire corpus C.

We use the N terms with the highest P (t|q0) in
an expanded query, whereN is a hyper-parameter.

Embeddings Similarity: Inspired by the meth-
ods proposed by Roy et al. (2016) and Kuzi et al.
(2016), the top-N terms are selected based on
the cosine similarity of their embeddings against
the original query embedding. Candidate terms
come from documents retrieved using the orig-
inal query (PRF-Emb), or from a fixed vocab-
ulary (Vocab-Emb). We use pretrained embed-
dings from Mikolov et al. (2013), and it contains
374,000 words.

4.2 Proposed Methods
Supervised Learning (SL): Here we detail a
deep learning-based variant of the method pro-
posed by Cao et al. (2008). It assumes that query
terms contribute independently to the retrieval per-
formance. We thus train a binary classifier to se-
lect a term if the retrieval performance increases
beyond a preset threshold when that term is added
to the original query. More specifically, we mark a
term as relevant if (R′ −R)/R > 0.005, where R
and R′ are the retrieval performances of the orig-
inal query and the query expanded with the term,
respectively.

We experiment with two variants of this
method: one in which we use a convolutional net-
work for both original query and candidate terms
(SL-CNN), and the other in which we replace the
convolutional network with a single hidden layer
feed-forward neural network (SL-FF). In this vari-
ant, we average the output vectors of the neural
network to obtain a fixed size representation of q0.

Reinforcement Learning (RL): We use multi-
ple variants of the proposed RL method. RL-CNN
and RL-RNN are the models described in Sec-
tion 2.1, in which the former uses CNNs to encode
query and term features and the latter uses RNNs
(more specifically, bidirectional LSTMs). RL-FF
is the model in which term and query vectors are
encoded by single hidden layer feed-forward neu-
ral networks. In the RL-RNN-SEQ model, we add
the sequential generator described in Section 2.2
to the RL-RNN variant.

4.3 Datasets
We summarize in Table 1 the datasets.

TREC - Complex Answer Retrieval (TREC-
CAR) This is a publicly available dataset auto-
matically created from Wikipedia whose goal is
to encourage the development of methods that re-
spond to more complex queries with longer an-
swers (Dietz and Ben, 2017). A query is the con-
catenation of an article title and one of its section
titles. The ground-truth documents are the para-
graphs within that section. For example, a query
is “Sea Turtle, Diet” and the ground truth docu-
ments are the paragraphs in the section “Diet” of
the “Sea Turtle” article. The corpus consists of all
the English Wikipedia paragraphs, except the ab-
stracts. The released dataset has five predefined
folds, and we use the first three as the training set
and the remaining two as validation and test sets,
respectively.

Jeopardy This is a publicly available Q&A
dataset introduced by Nogueira and Cho (2016). A
query is a question from the Jeopardy! TV Show
and the corresponding document is a Wikipedia
article whose title is the answer. For example,
a query is “For the last eight years of his life,
Galileo was under house arrest for espousing this
mans theory” and the answer is the Wikipedia arti-
cle titled “Nicolaus Copernicus”. The corpus con-
sists of all the articles in the English Wikipedia.

Microsoft Academic (MSA) This dataset con-
sists of academic papers crawled from Microsoft
Academic API.5 The crawler started at the pa-
per Silver et al. (2016) and traversed the graph of
references until 500,000 papers were crawled. We
then removed papers that had no reference within
or whose abstract had less than 100 characters. We
ended up with 480,000 papers.

A query is the title of a paper, and the ground-
truth answer consists of the papers cited within.
Each document in the corpus consists of its title
and abstract.6

4.4 Metrics and Reward

Three metrics are used to evaluate performance:

Recall@K: Recall of the top-K retrieved docu-
ments:

R@K =
|DK ∩D∗|
|D∗| , (10)

5https://www.microsoft.com/cognitive-services/en-
us/academic-knowledge-api

6This was done to avoid a large computational overhead
for indexing full papers.
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Queries Relevant Docs/Query Words/Doc
Dataset Corpus Docs Train Valid Test Avg. Std. Avg. Std.

TREC-CAR Wikipedia Paragraphs 3.5M 585k 195k 195k 3.6 5.7 84 68
Jeopardy Wikipedia Articles 5.9M 118K 10k 10k 1.0 0.0 462 990
MSA Academic Papers 480k 270k 20k 20k 17.9 21.5 165 158

Table 1: Summary of the datasets.

TREC-CAR Jeopardy MSA
Method R@40 P@10 MAP@40 R@40 P@10 MAP@40 R@40 P@10 MAP@40

Raw-Lucene 43.6 7.24 19.6 23.4 1.47 7.40 12.9 7.24 3.36
Raw-Google - - - 30.1 1.92 7.71 - - -

PRF-TFIDF 44.3 7.31 19.9 29.9 1.91 7.65 13.2 7.27 3.50
PRF-RM 45.1 7.35 19.5 30.5 1.96 7.64 12.3 7.22 3.38
PRF-Emb 44.5 7.32 19.0 30.1 1.92 7.74 12.2 7.22 3.20
Vocab-Emb 44.2 7.30 19.1 29.4 1.87 7.80 12.0 7.21 3.21

SL-FF 44.1 7.29 19.7 30.8 1.95 7.70 13.2 7.28 3.88
SL-CNN 45.3 7.35 19.8 31.1 1.98 7.79 14.0 7.42 3.99
SL-Oracle 50.8 8.25 21.0 38.8 2.50 9.92 17.3 10.12 4.89

RL-FF 44.1 7.29 20.0 31.0 1.98 7.81 13.9 7.33 3.81
RL-CNN 47.3 7.45 20.3 33.4 2.14 8.02 14.9 7.63 4.30
RL-RNN 47.9 7.52 20.6 33.7 2.12 8.07 15.1 7.68 4.35
RL-RNN-SEQ 47.4 7.48 20.3 33.4 2.13 8.01 14.8 7.63 4.27
RL-Oracle 55.9 9.06 23.0 42.4 2.74 10.3 24.6 12.83 6.33

Table 2: Results on Test sets. We use R@40 as a reward to the RL-based models.

where DK are the top-K retrieved documents and
D∗ are the relevant documents. Since one of the
goals of query reformulation is to increase the pro-
portion of relevant documents returned, recall is
our main metric.

Precision@K: Precision of the top-K retrieved
documents:

P@K =
|DK ∩D∗|
|DK |

(11)

Precision captures the proportion of relevant doc-
uments among the returned ones. Despite not be-
ing the main goal of a reformulation method, im-
provements in precision are also expected with a
good query reformulation method. Therefore, we
include this metric.

Mean Average Precision: The average preci-
sion of the top-K retrieved documents is defined
as:

AP@K =

∑K
k=1 P@k × rel(k)

|D∗| , (12)

where

rel(k) =

{
1, if the k-th document is relevant;
0, otherwise.

(13)

The mean average precision of a set of queries Q
is then:

MAP@K =
1

|Q|
∑

q∈Q
AP@Kq, (14)

where AP@Kq is the average precision at K for a
query q. This metric values the position of a rele-
vant document in a returned list and is, therefore,
complementary to precision and recall.

Reward We use R@K as a reward when train-
ing the proposed RL-based models as this metric
has shown to be effective in improving the other
metrics as well.

SL-Oracle In addition to the baseline methods
and proposed reinforcement learning approach,
we report two oracle performance bounds. The
first oracle is a supervised learning oracle (SL-
Oracle). It is a classifier that perfectly selects
terms that will increase performance according to
the procedure described in Section 4.2. This mea-
sure serves as an upper-bound for the supervised
methods. Notice that this heuristic assumes that
each term contributes independently from all the
other terms to the retrieval performance. There
may be, however, other ways to explore the de-
pendency of terms that would lead to a higher per-
formance.
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TREC-CAR Jeopardy MSA

SL-Oracle 13% 5% 11%
RL-Oracle 29% 27% 31%

Table 3: Percentage of relevant terms over all the
candidate terms according to SL- and RL-Oracle.

RL-Oracle Second, we introduce a reinforce-
ment learning oracle (RL-Oracle) which estimates
a conservative upper-bound performance for the
RL models. Unlike the SL-Oracle, it does not
assume that each term contributes independently
to the retrieval performance. It works as follows:
first, the validation or test set is divided into N
small subsets {Ai}Ni=1 (each with 100 examples,
for instance). An RL model is trained on each sub-
set Ai until it overfits, that is, until the reward R∗i
stops increasing or an early stop mechanism ends
training.7 Finally, we compute the oracle perfor-
mance R∗ as the average reward over all the sub-
sets: R∗ = 1

N

∑N
i=1R

∗
i .

This upper bound by the RL-Oracle is, however,
conservative since there might exist better refor-
mulation strategies that the RL model was not able
to discover.

4.5 Implementation Details
Search engine We use Lucene and BM25 as the
search engine and the ranking function, respec-
tively, for all PRF, SL and RL methods. For Raw-
Google, we restrict the search to the wikipedia.org
domain when evaluating its performance on the
Jeopardy dataset. We could not apply the same re-
striction to the two other datasets as Google does
not index Wikipedia paragraphs, and as it is not
trivial to match papers from MS Academic to the
ones returned by Google Search.

Candidate terms We use Wikipedia articles as
a source for candidate terms since it is a well cu-
rated, clean corpus, with diverse topics.

At training and test times of SL methods,
and at test time of RL methods, the candidate
terms are from the first M words of the top-K
Wikipedia articles retrieved. We select M and
K using grid search on the validation set over
{50, 100, 200, 300} and {1, 3, 5, 7}, respectively.
The best values are M = 300 and K = 7. These
correspond to the maximum number of terms we
could fit in a single GPU.

7The subset should be small enough, or the model should
be large enough so it can overfit.

Figure 3: Our RL-based model continues to im-
prove recall as more candidate terms are added,
whereas a classical PRF method saturates.

At training time of an RL model, we use only
one document uniformly sampled from the top-K
retrieved ones as a source for candidate terms, as
this leads to a faster learning.

For the PRF methods, the top-M terms ac-
cording to a relevance metric (i.e., TF-IDF for
PRF-TFIDF, cosine similarity for PRF-Emb, and
conditional probability for PRF-RM) from each
of the top-K retrieved documents are added to
the original query. We select M and K using
grid search over {10, 50, 100, 200, 300, 500} and
{1, 3, 5, 9, 11}, respectively. The best values are
M = 300 and K = 9.

Multiple Reformulation Rounds Although our
framework supports multiple rounds of search and
reformulation, we did not find any significant im-
provement in reformulating a query more than
once. Therefore, the numbers reported in the re-
sults section were all obtained from models run-
ning two rounds of search and reformulation.

Neural Network Setup For SL-CNN and RL-
CNN variants, we use a 2-layer convolutional net-
work for the original query. Each layer has a win-
dow size of 3 and 256 filters. We use a 2-layer con-
volutional network for candidate terms with win-
dow sizes of 9 and 3, respectively, and 256 filters
in each layer. We set the dimension d of the weight
matrices W,S,U , and V to 256. For the opti-
mizer, we use ADAM (Kingma and Ba, 2014) with
α = 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−8.
We set the entropy regularization coefficient λ to
10−3.

For RL-RNN and RL-RNN-SEQ, we use a 2-
layer bidirectional LSTM with 256 hidden units
in each layer. We clip the gradients to unit norm.
For RL-RNN-SEQ, we set the maximum possible
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number of generated terms to 50 and we use beam
search of size four at test time.

We fix the dictionary of pre-trained word em-
beddings during training, except the vector for out-
of-vocabulary words. We found that this led to
faster convergence and observed no difference in
the overall performance when compared to learn-
ing embeddings during training.

5 Results and Discussion

Table 2 shows the main result. As expected, re-
formulation based methods work better than us-
ing the original query alone. Supervised methods
(SL-FF and SL-CNN) have in general a better per-
formance than unsupervised ones (PRF-TFIDF,
PRF-RM, PRF-Emb, and Emb-Vocab), but per-
form worse than RL-based models (RL-FF, RL-
CNN, RL-RNN, and RL-RNN-SEQ).

RL-RNN-SEQ performs slightly worse than
RL-RNN but produces queries that are three times
shorter, on average (15 vs 47 words). Thus, RL-
RNN-SEQ is faster in retrieving documents and
therefore might be a better candidate for a produc-
tion implementation.

The performance gap between the oracle and
best performing method (Table 2, RL-Oracle vs.
RL-RNN) suggests that there is a large room for
improvement. The cause for this gap is unknown
but we suspect, for instance, an inherent difficulty
in learning a good selection strategy and the par-
tial observability from using a black box search
engine.

5.1 Relevant Terms per Document

The proportion of relevant terms selected by the
SL- and RL-Oracles over the total number of can-
didate terms (Table 3) indicates that only a small
subset of terms are useful for the reformulation.
Thus, we may conclude that the proposed method
was able to learn an efficient term selection strat-
egy in an environment where relevant terms are
infrequent.

5.2 Scalability: Number of Terms vs Recall

Fig. 3 shows the improvement in recall as more
candidate terms are provided to a reformulation
method. The RL-based model benefits from
more candidate terms, whereas the classical PRF
method quickly saturates. In our experiments, the
best performing RL-based model uses the maxi-
mum number of candidate terms that we could fit

Query Top-3 Retrieved Documents

(Original) The Cross -The Cross Entropy Method
Entropy Method for for Network Reliability Estim.
Fast Policy Search -Robot Weightlifting by

Direct Policy Search
-Off-policy Policy Search

(Reformulated) Cross -Near Optimal Reinforcement
Entropy Fast Policy Learning in Polynom. Time
Reinforcement -The Cross Entropy Method
Learning policies for Network Reliability Estim.
global search -Robot Weightlifting by
optimization biased Direct Policy Search

(Original) Daikon “...many types of pickles are
Cultivation made with daikon, includ...”

“Certain varieties of daikon
can be grown as a winter...”
“In Chinese cuisine, turnip
cake and chai tow kway...”

(Reformulated) Daikon “...many types of pickles are
Cultivation root seed “made with daikon, includ...”
grow fast-growing “Certain varieties of daikon
Chinese leaves can be grown as a winter...”

“The Chinese and Indian
varieties tolerate higher....”

Table 4: Top-3 retrieved documents using the orig-
inal query and a query reformulated by our RL-
CNN model. In the first example, we only show
the titles of the retrieved MSA papers. In the
second example, we only show some words of
the retrieved TREC-CAR paragraphs. Bold cor-
responds to ground-truth documents.

on a single GPU. We, therefore, expect further im-
provements with more computational resources.

5.3 Qualitative Analysis

We show two examples of queries and the proba-
bilities of each candidate term of being selected by
the RL-CNN model in Fig. 4.

Notice that terms that are more related to the
query have higher probabilities, although common
words such as ”the” are also selected. This is a
consequence of our choice of a reward that does

Trained on Selected Terms

TREC-CAR serves american national Winsted
accreditation

Jeopardy Tunxis Quinebaug Winsted NCCC

MSA hospital library arts center cancer center
summer programs

Table 5: Given the query “Northwestern Con-
necticut Community College”, models trained on
different tasks choose different terms.
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Figure 4: Probabilities assigned by the RL-CNN to candidate terms of two sample queries: “Learning
Intersections of Halfspaces with a Margin” (top) and “Sea Turtle Diet” (bottom). We show the original
query terms and the top-10 and bottom-10 document terms with respect to their probabilities.

not penalize the selection of neutral terms.
In Table 4 we show an original and reformu-

lated query examples extracted from the MS Aca-
demic and TREC-CAR datasets, and their top-3
retrieved documents. Notice that the reformulated
query retrieves more relevant documents than the
original one. As we conjectured earlier, we see
that a search engine tends to return a document
simply with the largest overlap in the text, neces-
sitating the reformulation of a query to retrieve se-
mantically relevant documents.

Same query, different tasks We compare in Ta-
ble 5 the reformulation of a sample query made by
models trained on different datasets. The model
trained on TREC-CAR selects terms that are sim-
ilar to the ones in the original query, such as
“serves” and “accreditation”. These selections are
expected for this task since similar terms can be
effective in retrieving similar paragraphs. On the
other hand, the model trained on Jeopardy prefers
to select proper nouns, such as “Tunxis”, as these
have a higher chance of being an answer to the
question. The model trained on MSA selects terms
that cover different aspects of the entity being
queried, such as “arts center” and “library”, since
retrieving a diverse set of documents is necessary
for the task the of citation recommendation.

5.4 Training and Inference Times

Our best model, RL-RNN, takes 8-10 days to train
on a single K80 GPU. At inference time, it takes

approximately one second to reformulate a batch
of 64 queries. Approximately 40% of this time is
to retrieve documents from the search engine.

6 Conclusion

We introduced a reinforcement learning frame-
work for task-oriented automatic query reformu-
lation. An appealing aspect of this framework is
that an agent can be trained to use a search en-
gine for a specific task. The empirical evaluation
has confirmed that the proposed approach outper-
forms strong baselines in the three separate tasks.
The analysis based on two oracle approaches has
revealed that there is a meaningful room for fur-
ther development. In the future, more research is
necessary in the directions of (1) iterative refor-
mulation under the proposed framework, (2) using
information from modalities other than text, and
(3) better reinforcement learning algorithms for a
partially-observable environment.
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Abstract

Sentence simplification aims to make sen-
tences easier to read and understand.
Most recent approaches draw on insights
from machine translation to learn simpli-
fication rewrites from monolingual cor-
pora of complex and simple sentences.
We address the simplification problem
with an encoder-decoder model coupled
with a deep reinforcement learning frame-
work. Our model, which we call DRESS

(as shorthand for Deep REinforcement
Sentence Simplification), explores the
space of possible simplifications while
learning to optimize a reward function that
encourages outputs which are simple, flu-
ent, and preserve the meaning of the in-
put. Experiments on three datasets demon-
strate that our model outperforms compet-
itive simplification systems.1

1 Introduction

The main goal of sentence simplification is to re-
duce the linguistic complexity of text, while still
retaining its original information and meaning.
The simplification task has been the subject of
several modeling efforts in recent years due to
its relevance for NLP applications and individ-
uals alike (Siddharthan, 2014; Shardlow, 2014).
For instance, a simplification component could be
used as a preprocessing step to improve the perfor-
mance of parsers (Chandrasekar et al., 1996), sum-
marizers (Beigman Klebanov et al., 2004), and se-
mantic role labelers (Vickrey and Koller, 2008;
Woodsend and Lapata, 2014). Automatic simplifi-
cation would also benefit people with low-literacy
skills (Watanabe et al., 2009), such as children and

1Our code and data are publicly available at https://
github.com/XingxingZhang/dress.

non-native speakers as well as individuals with
autism (Evans et al., 2014), aphasia (Carroll et al.,
1999), or dyslexia (Rello et al., 2013).

The most prevalent rewrite operations which
give rise to simplified text include substituting rare
words with more common words or phrases, ren-
dering syntactically complex structures simpler,
and deleting elements of the original text (Sid-
dharthan, 2014). Earlier work focused on individ-
ual aspects of the simplification problem. For ex-
ample, several systems performed syntactic sim-
plification only, using rules aimed at sentence
splitting (Carroll et al., 1999; Chandrasekar et al.,
1996; Vickrey and Koller, 2008; Siddharthan,
2004) while others turned to lexical simplification
by substituting difficult words with more common
WordNet synonyms or paraphrases (Devlin, 1999;
Inui et al., 2003; Kaji et al., 2002).

Recent approaches view the simplification pro-
cess more holistically as a monolingual text-
to-text generation task borrowing ideas from
statistical machine translation. Simplification
rewrites are learned automatically from exam-
ples of complex-simple sentences extracted from
online resources such as the ordinary and sim-
ple English Wikipedia. For example, Zhu
et al. (2010) draw inspiration from syntax-based
translation and propose a model similar to Ya-
mada and Knight (2001) which additionally per-
forms simplification-specific rewrite operations
(e.g., sentence splitting). Woodsend and Lapata
(2011) formulate simplification in the framework
of Quasi-synchronous grammar (Smith and Eis-
ner, 2006) and use integer linear programming
to score the candidate translations/simplifications.
Wubben et al. (2012) propose a two-stage model:
initially, a standard phrase-based machine transla-
tion (PBMT) model is trained on complex-simple
sentence pairs. During inference, the K-best out-
puts of the PBMT model are reranked according

584



to their dis-similarity to the (complex) input sen-
tence. The hybrid model developed in Narayan
and Gardent (2014) also operates in two phases.
Initially, a probabilistic model performs sentence
splitting and deletion operations over discourse
representation structures assigned by Boxer (Cur-
ran et al., 2007). The resulting sentences are fur-
ther simplified by a model similar to Wubben et al.
(2012). Xu et al. (2016) train a syntax-based
machine translation model on a large scale para-
phrase dataset (Ganitkevitch et al., 2013) using
simplification-specific objective functions and fea-
tures to encourage simpler output.

In this paper we propose a simplification model
which draws on insights from neural machine
translation (Bahdanau et al., 2015; Sutskever et al.,
2014). Central to this approach is an encoder-
decoder architecture implemented by recurrent
neural networks. The encoder reads the source
sequence into a list of continuous-space repre-
sentations from which the decoder generates the
target sequence. Although our model uses the
encoder-decoder architecture as its backbone, it
must also meet constraints imposed by the sim-
plification task itself, i.e., the predicted output
must be simpler, preserve the meaning of the in-
put, and grammatical. To incorporate this knowl-
edge, the model is trained in a reinforcement
learning framework (Williams, 1992): it explores
the space of possible simplifications while learn-
ing to maximize an expected reward function that
encourages outputs which meet simplification-
specific constraints. Reinforcement learning has
been previously applied to extractive summariza-
tion (Ryang and Abekawa, 2012), information ex-
traction (Narasimhan et al., 2016), dialogue gen-
eration (Li et al., 2016), machine translation, and
image caption generation (Ranzato et al., 2016).

We evaluate our system on three publicly
available datasets collated automatically from
Wikipedia (Zhu et al., 2010; Woodsend and Lap-
ata, 2011) and human-authored news articles (Xu
et al., 2015b). We experimentally show that the re-
inforcement learning framework is the key to suc-
cessful generation of simplified text bringing sig-
nificant improvements over strong simplification
models across datasets.

2 Neural Encoder-Decoder Model

We will first define a basic encoder-decoder
model for sentence simplification and then ex-
plain how to embed it in a reinforcement learning

framework. Given a (complex) source sentence
X = (x1, x2, . . . , x|X|), our model learns to pre-
dict its simplified target Y = (y1, y2, . . . , y|Y |).
Inferring the target Y given the sourceX is a typi-
cal sequence to sequence learning problem, which
can be modeled with attention-based encoder-
decoder models (Bahdanau et al., 2015; Luong
et al., 2015). Sentence simplification is slightly
different from related sequence transduction tasks
(e.g., compression) in that it can involve split-
ting operations. For example, a long source sen-
tence (In 1883, Faur married Marie Fremiet, with
whom he had two sons.) can be simplified as two
sentences (In 1883, Faur married Marie Fremiet.
They had two sons.). Nevertheless, we still view
the target as a sequence, i.e., two or more se-
quences concatenated with full stops.

The encoder-decoder model has two parts (see
left hand side in Figure 1). The encoder trans-
forms the source sentence X into a sequence
of hidden states (hS1 ,h

S
2 , . . . ,h

S
|X|) with a Long

Short-Term Memory Network (LSTM; Hochreiter
and Schmidhuber 1997), while the decoder uses
another LSTM to generate one word yt+1 at a time
in the simplified target Y . Generation is condi-
tioned on all previously generated words y1:t and
a dynamically created context vector ct, which en-
codes the source sentence:

P (Y |X) =

|Y |∏

t=1

P (yt|y1:t−1, X) (1)

P (yt+1|y1:t, X) = softmax(g(hTt , ct)) (2)

where g(·) is a one-hidden-layer neural network
with the following parametrization:

g(hTt , ct) = Wo tanh(Uhh
T
t +Whct) (3)

where Wo ∈ R|V |×d, Uh ∈ Rd×d, and Wh ∈
Rd×d; |V | is the output vocabulary size and d the
hidden unit size. hTt is the hidden state of the de-
coder LSTM which summarizes y1:t, i.e., what has
been generated so far:

hTt = LSTM(yt,h
T
t−1) (4)

The dynamic context vector ct is the weighted sum
of the hidden states of the source sentence:

ct =

|X|∑

i=1

αtih
S
i (5)
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whose weights αti are determined by an attention
mechanism:

αti =
exp(hTt · hSi )∑
i exp(h

T
t · hSi )

(6)

where · is the dot product between two vec-
tors. We use the dot product here mainly for ef-
ficiency reasons; alternative ways to compute at-
tention scores have been proposed in the litera-
ture and we refer the interested reader to Luong
et al. (2015). The model sketched above is usually
trained by minimizing the negative log-likelihood
of the training source-target pairs.

3 Reinforcement Learning for Sentence
Simplification

In this section we present DRESS, our Deep
REinforcement Sentence Simplification model.
Despite successful application in numerous se-
quence transduction tasks (Jean et al., 2015;
Chopra et al., 2016; Xu et al., 2015a), a vanilla
encoder-decoder model is not ideal for sentence
simplification. Although a number of rewrite oper-
ations (e.g., copying, deletion, substitution, word
reordering) can be used to simplify text, copy-
ing is by far the most common. We empirically
found that 73% of the target words are copied
from the source in the Newsela dataset. This num-
ber further increases to 83% when considering
Wikipedia-based datasets (we provide details on
these datasets in Section 5). As a result, a generic
encoder-decoder model learns to copy all too well
at the expense of other rewrite operations, often
parroting back the source or making only a few
trivial changes.

To encourage a wider variety of rewrite oper-
ations while remaining fluent and faithful to the
meaning of the source, we employ a reinforce-
ment learning framework (see Figure 1). We view
the encoder-decoder model as an agent which first
reads the source sentence X; then at each step, it
takes an action ŷt ∈ V (where V is the output vo-
cabulary) according to a policy PRL(ŷt|ŷ1:t−1, X)
(see Equation (2)). The agent continues to take
actions until it produces an End Of Sentence
(EOS) token yielding the action sequence Ŷ =
(ŷ1, ŷ2, . . . , ŷ|Ŷ |), which is also the simplified out-
put of our model. A reward r is then received
and the REINFORCE algorithm (Williams, 1992)
is used to update the agent. In the following, we
first introduce our reward and then present the de-
tails of the REINFORCE algorithm.

3.1 Reward

The reward r(Ŷ ) for system output Ŷ is the
weighted sum of the three components aimed at
capturing key aspects of the target output, namely
simplicity, relevance, and fluency:

r(Ŷ ) = λS rS + λR rR + λF rF (7)

where λS , λR, λF ∈ [0, 1]; r(Ŷ ) is a shorthand for
r(X,Y, Ŷ ) whereX is the source, Y the reference
(or target), and Ŷ the system output. rS , rR, and
rF are shorthands for simplicity rS(X,Y, Ŷ ), rel-
evance rR(X, Ŷ ), and fluency rF (Ŷ ). We provide
details for each reward summand below.

Simplicity To encourage the model to apply
a wide range of simplification operations, we
use SARI (Xu et al., 2016), a recently proposed
metric which compares System output Against
References and against the Input sentence. SARI
is the arithmetic average of n-gram precision and
recall of three rewrite operations: addition, copy-
ing, and deletion. It rewards addition operations
where system output was not in the input but oc-
curred in the references. Analogously, it rewards
words retained/deleted in both the system output
and the references. In experimental evaluation Xu
et al. (2016) demonstrate that SARI correlates well
with human judgments of simplicity, whilst cor-
rectly rewarding systems that both make changes
and simplify the input.

One caveat with using SARI as a reward is the
fact that it relies on the availability of multiple
references which are rare for sentence simplifica-
tion. Xu et al. (2016) provide eight references for
2,350 sentences, but these are primarily for system
tuning and evaluation rather than training. The
majority of existing simplification datasets (see
Section 5 for details) have a single reference for
each source sentence. Moreover, they are unavoid-
ably noisy as they are mostly constructed automat-
ically, e.g., by aligning sentences from the ordi-
nary and simple English Wikipedias. When rely-
ing solely on a single reference, SARI will try to
reward accidental n-grams that should never have
occurred in it. To countenance the effect of noise,
we apply SARI(X, Ŷ , Y ) in the expected direc-
tion, with X as the source, Ŷ the system output,
and Y the reference as well as in the reverse direc-
tion with Y as the system output and Ŷ as the ref-
erence. Assuming our system can produce reason-
ably good simplifications, by swapping the output
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X = x1 x2 x3 x4 x5

Ŷ = ŷ1 ŷ2 ŷ3

Get Action Seq. Ŷ

Update Agent

Simplicity
Model

Relevance
Model

Grammar
Model

REINFORCE algorithm

ŶX ŶX Ŷ Y

Figure 1: Deep reinforcement learning simplification model. X is the complex sentence, Y the reference
(simple) sentence and Ŷ the action sequence (simplification) produced by the encoder-decoder model.

and the reference, reverse SARI can be used to es-
timate how good a reference is with respect to the
system output. Our first reward is therefore the
weighted sum of SARI and reverse SARI:

rS=β SARI(X, Ŷ , Y )+(1−β) SARI(X,Y, Ŷ ) (8)

Relevance While the simplicity-based re-
ward rS tries to encourage the model to make
changes, the relevance reward rR ensures that the
generated sentences preserve the meaning of the
source. We use an LSTM sentence encoder to
convert the source X and the predicted target Ŷ
into two vectors qX and qŶ . The relevance
reward rR is simply the cosine similarity between
these two vectors:

rR = cos(qX ,qŶ ) =
qX · qŶ
||qX || ||qŶ ||

(9)

We use a sequence auto-encoder (SAE; Dai and
Le 2015) to train the LSTM sentence encoder on
both the complex and simple sentences. Specifi-
cally, the SAE uses sentence X = (x1, . . . , x|X|)
to infer itself via an encoder-decoder model (with-
out an attention mechanism). Firstly, an encoder
LSTM convertsX into a sequence of hidden states
(h1, . . . ,h|X|). Then, we use h|X| to initialize
the hidden state of the decoder LSTM and re-
cover/generate X one word at a time.

Fluency Xu et al. (2016) observe that SARI cor-
relates less with fluency compared to other met-
rics such as BLEU (Papineni et al., 2002). The
fluency reward rF models the well-formedness of
the generated sentences explicitly. It is the normal-
ized sentence probability assigned by an LSTM

language model trained on simple sentences:

rF = exp


 1

|Ŷ |

|Ŷ |∑

i=1

logPLM (ŷi|ŷ0:i−1)


 (10)

We take the exponential of Ŷ ’s perplexity to en-
sure that rF ∈ [0, 1] as is the case with rS and rR.

3.2 The REINFORCE Algorithm
The goal of the REINFORCE algorithm is to find
an agent that maximizes the expected reward. The
training loss for one sequence is its negative ex-
pected reward:

L(θ) = −E(ŷ1,...,ŷ|Ŷ |)∼PRL(·|X)[r(ŷ1, . . ., ŷ|Ŷ |)]

where PRL is our policy, i.e., the distribution pro-
duced by the encoder-decoder model (see Equa-
tion(2)) and r(·) is the reward function of an ac-
tion sequence Ŷ = (ŷ1, . . . , ŷ|Ŷ |), i.e., a gener-
ated simplification. Unfortunately, computing the
expectation term is prohibitive, since there is an
infinite number of possible action sequences. In
practice, we approximate this expectation with a
single sample from the distribution of PLR(·|X).
We refer to Williams (1992) for the full derivation
of the gradients. The gradient of L(θ) is:

∇L(θ) ≈
∑|Ŷ |

t=1∇ logPRL(ŷt|ŷ1:t−1, X)[r(ŷ1:|Ŷ |)− bt]

To reduce the variance of gradients, we also intro-
duce a baseline linear regression model bt to es-
timate the expected future reward at time t (Ran-
zato et al., 2016). bt takes the concatenation of hTt
and ct as input and outputs a real value as the ex-
pected reward. The parameters of the regressor are
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trained by minimizing mean squared error. We do
not back-propagate this error to hTt or ct during
training (Ranzato et al., 2016).

3.3 Learning

Presented in its original form, the REINFORCE
algorithm starts learning with a random policy.
This assumption can make model training chal-
lenging for generation tasks like ours with large
vocabularies (i.e., action spaces). We address this
issue by pre-training our agent (i.e., the encoder-
decoder model) with a negative log-likelihood ob-
jective (see Section 2), making sure it can pro-
duce reasonable simplifications, thereby starting
off with a policy which is better than random.
We follow prior work (Ranzato et al., 2016) in
adopting a curriculum learning strategy. In the be-
ginning of training, we give little freedom to our
agent allowing it to predict the last few words for
each target sentence. For every target sequence,
we use negative log-likelihood to train the first L
(initially, L = 24) tokens and apply the reinforce-
ment learning algorithm to the (L + 1)th tokens
onwards. Every two epochs, we set L = L− 3
and the training terminates when L is 0.

4 Lexical Simplification

Lexical substitution, the replacement of complex
words with simpler alternatives, is an integral part
of sentence simplification (Specia et al., 2012).
The model presented so far learns lexical substitu-
tion and other rewrite operations jointly. In some
cases, words are predicted because they seem nat-
ural in the their context, but are poor substitutes
for the content of the complex sentence. To coun-
tenance this, we learn lexical simplifications ex-
plicitly and integrate them with our reinforcement
learning-based model.

We use an pre-trained encoder-decoder model
(which is trained on a parallel corpus of com-
plex and simple sentences) to obtain probabilis-
tic word alignments, aka attention scores (see αt
in Equation (6)). Let X = (x1, x2, . . . , x|X|) de-
note a source sentence and Y = (y1, y2, . . . , y|Y |)
a target sentence. We convert X into |X| hidden
states (v1,v2, . . . ,v|X|) with an LSTM. Note that
vt ∈ Rd×1 corresponds to the context dependent
representation of xt. Let αt denote the alignment
scores αt1, αt2, . . . , αt|X|. The lexical simplifica-
tion probability of yt given the source sentence

and the alignment scores is:

PLS(yt|X,αt) = softmax(Wl st) (11)

where Wl ∈ R|V |×d and st represents the source:

st =

|X|∑

i=1

αtivi (12)

The lexical simplification model on its own
encourages lexical substitutions, without taking
into account what has been generated so far
(i.e., y1:t−1) and as a result fluency could be com-
promised. A straightforward solution is to inte-
grate lexical simplification with our reinforcement
learning trained model (Section 3) using linear in-
terpolation, where η ∈ [0, 1]:

P (yt|y1:t−1, X) = (1− η)PRL(yt|y1:t−1, X)

+ η PLS(yt|X,αt)
(13)

5 Experimental Setup

In this section we present our experimental setup
for assessing the performance of the simplification
model described above. We give details on our
datasets, model training, evaluation protocol, and
the systems used for comparison.

Datasets We conducted experiments on three
simplification datasets. WikiSmall (Zhu et al.,
2010) is a parallel corpus which has been exten-
sively used as a benchmark for evaluating text sim-
plification systems (Wubben et al., 2012; Wood-
send and Lapata, 2011; Narayan and Gardent,
2014; Zhu et al., 2010). It contains automatically
aligned complex and simple sentences from the or-
dinary and simple English Wikipedias. The test
set consists of 100 complex-simple sentence pairs.
The training set contains 89,042 sentence pairs
(after removing duplicates and test sentences). We
randomly sampled 205 pairs for development and
used the remaining sentences for training.

We also constructed WikiLarge, a larger
Wikipedia corpus by combining previously cre-
ated simplification corpora. Specifically, we ag-
gregated the aligned sentence pairs in Kauchak
(2013), the aligned and revision sentence pairs in
Woodsend and Lapata (2011), and Zhu’s (2010)
WikiSmall dataset described above. We used the
development and test sets created in Xu et al.
(2016). These are complex sentences taken from
WikiSmall paired with simplifications provided by
Amazon Mechanical Turk workers. The dataset
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contains 8 (reference) simplifications for 2,359
sentences partitioned into 2,000 for development
and 359 for testing. After removing duplicates and
sentences in development and test sets, the result-
ing training set contains 296,402 sentence pairs.

Our third dataset is Newsela, a corpus collated
by Xu et al. (2015b) who argue that Wikipedia-
based resources are suboptimal due to the auto-
matic sentence alignment which unavoidably in-
troduces errors, and their uniform writing style
which leads to systems that generalize poorly.
Newsela2 consists of 1,130 news articles, each re-
written four times by professional editors for chil-
dren at different grade levels (0 is the most com-
plex level and 4 is simplest). Xu et al. (2015b) pro-
vide multiple aligned complex-simple pairs within
each article. We removed sentence pairs corre-
sponding to levels 0–1, 1–2, and 2–3, since they
were too similar to each other. The first 1,070
documents were used for training (94,208 sen-
tence pairs), the next 30 documents for develop-
ment (1,129 sentence pairs) and the last 30 docu-
ments for testing (1,076 sentence pairs).3 We are
not aware of any published results on this dataset.

Training Details We trained our models on an
Nvidia GPU card. We used the same hyper-
parameters across datasets. We first trained an
encoder-decoder model, and then performed re-
inforcement learning training (Section 3), and
trained the lexical simplification model (Sec-
tion 4). Encoder-decoder parameters were uni-
formly initialized to [−0.1, 0.1]. We used Adam
(Kingma and Ba, 2014) to optimize the model with
learning rate 0.001; the first momentum coefficient
was set to 0.9 and the second momentum coeffi-
cient to 0.999. The gradient was rescaled when
the norm exceeded 5 (Pascanu et al., 2013). Both
encoder and decoder LSTMs have two layers with
256 hidden neurons in each layer. We regularized
all LSTMs with a dropout rate of 0.2 (Zaremba
et al., 2014). We initialized the encoder and de-
coder word embedding matrices with 300 dimen-
sional Glove vectors (Pennington et al., 2014).

During reinforcement training, we used plain
stochastic gradient descent with a learning rate
of 0.01. We set β = 0.1, λS = 1, λR = 0.25
and λF = 0.5.4 Training details for the lexical

2https://newsela.com
3If a sentence has multiple references in the development

or test set, we use the reference with highest simplicity level.
4Weights were tuned on the development set of the

Newsela dataset and kept fixed for the other two datasets.

simplification model are identical to the encoder-
decoder model except that word embedding matri-
ces were randomly initialized. The weight of the
lexical simplification model was set to η = 0.1.

To reduce vocabulary size, named entities were
tagged with the Stanford CoreNLP (Manning
et al., 2014) and anonymized with a NE@N to-
ken, where NE ∈ {PER,LOC,ORG,MISC} and
N indicates NE@N is the N -th distinct NE typed
entity. For example, “John and Bob are . . . ” be-
comes “PER@1 and PER@2 are . . . ”. At test
time, we de-anonymize NE@N tokens in the out-
put by looking them up in their source sentences.
Note that the de-anonymization may fail, but the
chance is small (around 2% of the time on the
Newsela development set). We replaced words oc-
curring three times or less in the training set with
UNK. At test time, when our models predict UNK,
we adopt the UNK replacement method proposed
in Jean et al. (2015).

Evaluation Following previous work (Wood-
send and Lapata, 2011; Xu et al., 2016) we eval-
uated system output automatically adopting met-
rics widely used in the simplification literature.
Specifically, we used BLEU5 (Papineni et al.,
2002) to assess the degree to which generated
simplifications differed from gold standard refer-
ences and the Flesch-Kincaid Grade Level index
(FKGL; Kincaid et al. 1975) to measure the read-
ability of the output (lower FKGL6 implies sim-
pler output). In addition, we used SARI (Xu et al.,
2016), which evaluates the quality of the output
by comparing it against the source and reference
simplifications.7 BLEU, FKGL, and SARI are
all measured at corpus-level. We also evaluated
system output by eliciting human judgments via
Amazon’s Mechanical Turk. Specifically (self-
reported) native English speakers were asked to
rate simplifications on three dimensions: Fluency
(is the output grammatical and well formed?), Ad-
equacy (to what extent is the meaning expressed in
the original sentence preserved in the output?) and
Simplicity (is the output simpler than the original
sentence?). All ratings were obtained using a five
point Likert scale.

Comparison Systems We compared our model
against several systems previously proposed in
the literature. These include PBMT-R, a mono-

5With the default mtevalv13a.pl settings.
6FKGL implementation at http://goo.gl/OHP7k3.
7We used he implementation of SARI in Xu et al. (2016).
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Newsela BLEU FKGL SARI
PBMT-R 18.19 7.59 15.77
Hybrid 14.46 4.01 30.00
EncDecA 21.70 5.11 24.12
DRESS 23.21 4.13 27.37
DRESS-LS 24.30 4.21 26.63

WikiSmall BLEU FKGL SARI
PBMT-R 46.31 11.42 15.97
Hybrid 53.94 9.20 30.46
EncDecA 47.93 11.35 13.61
DRESS 34.53 7.48 27.48
DRESS-LS 36.32 7.55 27.24

WikiLarge BLEU FKGL SARI
PBMT-R 81.11 8.33 38.56
Hybrid 48.97 4.56 31.40
SBMT-SARI 73.08 7.29 39.96
EncDecA 88.85 8.41 35.66
DRESS 77.18 6.58 37.08
DRESS-LS 80.12 6.62 37.27

Table 1: Automatic evaluation on Newsela, Wik-
iSmall, and WikiLarge test sets.

lingual phrase-based machine translation system
with a reranking post-processing step8 (Wubben
et al., 2012) and Hybrid, a model which first
performs sentence splitting and deletion opera-
tions over discourse representation structures and
then further simplifies sentences with PBMT-R
(Narayan and Gardent, 2014). Hybrid9 is state
of the art on the WikiSmall dataset. Compar-
isons with SBMT-SARI, a syntax-based transla-
tion model trained on PPDB (Ganitkevitch et al.,
2013) and tuned with SARI (Xu et al., 2016), are
problematic due to the size of PPDB which is con-
siderably larger than any of the datasets used in
this work (it contains 106 million sentence pairs
with 2 billion words). Nevertheless, we compare10

against SBMT-SARI, but only models trained on
Wikilarge, our largest dataset.

6 Results

Since Newsela contains high quality simplifica-
tions created by professional editors, we per-
formed the bulk of our experiments on this dataset.
Specifically, we set out to answer two ques-
tions: (a) which neural model performs best and
(b) how do neural models which are resource lean
and do not have access to linguistic annotations
fare against more traditional systems. We there-
fore compared the basic attention-based encoder-

8We made a good-faith effort to re-implement their sys-
tem following closely the details in Wubben et al. (2012).

9We are grateful to Shashi Narayan for running his system
on our three datasets.

10The output of SBMT-SARI is publicly available.

Newsela Fluency Adequacy Simplicity All
PBMT-R 3.56 3.58∗∗ 2.09∗∗ 3.08∗∗

Hybrid 2.70∗∗ 2.51∗∗ 2.99 2.73∗∗

EncDecA 3.63 2.99 2.56∗∗ 3.06∗∗

DRESS 3.65 2.94 3.10 3.23
DRESS-LS 3.71 3.07 3.04 3.28
Reference 3.90 2.81∗∗ 3.42∗∗ 3.38

WikiSmall Fluency Adequacy Simplicity All
PBMT-R 3.91 3.74∗∗ 2.80∗∗ 3.48∗

Hybrid 3.26∗∗ 3.42 2.82∗∗ 3.17∗∗

DRESS-LS 3.92 3.36 3.55 3.61
Reference 3.74∗ 3.34 3.13∗∗ 3.41∗∗

WikiLarge Fluency Adequacy Simplicity All
PBMT-R 3.68 3.63∗ 2.70∗∗ 3.34∗

Hybrid 2.60∗∗ 2.42∗∗ 3.52 2.85∗∗

SBMT-SARI 3.34∗∗ 3.51∗ 2.77∗∗ 3.21∗∗

DRESS-LS 3.70 3.28 3.42 3.46
Reference 3.79 3.72∗∗ 2.86∗∗ 3.46

Table 2: Mean ratings elicited by humans on
Newsela, WikiSmall, and WkiLarge test sets. Rat-
ings significantly different from DRESS-LS are
marked with * (p < 0.05) and ** (p < 0.01). Sig-
nificance tests were performed using a student
t-test.

decoder model (EncDecA), with the deep rein-
forcement learning model (DRESS; Section 3),
and a linear combination of DRESS and the lexi-
cal simplification model (DRESS-LS; Section 4).
Neural models were further compared against
two strong baselines, PBMT-R and Hybrid. Ta-
ble 3 shows example output of all models on the
Newsela dataset.

The top block in Table 1 summarizes the results
of our automatic evaluation. As can be seen, all
neural models obtain higher BLEU, lower FKGL
and higher SARI compared to PBMT-R. Hybrid
has the lowest FKGL and highest SARI. Com-
pared to EncDecA, DRESS scores lower on FKGL
and higher on SARI, which indicates that the
model has indeed learned to optimize the reward
function which includes SARI. Integrating lexical
simplification (DRESS-LS) yields better BLEU,
but slightly worse FKGL and SARI.

The results of our human evaluation are pre-
sented in the top block of Table 2. We elicited
judgments for 100 randomly sampled test sen-
tences. Aside from comparing system out-
put (PBMT-R, Hybrid, EncDecA, DRESS, and
DRESS-LS), we also elicited ratings for the gold
standard Reference as an upper bound. We report
results for Fluency, Adequacy, and Simplicity in-
dividually and in combination (All is the average
rating of the three dimensions). As can be seen,
DRESS and DRESS-LS outperform PBMT-R and
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Complex There’s just one major hitch: the primary purpose of education is to develop citizens
with a wide variety of skills.

Reference The purpose of education is to develop a wide range of skills.
PBMT-R It’s just one major hitch: the purpose of education is to make people with a wide

variety of skills.
Hybrid one hitch the purpose is to develop citizens.
EncDecA The key of education is to develop people with a wide variety of skills.
DRESS There’s just one major hitch: the main goal of education is to develop people with

lots of skills.
DRESS-LS There’s just one major hitch: the main goal of education is to develop citizens with

lots of skills.
Complex “They were so burdened by the past they couldn’t think about the future,” said Barnet,

62, who was president of Columbia Records, the No.1 record label in the United
States, before joining Capitol.

Reference Capitol was stuck in the past. It could not think about the future, Barnett said.
PBMT-R “They were so affected by the past they couldn’t think about the future,” said Barnett,

62, was president of Columbia Records, before joining Capitol building.
Hybrid ‘They were so burdened by the past they couldn’t think about the future,” said Barnett,

62, who was Columbia Records, president of the No.1 record label in the united
states, before joining Capitol.

EncDecA “They were so burdened by the past they couldn’t think about the future,” said Bar-
nett, who was president of Columbia Records, the No.1 record labels in the United
States.

DRESS “They were so sicker by the past they couldn’t think about the future,” said Barnett,
who was president of Columbia Records.

DRESS-LS “They were so burdened by the past they couldn’t think about the future,” said Bar-
nett, who was president of Columbia Records.

Table 3: System output for two sentences (Newsela development set). Substitutions are shown in bold.

Hybrid on Fluency, Simplicity, and overall. The
fact that neural models (EncDecA, DRESS and
DRESS-LS) fare well on Fluency, is perhaps not
surprising given the recent success of LSTMs in
language modeling and neural machine translation
(Zaremba et al., 2014; Jean et al., 2015).

Neural models obtain worse ratings on Ade-
quacy but are closest to the human references on
this dimension. DRESS-LS (and DRESS) are sig-
nificantly better (p < 0.01) on Simplicity than
EncDecA, PBMT-R, and Hybrid which indicates
that our reinforcement learning based model is ef-
fective at creating simpler output. Combined rat-
ings (All) for DRESS-LS are significantly different
compared to the other models but not to DRESS

and the Reference. Nevertheless, integration of the
lexical simplification model boosts performance
as ratings increase almost across the board (Sim-
plicity is slightly worse). Returning to our origi-
nal questions, we find that neural models are more
fluent than comparison systems, while perform-
ing non-trivial rewrite operations (see the SARI

scores in Table 1) which yield simpler output (see
the Simplicity column in Table 2). Based on our
judgment elicitation study, neural models trained
with reinforcement learning perform best, with
DRESS-LS having a slight advantage.

We further analyzed model performance by
computing various statistics on the simplified out-
put. We measured average sentence length and
the degree to which DRESS and comparison sys-
tems perform rewriting operations. We approxi-
mated the latter with Translation Error Rate (TER;
Snover et al. 2006), a measure commonly used
to automatically evaluate the quality of machine
translation output. We used TER to compute the
(average) number of edits required to change an
original complex sentence to simpler output. We
also report the number of edits by type, i.e., the
number of insertions, substitutions, deletions, and
shifts needed (on average) to convert complex to
simple sentences.

As shown in Table 4, Hybrid obtains the high-
est TER, followed by our models (DRESS and
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Models Len TER Ins Del Sub Shft
PBMT-R 23.1 0.13 0.68 0.68 1.50 0.09
Hybrid 12.4 0.90 0.01 10.19 0.12 0.41
EncDecA 17.0 0.36 0.13 5.96 1.69 0.09
DRESS 14.2 0.46 0.07 8.53 1.37 0.11
DRESS-LS 14.4 0.44 0.07 8.38 1.11 0.09
Reference 12.7 0.67 0.40 10.26 3.44 0.73

Table 4: Output length (average number of to-
kens), TER scores and number of edits by type
(Insertions, Deletions, Substitutions, Shifts) on
the Newsela test set. Higher TER means that more
rewriting operations are performed.

DRESS-LS), which indicates that they actively
perform rewriting. Perhaps Hybrid is too ag-
gressive when simplifying a sentence, it obtains
low Fluency and Adequacy scores in human eval-
uation (Table 2). There is a strong correlation
between sentence length and number of deletion
operations (i.e., more deleteions lead to shorter
sentences) and PBMT-R performs very few dele-
tions. Overall, reinforcement learning encourages
deletion (see DRESS and DRESS-LS), while per-
forming a reasonable amount of additional oper-
ations (e.g., substitutions and shifts) compared to
EncDecA and PBMT-R.

The middle blocks in Tables 1 and 2 report re-
sults on the WikiSmall dataset. FKGL and SARI
follow a similar pattern as on Newsela. BLEU
scores for PBMT-R, Hybrid, and EncDecA are
much higher compared to DRESS and DRESS-LS.
Hybrid obtains best BLEU and SARI scores, while
DRESS and DRESS-LS do very well on FKGL.
In human evaluation, we elicited judgments on
the entire WikiSmall test set (100 sentences). We
compared DRESS-LS, with PBMT-R, Hybrid, and
gold standard Reference simplifications. As hu-
man experiments are time consuming and ex-
pensive, we did not include other neural models
besides DRESS-LS based on our Newsela study
which showed that EncDecA is inferior to vari-
ants trained with reinforcement learning and that
DRESS-LS is the better performing model (how-
ever, we do compare all models in Table 1).
DRESS-LS is significantly better on Simplicity
than PBMT-R, Hybrid, and the Reference. It per-
forms on par with PBMT-R on Fluency and worse
on Adequacy (but still closer to the human Ref-
erence than PBMT-R or Hybrid). When combin-
ing all ratings (All in Table 2), DRESS-LS is sig-
nificantly better than PBMT-R, Hybrid, and the
Reference.

The bottom blocks in Tables 1 and 2 report re-
sults on Wikilarge. We compared our models with
PBMT-R, Hybrid, and SBMT-SARI (Xu et al.,
2016). The FKGL follows a similar pattern as
in the previous datasets. PBMT-R and our mod-
els are best in terms of BLEU while SBMT-SARI
outperforms all other systems on SARI.11 Because
there are 8 references for each complex sentence
in the test set, BLEU scores are much higher com-
pared to Newsela and WikiSmall. In human eval-
uation, we again elicited judgments for 100 ran-
domly sampled test sentences. We randomly se-
lected one of the 8 references as the Reference
upper bound. On Simplicity, DRESS-LS is sig-
nificantly better than all comparison systems, ex-
cept Hybrid. On Adequacy, it is better than Hybrid
but significantly worse than other comparison sys-
tems. On Fluency, it is on par with PBMT-R12 but
better than Hybrid and SBMT-SARI. On All di-
mension DRESS-LS significantly outperforms all
comparison systems.

7 Conclusions

We developed a reinforcement learning-based text
simplification model, which can jointly model
simplicity, grammaticality, and semantic fidelity
to the input. We also proposed a lexical simplifi-
cation component that further boosts performance.
Overall, we find that reinforcement learning of-
fers a great means to inject prior knowledge to the
simplification task achieving good results across
three datasets. In the future, we would like to ex-
plicitly model sentence splitting and simplify en-
tire documents (rather than individual sentences).
Beyond sentence simplification, the reinforcement
learning framework presented here is potentially
applicable to generation tasks such as sentence
compression (Chopra et al., 2016), generation of
programming code (Ling et al., 2016), or poems
(Zhang and Lapata, 2014).
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Abstract

Active learning aims to select a small sub-
set of data for annotation such that a classi-
fier learned on the data is highly accurate.
This is usually done using heuristic selec-
tion methods, however the effectiveness of
such methods is limited and moreover, the
performance of heuristics varies between
datasets. To address these shortcomings,
we introduce a novel formulation by re-
framing the active learning as a rein-
forcement learning problem and explicitly
learning a data selection policy, where the
policy takes the role of the active learning
heuristic. Importantly, our method allows
the selection policy learned using simu-
lation on one language to be transferred
to other languages. We demonstrate our
method using cross-lingual named entity
recognition, observing uniform improve-
ments over traditional active learning.

1 Introduction

For most Natural Language Processing (NLP)
tasks, obtaining sufficient annotated text for train-
ing accurate models is a critical bottleneck. Thus
active learning has been applied to NLP tasks to
minimise the expense of annotating data (Thomp-
son et al., 1999; Tong and Koller, 2001; Settles and
Craven, 2008). Active learning aims to reduce cost
by identifying a subset of unlabelled data for anno-
tation, which is selected to maximise the accuracy
of a supervised model trained on the data (Settles,
2010). There have been many successful appli-
cations to NLP, e.g., Tomanek et al. (2007) used
an active learning algorithm for CoNLL corpus to
get an F1 score 84% with a reduction of annotation
cost of about 48%. In prior work most active learn-
ing algorithms are designed for English based on

heuristics, such as using uncertainty or informa-
tiveness. There has been comparatively little work
done about how to learn the active learning strat-
egy itself.

It is no doubt that active learning is extremely
important for other languages, particularly low-
resource languages, where annotation is typically
difficult to obtain, and annotation budgets more
modest (Garrette and Baldridge, 2013). Such set-
tings are a natural application for active learning,
however there is little work to this end. A poten-
tial reason is that most active learning algorithms
require a substantial ‘seed set’ of data for learning
a basic classifier, which can then be used for ac-
tive data selection. However, given the dearth of
data in the low-resource setting, this assumption
can make standard approaches infeasible.

In this paper,1 we propose PAL, short for Pol-
icy based Active Learning, a novel approach for
learning a dynamic active learning strategy from
data. This allows for the strategy to be applied in
other data settings, such as cross-lingual applica-
tions. Our algorithm does not use a fixed heuris-
tic, but instead learns how to actively select data,
formalised as a reinforcement learning (RL) prob-
lem. An intelligent agent must decide whether or
not to select data for annotation in a streaming set-
ting, where the decision policy is learned using a
deep Q-network (Mnih et al., 2015). The policy
is informed by observations including sentences’
content information, the supervised model’s clas-
sifications and its confidence. Accordingly, a rich
and dynamic policy can be learned for annotating
new data based on the past sequence of annotation
decisions.

Furthermore, in order to reduce the dependence
on the data in the target language, which may be
low resource, we first learn the policy of active

1Source code available at https://github.com/
mengf1/PAL
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learning on another language and then transfer it to
the target language. It is easy to learn a policy on
a high resource language, where there is plentiful
data, such as English. We use cross-lingual word
embeddings to learn compatible data representa-
tions for both languages, such that the learned pol-
icy can be easily ported into the other language.

Our work is different for prior work in active
learning for NLP. Most previous active learning
algorithms developed for NER tasks is based on
one language and then applied to the language it-
self. Another main difference is that many ac-
tive learning algorithms use a fixed data selec-
tion heuristic, such as uncertainty sampling (Set-
tles and Craven, 2008; Stratos and Collins, 2015;
Zhang et al., 2016). However, in our algorithm,
we implicitly use uncertainty information as one
kind of observations to the RL agent.

The remainder of this paper is organised as fol-
lows. In Section 2, we briefly review some related
work. In Section 3, we present active learning al-
gorithms, which cross multiple languages. The ex-
perimental results are presented in Section 4. We
conclude our work in Section 5.

2 Related work

As supervised learning methods often require a
lot of training data, active learning is a technique
that selects a subset of data to annotate for train-
ing the best classifier. Existing active learning
(AL) algorithms can be generally considered as
three categories: 1) uncertainty sampling (Lewis
and Gale, 1994; Tong and Koller, 2001), which
selects the data about which the current classi-
fier is the most uncertain; 2) query by commit-
tee (Seung et al., 1992), which selects the data
about which the “committee” disagree most; and
3) expected error reduction (Roy and McCallum,
2001), which selects the data that can contribute
the largest model loss reduction for the current
classifier once labelled. Applications of active
learning to NLP include text classification (Mc-
Callumzy and Nigamy, 1998; Tong and Koller,
2001), relation classification (Qian et al., 2014),
and structured prediction (Shen et al., 2004; Set-
tles and Craven, 2008; Stratos and Collins, 2015;
Fang and Cohn, 2017). Qian et al. used uncer-
tainty sampling to jointly perform on English and
Chinese. Stratos and Collins and Zhang et al. de-
ployed uncertainty-based AL algorithms for lan-
guages with the minimal supervision.

Deep reinforcement learning (DRL) is a
general-purpose framework for decision mak-
ing based on representation learning. Recently,
there are some notable examples include deep Q-
learning (Mnih et al., 2015), deep visuomotor poli-
cies (Levine et al., 2016), attention with recur-
rent networks (Ba et al., 2015), and model predic-
tive control with embeddings (Watter et al., 2015).
Other important works include massively parallel
frameworks (Nair et al., 2015), dueling architec-
ture (Wang et al., 2016) and expert move predic-
tion in the game of Go (Maddison et al., 2015),
which produced policies matching those of the
Monte Carlo tree search programs, and squarely
beaten a professional player when combined with
search (Silver et al., 2016). DRL has been also
studied in NLP tasks. For example, recently, DRL
has been studied for information extraction prob-
lem (Narasimhan et al., 2016). They designed a
framework that can decide to acquire external ev-
idence and the framework is under the reinforce-
ment learning method. However, there has been
fairly little work on using DRL to learn active
learning strategies for language processing tasks,
especially in cross-lingual settings.

Recent deep learning work has also looked at
transfer learning (Bengio, 2012). More recent
work in deep learning has also considered trans-
ferring policies by reusing policy parameters be-
tween environments (Parisotto et al., 2016; Rusu
et al., 2016), using either regularization or novel
neural network architectures, though this work has
not looked at transfer active learning strategies be-
tween languages with shared feature space in state.

3 Methodology

We now show how active learning can be for-
malised as as a decision process, and then show
how this allows for the active learning selection
policy to be learned from data using deep rein-
forcement learning. Later we introduce a method
for transferring the policy between languages.

3.1 Active learning as a decision process

Active learning is a simple technique for labelling
data, which involves first selecting some instances
from an unlabelled dataset, which are then anno-
tated by a human oracle, which is then repeated
many times until a termination criterion is satis-
fied, e.g., the annotation budget is exhausted. Most
often the selection function is based on the pre-
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dictions of a trained model, which has been fit to
the labelled dataset at each stage in the algorithm,
where datapoints are selected based on the model’s
predictive uncertainty (Lewis and Gale, 1994), or
divergence in predictions over an ensemble (Se-
ung et al., 1992). The key idea of these meth-
ods is to find the instances on which the model is
most likely to make errors, such that after their la-
belling and inclusion in the training set, the model
becomes more robust to these types of errors on
unseen data.

The steps in active learning can be viewed as a
decision process, a means of formalising the ac-
tive learning algorithm as a sequence of decisions,
where the stages of active learning correspond to
the state of the system. Accordingly, the state cor-
responds to the selected data for labelling and their
labels, and each step in the active learning algo-
rithm corresponds to a selection action, wherein
the heuristic selects the next items from a pool.
This process terminates when the budget is ex-
hausted.

Effectively the active learning heuristic is oper-
ating as a decision policy, a form of function tak-
ing as input the current state — comprising the la-
belled data, from which a model is trained — and a
candidate unlabelled data point — e.g., the model
uncertainty. This raises the opportunity to con-
sider general policy functions, based on the state
and data point inputs, and resulting in a labelling
decision, and, accordingly a mechanism for learn-
ing such functions from data. We now elaborate
on the components of this process, namely the for-
mulation of the decision process, architecture of
the policy function, and means of learning the de-
cision policy automatically from data.

3.2 Stream-based learning
For simplicity, we make a streaming assumption,
whereby unlabelled data (sentences) arrive in a
stream (Lewis and Gale, 1994).2 As each instance
arrives, an agent must decide the action to take,
namely whether or not the instance should be man-
ually annotated. This process is illustrated in Fig-
ure 1, which illustrates the space of decision se-
quences for a small corpus. As part of this pro-
cess, a separate model, pφ, is trained on the la-
belled data, and updated accordingly as the la-
belled dataset is expanded as new annotations ar-

2This is different to pool-based active learning, where one
of several options is chosen for annotation. Our setup permits
simpler learning, while remaining sufficiently general.

3: Ms. Haag plays Elianti

1: Pierre Vinken will join the board 
2: Mr. Vinken is chairman of Elsevier

4: There is no asbestos in our products
...

label ~  !(ɸ0, x1)

label ~  !(ɸ0, x2)train ɸ1 | ɸ0 x1 y1   

yes;
y1 = PER PER O O O O no

label ~  !(ɸ1, x2)

label ~  !(ɸ1, x3)train ɸ2 | ɸ1 x2 y2   

no

label ~  !(ɸ0, x3)train ɸ'1 | ɸ0 x2 y2   

no

terminate

... ...

terminate

yes;
y2 = O PER O O O O

yes;
y2 = O PER O O O O

... …

Figure 1: Example illustrating sequential active
learning as a Markov Decision process. Data
arrives sequentially, and at each time the active
learning policy, π, must decide whether it should
be labelled or not, based on the state which in-
cludes a predictive model parameterised by φ, and
an unlabelled data instance x. The process con-
tinues until termination, e.g., when the annotation
budget is exhausted. The solid green path shows
the maximum scoring decision sequence.

rive. This model is central to the policy for choos-
ing the labelling actions at each stage, and for de-
termining the reward for a sequence of actions.

This is a form of Markov Decision Process
(MDP), which allows the learning of a policy that
can dynamically select instances that are most in-
formative. As illustrated in Figure 1 at each time,
the agent observes the current state si which in-
cludes the sentence xi, and the learned model
φ. The agent selects a binary action ai, denot-
ing whether to label xi, according to the policy
π. For ai = 1, the corresponding sentence is
labelled and added to the labelled data, and the
model pφ updated to include this new training
point. The process then repeats, terminating when
either the dataset is exhausted or a fixed annota-
tion budget is reached. After termination a reward
is computed based on the accuracy of the final
model, φ. We represent the MDP framework as
a tuple 〈S,A, Pr(si+1|si, a), R〉, where S = {s}
is the space of all possible states, A = {0, 1} is
the set of actions, R(s, a) is the reward function,
and Pr(si+1|si, a) is the transition function.
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3.2.1 State

The state at time i comprises the candidate in-
stance being considered for annotation and the la-
belled dataset constructed in steps 1 . . . i. We rep-
resent the state using a continuous vector, using
the concatenation of the vector representation of
xi, and outputs of the model pφ trained over the
labelled data. These outputs use both the predic-
tive marginal distributions of the model on the in-
stance, and a representation of the model’s confi-
dence. We now elaborate on each component.

Content representation A key input to the
agent is the content of the sentence, xi, which we
encode using a convolutional neural network to ar-
rive at a fixed sized vector representation, follow-
ing Kim (2014). This involves embedding each of
the n words in the sentence to produce a matrix
Xi = {xi,1, xi,2, · · · , xi,n}, after which a series
of wide convolutional filters is applied, using mul-
tiple filters with different gram sizes. Each filter
uses a linear transformation with a rectified linear
unit activation function. Finally the filter outputs
are merged using a max-pooling operation to yield
a hidden state hc, which is used to represent the
sentence.

Representation of marginals The prediction
outputs of the training model, pφ(y|xi), are cen-
tral to all active learning heuristics, and accord-
ingly, we include this in our approach. In order
to generalise existing techniques, we elect to use
the predictive marginals directly, rather than only
using statistics thereof, e.g., entropy. This gener-
ality allows for different and more nuanced con-
cepts to be learned, including patterns of proba-
bilities that span several adjacent positions in the
sentence (e.g., the uncertainty about the boundary
of a named entity).

We use another convolutional neural network to
process the predictive marginals, as shown in Fig-
ure 2. The convolutional layer contains j filters
with ReLU activation, based on a window of width
3 and height equal to the number of classes, and
with a stride of one token. We use a wide convo-
lution, by padding the input matrix to either size
with vectors of zeros. These j feature maps are
then subsampled with mean pooling, such that the
network is easily able to capture the average un-
certainty in each window. The final hidden layer
he is used to represent the predictive marginals.

Pierre 

Vinken 

will

join

the

board

…

Marginals Convolutional layer

Representation 
of marginals

PER LOC ORG O

Figure 2: The architecture for representing predic-
tive marginal distributions, pφ(y|xi), as a fixed di-
mensional vector, to form part of the MDP state.

Confidence of sequential prediction The last
component is a score C which indicates the con-
fidence of the model prediction. This is de-
fined based on the most probable label sequence
under the model, e.g., using Viterbi algorithm
with a CRF, and the probability of this se-
quence is used to represent the confidence, C =
n
√
maxy pφ(y|xi), where n = |xi| is the length of

the sentence.

3.2.2 Action
We now turn to the action, which denotes whether
the human oracle must annotate the current sen-
tence. The agent selects either to annotate xi, in
which case ai = 1, or not, with ai = 0, after which
the agent proceeds to consider the next instance,
xi+1. When action ai = 1 is chosen, an oracle is
requested to annotate the sentence, and the newly
annotated sentence is added to the training data,
and φ updated accordingly. A special ‘terminate’
option applies when no further data remains or the
annotation budget is exhausted, which concludes
the active learning run (referred to as an ‘episode’
or ‘game’ herein).

3.2.3 Reward
The training signal for learning the policy takes
the form of a scalar ‘reward’, which provides feed-
back on the quality of the actions made by the
agent. The most obvious reward is to wait for a
game to conclude, then measure the held-out per-
formance of the model, which has been trained
on the labelled data. However, this reward is de-
layed, and is difficult to related to individual ac-
tions after a long game. To compensate for this,
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we use reward shaping, whereby small interme-
diate rewards are assigned which speeds up the
learning process (Ng, 2003; Lample and Chap-
lot, 2016). At each step, the intermediate reward
is defined as the change in held-out performance,
i.e., R(si−1, a) = Acc(φi) − Acc(φi−1), where
Acc denotes predictive accuracy (here F1 score),
and φi is the trained model after action a has take
place, which may include an additional training in-
stance. Accordingly, when considering the aggre-
gate reward over a game, the intermediate terms
cancel, such that the total reward measures the
performance improvement over the whole game.
Note that the value of R(s, a) can be positive or
negative, indicating a beneficial or detrimental ef-
fect on the performance.

3.2.4 Budget
There is a fixed budget B for the total number of
instances annotated, which corresponds to the ter-
minal state in the MDP. It is a predefined number
and chosen according to time and cost constraints.
A game is finished when the data is exhausted or
the budget reached, and with the final result be-
ing the dataset thus created, upon which the final
model is trained.

3.2.5 Reinforcement learning
The remaining question is how the above compo-
nents can be used to learn a good policy. Different
policies make different data selections, and thus
result in models with different performance. We
adopt a reinforcement learning (RL) approach to
learn a policy resulting a highly accurate model.

Having represented the problem as a MDP,
episode as a sequence of transitions (si, a, r, si+1).
One episode of active learning produces a finite
sequence of states, actions and rewards. We
use a deep Q-learning approach (Mnih et al.,
2015), which formalises the policy using function
Qπ(s, a)→ Rwhich determines the utility of tak-
ing a from state s according to a policy π. In Q-
learning, the agent iteratively updates Q(s, a) us-
ing rewards obtained from each episode, with up-
dates based on the recursive Bellman equation for
the optimal Q:

Qπ(s, a) = E[Ri|si = s, ai = a, π]. (1)

Here, Ri =
∑T

t=i γ
t−irt is the discounted fu-

ture reward and γ ∈ [0, 1] is a factor discounting
the value of future rewards and the expectation is

Algorithm 1 Learn an active learning policy
Input: data D, budget B
Output: π

1: for episode = 1, 2, . . . , N do
2: Dl ← ∅ and shuffle D
3: φ← Random
4: for i ∈ {0, 1, 2, . . . , |D|} do
5: Construct the state si using xi
6: The agent makes a decision according to

ai = argmaxQπ(si, a)
7: if ai = 1 then
8: Obtain the annotation yi
9: Dl ← Dl + (xi,yi)

10: Update model φ based on Dl
11: end if
12: Receive a reward ri using held-out set
13: if |Dl| = B then
14: Store (si, ai, ri,Terminate) inM
15: Break
16: end if
17: Construct the new state si+1

18: Store transition (si, ai, ri, si+1) inM
19: Sample random minibatch of transitions

{(sj , aj , rj , sj+1)} from M, and per-
form gradient descent step on L(θ)

20: Update policy π with θ
21: end for
22: end for
23: return the latest policy π

taken over all transitions involving state s and ac-
tion a.

Following Deep Q-learning (Mnih et al., 2015),
we make use of a deep neural network to compute
the expected Q-value, in order to update the pa-
rameters. We implement the Q-function using a
single hidden layer neural network, taking as in-
put the state representation (hc,he, C) (defined
in §3.2.1), and outputting two scalar values cor-
responding to the values Q(s, a) for a ∈ {0, 1}.
This network uses a rectified linear unit (ReLU)
activation function in its hidden layer.

The parameters in the DQN are learnt using
stochastic gradient descent, based on a regression
objective to match the Q-values predicted by the
DQN and the expected Q-values from the Bell-
man equation, ri + γmaxaQ(si+1, a; θ). Fol-
lowing (Mnih et al., 2015), we use an experi-
ence replay memory M to store each transition
(s, a, r, s′) as it is used in an episode, after which
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Algorithm 2 Active learning by policy transfer
Input: unlabelled data D, budget B, policy π
Output: Dl

1: Dl ← ∅
2: φ← Random
3: for |Dl| 6= B and D not empty do
4: Randomly sample xi from the data pool D

and construct the state si
5: The agent chooses an action ai according to

ai = argmaxQπ(si, a)
6: if ai = 1 then
7: Obtain the annotation yi
8: Dl ← Dl + (xi,yi)
9: Update model φ based on Dl

10: end if
11: D ← D\xi
12: Receive a reward ri using held-out set
13: Update policy π
14: end for
15: return Dl

we sample a mini-batch of transitions from the
memory and then minimize the loss function:

L(θ) = Es,a,r,s′
[(
yi(r, s

′)−Q(s, a; θ)
)2]

, (2)

where yi(r, s′) = r + γmaxa′ Q(s′, a′; θi−1) is
the target Q-value, based on the current param-
eters θi−1, and the expectation is over the mini-
batch. Learning updates are made every training
step, based on stochastic gradient descent to min-
imise Eq. 2 w.r.t. parameters θ.

The algorithm for learning is summarised in Al-
gorithm 1. We train the policy by running multi-
ple active learning episodes over the training data,
where each episode is a simulated active learning
run. For each episode, we shuffle the data, and
hide the known labels, which are revealed as re-
quested during the run. A disjoint held-out set
is used to compute the reward, i.e., model accu-
racy, which is fixed over the episodes. Between
each episode the model is reset to its initialisation
condition, with the main changes being the differ-
ent (random) data ordering and the evolving policy
function.

3.3 Cross-lingual policy transfer
We now turn to the question of how the learned

policy can be applied to another dataset. Given
the extensive use of the training dataset, the policy
application only makes sense when employed in a

Algorithm 3 Active learning by policy and model
transfer, for ‘cold-start’ scenario
Input: unlabelled data D, budget B, policy π,

model φ
Output: Dl

1: Dl ← ∅
2: for |Dl| 6= B and D not empty do
3: Randomly sample xi from the data pool D

and construct the state si
4: The agent chooses an action ai according to

ai = argmaxQπ(si, a)
5: if ai = 1 then
6: Dl ← Dl + (xi,−)
7: end if
8: D ← D\xi
9: end for

10: Obtain all the annotations for Dl
11: return Dl

different data setting, e.g., where the domain, task
or language is different. For this paper, we con-
sider a cross-lingual application of the same task
(NER), where we train a policy on a source lan-
guage (e.g., English), and then transfer the learned
policy to a different target language. Cross-lingual
word embeddings provide a common shared rep-
resentation to facilitate application of the policy to
other languages.

We illustrate the policy transfer algorithm in Al-
gorithm 2. This algorithm is broadly similar to
Algorithm 1, but has two key differences. Firstly,
Algorithm 2 makes only one pass over the data,
rather than several passes, as befits an application
to a low-resource language where oracle labelling
is costly. Secondly, the algorithm also assumes
an initial policy, π, which is fine tuned during the
episode based on held-out performance such that
the policy can adapt to the test scenario.3

3.4 Cold-start transfer

The above transfer algorithm has some limita-
tions, which may not be realistic for low-resource
settings: the requirement for held-out evaluation
data and the embedding of the oracle annotator in-
side the learning loop. The former implies more
supervision than is ideal in a low-resource setting,

3Moreover, the algorithm can be extended to a traditional
batch setting by evaluating a batch of data instances and se-
lectinag the best k instances for labelling under the policy.
This could be applied in either the transfer step (Algorithm 2)
or initial policy training (Algorithm 1), or both.
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while the latter places limitations on the commu-
nication with annotator as well as a necessity for
real-time processing, both which are unlikely in a
field linguistics setting.

For this data and- communication-impoverished
setting, denoted as cold-start, we allow only one
chance to request labels for the target data, and,
having no held-out data, do not allow policy up-
dates. The agent needs to select a batch of unla-
belled target instances for annotations, but cannot
use these resulting annotations or any other feed-
back to refine the selection. In this, more difficult
cold-start setting, we bootstrap the process with an
initial model, such that the agent can make infor-
mative decisions in the absence of feedback.

The procedure is outlined in Algorithm 3. Us-
ing the cross-lingual word embeddings, we trans-
fer both a policy and a model into the target lan-
guage. The model, φ, is trained on one source
language, and the policy is learned on a different
source language. Policy learning uses Alg 1, with
the small change that in step 3 the model is ini-
tialised using φ. Consequently the learned policy
can exploit the knowledge from cross-lingual ini-
tialisation, such that it can figure out which aspects
that need to be corrected using target annotated
data. Overall this allows for estimates and con-
fidence values to be produced by the model, thus
providing the agent with sufficient information for
data selection.

4 Experiments

We conduct experiments to validate the proposed
active learning method in a cross-lingual setting,
whereby an active learning policy trained on a
source language is transferred to a target language.
We allow repeated active learning simulations on
the source language, where annotated corpora are
plentiful, to learn a policy, while for target lan-
guages we only permit a single episode, to mimic
a language without existing resources.

We use NER corpora from CoNLL2002/2003
shared tasks,4 which comprise NER annotated text
in English (en), German (de), Spanish (es), and
Dutch (nl), each annotated using the IOB1 la-
belling scheme, which we convert to the IO label-
ing scheme. We use the existing corpus partions,
with train used for policy training, testb used

4 http://www.cnts.ua.ac.be/conll2002/
ner/, http://www.cnts.ua.ac.be/conll2003/
ner/

Bilingual Multilingual Cold-start
tgt src tgt src tgt src pre
de en de en,nl,es de nl en
nl en nl en,de,es nl de en
es en es en,de,nl es de en
- - - - de es en
- - - - nl es en
- - - - es nl en

Table 1: Experimental configuration for the three
settings, showing target language (tgt), source lan-
guage (src) as used for policy learning, and lan-
guage used for pre-training the model (pre).

as held-out for computing rewards, and final re-
sults are reported on testa.

We consider three experimental conditions, as
illustrated in Table 1:

bilingual where English is the source (used for
policy learning) and we vary the target lan-
guage;

multilingual where several source languages are
the used in joint learning of the policy, and a
separate language is used as target; and

cold-start where a pretrained English NER tag-
ger is used to initialise policy learning on a
source language, and in cold-start application
to a separate target language.

Configuration We now outline the parameter
settings for the experimental runs. For learning
an active learning policy, we run N = 10, 000
episodes with budget B = 200 sentences using
Alg. 1. Content representations use three convo-
lutional filters of size 3, 4 and 5, using 128 fil-
ters for each size, while for predictive marginals,
the convolutional filters are of width 3, using 20
filters. The size of the last hidden layer is 256.
The discount factor is set to γ = 0.99. We used
the ADAM algorithm with mini-batches of size 32
for training the neural network. To report perfor-
mance, we apply the learned policy to the target
training set (using Alg. 2 or 3, again with budget
200),5 after which we use the final trained model
for which we report F1 score.

For word embeddings, we use off the shelf CCA
trained multilingual embeddings (Ammar et al.,

5Although it is possible the policy may learn not to use
the full budget, this does not occur in practise.
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Figure 3: The performance of active learning methods on the bilingual and multilingual settings for
three target languages, whereby the active learning policy is trained on only en, or all other languages
excluding the target, respectively.

2016),6 using a 40 dimensional embedding and
fixing these during training of both the policy and
model. As the model, we use a standard linear
chain CRF (Lafferty et al., 2001) for the first two
sets of experiments, while for cold-start case we
use a basic RNN classifier with the same multilin-
gual embeddings as before, and a 128 dimensional
hidden layer.

The proposed method is referred to as PAL, as
shorthand Policy based Active Learning. Sub-
scripts b,m, c are used to denote the bilingual,
multilingual and cold-start experimental configu-
rations. For comparative baselines, we use the fol-
lowing methods:

Uncertainty sampling we use the total token en-
tropy measure (Settles and Craven, 2008),
which takes the instance x maximising∑|x|

t=1H(yt|x, φ), where H is the token en-
tropy. We use the whole training set as the
data pool, and select a single instance for
labelling in each active learning step. This
method was shown to achieve the best re-
sult among model-independent active learn-
ing methods on the CoNLL data.

Random sampling which randomly selects ex-
amples from the unlabelled pool.

Results Figure 3 shows results the bilingual
case, where PALb consistently outperforms the
Random and Uncertainty baselines across the
three target languages. Uncertainty sampling is in-
effective, particularly towards the start of the run,

6http://128.2.220.95/multilingual

as a consequence of its dependence on a high qual-
ity model. The use of content information allows
PALb to make a stronger start, despite the poor ini-
tial model.

Also shown in Figure 3 are results for multilin-
gual policy learning, PALm, which outperform all
other approaches including PALb. This illustrates
that the additional training over several languages
gives rise to a better policy, than only using one
source language. The superior performance is par-
ticularly marked in the early stages of the runs for
Spanish and Dutch, which may indicate that the
approach was better able to learn to exploit the
sentence content information.

We evaluate the cold-start setting in Figure 4.
Recall that in this setting there are no policy or
model updates, as no heldout data is used, and all
annotations arrive in a batch. The model, how-
ever, is initialised with a NER tagger trained on
a different language, which explains why the per-
formance for all methods starts from around 40%
rather than 0%. Even in this challenging eval-
uation setting, our algorithm PALc outperforms
both baseline methods, showing that deep Q learn-
ing allows for better exploitation of the pretrained
classifier, alongside the sentence content.

Lastly, we report the results for all approaches
in Table 2, based on training on the full 200 la-
belled sentences as selected under the different
methods. It is clear that the PAL methods all out-
perform the baselines, and among these the multi-
lingual training of PALm outperforms the bilingual
setting in PALb. Surprisingly, PALc gives the over-
all best results, despite using a static policy and
model during target application, underscoring the
importance of model pretraining. Table 2 also re-
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Figure 4: The performance of active learning methods on the cold-start setting, each showing different
source→ target configurations, in all cases pretraining in en.

de nl es
F1 C/R F1 C/R F1 C/R

Rand. 44.6 100 45.2 100 40.7 100
Uncert. 54.2 60 50.1 25 45.1 30
PALb 57.9 60 54.7 25 53.9 40
PALm 62.7 25 56.3 30 56.0 25
PALc 70.7 10 69.1 10 63.8 10

Table 2: Results from active learning using the dif-
ferent methods, where each approach constructs a
training set of 200 sentences. The three target lan-
guages are shown as columns, reporting in each F1

score (%) and the relative cost reduction to match
the stated performance of the Random strategy.

ports the cost reduction versus random sampling,
showing that the PAL methods can reduce the an-
notation burden to as low as 10%.

5 Conclusion

In this paper, we have proposed a new active learn-
ing algorithm capable of learning active learning
strategies from data. We formalise active learn-
ing under a Markov decision framework, whereby
active learning corresponds to a sequence of bi-
nary annotation decisions applied to a stream of
data. Based on this, we design an active learning
algorithm as a policy based on deep reinforcement
learning. We show how these learned active learn-
ing policies can be transferred between languages,
which we empirically show provides consistent
and sizeable improvements over baseline methods,
including traditional uncertainty sampling. This

holds true even in a very difficult cold-start setting,
where no evaluation data is available, and there is
no ability to react to annotations.
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Abstract

We propose a new sentence simplifica-
tion task (Split-and-Rephrase) where the
aim is to split a complex sentence into
a meaning preserving sequence of shorter
sentences. Like sentence simplification,
splitting-and-rephrasing has the potential
of benefiting both natural language pro-
cessing and societal applications. Because
shorter sentences are generally better pro-
cessed by NLP systems, it could be used
as a preprocessing step which facilitates
and improves the performance of parsers,
semantic role labelers and machine trans-
lation systems. It should also be of use
for people with reading disabilities be-
cause it allows the conversion of longer
sentences into shorter ones. This paper
makes two contributions towards this new
task. First, we create and make available
a benchmark consisting of 1,066,115 tu-
ples mapping a single complex sentence
to a sequence of sentences expressing the
same meaning.1 Second, we propose five
models (vanilla sequence-to-sequence to
semantically-motivated models) to under-
stand the difficulty of the proposed task.

1 Introduction

Several sentence rewriting operations have been
extensively discussed in the literature: sen-
tence compression, multi-sentence fusion, sen-
tence paraphrasing and sentence simplification.

Sentence compression rewrites an input sen-
tence into a shorter paraphrase (Knight and Marcu,
2000; Cohn and Lapata, 2008; Filippova and

1The Split-and-Rephrase dataset is available here:
https://github.com/shashiongithub/
Split-and-Rephrase.

Strube, 2008; Pitler, 2010; Filippova et al., 2015;
Toutanova et al., 2016). Sentence fusion consists
of combining two or more sentences with over-
lapping information content, preserving common
information and deleting irrelevant details (McK-
eown et al., 2010; Filippova, 2010; Thadani and
McKeown, 2013). Sentence paraphrasing aims
to rewrite a sentence while preserving its mean-
ing (Dras, 1999; Barzilay and McKeown, 2001;
Bannard and Callison-Burch, 2005; Wubben et al.,
2010; Mallinson et al., 2017). Finally, sentence (or
text) simplification aims to produce a text that is
easier to understand (Siddharthan et al., 2004; Zhu
et al., 2010; Woodsend and Lapata, 2011; Wubben
et al., 2012; Narayan and Gardent, 2014; Xu et al.,
2015; Narayan and Gardent, 2016; Zhang and La-
pata, 2017). Because the vocabulary used, the
length of the sentences and the syntactic structures
occurring in a text are all factors known to af-
fect readability, simplification systems mostly fo-
cus on modelling three main text rewriting opera-
tions: simplifying paraphrasing, sentence splitting
and deletion.

We propose a new sentence simplification task,
which we dub Split-and-Rephrase, where the goal
is to split a complex input sentence into shorter
sentences while preserving meaning. In that task,
the emphasis is on sentence splitting and rephras-
ing. There is no deletion and no lexical or phrasal
simplification but the systems must learn to split
complex sentences into shorter ones and to make
the syntactic transformations required by the split
(e.g., turn a relative clause into a main clause). Ta-
ble 1 summarises the similarities and differences
between the five sentence rewriting tasks.

Like sentence simplification, splitting-and-
rephrasing could benefit both natural language
processing and societal applications. Because
shorter sentences are generally better processed by
NLP systems, it could be used as a preprocess-
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Split Delete Rephr. MPre.
Compression N Y ?Y N
Fusion N Y Y ?Y
Paraphrasing N N Y Y
Simplification Y Y Y N
Split-and-Rephrase Y N Y Y

Table 1: Similarities and differences between
sentence rewriting tasks with respect to splitting
(Split), deletion (Delete), rephrasing (Rephr.) and
meaning preserving (MPre.) operations (Y: yes,
N: No, ?Y: should do but most existing approaches
do not).

ing step which facilitates and improves the per-
formance of parsers (Tomita, 1985; Chandrasekar
and Srinivas, 1997; McDonald and Nivre, 2011;
Jelı́nek, 2014), semantic role labelers (Vickrey
and Koller, 2008) and statistical machine transla-
tion (SMT) systems (Chandrasekar et al., 1996).
In addition, because it allows the conversion of
longer sentences into shorter ones, it should also
be of use for people with reading disabilities (Inui
et al., 2003) such as aphasia patients (Carroll
et al., 1999), low-literacy readers (Watanabe et al.,
2009), language learners (Siddharthan, 2002) and
children (De Belder and Moens, 2010).

Contributions. We make two main contribu-
tions towards the development of Split-and-
Rephrase systems.

Our first contribution consists in creating and
making available a benchmark for training and
testing Split-and-Rephrase systems. This bench-
mark (WEBSPLIT) differs from the corpora used
to train sentence paraphrasing, simplification,
compression or fusion models in three main ways.

First, it contains a high number of splits and
rephrasings. This is because (i) each complex sen-
tence is mapped to a rephrasing consisting of at
least two sentences and (ii) as noted above, split-
ting a sentence into two usually imposes a syntac-
tic rephrasing (e.g., transforming a relative clause
or a subordinate into a main clause).

Second, the corpus has a vocabulary of 3,311
word forms for a little over 1 million training items
which reduces sparse data issues and facilitates
learning. This is in stark contrast to the relatively
small size corpora with very large vocabularies
used for simplification (cf. Section 2).

Third, complex sentences and their rephrasings
are systematically associated with a meaning rep-
resentation which can be used to guide learn-

ing. This allows for the learning of semantically-
informed models (cf. Section 5).

Our second contribution is to provide five mod-
els to understand the difficulty of the proposed
Split-and-Rephrase task: (i) A basic encoder-
decoder taking as input only the complex sen-
tence; (ii) A hybrid probabilistic-SMT model tak-
ing as input a deep semantic representation (Dis-
course representation structures, Kamp 1981) of
the complex sentence produced by Boxer (Cur-
ran et al., 2007); (iii) A multi-source encoder-
decoder taking as input both the complex sentence
and the corresponding set of RDF (Resource De-
scription Format) triples; (iv,v) Two partition-and-
generate approaches which first, partition the se-
mantics (set of RDF triples) of the complex sen-
tence into smaller units and then generate a text
for each RDF subset in that partition. One model is
multi-source and takes the input complex sentence
into account when generating while the other does
not.

2 Related Work

We briefly review previous work on sentence split-
ting and rephrasing.

Sentence Splitting. Of the four sentence rewrit-
ing tasks (paraphrasing, fusion, compression and
simplification) mentioned above, only sentence
simplification involves sentence splitting. Most
simplification methods learn a statistical model
(Zhu et al., 2010; Coster and Kauchak, 2011;
Woodsend and Lapata, 2011; Wubben et al.,
2012; Narayan and Gardent, 2014) from the par-
allel dataset of complex-simplified sentences de-
rived by Zhu et al. (2010) from Simple English
Wikipedia2 and the traditional one3.

For training Split-and-Rephrase models, this
dataset is arguably ill suited as it consists of
108,016 complex and 114,924 simplified sen-
tences thereby yielding an average number of sim-
ple sentences per complex sentence of 1.06. In-
deed, Narayan and Gardent (2014) report that only
6.1% of the complex sentences are in fact split in
the corresponding simplification. A more detailed
evaluation of the dataset by Xu et al. (2015) fur-
ther shows that (i) for a large number of pairs, the

2Simple English Wikipedia (http://simple.
wikipedia.org) is a corpus of simple texts targeting
“children and adults who are learning English Language”
and whose authors are requested to “use easy words and
short sentences”.

3English Wikipedia (http://en.wikipedia.org).
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simplifications are in fact not simpler than the in-
put sentence, (ii) automatic alignments resulted in
incorrect complex-simplified pairs and (iii) mod-
els trained on this dataset generalised poorly to
other text genres. Xu et al. (2015) therefore pro-
pose a new dataset, Newsela, which consists of
1,130 news articles each rewritten in four different
ways to match 5 different levels of simplicity. By
pairing each sentence in that dataset with the cor-
responding sentences from simpler levels (and ig-
noring pairs of contiguous levels to avoid sentence
pairs that are too similar to each other), it is possi-
ble to create a corpus consisting of 96,414 distinct
complex and 97,135 simplified sentences. Here
again however, the proportion of splits is very low.

As we shall see in Section 3.3, the new dataset
we propose differs from both the Newsela and the
Wikipedia simplification corpus, in that it con-
tains a high number of splits. In average, this new
dataset associates 4.99 simple sentences with each
complex sentence.

Rephrasing. Sentence compression, sentence
fusion, sentence paraphrasing and sentence sim-
plification all involve rephrasing.

Paraphrasing approaches include bootstrapping
approaches which start from slotted templates
(e.g.,“X is the author of Y”) and seed (e.g.,“X =
Jack Kerouac, Y = “On the Road””) to iteratively
learn new templates from the seeds and new seeds
from the new templates (Ravichandran and Hovy,
2002; Duclaye et al., 2003); systems which extract
paraphrase patterns from large monolingual cor-
pora and use them to rewrite an input text (Duboue
and Chu-Carroll, 2006; Narayan et al., 2016); sta-
tistical machine translation (SMT) based systems
which learn paraphrases from monolingual paral-
lel (Barzilay and McKeown, 2001; Zhao et al.,
2008), comparable (Quirk et al., 2004) or bilingual
parallel (Bannard and Callison-Burch, 2005; Gan-
itkevitch et al., 2011) corpora; and a recent neural
machine translation (NMT) based system which
learns paraphrases from bilingual parallel corpora
(Mallinson et al., 2017).

In sentence simplification approaches, rephras-
ing is performed either by a machine transla-
tion (Coster and Kauchak, 2011; Wubben et al.,
2012; Narayan and Gardent, 2014; Xu et al., 2016;
Zhang and Lapata, 2017) or by a probabilistic
model (Zhu et al., 2010; Woodsend and Lapata,
2011). Other approaches include symbolic ap-
proaches where hand-crafted rules are used e.g., to

split coordinated and subordinated sentences into
several, simpler clauses (Chandrasekar and Srini-
vas, 1997; Siddharthan, 2002; Canning, 2002; Sid-
dharthan, 2010, 2011) and lexical rephrasing rules
are induced from the Wikipedia simplification cor-
pus (Siddharthan and Mandya, 2014).

Most sentence compression approaches focus
on deleting words (the words appearing in the
compression are words occurring in the input)
and therefore only perform limited paraphrasing.
As noted by Pitler (2010) and Toutanova et al.
(2016) however, the ability to paraphrase is key
for the development of abstractive summarisation
systems since summaries written by humans of-
ten rephrase the original content using paraphrases
or synonyms or alternative syntactic constructions.
Recent proposals by Rush et al. (2015) and Bingel
and Søgaard (2016) address this issue. Rush et al.
(2015) proposed a neural model for abstractive
compression and summarisation, and Bingel and
Søgaard (2016) proposed a structured approach to
text simplification which jointly predicts possible
compressions and paraphrases.

None of these approaches requires that the in-
put be split into shorter sentences so that both the
corpora used, and the models learned, fail to ad-
equately account for the various types of specific
rephrasings occurring when a complex sentence is
split into several shorter sentences.

Finally, sentence fusion does induce rephrasing
as one sentence is produced out of several. How-
ever, research in that field is still hampered by the
small size of datasets for the task, and the difficulty
of generating one (Daume III and Marcu, 2004).
Thus, the dataset of Thadani and McKeown (2013)
only consists of 1,858 fusion instances of which
873 have two inputs, 569 have three and 416 have
four. This is arguably not enough for learning a
general Split-and-Rephrase model.

In sum, while work on sentence rewriting has
made some contributions towards learning to split
and/or to rephrase, the interaction between these
two subtasks have never been extensively studied
nor are there any corpora available that would sup-
port the development of models that can both split
and rephrase. In what follows, we introduce such
a benchmark and present some baseline models
which provide some interesting insights on how to
address the Split-and-Rephrase problem.
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3 The WEBSPLIT Benchmark

We derive a Split-and-Rephrase dataset from the
WEBNLG corpus presented in Gardent et al.
(2017).

3.1 The WEBNLG Dataset

In the WEBNLG dataset, each item consists of a
set of RDF triples (M ) and one or more texts (Ti)
verbalising those triples.

An RDF (Resource Description Format) triple
is a triple of the form subject|property|object
where the subject is a URI (Uniform Resource
Identifier), the property is a binary relation and the
object is either a URI or a literal value such as a
string, a date or a number. In what follows, we re-
fer to the sets of triples representing the meaning
of a text as its meaning representation (MR). Fig-
ure 1 shows three example WEBNLG items with
M1,M2,M3 the sets of RDF triples representing
the meaning of each item, and {T 1

1 , T
2
1 }, {T2} and

{T3} listing possible verbalisations of these mean-
ings.

The WEBNLG dataset4 consists of 13,308 MR-
Text pairs, 7049 distinct MRs, 1482 RDF enti-
ties and 8 DBpedia categories (Airport, Astronaut,
Building, Food, Monument, SportsTeam, Univer-
sity, WrittenWork). The number of RDF triples in
MRs varies from 1 to 7. The number of distinct
RDF tree shapes in MRs is 60.

3.2 Creating the WEBSPLIT Dataset

To construct the Split-and-Rephrase dataset, we
make use of the fact that the WEBNLG dataset (i)
associates texts with sets of RDF triples and (ii)
contains texts of different lengths and complexity
corresponding to different subsets of RDF triples.
The idea is the following. Given a WEBNLG MR-
Text pair of the form (M,T ) where T is a sin-
gle complex sentence, we search the WEBNLG
dataset for a set {(M1, T1), . . . , (Mn, Tn)} such
that {M1, . . . ,Mn} is a partition of M and
〈T1, . . . , Tn〉 forms a text with more than one sen-
tence. To achieve this, we proceed in three main
steps as follows.

Sentence segmentation We first preprocess all
13,308 distinct verbalisations contained in the
WEBNLG corpus using the Stanford CoreNLP

4We use a version from February 2017 given to us
by the authors. A more recent version is available here:
http://talc1.loria.fr/webnlg/stories/
challenge.html.

pipeline (Manning et al., 2014) to segment each
verbalisation Ti into sentences.

Sentence segmentation allows us to associate
each text T in the WEBNLG corpus with the num-
ber of sentences it contains. This is needed to
identify complex sentences with no split (the in-
put to the Split-and-Rephrase task) and to know
how many sentences are associated with a given
set of RDF triples (e.g., 2 triples may be re-
alised by a single sentence or by two). As the
CoreNLP sentence segmentation often fails on
complex/rare named entities thereby producing
unwarranted splits, we verified the sentence seg-
mentations produced by the CoreNLP sentence
segmentation module for each WEBNLG verbali-
sation and manually corrected the incorrect ones.

Pairing Using the semantic information given
by WEBNLG RDF triples and the information
about the number of sentences present in a
WEBNLG text produced by the sentence seg-
mentation step, we produce all items of the form
〈(MC , C), {(M1, T1) . . . (Mn, Tn)}〉 such that:

• C is a single sentence with semantics MC .

• T1 . . . Tn is a sequence of texts that contains
at least two sentences.

• The disjoint union of the semantics
M1 . . .Mn of the texts T1 . . . Tn is the
same as the semantics MC of the complex
sentence C. That is, MC =M1

⊎
. . .
⊎
Mn.

This pairing is made easy by the semantic in-
formation contained in the WEBNLG corpus and
includes two subprocesses depending on whether
complex and split sentences come from the same
WEBNLG entry or not.

Within entries. Given a set of RDF triplesMC , a
WEBNLG entry will usually contain several alter-
native verbalisations for MC (e.g., T 1

1 and T 2
1 in

Figure 1 are two possible verbalisations of M1).
We first search for entries where one verbalisa-
tion TC consists of a single sentence and another
verbalisation T contains more than one sentence.
For such cases, we create an entry of the form
〈(MC , TC), {(MC , T )}〉 such that, TC is a single
sentence and T is a text consisting of more than
one sentence. The second example item for WEB-
SPLIT in Figure 1 presents this case. It uses differ-
ent verbalisations (T 1

1 and T 2
1 ) of the same mean-

ing representation M1 in WEBNLG to construct
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WEBNLG
M1 { Birmingham|leaderName|John Clancy (Labour politician), John Madin|birthPlace|Birmingham,

103 Colmore Row|architect|John Madin}
T 1
1 John Clancy is a labour politican who leads Birmingham, where architect John Madin, who designed 103

Colmore Row, was born.
T 2
1 Labour politician, John Clancy is the leader of Birmingham.

John Madin was born in this city.
He was the architect of 103 Colmore Row.

M2 { Birmingham|leaderName|John Clancy (Labour politician)}
T2 Labour politician, John Clancy is the leader of Birmingham.
M3 { John Madin|birthPlace|Birmingham, 103 Colmore Row|architect|John Madin}
T3 John Madin was born in Birmingham.

He was the architect of 103 Colmore Row.
WEBSPLIT

MC(=M1) { Birmingham|leaderName|John Clancy (Labour politician), John Madin|birthPlace|Birmingham,
103 Colmore Row|architect|John Madin}

C(= T 1
1 ) John Clancy is a labour politican who leads Birmingham, where architect John Madin, who designed 103

Colmore Row, was born.
M2 { Birmingham|leaderName|John Clancy (Labour politician)}
T2 Labour politician, John Clancy is the leader of Birmingham.
M3 { John Madin|birthPlace|Birmingham, 103 Colmore Row|architect|John Madin}
T3 John Madin was born in Birmingham.

He was the architect of 103 Colmore Row.
MC(=M1) { Birmingham|leaderName|John Clancy (Labour politician), John Madin|birthPlace|Birmingham,

103 Colmore Row|architect|John Madin}
C(= T 1

1 ) John Clancy is a labour politican who leads Birmingham, where architect John Madin, who designed 103
Colmore Row, was born.

M1 { Birmingham|leaderName|John Clancy (Labour politician), John Madin|birthPlace|Birmingham,
103 Colmore Row|architect|John Madin}

T 2
1 Labour politician, John Clancy is the leader of Birmingham.

John Madin was born in this city.
He was the architect of 103 Colmore Row.

Figure 1: Example entries from the WEBNLG benchmark and their pairing to form entries in the WEB-
SPLIT benchmark.

a WEBSPLIT item associating the complex sen-
tence (T 1

1 ) with a text (T 2
1 ) made of three short

sentences.
Across entries. Next we create
〈(M,C), {(M1, T1) . . . (Mn, Tn)}〉 entries
by searching for all WEBNLG texts C consisting
of a single sentence. For each such text, we create
all possible partitions of its semantics MC and for
each partition, we search the WEBNLG corpus for
matching entries i.e., for a set S of (Mi, Ti) pairs
such that (i) the disjoint union of the semantics
Mi in S is equal to MC and (ii) the resulting set
of texts contains more than one sentence. The first
example item for WEBSPLIT in Figure 1 is a case
in point. C(= T 1

1 ) is the single, complex sentence
whose meaning is represented by the three triples
M . 〈T2, T3〉 is the sequence of shorter texts C
is mapped to. And the semantics M2 and M3 of
these two texts forms a partition over M .

Ordering. For each item
〈(MC , C), {(M1, T1) . . . (Mn, Tn)}〉 produced
in the preceding step, we determine an order
on T1 . . . Tn as follows. We observed that the

WEBNLG texts mostly5 follow the order in which
the RDF triples are presented. Since this order
corresponds to a left-to-right depth-first traversal
of the RDF tree, we use this order to order the
sentences in the Ti texts.

3.3 Results
By applying the above procedure to the WEBNLG
dataset, we create 1,100,166 pairs of the form
〈(MC , TC), {(M1, T1) . . . (Mn, Tn)}〉 where TC
is a complex sentence and T1 . . . Tn is a sequence
of texts with semantics M1, . . .Mn expressing the
same contentMC as TC . 1,945 of these pairs were
of type “Within entries” and the rest were of type
“Across entries”. In total, there are 1,066,115 dis-
tinct 〈TC , T1 . . . Tn〉 pairs with 5,546 distinct com-
plex sentences. Complex sentences are associated
with 192.23 rephrasings in average (min: 1, max:
76283, median: 16). The number of sentences in
the rephrasings varies between 2 and 7 with an av-
erage of 4.99. The vocabulary size is 3,311.

5As shown by the examples in Figure 1, this is not always
the case. We use this constraint as a heuristic to determine an
ordering on the set of sentences associated with each input.
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4 Problem Formulation

The Split-and-Rephrase task can be defined as fol-
lows. Given a complex sentence C, the aim is
to produce a simplified text T consisting of a se-
quence of texts T1 . . . Tn such that T forms a text
of at least two sentences and the meaning of C is
preserved in T . In this paper, we proposed to ap-
proach this problem in a supervised setting where
we aim to maximise the likelihood of T given C
and model parameters θ: P (T |C; θ). To exploit
the different levels of information present in the
WEBSPLIT benchmark, we break the problem in
the following ways:

P (T |C; θ) =
∑

MC

P (T |C;MC ; θ)P (MC |C; θ) (1)

= P (T |C;MC ; θ), if MC is known. (2)

=
∑

M1−n

P (T |C;MC ;M1−n; θ)×
P (M1−n|C;MC ; θ)

(3)

where, MC is the meaning representation of C
andM1−n is a set {M1, . . . ,Mn} which partitions
MC .

5 Split-and-Rephrase Models

In this section, we propose five different models
which aim to maximise P (T |C; θ) by exploiting
different levels of information in the WEBSPLIT

benchmark.

5.1 A Probabilistic, Semantic-Based
Approach

Narayan and Gardent (2014) describes a sen-
tence simplification approach which combines
a probabilistic model for splitting and deletion
with a phrase-based statistical machine translation
(SMT) and a language model for rephrasing (re-
ordering and substituting words). In particular, the
splitting and deletion components exploit the deep
meaning representation (a Discourse Representa-
tion Structure, DRS) of a complex sentence pro-
duced by Boxer (Curran et al., 2007).

Based on this approach, we create a Split-and-
Rephrase model (aka HYBRIDSIMPL) by (i) in-
cluding only the splitting and the SMT models (we
do not learn deletion) and (ii) training the model
on the WEBSPLIT corpus.

5.2 A Basic Sequence-to-Sequence Approach
Sequence-to-sequence models (also referred to as
encoder-decoder) have been successfully applied

to various sentence rewriting tasks such as ma-
chine translation (Sutskever et al., 2011; Bahdanau
et al., 2014), abstractive summarisation (Rush
et al., 2015) and response generation (Shang et al.,
2015). They first use a recurrent neural network
(RNN) to convert a source sequence to a dense,
fixed-length vector representation (encoder). They
then use another recurrent network (decoder) to
convert that vector to a target sequence.

We use a three-layered encoder-decoder model
with LSTM (Long Short-Term Memory, (Hochre-
iter and Schmidhuber, 1997)) units for the Split-
and-Rephrase task. Our decoder also uses the
local-p attention model with feed input as in (Lu-
ong et al., 2015). It has been shown that the lo-
cal attention model works better than the standard
global attention model of Bahdanau et al. (2014).
We train this model (SEQ2SEQ) to predict, given a
complex sentence, the corresponding sequence of
shorter sentences.

The SEQ2SEQ model is learned on pairs 〈C, T 〉
of complex sentences and the corresponding text.
It directly optimises P (T |C; θ) and does not take
advantage of the semantic information available in
the WEBSPLIT benchmark.

5.3 A Multi-Source Sequence-to-Sequence
Approach

In this model, we learn a multi-source model
which takes into account not only the input com-
plex sentence but also the associated set of RDF
triples available in the WEBSPLIT dataset. That is,
we maximise P (T |C;MC ; θ) (Eqn. 2) and learn a
model to predict, given a complex sentence C and
its semantics MC , a rephrasing of C.

As noted by Gardent et al. (2017), the shape of
the input may impact the syntactic structure of the
corresponding text. For instance, an input contain-
ing a path (X|P1|Y )(Y |P2|Z) equating the object
of a property P1 with the subject of a property
P2 may favour a verbalisation containing a sub-
ject relative (“x V1 y who V2 z”). Taking into
account not only the sentence C that needs to be
rephrased but also its semanticsMC may therefore
help learning.

We model P (T |C;MC ; θ) using a multi-source
sequence-to-sequence neural framework (we re-
fer to this model as MULTISEQ2SEQ). The core
idea comes from Zoph and Knight (2016) who
show that a multi-source model trained on trilin-
gual translation pairs ((f, g), h) outperforms sev-
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Model Task Training Size
HYBRIDSIMPL Given C, predict T 886,857
SEQ2SEQ Given C, predict T 886,857
MULTISEQ2SEQ Given C and MC , predict T 886,866
SPLIT-MULTISEQ2SEQ Given C and MC , predict M1 . . .Mn 13,051

Given C and Mi, predict Ti 53,470
SPLIT-SEQ2SEQ Given C and MC , predict M1 . . .Mn 13,051

Given Mi, predict Ti 53,470

Table 2: Tasks modelled and training data used by Split-and-Rephrase models.

eral strong single source baselines. We explore a
similar “trilingual” setting where f is a complex
sentence (C), g is the corresponding set of RDF
triples (MC) and h is the output rephrasing (T ).

We encode C and MC using two separate RNN
encoders. To encode MC using RNN, we first lin-
earise MC by doing a depth-first left-right RDF
tree traversal and then tokenise using the Stanford
CoreNLP pipeline (Manning et al., 2014). Like in
SEQ2SEQ, we model our decoder with the local-
p attention model with feed input as in (Luong
et al., 2015), but now it looks at both source en-
coders simultaneously by creating separate con-
text vector for each encoder. For a detailed expla-
nation of multi-source encoder-decoders, we refer
the reader to Zoph and Knight (2016).

5.4 Partitioning and Generating

As the name suggests, the Split-and-Rephrase task
can be seen as a task which consists of two sub-
tasks: (i) splitting a complex sentence into sev-
eral shorter sentences and (ii) rephrasing the in-
put sentence to fit the new sentence distribution.
We consider an approach which explicitly mod-
els these two steps (Eqn. 3). A first model
P (M1, . . . ,Mn|C;MC ; θ) learns to partition a set
MC of RDF triples associated with a complex sen-
tence C into a disjoint set {M1, . . . ,Mn} of sets
of RDF triples. Next, we generate a rephrasing of
C as follows:

P (T |C;MC ;M1, . . . ,Mn; θ) (4)

≈ P (T |C;M1, . . . ,Mn; θ) (5)

= P (T1, . . . , Tn|C;M1, . . . ,Mn; θ) (6)

=

n∏

i

P (Ti|C;Mi; θ) (7)

where, the approximation from Eqn. 4 to Eqn. 5
derives from the assumption that the generation of
T is independent of MC given (C;M1, . . . ,Mn).
We propose a pipeline model to learn parameters

θ. We first learn to split and then learn to generate
from each RDF subset generated by the split.

Learning to split. For the first step, we learn
a probabilistic model which given a set of RDF
triples MC predicts a partition M1 . . .Mn of
this set. For a given MC , it returns the par-
tition M1 . . .Mn with the highest probability
P (M1, . . . ,Mn|MC).

We learn this split module using items
〈(MC , C), {(M1, T1) . . . (Mn, Tn)}〉 in the WEB-
SPLIT dataset by simply computing the probabil-
ity P (M1, . . . ,Mn|MC). To make our model ro-
bust to an unseen MC , we strip off named-entities
and properties from each RDF triple and only keep
the tree skeleton ofMC . There are only 60 distinct
RDF tree skeletons, 1,183 possible split patterns
and 19.72 split candidates in average for each tree
skeleton, in the WEBSPLIT dataset.

Learning to rephrase. We proposed two ways
to estimate P (Ti|C;Mi; θ): (i) we learn a multi-
source encoder-decoder model which generates a
text Ti given a complex sentence C and a set of
RDF triples Mi ∈ MC ; and (ii) we approximate
P (Ti|C;Mi; θ) by P (Ti|Mi; θ) and learn a sim-
ple sequence-to-sequence model which, givenMi,
generates a text Ti. Note that as described earlier,
Mi’s are linearised and tokenised before we input
them to RNN encoders. We refer to the first model
by SPLIT-MULTISEQ2SEQ and the second model
by SPLIT-SEQ2SEQ.

6 Experimental Setup and Results

This section describes our experimental setup and
results. We also describe the implementation de-
tails to facilitate the replication of our results.

6.1 Training, Validation and Test sets

To ensure that complex sentences in validation
and test sets are not seen during training, we split
the 5,546 distinct complex sentences in the WEB-
SPLITdata into three subsets: Training set (4,438,
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80%), Validation set (554, 10%) and Test set (554,
10%).

Table 2 shows, for each of the 5 models, a
summary of the task and the size of the train-
ing corpus. For the models that directly learn
to map a complex sentence into a meaning pre-
serving sequence of at least two sentences ( HY-
BRIDSIMPL, SEQ2SEQ and MULTISEQ2SEQ),
the training set consists of 886,857 〈C, T 〉 pairs
with C a complex sentence and T , the corre-
sponding text. In contrast, for the pipeline mod-
els which first partition the input and then gen-
erate from RDF data (SPLIT-MULTISEQ2SEQand
SPLIT-SEQ2SEQ), the training corpus for learning
to partition consists of 13,051 〈MC , 〈M1 . . .Mn〉〉
pairs while the training corpus for learning to gen-
erate contains 53,470 〈Mi, Ti〉 pairs.

6.2 Implementation Details

For all our neural models, we train RNNs with
three-layered LSTM units, 500 hidden states and
a regularisation dropout with probability 0.8. All
LSTM parameters were randomly initialised over
a uniform distribution within [-0.05, 0.05]. We
trained our models with stochastic gradient de-
scent with an initial learning rate 0.5. Every
time perplexity on the held out validation set in-
creased since it was previously checked, then
we multiply the current learning rate by 0.5.
We performed mini-batch training with a batch
size of 64 sentences for SEQ2SEQ and MUL-
TISEQ2SEQ, and 32 for SPLIT-SEQ2SEQ and
SPLIT-MULTISEQ2SEQ. As the vocabulary size
of the WEBSPLIT data is small, we train both en-
coder and decoder with full vocabulary. We ran-
domly initialise word embeddings in the begin-
ning and let the model train them during training.
We train our models for 20 epochs and keep the
best model on the held out set for the testing pur-
poses. We used the system of Zoph and Knight
(2016) to train both simple sequence-to-sequence
and multi-source sequence-to-sequence models6,
and the system of Narayan and Gardent (2014) to
train our HYBRIDSIMPL model.7

6We used the code available at https://github.
com/isi-nlp/Zoph_RNN.

7We used the code available at https:
//github.com/shashiongithub/
Sentence-Simplification-ACL14.

Model BLEU #S/C #Tokens/S
SOURCE 55.67 1.0 21.11
HYBRIDSIMPL 39.97 1.26 17.55
SEQ2SEQ 48.92 2.51 10.32
MULTISEQ2SEQ 42.18 2.53 10.69
SPLIT-MULTISEQ2SEQ 77.27 2.84 11.63
SPLIT-SEQ2SEQ 78.77 2.84 9.28

Table 3: Average BLEU scores for rephrasings,
average number of sentences in the output texts
(#S/C) and average number of tokens per output
sentences (#Tokens/S). SOURCE are the complex
sentences from the WEBSPLIT corpus.

6.3 Results

We evaluate all models using multi-reference
BLEU-4 scores (Papineni et al., 2002) based on all
the rephrasings present in the Split-and-Rephrase
corpus for each complex input sentence.8 As
BLEU is a metric for n-grams precision estima-
tion, it is not an optimal metric for the Split-and-
Rephrase task (sentences even without any split
could have a high BLEU score). We therefore also
report on the average number of output simple sen-
tences per complex sentence and the average num-
ber of output words per output simple sentence.
The first one measures the ability of a system to
split a complex sentence into multiple simple sen-
tences and the second one measures the ability of
producing smaller simple sentences.

Table 3 shows the results. The high BLEU score
for complex sentences (SOURCE) from the WEB-
SPLIT corpus shows that using BLEU is not suffi-
cient to evaluate splitting and rephrasing. Because
the short sentences have many n-grams in com-
mon with the source, the BLEU score for com-
plex sentences is high but the texts are made of a
single sentence and the average sentence length is
high. HYBRIDSIMPL performs poorly – we con-
jecture that this is linked to a decrease in seman-
tic parsing quality (DRSs) resulting from com-
plex named entities not being adequately recog-
nised. The simple sequence-to-sequence model
does not perform very well neither does the multi-
source model trained on both complex sentences
and their semantics. Typically, these two mod-
els often produce non-meaning preserving outputs
(see example in Table 4) for input of longer length.
In contrast, the two partition-and-generate mod-
els outperform all other models by a wide mar-

8We used https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl to estimate BLEU
scores against multiple references.
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SOURCE Alan Shepard was born in New Hampshire and he served as the Chief of the Astronaut Office .
HYBRIDSIMPL Alan Shepard was born in New Hampshire and he served as of the the chief astronaut office .
SEQ2SEQ Alan Shepard ’s occupation was a test pilot . Alan Shepard was born in New Hampshire .

Alan Shepard was born on Nov 18 , 1923 .
MULTISEQ2SEQ Alan Shepard served as a test pilot . Alan Shepard ’s birth place was New Hampshire .
SPLIT-MULTISEQ2SEQ Alan Shepard served as the Chief of the Astronaut Office . Alan Shepard was born in New

Hampshire .
SPLIT-SEQ2SEQ Alan Shepard served as the Chief of the Astronaut Office . Alan Shepard ’s birth place was

New Hampshire .

Table 4: Example outputs from different models.

gin. This suggests that the ability to split is key
to a good rephrasing: by first splitting the input
semantics into smaller chunks, the two partition-
and-generate models permit reducing a complex
task (generating a sequence of sentences from a
single complex sentence) to a series of simpler
tasks (generating a short sentence from a seman-
tic input).

Unlike in neural machine translation set-
ting, multi-source models in our setting do
not perform very well. SEQ2SEQ and SPLIT-
SEQ2SEQ outperform MULTISEQ2SEQ and
SPLIT-MULTISEQ2SEQ respectively, despite
using less input information than their counter-
parts. The multi-source models used in machine
translation have as a multi-source, two trans-
lations of the same content (Zoph and Knight,
2016). In our approach, the multi-source is a
complex sentence and a set of RDF triples, e.g.,
(C;MC) for MULTISEQ2SEQ and (C;Mi) for
SPLIT-MULTISEQ2SEQ. We conjecture that the
poor performance of multi-source models in our
case is due either to the relatively small size of the
training data or to a stronger mismatch between
RDF and complex sentence than between two
translations.

Table 4 shows an example output for all 5 sys-
tems highlighting the main differences. HYBRID-
SIMPL’s output mostly reuses the input words sug-
gesting that the SMT system doing the rewriting
has limited impact. Both the SEQ2SEQ and the
MULTISEQ2SEQ models “hallucinate” new infor-
mation (“served as a test pilot”, “born on Nov
18, 1983”). In contrast, the partition-and-generate
models correctly render the meaning of the input
sentence (SOURCE), perform interesting rephras-
ings (“X was born in Y” → “X’s birth place was
Y”) and split the input sentence into two.

7 Conclusion

We have proposed a new sentence simplification
task which we call “Split-and-Rephrase”. We

have constructed a new corpus for this task which
is built from readily-available data used for NLG
(Natural Language Generation) evaluation. Initial
experiments indicate that the ability to split is a
key factor in generating fluent and meaning pre-
serving rephrasings because it permits reducing a
complex generation task (generating a text consist-
ing of at least two sentences) to a series of sim-
pler tasks (generating short sentences). In future
work, it would be interesting to see whether and
if so how, sentence splitting can be learned in the
absence of explicit semantic information in the in-
put.

Another direction for future work concerns the
exploitation of the extended WebNLG corpus.
While the results presented in this paper use a ver-
sion of the WebNLG corpus consisting of 13,308
MR-Text pairs, 7049 distinct MRs and 8 DBpedia
categories, the current WebNLG corpus encom-
passes 43,056 MR-Text pairs, 16,138 distinct MRs
and 15 DBpedia categories. We plan to exploit
this extended corpus to make available a corre-
spondingly extended WEBSPLIT corpus, to learn
optimised Split-and-Rephrase models and to ex-
plore sentence fusion (converting a sequence of
sentences into a single complex sentence).
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Abstract

This paper presents a Generative Adver-
sarial Network (GAN) to model single-
turn short-text conversations, which trains
a sequence-to-sequence (Seq2Seq) net-
work for response generation simulta-
neously with a discriminative classifier
that measures the differences between
human-produced responses and machine-
generated ones. In addition, the proposed
method introduces an approximate embed-
ding layer to solve the non-differentiable
problem caused by the sampling-based
output decoding procedure in the Seq2Seq
generative model. The GAN setup pro-
vides an effective way to avoid non-
informative responses (a.k.a “safe re-
sponses”), which are frequently observed
in traditional neural response generators.
The experimental results show that the
proposed approach significantly outper-
forms existing neural response generation
models in diversity metrics, with slight
increases in relevance scores as well, when
evaluated on both a Mandarin corpus and
an English corpus.

1 Introduction

After achieving remarkable successes in Machine
Translation (Sutskever et al., 2014; Cho et al.,
2014), neural networks with the encoder-decoder
architectures (a.k.a sequence-to-sequence models,
Seq2Seq) have been proven to be a functioning
method to model short-text conversations (Vinyals
and Le, 2015; Shang et al., 2015), where the
corresponding task is often called Neural Re-
sponse Generation. The advantage of applying

∗The work was done when the first author was an intern
at Tricorn (Beijing) Technology Co., Ltd.

Seq2Seq models to conversation generation is
that the training procedure can be performed
end-to-end in an unsupervised manner, based on
human-generated conversational utterances (typ-
ically query-response pairs mined from social
networks). One of the potential applications of
such neural response generators is to improve
the capability of existing conversational interfaces
(informally also known as chatbots) by enabling
them to go beyond predefined tasks and chat with
human users in an open domain.

However, previous research has indicated that
naı̈ve implementations of Seq2Seq based conver-
sation models tend to suffer from the so-called
“safe response” problem (Li et al., 2016a), i.e.
such models tend to generate non-informative
responses that can be associated to most queries,
e.g. “I don’t know”, “I think so”, etc. This is due
to the fundamental nature of statistical models,
which fit sufficiently observed examples better
than insufficiently observed ones. Concretely, the
space of open-domain conversations is so large
that in any sub-sample of it (i.e. a training set),
the distribution of most pieces of information
are relatively much sparser when compared to
safe response patterns. Furthermore, since a
safe response can be of relevance to a large
amount of diverse queries, a statistical learner
will tend to minimize its empirical risk in the
response generation process by capturing those
safe responses if naı̈ve relevance-oriented loss
metrics are employed.

Frequent occurrences of safe responses can
dramatically reduce the attractiveness of a chat
agent, which therefore should be avoided to the
best extent possible when designing the learning
algorithms. The pathway to achieve this purpose
is to seek a more expressive model with better
capacity that can take relevance and diversity
(or informativeness) into account simultaneously
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when modelling the underlying distribution of
human conversations.

Generative Adversarial Nets (GANs) (Good-
fellow et al., 2014; Chen et al., 2016) offers
an effective architecture of jointly training a
generative model and a discriminative classifier
to generate sharp and realistic images. This
architecture could also potentially be applied to
conversational response generation to relieve the
safe response problem, where the generative part
can be an Seq2Seq-based model that generates
response utterances for given queries, and the
discriminative part can evaluate the quality of
the generated utterances from diverse dimen-
sions according to human-produced responses.
However, unlike the image generation problems,
training such a GAN for text generation here is
not straightforward. The decoding phase of the
Seq2Seq model usually involves sampling discrete
words from the predicted distributions, which will
be fed into the training of the discriminator. The
sampling procedure is non-differentiable, and will
therefore break the back-propagation.

To the best of our knowledge, Reinforcement
Learning (RL) is first introduced to address the
above problem (Li et al., 2017; Yu et al., 2017),
where the score predicted by a discriminator was
used as the reinforcement to train the generator,
yielding a hybrid model of GAN and RL. But to
train the RL phrase, Li et al. (2017) introduced
two approximations for reward computing at each
action (word) selection step, including a Markov
Chain Monte Carlo (MCMC) sampling method
and a partial utterance scoring approach. It has
been stated in their work that the former approach
is time-consuming and the latter one will result in
lower performance due to the overfitting problem
caused by adding a large amount of partial utter-
ances into the training set. Nevertheless, we also
want to argue that, besides the time complexity
issue of MCMC, RL itself is not an optimal choice
either. As shown in our experimental results in
Section 5.1, a more elegant design of an end-to-
end differentiable GAN can significantly increase
the model’s performance in this text generation
task.

In this paper, we propose a novel variant
of GAN for conversational response generation,
which introduces an approximate embedding layer
to replace the sampling-based decoding phase,
such that the entire model is continuous and dif-

ferentiable. Empirical experiments are conducted
based on two datasets, of which the results show
that the proposed method significantly outper-
forms three representative existing approaches in
both relevance and diversity oriented automatic
metrics. In addition, human evaluations are
carried out as well, demonstrating the potential of
the proposed model.

2 Related Work

Inspired by recent advances in Neural Machine
Translation (NMT), Ritter et al. (2011) and
Vinyals and Le (2015) have shown that single-
turn short-text conversations can be modelled as
a generative process trained using query-response
pairs accumulated on social networks. Earlier
works focused on paired word sequences only,
while Zhou et al. (2016) and Iulian et al. (2017)
have demonstrated that the comprehensibility of
the generated responses can benefit from multi-
view training with respect to words, coarse tokens
and utterances. Moreover, Sordoni et al. (2015)
proposed a context-aware response generation
model that goes beyond single-turn conversations.

In addition, attention mechanisms were intro-
duced to Seq2Seq-based models to capture topic
and dialog focus information by Shang et al.
(2015) and Chen et al. (2017), which had been
proven to be helpful for improving query-response
relevance (Wu et al., 2016). Additional features
such as persona information (Li et al., 2016b) and
latent semantics (Zhou et al., 2017; Serban et al.,
2017) have also been proven beneficial within this
context.

When compared to previous work, this paper is
focused on single-turn conversation modeling, and
employs a GAN to yield informative responses.

3 Building a Conversational Response
Generator via GAN

3.1 Notations
Let D = {(qi, ri)}Ni=1 be a set of N single-
turn human-human conversations, where qi =
(wqi,1, . . . , wqi,t, . . . , wqi,m) is a query, ri =
(wri,1, . . . , wri,t, . . . , wri,n) stands for the re-
sponse to qi, and wqi,t and wri,t denote the t-
th words in qi and ri, respectively. This paper
aims to learn a generative model G(r|q) based
on a discriminator D that can predict informative
responses with good diversity for arbitrary input
queries.
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Figure 1: The Framework of GAN for the Response Generator.

3.2 Model Overview

We name the proposed model Generative Adver-
sarial Network with an Approximate Embedding
Layer (GAN-AEL), of which Figure 1 illustrates
the overall framework. Generally speaking, the
whole framework consists of a response generator
G, a discriminator D and an embedding approx-
imation layer that connects the G and the D.
We explain each of the components in detail as
follows. The generator adopts the Gated Recurrent
Unit (GRU) (Cho et al., 2014) based encoder-
decoder architecture, where the encoder projects
the input query (a discrete word sequence) into
a real-valued vector, on which the output will be
generated conditionally in the decoding process,
activated by a starting signal (denoted as “Go” in
Figure 1). An approximate embedding layer is
designed to guarantee that the response generation
procedure is continuous and differentiable, serv-
ing as an interface for the discriminator to propa-
gate its loss to the generator. The Convolutional
Neural Network (CNN) based discriminator is
attached on top of the approximation layer, which
aims to distinguish the fake responses output by
the approximation layer and the corresponding
human-generated references, conditioned on the
input query. The judgement of the CNN can
be propagated to the Seq2Seq generator through
the proposed approximate embedding layer, and
forces the generator to be fine-tuned to produce
more attractive results.

The proposed GAN framework possesses sev-

eral advantages over existing conversational re-
sponse generation models. Firstly, both the
generator and the discriminator are conditioned
on the input query, which guarantees the rele-
vance of the generated responses. Secondly, the
discriminator enforces the generator to produce a
response according to the true distribution in better
granularity, such that the state of promoting safe
responses is leaped out. Thirdly, the approxima-
tion layer yields a smooth connection between the
generator and the discriminator, avoiding the non-
differentiable discrete sampling process.

3.3 Pre-training the Generator by MLE
In our proposed encoder-decoder framework, both
the encoder and the generator (i.e. the decoder)
G is composed of GRU (Cho et al., 2014)
units, which is designed to generate responses
r = {wr,1, wr,2, · · · , wr,K} conditioned on an
input query q = {wq,1, wq,2, · · · , wq,J}. For a
given query-response pair (q, r), the target is to
maximum the conditional probability p(r|q) in the
generative process. Concretely, in this model, q
is firstly encoded into a vector representation qv
by the GRU-based encoder as shown in Figure
1, which is actually the last hidden state of the
encoder. Then the generator estimates the prob-
ability of each word occurring in r conditioned on
qv. Hence p(r|q) can be formulated as follows:

p(r|q) =
K∏

t=1

p(wr,t|qv, wr,1, · · · , wr,t−1) (1)

Taking the logarithm of the probabilities for
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effective computation, the generator is trained by
optimising the Maximum Likelihood Estimation
(MLE) objective defined as:

1

|D|
∑

(q,r)∈D

K∑

t=1

log p(wr,t|qv, wr,1, · · · , wr,t−1)

(2)
Note here, we need to pre-train the generator
using Equation 2 as the loss function to guarantee
the generator to produce grammatical utterances.
Otherwise, the discriminator will tend to learn
a rule with ease to distinguish human-produced
utterances from those ungrammatical responses
generated in the early stages of the training phase,
which would cause the failure of the training in
satisfying Nash Equilibrium (Goodfellow et al.,
2014).

3.4 The Approximate Embedding Layer

In order to smoothly connect the output layer of
the generator to the input layer of the discriminator
to yield an end-to-end differentiable GAN, one
needs to solve the following critical problem.
The output of the generator is a sequence of
discrete words, which is usually sampled from the
distributions predicted by the decoder’s RNN units
in the Softmax layer, and is non-differentiable.

Since afterward those words will be projected
into embedding vectors to feed the CNN-based
discriminator, we introduce an embedding approx-
imation layer to merge the generation process
of the decoder and the word embedding phrase
of the discriminator. This can be done by
multiplying the word probabilities in the distribu-
tions obtained from the decoder’s Softmax layer
to the corresponding word vectors, to directly
yield an approximately vectorized representation
of the generated word sequences for further
convolutional computations in the discriminative
process. This approximation is based on the
assumption that ideally the word distributions
should be trained to reasonably approach the one-
hot representations of the discrete words.

The structure of the approximation layer is
illustrated on the right-hand side of Figure 1.
Concretely, the approximation layer takes the
output hi of the generator and a random noise
zi as the input, and reuses the word projection
layer (pre-trained in the standard generator) to
estimate the probability distribution of wi. Note
that, the noise zi added to hi forms a latent feature

for the word embedding approximation process to
enforce the diversity of the generated responses.
The overall word embedding approximation is
computed as:

êwi =
V∑

j=1

ej · Softmax(Wp(hi + zi) + bp)j (3)

where Wp and bp are the weight and bias parame-
ters of the word projection layer, respectively, and
hi is the hidden representation of word wi, from
the decoding procedure of the generator G, which
is computed as:

hi = g(hi−1, êwi−1) (4)

where g(·) is the standard GRU inference step in
G (Cho et al., 2014).

3.5 Pre-training the CNN-based
Discriminator

CNN has been proven to be an appropriate
classifier for many NLP tasks, such as sentence
classification (Kim, 2014) and matching (Hu et al.,
2014). Therefore, in this paper we adopt a CNN-
based discriminator as shown in Figure 1.

For the convenience of further discussions, we
introduce r̂ to denote the underlying (distribu-
tional) fake response produced by the decoder.
In other words, r̂ stands for a sequence of word
distributions projected from the hidden layers of
the decoder RNN, based on which one would sam-
ple the output response utterance in a traditional
Seq2Seq generator. The detailed architecture of
the discriminator is described as follows. Firstly,
the input of the discriminator consist of the word
embedding vector sequence Vq for a given query
q and the word embedding vector sequence Vr
for its human-produced response r, as well as the
approximate word embedding vector sequence Vr̂
produced by the approximate embedding layer for
the corresponding fake response r̂. All the word
embedding vector sequences here are zero-padded
or truncated to a same fixed length. After this,
two CNNs with shared parameters are employed
to encode Vr and Vr̂ into higher-level abstractions,
respectively. In addition, a separate CNN is used
to abstract Vq in a similar way. We denote such
abstraction layers (i.e. the max-pooling layers
before the fully-connected layers) in the above
CNNs as Ar, Ar̂ and Aq, corresponding to r, r̂
and q, respectively. Finally, we concatenate Aq
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to Ar and Ar̂ separately, and feed the resulting
vectors to their respective fully-connected layers,
as illustrated in Figure 1. Here, we make the two
fully-connected layers share common parameters
and predict probabilities D(r|q) and D(r̂|q),
respectively, for r and r̂ being true responses of
the given q.

In practice, when the Seq2Seq generative net-
work G is pre-trained, we also pre-train the above
discriminator D by maximising the following
objective function:

Dloss = logD(r|q) + log(1−D(r̂|q)) (5)

with the parameters of G frozen, before the adver-
sarial training procedure described in Section 3.6.

3.6 Adversarial Training of the Generator

After the pre-training of the generator G and the
discriminator D as described above, the entire
network is trained adversarially. Concretely, we
iteratively train G and D, where at each iteration,
the parameters of the non-training network will
be frozen. The following tricks are utilised in
the adversarial training phase to achieve better
convergence. Firstly, when training G, we replace
the objective function given in Equation 5 with
the l2-loss between Ar and Ar̂, to maintain a
reasonable scale of the gradient. Secondly, we
freeze the parameters of the encoder network
and the projection layer of the decoder network,
but only tune the parameters of decoder’s hidden
layers. This is based on the assumption that,
in principle, after the pre-training, the encoder
network is sufficiently effective to represent the
entire input utterance, while the projection layer
of the decoder is also adequate to decode words
from its hidden states. Therefore, the adversarial
training here is to adjust the “wording strategy”
of the generative model, i.e. the way it organises
the semantic contents during the decoding (or
in other words, the way it realises the hidden
states). Preliminary experiments show that this
trick significantly improves the grammaticalness
of the generated responses.

The gradient of the generator can be computed
as:

∇gD,G(θG) =
∂Gloss
∂Vr̂

∂Vr̂
∂θG

=
∂Gloss
∂Vr̂

∂Vr̂
∂G

∂G

∂θG

(6)

where θG denotes the active parameters of the
generator G, Gloss = ‖Ar − Ar̂‖ and gD,G(·)
stands for the inference step of the entire GAN.
It can be seen that the feedback signals from D
can be propagated to G effectively through the
approximate embedding layer, which connects G
and D smoothly, and avoids the discrete sampling
procedure.

4 Experiment Setup

4.1 Datasets

We test our model on two datasets: Baidu
Tieba and OpenSubtitles (Lison and Tiedemann,
2016). The Baidu Tieba dataset is composed
of single-turn conversations collected from the
threads of Baidu Tieba1, of which the utterance
length ranging from 3 to 30 words. The Open-
Subtitles dataset contains movie scripts organised
by characters, where we follow Li et al. (2016a)
to retain subtitles containing 5-50 words in the
following experiments. From each of the two
datasets, we sample 5,000,000 unique single-
turn conversations as the training data, 200,000
additional unique pairs for validation, and another
10,000 as the test set.

4.2 Baselines

To illustrate the performance of the proposed
model, we introduce three existing approaches as
baselines.

• Seq2Seq: the standard sequence-to-sequence
model (Sutskever et al., 2014).

• MMI-anti: a Seq2Seq model with a Max-
imum Mutual Information (MMI) criterion
(implemented as an anti-language model) (Li
et al., 2016a) in the decoding process, which
reduces the probability of generating “safe
responses”.

• Adver-REGS: another adversarial strategy
proposed by Li et al. (2017)2, which links the
generator and the discriminator together with
a reinforcement learning framework, and
takes the discriminator’s output probability as
the reward to train the generator.

1https://tieba.baidu.com/index.html
2The codes can be accessed at https://github.

com/jiweil/Neural-Dialogue-Generation/
tree/master/Adversarial
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4.3 Evaluation Metrics
For automatic evaluations, the following com-
monly accepted metrics are employed. Note here,
the goal of our model is to obtain responses not
only semantically relevant to the corresponding
queries, but also of good diversity and novelty.
Therefore, in this work, embedding-based metrics
(Liu et al., 2016) are adopted to evaluate semantic
the relevance between queries and their corre-
sponding generated responses, while dist-1, dist-2
(Li et al., 2016a) are used as diversity measures. In
addition, we also introduce a Novelty measure as
detailed below.

Relevance Metrics: The following three word
embedding based metrics3 are used to compute
the semantic relevance of two utterances. The
Greedy metric is to greedily match words in two
given utterances based on the cosine similarities
of their embeddings, and to average the obtained
scores (Rus and Lintean, 2012). Alternatively,
an utterance representation can be obtained by
averaging the embeddings of all the words in that
utterance, of which the cosine similarity gives
the Average metric (Mitchell and Lapata, 2008).
In addition, one can also achieve an utterance
representation by taking the largest extreme values
among the embedding vectors of all the words it
contains, before computing the cosine similarities
between utterance vectors, which yields the Ex-
treme metric (Forgues et al., 2014).

Diversity Metrics: To measure the informa-
tiveness and diversity of the generated responses,
we follow the dist-1 and dist-2 metrics proposed
by Li et al. (2016a) and Chen et al. (2017), and
introduce a Novelty metric. The dist-1 (dist-
2) is defined as the number of unique unigrams
(bigrams for dist-2). A common drawback of
dist-1 and dist-2 is that in the computation, less
informative words (such as “I”, “is”, etc.) are
considered equally with those more informative
ones. Therefore, in this paper, we define an extra
Novelty metric, which is the number of infrequent
words observed in the generated responses. Here
we take all the words except the top 2000 most
frequent ones in the vocabulary as infrequent
words. Note here, the dist-1 and Novelty values
are normalised by utterance length, and dist-2 is
normalised by the total number of bigrams in the

3The implementation of all these metrics
follows the code at https://github.com/
julianser/hed-dlg-truncated/tree/master/
Evaluation.

generated response.
Human Evaluation: To evaluate the perfor-

mance of our model from human perspectives,
this paper conducts a human subject experiement
by comparing the responses generated by Adver-
REGS (which is one of the most competitive
existing approaches) with those by the proposed
model. Three experienced annotators are invited
to evaluate 200 groups of examples. In the
evaluation, for every given query, the annotators
will see 10 generated responses from each model.
Since the proposed method aims at improving the
diversity of the responses generated by Seq2Seq
models, while maintaining their relevance to the
input queries, we ask the annotators to evaluate
the diversity performance of the two systems only
if there is no obvious difference between the
performance of their relevance. This experimental
setting is due to the following two reasons. Firstly,
it is difficult to judge a systems diversity based on
one single response (Li et al., 2016a; Zhou et al.,
2017). Secondly, the practical deployment of a
chat-oriented conversational system will usually
decode an N-best list of candidate responses,
from which it random samples the final reply.
Considering that all the annotators use Mandarin
as their first language, the above evaluation is only
done on the Tieba dataset.

4.4 Hyperparameters & Training Strategies

Hyperparameter Settings: The hyperparameters
of the networks used in all the experiments below
are described as follows. The vocabulary sizes for
Tieba and OpenSubtitles are truncated to 100,000
and 150,000, respectively. The dimensions of
word embedding vectors are set to 100 for Tieba
and 300 for OpenSubtitles. The size of the hidden
layers in the generator is set to 200 in the all
experiments on both datasets. We experiments
subsets of {1,2,3,4} for the filter sizes of the
CNNs, and fixed the filter number to 128. As
shown in subsection 5.3, CNNs with filter sizes
{1,2} are the best choice here. Max-pooling is
used in all the CNN settings here. The noise Z is
sampled from a normal distribution with 0 mean
and 0.1 variance.

Training Strategies: To train the proposed
GAN, the parameters of the generator G are
initialised based on the pre-training mentioned in
subsection 3.3, while those of the discriminator D
are randomly initialised. The adversarial training
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Model
Relevance Diversity

Average Greedy Extreme Dist-1 Dist-2 Novelty
Seq2Seq 0.720 0.614 0.571 0.0037 0.0121 0.0102
MMI-anti 0.713 0.592 0.552 0.0127 0.0495 0.0250

Adver-REGS 0.722 0.660 0.574 0.0153 0.0658 0.0392
GAN-AEL 0.736 0.689 0.580 0.0214 0.0963 0.0635

Table 1: Relevance and diversity evaluation on the Tieba dataset.

Model
Relevance Diversity

Average Greedy Extreme Dist-1 Dist-2 Novelty
Seq2Seq 0.719 0.578 0.505 0.0054 0.0141 0.0045
MMI-anti 0.710 0.569 0.499 0.0175 0.0586 0.0097

Adver-REGS 0.726 0.590 0.507 0.0223 0.0725 0.0147
GAN-AEL 0.734 0.621 0.514 0.0296 0.0955 0.0216

Table 2: Relevance and diversity evaluation on the OpenSubtitles dataset.

starts from pre-training D with the parameters of
G fixed. After this, G and D will be trained
iteratively with different learning rates, which are
0.0001 for D and 0.00002 for G. In addition, we
updateD at a frequency of every 5 batches instead
of every single batch.

5 Experimental Results

5.1 Automatic Evaluation & Analysis

From Table 1 and 2, it can be observed that the
proposed GAN-AEL model outperforms the base-
lines on both datasets in all metrics, especially for
the diversity oriented scores. The improvements
can be explained from the following two angles.

a) Since a vanilla Seq2Seq model does not take
diversity, novelty or informativeness into account,
the discriminator tends to capture such infor-
mation to distinguish model-generated responses
and human responses. By backpropagating the
discriminator’s feedback to the generator, the
adversarially trained generator gains significantly
better performance in such aspects. On the other
hand, the relevance is also retained during the
adversarial training, as one can imagine that the
human produced references given to the discrim-
inator are usually semantically highly relevant to
the corresponding queries.

b) The proposed approximation layer is an
effective way to couple the response generator
and the discriminator. Through this differentiable
component, the loss of the discriminator is prop-
erly propagated to the generator and guide the

tuning of the latter’s parameters.
It can also be seen from the results that the per-

formance of all the models on the three semantic
relevance oriented metrics are comparable to each
other. This implies that all the models, including
the baseline methods and the proposed model,
have the capability to generate responses of rea-
sonable relevance to given queries, which satisfies
the primary goal of the response generation task.
It further suggests that the Seq2Seq architecture
works properly in modelling the semantics of
entire utterances. Nevertheless, although the de-
coder mechanism can select topic-relevant words
to construct responses based on the given query,
the limitation of naı̈ve Seq2Seq models tend to
yield less diverse or informative outputs.

Furthermore, when compared to Adver-REGS,
the proposed GAN-AEL gains 30%-60% relative
improvement in the dist-1, dist-2 and novelty
metrics on both datasets, which indicates that
coupling the generator and the discriminator with
a differentiable component is a more preferable
methodology for text generation tasks, and is a
meaningful analogy to standard GANs for image
generation. Interestingly, all the models achieve
significantly higher novelty scores on the Tieba
dataset than on the OpenSubtitle dataset. This is
due to the difference of the coverages of high-
frequency words in the two corpora. Concretely,
since we exclude top 2,000 most frequent words
when computing the novelty scores on both
datasets, which covers 70% and 82% of the words
in Tieba and OpenSubtitle respectively, it is more
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likely to observe novel words on the Tieba data.
In addition, it can be seen that GAN-AEL

improves the greedy score to a much greater
extent than the average and extreme scores, which
further suggests that the responses generated by
GAN-AEL are more informative. Concretely, the
calculations of the average and extreme scores
may be dominated by generic non-informative
words. By contrast, since the greedy metric is
computed based on a (simple and greedy) word-
wise semantic alignments between two utterances,
the influence of those generic words will be
reduced.

5.2 Human Evaluation Results

Table 3 gives the human evaluation results, which
indicates that the proposed GAN-AEL is more
preferable than Adver-REGS from human per-
spectives. This again implies that the approximate
embedding layer is more effective in propagating
the discriminator’s feedback to the generator than
the reinforcement learning mechanism of (Li et al.,
2017). The result is statistically significant with
p < 0.01 according to sign test.

GAN-AEL vs Adver-REGS
Wins Losses Ties
0.61 0.13 0.26

Table 3: Evaluations of GAN-AEL and Adver-
REGS based on human subjects,

5.3 The Influence of the Discriminator to
Adversarial Training
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Figure 2: Relevance scores of GAN-AEL on
the Tieba corpus with respect to different CNN
window sizes.

The discriminator plays an important role in
the adversarial training process, which determines
whether the GAN model converges to a Nash
Equilibrium (Chen et al., 2016). We conduct
a set of experiments to explore the influence of
the discriminator’s capacities to the adversarial
training. Figure 2 shows the relevance scores with
respect to different convolution window sizes for
the CNN discriminator, where “Filter[x]” denotes
the CNN with its convolution window(s) set to x.

It can be found that the discriminator with
“Filter[1, 2]” achieves the best performance.
Two facts based on the principle of GAN could
be taken to explain this observation: On one
hand, a discriminator with too low capacity (such
as “Filter[1]”) is less capable in distinguishing
human responses from generated ones, which will
backpropagate inappropriate signals that misleads
the generator. On the other hand, if the capacity
of the discriminator is too high (such as “Filter[1,
2, 3]”), in the adversarial training, the training
of the discriminator will converge too fast before
the generator being sufficiently trained (Durugkar
et al., 2016). A similar phenomenon is also
observed on the OpenSubtitles dataset. Since the
relevance between queries and their corresponding
responses is essential in this task, discriminators
with “Filter[1,2]” are adopted in the experiments
reported in subsections 5.1 and 5.2.

5.4 Case Study

To demonstrate the intuitive performance of the
proposed model in comparison with the naı̈ve
Seq2Seq model, we provide some example cases
in Figure 3, where for each query the response is
the top hypothesis obtained via beam search. Es-
pecially, we show that when the vanilla approach
generates safe responses such as “I don’t know
what to do”, the adversarially trained method can
still yield more informative outputs. Further-
more, when both models produces informative
responses, the utterance generated by GAN-AEL
tends to be of more interestingness, which is a
reflection of novelty and diversity.

6 Conclusion

In this paper, we proposed a GAN framework to
model single-turn short-text conversations. An
approximation embedding layer is introduced to
force the entire network differentiable, which
significantly overcomes the drawbacks found in
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Example responses generated based on the OpenSubtitle data Example responses generated based on the Baidu Tieba data

Query: You swore an oath when you put that uniform on.

Seq2Seq: I don’t know what to do.

GAN-AEL: I think I had a good reason.

Query: Do you like cats or dogs?

Seq2Seq: I Like cats.

GAN-AEL: I like golden retriever.

Query: Entire town knows your son is a goon.

Seq2Seq: What do you mean?

GAN-AEL: His life is really a sad story.

Query: You look like Obama’s wife.

Seq2Seq: Haha…

GAN-AEL: I have a common face.

Query: Turn his face away from me.

Seq2Seq: I don’t know what to do.

GAN-AEL: Let me explain to you about the mistake.

Query: 

I wish to invite you to dinner rather than chat up only.

Seq2Seq: I want to have dinner too.

GAN-AEL: I am fat, and I am on a diet.

Figure 3: Example responses generated by Seq2Seq and GAN-AEL.

the previous RL-based attempts (Li et al., 2017).
The superiority of the proposed method has been
demonstrated by empirical experiments based on
both automatic evaluation metrics and human
judgements. Further explorations of GAN-based
techniques to model contextual information in
dialogue problems will be addressed in our future
research.
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Abstract

In this paper we explore the effect of archi-
tectural choices on learning a variational
autoencoder (VAE) for text generation. In
contrast to the previously introduced VAE
model for text where both the encoder
and decoder are RNNs, we propose a
novel hybrid architecture that blends fully
feed-forward convolutional and deconvo-
lutional components with a recurrent lan-
guage model. Our architecture exhibits
several attractive properties such as faster
run time and convergence, ability to bet-
ter handle long sequences and, more im-
portantly, it helps to avoid the issue of the
VAE collapsing to a deterministic model.

1 Introduction

Generative models of texts are currently at the
cornerstone of natural language understanding en-
abling recent breakthroughs in machine transla-
tion (Bahdanau et al., 2014; Wu et al., 2016), dia-
logue modelling (Serban et al., 2016), abstractive
summarization (Rush et al., 2015), etc.

Currently, RNN-based generative models hold
state-of-the-art results in both unconditional
(Józefowicz et al., 2016; Ha et al., 2016) and con-
ditional (Vinyals et al., 2014) text generation. At
a high level, these models represent a class of au-
toregressive models that work by generating out-
puts sequentially one step at a time where the next
predicted element is conditioned on the history of
elements generated thus far.

Variational autoencoders (VAE), recently intro-
duced by (Kingma and Welling, 2013; Rezende
et al., 2014), offer a different approach to genera-
tive modeling by integrating stochastic latent vari-
ables into the conventional autoencoder architec-
ture. The primary purpose of learning VAE-based

generative models is to be able to generate realis-
tic examples as if they were drawn from the input
data distribution by simply feeding noise vectors
through the decoder. Additionally, the latent rep-
resentations obtained by applying the encoder to
input examples give a fine-grained control over the
generation process that is harder to achieve with
more conventional autoregressive models. Similar
to compelling examples from image generation,
where it is possible to condition generated human
faces on various attributes such as hair, skin color
and style (Yan et al., 2015; Larsen et al., 2015), in
text generation it should be possible to also control
various attributes of the generated sentences, such
as, for example, sentiment or writing style.

While training VAE-based models seems to
pose little difficulty when applied to the tasks of
generating natural images (Bachman, 2016; Gul-
rajani et al., 2016) and speech (Fraccaro et al.,
2016), their application to natural text generation
requires additional care (Bowman et al., 2016;
Miao et al., 2015). As discussed by Bowman et al.
(2016), the core difficulty of training VAE models
is the collapse of the latent loss (represented by the
KL divergence term) to zero. In this case the gen-
erator tends to completely ignore latent represen-
tations and reduces to a standard language model.
This is largely due to the high modeling power of
the RNN-based decoders which with sufficiently
small history can achieve low reconstruction er-
rors while not relying on the latent vector provided
by the encoder.

In this paper, we propose a novel VAE model for
texts that is more effective at forcing the decoder
to make use of latent vectors. Contrary to existing
work, where both encoder and decoder layers are
LSTMs, the core of our model is a feed-forward
architecture composed of one-dimensional convo-
lutional and deconvolutional (Zeiler et al., 2010)
layers. This choice of architecture helps to gain
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more control over the KL term, which is crucial
for training a VAE model. Given the difficulty of
generating long sequences in a fully feed-forward
manner, we augment our network with an RNN
language model layer. To the best of our knowl-
edge, this paper is the first work that successfully
applies deconvolutions in the decoder of a latent
variable generative model of natural text. We em-
pirically verify that our model is easier to train
than its fully recurrent alternative, which, in our
experiments, fails to converge on longer texts. To
better understand why training VAEs for texts is
difficult we carry out detailed experiments, dis-
cuss optimization difficulties, and propose effec-
tive ways to address them. Finally, we demon-
strate that sampling from our model yields realistic
texts.

2 Related Work

So far, the majority of neural generative mod-
els of text are built on the autoregressive as-
sumption (Larochelle and Murray, 2011; van den
Oord et al., 2016). Such models assume that the
current data element can be accurately predicted
given sufficient history of elements generated thus
far. The conventional RNN based language mod-
els fall into this category and currently dominate
the language modeling and generation problem
in NLP. Neural architectures based on recurrent
(Józefowicz et al., 2016; Zoph and Le, 2016; Ha
et al., 2016) or convolutional decoders (Kalch-
brenner et al., 2016; Dauphin et al., 2016) provide
an effective solution to this problem.

A recent work by Bowman et al. (2016) tack-
les language generation problem within the VAE
framework (Kingma and Welling, 2013; Rezende
et al., 2014). The authors demonstrate that with
some care it is possible to successfully learn a la-
tent variable generative model of text. Although
their model is slightly outperformed by a tradi-
tional LSTM (Hochreiter and Schmidhuber, 1997)
language model, their model achieves a similar ef-
fect as in computer vision where one can (i) sam-
ple realistic sentences by feeding randomly gen-
erated novel latent vectors through the decoder
and (ii) linearly interpolate between two points in
the latent space. Miao et al. (2015) apply VAE
to bag-of-words representations of documents and
the answer selection problem achieving good re-
sults on both tasks. Yang et al. (2017) discuss
a VAE consisting of RNN encoder and CNN de-

coder so that the decoder’s receptive field is lim-
ited. They demonstrate that this allows for a better
control of KL and reconstruction terms. Hu et al.
(2017) build a VAE for text generation and de-
sign a cost function that encourages interpretabil-
ity of the latent variables. Zhang et al. (2016),
Serban et al. (2016) and Zhao et al. (2017) ap-
ply VAE to sequence-to-sequence problems, im-
proving over deterministic alternatives. Chen et al.
(2016) propose a hybrid model combining autore-
gressive convolutional layers with the VAE. The
authors make an argument based on the Bit-Back
coding (Hinton and van Camp, 1993) that when
the decoder is powerful enough the best thing for
the encoder to do is to make the posterior distri-
bution equivalent to the prior. While they exper-
iment on images, this argument is very relevant
to the textual data. A recent work by Bousquet
et al. (2017) approaches VAEs and GANs from
the optimal transport point of view. The authors
show that commonly known blurriness of sam-
ples from VAEs trained on image data are a nec-
essary property of the model. While the implica-
tions of their argument to models combining la-
tent variables and autoregressive layers trained on
non-image data are still unclear, the argument sup-
ports the hypothesis of Chen et al. (2016) that dif-
ficulty of training a hybrid model is not caused by
a simple optimization difficulty but rather may be
a more principled issue.

Various techniques to improve training of VAE
models where the total cost represents a trade-off
between the reconstruction cost and KL term have
been used so far: KL-term annealing and input
dropout (Bowman et al., 2016; Sønderby et al.,
2016), imposing structured sparsity on latent vari-
ables (Yeung et al., 2016) and more expressive for-
mulations of the posterior distribution (Rezende
and Mohamed, 2015; Kingma et al., 2016). A
work by (Mescheder et al., 2017) follows the same
motivation and combines GANs and VAEs allow-
ing a model to use arbitrary complex formulations
of both prior and posterior distributions. In Sec-
tion 3.4 we propose another efficient technique to
control the trade-off between KL and reconstruc-
tion terms.

3 Model

In this section we first briefly explain the VAE
framework of Kingma and Welling (2013), then
describe our hybrid architecture where the feed-
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Figure 1: LSTM VAE model of (Bowman et al.,
2016)

forward part is composed of a fully convolutional
encoder and a decoder that combines deconvolu-
tional layers and a conventional RNN. Finally, we
discuss optimization recipes that help VAE to re-
spect latent variables, which is critical training a
model with a meaningful latent space and being
able to sample realistic sentences.

3.1 Variational Autoencoder
The VAE is a recently introduced latent vari-
able generative model, which combines varia-
tional inference with deep learning. It modifies the
conventional autoencoder framework in two key
ways. Firstly, a deterministic internal representa-
tion z (provided by the encoder) of an input x is re-
placed with a posterior distribution q(z|x). Inputs
are then reconstructed by sampling z from this
posterior and passing them through a decoder. To
make sampling easy, the posterior distribution is
usually parametrized by a Gaussian with its mean
and variance predicted by the encoder. Secondly,
to ensure that we can sample from any point of
the latent space and still generate valid and diverse
outputs, the posterior q(z|x) is regularized with
its KL divergence from a prior distribution p(z).
The prior is typically chosen to be also a Gaussian
with zero mean and unit variance, such that the KL
term between posterior and prior can be computed
in closed form (Kingma and Welling, 2013). The
total VAE cost is composed of the reconstruction
term, i.e., negative log-likelihood of the data, and
the KL regularizer:

Jvae = KL(q(z|x)||p(z))
−Eq(z|x)[log p(x|z)]

(1)

Kingma and Welling (2013) show that the loss
function from Eq (1) can be derived from the
probabilistic model perspective and it is an upper
bound on the true negative likelihood of the data.

One can view a VAE as a traditional Autoen-
coder with some restrictions imposed on the in-
ternal representation space. Specifically, using a
sample from the q(z|x) to reconstruct the input
instead of a deterministic z, forces the model to

map an input to a region of the space rather than
to a single point. The most straight-forward way to
achieve a good reconstruction error in this case is
to predict a very sharp probability distribution ef-
fectively corresponding to a single point in the la-
tent space (Raiko et al., 2014). The additional KL
term in Eq (1) prevents this behavior and forces the
model to find a solution with, on one hand, low re-
construction error and, on the other, predicted pos-
terior distributions close to the prior. Thus, the de-
coder part of the VAE is capable of reconstructing
a sensible data sample from every point in the la-
tent space that has non-zero probability under the
prior. This allows for straightforward generation
of novel samples and linear operations on the la-
tent codes. Bowman et al. (2016) demonstrate
that this does not work in the fully deterministic
Autoencoder framework . In addition to regulariz-
ing the latent space, KL term indicates how much
information the VAE stores in the latent vector.

Bowman et al. (2016) propose a VAE model for
text generation where both encoder and decoder
are LSTM networks (Figure 1). We will refer to
this model as LSTM VAE in the remainder of the
paper. The authors show that adapting VAEs to
text generation is more challenging as the decoder
tends to ignore the latent vector (KL term is close
to zero) and falls back to a language model. Two
training tricks are required to mitigate this issue:
(i) KL-term annealing where its weight in Eq (1)
gradually increases from 0 to 1 during the training;
and (ii) applying dropout to the inputs of the de-
coder to limit its expressiveness and thereby forc-
ing the model to rely more on the latent variables.
We will discuss these tricks in more detail in Sec-
tion 3.4. Next we describe a deconvolutional layer,
which is the core element of the decoder in our
VAE model.

3.2 Deconvolutional Networks

A deconvolutional layer (also referred to as trans-
posed convolutions (Gulrajani et al., 2016) and
fractionally strided convolutions (Radford et al.,
2015)) performs spatial up-sampling of its inputs
and is an integral part of latent variable genera-
tive models of images (Radford et al., 2015; Gulra-
jani et al., 2016) and semantic segmentation algo-
rithms (Noh et al., 2015). Its goal is to perform an
“inverse” convolution operation and increase spa-
tial size of the input while decreasing the number
of feature maps. This operation can be viewed as
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(a) Fully feed-forward component of our VAE model

(b) Hybrid model with LSTM
decoder

(c) Hybrid model with ByteNet
decoder

Figure 2: Illustrations of our proposed models.

a backward pass of a convolutional layer and can
be implemented by simply switching the forward
and backward passes of the convolution operation.
In the context of generative modeling based on
global representations, the deconvolutions are typ-
ically used as follows: the global representation
is first linearly mapped to another representation
with small spatial resolution and large number of
feature maps. A stack of deconvolutional layers
is then applied to this representation, each layer
progressively increasing spatial resolution and de-
creasing the amount of feature channels. The out-
put of the last layer is an image or, in our case,
a text fragment. A notable example of such a
model is the deep network of (Radford et al., 2015)
trained with adversarial objective. Our model uses
a similar approach but is instead trained with the
VAE objective.

There are two primary motivations for choos-
ing deconvolutional layers instead of the dom-
inantly used recurrent ones: firstly, such lay-
ers have extremely efficient GPU implementations
due to their fully parallel structure. Secondly,
feed-forward architectures are typically easier to
optimize than their recurrent counterparts, as the
number of back-propagation steps is constant and
potentially much smaller than in RNNs. Both
points become significant as the length of the gen-

erated text increases. Next, we describe our VAE
architecture that blends deconvolutional and RNN
layers in the decoder to allow for better control
over the KL-term.

3.3 Hybrid Convolutional-Recurrent VAE

Our model is composed of two relatively inde-
pendent modules. The first component is a stan-
dard VAE where the encoder and decoder modules
are parametrized by convolutional and deconvolu-
tional layers respectively (see Figure 2(a)). This
architecture is attractive for its computational effi-
ciency and simplicity of training.

The other component is a recurrent language
model consuming activations from the deconvo-
lutional decoder concatenated with the previous
output characters. We consider two flavors of re-
current functions: a conventional LSTM network
(Figure 2(b)) and a stack of masked convolutions
also known as the ByteNet decoder from Kalch-
brenner et al. (2016) (Figure 2(c)). The primary
reason for having a recurrent component in the
decoder is to capture dependencies between ele-
ments of the text sequences – a hard task for a
fully feed-forward architecture. Indeed, the condi-
tional distribution P (x|z) = P (x1, . . . , xn|z) of
generated sentences cannot be richly represented
with a feed-forward network. Instead, it factor-
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izes as: P (x1, . . . , xn|z) =
∏
i P (xi|z) where

components are independent of each other and are
conditioned only on z. To minimize the recon-
struction cost the model is forced to encode ev-
ery detail of a text fragment. A recurrent lan-
guage model instead models the full joint distribu-
tion of output sequences without having to make
independence assumptions P (x1, . . . , xn|z) =∏
i P (xi|xi−1, . . . , x1, z). Thus, adding a re-

current layer on top of our fully feed-forward
encoder-decoder architecture relieves it from en-
coding every aspect of a text fragment into the la-
tent vector and allows it to instead focus on more
high-level semantic and stylistic features.

Note that the feed-forward part of our model
is different from the existing fully convolutional
approaches of Dauphin et al. (2016) and Kalch-
brenner et al. (2016) in two respects: firstly, while
being fully parallelizable during training, these
models still require predictions from previous time
steps during inference and thus behave as a vari-
ant of recurrent networks. In contrast, expansion
of the z vector is fully parallel in our model (ex-
cept for the recurrent component). Secondly, our
model down- and up-samples a text fragment dur-
ing processing while the existing fully convolu-
tional decoders do not. Preserving spatial reso-
lution can be beneficial to the overall result, but
comes at a higher computational cost. Lastly, we
note that our model imposes an upper bound on the
size of text samples it is able to generate. While it
is possible to model short texts by adding special
padding characters at the end of a sample, generat-
ing texts longer than certain thresholds is not pos-
sible by design. This is not an unavoidable restric-
tion, since the model can be extended to generate
variable sized text fragments by, for example, vari-
able sized latent codes. These extensions however
are out of scope of this work.

3.4 Optimization Difficulties

The addition of the recurrent component results in
optimization difficulties that are similar to those
described by Bowman et al. (2016). In most cases
the model converges to a solution with a vanish-
ingly small KL term, thus effectively falling back
to a conventional language model. Bowman et al.
(2016) have proposed to use input dropout and KL
term annealing to encourage their model to encode
meaningful representations into the z vector. We
found that these techniques also help our model to

achieve solutions with non-zero KL term.
KL term annealing can be viewed as a grad-

ual transition from conventional deterministic Au-
toencoder to a full VAE. In this work we use linear
annealing from 0 to 1. We have experimented with
other schedules but did not find them to have a sig-
nificant impact on the final result. As long as the
KL term weight starts to grow sufficiently slowly,
the exact shape and speed of its growth does not
seem to affect the overall result. We have found
the following heuristic to work well: we first run a
model with KL weight fixed to 0 to find the num-
ber of iterations it needs to converge. We then con-
figure the annealing schedule to start after the un-
regularized model has converged and last for no
less than 20% of that amount.

While helping to regularize the latent vector, in-
put dropout tends to slow down convergence. We
propose an alternative technique to encourage the
model to compress information into the latent vec-
tor: in addition to the reconstruction cost com-
puted on the outputs of the recurrent language
model, we also add an auxiliary reconstruction
term computed from the activations of the last de-
convolutional layer:

Jaux = −Eq(z|x)[log p(x|z)]
= −Eq(z|x)[

∑

t

log p(xt|z)]. (2)

Since at this layer the model does not have ac-
cess to previous output elements it needs to rely on
the z vector to produce a meaningful reconstruc-
tion. The final cost minimized by our model is:

Jhybrid = Jvae + αJaux (3)

where α is a hyperparameter, Jaux is the interme-
diate reconstruction term and Jvae is the bound
from Eq (1). Expanding the two terms from Eq (3)
gives:

Jhybrid = KL(q(z|x)||p(z))
−Eq(z|x)[

∑

t

log p(xt|z, x<t)]

−αEq(z|x)[
∑

t

log p(xt|z)].
(4)

The objective function from Eq (4) puts a mild
constraint on the latent vector to produce features
useful for historyless reconstruction. Since the
autoregressive part reuses these features, it also
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improves the main reconstruction term. We are
thus able to encode information in the latent vector
without hurting expressiveness of the decoder.

One can view the objective function in Eq 4 as
a joint objective for two VAEs: one only feed-
forward, as in Figure 2(a), and the other combin-
ing feed-forward and recurrent parts, as in Fig-
ures 2(b) and 2(c), that partially share parameters.
Since the feed-forward VAE is incapable of pro-
ducing reasonable reconstructions without making
use of the latent vector, the full architecture also
gains access to the latent vector through shared
parameters. We note that this trick comes at a
cost of worse result on the density estimation task,
since part of the parameters of the full model are
trained to optimize an objective that does not cap-
ture all the dependencies that exist in the textual
data. However, the gap between purely determin-
istic LM and our model is small and easily control-
lable by the α hyperparameter. We refer the reader
to Figure 4 for quantitative results regarding the
effect of α on the performance of our model on
the LM task.

4 Experiments

We use KL term annealing and input dropout when
training the LSTM VAE models from Bowman
et al. (2016) and KL term annealing and regular-
ized objective function from Eq (3) when train-
ing our models. All models were trained with the
Adam optimization algorithm (Kingma and Ba,
2014) with decaying learning rate. We use Layer
Normalization (Ba et al., 2016) in LSTM lay-
ers and Batch Normalization (Ioffe and Szegedy,
2015) in convolutional and deconvolutional layers.
To make our results easy to reproduce we have re-
leased the source code of all our experiments1.

Data. Our first task is character-level language
generation performed on the standard Penn Tree-
bank dataset (Marcus et al., 1993). One of the
goals is to test the ability of the models to success-
fully learn the representations of long sequences.
For training, fixed-size data samples are selected
from random positions in the standard training and
validation sets.

4.1 Comparison with LSTM VAE
Historyless decoding. We start with an exper-
iment where the decoder is forced to ignore the

1https://github.com/stas-semeniuta/
textvae

history and has to rely fully on the latent vec-
tor. By conditioning the decoder only on the la-
tent vector z we can directly compare the expres-
siveness of the compared models. For the LSTM
VAE model historyless decoding is achieved by
using the dropout on the input elements with the
dropout rate equal to 1 so that its decoder is only
conditioned on the z vector and, implicitly, on the
number tokens generated so far. We compare it to
our fully-feedforward model without the recurrent
layer in the decoder (Figure 2(a)). Both networks
are parametrized to have comparable number of
parameters.

To test how well both models can cope with the
stochasticity of the latent vectors, we minimize
only the reconstruction term from Eq. (1). This
is equivalent to a pure autoencoder setting with
stochastic internal representation and no regular-
ization of the latent space. This experiment cor-
responds to an initial stage of training with KL
term annealing when its weight is set to 0. We
pursue two goals with this experiment: firstly, we
investigate how do the two alternative encoders
behave in the beginning of training and establish
a lower bound on the quality of the reconstruc-
tions. Secondly, we attempt to put the Bit Back
coding argument from Chen et al. (2016) in con-
text. The authors assume the encoder to be power-
ful enough to produce a good representation of the
data. One interpretation of this argument applied
to textual data is that factorizing the joint proba-
bility as p(x) =

∏
t p(xt|x<t) provides the model

with a sufficiently powerful decoder that does not
need the latent variables. However, our experi-
mental results suggest that LSTM encoder may not
be a sufficiently expressive encoder for VAEs for
textual data, potentially making the argument in-
applicable.

The results are presented in Figure 3. Note that
when the length of input samples reaches 30 char-
acters, the historyless LSTM autoencoder fails to
fit the data well, while the convolutional architec-
ture converges almost instantaneously. The results
appear even worse for LSTMs on sequences of 50
characters. To make sure that this effect is not
caused by optimization difficulties, i.e. exploding
gradients (Pascanu et al., 2013), we have searched
over learning rates, gradient clipping thresholds
and sizes of LSTM layers but were only able to
get results comparable to those shown in Figure 3.
Note that LSTM networks make use of Layer Nor-
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Figure 3: Training curves of LSTM autoencoder and our model on samples of different length. Solid
and dashed lines show training and validation curves respectively. Note that the model exhibits little to
no overfitting since the validation curve follows the training one almost perfectly.

12 24 36 48 60
Text fragment size, characters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
its
­p
er
­c
ha

ra
ct
er

hybrid, α=0.2
lstmvae, p=0.2
lstmvae, p=0.5

Figure 4: The full cost (solid lines) and its
KL component (dashed lines) in bits-per-character
of our Hybrid model trained with 0.2 α hyper-
parameter vs. LSTM based VAE trained with 0.2
and 0.5 input dropout, measured on validation par-
tition.

malization (Ba et al., 2016) which has been shown
to make training of such networks easier. These
results suggest that our model is easier to train than
the LSTM-based model, especially for modeling
longer pieces of text. Additionally, our model is
computationally faster by a factor of roughly two,
since we run only one recurrent network per sam-
ple and time complexity of the convolutional part
is negligible in comparison.

Decoding with history. We now move to a case
where the decoder is conditioned on both the la-
tent vector and previous output elements. In these
experiments we pursue two goals: firstly, we ver-
ify whether the results obtained on the historyless
decoding task also generalize to a less restricted
case. Secondly, we study how well the models
cope with stochasticity introduced by the latent
variables. Note that we do not attempt to improve
the state-of-the-art result on the Language Mod-
eling task but instead focus on providing an ap-

proach capable of generating long and diverse se-
quences. We experiment on the task to obtain a
detailed picture of how are our model and LSTM
VAE affected by various choices and compare the
two models, focusing on how effective is the en-
coder at producing meaningful latent vector. How-
ever, we note that our model performs fairly well
on the LM task and is only slightly worse than
purely deterministic Language Model, trained in
the same environment, and is comparable to the
one of Bowman et al. (2016) in this regard.

We fix input dropout rates at 0.2 and 0.5 for
LSTM VAE and use auxiliary reconstruction loss
(Section 3.4) with 0.2 weight in our Hybrid model.
The bits-per-character scores on differently sized
text samples are presented in Figure 4. As dis-
cussed in Section 3.1, the KL term value indi-
cates how much information the network stores
in the latent vector. We observe that the amount
of information stored in the latent vector by our
model and the LSTM VAE is comparable when
we train on short samples and largely depends on
hyper-parameters α and p. When the length of a
text fragment increases, LSTM VAE is able to put
less information into the latent vector (i.e., the KL
component is small) and for texts longer than 48
characters, the KL term drops to almost zero while
for our model the ratio between KL and recon-
struction terms stays roughly constant. This sug-
gests that our model is better at encoding latent
representations of long texts since the amount of
information in the latent vector does not decrease
as the length of a text fragment grows. In con-
trast, there is a steady decline of the KL term of the
LSTM VAE model. This result is consistent with
our findings from the historyless decoding exper-
iment. Note that in both of these experiments the
LSTM VAE model fails to produce meaningful la-
tent vectors with inputs over 50 characters long.
This further suggests that our Hybrid model en-
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Figure 5: The full cost (solid line) and the KL
component (dashed line) of our Hybrid model with
LSTM decoder trained with various α, with and
without KL term weight annealing, measured on
the validation partition.

codes long texts better than the LSTM VAE.

4.2 Controlling the KL term

We study the effect of various training techniques
that help control the KL term which is crucial for
training a generative VAE model.

Aux cost weight. First, we provide a detailed
view of how optimization tricks discussed in Sec-
tion 3.4 affect the performance of our Hybrid
model. Figure 5 presents results of our model
trained with different values of α from Eq. (3).
Note that the inclusion of the auxiliary reconstruc-
tion loss slightly harms the bound on the likeli-
hood of the data but helps the model to rely more
on the latent vector as α grows. A similar effect
on model’s bound was observed by Bowman et al.
(2016): increased input dropout rates force their
model to put more information into the z vector
but at the cost of increased final loss values. This
is a trade-off that allows for sampling outputs in
the VAE framework. Note that our model can
find a solution with non-trivial latent vectors when
trained with the full VAE loss provided that the
α hyper-parameter is large enough. Combining it
with KL term annealing helps to find non-zero KL
term solutions at smaller α values.

Receptive field. The goal of this experiment is
to study the relationship between the KL term val-
ues and the expressiveness of the decoder. Without
KL term annealing and input dropout, the RNN
decoder in LSTM VAE tends to completely ignore
information stored in the latent vector and essen-
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Figure 6: The full cost (solid line) and the KL
component (dashed line) of our Hybrid model with
ByteNet decoder trained with various number of
convolutional layers, measured on the validation
partition

tially falls back to an RNN language model. To
have a full control over the receptive field size of
the recurrent component in our decoder, we ex-
periment with masked convolutions (Figure 2(c)),
which is similar to the decoder in ByteNet model
from Kalchbrenner et al. (2016). We fix the size
of the convolutional kernels to 2 and do not use di-
lated convolutions and skip connections as in the
original ByteNet.

The resulting receptive field size of the recurrent
layer in our decoder is equal to N + 1 characters,
where N is the number of convolutional layers.
We vary the number of layers to find the amount of
preceding characters that our model can consume
without collapsing the KL term to zero.

Results of these experiments are presented in
Figure 6. Interestingly, with the receptive field
size larger than 3 and without the auxiliary re-
construction term from Eq. (3) (α = 0) the KL
term collapses to zero and the model falls back
to a pure language model. This suggests that the
training signal received from the previous charac-
ters is much stronger than that from the input to be
reconstructed. Using the auxiliary reconstruction
term, however, helps to find solutions with non-
zero KL term component irrespective of receptive
field size. Note that increasing the value of α re-
sults in stronger values of KL component. This
is consistent with the results obtained with LSTM
decoder in Figure 5.
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@userid @userid @userid @userid @userid ...
I want to see you so much @userid #FollowMeCam ...
@userid @userid @userid @userid @userid ...
Why do I start the day today?

@userid thanks for the follow back
no matter what I’m doing with my friends they are so cute
@userid Hello How are you doing
I wanna go to the UK tomorrow!! #feelinggood #selfie #instago
@userid @userid I’ll come to the same time and it was a good day too xx

Table 1: Random sample tweets generated by LSTM VAE
(top) and our Hybrid model (bottom).

Rec KL
LSTM, p = 0.2 67.4 1.0
LSTM, p = 0.5 77.1 2.1
LSTM, p = 0.8 93.7 3.8

Hybrid, α = 0.2 58.5 12.5

Table 2: Breakdown into KL and
reconstruction terms for char-level
tweet generation. p refers to input
dropout rate.

4.3 Generating Tweets

In this section we present qualitative results on the
task of generating tweets.

Data. We use 1M tweets2 to train our model
and test it on a held out dataset of 10k samples.
We minimally preprocess tweets by only replac-
ing user ids and urls with “@userid” and “url”.

Setup. We use 5 convolutional layers with the
ReLU non-linearity, kernel size 3 and stride 2 in
the encoder. The number of feature maps is [128,
256, 512, 512, 512] for each layer respectively.
The decoder is configured equivalently but with
the amount of feature maps decreasing in each
consecutive layer. The top layer is an LSTM with
1000 units. We have not observed significant over-
fitting. The baseline LSTM VAE model contained
two distinct LSTMs both with 1000 cells. The
models have comparable number of parameters:
10.5M for the LSTM VAE model and 10.8M for
our hybrid model.

Results. Both VAE models are trained on the
character-level generation. The breakdown of to-
tal cost into KL and reconstruction terms is given
in Table 2. Note that while the total cost values
are comparable, our model puts more information
into the latent vector, further supporting our obser-
vations from Section 4.1. This is reflected in the
random samples from both models, presented in
Table 1. We perform greedy decoding during gen-
eration so any variation in samples is only due to
the latent vector. LSTM VAE produces very lim-
ited range of tweets and tends to repeat ”@userid”
sequence, while our model produces much more
diverse samples.

2a random sample collected using the Twitter API

5 Conclusions

We have introduced a novel generative model of
natural texts based on the VAE framework. Its
core components are a convolutional encoder and
a deconvolutional decoder combined with a recur-
rent layer. We have shown that the feed-forward
part of our model architecture makes it easier to
train a VAE and avoid the problem of KL-term col-
lapsing to zero, where the decoder falls back to a
standard language model thus inhibiting the sam-
pling ability of VAE. Additionally, we propose an
efficient way to encourage the model to rely on
the latent vector by introducing an additional cost
term in the training objective. We observe that it
works well on long sequences which is hard to
achieve with purely RNN-based VAEs using the
previously proposed tricks such as KL-term an-
nealing and input dropout. Finally, we have ex-
tensively evaluated the trade-off between the KL-
term and the reconstruction loss. In particular, we
investigated the effect of the receptive field size on
the ability of the model to respect the latent vector
which is crucial for being able to generate realistic
and diverse samples. In future work we plan to ap-
ply our VAE model to semi-supervised NLP tasks
and experiment with conditioning generation on
text attributes such as sentiment and writing style.
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Abstract

Computerized generation of humor is a
notoriously difficult AI problem. We de-
velop an algorithm called Libitum that
helps humans generate humor in a Mad
Lib R©, which is a popular fill-in-the-blank
game. The algorithm is based on a ma-
chine learned classifier that determines
whether a potential fill-in word is funny
in the context of the Mad Lib story. We
use Amazon Mechanical Turk to create
ground truth data and to judge humor for
our classifier to mimic, and we make this
data freely available. Our testing shows
that Libitum successfully aids humans in
filling in Mad Libs that are usually judged
funnier than those filled in by humans with
no computerized help. We go on to analyze
why some words are better than others at
making a Mad Lib funny.

1 Introduction

As technologists attempt to build more natu-
ral human-computer interfaces, the inclusion of
computer-generated humor becomes more impor-
tant for creating personable interactions. However,
computational humor remains a long-standing
challenge in AI. Despite decades devoted to the-
ories and algorithms for humor, the best comput-
erized humor is still mediocre compared to hu-
mans. Humor requires creativity, sophistication of
language, world knowledge, empathy and cogni-
tive mechanisms, which are extremely difficult to
model theoretically. A more modest goal for com-
putational humor is to build machines that help hu-
mans create humor rather than replace them.

We develop and test an algorithm, called Li-

Figure 1: Example of a Mad Lib sentence. The
original words for the blanks, in order, were
“apartment”, “impatient” and “gallery”.

bitum1, for a computer-aided approach to humor
generation. Its aim is to help a human player fill
in the blanks of a Mad Lib R© story to make it
funny. The algorithm generates candidate words,
and its core component is a machine-trained clas-
sifier that can assess whether a potential fill-in-
the-blank word is funny, based on several fea-
tures, including the blank’s surrounding context.
We trained the classifier on Mad Lib stories that
were filled in and judged by humans. We note
that in our work, we give players, both human and
computer, access to the full Mad Lib story, includ-
ing the sentences surrounding the blanks. In regu-
lar Mad Libs, players do not see the surrounding
sentences. Figure 1 shows a sentence from a typi-
cal Mad Lib, completed by a human player.

The work presented here makes three contri-
butions. The first is the creation of a challenging
benchmark for humor generation, a vital aspect of
human communication which has received rela-
tively little attention in the NLP community. This
benchmark, based on Mad Libs, (i) is challeng-
ing, but doable by both humans and machines, (ii)
provides quantitative results so that progress can
be measured, and (iii) cannot be gamed by triv-
ial strategies, such as filling in random words. The
benchmark dataset is annotated and judged us-

1Libitum is Latin for “pleased”. Mad Lib is a humorous
variation of the Latin ad lib, where lib is short for Libitum.
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ing Amazon Mechanical Turk, with several steps
taken to reduce effects of human variation in hu-
mor taste. Our second contribution is that we cre-
ate and demonstrate a computer-aided humor algo-
rithm that, in most cases, allows humans to gen-
erate funnier Mad Lib stories than they can on
their own without computer assistance. The third
contribution is an analysis of our test data and al-
gorithm that helps to quantitatively explain what
makes our results humorous.

Our work goes beyond the modeling and gen-
eration of language to simply convey information.
Instead, we are trying to create a pleasurable feel-
ing using humor. This is analogous to the Story
Cloze Test (Mostafazadeh et al., 2017), where the
task is to choose a satisfying ending to a story.

We note the previous work called “Visual
Madlibs” (Yu et al., 2015). Although its title im-
plies similarity to our work, it is about an im-
age data set augmented with fill-in-the-blank ques-
tions, such as “This place is a park.”

2 Related Work

Developing a general humor recognizer or genera-
tor is hard, and some researchers consider it an AI-
complete problem (Stock and Strapparava, 2003),
i.e., “solving” computational humor is as difficult
as making computers as intelligent as people.

While our goal is generating humor, there is a
growing literature of projects for recognizing hu-
mor, mostly aimed at specific types of jokes.

Taylor and Mazlack’s (2004) work on knock-
knock jokes is based on Raskin’s (2012) “seman-
tic theory of verbal humor”, which says that hu-
mor comes from script opposition. Here, the joke
posits two different interpretations that oppose
each other, resulting in humor. They analyze the
two key parts of knock-knock jokes to discover the
wordplay that results in the humorous opposition.

Mihalcea and Strapparava (2006) developed a
classifier to recognize one-liner jokes by look-
ing for alliteration, antonymy, and adult slang.
Compared to different classes of non-jokes, they
achieved an accuracy of between 79% and 97%.

Davidov et al. (2010) decompose potential sar-
castic sentences into specialized parts of speech
and match them against sentence patterns that they
discovered in their corpus of sarcasm. Like us,
they used Mechanical Turk to find ground truth.

Kiddon and Brun (2011) present a classifier that
recognizes double entendres that become funny af-

ter adding “That’s what she said” at the end.
Other humor recognition efforts do not start

with constraints on the type of humor they recog-
nize. For instance, Zhang and Liu’s (2014) system
recognized humorous tweets based on 50 linguis-
tic features from humor theory, achieving a classi-
fication accuracy of 82%. Raz (2012) shows how
to classify humorous tweets into one of 12 joke
categories. Betero and Fung (2016) take on the
challenging task of recognizing humor from TV
sitcoms, using a neural network. They use the sit-
com’s laugh track to identify ground truth.

Our work is aimed at generating humor rather
than recognizing it. As with previous work on
humor recognition, humor generation has been
largely limited to specific types of jokes. The three
examples below, along with ours, show that auto-
matically generating humor still relies on special-
izing around a subgenre of jokes with customized
approaches that have yet to yield a general method
for generating humor.

Binsted et al.’s Joke Analysis and Production
Engine (JAPE) produced punning riddles, such as:

Question: What do you call a weird market?
Answer: A bizarre bazaar. (Binsted et al., 1997)

JAPE worked by discovering candidate ambigu-
ities in either spelling (e.g., cereal vs. serial) or
word sense (e.g. river bank vs. savings bank).
Evaluated by children, JAPEs jokes were fun-
nier than non-jokes, but not as funny as human-
generated jokes.

Petrovic and Matthews (2013) created an algo-
rithm to generate jokes such as “I like my coffee
like I like my war, cold,” filling in the three blanks.
They encoded four assumptions about what makes
a joke funny, using discrete probability tables
learned from a large corpus of regular text data
along with part-of-speech tagging and an estimate
of different possible senses of the words. 16% of
their automatically generated jokes were consid-
ered funny, compared to 33% when the same type
of jokes were generated by people.

HAHAcronyn, from Stock and Strappar-
ava (2003) attempted to take existing acronyms
(e.g. DMSO for Defense Modeling and Simula-
tion Office) and make an alternate, funny version
(e.g. Defense Meat-eating and Salivation Office).
Their algorithm keeps part of the acronym and
then looks for what to change in the remain-
der, with goals of different semantics, rhymes,
antonyms, and extreme-sounding adverbs.
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Besides the novelty of looking at Mad Libs, our
work is different in that it seeks to generate humor
for longer passages than the acronyms, one-liners,
and short riddles of previous work.

In addition to algorithmic work, there is a long
history of research into general theories of hu-
mor (O’Shannon, 2012; Weems, 2014; Wilkins
and Eisenbraun, 2009). One of the main thrusts is
incongruity theory, which says that a joke is funny
when it has a surprise that violates the conven-
tional expectation. According to the Benign Viola-
tion Theory (Raskin, 2008), the unexpected must
logically follow from the set up and must not be
offensive to the reader, otherwise the reader is left
confused and the joke is not funny. Similarly, the
Sematic Script Theory of Humor (SSTH) says that
a joke emerges when it can be interpreted accord-
ing to two different, generic scripts, one of which
is less obvious (Attardo and Raskin, 1991). Labu-
tov and Lipson make a first step at exploiting the
SSTH theory to automatically generate two-line
jokes (Labutov and Lipson, 2012).

In general, it is difficult to apply these theo-
ries directly to humor recognition and generation,
however, because they require a high degree of
common sense understanding of the world. Be-
cause of this, most successful algorithmic work on
humor is limited to using relatively shallow lin-
guistic rules on specific types of jokes. This is also
true of our work, which concentrates on filling the
blanks in Mad Libs, described next.

3 Mad Libs R©

Invented in 1953 by Roger Price and Leonard
Stern (2008a), Mad Libs is a fill-in-the blank game
intended to be humorous. A Mad Lib consists of a
story of several sentences and a title. Some of the
words are replaced with blanks, each of which has
a hint belonging to a certain hint type, such as
a part of speech. Players fill in each blank with a
word that agrees with the hint. A player can see
only the story’s title and the list of blanks with
hints. The resulting filled-in Mad Lib is usually
funny, because players fill in the blanks with no
knowledge of the story (except for its title). The
humor comes from the nonsensical filled-in words
in the context of a sensible, coherent story. Fig-
ure 1 shows part of a filled-in Mad Lib created
from a story describing the theft of the Mona Lisa.

Filling in Mad Libs is a novel challenge for au-
tomatic humor generation. The title and words sur-

rounding the blanks in a Mad Lib provide a con-
textual scaffolding that an algorithm can exploit to
choose appropriate words for the blanks that make
the resulting story humorous.

In order to incorporate such context, our rules
for playing Mad Libs differ from the original ones:
both our algorithmic and human players are al-
lowed to look at the story as a guide to filling in the
blanks. This makes the problem much richer, be-
cause players can take advantage of the story’s text
in choosing which words to fill in. Without look-
ing at the story, our algorithm would be reduced to
one that chooses only a priori funny words.

3.1 Fun Libs Generation

Mad Libs are copyrighted, and therefore it is diffi-
cult to release a data set by using stories from Mad
Libs books. Instead we studied original Mad Libs
to develop our own dataset, which we call Fun
Libs. This data set, including filled-in words and
funniness assessments from Mechanical Turkers,
is available online.2

Designing Mad Lib-like stories requires skill,
because the Mad Lib context is usually designed
in a way to help generate humor. To create our
own stories, we first examined 50 Mad Libs from
one of the many Mad Libs books (Price and Stern,
2008b). We found that the mean number of blanks,
observed words and sentences per Mad Lib were,
respectively, 16.0 (σ = 2.25), 114.84 (σ = 20.58)
and 9.04 (σ = 2.38). There were 14 unique hint
types.

One of our main goals is to build a system that
can create meaningful, diverse, and funny stories
which apply to a broad audience. However, in pi-
lot tests with human players, we found that six of
the original hint types restricted the variety of hu-
mor that can be generated by filling in their blanks,
by: (i) not affording a variety of possibilities to fill
in (hint types: color, silly word, exclamation) and
subtlety in humor generation (number), and (ii)
generally requiring the audience to have knowl-
edge of cultural references and specifics (person
name, place). Hence, we discarded them, leaving
eight hint types in our Fun Libs dataset, as shown
in Table 1. Some of them have variants such as
plurality for nouns and tenses for verbs.

Next, we created our dataset of 50 Fun Libs us-
ing simple Wikipedia articles because, similar to

2Fun Libs dataset: https://www.microsoft.com/en-
us/download/details.aspx?id=55593
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Hint Type Mad Libs Fun Libs
Noun 7.06 7.00
Adjective 4.06 3.12
Verb 1.22 3.10
Part of the Body 0.98 0.46
Adverb 0.44 0.38
Type of Food 0.22 0.20
Animal 0.20 0.36
Type of Liquid 0.18 0.16
All Blanks 16.0* 14.78

Table 1: Mean hint types per story in the two
datasets. ∗The mean number of blanks in the Mad
Libs dataset was computed based on 14 hint types.

Mad Libs, these articles have a title and text. Cre-
ating the stories involved finding a Wikipedia ar-
ticle and picking sentences which have potential
to generate humor (with very minimal edits such
as reducing verbosity), and then replacing some
words with blanks in a way such that the overall
blank, sentence, word and hint type distributions
are similar to their respective distributions in the
50 original Mad Libs. Table 1 shows the means of
the hint type distributions for the two datasets. We
randomly sampled 40 Fun Libs for training and
kept the remaining 10 for evaluation.

4 Data Annotation

With a set of Mad Lib-like stories in place, our
next task was to objectively create filled-in stories
to use as the basis for the remainder of our anal-
ysis. We used Amazon Mechanical Turk work-
ers, bootstrapping from an initial set of filled-
in stories, to then finding qualified turker judges,
and then finding qualified turker players to fill
in the blanks. Our goal was to create a labeled
dataset with filled-in blanks and a funniness
grade for each filled-in word. We selected turk-
ers who are native English speakers (from USA,
Canada, Great Britain and Australia), have a HIT
approval rate above 97%, and have completed at
least 10,000 HITs. We now describe how we fur-
ther selected qualified turkers and the methods we
applied to obtain better quality for the labeled data.

4.1 Judge Selection
To grade how funny a filled-in story is, we needed
turker judges who were unbiased referees of gen-
eral humor. We selected judges before players, be-
cause we used the judges to find qualified play-

ers. Finding good judges is challenging, because
humor is subjective. We launched a qualification
task to select qualified judges, with clear instruc-
tions on what makes a desirable judge. This task
involved giving turkers a set of seven filled-in sto-
ries to be graded for funniness. Out of these seven,
three were direct excerpts from Wikipedia articles
with some words marked as filled-in blanks. Ex-
cept for designating some words as filled-in, these
stories were unaltered from Wikipedia, and there-
fore were not funny. The remaining four stories
were filled in by humans to make them funny.
Turkers were allowed to select, for each story,
a grade from {0,1,2,3} (a scale which we used
throughout our work) described as follows:

0 - Not funny 2 - Moderately funny
1 - Somewhat funny 3 - Funny

We marked the ground-truth grade of the
Wikipedia excerpts as 0, and we used volunteers
from our research group to decide the ground-
truth grade of the other four stories between one
and three. We used 60 candidate turkers to do
this qualification task, out of which 27 success-
fully assigned 0 to all the Wikipedia excerpts and
1-3 to the other four stories. We selected all of
them as qualified judges. 16 others graded all the
Wikipedia excerpts as 0 but considered 1 of the
other four stories to be “Not funny”. We sorted
these turkers using the total Euclidean distance of
their grades from the ground truth, and chose the
top 13 among them to get 40 judges in total. To
make sure that turkers read each story, we also
asked a question that could be answered correctly
only by understanding the story’s context. During
our initial tests, we removed two judges who were
repeatedly failing to answer these questions cor-
rectly and took very little time to grade. Therefore,
our final judge pool included 38 judges. This se-
lection process was designed to find judges that
were careful, consistent, and representative in ob-
jectively judging the funniness of a filled-in story.

4.2 Player Selection

Players are the people who fill in the blanks in
a story. Our goal was to find turker players who
were good at creating funny stories by filling in
blanks. There was no overlap between the qual-
ified judges and the qualified players. To select
qualified players, we created two extra fill-in-the-
blank stories to be used for player selection alone.
We gave both stories to 50 candidate turkers to fill
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in. We instructed candidate turkers to avoid using
slang words, sexual references or bathroom humor
as these are crude, easy techniques for generating
humor, and do not require creativity. Further, we
required turkers to fill in each blank with exactly
one word (using alphabetic characters only) that
can be found in a US English dictionary, that is
grammatically correct, and that is not colloquial.

To lessen the impact of story contexts and to
have a variety in the humor generated, another
task was launched with two new stories and 30
new candidate turkers. For each filled-in story, we
graded the funniness of each story on our 0-3 scale
using 10 qualified judges (described above) to mit-
igate the effects of variations in humor taste. We
ranked the potential players and selected the high-
est ranked as qualified players. A total of 25 qual-
ified players were obtained from the two batches.

For both the judge and player selection phase,
we launched several small pilot tests and used
turkers’ feedback to design a better data labeling
phase, which we cover next.

4.3 Labeling Fun Libs
Our goal in labeling filled-in stories was to as-
sess the funniness of the overall filled-in story, the
funniness contribution of each filled-in word, and
other aspects of the humor. For each of the 40 sto-
ries in the training set, we used 5 players to fill the
blanks, giving us a total of 200 filled-in stories.
The players also self-graded the humor in their
completed stories.

Each of these stories was graded by 9 judges to
represent an audience rather than an individual and
to reduce effects of different humor tastes. Judges
answered the following:

• Which of the filled-in words caused humor.
• Funniness of the story (integer scale of 0-3).
• How coherent the story is, with the filled-in

words (integer scale of 0-3).
• To what extent the filled-in words caused the

story to deviate from its original topic as sug-
gested by the title (integer scale of 0-3).
• Whether the humor generation technique of

incongruity3 was applied by the player.
• A verification quiz, which can be answered

using the context of the story, to help ensure
that judges read the filled-in story carefully.

3Incongruity theory of humor says that a joke is funny
when it has a surprise, often at the end, that violates the con-
ventional expectation, often set up at the start (Weems, 2014).

We asked judges about coherence because we
expected incongruity would play a significant role
in the humor of Mad Libs due to their nature.

Judges and players each received 60 U.S. cents
per HIT. We also announced bonuses for the top 10
judges selected based on other judges’ agreements
with them and the top 10 players based on how
funny their filled-in stories were, as graded by the
judges. The total Mechanical Turk cost, including
the bonuses, was approximately US$2000.

5 Computer-aided Humor

In this section, we will discuss our machine
learning approach to generating humorous Fun
Libs. First we trained a random forest classi-
fier (Breiman, 2001) to predict whether a filled-in
word is funny using features from the story and the
title. Then our technique for generating complete,
funny Fun Libs involves, for each blank:

1. Use a language model to generate words

2. Keep the top 20 funny candidate words as
ranked by our classifier

3. Use humans to decide which candidate to fill
in the blank with

5.1 Language Model

To supply reasonable words for each blank,
we used the Microsoft Web Language Models
API (Wang et al., 2010), trained using Web Page
titles and available as a Web service. To gener-
ate candidate words for a blank, we use the API’s
word completion tool to get a list of all possible
candidate words using context windows up to four
previous words. Next, for each word we computed
the joint probability score, using the API’s joint
probability tool to get a probability estimate of
how well each candidate fits into the containing
sentence. Then we ranked candidates using this
score. We expect the words with high scores to be
the more fitting (less humorous) words for the con-
text, while those with low scores are more likely to
be the incongruous words that may generate sur-
prise or humor when used in the sentence.

5.1.1 Candidate Refinement
Since Web page titles for our language model are
not forced to be grammatically correct, the gen-
erated words are not all appropriate. Thus we ap-
plied the following constraints to get a cleaner can-
didate list:
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• The candidate must be in WordNet (Fell-
baum, 1998) or a US English dictionary.
• For a blank that is a sub-category of nouns

(e.g., “animal”), the candidate must have the
same sub-category as its WordNet hypernym.
• The candidate must have a part of speech tag

that agrees with the hint.
• The candidate must not be a word with non-

alphabetic characters or a stop word.
• The candidates for nouns and sub-categories

have to fit the context in terms of plurality .
• Candidate must not be a slang, adult or

bathroom-related word (filtered using a list of
4,012 words), because such words would be
too crude, producing shallow, easy humor.

5.2 Features

To predict whether a filled-in word is funny or not,
our classifier uses the following ten features ex-
tracted from the (word, story) pair:

1. Hint type.
2. Length of the word.
3. Language model’s joint probability for the

containing sentence with the word filled-in.
4. The word’s relative position, in terms of joint

probability, in the ranked candidate list gen-
erated by the language model: a value in the
interval [0,1], with 0 implying the candidate
has the highest joint probability in the list.

5. Minimum, maximum and average letter tri-
gram probabilities using letter bigram and
letter trigram counts from the Google Web
Trillion Word Corpus (Brants and Franz,
2006). The purpose of these features is to
capture the phonetic funniness of words (e.g.,
“whacking” instead of “fighting”).

6. The candidate’s similarity to the three con-
texts — title, overall story, and the containing
sentence. This is the cosine similarity of the
candidate’s word embedding vector with the
average word embedding vector for each con-
text. The vectors were computed using GloVe
vectors (Pennington et al., 2014) trained with
840 billion tokens from Web data.

5.3 Classification

The full training dataset includes 40 labeled Fun
Libs, each filled in by 5 different players, each of
which was graded by 9 different judges. We split

Train Validation
Precision (Funny) 0.712 0.715
Recall (Funny) 0.856 0.801
F1 score (Funny) 0.778 0.756
Accuracy 0.727 0.695

Table 2: Filled-in word classification results.

the data randomly by story titles, keeping 30 for
training and 10 in a validation set. This ensures
that the classifier does not see the validation sto-
ries’ contexts during training. Thus, our training
set consisted of features and funniness labels for
filled-in words from 150 stories. Further, we as-
signed labels using a vast majority vote, i.e., a
filled-in word having, out of nine judges’ votes:

- six or more “funny votes” is funny
- three or fewer funny votes is not funny

Otherwise the word was discarded. As a result, the
final dataset includes 1939 instances of filled-in
words: 1449 for training and 490 for validation.

We experimented with several machine learning
models, including linear regression, to predict the
number of positive votes for each word. Among
these, the random forest classifier worked best.
We performed 10-fold cross validation to train this
classifier, optimizing based on the F1 score. The
results are shown in Table 2. On the validation
data, the classifier has an F1 score of 0.756 and
an overall classification accuracy of 69.5%. While
these quality measures leave room for improve-
ment, they show that the classifier is clearly biased
toward choosing funnier words.

We show results from three baseline classifiers
in Table 3. Among these, the “Chance” classifiers
always predict the most frequent class found in
the training set, and “Chance Hint” predicts the
most frequent class for each hint type. The other
baseline is a Linear SVM classifier trained using
the three most important features of the trained
random forest as shown in Figure 2. The SVM’s
learned weights for the similarity features between
the word and the containing sentence, the entire
story, and the title, respectively, were −0.449,

Baseline Train Validation
Chance 0.571 0.543
Chance Hint 0.595 0.591
Linear SVM (3 feat.) 0.606 0.600

Table 3: Baseline classification accuracies.
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Figure 2: Feature importance for our classifier.

−0.883 and 1.344, showing that funnier filled-in
words are similar to the title but not to the body of
the story. This suggests that incongruity is playing
a significant role in generating humor.

6 Evaluation and Discussion

In this section, we define three approaches for gen-
erating humor in Mad Libs, and then we com-
pare and analyze the results we obtain from them.
These approaches are:

1. FreeText: players fill in the blanks without
any restrictions.

2. LMC (Language Model + Multiple Choice):
for each blank, players choose a word from
up to 20 candidate words generated by the
language model and sorted by their joint
probability score4.

3. Libitum: Similar to the LMC method, except
here we rank all the words up to the top 500
words generated by the language model us-
ing our classifier, keeping up to the top 20
“humorous” candidates4.

These methods are designed to study the out-
come of humor generated by humans only vs. hu-
mans with machine help. The purpose of the LMC
model is to study whether the language model
alone is a good aid to humans when creating hu-
mor, and the benefit of adding machine learning.

For evaluation, we used our ten test Fun Libs,
and for each of our three approaches, each of the

4In rare cases, for a blank, the language model was only
able to generate less than 20 candidate words that pass the
candidate refinement step. For such cases, the LMC candidate
list was expanded to at least 10 words by adding words ran-
domly from all possible words in WordNet that fit the blank’s
hint type, if necessary. For Libitum, WordNet was used to
randomly add words fitting the blank’s hint type to make a list
of 50 words that pass the candidate refinement phase. These
words were sorted using Libitum and used to ensure the final
candidate list had at least 10 words.

ten stories was completed by three players. Fig-
ure 3 shows the mean grade for these 30 stories. In
the figure, the titles are sorted left to right based on
the maximum mean story grade among the titles in
the Libitum approach. The stories per title are also
sorted left to right in descending mean grade. In
only one story (ID = 21), the Libitum model re-
ceives a lower mean grade than the LMC model,
suggesting that adding the machine learning to the
language model helps generate significantly more
humor than the language model alone. The Free-
Text model is fairly consistent in generating more
humor than the LMC model, which beats the Free-
Text model in only 7 out of 30 instances. However,
the Libitum approach frequently outperforms the
FreeText (human only) approach, and it achieves
significant gain in generating humor in the stories
with the titles “Valentine’s Day” and “Cats”.

Interestingly, the two stories that received the
highest mean grade (“Batman” and “Ducks”) are
from the FreeText format. This suggests that given
more freedom, humans are capable of generating
a stronger degree of humor than when they are re-
stricted to a limited number of choices. Excerpts
from the best “Batman” story are shown in Fig-
ure 4. Here, the strategy employed by the Free-
Text player is to consistently portray Batman as an
obese person obsessed with eating, exploiting the
superiority theory of humor5 (Mulder and Nijholt,
2002). This is remarkable, because it shows how
skilled humans are at finding and relating multi-
ple coherent concepts, achieving meaningful and
steady humor via continuity, something which is
very difficult for machines to do. Much of the hu-
mor generated by the Libitum approach here is via
incongruity — the filled-in words are quite humor-
ous mainly because they fit their contexts but do
not match the expectation of the reader (e.g., Bat-
man is an inefficient superhero). At times, some
of the filled-in words in the Libitum approach co-
herently generate humor, for instance, in the last
sentence when Batman is described as wearing a
veil to fight acne.

Since each human has a bias towards his/her
own understanding of humor, we also studied how
the stories appealed to the judges individually by
counting the total number of judges for each grade
in the three approaches. Table 4 shows the re-
sults, where the difference between the mean fun-

5Superiority humor comes from the misfortunes or short-
comings of others
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Figure 3: Mean funniness grade for the 30 test stories and their titles. The maximum mean grade for
a story in the Libitum format was used to order the titles. For each title, the three stories are sorted in
descending mean grade.

Grade FreeText LMC Libitum
0 65 102 37
1 97 100 103
2 84 56 86
3 24 12 44

mean 1.25 0.92 1.51

Table 4: Funniness grades for the 30 stories for the
three humor generation formats.

niness grades for each pair of approaches is statis-
tically significant with p < 0.005 when a 2-sample
t-test was performed. Using Krippendorff’s Al-
pha (Krippendorff, 1970), we also found positive
agreements between judges for these and training
set ratings.

As expected, the LMC model is the poorest
in terms of generating humor. Further, for each
non-zero grade, the Libitum model received more
votes than the FreeText model. A possible reason
is that the judges and players have different per-
ceptions of humor. In the FreeText approach, the
common technique employed by players was to
use words that are coherent, belonging to a specific
topic or domain, and to guide the story towards
one conclusion (e.g., the Batman story in Table 4).
When this technique worked well, the humor gen-
erated was very strong. However, the players have
their own biases towards what is humorous, and
having more freedom in the FreeText format al-
lowed them to explore their own concept of humor,
which could be too narrow to appeal to a broader
audience. The Libitum approach, by restricting the
players, prevented them from inserting words that
they themselves thought were funny, but were not
actually funny to people in general.

Table 5 shows passages from stories containing

filled-in words that received 9 funniness votes (the
maximum possible) from the judges. The story ID
and the algorithm used are also provided. Here,
in the “Ducks” story, the FreeText player chose
to generate humor by developing a steady mock-
ery by satirizing ducks as politicians, whereas
the LMC player chose the incongruity approach.
The “Beauty Contest” story shows the outstanding
skills of humans in generating humor when two
blanks are directly connected to each other (i.e.,
“brawler” and “deadly”). For the same segment,
Libitum was also able to aid the players in gener-
ating a very funny word, however, the coherence
between the blanks does not appear strong. With
the computer aided approaches, it is quite difficult
to suggest candidates for pairs of (or more) blanks
such that the choices are coherent.

6.1 Correlations
Table 6 shows correlations between different rat-
ings by judges (coherence, topic change and in-
congruity) and the stories’ funniness grades. In-
congruity had the strongest positive, and statisti-
cally significant (with p < 0.001), correlation with
the graded humor of a story. Coherence also ap-
pears very important for generating humor in all
the datasets except LMC, where it is difficult to
generate coherent words using a language model
only. Libitum is likely aiding players in achieving
funniness by providing coherent words. In LMC,
most of the words generating humor are probably
random, incongruous words since the change of
topic strongly positively correlates with increas-
ing the humor but coherence does not. Lastly, the
player’s self grade of humor has no significant re-
lationship with the judges’ grade of humor, sug-
gesting that each person has his/her own biases
about what is humorous.
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Alg. ID Text

FText 10
Most ducks are republican (adjective) birds, they can be found in both saltwater and fresh vodka
(liquid). Ducks are omnivorous, eating talkative (adjective) plants . . . People commonly feed ducks in
ponds stale jokes (noun), thinking that the ducks will like to have something to ridicule (verb)

LMC 10
Most ducks are evil (adjective) birds, they can be found in both saltwater and fresh coffee (liquid)
. . . Some ducks are not evil (adjective), and they are bred and kept by jesus (noun).

FText
Libtm

14
15

A beauty contest is a/an elaborate (adj) contest to decide which brawler (n) is the most deadly (adj)
A beauty contest is a observational (adjective) to decide wh organism is the most flammable

Libtm 5
Cats are the most barbaric (adjective) pets in the world. They were probably first kept because they ate
humans (animal). Later cats were bullied (verb [past]) because they are corrupt (adjective) . . . Cats
are active carnivores, meaning they hunt online (adjective) prey.

Table 5: Excerpts from test set stories, showing filled-in words receiving 9 (out of 9) funniness votes
(boldfaced) from our judges. The story ID and the approach provided can be used to trace the mean
funniness grade of the story in Figure 3.

Batman is a fictional character and one of the most famous / obese / sexiest / inefficient (adjective) superheroes
. . . Batman began in comic books and he was later used / liposuctioned / arrested / imprisoned (verb [past]) in several
movies, TV programs, and books. Batman lives in the fictional / edible / holy / abyssal (adjective) city of Gotham.
. . . Batman’s origin story is that as a/an young / obnoxious / adult / algebraic (adjective) child, Bruce Wayne saw a
robber murder / eat / play / prank (verb) his parents after the family left a/an theater / sauna / trail / bag (noun). Bruce
decided that he did not want that kind of violence / meal / luck / poem (noun) to happen to anyone else. He dedicated
his life to protect / devouring / pronounce / demolish (verb) Gotham City. Wayne learned many different ways to
fight / nibble / spell / crochet (verb) as he grew up. As an adult, he wore a/an costume / prosthesis / wig / veil (noun)
to protect his identity / belly / head / jaw (noun) while fighting crime / gelatin / poverty / acne (noun) in Gotham.

Figure 4: Portions of the best “Batman” story, with the filled-in words ordered based on their sources as
follows: Original / FreeText / LMC / Libitum. Each boldfaced word was rated “funny” by all 9 judges.

Assessment Train FText LMC Libtm
Coherence 0.390 0.345 0.023 0.578
Topic change 0.266 0.281 0.467 0.028
Self-grade 0.001 -0.054 0.024 0.151
Incongruity 0.638 0.620 0.650 0.515

Table 6: Correlation of different assessments of
stories with their funniness grade. The boldfaced
and underlined correlations are statistically signif-
icant, respectively, with p < 0.001 and p < 0.05.

6.2 Fully Automated System

We also tested an automated Mad Lib humor gen-
eration system, where we filled-in each test blank
with the most funny candidate word from Libitum.
The results were poor, with the stories having a
mean funny grade of 0.80. This is expected, be-
cause without human support, Libitum cannot an-
alyze complex word associations in order to come
up with words that preserve meaning and coher-
ence. This is evidenced by the statistically signif-
icant correlation (p < 0.001) of 0.456 between
coherence and mean funniness grade scores from
judges, suggesting that the judges mostly found
those stories funny which were coherent.

7 Conclusion

Our goal was to create and explore a new bench-
mark for computational humor research. We cre-
ated a copyright-free dataset that approximately
matches the statistical characteristics of Mad Libs.
Then we vetted a pool of Mechanical Turk judges
and players to create ground truth data. We devel-
oped an algorithm called Libitum that generates
and classifies potential blank-filling words as ei-
ther funny or not in the context of a Mad Lib. For
each blank, Libitum supplied a list of potentially
funny words from which a human could choose.
As judged by humans, the Libitum-aided words
easily worked better than words from a simple lan-
guage model and were usually better than even
words generated by human players who could fill
in the blanks in whichever way they liked.

Our three contributions, the benchmark, Libi-
tum, and the analysis of what makes it funny, ad-
vance the state of the art in computer humor by
demonstrating a successful computer aided hu-
mor technique and quantitatively analyzing what
makes for funny fill-in-the-blank words for Mad
Libs. These analyses show that coherent stories
have tremendous potential in making a Mad Lib
humorous, a promising direction for future work.
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Abstract

In this paper, we introduce a new distri-
butional method for modeling predicate-
argument thematic fit judgments. We use
a syntax-based DSM to build a prototyp-
ical representation of verb-specific roles:
for every verb, we extract the most salient
second order contexts for each of its roles
(i.e. the most salient dimensions of typi-
cal role fillers), and then we compute the-
matic fit as a weighted overlap between
the top features of candidate fillers and
role prototypes. Our experiments show
that our method consistently outperforms
a baseline re-implementing a state-of-the-
art system, and achieves better or compa-
rable results to those reported in the liter-
ature for the other unsupervised systems.
Moreover, it provides an explicit represen-
tation of the features characterizing verb-
specific semantic roles.

1 Introduction

Several psycholinguistic studies in the last two
decades have brought extensive evidence that hu-
mans activate a rich array of event knowledge dur-
ing sentence processing: verbs (e.g. arrest) ac-
tivate expectations about their typical arguments
(e.g. cop, thief ) (McRae et al., 1998; Altmann and
Kamide, 1999; Ferretti et al., 2001; McRae et al.,
2005; Hare et al., 2009; Matsuki et al., 2011), and
nouns activate other nouns typically co-occurring
in the same events (Kamide et al., 2003; Bick-
nell et al., 2010). Subjects are able to determine
the plausibility of a noun for a given argument
role and quickly use this knowledge to anticipate
upcoming linguistic input (McRae and Matsuki,
2009). This phenomenon is referred to in the lit-
erature as thematic fit. Thematic fit estimation

has been extensively used in sentence comprehen-
sion studies on constraint-based models, mainly as
a predictor variable allowing to disambiguate be-
tween possible structural analyses.1 More in gen-
eral, thematic fit is considered as a key factor in a
variety of studies concerned with structural ambi-
guity (Vandekerckhove et al., 2009).

Starting from the work of Erk et al. (2010),
several distributional semantic methods have been
proposed to compute the extent to which nouns
fulfill the requirements of verb-specific thematic
roles, and their performances have been evaluated
against human-generated judgments (Baroni and
Lenci, 2010; Lenci, 2011; Sayeed and Demberg,
2014; Sayeed et al., 2015, 2016; Greenberg et al.,
2015a,b). Most research on thematic fit estima-
tion has focused on count-based vector representa-
tions (as distinguished from prediction-based vec-
tors).2 Indeed, in their comparison between high-
dimensional explicit vectors and low-dimensional
neural embeddings, Baroni et al. (2014) found that
thematic fit estimation is the only benchmark on
which prediction models are lagging behind state-
of-the-art performance. This is consistent with
Sayeed et al. (2016)’s observation that “thematic
fit modeling is particularly sensitive to linguistic
detail and interpretability of the vector space”.

The present work sets itself among the un-
supervised approaches to thematic fit estima-
tion. By relying on explicit and interpretable
count-based vector representations, we propose
a simple, cognitively-inspired, and efficient the-
matic fit model using information extracted from
dependency-parsed corpora. The key features of
our proposal are a) prototypical representations
of verb-specific thematic roles, based on feature
weighting and filtering of second order contexts

1For an overview on constraint-based models, see Mac-
Donald and Seidenberg (2006).

2We adopt the terminology from Baroni et al. (2014).
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(i.e. contexts that are salient for many of the typ-
ical fillers of a given verb-specific thematic role),
and b) a similarity measure which computes the
Weighted Overlap (WO) between prototypes and
candidate fillers.3

2 Related Work

Erk et al. (2010) were, at the best of our knowl-
edge, the first authors to measure the correlation
between human-elicited thematic fit ratings and
the scores assigned by a syntax-based Distribu-
tional Semantic Model (DSM). More specifically,
their gold standard consisted of the human judg-
ments collected by McRae et al. (1998) and Padó
(2007). The plausibility of each verb-filler pair
was computed as the similarity between new can-
didate nouns and previously attested exemplars for
each specific verb-role pairing (as already pro-
posed in Erk (2007)).

Baroni and Lenci (2010) evaluated their Dis-
tributional Memory (henceforth DM)4 framework
on the same datasets, adopting an approach to the
task that has become dominant in the literature:
for each verb role, they built a prototype vector
by averaging the dependency-based vectors of its
most typical fillers. The higher the similarity of
a noun with a role prototype, the higher its plau-
sibility as a filler for that role. Lenci (2011) has
later extended the model to account for the dy-
namic update of the expectations on an argument,
depending on how another role is filled. By using
the same DM tensor, this study tested an additive
and a multiplicative model (Mitchell and Lapata,
2010) to compose and update the expectations on
the patient filler of the subject-verb-object triples
of the Bicknell dataset (Bicknell et al., 2010).

The thematic fit models proposed by Sayeed
and Demberg (2014) and Sayeed et al. (2015) are
similar to Baroni and Lenci’s, but their DSMs
were built by using the roles assigned by the
SENNA semantic role labeler (Collobert et al.,
2011) to define the feature space. These authors
argued that the prototype-based method with de-
pendencies works well when applied to the agent
and to the patient role (which are almost always
syntactically realized as subjects and objects), but

3Code: https://github.com/esantus/Thematic Fit
4In this paper, we will make reference to two different

models of DM: DepDM and TypeDM. DepDM counts the
frequency of dependency links between words (e.g. read, obj,
book), while TypeDM uses the variety of surface forms that
express the link between words, rather than the link itself.

that it might be problematic to apply it to dif-
ferent roles, such as instruments and locations,
as the construction of the prototype would have
to rely on prepositional complements as typical
fillers, and the meaning of prepositions can be am-
biguous. Comparing their results with Baroni and
Lenci (2010), the authors showed that their system
outperforms the syntax-based model DepDM and
almost matches the scores of the best performing
TypeDM, which uses hand-crafted rules. More-
over, they were the first to evaluate thematic role
plausibility for roles other than agent and patient,
as they computed the scores also for the instru-
ments and for the locations of the Ferretti datasets
(Ferretti et al., 2001).

Greenberg et al. (2015a,b) further developed the
TypeDM and the role-based models, investigat-
ing the effects of verb polysemy on human the-
matic fit judgments and introducing a hierarchical
agglomerative clustering algorithm into the proto-
type creation process. Their goal was to cluster to-
gether typical fillers into multiple prototypes, cor-
responding to different verb senses, and their re-
sults showed constant improvements of the perfor-
mance of the DM-based model.

Finally, Tilk et al. (2016) presented two neural
network architectures for generating probability
distributions over selectional preferences for each
thematic role. Their models took advantage of su-
pervised training on two role-labeled corpora to
optimize the distributional representation for the-
matic fit modeling, and managed to obtain signif-
icant improvements over the other systems on al-
most all the evaluation datasets. They also eval-
uated their model on the task of composing and
updating verb argument expectations, obtaining a
performance comparable to Lenci (2011).

3 Methodology

As pointed out by Sayeed et al. (2016), most works
on unsupervised thematic fit estimation vary in the
method adopted for constructing the prototypes.
The semantic role prototype is usually a vector,
obtained by averaging the most typical fillers, and
plausibility of new fillers depends on their similar-
ity to the prototype, assessed by means of vector
cosine (the standard similarity measure for DSMs;
see Turney and Pantel (2010)).

Its merits notwithstanding, we argue that this
method is not optimal for characterizing roles.
Distributional vectors are typically built as out-of-
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context representations, and they conflate different
senses. By building the prototype as the centroid
of a cluster of vectors and measuring then the the-
matic fit with vector cosine, the plausibility score
is inevitably affected by many contexts that are ir-
relevant for the specific verb-argument combina-
tion.5 This is likely to be one of the main reasons
behind the difficulties of modeling roles other than
agent and patient with syntax-based DSMs. We
claim that improving the prototype representation
might lead to a better characterization of thematic
roles, and to a better treatment of polysemy.

When a verb and an argument are composed,
humans are intuitively able to select only the part
of the potential meaning of the words that is rele-
vant for the concept being expressed (e.g. in The
player hit the ball, humans would certainly ex-
clude from the meaning of ball semantic dimen-
sions that are strictly related to its dancing sense).
In other words, not all the features of the seman-
tic representations are active, and the composition
process makes some features more ‘prominent’,
while moving others to the background.6

Although we are not aware of experimen-
tal works specifically dedicated to verb-argument
composition, a similar idea has been supported
in studies on conceptual combinations (Hampton,
1997, 2007): when a head and a modifier are com-
bined, their interaction affects the saliency of the
features in the original concepts. For example,
in racing car, the most salient properties would
be those related to SPEED, whereas in family
car SPACE properties would probably be more
prominent. Yeh and Barsalou (2006) used a prop-
erty priming experiment to show how the concept
features activated during language comprehension
vary across the background situations described by
the sentence they occur in. When concepts are
combined in a sentence, the features that are rele-
vant for the specific combination are activated and
are then easier to verify for human subjects.

The same could be true for linguistically-
derived properties of lexical meaning: Simmons
et al. (2008) brought neuroimaging evidence of the
early activation of word association areas during
property generation tasks, and Santos et al. (2011)

5For an overview on the limitations of vector cosine, see:
Li and Han (2013); Dinu et al. (2015); Schnabel et al. (2015);
Faruqui et al. (2016); Santus et al. (2016a).

6An early proposal going in this direction is the predica-
tion theory by Kintsch (2001), which exploited Latent Se-
mantic Analysis to select only the vector features that are ap-
propriate for predicate-argument composition.

showed that word associates are often among the
properties generated for a given concept. Such
findings suggest that, while we combine concepts,
both embodied simulations and word distributions
influence property salience (Barsalou et al., 2008).

Our model makes the following assumptions:

• the composition between a verb role repre-
sentation and an argument shares the same
cognitive mechanism underlying conceptual
combinations;

• at least part of semantic representations is
derived from, and/or mirrored in, linguistic
data.7 Consistently, the process of selecting
the relevant features of the concepts being
composed corresponds to modify the salience
of the dimensions of distributional vectors;

• thematic fit computation is carried out on the
basis of the activation and selection of salient
features of a verb thematic role prototype and
of the candidate argument filler vectors.

We rely on syntax-based DSMs, using depen-
dency relations to approximate verb-specific roles
and to identify their most typical fillers: for
agents/patients, we extract the most frequent sub-
jects/objects, for instruments we use the preposi-
tional complements introduced by with, and for
locations those introduced by either on, at or in.

Assuming that the linguistic features of distribu-
tional vectors correspond to the properties of con-
ceptual composition processes, a candidate filler
can be represented as a sorted distributional vec-
tor of the filler term, in which the most salient
contexts occupy the top positions. Similarly, the
abstract representation of a verb-specific role is
a sorted prototype-vector, whose features derive
from the sum of the most typical filler vectors for
that verb-specific role.

Differently from Baroni and Lenci, the core and
novel aspect of our proposal, described in the fol-
lowing subsections, is that we do not simply mea-
sure the correlation between all the features of
candidate and prototype vectors (as vector cosine
would do on unsorted vectors), but rather we rank
and filter the features, computing the weighted
overlap with a rank-based similarity measure in-
spired by APSyn, a recent proposal by Santus

7See also the so-called ’strong version’ of the Distribu-
tional Hypothesis (Miller and Charles, 1991; Lenci, 2008).
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et al. (2016a,b,c) which has shown interesting re-
sults in synonymy detection and similarity estima-
tion. As we will show in the next sections, the new
metric assigns high scores to candidate fillers shar-
ing many salient contexts with the verb-specific
role prototype.

3.1 Typical Fillers

The first step of our method consists in identifying
the typical fillers of a verb-specific role. Following
Baroni and Lenci (2010), we weighted the raw co-
occurrences between verbs, syntactic relations and
fillers in the TypeDM tensor of DM with Positive
Local Mutual Information (PLMI; Evert (2004)).

Given the co-occurrence count Ovrf of the verb
v, a syntactic relation r and the filler f , we com-
puted the expected count Evrf under the assump-
tion of statistical independence:

PLMI(v, r, f) = log

(
Ov,r,f
Ev,r,f

)
∗Ov,r,f (1)

From the ranked list of (v,r,f) tuples, for each slot,
we selected as typical fillers the top k lexemes with
the highest PLMI scores (see examples in Table 1,
Typical Fillers column). In our experiments, we
report results for k = {10, 30, 50}.

3.2 Role Prototype Vectors

To represent the typical fillers, the candidate fillers
and the verb-specific role prototypes (which are
obtained by summing their typical filler vectors),
we built a syntax-based DSM. This includes rela-
tion:word contexts, like sbj:dog, obj:apple, etc..

Contexts were weighted with Positive Pointwise
Mutual Information (PPMI; Church and Hanks
(1990), Bullinaria and Levy (2012), Levy et al.
(2015)). Given a context c and a wordw, the PPMI
is defined as follows:

PPMI(w, c) = max(PMI(w, c), 0) (2)

PMI(w, c) = log

(
P (w, c)

P (w)P (c)

)
= log

(
|w, c|D
|w||c|

)
(3)

where w is the target word, c is the given context,
P(w,c) is the probability of co-occurrence, and D
is the collection of observed word-context pairs.8

8A variant of this DSM weighted with PLMI (which is
simply the PPMI multiplied by the word-context frequency)
was also built, but because of its lower and inconsistent per-

The context c of the prototype vector P repre-
senting a thematic role has a value corresponding
to the sum of the values of c for each of the k typ-
ical fillers used to build P . The contexts of P
are then sorted according to their weight. Desir-
ably, the highest-ranking contexts for a role pro-
totype will be those that are more strongly associ-
ated with many of its typical fillers. Such second
order contexts correspond to the most salient fea-
tures of the verb-specific thematic role, as they are
salient for many role fillers (some examples are
reported in Table 1, Top Second Order Contexts
column).

In summary, we built centroid vectors for our
verb-specific thematic roles by means of second
order contexts, which are first order dependency-
based contexts of the most typical fillers of a verb-
specific role. Since we are interested only in the
most salient contexts, we ranked the centroid con-
texts according to their PPMI score, and we took
the resulting rank as a distributional characteriza-
tion of the thematic roles.

3.3 Filtering the Contexts

Filtering the prototype dimensions according to
syntactic criteria might be useful to improve our
role representations. It is, indeed, reasonable to
hypothesize that predicates co-occurring with the
typical patients of a verb are more relevant for the
characterization of its patient role than – let’s say –
prepositional complements, as they correspond to
other actions that are typically performed on the
same patients.

Imagine that apple, pizza, cake etc. are among
the most salient fillers for the OBJ slot of to eat,
and that OBJ-1:slice-v, OBJ-1:devour-v, SBJ:kid-
n, INSTRUMENT:fork-n, LOCATION:table-n are
some of the most salient contexts of the proto-
type.9 Things that are typically sliced and/or de-
voured are more likely to be good fillers for the pa-
tient role to eat than things that are simply located
on a table or that are patients of actions performed
by kids. To test this hypothesis, we evaluated the
performance of the system in three different set-
tings, each of which selecting:

formance we will not discuss it further. Santus et al. (2016c)
previously showed that their rank-based measure performs
worse on PLMI-weighted vectors, as they are biased towards
frequent contexts.

9Our DSM also makes use of inverse syntactic dependen-
cies: target SYN-1 context means that target is linked to con-
text by the dependency relation SYN (e.g. meal OBJ-1 devour
means that meal is OBJ of devour).
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Typical Fillers Top Second Order Contexts
subject: cure-v treatment-n, drug-n, resin-n, doctor-n, surgery-n, medicine-

n, therapy-n, antibiotic-n, dose-n, operation-n, water-n...
obj-1:prescribe-v, sbj-1:prescribe-v, sbj-
1:prevent-v, sbj-1:contraindicate-v, [...]

object: abandon-v plan-n, idea-n, project-n, attempt-n, position-n, principle-n,
policy-n, ship-n, practice-n, hope-n, fort-n, claim-n...

obj-1:revive-v, obj-1:defend-v, obj-1:renounce-
v, obj-1:espouse-v, sbj-1:entail-v...

instrument: eat-v bread-n, hand-n, spoon-n, sauce-n, relish-n, fork-n, finger-
n, meal-n, knife-n, friend-n, chopstick-n, rice-n, food-n...

obj-1:flavour-v, obj-1:taste-v, obj-1:spoon-v,
sbj-1:taste-v, obj-1:slice-v in:bowl-n...

location: walk-v in:direction-n, at:time, at:pace-n, on:path-n, at:night,
on:side-n, at:end, on:beach-n, on:leg, in:area, in:way...

obj-1:wander-v, obj-1:stroll-v, obj-1:litter-v,
obj-1:sweep-v, sbj-1:slope-v, obj-1:tread-v...

Table 1: Typical fillers and top second order contexts for several verb-specific roles.

• only predicates in a subject/object relation
(SO setting);

• only prepositional complements (PREP set-
ting);

• both of them (ALL setting).

3.4 Computing the Thematic Fit
Our hypothesis is that fillers whose salience-
ranked vector has a large overlap with the proto-
type representation should have a high thematic fit.
Such overlap should take into account not only the
number of shared features, but also their respective
ranks in the salience-ranked vectors.

When the prototype has been computed and the
candidate filler vector has also been sorted, we
can measure the Weighted Overlap by adapting
APSyn (Santus et al., 2016a,b,c) to our needs:

WO(wx, wy) =
∑

∀fε(x[1:N]∩y[1:N])

1

avg(rx(f), ry(f))
(4)

where for every feature f in the intersection be-
tween the top N features of the sorted vectors x,
x[1:N ], and y, y[1:N ], we sum 1 divided by the av-
erage rank of the shared feature in x and y, rx(f)
and ry(f) (N is a tunable parameter).

This measure assigns the maximum score to
vectors sharing exactly the same dimensions, in
the same salience ranking. The lower the rank of a
shared context in the sorted vector, the smaller its
contribution to the thematic fit score. If the feature
set intersection is empty, the score will be 0.

Differently from cosine similarity, which con-
flates multiple senses, measuring the Weighted
Overlap between prototype and candidate filler
can improve the estimation of the thematic fit
by favoring the appropriate word senses: for ex-
ample, for a verb-argument pair like embrace-
v–communism-n, communism-n is likely to inter-
sect and to increase the saliency (through the av-
erage rank) only of the second-order features of
embrace-v referring to its abstract sense.

Data Our system BL2010 SD2014 G2015 T2016
Padó 96 100 99 100 99

McRae 100 95 96 95 96
Instr. 100 93 94 93 94
Loc. 96 99 100 99 100

Table 2: Dataset coverage (%) for all systems.

4 Experiments

Datasets. We tested our method on three pop-
ular datasets for thematic fit estimation, namely
McRae et al. (1998), Ferretti et al. (2001) and Padó
(2007). All the datasets contain human plausibility
judgments for verb-role-filler triples. McRae and
Padó include scores for agent and patient roles,
whereas Ferretti includes instruments and loca-
tions (see Table 2 for the coverage of each system
for the datasets).
Metrics. Performance is evaluated as the Spear-
man correlation between the scores of the systems
and the human plausibility judgments.
Fillers. In order to make our results more compa-
rable with previous studies, the typical fillers for
each verb role were extracted from the TypeDM
tensor of the Distributional Memory framework
(see Section 3.1).10 Those were the same fillers
used by Baroni and Lenci (2010) and Greenberg
et al. (2015b).
DSM. Distributional information is derived from
the concatenation of two corpora: the British Na-
tional Corpus (Leech, 1992) and Ukwac (Baroni
et al., 2009). Both were parsed with the Malt-
parser (Nivre and Hall, 2005). From this con-
catenation, we built a dependency-based DSMs,
weighted with PPMI, containing 20,145 targets
(i.e. nouns and verbs with frequency above 1000)
and 94,860 contexts. The syntactic relations taken
into account were: sbj, sbj-1, obj, obj-1, at-1, in-1,
on-1, with-1.
Settings. To prove our hypotheses and verify the
consistency of the system, we tested a large range
of settings, varying:

10http://clic.cimec.unitn.it/dm/
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Weight N # Fillers Padó Mcrae Ferretti - Instruments Ferretti - Locations
ALL SO PREP ALL SO PREP ALL SO PREP ALL SO PREP

PPMI 2000
10 0.43 0.45 0.26 0.25 0.27 0.19 0.43 0.41 0.46 0.25 0.27 0.28
30 0.47 0.49 0.33 0.26 0.28 0.22 0.42 0.41 0.50 0.28 0.31 0.37
50 0.46 0.50 0.35 0.27 0.29 0.24 0.39 0.38 0.47 0.28 0.32 0.39

Vector Cosine
(Baseline)

10 0.43 0.25 0.42 0.29
30 0.47 0.26 0.41 0.32
50 0.48 0.26 0.38 0.31

State of the Art
Baroni and Lenci (2010) 0.53 0.33 0.36 0.23

Sayeed and Demberg (2014) 0.56 0.27 0.28 0.13
Greenberg et al. (2015) 0.53 0.36 0.42 0.29

Tilk et al. (2016) 0.52 0.38 0.45 0.44

Table 3: Results for Padó, McRae and Ferretti, Instruments and Locations, withWO computed on PPMI
matrix, varying the number of fillers (i.e. 10, 30 and 50) and the types of dependency contexts (i.e. ALL,
SO and PREP). The best results of our system are in bold. A baseline reimplementing Baroni and Lenci
(2010) – with 10, 30 and 50 fillers – and state of the art results from previous literature are reported for
comparison.

• the number of fillers used to build the proto-
type, with the most typical values in the liter-
ature ranging between 10 and 50. We report
the results for 10, 30 and 50 fillers

• the types of the dependency relations used for
calculating the overlap: we report results for
the SO, PREP and ALL settings;

• the value of N , that is the number of top con-
texts that we take into account when comput-
ing the weighted overlap. Table 3 reports the
scores for our best setting, while the perfor-
mances for other values ofN are discussed in
the Section 5.

Baseline and State of the Art. As a baseline, we
use the thematic fit model by Baroni and Lenci
(2010), with no ranking of the features of the
prototypes and with vector cosine as a similarity
metric.11 Results are reported for 10, 30 and 50
fillers. For reference, we also report the results
of state-of-the-art models, both the unsupervised
(Baroni and Lenci, 2010; Sayeed and Demberg,
2014; Greenberg et al., 2015b) and the supervised
ones (Tilk et al., 2016).

5 Results

Table 3 describes the performance of the best set-
ting (weight: PPMI; N=2000). In the first three
rows, the table shows the scores obtained by our

11This baseline is equivalent to the approach of Baroni and
Lenci (2010), except for the fact that it is applied on a stan-
dard dependency-based DSM and not on TypeDM, which
combines dependency links and handcrafted lexico-syntactic
patterns: see Section 2.

system varying the types of dependency contexts
(i.e. ALL, SO, PREP) and the number of fillers
considered for the prototype (i.e. 10, 30 and 50).
The other rows respectively show i) the scores ob-
tained by calculating the vector cosine between the
role prototype vector (i.e. the vector obtained by
summing the most typical fillers, with no salience
ranking of the dimensions) and the candidate filler
vector and ii) the scores reported in the literature
for the best unsupervised and supervised models.

At a glance, our best scores always outperform
the reimplementation of Baroni and Lenci, being
mostly competitive with the state of the art models.
More precisely, for agents and patients the per-
formance is close to the reported scores for DM,
when only predicates are used in the WO calcu-
lation, as hypothesized in Section 3.3. The neural
network of Tilk and colleagues retains a signifi-
cant advantage on our models only for the McRae
dataset. Our system, however, shows a remark-
able improvements on the Ferretti’s datasets, and
specifically on Ferretti-Instruments, when only
complements are used (see Section 3.3), outper-
forming even the supervised and more complex
model by Tilk et al. (2016), which has access to
semantic roles information. Compared to the other
unsupervised models, our system has a statisti-
cally significant advantage over Baroni and Lenci
(2010) on the locations dataset and over Sayeed
and Demberg (2014) on the locations and on the
instruments dataset (p < 0.05).12

At the best of our knowledge, the result for the

12p-values computed with Fisher’s r-to-z transformation.
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Figure 1: Results for Padó, McRae and Ferretti, Instruments and Locations, with WO (respectively SO
and PREP) computed on PPMI matrix, varying the number of fillers (i.e. 10, 30 and 50) and the value of
N (i.e. 500, 1000, 1500 and 2000). A baseline reimplementing Baroni and Lenci (2010) – with 10, 30
and 50 fillers – is also reported in every test for comparison.

Figure 2: Results for the agent and patient roles in Padó and McRae, with WO (SO) computed on PPMI
matrix, varying the number of fillers (i.e. 10, 30 and 50) and the value of N (i.e. 500, 1000, 1500 and
2000). A baseline reimplementing Baroni and Lenci (2010) – with 10, 30 and 50 fillers – is also reported
in every test for comparison.
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BEST 35 WORST 35
Metric Avg. Gold Overlap Syntax Lexemes Avg. Gold Overlap Syntax Lexemes

McRae
(k=50, Pred)

Cos 4.90 3 14 sbj, 21 obj 3 sentence, 2 devour, 2 scratch... 4.75 26 24 sbj, 11 obj 2 consider, 2 entertain, 2 scrub
WO 2000 4.20 4 17 sbj, 18 obj 2 haunt 4.15 26 23 sbj, 12 obj 2 admire, 2 arrest, 2 consider, 2 entertain

Padó
(k=50, Pred)

Cos 4.07 10 12 sbj, 23 obj 4 advise, 4 eat, 4 embarrass 4.77 16 17 sbj, 18 obj 9 tell, 7 kill, 4 see
WO 2000 4.35 10 21 sbj, 14 obj 3 confuse, 3 hear, 3 promise, 3 raise 4.68 16 15 sbj, 20 obj 7 resent, 5 increase, 4 hear, 4 see

Ferretti - Instruments
(k=30, Compl)

Cos 4.53 16 35 with 3 hung, 3 eat, 3 teach 4.51 22 35 with 4 repair, 3 teach, 3 inflate
WO 2000 5.06 15 35 with 3 dig, 3 hunt 4.49 22 35 with 3 repair, 2 attract, 2 dig, 2 draw, 2 drink...

Ferretti - Locations
(k=50, Compl)

Cos 5.15 11 35 on/at/in 3 draw, 3 rescue 4.72 23 35 on/at/in 3 run, 2 wait, 2 wash, 2 shower...
WO 2000 4.97 11 35 on/at/in 3 browse, 3 eat, 3 mingle, 3 rescue 4.47 23 35 on/at/in 3 run, 2 draw, 2 exercise, 2 shower, 2 wait...

Table 4: Average gold values, number of items listed for both metrics, and distribution of syntactic and
lexical forms among the 35 best and worst correlated items for every measure in the given datasets.

instruments is the best reported until now in the
literature. This is particularly interesting because
– as pointed out by Sayeed and Demberg (2014) –
instruments and locations are difficult to model for
a dependency-based system, given the ambiguity
of prepositional phrases (e.g. with does not only
encode instruments, but it can also encode other
roles, such as in I ate a pizza with Mark). We think
this is the main reason behind the different trend
observed for the Instruments datasets with respect
to the number of the fillers (see Table 3 and Fig-
ure 1). Unlike all the other datasets, instrument
prototypes built with more fillers tend to be more
noisy and therefore to pull down both the vector
cosine and WO performance (this is partially true
also for locations, where the performances – for
cosine and WO with a lower number of contexts
– drop with more than 30 fillers: see Figure 1).
Systems based on semantic role labeling have an
advantage in this sense, as they do not have to deal
with prepositional ambiguity.

Our results show that, by weighting and
filtering the features of the role prototype,
dependency-based approaches can be successful
in modeling roles other than agent and patient,
eventually dealing also with the ambiguity of
prepositional phrases.

Settings. Apart from the above-mentioned ex-
ceptions, the best scores are obtained building
the prototypes with a higher number of fillers,
typically with 50, and calculating the WO only
with a syntactically-filtered set of contexts. More
specifically, Padó and McRae benefit from the
calculation of WO using only second order
subject-object predicates (i.e. SO), while Ferretti-
Instruments and Ferretti-Locations benefit from
the exclusive use of prepositional complements
(i.e. PREP). On the other hand, the opposite set-
ting (e.g. SO for Ferretti-Instruments and Ferretti-
Locations and PREP for Padó and McRae) leads
to much lower scores, whereas the full vectors (i.e.

ALL) tend to have a stable-but-not-excellent per-
formances on all datasets.

As briefly mentioned above, in our experiments,
we tested both PPMI and PLMI as weighting mea-
sures. Table 3 only reports PPMI scores because
it performs more regularly than PLMI, whose be-
haviour is often unpredictable.

A parameter that has an impact on the perfor-
mance of our system is the value of N , which
is the number of second order contexts that are
considered when calculating the WO. We have
noticed that the performance of WO is directly
related to the growth of N , and this can be noticed
in Figure 1, where WO is plotted for the different
values of N with every combination of dataset
and number of fillers. For space reasons, the plot
only contains the performance for the best type
of second order contexts for each dataset (i.e.
SO for Padó and McRae and COMP for Ferretti-
Locations and Ferretti-Instruments). As it can be
seen in Figure 1, the scores of WO tend to grow
with the growth of N in all datasets. Interestingly,
they are largely above the competitive baseline
in most of the cases, the only exceptions being
Padó (where a large N is necessary to outperform
the baseline) and Ferretti-Locations with 10 fillers
(prepositional ambiguity might have caused the
introduction of noisy fillers among the top ones).

Agent & Patient. In order to further evaluate our
system, we have split Padó and McRae datasets
into agent and patient subsets. Figure 2 describes
the performance of WO and vector cosine base-
line while varying N and the number of fillers.
The plot shows a clearly better performance of
WO for the agent role (i.e. subject), especially
when N is equal or over 1000 (note that the value
of N has little impact in the agent subset of the
McRae dataset). Such advantage, however, is re-
duced for the patient role (i.e. object). This is
particularly interesting because we do not observe
large drops in performance for the vector cosine
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between agent and patient role (except for Padó,
k = 10). The drop is particularly noticeable in
Padó, a dataset which has several non-constraining
verbs (especially for the patient role: a similar ob-
servation was also made by Tilk et al. (2016)). As
the constraints on the typical fillers of such verbs
are very loose, we hypothesize that it is more diffi-
cult to find a set of salient features that are shared
by many typical fillers. Therefore, estimations
based on the whole vectors turn out to be more
reliable. This can be confirmed by looking at the
worst correlated words reported in Lexemes col-
umn, in Table 4.

5.1 Error Analysis
We performed an error analysis to verify – for the
best settings of WO in each dataset – the corre-
lation between vector cosine and WO scores (see
Table 5), and the peculiarities of the entries with
the strongest and the weakest correlation (see Ta-
ble 4).

We found that WO and vector cosine always
have a high correlation (i.e. above 0.80), with
the highest correlations reported for McRae and
Ferretti-Instruments. Looking at Table 4 we can
also observe that:

• the average gold value of the 35 most (4.65)
and least (4.56) correlated items does not
substantially differ from the average gold
value calculated on the full datasets (4.31),
meaning that the distribution of likely and un-
likely fillers among the best and worst corre-
lated items is similar to the one in the datasets
(i.e. no bias can be identified);

• both measures have difficulties on the same
test items (probably because of loose seman-
tic constraints), but report their best perfor-
mances on different pairs (see Overlap and
Lexemes columns);

• syntactically, vector cosine correlates better
with objects, whileWO is more balanced be-
tween objects and subjects, often showing a
preference for the latter (see the distribution
in Syntax column).

6 Conclusions

In this paper, we have introduced an unsupervised
distributional method for modeling predicate-
argument thematic fit judgments which works
purely on syntactic information.

Dataset Correlation
McRae 0.88
Padó 0.81

Ferretti - Instruments 0.90
Ferretti - Locations 0.83

Table 5: Correlation between WO and vector co-
sine in WO best settings for all datasets

The method, inspired by cognitive and psy-
cholinguistic findings, consists in: i) extracting
and filtering the most salient second order contexts
for each verb-specific role, i.e. the most salient
semantic dimensions of typical verb-specific role
fillers; and then ii) estimating the thematic fit as
a weighted overlap between the top features of
the candidate fillers and of the prototypes. Once
tested on some popular datasets of thematic fit
judgments, our method consistently outperforms a
baseline re-implementing the thematic fit model of
Baroni and Lenci (2010) and proves to be competi-
tive with state of the art models. It even registered
the best performance on the Ferretti-Instruments
dataset and it is the second best on the Ferretti-
Locations, which were known to be particularly
hard to model for dependency-based approaches.

Our method is simple, economic and efficient, it
works purely on syntactic dependencies (so it does
not require a role-labeled corpus) and achieves
good results even with no supervised training.
Finally, it offers linguistically and cognitively
grounded insights on the process of prototype cre-
ation and contextual feature salience, preparing
the ground for further speculations and optimiza-
tions. For example, future work might aim at iden-
tifying strategies for tuning the parameter N to
account for the different degrees of selectivity of
each verb-specific role. Another possible exten-
sion would be the inclusion of a mechanism for
updating the role prototypes depending on how the
other roles are filled, which would be the key for
a more realistic and dynamic model of thematic fit
expectations (Lenci, 2011).
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Abstract

We present a feature vector forma-
tion technique for documents - Sparse
Composite Document Vector (SCDV) -
which overcomes several shortcomings of
the current distributional paragraph vec-
tor representations that are widely used for
text representation. In SCDV, word em-
beddings are clustered to capture multiple
semantic contexts in which words occur.
They are then chained together to form
document topic-vectors that can express
complex, multi-topic documents. Through
extensive experiments on multi-class and
multi-label classification tasks, we outper-
form the previous state-of-the-art method,
NTSG (Liu et al., 2015a). We also show
that SCDV embeddings perform well on
heterogeneous tasks like Topic Coherence,
context-sensitive Learning and Informa-
tion Retrieval. Moreover, we achieve sig-
nificant reduction in training and predic-
tion times compared to other representa-
tion methods. SCDV achieves best of both
worlds - better performance with lower
time and space complexity.

1 Introduction

Distributed word embeddings represent words as
dense, low-dimensional and real-valued vectors
that can capture their semantic and syntactic prop-
erties. These embeddings are used abundantly
by machine learning algorithms in tasks such as
text classification and clustering. Traditional bag-
of-word models that represent words as indices
into a vocabulary don’t account for word ordering
and long-distance semantic relations. Represen-
tations based on neural network language models

*Represents equal contribution

(Mikolov et al., 2013b) can overcome these flaws
and further reduce the dimensionality of the vec-
tors. The success of the method is recently math-
ematically explained using the random walk on
discourses model (Arora et al., 2016a). However,
there is a need to extend word embeddings to en-
tire paragraphs and documents for tasks such as
document and short-text classification.

Representing entire documents in a dense, low-
dimensional space is a challenge. A simple
weighted average of the word embeddings in a
large chunk of text ignores word ordering, while
a parse tree based combination of embeddings
(Socher et al., 2013) can only extend to sentences.
(Le and Mikolov, 2014) trains word and para-
graph vectors to predict context but shares word-
embeddings across paragraphs. However, words
can have different semantic meanings in different
contexts. Hence, vectors of two documents that
contain the same word in two distinct senses need
to account for this distinction for an accurate se-
mantic representation of the documents. (Ling
et al., 2015), (Liu et al., 2015a) map word em-
beddings to a latent topic space to capture differ-
ent senses in which words occur. However, they
represent complex documents in the same space
as words, reducing their expressive power. These
methods are also computationally intensive.

In this work, we propose the Sparse Compos-
ite Document Vector(SCDV) representation learn-
ing technique to address these challenges and cre-
ate efficient, accurate and robust semantic repre-
sentations of large texts for document classifica-
tion tasks. SCDV combines syntax and semantics
learnt by word embedding models together with a
latent topic model that can handle different senses
of words, thus enhancing the expressive power of
document vectors. The topic space is learnt effi-
ciently using a soft clustering technique over em-
beddings and the final document vectors are made
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sparse for reduced time and space complexity in
tasks that consume these vectors.

The remaining part of the paper is organized as
follows. Section 2 discusses related work in docu-
ment representations. Section 3 introduces and ex-
plains SCDV in detail. This is followed by exten-
sive and rigorous experiments together with anal-
ysis in section 4 and 5 respectively.

2 Related Work

(Le and Mikolov, 2014) proposed two models
for distributional representation of a document,
namely, Distributed Memory Model Paragraph
Vectors (PV-DM) and Distributed BoWs para-
graph vectors (PV-DBoW). In PV-DM, the model
is learned to predict the next context word us-
ing word and paragraph vectors. In PV-DBoW,
the paragraph vector is directly learned to predict
randomly sampled context words. In both mod-
els, word vectors are shared across paragraphs.
While word vectors capture semantics across dif-
ferent paragraphs of the text, documents vectors
are learned over context words generated from the
same paragraph and potentially capture only local
semantics (Singh and Mukerjee, 2015). Moreover,
a paragraph vector is embedded in the same space
as word vectors though it can contain multiple top-
ics and words with multiple senses. As a result,
doc2vec (Le and Mikolov, 2014) doesn’t perform
well on Information Retrieval as described in (Ai
et al., 2016a) and (Roy et al., 2016). Consequently,
we expect a paragraph vector to be embedded in a
higher dimensional space.

A paragraph vector also assumes all words con-
tribute equally, both quantitatively (weight) and
qualitatively (meaning). They ignore the impor-
tance and distinctiveness of a word across all doc-
uments (Singh and Mukerjee, 2015). Mukerjee
et al. (Singh and Mukerjee, 2015) proposed idf-
weighted averaging of word vectors to form doc-
ument vectors. This method tries to address the
above problem. However, it assumes that all
words within a document belong to the same se-
mantic topic. Intuitively, a paragraph often has
words originating from several semantically dif-
ferent topics. In fact, Latent Dirichlet Allocation
(Blei et al., 2003) models a document as a distri-
bution of multiple topics.

These shortcomings are addressed in three
novel composite document representations called
Topical word embedding (TWE-1,TWE-2 and

TWE-3) by (Liu et al., 2015a). TWE-1 learns word
and topic embeddings by considering each topic as
a pseudo word and builds the topical word embed-
ding for each word-topic assignment. Here, the
interaction between a word and the topic to which
it is assigned is not considered. TWE-2 learns a
topical word embedding for each word-topic as-
signment directly, by considering each word- topic
pair as a pseudo word. Here, the interaction be-
tween a word and its assigned topic is considered
but the vocabulary of pseudo-words blows up. For
each word and each topic, TWE-3 builds distinct
embeddings for the topic and word and concate-
nates them for each word-topic assignment. Here,
the word embeddings are influenced by the corre-
sponding topic embeddings, making words in the
same topic less discriminative.

(Liu et al., 2015a) proposed an architecture
called Neural tensor skip-gram model (NTSG-1,
NTSG-2, NTSG-3, NTSG-4), that learns multi-
prototype word embeddings and uses a tensor
layer to model the interaction of words and top-
ics to capture different senses. NTSG outper-
forms other embedding methods like TWE−1 on
the 20 newsgroup data-set by modeling context-
sensitive embeddings in addition to topical-word
embeddings. LTSG (Law et al., 2017) builds on
NTSG by jointly learning the latent topic space
and context-sensitive word embeddings. All three,
TWE, NTSG and LTSG use LDA and suf-
fer from computational issues like large training
time, prediction time and storage space. They
also embed document vectors in the same space
as terms. Other works that harness topic modeling
likeWTM (Fu et al., 2016),w2v−LDA (Nguyen
et al., 2015), TV + MeanWV (Li et al., 2016a),
LTSG (Law et al., 2017), Gaussian − LDA
(Das et al., 2015), Topic2V ec (Niu et al., 2015),
(Moody, 2016) andMvTM (Li et al., 2016b) also
suffer from similar issues.

(Gupta et al., 2016) proposed a method to form
a composite document vector using word embed-
dings and tf-idf values, called the Bag of Words
Vector (BoWV). In BoWV , each document is rep-
resented by a vector of dimensionD = K ∗d+K,
where K is the number of clusters and d is the
dimension of the word embeddings. The core
idea behind BoWV is that semantically different
words belong to different topics and their word
vectors should not be averaged. Further, BoWV
computes inverse cluster frequency of each clus-
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ter (icf) by averaging the idf values of its mem-
ber terms to capture the importance of words in
the corpus. However,BoWV does hard clustering
using K-means algorithm, assigning each word to
only one cluster or semantic topic but a word can
belong to multiple topics. For example, the word
apple belongs to topic food as a fruit, and belongs
to topic Information Technology as an IT company.
Moreover, BoWV is a non-sparse, high dimen-
sional continuous vector and suffers from compu-
tational problems like large training time, predic-
tion time and storage requirements.

3 Sparse Composite Document Vectors

In this section, we present the proposed Sparse
Composite Document Vector (SCDV) representa-
tion as a novel document vector learning algo-
rithm. The feature formation algorithm can be di-
vided into three steps.

3.1 Word Vector Clustering
We begin by learning d dimensional word vec-
tor representations for every word in the vocab-
ulary V using the skip-gram algorithm with neg-
ative sampling (SGNS) (Mikolov et al., 2013a).
We then cluster these word embeddings using
the Gaussian Mixture Models(GMM) (Reynolds,
2015) soft clustering technique. The number of
clusters, K, to be formed is a parameter of the
SCDV model. By inducing soft clusters, we en-
sure that each word belongs to every cluster with
some probability P (ck|wi).

p(ck = 1) = πk

p(ck = 1|w) =
πkN (w|µk,Σk)

ΣK
j=1πjN (w|µj ,Σj)

3.2 Document Topic-vector Formation
For each word wi, we create K different word-
cluster vectors of d dimensions ( ~wcvik) by weight-
ing the word’s embedding with its probability dis-
tribution in the kth cluster, P (ck|wi). We then
concatenate all K word-cluster vectors ( ~wcvik)
into a K×d dimensional embedding and weight it
with inverse document frequency of wi to form a
word-topics vector ( ~wtvi). Finally, for all words
appearing in document Dn, we sum their word-
topic vectors ~wtvi to obtain the document vector
~dvDn .

~wcvik = ~wvi × P (ck|wi)

Algorithm 1: Sparse Composite Document
Vector
Data: Documents Dn, n = 1 . . . N
Result: Document vectors ~SCDVDn , n = 1

. . . N
1 Obtain word vector ( ~wvi), for each word wi;
2 Calculate idf values, idf(wi), i = 1..|V | ;

/* |V | is vocabulary size */
3 Cluster word vectors ~wv using GMM

clustering into K clusters;
4 Obtain soft assignment P (ck|wi) for word wi

and cluster ck;
/* Loop 5-10 can be

pre-computed */
5 for each word wi in vocabulary V do
6 for each cluster ck do
7 ~wcvik = ~wvi × P (ck|wi);
8 end
9 ~wtvi = idf(wi) ×

⊕K
k=1 ~wcvik ;

/*
⊕

is concatenation */

10 end
11 for n ∈ (1..N) do
12 Initialize document vector ~dvDn = ~0;
13 for word wi in Dn do
14 ~dvDn += ~wtvi;
15 end
16 ~SCDVDn = make-sparse( ~dvDn);

/* as mentioned in sec 3 */

17 end

~wtvi = idf(wi)×
K⊕

k=1

~wcvik

where,
⊕

is concatenation

3.3 Sparse Document Vectors

After normalizing the vector, we observed that
most values in ~dvDn are very close to zero. Fig-
ure 3 verifies this observation. We utilize this fact
to make the document vector ~dvDn sparse by zero-
ing attribute values whose absolute value is close
to a threshold (specified as a parameter), which re-
sults in the Sparse Composite Document Vector

~SCDVDn .
In particular, let p be percentage sparsity thresh-

old parameter, ai the value of the ith attribute of
the non-Sparse Composite Document Vector and
n represent the nth document in the training set:
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Figure 1: Word-topics vector formation.

Figure 2: Sparse Composite Document Vector for-
mation.

Figure 3: Distribution of attribute feature vector
values.

ai =

{
ai if |ai| ≥ p

100 ∗ t
0 otherwise

t =
|amin|+ |amax|

2

amin = avgn(mini(ai))

amax = avgn(maxi(ai))

Flowcharts depicting the formation of word-
topics vector and Sparse Composite Document
Vectors are shown in figure 1 and figure 2 respec-
tively. Algorithm 1 describes SCDV in detail.

4 Experiments

We perform multiple experiments to show the ef-
fectiveness of SCDV representations for multi-
class and multi-label text classification. For all ex-
periments and baselines, we use Intel(R) Xeon(R)
CPU E5-2670 v2 @ 2.50GHz, 40 working cores,
128GB RAM machine with Linux Ubuntu 14.4.
However, we utilize multiple cores only during
Word2Vec training and when we run the one-vs-
rest classifier for Reuters.

4.1 Baselines

We consider the following baselines: Bag-of-
Words (BoW) model (Harris, 1954), Bag of Word
Vector (BoWV) (Gupta et al., 2016) model, para-
graph vector models (Le and Mikolov, 2014),
Topical word embeddings (TWE-1) (Liu et al.,
2015b), Neural Tensor Skip-Gram Model (NTSG-
1 to NTSG-3) (Liu et al., 2015a), tf-idf weighted
average word-vector model (Singh and Mukerjee,
2015) and weighted Bag of Concepts (weight-
BoC) (Kim et al., 2017), where we build topic-
document vectors by counting the member words
in each topic.

We use the best parameter settings as reported in
all our baselines to generate their results. We use
200 dimensions for tf-idf weighted word-vector
model, 400 for paragraph vector model, 80 top-
ics and 400 dimensional vectors for TWE, NTSG,
LTSG and 60 topics and 200 dimensional word
vectors for BOWV. We also compare our results
with reported results of other topic modeling based
document embedding methods like WTM (Fu
et al., 2016), w2v − LDA (Nguyen et al., 2015),
LDA (Chen and Liu, 2014), TV + MeanWV
(Li et al., 2016a), LTSG (Law et al., 2017),
Gaussian−LDA (Das et al., 2015), Topic2V ec
(Niu et al., 2015), (Moody, 2016) andMvTM (Li
et al., 2016b). Implementation of SCDV and re-
lated experiments is available here 1.

4.2 Text Classification

We run multi-class experiments on 20NewsGroup
dataset 2 and multi-label classification experi-
ments on Reuters-21578 dataset 3. We use
the script4 for preprocessing the Reuters-21578
dataset. We use LinearSVM for multi-class classi-

1https://github.com/dheeraj7596/SCDV
2http://qwone.com/∼jason/20Newsgroups/
3https://goo.gl/NrOfu
4 https://gist.github.com/herrfz/7967781
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fication and Logistic regression with OneVsRest
setting for multi-label classification in baselines
and SCDV.

For SCDV, we set the dimension of word-
embeddings to 200 and the number of mixture
components in GMM to 60. All mixture com-
ponents share the same spherical co-variance ma-
trix. We learn word vector embedding using Skip-
Gram with window size of 10, Negative Sampling
(SGNS) of 10 and minimum word frequency as
20. We use 5-fold cross-validation on F1 score to
tune parameter C of SVM and the sparsity thresh-
old for SCDV.

4.2.1 Multi-class classification
We evaluate classifier performance using standard
metrics like accuracy, macro-averaging precision,
recall and F-measure. Table 1 shows a compari-
son with the current state-of-art (NTSG) document
representations on the 20Newsgroup dataset. We
observe that SCDV outperforms all other current
models by fair margins. We also present the class-
wise precision and recall for 20Newsgroup on an
almost balanced dataset with SVM over Bag of
Words model and the SCDV embeddings in Table
2 and observe that SCDV improves consistently
over all classes.

Table 1: Performance on multi-class classification
(Values in red show best performance, the SCDV
algorithm of this paper)

Model Acc Prec Rec F-mes
SCDV 84.6 84.6 84.5 84.6

NTSG-1 82.6 82.5 81.9 81.2
NTSG-2 82.5 83.7 82.8 82.4
BoWV 81.6 81.1 81.1 80.9

NTSG-3 81.9 83.0 81.7 81.1
LTSG 82.8 82.4 81.8 81.8
WTM 80.9 80.3 80.3 80.0

w2v-LDA 77.7 77.4 77.2 76.9
TV+MeanWV 72.2 71.8 71.5 71.6

MvTM 72.2 71.8 71.5 71.6
TWE-1 81.5 81.2 80.6 80.6
lda2Vec 81.3 81.4 80.4 80.5

lda 72.2 70.8 70.7 70.0
weight-AvgVec 81.9 81.7 81.9 81.7

BoW 79.7 79.5 79.0 79.0
weight-BOC 71.8 71.3 71.8 71.4
PV-DBoW 75.4 74.9 74.3 74.3

PV-DM 72.4 72.1 71.5 71.5

Table 2: Class-level results on the balanced
20newsgroup dataset.

BoW SCDV
Class Name Pre. Rec. Pre. Rec.
alt.atheism 67.8 72.1 80.2 79.5

comp.graphics 67.1 73.5 75.3 77.4
comp.os.ms-windows.misc 77.1 66.5 78.6 77.2
comp.sys.ibm.pc.hardware 62.8 72.4 75.6 73.5

comp.sys.mac.hardware 77.4 78.2 83.4 85.5
comp.windows.x 83.2 73.2 87.6 78.6

misc.forsale 81.3 88.2 81.4 85.9
rec.autos 80.7 82.8 91.2 90.6

rec.motorcycles 92.3 87.9 95.4 95.7
rec.sport.baseball 89.8 89.2 93.2 94.7
rec.sport.hockey 93.3 93.7 96.3 99.2

sci.crypt 92.2 86.1 92.5 94.7
sci.electronics 70.9 73.3 74.6 74.9

sci.med 79.3 81.3 91.3 88.4
sci.space 90.2 88.3 88.5 93.8

soc.religion.christian 77.3 87.9 83.3 92.3
talk.politics.guns 71.7 85.7 72.7 90.6

talk.politics.mideast 91.7 76.9 96.2 95.4
talk.politics.misc 71.7 56.5 80.9 59.7
talk.religion.misc 63.2 55.4 73.5 57.2

4.2.2 Multi-label classification
We evaluate multi-label classification perfor-
mance using Precision@K, nDCG@k (Bhatia
et al., 2015), Coverage error, Label ranking av-
erage precision score (LRAPS)5 and F1-score.
All measures are extensively used for the multi-
label classification task. However, F1-score is
an appropriate metric for multi-label classifica-
tion as it considers label biases when train-test
splits are random. Table 3 show evaluation results
for multi-label text classification on the Reuters-
21578 dataset.

4.2.3 Effect of Hyper-Parameters
SCDV has three parameters: the number of clus-
ters, word vector dimension and sparsity threshold
parameter. We vary one parameter by keeping the
other two constant. Performance on varying all
three parameters in shown in Figure 4. We ob-
serve that performance improves as we increase
the number of clusters and saturates at 60. The
performance improves until a word vector dimen-
sion of 300 after which it saturates. Similarly,
we observe that the performance improves as we
increase p till 4 after which it declines. At 4%
thresholding, we reduce the storage space by 80%
compared to the dense vectors. We observe that
SCDV is robust to variations in training Word2Vec

5Section 3.3.3.2 of https://goo.gl/4GrR3M
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Table 3: Performance on various metrics for multi-label classification for Reuters(Values in red show
best performance, the SCDV algorithm of this paper)

Model Prec@1
nDCG@1

Prec
@5

nDCG
@5

Coverage
Error

LRAPS F1-Score

SCDV 94.20 36.98 49.55 6.48 93.30 81.75
BoWV 92.90 36.14 48.55 8.16 91.46 79.16
TWE-1 90.91 35.49 47.54 8.16 91.46 79.16
PV-DM 87.54 33.24 44.21 13.15 86.21 70.24

PV-DBoW 88.78 34.51 46.42 11.28 87.43 73.68
AvgVec 89.09 34.73 46.48 9.67 87.28 71.91

tfidf AvgVec 89.33 35.04 46.83 9.42 87.90 71.97

and GMM. The performance metrics reported in
Tables 1, 3 are the average values obtained across
5 separate runs of SCDV , each run training a dif-
ferent Word2Vec and GMM model with identical
hyper-parameters.

4.3 Topic Coherence

We evaluate the topics generated by GMM cluster-
ing on 20NewsGroup for quantitative and qualita-
tive analysis. Instead of using perplexity (Chang
et al., 2011), which doesn’t correlate with seman-
tic coherence and human judgment of individ-
ual topics, we used the popular topic coherence
(Mimno et al., 2011), (Arora et al., 2013), (Chen
and Liu, 2014) measure. A higher topic coherence
score indicates a more coherent topic.

We used Bayes rule to compute the P (wk|ci)
for a given topic ci and given word wj and com-
pute the score of the top 10 words for each topic.

P (wk|ci) =
P (ci|wk)P (wk)

P (ci)

where,

P (ci) =

K∑

i=1

P (ci|wk)P (wk)

P (wk) =
#(wk)∑V
i=1 #(wi)

Here, #(wk) denotes the number of times word
wk appears in the corpus and V represents vocab-
ulary size.

We calculated the topic coherence score for all
topics for SCDV , LDA and LTSG (Law et al.,
2017). Averaging the score of all 80 topics, GMM
clustering scores -85.23 compared to -108.72 of

LDA and -92.23 of LTSG. Thus, SCDV creates
more coherent topics than both LDA and LTSG.

Table 4 shows top 10 words of 3 topics from
GMM clustering, LDAmodel and LTSGmodel
on 20NewsGroup and SCDV shows higher topic
coherence. Words are ranked based on their prob-
ability distribution in each topic. Our results
also support the qualitative results of (Randhawa
et al., 2016), (Sridhar, 2015) paper, where k-
means, GMM was used respectively over word
vectors to find topics.

4.4 Context-Sensitive Learning
In order to demonstrate the effects of soft clus-
tering (GMM) during SCDV formation, we se-
lect some words (wj) with multiple senses from
20Newsgroup and their soft cluster assignments
to find the dominant clusters. We also select top
scoring words (wk) from each cluster (ci) to rep-
resent the meaning of that cluster. Table 5 shows
polysemic words and their dominant clusters with
assignment probabilities. This indicates that using
soft clustering to learn word vectors helps com-
bine multiple senses into a single embedding vec-
tor. (Arora et al., 2016b) also reported similar re-
sults for polysemous words.

4.5 Information Retrieval
(Ai et al., 2016b) used (Mikolov et al., 2013b)’s
paragraph vectors to enhance the basic language
model based retrieval model. The language
model(LM) probabilities are estimated from the
corpus and smoothed using a Dirichlet prior (Zhai
and Lafferty, 2004). In (Ai et al., 2016b), this
language model is then interpolated with the para-
graph vector (PV) language model as follows.

P (w|d) = (1− λ)PLM (w|d) + λPPV (w|d)
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Figure 4: Effect of varying number of clusters (left), varying word vector dimension (center) and varying
sparsity parameter (right) on performance for 20NewsGroup with SCDV

Figure 5: Visualization of paragraph vectors(left) and SCDV(right) using t-SNE

where,

PPV (w|d) =
exp(~w.~d)

∑V
i=1 exp( ~wi.

~d)

and the score for document d and query string Q is
given by

score(q, d) =
∑

w∈Q
P (w)P (w|d)

where P (w) is obtained from the unigram query
model and score(q, d) is used to rank documents.
(Ai et al., 2016b) do not directly make use of
paragraph vectors for the retrieval task, but im-
prove the document language model. To di-
rectly make use of paragraph vectors and make
computations more tractable, we directly inter-
polate the language model query-document score
score(q, d) with the similarity score between the
normalized query and document vectors to gener-
ate scorePV (q, d), which is then used to rank doc-
uments.

scorePV (q, d) = (1− λ)score(q, d) + λ~q.~d

Directly evaluating the document similarity score
with the query paragraph vector rather than col-
lecting similarity scores for individual words in
the query helps avoid confusion amongst distinct
query topics and makes the interpolation operation
faster. In Table 6, we report Mean Average Pre-
cision(MAP) values for four datasets, Associated
Press 88-89 (topics 51-200), Wall Street Journal
(topics 51-200), San Jose Mercury (topics 51-150)
and Disks 4 & 5 (topics 301-450) in the TREC
collection. We learn λ on a held out set of topics.
We observe consistent improvement in MAP for
all datasets. We marginally improve the MAP re-
ported by (Ai et al., 2016b) on the Robust04 task.
In addition, we also report the improvements in
MAP score when Model based relevance feedback
(Zhai and Lafferty, 2001) is applied over the ini-
tially retrieved results from both models. Again,
we notice a consistent improvement in MAP.

5 Analysis and Discussion

SCDV overcomes several challenges encountered
while training document vectors, which we had
mentioned above.
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Table 4: Top words of some topics from GMM and LDA on 20NewsGroup for K = 80. Higher score
represent better coherent topics.

Topic Image Topic Health Topic Mail
GMM LTSG LDA GMM LTSG LDA GMM LTSG LDA

file image image heath stimulation doctor ftp anonymous list
bit jpeg file study diseases disease mail faq mail

image gif color medical disease coupons internet send information
files format gif drug toxin treatment phone ftp internet
color file jpeg test toxic pain email mailing send

format files file drugs newsletter medical send server posting
images convert format studies staff day opinions mail email

jpeg color bit disease volume microorganism fax alt group
gif formats images education heaths medicine address archive news

program images quality age aids body box email anonymous
-67.16 -75.66 -88.79 -66.91 -96.98 -100.39 -77.47 -78.23 -95.47

Table 5: Words with multiple senses assigned to
multiple clusters with significant probabilities

Word Cluster Words P(ci|wj)
subject:1 physics, chemistry, math, science 0.27
subject:2 mail, letter, email, gmail 0.72
interest:1 information, enthusiasm, question 0.65
interest:2 bank, market, finance, investment 0.32
break:1 vacation, holiday, trip, spring 0.52
break:2 encryption, cipher, security, privacy 0.22
break:3 if, elseif, endif, loop, continue 0.23
unit:1 calculation, distance, mass, length 0.25
unit:2 electronics, KWH, digital, signal 0.69

1. Clustering word-embeddings to discover top-
ics improves performance of classification as
Figure 4 (left) indicates, while also gener-
ating coherent clusters of words (Table 4).
Figure 5 shows that clustering gives more
discriminative representations of documents
than paragraph vectors do since it uses K ×
d dimensions while paragraph vectors embed
documents and words in the same space. This
enables SCDV to represent complex docu-
ments. Fuzzy clustering allows words to
belong to multiple topics, thereby recogniz-
ing polysemic words, as Table 5 indicates.
Thus it mimics the word-context interaction
in NTSG and LTSG.

2. Semantically different words are assigned to
different topics. Moreover, a single docu-
ment can contain words from multiple differ-
ent topics. Instead of a weighted averaging
of word embeddings to form document vec-
tors, as in most previous work, concatenat-
ing word embeddings for each topic (cluster)
avoids merging of semantically different top-
ics.

3. It is well-known that in higher dimensions,
structural regularizers such as sparsity help
overcome the curse of dimensionality (Wain-
wright, 2014).Figure 3 demonstrates this,
since majority of the features are close to
zero. Sparsity also enables linear SVM to
scale to large dimensions. On 20News-
Groups, BoWV model takes up 1.1 GB while
SCDV takes up only 236MB( 80% decrease).
Since GMM assigns a non-zero probability to
every topic in the word embedding, noise can
accumulate when document vectors are cre-
ated and tip the scales in favor of an unrelated
topic. Sparsity helps to reduce this by zeroing
out very small values of probability.

4. SCDV uses Gaussian Mixture Model (GMM)
while TWE, NTSG and LTSG use LDA
for finding semantic topics respectively.
GMM time complexity is O(V NT 2) while
that of LDA is O(V 2NT ). Here, V = Vo-
cabulary size, N = number of documents
and T = number of topics. Since num-
ber of topics T < vocabulary size V, GMM
is faster. Empirically, compared to TWE,
SCDV reduces document vector formation,
training and prediction time significantly. Ta-
ble 7 shows training and prediction times for
BoWV, SCDV and TWE models.

6 Conclusion

In this paper, we propose a document feature for-
mation technique for topic-based document rep-
resentation. SCDV outperforms state-of-the-art
models in multi-class and multi-label classifica-
tion tasks. SCDV introduces sparsity in document
vectors to handle high dimensionality. Table 7 in-
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Table 6: Mean average precision (MAP) for IR on four IR datasets

Dataset LM LM+SCDV MB MB + SCDV
AP 0.2742 0.2856 0.3283 0.3395

SJM 0.2052 0.2105 0.2341 0.2409
WSJ 0.2618 0.2705 0.3027 0.3126

Robust04 0.2516 0.2684 0.2819 0.2933

Table 7: Time Comparison (20NewsGroup) (Val-
ues in red show least time, the SCDV algorithm of
this paper)

Time (sec) BoWV TWE-1 SCDV
DocVec Formation 1250 700 160

Total Training 1320 740 200
Total Prediction 780 120 25

dicates that SCDV shows considerable improve-
ments in feature formation, training and prediction
times for the 20NewsGroups dataset. We show
that fuzzy GMM clustering on word-vectors lead
to more coherent topic than LDA and can also be
used to detect Polysemic words. SCDV embed-
dings also provide a robust estimation of the query
and document language models, thus improving
the MAP of language model based retrieval sys-
tems. In conclusion, SCDV is simple, efficient and
creates a more accurate semantic representation of
documents.
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Abstract

Many modern NLP systems rely on word
embeddings, previously trained in an un-
supervised manner on large corpora, as
base features. Efforts to obtain embed-
dings for larger chunks of text, such as
sentences, have however not been so suc-
cessful. Several attempts at learning unsu-
pervised representations of sentences have
not reached satisfactory enough perfor-
mance to be widely adopted. In this paper,
we show how universal sentence represen-
tations trained using the supervised data of
the Stanford Natural Language Inference
datasets can consistently outperform unsu-
pervised methods like SkipThought vec-
tors (Kiros et al., 2015) on a wide range
of transfer tasks. Much like how com-
puter vision uses ImageNet to obtain fea-
tures, which can then be transferred to
other tasks, our work tends to indicate the
suitability of natural language inference
for transfer learning to other NLP tasks.
Our encoder is publicly available1.

1 Introduction

Distributed representations of words (or word em-
beddings) (Bengio et al., 2003; Collobert et al.,
2011; Mikolov et al., 2013; Pennington et al.,
2014) have shown to provide useful features for
various tasks in natural language processing and
computer vision. While there seems to be a con-
sensus concerning the usefulness of word embed-
dings and how to learn them, this is not yet clear
with regard to representations that carry the mean-
ing of a full sentence. That is, how to capture the

1https://www.github.com/
facebookresearch/InferSent

relationships among multiple words and phrases in
a single vector remains an question to be solved.

In this paper, we study the task of learning uni-
versal representations of sentences, i.e., a sentence
encoder model that is trained on a large corpus
and subsequently transferred to other tasks. Two
questions need to be solved in order to build such
an encoder, namely: what is the preferable neu-
ral network architecture; and how and on what
task should such a network be trained. Follow-
ing existing work on learning word embeddings,
most current approaches consider learning sen-
tence encoders in an unsupervised manner like
SkipThought (Kiros et al., 2015) or FastSent (Hill
et al., 2016). Here, we investigate whether su-
pervised learning can be leveraged instead, tak-
ing inspiration from previous results in computer
vision, where many models are pretrained on the
ImageNet (Deng et al., 2009) before being trans-
ferred. We compare sentence embeddings trained
on various supervised tasks, and show that sen-
tence embeddings generated from models trained
on a natural language inference (NLI) task reach
the best results in terms of transfer accuracy. We
hypothesize that the suitability of NLI as a train-
ing task is caused by the fact that it is a high-level
understanding task that involves reasoning about
the semantic relationships within sentences.

Unlike in computer vision, where convolutional
neural networks are predominant, there are mul-
tiple ways to encode a sentence using neural net-
works. Hence, we investigate the impact of the
sentence encoding architecture on representational
transferability, and compare convolutional, recur-
rent and even simpler word composition schemes.
Our experiments show that an encoder based on a
bi-directional LSTM architecture with max pool-
ing, trained on the Stanford Natural Language In-
ference (SNLI) dataset (Bowman et al., 2015),
yields state-of-the-art sentence embeddings com-
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pared to all existing alternative unsupervised ap-
proaches like SkipThought or FastSent, while be-
ing much faster to train. We establish this finding
on a broad and diverse set of transfer tasks that
measures the ability of sentence representations to
capture general and useful information.

2 Related work

Transfer learning using supervised features has
been successful in several computer vision appli-
cations (Razavian et al., 2014). Striking examples
include face recognition (Taigman et al., 2014)
and visual question answering (Antol et al., 2015),
where image features trained on ImageNet (Deng
et al., 2009) and word embeddings trained on large
unsupervised corpora are combined.

In contrast, most approaches for sentence repre-
sentation learning are unsupervised, arguably be-
cause the NLP community has not yet found the
best supervised task for embedding the semantics
of a whole sentence. Another reason is that neural
networks are very good at capturing the biases of
the task on which they are trained, but can easily
forget the overall information or semantics of the
input data by specializing too much on these bi-
ases. Learning models on large unsupervised task
makes it harder for the model to specialize. Lit-
twin and Wolf (2016) showed that co-adaptation of
encoders and classifiers, when trained end-to-end,
can negatively impact the generalization power of
image features generated by an encoder. They pro-
pose a loss that incorporates multiple orthogonal
classifiers to counteract this effect.

Recent work on generating sentence embed-
dings range from models that compose word em-
beddings (Le and Mikolov, 2014; Arora et al.,
2017; Wieting et al., 2016b) to more complex neu-
ral network architectures. SkipThought vectors
(Kiros et al., 2015) propose an objective func-
tion that adapts the skip-gram model for words
(Mikolov et al., 2013) to the sentence level. By en-
coding a sentence to predict the sentences around
it, and using the features in a linear model, they
were able to demonstrate good performance on 8
transfer tasks. They further obtained better results
using layer-norm regularization of their model
in (Ba et al., 2016). Hill et al. (2016) showed
that the task on which sentence embeddings are
trained significantly impacts their quality. In ad-
dition to unsupervised methods, they included su-
pervised training in their comparison—namely, on

machine translation data (using the WMT’14 En-
glish/French and English/German pairs), dictio-
nary definitions and image captioning data from
the COCO dataset (Lin et al., 2014). These mod-
els obtained significantly lower results compared
to the unsupervised Skip-Thought approach.

Recent work has explored training sentence en-
coders on the SNLI corpus and applying them on
the SICK corpus (Marelli et al., 2014), either us-
ing multi-task learning or pretraining (Mou et al.,
2016; Bowman et al., 2015). The results were in-
conclusive and did not reach the same level as sim-
pler approaches that directly learn a classifier on
top of unsupervised sentence embeddings instead
(Arora et al., 2017). To our knowledge, this work
is the first attempt to fully exploit the SNLI cor-
pus for building generic sentence encoders. As we
show in our experiments, we are able to consis-
tently outperform unsupervised approaches, even
if our models are trained on much less (but human-
annotated) data.

3 Approach

This work combines two research directions,
which we describe in what follows. First, we ex-
plain how the NLI task can be used to train univer-
sal sentence encoding models using the SNLI task.
We subsequently describe the architectures that we
investigated for the sentence encoder, which, in
our opinion, covers a suitable range of sentence
encoders currently in use. Specifically, we exam-
ine standard recurrent models such as LSTMs and
GRUs, for which we investigate mean and max-
pooling over the hidden representations; a self-
attentive network that incorporates different views
of the sentence; and a hierarchical convolutional
network that can be seen as a tree-based method
that blends different levels of abstraction.

3.1 The Natural Language Inference task

The SNLI dataset consists of 570k human-
generated English sentence pairs, manually la-
beled with one of three categories: entailment,
contradiction and neutral. It captures natural lan-
guage inference, also known in previous incarna-
tions as Recognizing Textual Entailment (RTE),
and constitutes one of the largest high-quality la-
beled resources explicitly constructed in order to
require understanding sentence semantics. We hy-
pothesize that the semantic nature of NLI makes
it a good candidate for learning universal sentence
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embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u − v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u ∗ v; and
(iii) absolute element-wise difference |u− v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)

with either mean or max pooling, self-attentive
network and hierarchical convolutional networks.

3.2.1 LSTM and GRU

Our first, and simplest, encoders apply recurrent
neural networks using either LSTM (Hochreiter
and Schmidhuber, 1997) or GRU (Cho et al.,
2014) modules, as in sequence to sequence en-
coders (Sutskever et al., 2014). For a sequence
of T words (w1, . . . , wT ), the network computes
a set of T hidden representations h1, . . . , hT , with
ht =

−−−−→
LSTM(w1, . . . , wT ) (or using GRU units

instead). A sentence is represented by the last hid-
den vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling

For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T ], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pooling)
(Collobert and Weston, 2008) or by considering
the average of the representations (mean pooling).

3.2.3 Self-attentive network

The self-attentive sentence encoder (Liu et al.,
2016; Lin et al., 2017) uses an attention mecha-
nism over the hidden states of a BiLSTM to gen-
erate a representation u of an input sentence. The
attention mechanism is defined as :

h̄i = tanh(Whi + bw)

αi =
eh̄

T
i uw

∑
i e
h̄Ti uw

u =
∑

t

αihi
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The movie was great

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x

x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.

where {h1, . . . , hT } are the output hidden vec-
tors of a BiLSTM. These are fed to an affine trans-
formation (W , bw) which outputs a set of keys
(h̄1, . . . , h̄T ). The {αi} represent the score of
similarity between the keys and a learned con-
text query vector uw. These weights are used
to produce the final representation u, which is a
weighted linear combination of the hidden vectors.

Following Lin et al. (2017) we use a self-
attentive network with multiple views of the input
sentence, so that the model can learn which part of
the sentence is important for the given task. Con-
cretely, we have 4 context vectors u1

w, u
2
w, u

3
w, u

4
w

which generate 4 representations that are then con-
catenated to obtain the sentence representation u.
Figure 3 illustrates this architecture.

The movie was great

uw

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

α1 α2 α3 α4

u

w1 w2 w3 w4

Figure 3: Inner Attention network architecture.

3.2.4 Hierarchical ConvNet
One of the currently best performing models on
classification tasks is a convolutional architecture
termed AdaSent (Zhao et al., 2015), which con-
catenates different representations of the sentences

at different level of abstractions. Inspired by this
architecture, we introduce a faster version consist-
ing of 4 convolutional layers. At every layer, a
representation ui is computed by a max-pooling
operation over the feature maps (see Figure 4).

……

……

… …

This is the
great
est

movie of all time

x

x

x

x

x

x

max-pooling

max-pooling

max-pooling

max-pooling

x

x
x

x

x

x u1

u2

u3

u4

u : u4u3u2u1

convolutional layer

convolutional layer

convolutional layer

convolutional layer

Figure 4: Hierarchical ConvNet architecture.

The final representation u = [u1, u2, u3, u4]
concatenates representations at different levels of
the input sentence. The model thus captures hi-
erarchical abstractions of an input sentence in a
fixed-size representation.

3.3 Training details
For all our models trained on SNLI, we use SGD
with a learning rate of 0.1 and a weight decay of
0.99. At each epoch, we divide the learning rate
by 5 if the dev accuracy decreases. We use mini-
batches of size 64 and training is stopped when the
learning rate goes under the threshold of 10−5. For
the classifier, we use a multi-layer perceptron with
1 hidden-layer of 512 hidden units. We use open-
source GloVe vectors trained on Common Crawl
840B2 with 300 dimensions as fixed word embed-
dings.

4 Evaluation of sentence representations

Our aim is to obtain general-purpose sentence em-
beddings that capture generic information that is

2https://nlp.stanford.edu/projects/
glove/
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name N task C examples
MR 11k sentiment (movies) 2 ”Too slow for a younger crowd , too shallow for an older one.” (neg)
CR 4k product reviews 2 ”We tried it out christmas night and it worked great .” (pos)
SUBJ 10k subjectivity/objectivity 2 ”A movie that doesn’t aim too high , but doesn’t need to.” (subj)
MPQA 11k opinion polarity 2 ”don’t want”; ”would like to tell”; (neg, pos)
TREC 6k question-type 6 ”What are the twin cities ?” (LOC:city)
SST 70k sentiment (movies) 2 ”Audrey Tautou has a knack for picking roles that magnify her [..]” (pos)

Table 1: Classification tasks. C is the number of class and N is the number of samples.

useful for a broad set of tasks. To evaluate the
quality of these representations, we use them as
features in 12 transfer tasks. We present our
sentence-embedding evaluation procedure in this
section. We constructed a sentence evaluation
tool3 to automate evaluation on all the tasks men-
tioned in this paper. The tool uses Adam (Kingma
and Ba, 2014) to fit a logistic regression classifier,
with batch size 64.

Binary and multi-class classification We use
a set of binary classification tasks (see Table 1)
that covers various types of sentence classifica-
tion, including sentiment analysis (MR, SST),
question-type (TREC), product reviews (CR), sub-
jectivity/objectivity (SUBJ) and opinion polarity
(MPQA). We generate sentence vectors and train
a logistic regression on top. A linear classifier re-
quires fewer parameters than an MLP and is thus
suitable for small datasets, where transfer learning
is especially well-suited. We tune the L2 penalty
of the logistic regression with grid-search on the
validation set.

Entailment and semantic relatedness We also
evaluate on the SICK dataset for both entailment
(SICK-E) and semantic relatedness (SICK-R). We
use the same matching methods as in SNLI and
learn a Logistic Regression on top of the joint rep-
resentation. For semantic relatedness evaluation,
we follow the approach of (Tai et al., 2015) and
learn to predict the probability distribution of re-
latedness scores. We report Pearson correlation.

STS14 - Semantic Textual Similarity While
semantic relatedness is supervised in the case of
SICK-R, we also evaluate our embeddings on the
6 unsupervised SemEval tasks of STS14 (Agirre
et al., 2014). This dataset includes subsets of
news articles, forum discussions, image descrip-
tions and headlines from news articles contain-
ing pairs of sentences (lower-cased), labeled with

3https://www.github.com/
facebookresearch/SentEval

a similarity score between 0 and 5. These tasks
evaluate how the cosine distance between two sen-
tences correlate with a human-labeled similarity
score through Pearson and Spearman correlations.

Paraphrase detection The Microsoft Research
Paraphrase Corpus is composed of pairs of sen-
tences which have been extracted from news
sources on the Web. Sentence pairs have been
human-annotated according to whether they cap-
ture a paraphrase/semantic equivalence relation-
ship. We use the same approach as with SICK-E,
except that our classifier has only 2 classes.

Caption-Image retrieval The caption-image
retrieval task evaluates joint image and language
feature models (Hodosh et al., 2013; Lin et al.,
2014). The goal is either to rank a large collec-
tion of images by their relevance with respect to a
given query caption (Image Retrieval), or ranking
captions by their relevance for a given query image
(Caption Retrieval). We use a pairwise ranking-
loss Lcir(x, y):

∑

y

∑

k

max(0, α− s(V y, Ux) + s(V y, Uxk)) +

∑

x

∑

k′
max(0, α− s(Ux, V y) + s(Ux, V yk′))

where (x, y) consists of an image y with one
of its associated captions x, (yk)k and (yk′)k′ are
negative examples of the ranking loss, α is the
margin and s corresponds to the cosine similarity.
U and V are learned linear transformations that
project the caption x and the image y to the same
embedding space. We use a margin α = 0.2 and
30 contrastive terms. We use the same splits as
in (Karpathy and Fei-Fei, 2015), i.e., we use 113k
images from the COCO dataset (each containing
5 captions) for training, 5k images for validation
and 5k images for test. For evaluation, we split the
5k images in 5 random sets of 1k images on which
we compute Recall@K, with K ∈ {1, 5, 10} and
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name task N premise hypothesis label
SNLI NLI 560k ”Two women are embracing while

holding to go packages.”
”Two woman are holding packages.” entailment

SICK-E NLI 10k A man is typing on a machine used
for stenography

The man isn’t operating a steno-
graph

contradiction

SICK-R STS 10k ”A man is singing a song and play-
ing the guitar”

”A man is opening a package that
contains headphones”

1.6

STS14 STS 4.5k ”Liquid ammonia leak kills 15 in
Shanghai”

”Liquid ammonia leak kills at least
15 in Shanghai”

4.6

Table 2: Natural Language Inference and Semantic Textual Similarity tasks. NLI labels are contra-
diction, neutral and entailment. STS labels are scores between 0 and 5.

median (Med r) over the 5 splits. For fair compari-
son, we also report SkipThought results in our set-
ting, using 2048-dimensional pretrained ResNet-
101 (He et al., 2016) with 113k training images.

Model NLI Transfer
dim dev test micro macro

LSTM 2048 81.9 80.7 79.5 78.6
GRU 4096 82.4 81.8 81.7 80.9
BiGRU-last 4096 81.3 80.9 82.9 81.7
BiLSTM-Mean 4096 79.0 78.2 83.1 81.7
Inner-attention 4096 82.3 82.5 82.1 81.0
HConvNet 4096 83.7 83.4 82.0 80.9
BiLSTM-Max 4096 85.0 84.5 85.2 83.7

Table 3: Performance of sentence encoder ar-
chitectures on SNLI and (aggregated) transfer
tasks. Dimensions of embeddings were selected
according to best aggregated scores (see Figure 5).

Figure 5: Transfer performance w.r.t. embed-
ding size using the micro aggregation method.

5 Empirical results

In this section, we refer to ”micro” and ”macro”
averages of development set (dev) results on trans-
fer tasks whose metrics is accuracy: we compute a
”macro” aggregated score that corresponds to the
classical average of dev accuracies, and the ”mi-
cro” score that is a sum of the dev accuracies,
weighted by the number of dev samples.

5.1 Architecture impact

Model We observe in Table 3 that different mod-
els trained on the same NLI corpus lead to differ-
ent transfer tasks results. The BiLSTM-4096 with
the max-pooling operation performs best on both
SNLI and transfer tasks. Looking at the micro and
macro averages, we see that it performs signifi-
cantly better than the other models LSTM, GRU,
BiGRU-last, BiLSTM-Mean, inner-attention and
the hierarchical-ConvNet.

Table 3 also shows that better performance on
the training task does not necessarily translate in
better results on the transfer tasks like when com-
paring inner-attention and BiLSTM-Mean for in-
stance.

We hypothesize that some models are likely to
over-specialize and adapt too well to the biases of
a dataset without capturing general-purpose infor-
mation of the input sentence. For example, the
inner-attention model has the ability to focus only
on certain parts of a sentence that are useful for
the SNLI task, but not necessarily for the transfer
tasks. On the other hand, BiLSTM-Mean does not
make sharp choices on which part of the sentence
is more important than others. The difference be-
tween the results seems to come from the different
abilities of the models to incorporate general in-
formation while not focusing too much on specific
features useful for the task at hand.

For a given model, the transfer quality is also
sensitive to the optimization algorithm: when
training with Adam instead of SGD, we observed
that the BiLSTM-max converged faster on SNLI
(5 epochs instead of 10), but obtained worse re-
sults on the transfer tasks, most likely because of
the model and classifier’s increased capability to
over-specialize on the training task.

Embedding size Figure 5 compares the over-
all performance of different architectures, showing
the evolution of micro averaged performance with
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unsupervised representation training (unordered sentences)

Unigram-TFIDF 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - - .58/.57
ParagraphVec (DBOW) 60.2 66.9 76.3 70.7 - 59.4 72.9/81.1 - - .42/.43
SDAE 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38
SIF (GloVe + WR) - - - - 82.2 - - - 84.6 .69/ -
word2vec BOW† 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.803 78.7 .65/.64
fastText BOW† 76.5 78.9 91.6 87.4 78.8 81.8 72.4/81.2 0.800 77.9 .63/.62
GloVe BOW† 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0.800 78.6 .54/.56
GloVe Positional Encoding† 78.3 77.4 91.1 87.1 80.6 83.3 72.5/81.2 0.799 77.9 .51/.54
BiLSTM-Max (untrained)† 77.5 81.3 89.6 88.7 80.7 85.8 73.2/81.6 0.860 83.4 .39/.48

Unsupervised representation training (ordered sentences)
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - .62/.62
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
SkipThought-LN 79.4 83.1 93.7 89.3 82.9 88.4 - 0.858 79.5 .44/.45

Supervised representation training
CaptionRep (bow) 61.9 69.3 77.4 70.8 - 72.2 - - - .46/.42
DictRep (bow) 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - - .67/.70
NMT En-to-Fr 64.7 70.1 84.9 81.5 - 82.8 - - .43/.42
Paragram-phrase - - - - 79.7 - - 0.849 83.1 .71/ -
BiLSTM-Max (on SST)† (*) 83.7 90.2 89.5 (*) 86.0 72.7/80.9 0.863 83.1 .55/.54
BiLSTM-Max (on SNLI)† 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
BiLSTM-Max (on AllNLI)† 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .70/.67

Supervised methods (directly trained for each task – no transfer)
Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - - -
AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - - -
TF-KLD - - - - - - 80.4/85.9 - - -
Illinois-LH - - - - - - - - 84.5 -
Dependency Tree-LSTM - - - - - - - 0.868 - -

Table 4: Transfer test results for various architectures trained in different ways. Underlined are
best results for transfer learning approaches, in bold are best results among the models trained in the
same way. † indicates methods that we trained, other transfer models have been extracted from (Hill
et al., 2016). For best published supervised methods (no transfer), we consider AdaSent (Zhao et al.,
2015), TF-KLD (Ji and Eisenstein, 2013), Tree-LSTM (Tai et al., 2015) and Illinois-LH system (Lai and
Hockenmaier, 2014). (*) Our model trained on SST obtained 83.4 for MR and 86.0 for SST (MR and
SST come from the same source), which we do not put in the tables for fair comparison with transfer
methods.

regard to the embedding size.

Since it is easier to linearly separate in high di-
mension, especially with logistic regression, it is
not surprising that increased embedding sizes lead
to increased performance for almost all models.
However, this is particularly true for some mod-
els (BiLSTM-Max, HConvNet, inner-att), which
demonstrate unequal abilities to incorporate more
information as the size grows. We hypothesize
that such networks are able to incorporate infor-
mation that is not directly relevant to the objective
task (results on SNLI are relatively stable with re-
gard to embedding size) but that can nevertheless
be useful as features for transfer tasks.

5.2 Task transfer

We report in Table 4 transfer tasks results for dif-
ferent architectures trained in different ways. We
group models by the nature of the data on which
they were trained. The first group corresponds
to models trained with unsupervised unordered
sentences. This includes bag-of-words mod-
els such as word2vec-SkipGram, the Unigram-
TFIDF model, the Paragraph Vector model (Le
and Mikolov, 2014), the Sequential Denoising
Auto-Encoder (SDAE) (Hill et al., 2016) and the
SIF model (Arora et al., 2017), all trained on the
Toronto book corpus (Zhu et al., 2015). The sec-
ond group consists of models trained with unsu-
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Caption Retrieval Image Retrieval
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r
Direct supervision of sentence representations
m-CNN (Ma et al., 2015) 38.3 - 81.0 2 27.4 - 79.5 3
m-CNNENS (Ma et al., 2015) 42.8 - 84.1 2 32.6 - 82.8 3
Order-embeddings (Vendrov et al., 2016) 46.7 - 88.9 2 37.9 - 85.9 2
Pre-trained sentence representations
SkipThought + VGG19 (82k) 33.8 67.7 82.1 3 25.9 60.0 74.6 4
SkipThought + ResNet101 (113k) 37.9 72.2 84.3 2 30.6 66.2 81.0 3
BiLSTM-Max (on SNLI) + ResNet101 (113k) 42.4 76.1 87.0 2 33.2 69.7 83.6 3
BiLSTM-Max (on AllNLI) + ResNet101 (113k) 42.6 75.3 87.3 2 33.9 69.7 83.8 3

Table 5: COCO retrieval results. SkipThought is trained either using 82k training samples with VGG19
features, or with 113k samples and ResNet-101 features (our setting). We report the average results on 5
splits of 1k test images.

pervised ordered sentences such as FastSent and
SkipThought (also trained on the Toronto book
corpus). We also include the FastSent variant
“FastSent+AE” and the SkipThought-LN version
that uses layer normalization. We report results
from models trained on supervised data in the third
group, and also report some results of supervised
methods trained directly on each task for compar-
ison with transfer learning approaches.

Comparison with SkipThought The best
performing sentence encoder to date is the
SkipThought-LN model, which was trained on
a very large corpora of ordered sentences. With
much less data (570k compared to 64M sentences)
but with high-quality supervision from the SNLI
dataset, we are able to consistently outperform
the results obtained by SkipThought vectors. We
train our model in less than a day on a single GPU
compared to the best SkipThought-LN network
trained for a month. Our BiLSTM-max trained
on SNLI performs much better than released
SkipThought vectors on MR, CR, MPQA, SST,
MRPC-accuracy, SICK-R, SICK-E and STS14
(see Table 4). Except for the SUBJ dataset, it
also performs better than SkipThought-LN on
MR, CR and MPQA. We also observe by looking
at the STS14 results that the cosine metrics in
our embedding space is much more semantically
informative than in SkipThought embedding
space (pearson score of 0.68 compared to 0.29
and 0.44 for ST and ST-LN). We hypothesize
that this is namely linked to the matching method
of SNLI models which incorporates a notion
of distance (element-wise product and absolute
difference) during training.

NLI as a supervised training set Our findings
indicate that our model trained on SNLI obtains
much better overall results than models trained
on other supervised tasks such as COCO, dictio-
nary definitions, NMT, PPDB (Ganitkevitch et al.,
2013) and SST. For SST, we tried exactly the same
models as for SNLI; it is worth noting that SST is
smaller than NLI. Our representations constitute
higher-quality features for both classification and
similarity tasks. One explanation is that the natu-
ral language inference task constrains the model to
encode the semantic information of the input sen-
tence, and that the information required to perform
NLI is generally discriminative and informative.

Domain adaptation on SICK tasks Our trans-
fer learning approach obtains better results than
previous state-of-the-art on the SICK task - can
be seen as an out-domain version of SNLI - for
both entailment and relatedness. We obtain a pear-
son score of 0.885 on SICK-R while (Tai et al.,
2015) obtained 0.868, and we obtain 86.3% test
accuracy on SICK-E while previous best hand-
engineered models (Lai and Hockenmaier, 2014)
obtained 84.5%. We also significantly outper-
formed previous transfer learning approaches on
SICK-E (Bowman et al., 2015) that used the pa-
rameters of an LSTM model trained on SNLI to
fine-tune on SICK (80.8% accuracy). We hypothe-
size that our embeddings already contain the infor-
mation learned from the in-domain task, and that
learning only the classifier limits the number of
parameters learned on the small out-domain task.

Image-caption retrieval results In Table 5, we
report results for the COCO image-caption re-
trieval task. We report the mean recalls of 5 ran-
dom splits of 1K test images. When trained with
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ResNet features and 30k more training data, the
SkipThought vectors perform significantly better
than the original setting, going from 33.8 to 37.9
for caption retrieval R@1, and from 25.9 to 30.6
on image retrieval R@1. Our approach pushes
the results even further, from 37.9 to 42.4 on cap-
tion retrieval, and 30.6 to 33.2 on image retrieval.
These results are comparable to previous approach
of (Ma et al., 2015) that did not do transfer but di-
rectly learned the sentence encoding on the image-
caption retrieval task. This supports the claim that
pre-trained representations such as ResNet image
features and our sentence embeddings can achieve
competitive results compared to features learned
directly on the objective task.

MultiGenre NLI The MultiNLI corpus
(Williams et al., 2017) was recently released
as a multi-genre version of SNLI. With 433K
sentence pairs, MultiNLI improves upon SNLI
in its coverage: it contains ten distinct genres
of written and spoken English, covering most
of the complexity of the language. We augment
Table 4 with our model trained on both SNLI
and MultiNLI (AllNLI). We observe a significant
boost in performance overall compared to the
model trained only on SLNI. Our model even
reaches AdaSent performance on CR, suggesting
that having a larger coverage for the training task
helps learn even better general representations.
On semantic textual similarity STS14, we are
also competitive with PPDB based paragram-
phrase embeddings with a pearson score of 0.70.
Interestingly, on caption-related transfer tasks
such as the COCO image caption retrieval task,
training our sentence encoder on other genres
from MultiNLI does not degrade the performance
compared to the model trained only SNLI (which
contains mostly captions), which confirms the
generalization power of our embeddings.

6 Conclusion

This paper studies the effects of training sentence
embeddings with supervised data by testing on
12 different transfer tasks. We showed that mod-
els learned on NLI can perform better than mod-
els trained in unsupervised conditions or on other
supervised tasks. By exploring various architec-
tures, we showed that a BiLSTM network with
max pooling makes the best current universal sen-
tence encoding methods, outperforming existing
approaches like SkipThought vectors.

We believe that this work only scratches the sur-
face of possible combinations of models and tasks
for learning generic sentence embeddings. Larger
datasets that rely on natural language understand-
ing for sentences could bring sentence embedding
quality to the next level.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81–91, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. Proceedings of the 5th International Con-
ference on Learning Representations (ICLR).

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. Advances in neural
information processing systems (NIPS).

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent.
2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137–1155.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation (SSST-8).

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

Determining semantic textual similarity is
a core research subject in natural language
processing. Since vector-based models for
sentence representation often use shallow
information, capturing accurate semantics
is difficult. By contrast, logical seman-
tic representations capture deeper levels of
sentence semantics, but their symbolic na-
ture does not offer graded notions of tex-
tual similarity. We propose a method for
determining semantic textual similarity by
combining shallow features with features
extracted from natural deduction proofs of
bidirectional entailment relations between
sentence pairs. For the natural deduc-
tion proofs, we use ccg2lambda, a higher-
order automatic inference system, which
converts Combinatory Categorial Gram-
mar (CCG) derivation trees into semantic
representations and conducts natural de-
duction proofs. Experiments show that our
system was able to outperform other logic-
based systems and that features derived
from the proofs are effective for learning
textual similarity.

1 Introduction

Determining semantic textual similarity (STS)
is one of the most critical tasks in informa-
tion retrieval and natural language processing.
Vector-based sentence representation models have
been widely used to compare and rank words,
phrases or sentences using various similarity and
relatedness scores (Wong and Raghavan, 1984;
Mitchell and Lapata, 2010; Le and Mikolov,

2014). Recently, neural network-based sentence
representation models (Mueller and Thyagarajan,
2016; Hill et al., 2016) have been proposed for
learning textual similarity. However, these vector-
based models often use shallow information, such
as words and characters, and whether they can
account for phenomena such as negation and
quantification is not clear. Consider the sentences:
Tom did not meet some of the players and Tom did
not meet any of the players. If functional words
such as some or any are ignored or represented
as the same vector, then these sentences are to be
represented by identical vectors. However, the
first sentence implies that there is a player who
Tom did not meet, whereas the second sentence
means that Tom did not meet anyone, so the
sentences have different meanings.

Conversely, logic-based approaches have been
successful in representing the meanings of com-
plex sentences, having had a positive impact for
applications such as recognizing textual entail-
ment (Mineshima et al., 2015, 2016; Abzianidze,
2015, 2016). However, purely logic-based ap-
proaches only assess entailment or contradic-
tion relations between sentences and do not offer
graded notions of semantic similarity.

In this paper, we propose to leverage logic cues
to learn textual similarity. Our hypothesis is that
observing proof processes when testing the seman-
tic relations is predictive of textual similarity. We
show that our approach can be more effective than
systems that ignore these logic cues.

2 Related Work

Vector-based models of semantic composition
have been widely studied with regards to calculat-
ing STS. Mitchell and Lapata (2008, 2010) pro-

681



posed a sentence vector model involving word
vector addition or component-wise multiplica-
tion. Addition and multiplication are commuta-
tive and associative and thus ignore word order.
Polajnar et al. (2015) proposed a discourse-based
sentence vector model considering extra-intra sen-
tential context. Also, a categorical compositional
distributional semantic model has been developed
for recognizing textual entailment and for cal-
culating STS (Grefenstette and Sadrzadeh, 2011;
Kartsaklis et al., 2014; Kartsaklis and Sadrzadeh,
2016). However, these previous studies are mostly
concerned with the structures of basic phrases or
sentences and do not address logical and func-
tional words such as negations and connectives.
Neural network-based models of semantic compo-
sition (Mueller and Thyagarajan, 2016; Hill et al.,
2016) have also been proposed. Although these
models achieve higher accuracy, their end-to-end
nature introduces challenges in the diagnosis of
the reasons that make two sentences to be similar
or dissimilar to each other. These diagnosis capa-
bilities may play an important role in making the
system explainable and also to guide future system
improvements in a more precise manner. Our ap-
proach presented in this paper is partially inspired
by the latter two objectives.

Meanwhile, some previous studies have pro-
posed logic systems for capturing the seman-
tic relatedness of sentences. The Meaning Fac-
tory (Bjerva et al., 2014) uses both shallow and
logic-based features for learning textual similarity.
In this system, the overlap of predicates and entail-
ment judgments are extracted as logic-based fea-
tures. UTexas (Beltagy et al., 2014b) uses Prob-
abilistic Soft Logic for learning textual similarity.
In this system, each ground atom in the logical for-
mulas has a probability based on distributional se-
mantics of a word. The weights of the logical for-
mulas are calculated from the probabilities of their
ground atoms and are extracted as features. These
previous studies improved the accuracy by using
logic-based features derived from the entailment
results of first-order theorem proving in addition
to using shallow features such as sentence lengths.

In our study, we determine the semantic sim-
ilarity of sentences based on the conception of
proof-theoretic semantics (Bekki and Mineshima,
2017). The key idea is that not only the entailment
results but also the theorem proving process can
be considered as features for learning textual sim-

ilarity. That is, by taking into account not only
whether a theorem is proved but also how it is
proved, we can capture the semantic relationships
between sentence pairs in more depth.

Another difference between our study and pre-
vious logic systems is that we use higher-order
predicate logic. Higher-order predicate logic is
able to represent complex sentence semantics such
as generalized quantifiers more precisely than
first-order predicate logic. In addition, higher-
order predicate logic makes the logical structure
of a sentence more explicit than first-order predi-
cate logic does, so it can simplify the process of
proof search (Miller and Nadathur, 1986).

3 System Overview

Figure 1 shows an overview of the system which
extracts features for learning textual similarity
from logical proofs. To produce semantic repre-
sentations of sentences and prove them automati-
cally, we use ccg2lambda (Martı́nez-Gómez et al.,
2016), which is a semantic parser combined with
an inference system based on natural deduction.

First, sentences are parsed into syntactic
trees based on Combinatory Categorial Grammar
(CCG) (Steedman, 2000). CCG is a syntactic the-
ory suitable for semantic composition from syn-
tactic structures. Meaning representations are ob-
tained based on semantic templates and combi-
natory rules for the CCG trees. Semantic tem-
plates are defined manually based on formal se-
mantics. Combinatory rules specify the syntactic
behaviors of words and compositional rules for the
CCG trees. In ccg2lambda, two wide-coverage
CCG parsers, C&C (Clark and Curran, 2007)
and EasyCCG (Lewis and Steedman, 2014), are
used for converting tokenized sentences into
CCG trees robustly. According to a previous
study (Martı́nez-Gómez et al., 2017), EasyCCG
achieves higher accuracy. Thus, when the output
of both C&C and EasyCCG can be proved, we use
EasyCCG’s output for creating features.

Second, the meanings of words are described
using lambda terms. Semantic representations are
obtained by combining lambda terms in accor-
dance with the meaning composition rules spec-
ified in the CCG tree. The semantic represen-
tations are based on Neo-Davidsonian event se-
mantics (Parsons, 1990; Mineshima et al., 2015),
in which every verb is decomposed into a predi-
cate over events and a set of functional expressions
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Figure 1: System overview.

relating the events. Adverbs and prepositions are
also represented as predicates over events.

Third, we attempt to prove entailment relations
between sentence pairs. For this purpose, we
use Coq (Bertot and Castran, 2010), which can be
used for efficient theorem-proving for natural lan-
guage inference using both first-order and higher-
order logic (Mineshima et al., 2015). Coq’s proof
calculus is based on natural deduction (Prawitz,
1965), a proof system based on inference rules
called introduction and elimination rules for log-
ical connectives. The inference system imple-
mented in ccg2lambda using Coq achieves effi-
cient automatic inference by feeding a set of pre-
defined tactics and user-defined proof-search tac-
tics to its interactive mode. The natural deduc-
tion system is particularly suitable for injecting
external axioms during the theorem-proving pro-
cess (Martı́nez-Gómez et al., 2017).

Finally, features for learning textual similar-
ity are extracted from the proofs produced by
ccg2lambda during the theorem-proving process.
In this study, we experimented with logistic re-
gression, support vector regression and random
forest regression, finding that random forest re-
gression was the most effective. We therefore
chose random forest regression for learning tex-
tual similarity, with its hyperparameters being op-
timized by grid search. The mean squared error
(MSE) was used to measure the prediction perfor-
mance of our system.

4 Proof Strategy for Learning Textual
Similarity

4.1 Overview of the proof strategy

Sentence similarity depends on complex elements,
such as word overlaps and semantic relations. We
capture the similarity between the sentence pair
(A,B) as a function of the provability of bidirec-
tional entailment relations for (A,B) and combine
it with shallow features. After obtaining logical
formulas A′ and B′ from A and B, we attempt to

prove the bidirectional entailment relations, A′ ⇒
B′ and B′ ⇒ A′. If the initial natural deduc-
tion proofs fail, we re-run the proof, adding rel-
evant external axioms or skipping unproved sub-
goals until the proof is completed. After that, fea-
tures for learning textual similarity are extracted
by quantifying the provability of the bidirectional
entailment relations.

The details of the procedure are as follows.
First, we attempt a natural deduction proof without
using external axioms, aiming to prove entailment
relations, A′ ⇒ B′ and B′ ⇒ A′. If both fail,
then we check whether A′ contradicts B′, which
amounts to proving the negation of the original
conclusion, namely A′ ⇒ ¬B′ and B′ ⇒ ¬A′.

The similarity of a sentence pair tends to be
higher when the negation of the conclusion can
be proved, compared with the case where nei-
ther the conclusion nor its negation can be proved.
In the SICK (Sentences Involving Compositional
Knowledge) dataset (Marelli et al., 2014) (see
Section 6.1 for details), 70% of the sentence pairs
annotated as contradictory are assigned a related-
ness score in [3, 5).

Next, if we fail to prove entailment or contradic-
tion, that is, we cannot prove the conclusion or its
negation, we identify an unproved sub-goal which
is not matched by any predicate in the premise.
We then attempt to prove A′ ⇒ B′ and B′ ⇒ A′

using axiom injection, following the method in-
troduced in Martı́nez-Gómez et al. (2017). In ax-
iom injection, unproved sub-goals are candidates
to form axioms. We focus only on predicates that
share at least one argument with both the premise
and the conclusion. This means that an axiom can
be generated only if there is a predicate p in the
pool of premises and a predicate q in a sub-goal
and p and q share a variable in an argument posi-
tion, possibly with the same case (e.g., Subject or
Object).

In generating axioms, the semantic relation-
ships between the predicates in the premise and
those in the conclusion are checked using lexical
knowledge. In this study, we use WordNet (Miller,
1995) as the source of lexical knowledge. Linguis-
tic relations between predicates are checked in the
following order: inflections, derivationally related
forms, synonyms, antonyms, hypernyms, similar-
ities, and hyponyms. If any one of these relations
is found in the lexical knowledge, an axiom can
be generated. Again, if the proof fails, we attempt
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G : A ∧ B

∧-INTRO

G1 : A
G2 : B

P : A1 ∧ A2 ∧ · · · ∧ An

∧-ELIM

P1 : A1, P2 : A2, . . . , Pn : An

G : A → B

→-INTRO

P : A
G : B

P1 : A → B
P2 : A

→-ELIM

P : B

G : ∃xA(x)

∃-INTRO

G1 : A(x)

P : ∃xA(x)

∃-ELIM

P1 : A(x)

P1 : A(t)
P2 : t = u

=-ELIM

P : A(u)

Figure 2: Example of the inference rules used in
natural deduction. P, P1, . . . Pn are formulas in
the premise, while G,G1, G2 are formulas in the
goal. The initial formulas are at the top, with the
formulas obtained by applying the inference rules
shown below.

to prove the negation of the conclusion using the
axiom injection mechanism.

If the proof by axiom injection fails because of
a lack of lexical knowledge, we obtain sentence
similarity information from partial proofs by sim-
ply accepting the unproved sub-goals and forcibly
completing the proof. After the proof is com-
pleted, information about the generated axioms
and skipped sub-goals is used to create features.

4.2 Proving entailment relations
As an illustration of how our natural deduction
proof works, consider the case of proving entail-
ment for the following sentence pair:

A: A man is singing in a bar.
B: A man is singing.

The sentences A and B are mapped onto logical
formulas A′ and B′ based on event semantics via
CCG-based semantic composition, as follows.

A′ : ∃e1x1x2(man(x1) ∧ sing(e1) ∧ (subj(e1) = x1)

∧ bar(x2) ∧ in(e1, x2))

B′ : ∃e1x1(man(x1) ∧ sing(e1) ∧ (subj(e1) = x1))

First, we attempt a natural deduction proof of
A′ ⇒ B′, setting A′ as the premise and B′ as the
goal of the proof. Then A′ and B′ are decomposed
according to the inference rules.

Figure 2 shows the major inference rules we use
in the proofs. Inference rules in natural deduction
are divided into two types: introduction rules and
elimination rules. Introduction rules specify how

P0 : ∃e1x1x2(man(x1) ∧ sing(e1) ∧ (subj(e1) = x1)
∧ bar(x2) ∧ in(e1, x2))

G0 : ∃e1x1(man(x1) ∧ sing(e1) ∧ (subj(e1) = x1))

∃-ELIM (P0), ∃-INTRO (G0)

P1 : man(x1) ∧ sing(e1) ∧ (subj(e1) = x1)
∧ bar(x2) ∧ in(e1, x2)

G1 : man(x1) ∧ sing(e1) ∧ (subj(e1) = x1)

∧-ELIM (P1), ∧-INTRO (G1)

P2 : man(x1), P3 : sing(e1), P4 : subj(e1) = x1

P5 : bar(x2), P6 : in(e1, x2),
G2 : man(x1), G3 : sing(e1), G4 : subj(e1) = x1

Figure 3: The proof process for the example en-
tailment relation.

to prove a formula in the goal, decomposing a goal
formula into smaller sub-goals. Elimination rules
specify how to use a premise, decomposing a for-
mula in the pool of premises into smaller ones.

The proof process for A′ ⇒ B′ is shown in Fig-
ure 3. Here A′ is initially set to the premise P0 and
B′ to the goal G0. P0 and G0 are then decomposed
using elimination rules (∧-ELIM, ∃-ELIM) and intro-
duction rules (∧-INTRO, ∃-INTRO). Then we obtain a
set of premise formulas P = {P2, P3, P4, P5, P6},
and a set of sub-goals G = {G2, G3, G4}. The
proof is performed by searching for a premise Pi

whose predicate and arguments match those of a
given sub-goal Gj . If such a logical premise is
found, the sub-goal is removed. In this example,
the sub-goals G2, G3, and G4 match the premises
P2, P3, and P4, respectively. Thus, A′ ⇒ B′ can
be proved without introducing axioms.

Second, we attempt the proof in the opposite
direction, B′ ⇒ A′, by switching P0 and G0 in
Figure 3. Again, by applying inference rules, we
obtain the following sets of premises P and sub-
goals G:

P = {P2 : man(x1), P3 : sing(e1),
P4 : subj(e1) = x1}

G = {G2 : man(x1), G3 : sing(e1),
G4 : subj(e1) = x1,
G5 : bar(x2), G6 : in(e1, x2))}

Here, the two sub-goals G5 and G6 do not match
any of the premises, so the attempted proof of
B′ ⇒ A′ fails. We therefore attempt to inject
additional axioms, but in this case no predicate
in P shares the argument x2 of the predicates
bar(x2) and in(e1, x2) in G. Thus, no axiom can
be generated. To obtain information from a partial
proof, we forcibly complete the proof of B′ ⇒ A′

by skipping the unproved sub-goals bar(x) and
in(e1, x2).
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4.3 Proving the contradiction

The proof strategy illustrated here can be straight-
forwardly applied to proving the contradiction. In
natural deduction, a negative formula of the form
¬A can be defined as A → False (“the formula
A implies the contradiction”), by using a proposi-
tional constant False to encode the contradiction.
Thus, the inference rules for negation can be taken
as special cases of implication rules, as shown in
Figure 4.

As an illustration, let us consider the following
sentence pair:

A: No man is singing.
B: There is a man singing loudly.

Figure 5 shows the proof process. The sentences
A and B are mapped to P0 and P1, respectively,
via compositional semantics and the goal G0 is set
to False. By decomposing P1 using elimination
rules and then by combining P2, P3, and P4, we
can obtain P6. From P0 and P6 we can then derive
the contradiction.

These proofs are performed by an automated
prover implemented on Coq, using tactics for first-
order theorem proving. When a proof is success-
ful, Coq outputs the resulting proof (a proof term),
from which we can extract detailed information
such as the number of proof steps and the types
of inference rules used. In addition to the entail-
ment/contradiction result, information about the
proof process is used to create features.

5 Description of the Features

To maximize accuracy when learning textual sim-
ilarity, we adopt a hybrid approach that uses both
logic-based features extracted from the natural de-
duction proof and other, non-logic-based features.
All features are scaled to the [0, 1] range.

5.1 Logic-based Features

We propose 15 features consisting of nine different
types of logic-based features. Six of these feature
types are derived from the bidirectional natural de-
duction proofs: six features are extracted from the
direct proof (A′ ⇒ B′) and another six from the
reverse proof (B′ ⇒ A′). The remaining three
feature types are derived from semantic represen-
tations of the sentence pairs. The feature types are
as follows.
Logical inference result. As stated in Section 4,
we include features to distinguish the case where
either the conclusion or its negation can be proved

G : ¬A
¬-INTRO

P : A
G : False

P1 : ¬A
P2 : A

¬-ELIM

P : False

Figure 4: Inference rules of negation.

P0 : ¬∃e1∃x1(man(x1) ∧ sing(e1) ∧ (subj(e1) = x1))
P1 : ∃e1∃x1(man(x1) ∧ sing(e1) ∧ (subj(e1) = x1)

∧ loudly(e1))
G0 : False

∃-ELIM, ∧-ELIM (P2)

P2 : man(x1), P3 : sing(e1), P4 : subj(e1) = x1,
P5 : loudly(e1)

∃-INTRO, ∧-INTRO (P2)

P6 : ∃e1∃x1(man(x1) ∧ sing(e1) ∧ subj(e1) = x1)

Figure 5: Proof process for the contradiction ex-
ample.

from the one where neither can be proved. If the
conclusion can be proved, the feature is set to 1.0.
If the negation of the conclusion can be proved,
the feature is set to 0.5. If neither can be proved,
the feature is set to 0.0.
Axiom probabilities. The probability of an ax-
iom and the number of axioms appearing in the
proof are used to create features. The probability
of an axiom is defined as the inverse of the length
of the shortest path that connects the senses in the
is-a (hypernym/hyponym) taxonomy in WordNet.
When multiple axioms are used in the proof, the
average of the probabilities of the axioms is ex-
tracted as a feature. If the proof can be completed
without using axioms, the feature is set to 1.0.
Proved sub-goals. Given that proofs can be ob-
tained either by proving all the sub-goals or skip-
ping unproved sub-goals, we use the proportion of
proved sub-goals as a feature. Our assumption is
that if there are more unproved sub-goals then the
sentence pair is less similar. When there are m
logical formulas in the premise pool and n proved
sub-goals, we set the feature to n/m. If the theo-
rem can be proved without skipping any sub-goals,
the feature is set to 1.0. It may be the case that
the number of sub-goals is so large that some sub-
goals remain unproved even after axiom injection.
Since the proportion of unproved sub-goals is de-
creased by axiom injection, we use the proportion
of unproved sub-goals both with and without ax-
iom injection as features.
Cases in unproved sub-goals. Subject or object
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words can affect the similarity of sentence pairs.
Therefore, the number of each case in unproved
sub-goals, like subj(e1) in Figures 3 and 5, is
used as a feature. Here, we count subjective, ob-
jective, and dative cases.
Proof steps. In general, complex theorems are dif-
ficult to prove and in such cases the sentence pairs
are considered to be less similar. We therefore use
the number of Coq’s proof steps, namely the num-
ber of inference rule applications in a given proof,
as a feature.
Inference rules. The complexity of a natural de-
duction proof can be measured in terms of the in-
ference rules used for each proof step. We there-
fore extract the relative frequency with which each
inference rule is used in the proof as a feature. We
check seven inference rules for natural deduction
using Coq (cf. Figure 2): introduction and elimi-
nation rules for conjunction (∧-INTRO, ∧-ELIM), im-
plication (→-INTRO, →-ELIM), and existential quan-
tification (∃-INTRO, ∃-ELIM), and the elimination
rule for equality (=-ELIM).
Predicate overlap. Intuitively, the more predi-
cates overlap between the premise and the conclu-
sion, the more likely it is that the inference can be
proved. We therefore use the proportion of pred-
icates that overlap between the premise and the
conclusion as a feature.
Semantic type overlap. Each semantic represen-
tation in higher-order logic has a semantic type,
such as Entity for entities and Prop for proposi-
tions. As with predicates, we use the degree of se-
mantic type overlap between the premise and the
conclusion as a feature.
Existence of negative clauses. Whether or not the
premise or conclusion contain negative clauses is
an effective measure of similarity. In semantic rep-
resentations, negative clauses are represented by
the negation operator ¬, so we check for negation
operators in the premise and the conclusion and
set this feature to 1.0 if either contains one.

5.2 Non-logic-based Features

We also use the following eight non-logic-based
features.
Noun/verb overlap. We extract and lemmatize all
nouns and verbs from the sentence pairs and use
the degrees of overlap of the noun and verb lem-
mas as features.
Part-of-speech overlap. We obtain part-of-
speech (POS) tags for all words in the sentence

pairs by first tokenizing them with the Penn Tree-
bank Project tokenizer1 and then POS tagging
them with C&C POS tagger (Curran and Clark,
2003). The degree of overlap between the sen-
tences’ POS tags is used as a feature.

Synset overlap. For each sentence in the pair, we
obtain the set containing all the synonym lemmas
(the synset) for the words in the sentence. The
degree of overlap between the sentences’ synsets
is used as a feature.

Synset distance. For each word in the first sen-
tence, we compute the maximum path similarity
between its synset and the synset of any other
word in the second sentence. Then, we use the
average of maximum path similarities as a feature.

Sentence length. If the conclusion sentence is
long, there will possibly be many sub-goals in the
proof. We therefore use the average of the sen-
tence lengths and the difference in length between
the premise and the conclusion sentences as fea-
tures.

String similarity. We use the similarity of the se-
quence of characters within the sentence pairs as a
feature. The Python Difflib2 function returns the
similarity between two sequences as a floating-
point value in [0, 1]. This measure is given by
2.0 ∗ M/T , where T is the total number of ele-
ments in both sequences and M is the number of
matches. This feature is 1.0 if the sequences are
identical and 0.0 if they have nothing in common.

Sentence similarity from vector space models.
We calculate sentence similarity by using three
major vector space models, TF-IDF, latent se-
mantic analysis (LSA) (Deerwester et al., 1990),
and latent Dirichlet allocation (LDA) (Blei et al.,
2003). We use these cosine similarities as features.

Existence of passive clauses. Passive clauses
have an influence on similarity. In CCG trees,
passive clauses are represented using the syntactic
category Spss\NP . We check for the occurrence
of passive clauses in the premise and conclusion,
and if either of them contains a passive clause then
the feature is set to 1.0.

1ftp://ftp.cis.upenn.edu/pub/treebank/public html/
tokenization.html

2https://docs.python.org/3.5/library/difflib.html
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ID Sentence1 Sentence2 Entailment Score
23 There is no biker jumping in the air. A lone biker is jumping in the air no 4.2

1412 Men are sawing logs. Men are cutting wood. yes 4.5
9963 The animal is grazing on the grass. The cop is sitting on a police bike. unknown 1

Table 1: Examples in the SICK dataset with different entailment labels and similarity scores.

γ ρ MSE
Mueller et al. (2016) 0.882 0.835 0.229

Our system 0.838 0.796 0.561

SemEval2014 Best Score 0.828 0.769 0.325

The Meaning Factory 0.827 0.772 0.322

UTexas 0.714 0.674 0.499

Baseline 0.653 0.745 0.808

Table 2: Results on the test split of SICK dataset.

6 Experiments and Evaluation

6.1 Experimental Conditions

We evaluated our system3 using two datasets:
the SemEval-2014 version of the SICK
dataset (Marelli et al., 2014) and the SemEval-
2012 version of the MSR-paraphrase video corpus
dataset (MSR-vid) (Agirre et al., 2012). The
experimental conditions were as follows.

6.1.1 The SICK dataset
The SICK dataset is a dataset for studying STS as
well as for recognizing textual entailment (RTE).
It was originally developed for evaluating com-
positional distributional semantics, so it contains
logically challenging expressions such as quan-
tifiers, negations, conjunctions and disjunctions.
The dataset contains 9927 sentence pairs with a
5000/4927 training/test split. These sentence pairs
are manually annotated with three types of labels
yes (entailment), no (contradiction), or unknown
(neutral) as well as a semantic relatedness scores
in [1, 5] (see Table 1 for a sample).

In this dataset, sentence pairs whose gold entail-
ment labels are no tend to be scored a little more
highly than the average, whereas those whose la-
bels are unknown have a wide range of scores.
Thus, we set the baseline of the relatedness score
to 5 when the gold entailment label was yes and to
3 when the label was no or unknown.

We compared our system with the fol-
lowing systems: the state-of-the-art neural
network-based system (Mueller and Thyagarajan,
2016); the best system (Zhao et al., 2014)
from SemEval-2014; and two of the logic-

3Available at https://github.com/mynlp/ccg2lambda.

based systems stated in Section 2: namely
The Meaning Factory (Bjerva et al., 2014) and
UTexas (Beltagy et al., 2014b). The Pearson cor-
relation coefficient γ, Spearman’s rank correlation
coefficient ρ, and the MSE were used as the eval-
uation metrics.

6.1.2 The MSR-vid dataset
The MSR-vid dataset is our second dataset for the
STS task and contains 1500 sentence pairs with
a 750/750 training/test split. All sentence pairs
are annotated with semantic relatedness scores in
the range [0, 5]. We used this dataset to compare
our system with the best system from SemEval-
2012 (Bär et al., 2012) and the logic-based UTexas
system (Beltagy et al., 2014a). We used the Pear-
son correlation coefficient γ as the evaluation met-
ric.

6.2 Results

Table 2 shows the results of our experiments with
the SICK dataset. Although the state-of-the-art
neural network-based system yielded the best re-
sults overall, our system achieved higher scores
than SemEval-2014 submissions, including the
two logic-based systems (The Meaning Factory
and UTexas), in terms of Pearson correlation and
Spearman’s correlation.

The main reason for our system’s lower per-
formance in terms of MSE is that some theorems
could not be proved because of a lack of lexical
knowledge. In the current work, we only consider
word-level knowledge (word-for-word paraphras-
ing); we may expand the knowledge base in the
future by using more external resources.

As we mentioned above, the sentence pairs an-
notated as unknown produced a wide range of
scores. The Pearson correlation of the unknown
portion of the SICK dataset was 0.766, which sug-
gests that our logic-based system can also be ap-
plied to neutral sentence pairs.

Table 3 shows the results of our experiments
with the MSR-vid dataset. These results also in-
dicate that our logic-based system achieved higher
accuracy than the other logic-based systems.
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γ

SemEval2012 Best Score 0.873

Our system 0.853

Beltagy et al. (2014) 0.830

Table 3: Results on the test split of MSR-vid.

γ ρ MSE
Predicate overlap 0.691 0.609 0.734

Inference rules 0.632 0.619 0.794

Probability of axioms 0.543 0.540 0.865

Proof steps 0.458 0.494 0.915

Proved sub-goals 0.432 0.443 0.926

Logical inference result 0.386 0.399 0.939

Unproved sub-goals’ case 0.301 0.307 0.973

Semantic type overlap 0.245 0.219 0.987

Negative clauses 0.163 0.323 1.004

Noun/verb overlap 0.661 0.554 0.763

Vector space model 0.594 0.510 0.857

String similarity 0.414 0.418 0.977

Synset overlap 0.382 0.341 0.978

Synset distance 0.352 0.330 0.999

Part-of-speech overlap 0.349 0.346 0.954

Sentence length 0.231 0.240 0.993

Passive clauses 0.023 0.046 1.017

Only logic-based 0.798 0.760 0.613

Only non logic-based 0.793 0.732 0.621

All 0.838 0.796 0.561

Table 4: Results when training our regressor with
each feature group in isolation.

Table 4 shows evaluation results for each feature
group in isolation, showing that inference rules
and predicate overlaps are the most effective fea-
tures. Compared with the non-logic-based fea-
tures, the logic-based features achieved a slightly
higher accuracy, a point that will be analyzed in
more detail in the next section. Overall, our re-
sults show that combining logic-based features
with non logic-based ones is an effective method
for determining textual similarity.

6.3 Positive examples and error analysis

Table 5 shows some examples for which the pre-
diction score was better when using logic-based
features than when using non-logic-based ones.

For IDs 642 and 1360, one sentence contains a
passive clause while the other sentence does not.
In such cases, the sentence pairs are not superfi-
cially similar. By using logical formulas based on
event semantics we were able to interpret the sen-
tence containing the passive clause correctly and

judge that the passive and non-passive sentences
are similar to each other.

In ID 891, one sentence contains a negative
clause while the other does not. Using shallow
features, the word overlap is small and the predic-
tion score was much lower than the correct score.
Our logic-based method, however, interpreted the
first sentence as a negative existential formula of
the form ¬∃xP(x) and the second sentence as an
existential formula ∃xP ′(x). Thus, it could easily
handle the semantic difference between the posi-
tive and negative sentences.

In ID 1158, by contrast, the proportion of word
overlap is so high that the prediction score with
non-logic-based features was much higher than
the correct score. Our method, however, was able
to prove the contradiction using an antonym axiom
of the form ∀x(remove(x) → ¬add(x)) from
WordNet and thus predict the score correctly.

In ID 59, the proportion of word overlap is
low, so the prediction score with non-logic-based
features was lower than the correct score. Our
method, however, was able to prove the partial en-
tailment relations for the sentence pair and thus
predict the score correctly. Here the logic-based
method captured the common meaning of the sen-
tence pair: both sentences talk about the kids play-
ing in the leaves.

Finally, in ID 71, the prediction score with non-
logic-based features was much higher than the cor-
rect score. There are two reasons for this phe-
nomenon: negations tend to be omitted in non-
logic-based features such as TF-IDF and the pro-
portion of word overlap is high. However, as
logical formulas and proofs can handle negative
clauses correctly, our method was able to predict
the score correctly.

Table 6 shows examples where using only logic-
based features produced erroneous results. In ID
3974, the probability of axiom ∀x(awaken(x)→
up(x)) was low (0.25) and thus the prediction
score was lower than the correct score. Likewise,
in ID 4833, the probability of axiom ∀x(file(x)→
do(x)) was very low (0.09) and thus the pre-
diction score was negatively affected. In these
cases, we need to consider phrase-level axioms
such as ∀x(awaken(x) → wake up(x)) and
∀x(file nail(x) → do manicure(x)) using a
paraphrase database. This, however, is an issue
for future study. In ID 1941, the system wrongly
proved the bidirectional entailment relations by
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Pred Pred
ID Sentence Pair Gold +logic -logic Entailment

642 A person is climbing a rock with a rope, which is pink. 5.0 4.9 4.1 YesA rock is being climbed by a person with a rope, which is pink.

1360 The machine is shaving the end of a pencil. 4.7 4.6 3.8 YesA pencil is being shaved by the machine.

891 There is no one on the shore. 3.6 3.7 2.6 NoA bunch of people is on the shore.

1158 A woman is removing ingredients from a bowl. 3.3 3.5 4.1 NoA woman is adding ingredients to a bowl.

59 Kids in red shirts are playing in the leaves. 3.9 3.8 3.1 UnknownThree kids are jumping in the leaves.

71 There is no child lying in the snow and making snow angels. 3.3 3.3 4.1 UnknownTwo people in snowsuits are lying in the snow and making snow angels.

Table 5: Examples for which our regressor trained only with logic-based features performs better than
when using non-logic features. “Gold”: correct score, “Pred+logic”: prediction score only with logic-
based features, “Pred-logic”: prediction score only with non-logic-based features.

ID Sentence Pair Gold System Axiom

3974 A girl is awakening. 4.9 3.6 ∀x(awaken(x) → wake(x))
A girl is waking up. ∀x(awaken(x) → up(x))

4833 A girl is filing her nails. 4.2 1.8 ∀x(nail(x) → manicure(x))
A girl is doing a manicure. ∀x(file(x) → do(x))

1941 A woman is putting the baby into a trash can.
A person is putting meat into a skillet. 1.0 3.3

∀x(woman(x) → person(x))
∀x(trash(x) → skillet(x))
∀x(baby(x) → meat(x))

Table 6: Error examples when training the regressor only with logic-based features.

adding external axioms, so the prediction score
was much higher than the correct score. Set-
ting the threshold for the probability of an axiom
may be an effective way of improving our axiom-
injection method.

7 Conclusion

We have developed a hybrid method for learn-
ing textual similarity by combining features based
on logical proofs of bidirectional entailment rela-
tions with non-logic-based features. The results
of our experiments on two datasets show that our
system was able to outperform other logic-based
systems. In addition, the results show that infor-
mation about the natural deduction proof process
can be used to create effective features for learning
textual similarity. Since these logic-based features
provide accuracy improvements that are largely
additive with those provided by non-logic-based
features, neural network-based systems may also
benefit from using them.

In future work, we will refine our system so
that it can be applied to other tasks such as ques-
tion answering. Compared with neural network-
based systems, our natural deduction-based sys-
tem can not only assess how similar sentence pairs

are, but also explain what the sources of simi-
larity/dissimilarity are by referring to information
about sub-goals in the proof. Given this interpreta-
tive ability, we believe that our logic-based system
may also be of benefit to other natural language
processing tasks, such as question answering and
text summarization.
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Abstract

Traditionally, word segmentation (WS)
adopts the single-granularity formal-
ism, where a sentence corresponds to a
single word sequence. However, Sproat
et al. (1996) show that the inter-native-
speaker consistency ratio over Chinese
word boundaries is only 76%, indicat-
ing single-grained WS (SWS) imposes
unnecessary challenges on both manual
annotation and statistical modeling.
Moreover, WS results of different gran-
ularities can be complementary and
beneficial for high-level applications.
This work proposes and addresses
multi-grained WS (MWS). First,
we build a large-scale pseudo MWS
dataset for model training and
tuning by leveraging the annotation
heterogeneity of three SWS datasets.
Then we manually annotate 1,500 test
sentences with true MWS annotations.
Finally, we propose three benchmark
approaches by casting MWS as
constituent parsing and sequence
labeling. Experiments and analysis
lead to many interesting findings.

1 Introduction
As the first processing step of Chinese
language processing, word segmentation (WS)
has been extensively studied and made great
progress during the past decades, thanks
to the annotation of large-scale benchmark
datasets, among which the most widely-
used are Microsoft Research Corpus (MSR)
(Huang et al., 2006), Peking University

∗ Correspondence author

MSR 全国各地 医学 界 专家 走出 人民大会堂
PPD 全国 各地 医学界 专家 走 出 人民 大会堂
CTB 全 国 各 地 医学界 专家 走出 人民 大会堂

Table 1: An example of annotation
heterogeneity: 全 (all) 国 (country) 各 (every)
地 (place) 医学 (medical science) 界 (field) 专
家 (experts) 走 (walk) 出 (out) 人民 (people)
大会堂 (great hall).

People Daily Corpus (PPD) (Yu et al., 2003),
and Penn Chinese Treebank (CTB) (Xue
et al., 2005). Table 1 gives an example
sentence segmented in different guidelines.
Meanwhile, WS approaches gradually evolve
from maximum matching based on lexicon
dictionaries (Liu and Liang, 1986), to path
searching from segmentation graphs based on
language modeling scores and other statistics
(Zhang and Liu, 2002), to character-based
sequence labeling (Xue, 2003), to shift-reduce
incremental parsing (Zhang and Clark,
2007). Recently, neural network models have
also achieved success by effectively learning
representation of characters and contexts
(Zheng et al., 2013; Pei et al., 2014; Ma and
Hinrichs, 2015; Chen et al., 2015; Zhang et al.,
2016; Cai and Zhao, 2016; Liu et al., 2016).

To date, all the labeled datasets adopt the
single-granularity formalization, and previous
research mainly focuses on single-grained WS
(SWS), where one sentence is segmented into a
single word sequence. Although different WS
guidelines share the same high-level criterion
of word boundaries – a character string com-
bined closely and used steadily forms a word,
people greatly diverge due to individual differ-
ences on knowledge and living environments,
etc. An anonymous reviewer kindly points
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out that Vladímir Skalička of the Prague
School claimed that unlike the “isolating”
languages such as French and English, Chinese
belongs to the “polysynthetic” type, in which
compound words are normally produced from
indigenous morphemes (Jernudd and Shapiro,
1989). The vague distinction between mor-
phemes and compounds also contribute to
the cognition divergence on the concept of
words. Sproat et al. (1996) show that the
consensus ratio over word boundaries is only
76% among Chinese native speakers without
trained on a common guideline.To fill this
gap, WS guidelines need to further group
words into many types and provide illustration
examples for each type. Nevertheless, it is very
challenging even for well-trained annotators to
fully grasp the guidelines and to be consistent
on uncovered cases. For example, Xiu (2013)
(in Tables 1-3) shows that about 3% charac-
ters are inconsistently segmented in the PPD
training data used in SIGHAN Bakeoff 2005
(Emerson, 2005). We have also observed many
inconsistency cases in all MSR/PPD/CTB
during this work. In a word, SWS imposes
great challenge on data annotation, and as a
side effect, enforces statistical models to learn
subtleness of annotation guidelines rather than
the true WS ambiguities.

From another perspective, WS results of
different granularities may be complementary
in supporting applications such as information
retrieval (IR) (Liu et al., 2008) and machine
translation (MT) (Su et al., 2017). On the one
hand, coarse-grained words enable statistical
models to perform more exact matching and
analyzing. On the other hand, fine-grained
words are helpful in both reducing data sparse-
ness and supporting deeper understanding of
language.1

To solve the above two issues for SWS, this
paper proposes and addresses multi-grained
WS (MWS). Given an input sentence, the
goal is to produce a hierarchy structure of all
words of different granularities, as illustrated
in Figure 1. To tackle the lack of labeled data,
we build a large-scale pseudo MWS dataset for
model training and tuning by automatically
converting annotations of three heterogeneous

1 Words in CTB are generally more fine-grained
than those in PPD and MSR, probably due to the
requirement of annotating syntactic structures.
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Figure 1: MWS as a constituent parse tree.

SWS datasets (i.e. MSR/PPD/CTB) based
on the recently proposed coupled sequence
labeling approach of Li et al. (2015). In
order to fully investigate the problem, we
manually annotate 1,500 test sentences with
true MWS annotations. Finally, we propose
three benchmark approaches by casting MWS
as constituent parsing and sequence labeling
problems. Experiments and data analysis lead
to many interesting findings.

We will release the newly annotated data
and the codes of the benchmark approaches at
http://hlt.suda.edu.cn/~zhli. However,
due to the license issue, we may not directly
release all the pseudo MWS datasets. Instead,
we will launch a web service for obtaining
MWS annotations given a sentence with one
of MSR/PPD/CTB annotations.

2 Pseudo MWS Data Conversion
This section introduces the process of gather-
ing pseudo MWS data by making use of the
annotation heterogeneity of the three existing
datasets, i.e., MSR/PPD/CTB.

2.1 Annotation Heterogeneity
MSR is a manually labeled corpus with word
boundaries and named entity tags, and is
annotated by Microsoft Research Asia for
supporting Chinese text processing (Huang
et al., 2006). The key characteristic of MSR is
treating named entities as single words. For
example, “人民大会堂 (Great Hall of the
People)” is a location and forms a word in
Table 1. In general, MSR is more coarse-
grained than PPD and CTB. PPD is a large-
scale corpus with word boundaries, POS tag-
ging, and phonetic notations to facilitate Chi-
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nese information processing, and is annotated
by Institute of Computational Linguistics at
Peking University (Yu et al., 2003). Based
on the Penn Chinese Treebank Project, CTB
is built to create a Mandarin Chinese corpus
with syntactic bracketing (Xue et al., 2005).
We find that CTB is more fine-grained in
word boundaries than MSR and PPD, since
syntactic annotation tends to require deeper
understanding of a sentence. For example,
Table 5 reports the averaged number of char-
acters per word in each corpus, and confirms
our observations.

For better understanding of annotation het-
erogeneity, we summarize high-frequency dif-
ferences among the three datasets observed
and gathered during this study in Appendix
A. However, it is difficult to obtain a complete
list of annotation correspondences among the
three datasets, since there are too many low-
frequency and irregular cases. Moreover, we
also observe a lot of inconsistency annota-
tions of the same word or words with similar
structures in all three datasets, as shown in
Appendix B.

2.2 Coupled WS for Conversion:
MSR/PPD as Example

This section introduces how to automatically
produce high-quality PPD-side WS labels for
a sentence with MSR-side gold-standard WS
labels, by leveraging the two non-overlapping
SWS data of MSR and PPD with the coupled
sequence labeling approach of Li et al. (2015)
and Li et al. (2016). Figure 2 shows the
workflow.

Given a sentence x = [c1, ..., ci, ..., cn], the
coupled model aims to produce a sequence
of bundled tags t = [ta1t

b
1, ..., t

a
i t

b
i , ..., t

a
ntbn],

where tai and tbi are two labels corresponding
to two heterogeneous guidelines respectively.
Table 2 gives an example of coupled WS on
MSR/PPD. We employ the standard four-tag
label set to mark word boundaries of one gran-
ularity, among which B, I, E respectively rep-
resent that the concerned character situates at
the beginning, inside, end position of a word,
and S represents a single-character word. The
bottom row shows the gold-standard bundled
tag sequence.

One key advantage of the coupled model
is to directly learn from two non-overlapping

MSR-train/dev/test
w/ ambiguous labeling

MSR-train/dev/test
w/ complete bundled

MSR&PPD labels

Coupled Model:MMSR&PPD

2⃝Conversion

MSR-train w/
ambiguous labeling

PPD-train w/
ambiguous labeling

1⃝Train

Figure 2: Conversion between MSR/PPD.

Input 全 国 各 地 医 学 界 专 家 ...
Ambiguous BB IB IB EB BB EB SB BB EB ...
Labeling for BI II II EI BI EI SI BI EI ...
Training & BE IE IE EE BE EE SE BE EE ...
Conversion BS IS IS ES BS ES SS BS ES ...

Output BB IE IB EE BB EI SE BB EE ...

Table 2: Coupled WS (MSR/PPD as
example). Two WS labels are bundled
to represent MSR/PPD annotations for a
character. Ambiguous labeling is gained
supposing this sentence has MSR-side gold-
standard annotations.

heterogeneous training datasets, where each
dataset only contains single-side gold-standard
labels. To deal with this partial (or incom-
plete) labeling issue, they project each single-
side label to a set of bundled labels by consid-
ering all labels at the missing side, as shown
in the second row in Table 2. Such ambiguous
labelings are used for model supervision.

Under a traditional CRF, the coupled model
defines the score of a bundled tag sequence as

Score(x, t; θ) = θ · f(x, t)

=
n+1∑

i=1

θ ·




fjoint(x, i, tai−1t
b
i−1, t

a
i t

b
i)

fsep_a(x, i, tai−1, t
a
i )

fsep_b(x, i, tbi−1, t
b
i)




where fjoint(.) are the joint features whereas
fsep_a/sep_b(.) are the separate features. Li
et al. (2015) demonstrate that the joint fea-
tures capture the implicit mappings between
heterogeneous annotations, while the back-off
separate features work as a remedy for the
sparseness of the joint features.
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MMSR&CTB MMSR&PPD

MPPD&CTB

Figure 3: Producing pseudo MWS data.

In their case study of POS tagging, Li
et al. (2015) show the coupled model improves
tagging accuracy by 95.0 − 94.1 = 0.9%
on CTB5-test over the baseline non-coupled
model trained on a single training data.

More importantly, they show that the cou-
pled model can be naturally used for the task
of annotation conversion, where second-side
labels are automatically annotated, given one-
side gold-standard labels. The given one-side
tags are used to obtain ambiguous labelings,
as shown in Table 2, and the coupled model
finds the best bundled tag sequence in the
constrained search space, instead of in the
whole bundled tag space, hence greatly reduc-
ing the difficulty. Li et al. (2015) report that
the coupled model can improve conversion
accuracy on POS tagging by 93.9 − 90.6 =
3.3% over the non-coupled model.2

2.3 Producing Pseudo MWS Data
Figure 3 shows the workflow of producing
pseudo MWS data with three separately
trained coupled models. Please note that one
coupled model is able to perform conversion
between one pair of annotation standards,
and thus three coupled models are required
for three kinds of annotation standards.
Another alternative is that we could directly
train one coupled model on MSR/PPD/CTB
by extending the approach of Li et al. (2015)
from two guidelines into three, which would
lead to a much larger bundled tag space. For
simplicity, we directly employ their released
codes in this work, and leave that for future
exploration.

After conversion, we obtain 9 pseudo
MWS datasets (i.e., MSR/PPD/CTB-
train/dev/test) and represent each sentence

2The accuracy seems quite low. The reason is only
the 20% most ambiguous words of each sentence are
manually labeled and evaluated in their experiments.

in a hierarchy structure as shown in Figure 1.
Please kindly note that the guideline-specific
information are thrown away, since we do not
care which word belongs to which guideline.

In the resulting pseudo MWS data, we
find about 0.08% of words overlap with other
words, meaning a string “ABC” is segmented
into “A/BC” and “AB/C” in two different
annotations. We have manually checked these
words, and find almost all those cases are
caused by conversion errors. This confirms
that our treatment of MWS as a hierarchy
structure is reasonable.

3 Manual Annotation

In order to fully investigate the MWS problem,
we have manually created a true MWS data of
1,500 sentences for final evaluation. From each
test dataset in Table 5, we randomly sample
500 sentences with converted pseudo MWS
annotations for manual correction. First, two
coauthors of this work spent about two hours
each day on manual correction of the pseudo
MWS annotations for two weeks. During this
period, we have summarized a list of high-
frequency corresponding patterns among the
three guidelines (see Appendix A), and have
also written a simple program to automati-
cally detect inconsistent annotations of given
words in different training datasets, so that
annotators can use the outputs of the program
to decide ambiguous cases, which we find is
extremely helpful for annotation.

Then, we employ 10 postgraduate students
as our annotators who are at different fa-
miliarity in WS annotation. Before formal
annotation, the annotators are trained for two
hours on the basic concepts of MWS, high-
frequency correspondences among the three
guidelines, and the use of the outputs of the
program. We also encourage the annotators to
access the three training datasets directly for
studying concrete cases under real contexts.
Moreover, annotators are asked to recheck
their annotations before final submission to
improve quality.

To measure the inter-annotator consistency,
150 sentences (10%) are sampled for double
annotation, and are grouped into four batches
for four pairs of annotators. After annotation,
two annotators on the same batch compare
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#Words Granularities Distrbution (%)
Single Two Three

Before 44,593 74.5 24.0 1.5
After 45,279 71.6 26.8 1.6

Table 3: Data statistics of the MWS test data
before and after manual annotation.

their results and produce a consensus submis-
sion through discussion.

The annotation process lasts for four days,
and each annotator spends about 8 hours in
total on completing 160 sentences on average.
Table 3 compares data statistics on the 1, 500
sentences before and after manual annotation.
The second column reports the number of
words, and the last three columns report the
distribution of words according to their gran-
ularity levels. To illustrate how to gain the
distribution, we take Figure 1 as an example,
which contains 1 single-grained words, 9 two-
grained words, and 7 three-grained words.3

Table 3 shows that only 71.6% of all words
are single-grained, which is somehow roughly
consistent with the inter-native-speaker con-
sistency ratio (76%) in Sproat et al. (1996).
Among multi-grained words, 26.8

26.8+1.6 = 94.4%
are two-grained. It is clear that manual anno-
tation increases both the number of words by
45,279−44,593

44,593 = 1.5%, and the number of multi-
grained words by 74.5 − 71.6 = 2.9%. In fact,
during annotation, we also feel that multi-
granularity phenomena are under-represented
in the pseudo MWS data. The reason may be
two-fold. First, the conversion models incline
to suppress granularity differences, since most
words have the same granularity in different
datasets. Second, the exist of many incon-
sistencies in the same dataset also makes the
conversion models more reluctant to produce
multi-grained words.

The inter-annotator consistency ratio is
3859
3935 = 98.07%, where the denominator is the
word number after merging the submission
of all annotator pairs, and the numerator is
the consensus word number. We argue that

3 Formally, we call a word s three-grained if there
are two other words s1 and s2 satisfying any one
conditions: 1) s2 ∈ s1 ∈ s (like “全国各地” in Figure
1); 2) s2 ∈ s ∈ s1 (like “全国”); 3) s ∈ s1 ∈ s2 (like
“全”), where ∈ means substring. The definition of two-
grained words is analogous; otherwise single-grained.

the consistency ratio is not high, considering
most words do not need correction in the
pseudo MWS annotations. In fact, we find
that this annotation task is actually very
difficult, since the annotators must consider
three guidelines simultaneously. The main
inconsistency source of all four annotator
pairs are due to the situation where one
annotator notices a mistake while another
annotator overlooks it. To solve this issue,
our long-term plan is to compile a unified
MWS guideline by integrating existing SWS
guidelines, and gradually improve it by more
manual MWS annotation.4

4 Benchmark MWS Approaches
There has recently been a surge of interest
in applying neural network models to both
parsing and sequence labeling tasks. In this
work, we propose three simple benchmark
approaches for MWS, inspired by recently
neural models for constituent parsing (Cross
and Huang, 2016) and SWS (Pei et al., 2014).

4.1 MWS as Constituent Parsing
Due to its hierarchy structure shown in Figure
1, we naturally cast MWS as a constituent
parsing problem, where characters are leaf
nodes; “C” represent a character, “W” rep-
resent a word; “X” means that the spanning
word cannot be further merged into a more
coarse-grained word.

We employ the recently proposed transition-
based constituent parser of Cross and Huang
(2016) due to its simplicity and competitive
performance on different parsing benchmark
datasets. In the transition system, a stack S
stores processed tokens and partial trees col-
lected so far; a queue Q contains unprocessed
tokens; structural5 and labeling6 decisions are
alternatively made to advance the state until a
complete tree forms. The network architecture
is composed of two parts: 1) two cascaded

4Although this work has been confined to the three
guidelines of MSR/PPD/CTB, we feel that the three
guidelines can well capture most multi-granularity
phenomena of words. During manual annotation, we
have found very few cases where an obvious multi-
granularity structure is not covered by the three
guidelines.

5Shifting the first token in Q into S, or combining
the top two items in S

6Assigning a non-terminal label or “NULL” to the
top item in S
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ec1 ; ec0c1

f11; b1
1

ec2 ; ec1c2 ec3 ; ec2c3 ...

f12; b1
2 f13; b1

3
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f21; b2
1 f22; b2

2 f23; b2
3

...

Embeddings

BiLSTM1

BiLSTM2

Figure 4: Two-layer BiLSTM architecture.

Chars 全 国 各 地 医 学 界 专 家 ...
MWS labels SBB SEI SBI SEE BB EI SE B E ...

Table 4: MWS as sequence labeling. SWS
labels for the same character are organized
fine-to-coarse.

bidirectional LSTM layers to encode the input
token sequence, as shown in Figure 4; 2)
two separate multilayer perceptrons (MLPs)
to make structural/labeling decisions based
on 4/3 simple LSTM span features. A span
feature represents a sentence span (i, j) by
concatenating the element-wise differences of
BiLSTM outputs:

r(i,j) = [f1j −f1i−1; b1
i −b1

j+1; f2j −f2i−1; b2
i −b2

j+1]

To adapt the original parsing model to our
MWS task, we concatenate bichar embeddings
eci−1ciwith single char embedding eci as inputs
to the first-layer BiLSTM, inspired by Pei
et al. (2014), who show that bichar embed-
dings are very helpful for SWS.

4.2 MWS as Sequence Labeling
It is also straightforward to model MWS as
a sequence labeling task by replacing SWS
labels with MWS labels for each character.
Table 4 encodes the MWS structure in Figure
1 with a sequence of MWS labels. The
idea is to concatenate multiple SWS tags
simultaneously for one character to denote
the positions of the character under words of
different granularities. Please note that each
MWS label contains at most three SWS labels
since we only consider three SWS datasets in
this work. Here, we organize the SWS labels
in the order of fine-to-coarse granularities.

For simplicity and fair comparison, we adopt
a similar network architecture as the parsing

Train Dev Test #Char per Word
MSR 78,232 8,692 3,985 1.71
PPD 46,815 2,000 5,000 1.67
CTB 16,091 803 1910 1.63

Table 5: Data statistics (in sentence number).
The last column reports the averaged charac-
ter number of each word.

model described in Section 4.1. To decide
the MWS label of a character ci in the input
sentence, we feed the outputs of the two-layer
BiLSTM outputs [f1i ; b1

i , f2i ; b2
i ] into a single-

hidden-layer MLP.

4.3 MWS as SWS Aggregation
Instead of directly training a MWS model
on the three pseudo MWS training datasets,
we can also train three separate SWS models
on the three SWS training datasets. Given
an input sentence, we apply the three SWS
models and then merge their outputs as MWS
results.

The network architecture is the same with
the sequence labeling model in Section 4.2,
except the MLP outputs correspond to SWS
labels instead of MWS labels.

5 Experiments

Data: for MSR, we adopt the training/test
datasets of the SIGHAN Bakeoff 2005 (Emer-
son, 2005), and cut off 10% random training
sentences as the dev data following Zhang
et al. (2016); for PPD and CTB, we follow Li
et al. (2015) and directly adopt their datasets
and data split. Table 5 shows the data
statistics.7

Evaluation Metrics: the goal of MWS
is to precisely produce all words of different
granularities given the input sentence. There-
fore, to reach a balance of both precision (P =
#Wordgold∩sys

#Wordsys
) and recall (R =

#Wordgold∩sys

#Wordgold
),

we use the F1 score (= 2PR
P+R) as in SWS.

Hyper-parameter: we implement all our
approaches based on the codes released by
Cross and Huang (2016), by making exten-
sions such as adding bichar embeddings and

7A DBC-to-SBC (double/single-byte characters)
case preprocessing is performed on all datasets to avoid
encoding inconsistency.
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Dev (Pseudo) Test (Manual)
P R F P R F #Words Single Two Three Overlapping

Parsing 96.55 96.40 96.48 97.00 95.16 96.07 44,408 74.9% 23.5% 1.6% –
w/o Bichar Emb 95.58 95.04 95.51 96.37 94.11 95.22 44,434 74.2% 24.1% 1.7% –

Sequence Labeling 96.86 96.26 96.59 97.01 94.96 95.97 44,323 75.8% 22.7% 1.5% –
w/o Bichar Emb 95.88 94.94 95.41 96.56 94.18 95.35 44,162 75.7% 22.8% 1.5% –
SWS Aggregation 90.43 97.44 93.80 92.11 96.59 94.30 47,478 64.6% 31.4% 4.0% 1.0%

Table 6: Performance of different MWS approaches.

supporting sequence labeling.8 For simplicity,
char and bichar embeddings are randomly
initialized following Cross and Huang (2016).
The dimensions of char and bichar embeddings
are both 50 and other hyper-parameters are
the same with Cross and Huang (2016). In
our preliminary experiments, we observe that
under their neural network framework, the
MWS performance is quite stable when rerun-
ing under random initialization or reasonably
altering other hyper-parameters. Due to time
limitation, we leave the use of pre-trained
embeddings and more hyper-parameter tuning
for future exploration.

Training/test settings: when training
the parsing and sequence labeling based
MWS models (not SWS aggregation) on
MSR/PPD/CTB-train, we adopt the simple
corpus weighting strategy used in Li et al.
(2015) to balance the contributions of each
training dataset. Before each iteration, we
randomly sample 10,000 sentences from each
training dataset, and merge and shuffle them
for one-iteration training. We use merged
MSR/PPD/CTB-dev as the MWS dev data
for model selection.9

For the SWS aggregation model, three SWS
models are separately trained on the three
training/dev datasets. For evaluation, three
SWS outputs produced independently are
merged as one MWS result given a sentence.

In all experiments, training stops when F-
score on the dev data does not improve in
20 consecutive iterations, and we choose the
model that performs best on the dev data for
final evaluation.

8https://github.com/jhcross/span-parser. We
are very grateful for their helping us solve some code
issues at the early stage of this work.

9For MSR-dev, only the first 3, 000 sentences are
used during training due to efficiency concern.

Main results: Table 6 reports the per-
formance of different approaches on both the
pseudo MWS dev data and the manually
annotated MWS test data. The “#Word”
column reports the total number of words
returned by the corresponding model; the
following three columns show the percentages
of words of different granularities; the last
“Overlapping” column gives the percent of
words that overlap with other words, which
only happens in the “SWS aggregation” ap-
proach, since no constraint can be applied to
the three separate SWS models during testing.
From the results, we can draw the following
findings.

First, the results suggest that using pseudo
training and dev datasets to build a MWS
model is feasible, based on two evidences: 1)
our simple benchmark model can reach a high
F-score of 96.07% on the manually annotated
test data, which is 1.77% higher than directly
aggregating outputs of three SWS models; 2)
the P/R/F scores on the pseudo dev data
and on the manually labeled test data are
quite consistent in general, indicating that it is
reliable to use the pseudo dev data for model
selection and tuning.

Second, the parsing approach and the
sequence labeling approach (with or without
bichar embeddings) achieve very similar
performance (within 0.15% vibration),
More importantly, the parsing approach
produces more words and more multi-grained
words than the sequence labeling approach,
indicating that it is potentially more proper to
model MWS as a parsing problem in order to
better capture and represent multi-granularity
structures. Another possible disadvantage
of the sequence labeling approach is that
the trained model cannot produce more
granularity levels (e.g., four-grained) beyond
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those in the training data. Nevertheless,
compared against the manual annotations
in Table 3, both the parsing and sequence
labeling approaches retrieve much less
multi-grained words, which is caused by
the under-representation issue of the pseudo
training data, as discussed in Section 3.

Third, the SWS aggregation approach
achieves the best recall at the price of very
low precision on both dev/test data. We
believe the reason is that training three
SWS models separately on one of the three
training datasets has two disadvantages: 1)
connections among different guidelines are
totally ignored, leading to many overlapping
words (1.0%); 2) smaller training data also
degrades the performance of each SWS model.

Finally, using bichar embeddings turns out
very helpful for MWS, and leads to 0.97 ∼
1.18% F-score improvement on dev data and
0.62 ∼ 0.85% on test data, which is consistent
with the SWS results in Pei et al. (2014).

6 Related Work

As far as we know, this is the first work that
formally proposes and addresses the problem
of Chinese MWS under the data-driven ma-
chine learning framework. It is true that
the industrial community, driven by practical
demand, has long been interested in retriev-
ing words of different granularities from the
engineering perspective, based on lexicon dic-
tionaries and heuristic rules (Zhu and Li, 2008;
Hou et al., 2010). We also discover two pub-
licly released toolkits, i.e., IKAnalyzer10 and
PoolWord11, which consider all substrings in
a sentence and return those above a threshold
probability as candidate words. In contrast,
this paper defines MWS as a strict hierarchy
structure, and propose a supervised learning
framework for the problem.

To alleviate the high OOV-ratio issue of
character-based sequence labeling, Zhang
et al. (2006) and Zhao and Kit (2007)
propose subword-based sequence labeling
for word segmentation by extracting high-
frequency subword and treating them as the
basic labeling units. Li (2011) and Li and
Zhou (2012) propose to jointly parse the

10https://github.com/medcl/elasticsearch-analysis-ik
11http://pullword.com/

internal structures of words and syntactic
structure of a sentence. Their definition of
internal structures mainly considers prefix or
suffix information. They manually annotate
the internal structures of words that have
high-frequency prefixes or suffixes and left
other words with flat structures in CTB.
Zhang et al. (2013) further annotate internal
structures of all words in CTB and then
perform character-level parsing with WS
labels. Cheng et al. (2015) propose to cope
with the multiple WS standard problem based
on internal word structures. After close study
of the above works, we find that the MWS
annotations automatically built in this work
actually capture a lot of subwords and word
internal structures in previous works. Most
importantly, the main focus of previous works
is to improve SWS or parsing performance,
whereas this work aims to build a hierarchy
structure of multi-grained words. We leave
the integration of MWS and parsing for future
work.

It has been a long debate whether there
exists an optimal WS granularity for MT,
which is further complicated by the inevitable
mistakes contained in 1-best WS outputs.
Dyer et al. (2008) propose an MT model based
on source-language word lattices, obtained by
merging the outputs of different segmenters.
Xiao et al. (2010) propose joint SWS and MT
based on word lattices. Recently, Su et al.
(2017) propose a word lattice-based neural
MT model. They train many segmenters
on MSR/PPD/CTB, and merge the outputs
to produce word lattices for source-language
sentences, which is similar to our SWS ag-
gregation approach. All above works show
the usefulness of word lattices instead of a
single SWS output. In help IR, Liu et al.
(2008) propose a ranking based WS approach
for producing words of different granularities.
We believe this work can further help both
IR and MT by supplying with more accurate
MWS results.

7 Conclusion

This work proposes and addresses the prob-
lem of MWS, so that all words of different
granularities can be captured in a hierarchy
structure given a sentence. We can draw the
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following interesting findings.
(1) Our annotation conversion approach can

gather high-quality pseudo MWS training/dev
datasets, and hence it is feasible to use them
for model training and tuning.

(2) Manual MWS data annotation tells us
that about 28.4% words are multi-grained, and
among them 94.4% are two-grained words.

(3) The parsing and sequence labeling
approaches achieve very similar performance,
and outperform the SWS aggregation
approach by a large margin.

We believe there are many exploration di-
rections for this new task, among which we
are particularly interested in three in the
near future: 1) improving our benchmark
approaches by considering task-specific fea-
tures and neural network architectures, 2)
verifying the usefulness of MWS to high-
level applications such as MT, 3) integrating
MWS with syntactic parsing in some way by
exploiting existing treebanks.
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Appendix A: Collected Annotation
Inconsistencies

In MSR

(1) “一日 (one day)” is annotated as “一日 (one day)” or “一
(one)/日 (day)”.

(2) “过多 (too much)” is annotated as “过多 (too much)” or “过
(too)/多 (much)”.

(3) “这个 (this one)” and “这项 (this item)” have the same stucture
of “这 (this)” + #, however they are annotated as “这个 (this
one)” and “这 (this)/项 (item)” respectively.

(4) “无异于 (the same to)” and “归功于 (owe to)” have the same
stucture of # + “于 (to)”, however they are annotated as “无
异 (the same)/于 (to)” and “归功于 (owe to)” respectively.

(5) “核武器 (nuclear weapon)” and “核技术 (nuclear technology)”
have the same stucture of “核 (nuclear)” + #, however they are
annotated as “核武器 (nuclear weapon)” and “核 (nuclear)/技
术 (technology)” respectively.

(6) “下一步 (the next step)” and “下一场 (the next game)” have
the same stucture of “下一 (the next)” + #, however they
are annotated as “下一步 (the next step)” and “下 (next)/一
(one)/场 (game)” respectively.

(7) “副主任 (deputy director)” and “副总统 (vice-president)” have
the same stucture of “副 (vice)” + #, however they are
annotated as “副 (deputy)/主任 (director)” and “副总统 (vice-
president)” respectively.

(8) “工作者 (worker)” and “创始者 (creator)” have the same
stucture of # + “者 (-er/or)”, however they are annotated
as “工作者 (worker)” and “创始 (create)/者 (-or)” respectively.

(9) “跨世纪 (cross century)” and “跨国界 (cross border)” have the
same stucture of “跨” + # (cross + #), however they are
annotated as “跨世纪 (cross century)” and “跨 (cross)/国界
(border)”

In PPD

(1) “部长级 (ministerial level)” is annotated as “部长级 (ministerial
level)” or “部长 (ministerial)/级 (level)”.

(2) “一日 (one day)” is annotated as “一日 (one day)” or “一
(one)/日 (day)”.

(3) “过多 (too much)” is annotated as “过多 (too much)” or “过
(too)/多 (much)”.

(4) “最大 (biggest)” is annotated as “最大 (biggest)” or “最
(most)/大 (big)”.

(5) “还有 (and also)” is annotated as “还有 (and also)” or “还
(also)/有 (have)”.

(6) “重奖 (reward greatly)” is annotated as “重奖 (reward)” or “重
(reward)/奖 (greatly)”.

(7) “借助于 (by means of)” and “归功于 (owe to)” have the same
stucture of # + “于 (to)”, however they are annotated as “借
助于 (by means of)” and “归功 (owe)/于 (to)” respectively.

(8) “南斯拉夫联盟 (Yugoslavia Union)” and “南联盟 (Yugoslavia
Union)” have the same stucture of # + “联盟 (Union)”,
however they are annotated as “南斯拉夫/联盟 (Yugoslavia
Union)” and “南联盟 (Yugoslavia Union)” respectively.
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category Chinese example CTB PPD MSR
时间词 上午十一时 (11 a.m.) 上午/十一时 上午/十一时 上午十一时
(temporal word) 今年下半年 (the second half of this

year)
今年/下半年 今年/下半年 今年下半年

80 年代中期 (the mid-1980s) 80 年代/中期 80/年代/中期 80 年代中期
2000 年 1 月 1 日 (January 1, 2000) 2000 年/1 月/1 日 2000 年/1 月/1 日 2000 年 1 月 1 日

数量词 一个 (one) 一/个 一个 一个
(quantifier) 33 亿元 (3.3 billion yuan) 33 亿/元 33 亿/元 33 亿元

八十二年 (eighty-two years) 八十二/年 八十二/年 八十二年
十多个 (more than ten) 十多/个 十/多/个 十多个

团体、机构、组织 欧洲联盟 (European Union) 欧洲/联盟 欧洲/联盟 欧洲联盟
(orgnization) 乒乓球队 (table tennis team) 乒乓球队 乒乓球队 乒乓球/队

中共中央 (the Central Committee of
the Communist Party of China)

中共/中央 中共中央 中共中央

人事部门 (personnel department) 人事/部门 人事部门 人事/部门

地名 森林公园 (forest park) 森林/公园 森林/公园 森林公园
(placename) 塞尔维亚共和国 (The Republic of

Serbia)
塞尔维亚/共和国 塞尔维亚/共和国 塞尔维亚共和国

中华人民共和国 (The People’s Repub-
lic of China)

中华/人民/共和国 中华人民共和国 中华人民共和国

代词 + 名词 各国 (each country) 各/国 各国 各国
(pronoun + noun) 每人 (everyone) 每/人 每人 每人

各单位 (each unit) 各/单位 各/单位 各单位

专名 + 名词 东方人 (oriental) 东方人 东方/人 东方/人
(proper noun + noun) 诺贝尔奖 (Nobel Prize) 诺贝尔奖 or 诺贝

尔/奖
诺贝尔奖 诺贝尔/奖

令人 + # 令人满意 (satisfactory) 令 人 满 意 or
令/人/满意

令人满意 令人/满意

(make sb. + #) 令人感动 (touching) 令/人/感动 令人感动 令人/感动
令人瞩目 (eye-catching) 令/人/瞩目 令人瞩目 令人/瞩目

# + 于 有利于 (beneficial to) 有利/于 or 有利于 有利/于 or 有利于 有利于
(# + to/for) 用于 (use for) 用于 or 用/于 用于 用于

囿于 (confined to) 囿于 囿于 or 囿/于 囿/于

# + 率 使用率 (utilization rate) 使用率 使用率 使用/率
(# + rate) 通胀率 (inflation rate) 通胀率 通胀率 通/胀/率

通货膨胀率 (inflation rate) 通货膨胀率 通货膨胀率 通货膨胀/率
市场占有率 (market share) 市场/占有率 市场占有率 市场占有/率

# + 出 看出 (find out) 看出 看/出 看/出
(# + out) 走出 (go out) 走出 走/出 走出

拨出 (dial out) 拨出 拨/出 拨/出

跨 + # 跨世纪 (cross-century) 跨世纪 or 跨/世纪 跨/世纪 跨世纪
(cross + #) 跨年度 (go beyond the year) 跨/年度 跨年度 跨年度

跨国界 (cross border) 跨国界 跨/国界 跨/国界

# + 污染 水污染 (water pollution) 水污染 or 水/污染 水污染 水污染 or 水/污染
(# + pollution) 环境污染 (environmental pollution) 环境/污染 环境/污染 环境污染

# + 工业 轻工业 (light industry) 轻工业 or 轻/工业 轻工业 轻工业
(# + industry) 重工业 (heavy industry) 重工业 or 重/工业 重工业 重工业

化学工业 (chemical industry) 化学/工业 化学工业 化学工业 or 化学/工
业

全 + # 全市 (whole city) 全/市 全市 全/市 or 全市
(whole + #) 全天 (whole day) 全/天 or 全天 全天 全/天

全省 (whole province) 全/省 全省 全省

# + 法 组织法 (constitutive law) 组织/法 组织/法 组织法
(# + law) 刑事诉讼法 (criminal procedure law) 刑事/诉讼法 刑事诉讼法 刑事/诉讼法 or 刑事

诉讼/法
土地管理法 (land administration law) 土地/管理法 土地管理法 土地/管理/法

# + 后接成分 演唱者 (singer) 演唱者 演唱者 演唱/者
(# + subsequent 金融家 (financier) 金融家 金融家 金融/家
component) 投资商 (investor) 投资商 投资商 投资/商

丰富性 (richness) 丰富性 丰富性 丰富/性
商业化 (commercialization) 商业化 商业化 商业/化
知识型 (knowledge-based) 知识型 知识型 知识/型

Table 7: An incomplete collection of annotation heterogeneity.
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(9) “中共中央 (The CPC Central Committee)” and “越共中央
(Vietnamese Communist Party)” have the same stucture
of # + “共中央 (the central government)”, however they
are annotated as “中共中央 (The CPC Central Committee)”
and “越共 (Vietnamese Communist Party)/中央 (central)”
respectively.

(10) “下一步 (the next step)” and “下一场 (the next game)” have
the same stucture of “下一 (the next)” + #, however they
are annotated as “下一步 (the next step)” and “下 (next)/一
(one)/场 (game)” respectively.

(11) “跨年度 (go beyond the year)” and “跨国界 (cross border)” have
the same stucture of “跨” + # (cross + #), however they are
annotated as “跨 (go beyond)/年度 (year)” and “跨国界 (cross
border)” respectively.

In CTB

(1) “重量级 (heavyweight)” is annotated as “重量级 (heavyweight)”
or “重量 (heavy)/级 (weight)”.

(2) “一日 (one day)” is annotated as “一日 (one day)” or “一
(one)/日 (day)”.

(3) “再就业 (re-employment)” is annotated as “再就业 (re-
employment)” or “再 (once again)/就业 (employment)”.

(4) “野牛 (wild cow)” is annotated as “野牛 (wild cow)” or “野
(wild)/牛 (cow)”.

(5) “最大 (biggest)” is annotated as “最大 (biggest)” or “最
(most)/大 (big)”.

(6) “还有 (and also)” is annotated as “还有 (and also)” or “还
(also)/有 (have)”.

(7) “下一步 (the next step)” is annotated as “下一步 (the next step)”
or “下 (next)/一 (one)/步 (step)”.

(8) “副总统 (vice-president)” is annotated as “副总统 (vice-
president)” or “副 (vice)/总统 (president)”.

(9) “变得 (change into)” is annotated as “变得 (change into)” or
“变 (change) 得 (into)”.

(10) “有利于 (beneficial to)” and “归功于 (owe to)” have the same
stucture of # + “于 (to)”, however they are annotated as “有
利于 (beneficial to)” and “归功 (owe)/于 (to)” respectively.

(11) “跨年度 (go beyond the year)” and “跨国界 (cross border)” have
the same stucture of “跨” + # (cross + #), however they are
annotated as “跨 (go beyond)/年度 (year)” and “跨国界 (cross
border)” respectively.

Appendix B: See Table 7
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Abstract

This paper presents a model for Arabic
morphological disambiguation based on
Recurrent Neural Networks (RNN). We
train Long Short-Term Memory (LSTM)
cells in several configurations and embed-
ding levels to model the various morpho-
logical features. Our experiments show
that these models outperform state-of-the-
art systems without explicit use of feature
engineering. However, adding learning
features from a morphological analyzer to
model the space of possible analyses pro-
vides additional improvement. We make
use of the resulting morphological mod-
els for scoring and ranking the analyses
of the morphological analyzer for morpho-
logical disambiguation. The results show
significant gains in accuracy across sev-
eral evaluation metrics. Our system re-
sults in 4.4% absolute increase over the
state-of-the-art in full morphological anal-
ysis accuracy (30.6% relative error reduc-
tion), and 10.6% (31.5% relative error re-
duction) for out-of-vocabulary words.

1 Introduction

Recurrent Neural Networks (RNN) in general, and
Long Short-Term Memory (LSTM) cells in par-
ticular, have been proven very successful for vari-
ous Natural Language Processing (NLP) tasks, es-
pecially those involving sequential data tagging.
RNN models can produce near or above state-
of-the-art performance with minimal language-
specific feature engineering. These models have
the capacity of capturing syntactic and seman-
tic features through the lexical word-level embed-
dings, and subword features through character-
level embeddings.

Morphologically rich languages pose many
challenges to NLP through their high degree of
ambiguity and sparsity. These challenges are ex-
acerbated for languages with limited resources.
Morphological analyzers help reduce sparsity by
providing several out-of-context morpheme-based
analyses for words, but they usually introduce am-
biguity by returning multiple analyses for the same
surface form. Therefore, the model would require
a further step of morphological disambiguation to
choose the correct analysis in context.

Morphological modeling involves heavy use
of sequential tagging, so using an LSTM-based
model would be highly advantageous. LSTM
models are also optimal for long-sequence tagging
in particular, so such systems should be able to
outperform other deep learning models with fixed
window-based modeling. Morphological disam-
biguation is a well studied problem in the litera-
ture, but LSTM-based contributions are still rela-
tively scarce. In this paper we use Bidirectional-
LSTM (Bi-LSTM) models for morphological tag-
ging and language modeling, and use the results of
these models in ranking the analyses of the mor-
phological analyzer. We incorporate various sub-
word and morphological features at different lin-
guistic depths in the tagger, along with both word-
based and character-based embeddings.

Our results show significant accuracy gains
for all the morphological features we study, and
across several evaluation metrics. We compare
our system against a strong baseline and a state-
of-the-art-system. We achieve 4.4% absolute over
the state-of-the-art in full morphological analysis
accuracy (30.6% relative error reduction). When
evaluated for the out-of-vocabulary (OOV) words
alone, the system achieves 10.6% absolute in-
crease (31.5% relative error reduction), and shows
significant performance boost across all evaluation
metrics.
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2 Linguistic Issues

What distinguishes morphologically rich lan-
guages (MRL), like Arabic, from other languages
is that their words include more morphemes (such
as prefixes and suffixes) representing a number of
morphological features, e.g., gender, number, per-
son, mood, as well as attachable clitics. Table 1
shows the set of 16 Arabic morphological features
we model As a result, MRLs tend to have more
fully inflected words (types) than their poor coun-
terparts. For instance when comparing Modern
Standard Arabic (an MRL) with English (not an
MRL), the total number of Arabic words in a large
corpus is 20% less than the English parallel ver-
sion of the corpus; however the the total number
of unique Arabic types is twice that of English
(El Kholy and Habash, 2010).

Feature Definition
diac Diacratization
lex Lemma
pos Basic part-of-speech tags (34 tags)
gen Gender
num Number
cas Case
stt State
per Person
asp Aspect
mod Mood
vox Voice
prc0 Proclitic 0, article proclitic
prc1 Proclitic 1, preposition proclitic
prc2 Proclitic 2, conjunction proclitic
prc3 Proclitic 3, question proclitic
enc0 Enclitic

Table 1: The morphological features we use in the
various models. The first two groups are lexical
features; and the last two groups are inflectional
and clitic features respectively, in addition to the
part-of-speech tag.

Furthermore, MRLs have a tendency towards a
higher degree of ambiguity, stemming from dif-
ferent interpretations of the same surface mor-
phemes. In Modern Standard Arabic (MSA),
this ambiguity is exacerbated by the language’s
diacritzation-optional orthography-leading a word
to have about 12 analyses per word on average
(Habash, 2010). These two issues, form rich-

ness and form ambiguity, are at the heart of why
MRLs are challenging to NLP. Richness of form
increases model sparsity, and ambiguity makes
disambiguation harder. Table 2 shows an exam-
ple of the various in-context and out-of-context
morphological analyses of the word Aî �DÒJ
�̄ qymtha1

(‘its value’ among other readings).
A potential solution is to build a morphological

analyzer, also known as morphological dictionary,
that encodes all the word inflections in the lan-
guage. A good morphological dictionary should
cover all the inflected forms of a word lemma
(richness); and return all the possible analyses of
a surface word (ambiguity). Finally, both rich-
ness and ambiguity are more challenging when an
MRL has limited data, and when the data is noisy.

3 Background and Related Work

Deep learning models have recently emerged as a
viable approach for several morphological model-
ing tasks in general. Neural approaches are par-
ticularly appealing due to their generic modeling
capabilities that can be scaled to multiple tasks,
and for less reliance on specific feature engineer-
ing. Notable contributions include the work of
Collobert et al. (2011), where they present a learn-
ing model that is applicable to several NLP tasks,
like chunking, named entity recognition, and part-
of-speech (POS) tagging, by deliberately avoid-
ing task-specific feature engineering. They use
a window-based deep neural network. The fixed
window size, however, limits access to further
parts of the sentence that might be relevant to the
target word. Moreover, the analysis is applied on
the surface word level only, without considering
any subword features. Several other contributions
utilize somewhat similar approaches, with vari-
ous neural architectures (Wang et al., 2015; Huang
et al., 2015). Dos Santos and Zadrozny (2014),
on the other hand, argue that subword information
is useful for certain NLP tasks, like POS tagging.
They propose a character-based embedding along
with the word embeddings, to be able to capture
internal morphemic structures. Character embed-
dings, capturing subword features, are well stud-
ied in other contributions too (Labeau et al., 2015;
Rei et al., 2016; Belinkov and Glass, 2015).

Morphological disambiguation, however, has

1 All Arabic transliterations are provided in the Habash-
Soudi-Buckwalter transliteration scheme (Habash et al.,
2007).
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.PBðX 	àñJ
ÊÓ 25 H. PY�®�K Aî �DÒJ
�̄ 	à@ B@ A 	̄ðQªÓ ��
Ë �ékñ
�
ÊË @ Õæ�P t�'
PA�K 	à@ úÍ@ �é 	®J
j�Ë@ �HPA ��@ð

wAšArt AlSHyfh̄ Alý An tAryx rsm AllwHh̄ lys mErwfA AlA An qymthA tqdr b 25 mlywn dwlAr .
The newspaper pointed out that the date of the painting is unknown, but its value is estimated at 25 million dollars.
diac lex gloss pos prc3 prc2 prc1 prc0 per asp vox mod gen num stt cas enc0
qay∼amatohA qay∼am evaluate;assess verb 0 0 0 0 3 p a i f s na na 3fs:dobj
qay∼amotahA qay∼am evaluate;assess verb 0 0 0 0 2 p a i m s na na 3fs:dobj
qay∼amotihA qay∼am evaluate;assess verb 0 0 0 0 2 p a i f s na na 3fs:dobj
qay∼amotuhA qay∼am evaluate;assess verb 0 0 0 0 1 p a i m s na na 3fs:dobj
qay∼imatahA qay∼im caretaker noun 0 0 0 0 na na na na f s c a 3fs:poss
qay∼imatihA qay∼im caretaker noun 0 0 0 0 na na na na f s c g 3fs:poss
qay∼imatuhA qay∼im caretaker noun 0 0 0 0 na na na na f s c n 3fs:poss
qiymatahA qiymah̄ value;worth noun 0 0 0 0 na na na na f s c a 3fs:poss
qiymatihA qiymah̄ value;worth noun 0 0 0 0 na na na na f s c g 3fs:poss
qiymatuhA qiymah̄ value;worth noun 0 0 0 0 na na na na f s c n 3fs:poss
qymthA qymthA NOAN noun_prop 0 0 0 0 na na na na m s i u 0

Table 2: An example highlighting Arabic’s rich morphology and ambiguous orthography. The word
Aî �DÒJ
�̄ qiymatahA ‘its value’ has a specific analysis in the context of the sentence shown at the top of the
table; but it has many other analyses and diacritizations out of context. The correct analysis is bolded
(4th from the bottom of the list).

relatively fewer deep learning contributions.
Yildiz et al. (2016) presented a disambiguation
model for Turkish based on Convolutional Neural
Networks (CNN). Their model creates a represen-
tation for the surface form of a word from the root
along with a set of morphemic features. Then they
train a model to predict the optimal analysis of a
word given the annotations within a context win-
dow. Shen et al. (2016), on the other hand, use
a character-based Bi-LSTM model for morpho-
logical disambiguation of morphologically com-
plex languages, without using a morphological an-
alyzer. The LSTM cells have the advantage of cap-
turing a longer sequence window than those of the
fixed window and CNN approaches.

Arabic morphological analysis and disambigua-
tion have seen a considerable amount of work,
spanning both MSA (Habash and Rambow, 2005;
Diab et al., 2004; Khalifa et al., 2016; Abdelali
et al., 2016), and Dialectal Arabic (Duh and Kirch-
hoff, 2005; Al-Sabbagh and Girju, 2012; Habash
et al., 2013). The current state-of-the-art system
is MADAMIRA (Pasha et al., 2014); which uses
SVMs to disambiguate among a target word’s var-
ious morphological analyses provided by a mor-
phological dictionary.

Neural-based contributions for Arabic, how-
ever, are also relatively scarce. Among the contri-
butions that utilize morphological structures to en-
hance the neural models in different NLP tasks, we
note Guzmán et al. (2016) for machine translation,
and Abandah et al. (2015) for diacritization. Dar-
wish et al. (2017) use Bi-LSTM models to train a

POS tagger, and compare it against SVM-based
models. The SVM models in their system out-
perform the neural model, even with incorporat-
ing pre-trained embeddings. Heigold et al. (2016)
developed character-based neural models for mor-
phological tagging for 14 different languages, in-
cluding Arabic, using the UD treebank. Most re-
lated to our work though is by Shen et al. (2016),
who applied their Bi-LSTM morphological disam-
biguation model on MSA, but did not present any
improvements over the state-of-the-art.

Occurring in parallel to our work, Inoue et al.
(2017) used multi-task learning to model fine-
grained POS tags, using the individual mor-
phosyntactic features. They also use dictionary in-
formation concatenated to the word embeddings,
similar to the approach we use in this paper, and
use the same dataset. Our approach provides
slightly higher accuracy scores for the individual
features, but the joint features score in their sys-
tem is higher.

In this paper we study various architectures for
neural based morphological tagging. We then use
these architectures, along with neural language
modeling systems, to train models for various Ara-
bic morphological features. We utilize these mod-
els for morphological disambiguation of the opti-
mal analysis for each given word in context.

4 Approach

The morphological disambiguation task involves
choosing the correct morphological analysis from
the set of potential analyses, obtained from the an-
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alyzer. Towards that end, we train several mod-
els for the individual morphological features, and
use their results to score and rank the different
analyses and choose an optimal overall analysis.
These features can be grouped into non-lexical
features, where a tagger is used to obtain the rel-
evant morphological tag, or morphological fea-
ture tagging, and lexical features that need a lan-
guage model (Roth et al., 2008), or neural lan-
guage models. Table 1 shows the set of morpho-
logical features we work with. The lexical fea-
tures are handled with a language model, while the
inflectional, clitic, and part-of-speech features are
handled with a tagger.

We use Bi-LSTM-based taggers for the mor-
phological feature tagging tasks, with various em-
bedding levels and morphological features. We in-
vestigate the different architectures and design op-
tions in detail in Section 5. We then use the best
design to build 14 different taggers, each specific
to an individual feature. We also use LSTM-based
neural language models for the lexical features.
We discuss the neural language models in more
detail in Section 6.

We then use the results for these various models
to score the potential morphological analyses from
the analyzer for each given word. These scores are
used to rank the analyses and return the one with
the highest result. The process of scoring is also
tuned through tuning weights for the used features.
The details of the ranking and disambiguation pro-
cess are provided in Section 6.

Dataset: We use the Penn Arabic Treebank
(PATB parts 1,2 and 3) (Maamouri et al., 2004)
for all the experiments in this paper. We fol-
low the data splits recommend by Diab et al.
(2013) for training, dev, and testing sets. We use
Alif/Ya and Hamza normalization, and we remove
all diacritics. The pre-trained word embeddings
are trained using the LDC’s Gigaword corpus for
MSA (Parker et al., 2011). Table 3 shows the over-
all data sizes.

Dataset Size (words)
Train 503,015
Dev 63,137
Test 63,172

Gigaword corpus 2,154M

Table 3: Dataset statistics

Evaluation: We use accuracy as the evaluation
metric for all experiments reported in the paper.

Baselines: We use the Maximum Likelihood Es-
timation (MLE) baseline, calculated by count-
ing the frequency scores for each given word/tag
out of context, with backoff to the most fre-
quent tag for unknown words. We also use
the MADAMIRA (release-2.1) scores as another
baseline, designated as the state-of-the-art sys-
tem. Unless otherwise specified, MADAMIRA
was configured in the ADD_PROP backoff mode,
which adds a proper noun analysis to all words.
We use this configuration to match the analyzer
format we used in training the deep learning sys-
tem, and to match the models in previous contri-
butions.

5 Neural Morphological Feature Tagging
Architectures

The task of morphological tagging in general re-
lies on the context for accurate analysis. Such
tasks can be modeled as a sequential data tag-
ging problem, with both word and subword em-
beddings. While word embeddings are used to
convey syntactic and semantic features, subword
embeddings convey morphological features.

We present our morphological tagging model
in this section, and use the POS feature as a test
case. We then generalize our findings for all
the other features for the morphological disam-
biguation process in Section 6. The POS tag set
we use is the MADAMIRA tag set presented at
(Pasha et al., 2014), and covered in detail at the
MADAMIRA manual (Pasha et al., 2013), com-
prised of 34 tags.

5.1 Deep Learning Model

Given a sentence consisting of N words
{w1, w2, ..., wN}, every word wi is converted into
a vector

vi = [rwrd; rmorph]

which is composed of the word (or character se-
quence) embedding vector rwrd, and the morpho-
logical features embedding vector rmorph. The
morphological features vector can be constructed
through various constructs, representing morpho-
logical and/or subword units.

We then use two LSTM layers to model the rele-
vant context for both directions of the target word,
where the input is represented by the vn vectors
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mentioned above:

−→c i = g(vi,
−→c i−1)

←−c i = g(vi,
←−c i+1)

We join both sides, apply a non-linearity function,
and softmax to get a probability distribution. We
use two hidden layers of size 800. Each layer is
composed of two LSTM layers for each direction,
and a dropout wrapper with keep probability of
0.8, and peephole connections. We use Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.003, and cross-entropy cost function. We use
Tensorflow as the development environment.

subword and Morphological Features Several
features can be used to represent the rmorph vec-
tors mentioned before. These features are utilized
to convey morphological information that are not
represented at the word-level embeddings. We use
various features with various linguistic depth:

(a) Fixed-width affixes We represent the pre-
fixes and suffixes through a fixed character length
substring from the beginning and the end of every
word. This requires no linguistic information. We
use a subset of three characters on both ends.

(b) Language-specific affixes (lightstemmer)
We use regular expressions to maximally match
affix patterns at the word’s beginning and end.
This requires basic linguistic knowledge of the tar-
get language, but doesn’t require any large-scale
lexical resources or annotated corpora.

(c) Potential POS tags from a morphological
dictionary We use a high coverage morpholog-
ical dictionary to obtain all possible POS tags
of the target word. This requires advanced re-
sources/annotations of the language. We include
the set of potential tags in a vector representation
and concatenate it with the word embedding.

The vector representation of these features is
made up of the sum of the one-hot vectors for each
individual component.

5.2 Word and Character Embeddings

Using character-level embeddings has recently
been proven proficient for various NLP problems.
In this paper we also study the effect of using
word-level vs character-level embeddings on the
overall morphological tagging problem, especially

in light of the various subword and morphologi-
cal features that we utilize. For word-level em-
beddings, we pre-train the word vectors using
Word2Vec (Mikolov et al., 2013) on the Gigaword
corpus mentioned in Section 4 (and Table 3), and
the text of the training dataset. The embedding
dimension for the words is 250. For the character-
level embeddings, we concatenate the word em-
beddings with the sequence of character embed-
dings, initialized with their one-hot representation.

5.3 Results

Model Accuracy
MLE Baseline 92.5
MADAMIRA (no backoff) 95.9
MADAMIRA (with backoff) 97.0

Table 4: Maximum Likelihood Estimation (MLE)
and MADAMIRA baselines for POS tagging.

Model Embedding
Word Char

No Morphology 96.4 96.7
Fixed Character Affixes 96.6 NA
Lightstemmer 96.7 96.8
Morphological Dictionary 97.5 97.5

+ Fixed Character Affixes 97.6 NA
+ Lightstemmer 97.6 97.6

Table 5: Results for word embeddings (Word) and
character-level embeddings (Char) for POS tag-
ging. We don’t provide character-level embed-
dings results for the Fixed Character Affixes ap-
proach, because such features would be redundant
with the character embeddings themselves.

Table 4 shows the baseline scores for the sys-
tems, including the results for MADAMIRA with
and without backoff. Table 5 shows the results for
all systems. The results show clear improvement
for all systems over the baseline and state-of-the-
art without using subword. In fact, our system
with no morphology outperforms MADAMIRA
without using backoff. While our best result
outperforms both MADAMIRA systems. Af-
fixes (fixed length or lightstemmer) in general in-
crease the accuracy across all systems. We no-
tice, however, that the performance doesn’t vary
much between the fixed-width and lightstemmer
affixes. This proves that the Bi-LSTM model
is powerful enough to identify relevant features
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from a character-stream only, without the need for
language-specific affixes. Using the morpholog-
ical dictionary has the largest effect of improve-
ment across all systems (among the three mor-
phology features used): 0.8% over the next best
approach (absolute score difference). We obtain
the highest accuracy scores when incorporating
both the morphological dictionary tags, and af-
fixes, whether for the fixed-width or the lightstem-
mer approaches. This system shows 20.0% er-
ror reduction over MADAMIRA with backoff, and
41% error reduction without backoff.

The character-level embedding system shows a
somewhat similar behavior in terms of relative per-
formance. We do not provide the results for the
Fixed Character Affixes approach here since the
character embeddings would capture these fixed
affixes within the overall embedding vector any-
way. Hence, it will only provide redundant repre-
sentation without any additional information.

We observe that the character-based system,
without any additional features, outperforms the
word-based system. This is expected, since the
system has access to subword features, conveyed
in the characters stream, that are not available for
the word-based system. The same behavior per-
sists with the lightstemmer, but the performance
gap is smaller, since the word-based system is now
provided with similar subword features that the
character stream conveys. These subword features
are somewhat redundant for the character-based
system, so the performance is only slightly better.

Surprisingly, however, both systems perform
exactly the same when using the morphological
dictionary features. This indicates that the mor-
phological features are powerful enough to convey
and exceed the subword features that a character
stream can convey.

5.4 POS Tagging Error Analysis

We analyzed the resulting tag predictions against
the gold tags by transforming the POS tag set
space into four categories: nominals, verbs, par-
ticles, and punctuation, and observed the resulting
error patterns. We noticed that the errors’ distri-
bution across all developed systems is somewhat
similar throughout the four different categories.
Nominals dominate almost 80.0% of all errors,
even though they constitute 61.5% only of the to-
tal tokens. When introducing the morphological
dictionary tags as features, all four categories in-

crease in accuracy (except for the punctuation, be-
ing tagged almost correctly at all systems). Verbs,
however, have the highest accuracy increase, at
1.5%, relative to 1.0% for nominals and 0.8% for
particles. This can be the result of verbs being
the least common category in the dataset at 8.0%
(vs 64.0%, 14.0%, and 12.0% for nominals, par-
ticles, and punctuation, respectively). The nomi-
nals set is also relatively bigger than the other cat-
egories, which makes it internally confusable with
errors within the nominals’ options, like noun_adj
or noun_num/noun_quant, among others.

6 Morphological Disambiguation

In this section we apply the morphological feature
tagging architecture we discussed earlier for POS
tagging to the remaining morphological features.
We use the results of these taggers, along with the
language models for diac and lex, as the input to
the scoring and ranking process.

6.1 Morphological Tagging Models

Section 5 shows that the best performing neural ar-
chitecture for POS tagging, as an example of mor-
phological tagging in general, is using the embed-
dings (either character-based or word-based) with
the relevant morphological tags from the dictio-
nary, along with fixed or lightstemmer affixes. The
performance of both word and character embed-
dings in this architecture was similar, so we opt for
the word embeddings due to the excessive compu-
tational overhead affiliated with training character-
level embeddings.

We apply the same architecture for the 14 mor-
phological, non-lexical, features we study in this
paper. Table 6 shows the results for the differ-
ent taggers, relative to the MLE and MADAMIRA
baselines that we used in the previous section. All
features show significant performance boost.

Notable features though include case and state,
where good tagging requires a relatively wide
analysis window surrounding the target word.
These features have the biggest performance gap
between the baselines and the Bi-LSTM approach
among the various other features. This is mainly
due to the fact that LSTM cells have the capabil-
ity of maintaining a longer sequence memory than
the other approaches, hence capturing more of the
sentence structure when tagging, compared to tra-
ditional window-based approaches.
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System pos cas num gen vox mod stt asp per enc0 prc0 prc1 prc2 prc3

MLE 92.5 80.5 98.3 97.5 97.7 97.4 90.2 97.9 97.9 98.3 97.9 98.5 97.9 99.6
MADAMIRA 97.0 91.1 99.5 99.4 99.1 99.1 97.0 99.3 99.2 99.6 99.6 99.6 99.6 99.9

Bi-LSTM 97.6 94.5 99.6 99.5 99.2 99.4 97.9 99.4 99.4 99.7 99.7 99.8 99.7 99.9
Disambiguated Bi-LSTM 97.9 94.8 99.7 99.7 99.4 99.6 98.3 99.6 99.6 99.8 99.8 99.9 99.7 99.9

Absolute Increase 0.9 3.7 0.2 0.3 0.3 0.5 1.3 0.3 0.4 0.2 0.2 0.3 0.1 0.0
Error Reduction 30.0 42.0 40.0 50.0 33.0 56.0 43.0 43.0 50.0 50.0 50.0 75.0 25.0 0.0

Table 6: Morphological tagging results. The absolute increase and error reduction are of the disam-
biguated Bi-LSTM against MADAMIRA.

6.2 Neural Language Models
In addition to the morphological taggers for the
non-lexical features, we use neural language mod-
els for the lemmatization and diacritization fea-
tures. Lemmas and diacratized forms are lexi-
cal in nature, and cannot be modeled directly us-
ing a classifier. We use an LSTM-based neu-
ral language model (Enarvi and Kurimo, 2016),
with class-based input rather than words. Using
a class-based approach speeds convergence dras-
tically and improves the overall perplexity, espe-
cially for the diac (diacritization) language model,
which has a relatively large type count.

We use the MKCLS tool (Och, 1999), through
GIZA++ (Och and Ney, 2003), to train the word
classes. We use two hidden layers of size 500 and
input layer of size 300, and use Nesterov Momen-
tum as the optimization algorithm.

We encode the testing set in the HTK Standard
Lattice Format (SLF), with a word mesh represen-
tation for the various options of each word.

Table 7 shows the accuracy results of the
language models for lex and diac for both
MADAMIRA (which uses SRILM (Stolcke,
2002) for language modeling), and the LSTM
model we use here. All models are trained on the
same ATB training dataset used in the paper. The
LSTM results outperform MADAMIRA’s vastly,
proving the superiority of neural language models.

Feature lex diac

3-gram model 76.7 68.2

3-gram model disambiguated 96.2 87.7

Our system (LSTM) 89.6 73.5

Our system disambiguated 96.9 91.7

Table 7: The language model accuracy scores for
both MADAMIRA and the LSTM models, for the
lex and diac features.

6.3 Disambiguation

We use a similar morphological disambiguation
approach to the model proposed by Habash and
Rambow (2005) and Roth et al. (2008), where
the resulting morphological features are matched
and scored against the morphological analyzer op-
tions, as a way to rank the different analyses, and
tuned using feature weights. If the analysis and
the predicted morphological tag for a feature of a
given word match, the analysis score for that anal-
ysis is incremented by the weight corresponding
to that feature.

The morphological analysis with the highest
score is chosen as the disambiguated option. Any
tie-breaking after the disambiguation is handled
through random selection among the reduced op-
tions2. For feature weight tuning we use the
approach presented by Roth et al. (2008), us-
ing the Downhill Simplex Method (Nelder and
Mead, 1965). A tuning dataset of almost 2K lines
(∼63K words) is randomly selected from the train-
ing dataset. We retrain all the systems using the
remaining training dataset, to be used in the tun-
ing process. We finally use the resulting optimal
weights in the original systems, trained on the full
training dataset.

6.4 Evaluation

We use the following accuracy metrics to evalu-
ate the disambiguation model, which Pasha et al.
(2014) also use in their evaluation:

• EVALFULL: The percentage of correctly an-
alyzed words across all morphological fea-
tures. This is the strictest possible metric.

• EVALDIAC: The percentage of words where
the chosen analysis has the correct fully dia-
critized form.

2This results in %0.02 variation range only in the EVAL-
FULL end result.
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Evalustion Metric All Words Out-Of-Vocabulary Words
MADAMIRA Our System Error Reduction MADAMIRA Our System Error Reduction

EVALFULL 85.6 90.0 30.6 66.3 76.9 31.5
EVALDIAC 87.7 91.7 32.5 70.2 79.8 32.8
EVALLEX 96.2 96.8 15.8 82.9 87.8 28.7
EVALPOS 97.0 97.9 30.0 89.9 96.0 60.4

EVALATBTOK 99.4 99.6 33.3 94.2 97.8 60.2

Table 8: Accuracy results of the disambiguation system, evaluated using different metrics, for all words
and out-of-vacbulary (OOV) words alone. OOV percentage of all words is 7.9%.

• EVALLEX: The percentage of words where
the chosen analysis has the correct lemma.

• EVALPOS: The percentage of words where
the chosen analysis has the correct part-of-
speech.

• EVALATBTOK: The percentage of words
that have a correct ATB tokenization.3

Deep learning models, through word embed-
dings, provide an advantage in terms of the anal-
ysis of unseen words. So, in addition to calcu-
lating the metrics for all the words in the testing
set, we also calculate these metrics for the out-of-
vocabulary (OOV) words alone.

Table 8 shows the accuracy scores for
MADAMIRA and our system. All evaluation met-
rics indicate the performance boost of our sys-
tem relative to MADAMIRA, with significant rel-
ative error reduction. The same trend stands
for the OOV words, with even higher absolute
and relative error reduction scores, especially
for EVALLEX, EVALPOS, and EVALATBTOK.
This increase in OOV analysis accuracy is the re-
sult of modeling the data on a semantic level, with
the embeddings and neural networks, instead of
pure lexical approach.

6.5 Discussion

We conducted additional data analysis over the test
set comparing the performance of our system to
MADAMIRA.

Comparative Error Patterns When consider-
ing full analyses, we observe that our system still
makes some errors in words where MADAMIRA
is correct. However, the number of times our sys-
tem is correct and MADAMIRA is not is over
twice as the reverse (MADAMIRA is correct and
our system is not). From a manual analysis of

3ATB scheme tokenizes all clitics except the +È@ Al ‘the’
determiner.

a sample of 500 words, we observe the majority
of the instances where MADAMIRA was cor-
rect and our system failed involved the case fea-
tures. This is not surprising since case is one
the features our system still struggles with al-
though we have made major improvements be-
yond MADAMIRA. Shahrour et al. (2015) used
syntax as an additional model to improve the anal-
ysis of case. Our model still improves the accu-
racy beyond theirs, but this highlights the value of
using syntax in future work.

Minority Feature-Value Pairs While we show
a lot of improvements across the board above in
terms of accuracy, we also observe very large im-
provements in the performance on some minority
feature-value pairs. For example, among the val-
ues of the case feature, the nominative (cas:n) and
accusative (cas:a) appear about 7.0% and 11.0%
of all words, respectively, of all the values of
case. We improve the F-1 score from 70.4% in
MADAMIRA to 84.1% in our system for (cas:n);
and we similarly improve the F-1 score from
76.7% in MADAMIRA to 85.5% in our system
for (cas:a). We also observe similar improvement
in the mood feature, with the F-1 score for sub-
junctive mood (occurring 0.55% of all words) in-
creasing from 76.9% in MADAMIRA to 89.5%.

This great increase was not observed across
all features. The F1-score of the passive voice
feature-value pair (vox:p) occurring 0.6% of all
words (and 7.0% of all verbs) only increased from
70.1% in MADAMIRA to 73.4% in our system.
Voice in Arabic is harder to model than mood
and case since some verbal constructions can be
rather ambiguous even for human readers; for ex-
ample, the noun phrase Aî �DËA �®Ó �HQå�� 	� ú


�æË @ �éJ. �KA¾Ë@
AlkAtbh̄ Alty nšrt mqAlthA has two readings ‘the
writer who published her article’ (active voice) or
‘the writer whose article was published’ (passive
voice). Case and mood are more likely to be de-
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terminable from the context using long and short-
distance syntactic clues. In the example above the
case of the noun Aî �DËA �®Ó mqAlthA ‘her article’ is de-
pendent on the voice reading of the verb, which
determines if the noun is the subject or object of
the verb. For another example, the F1-score of
the 2nd person feature-value pair (per:2) occurring
0.05% of all words (and 0.5% of all verbs) only in-
creased from 29.7% in MADAMIRA to 31.7% in
our system. The very low performance in the 2nd
person makes sense, since the corpus we used is a
news corpus where the 2nd person is hardly ever
used. We would expect more training data to help
such feature-value pairs.

7 Conclusion and Future Work

In this paper we presented an LSTM-based mor-
phological disambiguation system for Arabic. The
system significantly outperforms a state-of-the-art
system. Our experiments showed that enriching
the input word embedding with additional mor-
phological features increases the morphological
tagging accuracy drastically, beyond the capabil-
ities of even character-level embeddings. We also
showed that using an LSTM based system pro-
vides a significant performance boost for syntax
based features, which often require wide context
window for accurate tagging.

Future directions include exploring additional
deep learning architectures for morphological
modeling and disambiguation, especially joint and
sequence-to-sequence models. We also intend to
further investigate the role of syntax features in
morphological disambiguation, and explore addi-
tional techniques for more accurate tagging. Fi-
nally, we aim at applying our models to Ara-
bic dialects and other languages. We expect that
character-level embeddings will have a bigger role
in scenarios with noisy input, such as non-standard
spontaneous orthography used in social media.
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Abstract

The generation of complex derived word
forms has been an overlooked problem in
NLP; we fill this gap by applying neu-
ral sequence-to-sequence models to the
task. We overview the theoretical mo-
tivation for a paradigmatic treatment of
derivational morphology, and introduce the
task of derivational paradigm completion
as a parallel to inflectional paradigm com-
pletion. State-of-the-art neural models,
adapted from the inflection task, are able
to learn a range of derivation patterns, and
outperform a non-neural baseline by 16.4%.
However, due to semantic, historical, and
lexical considerations involved in deriva-
tional morphology, future work will be
needed to achieve performance parity with
inflection-generating systems.

1 Introduction

Unlike inflectional morphology, which produces
grammatical variants of the same core lexical item
(e.g., take7→takes), derivational morphology is one
of the key processes by which new lemmata are
created. For example, the English verb corrode can
evolve into the noun corrosion, the adjective corro-
dent, and numerous other complex derived forms
such as anticorrosive. Derivational morphology is
often highly productive, leading to the ready cre-
ation of neologisms such as Rao-Blackwellize and
Rao-Blackwellization, both originating from the
Rao-Blackwell theorem. Despite the prevalence
of productive derivational morphology, however,
there has been little work on its generation. Com-
monly used derivational resources such as Nom-
Bank (Meyers et al., 2004) are still finite. Moreover,
the complex phonological and historical changes
(e.g., the adjectivization corrode7→corrosive) and

affix selection (e.g., choosing between English de-
verbal suffixes -ment and -tion) make generation
of derived forms an interesting and challenging
problem for NLP.

In this work, we show that viewing derivational
morphological processes as paradigmatic may be
fruitful for generation. This means that there are
a number of well-defined form-function pairs as-
sociated with a core word. For example, a typical
English verb may have five forms in its inflectional
paradigm, corresponding to its base (take), past
tense (took), past participle (taken), progressive
(taking) and third-person singular (takes) forms.
These forms are related by a consistent set of re-
lations, such as affixation. Similarly, a verb may
have several slots in its derivational paradigm: The
form take has the agentive nominalization taker,
and the abilitative adjectivization takable. Note
there are also consistent patterns associated with
each derivational slot, e.g., the -er suffix regularly
produces the agentive.

Exploiting this paradigmatic characterization of
derivational morphology allows us to create a sta-
tistical model capable of generating derivationally
complex forms. We apply state-of-the-art models
for inflection generation, which learn mappings
from fixed paradigm slots to derived forms. Em-
pirically, we compare results for two models on
the new task of derivational paradigm completion:
a neural sequence-to-sequence model and a stan-
dard non-neural baseline. Our best neural model
for derivation achieves 71.7% accuracy, beating the
non-neural baseline by 16.4 points. Nevertheless,
we note this is about 25 points lower than the equiv-
alent model on the English inflection task (and even
20 points lower than the model’s performance on
the harder Finnish inflection generation). These re-
sults point to additional complications in derivation
that require more elaborate models or data anno-
tation to overcome. While inflection generation is
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Semantics POS Affix

NEGATION J→J un-, in-, il-, ir-

ORIGIN N→J -an, -ian, -ish, -ese
RELATION N→J -ous, -ious, -eous
DIMINUTIVE N→N -ette

REPEAT V→V re-
PATIENT V→N -ee
RESULT V→N -ment, -ion, -tion, -tion, -al, -ure
AGENT V→N -er, -or, -ant, -ee
POTENTIAL V→J -able,-abil, ible

Table 1: A partial list of derivational transformations in En-
glish with corresponding POS changes and semantic labels.

becoming a solved problem (Cotterell et al., 2017),
derivation generation is still very much open.

2 Derivational Morphology

The generation of derived forms is structurally sim-
ilar to the generation of inflectional variants, but
presents additional challenges for NLP. Here, we
provide linguistic background comparing the two
types of morphological processes.

Inflection and Derivation. Inflectional morphol-
ogy primarily marks semantic features that are nec-
essary for syntax, e.g., gender, tense and aspect.
Thus, it follows that in most languages inflection
never changes the part of speech of the word and
often does not change its basic meaning. The set of
inflectional forms for a given lexeme is said to form
a paradigm, e.g., the full paradigm for the verb to
take is 〈take, taking, takes, took, taken〉. Each entry
in an inflectional paradigm is termed a slot and is
indexed by a syntacto-semantic category, e.g., the
PAST form of take is took. We may reasonably ex-
pect that all English verbs—including neologisms—
have these five forms.1 Furthermore, there is
typically a fairly regular relationship between a
paradigm slot and its form (e.g., add -s for the third
person singular form). Derivational morphology,
on the other hand, often changes the core part of
speech of a word and makes more radical changes
in meaning. In fact, derivational processes are often
subcategorized by the part-of-speech change they
engender, e.g., corrode7→corrosion is a deverbal
nominalization.

Derivational Paradigms. Much like inflection,
derivational processes may be organized into

1Only a handful of English irregulars distinguish between
the past tense and the past participle, e.g., took and taken, and
thus have five unique forms in their verbal paradigms; most
English verbs have four unique forms.

paradigms, with slots corresponding to more ab-
stract lexico-semantic categories for an associ-
ated part of speech (Corbin, 1987; Booij, 2008;
Štekauer, 2014). Lieber (2004) presents one of
the first theoretical frameworks to enumerate a set
of derivational paradigm slots, motivated by previ-
ous studies of semantic primitives by Wierzbicka
(1988). A partial listing of possible derivational
paradigm slots for base English adjectives, nouns,
and verbs is given in Table 1. The list contains
several productive cases. A key difficulty comes
from the the fact that the mapping between seman-
tics and suffixes is not always clean; Lieber (2004)
points out the category AGENT could be expressed
by the suffix -er (as in runner) or by -ee (as in es-
capee). However, both -er and -ee may have the
PATIENT role; consider burner (“a cheap phone
intended to be disposed of, i.e. burned”) and em-
ployee (“one being employed”), respectively. We
flesh out partial derivational paradigms for several
English verbs in Table 2.

Unlike in inflectional paradigms, where we ex-
pect most cells to be filled for any given base
form, derivational paradigms often contain base-
slot combinations that are not semantically compat-
ible, leading to the gaps in Table 2.2 We also ob-
serve increased paradigm irregularity due to some
derived forms becoming lexicalized at different
points in history, differences in the language from
which the base word entered the target language
(e.g., English roots of Germanic and Latinate ori-
gin behave differently (Bauer, 1983)), as well as
other factors that are not obvious from the charac-
ters in the base word (e.g., gender or number of the
resulting noun).

As an example of how difficult these factors can
make derivation, consider the wide variety of poten-
tial nominalizations corresponding to the RESULT

of a verb, e.g., -ion, -al and -ment, (Jackendoff,
1975). While any particular English verb will al-
most exclusively employ exactly one of these suf-
fixes (e.g., we have refuse 7→refusal and other can-
didates ∗refusion and ∗refusement are illicit),3 the
information required to choose the correct suffix
may be both arbitrary or not easily available.

2For instance, if suffix -ee marks a PATIENT it is seman-
tically not compatible with intransitive verbs, i.e., ∗sneezee
cannot be derived from intransitive sneeze.

3Note some forms appear to have multiple nominalizations,
e.g., deport7→{deportation,deportment}, but closer inspection
shows there is one regular semantic transformation per word
sense: deportation is eviction, but deportment is behavior.
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Base -er/-or -ee -ment/-tion -able/-ible
POS V 7→N V7→N V7→N V7→J
Semantic AGENT PATIENT RESULT POTENTIAL

animate animator — animation animatable
attract attractor attractee attraction attractable
— aggressor aggressee aggression —
employ employer employee employment employable
place placer — placement placeable
repel repeller repelee repellence repellable
escape escapee — — escapable
corrode corroder — corrosion corrosible
derive deriver derivee derivation derivable

Table 2: Partial derivational paradigm for several English verbs; semantic gaps are indicated with —.

Productivity. There is a general agreement in
linguistics that frequently used complex words be-
come part of the lexicon as wholes, while most oth-
ers are likely to be constructed from constituents
(Bauer, 2001; Aronoff and Lindsay, 2014); the lat-
ter ones typically follow derivational patterns, or
rules, such as adding -able to express potential or
ability or applying -ly to convert adjectives into
adverbs. These patterns typically present two es-
sential properties: productivity and restrictedness.
Productivity relates to the ability of a pattern to
be applied to any novel base form to create a new
word, potentially on-the-fly. One example of such
a productive transformation is adding -less (priva-
tive construction), which may attach to almost any
noun to form an adjective. Moreover, the resulting
form’s meaning is compositional and predictable.
Many derivational suffixes in English are of this
type. On the other hand, some patterns are subject
to semantic, pragmatic, morphological or phono-
logical restrictions. Consider the English patient
suffix -ee, which cannot be attached to a base end-
ing in /i(:)/, e.g., it cannot be attached to the verb
free to form freeee. Restrictedness is closely related
to productivity, i.e., highly productive rules are less
restricted. A parsimonious model of derivational
morphology would describe forms using produc-
tive rules when possible, but may store forms with
highly restricted patterns directly as full lexical
items.

A Note On Terminology. We would like to
make a subtle, but important point regarding ter-
minology: the phrase morphologically rich in the
NLP community almost exclusively refers to inflec-
tional, rather than derivational morphology. For
example, English is labeled as morphologically

impoverished, whereas German and Russian are
considered morphologically rich, e.g., see the in-
troduction of Tsarfaty et al. (2010). As regards
derivation, English is quite complex and even simi-
lar in richness to German or Russian as it contains
productive formations from two substrata: Ger-
manic and Latinate. From this perspective, English
is very much a morphologically rich language. In-
deed, a corpus study on the Brown Corpus showed
that the majority of English words are morphologi-
cally complex when derivation is considered (Light,
1996). Note that there many languages that have
exhibit neither rich inflection, nor rich derivational
morphology, e.g., Chinese, which most commonly
employs compounding for word word formation
(Chung et al., 2014).

3 Task and Models

We discuss our two systems for derivational
paradigm completion and the results they achieve.

3.1 Data

We experiment on English derivational triples ex-
tracted from NomBank (Meyers et al., 2004).4

Each triple consists of a base form, the semantics
of the derivation and a corresponding derived form
e.g., 〈ameliorate, RESULT, amelioration〉. Note
that in this task we do not predict whether a slot ex-
ists, merely what form it would take given the base
and the slot. In terms of current study, we consider
the following derivational types: verb nominaliza-
tion such as RESULT, AGENT and PATIENT, ad-
verbalization and adjective-noun transformations.
We intentionally avoid zero-derivations. We also

4There are few resources annotated for derivation in non-
English languages, making wider experimentation difficult.
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1-best 10-best
baseline seq2seq seq2seq

acc edit acc edit acc

all 55.3% 2.01 71.7% 0.97 84.5%

NOMINAL (J7→N) 23.1% 3.45 35.1% 2.67 70.2%
RESULT (V7→N) 40.0% 2.24 52.9% 1.86 72.6%
AGENT (V7→N) 52.2% 0.94 65.6% 0.78 82.2%
ADVERB (J7→R) 90.0% 0.21 93.3% 0.18 96.5%

Table 3: Results under two metrics (accuracy and Levenshtein
distance) comparing the non-neural baseline from the 201 SIG-
MORPHON shared task and the neural sequence-to-sequence
model (both for 1-best and 10-best output).

exclude overly orthographically distant pairs by fil-
tering out those for which the Levenshtein distance
exceeds half the sum of their lengths, which ap-
pear to be misannotations in NomBank. The final
dataset includes 6,029 derivational samples, which
we split into train (70%), development (15%), and
test (15%).5 We also note that NomBank annota-
tions are often semantically more coarse-grained.

3.2 Evaluation Metrics

We evaluate on 3 metrics: accuracy, average edit
distance, and F1. Accuracy measures how often
system output exactly matches the gold string. Edit
distance, by comparison, measures the Levenshtein
distance between system output and the gold string.
Finally, we calculate affix F1 scores for individual
derivational affixes. E.g., for -ment precision is
the number of words where the model correctly
predicted -ment (out of total predictions) and recall
is the number of words where the model correctly
predicted out of the number of true words.

3.3 Baseline Transducer

We train a simple transducer for each base-to-
paradigm slot mapping in the training set, identical
to the baseline described in Cotterell et al. (2016).
This uses an averaged perceptron classifier to greed-
ily apply an output transformation (substitution,
deletion, or insertion) to each input character given
the surrounding characters and previous decisions.

3.4 RNN Encoder-Decoder

Following Kann and Schütze (2016) on the morpho-
logical inflection task, we use an encoder-decoder
gated recurrent neural network (Bahdanau et al.,
2015). First, an encoder network encodes a se-
quence: the concatenation of the characters of

5The dataset is available at http://github.com/
ryancotterell/derviational-paradigms.

the input word and a tag describing the desired
transformation—both represented by embeddings.
This encoder is bidirectional and consists of two
gated RNNs (Cho et al., 2014), one encoding the in-
put in the forward direction, the other one encoding
in the backward direction. The output of the two
RNNs is the resulting hidden vectors

−→
hi and

←−
hi .

The hidden state is a concatenation of the forward
and backward hidden vectors, i.e., hi = [

−→
hi
←−
hi ].

The decoder also consists of an RNN, but is ad-
ditionally equipped with an attention mechanism.
The latter computes a weight for each of the en-
coder hidden vectors for each character or subtag,
which can be roughly understood as giving a certain
importance to each of the inputs. The probability
of the target sequence y = (y1, . . . , y|y|) given the
input sequence x = (x1, . . . , x|x|) is modeled by

p(y | x1, . . . , x|x|) =
|y|∏

t=1

p(yt | {y1, . . . , yt−1}, ct)

=

|y|∏

t=1

g(yt−1, st, ct), (1)

where g is a multi-layer perceptron, st is the hidden
state of the decoder and ct is the sum of the encoder
states hi, scored by attention weights αi(st−1) that
depend on the decoder state: ct =

∑
i αi(st−1)hi.

Input Encoding. We model this problem as a
character translation problem, with special encod-
ings for the transformation tags that indicate the
type of derivation. For example, we treat the triple:
〈ameliorate, RESULT, amelioration〉 as the source
string a m e l i o r a t e RESULT and target
string a m e l i o r a t i o n. This is similar
to the encoding in Kann and Schütze (2016).

Training. We use the Nematus toolkit (Sennrich
et al., 2017).6 We exactly follow the recipe in Kann
and Schütze (2016), the winning submission on the
2016 SIGMORPHON shared task for inflectional
morphology. Accordingly, we use a character em-
bedding size of 300, 100 hidden units in both the
encoder and decoder, Adadelta (Zeiler, 2012) with
a minibatch size of 20, and a beam size of 12. We
train for 300 epochs and select the test model based
on the performance on the development set.

4 Experimental Results

Table 3 compares the accuracy of our baseline sys-
tem with the accuracy of our sequence-to-sequence

6https://github.com/rsennrich/nematus/
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neural network using the data splits discussed in
§3.1. In all cases, the network outperforms the
baseline. While 1-best performance is not nearly
as high as that expected from a state-of-the-art in-
flectional generation system, the key point is that
performance significantly increases when consider-
ing the 10-best outputs. This suggests that the net-
work is indeed learning the correct set of possible
nominalization patterns. However, the information
needed to correctly choose among these patterns
for a given input is not necessarily available to the
network. In particular, the network is only aware of
important disambiguating historical (e.g., is the in-
put of Latin or Greek origin) and lexical-semantic
(e.g., is the input verb transitive or intransitive) fac-
tors to the extent that they are implicitly encoded
in the input character sequence. We speculate that
making these additional pieces of information di-
rectly available as input features will significantly
improve 1-best accuracy.

Unfortunately, NomBank does not provide the
necessary annotations in most cases. For instance,
there is no way to differentiate actor and actress
without gender. It also does not distinguish the
semantics of some adjective nominalizations, e.g.,
activism and activity. Future work will reannotate
NomBank to make these finer-grained distinctions.

Error Analysis. We observe mistakes on less fre-
quent suffixes, e.g., -age—we predict ∗draination
instead of drainage. Also, there are several cases
where NomBank only lists one available form, e.g.,
complexity, and our model predicts complexness.
We also see mistakes on irregular adverbs, e.g., we
generate advancely from advance, rather than in-
advance, as well as in PATIENT nominalizations,
e.g., the model produces containee in place of
content—this last distinction is unpredictable.

5 Related Work

Previous work in unsupervised morphological seg-
mentation and has implicitly incorporated deriva-
tional morphology. Such systems attempt to seg-
ment words into all constituent morphs, treating
inflectional and derivational affixes as equivalent.
The popular Morfessor tool (Creutz and Lagus,
2007) is one example of such an unsupervised seg-
mentation system, but many others exist, e.g., Poon
et al. (2009), Narasimhan et al. (2015) inter alia.
Supervised segmentation and analysis models in
the literature can also break down derivationally
complex forms into their morphs, provided pre-

affix F1 affix F1 affix F1

-ly 1.0 -ity 0.54 -ence 0.32
-er 0.86 -ment 0.45 -ure 0.22
-ation 0.78 -ist 0.43 -ee 0.20
-or 0.59 -ness 0.40 -age 0.20

Table 4: F1 for various suffix attachments with the sequence-
to-sequence model

segmented and labeled data is available for training
(Ruokolainen et al., 2013; Cotterell et al., 2015;
Cotterell and Schütze, 2017). Our work, however,
builds directly upon recent efforts in the generation
of inflectional morphology (Durrett and DeNero,
2013; Nicolai et al., 2015; Ahlberg et al., 2015;
Rastogi et al., 2016; Faruqui et al., 2016). We dif-
fer in that we focus on derivational morphology. In
another recent line of work, Vylomova et al. (2017)
predict derivationally complex forms using senten-
tial context. Our work differs from their approach
in that we attempt to generate derivational forms di-
vorced from the context, but the underlying neural
sequence-to-sequence architecture is quite similar.

6 Conclusion

We have presented a statistical model for the gen-
eration of derivationally complex forms, a task
that has gone essentially unexplored in the litera-
ture. Viewing derivational morphology as paradig-
matic, where slots refer to semantic categories, e.g.,
corrode+RESULT 7→corrosion, we draw upon re-
cent advances in the generation of inflectional mor-
phology. Applying this method works well, achiev-
ing an overall accuracy of 71.71%, and beating
a non-neural baseline. Performance, however, is
lower than on the task of paradigm completion for
inflectional morphology, indicating that paradigm
completion for derivational morphology is more
challenging than its inflectional counterpart.
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and Pavol Štekauer, editors, The Oxford Handbook
of Derivational Morphology, chapter 34, pages 609–
650. Oxford University Press, Oxford.

Danielle Corbin. 1987. Morphologie Dérivationnelle
et Structuration du Lexique, volume 193. Walter de
Gruyter.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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Abstract

We introduce a novel sub-character ar-
chitecture that exploits a unique com-
positional structure of the Korean lan-
guage. Our method decomposes each
character into a small set of primitive
phonetic units called jamo letters from
which character- and word-level represen-
tations are induced. The jamo letters di-
vulge syntactic and semantic information
that is difficult to access with conventional
character-level units. They greatly alle-
viate the data sparsity problem, reducing
the observation space to 1.6% of the orig-
inal while increasing accuracy in our ex-
periments. We apply our architecture to
dependency parsing and achieve dramatic
improvement over strong lexical baselines.

1 Introduction

Korean is generally recognized as a language iso-
late: that is, it has no apparent genealogical rela-
tionship with other languages (Song, 2006; Camp-
bell and Mixco, 2007). A unique feature of the
language is that each character is composed of a
small, fixed set of basic phonetic units called jamo
letters. Despite the important role jamo plays in
encoding syntactic and semantic information of
words, it has been neglected in existing modern
Korean processing algorithms. In this paper, we
bridge this gap by introducing a novel composi-
tional neural architecture that explicitly leverages
the sub-character information.

Specifically, we perform Unicode decomposi-
tion on each Korean character to recover its un-
derlying jamo letters and construct character- and
word-level representations from these letters. See

산을갔다

갔다

다

∅ㅏㄷ

갔

ㅆㅏㄱ

산을

을

ㄹㅡㅇ

산

ㄴㅏㅅ

Figure 1: Korean sentence “산을갔다” (I went to
the mountain) decomposed to words, characters,
and jamos.

Figure 1 for an illustration of the decomposi-
tion. The decomposition is deterministic; this is
a crucial departure from previous work that uses
language-specific sub-character information such
as radical (a graphical component of a Chinese
character). The radical structure of a Chinese
character does not follow any systematic process,
requiring an incomplete dictionary mapping be-
tween characters and radicals to take advantage of
this information (Sun et al., 2014; Yin et al., 2016).
In contrast, our Unicode decomposition does not
need any supervision and can extract correct jamo
letters for all possible Korean characters.

Our jamo architecture is fully general and can
be plugged in any Korean processing network. For
a concrete demonstration of its utility, in this work
we focus on dependency parsing. McDonald et al.
(2013) note that “Korean emerges as a very clear
outlier” in their cross-lingual parsing experiments
on the universal treebank, implying a need to tai-
lor a model for this language isolate. Because of
the compositional morphology, Korean suffers ex-
treme data sparsity at the word level: 2,703 out of
4,698 word types (> 57%) in the held-out portion
of our treebank are OOV. This makes the language
challenging for simple lexical parsers even when
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augmented with a large set of pre-trained word
representations.

While such data sparsity can also be alleviated
by incorporating more conventional character-
level information, we show that incorporating
jamo is an effective and economical new approach
to combating the sparsity problem for Korean. In
experiments, we decisively improve the LAS of
the lexical BiLSTM parser of Kiperwasser and
Goldberg (2016) from 82.77 to 91.46 while reduc-
ing the size of input space by 98.4% when we re-
place words with jamos. As a point of reference,
a strong feature-rich parser using gold POS tags
obtains 88.61.

To summarize, we make the following contribu-
tions.

• To our knowledge, this is the first work
that leverages jamo in end-to-end neural Ko-
rean processing. To this end, we develop a
novel sub-character architecture based on de-
terministic Unicode decomposition.

• We perform extensive experiments on depen-
dency parsing to verify the utility of the ap-
proach. We show clear performance boost
with a drastically smaller set of parameters.
Our final model outperforms strong baselines
by a large margin.

• We release an implementation of our jamo ar-
chitecture which can be plugged in any Ko-
rean processing network.1

2 Related Work

We make a few additional remarks on related
work to better situate our work. Our work fol-
lows the successful line of work on incorporating
sub-lexical information to neural models. Vari-
ous character-based architectures have been pro-
posed. For instance, Ma and Hovy (2016) and Kim
et al. (2016) use CNNs over characters whereas
Lample et al. (2016) and Ballesteros et al. (2015)
use bidirectional LSTMs (BiLSTMs). Both ap-
proaches have been shown to be profitable; we em-
ploy a BiLSTM-based approach.

Many previous works have also considered
morphemes to augment lexical models (Luong
et al., 2013; Botha and Blunsom, 2014; Cotterell
et al., 2016). Sub-character models are substan-
tially rarer; an extreme case is considered by

1https://github.com/karlstratos/
koreannet

Gillick et al. (2016) who process text as a sequence
of bytes. We believe that such byte-level models
are too general and that there are opportunities to
exploit natural sub-character structure for certain
languages such as Korean and Chinese.

There exists a line of work on exploiting graph-
ical components of Chinese characters called rad-
icals (Sun et al., 2014; Yin et al., 2016). For in-
stance, 足 (foot) is the radical of跑 (run). While
related, our work on Korean is distinguished in
critical ways and should not be thought of as
just an extension to another language. First, as
mentioned earlier, the compositional structure is
fundamentally different between Chinese and Ko-
rean. The mapping between radicals and charac-
ters in Chinese is nondeterministic and can only be
loosely approximated by an incomplete dictionary.
In contrast, the mapping between jamos and Ko-
rean characters is deterministic (Section 3.1), al-
lowing for systematic decomposition of all possi-
ble Korean characters. Second, the previous work
on Chinese radicals was concerned with learn-
ing word embeddings. We develop an end-to-end
compositional model for a downstream task: pars-
ing.

3 Method

3.1 Jamo Structure of the Korean Language
LetW denote the set of word types and C the set
of character types. In many languages, c ∈ C is
the most basic unit that is meaningful. In Korean,
each character is further composed of a small fixed
set of phonetic units called jamo letters J where
|J | = 51. The jamo letters are categorized as head
consonants Jh, vowels Jv, or tail consonants Jt.
The composition is completely systematic. Given
any character c ∈ C, there exist ch ∈ Jh, cv ∈ Jv,
and ct ∈ Jt such that their composition yields c.
Conversely, any ch ∈ Jh, cv ∈ Jv, and ct ∈ Jt
can be composed to yield a valid character c ∈ C.

As an example, consider the word갔다 (went).
It is composed of two characters,갔,다 ∈ C. Each
character is furthermore composed of three jamo
letters as follows:

• 갔 ∈ C is composed of ㄱ ∈ Jh, ㅏ ∈ Jv,
andㅆ ∈ Jt.

• 다 ∈ C is composed of ㄷ ∈ Jh, ㅏ ∈ Jv,
and an empty letter ∅ ∈ Jt.

The tail consonant can be empty; we assume a
special symbol ∅ ∈ Jt to denote an empty letter.

722



Figure 1 illustrates the decomposition of a Korean
sentence down to jamo letters.

Note that the number of possible characters
is combinatorial in the number of jamo letters,
loosely upper bounded by 513 = 132, 651. This
upper bound is loose because certain combina-
tions are invalid. For instance, ㅁ ∈ Jh ∩ Jt but
ㅁ 6∈ Jv whereasㅏ ∈ Jv butㅏ 6∈ Jh ∪ Jt.

The combinatorial nature of Korean characters
motivates the compositional architecture below.
For completeness, we describe the entire forward
pass of the transition-based BiLSTM parser of
Kiperwasser and Goldberg (2016) that we use in
our experiments.

3.2 Jamo Architecture

The parameters associated with the jamo layer are

• Embedding el ∈ Rd for each letter l ∈ J

• UJ , V J ,WJ ∈ Rd×d and bJ ∈ Rd

Given a Korean character c ∈ C, we perform Uni-
code decomposition (Section 3.3) to recover the
underlying jamo letters ch, cv, ct ∈ J . We com-
pose the letters to induce a representation of c as

hc = tanh
(
UJ ech + V J ecv +WJ ect + bJ

)

This representation is then concatenated with a
character-level lookup embedding, and the result
is fed into an LSTM to produce a word representa-
tion. We use an LSTM (Hochreiter and Schmidhu-
ber, 1997) simply as a mapping φ : Rd1 × Rd2 →
Rd2 that takes an input vector x and a state vector
h to output a new state vector h′ = φ(x, h). The
parameters associated with this layer are

• Embedding ec ∈ Rd′ for each c ∈ C

• Forward LSTM φf : Rd+d′ × Rd → Rd

• Backward LSTM φb : Rd+d′ × Rd → Rd

• UC ∈ Rd×2d and bC ∈ Rd

Given a word w ∈ W and its character sequence
c1 . . . cm ∈ C, we compute

f ci = φf
([
hci

eci

]
, f ci−1

)
∀i = 1 . . .m

bci = φb
([
hci

eci

]
, bci+1

)
∀i = m. . . 1

and induce a representation of w as

hw = tanh

(
UC
[
f cm
bc1

]
+ bC

)

Lastly, this representation is concatenated with a
word-level lookup embedding (which can be ini-
tialized with pre-trained word embeddings), and
the result is fed into a BiLSTM network. The pa-
rameters associated with this layer are

• Embedding ew ∈ RdW for each w ∈ W

• Two-layer BiLSTM Φ that maps h1 . . . hn ∈
Rd+dW to z1 . . . zn ∈ Rd∗

• Feedforward for predicting transitions

Given a sentence w1 . . . wn ∈ W , the final d∗-
dimensional word representations are given by

(z1 . . . zn) = Φ

([
hw1

ew1

]
. . .

[
hwn

ewn

])

The parser then uses the feedforward network to
greedily predict transitions based on words that are
active in the system. The model is trained end-to-
end by optimizing a max-margin objective. Since
this part is not a contribution of this paper, we refer
to Kiperwasser and Goldberg (2016) for details.

By setting the embedding dimension of jamos
d, characters d′, or words dW to zero, we can con-
figure the network to use any combination of these
units. We report these experiments in Section 4.

3.3 Unicode Decomposition

Our architecture requires dynamically extracting
jamo letters given any Korean character. This is
achieved by simple Unicode manipulation. For
any Korean character c ∈ C with Unicode value
U(c), let U(c) = U(c) − 44032 and T (c) =
U(c) mod 28. Then the Unicode values U(ch),
U(cv), and U(ct) corresponding to the head con-
sonant, vowel, and tail consonant are obtained by

U(ch) = 1 +

⌊
U(c)

588

⌋
+ 0x10ff

U(cv) = 1 +

⌊
(U(c)− T (c)) mod 588

28

⌋
+ 0x1160

U(ct) = 1 + T (c) + 0x11a7

where ct is set to ∅ if T (ct) = 0.
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Training Development Test
# projective trees 5,425 603 299

# non-projective trees 12 0 0

# # Ko Examples
word 31,060 – 프로그램보다갈비 booz
char 1,772 1,315 최귤흠냥셧캐쪽@正 a
jamo 500 48 ㄱㄳㄼㅏㅠㅢ@正 a

Table 1: Treebank statistics. Upper: Number of
trees in the split. Lower: Number of unit types
in the training portion. For simplicity, we include
non-Korean symbols (e.g., @, 正, a) as charac-
ters/jamos.

3.4 Why Use Jamo Letters?

The most obvious benefit of using jamo letters is
alleviating data sparsity by flattening the combi-
natorial space of Korean characters. We discuss
some additional explicit benefits. First, jamo let-
ters often indicate syntactic properties of words.
For example, a tail consonantㅆ strongly implies
that the word is a past tense verb as in 갔다
(went), 왔다 (came), and 했다 (did). Thus a
jamo-level model can identify unseen verbs more
effectively than word- or character-level models.
Second, jamo letters dictate the sound of a char-
acter. For example, 갔 is pronounced as got be-
cause the head consonantㄱ is associated with the
sound g, the vowelㅏ with o, and the tail conso-
nantㅆ with t. This is clearly critical for speech
recognition/synthesis and indeed has been investi-
gated in the speech community (Lee et al., 1994;
Sakti et al., 2010). While speech processing is not
our focus, the phonetic signals can capture useful
lexical correlation (e.g., for onomatopoeic words).

4 Experiments

Data We use the publicly available Korean tree-
bank in the universal treebank version 2.0 (Mc-
Donald et al., 2013).2 The dataset comes with
a train/development/test split; data statistics are
shown in Table 1. Since the test portion is sig-
nificantly smaller than the dev portion, we report
performance on both.

As expected, we observe severe data sparsity
with words: 24,814 out of 31,060 elements in the
vocabulary appear only once in the training data.
On the dev set, about 57% word types and 3%
character types are OOV. Upon Unicode decom-
position, we obtain the following 48 jamo types:

2https://github.com/ryanmcd/uni-dep-tb

ㄱㄳㄲㄵㄴㄷㄶㄹㄸㄻㄺㄼㅁ
ㅀㅃㅂ ㅅㅄㅇㅆ ㅉ ㅈ ㅋ ㅊ ㅍ ㅌ
ㅏㅎㅑㅐㅓㅒㅕㅔㅗㅖㅙㅘㅛㅚ
ㅝㅜㅟㅞㅡㅠㅣㅢ

none of which is OOV in the dev set.

Implementation and baselines We implement
our jamo architecture using the DyNet library
(Neubig et al., 2017) and plug it into the BiLSTM
parser of Kiperwasser and Goldberg (2016).3 For
Korean syllable manipulation, we use the freely
available toolkit by Joshua Dong.4 We train the
parser for 30 epochs and use the dev portion for
model selection. We compare our approach to the
following baselines:

• McDonald13: A cross-lingual parser origi-
nally reported in McDonald et al. (2013).

• Yara: A beam-search transition-based parser
of Rasooli and Tetreault (2015) based on the
rich non-local features in Zhang and Nivre
(2011). We use beam width 64. We use
5-fold jackknifing on the training portion to
provide POS tag features. We also report on
using gold POS tags.

• K&G16: The basic BiLSTM parser of Kiper-
wasser and Goldberg (2016) without the sub-
lexical architecture introduced in this work.

• Stack LSTM: A greedy transition-based
parser based on stack LSTM representa-
tions. Dyer15 denotes the word-level vari-
ant (Dyer et al., 2015). Ballesteros15 denotes
the character-level variant (Ballesteros et al.,
2015).

For pre-trained word embeddings, we apply the
spectral algorithm of Stratos et al. (2015) on a
2015 Korean Wikipedia dump to induce 285,933
embeddings of dimension 100.

Parsing accuracy Table 2 shows the main re-
sult. The baseline test LAS of the original cross-
lingual parser of McDonald13 is 55.85. Yara
achieves 85.17 with predicted POS tags and 88.61
with gold POS tags. The basic BiLSTM model
of K&G16 obtains 82.77 with pre-trained word
embeddings (78.95 without). The stack LSTM
parser is comparable to K&G16 at the word level

3https://github.com/elikip/bist-parser
4https://github.com/JDongian/

python-jamo
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System Features Feature Representation Emb POS Dev Test
UAS LAS UAS LAS

McDonald13 cross-lingual features large sparse matrix – PRED – – 71.22 55.85
Yara (beam 64) features in Z&N11 large sparse matrix – PRED 76.31 62.83 91.19 85.17

GOLD 79.08 68.85 92.93 88.61
K&G16 word 31060× 100 matrix – – 68.87 48.25 88.61 78.95

298115× 100 matrix YES 76.30 60.88 90.00 82.77
Dyer15 word, transition 31067× 100 matrix – – 69.40 48.46 88.41 78.22

298122× 100 matrix YES 75.99 59.38 90.73 83.89
Ballesteros15 char, transition 1779× 100 matrix – – 84.22 76.41 91.27 86.25

KoreanNet char 1772× 100 matrix – – 84.76 76.95 94.75 90.81
1772× 200 matrix 84.83 77.29 94.55 91.04

jamo 500× 100 matrix – – 84.27 76.07 94.59 90.77
500× 200 matrix 84.68 77.27 94.86 91.46

char, jamo 2272× 100 matrix – – 85.35 78.18 94.79 91.19
2272× 200 matrix 85.74 78.76 94.55 91.31

word, char, jamo 302339× 200 matrix YES – 86.39 79.68 95.17 92.31

Table 2: Main result. Upper: Accuracy with baseline models. Lower: Accuracy with different configu-
rations of our parser network (word-only is identical to K&G16).

(Dyer15), but it performs significantly better at the
character level (Ballesteros15) reaching 86.25 test
LAS.

We observe decisive improvement when we in-
corporate sub-lexical information into the parser
of K&G16. In fact, a strictly sub-lexical parser us-
ing only jamos or characters clearly outperforms
its lexical counterpart despite the fact that the
model is drastically smaller (e.g., 90.77 with 500×
100 jamo embeddings vs 82.77 with 298115×100
word embeddings). Notably, jamos alone achieve
91.46 which is not far behind the best result 92.31
obtained by using word, character, and jamo units
in conjunction. This demonstrates that our compo-
sitional architecture learns to build effective rep-
resentations of Korean characters and words for
parsing from a minuscule set of jamo letters.

5 Discussion of Future Work

We have presented a natural sub-character archi-
tecture to model the unique compositional orthog-
raphy of the Korean language. The architecture in-
duces word-/sentence-level representations from a
small set of phonetic units called jamo letters. This
is enabled by efficient and deterministic Unicode
decomposition of characters.

We have focused on dependency parsing to
demonstrate the utility of our approach as an eco-
nomical and effective way to combat data sparsity.
However, we believe that the true benefit of this ar-
chitecture will be more evident in speech process-
ing as jamo letters are definitions of sound in the
language. Another potentially interesting applica-
tion is informal text on the internet. Ill-formed
words such as ㅎㅎㅎ (shorthand for 하하하, an

onomatopoeic expression of laughter) and ㄴㄴ
(shorthand for노노, a transcription of no no) are
omnipresent in social media. The jamo architec-
ture can be useful in this scenario, for instance by
correlatingㅎㅎㅎ and하하하 which might oth-
erwise be treated as independent.
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Abstract

A recent study by Plank et al. (2016) found
that LSTM-based PoS taggers consider-
ably improve over the current state-of-the-
art when evaluated on the corpora of the
Universal Dependencies project that use a
coarse-grained tagset. We replicate this
study using a fresh collection of 27 cor-
pora of 21 languages that are annotated
with fine-grained tagsets of varying size.
Our replication confirms the result in gen-
eral, and we additionally find that the ad-
vantage of LSTMs is even bigger for larger
tagsets. However, we also find that for
the very large tagsets of morphologically
rich languages, hand-crafted morpholog-
ical lexicons are still necessary to reach
state-of-the-art performance.

1 Introduction

Part-of-Speech (PoS) tagging is an important pro-
cessing step for many NLP applications. When
researchers want to use a PoS tagger, they would
ideally choose an off-the-shelf PoS tagger which
is optimized for a specific language. If a suited
tagger is not available two options remain: a) im-
plementation of your own tagger, which requires
technical knowledge and experience, or b) us-
ing an existing tagger and hope that the resulting
model will be sufficiently accurate. One can as-
sume that many taggers fit more languages than
the one for which they have been constructed orig-
inally. Ideally, researchers should be able to fall
back to a well-evaluated language-independent
tagger if no reference implementation for a lan-
guage is available.

A recent study by Plank et al. (2016) evalu-
ated an LSTM PoS tagger and compared the re-
sults to Conditional Random Fields (CRF) (Laf-

ferty et al., 2001) and Hidden-Markov (HMM)
implementations on corpora of various languages.
Their evaluation concludes that the LSTM tagger
reaches better results than the CRF and HMM tag-
ger. The evaluation corpora were all annotated
with a coarse-grained tagset with 17 tags. Thus,
this LSTM tagger seems to be a well-performing,
language-independent choice for learning models
on coarse-grained tagsets. While for many tasks
a coarse-grained tagset might be sufficient some
tasks require more fine-grained tagsets.

We, thus, consider it worthwhile to explore if
the results are reproducible using corpora with
fine-grained tagsets. We use the LSTM tagger pro-
vided by Plank et al. (2016) and compare the re-
sults likewise to CRF and an off-the-shelf HMM
tagger implementation. We compile a fresh set of
27 corpora of 21 languages which uses the com-
monly used fine-grained tagset of the respective
language. We suggest these corpora as evaluation
set for tasks which require fine-grained PoS tags,
as all corpora are freely available for research pur-
poses. Our intention is to replicate the findings of
Plank et al. (2016), which have been achieved on a
coarse-grained tagset and investigate if they trans-
fer to fine-grained tagsets.

2 PoS Tagger Paradigms

We distinguish two PoS tagger paradigms, which
can be used to implement a tagger: The first one
is Feature Engineering, in which a classifier learns
a mapping from human-defined features to a PoS
tag. Defining good features is often a non-trivial
task, which furthermore requires a lot of experi-
ence. For instance a suffix feature which checks
a word-ending for “ing” is highly discriminative
for English gerunds, but might not provide any
useful information for other languages. The de-
tails of the feature implementation might render a
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Tokens
Group Corpus Id Source (103) # Tags Annotation Reference

G
er

m
an

ic

Danish Copenhagen DTB 255 36 manual (Buch-Kromann and Korzen, 2010)
Dutch Alpino 200 20 manual (Bouma et al., 2000)
English Brown 1,100 180 manual (Nelson Francis and Kuçera, 1964)
German-1 Hamburg DTB 4,800 54 manual (Brants et al., 2004)
German-2 Tiger 880 54 manual (Telljohann et al., 2004)
German-3 Tüba-D/Z 1,500 54 manual (Foth et al., 2014)
Icelandic Mim 1,000 703 auto (Helgadóttir et al., 2012)
Norwegian Norwegian DTB 1,300 19 manual (Solberg et al., 2014)
Swedish-1 Talbanken 96 25 manual (Einarsson, 1976)
Swedish-2 Stockholm-Umea 1,100 153 manual (Ejerhed and Källgren, 1997)

R
om

an
ic

Braz.Portuguese MAC-Morpho 1,000 82 manual (Aluísio et al., 2003)
French-1 Multitag 370 992 manual (Paroubek, 2000)
French-2 Sequoia 200 29 manual (Candito et al., 2014)
Italian Turin Parallel 80 15 auto (Bosco et al., 2012)
Spanish IULA DTB 550 241 manual (Marimon et al., 2014)

Sl
av

ic

Croatian-1 Croatian DTB 200 692 manual (Željko Agić and Ljubešić, 2014)
Croatian-2 Hr500k 500 769 manual (Ljubešić et al., 2016)
Czech Prague DTB 2,000 1,574 manual (Bejček et al., 2013)
Polish Polish National Corpus 1,000 27 manual (Przepiórkowski et al., 2008)
Russian Russian Open Corpus 1,700 22 manual (Bocharov et al., 2013)
Slovak MULTEXT-East 84 956 manual (Erjavec, 2010)
Slovene-1 IJS-ELAN 540 1,181 auto (Erjavec, 2002)
Slovene-2 SSJ 590 1,304 manual (Krek et al., 2013)

O
th

er
s Afrikaans AfriBooms 50 12 manual (Augustinus et al., 2016)

Finnish FinnTreebank 170 1573 manual (Voutilainen, 2011)
Hebrew HaAretz Corpus 11,000 22 auto (Itai and Wintner, 2008)
Hungarian The Szeged Treebank 1,200 1,085 manual (Csendes et al., 2005)

Table 1: Corpora used in our experiments

tagger unsuited for learning models for other lan-
guages or tagsets. We will, thus, experiment with
features and their configurations, and investigate
how well they perform in combination for learn-
ing fine-grained tagsets of various languages. We
implement those experiments using CRF which
are frequently used for PoS tagging (Remus et al.,
2016; Ljubešić et al., 2016).

The second paradigm is Architecture Engineer-
ing, which relies on methods to learn the input
representation by themselves. The challenge lies
in finding an architecture that supports this self-
learning process. Most recent representatives of
this paradigm are neural networks of which we use
the LSTM tagger provided by Plank et al. (2016).

In our experiments, we will focus on how to
provide word- and character-level information to
the classifiers as these two types of information
are most relevant and most frequently used for
training PoS tagger models. Furthermore, we will
evaluate the performance on Out-Of-Vocabulary
(OOV) words to learn if the taggers generalize to
unseen words.

To provide a reference value to a well-known
PoS tagger, we will compare all results to the
HMM-based HunPos (Halácsy et al., 2007) tag-
ger, which is a freely available re-implementation
of the TNT tagger (Brants, 2000). HunPos has
been used before for training models of various
languages and tagsets (Seraji, 2011; Attardi et al.,
2010; Hládek et al., 2012) which is why we con-
sider this tagger to be a suitable baseline.

3 Evaluation Corpora Dataset

Table 1 shows the fine-grained annotated corpora
we collected by screening the literature. We do not
claim that this list is complete, but the provided
corpora are all reasonably easy to access and can
be freely used for research purposes.

Selection To ensure reproducibility, we prefer-
ably selected corpora which are directly available
via the Internet except German-3, Hungarian and
Swedish-2. We intentionally exclude languages
such as Chinese or Japanese, which do not pro-
vide whitespace delimiters to mark word bound-
aries. Tagging those languages requires a morpho-
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Figure 1: Coarse-grained PoS tag distribution of
corpora by language group

logical analysis which is a different task than the
tagging task on which we are focusing here. Most
corpora are manually annotated or were at least
human-verified. There are four exceptions which
we decided to add anyway to increase the number
of languages represented in our setup. The tagset
granularity of the corpora ranges from coarse (12
tags) to morphologically fine (1574 tags) to evalu-
ate all taggers on various stages of granularity.

Language & Corpora Diversity We analyzed
the distribution of PoS tags in the corpora by map-
ping all tags to the 17 coarse-grained PoS tags of
the Universal Dependencies (UD) project (Nivre
et al., 2015) in Figure 1. The mappings to the
UD tagset have been manually created. The partly
large differences between the syntactical classes
help to better understand the challenge in con-
struction a tagger that is suited for all those lan-
guages. For instance, Germanic and Romanic lan-
guages have a lot of determiners while they do not
occur at all in Slavic languages.

Corpus Size & Tagset The corpora have vary-
ing sizes which makes a direct comparison be-
tween corpora difficult. To run our experiments
under fully controlled conditions, we extract a ran-
domized sub-sample of sentences from each cor-
pus, which accounts for 50k tokens, and run all our
experiments with 10fold cross-validation (CV).1

Results reported use the fine-grained tagset of the
respective corpus.

1While randomization prohibits exact reproducibility, it is
no barrier to the more interesting replicability. It is also less
prone to continued overfitting on the known test set.

We deliberately do not use the corpora from the
UD Treebank project in order to provide results on
a fresh dataset. Additionally, UD uses a coarse-
grained tagset for all its corpora. While this gran-
ularity is sufficient for many tasks, linguistic anal-
ysis often requires more fine-grained tagsets, and
it is not clear whether results achieved on coarse-
grained tagsets transfer well to more fine-grained
tagsets. The collected corpora, thus, also represent
an alternative dataset, which we suggest in case
the UD tagset is too coarse-grained.

4 CRF Experiments

We reviewed the recent literature to determine the
most commonly used features for training PoS tag-
gers. As re-occurring features, we found word
ngrams, fixed character sequences focusing on ei-
ther pre-, in-, or suffixes of words and word dis-
tributional knowledge for PoS taggers of various
languages (Brants, 2000; Horsmann and Zesch,
2016; Ljubešić et al., 2016). Word- and character-
ngrams have been used with various parametriza-
tions depending on the language and there is no
agreement which parameters are most advisable.
We will, hence, run a series of parameter-search
experiments over the word- and character-ngram
parametrization to determine a configuration ap-
plicable to all languages. For this, we evaluate all
permutations of the subsequently introduced fea-
ture configurations with 10fold cross-validation.
The objective is to find a configuration that works
well on all corpora, languages, and tagsets.

Word Features We experiment with adding the
1,2,3 words to the right and left of the current
word as lower-cased string features.

Character Features Which character-ngram is
discriminative for a PoS tag strongly depends on
the language. To avoid a language bias, we use a
frequency-based approach in which we select the
N most frequently occurring character-ngrams of
length 1,2,3,4 from the training dataset. We ex-
periment with the following frequency cut-off val-
ues of N ε {250,500,750,1000} to select only
frequent and potentially informative character-
ngrams as features. These N features are boolean
and are set to 1 if the respective character-ngram
occurs in the current word.

Semantic Features We use Brown clustering
(Brown et al., 1992) to create word clusters. The

729



Word Top 750
Lang. Ngrams ±1 Char Ngrams Clusters Best CRF HunPos
Group Corpus Id All OOV All OOV All OOV All OOV All OOV

G
er

m
an

ic
Danish 90.9 53.3 90.3 69.3 89.5 67.6 96.1 82.4 94.9 74.2
Dutch 86.5 66.9 85.0 71.7 88.0 77.7 90.7 83.7 89.9 80.6
English 87.5 45.1 90.3 70.1 89.1 64.0 94.6 80.2 93.8 77.7
German-1 88.5 62.4 90.3 77.7 90.8 73.7 94.6 84.6 94.4 83.7
German-2 87.2 60.3 90.9 77.7 90.8 76.1 95.2 87.1 94.9 85.4
German-3 86.3 58.5 91.7 76.8 91.6 77.6 94.4 85.0 94.4 83.9
Icelandic 67.5 14.2 76.5 45.1 68.3 28.9 80.9 53.6 79.8 51.9
Norwegian 92.4 77.1 91.6 80.6 92.8 82.7 96.1 89.7 95.5 86.5
Swedish-1 91.1 70.6 92.9 82.2 92.3 79.9 96.3 90.3 95.6 85.9
Swedish-2 78.7 29.7 87.2 67.3 81.4 48.8 91.0 74.6 91.4 77.6

R
om

an
ic

B-Portug. 86.9 62.8 87.8 73.6 89.7 76.0 92.8 83.8 93.3 84.2
French-1 81.9 40.1 85.9 66.5 81.6 58.2 89.2 75.7 88.2 71.8
French-2 95.4 67.3 93.8 74.5 91.9 79.3 97.7 88.2 97.4 82.4
Italian 93.3 68.6 91.6 74.8 91.7 75.5 96.4 86.5 95.8 80.8
Spanish 88.5 45.5 94.5 78.2 88.1 58.8 96.4 83.5 96.6 83.6

Sl
av

ic

Croatian-1 69.0 18.6 80.6 56.3 75.2 47.2 84.9 65.4 84.7 66.7
Croatian-2 66.3 15.9 78.5 54.4 73.5 44.8 83.4 63.9 82.6 63.9
Czech 64.1 14.4 79.2 56.0 75.2 39.2 83.1 62.9 81.7 60.9
Polish 82.9 58.1 92.5 86.9 86.5 72.5 95.5 91.5 93.6 85.4
Russian 83.7 53.7 93.0 83.5 88.2 70.9 95.5 87.5 94.6 83.6
Slovak 67.7 14.9 80.5 57.8 65.6 31.9 83.5 63.8 82.9 61.6
Slovene-1 72.6 17.4 83.5 55.6 72.4 39.4 86.4 62.5 82.6 59.6
Slovene-2 65.4 12.1 78.2 50.5 73.0 39.0 83.0 59.4 86.2 59.5

O
th

er

Afrikaans 95.7 75.0 95.3 80.3 95.8 81.9 97.8 89.6 97.3 85.5
Finnish 62.6 10.0 77.1 48.5 67.8 33.8 82.3 56.7 81.3 55.8
Hebrew 82.3 41.7 81.3 60.9 76.3 53.3 90.5 68.5 90.3 60.1
Hungarian 72.7 13.9 86.7 63.3 72.0 31.7 89.9 69.6 89.4 69.5

Table 2: Accuracy of CRF taggers (10fold CV)

unlabelled text is obtained from the Leipzig Cor-
pus Collection (Quasthoff et al., 2006), which pro-
vides large text quantities crawled from the web
for many languages. We use 15 ·106 tokens to cre-
ate the clusters from the same amount of text for
all languages. We provide the cluster ids in sub-
strings of varying length to the classifier (Owoputi
et al., 2013).

Results In Figure 2, we show the results of
our parameter search experiment. The triangles
mark the results of the various feature configu-
rations. The diamond symbol shows the config-
uration which works best over all corpora. We
refer to this best working configuration as Best
CRF subsequently, it uses a word-context win-
dow of 1 word to the left and right and the
750 most frequent character [1..4] grams with
additionally adding word clusters. Especially
for morphologically-rich languages, the spread is

quite large which is caused by the lower number
of character-ngrams in those configurations. For
corpora such as Slovene-1, we see that more accu-
rate configurations exist than Best CRF but more
importantly, the selected configuration is always
among the best working ones.

We show the results of Best CRF and the per-
formance of the individual features for each lan-
guage in Table 2, and compare the results to
HunPos, the highest accuracies are highlighted in
grey. When evaluating the features separately, the
character-ngrams reach the highest accuracy on
OOV words. Especially on the Slavic language
family the character-ngrams perform much better
than using only word-ngrams or clusters. Further-
more, using only character-ngrams is often com-
petitive to using only word-ngrams. Hence, a
rather naïve strategy to achieving a decent per-
formance on almost any language is to just use
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Figure 2: Variance of CRF taggers (10fold CV)

all kinds of character-ngrams. The cluster feature
also performs better than the word-ngrams. Con-
sidering that we had to limit the amount of data for
creating the clusters for comparability, this feature
assumedly has more potential when using larger
data sizes (Derczynski et al., 2015). The combina-
tion of all features in the column Best CRF shows
that the features address quite different informa-
tion and add up well, so unsurprisingly, this con-
figuration reaches the overall best accuracies. The
difference to HunPos is, with often less than one
percent point difference, only small. Off-the-shelf
taggers do, hence, not necessary have a disadvan-
tage over constructing an own tagger. In the re-
mainder of this work, we will use the Best CRF
configuration when discussing CRF tagger results.

5 LSTM Experiments

When using neural networks, the details of how
word and character information is provided greatly
influences the learning success of the network. We
will reproduce network setups which have also
been used in Plank et al. (2016) to ensure compa-
rability to the coarse-grained results to which we
compare our results:

Word In this setup, we train a network on the
word embeddings only and provide them to a bidi-
rectional LSTM. This setup will serve as baseline.

Char The character embeddings of a word are
provided to a bidirectional LSTM. The last state
of the forward and the backward character LSTM
are combined (Ling et al., 2015) and provided to
another bidirectional LSTM layer.

Word-Char This architecture is a combination
of the previous two architectures. The last state of
the character LSTMs is added to the word embed-
ding information before it is provided to the next
LSTM layer.

Word-Char+ The architecture by Plank et al.
(2016) combines word and character level in-
formation and additionally considers the log-
frequency of the next word during training. This
tagger reported state-of-the-art results and we use
the provided reference implementation of this tag-
ger in our setup.

LSTMs have the reputation to require larger
amounts of training data. With the 50k tokens we
use this is barely fulfilled, however, Plank et al.
(2016) find this sensitivity to be less severe and
set a corpus size of 60k tokens as lower bound
for their coarse-grained tagging experiments. We
will come back to this data size issue in Section
7, where we evaluate using all tokens in a corpus
(and arriving at the same conclusions as for our
50k token datasets). Furthermore, in many cases
only smaller dataset sizes are available, sometimes
even less than 50k tokens. It is, thus, important to
know if considering neural network taggers makes
sense at all (on fine-grained tagsets), thus we will
train LSTM models on smaller dataset sizes.

We implement the LSTM taggers in DyNet
(Neubig et al., 2017) and use the hyper-parameter
settings by Plank et al. (2016), i.e. we train 20
epochs using Statistical-Gradient-Descent with a
learning rate of 0.1 and adding Gaussian noise of
0.2 to the embedding layer. We train word embed-
dings on the data we already used for the semantic
feature in the CRF experiments by using fastText
(Bojanowski et al., 2016) . The the character-level
embeddings are trained on-the-fly.

Results In Figure 3, we show the results for
the LSTM architectures. The Word-Char+ tag-
ger performs best followed by Word-Char, which
is not surprising as Word-Char+ is based on this
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Figure 3: Variance of LSTM taggers (10fold CV)

architecture. For the Germanic and Romanic lan-
guages, the accuracy of the various architectures
is similar but for Slavic languages, which use
much more fine-grained tagsets, the differences
are rather large. For instance, the Char archi-
tecture reaches only small improvements over the
Word baseline on Croatian or Czech while on
Spanish, or Hungarian the character architecture
is clearly better than the baseline. Table 3 shows
the detailed results and additionally reports the
accuracy values on OOV with best results high-
lighted in grey. The Char architecture is in many
cases competitive to the HunPos reference system.
This shows that the performance of many off-the-
shelf taggers is rather easy to approximate by re-
lying only on character-level information.

The results by the Char architecture also ex-
plains why the Word-Char architecture performs
so well although the amount of syntactical infor-
mation is quite limited with 50k tokens. A large
part of the necessary information is already ob-
tained by the character model, which requires a lot
less training data than a model on the word level.
Thus, the results of Plank et al. (2016) on coarse-
tagsets are reproducible for fine-grained tagsets

with the Word-Char architecture being the essen-
tial property to achieving high accuracy.

6 Influence of Tagset Size

A researcher who works with morphologically
rich languages will often be interested in addi-
tional morphologic details such as case or gender.
This drastically complicates the task, as a few hun-
dred instead of a few dozen PoS tag distinctions
have to be learned. In this experiment, we will ex-
amine the impact of an increasing number of PoS
tags on the accuracy of the taggers to provide ref-
erence values of how much performance a tagger
seems to loose with an increasing tagset size.

Results In Figure 4, we show a comparison of
the tagging accuracy in relation to the number of
PoS tags. We show the best performing LSTM
tagger Word-Char+, the CRF tagger and HunPos.
Each data point represents the averaged CV result
on one corpus with the respective tagger. We see
a certain clustering of the data points for the small
tagset sizes, which shows that the taggers tend to
perform highly similarly for many languages. This
means that the tagset size has a larger effect on the
accuracy than the language of the corpus.

For each PoS tagger, a regression trendline is
plotted which indicates the average loss in ac-
curacy with an increasing tagset size. For one-
hundred additional PoS tags, Word-Char+ loses
0.35 points in accuracy, while CRF and HunPoS
have a much steeper decay of 0.45 points. Hence,
with growing tagset size the tagger choice be-
comes increasingly more important. Furthermore,
the benefit of more sophisticated tagger architec-
tures becomes only apparent on large PoS tagsets.

7 Comparison with Reference Taggers

In this experiment, we compare our results to ref-
erence taggers from the literature that are tailored
towards certain languages. Our experiments un-
til now were limited to the fixed dataset size that
we set at the beginning for comparability. Espe-
cially for the morphologically fine-grained tagsets
this might have been problematic, as it is doubtful
if all PoS tags of a morphological tagset do even
occur on 50k tokens. Thus, in order to evaluate the
taggers using all available data, we will reproduce
setups reported in the literature and compare the
performance of the taggers to those results.

This experiment limits the number of compar-
isons we can make drastically, as we need to have
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Lang. Word Char Word-Char Word-Char+ HunPos
Group Corpus Id All OOV All OOV All OOV All OOV All OOV

G
er

m
an

ic

Danish 94.9 72.7 95.0 79.1 96.4 82.5 96.9 83.4 94.9 74.2
Dutch 91.1 82.3 90.3 83.6 91.6 85.7 92.5 87.1 89.9 80.6
English 91.9 65.9 92.3 77.4 94.1 79.6 94.9 80.9 93.8 77.7
German-1 93.6 78.3 94.1 84.5 95.6 87.6 96.0 88.3 94.4 83.7
German-2 94.5 82.4 94.6 87.1 96.4 90.1 96.8 91.5 94.4 85.4
German-3 93.8 80.3 94.0 84.9 95.8 88.6 96.4 89.8 94.4 83.9
Icelandic 76.0 34.8 76.5 49.3 81.8 56.2 84.1 60.6 79.8 51.9
Norwegian 95.8 86.2 95.7 88.2 96.6 90.3 96.9 90.3 95.5 86.5
Swedish-1 94.9 81.4 95.3 86.7 96.2 89.0 96.7 89.8 95.6 85.9
Swedish-2 86.5 54.3 88.9 74.3 91.8 78.5 92.5 80.4 91.4 77.6

R
om

an
ic

B-Portug. 93.3 82.4 93.9 87.4 95.0 90.3 95.1 90.8 93.3 84.2
French-1 87.6 67.0 85.8 72.0 88.7 77.4 89.7 78.7 88.2 71.8
French-2 97.5 80.4 97.4 83.4 98.1 87.7 98.3 88.7 97.4 82.4
Italian 96.0 81.3 95.6 84.2 96.5 85.9 97.1 86.9 95.8 80.8
Spanish 93.1 63.3 96.4 85.5 96.9 86.1 97.2 87.0 96.6 83.6

Sl
av

ic

Croatian-1 83.2 55.5 83.8 67.5 88.1 72.8 89.1 75.2 84.7 66.9
Croatian-2 80.3 52.4 81.1 63.8 84.9 69.1 86.8 72.4 82.6 63.9
Czech 79.4 49.1 81.0 62.7 85.8 68.7 87.7 72.4 81.7 60.9
Polish 86.9 73.6 89.2 84.7 95.5 91.2 91.2 88.0 93.6 85.4
Russian 91.3 73.2 94.6 85.8 95.3 86.9 96.0 88.4 94.6 83.6
Slovak 78.7 44.9 80.6 65.0 85.3 69.7 86.6 71.4 82.9 61.6
Slovene-1 81.9 44.5 83.9 61.1 86.0 62.6 87.9 65.7 82.6 59.6
Slovene-2 79.9 47.9 82.0 63.4 85.8 67.4 87.5 70.1 86.2 59.5

O
th

er

Afrikaans 97.3 82.8 97.1 85.8 97.8 88.4 98.0 90.0 97.3 85.5
Finnish 76.7 42.7 78.0 57.6 82.0 58.9 83.6 61.2 81.3 55.8
Hebrew 89.9 60.2 89.2 66.9 92.2 69.7 92.9 72.1 90.3 60.1
Hungarian 84.7 53.3 88.0 73.1 91.2 76.9 92.0 79.0 89.4 69.5

Table 3: Accuracy of LSTM taggers (10fold CV)
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Figure 4: Influence of tagset size on accuracy

the same corpora as used in the literature. We,
thus, reproduce for Czech the setup by Spous-
tová et al. (2009) with training on 106 and eval-
uation on 2 · 105 tokens, for German-2 the setup
by Giesbrecht and Evert (2009) and for Swedish-2
the setup by Östling (2013), which both use 10fold
cross-validation over the full corpus size.

Taggers for Slavic languages often make use of
additional resources such as morphological dictio-
naries, which we intentionally do not include to
avoid human-crafted resources that are not avail-
able for all languages. Thus, we do not expect to
reach state-of-the-art performance, but we want to
quantify the size of the gap.

Results In Table 4, we show a comparison of our
results to the results reported in the literature. On
German-2 and Swedish-2, the Word-Char+ tagger
is able to reach better results than the reported ref-
erence values except for Czech which uses a mor-
phologically fine-grained tagset. Thus, language-
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∆ to reference tagger
Corpus Id # Tags Acc (%) HunPos CRF Word-Char+

Czech 1,574 95.9 -4.7 -3.2 -1.5
German-2 54 97.6 -0.1 -0.2 0.9
Swedish-2 153 96.1 0.0 -0.6 0.1

Table 4: Results of reproducing setups in the literature using the full corpus size

fitted PoS taggers reach better results than neural
networks when training models on corpora with
extremely fine-grained PoS tagsets. However, for
smaller tagsets sizes the need for using language-
fitting is negligible.

8 Conclusion

We replicated a study in which LSTM PoS taggers
are compared to CRF and HMM taggers on cor-
pora with a coarse-grained tagset. Our replication
focused on whether results reported for coarse-
grained tagsets do also hold when training models
on fine-grained tagsets. Therefore, we collected a
large set of 27 evaluation corpora that are anno-
tated with the commonly used fine-grained tagset
of 21 languages. The replication confirmed the su-
perior performance of the LSTM tagger reported
by Plank et al. (2016) also on fine-grained tagsets.
However, we also found that for smaller tagset
sizes the differences between the LSTM, our self-
implemented CRF and the HMM tagger are often
only small. The advantages of the LSTM tagger
over other taggers grow proportionally with the
tagsets size of the corpus. On morphologically
fine tagsets, even the LSTM tagger fails to reach
results reported in the literature when reproducing
those setups.
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Abstract

We introduce the task of book structure la-
beling: segmenting and assigning a fixed
category (such as TABLE OF CONTENTS,
PREFACE, INDEX) to the document struc-
ture of printed books. We manually anno-
tate the page-level structural categories for
a large dataset totaling 294,816 pages in
1,055 books evenly sampled from 1750–
1922, and present empirical results com-
paring the performance of several classes
of models. The best-performing model,
a bidirectional LSTM with rich features,
achieves an overall accuracy of 95.8 and a
class-balanced macro F-score of 71.4.

1 Introduction

The availability of large-scale book corpora (such
as those created by Google Books, the Inter-
net Archive and the HathiTrust) has driven a
flurry of work in cultural analytics over the past
decade, in which the text contained in historical
books has provided the raw material for the analy-
sis of genre (Underwood, 2016), literary charac-
ter (Bamman et al., 2014), geographic attention
(Wilkens, 2013), fame (Michel et al., 2010), and
much more.

Books, however, are not undifferentiated
streams of text in the same way that born-digital
documents like tweets or emails are; they are phys-
ical objects with materiality (Werner, 2012) and
are arranged in a complex structure steeped in a
long design tradition, with the core content of the
work placed between structured frontmatter (such

as a table of contents and introduction) and back-
matter (such as an appendix and index). Not all
of this content is desirable for all analyses; as we
show below, 11% of all pages in books belong to
the peritext (Genette, 1987) that surrounds the core
content, with wide variability from book to book.
For other analyses, such as those addressing ques-
tions in book history (Kirschenbaum and Werner,
2014), isolating this structure in a consistent way
across historical documents can enable research
into how the form of the printed book has, for ex-
ample, changed over time.

While other work has focused on extracting the
idiosyncratic structure inherent in each book, such
as recognizing chapter boundaries in order to au-
tomatically generate a table of contents, or link
a parsed table of contents to positions in a book
(Déjean and Meunier, 2005, 2009; Wu et al., 2013;
Gao et al., 2009), labeling document segments
with a fixed typology has complementary bene-
fits, allowing researchers to identify consistent cat-
egories in all books regardless of the names as-
signed by a specific author or publisher, or popular
at a given time.1

At the same time, book structure labeling
presents real challenges to automatic identifica-
tion. While large-scale digital collections origi-
nate in page scans of the books, the most com-
mon form of access by researchers is through the
output of OCR; raw image files are prohibitively
expensive both in terms of disk space (15.1 mil-
lion books from the HathiTrust consumes 677 ter-

1For example, a section whose function is to outline the
structural regions of a book and list the pages on which they
begin may be known at different points in history as a “table
of contents,” “index,” or several other terms.
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(a) Title page. (b) Preface. (c) Index.

Figure 1: An Account of the War in India, Between the English and French (1761). From the HathiTrust.

abytes of space2) and in the resources required for
computational processing. While people are able
to distinguish the different sections of a book with
ease, the degraded nature of the OCR output (es-
pecially for historical books) blurs the clear mark-
ers that signal the category to human readers—
both in terms of the lexical signals like “Pref-
ace” or “Index” that head a page, and its visual
structure as well. Figure 1 illustrates an exam-
ple of three pages from a single book drawn from
the HathiTrust; figure 2 displays the correspond-
ing OCR output; the degradation introduced by
OCR affects not only the accuracy of character and
word identification, but also the structural layout
as well.

To address these limitations and enable research
that depends on reasoning over fine-grained docu-
ment structure within books, we introduce the task
of labeled segmentation, and make the following
contributions:

• We create an human-annotated gold standard of
294,816 pages in 1,055 printed books drawn
from the HathiTrust Digital Library.

• We approach this problem in the most common
resource-deficient scenario researchers most
frequently encounter: with access only to the
pre-existing output of OCR.

• We compare several different classes of mod-
els, including a fast independent predictor
(a random forest), a simple linear sequence

2https://www.hathitrust.org/
statistics_visualizations

labeling model (CRF), and a sequence la-
beling bidirectional LSTM that can capture
non-linearities in the feature space. All data
and pre-trained models are openly available
to the public at https://github.com/
dbamman/book-segmentation.

2 Data

In order to support the analysis and prediction of
labeled document structure, we present a manu-
ally annotated dataset of 1,055 books, where each
page has been labeled according to one of 10 cat-
egories described in §2.1 below. All books orig-
inate in the HathiTrust Digital Library. In order
to capture historically representative phenomena,
we use the decade-stratified sample of 1,075 books
from Bamman et al. (2017), in which each decade
from 1750-1922 is roughly equally represented.
From this sample of 1,075 apparent books, we
exclude all non-book records (including digitized
newspaper clippings, unbound pamphlets and re-
ports, opera programs, etc.) to yield a total labeled
dataset of 294,816 pages in 1,055 books.

2.1 Categories
While there is no codified form of the standard
categories that are present in print books, modern
book designers generally adhere to a tradition in-
volving a typical sequence of parts (Wilson, 1993;
Lee, 2009). We draw on this tradition to inform
our set of the following ten categories; to contex-
tualize its prevalence, each category is listed with
its description and the fraction of the 1,055 books

738



(a) Title page. (b) Preface. (c) Index.

Figure 2: OCR output for the page scans illustrated in fig. 1.

in our dataset in which it appears (for example,
47.8% of books have an annotated preface).

• TITLE PAGE (93.0%), which lists the title of
the work and (optionally) other information
including the names of the author, translator,
and others involved in its creation. In this cat-
egory we group the primary title page along
with the HALF-TITLE (a page that generally
only presents the title of the work, often pre-
ceding the main title page or first chapter).

• AD CARD (18.1%), which lists other works by
the author or publisher; or, more generally,
any other object that is advertised for sale.

• PUBLISHER (39.9%), which includes the mod-
ern COPYRIGHT page (typically on the
verso side of the title page) and also the
COLOPHON (an imprint often appearing at
the end of a work).

• DEDICATION (17.5%), an inscription by the au-
thor dedicating the work to another.

• PREFACE (47.8%), which includes a FORE-
WORD, PREFACE, and INTRODUCTION.
While modern designers articulate prescrip-
tive distinctions among these categories pri-
marily in their subject matter and authorial
voice,3 we do not find a strong distinction
among these sub-categories evident when la-
beling the text. We therefore follow Genette
(1987) in grouping all together as prefatory

3“A preface is written by the author and is generally about
the writing of the book. A foreword is a comment on the book
and/or the author by another person. An introduction, which
may by the author or another, may contain such matter, but
it’s primarily a preparation for, or explanation of, the content”
(Lee, 2009)

material.

• TABLE OF CONTENTS (46.8%), which includes
“an accurate listing of all textual matter
which follows it and the page on which the
parts of the book commence” (Wilson, 1993).

• TEXT (99.3%), which includes the main con-
tents of the book. TEXT is naturally the
most frequent category, but only accounts for
89.4% of pages in all books in our dataset.
We also see wide variability from book to
book; the average TEXT ratio in books is
0.82, with a standard deviation of 0.18.

• APPENDIX (14.4%) includes a heterogeneous
mix of other minor categories that appear in-
frequently in different books. These include:
NOTES (1.1%) (which “have the character
of footnotes which, because of their extent,
are placed at the back of the book” (Wilson,
1993)); BIBLIOGRAPHY (1.7%), “a listing of
the books and periodicals, etc., which the au-
thor has used as source material or which he
recommends as supplementary reading mat-
ter” (Wilson, 1993); GLOSSARY (0.6%), “a
list of definitions of terms used in the text”
(Wilson, 1993), ERRATA (4.1%), mistakes
corrected in the printing of the book, and
SUBSCRIBERS (1.7%), a list of individuals
who have committed to purchasing the work
in advance (a historical category not fre-
quently seen in modern texts). We annotate
each of these subcategories individually for
future work, but collapse them into the single
category of APPENDIX for the work below.

• INDEX (19.2%), which “serves to catalogue,
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with page indications, all the references
which an author wishes to identify” (Wilson,
1993).

• N/A. For each of the nine categories above, we
annotate the beginning and end pages present
in a book; any page not contained within a
labeled section receives the label N/A.

As Genette (1987) articulates, each of these
structural categories mediates the relationship be-
tween the text and its audience, and each serves a
different illocutionary purpose. The TITLE is ad-
dressed to the general public (not necessarily the
readers) and is not only informational (informing
of the name of the work), but also serves as im-
portant marketing material as well; PREFACES are
addressed to readers, and may be written either by
the author of the core content (authorial) or by
another (allographic) and communicate the inten-
tion or interpretation of the work; the illocutionary
force of a DEDICATION, in contrast, is performa-
tive: its very presence is a speech act that serves to
dedicate the work to another.

Figure 3: Table of contents page listed as “Index.”

For all categories, we label based on the tenor
of the category’s meaning, and not on the title of
the section that may appear on the page. Figure 3
illustrates one such example of this distinction—
a page whose function is to serve as a table of
contents but is headed as an “Index” (and also ap-
pears at the back of the book, like contemporary
indices); rather than functioning as an index in
providing references to concepts within the text,
it outlines the organizational structure of the sec-
tions (as a table of contents does).

Human judgments of these ten categories are
relatively uncontroversial; to calculate the coher-
ence of the task, we calculated the inter-annotator
agreement rate for two annotators on 25 books,
and find a chance-corrected Cohen’s κ = 0.83,
suggesting a very high level of agreement.4 All
books then receive a single judgment of page-level
annotations by a single annotator.

3 Methods

To explore our ability to label book structure auto-
matically, we test three different feature-rich clas-
sifiers. All make use of the same set of features.

3.1 Features

Keywords. Most words on a page are not pre-
dictive of the category to which it belongs; a word
like Britain in a biography of Churchill may dis-
tinguish that book from other books, but will also
equally be found on the title page, table of con-
tents, preface, content, index, or any other cate-
gory. Some words, however, are discriminative,
such as the titles of the categories (“index,” “pref-
ace,” “dedication,” etc.). To identify these terms,
we train a unigram logistic regression classifier on
the training-only partition of the data (described
in section 4 below) and manually select keywords
with high face validity. We create two sets of fea-
tures from these keywords: presence of a keyword
in the header of the page (the first four lines) and
the presence of a keyword anywhere on the page.

Longest increasing subsequence. As figure 3
shows, tables of contents are distinguished from
indices in that the page numbers generally increase
from the top of the page to the bottom, correspond-
ing to the linear order of the book. To capture this,
we create a feature for the longest increasing sub-
sequence (LIS) of numbers on the page. The LIS
for any set of n randomly permuted numbers con-
verges to a Tracy-Widom distribution (Baik et al.,
1999); to enable feature value comparisons across
pages with different total numbers, we conduct a
permutation test by shuffling the numbers on the
page and recalculating the LIS for that resample;
we set the feature value to be 1 only when the ob-
served LIS is greater than 5% of the LIS scores for
the permutations (i.e., p < 0.05).

4Using the non-parametric bootstrap to account for the
size of the sample in our confidence of the agreement rate,
we find a 95% confidence interval for κ to be within the in-
terval [0.65, 0.94].
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Alphabetical sort. Indices, in contrast, are dis-
tinguished from tables of contents in that their
lines are sorted alphabetically (from the top to the
bottom of the page). To capture this, we create
a feature measuring the degree to which the lines
on a page are sorted, operationalized as the Spear-
man rank correlation coefficient (ρ) between the
set of lines in their original order and the lines in
sorted order. Perfectly sorted lines have a ρ = 1;
inversely sorted lines have ρ = −1 and randomly
ordered lines have an expected ρ = 0. To account
for random sorting that take place by chance, we
set this feature value to be ρ only when its p value
(rejecting H0 ≡ ρ = 0) < 0.01.

Letter distribution. In addition to measuring
the degree which the full page is alphabetized, we
can also capture important structural qualities of
indices by measuring the degree to which initial
letters in words are overrepresented on the page.
We calculate this by measuring the empirical dis-
tribution of initial downcased letters [a-z] for
all words in the book, and measure the degree to
which the empirical distribution on the page over-
represents any individual letter. Rather than com-
parison the full distributions (using e.g., Jensen-
Shannon divergence), we calculate the number of
letters whose frequency on the page deviates from
the book frequency for that letter by a z-score (ac-
counting for the number of times we observe the
letter) corresponding to a critical value α ≤ 0.05.

Roman numerals. Frontmatter preceding the
main content is often paginated with roman nu-
merals, rather than the arabic numerals found in
the content. To capture this, we create a binary
feature identifying the presence of roman numer-
als in the first four lines (header) or last four lines
(footer) of the page, using the resources of Under-
wood (2017).

Page density. Content pages are relatively dense
with characters (both letters and numbers); title
pages and tables of contents are defined by greater
volume of whitespace. To capture this differential,
we introduce features for the ratio of words and
numbers among all (whitespace-delimited) tokens
and for the overall number of tokens observed.

Position. We create a set of binary features
marking the position of the page within the book
(appearance in the first ten pages, last ten pages,
and in which quintile it appears), and its real-

valued positional ratio within the book (page num-
ber divided by the total pages).

Page Sequence. Not all books distinguish front-
matter from the main content with roman numer-
als; to address this, we identify the page with the
first marked page number and create a feature that
captures whether a page appears before or after
that first marked page.

TextTiling While all words are not indicative of
the categories on their own, they can provide a
natural segmentation of the book into discrete dis-
course chunks, in that the language that character-
izes a given main content section may differ from
that within an introduction (and certainly from
more structured sections like indices or tables of
contents). To capture this, we create a feature
for each page derived from TextTiling (Hearst,
1997): for a given page at position i, we calculate
the cosine similarity between the intervals [page1,
pagei−1] and [pagei, pagen].

The feature classes above total 172 features for
each individual page. When representing a page as
input to the models below, we also conjoin infor-
mation about all pages within a window of three
pages around the target page; each page is thus
represented by a total of 7 × 172 distinct fea-
tures. All non-binary features are standardized to
standard normals, whose means and variances are
estimated using the distribution observed in the
training-only partition of the data.

3.2 Models
We compare three different model classes: a ran-
dom forest (Breiman, 2001), which can capture
complex nonlinearities in the feature space but
is constrained to make independent predictions;
an `2-regularized conditional random field (Laf-
ferty et al., 2001), which can account for tem-
poral dependencies in the predictions but is lim-
ited to linear relationships; and a bidirectional se-
quence labeling LSTM (Graves, 2012; Ma and
Hovy, 2016), which can reason over sequential
information while also capturing more complex
non-linearities. The observed input to all meth-
ods for each page xi is the same feature represen-
tation f(xi); the CRF also includes information
about label transition features, decoding the entire
sequence using Viterbi decoding; and the bidirec-
tional LSTM captures persistent state information
for each page as two H-dimensional hidden lay-
ers, one for the forward direction hf and one for
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Method Accuracy Macro precision Macro recall Macro F
Majority class 0.888 0.089 0.100 0.094
Random Forest 0.959 [0.947, 0.969] 0.866 [0.831, 0.894] 0.593 [0.555, 0.632] 0.677 [0.641, 0.715]

CRF 0.940 [0.915, 0.959] 0.654 [0.615, 0.695] 0.744 [0.683, 0.835] 0.686 [0.644, 0.740]
BiLSTM 0.958 [0.947, 0.968] 0.776 [0.741, 0.807] 0.670 [0.630, 0.709] 0.714 [0.679, 0.747]

Table 1: Full segment labeling, along with 95% bootstrap confidence intervals.

the backward direction hb (we setH = 25 in these
experiments). Predictions for each time step i are
made using the vector concatenation of [hif ;h

i
b].

4 Evaluation

We compare the performance of the three mod-
els described above at the task of page-level la-
beling: both the multiclass classification problem
of predicting which of the 10 labels applies to
each page, and the binary task of {TEXT, NON-
TEXT} prediction, in which the nine front- and
backmatter labels are collapsed into the single la-
bel NON-TEXT; while the former allows access to
fine-grained categories of (e.g.) indices and tables
of contents, the latter covers the common scenario
where researchers are interested only in isolating
where the core text begins and ends.

Experimentally, we divide the full training data
into two partitions: a training-only partition of 400
books, on which we experiment with feature and
model development, and a test partition of the re-
maining 655 books. All results presented below
are the result of tenfold cross-validation on the test
partition. Each fold trains on 8

10 of the test data,
uses 1

10 of the 655 books as development for model
selection (e.g., to optimize the `2 regularization
parameter for the CRF, terminate training for the
BiLSTM, and optimize the depth of the random
forest), and uses 1

10 of the 655 for test. We supple-
ment each training fold with the 400 books from
the training-only partition, but this data is never
used for evaluation below.

In total, we evaluate the performance on 655
books and calculate 95% confidence intervals for
each metric using the non-parametric bootstrap,
drawing B = 10, 000 resamples of books (not in-
dividual pages) in order to account for the statisti-
cal dependence between page-level predictions.

4.1 Full segment labeling

Table 1 presents the results for full multiclass seg-
ment labeling. To contextualize these results, we
also provide a simple baseline of predicting the
majority class (TEXT) for all pages; since most

pages in a book are core content, this yields a high
absolute accuracy against which to compare, but a
low macro precision/recall/F score (which evenly
weights the importance of each class).

All three methods achieve relatively similar per-
formance when measured by absolute accuracy
(though the room for improvement over the base-
line is small). When treating all classes as equally
important and measuring by the macro F score,
both sequence labeling methods (CRF and bidi-
rectional LSTM) show slight improvements over
the independent predictions of a random forest,
but not significantly so, suggesting that the feature
representation of the book (which they all share as
identical input) is perhaps a strong enough signal
that mitigates the label dependencies.

Category Precision Recall F True n
Title 0.782 0.751 0.766 887

Dedication 0.630 0.489 0.551 188
Pubinfo 0.697 0.590 0.639 261
Ad card 0.642 0.516 0.572 717

TOC 0.844 0.842 0.843 1,139
Preface 0.736 0.643 0.686 2,253

Text 0.971 0.991 0.981 160,721
Index 0.894 0.628 0.737 2,586

Appendix 0.688 0.412 0.515 2,460
N/A 0.894 0.801 0.845 9,791

Table 2: Individual category results, BiLSTM.

Table 2 lists the precision, recall and F-
score results by category for the best-performing
model (bidirectional LSTM). Several categories
are worth calling out: the precision and recall for
recognizing table of contents is high (≥ 0.84 for
both metrics), suggesting that this method may
provide a solid foundation for work in book struc-
ture extraction that relies on an identified table
of contents in order to recognize the idiosyncratic
structure of books. Title page and index recogni-
tion are also relatively high (0.89 precision/0.63
recall); what these three categories have in com-
mon are strong structural features (the distribution
of ink and whitespace on the page; regularities in
the numbers and the degree of alphabetization).

While dedications and publication information
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Method Accuracy Macro P Macro R Macro F
Majority class 0.888 0.444 0.500 0.470

Chop 0.857 0.804 0.692 0.725
Random Forest 0.966 [0.953, 0.976] 0.947 [0.937, 0.956] 0.877 [0.836, 0.911] 0.908 [0.877, 0.931]

CRF 0.963 [0.949, 0.973] 0.887 [0.843, 0.921] 0.920 [0.896, 0.941] 0.902 [0.872, 0.926]
BiLSTM 0.965 [0.953, 0.974] 0.938 [0.924, 0.951] 0.881 [0.843, 0.913] 0.907 [0.880, 0.928]

Table 3: Content/non-content labeling, along with 95% bootstrap confidence intervals.

are both relatively infrequent (often occupying a
single page in a book), the greatest point of con-
fusion is in separating the main content from the
structurally similar pages that typically precede it
(in the preface) and follow it (in the appendix).
While confusion between PREFACE/TEXT and
APPENDIX/TEXT account for most of the errors,
figure 4 illustrates several difficult cases and ex-
emplary mistakes in the other categories: fig. 4a
is a page that blurs the line between an index and
table of contents; fig. 4b is an advertisement for a
book “in the press and speedily will be published”;
and fig. 4c is a dedication that, without strong lex-
ical indicators, is mistaken for a title page.

In order to understand the contribution that indi-
vidual features make on the predictions, we carry
out an ablation test for each feature class, in which
we remove a feature class from the model and per-
form exactly the same training and test procedure
as described in section 4: we train a model on the
training fold supplemented with the 400 books in
the training partition, perform hyperparameter op-
timization on development data, and report accu-
racy on the held-out test fold, repeating ten times,
once for each fold in cross-validation.

Feature ∆ Macro F-score
–Keywords -0.15
–Position -0.03
–Density -0.02
–Window -0.01
–Roman -0.01
–Letter -0.01
–LIS 0.00
–TextTiling 0.00
–Page sequence 0.00
–Alphabetical 0.01

Table 4: Feature ablation results for the BiLSTM
model, illustrating the change in macro F-score
that results by removing a given feature class from
the full model.

The simplest features are the most informative:
the small set of keywords learned from the training
partition (which include common section labels
like preface, content, index, advertisement, other

informative markers such as dedicated, copyright,
and currency markers like $, £), the position of the
page in the book, and the density of characters (in-
cluding words and numbers) on the page.

4.2 Content/non-content segment labeling

In order to assess the ability of these different fea-
tures and models to demarcate the core text of a
work, we binarize the multiclass label, assigning
TEXT to all pages labeled TEXT in the multiclass
setting, and NON-TEXT to all other pages. We
train all three classifiers again on these binarized
labels and repeat the training procedure for each
model outlined in section 4.

Table 3 shows the results for the binary task of
{TEXT, NOT-TEXT} prediction. Here again we
contextualize these results with two simpler base-
lines: a simple majority class predictor (always
predict TEXT), and a model that identifies the av-
erage start and end positions in a book for the first
and last text page (respectively) within the train-
ing data, and predicts TEXT for pages within that
range (roughly within the [0.10, 0.94] interval),
and NON-TEXT for all pages outside of it. This
corresponds to a heuristic that chops off the first
10% of a book and the last 6% as NON-TEXT.

The chop heuristic performs worse than the ma-
jority class predictor in terms of absolute accu-
racy, but improves over the class-balanced macro
scores. All three feature-rich models show sub-
stantial improvements over all metrics, but are in-
distinguishable from each other, each achieving
nearly identical performance. For this reduced
purpose, any of the three classifiers are sufficient
for segmenting TEXT from NON-TEXT, even a
random forest making independent predictions for
each page.

5 Related work

The work described here has points of intersec-
tion with several other threads of research. The
most direct originates in work that grows out of the
INEX and ICDAR book structure extraction com-
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(a) Index/TOC. (b) Ad predicted as text. (c) Dedication predicted as title.

Figure 4: Exemplary mistakes in prediction.

petitions (Kazai et al., 2009, 2010; Doucet et al.,
2011, 2013), in which participants are challenged
to recognize the fine-grained structure present in
documents (recognizing, for example, that the cur-
rent article has sections entitled “Abstract,” “In-
troduction,” “Data, “References,” etc.). The most
successful systems recognize structure by parsing
the table of contents (Déjean and Meunier, 2005,
2009; Wu et al., 2013; Gao et al., 2009) rather than
relying on the content of the book itself. Our work
primarily differs in the fundamental design choice
of prescribing a fix set of categories into which
we classify pages (in order to enable comparison
across documents) rather than prioritizing the id-
iosynractic structure of a book (which is useful for
generating new tables of contents).

Given the relatively constant page-level cate-
gories that printers use to describe book design,
we formulate our problem as a classification task
into a set of pre-established categories. An alterna-
tive is to take an unsupervised approach, and learn
the set of categories empirically from the data;
this general problem of book segmentation in its
unlabeled form shares functional similarity with
other work in general unsupervised topic or dis-
course segmentation (Hearst, 1997; Utiyama and
Isahara, 2001; Chen et al., 2009)—most notably,
the work of Eisenstein and Barzilay (2008) (for
whom the section labels may be considered a form
of “cue words” akin to discourse markers). Given
the amount of data in large-scale book collections,
we see this as an interesting path forward (either in
a fully unsupervised or semi-supervised setting);

an unsupervised approach that includes aspects of
metadata such as country of publication or pub-
lisher may also be fruitful in accommodating vari-
ation in printer’s rules as a function of time and
geographical location (books by French publish-
ers, for example, often place the table of contents
at the back of the book).

As figure 2 illustrates, one of the primary chal-
lenges that we face with the labeled segmenta-
tion of books is the degraded nature of the in-
put; unlike contemporary business documents for
which OCR is largely a solved problem, histori-
cal books present several challenges due to their
binding, age, and significant variation in font and
printing. Much work has focused on overcom-
ing these limitations from several perspectives, in-
cluding creating ground truth for historical books
(Papadopoulos et al., 2013), bootstrapping their
alignment with existing resources (Feng and Man-
matha, 2006; Yalniz and Manmatha, 2011), ex-
ploiting the fact that books often have multiple
scans or printings that could be leveraged (Smith
et al., 2011; Wemhoener et al., 2013) or develop-
ing methods that account for variation in the print-
ing process (Berg-Kirkpatrick et al., 2013; Berg-
Kirkpatrick and Klein, 2014).

Large-scale book corpora are increasingly be-
ing used as the raw material for linguistic anal-
ysis, especially those focused on measuring his-
torical change (Hamilton et al., 2016a,b; Kulka-
rni et al., 2015; Mitra et al., 2014; Mihalcea and
Nastase, 2012; Kim et al., 2014). These studies
use not only the observed word frequencies pro-
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vided by the Google Ngram dataset, but also in-
creasingly structured representations of language
as well (Lin et al., 2012; Goldberg and Orwant,
2013). The task of labeled book segmentation may
be helpful in reducing the noise inherent in the use
of statistics aggregated from these large datasets—
both in terms of filtering out the 11% of all pages
that are not the core content (e.g., such as indices),
and also in grounding the text at the appropriate
date for historical analysis (such as deriving statis-
tics only from the core content, and not from an
introduction written years afterward).

6 Conclusion

We introduce in this work the task of book struc-
ture labeling, the problem of assigning to each
page in a printed book its membership in one of
a set of predetermined categories. In annotating a
large dataset of books, we are able to empirically
assess the ability to accurately segment and label
books from a range of historical time periods.

The ten categories that form our typology are
drawn from printers’ guides and informed by con-
temporary criticism, but still reflect our historical
present; while we have in part let our categories be
shaped by our experience labeling texts (so that we
have preserved in our annotations historical cat-
egories not in contemporary use, such as SUB-
SCRIBERS), we recognize that the act of catego-
rization glosses over meaningful distinctions—for
example, while we have grouped sections marked
ADVERTISEMENT, TO THE READER, PREFACE,
INTRODUCTION, FOREWORD and others into the
single category of PREFACE, such labels may
have historically significant differences that may
be worth preserving for some analyses. Never-
theless, we expect the coarse distinctions we out-
line here to occasion research that requires access
to those broad categories. Potential uses of this
work include using the categories directly to an-
swer questions in book history (e.g., charting the
historical prevalence of advertisements and their
variation across time), improving the task of id-
iosyncratic structure detection by identifying ta-
bles of contents, and identifying the fine-grained
topics of books by parsing recognized indices.

In this work, we deliberately focus on the
resource-deficient scenario most commonly en-
countered by researchers working with large book
corpora, in which books are represented as the out-
put of errorful OCR. In providing a labeled dataset

for others to use, we hope to encourage other work
that reasons about the structure present in alterna-
tive representations (such as images) as well.
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Abstract

Even for common NLP tasks, sufficient
supervision is not available in many
languages—morphological tagging is no
exception. In the work presented here,
we explore a transfer learning scheme,
whereby we train character-level recurrent
neural taggers to predict morphological
taggings for high-resource languages and
low-resource languages together. Learning
joint character representations among mul-
tiple related languages successfully enables
knowledge transfer from the high-resource
languages to the low-resource ones, im-
proving accuracy by up to 30%.

1 Introduction

State-of-the-art morphological taggers require thou-
sands of annotated sentences to train. For the ma-
jority of the world’s languages, however, sufficient
large-scale annotation is not available and obtain-
ing it would often be infeasible. Accordingly, an
important road forward in low-resource NLP is the
development of methods that allow for the training
of high-quality tools from smaller amounts of data.
In this work, we focus on transfer learning—we
train a recurrent neural tagger for a low-resource
language jointly with a tagger for a related high-
resource language. Forcing the models to share
character-level features among the languages al-
lows large gains in accuracy when tagging the low-
resource languages, while maintaining (or even im-
proving) accuracy on the high-resource language.

Recurrent neural networks constitute the state
of the art for a myriad of tasks in NLP, e.g., multi-
lingual part-of-speech tagging (Plank et al., 2016),
syntactic parsing (Dyer et al., 2015; Zeman et al.,
2017), morphological paradigm completion (Cot-
terell et al., 2016, 2017) and language modeling

(Sundermeyer et al., 2012; Melis et al., 2017); re-
cently, such models have also improved morpho-
logical tagging (Heigold et al., 2016, 2017). In
addition to increased performance over classical
approaches, neural networks also offer a second
advantage: they admit a clean paradigm for multi-
task learning. If the learned representations for
all of the tasks are embedded jointly into a shared
vector space, the various tasks reap benefits from
each other and often performance improves for
all (Collobert et al., 2011b). We exploit this idea
for language-to-language transfer to develop an
approach for cross-lingual morphological tagging.

We experiment on 18 languages taken from four
different language families. Using the Univer-
sal Dependencies treebanks, we emulate a low-
resource setting for our experiments, e.g., we at-
tempt to train a morphological tagger for Catalan
using primarily data from a related language like
Spanish. Our results demonstrate the successful
transfer of morphological knowledge from the high-
resource languages to the low-resource languages
without relying on an externally acquired bilingual
lexicon or bitext. We consider both the single- and
multi-source transfer case and explore how similar
two languages must be in order to enable high-
quality transfer of morphological taggers.1

2 Morphological Tagging

Many languages in the world exhibit rich inflec-
tional morphology: the form of individual words
mutates to reflect the syntactic function. For exam-
ple, the Spanish verb soñar will appear as sueño in
the first person present singular, but soñáis in the
second person present plural, depending on the bun-
dle of syntaco-semantic attributes associated with

1While we only experiment with languages in the same
family, we show that closer languages within that family are
better candidates for transfer. We remark that future work
should consider the viability of more distant language pairs.
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Figure 1: Example of a morphologically-tagged sentence in Russian using the annotation scheme provided in the UD dataset.

PRESENT INDICATIVE PAST INDICATIVE

SINGULAR PLURAL SINGULAR PLURAL

1 sueño soñamos soñé soñamos
2 sueñas soñáis soñaste soñasteis
3 sueña sueñan soñó soñaron

Table 1: Partial inflection table for the Spanish verb soñar

the given form (in a sentential context). For con-
creteness, we list a more complete table of Spanish
verbal inflections in Table 1. Note that some lan-
guages, e.g., Archi, Northeast Caucasian language,
display a veritable cornucopia of potential forms
with the size of the verbal paradigm exceeding
10,000 (Kibrik, 1998).

Standard NLP annotation, e.g., the scheme in
Sylak-Glassman et al. (2015), marks forms in terms
of universal key-attribute pairs, e.g., the first per-
son present singular is represented as [pos=V, per=1,

num=SG, tns=PRES ]. This bundle of key-attributes
pairs is typically termed a morphological tag and
we may view the goal of morphological tagging to
label each word in its sentential context with the ap-
propriate tag (Oflazer and Kuruöz, 1994; Hajič and
Hladká, 1998). As the part-of-speech (POS) is a
component of the tag, we may view morphological
tagging as a strict generalization of POS tagging,
where we have significantly refined the set of avail-
able tags. All of the experiments in this paper make
use of the universal morphological tag set available
in the Universal Dependencies (UD) (Nivre et al.,
2016). As an example, we have provided a Russian
sentence with its UD tagging in Figure 1.

Transferring Morphology. The transfer of mor-
phology is arguably more dependent on the relat-
edness of the languages in question than other an-
notations in NLP, such as POS and named entity
recognition (NER). POS lends itself nicely to a
universal annotation scheme (Petrov et al., 2012)
and traditional NER is limited to a small number of
cross-linguistically compliant categories, e.g., PER-
SON and PLACE. Even universal dependency arcs
employ cross-lingual labels (Nivre et al., 2016).

Morphology, on the other hand, typically re-
quires more fine-grained annotation, e.g., gram-
matical case and tense. It is often the case that one
language will make a semantic distinction in the
form (or at all) that another does not. For example,
the Hungarian noun overtly marks 17 grammatical
cases and Slavic verbs typically distinguish two
aspects through morphology, while English marks
none of these distinctions. If the word form in
the source language does not overtly mark a gram-
matical category in the target language, it is nigh-
impossible to expect a successful transfer. For this
reason, much of our work focuses on the transfer
of related languages—specifically exploring how
close two languages must be for a successful trans-
fer. Note that the language-specific nature of mor-
phology does not contradict the universality of the
annotation; each language may mark a different
subset of categories, i.e., use a different set of the
universal keys and attributes, but there is a single,
universal set, from which the key-attribute pairs
are drawn. See Newmeyer (2007) for a linguistic
treatment of cross-lingual annotation.

Notation. We will discuss morphological tag-
ging in terms of the following notation. We will
consider two (related) languages: a high-resource
source language `s and a low-resource target lan-
guage `t. Each of these languages will have its
own (potentially overlapping) set of morphologi-
cal tags, denoted Ts and Tt, respectively. We will
work with the union of both sets T = Ts ∪ Tt. An
individual tag mi = [k1=v1, . . . , kM=vM ] ∈ T is
comprised of universal keys and attributes, i.e., the
pairs (ki, vi) are completely language-agnostic. In
the case where a language does not mark a distinc-
tion, e.g., case on English nouns, the corresponding
keys are excluded from the tag. Typically, |T | is
large (see Table 3). We denote the set of training
sentences for the high-resource source language as
Ds and the set of training sentences for the low-
resource target language asDt. In the experimental
section, we will also consider a multi-source setting
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where we have multiple high-resource languages,
but, for ease of explication, we stick to the single-
source case in the development of the model.

3 Character-Level Neural Transfer

Our formulation of transfer learning builds on work
in multi-task learning (Caruana, 1997; Collobert
et al., 2011b). We treat each individual language as
a task and train a joint model for all the tasks. We
first discuss the current state of the art in morpho-
logical tagging: a character-level recurrent neural
network. After that, we explore three augmenta-
tions to the architecture that allow for the transfer
learning scenario. All of our proposals force the
embedding of the characters for both the source
and the target language to share the same vector
space, but involve different mechanisms, by which
the model may learn language-specific features.

3.1 Character-Level Neural Networks

Character-level neural networks currently consti-
tute the state of the art in morphological tagging
(Heigold et al., 2017). We draw on previous work
in defining a conditional distribution over taggings
t for a sentence w of length |w| = N as

pθ(t | w) =
N∏

i=1

pθ(ti | w), (1)

which may be seen as a 0th order conditional ran-
dom field (CRF) (Lafferty et al., 2001) with pa-
rameter vector θ.2 Importantly, this factorization
of the distribution pθ(t | w) also allows for ef-
ficient exact decoding and marginal inference in
O(|T | · N)-time, but at the cost of not admitting
any explicit interactions in the output structure, i.e.,
between adjacent tags.3 We parameterize the distri-
bution over tags at each time step as

pθ(ti | w) = softmax (Wei + b) , (2)

2The parameter vector θ is a vectorization of all the pa-
rameters discussed below.

3As an aside, it is quite interesting that a model with the fac-
torization in Equation (1) outperforms the MARMOT model
(Müller et al., 2013), which focused on modeling higher-order
interactions between the morphological tags, e.g., they employ
up to a (pruned) 3rd order CRF. That such a model achieves
state-of-the-art performance indicates, however, that richer
source-side features, e.g., those extracted by our character-
level neural architecture, are more important for morpholog-
ical tagging than higher-order tag interactions, which come
with the added unpleasantness of exponential (in the order)
decoding.

where W ∈ R|T |×n is an embedding matrix, b ∈
R|T | is a bias vector and positional embeddings
ei

4 are taken from a concatenation of the output
of two long short-term memory recurrent neural
networks (LSTMs) (Hochreiter and Schmidhuber,
1997), folded forward and backward, respectively,
over a sequence of input vectors. This constitutes
a bidirectional LSTM (Graves and Schmidhuber,
2005). We define the positional embedding vector
as follows

ei = [LSTM(v1:i); LSTM(vN,i+1)] , (3)

where each vi ∈ Rn is, itself, a word embedding.
Note that the function LSTM returns the last final
hidden state vector of the network. This architec-
ture is the context bidirectional recurrent neural
network of Plank et al. (2016). Finally, we derive
each word embedding vector vi from a character-
level bidirectional LSTM embedder. Namely, we
define each word embedding as the concatenation

vi =
[
LSTM

(
〈ci1 , . . . , ciMi 〉

)
; (4)

LSTM
(
〈ciMi , . . . , ci1〉

)]
.

In other words, we run a bidirectional LSTM over
the character stream. This bidirectional LSTM is
the sequence bidirectional recurrent neural network
of Plank et al. (2016). Note a concatenation of
the sequence of character symbols 〈ci1 , . . . , ciMi 〉
results in the word string wi. Each of the Mi char-
acters cik is a member of the set Σ. We take Σ to
be the union of sets of characters in the languages
considered.

We direct the reader to Heigold et al. (2017)
for a more in-depth discussion of this and various
additional architectures for the computation of vi;
the architecture we have presented in Equation (5)
is competitive with the best performing setting in
Heigold et al.’s study.

3.2 Cross-Lingual Morphological Transfer as
Multi-Task Learning

Cross-lingual morphological tagging may be for-
mulated as a multi-task learning problem. We seek
to learn a set of shared character embeddings for
taggers in both languages together through opti-
mization of a joint loss function that combines the
high-resource tagger and the low-resource one. The
first loss function we consider is the following:

4Note that |ei| = n; see §4.4 for the exact values used in
the experimentation.
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(a) Vanilla architecture for neural
morphological tagging.
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(b) Joint morphological tagging and
language identification.
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(c) Character-level biL-
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(d) Language-specific
biLSTM embedder.

Figure 2: We depict four subarchitectures used in the models we develop in this work. Combining (a) with the character
embeddings in (c) gives the vanilla morphological tagging architecture of Heigold et al. (2017). Combining (a) with (d) yields
the language-universal softmax architecture and (b) and (c) yields our joint model for language identification and tagging.

Lmulti(θ) =
∑

(t,w)∈Ds
log pθ(t | w, `s) (5)

+
∑

(t,w)∈Dt
log pθ (t | w, `t) .

Crucially, our cross-lingual objective forces both
taggers to share part of the parameter vector θ,
which allows it to represent morphological regular-
ities between the two languages in a common em-
bedding space and, thus, enables transfer of knowl-
edge. This is no different from monolingual multi-
task settings, e.g., jointly training a chunker and
a tagger for the transfer of syntactic information
(Collobert et al., 2011b). We point out that, in con-
trast to our approach, almost all multi-task transfer
learning, e.g., for dependency parsing (Guo et al.,
2016), has shared word-level embeddings rather
than character-level embeddings. See §6 for a more
complete discussion.

We consider two parameterizations of this dis-
tribution pθ(ti | w, `). First, we modify the ini-
tial character-level LSTM embedding such that it
also encodes the identity of the language. Second,
we modify the softmax layer, creating a language-
specific softmax.

Language-Universal Softmax. Our first archi-
tecture has one softmax, as in Equation (2), over
all morphological tags in T (shared among all the
languages). To allow the architecture to encode
morphological features specific to one language,
e.g., the third person present plural ending in Span-
ish is -an, but -ão in Portuguese, we modify the
creation of the character-level embeddings. Specif-
ically, we augment the character alphabet Σ with a
distinguished symbol that indicates the language:
id`. We then pre- and postpend this symbol to the
character stream for every word before feeding the

characters into the bidirectional LSTM Thus, we
arrive at the new language-specific word embed-
dings,

v`i =
[
LSTM

(
〈id`, ci1 , . . . , ciMi ,id`〉

)
; (6)

LSTM
(
〈id`, ciMi , . . . , ci1 ,id`〉

)]
.

This model creates a language-specific embedding
vector vi, but the individual embeddings for a given
character are shared among the languages jointly
trained on. The remainder of the architecture is
held constant.

Language-Specific Softmax. Next, inspired by
the architecture of Heigold et al. (2013), we con-
sider a language-specific softmax layer, i.e., we
define a new output layer for every language:

pθ (ti | w, `) = softmax (W`ei + b`) , (7)

where W` ∈ R|T |×n and b` ∈ R|T | are now
language-specific. In this architecture, the embed-
dings ei are the same for all languages—the model
has to learn language-specific behavior exclusively
through the output softmax of the tagging LSTM.

Joint Morphological Tagging and Language
Identification. The third model we exhibit is a
joint architecture for tagging and language identifi-
cation. We consider the following loss function:

Ljoint(θ) =
∑

(t,w)∈Ds
log pθ(`s, t | w) (8)

+
∑

(t,w)∈Dt
log pθ (`t, t | w) ,

where we factor the joint distribution as

pθ (`, t | w) = pθ (` | w) · pθ (t | w, `) . (9)
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Romance Slavic

lang train dev test lang train dev test

(ca) 13123 1709 1846 (bg) 8907 1115 1116
(es) 14187 1552 274 (cs) 61677 9270 10148
(fr) 14554 1596 298 (pl) 6800 7000 727
(it) 12837 489 489 (ru) 4029 502 499
(pt) 8800 271 288 (sk) 8483 1060 1061
(ro) 7141 1191 1191 (uk) 200 30 25

Germanic Uralic

lang train dev test lang train dev test

(da) 4868 322 322 (et) 14510 1793 1806
(no) 15696 2410 1939 (fi) 12217 716 648
(sv) 4303 504 1219 (hu) 1433 179 188

Table 2: Number of tokens in each of the train, development
and test splits (organized by language family).

Just as before, we define pθ (t | w, `) above as in
Equation (7) and we define

pθ(` | w) = softmax
(
u> tanh(V ei)

)
, (10)

which is a multi-layer perceptron with a binary soft-
max (over the two languages) as an output layer; we
have added the additional parameters V ∈ R|T |×n
and u ∈ R|T |. In the case of multi-source transfer,
this is a softmax over the set of languages.

Comparative Discussion. The first two architec-
tures discussed in §3.2 represent two possibilities
for a multi-task objective, where we condition on
the language of the sentence. The first integrates
this knowledge at a lower level and the second at
a higher level. The third architecture discussed in
§3.2 takes a different tack—rather than condition-
ing on the language, it predicts it. The joint model
offers one interesting advantage over the two archi-
tectures proposed. Namely, it allows us to perform
a morphological analysis on a sentence where the
language is unknown. This effectively alleviates an
early step in the NLP pipeline, where language id
is performed and is useful in conditions where the
language to be tagged may not be known a-priori,
e.g., when tagging social media data.

While there are certainly more complex architec-
tures one could engineer for the task, we believe we
have found a relatively diverse sampling, enabling
an interesting experimental comparison. Indeed,
it is an important empirical question which archi-
tectures are most appropriate for transfer learning.
Since transfer learning affords the opportunity to
reduce the sample complexity of the “data-hungry”
neural networks that currently dominate NLP re-
search, finding a good solution for cross-lingual
transfer in state-of-the-art neural models will likely
be a boon for low-resource NLP in general.

Romance Slavic Germanic Uralic

lang |T | lang |T | lang |T | lang |T |
(ca) 172 (bg) 380 (da) 124 (et) 654
(es) 232 (cs) 2282 (no) 169 (fi) 1440
(fr) 142 (pl) 774 (sv) 155 (hu) 634
(it) 179 (ru) 520
(pt) 375 (sk) 597
(ro) 367 (uk) 220

Table 3: Number of unique morphological tags for each of the
experimental languages (organized by language family).

4 Experiments

Empirically, we ask three questions of our archi-
tectures. i) How well can we transfer morphologi-
cal tagging models from high-resource languages
to low-resource languages in each architecture?
(Does one of the three outperform the others?) ii)
How many annotated data in the low-resource lan-
guage do we need? iii) How closely related do the
languages need to be to get good transfer?

4.1 Experimental Languages

We experiment with the language families: Ro-
mance (Indo-European), Northern Germanic (Indo-
European), Slavic (Indo-European) and Uralic. In
the Romance sub-grouping of the wider Indo-
European family, we experiment on Catalan (ca),
French (fr), Italian (it), Portuguese (pt), Romanian
(ro) and Spanish (es). In the Northern Germanic
family, we experiment on Danish (da), Norwegian
(no) and Swedish (sv). In the Slavic family, we
experiment on Bulgarian (bg), Czech (bg), Polish
(pl), Russian (ru), Slovak (sk) and Ukrainian (uk).
Finally, in the Uralic family we experiment on Es-
tonian (et), Finnish (fi) and Hungarian (hu).

4.2 Datasets

We use the morphological tagging datasets pro-
vided by the Universal Dependencies (UD) tree-
banks (the concatenation of the 4th and 6th columns
of the file format) (Nivre et al., 2016). We list the
size of the training, development and test splits of
the UD treebanks we used in Table 2. Also, we list
the number of unique morphological tags in each
language in Table 3, which serves as an approx-
imate measure of the morphological complexity
each language exhibits. Crucially, the data are an-
notated in a cross-linguistically consistent manner,
such that words in the different languages that have
the same syntacto-semantic function have the same
bundle of tags (see §2 for a discussion). Potentially,
further gains would be possible by using a more
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universal scheme, e.g., the UNIMORPH scheme.

4.3 Baselines

We consider two baselines in our work. First, we
consider the MARMOT tagger (Müller et al., 2013),
which is currently the best performing non-neural
model. The source code for MARMOT is freely
available online,5 which allows us to perform fully
controlled experiments with this model. Second,
we consider the alignment-based projection ap-
proach of Buys and Botha (2016).6 We discuss
each of the two baselines in turn.

4.3.1 Higher-Order CRF Tagger
The MARMOT tagger is the leading non-neural
approach to morphological tagging. This baseline
is important since non-neural, feature-based ap-
proaches have been found empirically to be more
efficient, in the sense that their learning curves tend
to be steeper. Thus, in the low-resource setting we
would be remiss to not consider a feature-based
approach. Note that this is not a transfer approach,
but rather only uses the low-resource data.

4.3.2 Alignment-based Projection
The projection approach of Buys and Botha (2016)
provides an alternative method for transfer learn-
ing. The idea is to construct pseudo-annotations
for bitext given cross-lingual alignments (Och and
Ney, 2003). Then, one trains a standard tagger us-
ing the projected annotations. The specific tagger
employed is the WSABIE model of Weston et al.
(2011), which—like our approach— is a 0th-order
discriminative neural model. In contrast to ours,
however, their network is shallow. We compare the
two methods in more detail in §6.

4.3.3 Architecture Study
Additionally, we perform a thorough study of the
neural transfer learner, considering all three archi-
tectures. A primary goal of our experiments is
to determine which of our three proposed neural
transfer techniques is superior. Even though our
experiments focus on morphological tagging, these
architectures are more general in that they may be

5http://cistern.cis.lmu.de/marmot/
6We do not have access to the code as the model was

developed in industry, so we compare to the numbers reported
in the original paper, as well as additional numbers provided
to us by the first author in a personal communication. The
numbers will not be, strictly speaking, comparable. However,
we hope they provide insight into the relative performance of
the tagger.

easily applied to other tasks, e.g., parsing or ma-
chine translation. We additionally explore the via-
bility of multi-source transfer, i.e., the case where
we have multiple source languages. All of our
architectures generalize to the multi-source case
without any complications.

4.4 Experimental Details

We train our models with the following conditions.

Evaluation Metrics. We evaluate using average
per token accuracy, as is standard for both POS
tagging and morphological tagging, and per feature
F1 as employed in Buys and Botha (2016). The
per feature F1 calculates a key F k1 for each key
in the target language’s tags by asking if the key-
attribute pair ki=vi is in the predicted tag. Then,
the key-specific F k1 values are averaged equally.
Note that F1 is a more flexible metric as it gives
partial credit for getting some of the attributes in
the bundle correct, where accuracy does not.

Hyperparameters. Our networks are four layers
deep (two LSTM layers for the character embedder,
i.e., to compute vi and two LSTM layers for the tag-
ger, i.e., to compute ei) and we use an embedding
size of 128 for the character input vector size and
hidden layers of 256 nodes in all other cases. All
networks are trained with the stochastic gradient
method RMSProp (Tieleman and Hinton, 2012),
with a fixed initial learning rate and a learning rate
decay that is adjusted for the other languages ac-
cording to the amount of training data. The batch
size is always 16. Furthermore, we use dropout
(Srivastava et al., 2014). The dropout probability is
set to 0.2. We used Torch 7 (Collobert et al., 2011a)
to configure the computation graphs implementing
the network architectures.

5 Results and Discussion

We report our results in three tables. First, we re-
port a detailed cross-lingual evaluation in Table 4.
Secondly, we report a comparison against two base-
lines in Table 5 (accuracy) and Table 6 (F1). We
see two general trends of the data. First, we find
that genetically closer languages yield better source
languages. Second, we find that the multi-softmax
architecture is the best in terms of transfer ability,
as evinced by the results in Table 4. We find a
wider gap between our model and the baselines
under the accuracy than under F1. We attribute this
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target language
|Dt| = 100 |Dt| = 1000

(ca) (es) (fr) (it) (pt) (ro) (ca) (es) (fr) (it) (pt) (ro)
so

ur
ce

la
ng

ua
ge (ca) — 87.9% 84.2% 84.6% 81.1% 67.4% — 94.1% 93.5% 93.1% 89.0% 89.8%

(es) 88.9% — 85.5% 85.6% 81.8% 69.5% 95.5% — 93.5% 93.5% 88.9% 89.7%
(fr) 88.3% 87.0% — 83.6% 79.5% 69.9% 95.4% 93.8% — 93.3% 88.6% 89.7%
(it) 88.4% 87.8% 84.2% — 80.6% 69.1% 95.4% 94.0% 93.3% — 88.7% 90.3%
(pt) 88.4% 88.9% 85.1% 84.7% — 69.6% 95.3% 94.2% 93.5% 93.6% — 89.8%
(ro) 87.6% 87.2% 85.0% 84.4% 79.9% — 95.3% 93.6% 93.4% 93.2% 88.5% —

multi-source 89.8% 90.9% 86.6% 86.8% 83.4% 67.5% 95.4% 94.2% 93.4% 93.8% 88.7% 88.9%

(a) Results for the Romance languages.

target language
|Dt| = 100 |Dt| = 1000

(bg) (cs) (pl) (ru) (sk) (uk) (bg) (cs) (pl) (ru) (sk) (uk)

so
ur

ce
la

ng
ua

ge (bg) — 47.4% 44.7% 67.3% 39.7% 57.3% — 73.7% 75.0% 84.1% 70.9% 72.0%
(cs) 57.8% — 56.5% 62.6% 62.6% 54.0% 80.9% — 80.0% 84.1% 78.1% 64.7%
(pl) 54.3% 54.0% — 59.3% 57.8% 48.0% 78.3% 74.9% — 84.2% 75.9% 57.3%
(ru) 68.8% 48.6% 47.4% — 46.5% 60.7% 83.1% 73.6% 76.0% — 71.4% 72.7%
(sk) 55.2% 57.4% 54.8% 61.2% — 49.3% 77.6% 76.3% 78.4% 83.9% — 60.7%
(uk) 44.1% 36.0% 34.4% 43.2% 30.0% — 67.3% 64.8% 66.9% 76.1% 56.0% —

multi-source 64.5% 57.9% 57.0% 64.4% 64.8% 58.7% 81.6% 74.8% 78.1% 83.1% 79.6% 69.3%

(b) Results for the Slavic languages.

target language
|Dt| = 100 |Dt| = 1000

(da) (no) (sv) (da) (no) (sv)

so
ur

ce (da) — 77.6% 73.1% — 90.1% 90.0%
(no) 83.1% — 75.7% 93.1% — 90.5%
(sv) 81.4% 76.5% — 92.6% 90.2% —

multi-source 87.8% 82.3% 77.2% 93.9% 91.2% 90.9%

(c) Results for the Northern Germanic languages.

target language
|Dt| = 100 |Dt| = 1000

(et) (fi) (hu) (et) (fi) (hu)

so
ur

ce (et) — 60.9% 60.4% — 85.1% 74.8%
(fi) 60.1% — 60.3% 82.3% — 75.2%
(hu) 47.1% 48.3% — 76.9% 81.2% —

multi-source 54.7% 55.3% 55.4% 78.7% 81.8% 73.3%

(d) Results for the Uralic languages.

Table 4: Results for transfer learning with our joint model. The tables highlight that the best source languages are often
genetically and typologically closest. Also, we see that multi-source often helps, albeit more often in the |Dt| = 100 case.

to the fact that F1 is a softer metric in that it assigns
credit to partially correct guesses.

Source Language. As discussed in §2, the trans-
fer of morphology is language-dependent. This
intuition is borne out in the results from our study
(see Table 4). We see that in the closer grouping
of the Western Romance languages, i.e., Catalan,
French, Italian, Portuguese, and Spanish, it is eas-
ier to transfer than with Romanian, an Eastern Ro-
mance language. Within the Western grouping,
we see that the close pairs, e.g., Spanish and Por-
tuguese, are amenable to transfer. We find a similar
pattern in the other language families, e.g., Russian
is the best source language for Ukrainian, Czech is
the best language source for Slovak and Finnish is
the best source language for Estonian.

Multi-Source Transfer. In many cases, we find
that multiple sources noticeably improve the results
over the single-source case. For instance, when we
have multiple Romance languages as a source lan-
guage, we see gains of up to 2%. We also see gains

in the Northern Germanic languages when using
multiple source languages. From a linguistic point
of view, this is logical as different source languages
may be similar to the target language along differ-
ent dimensions, e.g., when transferring among the
Slavic languages, we note that Russian retains the
complex nominal case system of Serbian, but south
Slavic Bulgarian is lexically more similar.

Performance Against the Two Baselines. As
shown in Table 5 and Table 6, our model outper-
forms the projection tagger of Buys and Botha
(2016) even though our approach does not uti-
lize bitext, large-scale alignment or monolingual
corpora—rather, all transfer between languages
happens through the forced sharing of character-
level features.7 Our model, does, however, require

7 We would like to highlight some issues of comparability
with the results in Buys and Botha (2016). Strictly speaking,
the results are not comparable and our improvement over their
method should be taken with a grain of salt. As the source code
is not publicly available and developed in industry, we resorted
to numbers in their published work and additional numbers
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Accuracy
B&B (2016) MARMOT Ours (Mono) Ours (Universal) Ours (Joint) Ours (Specific)

en (int) best (non) best (int) 100 1000 100 1000 100 1000 100 1000 100 1000

(bg) 36.3 38.2 50.0 56.5 78.8 40.2 66.6 57.8 80.9 64.5 81.6 63.5 80.8
(cs) 24.4 49.3 53.4 49.2 69.2 32.1 66.1 57.4 77.6 57.9 74.8 56.1 74.2
(da) 36.6 46.9 46.9 75.9 90.9 45.3 86.6 77.6 90.1 87.8 93.9 89.2 94.3
(es) 39.9 75.3 75.5 85.9 93.1 64.7 92.5 85.1 60.9 90.9 94.2 90.7 94.2
(fi) 27.4 51.8 56.0 50.0 77.5 28.0 74.2 48.3 81.2 55.3 81.8 55.4 80.7
(it) 38.1 75.5 75.9 81.7 92.3 67.0 88.9 84.7 93.1 86.8 93.8 86.1 93.3
(pl) 25.3 47.4 51.3 51.7 71.1 32.1 60.9 47.4 78.4 57.0 78.1 56.1 76.4
(pt) 36.6 71.9 72.2 77.0 86.3 61.7 85.6 80.6 88.7 83.4 88.7 82.4 89.1
(sv) 29.3 44.5 44.5 69.5 88.3 46.1 84.2 75.7 90.0 77.2 90.9 78.3 90.7

Table 5: Comparison of our approach to various baselines for low-resource tagging under token-level accuracy. We compare on
only those languages in Buys and Botha (2016). Note that tag-level accuracy was not reported in the original B&B paper, but
was acquired through personal communication with the first author. All architectures presented in this work are used in their
multi-source setting. The B&B and MARMOT models are single-source.

annotation of a small number of sentences in the
target language for training. We note, however, that
this does not necessitate a large number of human
annotation hours (Garrette and Baldridge, 2013).

Reducing Sample Complexity. Another inter-
esting a point about our model that is best evinced
in Figure 3 is the feature-based CRF approach
seems to be a better choice for the low-resource
setting, i.e., the neural model has greater sample
complexity. However, in the multi-task scenario,
we find that the neural tagger’s learning curve is
even steeper. In other words, if we have to train a
tagger on very little data, we are better off using
a neural multi-task approach than a feature-based
approach; preliminary attempts to develop a multi-
task version of MARMOT failed (see Figure 3).

6 Related Work

We divide the discussion of related work topically
into three parts for ease of intellectual digestion.

6.1 Alignment-Based Distant Supervision.

Most cross-lingual work in NLP—focusing on mor-
phology or otherwise—has concentrated on indi-
rect supervision, rather than transfer learning. The
goal in such a regime is to provide noisy labels for

obtained through direct communication with the authors. First,
we used a slightly newer version of UD to incorporate more
languages: we used v2 whereas they used v1.2. There are
minor differences in the morphological tagset used between
these versions. Also, in the |Dt| = 1000 setting, we are
training on significantly more data than the models in Buys
and Botha (2016). A much fairer comparison is to our models
with |Dt| = 100. Also, we compare to their method using
their standard (non) setup. This method is fair in so far as
we evaluate in the same manner, but it disadvantages their
approach, which cannot predict tags that are not in the source
language.

26 27 28 29 210 211 212 213

Number of Samples

55

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y Languages
Joint
MarMoT
Mono
MarMoT-Trans

Figure 3: Learning Curve for Spanish and Catalan comparing
our monolingual model, our joint model and two MARMOT
models. The first MARMOT model is identical to those trained
in the rest of the paper and the second attempts a multi-task
approach, which failed so no further experimentation was
performed with this model.

training the tagger in the low-resource language
through annotations projected over aligned bitext
with a high-resource language. This method of
projection was first introduced by Yarowsky and
Ngai (2001) for the projection of POS annotation.
While follow-up work (Fossum and Abney, 2005;
Das and Petrov, 2011; Täckström et al., 2012) has
continually demonstrated the efficacy of projecting
simple part-of-speech annotations, Buys and Botha
(2016) were the first to show the use of bitext-based
projection for the training of a morphological tag-
ger for low-resource languages.

As we also discuss the training of a morphologi-
cal tagger, our work is most closely related to Buys
and Botha (2016) in terms of the task itself. We
contrast the approaches. The main difference lies
therein, that our approach is not projection-based
and, thus, does not require the construction of a
bilingual lexicon for projection based on bitext.
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F1

B&B (2016) MARMOT Ours (Mono) Ours (Universal) Ours (Joint) Ours (Specific)

en (int) best (non) best (int) 100 1000 100 1000 100 1000 100 1000 100 1000

(bg) 51.6 61.9 65.0 53.7 74.7 26.0 68.0 55.1 77.3 56.6 77.8 55.1 78.6
(cs) 55.7 61.6 64.0 60.8 80.5 30.9 65.3 54.5 66.3 54.7 66.5 54.6 67.0
(da) 65.4 70.7 73.1 69.7 92.9 35.3 90.1 85.9 93.2 86.9 93.5 83.2 93.2
(es) 60.7 74.0 74.6 82.4 92.6 55.9 91.4 88.4 93.6 89.2 94.1 87.6 93.8
(fi) 59.1 57.2 59.1 44.6 78.3 17.5 61.7 48.6 73.6 49.3 74.4 46.2 73.9
(it) 66.1 74.4 75.3 78.7 90.0 56.4 87.0 83.1 90.5 83.3 91.9 82.7 91.7
(pl) 47.3 56.8 60.4 57.8 81.8 31.6 69.7 61.9 83.9 62.5 84.7 62.6 83.2
(pt) 60.2 69.2 73.1 67.6 80.0 42.9 82.0 77.9 86.3 78.1 86.5 71.8 85.7
(sv) 55.1 72.1 74.6 69.7 90.2 44.1 86.4 82.5 93.2 83.5 93.7 82.8 93.4

Table 6: Comparison of our approach to various baselines for low-resource tagging under F1 to allow for a more complete
comparison to the model of Buys and Botha (2016). All architectures presented in this work are used in their multi-source setting.
The B&B and MARMOT models are single-source. We only compare on those languages used in B&B.

Rather, our method jointly learns multiple taggers
and forces them to share features—a true transfer
learning scenario. In contrast to projection-based
methods, our procedure always requires a minimal
amount of annotated data in the low-resource target
language—in practice, however, this distinction is
non-critical as projection-based methods without a
small mount of seed target language data perform
poorly (Buys and Botha, 2016).

6.2 Character-level NLP.

Our work also follows a recent trend in NLP,
whereby traditional word-level neural representa-
tions are being replaced by character-level repre-
sentations for a myriad tasks, e.g., POS tagging dos
Santos and Zadrozny (2014), parsing (Ballesteros
et al., 2015), language modeling (Ling et al., 2015),
sentiment analysis (Zhang et al., 2015) as well as
the tagger of Heigold et al. (2017), whose work we
build upon. Our work is also related to recent work
on character-level morphological generation using
neural architectures (Faruqui et al., 2016; Rastogi
et al., 2016).

6.3 Neural Cross-lingual Transfer in NLP.

In terms of methodology, however, our proposal
bears similarity to recent work in speech and ma-
chine translation–we discuss each in turn. In
speech recognition, Heigold et al. (2013) train a
cross-lingual neural acoustic model on five Ro-
mance languages. The architecture bears similarity
to our multi-language softmax approach. Depen-
dency parsing benefits from cross-lingual learning
in a similar fashion (Guo et al., 2015, 2016).

In neural machine translation (Sutskever et al.,
2014; Bahdanau et al., 2015), recent work (Firat
et al., 2016; Zoph and Knight, 2016; Johnson et al.,

2016) has explored the possibility of jointly train
translation models for a wide variety of languages.
Our work addresses a different task, but the un-
dergirding philosophical motivation is similar, i.e.,
attack low-resource NLP through multi-task trans-
fer learning. Kann et al. (2017) offer a similar
method for cross-lingual transfer in morphological
inflection generation.

7 Conclusion

We have presented three character-level recurrent
neural network architectures for multi-task cross-
lingual transfer of morphological taggers. We pro-
vided an empirical evaluation of the technique on
18 languages from four different language families,
showing wide-spread applicability of the method.
We found that the transfer of morphological taggers
is an eminently viable endeavor among related lan-
guage and, in general, the closer the languages, the
easier the transfer of morphology becomes. Our
technique outperforms two strong baselines pro-
posed in previous work. Moreover, we define stan-
dard low-resource training splits in UD for future
research in low-resource morphological tagging.
Future work should focus on extending the neural
morphological tagger to a joint lemmatizer (Müller
et al., 2015) and evaluate its functionality in the
low-resource setting.
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ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependen-
cies v1: A multilingual treebank collection. In Pro-
ceedings of the 10th International Conference on
Language Resources and Evaluation (LREC), pages
1659–1666.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.
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Abstract

Neural parsers have benefited from au-
tomatically labeled data via dependency-
context word embeddings. We inves-
tigate training character embeddings on
a word-based context in a similar way,
showing that the simple method signif-
icantly improves state-of-the-art neural
word segmentation models, beating tri-
training baselines for leveraging auto-
segmented data.

1 Introduction

Neural network Chinese word segmenta-
tion (CWS) models (Zhang et al., 2016; Liu
et al., 2016; Cai and Zhao, 2016) appeal for their
strong ability of feature representation, employing
unigram and bigram character embeddings as
input features (Zheng et al., 2013; Pei et al., 2014;
Ma and Hinrichs, 2015; Chen et al., 2015a). They
give state-of-the-art performances. We investigate
leveraging automatically segmented texts for
enhancing their accuracies.
Such semi-supervised methods can be divided

into two main categories. The first one is boot-
strapping, which includes self-training and tri-
training. The idea is to generate more training in-
stances by automatically labeling large-scale data.
Self-training (Yarowsky, 1995; McClosky et al.,
2006; Huang et al., 2010; Liu and Zhang, 2012)
labels additional data by using the base classifier
itself, and tri-training (Zhou and Li, 2005; Li et al.,
2014) uses two extra classifiers, taking the in-
stances with the same labels for additional training
data. A second semi-supervised learning method
in NLP is knowledge distillation, which extracts
knowledge from large-scale auto-labeled data as
features.

∗Equal contributions

Tri-training has been used in neural parsing, giv-
ing considerable improvements for both of depen-
dency (Weiss et al., 2015) and constituent pars-
ing (Vinyals et al., 2015; Choe and Charniak,
2016). Knowledge from auto-labeled data has
also been used for parsing (Bansal et al., 2014;
Melamud et al., 2016), where word embeddings
are trained on automatic dependency tree context.
Such knowledge has also been proved effective in
conventional discrete CWS models, such as label
distribution information (Wang et al., 2011; Zhang
et al., 2013). However, it has not been investigated
for neural CWS.
We propose word-context character embed-

dings (WCC), using segmentation label informa-
tion in the pre-training of unigram and bigram
character embeddings. The method packs the la-
bel distribution information into the embeddings,
which could be regarded as a way for knowl-
edge parameterization. Our idea follows Levy and
Goldberg (2014), who use dependency contexts
to train word embeddings. Additionally, moti-
vated by co-training, we proposemulti-view word-
context character embeddings for cross-domain
segmentation, which pre-trains two types of em-
bedding for in-domain and out-of-domain data, re-
spectively. In-domain embeddings are used for
solving data sparseness, and out-of-domain em-
beddings are used for domain adaptation.
Our proposed model is simple, efficient and ef-

fective, giving average 1% accuracy improvement
on in-domain data and 3.5% on out-of-domain
data, respectively, significantly out-performing
self-training and tri-training methods for leverag-
ing auto-segmented data.

2 Baseline Segmentation Model

Chinese word segmentation can be regarded as a
character sequence labeling task, where each char-
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Figure 1: Baseline model architecture.

acter in the sentence is assigned a segment label
from left to right, including {B, M, E, S}, to in-
dicate the segmentation (Xue, 2003; Low et al.,
2005; Zhao et al., 2006). B, M, E represent the
character is the beginning, middle or end of a
multi-character word, respectively. S represents
that the current character is a single character
word.
Following Chen et al. (2015b), a standard bi-

LSTMmodel (Graves, 2008) is used to assign seg-
mentation label for each character. As shown in
Figure 1, our model consists of a representation
layer and a scoring layer. The representation layer
utilizes a bi-LSTM to capture the context of each
character in the sentence. Given a sentence {w1,
w2, w3, · · · , wN }, where wi is the ith character in
the sentence, andN is the sentence length, we have
a corresponding embedding ewi and ewi−1wi for
each character unigram wi and character bigram
wi−1wi, respectively. A forward word representa-
tion ef

i is calculated as follows:

ef
i = concat1(ewi , ewi−1wi),

= tanh(W1[ewi ; ewi−1wi ])

A backward representation eb
i can be obtained in

the same way. Then ef
i and eb

i are fed into forward
and backward LSTM units at current position, ob-
taining the corresponding forward and backward
LSTM representations rlstm−f

i and rlstm−b
i , re-

spectively.
In the scoring layer, we first obtain a linear com-

bination of rlstm−f
i and rlstm−b

i , which is the final

representation at the ith position.

ri = concat2(rlstm−f
i , rlstm−b

i )

= tanh(W2[r
lstm−f
i ; rlstm−b

i ])

Given the representation ri, we use a scoring unit
to score for each potential segment label. Given ri,
the score of segment labelM is:

f i
M = WMh,

where

h = concat3(ri, eM),

= tanh(W3[ri; eM])

WM is the score matrix for label M, and eM is the
label embedding for labelM.

3 Word-Context Character Embeddings

Our model structure is a derivation from the skip-
gram model (Mikolov et al., 2013), similar to
Levy and Goldberg (2014). Given a sentence with
length n: {w1, w2, w3, · · · wn} and its cor-
responding segment labels: {l1, l2, l3, · · · ln},
the pre-training context of current character wt is
the around characters in the windows with size
c, together with their corresponding segment la-
bels (Figure 2). Characters wi and labels li in the
context are represented by vectors ec

wi
∈ Rd and

ec
li

∈ Rd, respectively, where d is the embedding
dimensionality.
The word-context embedding of character wt is

represented as ewt ∈ Rd, which is trained by pre-
dicting the surrounding context representations ec

w′
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and ec
li
, parameterizing the labeled segmentation

information in the embedding parameters. To cap-
ture order information (Ling et al., 2015), we use
different embedding matrices for context embed-
ding in different context positions, training differ-
ent embeddings for the same word when they re-
side on different locations as the context word. In
particular, our context window size is five. As a
result, each word has four different versions of ec,
namely ec

−1, ec
−2, ec

+1, and ec
+2, each taking a dis-

tinct embedding matrix. Given the context win-
dow [w−2,w−1,w,w+1,w+2],w−1 is the left first
context word of the focus word w, ec

−1,wi
will be

selected from embedding matrix E−1, and w+1 is
the right first word of w, ec

+1,wi
will be selected

from embedding matrix E+1.
Note that each character has two types of em-

beddings, where ewi is the embedding form of wi

when wi is the focus word, and ec
wi

is the embed-
ding form of wi when wi is used as a surrounding
context word. We do not have eli because li only
acts as the surrounding context. After pre-training,
ewi will be used as the WCC embeddings.
The objective of our model is to maximize the

average log probability of the context:

1

T

T∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt)+ log p(tt+j |wt)

Negative sampling (Mikolov et al., 2013) is used,
where log p(wt+j |wt) and log p(tt+j |wt) are com-
puted as:

p(wt+j |wt) = logσ(ec
wt+j

⊤ewt)

+

k∑

i=1

Ewi∼Pn(w)[logσ(−ec
wi

⊤ewt)]

and

p(tt+j |wt) = logσ(ec
lt+j

⊤ewt)

+
k∑

i=1

Eli∼Pn(l)[logσ(−ec
li

⊤ewt)],

respectively, where Pn(w) and Pn(l) is the noise
distributions and k is the size of negative samples
for each data sample.
Bigram embeddings are trained in the same way

as unigram character embeddings. For out-of-
domain segmentation, we pre-train two embed-
dings for each token, extracting knowledge from
the two domains, respectively.

上 来 了马

在 马 上骑 来 了

ride on horse up come le

他

E S SBS

he immedially come le

E S SB S S

Figure 2: Word-context for the character ’ 上’ in
two different sentences. The windows size c = 3.

4 Experiments

4.1 Set-up

Weperform experiments on three standard datasets
for Chinese word segmentation: PKU and MSR
from the second SIGHAN bakeoff shared task,
and Chinese Treebank 6.0 (CTB6). For PKU and
MSR, 10% of the training data are randomly se-
lected as development data. We followZhang et al.
(2016) to split the CTB6 corpus into training, de-
velopment and testing sections. For evaluating
cross-domain performance, we also experiment on
Chinese novel data. Following Zhang et al. (2014),
the training set of CTB5 is selected for training,
and the manually annotated sentences of free In-
ternet novel ’Zhuxian’ (ZX) are selected as the de-
velopment and test data (Liu and Zhang, 2012)1.
Chinese Gigaword (LDC2011T13, 4M) is used

for in-domain unlabeled data. For out-of-domain
data, 20K raw sentences of Zhuxian is used.
We take self-training and tri-training as base-
lines, which also use large-scale auto-segmented
data. For self-training, skip-gram pre-training and
word-context character embedding, unlabeled cor-
pus is segmented automatically by our baseline
model. For tri-training, we additionally use the
ZPar (Zhang and Clark, 2007) and ICTCLAS2 as
our base classifiers .
We use F1 to evaluate segmentation accuracy.

The recalls of in-vocabulary (IV) and out-of-
vocabulary (OOV) are also measured.

4.2 Hyper-Parameters

The hyper-parameters used in this work are listed
in Table 1. The values are selected according

1http://zhangmeishan.github.io/
eacl14mszhang.zip

2http://ictclas.nlpir.org/
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unigram dimension 50
bigram dimesion 50
label embedding dimention 32
LSTM hidden size 100
LSTM input size 100
learning rate 0.1
windows size 5

Table 1: Hyper-parameters.

System CTB6 PKU MSR Speed
Greedy 94.9 95.0 97.2 14.7
CRF 95.0 95.1 97.2 3.6

Table 2: Comparisons between greedy and CRF
segmentation. Speed: tokens per millisecond.

to the development set of CTB6. Many previ-
ous character-based CWS models use a transi-
tion matrix to model the tag dependency and CRF
for structured inference (Pei et al., 2014; Chen
et al., 2015a). However, we find that, the greedy
model obtains comparable segmentation accura-
cies across CTB6, PKU andMSR, yet givingmuch
fast speed (Table 2). Hence we adopt the greedy
model as our baseline segmentation model.

4.3 Utilizing Varying-Scale Data

The results of self-training and tri-training with
varying-scale training data are list in Table 3,
where +4X means adding 4 times the size of su-
pervised training data into the training set. We
find that self-training does not work well, and tri-
training with 16X gives a 0.5% accuracy improve-
ment. We adopt this setting for our baseline in the
remaining experiments3.
We also try to choose more effective examples

for self-training and tri-training, by selecting train-
ing instances according to the base segmentation
model score. However, the segmentation perfor-
mances do not get improved. A possible reason is
that the training instances with higher confidence
are always shorter than the original sampled sen-
tences, which may not be very helpful for semi-
spervised segmentation.

4.4 In-Domain Results

As shown in Table 4, pre-training with conven-
tional skip-gram embeddings gives only small im-
provements, which is consistent as findings of pre-
vious work (Chen et al., 2015a; Ma and Hinrichs,

3For out-of-domain experiments, we include both the
+16X and the 20K out-of-domain data for self-training and
tri-training.

Systems +4X +8X +16X +32X
baseline 94.9

self-training 95.0 94.9 94.9 94.8
tri-training 95.2 95.3 95.4 95.4

Table 3: Results of self-training and tri-training on
CTB6 with varying scaled training data.

Type System CTB6 PKU MSR

non-nn

Tseng et al. (2005) - 95.0 96.4
Sun et al. (2009) - 95.2 97.3
Wang et al. (2011) 95.8 - -
Zhang et al. (2013) - 96.1 97.5

nn

Zheng et al. (2013) - 92.4 93.3
Pei et al. (2014) - 95.2 97.2
Kong et al. (2015) - 90.6 90.7
Ma and Hinrichs (2015) - 95.1 96.6
Chen et al. (2015c)† - 94.8 95.6
Xu and Sun (2016) 95.8 96.1 96.3
Liu et al. (2016) 95.5 95.7 97.6
Zhang et al. (2016) 95.4 95.1 97.0
Cai and Zhao (2016) - 95.5 96.5

comb Zhang et al. (2016) 96.0 95.7 97.7

Ours

baseline 94.9 95.0 97.2
+ self-training 95.0 94.8 97.0
+ tri-training 95.5 95.5 97.4
+ skip-gram embeddings 95.3 95.5 97.4
+ WCC embeddings 96.2 96.0 97.8

Table 4: Comparison with other models.

2015; Cai and Zhao, 2016). Segmentation with
self-training even shows accuracy drops on PKU
andMSR.We speculate that the self-training by the
neural CWS baseline is sensitive to the segmenta-
tion errors of the auto-labeled data. On average,
our method obtains an absolute 1% accuracy im-
provement over the baseline, outperforming other
semi-supervised method significantly4.
We compare our model with other state-of-the-

art segmentation models5, which are grouped into
3 classes, namely traditional segmentation mod-
els (non-nn), neural segmentationmodels (nn), and
the combination of both neural and traditional dis-
crete features (comb). Our simple model gives
top accuracies compared with related work. Liu
et al. (2016), Cai and Zhao (2016) and Zhang et al.
(2016) propose to incorporate word embedding
features in the neural CWS, pre-training the word
embeddings in the large-scale labeled data. Differ-
ent to them, we employ a simpler character level
model containing word information, yet obtaining
higher F1 scores.

4The p-values are below 0.01 using pairwise t-test.
5Results with † are obtained from Cai and Zhao (2016),

because results in the original paper use dictionary resources.
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ours:

若在 (if)_鬼王 (guiwang)_手上 (hand)
夺下 (wrest)_七星剑 (qixin sword)，_我 (I)
必 (must)_器重 (think highly of)_于 (at)

你 (you)

baseline:

若在 (if)_鬼 (gui)_王 (king)_手上 (hand)
夺下 (wrest)_七 (seven)_星 (star)_剑 (sword)，
我 (I)_必 (must)_器 (ware)_重 (heavy)

于 (at)_你 (you)

Figure 3: Case studies.

4.5 Out-of-Domain Results

We test out-of-domain performance of our model
on the ZX dataset. We also use the multi-view
word-context character embeddings (WCC) for
cross domain segmentation, which uses two types
of embeddings by simple vector concatenation.
One type of embeddings is pre-trained on in-
domain data, and the other type is pre-trained on
out-of-domain data. In such case, the multi-view
embeddings includes cross-domain information,
which may enhance the cross-domain segmenta-
tion performance (Mou et al., 2016).
As shown in Table 5, using word-context char-

acter (WCC) embeddings and multi-view word-
context character embeddings both give signifi-
cantly higher accuracy improvements compared
with other semi-supervised methods. Addition-
ally, we find that multi-view WCC embeddings
give an extra 1% F1 score improvement overWCC
embeddings. Our proposed model also signifi-
cantly improves the OOV recall (ROOV) and IV
recall (RIV). By studying the cases of segmented
output (Figure 3), we find that our model can rec-
ognize OOV words such as ‘鬼王’, ‘七星剑’ and
the IV word ‘器重’, which are incorrectly labeled
by the baseline. This confirms that our proposed
model is helpful for the data sparseness problem
on closed domain and domain adaptation on across
domain.
We also list the results of Zhang et al. (2014)

and Liu et al. (2014) on this dataset. Liu et al.
(2014) obtains better out-of-domain performance
than our model. However, their results cannot be
compared directly with ours because they use par-
tial labeled URL link data fromChineseWikipedia
data for training.

5 Conclusion

We proposed word-context character embeddings
for semi-supervised neural CWS, which makes the
segmentation model more accurate on in-domain

System F1 ROOV RIV
Zhang et al.
(2014b))

baseline 87.7 - -
+ self-training 88.7 - -

Liu et al.
(2014)

baseline 87.5 - -
+Chinese Wikipedia 90.6 - -

Ours

baseline† 86.6 60.8 91.7
+ skip-gram‡ 87.6 - -
+ self-training‡ 87.8 70.3 91.5
+ tri-training‡ 88.1 68.1 91.5
+ WCC embeddings‡ 89.1 70.4 93.7

+ multi-view
WCC embeddings♯ 90.1 74.1 93.3

Table 5: Results on the out-of-domain data. Mod-
els with † do not use large-scale data, models with
‡ use in-domain large-scale data, and models with
♯ use both in-domain, and out-of-domain large-
scale data.

data, and more robust on the out-of-domain data.
Our segmentation model is simple yet effective,
achieving state-of-the-art segmentation accuracies
on standard benchmarks. It can also be use-
ful for other NLP tasks with small labeled train-
ing data, but a large unlabeled data. Our code
could be downloaded at https://github.com/
zhouh/WCC-Segmentation.
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Abstract

In this paper, we propose a new pipeline
of word embedding for unsegmented lan-
guages, called segmentation-free word em-
bedding, which does not require word seg-
mentation as a preprocessing step. Unlike
space-delimited languages, unsegmented
languages, such as Chinese and Japanese,
require word segmentation as a prepro-
cessing step. However, word segmenta-
tion, that often requires manually anno-
tated resources, is difficult and expensive,
and unavoidable errors in word segmen-
tation affect downstream tasks. To avoid
these problems in learning word vectors
of unsegmented languages, we consider
word co-occurrence statistics over all pos-
sible candidates of segmentations based
on frequent character n-grams instead of
segmented sentences provided by conven-
tional word segmenters. Our experiments
of noun category prediction tasks on raw
Twitter, Weibo, and Wikipedia corpora
show that the proposed method outper-
forms the conventional approaches that re-
quire word segmenters.

1 Introduction

Word embedding, which learns dense vector rep-
resentation of words from large text corpora, has
received much attention in the natural language
processing (NLP) community in recent years.
It is reported that the representation of words
well captures semantic and syntactic properties
of words (Bengio et al., 2003; Mikolov et al.,

∗ This work was done while the author was at Shi-
modaira laboratory, Division of Mathematical Science, Grad-
uate School of Engineering Science, Osaka University, and
Mathematical Statistics Team, RIKEN Center for Advanced
Intelligence Project.
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Figure 1: t-SNE projections of vector represen-
tation of Japanese nouns that generated by our
proposed method without word dictionary. These
proper nouns are color-coded according to its cat-
egories which extracted from Wikidata.

2013; Pennington et al., 2014), and is useful for
many downstream NLP tasks, including part-of-
speech tagging, syntactic parsing, and machine
translation (Huang et al., 2011; Socher et al., 2013;
Sutskever et al., 2014).

In order to train word embedding models on a
raw text corpus, we have to do word segmentation
as a preprocessing step. In space-delimited lan-
guages such as English and Spanish, simple rule-
based and co-occurrence-based approaches offer
reasonable segmentations. On the other hands,
these approaches are impractical for unsegmented
languages such as Chinese, Japanese, and Thai.
Therefore, machine learning-based approaches are
widely used in NLP for unsegmented languages.
Conditional random field (CRF)-based supervised
word segmentation (Kudo et al., 2004; Tseng
et al., 2005) is still the most used one in Japanese
and Chinese NLP (Prettenhofer and Stein, 2010;
Funaki and Nakayama, 2015; Ishiwatari et al.,
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2015; Nakazawa et al., 2016).

However, there are some problems for these
supervised word segmentation as a preprocess-
ing step of a word embedding pipeline. First,
they require language-specific manually anno-
tated resources such as word dictionaries and seg-
mented corpora. Since these manually annotated
resources are typically unavailable for domain-
specific corpora (e.g. Twitter or Weibo cor-
pora that contain many neologisms and informal
words), we have to create manually annotated re-
sources if we need. Second, they cannot take ad-
vantage of word occurrence frequencies in a cor-
pus. Even though a certain proper noun (e.g. “
老人と海” (The Old Man and the Sea)) occurs
frequently in a corpus, word segmenters will con-
tinue to split the proper noun erroneously (e.g. “
老人/と/海” (a old man / and / a sea)) if it is not
registered in the word dictionary. Because of seg-
mentation errors incurred by these problems, the
downstream word embedding model cannot learn
vector representation of proper nouns, neologisms,
and informal words.

In this paper, in order to learn word vectors
from a raw text corpus while avoiding the above
problems, we propose a new word segmentation-
free pipeline for word embedding, referred to as
segmentation-free word embedding (sembei). Our
framework first enumerates all possible segmen-
tations (referred to as a frequent n-gram lattice)
based on character n-grams that frequently oc-
curred in the raw corpus, and then learns n-gram
vectors from co-occurrence frequencies over the
frequent n-gram lattice. Using the general idea
of segmentation-free word embedding, we can ex-
tend existing word embedding models. Specifi-
cally, in this paper, we propose a segmentation-
free version of the widely used skip-gram model
with negative sampling (SGNS) (Mikolov et al.,
2013), which we refer to as SGNS-sembei.

Although the frequent character n-grams nec-
essarily include many non-words (i.e. n-grams
that are not words), remarkably, our results show
that nearest neighbor search works well for fre-
quent words and even proper nouns (e.g. near-
est neighbors of n-gram “ドイツ” (Germany) are
“中国” (China), “イギリス” (United Kingdom),
etc.). This observation suggests that we can use
the proposed method for automatic acquisition of
synonyms from large raw text corpora.

We conduct experiments on a noun category

prediction task on several corpora and observe
that our method outperforms the conventional ap-
proaches that use word segmenters. Fig. 1 shows
a t-SNE projection of vector representation of
Japanese nouns which is learned from only a raw
Twitter corpus. We can see that the proposed
method can learn vector representation of these
nouns, and the learnt representation achieves good
separation based on their categories.

2 Related Work

There are some representation models that do not
rely on any segmenters. Dhingra et al. (2016) pro-
posed a character-based RNN model for vector
representation of tweets, and Schütze (2017) pro-
posed a new text embedding method that learns
n-gram vectors from the corpus that segmented
randomly and then constructs text embeddings by
summing up the n-gram vectors. In the field of
representation learning for biological sequences
(e.g. DNA and RNA), Asgari and Mofrad (2015)
applied the skip-gram model (Mikolov et al.,
2013) to fixed length fragments of biological se-
quences. These methods mainly aim at learn-
ing vector representation of texts or biological
sequences instead of words or fragments of se-
quences. On the other hand, in this paper, we focus
on learning vector representation of words from a
raw corpus of unsegmented languages.

3 Conventional Approaches to Word
Embeddings

Word embedding is also commonly used in
NLP for unsegmented languages (Prettenhofer and
Stein, 2010; Funaki and Nakayama, 2015; Ishi-
watari et al., 2015). In these studies, they usually
segment a raw corpus into words using a word seg-
menter or a morphological analyzer, and then feed
the segmented corpus to word embedding models
(e.g. the skip-gram model (Mikolov et al., 2013)
or the GloVe (Pennington et al., 2014)) as in the
case of space-delimited languages. The flowchart
of the above process is shown in the left part of
Fig. 2.

3.1 The original SGNS

The original skip-gram model with negative sam-
pling (Mikolov et al., 2013) (we refer to it as
the original SGNS) learns vector representation of
words vw and their contexts ṽc that minimize the
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word dictionary with a set of frequent character n-
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following objective function:

maximize
{vw}∪{ṽc}

∑

(w,c)∈D
log σ(v⊤

w ṽc) +
∑

(w,c)∈D′
log σ(−v⊤

w ṽc)

(1)

where σ(x) := (1 + e−x)−1, D is a multiset (bag)
of positive samples (i.e. co-occurred pairs in the
corpus), and D′ is a multiset of negative sam-
ples. This objective function is maximized using
stochastic gradient descent (SGD).

4 Segmentation-Free Word Embeddings

In this section, we first introduce the general idea
of segmentation-free word embeddings (sembei),
and then propose a segmentation-free version of
the SGNS.

While conventional word embedding ap-
proaches learn word vectors from segmented
corpora that provided by word segmenters,
our approach learns n-gram vectors from raw
corpora, as in the right part of Fig. 2. In order
to learn n-gram vectors from a raw corpus of
unsegmented languages, we first construct a
frequent n-gram lattice, which represents all pos-
sible segmentations based on frequent character
n-grams of the corpus, in the same way as the
construction of word lattices used in morpho-
logical analysis. Then, we learn n-gram vectors
using co-occurrence statistics over the frequent

n-gram lattice instead of segmented corpora as in
conventional approaches.

4.1 Segmentation-Free Version of the SGNS

Here, we introduce a segmentation-free version of
SGNS, referred to as SGNS-sembei, as an appli-
cation of the idea of segmentation-free word em-
bedding. Our method simply optimizes the origi-
nal SGNS’s objective function (1) with the slight
modification: changing the definition of the multi-
set of positive samples D.

In SGNS-sembei, D is redefined as the multi-
set of character n-gram pairs (w, c) where w and
c occur adjacently in the corpus (i.e. w and c are
connected in the frequent n-gram lattice). In addi-
tion, to discriminate co-occurrence with different
order in the frequent n-gram lattice, we define con-
textual words with their relative positions to the
center word as the same way as Ling et al. (2015)
did.

We also redefine the multiset of negative sam-
ples D′ using D in the same way as the origi-
nal SGNS, and then optimize the objective func-
tion (1) using SGD.

Table 1: Examples of labels of entities (in
Japanese, and in English for reference) and its cat-
egories extracted from Wikidata.

label (ja) label (en) category

ドイツ Germany country
二酸化炭素 carbon dioxide chemical compound
消防士 firefighter profession
アップルパイ apple pie food
長友佑都 Yuto Nagatomo human

5 Experiment

In this section, we evaluate our method by the
noun category prediction task on Twitter, Weibo,
and Wikipedia corpora.

The C++ implementation of the proposed
method is available on GitHub1.

5.1 Settings

We used four raw text corpora: Wikipedia
(Japanese), Wikipedia (Chinese), Twitter
(Japanese), and Weibo (Chinese). The Wikipedia
corpora consist of only a part of the Wikipedia

1https://github.com/oshikiri/
w2v-sembei
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Table 2: Micro F-scores (higher is better) and coverages [%] (in parentheses, higher is better).
dictionary Japanese Chinese

default Wikidata Wikipedia Twitter Wikipedia Weibo

SGNS ✓ 0.896 (34) 0.761 (46) 0.889 (86) 0.766 (88)
SGNS ✓ ✓ 0.945 (98) 0.867 (96) 0.891 (94) 0.765 (93)
SGNS-sembei 0.949 (100) 0.870 (100) 0.891 (100) 0.811 (100)

dumps2 (dated on February 20th, 2017), whose
HTML tags are removed. The Weiboscope
corpus (Chau et al., 2013) consists of 226,841,122
posts mainly in Chinese, and we use only a part
of it. The Twitter corpus consists of 17,316,968
Japanese tweets that were collected from October
26th, 2016 until November 22nd, 2016 via the
Twitter Streaming API. We removed hashtags,
users’ id, and URL from Twitter and Weibo
corpora. We extracted about 1,460k frequent
n-grams3 as the frequent character n-grams for
our proposed method.

We extracted the noun-category pairs from the
Wikidata (Vrandečić and Krötzsch, 2014) (We
used the dump dated January 9th, 2017) as fol-
lows. We first extracted Wikidata entities whose
headwords are also in the 1,460k frequent n-
grams, and then extracted the Wikidata entities
whose “instance of” properties are any of the
predetermined category set4, and then collected
names and their categories of the entities. Ex-
amples of the extracted noun-category pairs are
shown in Table 1.

We randomly split the noun-category pairs
into a train (60%) and a test (40%) set. We
trained linear C-SVM classifiers (Hastie
et al., 2009) with the train set to predict
categories from vector representation of the
nouns. We performed a grid search over
(C, classifier) ∈ {0.5, 1, 5, 10, 50, 100} ×
{one-vs-one, one-vs-rest} of linear SVM using
the train set for each vector representation, and

2We used {ja,zh}wiki-20170220-pages-articles1.xml in
https://dumps.wikimedia.org

3In this experiment, we defined the frequent
n-grams as the union of the top-kn frequent n-
grams, where n and kn are the pre-specified num-
bers. And we used n = 8, (k1, . . . , k8) =
(10000, 300000, 300000, 300000, 200000, 200000, 100000,
50000) for Japanese corpora, and n = 7, (k1, . . . , k7) =
(10000, 400000, 400000, 300000, 200000, 100000, 50000)
for Chinese corpora

4 {country, profession, ship, railway station, food, chem-
ical compound, prefecture of Japan, manga, human } for
Japanese, and {country, profession, television series, busi-
ness enterprise, city, chemical compound, taxon, human} for
Chinese

reported the best scores on the test set.

5.2 Baseline Systems

We compared SGNS-sembei with the conven-
tional approaches that use the original SGNS and
word segmenters. To segment the raw corpora, we
used the MeCab (Kudo et al., 2004) for Japanese
corpora and the Stanford Word Segmenter (Tseng
et al., 2005) for Chinese corpora with their de-
fault dictionaries5. And we ignored the words that
occur less than 5 times. We also ran these base-
line systems in an ideal setting: running the word
segmenters with the default dictionaries and ad-
ditional dictionaries that consist of the nouns ex-
tracted in § 5.1.

We performed a grid search over (h, t, nneg) ∈
{5, 8, 10} × {10−5, 10−4, 10−3} × {3, 10, 25}
where h is the size of context window, t is the sam-
pling threshold, and nneg is the number of negative
samples.

5.3 Results

In both the original SGNS and SGNS-sembei, we
fixed the dimensionality of vector representation
to 200 and the number of iterations to 5 in both
baseline and our method. In SGNS-sembei, we
used the number of negative samples nneg = 10,
size of context window h = 1, initial learning rate
αinit = 0.01.

The resulting micro F-scores and the cover-
ages (i.e. the percentages of the noun-category
pairs whose nouns’ vector representation exists)
are shown in Table 2, and the t-SNE (Maaten and
Hinton, 2008) projections of Japanese nouns vec-
tors learned from the Twitter corpus are shown in
Fig. 1. We observed that our proposed method
outperforms the conventional approaches that use
word segmenters. Furthermore, the coverages of
our method were higher than those of the SGNS
with the default dictionary (especially in Japanese)
and competitive to those of the SGNS with the de-
fault dictionary and Wikidata (which is an ideal

5We use mecab-ipadic v2.7.0 for the MeCab and
dict-chris6.ser.gz for the Stanford Word Segmenter.
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setting) even though our method does not require
any manually annotated resources. We can also
see that the learnt representation achieves good
separation based on their categories as in Fig. 1.
Nearest neighbor search using Twitter and Weibo
corpora was also performed as preliminary exper-
iments, and surprisingly, it worked well for fre-
quent words as in Table. 3.

Table 3: Results of nearest neighbor search for fre-
quent words

Language Query 3-Nearest Neighbors

Japanese
ドイツ (Germany)

中国 (China), イギリス (UK),
ポーランド (Poland)

酸素 (oxygen)
水素 (hydrogen),鉄分 (iron),二
酸化炭素 (carbon dioxide)

Chinese
德国 (Germany)

美国 (USA), 英国 (UK), 法国
(France)

羽毛球 (badminton)
台球 (billiards),网球 (tennis),乒
乓球 (pingpong)

6 Conclusion

We proposed segmentation-free word embedding
for unsegmented languages. Although our method
does not rely on any manually annotated re-
sources, experimental results of the noun category
prediction task on several corpora showed that our
method outperforms conventional approaches that
rely on manually annotated resources.

As an anonymous reviewer suggested, a pos-
sible direction of future work is to leverage an-
other word segmentation approach which uses lin-
guistic features, such as the Stanford Word Seg-
menter (Tseng et al., 2005) with k-best segmenta-
tions.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-

guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

Michael Chau, Chung hong Chan, and King wa Fu.
2013. Assessing censorship on microblogs in
china: Discriminatory keyword analysis and the
real-name registration policy. IEEE Internet Com-
puting, 17:42–50.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William Cohen. 2016.
Tweet2vec: Character-based distributed represen-
tations for social media. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 269–274, Berlin, Germany. Association for
Computational Linguistics.

Ruka Funaki and Hideki Nakayama. 2015. Image-
mediated learning for zero-shot cross-lingual doc-
ument retrieval. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 585–590, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2009. The Elements of Statistical Learning,
2 edition. Springer New York.

Fei Huang, Alexander Yates, Arun Ahuja, and Doug
Downey. 2011. Language models as representations
for weakly supervised nlp tasks. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning, pages 125–134, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Shonosuke Ishiwatari, Nobuhiro Kaji, Naoki Yoshi-
naga, Masashi Toyoda, and Masaru Kitsuregawa.
2015. Accurate cross-lingual projection between
count-based word vectors by exploiting translatable
context pairs. In Proceedings of the Nineteenth Con-
ference on Computational Natural Language Learn-
ing, pages 300–304, Beijing, China. Association for
Computational Linguistics.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
japanese morphological analysis. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 230–
237, Barcelona, Spain. Association for Computa-
tional Linguistics. http://taku910.github.
io/mecab/.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1299–
1304, Denver, Colorado. Association for Computa-
tional Linguistics.

771



Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Toshiaki Nakazawa, Chenchen Ding, Hideya Mino,
Isao Goto, Graham Neubig, and Sadao Kurohashi.
2016. Overview of the 3rd workshop on asian trans-
lation. In Proceedings of the 3rd Workshop on Asian
Translation (WAT2016), pages 1–46, Osaka, Japan.
The COLING 2016 Organizing Committee.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1532–1543, Doha, Qatar. Associ-
ation for Computational Linguistics.

Peter Prettenhofer and Benno Stein. 2010. Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1118–1127, Uppsala, Swe-
den. Association for Computational Linguistics.

Hinrich Schütze. 2017. Nonsymbolic text representa-
tion. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
785–796, Valencia, Spain. Association for Compu-
tational Linguistics.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with composi-
tional vector grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
455–465, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112. Curran As-
sociates, Inc.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A Condi-
tional Random Field Word Segmenter for SIGHAN
bakeoff 2005. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing, volume
171. Jeju Island, Korea. http://nlp.stanford.
edu/software/segmenter.shtml.
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Abstract

Textbooks are rich sources of knowledge.
Harvesting knowledge from textbooks is a
key challenge in many educational appli-
cations. In this paper, we present an ap-
proach to obtain axiomatic knowledge of
geometry in the form of horn-clause rules
from math textbooks. The approach uses
rich contextual and typographical features
extracted from the textbooks. It also lever-
ages the redundancy and shared ordering
of axioms across multiple textbooks to ac-
curately harvest axioms. These axioms
are then parsed into horn-clause rules that
are used to improve the state-of-the-art in
solving geometry problems.

1 Introduction

Recently, researchers have proposed standardized
tests as “drivers for progress in AI” (Clark and
Etzioni, 2016). There is a growing body of
work in solving standardized tests such as reading
comprehensions (Richardson et al., 2013; Sachan
et al., 2015, inter alia), science question answering
(Schoenick et al., 2016; Sachan et al., 2016, in-
ter alia), algebra word problems (Kushman et al.,
2014, inter alia), geometry problems (Seo et al.,
2015), pre-university entrance exams (Fujita et al.,
2014), etc. A major challenge in building these
solvers is the lack of subject knowledge. For ex-
ample, geometry tests require knowledge of ge-
ometry axioms and pre-university exams require
knowledge of laws of physics, chemistry, etc.

In this paper, we present an automatic approach
that can (a) harvest such subject knowledge from
textbooks, and (b) parse the extracted knowledge
to structured programs that the solvers can use.
Unlike information extraction systems trained on
domains such as web documents (Chang et al.,

Figure 1: An excerpt of a textbook from our dataset that introduces the
Pythagoras theorem. The textbook has a lot of typographical features that can
be used to harvest this theorem: The textbook explicitly labels it as a “the-
orem”; there is a colored bounding box around it; an equation writes down
the rule and there is a supporting figure. Our models leverages such rich con-
textual and typographical information (when available) to accurately harvest
axioms and then parses them to horn-clause rules. The horn-clause rule de-
rived by our approach for the Pythagoras theorem is: isTriangle(ABC)∧
perpendicular(AC,BC) =⇒ BC2 + AC2 = AB2.

2003; Etzioni et al., 2004, inter alia), learning an
information extraction system that can extract ax-
iomatic knowledge from textbooks is challenging
because of the small amount of in-domain labeled
data available for these tasks. We tackle this chal-
lenge by (a) leveraging the redundancy and shared
ordering of axiom mentions across multiple text-
books1, and (b) utilizing rich contextual and typo-
graphical features2 from textbooks to effectively
extract and parse axioms. Finally, we also provide
an approach to parse the extracted axiom men-
tions from various textbooks and reconcile them
to achieve the best program for each axiom.

As a case study, we use our approach to har-
vest axiomatic knowledge of geometry from math
textbooks, and use this knowledge to improve the
state-of-the-art system for solving SAT style ge-
ometry problems. Seo et al. (2015) recently pre-
sented GEOS, an automated end-to-end system
that solves SAT style geometry questions such as
the one shown in Figure 2. GEOS derives a logi-
cal expression that represents the meaning of the

1The same axiom can be potentially mentioned in a num-
ber of textbooks in different ways. All textbooks typically
introduce axioms in roughly the same order – for example,
pythagorous theorem would typically be introduced after in-
troducing the notion of a right angled triangle.

2Textbooks contain rich context and typographical infor-
mation (see Figure 1 for an illustrative example). We use this
rich information as features in our model.
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Text Description:

measure(   MAO, 30o)
isCircle(O)

radius(O, 4 cm)
?x

Diagram:

liesOn( A, circle O), liesOn( B, circle O), 
liesOn( C, circle O), liesOn( D, circle O)

isLine(AB), isLine(BC), isLine(CA), isLine(BD), isLine(DA)
isTriangle(ABC), isTriangle(ABD), isTriangle(AOM)

measure(   ADB, x), measure(   MAO, 30o)
measure(   AMO, 90o)

…

Figure 2: An example SAT style geometry problem with the question text,
corresponding diagram and (optionally) answer candidates. Below: A logical
expression that represents the meaning of the text description and the diagram
in the problem. GEOS derives a weighted logical expression where each pred-
icates also carries a weighted score but we do not show them here for clarity.

text description and the diagram (also shown in
Figure 2), and then solves the geometry question
by checking the satisfiablity of the derived logical
expression. While this solver has its basis in co-
ordinate geometry and indeed works, it has some
key issues: GEOS requires an explicit mapping of
each predicate into a set of constraints over point
coordinates3. These constraints can be non-trivial
to write, requiring significant manual engineering.
As a result, GEOS’s constraint set is incomplete
and it cannot solve a number of SAT style geome-
try questions. Furthermore, this solver is not in-
terpretable. As our user studies show, it is not
natural for a student to understand the solution of
these geometry questions in terms of satisfiability
of constraints over coordinates. A more natural
way for students to understand and reason about
these questions is through deductive reasoning us-
ing axioms of geometry4.

We use our model to extract and parse axiomatic
knowledge from a novel dataset of 20 publicly
available math textbooks. We use this structured
axiomatic knowledge to build a new axiomatic
solver that performs logical inference to solve ge-

3For example, the predicate isPerpendicular(AB, CD) is
mapped to the constraint yB−yA

xB−xA ×
yD−yC
xD−xC = −1.

4For example, the deductive reasoning required to solve
the question in Figure 2 is: (1) Use the axiom that the sum of
interior angles of a triangle is 180◦and the fact that ∠AMO
is 90◦to conclude that ∠MOA is 60◦. (2)4MOA ∼4MOB
(using a similar triangle axiom) and then, ∠MOB = ∠MOA
= 60◦(using the axiom that corresponding angles of similar
triangles are equal). (3) Use angle sum rule to conclude that
∠AOB = ∠MOB + ∠MOA = 120◦. (4) Use the axiom that the
angle subtended by an arc of a circle at the centre is double
the angle subtended by it at any point on the circle to conclude
that ∠ADB = 0.5×∠AOB = 60◦.

ometry problems. Our axiomatic solver outper-
forms GEOS on all existing test sets introduced in
Seo et al. (2015) as well as a new test set of geom-
etry questions collected from these textbooks. We
also performed user studies on a number of school
students studying geometry who found that our
axiomatic solver is more interpretable and useful
compared to GEOS.

2 Background: GEOS

Our work reuses GEOS to parse the question text
and diagram into its formal problem description
as shown in Figure 2. GEOS parses the ques-
tion text and the diagram to a formal problem de-
scription. GEOS uses a logical formula, a first-
order logic expression that includes known num-
bers or geometrical entities (e.g. 4 cm) as con-
stants, unknown numbers or geometrical entities
(e.g. O) as variables, geometric or arithmetic re-
lations (e.g. isLine, isTriangle) as predicates and
properties of geometrical entities (e.g. measure,
liesOn) as functions.

This is done by learning a set of relations that
potentially correspond to the question text (or the
diagram) along with a confidence score. For dia-
gram parsing, GEOS uses a publicly available di-
agram parser for geometry problems (Seo et al.,
2014). For text parsing, GEOS takes a multi-stage
approach, which maps words or phrases in the text
to their corresponding concepts, and then identi-
fies relations between identified concepts. Given
this formal problem description, GEOS use a nu-
merical method to check the satisfiablity of literals
by defining a relaxed indicator function for each
literal. These indicator functions are manually en-
gineered for every predicate. Since this is a cum-
bersome process, GEOS has an incomplete map-
ping of literals to indicator functions.

3 Set up for the Axiomatic Solver

In this work, we replace the numerical solver of
GEOS with an axiomatic solver. We extract ax-
iomatic knowledge from textbooks and parse them
into horn clause rules. Then we build an ax-
iomatic solver that performs logical inference with
these horn clause rules and the formal problem de-
scription. A sample logical program (in prolog
notation) that solves the problem in Figure 2 is
given in Figure 3. The logical program has a set
of declarations from the GEOS text and diagram
parsers which describe the problem specification
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sort	point	=	{A,	B,	C,	D,	O,	M}	
sort	line	=	{AB,	BC,	CA,	BD,	DA,	OA,	OM}	//Symmetrically	define	BA,	CB,	…	
sort	angle	=	{ABC,	BCA,	CAB,	ABD,	BDA,	DAB,	AMO,	MOA,	OAM,	BMO}	//Symmetrically	define	CBA,	ACB,	…	
sort	triangle	=	{ABC,	ABD,	AMO}	//Symmetrically	define	CBA,	ACB,	…	
sort	circle	=	{O}	
	
0.4	perpendicular(OM,	AB)	
0.8	measure(ADB,	x)	
0.9	liesOn(A,	O)	
0.9	liesOn(B,	O)	
0.9	liesOn(C,	O)	
0.9	liesOn(D,	O)	
0.9	liesOn(M,	AB)	
0.9	liesInInterior(M,	AOB)	
	
0.9	measure(OAM,	30)	
0.9	measure(radius(O),	4	cm)	
0.9	query(x,	_)	
	
	
0.8	measure(ABC,	90.0)	:-	perpendicular(AB,	CD),	liesOn(B,	CD)	
0.8	measure(XAC,	180-t)	:-	liesOn(A,	BC),	measure(XAB,	t)	
0.7	equals(length(AX),	length(XB))	:-	liesOn(A,	O),	liesOn(B,	O),	perpendicular(OX,	AB),	liesOn(X,	AB)	
0.7	similar(ABC,	DEF)	:-	equals(length(BC),	length(EF)),	equals(measure(ABC),	measure(DEF)),	

equals(measure(BCA),	measure(EFD))	//	ASA	rule.	Similar	rules	for	SAS,	SSS,	RHS	rules	of	similarity	
0.7	equals(measure(CAB),	measure(FED))	:-	similar(ABC,	DEF)	//	Similar	rules	for	other	corresponding	angles	
0.7	equals(measure(ABC),	u+v))	:-	equals(measure(ABD),	u)),	equals(measure(DBC),	v)),	liesInInterior(D,	ABC)	
0.6	equals(measure(ADB),	t/2)	:-	equals(measure(AOB),	t),	liesOn(A,	O),	liesOn(B,	O)		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

1	
2	
3	
4	
	
	

5	
6	
7	

D
atastructures	

D
iagram

	Parse		
Text	Parse		

Axiom
atic	Rules	

Figure 3: A sample logical program (in prolog style) that solves the prob-
lem in Figure 2. The program consists of a set of data structure declarations
that correspond to types in the prolog program, a set of declarations from the
diagram and text parse and a subset of the geometry axioms written as horn
clause rules. The axioms are used as the underlying theory with the aforemen-
tioned declarations to yield the solution upon logical inference. Normalized
confidence weights from the diagram, text and axiom parses are used as proba-
bilities. For readers understanding, we list the axioms in the order (1 to 7) they
are used to solve the problem. However, this ordering is not required. Other
(less probable) declarations and axiom rules are not shown here for clarity but
they can be assumed to be present.

and the parsed horn clause rules describe the un-
derlying theory. Normalized confidence scores
from question text, diagram and axiom parsing
models are used as probabilities in the program.
Next, we describe how we harvest structured ax-
iomatic knowledge from textbooks.

4 Harvesting Axiomatic Knowledge

We present a structured prediction model that
identifies axioms in textbooks and then parses
them. Since harvesting axioms from a single text-
book is a very hard problem, we use multiple text-
books and leverage the redundancy of information
to accurately extract and parse axioms. We first
define a joint model that identifies axiom mentions
in each textbook and aligns repeated mentions of
the same axiom across textbooks. Then, given a
set of axioms (with possibly, multiple mentions of
each axiom), we define a parsing model that maps
each axiom to a horn clause rule by utilizing the
various mentions of the axiom.

Given a set of textbooks B in machine readable
form (XML in our experiments), we extract chap-
ters relevant for geometry in each of them to ob-
tain a sequence of sentences (with associated ty-
pographical information) from each textbook. Let
Sb = {s(b)0 , s

(b)
1 , . . . s

(b)
|Sb|} denote the sequence of

sentences in textbook b. |Sb| denotes the number
of sentences in textbook b.

4.1 Axiom Identification and Alignment

We decompose the problem of extracting axioms
from textbooks into two tractable sub-problems:
(a) identification of axiom mentions in each text-
book using a sequence labeling approach, and (b)
aligning repeated mentions of the same axiom
across textbooks. Then, we combine the learned
models for these sub-problems into a joint opti-
mization framework that simultaneously learns to
identify and align axiom mentions. Joint modeling
of the axiom identification and alignment is neces-
sary as both sub-problems can help each other.

4.1.1 Axiom Identification
Linear-chain CRF formulation (Lafferty et al.,
2001) can be used for the subproblem of axiom
identification. Given {Sb|b ∈ B}, the model labels
each sentence s(b)i as Before, Inside or Outside an
axiom. Hereon, a contiguous block of sentences
labeled B or I will be considered as an axiom
mention. Let T = {B, I,O} denote the tag set.
Let y(b)i be the tag assigned to s(b)i and Yb be the
tag sequence assigned to Sb. The CRF defines:

p(Yb|Sb;θθθ) ∝
|Sb|∏
k=1

exp

(
∑
i,j∈T

θθθTijfij(y
(b)
k−1, y

(b)
k ,Sb)

)

We find the parameters θθθ using maximum-
likelihood estimation with L2 regularization:
θθθ∗ = arg maxθθθ

∑
b∈B

log p(Yb|Sb;θθθ)− λ||θθθ||22
We use L-BFGS to optimize the objective and
Viterbi decoding for inference.
Features: Features f look at a pair of adjacent
tags y(b)k−1, y(b)k , the input sequence Sb, and where
we are in the sequence. The features (listed in Ta-
ble 1) include various content based features en-
coding various notions of similarity between pairs
of sentences as well as various typographical fea-
tures such as whether the sentences are annotated
as an axiom (or theorem or corollary) in the text-
book, contain equations, diagrams, text that is bold
or italicized, are in the same node of the xml hier-
archy, are contained in a bounding box, etc.

Some extracted axiom mentions contain point-
ers to a diagram eg. “Figure 2.1”. We consider the
diagram to be a part of the axiom mention.

4.1.2 Axiom Alignment
Next, we leverage the redundancy of information
and the relatively fixed ordering of axioms in var-
ious textbooks by aligning various mentions of
the same axiom across textbooks and introducing
structural constraints on the alignment.
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C
on

te
nt

Sentence Over-
lap

Semantic Textual Similarity between the current and next sentence. We include features that compute the proportion of common
unigrams and geometry entities (constants, predicates and functions) across the two sentences. This feature is conjoined with the tag
assigned to the current and next sentence.

Geometry enti-
ties

No. of geometry entities (normalized by the number of tokens) in this sentence. This feature is conjoined with the tag assigned to the
current sentence.

Intra-sentence
semantics

Indicator that the current sentence contains any one of the following words: hence, if, equal, twice, proportion, ratio, product. This
feature is conjoined with the tag assigned to the current sentence.

Ty
po

gr
ap

hy

Axiom, Theo-
rem, Corollary
Mention

(a) The current (or previous) sentence is mentioned as an Axiom, Theorem or Corollary e.g. Similar Triangle Theorem or Corollary 2.1.
(b) The section or subsection in the textbook containing the current (or previous) sentence mentions an Axiom, Theorem or Corollary.
This feature is conjoined with the tag assigned to the current (and previous) sentence.

Eqn. Template The current (or next) sentence contains an equation eg. PA × PB = PT 2. This feature is conjoined with the tag assigned to the
current (and next) sentence.

Assoc. Dia-
gram

The current sentence contains a pointer to a figure eg. “Figure 2.1”. This feature is conjoined with the tag assigned to the current
sentence.

RST edge Indicator for the RST relation between the current and next sentence. This feature is conjoined with the tag assigned to the current and
next sentence.

Bold/Underline The sentence (or previous) sentence contains text that is in bold font or underlined. Conjoined with the tag assigned to the current (and
previous) sentence.

XML structure Indicator that the current and previous sentence are in the same node of the XML hierarchy. Conjoined with the tag assigned to the
current and previous sentence.

Bounding box Indicator that the current and previous sentence are bounded by a bounding box in the textbook. Conjoined with the tag assigned to the
current and previous sentence.

Table 1: Feature set for our axiom identification model. The features are based on content and typography.

Let Ab =
(
A

(b)
1 , A

(b)
2 , . . . , A

(b)
|Ab|

)
be the axiom

mentions extracted from textbook b. Let A denote
the collection of axiom mentions extracted from
all textbooks. We assume a global ordering of
axioms A∗ = (A∗1, A

∗
2, . . . , A

∗
U ) where U is some

pre-defined upper bound on the total number
of axioms in geometry. Then, we emphasize
that the axiom mentions extracted from each
textbooks (roughly) follow this ordering. Let
Z

(b)
ij be a random variable that denotes if axiom

A
(b)
i extracted from book b refers to the global

axiom A∗j . We introduce a log-linear model that
factorizes over alignment pairs:
P (Z|A;φφφ) = 1

Z(A;φφφ)
×

exp




∑
b1,b2∈B
b1 6=b2

∑
1≤k≤U

∑
1≤i≤|Ab1

|
1≤j≤|Ab2

|

Z
(b1)
ik Z

(b2)
jk φφφTg(A

(b1)
i , A

(b2)
j )




Here, Z(A;φφφ) is the partition function of the
log-linear model. g denotes the feature function
described later. We introduce the following
constraints on the alignment structure:
C1: An axiom appears in one book at-most once
C2: An axiom refers to exactly one theorem in
the global ordering
C3: Ordering Constraint: If ith axiom in a book
refers to the jth axiom in the global ordering then
no axiom succeeding the ith axiom can refer to a
global axiom preceding j.

Learning with Hard Constraints: We find the
optimal parameters φφφ using maximum-likelihood
estimation with L2 regularization:
φφφ∗ = arg maxφφφ logP (Z|A;φφφ)− µ||φφφ||22

We use L-BFGS to optimize the objective. To

compute feature expectations appearing in the gra-
dient of the objective, we use a Gibbs sampler. The
sampling equations for Zbik are:

P (Z
(b)
ik |rest) ∝ exp (Tb(i, k)) (1)

Tb(i, k) = Z
(b)
ik

∑
b′∈B
b′ 6=b

∑
1≤j≤|Ab′ |

Z
(b′)
jk φφφTg(A

(b)
i , A

(b′)
j )

Note that the constraints C1 . . . 3 define the fea-
sible space of alignments. Our sampler always
samples the next Z(b)

ik in this feasible space.
Learning with Soft Constraints: We might want
to treat some constraints, in particular, the order-
ing constraints C3 as soft constraints. We can
write down the constraint C3 using the alignment
variables:
Z

(b)
ij ≤ 1− Z(b)

kl

∀ 1 ≤ i < k ≤ |Ab|, 1 ≤ l < j ≤ U
∀ b ∈ B

To model these constraints as soft constraints,
we penalize the model for violating these con-
straints. Let the penalty for violating the above
constraint be exp

(
νmax

(
0, 1− Z(b)

ij − Z
(b)
kl

))
. We

introduce a new regularization term: R(Z) =∑
1≤i<k≤|Ab|
1≤l<j≤U
b∈B

exp
(
νmax

(
0, 1− Z(b)

ij − Z
(b)
kl

))
. Here

ν is a hyper-parameter to tune the cost of violating
a constraint. We write down the following regular-
ized objective:

φφφ∗ = arg maxφφφ logP (Z|A;φφφ)−R(Z)− µ||φφφ||22
We use L-BFGS to find the optimal parameters

φφφ∗. We perform Gibbs sampling to compute fea-
ture expectations. The sampling equation for Z(b)

ik

is similar (eq 1), but:
Tb(i, k) =

∑
b′∈B
b′ 6=b

∑
1≤j≤|Ab′ |

Z
(b)
ik Z

(b′)
jk φφφTg(A

(b)
i , A

(b′)
j )
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Figure 4: An illustration of the three operations to sample axiom blocks.

+ ν
∑
b′∈B
b′ 6=b

∑
i<j≤|Ab′ |

∑
1≤l<k

(
1− Z(b)

ik − Z
(b′)
jl

)

+ ν
∑
b′∈B
b′ 6=b

∑
1≤j<i|

∑
k<l≤U

(
1− Z(b)

ik − Z
(b′)
jl

)

Features: Now, we describe the features g. These
too include content based features encoding var-
ious notions of similarity between pairs of ax-
iom mentions as well as various typographical fea-
tures. The features are listed in Table 2.

4.1.3 Joint Identification and Alignment

Joint modeling of axiom identification and align-
ment components is useful as both problems po-
tentially help each other. Let Y (b)

ij denote that the

sentence s(b)i from book b has tag j. We reuse the
definitions of the alignment variables Z(b)

ij as be-

fore. We further define Z(b)
i0 such that it denotes

that the ith axiom in textbook b is not aligned to
any global axiom. We again define a log-linear
model with factors that score axiom identification
and axiom alignments.

p(Y,Z|{Sb};θθθ,φφφ) ∝ fAI(Y|{Sb};θθθ)× fAA(Z|Y, {Sb};φφφ)
Here, the factors:
fAI = exp(

∑
b∈B

|Sb|∑
k=1

∑
i,j∈T

Y
(b)
k−1iY

(b)
kj θθθ

T
ijfij(i, j,Sb))

fAA = exp(
∑

b1,b2∈B
b1 6=b2

∑
1≤k≤U

∑
1≤i≤|Ab1

|
1≤j≤|Ab2

|

Z
(b1)

ik Z
(b2)

jk φφφT g(A
(b1)
i , A

(b2)
j ))

We write down the model constraints below:
C1’: Every sentence has a unique label
C2’ Tag O cannot be followed by tag I
C3’ Consistency between Y ’s and Z’s i.e. axiom
boundaries defined by Y ’s and Z’s must agree.
C4’ = C3.

We use L-BFGS for learning. To compute fea-
ture expectations, we use a Metropolis Hastings
sampler that samples Y′s and Z′s alternatively.
Sampling for Z′s reduces to Gibbs sampling and
the sampling equations are as same as before (Sec-
tion 4.1.2). For better mixing, we sample Y in
blocks. Consider blocks of Y’s which denote ax-
iom boundaries at time stamp t , we define three
operations to sample axiom blocks at the next time

stamp. The operations (shown in Figure 4) are:
Update axiom: The axiom boundary can be
shrunk, expanded or moved. The new axiom, how-
ever, cannot overlap with other axioms.
Delete axiom: The axiom can be deleted by label-
ing all its sentences as O.
Introduce axiom: Given a contiguous sequence
of sentences labeled O, a new axiom can be intro-
duced.
Note that these three operations define an ergodic
Markov chain. We use the axiom identification
part of the model as the proposal:

Q(Ȳ|Y) ∝ exp

(
∑
b∈B

|Sb|∑
k=1

∑
i,j∈T

Ȳ
(b)
k−1iȲ

(b)
kj θθθ

T
ijfij(i, j,Sb)

)

Hence, the acceptance ratio only depends on
the alignment part of the model: R(Ȳ|Y) =

min
(

1, U(Ȳ)
U(Y)

)
where U(Y) = fAA. We again have

two variants, where we model the ordering con-
straints (C4′) as soft or hard constraints.

4.2 Axiom Parsing

After harvesting axioms, we build a parser for
these axioms that maps raw axioms to horn clause
rules. The axiom harvesting step provides us
a multi-set of axiom extractions. Let A =
{A1,A2, . . . ,A|A|} represent the multi-set where
each axiom Ai is mentioned at least once.

First, we describe a base parser that parses ax-
iom mentions to horn clause rules. Then, we uti-
lize the redundancy of axiom extractions from var-
ious sources (textbooks) to improve our parser.

4.2.1 Base Axiomatic Parser
Our base parser identifies the premise and conclu-
sion portions of each axiom and then uses GEOS’s
text parser to parse the two portions into a logical
formula. Then, the two logical formulas are put
together to form horn clause rules.

Axiom mentions (for example, the Pythagoras
theorem mention in Figure 1) are often accompa-
nied by equations or diagrams. When the men-
tion has an equation, we simply treat the equation
as the conclusion and the rest of the mention as
the premise. When the axiom has an associated
diagram, we always include the diagram in the
premise. We learn a model to predict the split of
the axiom text into two parts forming the premise
and the conclusion spans. Then, the GEOS parser
maps the premise and conclusion spans to premise
and conclusion logical formulas, respectively.

Let Zs represent the split that demarcates the
premise and conclusion spans. We score the ax-
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Unigram, Bigram,
Dependency and
Entity Overlap

Real valued features that compute the proportion of common unigrams, bigrams, dependencies and geometry entities (constants,
predicates and functions) across the two axioms. When comparing geometric entities, we include geometric entities derived from
the associated diagrams when available.

Longest Common
Subsequence

Real valued feature that computes the length of longest common sub-sequence of words between two axiom mentions normalized
by the total number of words in the two mentions.

Number of sentences Real valued feature that computes the absolute difference in the number of sentences in the two mentions.
Alignment Scores We use an off-the-shelf monolingual word aligner – JACANA (Yao et al., 2013) pretrained on PPDB – and compute alignment score

between axiom mentions as the feature.
MT Metrics We use two common MT evaluation metrics METEOR (Denkowski and Lavie, 2010) and MAXSIM (Chan and Ng, 2008), and

use the evaluation scores as features. While METEOR computes n-gram overlaps controlling on precision and recall, MAXSIM
performs bipartite graph matching and maps each word in one axiom to at most one word in the other.

Summarization Met-
rics

We also use Rouge-S (Lin, 2004), a text summarization metric, and use the evaluation score as a feature. Rouge-S is based on
skip-grams.

Equation Template Indicator feature that matches templates of equations detected in the axiom mentions.
Image Caption Proportion of common unigrams in the image captions of the diagrams associated with the axiom mentions. If both mentions do

not have associated diagrams, this feature doesn’t fire.
XML structure Indicator matching the current (and parent) node of axiom mentions in respective XML hierarchies.

Table 2: Feature set for our axiom alignment model. The features are based on content, structure and typography.

iom split as a log-linear model: p(Zs|a;w) ∝
exp

(
wTh(a, Zs)

)
. Here, h are feature functions

described later. We found that in most cases
(>95%), the premise and conclusion are contigu-
ous spans in the axiom mention where the left span
corresponds to the premise and the right span cor-
responds to the conclusion. Hence, we search over
the space of contiguous spans to infer Zs. We use
L-BGFGS for learning.
Features: We list the features h in Table 3. The
features are defined over candidate spans forming
the text split, are strongly inspired from rhetori-
cal structure theory (Mann and Thompson, 1988)
and previous works on discourse parsing (Marcu,
2000; Soricut and Marcu, 2003). Given a beam of
Premise and Conclusion splits, we use the GEOS
parser to get Premise and Conclusion logical for-
mulas for each split in the beam and obtain a beam
of axiom parses for each axiom in each textbook.

4.2.2 Multi-source Axiomatic Parser
Now, we describe a multi-source parser that uti-
lizes the redundancy of axiom extractions from
various sources (textbooks). Given a beam of 10-
best parses for each axiom from each source, we
use a number of heuristics to determine the best
parse for the axiom:
1. Majority Voting: For each axiom, pick the
parse that occurs most frequently across beams.
2. Average Score: Pick the parse that has the
highest average parse score (only counting top 5
parses for each source), for each axiom.
3. Learn Source Confidence: Learn a set of
weights {µ1, µ2, . . . , µS}, one for each source and
then picks the parse that has the highest average
weighted parse score for each axiom.
4. Predicate Score: Instead of selecting from one
of the top parses across various sources, treat each
axiom parse as a bag of premise predicates and a

bag of conclusion predicates. Then, pick a subset
of premise and conclusion predicates for the final
parse using average scoring with thresholding.

5 Experiments

Datasets: We use a collection of grade 6-10 In-
dian high school math textbooks by four publish-
ers/authors – NCERT, R S Aggarwal, R D Sharma
and M L Aggarwal – a total of 5 × 4 = 20 text-
books to validate our model. Millions of students
in India study geometry from these books every
year and these books are readily available online.
We manually marked chapters relevant for geom-
etry in these books and then parsed them using
Adobe Acrobat’s pdf2xml parser. Then, we an-
notated geometry axioms, alignments and parses
for grade 6, 7 and 8 textbooks by the four pub-
lishers/authors. We use grade 6, 7 and 8 textbook
annotations for development, training, and testing,
respectively. All the hyper-parameters in all the
models are tuned on the development set using
grid search.

GEOS used 13 types of entities and 94 functions
and predicates. We add some more entities, func-
tions and predicates to cover other more complex
concepts in geometry not covered in GEOS. Thus,
we obtain a final set of 19 entity types and 115
functions and predicates for our parsing model.
We use Stanford CoreNLP (Manning et al., 2014)
for feature generation. We use two datasets for
evaluating our system: (a) practice and official
SAT style geometry questions used in GEOS, and
(b) an additional dataset of geometry questions
collected from the aforementioned textbooks. This
dataset consists of a total of 1406 SAT style ques-
tions across grades 6-10, and is approximately
7.5 times the size of the dataset used in GEOS.
We split the dataset into training (350 questions),
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Discourse Mark-
ers

Discourse markers (connectives, cue-words or cue-phrases, etc) have been shown to give good indications on discourse structure (Marcu,
2000). We build a list of discourse markers using the training set, considering the first and last tokens of each span, culled to top 100
by frequency. We use these 100 discourse markers as features. We repeat the same procedure by using part-of-speech (POS) instead of
words and use them as features.

Punctuation Punctuation at the segment border is an excellent cue. We include indicator features whether there is a punctuation at the segment border.
Text Organization Indicator that the two text spans are part of the same (a) sentence, (b) paragraph.
XML Structure Indicator that the two spans are in the same node in the XML hierarchy. Conjoined with the indicator feature that the two spans are part

of the same paragraph.
RST Parse We use an off-the-shelf RST parser (Feng and Hirst, 2014) and include an indicator feature that the segmentation matches the parse

segmentation. We also include the RST label as a feature.
Span Lengths The distribution of the two text spans is typically dependent on their lengths. We use the ratio of the length of the two spans as an

additional feature.
Soricut and
Marcu Segmenter

Soricut and Marcu (2003) (section 3.1) presented a statistical model for deciding elementary discourse unit boundaries. We use the
probability given by this model retrained on our training set as feature. This feature uses both lexical and syntactic information.

Head / Common
Ancestor/ Attach-
ment Node

Head node is the word with the highest occurrence as a lexical head in the lexicalized tree among all the words in the text span. The
attachment node is the parent of the head node. We have features for the head words of the left and right spans, the common ancestor (if
any), the attachment node and the conjunction of the two head node words. We repeat these features with part-of-speech (POS) instead
of words.

Syntax Distance to (a) root (b) common ancestor for the nodes spanning the respective spans. We use these distances, and the difference in the
distances as features.

Dominance Dominance (Soricut and Marcu, 2003) is a key idea in discourse which looks at syntax trees and studies sub-trees for each span to infer
a logical nesting order between the two. We use the dominance relationship is a feature. See Soricut and Marcu (2003) for details.

Span Similarity Proportion of (a) words (b) geometry relations (c) relation-arguments shared by the two spans.
No. of Relations Number of geometry relations represented in the two spans. We use the Lexicon Map from GEOS to compute the number of expressed

geometry relations.
Relative Position Relative position of the two lexical heads and the text split in sentence.

Table 3: Feature set for our axiom parsing model.

Strict Comp. Relaxed Comp.
P R F P R F

Identification 64.3 69.3 66.7 84.3 87.9 86.1
Joint-Hard 68.0 68.1 68.0 85.4 87.1 86.2
Joint-Soft 69.7 71.1 70.4 86.9 88.4 87.6

Table 4: Test set Precision, Recall and F-measure scores for axiom identi-
fication when performed alone and when performed jointly with axiom align-
ment. We show results for both strict as well as relaxed comparison modes.
For the joint model, we show results when we model ordering constraints as
hard or soft constraints.

development (150 questions) and test (906 ques-
tions) with equal proportion of grade 6-10 ques-
tions. We annotated the 500 training and devel-
opment questions with ground-truth logical forms.
We use the training set to train another version of
GEOS with expanded set of entity types, functions
and predicates. We call this system GEOS++.
Results: We first evaluate the axiom identifica-
tion, alignment and parsing models individually.

For axiom identification, we compare the results
of automatic identification with gold axiom identi-
fications and compute the precision, recall and F-
measure on the test set. We use strict as well as re-
laxed comparison. In strict comparison mode the
automatically identified mentions and gold men-
tions must match exactly to get credit, whereas,
in the relaxed comparison mode only a majority
(>50%) of sentences in the automatically identi-
fied mentions and gold mentions must match to get
credit. Table 4 shows the results of axiom identifi-
cation where we clearly see improvements in per-
formance when we jointly model axiom identifica-
tion and alignment. This is due to the fact that both
the components reinforce each other. We also ob-

P R F NMI
Alignment 71.8 74.8 73.3 0.60
Joint-Hard 75.0 76.4 75.7 0.65
Joint-Soft 79.3 81.4 80.3 0.69

Table 5: Test set Precision, Recall, F-measure and NMI scores for axiom
alignment when performed alone and when performed jointly with axiom iden-
tification. For the joint model, we show results when we model ordering con-
straints as hard or soft constraints.

serve that modeling the ordering constraints as soft
constraints leads to better performance than mod-
eling them as hard constraints. This is because
the ordering of presentation of axioms is generally
(yet not always) consistent across textbooks.

To evaluate axiom alignment, we first view it
as a series of decisions, one for each pair of ax-
iom mentions and compute precision, recall and F-
score by comparing automatic decisions with gold
decisions. Then, we also use a standard clustering
metric, Normalized Mutual Information (NMI)
(Strehl and Ghosh, 2002) to measure the quality
of axiom mention clustering. Table 5 shows the
results on the test set when gold axiom identifica-
tions are used. We observe improvements in ax-
iom alignment performance too when we jointly
model axiom identification and alignment jointly
both in terms of F-score as well as NMI. Modeling
ordering constraints as soft constraints again leads
to better performance than modeling them as hard
constraints in terms of both metrics.

To evaluate axiom parsing, we compute pre-
cision, recall and F-score in (a) deriving literals
in axiom parses, as well as for (b) the final ax-
iom parses on our test set. Table 6 shows the re-
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Literals Full Parse
P R F P R F

GEOS 86.7 70.9 78.0 64.2 56.6 60.2
G

E
O

S+
+

Single Src. 91.6 75.3 82.6 68.8 60.4 64.3
Maj. Voting 90.2 78.5 83.9 70.0 63.3 66.5
Avg. Score 90.8 79.6 84.9 71.7 66.4 69.0

Src. Confid. 91.0 79.9 85.1 73.3 68.1 70.6
Pred. Score 92.8 82.8 87.5 76.6 70.1 73.2

Table 6: Test set Precision, Recall and F-measure scores for axiom parsing.
These scores are computed over literals derived in axiom parses or full axiom
parses. We show results for the old GEOS system, for the improved GEOS++
system with expanded entity types, functions and predicates, and for the multi-
source parsers presented in this paper.

Practice Official Textbook
GEOS 61 49 32

Our System 64 55 51
Oracle 80 78 72

Table 7: Scores for solving geometry questions on the SAT practice and
official datasets and a dataset of questions from the 20 textbooks. We use
SATs grading scheme that rewards a correct answer with a score of 1.0 and
penalizes a wrong answer with a negative score of 0.25. Oracle uses gold
axioms but automatic text and diagram interpretation in our logical solver. All
differences between GEOS and our system are significant (p¡0.05 using the
two-tailed paired t-test).

sults of axiom parsing for GEOS (trained on the
training set) as well as various versions of our
best performing system (GEOS++ with our ax-
iomatic solver) with various heuristics for multi-
source parsing. The results show that our system
(single source) performs better than GEOS as it is
trained with the expanded set of entity types, func-
tions and predicates. The results also show that
the choice of heuristic is important for the multi-
source parser – though all the heuristics lead to
improvements over the single source parser. The
average score heuristic that chooses the parse with
the highest average score across sources performs
better than majority voting which chooses the best
parse based on a voting heuristic. Learning the
confidence of every source and using a weighted
average is an even better heuristic. Finally, pred-
icate scoring which chooses the parse by scoring
predicates on the premise and conclusion sides
performs the best leading to 87.5 F1 score (when
computed over parse literals) and 73.2 F1 score
(when computed on the full parse). The high F1
score for axiom parsing on the test set shows that
our approach works well and we can accurately
harvest axiomatic knowledge from textbooks.

Finally, we use the extracted horn clause rules
in our axiomatic solver for solving geometry prob-
lems. For this, we over-generate a set of horn
clause rules by generating 3 horn clause parses for
each axiom and use them as the underlying theory
in prolog programs such as the one shown in Fig-
ure 3. We use weighted logical expressions for the

Interpretability Usefulness
GEOS O.S. GEOS O.S.

Grade 6 2.7 2.9 2.9 3.2
Grade 7 3.0 3.7 3.3 3.6
Grade 8 2.7 3.5 3.1 3.5
Grade 9 2.4 3.3 3.0 3.7
Grade 10 2.8 3.1 3.2 3.8
Overall 2.7 3.3 3.1 3.6

Table 8: User study ratings for GEOS and our system (O.S.) by students in
grade 6-10. Ten students in each grade were asked to rate the two systems on a
scale of 1-5 on two facets: ‘interpretability’ and ‘usefulness’. Each cell shows
the mean rating computed over ten students in that grade for that facet.

question description and the diagram derived from
GEOS++ as declarations, and the (normalized)
score of the parsing model multiplied by the score
of the joint axiom identification and alignment
model as weights for the rules. Table 7 shows the
results for our best end-to-end system and com-
pares it to GEOS on the practice and official SAT
dataset from Seo et al. (2015) as well as questions
from the 20 textbooks. On all the three datasets,
our system outperforms GEOS. Especially on the
dataset from the 20 textbooks (which is indeed a
harder dataset and includes more problems which
require complex reasoning based on geometry),
GEOS doesn’t perform very well whereas our sys-
tem still achieves a good score. Oracle shows
the performance of our system when gold ax-
ioms (written down by an expert) are used along
with automatic text and diagram interpretations in
GEOS++. This shows that there is scope for fur-
ther improvement in our approach.
Interpretability: Students around the world solve
geometry problems through rigorous deduction
whereas the numerical solver in GEOS does not
provide such interpretability. One of the key ben-
efits of our axiomatic solver is that it provides an
easy-to-understand student-friendly deductive so-
lution to geometry problems.

To test the interpretability of our axiomatic
solver, we asked 50 grade 6-10 students (10 stu-
dents in each grade) to use GEOS and our sys-
tem (GEOS++ with our axiomatic solver) as a
web-based assistive tool while learning geometry.
They were each asked to rate how ‘interpretable’
and ‘useful’ the two systems were on a scale of
1-5. Table 8 shows the mean rating by students
in each grade on the two facets. We can observe
that students of each grade found our system to be
more interpretable as well as more useful to them
than GEOS. This study lends support to our claims
about the need of an interpretable deductive solver
for geometry problems.
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6 Related Work

Solving Geometry Problems: While the prob-
lem of using computers to solve geometry ques-
tions is old (Feigenbaum and Feldman, 1963;
Schattschneider and King, 1997; Davis, 2006),
NLP and computer vision techniques were first
used to solve geometry problems in Seo et al.
(2015). While Seo et al. (2014) only aligned ge-
ometric shapes with their textual mentions, Seo
et al. (2015) also extracted geometric relations
and built GEOS, the first automated system to
solve SAT style geometry questions. GEOS used
a coordinate geometry based solution by translat-
ing each predicate into a set of manually writ-
ten constraints. A boolean satisfiability problem
posed with these constraints was used to solve
the multiple-choice question. GEOS had two key
issues: (a) it needed access to answer choices
which may not always be available for such prob-
lems, and (b) it lacked the deductive geometric
reasoning used by students to solve these prob-
lems. Our axiomatic solver mitigates these is-
sues by performing deductive reasoning using ax-
iomatic knowledge extracted from textbooks.
Information Extraction from Textbooks: Our
model builds upon ideas from Information extrac-
tion (IE), which is the task of automatically ex-
tracting structured information from unstructured
and/or semi-structured documents. While there
has been a lot of work in IE on domains such as
web documents (Chang et al., 2003; Etzioni et al.,
2004; Cafarella et al., 2005; Chang et al., 2006;
Banko et al., 2007; Etzioni et al., 2008; Mitchell
et al., 2015) and scientific publication data (Shah
et al., 2003; Peng and McCallum, 2006; Saleem
and Latif, 2012), work on IE from educational ma-
terial is much more sparse. Most of the research
in IE from educational material deals with extract-
ing simple educational concepts (Shah et al., 2003;
Canisius and Sporleder, 2007; Yang et al., 2015;
Wang et al., 2015; Liang et al., 2015; Wu et al.,
2015; Liu et al., 2016b; Wang et al., 2016) or
binary relational tuples (Balasubramanian et al.,
2002; Clark et al., 2012; Dalvi et al., 2016) us-
ing existing IE techniques. On the other hand,
our approach extracts axioms and parses them to
horn clause rules. This is much more challenging.
Raw application of rule mining or sequence label-
ing techniques used to extract information from
web documents and scientific publications to ed-
ucational material usually leads to poor results as

the amount of redundancy in educational material
is lower and the amount of labeled data is sparse.
Our approach tackles these issues by making ju-
dicious use of typographical information, the re-
dundancy of information and ordering constraints
to improve the harvesting and parsing of axioms.
This has not been attempted in previous work.
Language to Programs: After harvesting axioms
from textbooks, we also present an approach to
parse the axiom mentions to horn clause rules.
This work is related to a large body of work on
semantic parsing (Zelle and Mooney, 1993, 1996;
Kate et al., 2005; Zettlemoyer and Collins, 2012,
inter alia). Semantic parsers typically map natu-
ral language to formal programs such as database
queries (Liang et al., 2011; Berant et al., 2013;
Yaghmazadeh et al., 2017, inter alia), commands
to robots (Shimizu and Haas, 2009; Matuszek
et al., 2010; Chen and Mooney, 2011, inter alia),
or even general purpose programs (Lei et al., 2013;
Ling et al., 2016; Yin and Neubig, 2017; Ling
et al., 2017). More specifically, Liu et al. (2016a)
and Quirk et al. (2015) learn “If-Then” and “If-
This-Then-That” rules, respectively. In theory,
these works can be adapted to parse axiom men-
tions to horn-clause rules. However, this would
require a large amount of supervision which would
be expensive to obtain. We mitigated this issue by
using redundant axiom mention extractions from
multiple textbooks and then combining the parses
obtained from various textbooks to achieve a bet-
ter final parse for each axiom.

7 Conclusion

We presented an approach to harvest structured
axiomatic knowledge from math textbooks. Our
approach uses rich features based on context and
typography, the redundancy of axiomatic knowl-
edge and shared ordering constraints across mul-
tiple textbooks to accurately extract and parse ax-
iomatic knowledge to horn clause rules. We used
the parsed axiomatic knowledge to improve the
best previously published automatic approach to
solve geometry problems. A user-study conducted
on a number of school students studying geome-
try found our approach to be more interpretable
and useful than its predecessor. While this paper
focused on harvesting geometry axioms from text-
books as a case study, it can be extended to obtain
valuable structured knowledge from textbooks in
areas such as science, engineering and finance.

781



References
Niranjan Balasubramanian, Stephen Soderland,

Oren Etzioni Mausam, and Robert Bart. 2002. out
of the box information extraction: a case study
using bio-medical texts. Technical report.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6-12, 2007, pages 2670–2676.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington,
USA, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1533–1544.

Michael J. Cafarella, Doug Downey, Stephen Soder-
land, and Oren Etzioni. 2005. Knowitnow: Fast,
scalable information extraction from the web. In
HLT/EMNLP 2005, Human Language Technology
Conference and Conference on Empirical Methods
in Natural Language Processing, Proceedings of the
Conference, 6-8 October 2005, Vancouver, British
Columbia, Canada, pages 563–570.

Sander Canisius and Caroline Sporleder. 2007. Boot-
strapping information extraction from field books.
In EMNLP-CoNLL, pages 827–836.

Yee Seng Chan and Hwee Tou Ng. 2008. Maxsim: A
maximum similarity metric for machine translation
evaluation. In The 2008 Annual Conference of the
Association for Computational Linguistics (ACL).

Chia-Hui Chang, Chun-Nan Hsu, and Shao-Cheng Lui.
2003. Automatic information extraction from semi-
structured web pages by pattern discovery. Decision
Support Systems, 35(1):129–147.

Chia-Hui Chang, Mohammed Kayed, Moheb R Gir-
gis, and Khaled F Shaalan. 2006. A survey of web
information extraction systems. IEEE transactions
on knowledge and data engineering, 18(10):1411–
1428.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence (AAAI-
2011), pages 859–865.

Peter Clark and Oren Etzioni. 2016. My computer is
an honor student - but how intelligent is it? stan-
dardized tests as a measure of ai. In Proceedings of
AI Magazine.

Peter Clark, Phil Harrison, Niranjan Balasubramanian,
and Oren Etzioni. 2012. Constructing a textual kb
from a biology textbook. In Proceedings of the Joint

Workshop on Automatic Knowledge Base Construc-
tion and Web-scale Knowledge Extraction, pages
74–78. Association for Computational Linguistics.

Bhavana Dalvi, Sumithra Bhakthavatsalam, Chris
Clark, Peter Clark, Oren Etzioni, Anthony Fader,
and Dirk Groeneveld. 2016. IKE - an interactive tool
for knowledge extraction. In Proceedings of the 5th
Workshop on Automated Knowledge Base Construc-
tion, AKBC@NAACL-HLT 2016, San Diego, CA,
USA, June 17, 2016, pages 12–17.

Tom Davis. 2006. Geometry with computers. Techni-
cal report.

Michael Denkowski and Alon Lavie. 2010. Extending
the meteor machine translation evaluation metric to
the phrase level. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 250–253. Association for Computa-
tional Linguistics.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Oren Etzioni, Michael J. Cafarella, Doug Downey,
Ana-Maria Popescu, Tal Shaked, Stephen Soder-
land, Daniel S. Weld, and Alexander Yates. 2004.
Methods for domain-independent information ex-
traction from the web: An experimental comparison.
In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence,
July 25-29, 2004, San Jose, California, USA, pages
391–398.

Edward A Feigenbaum and Julian Feldman. 1963.
Computers and thought. The AAAI Press.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints
and post-editing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 511–521.

Akira Fujita, Akihiro Kameda, Ai Kawazoe, and
Yusuke Miyao. 2014. Overview of todai robot
project and evaluation framework of its nlp-based
problem solving. World History, 36:36.

Rohit J Kate, Yuk Wah, Wong Raymond, and
J Mooney. 2005. Learning to transform natural to
formal languages. In Proceedings of AAAI-05. Cite-
seer.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
ACL.

782



John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the eighteenth in-
ternational conference on machine learning, ICML,
volume 1, pages 282–289.

Tao Lei, Fan Long, Regina Barzilay, and Martin C Ri-
nard. 2013. From natural language specifications to
program input parsers. Association for Computa-
tional Linguistics (ACL).

Chen Liang, Zhaohui Wu, Wenyi Huang, and C Lee
Giles. 2015. Measuring prerequisite relations
among concepts. In EMNLP, pages 1668–1674.

Percy Liang, Michael I Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1, pages 590–
599. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop, volume 8. Barcelona, Spain.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
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Abstract

We present RACE, a new dataset for
benchmark evaluation of methods in the
reading comprehension task. Collected
from the English exams for middle and
high school Chinese students in the age
range between 12 to 18, RACE con-
sists of near 28,000 passages and near
100,000 questions generated by human
experts (English instructors), and cov-
ers a variety of topics which are care-
fully designed for evaluating the students’
ability in understanding and reasoning.
In particular, the proportion of questions
that requires reasoning is much larger
in RACE than that in other benchmark
datasets for reading comprehension, and
there is a significant gap between the
performance of the state-of-the-art mod-
els (43%) and the ceiling human perfor-
mance (95%). We hope this new dataset
can serve as a valuable resource for re-
search and evaluation in machine com-
prehension. The dataset is freely avail-
able at http://www.cs.cmu.edu/

˜glai1/data/race/ and the code is
available at https://github.com/
qizhex/RACE_AR_baselines

1 Introduction

Constructing an intelligence agent capable of un-
derstanding text as people is the major challenge
of NLP research. With recent advances in deep
learning techniques, it seems possible to achieve
human-level performance in certain language un-
derstanding tasks, and a surge of effort has been
devoted to the machine comprehension task where
people aim to construct a system with the ability to

⇤* indicates equal contribution

answer questions related to a document that it has
to comprehend (Chen et al., 2016; Kadlec et al.,
2016; Dhingra et al., 2016; Yang et al., 2017).

Towards this goal, several large-scale datasets
(Rajpurkar et al., 2016; Onishi et al., 2016; Hill
et al., 2015; Trischler et al., 2016; Hermann
et al., 2015) have been proposed, which allow re-
searchers to train deep learning systems and ob-
tain results comparable to the human performance.
While having a suitable dataset is crucial for eval-
uating the system’s true ability in reading compre-
hension, the existing datasets suffer several critical
limitations. Firstly, in all datasets, the candidate
options are directly extracted from the context (as
a single entity or a text span), which leads to the
fact that lots of questions can be solved trivially
via word-based search and context-matching with-
out deeper reasoning; this constrains the types of
questions as well. Secondly, answers and ques-
tions of most datasets are either crowd-sourced
or automatically-generated, bringing a significant
amount of noises in the datasets and limits the ceil-
ing performance by domain experts, such as 82%
for Childrens Book Test and 84% for Who-did-
What. Yet another issue in existing datasets is that
the topic coverages are often biased due to the spe-
cific ways that the data were initially collected,
making it hard to evaluate the ability of systems in
text comprehension over a broader range of topics.

To address the aforementioned limitations, we
constructed a new dataset by collecting a large
set of questions, answers and associated pas-
sages in the English exams for middle-school and
high-school Chinese students within the 12–18
age range. Those exams were designed by do-
main experts (instructors) for evaluating the read-
ing comprehension ability of students, with en-
sured quality and broad topic coverage. Fur-
thermore, the answers by machines or by hu-
mans can be objectively graded for evaluation
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and comparison using the same evaluation met-
rics. Although efforts have been made with a sim-
ilar motivation, including the MCTest dataset cre-
ated by (Richardson et al., 2013) (containing 500
passages and 2000 questions) and several others
(Peñas et al., 2014; Rodrigo et al., 2015; Khashabi
et al., 2016; Shibuki et al., 2014), the usefulness
of those datasets is significantly restricted due to
their small sizes, especially not suitable for train-
ing powerful deep neural networks whose success
relies on the availability of relatively large training
sets.

Our new dataset, namely RACE, consists of
27,933 passages and 97,687 questions. After read-
ing each passage, each student is asked to answer
several questions where each question is provided
with four candidate answers – only one of them is
correct . Unlike existing datasets, both the ques-
tions and candidate answers in RACE are not re-
stricted to be the text spans in the original passage;
instead, they can be described in any words. A
sample from our dataset is presented in Table 1.

Our latter analysis shows that correctly answer-
ing a large portion of questions in RACE requires
the ability of reasoning, the most important fea-
ture as a machine comprehension dataset (Chen
et al., 2016). RACE also offers two important sub-
divisions of the reasoning types in its questions,
namely passage summarization and attitude anal-
ysis, which have not been introduced by the any of
the existing large-scale datasets to our knowledge.

In addition, compared to other existing datasets
where passages are either domain-specific or of a
single fixed style (namely news stories for CNN/-
Daily Mail, NEWSQA and Who-did-What, fiction
stories for Children’s Book Test and Book Test,
and Wikipedia articles for SQUAD), passages in
RACE almost cover all types of human articles,
such as news, stories, ads, biography, philosophy,
etc., in a variety of styles. This comprehensiveness
of topic/style coverage makes RACE a desirable
resource for evaluating the reading comprehension
ability of machine learning systems in general.

The advantages of our proposed dataset over ex-
isting large datasets in machine reading compre-
hension can be summarized as follows:

• All questions and candidate options are gen-
erated by human experts, which are intention-
ally designed to test human agent’s ability in
reading comprehension. This makes RACE a
relatively accurate indicator for reflecting the

text comprehension ability of machine learn-
ing systems under human judge.

• The questions are substantially more difficult
than those in existing datasets, in terms of the
large portion of questions involving reason-
ing. At the meantime, it is also sufficiently
large to support the training of deep learning
models.

• Unlike existing large-scale datasets, candi-
date options in RACE are human generated
sentences which may not appear in the origi-
nal passage. This makes the task more chal-
lenging and allows a rich type of questions
such as passage summarization and attitude
analysis.

• Broad coverage in various domains and writ-
ing styles: a desirable property for evaluating
generic (in contrast to domain/style-specific)
comprehension ability of learning models.

2 Related Work

In this section, we briefly outline existing datasets
for the machine reading comprehension task, in-
cluding their strengths and weaknesses.

2.1 MCTest
MCTest (Richardson et al., 2013) is a popular
dataset for question answering in the same for-
mat as RACE, where each question is associated
with four candidate answers with a single cor-
rect answer. Although questions in MCTest are
of high-quality ensured by careful examinations
through crowdsourcing, it contains only 500 stores
and 2000 questions, which substantially restricts
its usage in training advanced machine compre-
hension models. Moreover, while MCTest is de-
signed for 7 years old children, RACE is con-
structed for middle and high school students at
12–18 years old hence is more complicated and
requires stronger reasoning skills. In other words,
RACE can be viewed as a larger and more difficult
version of the MCTest dataset.

2.2 Cloze-style datasets
The past few years have witnessed several large-
scale cloze-style datasets (Hermann et al., 2015;
Hill et al., 2015; Bajgar et al., 2016; Onishi et al.,
2016), whose questions are formulated by obliter-
ating a word or an entity in a sentence.
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Passage:
In a small village in England about 150 years ago, a mail coach was standing on the street. It didn’t come to that village often.
People had to pay a lot to get a letter. The person who sent the letter didn’t have to pay the postage, while the receiver had to.
“Here’s a letter for Miss Alice Brown,” said the mailman.
“ I’m Alice Brown,” a girl of about 18 said in a low voice.
Alice looked at the envelope for a minute, and then handed it back to the mailman.
“I’m sorry I can’t take it, I don’t have enough money to pay it”, she said.
A gentleman standing around were very sorry for her. Then he came up and paid the postage for her.
When the gentleman gave the letter to her, she said with a smile, “ Thank you very much, This letter is from Tom. I’m going
to marry him. He went to London to look for work. I’ve waited a long time for this letter, but now I don’t need it, there is
nothing in it.”
“Really? How do you know that?” the gentleman said in surprise.
“He told me that he would put some signs on the envelope. Look, sir, this cross in the corner means that he is well and this
circle means he has found work. That’s good news.”
The gentleman was Sir Rowland Hill. He didn’t forgot Alice and her letter.
“The postage to be paid by the receiver has to be changed,” he said to himself and had a good plan.
“The postage has to be much lower, what about a penny? And the person who sends the letter pays the postage. He has to buy
a stamp and put it on the envelope.” he said . The government accepted his plan. Then the first stamp was put out in 1840. It
was called the “Penny Black”. It had a picture of the Queen on it.

Questions:

1): The first postage stamp was made .
A. in England B. in America C. by Alice D. in 1910

2): The girl handed the letter back to the mailman because
.
A. she didn’t know whose letter it was
B. she had no money to pay the postage
C. she received the letter but she didn’t want to open it
D. she had already known what was written in the letter

3): We can know from Alice’s words that .
A. Tom had told her what the signs meant before leaving
B. Alice was clever and could guess the meaning of the signs
C. Alice had put the signs on the envelope herself
D. Tom had put the signs as Alice had told him to

4): The idea of using stamps was thought of by .
A. the government
B. Sir Rowland Hill
C. Alice Brown
D. Tom

5): From the passage we know the high postage made .
A. people never send each other letters
B. lovers almost lose every touch with each other
C. people try their best to avoid paying it
D. receivers refuse to pay the coming letters

Answer: ADABC

Table 1: Sample reading comprehension problems from our dataset.

CNN/Daily Mail (Hermann et al., 2015) are
the largest machine comprehension datasets with
1.4M questions. However, both require limited
reasoning ability (Chen et al., 2016). In fact, the
best machine performance obtained by researchers
(Chen et al., 2016; Dhingra et al., 2016) is close to
human’s performance on CNN/Daily Mail.

Childrens Book Test (CBT) (Hill et al., 2015)
and Book Test (BT) (Bajgar et al., 2016) are con-
structed in a similar manner. Each passage in CBT
consist of 20 contiguous sentences extracted from
children’s books and the next (21st) sentence is
used to make the question. The main difference
between the two datasets is the size of BT being
60 times larger. Machine comprehension models
have also matched human performance on CBT
(Bajgar et al., 2016).

Who Did What (WDW) (Onishi et al., 2016)
is yet another cloze-style dataset constructed from
the LDC English Gigaword newswire corpus. The
authors generate passages and questions by pick-
ing two news articles describing the same event,

using one as the passage and the other as the ques-
tion.

High noise is inevitable in cloze-style datasets
due to their automatic generation process, which
is reflected in the human performance on these
datasets: 82% for CBT and 84% for WDW.

2.3 Datasets with Span-based Answers

In datasets such as SQUAD (Rajpurkar et al.,
2016), NEWSQA (Trischler et al., 2016) and MS
MARCO (Nguyen et al., 2016), the answer to each
question is in the form of a text span in the article.
Articles of SQUAD, NEWSQA and MS MARCO
come from Wikipedia, CNN news and the Bing
search engine respectively. The answer to a cer-
tain question may not be unique and could be mul-
tiple spans. Instead of evaluating the accuracy, re-
searchers need to use F1 score, BLEU (Papineni
et al., 2002) or ROUGE (Lin and Hovy, 2003)
as metrics, which measure the overlap between
the prediction and ground truth answers since the
questions come without candidate spans.
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Datasets with span-based answers are challeng-
ing as the space of possible spans is usually large.
However, restricting answers to be text spans in
the context passage may be unrealistic and more
importantly, may not be intuitive even for humans,
indicated by the suffered human performance of
80.3% on SQUAD (or 65% claimed by Trischler
et al. (2016)) and 46.5% on NEWSQA. In other
words, the format of span-based answers may not
necessarily be a good examination of reading com-
prehension of machines whose aim is to approach
the comprehension ability of humans.

2.4 Datasets from Examinations

There have been several datasets extracted from
examinations, aiming at evaluating systems un-
der the same conditions as how humans are evalu-
ated in schools. E.g., the AI2 Elementary School
Science Questions dataset (Khashabi et al., 2016)
contains 1080 questions for students in elementary
schools; NTCIR QA Lab (Shibuki et al., 2014)
evaluates systems by the task of solving real-world
university entrance exam questions; The Entrance
Exams task at CLEF QA Track (Peñas et al., 2014;
Rodrigo et al., 2015) evaluates the system’s read-
ing comprehension ability. However, data pro-
vided in these existing tasks are far from sufficient
for the training of advanced data-driven machine
reading models, partially due to the expensive data
generation process by human experts.

To the best of our knowledge, RACE is the first
large-scale dataset of this type, where questions
are created based on exams designed to evaluate
human performance in reading comprehension.

3 Data Analysis

In this section, we study the nature of questions
covered in RACE at a detailed level. Specifically,
we present the dataset statistics in Section 3.1, and
then analyze different reasoning/question types in
RACE in the remaining subsections.

3.1 Dataset Statistics

As mentioned in section 1, RACE is collected
from English examinations designed for 12–15
year-old middle school students, and 15–18 year-
old high school students in China. To distin-
guish the two subgroups with drastic difficulty
gap, RACE-M denotes the middle school exami-
nations and RACE-H denotes high school exami-
nations. We split 5% data as the development set

and 5% as the test set for RACE-M and RACE-H
respectively. The number of samples in each set is
shown in Table 2. The statistics for RACE-M and
RACE-H is summarized in Table 3. We can find
that the length of the passages and the vocabulary
size in the RACE-H are much larger than that of
the RACE-M, an evidence of the higher difficulty
of high school examinations.

However, notice that since the articles and ques-
tions are selected and designed to test Chinese
students learning English as a foreign language,
the vocabulary size and the complexity of the lan-
guage constructs are simpler than news articles
and Wikipedia articles in other QA datasets.

3.2 Reasoning Types of the Questions
To get a comprehensive picture about the reason-
ing difficulty requirement of RACE, we conduct
human annotations of questions types. Following
Chen et al. (2016); Trischler et al. (2016), we strat-
ify the questions into five classes as follows with
ascending order of difficulty:

• Word matching: The question exactly
matches a span in the article. The answer is
self-evident.

• Paraphrasing: The question is entailed or
paraphrased by exactly one sentence in the
passage. The answer can be extracted within
the sentence.

• Single-sentence reasoning: The answer could
be inferred from a single sentence of the arti-
cle by recognizing incomplete information or
conceptual overlap.

• Multi-sentence reasoning: The answer must
be inferred from synthesizing information
distributed across multiple sentences.

• Insufficient/Ambiguous: The question has no
answer or the answer is not unique based on
the given passage.

We refer readers to (Chen et al., 2016; Trischler
et al., 2016) for examples of each category.

To obtain the proportion of different question
types, we sample 100 passages from RACE (50
from RACE-M and 50 from RACE-H), all of
which have 5 questions hence there are 500 ques-
tions in total. We put the passages on Amazon Me-
chanical Turk1, and a Hit is generated by a passage

1https://www.mturk.com/mturk/welcome
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Dataset RACE-M RACE-H RACE
Subset Train Dev Test Train Dev Test Train Dev Test All
# passages 6,409 368 362 18,728 1,021 1,045 25,137 1,389 1,407 27,933
# questions 25,421 1,436 1,436 62,445 3,451 3,498 87,866 4,887 4,934 97,687

Table 2: The separation of the training, development and test sets of RACE-M,RACE-H and RACE

Dataset RACE-M RACE-H RACE
Passage Len 231.1 353.1 321.9
Question Len 9.0 10.4 10.0
Option Len 3.9 5.8 5.3
Vocab size 32,811 125,120 136,629

Table 3: Statistics of RACE where Len denotes
length and Vocab denotes Vocabulary.

with 5 questions. Each question is labeled by two
crowdworkers. We require the turkers to both an-
swer the questions and label the reasoning type.
We pay $0.70 and $1.00 per passage in RACE-M
and RACE-H respectively, and restrict the access
to master turkers only. Finally, we get 1000 labels
for the 500 questions.

The statistics about the reasoning type is sum-
marized in Table 4. The higher difficulty level
of RACE is justified by its higher ratio of rea-
soning questions in comparison to CNN, SQUAD
and NEWSQA. Specifically, 59.2% questions of
RACE are either in the category of single-sentence
reasoning or in the category of multi-sentence
reasoning, while the ratio is 21%, 20.5% and
33.9% for CNN, SQUAD and NEWSQA respec-
tively. Also notice that the ratio of word match-
ing questions on RACE is only 15.8%, the lowest
among several categories. In addition, questions
in RACE-H are more complex than questions in
RACE-M since RACE-M has more word match-
ing questions and fewer reasoning questions.

3.3 Subdividing Reasoning Types

To better understand our dataset and facilitate fu-
ture research, we list the subdivisions of ques-
tions under the reasoning category. We find the
most frequent reasoning subdivisions include: de-
tail reasoning, whole-picture understanding, pas-
sage summarization, attitude analysis and world
knowledge. One question may fall into multiple
divisions. Definition of these subdivisions and
their associated examples are as follows:

1. Detail reasoning: to answer the question, the
agent should be clear about the details of the pas-

sage. The answer appears in the passage but it can-
not be found by simply matching the question with
the passage. For example, Question 1 in the sam-
ple passage falls into this category.

2. Whole-picture reasoning: the agent needs to
understand the whole picture of the story to ob-
tain the correct answer. For example, to answer
the Question 2 in the sample passage, the agent is
required to comprehend the entire story.

3. Passage summarization: The question re-
quires the agent to select the best summarization
of the passage among four candidate summariza-
tions. A typical question of this type is “The main
idea of this passage is .”. An example question
can be found in Appendix A.1.

4. Attitude analysis: The question asks about
the opinions/attitudes of the author or a character
in the story towards somebody or something, e.g.,

• Evidence: “. . . Many people optimistically
thought industry awards for better equipment
would stimulate the production of quieter
appliances. It was even suggested that noise from
building sites could be alleviated . . . ”

• Question: What was the author’s attitude towards
the industry awards for quieter?

• Options: A.suspicious B.positive
C.enthusiastic D.indifferent

5. World knowledge: Certain external knowl-
edge is needed. Most frequent questions under this
category involve simple arithmetic.

• Evidence: “The park is open from 8 am to 5 pm.”

• Question: The park is open for hours a day.

• Options: A.eight B.nine C.ten D.eleven

To the best of our knowledge, questions like
passage summarization and attitude analysis have
not been introduced by any of the existing large-
scale machine comprehension datasets. Both are
crucial components in evaluating humans’ reading
comprehension abilities.
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Dataset RACE-M RACE-H RACE CNN SQUAD NEWSQA
Word Matching 29.4% 11.3% 15.8% 13.0%† 39.8%* 32.7%*
Paraphrasing 14.8% 20.6% 19.2% 41.0%† 34.3%* 27.0%*
Single-Sentence Reasoning 31.3% 34.1% 33.4% 19.0%† 8.6%* 13.2%*
Multi-Sentence Reasoning 22.6% 26.9% 25.8% 2.0%† 11.9%* 20.7%*
Ambiguous/Insufficient 1.8% 7.1% 5.8% 25.0%† 5.4%* 6.4%*

Table 4: Statistic information about Reasoning type in different datasets. * denotes the numbers coming
from (Trischler et al., 2016) based on 1000 samples per dataset, and numbers with † come from (Chen
et al., 2016).

4 Collection Methodology

We collected the raw data from three large free
public websites234 in China5, where the reading
comprehension problems are extracted from En-
glish examinations designed by teachers in China.
The data before cleaning contains 137,918 pas-
sages and 519,878 questions in total, where there
are 38,159 passages with 156,782 questions in the
middle school group, and 99,759 passages with
363,096 questions in the high school group.

The following filtering steps are conducted to
clean the raw data. Firstly, we remove all prob-
lems and questions that do not have the same for-
mat as our problem setting, e.g., a question would
be removed if the number of its options is not four.
Secondly, we filter all articles and questions that
are not self-contained based on the text informa-
tion, i.e. we remove the articles and questions con-
taining images or tables. We also remove all ques-
tions containing keywords “underlined” or “para-
graph”, since it is difficult to reproduce the effect
of underlines and the paragraph segment informa-
tion. Thirdly, we remove all duplicated articles.

On one of the websites (xkw.com), the answers
are stored as images. We used two standard OCR
programs tesseract 6 and ABBYY FineReader 7 to
process the images. We remove all the answers
that two software disagree. The OCR task is easy
since we only need to recognize printed alphabet
A, B, C, D with a standard font. Finally, we get
the cleaned dataset RACE, with 27,933 passages
and 97,687 questions.

2http://www.21cnjy.com/
3http://5utk.ks5u.com/
4http://zujuan.xkw.com/
5We checked that our dataset does not include exam-

ple questions of exams with copyright, such as SSAT, SAT,
TOEFL and GRE.

6https://github.com/tesseract-ocr
7https://www.abbyy.com/FineReader

5 Experiments

In this section, we compare the performance
of several state-of-the-art reading comprehension
models with human performance. We use accu-
racy as the metric to evaluate different models.

5.1 Methods for Comparison
Sliding Window Algorithm Firstly, we build
the rule-based baseline introduced by Richardson
et al. (2013). It chooses the answer having the
highest matching score. Specifically, it first con-
catenates the question and the answer and then cal-
culates the TF-IDF style matching score between
the concatenated sentence with every window (a
span of text) of the article. The window size is
decided by the model performance in the training
and dev sets.

Stanford Attentive Reader Stanford Attentive
Reader (Stanford AR) (Chen et al., 2016) is a
strong model that achieves state-of-the-art results
on CNN/Daily Mail. Moreover, the authors claim
that their model has nearly reached the ceiling per-
formance on these two datasets.

Suppose that the triple of passage, question and
options is denoted by (p, q, o1,··· ,4). We first em-
ploy bidirectional GRUs to encode p and q respec-
tively into hp

1, h
p
2, . . . , h

p
n and hq. Then we sum-

marize the most relevant part of the passage into
sp with an attention model. Following Chen et al.
(2016), we adopt a bilinear attention form. Specif-
ically,

↵i = Softmaxi((h
p
i )

T W1h
q)

sp =
X

i

↵ih
p
i

(1)

Similarly, we use bidirectional GRUs to encode
option oi into a vector hoi . Finally, we com-
pute the matching score between the i-th option
(i = 1, · · · , 4) and the summarized passage using
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RACE-M RACE-H RACE MCTest CNN DM CBT-N CBT-C WDW
Random 24.6 25.0 24.9 24.8 0.06 0.06 10.6 10.2 32.0†

Sliding Window 37.3 30.4 32.2 51.5† 24.8 30.8 16.8† 19.6† 48.0†

Stanford AR 44.2 43.0 43.3 – 73.6† 76.6† – – 64.0†

GA 43.7 44.2 44.1 – 77.9† 80.9† 70.1† 67.3† 71.2†

Turkers 85.1 69.4 73.3 – – – – – –
Ceiling Performance 95.4 94.2 94.5 – – – 81.6† 81.6† 84†

Table 5: Accuracy of models and human on the each dataset, where † denotes the results coming from
previous publications. DM denotes Daily Mail and WDW denotes Who-Did-What .
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Figure 1: Test accuracy of different baselines on each reasoning type category introduced in Section 3.2,
where Word-Match, Single-Reason, Multi-Reason and Ambiguous are the abbreviations for Word match-
ing, Single-sentence Reasoning, Multi-sentence Reasoning and Insufficient/Ambiguous respectively.

a bilinear attention. We pass the scores through
softmax to get a probability distribution. Specif-
ically, the probability of option i being the right
answer is calculated as

pi = Softmaxi(h
oiW2s

d) (2)

Gated-Attention Reader Gated AR (Dhingra
et al., 2016) is the state-of-the-art model on mul-
tiple datasets. To build query-specific represen-
tations of tokens in the document, it employs an
attention mechanism to model multiplicative in-
teractions between the query embedding and the
document representation. With a multi-hop ar-
chitecture, GA also enables a model to scan the
document and the question iteratively for multi-
ple passes. In other words, the multi-hop struc-
ture makes it possible for the reader to refine token
representations iteratively and the attention mech-
anism find the most relevant part of the document.
We refer readers to (Dhingra et al., 2016) for more
details.

After obtaining a query specific document rep-
resentation sd, we use the same method as bilinear
operation listed in Equation 2 to get the output.

Note that our implementation slightly differs
from the original GA reader. Specifically, the At-
tention Sum layer is not applied at the final layer
and no character-level embeddings are used.

Implementation Details We follow Chen et al.
(2016) in our experiment settings. The vocabulary
size is set to 50k. We choose word embedding
size d = 100 and use the 100-dimensional Glove
word embedding (Pennington et al., 2014) as em-
bedding initialization. GRU weights are initial-
ized from Gaussian distribution N (0, 0.1). Other
parameters are initialized from a uniform distri-
bution on (�0.01, 0.01). The hidden dimension-
ality is set to 128 and the number of layers is
set to one for both Stanford AR and GA. We use
vanilla stochastic gradient descent (SGD) to train
our models. We apply dropout on word embed-
dings and the gradient is clipped when the norm
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of the gradient is larger than 10. We use a grid
search on validation set to choose the learning
rate within {0.05, 0.1, 0.3, 0.5} and dropout rate
within {0.2, 0.5, 0.7}. The highest accuracy on
validation set is obtained by setting learning rate to
0.1 for Stanford AR and 0.3 for GA and dropout
rate to 0.5. The data of RACE-M and RACE-H
is used together to train our model and testing is
performed separately.

5.2 Human Evaluation

As described in section 3.2, a randomly sam-
pled subset of test set has been labeled by Ama-
zon Turkers, which contains 500 questions with
half from RACE-H and with the other half from
RACE-M. The turkers’ performance is 85% for
RACE-M and 70% for RACE-H. However, it is
hard to guarantee that every turker performs the
survey carefully, given the difficult and long pas-
sages of high school problems. Therefore, to ob-
tain the ceiling human performance on RACE,
we manually labeled the proportion of valid ques-
tions. A question is valid if it is unambiguous and
has a correct answer. We found that 94.5% of the
data is valid, which sets the ceiling human per-
formance. Similarly, the ceiling performance on
RACE-M and RACE-H is 95.4% and 94.2% re-
spectively.

5.3 Main Results

We compare models’ and human ceiling perfor-
mance on datasets which have the same evalua-
tion metric with RACE. The compared datasets
include RACE, MCTest, CNN/Daily Mail (CNN
and DM), CBT and WDW. On CBT, we report per-
formance on two subsets where the missing token
is either a common noun (CBT-C) or name entity
(CBT-N) since the language models have already
reached human-level performance on other types
(Hill et al., 2015). The comparison is shown in
Table 5.

Performance of Sliding Window We first com-
pare MCTest with RACE using Sliding Window,
where it is unable to train Stanford AR and Gated
AR on MCTest’s limited training data. Slid-
ing Window achieves an accuracy of 51.5% on
MCTest while only 37.3% on RACE, meaning that
to answer the questions of RACE requires more
reasoning than MCTest.

The performance of sliding window on RACE
is not directly comparable with CBT and WDW

since CBT has ten candidate answers for each
question and WDW has an average of three. In-
stead, we evaluate the performance improvement
of sliding window on the random baseline. Larger
improvement indicates more questions solvable by
simple matching. On RACE, Sliding Window is
28.6% better than the random baseline, while the
improvement is 58.5%, 92.2% and 50% for CBT-
N, CBT-C and WDW.

The accuracy on RACE-M (37.3%) and RACE-
H (30.4%) indicates that the middle school ques-
tions are simpler based on the matching algorithm.

Performance of Neural Models We further
compare the difficulty of different datasets by
state-of-the-art neural models’ performance. A
lower performance means that more problems are
unsolvable by machines. The Stanford AR and
Gated AR achieve an accuracy of only 43.3% and
44.1% on RACE while their accuracy is much
higher on CNN/Daily Mail, Childrens Book
Test and Who-Did-What. It justifies the fact that,
among current large-scale machine comprehen-
sion datasets, RACE is the most challenging one.

Human Ceiling Performance The human per-
formance is 94.5% which shows our data is quite
clean compared to other large-scale machine com-
prehension datasets. Since we cannot enforce ev-
ery turker do the test cautiously, the result shows
a gap between turkers’ performance and human
performance. Reasonably, problems in the high
school group with longer passages and more com-
plex questions lead to more significant divergence.
Nevertheless, the start-of-the-art models still have
a large room to be improved to reach turkers’ per-
formance. The performance gap is 41% for the
middle school problems and 25% for the high
school problems. What’s more, The performance
of Stanford AR and GA is only less than a half
of the ceiling human performance, which indicates
that to match the humans’ reading comprehension
ability, we still have a long way to go.

5.4 Reason Types Analysis

We evaluate human and models on different types
of questions, shown in Figure 1. Turkers do the
best on word matching problems while doing the
worst on reasoning problems. Sliding window
performs better on word matching than problems
needing reasoning or paraphrasing. Surprisingly,
Stanford AR does not have a stronger performance
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on the word matching category than reasoning cat-
egories. A possible reason is that the proportion
of data in reasoning categories is larger than that
of data. Also, the candidate answers of simple
matching questions may share similar word em-
beddings. For example, if the question is about
color, it is difficult to distinguish candidate an-
swers, “green”, “red”, “blue” and “yellow”, in the
embedding vector space. The similar performance
on different categories also explains the reason
that the performance of the neural models is close
in the middle and high school groups in Table 5.

6 Conclusion

We introduce a large, high-quality dataset for read-
ing comprehension that is carefully designed to
examine human ability on this task. Some desir-
able properties of RACE include the broad cover-
age of domains/styles and the richness in the ques-
tion format. Most importantly, it requires substan-
tially more reasoning to do well on RACE than
on other datasets, as there is a significant gap be-
tween the performance of state-of-the-art machine
comprehension models and that of the human. We
hope this dataset will stimulate the development of
more advanced machine comprehension models.
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Abstract

We present an approach for answering
questions that span multiple sentences
and exhibit sophisticated cross-sentence
anaphoric phenomena, evaluating on a rich
source of such questions – the math por-
tion of the Scholastic Aptitude Test (SAT).
By using a tree transducer cascade as its
basic architecture, our system (called EU-
CLID) propagates uncertainty from multi-
ple sources (e.g. coreference resolution
or verb interpretation) until it can be con-
fidently resolved. Experiments show the
first-ever results (43% recall and 91% pre-
cision) on SAT algebra word problems.
We also apply EUCLID to the public Dol-
phin algebra question set, and improve
the state-of-the-art F1-score from 73.9%
to 77.0%.

1 Introduction

Math word problems pose questions that are chal-
lenging for current question answering (QA) sys-
tems to solve. Consider the following question
originating from a study guide for the Math SAT1:

Example 1: Suppose 3x + y = 15,
where x is a positive integer. What is
the difference between the largest possi-
ble value of y and the smallest possible
value of x, assuming that y is also a pos-
itive integer?

The correct response is 11; however its relation-
ship with the other numbers in the question (3 and
15) is oblique and not easily mapped to an opera-
tor tree or equation template. This encourages us
to build a semantic parser that produces an explicit

1The Math SAT is a standardized exam administered to
college-bound high school students in the United States.

representation of what the question is asking, if we
want to make quantitative progress on the question
set. However, while it is not hard to formalize the
semantics:

X × Y = {(x, y) | 3x+ y = 15, x, y ∈ Z+}
X = {x | (x, y) ∈ X × Y }
Y = {y | (x, y) ∈ X × Y }

solve: maxY −minX

it is not clear how to devise a compositional trans-
formation from the original question to the formal
semantics, since the meaning is dispersed through-
out the discourse, such that neither the maximiza-
tion nor the minimization can be locally derived
from some subtree of the syntactic structure.

Moreover, SAT questions quickly reach the lim-
its of preprocessing tools like anaphora resolution:

Example 2: 〈r, s, t〉 In the sequence
above, if each term after the first is x
more than the previous term, what is the
average of r, s, and t in terms of r and x?

Understanding this question requires a nuanced
resolution of each term after the first to the subse-
quence 〈s, t〉, a coreference resolution beyond the
grasp of the current state of the art.

Generally speaking, question discourse (with its
complex cross-sentence semantics and anaphora)
has not been a major focus of QA research. In
this paper, we use math SAT questions to develop
an approach to handling question discourse. Our
parser uses an intermediate semantic language that
allows complex semantics (like those of Example
1) to be compositionally constructed from a multi-
sentence question passage (Section 5.1). By archi-
tecting our semantic parser as a cascade of nonde-
terministic tree transducers (Gécseg and Steinby,
1997), we can propagate uncertainty until it can be
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Figure 1: High-level view of EUCLID’s architecture.

confidently resolved – sometimes as late as during
program interpretation (Section 6). The integrated
approach also allows us to handle novel classes of
anaphoric phenomena by framing anaphora reso-
lution as an operation on a parse forest decorated
with implicits (Section 5.2).

Ultimately we produce an end-to-end system
(called EUCLID) that achieves 43% recall and 91%
precision on SAT closed-vocabulary algebra ques-
tions, a subset (described in more detail in the next
section) that constitutes approximately 45% of a
typical math SAT. We also achieve state-of-the-art
results on the publicly released Dolphin question
set (Shi et al., 2015), a set of more than 1500 al-
gebra questions released by Microsoft Research.
Finally, we provide a look at our early progress on
extending the system to tackle the math SAT in its
entirety.

2 Anatomy of a Math SAT

To assess our semantic parser, we compiled three
question sets. Two question sets were created from
sample SAT exams found in study guides (pub-
lished by Kaplan and McGraw-Hill). We used
the Kaplan set (12 exams, 648 total questions) for
training/development and the McGraw-Hill set (13
exams2, 686 total questions) for devtest. We re-
served official practice exams (8 exams, 396 total
questions) released by the College Board for final
testing. We did not subselect questions from the
exams, rather we used them in their entirety.3 We
encoded mathematical formatting using LATEX.

During the compilation of these questions, they
were split into 4 broad categories:

1. Algebra (closed vocabulary) (e.g. Exam-
ples 1 and 2) : Algebra questions drawn

212 full exams + 1 PSAT
3One exception: we exclude the “comparison”-style ques-

tions (discontinued in 2005) from pre-2005 exams.

from a limited mathematical vocabulary.

2. Algebra (open vocabulary) (e.g. “At a bas-
ketball tournament involving 8 teams, each
team played 4 games with each of the other
teams. How many games were played at this
tournament?”) : Algebra questions drawn
from an open-ended vocabulary.

3. Geometry: Geometry questions, typically
involving a diagram.

4. Other A catch-all for questions that do not
fall neatly into the above categories.

In this paper, we focus our attention on closed-
vocabulary algebra, which constitutes approxi-
mately 45% of the questions.

3 Related Work

Most of the recent work on math questions has
focused on open-vocabulary algebra problems,
also known as math story problems. Benchmark
datasets include Alg514 (Kushman et al., 2014),
AI2 (Hosseini et al., 2014), Illinois and Common-
core (Roy and Roth, 2015), and DRAW (Upad-
hyay and Chang, 2016). A common property of
these datasets is that they have been curated such
that any given question can be solved by a limited-
depth operator tree (AI2, Illinois, Commoncore)
or a limited set of equation templates (Alg514
and DRAW). Because of this, it is feasible to use
discriminative approaches (Kushman et al., 2014;
Hosseini et al., 2014; Roy and Roth, 2015; Zhou
et al., 2015; Koncel-Kedziorski et al., 2015; Mitra
and Baral, 2016) that extract the quantities, fea-
turize the question, and then perform a weighted
search over the space of instantiated operator trees
or equation templates. However it is not clear how
one can extend these discriminative techniques to
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handle the complex semantics found in Examples
1 and 2.

Very recently, (Matsuzaki et al., 2017) pub-
lished a paper about their semantic parsing ap-
proach to pre-university math problems (harvested
from Japanese exams rather than the Math SAT).
It is challenging to do a direct comparison, since
they report results only on the Japanese-language
exams. They report end-to-end system results of
11% recall and 50% precision.

(Shi et al., 2015) harvested a fairly diverse set of
closed-vocabulary algebra problems (called Dol-
phin) from the web and provided the first results
on that dataset. Here, we demonstrate how to
handle the more complex discourse semantics and
anaphoric phenomena found in Math SAT ques-
tions, and establish a new state-of-the-art result on
the Dolphin benchmark.

4 System Overview

Figure 1 shows a high-level view of our QA sys-
tem. We will give a general overview in this sec-
tion, and then explore more advanced concepts
and examples in the subsequent section.

4.1 Intermediate Languages

Our QA system has two basic languages that me-
diate the transformation from the question passage
to the answer: a syntactic language A and a se-
mantic language B.

Syntactic language A has a constituent-style
syntax convenient4 for the tree transducers in our
cascade. In Figure 2, we show an example. We
have three basic node types: clauses, entities
(these correspond to noun phrases), and details
(these correspond to adjectival and adverbial mod-
ifiers). Each node has a table of fields (key-value
pairs) that store child relationships and auxiliary
information like tense and number. For brevity,
this additional structure is omitted from Figure 2,
but a more explicit visualization can be found in
Figure 4 (top).

A program in semantic language B is a set of
constraint declarations. For instance, the question
from Figure 2 (“Letm+3 < 15. Ifm is a positive
integer, what is the sum of all values ofm?”) com-
piles to the semantic program in Figure 3. When

4We experimented with adopting an existing syntax, like
the Penn Treebank Syntax or the Stanford Dependency Syn-
tax, but it turned out to be easier to develop the syntax in
parallel with the needs of our system. Having said that, it is
not intended to be wildly different from those formalisms.

Figure 4: Example XTOPs transducer rules (bot-
tom) used to derive a syntactic parse from the noun
phrase “a positive integer” (via backward applica-
tion of the transducer).

the form of the tree is unimportant, it will be con-
venient to use a more legible LISP-style format,
e.g.

(< (+m 3) 15)
(> m 0)
(intm)
(protomM )
(= ?q (sumM ))

Every constraint in this program should be easily
understandable, except for (proto m M ), which
loosely means that M is the set of all possible val-
ues of m. In Section 5.1, we discuss the proto
directive in more detail.
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Figure 2: Example syntactic parse. For convenience, we show the correspondence of the nodes of
our syntactic parse (top) to the original question passage (bottom). In the parse tree, “E” stands for
“ENTITY”.

Figure 3: Example semantic program for the question “Let m+ 3 < 15. If m is a positive integer, what
is the sum of all values of m?”

4.2 Syntactic Parsing

The first stage of our QA system parses the ques-
tion passage into language A5. We implemented
the parser as the backward application of an ex-
tended top-down tree-to-string (XTOPs) trans-
ducer6.

We refer the reader to (Maletti et al., 2009) for
a theoretical presentation of XTOPs, and instead
give a brief intuitive presentation of the device. An
XTOPs transducer defines a top-down transforma-
tion from a tree language to a string language, via
a set of stateful rewrite rules. For instance, rules
(i) through (v) of Figure 4 can generate the string
“a positive integer” from theA-tree pictured at the
top of the figure, given start state qNP.

Given an XTOPs transducer M , we can parse
string s through backward application of the trans-
ducer, i.e. compute the set of trees M−1(s)
that could have generated string s from the start

5Recall: language A is the syntactic language described
in the previous section. An example is shown in Figure 2.

6We chose to implement the parsing step by engineering a
transducer rather than using an off-the-shelf statistical parser.
While we tried to retrofit a parser – e.g. as done by (Seo et al.,
2015) – to serve our needs, it turned out to be somewhat more
robust (and relatively simple) to engineer our own.

state. Efficient backward application of XTOPs
transducers is supported by packages like Tiburon
(May and Knight, 2006).

Our XTOPs transducer has approximately 140
states and 550 engineered rules (approximately
200 of these rules are used for parsing formal
mathematics and a subset of LaTeX). Most lexical
rules are automatically generated on-the-fly from
WordNet (Miller, 1995).

4.3 Compilation

We then compile the parses of the question pas-
sage, by running them forward through a cas-
cade of bottom-up tree transducers (Engelfriet,
1975). Again we refer the reader to the literature
(Maletti, 2011, 2014) for a theoretical presentation
of bottom-up tree transducers, and use Figure 5
to provide intuition about the device. A bottom-
up tree transducer defines a transformation from
a tree language to a (possibly different) tree lan-
guage, via a set of stateful bottom-up rewrite rules.

In Figure 5, we show how this transformation
works in the context of the semantic translation
step, which uses a multi bottom-up transducer
(MBOT) to map our syntactic languageA into our
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semantic language B. There is a single state (in-
dicated by a gray shaded rectangle) that has two
children: (i) a return value, and (ii) a set of side-
effect statements.

The first rule application transforms “all values
of m” into a return value of M (a new variable
introduced to indicate the set of all values of vari-
able m) and a side-effect (protomM ), indicating
that M equals the set of all possible values of m.
The second rule application transforms “the sum
of M” into a return value of (sumM ), and propa-
gates upward the accumulated side-effects.

We implemented all three compilation steps
from Figure 1 (anaphora resolution, semantic
translation, and semantic analysis) as the for-
ward application of a bottom-up tree transducer.
Anaphora resolution resolves any nodes that refer
to other nodes in the tree. Semantic translation
translates syntactic language A into semantic lan-
guage B. Semantic analysis type-checks the trees
for internal consistency.

4.4 Interpretation
Finally, each derived B-tree is sent to an evalu-
ator to obtain an answer. Our main evaluator is
a wrapped version of Z3 (de Moura and Bjorner,
2008), a widely used Satisfiability Modulo Theo-
ries (SMT) solver. If it does not find an answer, we
fall back to a numeric optimization solver similar
to one used by (Seo et al., 2015).

5 Spotlights

Having provided a bird’s eye view in the last sec-
tion, we now spotlight some key details of our QA
system.

5.1 Spotlight: Complex Aggregations
A core challenge of semantic parsing is how best
to read complex semantic phenomena from a syn-
tactic representation. Two such phenomena are
superlatives and counting. GeoQuery (Zelle and
Mooney, 1996) has examples7 of these, as does8

WebQuestions (Berant et al., 2013). Unfortu-
nately, it is not clear how existing strategies for
dealing with aggregative constructs (e.g. (Liang
et al., 2011)) can be extended to the more complex
multi-sentence questions found on the SATs. For
instance, the basic semantics of Example 1 (enu-
merated in Section 1) is dispersed throughout the

7e.g. “What is the capital of the state that borders the most
states?”

8e.g. “How many pets did John F. Kennedy own?”

Figure 6: Understanding complex aggregations
by decomposing them into order-independent
atoms.

question passage, such that neither the maximiza-
tion nor the minimization can be locally derived
from some subtree of the dependency structure.

To deal with this challenge, we designed our se-
mantic language B to decompose the semantics
of aggregative constructs into order-independent
atoms. Consider the following restatement of the
semantics of Example 1:

proto(ẋ, X)

proto(ẏ, Y )

3ẋ+ ẏ = 15

ẋ > 0

ẏ > 0

ẋ ∈ Z
ẏ ∈ Z

solve: maxY −minX

where proto(ż, Z) designates that a variable ż
should be treated as the prototype variable of a
statement in set-builder notation, i.e. Z = {ż |
...}. We treat any other statement featuring pro-
totype variable ż as a constraint appearing on the
right side of the set-builder statement. If there are
multiple prototype statements, they are grouped
into a single set-builder statement (as occurs with
ẋ and ẏ in our example).

The power of this decomposition is that it can be
reconstructed piecemeal from an arbitrarily com-
plex passage. The atomic statements can be inter-
preted locally in an arbitrary order, as in Figure 6,
then synthesized into set-builder notation during
evaluation.
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Figure 5: Example semantic translation using an MBOT.

5.2 Spotlight: Complex Anaphoric
Phenomena

The anaphora resolution task (Ge et al., 1998) is
typically defined at the lexical level. For instance,
in the sentence “c is equal to its square,” a tra-
ditional evaluation like the CoNLL-2011 Shared
Task (Pradhan et al., 2011) would ask whether the
string “its” is aligned to the string “c”. These eval-
uations also assume that both the reference and the
referent (a.k.a. antecedent) are contiguous strings
in the text.

Math SAT problems exhibit a host of new chal-
lenges that fall outside traditionally studied defini-
tions of anaphora resolution:

• One-to-many coreference9 (One integer is
5 more than another. What is the sum of the
numbers?): “The numbers” refers to two dis-
contiguous strings: “one integer” and “an-
other”.

• Implicit set reference (Two numbers sum to
5. If the first is 2, what is the second?): “The
second” implies a latent set that needs to be
resolved (to “two numbers”) in order to un-
derstand the sentence. This phenomenon is
shown in Figure 7.

9A recent ACL paper (Vala et al., 2016) has provided a
preliminary treatment of this phenomenon.

• Implicit clausal reference (If 7 is divided by
3, what is the remainder?): “The remainder”
implies a latent clause that needs to be re-
solved (to “7 is divided by 3”) in order to un-
derstand the sentence.

We address this broader class of anaphora by a
two-pass process:

1. First, we introduce implicit sets and clauses
when appropriate. For instance, implicit sets
are introduced for superlative and ordinal
constructions, while implicit clauses are in-
troduced for functional nouns like “remain-
der.” In Figure 7, these implicits are depicted
as bracketed phrases (i.e. [of a set]).

2. Anaphora resolution then proceeds as a
bottom-up tree-labeling process, shown in
Figure 7. For each subtree, a resolution func-
tion ρ partially maps subtree entities to sub-
tree nodes. Note that ancestors can overwrite
the resolutions of their descendants. This oc-
curs in the second example of Figure 7, where
the implicit set E7 is initially resolved to im-
plicit set E4, but is later resolved to the en-
tity E1 (“two numbers”) once it comes into
scope.

In our initial system, the resolution function ρ was
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Figure 7: Bottom-up anaphora resolution in our QA system. For convenience, we show the correspon-
dence of the nodes of our syntactic parse (top) to the original question passage (bottom). In the parse
tree, “E” is an abbreviation for ENTITY.

engineered heuristically. We later replaced this
with a learned version (by using our system to gen-
erate training data). Due to space considerations,
details are omitted.

6 Results with the Unweighted
Nondeterministic Cascade

In the basic cascade from Section 4, the number of
trees passed from module to module can expand,
but it can also contract (for instance, in the seman-
tic translation step, there can be multiple ways of
translating a parse, or none at all). This allows the
QA system to disambiguate question passages by
eliminating parses for which there is no consistent
semantics. On the subset of the Kaplan questions
for which at least one parse exists, the average
number of trees after the parsing step is 7.5. The
average number of trees after the semantic analy-
sis step goes down to only 2.4. At that point, ob-
viously we need to choose some priority in which
to feed these finalized programs to the evaluation
module. Using a simple heuristic (process smaller
programs first), we obtain 70.2% recall and 95.8%
precision on the Kaplan closed-vocabulary algebra
questions10.

This high precision can be partially attributed
to the fact that most SAT questions are multiple-
choice (thus we can sequentially evaluate the fi-
nalized programs until we find a viable answer).
We do not have that luxury on the Dolphin dataset,
a set of direct-answer algebra questions curated
by Microsoft Research (split into a development
set of 374 questions and a test set of 1504 ques-

10Recall and precision numbers are computed over the en-
tire set of questions, regardless of whether they have a valid
parse.

tions). On the subset of the development ques-
tions for which at least one parse exists (90.3%
of the questions), the average number of trees af-
ter the parsing step is 4.3. The average number of
trees after the semantic analysis step goes down to
1.5. Our basic system obtains 66.3% recall on the
development questions. Naturally the precision is
not as high as on the multiple choice questions, but
surprisingly we still obtain 85.5% precision, even
with an unweighted cascade.

7 Introducing a Parse Ranker

Most of this precision loss is due to legitimate
parse ambiguity that cannot be resolved through
semantic interpretability alone. Rather, the dis-
ambiguation requires some additional pragmatic
convention. Consider the example: “When the
reciprocal of three times a number is subtracted
from the reciprocal of the number, the result is one
sixth. Find the number.” By interpreting “the re-
ciprocal of three” as 1

3 , the meaning of this ques-
tion becomes “When 1

3 times a number is sub-
tracted from the reciprocal of the number, the re-
sult is one sixth. Find the number.” This is not
however the most human-intuitive interpretation
of the question. Somehow the system must iden-
tify the pragmatic cues that cause humans to dis-
prefer this interpretation.

To identify these cues, we insert a parse rank-
ing module between the parsing module and the
anaphora resolution module (see Figure 1 for a
reminder of the system components). The goal
of the parse ranker is to associate a lower cost
to “more intuitive” interpretations when there are
multiple plausible syntactic interpretations. The
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recall prec. F1
Kaplan (non-blind) 70.2 95.8 81.0

McGraw-Hill (blind) 41.0 91.8 56.7
Official (blind) 43.1 90.8 58.5

Table 1: Results on the closed-vocabulary algebra
subsets of our Math SAT question sets.

EUCLID (Shi et al., 2015)
rec prec F1 rec prec F1

dev 78.1 97.0 86.5 - - -
test 65.1 94.1 77.0 60.3 95.4 73.9

Table 2: Results on the Dolphin question sets.
The increase in recall is statistically significant
with a P -value < 0.01.

rest of the cascade propagates these costs. Simi-
lar to existing work, e.g. (Charniak and Johnson,
2005), we implement the cost function as an L1-
regularized logistic regression model.

Adding the trained parse ranker module im-
proves performance on the Dolphin development
set to 75.7% recall and 97.3% precision (from
66.3% recall and 85.5% precision).

8 Final Results

Results from our final system are shown in Table 1
(for the closed-vocabulary algebra subsets of our
math SAT question sets) and Table 2 (for the Dol-
phin question sets). EUCLID generalizes reason-
ably well to the blind SAT questions, achieving
approximately 60% of the system’s recall on the
training questions, at a precision of approximately
91%. To give a sense of the extent of the gen-
eralization from training to test, Table 3 offers a
couple of correctly answered questions from the
blind11 McGraw-Hill set, plus their closest analog
in the training questions (by edit distance). The
performance on the blind test sets (including all
questions, not just closed-vocabulary algebra) cor-
responds to an SAT score of approximately 350
(out of 800). A random-guessing baseline has an
expected score of 200.

Table 4 provides a failure analysis on the
McGraw-Hill data, categorizing a sample of 50
questions. Half of the questions failed to have a

11Apart from harvesting a sample of correctly answered
questions for this analysis, the McGraw-Hill set was kept
completely blind. The official set was left completely un-
touched.

development (blind) training
Set M consists of the If the sum of the
consecutive integers consecutive integers
from -15 to y, inclusive. from -15 to x,
If the sum of all of the inclusive, is 51,
integers in set M is 70, what is the value
how many numbers are of x?
in the set?
If a, b, and c are If x and y are
positive even integers different positive
such that a < b < c integers and
and a+ b+ c = 60, 3x+ y = 17, the
then the greatest difference between
possible value of c is the largest possible

value of y
and the smallest
possible value
of x is

Table 3: Some correctly answered questions on
the blind McGraw-Hill set, and their closest paral-
lel (by edit distance) in the training set (Kaplan).

development (blind) training
failed to parse 50%

failed to map parse
into a semantic program 24%

failed to produce an answer
from any semantic program 18%

produced an incorrect answer 8%

Table 4: Error analysis on the blind McGraw-Hill
set, surveying the first point of failure for a sample
of 50 incorrectly answered questions.

valid parse. Roughly a quarter of the questions had
at least one valid parse, but none of these resulted
in a semantic program. 18% of the questions com-
piled into at least one semantic program, but none
of these produced an answer when fed to the in-
terpreter. 8% of the questions compiled into a se-
mantic form that produced an incorrect answer.

Besides the Math SAT datasets, EUCLID also
has state-of-the-art performance on the public
Dolphin question set, achieving an absolute recall
improvement12 of nearly 5% with a small loss in
precision. This raises the state-of-the-art F1-score
on this data set from 73.9% to 77.0%.

12This improvement is statistically significant with a P-
value < 0.01.
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genre dataset blind? recall precision F1-score
closed algebra Kaplan no 70.2 95.8 81.0

McGraw-Hill yes 41.0 91.8 56.7
official yes 43.1 90.8 58.5

geometry Kaplan no 11.7 95.0 20.8
McGraw-Hill yes 5.6 76.9 10.4

open algebra hosseini-ma2 no 34.7 57.5 43.3
hosseini-ma1 yes 29.9 45.4 36.1

Table 5: Snapshot of early progress across several subgenres of the Math SAT. In our early stages,
we are hillclimbing on the hosseini datasets from (Hosseini et al., 2014), which are simpler than the
open-vocabulary algebra questions from the Math SAT.

9 Towards a Broad-Coverage SAT solver

This paper reports on the first steps of a longer-
term initiative to build a unified system that can
pass the math SAT. We have made some prelimi-
nary forays into extending the system to handle the
more complex subdomains described in Section
2, namely open-vocabulary algebra and geometry.
Key research challenges presented by these new
domains are:

• Mapping into richer semantic languages:
The math story problems of open-vocabulary
algebra require languages that reason about
state change and can introduce assumptions
not explicitly represented in the text.

• Robustly synthesizing diagram and text in-
formation: For geometry questions, we are
building on key early work in this area per-
formed by (Seo et al., 2014, 2015).

• Extending the system in a scalable way:
Writing new transducer rules for each new
domain is not a sustainable way to extend our
system. We are exploring how to use natural
language to “program” our system, e.g. by
automatically inducing transducer rules for
paraphrase text.

A snapshot of our current progress is shown in Ta-
ble 5.

10 Discussion

In the process of creating a QA system for math
SAT questions, this project has yielded several
general strategies for beyond-sentential semantic
parsing. For instance:

• One can modularize the parser as a cascade of
tree transducers, allowing uncertainty about

anaphora resolution and lexical interpretation
to be propagated until it can be confidently
resolved, sometimes as late as program inter-
pretation (see Section 6).

• One can atomize complex semantic phenom-
ena (e.g. aggregrative constructs) into small
order-independent pieces. This allows a sim-
pler transformation from a syntactic form,
because these atoms can be locally recog-
nized, incrementally composed, and globally
reconstituted into a structured semantics (see
Section 5.1).

• One can reframe bread-and-butter NLP tasks
(e.g. anaphora resolution) to fit better within
(and take advantage of) the context of the
transducer cascade (see Section 5.2)

An important focus of this paper has been issues
of representation, namely how to develop interme-
diate structured languages that facilitate the auto-
matic transformation of question discourse into a
response. Because we can use the resulting QA
system to generate gold intermediate trees for any
correctly answered question in our dataset, one
way to view this work is as a data annotation
project. One distinguishing advantage is that our
intermediate languages come with a “proof of use-
fulness.” They are not designed based on specula-
tive utility – rather, they have already proven use-
ful in the context of a functioning QA system.
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Abstract

This paper presents a novel template-
based method to solve math word prob-
lems. This method learns the mappings
between math concept phrases in math
word problems and their math expressions
from training data. For each equation tem-
plate, we automatically construct a rich
template sketch by aggregating informa-
tion from various problems with the same
template. Our approach is implemented in
a two-stage system. It first retrieves a few
relevant equation system templates and
aligns numbers in math word problems
to those templates for candidate equation
generation. It then does a fine-grained in-
ference to obtain the final answer. Ex-
periment results show that our method
achieves an accuracy of 28.4% on the lin-
ear Dolphin18K benchmark, which is 10%
(54% relative) higher than previous state-
of-the-art systems while achieving an ac-
curacy increase of 12% (59% relative) on
the TS6 benchmark subset.

1 Introduction

The research topic of automatically solving math
word problems dates back to the 1960s (Bobrow,
1964a,b; Charniak, 1968). Recently many sys-
tems have been proposed to these types of prob-
lems (Kushman et al., 2014; Hosseini et al., 2014;
Koncel-Kedziorski et al., 2015; Zhou et al., 2015;
Roy and Roth, 2015; Shi et al., 2015; Upadhyay
et al., 2016; Mitra and Baral, 2016). On a re-
cent evaluation conducted by Huang et al. (2016),
current state-of-the-art systems only achieved an

∗Work done while this author was an intern at Microsoft
Research.

18.3% accuracy on their published dataset Dol-
phin18K. Their results indicate that math word
problem solving is a very challenging task.

To solve a math word problem, a system needs
to understand natural language text to extract in-
formation from the problem as local context. Also,
it should provide an external knowledge base, in-
cluding commonsense knowledge (e.g. ”a chicken
has two legs”) and mathematical knowledge (e.g.
”the perimeter of a rectangle = 2 * length + 2 *
width”). The system can then perform reasoning
based on the above two resources to generate an
answer.

P1: What's 25% off $139.99?
Equation: (1-0.25)*139.99 = x

P2: How much will the ipod now be if the original price is $260 and I 
get 10% discount?
Equation: (1-0.1)*260 = x

Template: (1-n1)*n2 = x

P3: I bought something for $306.00 dollars. I got a 20% discount. What 
was the original price?
Equation: (1-0.2)*x = 306

Template: (1-n1)*x = n2

Figure 1: Math Word Problem Examples.

In this paper, we focus on the acquisition of
mathematical knowledge, or deriving math con-
cepts from natural language. Consider the first two
problems P1 and P2 in Figure 1. The math con-
cept in the problems tells you to take away a per-
centage from one and get the resulting percentage
of a total. Using mathematical language, it can be
formulated as (1−n1)∗n2, where n1, n2 are quan-
tities. In this example, we can derive the concept
of subtraction from the text “[NUM] % off ” and
“[NUM] % discount”.
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Acquisition of mathematical knowledge is non-
trivial. Initial statistical approaches (Hosseini
et al., 2014; Roy and Roth, 2015; Koncel-
Kedziorski et al., 2015) derive math concepts
based on observations from their dataset of spe-
cific types of problems, e.g. problems with one
single equation. For example, Hosseini et al.
(2014) assumes verbs and only verbs embed math
concepts and map them to addition/subtraction.
Roy and Roth (2015); Koncel-Kedziorski et al.
(2015) assume there is only one unknown vari-
able in the problem and cannot derive math con-
cepts involving constants or more than one un-
known variables, such as “the product of two un-
known numbers”.

Template-based approaches (Kushman et al.,
2014; Zhou et al., 2015; Upadhyay et al., 2016),
on the other hand, leverage the built-in composi-
tion structure of equation system templates to for-
mulate all types of math concepts seen in train-
ing data, such as (1 − n1) ∗ n2 = x in Figure 1.
However, they suffer from two major shortcom-
ings. First, the math concepts they learned, which
is expressed as an entire template, fails to capture
a lot of useful information with sparse training in-
stances. We argue that it would be more expres-
sive if the math concept is learned in a finer granu-
larity. Second, their learning processes rely heav-
ily on lexical and syntactic features, such as the
dependency path between two slots in a template.
When applied to a large-scale dataset, they create a
huge and sparse feature space and it is unclear how
these template-related features would contribute.

To alleviate the sparseness problem of math
concept learning and better utilize templates, we
propose a novel approach to capture rich informa-
tion contained in templates, including textual ex-
pressions that imply math concepts. We parse the
template into a tree structure and define “template
fragment” as any subtree with at least one opera-
tor and two operands. We learn fine-grained map-
pings between textual expressions and template
fragments, based on longest common substring.
For example, given the three problems in Figure 1,
we can map “[NUM] % off” and “[NUM] % dis-
count” to 1 − n1, and “[NUM] % off [NUM]” to
(1−n1)∗n2 = x. In this way, we can decompose
the templates and learn math concepts in a finer
grain. Furthermore, we observe that problems of
the same template share some common properties.
By aggregating problems of the same template and

capturing these properties, we automatically con-
struct a sketch for each template in the training
data.

Our approach is implemented in a two-stage
system. We first retrieve a few relevant templates
in the training data. This narrows our search space
to focus only on those templates that are likely to
be relevant. Then we align numbers in the prob-
lem to those few returned templates, and do fine-
grained inference to obtain the final answer. We
show that the textural expressions and template
sketch we propose are effective for both stages. In
addition, our system significantly reduces the hy-
pothesis space of candidate equations compared to
previous systems, which benefits the learning pro-
cess and inference at scale.

We evaluate our system on the benchmark
dataset provided by Huang et al. (2016). Experi-
ments show that our system outperforms two state-
of-the-art baselines with a more than 10% abso-
lute (54% relative) accuracy increase in the linear
benchmark and a more than 20% absolute (71%
relative) accuracy increase for the dataset with a
template size greater than or equal to 6.

In the remaining parts of this paper, we in-
troduce related work in Section 2, describe tem-
plate sketch and textual expression learning in
Section 3, present our two-stage system in Sec-
tion 4, summarize experiment setup and results in
Section 5, and conclude this paper in Section 6.

2 Related Work

Automatic math word problem solving meth-
ods (Bobrow, 1964a,b; Charniak, 1968, 1969; Bri-
ars and Larkin, 1984; Fletcher, 1985; Dellarosa,
1986; Bakman, 2007; Yuhui et al., 2010) devel-
oped before 2008 are mostly rule-based. They ac-
cept limited well-format input sentences and map
them into certain structures by pattern matching.
They usually focus on problems with simple math
operations such as addition or subtraction. Please
see Mukherjee and Garain (2008) for a summary.

In recent years, symbolic and statistical meth-
ods have been explored by various researchers. In
the symbolic approach, systems transform math
word problems to structured representations. Bak-
man (2007) maps math problems to predefined
schema with a table of textual formulas and chang-
ing verbs. Liguda and Pfeiffer (2012) uses aug-
mented semantic networks to represent math prob-
lems. Shi et al. (2015) parses math problems to
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their pre-defined semantic language. However,
these methods are only effective in their desig-
nated math problem categories and are not scal-
able to other categories. For example, the method
used by Shi et al. (2015) works extremely well for
solving number word problems but not others.

In the statistical machine learning approach,
Hosseini et al. (2014) solves addition and subtrac-
tion problems by extracting quantities as states and
derive math concepts from verbs in the training
data. Kushman et al. (2014) and Zhou et al.
(2015) generalize equations attached to problems
with variable slots and number slots. They learn
a probabilistic model for finding the best solution
equation. Upadhyay et al. (2016) follows their
approach and leverage math word problems with-
out equation annotation as external resources. Seo
et al. (2015) solves a set of SAT geometry ques-
tions with text and diagram provided. Koncel-
Kedziorski et al. (2015) and Roy and Roth (2015)
target math problems that can be solved by one
single linear equation. They map quantities and
words to candidate equation trees and select the
best tree using a statistical learning model. Mi-
tra and Baral (2016) considers addition and sub-
traction problems in three basic problem types:
“Change”, “Part Whole” and “Comparison”. They
manually design different features for each type,
which is difficult to expand to more types.

In summary, previous methods can achieve
high accuracy in limited math problem categories,
(i.e. (Kushman et al., 2014; Shi et al., 2015)), but
do not scale or perform well in datasets contain-
ing various math problem types as in Huang et al.
(2016), as their designed features are becoming
sparse. Their process of acquiring mathematical
knowledge is either sparse or based on certain as-
sumptions of specific problem types. To allevi-
ate this problem, we introduce our template sketch
construction and fine-grained expressions learning
in the next section.

3 Template Sketch Construction

A template sketch contains template information.
We define three categories of information for the
sketch shown in this section. Next we describe
how we construct a template sketch, via aggrega-
tion of rich information from training problems.
We group problems of the same template in train-
ing set as one cluster and collect information. See
Figure 2 for the outline of our template sketch con-

struction.

3.1 Definition
Template: It is first introduced in Kushman et al.
(2014). It is a unique form of an equation system.
For example, given an equation system as follows:

2 · x1 + 4 · x2 = 34
x1 + 4 = x2

This equation system is a solution for a specific
math word problem. We replace the numbers with
four number slots {n1, n2, n3, n4} and generalize
the equations to the following template:

n1 · x1 + n2 · x2 = n3
x1 + n4 = x2

Alignment: We align numbers in the math prob-
lem with the number slots of a template. For the
first math problem in Figure 1 with its correspond-
ing template (1 − n1) ∗ n2 = x, there are two
numbers 0.25 and 139.99 to align with two num-
ber slots n1 and n2, which results in two different
alignments.

Kushman et al. (2014) aligns nouns to variable
slots {x1, x2, ...} which leads to a huge hypoth-
esis space and does not perform as well as the
number slot alignment only method proposed later
by (Zhou et al., 2015). Therefore, we only con-
sider number slot alignment in this paper.

3.2 Textual Expressions
For template fragments, there are usually some
textual expressions. For example, “n1 % off” and
“n1 % discount” are both mapped to the template
fragment 1− n1.

We employ a statistical framework to automat-
ically mine textual expressions for template frag-
ments from a training dataset. First we parse the
equation to a hierarchical tree. In a bottom-up ap-
proach, we obtain each possible subtree as a tem-
plate fragment tk, which associates with at least
one number slot. For each tk, we use the num-
bers to anchor the number-related phrases in the
problem, replace numbers with“[NUM]” and noun
phrases with “[VAR]”, and cluster the phrases
P = {p1, p2, · · · } with the same tk across all data
given all training problems. Then we compute the
longest common substring lcskij between pairs pi
and pj and calculate tf-idf score of lcskij . We keep
the lcskij with scores above certain empirically de-
termined threshold as the textual expressions.

807



Sketch for Template: (1-n1)*n2=x

[Unit Sequence]
{%, $}
…

[Normalized Unit Sequence]
{0, 1}
…

[Question Keyword]
{price}
…

[Textual Expression]
• 1.0-n1

a discount of [NUM] %
mark down [NUM] %
[NUM] % less than
...
• (1.0-n1)*n2

[NUM] % of off [NUM]
…

Problem 2Problem 1 Problem k…

Problem Aggregation

Wallace received a discount of 28% 
on an item priced at $275. What is 
the total price that he paid for it?

=

x*

275

1

-

0.28

Equation Template Phrases

1–0.28 1-n1 a discount of [NUM] %

(1-0.28)*275 (1-n1)*n2 a discount of [NUM] % on 
[VAR] priced at [NUM]

1. Quantity Extraction

Qnt: 0.28
Unit: %
Normalized Unit: 0

Qnt: 275
Unit: $
Normalized Unit: 1

2. Question Keyword Detection
{total price}

3. Textual Patterns

Equation: (1-0.28)*275 = x
Template: (1-n1)*n2 = x

Problem:

Figure 2: Template Sketch Construction.

3.3 Slot Type

Number slots in templates have their own type of
constraints. For example, in the template (1−n1)∗
n2 = x, usually n1 represents a percentage quan-
tity and n2 is the quantity of an object.

We model slot types with quantity units, and
find the direct governing noun phrase as its
‘owner’. For the problem in Figure 2, we ex-
tract quantity unit sequence as {%, $}, normalized
unit sequence as {0, 1} (because % and $ are of
different quantity types), and quantity owners as
{discount, item}. The slot type information pro-
vides important clues to choose the correct tem-
plate and alignment.

3.4 Question Keyword

Question keyword decides which template we use.
Given the following problem setting: “A rectangle
has a width of 5cm and a length of 10cm.”, we can
ask either Q1:“What is the area of the rectangle?”
or Q2: “What is the difference between width and
length?”. The question keywords area and differ-
ence help our system to decide if is should apply
template n1 ∗ n2 = x for Q1 and apply template
n1 − n2 = x for Q2.

We first detect the question sentence (containing

keywords “what”,“how”,“figure out”...). Then we
extract the question keyword on the dependency
tree with simple rules that we observed in the dev
set (e.g. retrieving nouns with “attr− nsubj” de-
pendency relation with keyword “what”). Please
note that we favor recall over precision of our de-
tected question keywords since they are used as
features instead of hard constrains on template de-
cision. Simple rule-based extraction can already
satisfy our need for detecting question keywords
in math problems.

4 Two-Stage System

In this section, we describe our two-stage system
for solving math problems, including template re-
trieval and alignment ranking. We show how to
apply textual expressions and template sketch to
our system.

4.1 Template Retrieval

We use an efficient retrieval module to first narrow
our search space and focus only on templates that
are likely to be relevant. Let χ denote the set of
test problems, and T = {t1, t2, . . . , tj} as the tem-
plate set in the training data. For each test prob-
lem xi, our goal is to select the correct template
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tj . We define the conditional probability of select-
ing a template given a problem as follows:

p(tj |xi; νt) =
exp(νt · f(xi, tj))∑
t′j∈T exp(νt · f(xi, t′j))

where νt is the model parameter and f(xi, tj)
is the feature vector. We apply the Ranking
SVM (Herbrich et al., 2000) to minimize a regu-
larized margin-based pairwise loss. We then have
the following objective function:
1

2
‖νt‖2 + C

∑

i

l(νTt f(xi, tj)
+ − νTt f(xi, tl)−)

where superscript ”+” indicates the correct in-
stance and ”-” indicates the false ones. We use
the loss function l(t) = max(0, 1− t)2.

To construct the vector f(xi, tj) for template tj ,
we use the three categories in the template sketch
shown in Table 1. Let Q(tj) represent the cluster
of training problems with template tj .

Textual Features
Contains textual expressions in each template
fragments?
Average Word Overlap with Q(tj)
Max Word Overlap with Q(tj)

Quantity Features
Unit sequence in Q(tj)
Normalized unit sequence in Q(tj)

Question Features
Is Question keyword in Q(tj)

Table 1: Features for template retrieval.

At the phrase level, as we have mined differ-
ent expressions in 3.2 for slots in templates, we
can extract the phrases related to each number or
number pair in a test problem and match them with
expressions. For example, given a test problem to
match template (1− n1) ∗ n2 = x in Figure 2, we
have two groups of patterns to match, correspond-
ing to 1.0− n1 and (1.0− n1) ∗ n2 respectively.

Quantity types in a problem are important. We
use the unit type sequences and normalized unit
type sequence for describing number slot types in
a template. In addition, if a number unit type can-
not differentiate each number slot, we will make
use of number “owner” as defined in subsection
3.3. For example, in the sentence ”The width is
3cm and the length is 5cm”, we extract two quanti-
ties with unit type sequence {cm, cm}; and owner
{width, length}.

In addition, we consider question keywords for
templates. For example, if the question keyword is
”difference”, then x+ n1 = n2 will have a higher
probability of being selected than x = n1 ∗ n2.

We observe that in some cases, one word dif-
ference can lead to two different templates. To
consider cases in which some templates are very
similar (e.g. x + n1 = n2 and n1 + n2 = x,
part/whole unknown), we retrieve the top ranked
N (N=3) templates as candidates for alignment in
the next stage.

4.2 Alignment Ranking
For each top N templates from the previous
stage, we generate possible alignments A =
{a1, a2, . . . , am} as the candidate equation sys-
tem for the test problem xi. We train a ranking
model to choose the alignment with the highest
probability p(ak|xi, tj ; νa), where νa is the model
parameter vector.

p(ak) =
exp(νa · f(xi, ak))∑

a′k∈A exp(νa′ · f(xi, a′k))

We use the same ranking model as in template se-
lection stage and the objective function is changed
to:
1

2
‖νa‖2 + C

∑

i

l(νTa f(xi, ak)
+ − νTa f(xi, al)−)

We design more fine-grained features for each
number slot to formulate the alignment feature
vector f(xi, ak). It contains the following features
in Table 2.

Textual Features
Match textual expressions in template frag-
ment aligned to each number slot (pair)
Quantity Features
Aligned unit sequence in Q(tj)
Aligned normalized unit sequence in Q(tj)
Relationship with noun phrase
Optimal number 1 or 2 is used?
Solution Features
Is integer solution?
Is positive solution?

Table 2: Features for alignment ranking.

At the textual level, we want to capture textual
expressions describing each number slot. For ex-
ample, in the template (1−n1) ∗n2 = x, we have
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mined patterns of 1 − n1 in 3.2, such as “a dis-
count of n1 %”, “mark down n1 %”, etc. Given
the problem in Figure 2 as the test problem, align-
ment (1-0.28) ∗ 275 = x matches textual expres-
sions, while (1-275) ∗ 0.28 = x does not.

For quantity features, we use the alignment-
ordered unit sequence. For the problem in Figure
2 mapping to template (1 − n1) ∗ n2 = x, we
have two different alignments: {n1:0.28, n2:275},
{n1:275,n2:0.28}. Their aligned unit sequences
are {%, $} and {$,%} respectively. We also use
the relations of quantities with noun phrases to dif-
ferentiate number slot interaction with unknown
variable slots and number slots, such as n1 ∗x and
n1 ∗ n2.

Some templates have numerical solution prop-
erties while others do not. For example, tem-
plate x1 = (n1 − n2)/(n3 − n4) would be
less likely to have any strong indication of inte-
ger solution properties. We count the percentage
of integer/positive solutions from the correspond-
ing problems as the probability that this template
prefers an integer/positive solution.

4.3 Model Discussion

Our method has two main differences from pre-
vious template-based methods (Kushman et al.,
2014; Zhou et al., 2015; Upadhyay et al., 2016).

First, previous methods implicitly model map-
ping from problem text to templates. We learn
fine-grained textual expressions mapped to tem-
plate fragments; and explicitly model the property
of templates with template sketches. Second, pre-
vious methods align numbers for all templates in
a training set, while we only examine the N most
probable templates. This significantly reduces the
equation candidate search space. Given a prob-
lem in which m numbers align with a template
of n number slots, the number of possible equa-
tion candidates would be Anm. The search space
grows linearly with the number of templates in
the training data. Suppose m = 5, n = 4 and
we have 1000 templates, the total space would
be (5 ∗ 4 ∗ 3 ∗ 2) ∗ 1000 = 120, 000 for one
problem in Zhou et al. (2015), and will be much
larger if it considers unknown variable alignment
as in (Kushman et al., 2014).

5 Experiments

Settings As demonstrated in Huang et al. (2016),
previous datasets for math problems are limited in

both scale and diversity. We conduct our experi-
ment on their dataset Dolphin18K. We use the lin-
ear subset, containing 10,644 problems in total.
We use two baseline systems for comparison:
(1) ZDC (Zhou et al., 2015) is a statistical
learning method that is an improved version of
KAZB (Kushman et al., 2014)1. (2) SIM (Huang
et al., 2016) is a simple similarity based method.
We do not compare other systems because they
only solve one specific type of problem, e.g. Hos-
seini et al. (2014) only handle addition/subtraction
problems and Koncel-Kedziorski et al. (2015) aim
to solve problems with one single linear equation.
Experiments are conducted using 5-fold cross-
validation with 80% problems randomly selected
as training data and the remaining 20% for testing.
We report the solution accuracy.

5.1 Overall Evaluation Results

Table 3 shows the overall performance of differ-
ent systems. In the table, the size of a template is
the number of problems corresponding to a tem-
plate. For example, for templates with a size 100
or larger, their problem counts add up to 1,807.

Template problems ZDC SIM Ours
Size (%) (%) (%)

>=100 1807 34.2 29.7 64.5
>=50 4281 31.1 27.2 39.3
>=20 5392 29.4 25.8 36.9
>=10 6216 25.3 24.6 35.7
>=6 6827 21.7 20.2 34.6
>=5 7081 21.6 20.1 34.3
>=4 7262 21.1 19.8 33.8
>=3 7466 20.7 19.7 33.2
>=2 8229 20.6 20.3 32.2
>=1 10644 17.9 18.4 28.4

Table 3: Overall evaluation results.

From the table, we observe that our model
consistently achieves better performance than the
baselines on all template sizes. As the template
size becomes larger, all three systems achieve bet-
ter performance. When template size equals 6
(TS6, as a de-facto template size constrain adopted
in ZDC), our model achieve an absolute increase
of over 12% (59% relative). This demonstrates the
effectiveness of our proposed method.

1We ignore KAZB because it does not complete running
on the dataset in three days
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When including long tail problems with a tem-
plate size less than 2, performance of all three
systems drop significantly. This is because the
templates of these problems are not seen in the
training set, and thus are difficult to solve using
these template-based methods. Still, we have at
least 10% absolute (54% relative) accuracy in-
crease on the whole test set compared to the two
baselines. Previous template-based methods re-
quire templates size larger than 6 in the data as
constraints. From the result, we can see that our
method relaxes the template size constraint and
matches more problems with less frequent tem-
plates.

5.2 Accuracy per Template
Here we investigate the performance of different
templates. In Table 4, we sample some domi-
nant templates and report their accuracies. For our
model, we report both template retrieval accuracy
and final solution accuracy.

As we can see, our method performs better than
the baselines for most dominant templates. Per-
formance of the dominant templates can reach an
accuracy level of 60%. This proves that our tem-
plate sketch and textual expressions are effective
in capturing rich template information.

To our surprise, some templates tend to perform
better than others even with smaller template sizes.
For example, x1 = n1 − n2, which represents
the subtraction problem, has 63 problems but per-
forms not as well as x1 = (n1 − n2)/(n3 − n4)
which has 48 problems. We look into their corre-
sponding problems and find out that x1 = n1−n2
are applied to more themes in natural language
than x1 = (n1−n2)/(n3−n4), which are almost
about the theme of “coordinate slope”.

In our model, there is a gap between tem-
plate retrieval accuracy and final solution accu-
racy, which means that although we select the
correct template candidates for the problem, the
alignment model cannot rank the equations cor-
rectly.

5.3 Two-Stage Evaluation
Next, we evaluate the performance of our two-
stage system. Accuracy of template retrieval and
alignment ranking is shown in Table 5.

For template retrieval accuracy, Hit@N means
the correct template for a problem is included in
the top N list returned by our model. We es-
timate the best achievable performance by using

oracle template retrieval. The result is 47.1%
(Hit@ALL), which means 47.1% of the templates
exist more than once in the problem set. Please
note that our template retrieval evaluation may be
underestimated, since in some cases, a test prob-
lem can be solved by different templates.

We then use the top N templates as input for
both our alignment ranking and ZDC. From the
table, we have the following observations: (1)
Hit@3 performs better compared to Hit@1 for
both systems. This confirms our claim that some
templates are similar and we need to incorporate
more fine-grained features to differentiate in the
alignment step; (2) It obtains the highest accu-
racy when N = 3 and decreases when N gets
larger. Both systems get benefits from our tem-
plate retrieval which helps retrieve relevant tem-
plates and reduce the hypothesis space of equa-
tions; (3) Given the same N templates input, our
alignment ranking achieves better performance
than ZDC. This implies that our features are more
indicative.

5.4 Feature Ablation
This section describes our feature ablation study.

Template Retrieval In Table 6, we conduct
three configurations against our model (FULL).
Each ablated configuration corresponds to one
category of our template sketch. From the ta-
ble, we can see that all three categories of fea-
tures contribute to system performance. We re-
move QUANTITY results in the worse perfor-
mance comparing to the FULL model.

Alignment Ranking In Table 7, N means to
select the top N templates in the previous stage
for alignment. The column ”Correct Template”
represents how well the alignment model can per-
form given the correct template input for align-
ment. Our alignment model (FULL) performs the
best compared to the three ablated settings, which
confirms the effectiveness of template properties.

5.5 Error Analysis
We have observed that template-based methods
have difficulty solving problems with small tem-
plate sizes, especially for cases that have a single
problem instance (i.e. template size = 1). We
sample 100 problems in which our system makes
mistakes in the dev set of Dolphin18K and sum-
marize them in Table 8.

Quantity Type The types of quantities are dif-
ficult to determined. For the example problem in
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Ours
Template problems ZDC SIM Template retrieval Acc Final Acc

(%) (%) (%) (%)
n1 ∗ x1 = n2 548 26.3 23.9 87.0 58.7
n1/x1 = n2/n3 453 21.4 29.8 94.1 61.5
x1 = n1 ∗ n2 403 23.6 28.0 78.9 63.4
n1 ∗ x1 + n2 ∗ x2 = n3; 300 86.3 69.7 94.9 85.8
x1 + x2 = n4
x1 = n1 ∗ n2 ∗ n3 103 22.3 32.0 67.0 55.0
x1 + x2 = n1 80 39.7 48.8 79.4 65.1
x1− x2 = n2

x1 = n1 − n2 63 11.7 15.9 50.7 23.4
x1 = (n1 − n2)/(n3 − n4) 48 14.9 18.8 95.7 89.4

Table 4: Accuracy Per Template. Template retrieval acc reports percent of templates appears in one of
the top 3 templates returned by our method.

Hit@N 1 2 3 4 5 10 20 50 ALL
Template retrieval 17.5 22.4 26.3 27.2 28.0 30.2 32.7 35.2 47.1
Acc (%)
Final Acc (%) 24.9 27.6 28.4 27.9 27.4 25.3 22.3 22.1 20.1
ZDC (%) 19.5 20.1 20.1 19.9 19.8 19.1 18.9 18.6 17.9

Table 5: Results of template retrieval and final accuracy with different top N templates retrieved.

Model Hit Hit Hit
@1 @3 @10
(%) (%) (%)

FULL 17.5 26.3 30.2
-TEXTUAL 14.1 24.7 28.4
-QUANTITY 11.4 23.4 25.9
-QUESTION 16.9 25.4 29.8

Table 6: Feature ablation of template retrieval.

the table, if we can detect “24 male” is the same as
“men”, the problem can be solved.

Relation/State Detection If we can identify the
changed states or mathematical relations between
variables, we can solve this category of problems.
In the example problem, it is important to under-
stand that “commission is taken out” is my money
state.

External Knowledge This requires specific
mathematical models, such as permutation and
combination, or commonsense knowledge, e.g. a
dice has 6 sides.

Equation Decomposition The limitation of
template-based approaches is that they require test
problems belonging to one of the templates seen

Model Correct N= N=
Template 1 3

(%) (%) (%)
FULL 34.5 24.9 28.4
-TEXTUAL 31.9 22.2 25.1
-QUANTITY 29.2 20.9 23.3
-SOLUTION 26.3 18.7 21.2

Table 7: Feature ablation of alignment ranking.

in training. Thus, for problems corresponding
to template sizes less than 2, we can decompose
templates into smaller units and conduct learning
more precisely. We then need to generate the equa-
tions, which is also a challenge.

6 Conclusion and Future Work

In this paper, we propose a novel approach to solv-
ing math word problems with rich information of
templates. We learn mappings between textual ex-
pressions and template fragments. Furthermore,
we automatically construct sketches for each tem-
plate. We implement a two-stage system, includ-
ing template retrieval and alignment ranking. Ex-
periments show that our method performs signifi-
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Category Math Problem
Quantity Type
(10%)

The ratio of women to men
in a certain club is 3 to 2. If
there are 24 male club mem-
bers, then how many female
club members are there?

Relation/State
Detection
(12%)

If I am selling something for
$25,000 and a 7% commis-
sion is taken out, how much
money will I be left with?

External
Knowledge
(23%)

Find the probability that total
score is 10 or more given at
least one dice show 6 if 2 dice
red & blue thrown?

Equation De-
composition
(55%)

The average weight of A, B
and C is 45 kg. If the aver-
age weight of A and B is 40
kg and that of B and C is 43
kg, the weight of B is?

Table 8: Error Categorization.

cantly better than two state-of-the-art systems.
Based on our error analysis, we plan to improve

our model by detecting quantity types more accu-
rately, learning relations and incorporating com-
monsense knowledge. For long tail problems with
a template size less 2, we want to utilize the fine-
grained expressions we have learned and decom-
pose equations for learning. Then we can reason
with small equation units to generate a final equa-
tion in testing. We would like to leverage seman-
tic parsing and transform math problems to a more
structured representation. Additionally, we plan to
apply our findings to generating math problem.
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Abstract

Deep neural networks for machine com-
prehension typically utilizes only word
or character embeddings without explic-
itly taking advantage of structured linguis-
tic information such as constituency trees
and dependency trees. In this paper, we
propose structural embedding of syntactic
trees (SEST), an algorithm framework to
utilize structured information and encode
them into vector representations that can
boost the performance of algorithms for
the machine comprehension. We evaluate
our approach using a state-of-the-art neu-
ral attention model on the SQuAD dataset.
Experimental results demonstrate that our
model can accurately identify the syntactic
boundaries of the sentences and extract an-
swers that are syntactically coherent over
the baseline methods.

1 Introduction

Reading comprehension such as SQuAD (Ra-
jpurkar et al., 2016) or NewsQA (Trischler et al.,
2016) requires identifying a span from a given
context, which is an extension to the traditional
question answering task, aiming at responding
questions posed by human with natural language
(Nyberg et al., 2002; Ferrucci et al., 2010; Liu,
2017; Yang, 2017). Many works have been pro-
posed to leverage deep neural networks for such
question answering tasks, most of which involve
learning the query-aware context representations
(Dhingra et al., 2016; Seo et al., 2017; Wang and
Jiang, 2016; Xiong et al., 2017). Although deep
learning based methods demonstrated great poten-
tials for question answering, none them take syn-
tactic information of the sentences such as con-

∗Authors contributed equally to this work.

stituency tree and dependency tree into considera-
tion. Such techniques have been proven to be use-
ful in many natural language understanding tasks
in the past and illustrated noticeable improvements
such as the work by (Rajpurkar et al., 2016). In
this paper, we adopt similar ideas but apply them
to a neural attention model for question answering.

The constituency tree (Manning et al., 1999)
of a sentence defines internal nodes and termi-
nal nodes to represent phrase structure grammars
and the actual words. Figure 1 illustrates the con-
stituency tree of the sentence “the architect or en-
gineer acts as the project coordinator”. Here, “the
architect or engineer” and “the project coordina-
tor” are labeled as noun phrases (“NP”), which is
critical for answering the question below. Here,
the question asks for the name of certain occu-
pation that can be best answered using an noun
phrase. Utilizing the know ledge of a constituency
relations, we can reduce the size of the candidate
space and help the algorithm to identify the correct
answer.

Whose role is to design the works, prepare
the specifications and produce construction
drawings, administer the contract, tender the
works, and manage the works from inception
to completion?

On the other hand, a dependency tree (Manning
et al., 1999) is constructed based on the depen-
dency structure of a sentence. Figure 2 displays
the dependency tree for sentence

The Annual Conference, roughly the equiv-
alent of a diocese in the Anglican Commu-
nion and the Roman Catholic Church or a
synod in some Lutheran denominations such
as the Evangelical Lutheran Church in Amer-
ica, is the basic unit of organization within
the UMC.
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NP

the architect
or engineer

VP

VBZ
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PP

IN

as

NP

the project
coordinator

Figure 1: The constituency tree of context “the ar-
chitect or engineer acts as the project coordinator”

“The Annual Conference” being the subject of
“the basic unit of organization within the UMC”
provides a critical clue for the model to skip over
a large chunk of the text when answering the
question “What is the basic unit of organization
within the UMC”. As we show in the analysis
section, adding dependency information dramati-
cally helps identify dependency structures within
the sentence, which is otherwise difficult to learn.

In this paper, we propose Structural Embedding
of Syntactic Trees (SEST) that encode syntactic
information structured by constituency tree and
dependency tree into neural attention models for
the question answering task. Experimental results
on SQuAD dataset illustrates that the syntactic in-
formation helps the model to choose the answers
that are both succinct and grammatically coherent,
which boosted the performance on both qualita-
tive studies and numerical results. Our focus is
to show adding structural embedding can improve
baseline models, rather than directly compare to
published SQuAD results. Although the methods
proposed in the paper are demonstrated using syn-
tactic trees, we note that similar approaches can
be used to encode other types of tree structured in-
formation such as knowledge graphs and ontology
relations.

2 Methodology

The general framework of our model is illustrated
in Figure 3. Here the input of the model is the
embedding of the context and question while the
output is two indices begin and end which indi-
cate the begin and end indices of the answer in the
context space.

The input of the model contains two parts: the
word/character model and the syntactic model.

The shaded portion of our model in Figure 3
represents the encoded syntactic information of
both context and question that are fed into the
model. To gain an insight of how the encoding
works, consider a sentence which syntactic tree
consists of four nodes (o1, o2, o3, o4). A specific
word is represented to be a sequence of nodes
from its leave all the way to the root. We cover
how this process work in detail in Section 3.1.1
and 3.1.2. Another input that will be fed into deep
learning model is the embedding information for
words and characters respectively. There are many
ways to convert words in a sentence into a high-
dimensional embedding. We choose GloVe (Pen-
nington et al., 2014b) to obtain a pre-trained and
fixed vector for each word. Instead of using a
fixed embedding, we use Convolutional Neural
Networks (CNN) to model character level embed-
ding, which values can be changed during train-
ing (Kim, 2014). To integrate both embeddings
into the deep neural model, we feed the concate-
nation of them for the question and the context to
be the input of the model.

The inputs are processed in the embedding layer
to form more abstract representations. Here we
choose a multi-layer bi-directional Long Short
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) to obtain more abstract representa-
tions for words in the contexts and questions.

After that, we employ an attention layer to fuse
information from both the contexts and the ques-
tions. Various matching mechanisms using atten-
tions have been extensively studied for machine
comprehension tasks (Xiong et al., 2017; Seo
et al., 2017; Wang et al., 2016; Wang and Jiang,
2016). We use the Bi-directional Attention flow
model (Seo et al., 2017) which performs context-
to-question and question-to-context attentions in
both directions. The context-to-question attention
signifies which question words are most relevant
to each context word. For each context word, the
attention weight is first computed by a softmax
function with question words, and the attention
vector of each context word is then computed by a
weighted sum of the question words’ embeddings
obtained from the embedding layer. The question-
to-context attention summarizes a context vector
by performing a soft attention with context words
given the question. We then represent each context
word as the concatenation of the embedding vec-
tor obtained from the embedding layer, the atten-
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The Annual Conference , ... , is the basic unit of organization within the UMC .

DET

AMOD

NSUBJ

APPOS

COP

DET

AMOD CASE

NMOD CASE

DET

NMOD

Figure 2: Partial dependency parse tree of an example context “The Annual Conference, roughly the
equivalent of a diocese in the Anglican Communion and the Roman Catholic Church or a synod in
some Lutheran denominations such as the Evangelical Lutheran Church in America, is the basic unit of
organization within the UMC.”

tion vector obtained from the context-to-question
attention and the context vector obtained from the
question-to-context attention. We then feed the
concatenated vectors to a stacked bi-directional
LSTM with two layers to obtain the final repre-
sentations of context words. We note that our pro-
posed structural embedding of syntactic trees can
be easily applied to any attention approaches men-
tioned above.

For the machine comprehension task in this pa-
per, the answer to the question is a phrase in the
context. In the output layer, we use two softmax
functions over the output of the attention layer to
predict the begin and end indices of the phrase in
the context.

3 Structural Embedding of Syntactic
Tree

We detail the procedures of two alternative im-
plementation of our methods: the Structural Em-
bedding of Constituency Trees model (SECT) and
the Structural Embedding of Dependency Trees
model (SEDT). We assume that the syntactic in-
formation has already been generated in the pre-
processing step using tools such as the Stanford
CoreNLP (Manning et al., 2014).

3.1 Syntactic Sequence Extraction

We first extract a syntactic collection C(p) for
each word p, which consists of a set of nodes
{o1, o2, . . . , od−1, od} in the syntactic parse tree
T . Each node oi can be a word, a grammatical
category (e.g., part-of-speech tagging), or a depen-
dency link label, depending on the type of syn-
tactic tree we use. To construct syntactic embed-
dings, the first thing we need to do is to define a
specific processing order A over the syntactic col-
lection C(p), in which way we can extract a syn-
tactic sequence S(p) for the word p.

3.1.1 Structural Embedding of Constituency
Trees (SECT)

The constituency tree is a syntactic parse tree con-
structed by phrase structure grammars (Manning
et al., 1999), which defines the way to hierarchi-
cally construct a sentence from words in a bottom-
up manner based on constituency relations. Words
in the contexts or the questions are represented
by leaf nodes in the constituency tree while the
non-terminal nodes are labeled by categories of
the grammar. Non-terminal nodes summarize the
grammatical function of the sub-tree. Figure 1
shows an example of the constituency tree with
“the architect or engineer” being annotated as a
noun phrase (NP).

A path originating from the leaf node to the root
node captures the syntactic information in the con-
stituency tree in a hierarchical way. The higher the
node is, the longer span of words the sub-tree of
this node covers. Hence, to extract the syntactic
sequence S(p) for a leaf node p, it is reasonable
to define the processing order A(p) from the leaf
p all the way to its root. For example, the syntac-
tic sequence for the phrase “the project coordina-
tor” in Figure 1 is detected as (NP, PP, VP, S). In
practice, we usually take the last hidden units of
Bi-directional encoding mechanisms such as Bi-
directional LSTM to represent the sequence state,
as is indicated in Figure 4 (a). We set a win-
dow size to limit the amount of information that
is used in our models. For example, if we choose
the window size as 2, then the syntactic sequence
becomes (NP, PP). This process is introduced for
both performance and memory utilization consid-
eration, which is discussed in detail in Section 4.5.

In addition, a non-terminal node at a particu-
lar position in the syntactic sequence defines the
begin and end indices of a phrase in the context.
By measuring the similarity between syntactic se-
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Figure 3: Model Framework. The neural network
for training and testing is built by components with
solid lines, which includes the embedding layer,
attention layer, and output layer. The shaded area
highlights the part of the framework that involves
syntactic information. Components with dashed
lines is an example to illustrate how syntactic in-
formation is decoded. Here a sentence is decom-
posed into a syntactic tree with four nodes and
the syntactic information for a specific word is
recorded as the path from its position in the syn-
tactic tree to the root, i.e. (o1, o2, o3) in this case.

quences S(p) extracted for each word p of both the
question and the context, we are able to locate the
boundaries of the answer span. This is done in the
attention layer shown in Figure 3.

3.1.2 Structural Embedding of Dependency
Trees (SEDT)

The dependency tree is a syntactic tree constructed
by dependency grammars (Manning et al., 1999),
which defines the way to connect words by di-
rected links that represent dependencies. A de-
pendency link is able to capture both long and
short distance dependencies of words. Relations
on links vary in their functions and are labeled
with different categories. For example, in the de-
pendency tree plotted in Figure 2, the link from
“unit” to “Conference” indicates that the target
node is a nominal subject (i.e. NSUBJ) of the
source node.

The syntactic collection C(p) for dependency
tree is defined as p’s children, each represented
by its word embedding concatenated with a vec-

tor that uniquely identifies the dependency label.
The processing order A(p) for dependency tree is
then defined to be the dependent’s original order
in the sentence.

Take the word “unit” as an example, we encode
the dependency sub-tree using a Bi-directional
LSTM, as indicated in Figure 4 (b). In such as
a sub-tree, since children are directly linked to the
root, they are position according to the original se-
quence in the sentence. Similar to the syntactic
encoding of C-Tree, we take the last hidden states
as its embedding.

Similar to SECT, we use a window of size l to
limit the amount of syntactic information for the
learning models by choosing only the l-nearest de-
pendents, which is again reported in Section 4.5.

3.2 Syntactic Sequence Encoding
Similar to previous work (Cho et al., 2014; Kim,
2014), we use a neural network to encode a
variable-length syntactic sequence into a fixed-
length vector representation. The encoder can be
a Recurrent Neural Network (RNN) or a Convolu-
tional Neural Network (CNN) that learns a struc-
tural embedding for each node such that embed-
ding of nodes under similar syntactic trees are
close in their embedding space.

We can use a Bi-directional LSTM as our RNN
encoder, where the hidden state vpt is updated ac-
cording to Eq. 1. Here xpt is the tth node in the
syntactic sequence of the word p, which is a vector
that uniquely identifies each syntactic node. We
obtain the structural embedding of the given word
p, vpBi-LSTM = vpT to be the final hidden state.

vpt = Bi-LSTM(vpt−1,x
p
t ) (1)

Alternatively, we can also use CNN to obtain
embeddings from a sequence of syntactic nodes.
We denote l as the length of the filter of the CNN
encoder. We define xpi:i+l as the concatenation of
the vectors from xpi to xpi+l−1 within the filter. The
ith element in the jth feature map can be obtained
in Eq. 2. Finally we obtain the structural embed-
ding of the given word p by vpCNN in Eq. 3.

cpi,j = f(wj · xi:i+l−1 + bj) (2)

vpCNN = maxrow(cp) (3)

where wj and bj are the weight and bias of the
jth filter respectively, f is a non-linear activation
function and maxrow(·) takes the maximum value
along rows in a matrix.
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(a) A SECT example (b) A SEDT example

Figure 4: Two examples are used to illustrate how the syntactic information is encoded for SECT and
SEDT respectively. Take Bi-directional LSTM as examples, where x is a vector such as word embed-
ding, v and u are the outputs of the forward and backward LSTMs respectively. For SECT, we encode
the syntactic sequence (NP, PP, VP) for the word “coordinator” in Figure 1. We use fixed vectors for
syntactic tags (e.g., NP, PP and VP), initialized with multivariate normal distribution. The final repre-
sentation for the target word “coordinator” can be represented as the concatenation [Ew;u0; v4], where
Ew is the word embedding for “coordinator” that is 100 dimensions in our experiments and each of
the encoded vector u and v can be 30 dimensional. For SEDT, we encode the word “unit” in Figure 2
with its dependent nodes including “Conference”, “is”, “the”, “basic”, “organization”, ordered by their
positions in the original sentence. Each word is represented with its word embedding. Similar to SECT,
the final representation is the concatenation [Ew;u0; v6], which will be sent to the input layer of a neural
network.

4 Experiments

We conducted systematic experiments on the
SQuAD dataset (Rajpurkar et al., 2016). We com-
pared our methods against Bi-Directional Atten-
tion Flow (BiDAF), as well as the SEST models
described in Section 3.

4.1 Preprocessing
A couple of preprocessing steps is performed to
ensure that the deep neural models get the cor-
rect input. We segmented context and questions
into sentences by using NLTK’s Punkt sentence
segmenter1. Words in the sentences were then
converted into symbols by using PTB Tokenizer2.
Syntactic information including POS tags and syn-
tactic trees were acquired by Stanford CoreNLP
utilities (Manning et al., 2014). For the parser, we
collected constituent relations and dependency re-
lations for each word by using tree annotation and
enhanced dependencies annotation respectively.
To generate syntactic sequence, we removed se-
quences whose first node is a punctuation (“$”,
“:”, “#”, “.”, “ ” ”, “ “ ”, “,”). To use depen-
dency labels, we removed all the subcategories
(e.g., “nmod:poss”⇒ “nmod”).

1http://www.nltk.org/api/nltk.tokenize.html
2http://nlp.stanford.edu/software/tokenizer.shtml

4.2 Experiment Setting

We run our experiments on a machine that con-
tains a single GTX 1080 GPU with 8GB VRAM.
All of the models being compared have the same
settings on character embedding and word embed-
ding. As introduced in Section 2, we use a variable
character embedding with a fixed pre-trained word
embedding to serve as part of the input into the
model. The character embedding is implemented
using CNN with a one-dimensional layer consists
of 100 units with a channel size of 5. It has an
input depth of 8. The max length of SQuAD is
16 which means there are a maximum 16 words in
a sentence. The fixed word embedding has a di-
mension of 100, which is provided by the GloVe
data set (Pennington et al., 2014a). The settings
for syntactic embedding are slightly different for
each model. The BiDAF model does not deal with
syntactic information. The POS model contains
syntactic information with 39 different POS tags
that serve as both input and output. For SECT
and SEDT the input of the model has a size of
8 with 30 units to be output. Both of them has
a maximum length size that is set to be 10 and
20 respectively, which values will be further dis-
cussed in Section 4.5. They also have two different
ways to encode the syntactic information as indi-
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cated in Section 3: LSTM and CNN. We apply the
same sets of parameters when we experiment them
with the two models. We report the results on the
SQuAD development set and the blind test set.

4.3 Predictive Performance

We first compared the performance of single mod-
els between the baseline approach BiDAF and
the proposed SEST approaches, including SE-
POS, SECT-LSTM, SECT-CNN, SEDT-LSTM,
and SEDT-CNN, on the development dataset of
SQuAD. For each model, we conducted 5 dif-
ferent single experiments and evaluated them us-
ing two metrics: “Exact match” (EM), which cal-
culates the ratio of questions that are answered
correctly by strict string comparison, and the F1
score, which calculates the harmonic mean of the
precision and recall between predicted answers
and ground true answers at the character level. As
shown in Table 1, we reported the maximum, the
mean, and the standard deviation of EM and F1
scores across all single runs for each approach,
and highlighted the best model using bold font.
SECT-LSTM is the second best method, which
confirms the predictive powers of different types
of syntactic information. We could see that SEDT-
LSTM model outperforms the baseline method
and other proposed methods in terms of both EM
and F1. Another observation is that our propose
models achieve higher relative improvements in
EM scores than F1 scores over the baseline meth-
ods, providing the evidence that syntactic infor-
mation can accurately locate the boundaries of the
answer.

Moreover, we found that both SECT-LSTM and
SEDT-LSTM have better performance than their
CNN counterparts, which suggests that LSTM can
more effectively preserve the syntactic informa-
tion. As a result, we conducted further analysis
of only SECT-LSTM and SEDT-LSTM models
in the subsequent subsections and drop the suf-
fix “-LSTM” for abbreviation. We built an en-
semble model from the 5 single models for the
baseline method BiDAF and our proposed meth-
ods SEPOS, SECT-LSTM, and SEDT-LSTM. The
ensemble model choose the answer with the high-
est sum of confidence scores among the 5 single
models for each question. We compared these
models on both the development set and official
test set and reported the results in Table 2. We
found that the models have higher performance on

the test set than the development set, which coin-
cides with the previous results on the same data set
(Seo et al., 2017; Xiong et al., 2017).

4.4 Contribution of Syntactic Sequence
To take a closer look at how syntactic sequences
affect the performance, we removed the charac-
ter/word embedding from our model seen in Fig-
ure 3 and conducted experiments based on the
syntactic input alone. In particular, we are inter-
ested in two aspects related to syntactic sequences:
First, the ability to predict answers of questions
of syntactic sequences compared to complete ran-
dom sequences. Second, the amount of impacts
brought by our proposed ordering introduced in
Section 3.1.1 and Section 3.1.2 compared to ran-
dom ordering.

We compared the performance of the models
using syntactic information along in their orig-
inal order (i.e. SECT-Only and SEDT-Only)
against their counterparts with the same syntac-
tic tree nodes but with randomly shuffled order
(i.e. SECT-Random-Order and SEDT-Random-
Order) as well as the baselines with randomly gen-
erated tree nodes (i.e. SECT-Random and SEDT-
Random). Here we choose the length of window
size to be 10. The predictive results in terms of
EM and F1 metrics are reported in Table 3. From
the table we see that both the ordering and the
contents of the syntactic tree are important for the
models to work properly: constituency and depen-
dency trees achieved over 20% boost on perfor-
mance compared to the randomly generated ones
and our proposed ordering also out-performed the
random ordering. It also worth mentioning that the
ordering of dependency trees seems to have less
impact on the performance compared to that of
the constituency trees. This is because sequences
extracted from constituency trees contain hierar-
chical information, which ordering will affect the
output of the model significantly. However, se-
quences extracted from dependency trees are all
children nodes, which are often interchangeable
and don’t seem to be affected by ordering much.

4.5 Window Size Analysis
As we have mentioned in the earlier sections, lim-
iting the window size is an important technique
to prevent excessive usage on VRAM. In practice,
we found that limiting the window size also ben-
efits the performance of our models. In Table 4
we compared the predictive performance of SECT
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Method
Single Ensemble

EM F1 EM F1Max Mean (±SD) Max Mean (±SD)
BiDAF 67.10 66.92 (±0.23) 76.92 76.79 (±0.08) 70.97 79.53
SEPOS 67.65 66.05 (±2.94) 77.25 75.80 (±2.65) 71.46 79.70
SECT-LSTM 67.91 67.65 (±0.31)• 77.47 77.19 (±0.21) • 71.76 80.09
SEDT-LSTM 68.13 67.89 (±0.10)• 77.58 77.42 (±0.19) • 72.03 80.28
SECT-CNN 67.29 64.04 (±4.28) 76.91 73.99 (±3.89) 69.70 78.49
SEDT-CNN 67.88 66.53 (±1.91) 77.27 76.21 (±1.67) 71.58 79.80

Table 1: Performance comparison on the development set. Each setting contains five runs trained
consecutively. Standard deviations across five runs are shown in the parenthesis for single models. Dots
indicate the level of significance.

Method Single Ensemble
EM F1 EM F1

BiDAF 67.69 77.07 72.33 80.33
SECT-LSTM 68.12 77.21 72.83 80.58
SEDT-LSTM 68.48 77.97 73.02 80.84

Table 2: Performance comparison on the official
blind test set. Ensemble models are trained over
the five single runs with the identical network and
hyper-parameters.

Method EM F1
SECT-Random 5.64 12.85
SECT-Random-Order 30.04 39.98
SECT-Only 34.21 44.53
SEDT-Random 0.92 8.82
SEDT-Random-Order 31.82 43.65
SEDT-Only 32.96 44.37

Table 3: Performance comparisons of models
with only syntactic information against their coun-
terparts with randomly shuffled node sequences
and randomly generated tree nodes using the
SQuAD Dev set

and SEDT models by varying the length of their
window sizes from 1 to maximum on the develop-
ment set. In general the results illustrate that per-
formances of the models increase with the length
of the window. However, we found that for SECT
model, its mean performance reached the peak
while standard deviations narrowed when window
size reaches 10. We also observed that larger win-
dow size does not generate predictive results that
is as good as the one with window size set to 10.
This suggests that there exists an optimal window
size for the constituency tree. One possible ex-

MethodLen EM F1

SECT

1 65.58 (± 2.58) 75.31 (± 2.39)
5 65.74 (± 3.77) 75.48 (± 3.39)

10 67.51 (± 0.34) 77.14 (± 0.39)
Max 67.48 (± 0.33) 77.09 (± 0.45)

SEDT
1 66.23 (± 2.5) 73.85 (± 2.22)

10 67.39 (± 0.09) 76.93 (± 0.21)

Table 4: Performance means and standard devi-
ations of different window sizes on the develop-
ment set.

planation is increasing the window size leads to
the increase in the number of syntactic nodes in
the extracted syntactic sequence. Although sub-
trees might be similar between context and ques-
tion, it is very unlikely that the complete trees are
the same. Because of that, allowing the syntac-
tic sequence to extend beyond the certain heights
will introduce unnecessary noise into the learned
representation, which will compromise the perfor-
mance of the models. Similar conclusion holds
for the SEDT model, which has an improved per-
formance and decreased variance with the window
size is set to 10. We did not perform experiments
with window size beyond 10 for SEDT since it will
consume VRAM that exceeds the capacity of our
computing device.

4.6 Overlapping Analysis
To further understand the performance benefits of
incorporating syntactic information into the ques-
tion answering problem, we can take a look at the
questions on which models disagree. Figure 5 is
the Venn Diagram on the questions that have been
corrected identified by SECT, SEDT and the base-
line BiDAF model. Here we see that the vast
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Question BiDAF SECT
Whose role is to design the works, pre-
pare the specifications and produce con-
struction drawings, administer the con-
tract, tender the works, and manage the
works from inception to completion?

[the architect or engineer]NP
[acts as [the project
coordinator]NP]VP

[the architect or
engineer]NP

What did Luther think the study of law
meant?

[represented
[uncertainty]NP]VP

[uncertainty]NP

What caused the dynamos to be burnt out? [the powerful high fre-
quency currents]NP [set up [in
[them]NP]PP]VP

[powerful high fre-
quency currents]NP

Table 5: Questions that are correctly answered by SECT but not BiDAF

Question Context BiDAF SEDT
In the layered
model of the Earth,
the mantle has two
layers below it.
What are they?

These advances led to the development of a
layered model of the Earth, with a crust and
lithosphere on top, the mantle below (sepa-
rated within itself by seismic discontinuities
at 410 and 660 kilometers), and the outer core
and inner core below that.

seismic dis-
continuities at
410 and 660
kilometers),
and the outer
core and inner
core

the outer
core and
inner
core

What percentage
of farmland grows
wheat?

More than 50% of this area is sown for wheat,
33% for barley and 7% for oats.

33% 50%

What is the basic
unit of organization
within the UMC?

The Annual Conference, roughly the equiva-
lent of a diocese in the Anglican Communion
and the Roman Catholic Church or a synod
in some Lutheran denominations such as the
Evangelical Lutheran Church in America, is
the basic unit of organization within the UMC.

Evangelical
Lutheran
Church in
America

The
Annual
Confer-
ence

Table 6: Questions that are correctly answered by SEDT but not BiDAF

358

413 410

448

503

477

5783

BiDAF

SEDT SECT

Figure 5: Venn Diagram on the number of correct
answers predicted by BiDAF, SECT and SEDT

majority of the correctly answered questions are
shared across all three models. The rest of them
indicates questions that models disagree and are
distributed fairly evenly.

To understand the types of the questions that

syntactic models can do better, we extracted three
questions that were correctly answered by SECT
and SEDT but not the baseline model. In Table 5,
all of the three questions are “Wh-questions” and
expect the answer of a noun phrase (NP). With-
out knowing the syntactic information, BiDAF an-
swered questions with unnecessary structures such
as verb phrases (vp) (e.g. “acts as · · · ”, “repre-
sented · · · ”) or prepositional phrases (pp) (e.g.
“in · · · ”) in addition to NPs (e.g. “the architect
engineer”, “uncertainty” and “powerful high fre-
quency currents”) that normal human would an-
swer. For that reason, answers provided by BiDAF
failed the exact match although its answers are
semantically equivalent to the ones provided by
SECT. Having incorporated constituency informa-
tion provided an huge advantage in inferring the
answers that are most natural for a human.
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The advantages of using the dependency tree in
our model can be illustrated using the questions
in Table 6. Here again we listed the ones that are
correctly identified by SEDT but not BiDAF. As
we can see that the answer provided by BiDAF
for first question broke the parenthesis incorrectly,
this problem that can be easily solved by utiliz-
ing dependency information. In the second ex-
ample, BiDAF failed to identify the dependency
structures between “50%” and the keyword be-
ing asked “wheat”, which resulted in an incorrect
answer that has nothing to do with the question.
SEDT, on the other hand, answered the question
correctly. In the third question, the key to the an-
swer is to correctly identify the subject of ques-
tion phrase “is the basic unit of organization”. Us-
ing the dependency tree as illustrated in Figure 2,
SEDT is able to identify the subject phrase cor-
rectly, namely “The Annual Conference”. How-
ever, BiDAF failed to anwer the question correctly
and selected a noun phrase as the answer.

5 Related Work

Reading Comprehension. Reading comprehen-
sion is a challenging task in NLP research. Since
the release of the SQuAD data set, many works
have been done to construct models on this mas-
sive question answering data set. Rajpurkar et. al.
are among the first authors to explore the SQuAD.
They used logistic regression with pos tagging in-
formation (Rajpurkar et al., 2016) and provided
a strong baseline for all subsequent models. A
steep improvement was given by the RaSoR model
(Lee et al., 2016) which utilized recurrent neu-
ral networks to consider all possible subphrases
of the context and evaluated them one by one. To
avoid comparing all possible candidates and to im-
prove the performance, Match-LSTM (Wang and
Jiang, 2016) was proposed by using a pointer net-
work (Vinyals et al., 2015) to extract the answer
span from the context. The same idea was taken to
the BiDAF (Seo et al., 2017) model by introducing
a bi-directional attention mechanism. Despite the
above-mentioned strong models for the machine
comprehension task, none of them considers syn-
tactic information into their prediction models.

Representations of Texts and Words. One
of the main issues in reading comprehension is
to identify the latent representations of texts and
words (Cui et al., 2016; Lee et al., 2016; Wang
et al., 2016; Xiong et al., 2017; Yu et al., 2016).

Many pre-trained libraries such as word2vec
(Mikolov et al., 2013) and Glove (Pennington
et al., 2014a) have been widely used to map words
into a high dimensional embedding space. An-
other approach is to generate embeddings by us-
ing neural networks models such as Character Em-
bedding (Kim, 2014) and Tree-LSTM (Tai et al.,
2015). One thing that worth mentioning is that
although Tree-LSTM does utilize syntactic infor-
mation, it targets at the phrases or sentences level
embedding other than the word level embedding
we have discussed in this paper. Many machine
comprehension models include both pre-trained
embeddings and variable embeddings that can be
changed through a training stage (Seo et al., 2017).

6 Conclusion

In this paper, we proposed methods to embed syn-
tactic information into the deep neural models to
improve the accuracy of our model in the ma-
chine comprehension task. We formally defined
our SEST framework and proposed two instances
to it: the structural embedding of constituency
trees (SECT) and the structural embedding of de-
pendency trees (SEDT). Experimental results on
SQuAD data set showed that our proposed ap-
proaches outperform the state-of-the-art BiDAF
model, proving that the proposed embeddings play
a significant part in correctly identifying answers
for the machine comprehension task. In particular,
we found that our model can perform especially
well on exact match metrics, which requires syn-
tactic information to accurately locate the bound-
aries of the answers. Similar approaches can be
used to encode other tree structures such as knowl-
edge graphs and ontology relations.

This work opened several potential new lines of
research: 1) In the experiments of our paper we
utilized the BiDAF model to retrieve answers from
the context. Since there are no structures in the
BiDAF models to specifically optimize for syntac-
tic information, an attention mechanism that is de-
signed for to utilize syntactic information should
be studied. 2) Another direction of research is
to incorporate SEST with deeper neural networks
such as VD-CNN (Conneau et al., 2017) to im-
prove learning capacity for syntactic embedding.
3) Tree structured information such as knowledge
graphs and ontology structure should be studied
and improve question answering tasks using simi-
lar techniques to the ones proposed in the paper.
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Abstract

Humans interpret texts with respect to
some background information, or world
knowledge, and we would like to develop
automatic reading comprehension systems
that can do the same. In this paper, we in-
troduce a task and several models to drive
progress towards this goal. In particular,
we propose the task of rare entity predic-
tion: given a web document with several
entities removed, models are tasked with
predicting the correct missing entities con-
ditioned on the document context and the
lexical resources. This task is challenging
due to the diversity of language styles and
the extremely large number of rare enti-
ties. We propose two recurrent neural net-
work architectures which make use of ex-
ternal knowledge in the form of entity de-
scriptions. Our experiments show that our
hierarchical LSTM model performs signif-
icantly better at the rare entity prediction
task than those that do not make use of ex-
ternal resources.

1 Introduction

Reading comprehension is the ability to process
some text and understand its contents, in order to
form some beliefs about the world. The starting
point of this paper is the fact that world knowledge
plays a crucial role in human reading comprehen-
sion and language understanding. Work in the psy-
chology of reading literature has demonstrated this
point, for example by showing that readers are bet-
ter able to recall the contents of a story when it de-
scribes a counter-intuitive but plausible sequence
of events, rather than a bizarre or a highly pre-
dictable one (Barrett and Nyhof, 2001). This point
is also central to work in the Schankian tradition

of scripts (Schank and Abelson, 1977).
Despite the importance of world knowledge,

previous data sets and tasks for reading compre-
hension have targeted other aspects of the read-
ing comprehension problem, at times explicitly at-
tempting to factor out its influence. In the Daily
Mail/CNN dataset (Hermann et al., 2015), named
entities such Clarkson and Top Gear are replaced
by anonymized entity tokens like ent212. The
Children’s Book Test focuses on the role of con-
text and memory (Hill et al., 2016a), and the fic-
tional genre makes it difficult to connect the enti-
ties in the stories to real-world knowledge about
those entities.

As a result, language models have proved to
be a highly competitive solution to these tasks.
Chen et al. (2016) showed that their attention-
based LSTM model achieves state-of-the-art re-
sults on the Daily Mail/CNN data set. In fact, their
analysis shows that more than half of the ques-
tions can be answered by exact word matching
and sentence-level paraphrase detection, and that
many of the remaining errors are difficult to solve
exactly because the entity anonymization proce-
dure removes necessary world knowledge.

In this paper, we propose a novel task called
rare entity prediction, which places the use of ex-
ternal knowledge at its core, with the following
key features. First, our task is similar in flavour
to the Children’s Book and other language model-
ing tasks, in that the goal of the models is to pre-
dict missing elements in text. However, our task
involves predicting missing named entities, rather
than missing words. Second, the number of unique
named entities in the data set is very large, roughly
on par with the number of documents. As such,
there are very few instances per named entity for
systems to train on. Instead, they must rely on ex-
ternal knowledge sources such as Freebase (Bol-
lacker et al., 2008) in order to make inferences
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Context
[...] , who lived from 1757 to 1827, was
admired by a small group of intellectuals and
artists in his day, but never gained general recog-
nition as either a poet or painter. [...]

Candidate Entities
Peter Ackroyd: Peter Ackroyd is an English biog-
rapher, novelist and critic with a particular inter-
est in the history and culture of London. [...]
William Blake: William Blake was an English
poet, painter, and printmaker. [...]
Emanuel Swedenborg: Emanuel Swedenborg
was a Swedish scientist, philosopher, theologian,
revelator, and mystic. [...]

Table 1: An abbreviated example from the Wik-
ilinks Rare Entity Prediction dataset. Shown is an
excerpt from the text (context), with a missing en-
tity that must be predicted from a list of candidate
entities. Each candidate entity is also provided
with its description from Freebase.

about the likely entities that fit the context.
For our task, we use a significantly enhanced

version of the Wikilinks dataset (Singh et al.,
2012), with entity descriptions extracted from
Freebase serving as the lexical resources, which
we call the Wikilinks Rare Entity Prediction
dataset. An example from the Wikilinks Entity
Prediction dataset is shown in Table 1.

We also introduce several recurrent neural
network-based models for this task which take in
entity descriptions of candidate entities. Our first
model, DOUBENC, combines information derived
from two encoders: one for the text passage be-
ing read, and one for the entity description. Our
second model, HIERENC, is an extension which
considers information from a document-level con-
text, in addition to the local sentential context. We
show that language modeling baselines that do not
consider entity descriptions are unable to achieve
good performance on the task. RNN-based mod-
els that are trained to leverage external knowl-
edge perform much better; in particular, HIERENC

achieves a 17% increase in accuracy over the lan-
guage model baseline.

2 Related Work

Related to our work is the task of entity predic-
tion, also called link prediction or knowledge base
completion, in the context of multi-relational data.
Multi-relational datasets like WordNet (Miller,

1995) and Freebase (Bollacker et al., 2008) con-
sist of entity-relation triples of the form (head, re-
lation, tail). In entity prediction, either the head or
tail entity is removed, and the model has to predict
the missing entity. Recent efforts have integrated
different sources of knowledge, for example com-
bining distributional and relational semantics for
building word embeddings (Fried and Duh, 2015;
Long et al., 2016). While this task requires under-
standing and predicting associations between enti-
ties, it does not require contextual reasoning with
text passages, which is crucial in rare entity pre-
diction.

Rare entity prediction is also clearly distinct
from tasks such as entity tagging and recogni-
tion (Ritter et al., 2011), as models are provided
with the actual name of the entity in question, and
only have to match the entity with related con-
cepts and tags. It is more closely related to the
machine reading literature from e.g. Etzioni et al.
(2006); however, the authors define machine read-
ing as primarily unsupervised, whereas our task is
supervised.

A similar supervised reading comprehension
task was proposed by Hermann et al. (2015) us-
ing news articles from CNN and the Daily Mail.
Given an article, models are tasked with filling in
blanks of one-sentence summaries of the article.
The original dataset was found to have a low ceil-
ing for machine improvement (Chen et al., 2016);
thus, alternative datasets have been proposed that
consist of more difficult questions (Trischler et al.,
2016; Rajpurkar et al., 2016). A dataset with
a similar task was also proposed by Hill et al.
(2016a), where models must answer questions
about short children’s stories. While these tasks
require the understanding of unstructured natural
language, they do not require integration with ex-
ternal knowledge sources.

Hill et al. (2016b) proposed a method of com-
bining distributional semantics with an external
knowledge source in the form of dictionary defi-
nitions. The purpose of their model is to obtain
more accurate word and phrase embeddings by
combining lexical and phrasal semantics, and they
achieve fairly good performance on reverse dictio-
naries and crossword puzzle solving tasks.

Perhaps the most related approach to our work
is the one developed by Ahn et al. (2016).
The authors propose a WikiFacts dataset where
Wikipedia descriptions are aligned with Freebase
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facts. While they also aim to integrate exter-
nal knowledge with unstructured natural language,
their task differs from ours in that it is primarily a
language modeling problem.

More recently, Bahdanau et al. (2017) investi-
gated a similar approach to generate embeddings
for out-of-vocabulary words from their definitions
and applied it to a number of different tasks. How-
ever, their method mainly focuses on modeling
generic concepts and is evaluated on tasks that do
not require the understanding of world knowledge
specifically. Our work, on the other hand, shows
the effectiveness of incorporating external descrip-
tions for modeling real-world named entities and
is evaluated on a task that explicitly requires the
understanding of such external knowledge.

3 Rare Entity Prediction

3.1 The Wikilinks Dataset

The Wikilinks dataset (Singh et al., 2012) is a large
dataset originally designed for cross-document
coreference resolution, the task of grouping en-
tity mentions from a set of documents into clusters
that represent a single entity. The dataset consists
of a list of non-Wikipedia web pages (discovered
using the Google search index) that contain hy-
perlinks to Wikipedia, such as random blog posts
or news articles. Every token with a hyperlink to
Wikipedia is then marked and considered an en-
tity mention in the dataset. Each entity mention is
also linked back to a knowledge base through their
corresponding Freebase IDs

In order to ensure the hyperlinks refer to the cor-
rect Wikipedia pages, additional filtering is con-
ducted to ensure that either (1) at least one token
in the hyperlink (or anchor) matches a token in
the title of the Wikipedia page, or (2) the anchor
text matches exactly an anchor from the Wikipedia
page text, which can be considered an alias of the
page. As many near-duplicate copies of Wikipedia
pages can be found online, any web pages where
more than 70% of the sentences match those from
their linked Wikipedia pages are discarded.

3.2 The Wikilinks Rare Entity Prediction
Dataset

We use a significantly pre-processed and aug-
mented version of the Wikilinks dataset for the pur-
pose of entity prediction, which we call the Wik-
ilinks Rare Entity Prediction dataset. In particular,
we parse the HTML texts of the web pages and ex-

Number of documents 269,469
Average # blanks per doc 3.69
Average # candidates per doc 3.35
Number of unique entities 245,116
# entities with n <= 5 207,435 (84.6%)
# entities with n <= 10 227,481 (92.8%)
# entities with n <= 20 238,025 (97.1%)

Table 2: Statistics for the augmented version of
the Wikilinks dataset, where n represents the en-
tity frequency in the corpus. Web documents with
more than 10 blanks to fill are filtered out for com-
putational reasons.

tract their page contents to form our corpus. Entity
mentions with hyperlinks to Wikipedia are marked
and replaced by a special token (**blank**), serv-
ing as the placeholder for missing entities that we
would like the models to predict. The correct
missing entity ẽ is preserved as a target. Addition-
ally, we extract the lexical definitions of all enti-
ties that are marked in the corpus from Freebase
using their Freebase IDs, which are available for
all entities in the Wikilinks dataset. These lexical
definitions will serve as the external knowledge to
our models.

Table 2 shows some basic statistics of a sub-
set of the corpus used in our experiments. As we
can see, unlike the Children’s Book dataset, which
has 50k candidate entities for almost 700k context
and query pairs (Hill et al., 2016a), the number of
unique entities found in our dataset has the same
order of magnitude as the number of documents
available.

Moreover, the majority of entities appears a rel-
atively small number of times, with 92.8% ob-
served less than or equal to 10 times across the
entire corpus. This suggests that models that only
rely on the surrounding context information may
not be able to correctly predict the missing enti-
ties. This further motivates us to incorporate ad-
ditional information into the decision process to
improve the performance. In the experiments sec-
tion, we show that the external entity descriptions
are indeed necessary to achieve better results.

3.3 Task Definition1

Here we formalize the task definition of the en-
tity prediction problem. Given a document D in

1On notation: we use A to denote sequences, A to denote
sets, a to denote words / entities, a to denote vectors, A to
denote matrices.
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Figure 1: An example from the Wikilinks Rare Entity Prediction dataset. Shown is a paragraph from the
dataset, along with the context (in blue italics) and the missing entity (in red underline). We also visually
show the notation that we use for the remainder of this paper. The correct answer here is Peter Ackroyd.

the corpus, we split it into an ordered list of con-
texts C = {C1, ...,Cn} where each context Ci
(1 ≤ i ≤ n) is a word sequence (w1, ..., wm)
where the special token **blank** is found. Let
E be the set of candidate entities. For each miss-
ing entity, we want the model to select the correct
entity ẽ ∈ E to fill the blank slot. In our problem
setting, the model also has access to the lexical re-
source L = {Le | e ∈ E} where Le = (le1 , ..., lek)
is the lexical definition of entity e extracted from
the knowledge base. Thus, the task of the model
is to predict the correct missing entities for each
empty slot in D.

There are several possible ways to specify the
candidate set E . For instance, we could define
E so that it includes all entities found in the cor-
pus. However, given the extremely large amount
of unique entities found in the dataset, this would
render the task difficult to solve from both a prac-
tical and computational perspective. We present a
simpler version of the task where E is the set of en-
tities that are present in the documentD. Note that
we can make the task arbitrarily more difficult by
randomly sampling other entities from the entity
vocabulary and adding them to candidate set.

We show an example from the Wikilinks Entity
Prediction dataset in Figure 1, along with a visual
guide to the notation from this section.

4 Model Architectures

In this section, we present two models that use
the lexical definitions of entities to solve the pro-
posed rare entity prediction problem. The basic

building blocks of our models are recurrent neu-
ral networks (RNN) with long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997). An RNN is a neural network with feedback
connections that allows information from the past
to be encoded in the hidden layer representation,
thus is ideal for modeling sequential data (Diet-
terich, 2002) and most language related problems.

LSTMs are an extension of RNNs which in-
clude a memory cell ct alongside their hidden state
representation ht. Reads and writes to the mem-
ory cell are controlled by a set of three gates that
allow the model to either keep or discard infor-
mation from the past and update their state with
the current input. This allows LSTMs to model
potentially longer dependencies and at the same
time mitigate the vanishing and exploding gradient
problems, which are quite common among regular
RNNs (Bengio et al., 1994). In our experiments,
we use LSTMs augmented with peephole connec-
tions (Gers et al., 2002).

We denote the output (i.e. the last hidden state)
of an RNN f operating on a sequence S as f(S),
and subscript the t-th hidden state as ft(S).

4.1 Double Encoder (DOUBENC)
This model uses two jointly trained recurrent mod-
els, a lexical encoder g(.) and a context encoder
f(.), and a logistic predictor P (see Figure 2).

The lexical encoder converts the definition of an
entity into a vector embedding, while the context
encoder repeats the same process for a given con-
text to obtain its context embedding. These two
embeddings are then used by P to predict if the
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e→ Le :

Ci:
de

hei

w1 ... ... wm

le1 ... lek

P (e = ẽ|Ci, Le) = σ((hei )
TWde + b)

Figure 2: Our double encoder architecture. Each entity e has an associated lexical definition Le =
(le1 , le2 , ..., lek), which is fed through the lexical encoder g (orange squares) to provide an encoding de.
This definition embedding is then fed as the blank input token of context Ci to the context encoder f
(blue circles), which provides a context embedding hei .

given entity-context pair is correct. Additionally,
the blank in the context sentence is replaced by the
encoded definition embedding to provide more in-
formation to f .

For an entity e in the candidate set E of docu-
ment D, we retrieve its corresponding lexical def-
inition Le, itself a sequence of words, to compute
its encoding g(Le) ≡ de.

For a given context Ci, we replace the em-
bedding of the blank token with de. Thus
Ci = (w1, ..., wblank, ..., wm) becomes Cei =
(w1, ...,de, ..., wm)2. We then compute the con-
text embedding of the new Cei , f(Cei ) ≡ hei .

After getting hei and de, we wish to compute the
probability of candidate e being the correct entity
ẽ missing in context Ci. This probability is the
output of the predictor:

P (e = ẽ|Ci, Le) = σ((hei )
TWde + b)

where σ is the sigmoid function, W and b are
model parameters.

The cross term (hei )
TWde is a dot product be-

tween hei and de that weighs the dimensions dif-
ferently based on the learned parameters W . Sim-
ilar prediction methods have been used success-
fully for question answering (Bordes et al., 2014;
Yu et al., 2014) and dialogue response retrieval
(Lowe et al., 2015).

We also experimented with only feeding hei
to the predictor, without the cross term, and
found this slows down training the lexical encoder.
While hei is a function of de, using de in the cross
term (hei )

TWde provides a much shorter gradient
path from the loss to the lexical encoder through
de, thus allowing both modules to learn at the
same pace.

2We mix the word / vector notation here since each word
w is replaced by its corresponding word embedding vector.

Given a context, the model outputs a probabil-
ity for each entity e ∈ E . Entities in the candidate
set are then ranked against each other according to
their predicted probabilities. The entity with the
highest probability is considered as the most plau-
sible answer for the missing entity in the current
context. We consider the model to make an error
if that entity is not ẽ.

4.2 Hierarchical Double Encoder
(HIERENC)

The double encoder architecture mentioned above
considers each context independently. However,
since each document consists of a sequence of
contexts, the knowledge carried by other contexts
in C could also provide useful information for the
decision process of Ci. To that end, we propose
a hierarchical model structure by adding a LSTM
network r, which we call the temporal network
(see Figure 3), on top of the double encoder ar-
chitecture. Since a document is a sequence of Cis,
each time step of this network consists of one such
context, and thus is indexed with i.

Since we already have a context encoder f , we
reuse the output of f(Cei ) as the input of r at time
step i. More specifically, we combine the embed-
dings generated by f into a single one via aver-
aging: h̄i = 1

|E|
∑

e′∈E h
e′
i , which then serves as

the input to the temporal network for context Ci.
Note that alternatively, one could aggregate infor-
mation about the past predictions through other
means like policies or soft attention. However, this
would introduce extra complexities to the learning
process. As such, we use averaging to that end.

Finally, at each time step i, the temporal net-
work outputs an embedding ri(C1, ...,Cn) ≡
ri. We use this temporal embedding to predict
the probability of the context-entity pair with a
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h̄i = 1
|E|
∑

e′∈E h
e′
ih̄i−1h̄i−2

...

P (e = ẽ|C1,...,i, Le) = σ((hei )
TWde + rTi V + b)

ri

... de′ ... de

heiCi

Figure 3: Our hierarchical encoder architecture. Each entity e is encoded as de, at each time step, hei is
computed for each e. h̄i is the average encoding, which is fed as input to the temporal network r (green
diamonds). The temporal network produces ri, which is used to compute P (e = ẽ|C1,...,i, Le).

slightly altered logistic predictor:

P (e = ẽ|C1,...,i, Le) = σ((hei )
TWde + rTi V +b)

where W , V and b are model parameters. The
entities in candidate set are again ranked against
each other based on their probabilities.

5 Experiments

5.1 Setup

We randomly partition the data into training, vali-
dation and test sets. The training set consists of ap-
proximately 80% of the total documents, the vali-
dation and test sets comprise about 10% each.

In our experiments, the context windows are de-
fined as the sentences where the special **blank**
tokens are found; the lexical definitions for each
entity are the first sentences of their Freebase de-
scriptions. We experimented with different config-
urations of defining contexts and entity definitions,
such as expanding the context windows by includ-
ing sentences that come before and after the one
where blank is found, as well as taking more than
one sentence out of the entity description. How-
ever, results on validation set show that increasing
the context window size and the definition size had
very little impact on accuracies, but drastically in-
creased the training time of all models. We thus
chose to use only the immediate sentence of the
context and the first sentence of the entity descrip-
tion.

To train our models, we use the correct missing
entity for each blank as the positive example and
all other entities in the candidate set as the negative
examples, which we found to be more beneficial
empirically than using only a subset of rest of the

candidate set. During the testing phase, we present
each entity in the candidate set to our models and
record the probabilities output by the models. The
entity with the highest probability is chosen as the
model prediction. For all gradient-based methods,
including both baseline models and our proposed
models, the learning objective is to minimize the
binary cross-entropy of the training data.

We measure the performance on our entity pre-
diction task using the accuracy; that is, the number
of correct entity predictions made by the model di-
vided by the total number of predictions. This is
equivalent to the metric of Recall@1 that is often
used in information retrieval.

5.2 Baselines

In order to demonstrate the effects of using lex-
ical resources as external knowledge for solv-
ing the task, we present three sets of baselines:
one set of simple baselines (RANDOM and FRE-
QENT), one LSTM-based model that only relies
on the contexts and does not utilize the definitions
(CONTENC), and another set of models that do
make use of the entity definitions but in a simplis-
tic fashion (TF-IDF + COS and AVGEMB + COS).

RANDOM For each context in a given document,
this baseline simply selects an entity from the can-
didate set uniformly at random as its prediction.

FREQENT Under this baseline, we rank all en-
tities in the candidate set by the number of times
that they appear in the document. For each blank
in the document, we always choose the entity with
the highest frequency in that document as the pre-
diction. Note that this baseline has access to extra
information compared to the other models, in par-
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ticular the total number of times each entity ap-
pears in the document.

CONTENC Instead of using their definitions,
entities are treated as regular tokens in vocabu-
lary. Thus for a particular entity e, the context
sequence Ci = (w1, ..., wblank, ..., wm) becomes
(w1, ..., we, ..., wm). We feed the sequence Ci into
the context encoder and as usual take the last hid-
den state as the context embedding hei . Thus given
Ci and e ∈ E, the probability of e being the cor-
rect missing entity is:

P (e = ẽ|Ci) = σ((hei )
TW + b)

where again σ is the sigmoid function, W and b
are model parameters. This model is essentially a
language model baseline, that does not make use
of the external a priori knowledge.

TF-IDF + COS This method takes the term
frequency-inverse document frequency (TF-IDF)
vectors of the context and the entity definition as
their corresponding embeddings. The aggrega-
tions of contexts and definitions are treated as their
own corpora, and two separate TF-IDF transform-
ers are fitted. Candidate entities are ranked by the
cosine similarity between their definition vectors
and the context vector. The entity with the highest
cosine similarity score is chosen as the prediction.

AVGEMB + COS This baseline computes the
context embedding by taking the average of some
pre-trained word embeddings. The entities’ em-
beddings are computed in the same way. In our ex-
periments, we choose to use the published GloVe
(Pennington et al., 2014) pre-trained word embed-
dings. Same as above, the prediction is made by
considering the cosine similarity between the con-
text embedding and the entity embeddings.

5.3 Hyperparameters

For the CONTENC baseline, we choose 300 as
the size of hidden state for the encoder. For the
DOUBENC and the HIERENC models, the size
of hidden state for both the context encoder and
the lexical encoder is set to 300. An RNN with
200 LSTM units is used as the temporal net-
work in the hierarchical case. All three mod-
els are trained with stochastic gradient descent
with Adam (Kingma and Ba, 2015) as our opti-
mizer, with learning rates of 10−3 used for CON-
TENC and 10−4 used for DOUBENC as well as

Accuracy
Model Valid Test
Fixed Baselines
RANDOM 29.4% 30.1%
FREQENT 32.9% 33.1%
Without External Knowledge
CONTENC 39.3% 39.6%
With External Knowledge
TF-IDF + COS 29.2% 30.0%
AVGEMB + COS 35.5% 35.9%
DOUBENC 54.7% 54.0%
HIERENC 57.3% 56.6%

Table 3: Empirical results on Wikilinks Entity Pre-
diction dataset for proposed baselines and models.

Figure 4: Accuracies of CONTENC, DOUBENC,
and HIERENC on test set, for different frequency
ranges; n is entity frequency in the entire corpus.

HIERENC. Models with the best performance on
validation set are saved and used to test on test set.

5.4 Results

Empirical results are shown in Table 3. We test our
proposed model architectures (detailed in Section
4), along with baselines described in Section 5.2.

It is clear from Table 3 that models that only
use contextual knowledge give relatively poor per-
formance compared to the ones that utilize lexi-
cal resources. The large discrepancy between the
context encoder and the double encoder shows that
lexical resources play a crucial role in solving the
task. The best result is achieved by the hierarchi-
cal double encoder, which confirms that knowing
about previous contexts is indeed beneficial to the
prediction at the current time step.

We performed statistical significance tests on
the predictions from CONTENC, compared to the
predictions made by DOUBENC and HIERENC re-
spectively. Both tests yielded p < 10−5. We also
computed the p-value between DOUBENC and HI-
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Context & Prediction
[...] We heard from Audrey Bomse, who is with
the Free Gaza movement. She was in ,
Cyprus. [...]

CONTENC: Istanbul HIERENC: Larnaca

Candidate Set
Istanbul: Istanbul is the most populous city in
Turkey, and the country’s economic, cultural, and
historical center.
Larnaca: Larnaca is a city on the southern coast
of Cyprus and the capital of eponymous district.
Ben Macintyre: Ben Macintyre is a British au-
thor, historian, reviewer and columnist writing for
The Times newspaper.
(Other candidate entities......)

Table 4: An example from the test set, with the
predictions made by CONTENC and HIERENC;
HIERENC was able to successfully predict the cor-
rect missing entity, Larnaca.

ERENC, with p ≈ 0.003. This suggests that the
performance improvement achieved by the hierar-
chical model is statistically significant.

6 Discussion

Figure 4 provides a performance breakdown of
test accuracies over various entity frequencies for
CONTENC, DOUBENC, and HIERENC. As we
can see, the biggest performance gap between
the baseline and our two proposed models oc-
curs when n ≤ 5; as entity frequencies increase,
the accuracy of CONTENC also increases. This
confirms the value and necessity of lexical re-
sources, especially when entities appear extremely
infrequently. We also see that HIERENC outper-
forms DOUBENC consistently over all frequency
ranges. This suggests that by propagating infor-
mation from the past through temporal network,
the hierarchical model is able to reason beyond the
local context, thus achieve higher accuracies.

Table 4 shows an example found in the test set,
along with the predictions from CONTENC and
HIERENC. Even though the context encoder base-
line was able to identify that the missing entity
should be a city, it incorrectly predicted Istanbul.
This is likely because Istanbul appears 86 times in
the dataset, whereas Larnaca appears only twice
in the test set, and not at all in the training set. It
seems that, although the context encoder was able
to derive a strong association between Istanbul and

Middle Eastern geolocations, such knowledge was
not learned for Larnaca because of the lack of ex-
amples. Conversely, the hierarchical double en-
coder was able to take both the context and the
external knowledge into account and successfully
predicted the correct missing city.

One interesting observation is the margin of dif-
ference in accuracy between the context encoder
and the embedding average baseline. The con-
text encoder, which is a relatively sophisticated
context-only model, only slightly outperforms the
simple embedding average baseline that has no
learning component. This suggests that the entity
definitions are valuable in solving such tasks even
when it is used in a rather simplistic way.

As we discussed in Section 5.1, we found in ini-
tial experiments that using a large context window
size (including sentences before and after the sen-
tence where blank token is found) does not have
any significant positive impact on the results. This
may imply that words that are most informative
about the missing entity in the blank are generally
found in vicinity of the blank. It is also likely that
more sophisticated models will be able to use the
surrounding context information more effectively,
leading to greater performance increases.

7 Conclusions

In this paper, we examined the use of external
knowledge in the form of lexical resources to
solve reading comprehension problems. Specifi-
cally, we propose the problem of rare entity pre-
diction. In our Wikilinks Rare Entity Prediction
dataset, the majority of the entities have very low
frequencies across the entire corpus; thus, mod-
els that solely rely on co-occurrence statistics tend
to under-perform. We show that models leverag-
ing the Freebase descriptions achieve large per-
formance gains, particularly when this informa-
tion is incorporated intelligently as in our double
encoder-based models.

For future work, we plan to examine the effects
of other knowledge sources. In this paper, we use
entity definitions as the source of external knowl-
edge. However, Freebase also contains other types
of valuable information, such as relational infor-
mation between entities. Thus, one potential di-
rection for future work would be to incorporate
both relational information and lexical definitions.

We have demonstrated the crucial role that ex-
ternal knowledge plays in solving tasks with many
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rare entities. We believe that incorporating ex-
ternal knowledge into other systems, such as dia-
logue agents, should also see similar positive re-
sults. We plan to explore the idea of external
knowledge integration further in future research.
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Abstract

We develop a technique for transfer learn-
ing in machine comprehension (MC) us-
ing a novel two-stage synthesis network
(SynNet). Given a high-performing MC
model in one domain, our technique aims
to answer questions about documents in
another domain, where we use no labeled
data of question-answer pairs. Using the
proposed SynNet with a pretrained model
on the SQuAD dataset, we achieve an
F1 measure of 46.6% on the challeng-
ing NewsQA dataset, approaching perfor-
mance of in-domain models (F1 measure
of 50.0%) and outperforming the out-of-
domain baseline by 7.6%, without use of
provided annotations.1

1 Introduction

Machine comprehension (MC), the ability to an-
swer questions over a provided context paragraph,
is a key task in natural language processing. The
rise of high-quality, large-scale human-annotated
datasets for this task (Rajpurkar et al., 2016;
Trischler et al., 2016) has allowed for the train-
ing of data-intensive but expressive models such
as deep neural networks (Wang et al., 2016; Xiong
et al., 2017; Seo et al., 2017). Moreover, these
datasets have the attractive quality that the answer
is a short snippet of text within the paragraph,
which narrows the search space of possible answer
spans.

However, many of these models rely on large
amounts of human-labeled data for training. Yet

∗Work performed while interning at Microsoft Research.
†Work performed when the author was at Microsoft Re-

search.
1Code will be available at https://github.com/

davidgolub/QuestionGeneration

data collection is a time-consuming and expensive
task. Moreover, direct application of a MC model
trained on one domain to answer questions over
paragraphs from another domain may suffer per-
formance degradation.

While understudied, the ability to transfer a MC
model to multiple domains is of great practical im-
portance. For instance, the ability to quickly use
a MC model trained on Wikipedia to bootstrap a
question-answering system over customer support
manuals or news articles, where there is no labeled
data, can unlock a great number of practical appli-
cations.

In this paper, we address this problem in MC
through a two-stage synthesis network (SynNet).
The SynNet generates synthetic question-answer
pairs over paragraphs in a new domain that are
then used in place of human-generated annotations
to finetune a MC model trained on the original do-
main.

The idea of generating synthetic data to aug-
ment insufficient training data has been explored
before. For example, for the target task of trans-
lation, Sennrich et al. (2016) present a method
to generate synthetic translations given real sen-
tences to refine an existing machine translation
system.

However, unlike machine translation, for tasks
like MC, we need to synthesize both the question
and answers given the context paragraph. More-
over, while the question is a syntactically fluent
natural language sentence, the answer is mostly a
salient semantic concept in the paragraph, e.g., a
named entity, an action, or a number, which is of-
ten a single word or short phrase.2 Since the an-
swer has a very different linguistic structure com-
pared to the question, it may be more appropri-

2This assumption holds for MC datasets such as SQuAD
and NewsQA, but there are exceptions in certain subdomains
of MSMARCO.
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Figure 1: Illustration of the two-stage SynNet. The SynNet
is trained to synthesize the answer and the question, given the
paragraph. The first stage of the model, an answer synthesis
module, uses a bi-directional LSTM to predict IOB tags on
the input paragraph, which mark out key semantic concepts
that are likely answers. The second stage, a question syn-
thesis module, uses a uni-directional LSTM to generate the
question, while attending on embeddings of the words in the
paragraph and IOB ids. Although multiple spans in the para-
graph could be identified as potential answers, we pick one
span when generating the question.

ate to view answers and questions as two different
types of data. Hence, the synthesis of a (question,
answer) tuple is needed.

In our approach, we decompose the process of
generating question-answer pairs into two steps,
answer generation conditioned on the paragraph,
and question generation conditioned on the para-
graph and answer. We generate the answer first be-
cause answers are usually key semantic concepts,
while questions can be viewed as a full sentence
composed to inquire the concept.

Using the proposed SynNet, we are able to
outperform a strong baseline of directly apply-
ing a high-performing MC model trained on an-
other domain. For example, when we apply our
algorithm using a pretrained model on the Stan-
ford Question-Answering Dataset (SQuAD) (Ra-
jpurkar et al., 2016), which consists of Wikipedia
articles, to answer questions on the NewsQA
dataset (Trischler et al., 2016), which consists of
CNN/Daily Mail articles, we improve the per-
formance of the SQuAD baseline from 39.0%

to 46.6% F1 and approach results of previously
published work of Trischler et al. (2016) (50.0%
F1), without use of labeled data in the new do-
main. Moreover, an error analysis reveals that we
achieve higher accuracy over the baseline on all
common question types.

2 Related Work

2.1 Question Answering

Question answering is an active area in natural lan-
guage processing with ongoing research in many
directions (Berant et al., 2013; Hill et al., 2015;
Golub and He, 2016; Chen et al., 2016; Hermann
et al., 2015). Machine comprehension, a form of
extractive question answering where the answer is
a snippet or multiple snippets of text within a con-
text paragraph, has recently attracted a lot of atten-
tion in the community. The rise of large-scale hu-
man annotated datasets with over 100,000 realistic
question-answer pairs such as SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2016), and
MSMARCO (Nguyen et al., 2016), has led to a
large number of successful deep learning models
(Lee et al., 2016; Seo et al., 2017; Xiong et al.,
2017; Dhingra et al., 2017; Wang and Jiang, 2016).

2.2 Semi-Supervised Learning

Semi-supervised learning has a long history (c.f.
Chapelle et al. (2009) for an overview), and has
been applied to many tasks in natural language
processing such as dependency parsing (Koo et al.,
2008), sentiment analysis (Yang et al., 2015),ma-
chine translation (Sennrich et al., 2016), and se-
mantic parsing (Berant and Liang, 2014; Wang
et al., 2015; Jia and Liang, 2016). Recent
work generated synthetic annotations on unsuper-
vised data to boost the performance of both read-
ing comprehension and visual question answering
models (Yang et al., 2017; Ren et al., 2015), but on
domains with some form of annotated data. There
has also been work on generating high-quality
questions (Yuan et al., 2017; Serban et al., 2016;
Labutov et al., 2015), but not how to best use them
to train a model. In contrast, we use the two-stage
SynNet to generate data tuples to directly boost
performance of a model on a domain with no an-
notations.

2.3 Transfer Learning

Transfer learning (Pan and Yang, 2010) has been
successfully applied to numerous domains in ma-
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chine learning, such as machine translation (Zoph
et al., 2016), computer vision, (Sharif Razavian
et al., 2014), and speech recognition (Doulaty
et al., 2015). Specifically, object recognition mod-
els trained on the large-scale ImageNet challenge
(Russakovsky et al., 2015) have proven to be ex-
cellent feature extractors for diverse tasks such as
image captioning (i.e., Lu et al. (2017); Fang et al.
(2015); Karpathy and Fei-Fei (2015)) and visual
question answering (i.e., Zhou et al. (2015); Xu
and Saenko (2016); Fukui et al. (2016); Yang et al.
(2016)), among others. In a similar fashion, we
use a model pretrained on the SQuAD dataset as a
generic feature extractor to bootstrap a QA system
on NewsQA.

3 The Transfer Learning Task for MC

We formalize the task of machine comprehension
below. Our MC model takes as input a tokenized
question q = {q0, q1, ...qn}, a context paragraph
p = {p0, p1, ...pn}, where qi, pi are words, and
learns a function f(p, q) 7→ {astart, aend} where
astart and aend are pointer indices into paragraph
p, i.e., the answer a = pastart ...paend .

Given a collection of labeled paragraph, ques-
tion, answer triples {p, q, a}ni=1 from a particular
domain s, i.e., Wikipedia articles, we can learn a
MC model fs(p, q) that is able to answer questions
in that domain.

However, when applying the model trained in
one domain to answer questions in another, the
performance may degrade. On the other hand, la-
beling data to train a model in the new domain is
expensive and time-consuming.

In this paper, we propose the task of transferring
a MC system fs(p, q) that is trained in a source do-
main to answer questions over another target do-
main, t. In the target domain t, we are given an
unlabeled set pt = {p}ki=1 of k paragraphs. Dur-
ing test time, we are given an unseen set of para-
graphs, p∗, in the target domain, over which we
would like to answer questions.

4 The Model

4.1 Two-Stage SynNet
To bootstrap our model fs we use a SynNet (Fig-
ure 1), which consists of answer synthesis and
question synthesis modules, to generate data on
pt. Our SynNet learns the conditional probability
of generating answer a = {astart, aend} and ques-
tion q = {q1, ...qn} given paragraph p, P (q, a|p).

We decompose the joint probability distribution
P (q, a|p) into a conditional probability distribu-
tion P (q|p, a)P (a|p), where we first generate the
answer a, followed by generating the question q
conditioned on the answer and paragraph.

4.1.1 Answer Synthesis Module
In our answer synthesis module we train a simple
IOB tagger to predict whether each word in the
paragraph is part of an answer or not.

More formally, given a set of words in a para-
graph p = {p1...pn}, our IOB tagging model
learns the conditional probability of labels y1...yn,
where y1 ∈ IOBSTART, IOBMID, IOBEND if a word
pi is marked as an answer by the annotator in our
train set, NONE otherwise.

We use a bi-directional Long-Short Term Mem-
ory Network (Bi-LSTM) (Hochreiter and Schmid-
huber, 1997) for tagging. Specifically, we project
each word pi 7→ p∗i into a continuous vector
space via pretrained GloVe embeddings (Penning-
ton et al., 2014). We then run a Bi-LSTM over the
word embeddings p∗1, ...p

∗
n to produce a context-

dependent word representation h1, ...hn, which
we feed into two fully connected layers followed
by a softmax to produce our tag likelihoods for
each word.

We select all consecutive spans where y 6=
NONE produced by the tagger as our candidate
answer chunks, which we feed into our question
synthesis module for question generation.

4.1.2 Question Synthesis Module
Our question synthesis module learns
the conditional probability of generating
question q = {q1, ...qn} given answer
a = astart, aend and paragraph p = p1...pn,
P (q1, ...qn|p1...pn, astart, aend). We decompose
the joint probability distribution of generating
all the question words q1, ...qn into gener-
ating the question one word at a time, i.e.∏n
i=1 P (qi|p, a, q1...i−1).
The model is similar to an encoder-decoder

network with attention (Bahdanau et al., 2014),
which computes the conditional probability
P (qi|p1...pn, astart, aend, q1...i−1). We run a
Bi-LSTM over the paragraph to produce context-
dependent word representations h = {h1, ...hn}.
To model where the answer is in the paragraph,
similar to Yang et al. (2017), we insert answer
information by appending a zero/one feature
to the paragraph word embeddings. Then, at
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each time step i, a decoder network attends to
both h and the previously generated question
token qi−1 to produce a hidden representation ri.
Since paragraphs may often have named entities
and rare words not present during training, we
incorporate a copy mechanism into our models
(Gu et al., 2016).

We use an architecture motivated by latent pre-
dictor networks (Ling et al., 2016) to force the
model to learn when to copy vs. directly predict
the word, without direct supervision of what ac-
tion to choose. Specifically, at every time step i,
two latent predictors generate the probability of
generating wordwi, a pointer networkCp (Vinyals
et al., 2015) which can copy a word from the
context paragraph, and a vocabulary predictor Vp
which directly generates a probability distribution
of choosing a word wi from a predefined vocab-
ulary. The likelihood of choosing predictor k at
time step i is proportional to wkri, and the like-
lihood of predicting question token qi is given by
q∗i = pvlv(wi) + (1 − pv)lc(wi), where v rep-
resents the vocabulary predictor and c represents
the copy predictor, and l(wi) is the likelihood of
the word given by the predictor.3 For training,
since no direct supervision is given as to which
predictor to choose, we minimize the cross en-
tropy loss of producing the correct question to-
kens

∑n
j=1−log(q∗j ) by marginalizing out latent

variables using a variant of the forward-backward
algorithm (see Ling et al. (2016) for full details).

During inference, to generate a question q1...qn,
we use greedy decoding in the following manner.
At time step i, we select the most likely predictor
(Cp or Vp), followed by the most likely word qi
given the predictor. We feed the predicted word
as input at the next timestep back into the decoder
until we predict the end symbol, END, after which
we stop decoding.

4.2 Machine Comprehension Model

Our machine comprehension model f(p, q) 7→ a
learns the conditional likelihood of predicting an-
swer pointers a = {astart, aend} given paragraph
p and question q, P (a|p, q). In our experiments we
use the open-source Bi-directional Attention Flow
(BiDAF) network (Seo et al., 2017)4 since it is
one of the best-performing models on the SQuAD

3Since we only have two predictors, pc = 1− pv
4See https://github.com/allenai/bi-att-flow

Algorithm 1: Training Algorithm
Input : xs = {ps, qs, as}ni=1 triplets from

source domain s; pretrained MC
model on s,
fs(p, q) 7→ {astart, aend};
paragraphs from target domain t,
pmj=1

Output: MC model on target domain,
ft(p, q) 7→ {astart, aend}

1 Train SynNet g to maximize P (q, a|p) on
source s;

2 Generate samples xt = (q, a|p)ki=1 on text in
target domain t;

3 Use xs ∪ xt to finetune MC model fs on
domain t. For every batch sampled from xt,
sample k batches from xs;

dataset,5 although we note that our algorithm for
data synthesis can be used with any MC model.

4.3 Algorithm Overview

Having given an overview of our SynNet and a
brief overview of the MC model we describe our
training procedure, which is illustrated in Algo-
rithm 1.

4.4 Training

Our approach for transfer learning consists of sev-
eral training steps. First, given a series of labeled
examples xs = {ps, qs, as}ni=1 from domain s,
paragraphs pmj=1 from domain t, and pretrained
MC model fs(p, q), we train the SynNet gs to
maximize the likelihood of the question-answer
pairs in s.

Second, we fix our SynNet gs and we sample
xt = {pt, qt, at}ki=1 question-answer pairs on the
paragraphs in domain t. Several examples of gen-
erated questions can be found in Table 1.

We then transfer the MC model originally
learned on the source domain to the target domain
t using SGD on the synthetic data. However, since
the synthetic data is usually noisy, we alternatively
train the MC model with mini-batches from xs and
xt, which we call data-regularization. Every k
batches from x, we sample 1 batch of synthetic
data from x′, where k is a hyper-parameter, which
we set to 4. Letting the model encounter many ex-
amples from source domain s serves to regularize

5See https://rajpurkar.github.io/SQuAD-explorer/ for lat-
est results

838



Snippet of context paragraph (answer in bold) Generated questions (bold) vs. human questions
...At this point, some of these used-luxe models have
been around so long that they almost qualify as vin-
tage throwback editions. Recently, Consumer Re-
port magazine issued its list of best and worst used
cars, and divvied them up by price range ...

What magazine made best used cars in the
USAF?
Who released a list of best and worst used cars

...A high court in northern India on Friday acquitted
a wealthy businessman facing the death sentence for
the killing of a teen in a case dubbed ”the house of
horrors.“ Moninder Singh Pandher was sentenced to
death by a lower court in February. The teen was one
of 19 victims – children and ...

How many victims were in India ?
What was the amount of children murdered ?

Joe Pantoliano has met with the Obama and Mc-
Cain camps to promote mental health and recov-
ery. Pantoliano, founder and president of the eight-
month-old advocacy organization No Kidding, Me
Too, released a teaser of his new film about various
forms of mental illness...

Which two groups did Joe Pantoliano meet with?
Who did he meet with to discuss the issue?

...Former boxing champion Vernon Forrest , 38 , was
shot and killed in southwest Atlanta , Georgia , on
July 25 . A grand jury indicted the three suspects –
Charman Sinkfield , 30 ; Demario Ware , 20 ; and
Jquante...

Where was the first person to be shot ?
Where was Forrest killed?

Table 1: Randomly sampled paragraphs and corresponding synthetic vs. human questions from the
NewsQA train set. Human-selected answers from the train set were used as input.

the distribution of the synthetic data in the target
domain with real data from s. We checkpoint fine-
tuned model f∗s every i mini-batches, i = 1000 in
our experiments, and save a copy of the model at
each checkpoint.

At test time, to generate an answer, we feed
paragraph p = {p0, p1, ...pn} and question q
through our finetuned MC model f∗(p, q) to get
P (pi = astart), P (pi = aend) for all i ∈
1...n. We then use dynamic programming (Seo
et al., 2017) to find the optimal answer span
{astart, aend}. To improve the stability of using
our model for inference, we average the predicted
answer likelihoods from model copies at differ-
ent checkpoints prior to running the dynamic pro-
gramming algorithm.

5 Experimental Setup

We summarize the datasets we use in our experi-
ments, parameters for our model architectures, and
training details.

The SQuAD dataset consists of approximately
100,000 question-answer pairs on Wikipedia,
87,600 of which are used for training, 10,570 for
development, and an unknown number in a hidden
test set. The NewsQA dataset consists of 92,549
train, 5,166 development and 5,165 test questions
on CNN/Daily Mail news articles. Both the do-
main type (i.e., news) and question types differ
between the two datasets. For example, an analy-

sis of a randomly generated sample of 1,000 ques-
tions from both NewsQA and SQuAD (Trischler
et al., 2016) reveals that approximately 74.1% of
questions in SQuAD require word matching or
paraphrasing to retrieve the answer, as opposed to
59.7% in NewsQA. As our test metrics, we report
two numbers, exact match (EM) and F1 score.

We train a BIDAF model on the SQuAD train
dataset and use a two-stage SynNet to finetune it
on the NewsQA train dataset.

We initialize word-embeddings for the BIDAF
model, answer synthesis module, and question
synthesis module with 300-dimensional-GloVe
vectors (Pennington et al., 2014) trained on the
840 Billion Words Common Crawl corpus. We set
all embeddings of unknown word tokens to zero.

For both the answer synthesis and question
synthesis module, we use a vocabulary of size
110,179. We use LSTMs with hidden states of size
150 for the answer module vs. those of size 100
for the question module since the answer module
is less memory intensive than the question module.

We train both the answer and question module
with Adam (Kingma and Ba, 2015) and a learning
rate of 1e-2. We train a BIDAF model with the de-
fault hyperparameters provided in the open-source
repository. To stop training of the question synthe-
sis module, after each epoch, we monitor both the
loss as well as the quality of questions generated
on the SQuAD development set. To stop training
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of the answer synthesis module, we similarly mon-
itor predictions on the SQuAD development set.

To train the question synthesis module, we only
use the questions provided in the SQuAD train set.
However, to train the answer synthesis module,
we further augment the human-annotated labels
of each paragraph with tags from a simple NER
system6 because labels of answers provided in the
train set are underspecified, i.e., many words in the
paragraph that could be potential answers are not
labeled. Therefore, we assume any named entities
could also be potential answers of certain ques-
tions, in addition to the answers explicitly labeled
by annotators.

To generate question-answer pairs on the
NewsQA train set using the SynNet, we first
run every paragraph through our answer synthe-
sis module. We then randomly sample up to 30
candidate answers extracted by our module, which
we feed into the question synthesis module. This
results in 250,000 synthetic question-answer pairs
that we can use to finetune our MC model.

6 Experimental Results

We report the main results on the NewsQA test set
(Table 2), report brief results on SQuAD (Table 3),
conduct ablation studies (Table 4), and conduct an
error analysis.

6.1 Results

We compare to the best previously published
work, which trains BARB (Trischler et al., 2016)
and Match-LSTM (Wang and Jiang, 2016) ar-
chitectures, and a BIDAF model we train on
NewsQA. Directly applying a BIDAF model
trained on SQuAD to predict on NewsQA leads to
poor performance with an F1 measure of 39.0%,
13.2% lower than one trained on labeled NewsQA
data. Using the 2-stage SynNet already leads
to a slight boost in performance (F1 measure of
44.3%), which implies that having exposure to
the new domain via question-answer pairs pro-
vides important signal for the model during train-
ing. When we augment the answers from our an-
swer synthesis module with those from a generic
NER system to produce questions, we have an ad-
ditional 2.3% performance boost. Finally, when
we ensemble with the original model, we boost
the EM further by 0.2%. Our final system achieves
an F1 measure of 46.6%, approaching previously

6https://spacy.io/

published results of 50.0%. The results demon-
strate that using the proposed architecture and
training procedure, we can transfer a MC model
from one domain to another, without use of anno-
tated data.

We also evaluate the SynNet on the NewsQA-
to-SQuAD direction. We directly apply the best
setting from the other direction and report the re-
sult in Table 3. The SynNet improves over the
baseline by 1.6% in EM and 0.7% in F1. Lim-
ited by space, we leave out ablation studies in this
direction.

6.2 Ablation Studies

To better understand how various components in
our training procedure and model impact overall
performance we conduct several ablation studies,
as summarized in Table 4.

6.2.1 Answer Synthesis
We experiment with using the answer chunks
given in the train set, Aoracle, to generate syn-
thetic questions, versus those from an NER sys-
tem, Aner. Results in Table 4(A) show that us-
ing human-annotated answers to generate ques-
tions leads to a significant performance boost over
using answers from an answer generation module.
This supports the hypothesis that the answers hu-
mans choose to generate questions for provide im-
portant linguistic cues for finetuning the machine
comprehension model.

6.2.2 Question Synthesis
To see how copying impacts performance, we ex-
plore using the entire paragraph to generate the
question vs. only the two sentences before and
one sentence after the answer span and report re-
sults in Table 4(B). On the NewsQA train set, syn-
thetic questions that use 2 sentences contain an
average of 3.0 context words within 10 words to
the left and right of the answer chunk, those that
use the entire context have 2.1 context words, and
human generated questions only have 1.7 words.
Training with generated questions that have a large
amount of overlap with words close to the an-
swer span (i.e., those that use 2-sentences vs. en-
tire context for generation) leads to models that
perform worse, especially with synthetic answer
spans and no data regularization (35.6% F1 vs.
34.3% F1). One possible reason is that, accord-
ing to analysis in Trischler et al. (2016), signifi-
cantly more questions in the NewsQA dataset re-
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Method System EM F1

Transfer Learning Msq (baseline) 24.9 39.0
Msq + Agen + Qgen 30.6 44.3
Msq + Agen + Aner + Qgen 32.8 46.6
Msq + Agen + Aner + Qgen + M∗sq 33.0 46.6

Supervised Learning Barb-LSTM on NewsQA (Trischler et al., 2016) 34.9 50.0
Match-LSTM on NewsQA (Trischler et al., 2016) 34.1 48.2
BIDAF on NewsQA 37.1 52.3
BIDAF on SQuAD finetuned on NewsQA 37.3 52.2

Table 2: Main Results. Exact match (EM) and span F1 scores on the NewsQA test set of a BIDAF
model finetuned with our SynNet. Msq refers to a baseline BIDAF model trained on SQuAD, Agen,
Qgen refers to using answers generated from our SynNet respectively to finetune the model on NewsQA,
Aner refers to using answers extracted from a standard NER system to generate questions. M∗sq refers to
using the baseline SQUAD model in the ensemble.

System EM F1
Mnewsqa 46.3 60.8
Mnewsqa + Snet 47.9 61.5

Table 3: NewsQA to SQuAD. Exact match (EM)
and span F1 results on SQuAD development set of
a NewsQA BIDAF model baseline vs. one fine-
tuned on SQuAD using the data generated by a
2-stage SynNet (Snet).

quire paraphrase, inference, and synthesis as op-
posed to word-matching.

6.2.3 Model Finetuning

To see how the quantity of synthetic questions
encountered during training impacts performance,
we use k = {0, 2, 4} mini-batches from SQuAD
for every synthetic mini-batch from NewsQA to
finetune our model, and average the prediction
of 4 checkpointed models during testing. As
we see from the results, letting the model to en-
counter data from human annotations, although
from another domain, serves as a key form of data-
regularization, yielding consistent improvement as
k increases. We hypothesize this is because the
data distribution of machine-generated questions
is different than human-annotated ones; our batch-
ing scheme provides a simple way to prevent over-
fitting to this distribution.

A) EM F1 B) EM F1
k=0 27.2 40.5 2s + Aner 22.8 36.1
k=2 29.8 43.9 all + Aner 27.2 40.5
k=4 30.4 44.3 2s + Aoracle 31.3 45.2

all + Aoracle 32.5 46.8

Table 4: Ablation Studies. Exact match (EM) and
span F1 results on NewsQA test set of a BIDAF
model finetuned with a 2-stage SynNet. In study
A, we vary k, the number of mini-batches from
SQuAD for every batch in NewsQA. In study B,
we set k = 0, and vary the answer type and how
much of the paragraph we use for question synthe-
sis. 2 − sent refers to using two sentences before
answer span, while all refers to using the entire
paragraph. Aner refers to using an NER system
and Aor refers to using the human-annotated an-
swers to generate questions.

6.3 Error Analysis

In this section we provide a qualitative analysis of
some of our components to help guide further re-
search in this task.

6.3.1 Answer Synthesis
We randomly sample and present a paragraph with
answers extracted by our answer synthesis module
(Tables 5 and 6). Although the module appears to
have high precision, i.e., it picks up entities such as
the “Atlantic Paranormal Society”, it misses clear
entities such as “David Schrader”, which suggests
training a system with full NER/POS tags as la-
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They are ghost hunters , or , as they prefer to be called , para-
normal investigators . “ Ghost-Hunters ”, which airs a spe-
cial live show at 7 p.m. Halloween night , is helping lift
the stigma once attached to paranormal investigators . The
show has become so popular that the group featured in each
episode – Atlantic Paranormal Society - has spawned im-
itators across United States and affiliates in countries .
TAPS , as the “ Hunters” group is informally known , even
has its own “ Reality Radio” show , magazine , lecture tours
, T-shirts – and groupies . “ Hunters” has made creepy cool
, says David Schrader , a paranormal investigator and co-host
of “ Radio ”, a radio show that investigates paranormal activ-
ity.

Table 5: Sample predictions from our answer syn-
thesis module.

What is Oklahoma’s unemployment rate until Oklahoma City
?
What was the manager of the Oklahoma City agency ?
How many companies are in Oklahoma City ?
How many workers may Oklahoma have as fair hold ?
Who said the bureau has already hired civilians to choose
What was the average hour manager of Oklahoma City ?
How much would Oklahoma have a year to be held
What year did Oklahoma ’s census build job industry ?

Table 6: Predictions from the question synthesis
module on a subset of a paragraph.

bels would yield better results, and also explains
why augmenting synthetic data generated by Syn-
Net with such tags leads to improved performance.

6.3.2 Question Synthesis
We randomly sample synthetic questions gener-
ated by our module and present our results in Ta-
ble 6. Due to the copy mechanism, our module
has the tendency to directly use many words from
the paragraph, especially common entities, such
as “Oklahoma” in the example. Thus, one way to
generate higher-quality questions may be to intro-
duce a cost function that promotes diversity during
decoding, especially within a single paragraph. In
turn, this would expose the RC model to a larger
variety of training examples in the new domain,
which can lead to better performance.

6.3.3 Machine Comprehension Model
We examine the performance over various ques-
tion types of a finetuned BIDAF on NewsQA
vs. one trained on NewsQA vs. one trained
on SQuAD (Figure 2). Finetuning with Syn-
Net improves performance over all question types
given, with the largest performance boost on lo-
cation and person-identification questions. Simi-
larly, models trained on synthetic questions tend to
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p 
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Figure 2: NewsQA accuracy of baseline BIDAF
model trained on SQuAD (light green), vs. model
finetuned with our method (red) vs. one trained
from scratch on NewsQA (dark grey).

approach in-domain performance on numeric and
person-identification questions, but still struggle
with questions that require higher-order reasoning,
i.e. those starting with “what was” or “what did”.
Designing a question generator that explicitly re-
quires such reasoning may be one way to further
bridge the gap in performance.

7 Conclusion

We introduce a two-stage SynNet for the task of
transfer learning for machine comprehension, a
task which is both challenging and of practical im-
portance. With our network and a simple training
algorithm where we generate synthetic question-
answer pairs on the target domain, we are able to
generalize a MC model from one domain to an-
other with no annotated data. We present strong
results on the NewsQA test set, improving perfor-
mance of a baseline BIDAF model by over 7.6%
F1. Through ablation studies and error analysis,
we provide insights into our methodology on the
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SynNet and MC models that can help guide fur-
ther research in this task.
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Abstract

This paper presents a deep neural solver
to automatically solve math word prob-
lems. In contrast to previous statistical
learning approaches, we directly translate
math word problems to equation templates
using a recurrent neural network (RNN)
model, without sophisticated feature engi-
neering. We further design a hybrid mod-
el that combines the RNN model and a
similarity-based retrieval model to achieve
additional performance improvement. Ex-
periments conducted on a large dataset
show that the RNN model and the hy-
brid model significantly outperform state-
of-the-art statistical learning methods for
math word problem solving.

1 Introduction

Developing computer models to automatically
solve math word problems has been an interest
of NLP researchers since 1963 Feigenbaum et al.
(1963); Bobrow (1964); Briars and Larkin (1984);
Fletcher (1985). Recently, machine learning tech-
niques Kushman et al. (2014); Amnueypornsakul
and Bhat (2014); Zhou et al. (2015); Mitra and
Baral (2016) and semantic parsing methods Shi
et al. (2015); Koncel-Kedziorski et al. (2015) are
proposed to tackle this problem and promising re-
sults are reported on some datasets. Although
progress has been made in this task, performance
of state-of-the-art techniques is still quite low on
large datasets having diverse problem types Huang
et al. (2016).

A typical math word problems are shown in Ta-
ble 1. The reader is asked to infer how many pens
Dan and Jessica have, based on constraints pro-
vided. Given the success of deep neural network-
s (DNN) on many NLP tasks (like POS tagging,

Problem: Dan have 2 pens, Jessica have 4
pens. How many pens do they have in total ?
Equation: x = 4+2
Solution: 6

Table 1: A math word problem

syntactic parsing, and machine translation), it may
be interesting to study whether DNN could also
help math word problem solving. In this paper, we
propose a recurrent neural network (RNN) model
for automatic math word problem solving. It is a
sequence to sequence (seq2seq) model that trans-
forms natural language sentences in math word
problems to mathematical equations. Experiments
conducted on a large dataset show that the RNN
model significantly outperforms state-of-the-art s-
tatistical learning approaches.

Since it has been demonstrated Huang et al.
(2016) that a simple similarity based method per-
forms as well as more sophisticated statistical
learning approaches on large datasets, we imple-
ment a similarity-based retrieval model and com-
pare with our seq2seq model. We observe that al-
though seq2seq performs better on average, the re-
trieval model is able to correctly solve many prob-
lems for which RNN generates wrong results. We
also find that the accuracy of the retrieval model
positively correlate with the maximal similarity s-
core between the target problem and the problems
in training data: the larger the similarity score, the
higher the average accuracy is.

Inspired by these observations, we design a hy-
brid model which combines the seq2seq model
and the retrieval model. In the hybrid model, the
retrieval model is chosen if the maximal similar-
ity score returned by the retrieval model is larger
than a threshold, otherwise the seq2seq model is
selected to solve the problem. Experiments on our
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dataset show that, by introducing the hybrid mod-
el, the accuracy increases from 58.1% to 64.7%.

Our contributions are as follows:
1) To the best of our knowledge, this is the

first work of using DNN technology for automatic
math word problem solving.

2) We propose a hybrid model where a se-
q2seq model and a similarity-based retrieval mod-
el are combined to achieve further performance
improvement.

3) A large dataset is constructed for facilitating
the study of automatic math problem solving.1

The remaining part of this paper is organized
as follows: After analyzing related work in Sec-
tion 2, we formalize the problem and introduce our
dataset in Section 3. We present our RNN-based
seq2seq model in Section 4, and the hybrid model
in Section 5. Then experimental results are shown
and analyzed in Section 6. Finally we conclude
the paper in Section 7.

2 Related work

2.1 Math Word Problems Solving

Previous work on automatic math word problem
solving falls into two categories: symbolic ap-
proaches and statistical learning approaches.

In 1964, STUDENT Bobrow (1964) handles al-
gebraic problems by two steps: first, they trans-
form natural language sentences into kernel sen-
tences using a small set of transformation pat-
terns. Then the kernel sentences are transformed
to mathematical expressions by pattern match-
ing. A similar approach is also used to solve En-
glish rate problems Charniak (1968, 1969). Ligu-
da and Pfeiffer Liguda and Pfeiffer (2012) pro-
pose modeling math word problems with aug-
mented semantic networks. In addition, Addi-
tion/subtraction problems are studied most Bri-
ars and Larkin (1984); Dellarosa (1986); Bakman
(2007); Yuhui et al. (2010); Roy et al. (2015).

In 2015, Shi et.al Shi et al. (2015) propose a
system SigmaDolphin which automatically solves
math word problems by semantic parsing and rea-
soning. In the same year, Koncel et.al Koncel-
Kedziorski et al. (2015) also formalizes the prob-
lem of solving multi-sentence algebraic word
problems as that of generating and scoring equa-
tion trees.

1We plan to make the dataset publicly available when the
paper is published

Since 2014, statistical learning based approach-
es are proposed to solve the math word problems.
Hosseini et al. Hosseini et al. (2014) deal with the
open-domain aspect of algebraic word problems
by learning verb categorization from training data.
Kushman et al. Kushman et al. (2014) proposed
a equation template system to solve a wide range
of algebra word problems. Zhou et al. Zhou et al.
(2015) further extends this method by adopting the
max-margin objective, which results in higher ac-
curacy and lower time cost. In addition, Roy and
Roth Roy et al. (2015); Roy and Roth (2016) tries
to handle arithmetic problems with multiple step-
s and operations without depending on additional
annotations or predefined templates. Mitra et al.
Mitra and Baral (2016) presents a novel method
to learn to use formulas to solve simple addition-
subtraction arithmetic problems.

As reported in 2016 Huang et al. (2016), state-
of-the-art approaches have extremely low per-
formance on a big and highly diverse data set
(18,000+ problems). In contrast to these ap-
proaches, we study the feasibility of applying deep
learning to the task of math word problem solving.

2.2 Sequence to Sequence (seq2seq) Learning

With the framework of seq2seq learning Sutskev-
er et al. (2014); Wiseman and Rush (2016), re-
cent advances in neural machine translation (N-
MT) Bahdanau et al. (2014); Cho et al. (2014) and
neural responding machine (NRM) Shang et al.
(2015) have demonstrated the power of recurren-
t neural networks (RNNs) at capturing and trans-
lating natural language semantics. The NMT and
NRM models are purely data-driven and directly
learn to converse from end-to-end conversational
corpora.

Recently, the task of translating natural lan-
guage queries into regular expressions is explored
by using a seq2seq model Locascio et al. (2016),
which achieves a performance gain of 19.6% over
previous state-of-the-art models. To our knowl-
edge, we are the first to apply seq2seq model to
the task of math word problem solving.

3 Problem Formulation and Dataset

3.1 Problem Formulation

A math word problem P is a word sequence
Wp and contains a set of variables Vp =
{v1, . . . , vm, x1, . . . , xk} where v1, . . . , vm are
known numbers in P and x1, . . . , xk are variables
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Problem: Dan have 5 pens and 3 pencils,
Jessica have 4 more pens and 2 less pencils
than him. How many pens and pencils do
Jessica have in total?
Equation: x = 5 + 4 +3 -2
Solution: 10

Table 2: A math word problem

whose values are unknown. A problem P can be
solved by a mathematical equation Ep formed by
Vp and mathematical operators.

In math word problems, different equations may
belong to a same equation template. For exam-
ple, equation x = (9 ∗ 3) + 7 and equation
x = (4 ∗ 5) + 2 share the same equation template
x = (n1 ∗ n2) + n3. To decrease the diversity of
equations, we map each equation to an equation
template Tp through a number mapping Mp. The
number mapping process can be defined as:

Definition 1 Number mapping: For a problem
P with m known numbers, a number mapping Mp

maps the numbers in problem P to a list of number
tokens {n1, . . . , nm} by their order in the problem
text.

Definition 2 Equation template: A general for-
m of equations. For a problem P with equationEp
and number mapping Mp, its equation template is
obtained by mapping numbers in Ep to a list of
number tokens {n1, . . . , nm} according to Mp.

Take the problem in Table 2 as an example, first
we can obtain a number mapping from the prob-
lem:

M : {n1 = 5; n2 = 3; n3 = 4; n4 = 2; }
and then the given equation can be expressed as an
equation template:

x = n1 + n3 + n2 − n4
After number mapping, the problem in Table 2

can be mapped to:
“Dan have n1 pens and n2 pencils, Jessica have

n3 more pens and n4 less pencils than him. How
many pens and pencils do Jessica have in total?”

We solve math word problems by generating e-
quation templates through a seq2seq model. The
input of the seq2seq model is the sequenceWP af-
ter number mapping, and the output is an equation
template TP . The equation EP can be obtained by
applying the corresponding number mapping MP

to TP .

3.2 Constructing a Large Dataset

Most public datasets for automatic math word
problem solving are quite small and contains lim-
ited types of problems. The most frequently used
Alg514 (Kushman et al., 2014) dataset contains
only 514 linear algebra problems with 28 equa-
tion templates. There are 1,000 problems in the
newly constructed DRAW-1K (Shyam and Ming-
Wei, 2017) dataset. Dophin1878 (Shi et al., 2015)
includes 1,878 number word problems. An ex-
ception is the Dolphin18K dataset (Huang et al.,
2016) which contains 18,000+ problems. Howev-
er, this dataset has not been made publicly avail-
able so far.

Since DNN-based approaches typically need
large training data, we have to build a large dataset
of labeled math word problems. We crawl over
60,000 Chinese math word problems from a cou-
ple of online education web sites. All of them are
real math word problems for elementary school s-
tudents. We focus on one-unknown-variable lin-
ear math word problems in this paper. For oth-
er problem types, we would like to leave as fu-
ture work. Please pay attention that the solutions
to the problems are in natural language, and we
have to extract equation systems and structured
answers from the solution text. We implemen-
t a rule-based extraction method for this purpose,
which achieves very high precision and medium
recall. That is, most equations and structured an-
swers extracted by our method are correct, and
many problems are dropped from the dataset. As
a result, we get dataset Math23k which contains
23,161 problems labeled with structured equation-
s and answers. Please refer to Table 3 for some s-
tatistics of the dataset and a comparison with other
public datasets.

4 Deep Neural Solver

In this section, we propose a RNN-based seq2seq
model to translate problem text to math equations.
Since not all numbers in problem text may be use-
ful for solving the problem, we propose, in Section
4.2, a significant number identification model to
distinguish whether a number in a problem should
appear in the corresponding equations.

4.1 RNN based Seq2seq Model

Figure 1 shows our RNN-based seq2seq model for
transforming problem text to a math equation, us-
ing the problem in Table 2 as an example. The in-
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dataset # problems # templates # sentences # words problem types
Alg514 514 28 1.62k 19.3k algebra, linear

Dolphin1878 1,878 1,183 3.30k 41.4k number word problems
DRAW-1K 1,000 Unknown 6.23k 81.5k algebra, linear, one-VAR
Math23K 23,161 2,187 70.1k 822k algebra, linear, one-VAR

Table 3: Statistics of our dataset and several publicly available datasets

Figure 1: The seq2seq model

put sequence W is the problem after number map-
ping:

“Dan have n1 pens and n2 pencils, Jessica have
n3 more pens and n4 less pencils than him. How
many pens and pencils do Jessica have in total?”

The output sequence R = {r1, . . . , rs} is the
equation template:

x = n1 + n3 + n2 − n4

The gated recurrent units (GRU) (Chung et al.,
2014) and long short-memory (LSTM) (Hochreit-
er and Schmidhuber, 1997) cells are used for en-
coding and decoding, respectively. The reason
why we use GRU as the encoder instead of LSTM
is that the GRU has less parameters and less likely
to be overfitted on small dataset. Four fundamen-

tal operational stages of GRU are as follows:

zt =σ(W
(z)xt + U zht−1) (Update gate)

rt =σ(W
(r)xt + U rht−1) (Reset gate)

ĥt =tanh(rt � Uht−1 +Wxt) (New memory)

ht =(1− zt)� ĥt + zt � ht−1 (Hidden state)
(1)

where σ represents the sigmoid function and � is
an element-wise multiplication. The input xt is a
wordwt along with previously generated character
rt−1 . The variables U and W are weight matrices
for each gate.

The fundamental operational stages of LSTM
are as follows:

it = σ(W (i)xt + U iht−1) (Input gate)

ft = σ(W (f)xt + Ufht−1) (Forget gate)

ot = σ(W (o)xt + Uoht−1) (Output gate)

c̃t = tanh(W (c)xt + U (c)ht−1) (New memory)

ct = ft � c̃t−1 + it � c̃t (Final memory)

ht = ot � tanh(ct) (Hidden state)
(2)

where the input xt is a word wt along with previ-
ously generated character rt−1 .

Then, we redesigned the activation function of
the seq2seq model, which is different from vanil-
la seq2seq models. If we directly generate equa-
tion templates by a softmax function, some incor-
rect equations may be generated, such as: “x =
n1 + + ∗ n2” and “x = (n1 ∗ n2”. To ensure
that the output equations are mathematically cor-
rect, we need to find out which characters are ille-
gal according to previously generated characters.
This is done by five predefined rules like:

• Rule 1: If rt−1 in {+,−, ∗, /}, then rt will
not in {+,−, ∗, /, ),=};

• Rule 2: If rt−1 is a number, then rt will not
be a number and not in {(,=};
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• Rule 3: If rt−1 is “=”, then rt will not in
{+,−, ∗, /,=, )};

• Rule 4: If rt−1 is “(”, then rt will not in
{(, ),+,−, ∗, /,=};

• Rule 5: If rt−1 is “)”, then rt will not be a
number and not in {(, )};

A binary vector ρt can be generated depends on
rt−1 and these rules. Each position in ρt is corre-
sponding to a character in the output vocabulary,
where “1” represents that the character is mathe-
matically correct, and “0” indicates mathematical-
ly incorrect. Thus, the output probability distribu-
tion at each time-step t can be calculated as:

P (r̂t|ht) =
ρt � ehTt W s

∑
ρt � ehTt W s

(3)

where ht is the output of LSTM decoder, and W s

is the weight matrix. The probability of mathemat-
ically incorrect characters will be 0.

Our model is five layers deep, with a word em-
bedding layer, a two-layer GRU as encoder and a
two-layer LSTM as decoder. Both the encoder and
decoder contain 512 nodes. We perform standard
dropout during training (Srivastava et al., 2014) af-
ter GRU and LSTM layer with dropout probability
equal to 0.5. We train for 80 epochs, utilizing a
mini-batch size of 256 and a learning-rate of 0.01.

4.2 Significant Number Identification (SNI)
In a math word problem, not all numbers appear
in the equation for solving the problem. An ex-
ample is shown in Table 4, where the number “1”
in “1 day, 1 girl” and number “2” in “She has 2
types of” should not be used in equation construc-
tion. We say a number is significant if the number
should be included in the equation to the problem;
otherwise it is insignificant. For the problem in Ta-
ble 4, significant numbers are 9, 3, and 5, while 1
and 2 are insignificant numbers. Identifying sig-
nificant and insignificant numbers are important
for constructing correct equations. For this pur-
pose, we build a LSTM-based binary classification
model to determine whether a number in a piece of
problem text is significant.

The training data for SNI model are extract-
ed from the math word problems. Each number
and its context in problems is a training instance
of SNI. An instance will be labelled“True” if the
number is significant, otherwise it will be labelled

“False”. The structure of SNI model is shown in
Figure 2. By using single layer LSTMs with 128
nodes and a symmetric window of length 3, our
model achieves 99.1% accuracy. Table 4 is an ex-
ample of number mapping with and without SNI.

Problem: 1 day, 1 girl was organizing her
book case making sure each of the shelves had
exactly 9 books on it. She has 2 types of books
- mystery books and picture books. If she had
3 shelves of mystery books and 5 shelves of
picture books, how many books did she have
in total?
Number mapping: n1 = 1; n2 = 1; n3 = 9;
n4 = 2; n5 = 3; n6 = 5

Equation template: x = n5 ∗ n3 + n6 ∗ n3
Number mapping with SNI:
n1 = 9; n2 = 3; n3 = 5

Equation template with SNI:
x = n2 ∗ n1 + n3 ∗ n1
Problem after number mapping and SNI:
1 day, 1 girl was organizing her book case
making sure each of the shelves had exactly n1
books on it. She has 2 types of books -mystery
books and picture books. If she had n2 shelves
of mystery books and n3 shelves of picture
books, how many books did she have in total?

Table 4: Significant number identification (SNI)
example

Figure 2: The significant number identification
model

5 Hybrid Model

To compare the performance of our deep neural
solver and traditional statistical learning methods,
we implement a similarity-based retrieval model
(refer to Section 5.1 for more details).

The Venn diagram in Figure 3 shows the rela-
tionship between the problems solved by the re-
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Figure 3: Green area: problems correctly solved
by the retrieval model; Blue area: problems cor-
rectly solved by the seq2seq model; Overlapped
area: problems correctly solved by both model-
s; White area: problems that both models fail to
solve

trieval model and those solved by the seq2seq
model. We can see that although seq2seq perform-
s better on average, the retrieval model is able to
correctly solve many problems that seq2seq can-
not solve. If we can combine the two models prop-
erly to build a hybrid model, more problems may
get solved.

In this section, we first give some details about
the retrieval model in Section 5.1, then the hybrid
model is introduced in Section 5.2.

5.1 Retrieval Model

The retrieval model solves problems by calculat-
ing the lexical similarity between the testing prob-
lem and each problem in the training data, and
then the equation template of the most similar
problem is applied to the testing problem. Each
problem is modeled as a vector of word TF-IDF
scores W = [w1,d, w2,d, . . . , wN,d]

T , where

wt,d = tft,d ∗
|D|

|d ∈ D|t ∈ d| (4)

and tft,d is the word frequency of word t in prob-
lem d; |D| is the total number of problems in
dataset; |d ∈ D|t ∈ d| is the number of documents
containing the word t.

The similarity between the testing problem PT
and another problem Q can be calculated by the
Jaccard similarity between their corresponding
vectors:

J(PT , Q) =
|PT ∩Q|
|PT ∪Q|

=
|PT ∩Q|

|PT |+ |Q| − |PT ∩Q|
(5)

The retrieval model will choose training prob-
lem Q1 that have the maximal similarity with PT
and use the equation template T of Q1 as the tem-
plate of problem PT .

An important and interesting observation about
the retrieval model is the relation between the
maximal similarity and solution accuracy. Figure
4 shows the results of only considering the prob-
lems for those the maximal similarity returned by
retrieval model is above a threshold θ (in oth-
er words, we skip a problem if its corresponding
maximal similarity is below the threshold). It is
clear that the larger the similarity score, the higher
the average accuracy is. In our hybrid model, we
make use of this property to combine the seq2seq
model and the retrieval model.

Figure 4: Precision and recall of the retrieval mod-
el, and the precision of the seq2seq model w.r.t.
different similarity threshold (θ) values

5.2 Hybrid Model
Our hybrid model combines the retrieval mod-
el and the seq2seq model by setting a hyper-
parameter θ as the threshold of similarity. In algo-
rithm 1, if the Jaccard similarity between testing
problem PT and the retrieved problem Q1 is high-
er than θ, the model will choose the equation tem-
plate T of Q1 as the equation template of problem
PT . Otherwise an equation template will be gen-
erated by a seq2seq model. As shown in Figure 4,
the retrieval model has a higher precision than the
seq2seq model when we set a high threshold.

6 Experiments

In this section, we conduct experiments on two
datasets to examine the performance of the pro-
posed models. Our main experimental result is to
show a significant improvement over the baseline
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Algorithm 1 Hybrid model
Input: Q: problems in training data;

PT : testing problem;
θ: pre-defined threshold of similarity

Output: Problem solution
1: Get equation templates and number mappings

for training problems Q and testing problem
PT .

2: Number identification: identify significan-
t numbers

3: Retrieval:
choose problem Q1 from Q that has the max-
imal Jaccard similarity with PT

4: if J(PT , Q1) > θ then
5: Apply the retrieval model: select equation

template T of Q1

6: else
7: Apply the seq2seq model: T =

seq2seq(PT )
8: end if
9: Applying number mappings of PT to T and

calculating final solution

method on the proposed Math23K dataset. We fur-
ther show that the baseline method cannot solve
problems with new equation templates. In con-
trast, the proposed seq2seq model is quite robust
on problems with new equation templates (refer to
Table 7).

6.1 Experimental Setup

Datasets: As introduced in Section 3.2, we col-
lected a dataset called Math23K which contain-
s 23161 math word problems labeled with equa-
tion templates and answers. All these problems
are linear algebra questions with only one variable.
There are 2187 equation templates in the dataset.
In addition, we also evaluate our method on a pub-
lic dataset Alg514 (Kushman et al., 2014).

Baseline: We compare our proposed methods
with two baselines. The first baseline is the re-
trieval model introduced in Section 5.1. The sec-
ond one is ZDC (Zhou et al., 2015), which is
an improved version of KAZB (Kushman et al.,
2014). It maps a problem to one equation template
defined in the training set by reasoning across
problem sentences. It reports an accuracy of
79.7% on the Alg514 dataset. The Stanford parser
is adopted in ZDC to parse all math word problems

Math23K Alg514
ZDC 42.1% 79.7%
Retrieval model w/o SNI 46.0% 70.1%
Retrieval model w/ SNI 47.2% 70.1%
Seq2seq model w/o SNI 53.7% 17.2%
Seq2seq model w/ SNI 58.1% 16.1%
Hybrid model w/o SNI 61.1% 70.1%
Hybrid model w/ SNI 64.7% 70.1%

Table 5: Model comparison (average accuracy of
5-fold cross validation)

ZDC R R(S) Seq Seq(S) H
R(S) � >
Seq � � �

Seq(S) � � � �
H � � � � �

H(S) � � � � � �

Table 6: Result of significance test. The meaning
of abbreviations in this table is as follows: R: re-
trieval model w/o SNI; R(S): retrieval model w/ S-
NI; Seq: seq2seq model w/o SNI; Seq(S): seq2seq
model w/ SNI; H: hybrid model w/o SNI; H(S):
hybrid model w/ SNI

to Stanford coreNLP output formats. 2

6.2 Experimental Results

Each approach is evaluated on each dataset via 5-
fold cross-validation: In each run, 4 folds are used
for training and 1 fold is used for testing. Evalu-
ation results are summarized in Table 5. First, to
test the effectiveness of significant number identi-
fication (SNI), model performance before and af-
ter the application of SNI are compared. Then, the
performance of the hybrid model, seq2seq model,
and retrieval model are examined on two datasets
respectively.

To check whether the performance improve-
ments are significant enough, we conduct statisti-
cal significance study upon pairs of methods. Ta-
ble 6 shows the results of sign test, where the
symbol > indicates that the method in the row
significantly (with p value < 0.05) improves the
performance of the method in the column, and
the symbol � indicates that the performance im-
provement is extremely significant (with p value
< 0.01).

Several observations can be made from the re-
2We also try to run KAZB on our dataset, but fail on our

workstation (2 12-core E5-2650 CPU, 128G RAM, 4 K80
GPUs) due to large memory consumption.
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sults. First, the seq2seq model significantly out-
performs state-of-the-art statistical learning meth-
ods (ZDC and the retrieval model). Second, by
combining the retrieval model and the seq2seq
model using a simple mechanism, our hybrid mod-
el achieves significant performance gain with re-
spect to the seq2seq model. Third, the SNI mod-
ule can effectively improve model accuracy. The
accuracy of the hybrid model and seq2seq mod-
el gains approximately 4% increase after number
identification. Please pay attention that on the s-
mall dataset of Alg514, the seq2seq model be-
haves much worse than others. This is not surpris-
ing, because deep neural networks typically need
large training data.

Figure 5 shows the performance of differen-
t models on various scales of training data. As
expected, the seq2seq model performs very well
on big datasets, but poorly on small datasets.

Figure 5: Performance of different models versus
the size of training set

Ability to Generate New Equation Templates:
please note that many problems in Math23K can
be solved using the same equation template. For
example, a problem which corresponds to the e-
quation x = (9 ∗ 3) + 7 and a different problem
that maps to x = (4 ∗ 5) + 2 share the same equa-
tion template.

One nice property of the seq2seq model is its a-
bility of generating new equation templates. Most
previous statistical learning methods (with a few
exceptions) for math word problem solving are on-
ly able to select an equation template from those
in the training data. In other words, they cannot
generate new templates. To test the performance
of the seq2seq model in generating new templates,

Math23K
ZDC 15.1%
Retrieval model w/o SNI 26.1%
Retrieval model w/ NI 29.2%
Seq2seq model w/o SNI 40.3%
Seq2seq model w/ SNI 47.5%
Hybrid model w/o SNI 40.3%
Hybrid model w/ SNI 47.7%

Table 7: Experimental results of non-overlapping
templates between training data and test data

we make a new split of our dataset between train-
ing data and test data, to ensure that the training
data and the test data do not share overlapped tem-
plates. As a result, we get a training set with 19,
024 problems and 1, 802 equation templates, and a
testing set with 4, 137 problems and 315 equation
templates.

Experimental results on the new training set and
test set are shown is shown in Table 7. By com-
paring Table 5 and Table 7, it is clear that the gap
between the seq2seq model and the baselines be-
comes larger in the new settings. It is because the
seq2seq model can effectively generate new equa-
tion templates for new problems, instead of select-
ing equation templates from the training set.

Although ZDC and the retrieval model cannot
generate new templates, their accuracy is not zero
in the new settings. That is because one problem
can be solved by multiple equation templates: Al-
though one problem is labeled with template T1 in
the test set, it may also be solved by another tem-
plate T2 in the training set.

6.3 Discussion

Compare to most previous statistical learning
methods for math problem solving, our proposed
seq2seq model and hybrid model have the follow-
ing advantages: 1) They have higher accuracy on
large training data. On the Math23K dataset, the
hybrid model achieves at least 22% higher accura-
cy than the baselines. 2) They have the ability of
generating new templates (i.e., templates that are
not in the training data. 3) They do not rely on
sophisticated feature engineering.

7 Conclusion

We have proposed an RNN-based seq2seq model
to automatically solve math word problems. This
model directly transforms problem text to a math
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equation template. This is the first work of ap-
plying deep learning technologies to math word
problem solving. In addition, we have designed
a hybrid model which combines the seq2seq mod-
el and a retrieval model to further improve perfor-
mance. A large dataset has been constructed for
model training and empirical evaluation. Exper-
imental results show that both the seq2seq mod-
el and the hybrid model significantly outperfor-
m state-of-the-art statistical learning methods in
math word problem solving.

The output of our seq2seq model is a single e-
quation containing one unknown variable. There-
fore our approach is only applicable to the prob-
lems whose solution involves one linear equation
of one unknown variable. As future work, we plan
to extend our model to be able to generate equation
systems and nonlinear equations.
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Abstract

Community-driven Question Answering
(CQA) systems such as Yahoo! Answers
have become valuable sources of reusable
information. CQA retrieval enables usage
of historical CQA archives to solve new
questions posed by users. This task has re-
ceived much recent attention, with meth-
ods building upon literature from transla-
tion models, topic models, and deep learn-
ing. In this paper, we devise a CQA re-
trieval technique, LASER-QA, that embeds
question-answer pairs within a unified la-
tent space preserving the local neighbor-
hood structure of question and answer
spaces. The idea is that such a space
mirrors semantic similarity among ques-
tions as well as answers, thereby enabling
high quality retrieval. Through an em-
pirical analysis on various real-world QA
datasets, we illustrate the improved effec-
tiveness of LASER-QA over state-of-the-
art methods.

1 Introduction

Community-based Question Answering (CQA)
services such as Yahoo! Answers1, Quora2, Stack-
Overflow3, and Baidu Zhidao4 have become a de-
pendable source of knowledge to solve common
user problems. These allow a user to post queries
such as how and why questions that seek descrip-
tive solutions and opinions as answers. Over time,
these services build up a large archive of question-
answer knowledge that may be leveraged to solve
new user questions. The CQA retrieval problem,

1
https://answers.yahoo.com/

2
https://www.quora.com/

3
http://stackoverflow.com/

4
https://en.wikipedia.org/wiki/Baidu Knows

Table 1: Example CQA Pairs

# QA Cause

1

Q: My internet connection is not working, my

router shows the ”Internet” led blinking in red. Router

A: Please go to the router login page and re-login Authentication

with broadband credentials; click ”connect” and Issue

you should be on the internet.

2

Q: My internet connection is not working, only

the power led is lit in the router. Router

A: Can you check whether the broadband cable Loose

is plugged in. Maybe, the broadband cable is not Connection

connected properly.

that has received much recent attention, is about
addressing this opportunity. CQA retrieval meth-
ods focus on finding historical archived knowl-
edge (questions, answers or QA pairs) that are rel-
evant to a newly posed user question. The cen-
tral technical challenge that differentiates CQA re-
trieval from other general purpose IR tasks is that
of the need to address the lexical gap (aka lexi-
cal chasm) in QA archives. Lexical chasm means
that text fragments in questions (e.g., disk full)
may lead to semantically correlated content in an-
swers (e.g., format). This QA-correlation is differ-
ent from semantic relatedness such as synonymy
and antonymy; in the above example, the correla-
tion is due to disk full issues often leading to so-
lution involving disk formating. Explicit correla-
tion modelling, using statistical translation mod-
els, have met with much success in CQA retrieval.

In this paper, we take a neighborhood preserv-
ing learning approach, and learn a unified repre-
sentation for QA pairs in an abstract latent space.
Consider two example CQA pairs from a techni-
cal support forum presented in Table 1; the in-
tuitive causes listed alongside are external to the
dataset. Though the questions are reasonably sim-
ilar lexically, they pertain to very different issues

855



as illustrated by the wide disparity in the answers
posed to them. We model QA-pairs in a uni-
fied space that preserves the similarity neighbor-
hood in question and answer spaces. In this ex-
ample, the wide divergence in answer-space simi-
larity neighborhoods between the two QAs would
pull them apart, so they live in different parts of the
latent space, reflecting the dissimilarity between
their causes. Thus, our contribution in this paper
is a neighborhood-preserving method for CQA re-
trieval, LASER-QA, expanding to LAtent-Space
Embedding for Rretrieval in QA archives.

2 Related Work

The three main CQA retrieval tasks target retriev-
ing (a) related past questions (Zhou et al., 2015),
(b) potentially usable past answers (Shtok et al.,
2012), and (c) past question-answer pairs (Xue
et al., 2008). Techniques for CQA typically use
one of: (i) statistical translation models, (ii) topic
models and (iii) neural networks. A fourth class
target exploiting metadata such as question cate-
gories and author data, or domain-specific syntac-
tic information, and are not as applicable in the
absence of such information.

In the interest of keeping this section focused
on retrieval, we do not cover other tasks that have
been addressed for CQA, such as QA-pair dis-
covery (Deepak and Visweswariah, 2014), cluster-
ing (Deepak, 2016) and auxiliary IR tasks such as
query suggestions (Deepak et al., 2013).

2.1 Translation Model based Techniques

Translation models (Brown et al., 1990) take
parallel corpora, collections of document pairs
expressing the same thing in different natu-
ral languages, and learn correlations between
words/phrases; for example, p(f |e) quantifies the
probability of an english word e getting translated
to a french word f in an English-French transla-
tion system. Though question-answer pairs do
not semantically qualify as parallel corpora, us-
age of translation models treating them so(Xue
et al., 2008) have led to retrieval accuracy im-
provements. Simplistically, a high probability for
p(format|disk) leads to retrieval models boost-
ing the score of a answer containing the word for-
mat to respond to a user query involving a disk
problem. Later methods have improved upon them
by phrase-level (Zhou et al., 2011) and entity-
level (Singh, 2012) modelling as well as by unim-

portant word removal (Lee et al., 2008) and dif-
ferential treatment of concepts (Park and Croft,
2015). Recent work has even explored using a
different language (e.g., Chinese) to enrich ques-
tions (Zhang et al., 2015).

2.2 Topic Model based Techniques
Topic models (Blei et al., 2003) have been used
to retrieve topically similar questions (Cai et al.,
2011) with usage of the solution side leading to
further improvements (Ji et al., 2012). They have
been combined with language modeling whereby
question and answer parts are modeled to have
been generated from paired latent topics, but in
”question and answer languages” (Zhang et al.,
2014). We will use such paired topic modelling,
called TBLM, as a baseline in our experimental
study.

2.3 Topic+Translation Models
Hybrid methods build upon topic and transla-
tion models by interpolating the separate scorings.
Due to the usage of a combination of multiple
types of parameterized models, the results of such
”pipeline methods” have been observed to be hard
to reproduce (Qiu et al., 2013).We use a recent
hybrid scoring method, called TopicTRLM (Zhou
et al., 2015), as a baseline in our experimental
study.

2.4 Deep Learning Methods
Neural networks such as DBNs (Wang et al., 2011;
Hu et al., 2013) and more sophisticated neural
pipelines (Shen et al., 2015) have been explored
for CQA retrieval. A recent work (Nakov et al.,
2016a) trains a neural network to discriminate be-
tween good and bad comments for a question. Us-
ing neural networks for retrieval within question
datasets (not involving answers) has also been a
subject of recent interest (e.g., (Bogdanova et al.,
2015; Das et al., 2016)). The most recent method
for generic QA-pair processing, which we will call
as AENN (Zhou et al., 2016), trains separate auto-
encoders for question and answer corpora, and in-
duces correlatedness of intermediate representa-
tions in a fine-tuning step. In our empirical anal-
ysis, we will use the AENN approach from (Zhou
et al., 2016) as a baseline.

2.5 Auxiliary-information based Methods
This category of methods target to exploit specific
kinds of auxiliary information that are potentially
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available with CQA data. Techniques have consid-
ered usage of question categories (Cao et al., 2009;
Zhou et al., 2014), the split between question ti-
tle and description (Qiu et al., 2013), and assump-
tions of the question syntax (Duan et al., 2008).
While such information is available in many sys-
tems, QA information from systems such as fo-
rums and chat-based customer support sometimes
have very little information other than just QA-
pairs. We target a general scenario where such
metadata is not expected as a pre-requisite, as in
the case of most techniques from other categories.

3 Problem Statement

Let D = {(q1,a1), . . . , (qn,an)} be QA pairs
from a CQA archive where answer ai is associ-
ated with question qi; for cases involving mul-
tiple answers for a question, the question would
be replicated for each answer. For a new question
q, the CQA retrieval problem is about devising a
scoring function f(q, (qi,ai)) that quantifies the
relevance of each (qi,ai) pair from D to the new
question q. Having devised a scoring function, re-
trieval is trivially accomplished by choosing an or-
dered set of top-t QA pairs from D in accordance
with their f(·, ·) scores.

3.1 Evaluation
In the datasets that we use, we have labels indicat-
ing which QAs are related/relevant to a particular
question. Thus, the quality of the scoring func-
tion can be evaluated using traditional information
retrieval metrics (Robertson and Zaragoza, 2007)
such as Precision, MAP, MRR, and NDCG when
measured against such labellings. In addition, we
will use one more metric, namely Success Rate,
the fraction of questions for which at least one re-
lated question is ranked among the top-t, in eval-
uation.

4 LASER-QA: The Proposed Technique

Our method, LASER-QA, embeds QA pairs in D,
within a unified space of desired dimensionality.

{(q1,a1), . . . , (qn,an)}
LASER−QA−−−−−−−−→ {u1, . . . ,un}

where, ui ∈ Rd is a vector space embedding in
the latent space Rd. As we will illustrate, LASER-
QA targets to preserve the local similarity struc-
tures in the question and answer spaces within the
unified embedding. Having built the embedding

of QA pairs, cosine similarity between vectors in
Rd is used for scoring:

f(q, (qi,ai)) =
u>ui
‖u‖‖ui‖

, (1)

where, u ∈ Rd is the embedding of the new ques-
tion q; we will outline the embedding of single
questions into Rd in a later section.

Our motivation behind LASER-QA stems from
the idea of Local Linear Embedding (LLE) (Saul
and Roweis, 2000); further, the choice of lo-
cal neighborhood preservation is motivated by
pervasive usage of local neighbors (i.e., k-
NN retrieval) in case-based reasoning frame-
works (De Mantaras et al., 2005) that seek to reuse
structured problem-solution data.

4.1 Data Representation

We use the tf-idf vector representation for each
question (denoted as xi) and each answer (yi) in
D. The tf-idf vectors are in RD where D denotes
the size of the vocabulary. The question and an-
swer tf-idf vectors are arranged as columns to form
matrices X and Y , both of size D × n. Recall,
the latent space would be a Euclidean space of di-
mension d, and typically, we have d < D. Our
method is intentionally designed to not rely on the
specifics of the representation used, and thus can
make use of any vector representation of text data.
Note that our latent space embeddings in Rd are
evidently unrelated to distributional text embed-
dings (e.g., (Mikolov et al., 2013)) and are com-
plementary in that such embeddings could be used
as an alternative input representation forxi and yi.

4.2 Regularized Reconstruction Coefficients

For any question xi, let Nk(xi) denote the set of
top-k nearest questions to the question xi, prox-
imity assessed using cosine similarity of vectors in
RD; analogously, Nk(yi) denotes the top-k near-
est answers to yi. Much like the representation,
the similarity measure may also be replaced as
appropriate. Inspired by LLE (Saul and Roweis,
2000), we model the local neighborhood geome-
try around xi using reconstruction coefficient wqij
for each questionxj ∈ Nk(xi). We intend to learn
the co-efficients such that xi may be reconstructed
well as a linear combination of the neighbors us-
ing the co-efficients. Thus, these co-efficients
are computed by minimizing, for every question
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xi, the regularized reconstruction penalty (RRP)
given below:

RRP(xi) =

1

2

∥∥∥∥∥∥
xi −

∑

xj∈Nk(xi)
wqijxj

∥∥∥∥∥∥

2

+
λ

2

∑

xj∈Nk(xi)

(
wqij

)2

(2)

The first term denotes the approximation error
in reconstructing xi as a linear combination of its
k nearest neighbors using weights wqij . The sec-
ond term is an L2 regularization term weighted
with a non-negative hyperparameter λ, which we
set to 0.01 in our experiments. We replaced the
sum-to-one constraint in (Saul and Roweis, 2000)
by L2 regularization since the former produces
large swings in magnitude on either sides of 0.0
(note co-efficients are not constrained to be non-
negative) on high-dimensional spaces such as our
tf-idf space, leading to stability concerns.

By explicitly assigning wqij = 0 ∀xj 6∈ Nk(xi),
we rewrite the above problem as:

min
wq
i

1

2
wq>
i

(
X>X + λI

)
wq
i−

wq>
i X

>xi +
1

2
x>i xi

subject to wqij = 0 ∀j 6∈ Nk(xi) (3)

where I is an n× n identity matrix andwq
i is a

column vector of size n comprising reconstruction
coefficients vector for xi. It can be shown that the
nonzero entries of the optimal coefficient vector is:

(X>i Xi + λIk)
−1X>i xi (4)

where Ik is an identity matrix of the size k and
matrix Xi is a D × k matrix obtained from the
matrix X by retaining only those columns which
are neighbors of xi. Note, the above matrix in-
verse is well-defined since the matrix is positive
definite by construction. Once we find these opti-
mal coefficient vectors for all questions (answers),
we stack them together column-wise and obtain a
matrix, W q (W a) of size n × n, called the re-
construction coefficient matrix for questions (an-
swers). These two matrices W q and W a capture
the local geometry of the questions and answers in
the QA-archive D.

4.3 Embedding into Latent Space Rd

In this step, we use theW q andW a matrices to do
the transformation of the QA pairs, the (xi,yi)s to
uis. Building upon LLE, we develop a scheme to
preserve the local neighborhood structure around
xi and yi in learning the ui.

min
U

α
n∑

i=1

‖ui-Uwq
i ‖

2
+(1-α)

n∑

i=1

‖ui-Uwa
i ‖2

subject to:
n∑

i=1

ui = 0

UU> = (n-1)Id (5)

where, U is a d × n matrix whose ith column
is equal to ui. α ∈ [0, 1] is a weighting param-
eter that allows to trade-off between question and
answer spaces. At α = 1, the embedding ui will
try to maximally align with question xi and vice
versa. Our constraints, like the analogous ones
in LLE, ensure origin-centered mean solutions
and avoid degenerate solutions, respectively (Pang
et al., 2005). The first constraint is soft in that any
optimal solution disregarding the constraint can be
shifted to ensure origin-centering.

Towards capturing the optimal solution for
Eq. 5, we define three n× n symmetric matrices,

Q = (I −W q)(I −W q)> (6)

A = (I −W a)(I −W a)> (7)

Z = αQ+ (1− α)P , α ∈ [0, 1] (8)

Theorem 1. If the eigenvalues of the matrixZ are
arranged in the descending order and the eigen-
vectors corresponding to the last d eigenvalues are
denoted by {v1,v2, . . . ,vd}, then, the optimal so-
lution for Eq. (5), denoted by U∗ is:

U∗ =




v>1
v>2
. . .
v>d


 (9)

Further, origin centering is achieved by the fol-
lowing transformation:

U∗centered = U∗ −U∗ee> (10)

where e is a a vector of all 1′s.
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Proof: First, observe that the objective function
of Eq. (5) can be rewritten in a compact form:

α ‖U −UW q‖2F + (1− α) ‖U −UW a‖2F (11)

where, ‖ · ‖F denotes the Frobenius norm.
Now, keeping the first constraint aside, we fold in
the second constraint using Lagrange multipliers
yielding the following Lagrangian L(U ,Λ).

L(U ,Λ) = α ‖U -UW q‖2F+(1-α) ‖U -UW a‖2F
+ e>

(
Λ ◦

(
UU>-(n-1)Id

))
e (12)

where e is an all 1’s vector. In this Lagrangian,

• Matrix Λ is a d× d symmetric matrix denot-
ing the Lagrange multipliers for the second
constraint. Note, the last term is a compact
representation of d2/2 equality constraints.

• The symbol ◦ denotes the Hadamard prod-
ucts (element wise product) of two matrices.

For any matrix M , we have ‖M‖2F =
Tr(MM>) where Tr(.) is the trace. Thus, we
can rewrite the first two terms of Eq.(12) as:

αTr
(
(U −UW q) (U −UW q)>

)
+

(1− α) Tr
(
(U −UW a) (U −UW a)>

)

A slight re-arrangement yields:

αTr
(
U (I −W q) (I −W q)>U>

)
+

(1− α) Tr
(
U (I −W a) (I −W a)>U>

)

The Q and A space components are now sepa-
rated out into the first and second terms. We now
simplify the notation using Eq. (6) and (7) to:

L(U ,Λ) = αTr
(
UQU>

)
+(1-α) Tr

(
UAU>

)

+ e>
(
Λ ◦

(
UU>-(n-1)Id

))
e

Recall the following for any matricesA,B, & C.

1. A ◦ (B −C) = (A ◦B)− (A ◦C)

2. e> (A ◦B) e = Tr(AB>) = Tr(A>B)

This allows us to rewrite Eq. (13) as:

L(U ,Λ) = Tr

(
αUQU> + (1− α)UAU>

+ΛUU> − (n− 1)Λ

)
(13)

To find an optimalU , we differentiate L(U ,Λ)
w.r.t U and equate to zero. This leads to:

∂L(U ,Λ)

∂U
= 2αUQ+ 2(1− α)UA+ 2ΛU = 0

The above follows from standard matrix proper-
ties (Petersen and Pedersen, 2012). Re-arranging:

(αQ+ (1− α)A)U> = −U>Λ (14)

One possible solution of the above equation could
be constructed in the following manner.

1. Let Z = αQ+ (1− α)A
2. Compute the Eigen decomposition of Z

3. Find the lowest (i.e., bottom) d Eigen values,
and take the corresponding Eigen vectors.

4. Form a matrix U by stacking the selected
Eigen vectors row-wise.

While any subset of d eigenvectors (and their
eigenvalues) would be a solution for Eq. (14), we
would take the bottom d eigenvectors for minimiz-
ing the objective; this is so since the objective be-
comes Tr(−Λ) when Eq. (14) holds. The matrix
constructed above is the optimal U∗ in Eq. (9).
This completes the proof.

The first constraint in Eq.(5) is then applied to
centre the vectors around the origin using Eq.(10).

4.4 Embedding a new Question in Rd

To use the historical ui vectors to retrieve histor-
ical QAs against a new question (vector) q, we
need to embed the latter in the same space Rd.
This is achieved using the same structure as ap-
plied in forming the embedding; we start with
identifying, from D, the k-nearest questions to q.
The reconstruction co-efficient vector wq is then
learnt using Eq. (2). Finally, we obtain the em-
bedding u for x as a wq-weighted linear combi-
nation of the Rd embeddings corresponding to the
k-nearest neighbors. This is captured in steps 9-11
in Algorithm 1 given in the next section.
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Algorithm 1: LASER-QA Algorithm
input : D = {(q1,a1), . . . , (qn,an)}

(CQA corpus) & query q
output : Top-t relevant QA pairs from D
Offline Phase

1 Use appropriate data representation to form
vector-pairs (xi,yi) for every QA (qi,ai);

2 Compute the reconstruction coefficient
matricesW q andW a (Ref. Section 4.2);

3 Q← (I −W q)(I −W q)>;
4 A← (I −W a)(I −W a)>;
5 Z ← αQ+ (1− α)A;
6 {v1,v2, . . . ,vd} ← Bottom d eigenvectors of

matrix Z;

7 U∗ ←




v>1
v>2
. . .
v>d


;

8 U∗centered = U∗ −U∗ee>;
Query-time (Online) Phase

9 x← Vector representation of the query q;
10 wx ← Vector of size n capturing the

reconstruction coefficients for x;
11 u← U∗centeredwx;
12 Output top-t QA pairs based by computing

the following scores

f(q, (qi,ai)) =
u>ui
‖u‖‖ui‖

4.5 LASER-QA Algorithm
The details of the LASER-QA technique from the
previous sections are summarized in Algorithm 1,
with the offline (Steps 1-8) and query-time phase
(Steps 9-12) clearly demarcated. It may be noted
that, LASER-QA, being an optimization-based
method, preserves Q/A-space local neighborhoods
on a best-effort basis and does not offer guarantees
on the fraction of local neighbors preserved from
either spaces in the Rd embedding.

4.5.1 Generalizability of LASER-QA
LASER-QA can be easily extended to incorpo-
rate other kinds of information that might be avail-
able along with QA pairs such as images, votes
(e.g., Blurtit5, Quora and Yahoo! Answers) tags
(Quora), categories (answers.com6 and Yahoo!

5http://www.blurtit.com/
6http://www.answers.com/

Answers) or comments (Quora and Blurtit). Con-
sider data in the form of triplets (qi,ai,mi) where
mi represents the extra information. The mi vec-
tors are subjected to the same form of process-
ing as qi and ai vectors, leading to the Wm and
M matrices. Line 5 in Algorithm 1 would then
change to:

Z ← αqQ+ αaA+ αmM (15)

where the different αs denote interpolation
weights that need to be set appropriately. The re-
mainder of the LASER-QA steps remain identical
to Algorithm 1. It may be noted that αm could be
set to a low value if the utility of the extra infor-
mation is deemed to be low.

4.5.2 Scalability of LASER-QA
We now analyze the scalability of LASER-
QA, separately analysing the (a) one-time offline
phase, and (b) query-time phase.
Offline Phase: This is a one-time operation at
the system design time, involving matrix multi-
plications followed by eigen-decomposition. Our
matrices being sparse, multiplications are fast and
worst-case quadratic7 in n. The Eigendecomposi-
tion is O(n3), but being a fundamental matrix op-
eration, very efficient implementations exist (es-
pecially for symmetric matrices such as ours) with
sub-second response times for n of the order of
thousands (in packages such as Eigen8 and LA-
PACK9), trendlines illustrating that Eigendecom-
positions with even n of the order of millions are
easy. The embeddings of all vectors are then in-
dexed using conventional multi-dimensional in-
dexes and/or locality sensitive hashing to aid
querying.
Online/Query-time Phase: This encompasses (a)
an IR query to find the k most similar questions,
(b) solving for the k reconstruction co-efficients in
Eq. 4 and forming the embedding, and (c) simply
querying for top-t nearest neighbors over indexes
built at design-time. The main query-time over-
head (vis-a-vis conventional information retrieval)
is the additional query over the multi-dimensional
index; this construction ensures fast sub-linear re-
sponse times for the online phase.
Scalability against other methods: In contrast
to LASER-QA, it is notable that the baselines

7https://goo.gl/RQ1m0V
8https://goo.gl/phMJv9
9https://goo.gl/rJjBY6 (Fig 3.1)
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employ expensive query-time operations; specif-
ically, it is unclear as to how query-time retrieval
using Eq.4 in the TBLM paper (Zhang et al., 2014)
and Eq.1 in Topic-TRLM paper (Zhou et al., 2015)
could be completed in sub-linear time.

5 Experimental Evaluation

5.1 Datasets and Experimental Setup

Datasets: We use two recent datasets in our eval-
uation, CQADupStack (Hoogeveen et al., 2015)
and SemEval2016-Task3 (Nakov et al., 2016b).
The former has a manually labelled set of related
questions to every question, whereas the latter has
relevance labels associated with answers (appear-
ing as comments); these labellings make auto-
mated evaluation possible. Among the 12 subsets
in CQADupStack, owing to scalability issues of
the AENN baseline, we choose the three smaller
subsets from CQADupStack, namely webmasters
(1299 QAs), android (2193), and gis (3726) for
a full comparative evaluation. Each of these are
split into two halves, with one portion used for the
training (that is, learning the statistical model such
as LASER-QA, translation model, etc.) and the
other one used for the testing (the 50:50 split en-
sures a sizeable test set). The related labellings
are used only for evaluation purposes; however,
since only training pairs are retrieved within this
setup, related labellings across QAs in the testing
set would be missed, artificially lowering the recall
of all the methods in our evaluation. In a recent
analysis (Hoogeveen et al., 2016), CQADupStack
authors quantify the incompleteness of labeling in
the dataset. Such issues further artificially reduce
retrieval accuracies as estimated from our auto-
mated evaluation. The SemEval2016 dataset, on
the other hand, has an implicit test-train split. We
use the subset of the data categorized under Qatar
Living Lounge, the largest category (which is 27%
of the full dataset), for our experiments. All ‘com-
ments’ that are labelled relevant to the associated
question are paired together as QA-pairs to form a
training set of 1366 pairs, with the test questions
from the dataset used as is.
Baselines: As detailed in Section 2, we com-
pare against three baselines (a) TBLM (Zhang
et al., 2014) (topic model approach), (b) Topic-
TRLM (Zhou et al., 2015) (topic+translation mod-
els), and (b) AENN (Zhou et al., 2016) (deep
learning). TBLM requires an answer quality
signal that we set to unity. We use author-

recommended parameter settings for TBLM and
TopicTRLM. Since AENN learns a latent space
representation (though a separate one for ques-
tions and answers unlike LASER-QA), the evalua-
tion w.r.t LASER-QA is a direct comparison of the
quality of the respective latent spaces. The AENN
method requires training triplets, i.e., [question,
answer, other answer]; we populate the other an-
swer part using the answer of a related question.
This gives AENN an advantage as it uses relations
among training pairs that are unavailable to other
methods. For AENN, quality measures peaked
around 2000 (for webmasters and gis) and 3000
(for android and SemEval2016) for latent space di-
mensionality; our results are from such settings.
LASER-QA Parameters: We set k = 15 and
α = 0.8, the latter ensuring that the question space
is given more importance. We always set d to the
number of eigen vectors in Z, equalling |D|. We
will separately study LASER-QA trends against
parameter variations as well.
Evaluation Metrics: We use Precision, Success
Rate (SR) (Ref. Sec 3), MAP and NDCG (Robert-
son and Zaragoza, 2007) for our evaluation. Preci-
sion simply measures the fraction of related doc-
uments among the top-t that were retrieved. Due
to this rank-agnostic construction, precision is un-
able to incentivize for putting the relevant results
at the top of the result instead of deeper down.
In contrast, MAP and NDCG are rank-aware met-
rics. MAP10 computes the average of precisions
computed at rank positions where a relevant result
is returned. NDCG is another rank-aware met-
ric11 that discounts the appearance of the reve-
lant result based on it’s rank in the result set. We
assess statistical significance using randomization
tests (Smucker et al., 2007).

5.2 Evaluation Results and Insights

Table 2 summarizes the comparative evaluation
across varying t (best results boldfaced). The fol-
lowing observations are notable:

• LASER-QA outperforms the other methods
across datasets. This is followed by Topic-
TRLM, TBLM and then AENN.

• LASER-QA’s margin is highest at (small)
values of t that are typical of scenarios in-
volving human perusal of results. As t in-

10https://goo.gl/xr7NnD
11https://goo.gl/26Pcct
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Table 2: Retrieval Results (•& ◦ denote statistical significance at p-value< 0.01 &< 0.05 respectively)

Dataset→ webmasters (#QAs=1299) android (#QAs=2193) gis (#QAs=3726) SemEval2016 (#QAs=1366)
t=5 t=5 t=5 t=5

Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.022• 0.101• 0.079• 0.082• 0.026◦ 0.127• 0.094• 0.102• 0.023• 0.111• 0.085• 0.089• 0.141◦ 0.407• 0.266◦ 0.265◦
TBLM 0.009 0.043 0.031 0.034 0.017 0.080 0.059 0.061 0.008 0.041 0.034 0.035 0.084 0.259 0.158 0.158
TTRLM 0.012 0.056 0.030 0.033 0.022 0.101 0.061 0.067 0.016 0.079 0.048 0.052 0.067 0.201 0.134 0.139
AENN 0.008 0.035 0.023 0.026 0.007 0.033 0.012 0.012 0.005 0.026 0.016 0.017 0.030 0.148 0.060 0.059

t=10 t=10 t=10 t=10
Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.013• 0.116• 0.080• 0.088• 0.015◦ 0.148• 0.097• 0.110• 0.013• 0.123• 0.086• 0.095• 0.125• 0.556• 0.291• 0.292•
TBLM 0.006 0.050 0.031 0.036 0.010 0.089 0.060 0.066 0.005 0.046 0.034 0.037 0.070 0.296 0.156 0.163
TTRLM 0.010 0.093 0.036 0.043 0.014 0.124 0.065 0.076 0.010 0.098 0.050 0.060 0.069 0.383 0.152 0.160
AENN 0.005 0.043 0.024 0.029 0.005 0.047 0.014 0.018 0.003 0.030 0.016 0.019 0.036 0.259 0.069 0.078

t=20 t=20 t=20 t=20
Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.007 0.121 0.080• 0.092• 0.008 0.157 0.097• 0.116• 0.007 0.126 0.087• 0.100• 0.079 0.605 0.296• 0.327•
TBLM 0.003 0.050 0.031 0.038 0.006 0.100 0.060 0.070 0.003 0.052 0.034 0.038 0.051 0.333 0.157 0.175
TTRLM 0.006 0.118 0.037 0.052 0.008 0.149 0.066 0.085 0.006 0.119 0.052 0.067 0.059 0.519 0.149 0.182
AENN 0.003 0.053 0.025 0.032 0.003 0.066 0.015 0.023 0.002 0.039 0.017 0.021 0.023 0.321 0.074 0.104

t=50 t=50 t=50 t=50
Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.003 0.125 0.081• 0.096• 0.003 0.166 0.097• 0.121• 0.002 0.129 0.087• 0.103• 0.033 0.630 0.295• 0.359•
TBLM 0.001 0.056 0.031 0.040 0.003 0.112 0.060 0.074 0.001 0.060 0.035 0.040 0.026 0.346 0.151 0.187
TTRLM 0.003 0.145◦ 0.038 0.061 0.004◦ 0.177 0.066 0.093 0.003• 0.152• 0.052 0.074 0.039 0.667 0.140 0.214
AENN 0.002 0.070 0.025 0.035 0.002 0.088 0.015 0.028 0.001 0.065 0.017 0.025 0.016 0.407 0.066 0.107

t=5 t=50
Dataset #QAs Prec SR MAP NDCG Prec SR MAP NDCG
stats 4004 0.016• 0.076• 0.057• 0.060• 0.002 0.096 0.058• 0.071•
programmers 4107 0.020• 0.096• 0.068• 0.075• 0.002 0.115 0.069• 0.088•
wordpress 4744 0.019• 0.091• 0.069• 0.074• 0.002 0.112 0.070• 0.085•
physics 5044 0.025• 0.120• 0.088• 0.094• 0.003 0.148 0.090• 0.111•
mathematica 5084 0.018• 0.087• 0.067• 0.072• 0.002 0.116 0.069• 0.084•
unix 5330 0.023• 0.115• 0.089• 0.094• 0.003 0.137 0.091• 0.107•
gaming 6398 0.034• 0.166• 0.130• 0.137• 0.004 0.189 0.132• 0.155•
english 6668 0.024• 0.115• 0.090• 0.095• 0.003 0.130 0.092• 0.107•

Table 3: LASER-QA Results (Boldfacing and Statistical Sig-
nificance indications from comparison with TopicTRLM and
TBLM) over Larger Categories in CQADupStack Figure 1: NDCG (Y-axis) v/s. k

creases way beyond the training neighbor-
hood size (i.e., 15), LASER-QA is seen to
deteriorate gracefully (as expected).

• LASER-QA performance peaks on rank-
aware metrics such as MAP and NDCG (even
at t = 50), indicating it’s high effectiveness
in producing relevant results at the top.

These observations underline the effectiveness of
LASER-QA as a CQA retrieval method. It may
be noted that LASER-QA uses compact represen-
tations (d < 2000), as compared to vocabulary
space representations that are typically ≥ 5000.
Trends at High t: The performance trends at high
values of t are explained by the usage of the lo-
cal neighborhood (of size k) in LASER-QA latent
space learning. Going down the result list much
beyond k reveals expected, but graceful, decline
in accuracy. For automated processing scenarios
that necessitate large t, a correspondingly high k
may be used in learning. It is notable that LASER-

QA’s focus on local neighborhood manifests as en-
hanced accuracy at the top of the result set.
LASER-QA Analysis on Larger CQADup-
Stack Datasets: Owing to scalability issues of
AENN that disallows a full evaluation over larger
categories in CQADupStack, we present LASER-
QA results over them in Table 3 to illustrate the
consistency in trends. Boldfacing and statistical
significance have the same semantics as earlier,
with the comparison performed against only Top-
icTRLM and TBLM.

5.3 LASER-QA Parameter Analysis

We now analyze the NDCG trends (NDCG being
the most popular IR metric) across LASER-QA
parameters, i.e., k, α and d, varying each one sep-
arately keeping the default choice for others.

• Varying k: Figure 1 plots NDCG against val-
ues of k from {5, 10, 15, 20}. As may be
seen, the accuracy is seen to improve with
increasing k in the lower ranges, while sat-

862



Figure 2: NDCG (Y-axis) v/s
varying values of α

Figure 3: NDCG (Y-axis) v/s
varying values of d

Figure 4: Precision (Y-axis) v/s
Recall (X-axis)

urating beyond 15. The trends are seen to be
similar across datasets.

• Varying α: The retrieval accuracies were
seen to be stable across a wide range of val-
ues of α such as illustrated in Figure 2. This
shows that LASER-QA is not very sensitive
to α.

• Varying d: The size of the latent space,
d, forms a critical parameter for LASER-
QA. Given the LASER-QA construction, this
space is limited by the number of eigenvec-
tors in the matrix Z which is n × n. This
means, d is limited above by n, the size of
the training dataset. Table 3 plots the ac-
curacies with varying values of d, with the
upper end different for different datasets due
to the dependence on the training dataset
size. The plots indicate that the perfor-
mance improves steadily with increasing val-
ues of d. The performance saturates beyond
400 for the topically coherent CQADupStack
datasets. The Qatar Living Lounge category
in SemEval2016, unlike the CQADupStack
categories, is more diverse discussing issues
ranging from massage centres to immigra-
tion. Thus, LASER-QA is able to make use
of much more dimensions to model the com-
plexity involved.

To summarize, LASER-QA is not very sensitive to
α and is best run with k ≥ 15 and values of d ≈ n.

Finally, the precision-recall curve with varying
values of t is presented in Figure 4. As may be
observed, LASER-QA exhibits a gradual degrada-
tion of precision with increasing t correlated with
a corresponding improvement in recall. The di-
versity in the SemEval2016 dataset manifests as a
sharper precision drop at high t, as the result set
starts to transcend sub-topic boundaries.

6 Conclusions

We considered the problem of CQA retrieval –
the task of retrieving relevant historical QA pairs
in response to a new question. We formulated
a method that builds upon the ideas from local
linear embedding to use collective corpus level
information across historical QA pairs to embed
them in a latent space. In contrast to the main-
stream paradigm in literature, we do not explic-
itly model lexical correlations; instead, we learn
an embedding of QA pairs in a way that the local
neighborhood in question and answer spaces are
preserved. LASER-QA provides a single-model
based solution in lieu of learning separate mod-
els (e.g., topic and translation models) which are
then interpolated to a final scoring; the latter ap-
proach has been observed to have reproducilibil-
ity issues (Qiu et al., 2013). We analyzed our
method empirically against state of the art meth-
ods from across families of CQA retrieval meth-
ods that use topic models, translation models and
deep learning. Our empirical results confirm that
the LASER-QA method significantly outperforms
the baselines on all IR metrics of interest, under-
lining the effectiveness of our modelling.
Future Work: A study on the correlation between
the kNNs in the LASER-QA embedded space and
the original Question and Answer spaces would
provide insights into the extent of correlation be-
tween manifolds in the original spaces. Further,
we would like to see how LASER-QA generalizes
to beyond text; one immediate scenario of interest
is to explore how pictures and multimedia within
QAs may be leveraged within LASER-QA.
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Abstract

This paper presents how to generate ques-
tions from given passages using neural
networks, where large scale QA pairs
are automatically crawled and processed
from Community-QA website, and used as
training data. The contribution of the pa-
per is 2-fold: First, two types of question
generation approaches are proposed, one
is a retrieval-based method using convo-
lution neural network (CNN), the other is
a generation-based method using recurrent
neural network (RNN); Second, we show
how to leverage the generated questions to
improve existing question answering sys-
tems. We evaluate our question generation
method for the answer sentence selection
task on three benchmark datasets, includ-
ing SQuAD, MS MARCO, and WikiQA.
Experimental results show that, by using
generated questions as an extra signal, sig-
nificant QA improvement can be achieved.

1 Introduction

Question Answering (or QA) is one of the core
problems for AI, and consists of several typical
tasks, i.e. community-based QA (Qiu and Huang,
2015), knowledge-based QA (Berant et al., 2013),
text-based QA (Yu et al., 2014), and reading com-
prehension (Rajpurkar et al., 2016). Most of cur-
rent QA systems, e.g. (Berant and Liang, 2014),
(Qiu and Huang, 2015), (Xiong et al., 2017), (Yin
and Schtze, 2017), need labeled QA pairs as train-
ing data. Although labeling efforts have been
made, such as WebQuestions dataset (Berant et al.,
2013) and SimpleQuestions dataset (Bordes et al.,
2015) for knowledge-based QA, WikiQA dataset
(Yang et al., 2015) for text-based QA, SQuAD
dataset (Rajpurkar et al., 2016) and MS MARCO

dataset (Nguyen et al., 2016) for reading compre-
hension, these datasets are still with limited sizes,
as labeling is very expensive.

Motivated by this, we explore how to generate
questions from given passages using neural net-
works, with three expected goals: (1) the training
data should need few or no human efforts and re-
flect commonly-asked question intentions; (2) the
questions are generated based on natural language
passages, and should have good quality; (3) the
generated questions should be helpful to QA tasks.

To achieve the 1st goal, we propose to ac-
quire large scale high-quality training data from
Community-QA (CQA) website. The motivation
of using CQA website for training data collection
is that, such websites (e.g., YahooAnswers, Quo-
ra, etc.) contain large scale QA pairs generated
by real users, and these questions reflect the most
common user intentions, and therefore are useful
to search, QA, and chatbot scenarios.

To achieve the 2nd goal, we explore two ways
to generate questions for a given passage, one is
a retrieval-based method using convolution neural
network (CNN), the other is a generation-based
method using recurrent neural network (RNN).
We evaluate the generation quality by BLEU score
(Papineni et al., 2002) and human annotations, and
discuss their pros and cons in Section 9.

To achieve the 3rd goal, we integrate our ques-
tion generation approach into an end-to-end QA
task, i.e., answer sentence selection, and evaluate
its impact on three popular benchmark datasets,
SQuAD, MS MARCO, and WikiQA. Experimen-
tal results show that, the generated questions can
improve the QA quality on all these three datasets.

2 Question Generation

Formally, given a passage S , question generation
(QG) engine generates a set of questions {Qi},
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where each generated Qi can be answered by S.
There are four components in our QG engine:

1. Question Pattern Mining, which extracts the
frequently-asked question patterns from large
scale CQA questions, without any human an-
notation effort;

2. Question Pattern Prediction, which predicts
top-N question patterns Q1

p, ...,QNp given S,
by a retrieval-based method or a generation-
based method. Therefore, “Prediction” has
two different meanings here: in retrieval-
based method, it means to rank existing ques-
tion patterns and select the highest ranked
ones, while in generation-based method, it
means to generate question patterns based on
S in a sequence-to-sequence manner, each of
which could be a totally new question pattern
beyond the existing question pattern set;

3. Question Topic Selection, which selects a
phraseQt from S as the question topic, based
on a predicted question pattern Qp. Qt will
be filled intoQp to form a complete question;

4. Question Ranking, which ranks all generated
questions by a set of features. Here, multiple
questions with different intentions could be
generated, as S could contain multiple facts.

3 Question Pattern Mining

A question pattern (or QP) is defined as a word se-
quence Qp = {w1, w2, ..., wL}. Each QP should
contain one and only one special word “#” as the
placeholder, and all the other L− 1 words are ter-
minal words. For example, “who founded # ?” is a
question pattern, and “#” denotes the placeholder,
which could be an organization name. We gener-
ate questions only using frequently-asked question
patterns, where “frequently-asked” denotes that
each question pattern should be extracted from a
large scale question set more than T times, where
T denotes a pre-defined threshold.

In this paper, a question cluster (or QC) based
approach is proposed to mine frequently-asked
question patterns from large scale CQA questions.

First, a set of question clusters is collected from
CQA webpages, and each question cluster consists
of questions that are grouped as related question-
s1 by the CQA website. For example, when the

1Usually, each question page of a CQA website contains
a field that shows a list of related questions.

query “what is the population of nyc” is issued to
YahooAnswers2, the returned page contains a list
of related questions including “population of nyc”,
“nyc population”, “nyc census”, and etc.

Second, for each question cluster QC =
{Q1, ...,QK}, we enumerate all valid continuous
n-grams, each of which should contain at least one
content word and its order should be equal or less
then 7, as question topic candidates {Q1

t , ...,QMt }.
We then assign an importance score Impts(·) to
each question topic candidate Qmt :

Impts(Qmt ) =
∑

Qk∈QC
δ(Qmt ,Qk) · |Qmt |

Qmt denotes the mth question topic candidate,
δ(Qmt ,Qk) equals to 1 when Qmt occurs in Qk,
and 0 otherwise, |Qmt | denotes Qmt ’s word count,
which boosts longer question topic candidates.

For each QC, we select Qt with the highest im-
portance score as the question topic, and remove
it from each question to form a question pattern.
We call each removed question topic as a histor-
ical question topic of its corresponding question
pattern. IfQt doesn’t exist in a question, ignore it.

Mining question patterns based on question
clusters is motivated by the observation that, all
questions within a QC tend to ask questions about
an identical “question topic” (e.g., nyc in the above
example) from different aspects, or the same as-
pect but using different expressions. Thus, we can
leverage the consensus information among ques-
tions to detect the boundary of the question topic:
the more times an n-gram occurs in different ques-
tions within a question cluster, the more likely it is
the question topic of the current question cluster.

Although the question pattern mining approach
described above is simple, it works surprisingly
well. Table 1 shows statistics of question patterns
mined from YahooAnswers, and Figure 1 gives ex-
amples of frequently-asked question patterns with
their corresponding historical question topics. We
have two interesting observations:

1. Most frequently-asked question patterns (fre-
quency>=10,000) are with high quality, and
reflect the most common user intentions;

2. Most historical question topics extracted are
entities. This is achieved without using any
prior semantic knowledge base or dictionary.

2https://answers.yahoo.com/
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Figure 1: Examples of frequently-asked question patterns with corresponding historical question topics.

# of QCs 67,330,506
# of QPs 20,818,569

# of QPs (freq. >= 10,000) 105,623

Table 1: Statistics of question patterns mined from
YahooAnswers, where QC denotes Question Clus-
ter and QP denotes Question Pattern.

4 Question Pattern Prediction

Given a passage S, question pattern prediction
predicts S’s most related question patterns, and
then use them to generate questions. For exam-
ple, given S as “Tesla Motors is an American au-
tomaker and energy storage company co-founded
by Elon Musk, Martin Eberhard, Marc Tarpen-
ning, JB Straubel and Ian Wright, and is based in
Palo Alto.”, two question patterns can be derived
from S, including: (1) who founded # ?, which
can be inferred by the context around “co-founded
by”, and (2) where is # located ?, which can be in-
ferred by the context around “is based in”. Based
on these two question patterns, we can generate t-
wo questions, “who founded Tesla Motors ?” and
“where is Tesla Motors located ?” respectively.

4.1 Training Data Construction

We collect QA pairs from YahooAnswers. For
each QA pair < Q, A >, if (1) Q can be matched
by a frequently-asked question patternQp, and (2)
the matched question topic Qt of Q based on Qp
exists in A, then we create a training instance as
< A,Qp,Qt >. Qt ∈ Amakes sure that the ques-
tion topic occurs in both Q and A. If the matched
question topic only exists in Q, we just discard it.
By doing so, we collect a total of 1,984,401 train-
ing instances as training data for QP prediction.

Two neural network-based question pattern pre-

diction approaches are explored in this paper:

• Retrieval-based QP Prediction, which con-
siders QP prediction as a ranking task;

• Generation-based QP Prediction, which con-
siders QP prediction as a generation task.

4.2 Retrieval-based QP Prediction
The retrieval-based QP prediction is done based
on an attention-based convolution neural network.
It takes a passage and a question pattern as input,
and outputs their corresponding vector representa-
tions. We denote each input pair as 〈S,Qp〉, where
S is a passage, and Qp is a question pattern.

In the input layer, given an input pair 〈S,Qp〉,
an attention matrix Att ∈ <|S|×|Qp| is generat-
ed by pre-trained word embeddings of S and Qp,
where each element Atti,j ∈ Att is computed as:

Atti,j = cosine(vSi , v
Qp
j )

where vSi (or vQpj ) denotes the embedding vector
of the ith (or jth) word in S (or Qp).

Then, column-wise and row-wise max-pooling
are applied to Att to generate two attention vec-
tors V S ∈ <|S| and V Qp ∈ <|Qp|, where the kth
elements of V S and V Qp are computed as:

V Sk = max
1<l<|Qp|

{Attk,l} and V Qp

k = max
1<l<|S|

{Attl,k}

V Sk (or V Qpk ) can be interpreted as the attention
score of the kth word in S (or Qp) with regard to
all words in Qp (or S).

Next, two attention distributions DS ∈ <|S|
and DQp ∈ <|Qp| are generated for S and Qp
based on V S and V Qp respectively, where the kth

elements of DS and DQp are computed as:

DSk =
eV

S
k

∑|S|
l=1

eV
S
l

and D
SY
k =

eV
Qp
k

∑|Qp|
l=1

eV
Qp
l

868



DSXk (or DSYk ) can be interpreted as the normal-
ized attention score of the kth word in S (or Qp)
with regard to all words in Qp (or S).

Last, we update each pre-trained word embed-
ding vSk (or vQpk ) to v̂Sk (or v̂Qpk ), by multiplying
every value in vSk (or vQpk ) withDSk (orDQpk ). The
underlying intuition of updating pre-trained word
embeddings is to re-weight the importance of each
word in S (or Qp) based on Qp (or S), instead of
treating them in an equal manner.

In the convolution layer, we first derive an in-
put matrix ZS = {l1, ..., l|S|}, where lt is the con-
catenation of a sequence of m = 2d − 13 updat-
ed word embeddings [v̂St−d, ..., v̂

S
t , ..., v̂

S
t+d], cen-

tralized in the tth word in S. Then, the convo-
lution layer performs sliding window-based fea-
ture extraction to project each vector representa-
tion lt ∈ ZS to a contextual feature vector hSt :

hSt = tanh(Wc · lt)

where Wc is the convolution matrix, tanh(x) =
1−e−2x

1+e−2x is the activation function. The same oper-
ation is performed to Qp as well.

In the pooling layer, we aggregate local fea-
tures extracted by the convolution layer from S,
and form a sentence-level global feature vector
with a fixed size independent of the length of the
input sentence. Here, max-pooling is used to force
the network to retain the most useful local features
by lSp = [vS1 , ..., v

S
K ], where:

vSi = max
t=1,...,|S|

{hSt (i)}

hSt (i) denotes the ith value in the vector hSt . The
same operation are performed to Qp as well.

In the output layer, one more non-linear trans-
formation is applied to lSp :

y(S) = tanh(Ws · lSp )

Ws is the semantic projection matrix, y(S) is the
final sentence embedding of S. The same opera-
tion is performed to Qp to obtain y(Qp).

We train model parameters Wc and Ws by min-
imizing the following ranking loss function:

L = max{0,M − cosine(y(S), y(Qp))
+cosine(y(S), y(Q−p ))}

where M is a constant, Q−p is a negative instance.

3In this paper, m is set to 3.

4.3 Generation-based QP Prediction
The generation-based QP prediction is done based
on an sequence-to-sequence BiGRU (Bahdanau
et al., 2015) that is commonly used in the neural
machine translation field.

The encoder reads a word sequence of an input
passage S = (x1, ..., x|S|), and the decoder pre-
dicts a word sequence of an output question pat-
tern Qp = (y1, ..., y|Qt|). The probability of gen-
erating a question pattern Qp is computed as:

p(Qp) =
|Qp|∏

i=1

p(yi|y1, ..., yi−1, ci)

where each conditional probability is defined as:

p(yi|y1, ..., yi−1, ci) = g(yi−1, si, ci)

g(·) denotes a nonlinear function that outputs the
probability of generating yi. si denotes the hidden
state of time t in decoder, which is computed as:

si = (1− zi) ◦ si−1 + zi ◦ s̃i

where

s̃i = tanh(WEyi−1 + U [ri ◦ si−1] + Cci)

zi = δ(WzEyi−1 + Uzsi−1 + Czci)

ri = δ(WrEyi−1 + Ursi−1 + Crci)

δ(·) is the sigmoid function, ◦ represents element-
wise multiplication, Ew ∈ <m×1 denotes the
word embedding of a word w, W , Wz , Wr ∈
<n×m, U , Uz , Ur ∈ <n×n, and C, Cz , Cr ∈
<n×2n are weights. ci denotes the context vector,
which is computed as:

ci =

|S|∑

j=1

αijhj

where

αij =
exp(eij)

∑|S|
k=1 exp(eik)

eij = vTa tanh(Wasi−1 + Uahj)

va ∈ <n
′
, Wa ∈ <n

′×n, and Ua ∈ <n
′×2n are

weights. hj denotes the jth hidden state from en-
coder, which is the concatenation of the forward
hidden state

−→
h j and the back forward state

←−
h j .
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For training, stochastic gradient descent (SGD)
algorithm is used, and Adadelta (Zeiler, 2012) is
used to adapt the learning rate of each parameter.
Given a batch of D = {< S,Qp >}Mi=1 pairs with
size M instances, the objective function is to min-
imize the negative log-likelihood:

L = − 1

M

∑

<S,Qp>

T∑

t=1

log(p(yt|y<t,S))

For prediction, beam search is used to output
the top-N question pattern predictions.

Retrieval-based approach can only find existing
question patterns for each passage, but it makes
sure that each question pattern comes from re-
al questions and is in a good grammatical form;
Generation-based approach, on the other hand, can
generate totally new question patterns beyond ex-
isting question pattern set. We will compare both
of them in the experimental part (Section 8).

5 Question Topic Selection

Given a passage S and a predicted question pattern
Qp, question topic selection selects an n-gram (or
a phrase) Qt from S, which can be then filled into
Qp to form a complete question. Since we have
two question pattern prediction methods, we have
two ways to select the question topic Qt as well.

For Qp from retrieval-based method, two
types of prior knowledge are used to extract ques-
tion topic candidates from S, including:

• Entities as question topic candidates, which
are detected based on Freebase4 entities;

• Noun phrases as question topic candidates,
which are detected based on the Stanford
parser (Klein and Manning, 2003).

Once a question topic candidate Qt is extracted
from S , we then measure how Qt can fit Qp by:

s(Qt,Qp) =
1

N
·
∑

k

#(Qtkp ) · dist(vQt , vQtkp )

s(Qt,Qp) denotes the confidence that Qt can be
filled into Qp to generate a reasonable question.
Qtkp denotes the kth historical question topic of
Qp. #(Qtkp ) denotes the number of times that
Qtkp is extracted from different question clusters
to generate Qp. vp denotes the question topic em-
bedding of p, which is computed as the average of

4https://developers.google.com/freebase/

word embeddings in p. dist(·) denotes the cosine
distance between two question topic embeddings.
N =

∑
k#(Qtkp ) denotes the total number of his-

torical question topics of Qp. The basic principle
of the above equation is that, the historical ques-
tion topics of a given question pattern can help
on measuring how possible a question topic can-
didate can be filled into this question pattern to
form a reasonable question. For example, as most
historical question topics of “who founded # ?” are
organization names, then it is very unlikely a date
or a film name is suitable for this question pattern
to generate a reasonable question.

For Qp from generation-based method, sup-
pose the placeholder # is the ith word in Qp, then
we select the jth word wj ∈ S as the question
topic, which satisfies the following constraint:

wj = arg max
w
j
′∈S

αij′ = arg max
w
j
′∈S

exp(eij′ )
∑|S|
k=1 exp(eik)

This question topic selection strategy leverages the
attention scores between S and Qp, and can be
considered as a COPY mechanism.

6 Question Ranking

Given a predicted question pattern Qp and a se-
lected question topic Qt of an input passage S, a
complete question Q can be simply generated by
replacing # in Qp with Qt. We use a set of fea-
tures to rank generated question candidates:

• question pattern prediction score, which is
the prediction score by either retrieval-based
approach or generation-based approach;

• question topic selection score, for retrieval-
based approach, this score is computed as
s(Qt,Qp), while for generation-based ap-
proach, this score is the attention score;

• QA matching score, which measures rele-
vance between generated question Q and S.

• word overlap betweenQ and S, which counts
number of words that co-occur in Q and S;

• question pattern frequency, which equals to
the extraction frequency ofQp, ifQ is gener-
ated from or matched byQp, and 0 otherwise.

All features are combined by a linear model as:

p(Q|S) =
∑

i

λi · hi(Q,S,Qp,Qt)
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where hi(Q,S,Qp,Qt) is one of the features de-
scribed above, and λi is the corresponding weight.

7 Question Generation for QA

This section describes how question generation
can improve existing QA systems. There are sev-
eral types of QA systems, i.e. knowledge-based
QA, community-based QA, text-based QA, etc,
and in this paper, we focus on text-based QA task
(a.k.a. answer sentence selection), which aims to
select one or multiple answer sentences from a tex-
t given an input question. We select this task as it
can be considered as a dual task of QG.

A typical answer sentence selection method,
such as (Yin et al., 2016; Santos et al., 2016; Miller
et al., 2016; Tymoshenko et al., 2016), computes
the relevance score between input question Q and
each answer candidateA, and selects the one with
the highest relevance score as the final answer:

Â = argmax
A

P (A|Q)

Motivated by Dual Learning (He et al., 2016),
we integrate question generation into answer rank-
ing procedure, by changing the above formula to:

Â = argmax
A
{P (A|Q) + λ ·QQ(Q,Qgenmax)}

λ is hyper-parameter, and in order to com-
puteQQ(Q,Qgenmax), we generate top-10 questions
{Qgen1 , ...,Qgen10 } for current answer candidate A,
and then compute the question-to-generated ques-
tion matching scoreQQ(Q,Qgenmax), by computing
the similarity between input question Q and gen-
erated questions {Qgen1 , ...,Qgen10 } as:

QQ(Q,Qgenmax) = arg max
i=1,...,10

sim(Q,Qgeni ) · p(Qgeni )

sim(Q,Qgeni ) is the similarity between the input
question Q and the ith generated question Qgeni ,
and computed as the cosine distance between av-
eraged word embedding of Q and averaged word
embedding ofQgeni , p(Qgeni ) denotes the posterior
probability that is computed based on the genera-
tion score of each generated question:

p(Qgeni ) =
p(Qgeni |A)∑10
i′=1

p(Qgen
i′
|A)

p(Qgeni |A) is output by the question generation
model described in Section 6. The underlying
motivation is that, the questions generated from
correct answers are more likely to be similar to
labeled questions than questions generated from
wrong answers.

8 Related Work

Yao et al. (2012) proposed a semantic-based ques-
tion generation approach, which first parses the in-
put sentence into its corresponding Minimal Re-
cursion Semantics (MRS) representation, and then
generates a question guided by the English Re-
source Grammar that includes a large scale hand-
crafted lexicon and grammar rules.

Labutov et al. (2015) proposed an ’ontology-
crowd-relevance’ method for question genera-
tion. First, Freebase types and Wikipedia session
names are used as semantic tags to understand
texts. Question are then generated based on ques-
tion templates that are aligned with types/session
names and labeled by crowdsourcing. All gener-
ated questions are ranked by a relevance model.

Chali and Hasan (2015) proposed a topic-to-
question method, which uses about 350 general-
purpose rules to transform the semantic-role la-
beled sentences into corresponding questions.

Serban et al. (2016) used the encoder-decoder
framework to generate 30M QA pairs, but their in-
puts are knowledge triples, instead of passages.

Song and Zhao (2016) proposed a question gen-
eration method using question template seeds and
used search engine to do question expansion.

Du et al. (2017) proposed a neural question
generation method using a vanilla sequence-to-
sequence RNN model, which is most-related to
our work. But this method is still based on labeled
dataset, and tried RNN only.

Comparing to all these related work mentioned
above, our question generation approach has two
uniqueness: (1) all question patterns, that are used
as training data for question generation, are auto-
matically extracted from a large scale CQA ques-
tion set without any crowdsourcing effort. Such
question patterns reflect the most common user in-
tentions, and therefore are useful to search, QA,
and chatbot engines; (2) it is also the first time
question generation is integrated and evaluated in
an end-to-end QA task directly, and shows signifi-
cant improvements.

9 Experiment

9.1 Dataset

As described in Section 4.1, we collect 1, 984, 401
< A,Qp,Qt > pairs from YahooAnswers, and
use them as the training set of the question pat-
tern prediction model. We re-use the dev sets and
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test sets of SQuAD, MS MARCO, and WikiQA,
to evaluate the quality of generated questions. The
dataset statistics are in Table 2.

# of QA Pairs
training set 1,984,401

dev set (SQuAD) 26,442
test set (SQuAD) 26,604

dev set (MS MARCO) 39,510
test set (MS MARCO) 42,850

dev set (WikiQA) 2,733
test set (WikiQA) 6,165

Table 2: Dataset Statistics.

Besides, an answer sentence selection model
(Yin et al., 2016) is trained based on the 1,984,401
QA pairs from the training set as well, and used to
compute the QA matching score for question rank-
ing, as we described in Section 6. Feature weights
for question ranking are optimized on dev set.

9.2 Evaluation on Question Generation

We first perform a vanilla sequence-to-sequence
method (Du et al., 2017) using the original training
sets of these three datasets, and show QG results in
Table 3, where BLEU 4 score is used as the metric.

BLEU 4 Seq2Seq-QG
SQuAD 12.28

MS MARCO 10.46
WikiQA 2.04

Table 3: QG results using original training sets.

We then evaluate the quality of the generated
questions based on auto-extracted training set. For
each passage in the test set, we generate two top-
1 questions based on retrieval-based method and
generation-based method respectively, and then
compare them with labeled questions using BLEU
4 as the metric. Results are listed in Table 4.

BLEU 4 R-QG G-QG
SQuAD (crawled) 9.87 12.39

MS MARCO (crawled) 9.86 11.46
WikiQA (crawled) 11.38 13.57

Table 4: QG results using auto-extracted training
set, where R-QG denotes results from Retrieval-
based QG method, G-QG denotes results from
Generation-based QG method.

From Table 3 and 4 we can see two findings:
(1) Comparing to QG results based on original la-
beled training sets, G-QG achieves comparable or
better results. We think this is due to two fact-
s: first, the size of the automatically constructed
training set is much larger than the labeled train-
ing sets, and second, as the QA pairs from CQA
websites are generated by real users, the quality
is good. (2) Generation-based QG performs bet-
ter than Retrieval-based QG. By analyzing outputs
we find that, for question pattern prediction, both
retrieval-based and generation-based methods per-
form similarly. However, Generation-based QG
performs better than Retrieval-based QG on ques-
tion topic selection. This could be caused by the
fact that, in Generation-based QG, question top-
ic selection is based on the attention mechanis-
m, which is optimized together with question pat-
tern prediction in an end-to-end way; while in
Retrieval-based QG, question topic selection is a
separate task, and based on the similarity between
each question topic candidate and historical ques-
tion topics of a given question pattern. The embed-
ding of each question topic is pre-trained, which
is not directly related to the question generation
task. So such method cannot handle unseen ques-
tion topics very well. Another disadvantage of
Retrieval-based QG is that, each time, we have to
compute the similarity between the input passage
and each question pattern. When question pattern
size is large, the computation is very expensive.

In order to better understand the question gener-
ation quality, we manually check a set of sampled
outputs, and list the main errors in Figure 2:

• Multi-Fact Error (40%). Most input pas-
sages include more than one fact. For such a
question, it is reasonable to generate different
questions from different aspects, all of which
can be answered by the input passage. For
each passage in QAGen, we only label one
question as ground truth. In the future, we
will extend QAGen to be a more comprehen-
sive dataset, by labeling multiple questions to
each passage for more reasonable evaluation;

• Paraphrase Error (30%). The same question
can be expressed by different ways. Labeling
more paraphrased questions for a passage can
alleviate this issue as well;

• Question Topic Selection Error (15%). This
error is caused by selecting either a total-
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Figure 2: List of error analysis examples. [P] denotes a passage, [Ref] denotes the labeled question of
the passage, and [Gen] denotes the generated question of the passage.

ly wrong question topic, or a partially right
question topic. In the future, we plan to de-
velop an independent question topic selection
model for the question generation task.

9.3 Evaluation on QA
As described in Section 7, we combine question
generation into QA system for answer sentence s-
election task, and do evaluation on SQuAD, M-
S MARCO, and WikiQA. Evaluation results are
shown in Table 5, 6, and 7, where QA denotes
the result of our in-house implementation of a
retrieval-based answer selection approach (Doc-
Chat) proposed by (Yan et al., 2016), QA+QG de-
notes result by combining question-to-generated
question matching score with DocChat score.

SQuAD MAP MRR ACC@1
QA 0.8843 0.8915 0.8160

QA+QG 0.8887 0.8963 0.8232

Table 5: Impact of QG on SQuAD.

MS MARCO MAP MRR ACC@1
QA 0.5131 0.5195 0.3029

QA+QG 0.5230 0.5291 0.3153

Table 6: Impact of QG on MS MARCO.

The improvement on MS MARCO dataset is
most significant. We think it due to the fact that,
the questions from MS MARCO dataset are from
Bing search log, which are generated naturally by
real users. This is similar to the questions coming

WikiQA MAP MRR ACC@1
QA 0.7703 0.7851 0.6540

QA+QG 0.7742 0.7893 0.6624

Table 7: Impact of QG on WikiQA.

for CQA websites; while questions from the other
datasets are labeled by crowd-sourcing.

In order to explain these improvements, two
datasets, WikiQG+ and WikiQG-, are built from
WikiQA test set: given each document and its la-
beled question, we pair the question with its COR-
RECT answer sentence as a QA pair and add it to
WikiQG+; we also pair the same question with a
randomly selected WRONG answer sentence as a
QA pair and add it to WikiQG-. Then, we generate
questions for passages in WikiQG+ and WikiQG-
respectively, and compare them with labeled ques-
tions. The BLEU 4 score is 0.2031 on Wik-
iQG+, and 0.1301 on WikiQG-, which indicates
that the questions generated from correct answers
are more likely to be similar to labeled questions
than questions generated from wrong answers.

10 Conslusion

This paper presents a neural question generation
method that is based on training data collected
from CQA questions. We integrate the QA pair
generation task into an end-to-end QA task, and
show significant improvements, which indicates
that, QA task and QG are dual tasks that can boost
each other. In the future, we will explore more
ways to leverage QG for QA task.
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Abstract

Question answering (QA) systems are sen-
sitive to the many different ways natural
language expresses the same information
need. In this paper we turn to paraphrases
as a means of capturing this knowledge
and present a general framework which
learns felicitous paraphrases for various
QA tasks. Our method is trained end-to-
end using question-answer pairs as a su-
pervision signal. A question and its para-
phrases serve as input to a neural scor-
ing model which assigns higher weights to
linguistic expressions most likely to yield
correct answers. We evaluate our approach
on QA over Freebase and answer sentence
selection. Experimental results on three
datasets show that our framework con-
sistently improves performance, achieving
competitive results despite the use of sim-
ple QA models.

1 Introduction

Enabling computers to automatically answer ques-
tions posed in natural language on any domain or
topic has been the focus of much research in re-
cent years. Question answering (QA) is challeng-
ing due to the many different ways natural lan-
guage expresses the same information need. As a
result, small variations in semantically equivalent
questions, may yield different answers. For exam-
ple, a hypothetical QA system must recognize that
the questions “who created microsoft” and “who
started microsoft” have the same meaning and that
they both convey the founder relation in order to
retrieve the correct answer from a knowledge base.

Given the great variety of surface forms for se-
mantically equivalent expressions, it should come
as no surprise that previous work has investigated

the use of paraphrases in relation to question an-
swering. There have been three main strands of
research. The first one applies paraphrasing to
match natural language and logical forms in the
context of semantic parsing. Berant and Liang
(2014) use a template-based method to heuristi-
cally generate canonical text descriptions for can-
didate logical forms, and then compute paraphrase
scores between the generated texts and input ques-
tions in order to rank the logical forms. Another
strand of work uses paraphrases in the context of
neural question answering models (Bordes et al.,
2014a,b; Dong et al., 2015). These models are typ-
ically trained on question-answer pairs, and em-
ploy question paraphrases in a multi-task learning
framework in an attempt to encourage the neural
networks to output similar vector representations
for the paraphrases.

The third strand of research uses paraphrases
more directly. The idea is to paraphrase the
question and then submit the rewritten version
to a QA module. Various resources have been
used to produce question paraphrases, such as
rule-based machine translation (Duboue and Chu-
Carroll, 2006), lexical and phrasal rules from the
Paraphrase Database (Narayan et al., 2016), as
well as rules mined from Wiktionary (Chen et al.,
2016) and large-scale paraphrase corpora (Fader
et al., 2013). A common problem with the gen-
erated paraphrases is that they often contain in-
appropriate candidates. Hence, treating all para-
phrases as equally felicitous and using them to an-
swer the question could degrade performance. To
remedy this, a scoring model is often employed,
however independently of the QA system used to
find the answer (Duboue and Chu-Carroll, 2006;
Narayan et al., 2016). Problematically, the sepa-
rate paraphrase models used in previous work do
not fully utilize the supervision signal from the
training data, and as such cannot be properly tuned
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Figure 1: We use three different methods to generate candidate paraphrases for input q. The question and
its paraphrases are fed into a neural model which scores how suitable they are. The scores are normalized
and used to weight the results of the question answering model. The entire system is trained end-to-end
using question-answer pairs as a supervision signal.

to the question answering tasks at hand. Based
on the large variety of possible transformations
that can generate paraphrases, it seems likely that
the kinds of paraphrases that are useful would de-
pend on the QA application of interest (Bhagat
and Hovy, 2013). Fader et al. (2014) use features
that are defined over the original question and its
rewrites to score paraphrases. Examples include
the pointwise mutual information of the rewrite
rule, the paraphrase’s score according to a lan-
guage model, and POS tag features. In the context
of semantic parsing, Chen et al. (2016) also use
the ID of the rewrite rule as a feature. However,
most of these features are not informative enough
to model the quality of question paraphrases, or
cannot easily generalize to unseen rewrite rules.

In this paper, we present a general framework
for learning paraphrases for question answering
tasks. Given a natural language question, our
model estimates a probability distribution over
candidate answers. We first generate paraphrases
for the question, which can be obtained by one or
several paraphrasing systems. A neural scoring
model predicts the quality of the generated para-
phrases, while learning to assign higher weights
to those which are more likely to yield correct an-
swers. The paraphrases and the original question
are fed into a QA model that predicts a distribution
over answers given the question. The entire sys-
tem is trained end-to-end using question-answer
pairs as a supervision signal. The framework is
flexible, it does not rely on specific paraphrase or
QA models. In fact, this plug-and-play functional-

ity allows to learn specific paraphrases for differ-
ent QA tasks and to explore the merits of different
paraphrasing models for different applications.

We evaluate our approach on QA over Free-
base and text-based answer sentence selection. We
employ a range of paraphrase models based on
the Paraphrase Database (PPDB; Pavlick et al.
2015), neural machine translation (Mallinson
et al., 2016), and rules mined from the WikiAn-
swers corpus (Fader et al., 2014). Results on three
datasets show that our framework consistently im-
proves performance; it achieves state-of-the-art re-
sults on GraphQuestions and competitive perfor-
mance on two additional benchmark datasets us-
ing simple QA models.

2 Problem Formulation

Let q denote a natural language question, and a its
answer. Our aim is to estimate p (a|q), the condi-
tional probability of candidate answers given the
question. We decompose p (a|q) as:

p (a|q) =
∑

q′∈Hq∪{q}
pψ
(
a|q′
)

︸ ︷︷ ︸
QA Model

pθ
(
q′|q
)

︸ ︷︷ ︸
Paraphrase Model

(1)

where Hq is the set of paraphrases for question q,
ψ are the parameters of a QA model, and θ are the
parameters of a paraphrase scoring model.

As shown in Figure 1, we first generate candi-
date paraphrases Hq for question q. Then, a neu-
ral scoring model predicts the quality of the gen-
erated paraphrases, and assigns higher weights to
the paraphrases which are more likely to obtain
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Input: what be the zip code of the largest car manufacturer
what be the zip code of the largest vehicle manufacturer PPDB
what be the zip code of the largest car producer PPDB
what be the postal code of the biggest automobile manufacturer NMT
what be the postcode of the biggest car manufacturer NMT
what be the largest car manufacturer ’s postal code Rule
zip code of the largest car manufacturer Rule

Table 1: Paraphrases obtained for an input ques-
tion from different models (PPDB, NMT, Rule).
Words are lowercased and stemmed.

the correct answers. These paraphrases and the
original question simultaneously serve as input to
a QA model that predicts a distribution over an-
swers for a given question. Finally, the results of
these two models are fused to predict the answer.
In the following we will explain how p (q′|q) and
p (a|q′) are estimated.

2.1 Paraphrase Generation

As shown in Equation (1), the term p (a|q) is
the sum over q and its paraphrases Hq. Ide-
ally, we would generate all the paraphrases of q.
However, since this set could quickly become in-
tractable, we restrict the number of candidate para-
phrases to a manageable size. In order to in-
crease the coverage and diversity of paraphrases,
we employ three methods based on: (1) lexical
and phrasal rules from the Paraphrase Database
(Pavlick et al., 2015); (2) neural machine trans-
lation models (Sutskever et al., 2014; Bahdanau
et al., 2015); and (3) paraphrase rules mined from
clusters of related questions (Fader et al., 2014).
We briefly describe these models below, however,
there is nothing inherent in our framework that is
specific to these, any other paraphrase generator
could be used instead.

2.1.1 PPDB-based Generation
Bilingual pivoting (Bannard and Callison-Burch,
2005) is one of the most well-known approaches
to paraphrasing; it uses bilingual parallel corpora
to learn paraphrases based on techniques from
phrase-based statistical machine translation (SMT,
Koehn et al. 2003). The intuition is that two
English strings that translate to the same foreign
string can be assumed to have the same meaning.
The method first extracts a bilingual phrase table
and then obtains English paraphrases by pivoting
through foreign language phrases.

Drawing inspiration from syntax-based SMT,
Callison-Burch (2008) and Ganitkevitch et al.
(2011) extended this idea to syntactic paraphrases,
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Figure 2: Overview of NMT-based paraphrase
generation. NMT1 (green) translates ques-
tion q into pivots g1 . . . gK which are then back-
translated by NMT2 (blue) where K decoders
jointly predict tokens at each time step, rather than
only conditioning on one pivot and independently
predicting outputs.

leading to the creation of PPDB (Ganitkevitch
et al., 2013), a large-scale paraphrase database
containing over a billion of paraphrase pairs in
24 different languages. Pavlick et al. (2015) fur-
ther used a supervised model to automatically la-
bel paraphrase pairs with entailment relationships
based on natural logic (MacCartney, 2009). In our
work, we employ bidirectionally entailing rules
from PPDB. Specifically, we focus on lexical (sin-
gle word) and phrasal (multiword) rules which we
use to paraphrase questions by replacing words
and phrases in them. An example is shown in
Table 1 where we substitute car with vehicle and
manufacturer with producer.

2.1.2 NMT-based Generation

Mallinson et al. (2016) revisit bilingual pivoting in
the context of neural machine translation (NMT,
Sutskever et al. 2014; Bahdanau et al. 2015) and
present a paraphrasing model based on neural net-
works. At its core, NMT is trained end-to-end to
maximize the conditional probability of a correct
translation given a source sentence, using a bilin-
gual corpus. Paraphrases can be obtained by trans-
lating an English string into a foreign language
and then back-translating it into English. NMT-
based pivoting models offer advantages over con-
ventional methods such as the ability to learn con-
tinuous representations and to consider wider con-
text while paraphrasing.

In our work, we select German as our pivot
following Mallinson et al. (2016) who show that
it outperforms other languages in a wide range
of paraphrasing experiments, and pretrain two
NMT systems, English-to-German (EN-DE) and
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Source Target
the average size of what be average size

be locate on which continent what continent be a part of
language speak in what be the official language of
what be the money in what currency do use

Table 2: Examples of rules used in the rule-based
paraphrase generator.

German-to-English (DE-EN). A naive implemen-
tation would translate a question to a German
string and then back-translate it to English. How-
ever, using only one pivot can lead to inaccu-
racies as it places too much faith on a single
translation which may be wrong. Instead, we
translate from multiple pivot sentences (Mallinson
et al., 2016). As shown in Figure 2, question q
is translated to K-best German pivots, Gq =
{g1, . . . , gK}. The probability of generating para-
phrase q′ = y1 . . . y|q′| is decomposed as:

p
(
q′|Gq

)
=

|q′|∏

t=1

p (yt|y<t,Gq)

=

|q′|∏

t=1

K∑

k=1

p (gk|q) p (yt|y<t, gk)
(2)

where y<t = y1, . . . , yt−1, and |q′| is the length
of q′. Probabilities p (gk|q) and p (yt|y<t, gk) are
computed by the EN-DE and DE-EN models, re-
spectively. We use beam search to decode tokens
by conditioning on multiple pivoting sentences.
The results with the best decoding scores are con-
sidered candidate paraphrases. Examples of NMT
paraphrases are shown in Table 1.

Compared to PPDB, NMT-based paraphrases
are syntax-agnostic, operating on the surface level
without knowledge of any underlying grammar.
Furthermore, paraphrase rules are captured im-
plicitly and cannot be easily extracted, e.g., from
a phrase table. As mentioned earlier, the NMT-
based approach has the potential of perform-
ing major rewrites as paraphrases are generated
while considering wider contextual information,
whereas PPDB paraphrases are more local, and
mainly handle lexical variation.

2.1.3 Rule-Based Generation
Our third paraphrase generation approach uses
rules mined from the WikiAnswers corpus (Fader
et al., 2014) which contains more than 30 mil-
lion question clusters labeled as paraphrases by

WikiAnswers1 users. This corpus is a large re-
source (the average cluster size is 25), but is rel-
atively noisy due to its collaborative nature – 45%
of question pairs are merely related rather than
genuine paraphrases. We therefore followed the
method proposed in (Fader et al., 2013) to har-
vest paraphrase rules from the corpus. We first ex-
tracted question templates (i.e., questions with at
most one wild-card) that appear in at least ten clus-
ters. Any two templates co-occurring (more than
five times) in the same cluster and with the same
arguments were deemed paraphrases. Table 2
shows examples of rules extracted from the cor-
pus. During paraphrase generation, we consider
substrings of the input question as arguments, and
match them with the mined template pairs. For ex-
ample, the stemmed input question in Table 1 can
be paraphrased using the rules (“what be the zip
code of ”, “what be ’s postal code”) and (“what
be the zip code of ”, “zip code of ”). If no ex-
act match is found, we perform fuzzy matching by
ignoring stop words in the question and templates.

2.2 Paraphrase Scoring

Recall from Equation (1) that pθ (q′|q) scores the
generated paraphrases q′ ∈ Hq ∪ {q}. We esti-
mate pθ (q′|q) using neural networks given their
successful application to paraphrase identification
tasks (Socher et al., 2011; Yin and Schütze, 2015;
He et al., 2015). Specifically, the input ques-
tion and its paraphrases are encoded as vectors.
Then, we employ a neural network to obtain the
score s (q′|q) which after normalization becomes
the probability pθ (q′|q).

Encoding Let q = q1 . . . q|q| denote an input
question. Every word is initially mapped to a
d-dimensional vector. In other words, vector qt
is computed via qt = Wqe (qt), where Wq ∈
Rd×|V| is a word embedding matrix, |V| is the
vocabulary size, and e (qt) is a one-hot vector.
Next, we use a bi-directional recurrent neural net-
work with long short-term memory units (LSTM,
Hochreiter and Schmidhuber 1997) as the ques-
tion encoder, which is shared by the input ques-
tions and their paraphrases. The encoder recur-
sively processes tokens one by one, and uses the
encoded vectors to represent questions. We com-
pute the hidden vectors at the t-th time step via:

1wiki.answers.com
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−→
h t = LSTM

(−→
h t−1,qt

)
, t = 1, . . . , |q|

←−
h t = LSTM

(←−
h t+1,qt

)
, t = |q|, . . . , 1

(3)

where
−→
h t,
←−
h t ∈ Rn. In this work we follow the

LSTM function described in Pham et al. (2014).
The representation of q is obtained by:

q =
[−→
h |q|,

←−
h 1

]
(4)

where [·, ·] denotes concatenation, and q ∈ R2n.

Scoring After obtaining vector representations
for q and q′, we compute the score s (q′|q) via:

s
(
q′|q
)
= ws ·

[
q,q′,q� q′

]
+ bs (5)

where ws ∈ R6n is a parameter vector, [·, ·, ·] de-
notes concatenation, � is element-wise multipli-
cation, and bs is the bias. Alternative ways to com-
pute s (q′|q) such as dot product or with a bilinear
term were not empirically better than Equation (5)
and we omit them from further discussion.

Normalization For paraphrases q′ ∈ Hq ∪ {q},
the probability pθ (q′|q) is computed via:

pθ
(
q′|q
)
=

exp{s (q′|q)}∑
r∈Hq∪{q} exp{s (r|q)}

(6)

where the paraphrase scores are normalized over
the set Hq ∪ {q}.

2.3 QA Models
The framework defined in Equation (1) is rela-
tively flexible with respect to the QA model being
employed as long as it can predict pψ (a|q′). We il-
lustrate this by performing experiments across dif-
ferent tasks and describe below the models used
for these tasks.

Knowledge Base QA In our first task we use
the Freebase knowledge base to answer questions.
Query graphs for the questions typically contain
more than one predicate. For example, to answer
the question “who is the ceo of microsoft in 2008”,
we need to use one relation to query “ceo of mi-
crosoft” and another relation for the constraint “in
2008”. For this task, we employ the SIMPLE-
GRAPH model described in Reddy et al. (2016,
2017), and follow their training protocol and fea-
ture design. In brief, their method uses rules to

convert questions to ungrounded logical forms,
which are subsequently matched against Freebase
subgraphs. The QA model learns from question-
answer pairs: it extracts features for pairs of ques-
tions and Freebase subgraphs, and uses a logistic
regression classifier to predict the probability that
a candidate answer is correct. We perform entity
linking using the Freebasee/KG API on the origi-
nal question (Reddy et al., 2016, 2017), and gener-
ate candidate Freebase subgraphs. The QA model
estimates how likely it is for a subgraph to yield
the correct answer.

Answer Sentence Selection Given a question
and a collection of relevant sentences, the goal
of this task is to select sentences which contain
an answer to the question. The assumption is
that correct answer sentences have high semantic
similarity to the questions (Yu et al., 2014; Yang
et al., 2015; Miao et al., 2016). We use two bi-
directional recurrent neural networks (BILSTM)
to separately encode questions and answer sen-
tences to vectors (Equation (4)). Similarity scores
are computed as shown in Equation (5), and then
squashed to (0, 1) by a sigmoid function in order
to predict pψ (a|q′).

2.4 Training and Inference

We use a log-likelihood objective for training,
which maximizes the likelihood of the correct an-
swer given a question:

maximize
∑

(q,a)∈D
log p (a|q) (7)

where D is the set of all question-answer training
pairs, and p (a|q) is computed as shown in Equa-
tion (1). For the knowledge base QA task, we pre-
dict how likely it is that a subgraph obtains the
correct answer, and the answers of some candidate
subgraphs are partially correct. So, we use the
binary cross entropy between the candidate sub-
graph’s F1 score and the prediction as the objec-
tive function. The RMSProp algorithm (Tieleman
and Hinton, 2012) is employed to solve this non-
convex optimization problem. Moreover, dropout
is used for regularizing the recurrent neural net-
works (Pham et al., 2014).

At test time, we generate paraphrases for the
question q, and then predict the answer by:

â = argmax
a′∈Cq

p
(
a′|q
)

(8)
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where Cq is the set of candidate answers,
and p (a′|q) is computed as shown in Equation (1).

3 Experiments

We compared our model which we call PARA4QA
(as shorthand for learning to paraphrase for ques-
tion answering) against multiple previous systems
on three datasets. In the following we introduce
these datasets, provide implementation details for
our model, describe the systems used for compar-
ison, and present our results.

3.1 Datasets
Our model was trained on three datasets, repre-
sentative of different types of QA tasks. The first
two datasets focus on question answering over a
structured knowledge base, whereas the third one
is specific to answer sentence selection.

WEBQUESTIONS This dataset (Berant et al.,
2013) contains 3, 778 training instances and
2, 032 test instances. Questions were collected by
querying the Google Suggest API. A breadth-first
search beginning with wh- was conducted and the
answers were crowd-sourced using Freebase as the
backend knowledge base.

GRAPHQUESTIONS The dataset (Su et al.,
2016) contains 5, 166 question-answer pairs
(evenly split into a training and a test set). It was
created by asking crowd workers to paraphrase
500 Freebase graph queries in natural language.

WIKIQA This dataset (Yang et al., 2015) has
3, 047 questions sampled from Bing query logs.
The questions are associated with 29, 258 candi-
date answer sentences, 1, 473 of which contain the
correct answers to the questions.

3.2 Implementation Details
Paraphrase Generation Candidate paraphrases
were stemmed (Minnen et al., 2001) and lower-
cased. We discarded duplicate or trivial para-
phrases which only rewrite stop words or punc-
tuation. For the NMT model, we followed the im-
plementation2 and settings described in Mallinson
et al. (2016), and used English↔German as the
language pair. The system was trained on data
released as part of the WMT15 shared transla-
tion task (4.2 million sentence pairs). We also
had access to back-translated monolingual train-
ing data (Sennrich et al., 2016a). Rare words were

2github.com/sebastien-j/LV_groundhog

split into subword units (Sennrich et al., 2016b) to
handle out-of-vocabulary words in questions. We
used the top 15 decoding results as candidate para-
phrases. We used the S size package of PPDB
2.0 (Pavlick et al., 2015) for high precision. At
most 10 candidate paraphrases were considered.
We mined paraphrase rules from WikiAnswers
(Fader et al., 2014) as described in Section 2.1.3.
The extracted rules were ranked using the point-
wise mutual information between template pairs
in the WikiAnswers corpus. The top 10 candidate
paraphrases were used.

Training For the paraphrase scoring model, we
used GloVe (Pennington et al., 2014) vectors3 pre-
trained on Wikipedia 2014 and Gigaword 5 to ini-
tialize the word embedding matrix. We kept this
matrix fixed across datasets. Out-of-vocabulary
words were replaced with a special unknown sym-
bol. We also augmented questions with start-of-
and end-of-sequence symbols. Word vectors for
these special symbols were updated during train-
ing. Model hyperparameters were validated on
the development set. The dimensions of hid-
den vectors and word embeddings were selected
from {50, 100, 200} and {100, 200}, respectively.
The dropout rate was selected from {0.2, 0.3, 0.4}.
The BILSTM for the answer sentence selection
QA model used the same hyperparameters. Pa-
rameters were randomly initialized from a uniform
distribution U (−0.08, 0.08). The learning rate
and decay rate of RMSProp were 0.01 and 0.95,
respectively. The batch size was set to 150. To
alleviate the exploding gradient problem (Pascanu
et al., 2013), the gradient norm was clipped to 5.
Early stopping was used to determine the number
of epochs.

3.3 Paraphrase Statistics
Table 3 presents descriptive statistics on the para-
phrases generated by the various systems across
datasets (training set). As can be seen, the av-
erage paraphrase length is similar to the average
length of the original questions. The NMT method
generates more paraphrases and has wider cover-
age, while the average number and coverage of the
other two methods varies per dataset. As a way
of quantifying the extent to which rewriting takes
place, we report BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) scores between the orig-
inal questions and their paraphrases. The NMT

3nlp.stanford.edu/projects/glove
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Metric GRAPHQ WEBQ WIKIQA

NMT PPDB Rule NMT PPDB Rule NMT PPDB Rule
avg(|q|) 10.87 7.71 6.47
avg(|q′|) 10.87 12.40 10.51 8.13 8.55 7.54 6.60 7.85 7.15
avg(#q′) 13.85 3.02 2.50 13.76 0.71 7.74 13.95 0.62 5.64
Coverage (%) 99.67 73.52 31.16 99.87 35.15 83.61 99.89 31.04 63.12
BLEU (%) 42.33 67.92 54.23 35.14 56.62 42.37 32.40 54.24 40.62
TER (%) 39.18 14.87 38.59 45.38 19.94 43.44 46.10 17.20 48.59

Table 3: Statistics of generated paraphrases across
datasets (training set). avg(|q|): average ques-
tion length; avg(|q′|): average paraphrase length;
avg(#q′): average number of paraphrases; cover-
age: the proportion of questions that have at least
one candidate paraphrase.

method and the rules extracted from WikiAnswers
tend to paraphrase more (i.e., have lower BLEU
and higher TER scores) compared to PPDB.

3.4 Comparison Systems

We compared our framework to previous work
and several ablation models which either do not
use paraphrases or paraphrase scoring, or are not
jointly trained.

The first baseline only uses the base QA mod-
els described in Section 2.3 (SIMPLEGRAPH and
BILSTM). The second baseline (AVGPARA) does
not take advantage of paraphrase scoring. The
paraphrases for a given question are used while the
QA model’s results are directly averaged to predict
the answers. The third baseline (DATAAUGMENT)
employs paraphrases for data augmentation dur-
ing training. Specifically, we use the question, its
paraphrases, and the correct answer to automati-
cally generate new training samples.

In the fourth baseline (SEPPARA), the para-
phrase scoring model is separately trained on para-
phrase classification data, without taking question-
answer pairs into account. In the experiments,
we used the Quora question paraphrase dataset4

which contains question pairs and labels indicat-
ing whether they constitute paraphrases or not. We
removed questions with more than 25 tokens and
sub-sampled to balance the dataset. We used 90%
of the resulting 275K examples for training, and
the remaining for development. The paraphrase
score s (q′|q) (Equation (5)) was wrapped by a
sigmoid function to predict the probability of a
question pair being a paraphrase. A binary cross-
entropy loss was used as the objective. The classi-
fication accuracy on the dev set was 80.6%.

4goo.gl/kMP46n

Method Average F1 (%)

GRAPHQ WEBQ
SEMPRE (Berant et al., 2013) 10.8 35.7
JACANA (Yao and Van Durme, 2014) 5.1 33.0
PARASEMP (Berant and Liang, 2014) 12.8 39.9
SUBGRAPH (Bordes et al., 2014a) - 40.4
MCCNN (Dong et al., 2015) - 40.8
YAO15 (Yao, 2015) - 44.3
AGENDAIL (Berant and Liang, 2015) - 49.7
STAGG (Yih et al., 2015) - 48.4 (52.5)
MCNN (Xu et al., 2016) - 47.0 (53.3)
TYPERERANK (Yavuz et al., 2016) - 51.6 (52.6)
BILAYERED (Narayan et al., 2016) - 47.2
UDEPLAMBDA (Reddy et al., 2017) 17.6 49.5
SIMPLEGRAPH (baseline) 15.9 48.5
AVGPARA 16.1 48.8
SEPPARA 18.4 49.6
DATAAUGMENT 16.3 48.7
PARA4QA 20.4 50.7
−NMT 18.5 49.5
−PPDB 19.5 50.4
−RULE 19.4 49.1

Table 4: Model performance on GRAPHQUES-
TIONS and WEBQUESTIONS. Results with addi-
tional task-specific resources are shown in paren-
theses. The base QA model is SIMPLEGRAPH.
Best results in each group are shown in bold.

Finally, in order to assess the individual con-
tribution of different paraphrasing resources, we
compared the PARA4QA model against versions
of itself with one paraphrase generator removed
(−NMT/−PPDB/−RULE).

3.5 Results

We first discuss the performance of PARA4QA on
GRAPHQUESTIONS and WEBQUESTIONS. The
first block in Table 4 shows a variety of systems
previously described in the literature using aver-
age F1 as the evaluation metric (Berant et al.,
2013). Among these, PARASEMP, SUBGRAPH,
MCCNN, and BILAYERED utilize paraphrasing
resources. The second block compares PARA4QA
against various related baselines (see Section 3.4).
SIMPLEGRAPH results on WEBQUESTIONS and
GRAPHQUESTIONS are taken from Reddy et al.
(2016) and Reddy et al. (2017), respectively.

Overall, we observe that PARA4QA outper-
forms baselines which either do not employ para-
phrases (SIMPLEGRAPH) or paraphrase scoring
(AVGPARA, DATAAUGMENT), or are not jointly
trained (SEPPARA). On GRAPHQUESTIONS, our
model PARA4QA outperforms the previous state
of the art by a wide margin. Ablation experiments
with one of the paraphrase generators removed
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Method MAP MRR
BIGRAMCNN (Yu et al., 2014) 0.6190 0.6281
BIGRAMCNN+CNT (Yu et al., 2014) 0.6520 0.6652
PARAVEC (Le and Mikolov, 2014) 0.5110 0.5160
PARAVEC+CNT (Le and Mikolov, 2014) 0.5976 0.6058
LSTM (Miao et al., 2016) 0.6552 0.6747
LSTM+CNT (Miao et al., 2016) 0.6820 0.6988
NASM (Miao et al., 2016) 0.6705 0.6914
NASM+CNT (Miao et al., 2016) 0.6886 0.7069
KVMEMNET+CNT (Miller et al., 2016) 0.7069 0.7265
BILSTM (baseline) 0.6456 0.6608
AVGPARA 0.6587 0.6753
SEPPARA 0.6613 0.6765
DATAAUGMENT 0.6578 0.6736
PARA4QA 0.6759 0.6918
−NMT 0.6528 0.6680
−PPDB 0.6613 0.6767
−RULE 0.6553 0.6756

BILSTM+CNT (baseline) 0.6722 0.6877
PARA4QA+CNT 0.6978 0.7131

Table 5: Model performance on WIKIQA. +CNT:
word matching features introduced in Yang et al.
(2015). The base QA model is BILSTM. Best re-
sults in each group are shown in bold.

show that performance drops most when the NMT
paraphrases are not used on GRAPHQUESTIONS,
whereas on WEBQUESTIONS removal of the rule-
based generator hurts performance most. One rea-
son is that the rule-based method has higher cov-
erage on WEBQUESTIONS than on GRAPHQUES-
TIONS (see Table 3).

Results on WIKIQA are shown in Table 5. We
report MAP and MMR which evaluate the rela-
tive ranks of correct answers among the candi-
date sentences for a question. Again, we observe
that PARA4QA outperforms related baselines (see
BILSTM, DATAAUGMENT, AVGPARA, and SEP-
PARA). Ablation experiments show that perfor-
mance drops most when NMT paraphrases are re-
moved. When word matching features are used
(see +CNT in the third block), PARA4QA reaches
state of the art performance.

Examples of paraphrases and their probabil-
ities pθ (q

′|q) (see Equation (6)) learned by
PARA4QA are shown in Table 6. The two ex-
amples are taken from the development set of
GRAPHQUESTIONS and WEBQUESTIONS, re-
spectively. We also show the Freebase relations
used to query the correct answers. In the first ex-
ample, the original question cannot yield the cor-
rect answer because of the mismatch between the
question and the knowledge base. The paraphrase
contains “role” in place of “sort of part”, increas-
ing the chance of overlap between the question and

Examples pθ (q
′|q)

(music.concert performance.performance role)
what sort of part do queen play in concert 0.0659
what role do queen play in concert 0.0847
what be the role play by the queen in concert 0.0687
what role do queen play during concert 0.0670
what part do queen play in concert 0.0664
which role do queen play in concert concert 0.0652
(sports.sports team roster.team)
what team do shaq play 4 0.2687
what team do shaq play for 0.2783
which team do shaq play with 0.0671
which team do shaq play out 0.0655
which team have you play shaq 0.0650
what team have we play shaq 0.0497

Table 6: Questions and their top-five paraphrases
with probabilities learned by the model. The Free-
base relations used to query the correct answers
are shown in brackets. The original question is
underlined. Questions with incorrect predictions
are in red.

the predicate words. The second question contains
an informal expression “play 4”, which confuses
the QA model. The paraphrase model generates
“play for” and predicts a high paraphrase score
for it. More generally, we observe that the model
tends to give higher probabilities pθ (q′|q) to para-
phrases biased towards delivering appropriate an-
swers.

We also analyzed which structures were mostly
paraphrased within a question. We manually in-
spected 50 (randomly sampled) questions from
the development portion of each dataset, and their
three top scoring paraphrases (Equation (5)). We
grouped the most commonly paraphrased struc-
tures into the following categories: a) question
words, i.e., wh-words and and “how”; b) ques-
tion focus structures, i.e., cue words or cue phrases
for an answer with a specific entity type (Yao and
Van Durme, 2014); c) verbs or noun phrases in-
dicating the relation between the question topic
entity and the answer; and d) structures requir-
ing aggregation or imposing additional constraints
the answer must satisfy (Yih et al., 2015). In the
example “which year did Avatar release in UK”,
the question word is “which”, the question focus
is “year”, the verb is “release”, and “in UK” con-
strains the answer to a specific location.

Figure 3 shows the degree to which different
types of structures are paraphrased. As can be
seen, most rewrites affect Relation Verb, espe-
cially on WEBQUESTIONS. Question Focus, Re-
lation NP, and Constraint & Aggregation are more
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Figure 3: Proportion of linguistic phenomena sub-
ject to paraphrasing within a question.

Method Average F1 (%)

Simple Complex
SIMPLEGRAPH 20.9 12.2
PARA4QA 27.4 (+6.5) 16.0 (+3.8)

Table 7: We group GRAPHQUESTIONS into sim-
ple and complex questions and report model per-
formance in each split. Best results in each group
are shown in bold. The values in brackets are ab-
solute improvements of average F1 scores.

often rewritten in GRAPHQUESTIONS compared
to the other datasets.

Finally, we examined how our method fares on
simple versus complex questions. We performed
this analysis on GRAPHQUESTIONS as it contains
a larger proportion of complex questions. We con-
sider questions that contain a single relation as
simple. Complex questions have multiple rela-
tions or require aggregation. Table 7 shows how
our model performs in each group. We observe
improvements for both types of questions, with
the impact on simple questions being more pro-
nounced. This is not entirely surprising as it is eas-
ier to generate paraphrases and predict the para-
phrase scores for simpler questions.

4 Conclusions

In this work we proposed a general framework
for learning paraphrases for question answering.
Paraphrase scoring and QA models are trained
end-to-end on question-answer pairs, which re-
sults in learning paraphrases with a purpose. The
framework is not tied to a specific paraphrase gen-
erator or QA system. In fact it allows to in-
corporate several paraphrasing modules, and can
serve as a testbed for exploring their coverage
and rewriting capabilities. Experimental results

on three datasets show that our method improves
performance across tasks. There are several direc-
tions for future work. The framework can be used
for other natural language processing tasks which
are sensitive to the variation of input (e.g., tex-
tual entailment or summarization). We would also
like to explore more advanced paraphrase scoring
models (Parikh et al., 2016; Wang and Jiang, 2016)
as well as additional paraphrase generators since
improvements in the diversity and the quality of
paraphrases could also enhance QA performance.
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Abstract

In this paper, we propose to use a set
of simple, uniform in architecture LSTM-
based models to recover different kinds
of temporal relations from text. Using
the shortest dependency path between en-
tities as input, the same architecture is im-
plemented to extract intra-sentence, cross-
sentence, and document creation time rela-
tions. A “double-checking” technique re-
verses entity pairs in classification, boost-
ing the recall of positive cases and reduc-
ing misclassifications between opposite
classes. An efficient pruning algorithm
resolves conflicts globally. Evaluated on
QA-TempEval (SemEval2015 Task 5), our
proposed technique outperforms state-of-
the-art methods by a large margin. We also
conduct intrinsic evaluation and post state-
of-the-art results on Timebank-Dense.

1 Introduction

Recovering temporal information from text is es-
sential to many text processing tasks that require
deep language understanding, such as answering
questions about the timeline of events or auto-
matically producing text summaries. This work
presents intermediate results of an effort to build a
temporal reasoning framework with contemporary
deep learning techniques.

Until recently, there has been remarkably few
attempts to evaluate temporal information extrac-
tion (TemporalIE) methods in context of down-
stream applications that require reasoning over
the temporal representation. One recent effort to
conduct such evaluation was SemEval2015 Task
5, a.k.a. QA-TempEval (Llorens et al., 2015a),
which used question answering (QA) as the tar-
get application. QA-TempEval evaluated systems

producing TimeML (Pustejovsky et al., 2003) an-
notation based on how well their output could
be used in QA. We believe that application-based
evaluation of TemporalIE should eventually com-
pletely replace the intrinsic evaluation if we are
to make progress, and therefore we evaluated our
techniques mainly using QA-TempEval setup.

Despite the recent advances produced by multi-
layer neural network architectures in a variety of
areas, the research community is still struggling to
make neural architectures work for linguistic tasks
that require long-distance dependencies (such as
discourse parsing or coreference resolution). Our
goal was to see if a relatively simple architecture
with minimal capacity for retaining information
was able to incorporate the information required
to identify temporal relations in text.

Specifically, we use several simple LSTM-
based components to recover ordering relations
between temporally relevant entities (events and
temporal expressions). These components are
fairly uniform in their architecture, relying on de-
pendency relations recovered with a very small
number of mature, widely available processing
tools, and require minimal engineering otherwise.
To our knowledge, this is the first attempt to apply
such simplified techniques to the TemporalIE task,
and we demonstrate this streamlined architecture
is able to outperform state-of-the-art results on a
temporal QA task with a large margin.

In order to demonstrate generalizability of our
proposed architecture, we also evaluate it intrin-
sically using TimeBank-Dense1 (Chambers et al.,
2014). TimeBank-Dense annotation aims to ap-
proximate a complete temporal relation graph by
including all intra-sentential relations, all relations
between adjacent sentences, and all relations with
document creation time. Although our system

1https://www.usna.edu/Users/cs/
nchamber/caevo/#corpus
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was not optimized for such a paradigm, and this
data is quite different in terms of both the annota-
tion scheme and the evaluation method, we obtain
state-of-the-art results on this corpus as well.

2 Related Work

A multitude of TemporalIE systems have been de-
veloped over the past decade both in response to
the series of shared tasks organized by the com-
munity (Verhagen et al., 2007, 2010; UzZaman
et al., 2012; Sun et al., 2013; Bethard et al., 2015;
Llorens et al., 2015b; Minard et al., 2015) and in
standalone efforts (Chambers et al., 2014; Mirza,
2016).

The best methods used by TemporalIE systems
to date tend to rely on highly engineered task-
specific models using traditional statistical learn-
ing, typically used in succession (Sun et al., 2013;
Chambers et al., 2014). For example, in a recent
QA-TempEval shared task, the participants rou-
tinely used a series of classifiers (such as support
vector machine (SVM) or hidden Markov chain
SVM) or hybrid methods combining hand crafted
rules and SVM, as was used by the top system in
that challenge (Mirza and Minard, 2015). While
our method also relies on decomposing the tem-
poral relation extraction task into subtasks, we use
essentially the same simple LSTM-based archi-
tecture for different components, that consume a
highly simplified representation of the input.

Although there has not been much work ap-
plying deep learning techniques to TemporalIE,
some relevant work has been done on a similar
(but typically more local) task of relation extrac-
tion. Convolutional neural networks (Zeng et al.,
2014) and recurrent neural networks both have
been used for argument relation classification and
similar tasks (Zhang and Wang, 2015; Xu et al.,
2015; Vu et al., 2016). We take inspiration from
some of this work, including specifically the ap-
proach proposed by Xu et al. (2015) which uses
syntactic dependencies.

3 Dataset

We used QA-TempEval (SemEval 2015 Task 5)2

data and evaluation methods in our experiments.
The training set contains 276 annotated TimeML
files, mostly news articles from major agencies or
Wikinews from late 1990s to early 2000s. This

2http://alt.qcri.org/semeval2015/
task5/

data contains annotations for events, temporal ex-
pressions (referred to as TIMEXes), and temporal
relations (referred to as TLINKs). The test set con-
tains unannotated files in three genres: 10 news
articles composed in 2014, 10 Wikipedia articles
about world history, and 8 blogs entries from early
2000s.

In QA-TempEval, evaluation is done via a QA
toolkit which contains yes/no questions about tem-
poral relations between two events or an event and
a temporal expression. QA evaluation is not avail-
able for most of the training data except for 25
files, for which 79 questions are available. We
used used this subset of the training data for vali-
dation. The test set contains unannotated files, so
QA is the only way to measure the performance.
The total of 294 questions is available for the test
data, see Table 6.

We also use TimeBank-Dense dataset, which
contains a subset of the documents in QA-
TempEval. In TimeBank-Dense, all entity pairs in
the same sentence or in consecutive sentences are
labeled. If there is no information about the rela-
tion between two entities, it is labeled as “vague”.
We follow the experimental setup in (Chambers
et al., 2014), which splits the corpus into train-
ing/validation/test sets of 22, 5, and 9 documents,
respectively.

4 TIMEX and Event Extraction

The first task in our TemporalIE pipeline (TEA) is
to identify time expressions (TIMEXes) and events
in text. We utilized the HeidelTime package
(Strötgen and Gertz, 2013) to identify TIMEXes.
We trained a neural network model to identify
event mentions. Contrary to common practice in
TemporalIE, our models do not rely on event at-
tributes, and thus we did not attempt to identify
them.

Feature Explanation
is main verb whether the token is the main verb of a sentence
is predicate whether the token is the predicate of a phrase
is verb whether the token is a verb
is noun whether the token is a noun

Table 1: Token features for event extraction

We perform tokenization, part-of-speech tag-
ging, and dependency parsing using NewsReader
(Agerri et al., 2014). Every token is represented
with a set of features derived from preprocess-
ing. Syntactic dependencies are not used for event
extraction, but are used later in the pipeline for
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Figure 1: System overview for our temporal extraction annotator (TEA) system

TLINK classification. The features used to identify
events are listed in Table 1.

The event extraction model uses long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997), an RNN architecture well-suited for se-
quential data. The extraction model has two com-
ponents, as shown on the right of Figure 2. One
component is an LSTM layer which takes word
embeddings as input. The other component takes
4 token-level features as input. These components
produce hidden representations which are concate-
nated, and fed into an output layer which performs
binary classification. For each token, we use four
tokens on each side to represent the surrounding
context. The resulting sequence of nine word em-
beddings is then used as input to an LSTM layer. If
a word is near the edge of a sentence, zero padding
is applied. We only use the token-level features of
the target token, and ignore those from the context
words. The 4 features are all binary, as shown in
Table 1. Since the vast majority of event mentions
in the training data are single words, we only mark
single words as event mentions.

5 TLINK Classification

Our temporal relation (TLINK) classifier con-
sists of four components: an LSTM-based model
for intra-sentence entity relations, an LSTM-
based model for cross-sentence relations, another
LSTM-based model for relations with document
creation time, and a rule-based component for
TIMEX pairs. The four models perform TLINK

classifications independently, and the combined
results are fed into a pruning module to remove
the conflicting TLINKs. The three LSTM-based
components use the same streamlined architecture
over token sequences recovered from shortest de-
pendency paths between entity pairs.

Left Branch Right Branch

Max PoolMax Pool
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DropoutDropout
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LSTM LSTM

FC1

FC2
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Embeddings

Token 

Features

Max PoolMax Pool
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FC3

Sigmoid
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Figure 2: Model architecture. Left: intra-sentence and cross-
sentence model. Right: Event extraction model.

5.1 Intra-Sentence Model

A TLINK extraction model should be able to learn
the patterns that correspond to specific temporal
relations, such as specific temporal prepositional
phrases and clauses with temporal conjunctions.
This suggests such models may benefit from en-
coding syntactic relations, rather than linear se-
quences of lexical items.

We use the shortest path between entities in a
dependency tree to capture the essential context.
Using the NewsReader pipeline, we identify the
shortest path, and use the word embeddings for
all tokens in the path as input to a neural net-
work. Similar to previous work in relation extrac-
tion (Xu et al., 2015), we use two branches, where
the left branch processes the path from the source
entity to the least common ancestor (LCA), and
the right branch processes the path from the target
entity to the LCA. However, our TLINK extrac-
tion model uses only word embeddings as input,
not POS tags, grammatical relations themselves,
or WordNet hypernyms.

For example, for the sentence “Their marriage
ended before the war”, given an event pair (mar-
riage, war), the left branch of the model will re-
ceive the sequence (marriage, ended), while the
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right branch will receive (war, before, ended). The
LSTM layer processes the appropriate sequence of
word embeddings in each branch. This is followed
by a separate max pooling layer for each branch,
so for each LSTM unit, the maximum value over
the time steps is used, not the final step value.
During the early stages of model design, we ob-
served that this max pooling approach (also used
in Xu et al. (2015)) resulted in a slight improve-
ment in performance. Finally, the results from
the max pooling layers of both branches are con-
catenated and fed to a hidden layer, followed by
a softmax to yield a probability distribution over
the classes. The model architecture is shown in
Figure 2 (left). We also augment the training data
by flipping every pair, i.e. if (e1, e2) → BEFORE,
(e2, e1) → AFTER is also included.

5.2 Cross-Sentence Model

TLINKs between the entities in consecutive sen-
tences can often be identified without any external
context or prior knowledge. For example, the or-
der of events may be indicated by discourse con-
nectives, or the events may follow natural order,
potentially encoded in their word embeddings.

To recover such relations, we use a model sim-
ilar to the one used for intra-sentence relations, as
described in Section5.1. Since there is no common
root between entities in different sentences, we use
the path between an entity and the sentence root to
construct input data. A sentence root is often the
main verb, or a conjunction.

5.3 Relations to DCT

The document creation time (DCT) naturally
serves as the “current time”. In this section, we
discuss how to identify temporal relations between
an event and DCT. The assumption here is that an
event mention and its local context can often suf-
fice for DCT TLINKs. For example, English has
inflected verbs for tense in finite clauses, and uses
auxiliaries to express aspects.

The model we use is again similar to the one in
Section5.2. Although one branch would suffice in
this case, we use two branches in our implementa-
tion. One branch processes the path from a given
entity to the sentence root, and the other branch
processes the same path in reverse, from the root
to the entity.

5.4 Relations between TIMEXes

Time expressions explicitly signify a time point or
an interval of time. Without the TIMEX entities
serving as “hubs”, many events would be isolated
from each other. We use rule-based techniques to
identify temporal relations between TIMEX pairs
that have been identified and normalized by Hei-
delTime. The relation between the DCT and other
time expressions is just a special case of TIMEX-
to-TIMEX TLINK and is handled with rules as well.

DATE value Calculation Representation
2017-08-04 START = 2017 + 7/12 + 3/365 (2017.591, 2017.591)

= 2017.591
END = START

2017-SU START = 2017 + 5/12 = 2017.416 (2017.416, 2017.666)
(Summer 2017) END = 2017 + 8/12 = 2017.666

Table 2: Examples of DATE values and their tuple represen-
tations

In the present implementation, we focus on the
DATE class of TIMEX tags, which is prevalent in
the newswire text. The TIME class tags which con-
tain more information are converted to DATE. Ev-
ery DATE value is mapped to a tuple of real val-
ues (start, end). The “value” attribute of TIMEX

tags follows the ISO-8601 standard, so the map-
ping is straightforward. Table 2 provides some
examples. We set the minimum time interval to
be a day. Practically, such a treatment suffices
for our data. After mapping DATE values to tu-
ples of real numbers, we can define 5 relations
between TIMEX entities T1 = (start1, end1) and
T2 = (start2, end2) as follows:

T1 × T2 →





BEFORE if end1 < start2

AFTER if start1 > end2

INCLUDES if start1 < start2

and end1 > end2

IS INCLUDED if start1 > start2

and end1 < end2

SIMULTANEOUS if start1 = start2

and end1 = end2

(1)

The TLINKs from training data contain more
types of relations than the five described in Equa-
tion 1. However relations such as IBEFORE (“im-
mediately before”), IAFTER(“immediately after”)
and IDENTITY are only used on event pairs, not
TIMEX pairs. The QA system also does not tar-
get questions on TIMEX pairs. The purpose here
is to use the TIMEX relations to link the otherwise
isolated events.
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6 Double-checking

A major difficulty we have is that the TLINKs for
intra-sentence, cross-sentence, and DCT relations
in the training data are not comprehensive. Of-
ten, the temporal relation between two entities is
clear, but the training data provides no TLINK an-
notation. We downsampled the NO-LINK class in
training in order to address both the class imbal-
ance and the fact that TimeML-style annotation is
de-facto sparse, with only a fraction of positive in-
stances annotated.

In addition to that, we introduce a technique to
boost the recall of positive classes (not NO-LINK)
and to reduce the misclassification between the op-
posite classes. Since entity pairs are always classi-
fied in both orders, if both orders produce a TLINK

relation, rather than NO-LINK, we adopt the label
with a higher probability score, as assigned by the
softmax classifier. We call this technique “double-
checking”. It serves to reduce the errors that are
fundamentally harmful (e.g. BEFORE misclassi-
fied as AFTER, and vice versa). We also allow
a positive class to have the “veto power” against
NO-LINK class. For instance, if our model pre-
dicts (e1, e2) → AFTER but NO-LINK reversely,
we adopt the former.

NO-LINK ratio Recall Recall BEFORE AFTER
BEFORE AFTER as AFTER as BEFORE

0.5 0.451 0.445 0.075 0.092
0.1 0.643 0.666 0.145 0.159
0.1 + double-check 0.721 0.721 0.125 0.125

Table 3: Effects of downsampling and double-checking on
intra-sentence results. 0.5 NO-LINK ratio means that NO-
LINKs are downsampled to a half of the number of all positive
instances combined. BEFORE as AFTER shows the fraction of
BEFORE misclassified as AFTER, and vice versa.

Table 3 shows the effects of double-checking
and downsampling the NO-LINK cases on the
intra-sentence model. Double-checking technique
not only further boosts recall, but also reduces the
misclassification between the opposite classes.

7 Pruning TLINKs

The four TLINK classification models in Section 5
deal with different kinds of TLINKs, so their output
does not overlap. Nevertheless temporal relations
are transitive in nature, so the deduced relations
from given TLINKs can be in conflict.

Most conflicts arise from two types of
relations, namely BEFORE/AFTER and IN-
CLUDES/IS INCLUDED. Naturally, we can

convert TLINKs of opposite relations and put them
all together. If we use a directed graph to repre-
sent the BEFORE relations between all entities, it
should be acyclic. Sun (2014) proposed a strategy
that “prefers the edges that can be inferred by
other edges in the graph and remove the ones
that are least so”. Another strategy is to use the
results from separate classifiers or “sieves” to
rank TLINKs according to their confidence (Mani
et al., 2007; Chambers et al., 2014). High-ranking
results overwrite low-ranking ones.

We follow the same idea of purging the weak
TLINKs. Given a directed graph, our approach
is to remove the edges to break cycles, so that
the sum of weights from the removed edges is
minimal. This problem is actually an extension
of the minimum feedback arc set problem and
is NP-hard (Karp, 1972). We therefore adopt
a heuristic-based approach, applied separately to
the graphs induced by BEFORE/AFTER and IN-
CLUDES/IS INCLUDED relations.3 The softmax
layer provides a probability score for each re-
lation class, which represents the strength of a
link. TLINKs between TIMEX pairs are gener-
ated by rules, so we assume them to be reli-
able and assign them a score of 1. Although IN-
CLUDES/IS INCLUDED edges can generate con-
flicts in a BEFORE/AFTER graph as well, we cur-
rently do not resolve such conflicts because they
are relatively rare. We also do not use SIMULTA-
NEOUS/IDENTITY relations to merge nodes, be-
cause we found that it leads to very unstable re-
sults.

For a given relation (e.g., BEFORE), we incre-
mentally build a directed graph with all edges rep-
resenting that relation. We first initialize the graph
with TIMEX-to-TIMEX relations. Event vertices
are then added to this graph in a random order.
For each event, we add all edges associated with
it. If this creates a cycle, the edges are removed
one by one until there is no cycle, keeping track
of the sum of the scores associated with removed
edges. We choose the order in which the edges are
removed to minimize that value.4 The algorithm
is shown above.

In practice, the vertices do not have a high de-

3We found that ENDS and BEGINS TLINKs are too infre-
quent to warrant a separate treatment.

4By removing an edge, we mean resetting the relation to
NO-LINK. Another possibility may be to set the relation asso-
ciated with the edge to the one with the second highest prob-
ability score, however this may create additional cycles.
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X ← EVENTS;
V ← TIMEXes;
E ← TIMEX pairs;
Initialize G←< V,E >;
for x∈ X do

V ′ ← V + {x};
C ← {(x, v) ∪ (v, x)|v ∈ V } ;
E′ ← E ∪ C ;
G′ ←< V ′, E′ > ;
if cycle exists(G’) then

for Ci ∈ π(C) do
scorei = 0;
while Ci 6= φ & cycle exists(G ∪ Ci)

do
c← Ci.pop();
scorei+ = weight(c);

end
end

end
G← G ∪ Ci s.t. i = argmin(scorei);

end
Algorithm 1: Algorithm to prune edges. π(C) denotes

some permutations of C, where C is a list of weighted

edges.

gree for a given relation, so permuting the candi-
dates N × (N − 1) times (i.e., not fully), where
N is the number of candidates, produces only a
negligible slowdown. We also make sure to try
the greedy approach, dropping the edges with the
smallest weights first.

8 Model Settings

In this section, we describe the model settings used
in our experiments. All models requiring word
embeddings use 300-dimensional word2vec vec-
tors trained on Google News corpus (3 billion run-
ning words).5 Our models are written in Keras on
top of Theano.

TIMEX and Event Annotation The LSTM
layer of the event extraction model contains 128
LSTM units. The hidden layer on top of that has
30 neurons. The input layer corresponding to the
4 token features is connected with a hidden layer
with 3 neurons. The combined hidden layer is then
connected with a single-neuron output layer. We
set a dropout rate 0.5 on input layer, and another
drop out rate 0.5 on the hidden layer before output.

As mentioned earlier, we do not attempt to tag
event attributes. Since the vast majority of tokens
are outside of event mention boundaries, we set
higher weights for the positive class. In order to
answer questions about temporal relations, it is not

5https://github.com/mmihaltz/
word2vec-GoogleNews-vectors

particularly harmful to introduce spurious events,
but missing an event makes it impossible to an-
swer any question related to it. Therefore we in-
tentionally boost the recall while sacrificing preci-
sion. Table 4 shows the performance of our event
extraction, as well as the performance of Heidel-
Time TIMEX tagging. For events, partial overlap
of mention boundaries is considered an error.

Annotation Prec Rec F1
TIMEX 0.838 0.850 0.844
Event 0.729 0.963 0.830

Table 4: TIMEX and event evaluation on validation set.

Intra-Sentence Model We identify 12 classes
of temporal relations, plus a NO-LINK class. For
training, we downsampled NO-LINK class to 10%
of the number of positive instances. Our system
does not attempt to resolve coreference. For the
purpose of identifying temporal relations, SIMUL-
TANEOUS and IDENTITY links capture the same
relation of simultaneity, which allowed us to com-
bine them. The LSTM layer of the intra-sentence
model contains 256 LSTM units on each branch.
The hidden layer on top of that has 100 neurons.
We set a dropout rate 0.6 on input layer, and an-
other drop out rate 0.5 on the hidden layer before
output.

Cross-Sentence Model The training and evalu-
ation procedures are very similar to what we did
for intra-sentence models, and the hyperparame-
ters for the neural networks are the same. Now the
vast majority of entity pairs have no TLINKs ex-
plicitly marked in training data. Unlike the intra-
sentence scenario, however, a NO-LINK label is
truly adequate in most cases. We found that down-
sampling NO-LINK instances to match the number
of all positive instances (ratio=1) yields desirable
results. Since positive instances are very sparse
in both the training and validation data, the ratio
should not be too low, so as not to risk overfitting.

DCT Model We use the same hyperparameters
for the DCT model as for the intra-sentence and
cross-sentence models. Again, the training files do
not sufficiently annotate TLINKs with DCT even if
the relations are clear, so there are many false neg-
atives. We downsample the NO-LINK instances so
that they are 4 times the number of positive in-
stances.
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system coverage prec rec f1
human-fold1-original 0.43 0.91 0.38 0.54
human-fold1-timlinks 0.52 0.93 0.47 0.62
TIPSem-fold1-original 0.35 0.57 0.22 0.32
TIPSem-fold1-timex 0.53 0.69 0.38 0.50
orig. validation data 0.37 0.93 0.34 0.50
orig. tags TEA tlinks 0.81 0.58 0.47 0.52
TEA-initial 0.78 0.60 0.47 0.52
TEA-double-check 0.89 0.60 0.53 0.56
TEA-prune 0.82 0.58 0.48 0.53
TEA-flat 0.81 0.44 0.35 0.39
TEA-Dense 0.68 0.70 0.48 0.57
TEA-final 0.84 0.64 0.53 0.58

Table 5: QA results on validation data. There are 79 ques-
tions in total. The 4 systems on the top of the table are pro-
vided with the toolkit. The systems starting with “human-
” are annotated by human experts. TEA-final utilizes both
double-check and pruning. TEA-flat uses the flat context.
TEA-Dense is trained on TimeBank-Dense.

9 Experiments

In this section, we first describe the model se-
lection experiments on QA-TempEval validation
data, selectively highlighting results of interest.
We then present the results obtained with the op-
timized model on the QA-TempEval task and on
TimeBank-Dense.

9.1 Model Selection Experiments

As mentioned before, “gold” TLINKs are sparse,
so we cannot merely rely on the F1 scores on val-
idation data to do model selection. Instead, we
used the QA toolkit. The toolkit contains 79 yes-
no questions about temporal relations between en-
tities in the validation data. Originally, only 6
questions have “no” as the correct answer, and 1
question is listed as “unknown”. After investigat-
ing the questions and answers, however, we found
some errors and typos6. After fixing the errors,
there are 7 no-questions and 72 yes-questions in
total. All evaluations are performed on the fixed
data.

The evaluation tool draws answers from the an-
notations only. If an entity (event or TIMEX) in-
volved in a question is not annotated, or the TLINK

cannot be found, the question will then be counted
as not answered. There is no way for partici-
pants to give an answer directly, other than de-

6Question 24 from XIE19980821.0077.tml should be
answered with “yes”, but the answer key contains a typo
“is”. Question 34 from APW19980219.0476.tml has BE-
FORE that should be replaced with AFTER. Question 29 from
XIE19980821.0077.tml has “unknown” in the answer key,
but after reading the article, we believe the correct answer is
“no”.

livering the annotations. The program generates
Timegraphs to infer relations from the annotated
TLINKs. As a result, relations without explicit
TLINK labels can still be used if they can be in-
ferred from the annotations. The QA toolkit uses
the following evaluation measures:

coverage = #answered
#questions , precision = #correct

#answered

recall = #correct
#questions , f1 = 2×precision×recall

precision+recall

Table 5 shows the results produced by different
models on the validation data. The results of the
four systems above the first horizontal line are pro-
vided by the task organizer. Among them, the top
two use annotations provided by human experts.
As we can see, the precision is very high, both
above 0.90. Our models cannot reach that preci-
sion. In spite of the lower precision, automated
systems can have much higher coverages i.e. an-
swer a lot more questions.

As a starting point, we evaluated the valida-
tion files in their original form, and the results are
shown as “orig. validation data” of Table 5. The
precision was good, but with very low coverage.
This supports our claim that the TLINKs provided
by the training/validation files are not complete.
We also tried using the event and TIMEX tags from
the validation data, but performing TLINK classifi-
cation with our system. As shown with “orig. tags
TEA tlinks” in the table, now the coverage rises to
64 (or 0.81), and the overall F1 score reaches 0.52.
The TEA-initial system uses our own annotators.
The performance is similar, with a slight improve-
ment in precision. This result shows our event and
TIMEX tags work well, and are not inferior to the
ones provided by the training data.

The double-checking technique boosts the cov-
erage a lot, probably because we allow positive
results to veto NO-LINKs. Combining double-
checking with the pruning technique yields the
best results, with F1 score 0.58, answering 42 out
of 79 questions correctly.

In order to validate the choice of the depen-
dency path-based context, we also experimented
with a conventional flat context window, using the
same hyperparameters. Every entity is represented
by a 11-word window, with the entity mention in
the middle. If two entities are near each other, their
windows are cut short before reaching the other
entity. Using the flat context instead of depen-
dency paths yields a much weaker performance.

893



This confirms our hypothesis that syntactic depen-
dencies represent temporal relations better than
word windows. However, it should be noted that
we did not separately optimize the models for the
flat context setting. The large performance drop
we saw from switching to flat context did not war-
rant performing a separate parameter search.

We also wanted to check whether a comprehen-
sive annotation of TLINKs in the training data can
improve model performance on the QA task. We
therefore trained our model on TimeBank-Dense
data and evaluated it with QA (see the TEA-Dense
line in Table 5). Interestingly, the performance
is nearly as good as our top model, although
TimeBank-Dense only uses five major classes of
relations. For one thing, it shows that our sys-
tem may perform equally after being trained on
sparsely labeled data and on densely labeled data,
judged from the QA evaluation tool. If this is true,
excessively annotated data may not be necessary
in some tasks.

doc words quest yes no dist- dist+
news 10 6920 99 93 6 40 59
wiki 10 14842 130 117 13 58 72
blogs 8 2053 65 65 0 30 35
total 28 23815 294 275 19 128 166

Table 6: Test data statistics. Adapted from Table 1 in Llorens
et al. (2015a).

9.2 QA-TempEval Experiments

We use the QA toolkit provided by the QA-
TempEval organizers to evaluate our system on the
test data. The documents in test data are not an-
notated at all, so the event tags, TIMEX tags, and
TLINKs are all created by our system.

Table 6 shows the the statistics of test data. As
we can see, the vast majority of the questions in
the test set should be answered with yes. Gener-
ally speaking, it is much more difficult to validate
a specific relation (answer yes) than to reject it
(answer no) when we have as many as 12 types of
relations in addition to the vague NO-LINK class.
dist- means questions involving entities that are
in the same sentence or in consecutive sentences.
dist+ means the entities are farther away.

The QA-TempEval task organizers used two
evaluation methods. The first method is exactly
the same as the one we used on validation data.
The second method used a so-called Time Expres-
sion Reasoner (TREFL) to add relations between
TIMEXes, and evaluated the augmented results.

The goal of such an extra run is to “analyze how
a general time expression reasoner could improve
results”. Our model already includes a component
to handle TIMEX relations, so we will compare our
results with other systems’ in both methods.

News Genre (99 questions)
system prec rec f1 % answd # correct
hlt-fbk-ev1-trel1 0.59 0.17 0.27 29 17
hlt-fbk-ev1-trel2 0.43 0.23 0.30 55 23
hlt-fbk-ev2-trel1 0.56 0.20 0.30 36 20
hlt-fbk-ev2-trel2 0.43 0.29 0.35 69 29
ClearTK 0.60 0.06 0.11 10 6
CAEVO 0.59 0.17 0.27 29 17
TIPSemB 0.50 0.16 0.24 32 16
TIPSem 0.52 0.11 0.18 21 11
TEA 0.61 0.44 0.51 73 44

Wikipedia Genre (130 questions)
system prec rec f1 % answd # correct
hlt-fbk-ev1-trel1 0.55 0.16 0.25 29 21
hlt-fbk-ev1-trel2 0.52 0.22 0.35 50 34
hlt-fbk-ev2-trel1 0.58 0.17 0.26 29 22
hlt-fbk-ev2-trel2 0.62 0.36 0.46 58 47
ClearTK 0.60 0.05 0.09 8 6
CAEVO 0.59 0.17 0.26 28 22
TIPSemB 0.52 0.13 0.21 25 17
TIPSem 0.74 0.19 0.30 26 25
TEA 0.62 0.44 0.51 71 57

Blog Genre (65 questions)
system prec rec f1 % answd # correct
hlt-fbk-ev1-trel1 0.57 0.18 0.28 32 12
hlt-fbk-ev1-trel2 0.43 0.18 0.26 43 12
hlt-fbk-ev2-trel1 0.47 0.14 0.21 29 9
hlt-fbk-ev2-trel2 0.34 0.20 0.25 58 13
ClearTK 0.56 0.08 0.14 14 5
CAEVO 0.48 0.18 0.27 38 12
TIPSemB 0.31 0.08 0.12 25 5
TIPSem 0.45 0.14 0.21 31 9
TEA 0.43 0.20 0.27 46 13

Table 7: QA evaluation on test data without TREFL

The results are shown in Table 7. We give the
results for the hlt-fbk systems that were submitted
by the top team. Among them, hlt-fbk-ev2-trel2
was the overall winner of TempEval task in 2015.
ClearTK, CAEVO, TIPSEMB and TIPSem were
some off-the-shelf systems provided by the task
organizers for reference. These systems were not
optimized for the task (Llorens et al., 2015a).

For news and Wikipedia genres, our system out-
performs all other systems by a large margin. For
blogs genre, however, the advantage of our sys-
tem is unclear. Recall that our training set con-
tains news articles only. While the trained model
works well on Wikipedia dataset too, blog dataset
is fundamentally different in the following ways:
(1) each blog article is very short, (2) the style of
writing in blogs is much more informal, with non-
standard spelling and punctuation, and (3) blogs

894



All Genres (294 questions)
system prec rec f1 % awd # corr
hlt-fbk-ev2-trel2 0.49 0.30 0.37 62 89
hlt-fbk-ev2-trel2-TREFL 0.51 0.34 0.40 67 99
TEA 0.59 0.39 0.47 66 114
TEA-TREFL 0.58 0.38 0.46 66 111

Table 8: Test results over all genres.

are written in first person, and the content is usu-
ally personal stories and feelings.

Interestingly, the comparison between differ-
ent hlt-fbk submissions suggests that resolving
event coreference (implemented by hlt-fbk-ev2-
trel2) substantially improves system performance
for the news and Wikipedia genres. However,
although our system does not attempt to handle
event coreference explicitly, it easily outperforms
the hlt-fbk-ev2-trel2 system in the genres where
coreference seems to matter the most.

Evaluation with TREFL The extra evaluation
with TREFL has a post-processing step that adds
TLINKs between TIMEX entities. Our model
already employs such a strategy, so this post-
processing does not help. In fact, it drags down
the scores a little. Table 8 summarizes the results
over all genres before and after applying TREFL.
For comparison, we include the top 2015 system,
hlt-fbk-ev2-trel2. As we can see, TEA generally
shows substantially higher scores.

9.3 TimeBank-Dense Experiments

We trained and evaluated the same system on
TimeBank-Dense to see how it performs on a sim-
ilar task with a different set of labels and another
method of evaluation. In this experiment, we used
the event and TIMEX tags from test data, as Mirza
and Tonelli (2016).

Since all the NO-LINK (vague) relations are la-
beled, downsampling was not necessary. We did
use double-checking in the final conflict resolu-
tion, but without giving positive cases the veto
power over NO-LINK. Because NO-LINK relations
dominate, especially for cross-sentence pairs, we
set class weights to be inversely proportional to the
class frequencies during training. We also reduced
input batch size to counteract class imbalance.

We ran two sets of experiments. One used
the uniform configurations for all the neural net-
work models, similar to our experiments with QA-
TempEval. The other tuned the hyperparameters
for each component model (number of neurons,
dropout rates, and early stop) separately.

system ClearTK NavyT CAEVO CATENA TEA-Dense
uniform tuned

F1 0.447 0.453 0.507 0.511 0.505 0.519

Table 9: TEA results on TimeBank-Dense. ClearTK, NavyT,
and CAEVO are systems from Chambers et al. (2014).
CATENA is from Mirza and Tonelli (2016)

The results from TimeBank-Dense are shown
in Talble 9. Even though TimeBank-Dense has
a very different methodology for both annotation
and evaluation, our “out-of-the-box” model which
uses uniform configurations across different com-
ponents obtains F1 0.505, compared to the best F1
of 0.511 in previous work. Our best result of 0.519
is obtained by tuning hyperparameters on intra-
sentence, cross-sentence, and DCT models inde-
pendently.

For the QA-TempEval task, we intentionally
tagged a lot of events, and let the pruning algo-
rithm resolve potential conflicts. In the TimeBank-
Dense experiment, however, we only used the pro-
vided event tags, which are sparser than what we
have in QA-TempEval. The system may have lost
some leverage that way.

10 Conclusion

We have proposed a new method for extraction of
temporal relations which takes a relatively sim-
ple LSTM-based architecture, using shortest de-
pendency paths as input, and re-deploys it in a
set of subtasks needed for extraction of temporal
relations from text. We also introduce two tech-
niques that leverage confidence scores produced
by different system components to substantially
improve the results of TLINK classification: (1) a
“double-checking” technique which reverses pairs
in classification, thus boosting the recall of posi-
tives and reducing misclassifications among oppo-
site classes and (2) an efficient pruning algorithm
to resolve TLINK conflicts. In a QA-based evalu-
ation, our proposed method outperforms state-of-
the-art methods by a large margin. We also obtain
state-of-the art results in an intrinsic evaluation on
a very different TimeBank-Dense dataset, proving
generalizability of the proposed model.
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Abstract

Recent work has shown that Tree Ker-
nels (TKs) and Convolutional Neural Net-
works (CNNs) obtain the state of the art in
answer sentence reranking. Additionally,
their combination used in Support Vec-
tor Machines (SVMs) is promising as it
can exploit both the syntactic patterns cap-
tured by TKs and the embeddings learned
by CNNs. However, the embeddings are
constructed according to a classification
function, which is not directly exploitable
in the preference ranking algorithm of
SVMs. In this work, we propose a new hy-
brid approach combining preference rank-
ing applied to TKs and pointwise rank-
ing applied to CNNs. We show that our
approach produces better results on two
well-known and rather different datasets:
WikiQA for answer sentence selection and
SemEval cQA for comment selection in
Community Question Answering.

1 Introduction

Recent work on learning to rank (L2R) has shown
that deep learning and kernel methods are two
very effective approaches, given their ability of
engineering features. In particular, in question
answering (QA), Convolutional Neural Networks
(CNN), e.g., (Severyn and Moschitti, 2015; Miao
et al., 2016; Yin et al., 2016) can automatically
learn the representation of question and answer
passage (Q/AP) in terms of word embeddings and
their non-linear transformations. These are then
used by the other layers of the network to mea-
sure Q/AP relatedness. In contrast, Convolution
Tree Kernels (CTK) can be applied to relational
structures built on top of syntactic/semantic struc-
tures derived from Q/AP text (Tymoshenko et al.,

2016a). CNNs as well as CTKs can achieve
the state of the art in ranking APs or also ques-
tions. Considering their complementary approach
for generating features, studying ways to com-
bine them is very promising. In (Tymoshenko
et al., 2016a), we investigated the idea of extract-
ing layers from CNNs and using them in a ker-
nel function to be further combined with CTKs in
a composite reranking kernel. This was used in
an SVMRank (Joachims, 2002) model, which ob-
tained a significant improvement over the individ-
ual methods. However, the simple use of CNN
layers as vectors in a preference ranking approach
is intutively not optimal since such layers are basi-
cally learnt in a classification model, thus they are
not optimized for SVMRank.

In this work, we further compare and investi-
gate different ways of combining CTKs and CNNs
in reranking settings. In particular, we follow the
intuition that as CNNs learn the embeddings in a
classification setting they should be used in the
same way for building the reranking kernel, i.e.,
we need to use the embeddings in a pointwise
reranking fashion. Therefore, we propose a hy-
brid preference-pointwise kernel, which consists
in (i) a standard reranking kernel based on CTKs
applied to the Q/AP structural representations; and
(ii) a classification kernel based on the embed-
dings learned by neural networks. The intuition
about the hybrid models is to add CNN layer vec-
tors, not their difference, to the preference CTK.
That is, CNN layers are still used as they were
used in a classification setting whereas CTKs fol-
low the standard SVMRank approach.

We tested our proposed models on the answer
sentence selection benchmark, WikiQA (Yang
et al., 2015), and the benchmark from cQA
SemEval-2016 Task 3.A1 corpus. We show that

1http://alt.qcri.org/semeval2016/
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Figure 1: Shallow chunk-based tree representation of a question in the Q/AP pair: Q: “Who wrote white
Christmas?”, AP: “White Christmas is an Irving Berlin song”.

the proposed hybrid kernel consistently outper-
forms standard reranking models in all settings.

2 Answer Sentence/Comment Selection

We focus on two question answering subtasks: an-
swer sentence selection task (AST) and the com-
ment selection task from cQA.

AST consists in selecting correct answer sen-
tences (i.e., an AP composed of only one sentence)
for a question Q from a set of candidate sentences,
S = {s1, ..., sN}. In factoid question answering,
Q typically asks for an entity or a fact, e.g., time
location and date. S is typically a result of so-
called primary search, a result of fast-recall/low-
precision search for potential answer candidates.
For example, it could be a set of candidate APs re-
turned when running a search engine over a large
corpus using Q as a search query. Many such APs
are typically not pertinent to the original question,
thus automatic approaches for selecting those use-
ful are very valuable.

cQA proposes a task similar to AST, where Q
is a question asked by a user in a web forum and
S are the potential answers to the question posted
as comments by other users. Again, many com-
ments in a cQA thread do not contain an answer
to the original question, thus raising the need for
automatic comment selection.

The crucial features for both tasks capture infor-
mation about the relations between Q and an AP.
Manual feature engineering can provide competi-
tive results (Nicosia et al., 2015), however, it re-
quires significant human expertise in the specific
domain and is time-consuming. Thus, machine
learning methods for automatic feature engineer-
ing are extremely valuable.

3 CTK and CNN models

Our baselines are the standalone CTK and CNN
models originally proposed in (Severyn et al.,

task3/

2013; Severyn and Moschitti, 2015) and further
advanced in (Tymoshenko et al., 2016a,b). The
following subsections provide a brief overview of
these models.

3.1 CTK structures

The CTK models are applied to syntactic struc-
tural representations of Q and AP. We used shal-
low chunk-based and constituency tree represen-
tations in AST (Tymoshenko et al., 2016a) and
cQA (Tymoshenko et al., 2016b), respectively. We
follow the tree construction algorithms provided in
the work above. Due to the space restrictions, we
present only high-level details below.

A shallow chunk-based representations of a text
contains lemma nodes at leaf level and their part-
of-speech (POS) tag nodes at the preterminal level.
The latter are further grouped under the chunk and
sentence nodes.

A constituency tree representation is an ordi-
nary constituency parse tree. In all representa-
tions, we mark lemmas that occur in both Q and
AP by prepending the REL tag to the labels of
the corresponding preterminal nodes and their par-
ents.

Moreover, in the AST setting, often question
and focus classification information is used (Li
and Roth, 2002), thus we enrich our representa-
tion with the question class and focus information,
when is available.

Additionally, we mark AP chunks containing
named entities that match the expected answer
type of the question by prepending REL-FOCUS-
<QC> to them. Here, the< QC > placeholder is
substituted with the actual question class. Fig. 1 il-
lustrates a shallow chunk-based syntactic structure
enriched with relational tags.

3.2 Convolutional Neural Networks

A number of NN-based models have been pro-
posed in the research line of answer selection (Hu
et al., 2014; Yu et al., 2014). Here, we employ
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Figure 2: CNN architecture to compute the simi-
larity between question and answer.

the NN model described in (Tymoshenko et al.,
2016a) and depicted in Fig. 2. It includes two main
components (i) two sentence encoders that map
input documents i into fixed size m-dimensional
vectors xsi , and (ii) a feed forward NN that com-
putes the similarity between the two sentences in
the input.

We use a sentence model built with a convolu-
tion operation followed by a k-max pooling layer
with k = 1. The sentence vectors, xsi , are con-
catenated together and given in input to standard
NN layers, which are constituted by a non-linear
hidden layer and a sigmoid output layer. The sen-
tence encoder, xsi = f(si) outputs a fixed-size
vector representation of the input sentence si (we
will refer to f(si) as question embedding, QE, and
answer embedding, AE, respectively).

Additionally, we encode the relational informa-
tion between Q and AP, by injecting relation fea-
tures into the network. In particular, we associate
each word w of the input sentences with a word
overlap binary feature indicating if w is shared by
both Q and AP.

4 Hybrid learning to rank model

We represent a Q/AP pair as p = (q, a, ~x), where
q and a are the structural representations of Q and
AP (as described in Sec. 3), and ~x is a feature vec-
tor that incorporates the features characterizing the
Q/AP pair (e.g., similarity features between Q and
AP or their embeddings learned by an NN).

Reranking kernel. This kernel captures differ-
ences between two Q/AP pairs, p1 and p2, and pre-
dicts which pair should be ranked higher, i.e., in
which pair, AP has higher probability to provide

a correct answer to Q. In the reranking setting, a
training/classification instance is a pair of Q/AP
pairs, 〈p1 = (q, a1, ~x1), p2 = (q, a2, ~x2)〉. The
instance is positive if p1 is ranked higher than p2,
and negative otherwise. One approach for pro-
ducing training data is to form pairs both using
〈p1, p2〉 and 〈p2, p1〉, thus generating both positive
and negative examples.

However, since these are clearly redundant as
formed by the same members, it is more efficient
training with a reduced set of examples such that
members are not swapped. Algorithm 1 describes
how we generate a more compact set of positive
(E+) and negative (E−) training examples for a
specific Q.

Given a pair of examples, 〈p1, p2〉 and 〈p′1, p′2〉,
we used the following preference kernel (Shen and
Joshi, 2003):

RK(〈p1, p2〉, 〈p′1, p′2〉) = K(p1, p
′
1)+

+K(p2, p
′
2)−K(p1, p

′
2)−K(p2, p

′
1),

(1)

which is equivalent to the dot product between
vector subtractions, i.e.,

(
φ(p1)−φ(p2)

)
·
(
φ(p′1)−

φ(p′2)
)
, used in preference reranking, where φ is

a feature map. Additionally, we indicate (i) with
RTK the preference kernel using TKs applied to
q and a trees, i.e., TK(pi, pj) = TK(qi, qj) +
TK(ai, aj); and (ii) with RV , the preference ker-
nel applied to vectors, i.e., V (pi, pj) = V (~xi, ~xj).
Our final reranking kernel is:

RK(〈p1, p2〉, 〈p′1, p′2〉) = RTK(〈p1, p2〉, 〈p′1, p′2〉)+

+RV (〈p1, p2〉, 〈p′1, p′2〉) (2)

Now, if we substitute the explicit form for RV , we
have:

RK(〈p1, p2〉, 〈p′1, p′2〉) = RTK(〈p1, p2〉, 〈p′1, p′2〉)+

+V (p1, p
′
1) + V (p2, p

′
2)− V (p1, p

′
2)− V (p2, p

′
1)

Since our vectors are internal network layers in
order to not lose important information with differ-
ences (operated by RV ), we only keep V (p1, p

′
1)

(or equivalently V (p2, p
′
2)), i.e.,

RK(〈p1, p2〉, 〈p′1, p′2〉) = RTK(〈p1, p2〉, 〈p′1, p′2〉)+

V (p1, p
′
1) (3)

Note that our approach also works when using
Alg. 1.
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Algorithm 1 Generating training data for reranking
Require: Sq+, Sq− - (q, a, ~x)-triplets for correct and wrong

answer sentences per question Q
1: E+← ∅, E−← ∅, flip← true
2: for all s+ ∈ Sq+ do
3: for all s− ∈ Sq− do
4: if flip == true then
5: E+ ← E+ ∪ (s+, s−)
6: flip← false
7: else
8: E− ← E− ∪ (s−, s+)
9: flip← true

10: return E+, E−

5 Experiments

In our experiments, we compare various methods
of combining CTKs and CNNs, using standard
and our hybrid reranking kernels. The software
for reproducing our experimental results is avail-
able at https://github.com/iKernels/
RelTextRank.

5.1 Experimental setup

WikiQA, sentence selection dataset: this was
created for open domain QA. Table 1 provides the
statistics regarding this dataset. Following Yang
et al. (2015), we discard questions that have either
only correct or only incorrect answers.

cQA, SemEval-2016 dataset: we used the En-
glish data from Task 3, Subtask A2. We can ex-
actly compare with the state of the art in SemEval.
It contains questions collected from the Qatar Liv-
ing forum3 and the first ten comments per question
manually annotated. The train, dev. and test sets
contain 1790, 244 and 327 questions, respectively.

Text Preprocessing: we used the Illinois chun-
ker (Punyakanok and Roth, 2001) and the Stanford
CoreNLP (Manning et al., 2014) toolkit, v3.6.0.
When experimenting with SemEval-2016, we per-
form preprocessing as in (Tymoshenko et al.,
2016a), e.g., we truncate all the comments to 2000
symbols and sentences to 70 words.

CTKs: we trained our models with SVM-Light-
TK4 using the partial tree kernel (PTK) and the
subset tree kernel (STK). We use PTK for WikiQA
and STK for SemEval as suggested in our previ-
ous work (Tymoshenko et al., 2016a) with default

2http://alt.qcri.org/semeval2016/
task3/index.php?id=description-of-tasks

3http://www.qatarliving.com/forum
4http://disi.unitn.it/moschitti/

Tree-Kernel.htm

Dataset Q AP Q with AP
WikiQA-train 2,118 20,360 873
WikiQA-test 633 6,165 243
WikiQA-dev 296 2,733 126

Table 1: WikiQA statistics.

parameters and the polynomial kernel (P) of de-
gree 3 on all feature vectors, which are embed-
dings learned as described in Section 3.2.

Neural Network (CNN) setup: we used the
same setup and parameters as (Tymoshenko et al.,
2016a): we pre-initialize the word embeddings
with skipgram embedding of dimensionality 50
trained on the English Wikipedia dump (Mikolov
et al., 2013). We used a single non-linear hidden
layer (with hyperbolic tangent activation, Tanh),
whose size is equal to the size of the previous
layer, i.e., the join layer. The network is trained us-
ing SGD with shuffled mini-batches using the Rm-
sprop update rule (Tieleman and Hinton, 2012).
The model is trained until the validation loss stops
improving. The size of the sentences embedding
(QE and AE) and of the join layer is set as 200.

QA metrics: we report our results in terms of
Mean Average Precision (MAP), Mean Recipro-
cal Rank (MRR) and P@1.

5.2 Ranking with trees and embeddings

We evaluate the combination techniques proposed
in Sec. 4 on the SemEval-2016 and WikiQA de-
velopment (DEV) and test (TEST) sets. Addition-
ally, to have more reliable results, it is standard
practice to apply n-fold cross-validation. How-
ever, we cannot do this on the training (TRAIN)
sets, since the embeddings learned in Sec. 3.2 are
trained on TRAIN by construction, and therefore
cross-validation on TRAIN would exhibit unreal-
istically high performance. Thus, we employed
the following disjoint Cross Validation approach:
we train 5 models as in traditional 5-fold cross-
validation on TRAIN. Then, we merged WikiQA
DEV and TEST sets, split the resulting set into
5 subsets, and use i-th subset to test the model
trained in i-th fold (i=1,..,5).

Table 2 reports the performance of the models.
Here, Rank corresponds to the traditional rerank-
ing model described by Eq. 2 in Sec. 4. Hybrid
refers to our new reranking/classification kernels
described by Eq. 3. V means that the model uses
a kernel applied to the embedding feature vectors
only. T specifies that the model employs struc-
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WikiQA SemEval-2016, Task 3.A
DEV TEST Cross Validation DEV TEST

MRR MAP P@1 MRR MAP P@1 MRR MAP P@1 MAP MRR MAP MRR
Rank:T 72.33 71.96 59.02 71.25 69.71 56.54 71.57±2.09 70.56±1.98 57.56±3.43 65.19 73.16 75.14 82.90
Class:V 70.88 70.55 58.20 66.98 65.18 53.59 68.54±1.78 67.45±1.64 55.95±1.54 65.63 72.69 75.16 82.37
Rank:V 69.39 68.73 54.92 67.56 66.42 54.43 66.64±3.21 65.66±2.19 51.83±2.66 65.29 72.65 74.49 81.77
Rank:T+V 71.54 71.05 59.02 71.56 69.99 57.38 70.23±2.63 69.33±2.15 56.79±3.19 66.22 73.74 74.79 81.69
Hybrid:T+V 75.05 74.02 63.93 74.08 72.19 61.60 74.36±2.67 72.69±1.73 62.16±3.31 68.08 75.09 77.10 83.45
CNN 72.04 71.73 59.84 70.34 68.73 56.12 — — — 66.48 73.46 76.17 81.32
Rank’:T+V 71.29 70.79 57.94 72.51 71.29 59.26 — — — — — — —
ABCNN — — — 71.27 69.14 — — — — — — — —
KeLP (#1) — — — — — — — — — — — 79.19 86.42
ConvKN (#2) — — — — — — — — — — — 77.66 84.93

Table 2: Experimental results on WikiQA and SemEval-2016 Task 3.A corpora

tural representations with a tree kernel. Finally,
V +T means that both embedding feature vectors
and trees are used.

The experiments show that: in general, a stan-
dalone model with CTKs applied to the syntac-
tic structures (Rank:T) outperforms the standalone
feature-based models using embeddings as feature
vectors (V).

Then, the straightforward combination of tree
and polynomial kernels applied to the syntactic
structural representations and embeddings (Rank:
T+V) does not improve over the Rank: T model.

At the same time, the Hybrid model consistently
outperforms all the other models in all possible ex-
perimental configurations, thus confirming our hy-
pothesis that the classification setting is more ap-
propriate when using embeddings as feature vec-
tors in the kernel-based ranking models.

Additionally, for reference, we report the per-
formance of the CNN we used to obtain the em-
beddings. It is consistently outperformed by the
Hybrid model on all the datasets.

Finally, in the last four lines of Tab. 2, we re-
port the performance of the state-of-the-art mod-
els from previous work, measured on exactly the
same experimental settings we used.

Here Rank’:T+V is our model described in
(Tymoshenko et al., 2016a), based on the tradi-
tional reranking model. Our updated version ob-
tains comparable performance on WikiQA-DEV
and slightly lower performance on WikiQA-TEST
(probably, just due to differences in preprocessing
after we updated our pre-processing pipelines).

ABCNN (Yin et al., 2016) is another state-of-
the-art system based on advanced attention-based
convolutional networks. All our models involving
CTKs outperform it.

KeLP (#1) (Filice et al., 2016) and ConvKN
(#2) (Barrón-Cedeño et al., 2016) are the two top-
performing SemEval 2016, Task 3.A competition
systems (Nakov et al., 2016). ConvKN (#2) is an

earlier version of our approach, which also em-
ploys CTKs and embeddings. Both KeLP and
ConvKN (i) employ cQA-domain-specific hand-
crafted features, which also consider the thread-
level information, while in this work, we do not
use manually engineered features; (ii) they employ
PTK, which is capable of learning more power-
ful features than SST, but it is more computation-
ally complex; (iii) KeLP system parameters were
optimized in cross-validation on the training set,
while, in this work, we perform no parameter op-
timization. Nevertheless, the performance of our
Hybrid:T+V models on SemEval TEST is compa-
rable to that of ConvKN (#2).

6 Conclusion

In this paper, we have studied and compared state-
of-the-art feature engineering approaches, namely
CTKs and CNNs, on two different QA tasks, AST
and cQA. We investigated the ways of combining
the two approaches into a single model and pro-
posed a hybrid reranking-classification kernel for
combining the structural representations and em-
beddings learned by CNNs.

We have shown that the combination of CTKs
and CNNs with a hybrid kernel in the reranking
setting outperforms the state of the art on AST and
is comparable to the state of the art in cQA. In par-
ticular, in cQA, a combination of CTKs and CNNs
performs comparably to the systems using domain
specific features that were manually engineered.
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Abstract

The existing factoid QA systems often
lack a post-inspection component that can
help models recover from their own mis-
takes. In this work, we propose to cross-
check the corresponding KB relations be-
hind the predicted answers and identify
potential inconsistencies. Instead of devel-
oping a new model that accepts evidences
collected from these relations, we choose
to plug them back to the original questions
directly and check if the revised question
makes sense or not. A bidirectional LSTM
is applied to encode revised questions. We
develop a scoring mechanism over the re-
vised question encodings to refine the pre-
dictions of a base QA system. This ap-
proach can improve the F1 score of STAGG

(Yih et al., 2015), one of the leading QA
systems, from 52.5% to 53.9% on WE-
BQUESTIONS data.

1 Introduction

With the recent advances in building large scale
knowledge bases (KB) like Freebase (Bollacker
et al., 2008), DBpedia (Auer et al., 2007), and
YAGO (Suchanek et al., 2007) that contain the
world’s factual information, KB-based question
answering receives attention of research efforts in
this area. Traditional semantic parsing is one of
the most promising approaches that tackles this
problem by mapping questions onto logical forms
using logical languages CCG (Kwiatkowski et al.,
2013; Reddy et al., 2014; Choi et al., 2015; Reddy
et al., 2016), DCS (Berant et al., 2013; Berant and
Liang, 2014, 2015), or directly query graphs (Yih
et al., 2015) with predicates closely related to KB
schema. Recently, neural network based models
have been applied to question answering (Bordes

Figure 1: Sketch of our approach. Elements in solid round
rectangles are KB relation labels. Relation on the left is cor-
rect, but the base QA system predicts the one on the right.
Dotted rectangles represent revised questions with relation
labels plugged in. The left revised question looks semanti-
cally closer to the original question and itself is more consis-
tent. Hence, it shall be ranked higher than the right one.

et al., 2015; Yih et al., 2015; Xu et al., 2016a,b).
While these approaches yielded successful re-

sults, they often lack a post-inspection component
that can help models recover from their own mis-
takes. Table 1 shows the potential improvement
we can achieve if such a component exists. Can
we leverage textual evidences related to the pre-
dicted answers to recover from a prediction error?
In this work, we show it is possible.

Our strategy is to cross-check the correspond-
ing KB relations behind the predicted answers and
identify potential inconsistencies. As an interme-
diate step, we define question revision as a tai-
lored transformation of the original question using
textual evidences collected from these relations in
a knowledge base, and check if the revised ques-
tions make sense or not. Figure 1 illustrates the
idea over an example question “what did Mary
Wollstonecraft fight for ?” Obviously, “what [area
of activism] did [activist] fight for ?” looks more
consistent over “what [profession] did [person]
fight for ?” We shall build a model that prefers
the former one. This model shall be specialized
for comparing the revised questions and checking
which one makes better sense, not for answering
the revised questions. This strategy differentiates
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Refinement F1 # Refined Qs

STAGG 52.5 -
w/ Best Alternative 58.9 639

Table 1: What if we know the questions on which the sys-
tem makes mistakes? Best alternative is computed by re-
placing the predictions of incorrectly answered questions
by STAGG with its second top-ranked candidate.

our work from many existing QA studies.
Given a question, we first create its revisions

with respect to candidate KB relations. We encode
question revisions using a bidirectional LSTM. A
scoring mechanism over these encodings is jointly
trained with LSTM parameters with the objective
that the question revised by a correct KB relation
has higher score than that of other candidate KB
relations by a certain confidence margin. We eval-
uate our method using STAGG (Yih et al., 2015)
as the base question answering system. Our ap-
proach is able to improve the F1 performance of
STAGG (Yih et al., 2015) from 52.5% to 53.9%
on a benchmark dataset WEBQUESTIONS (Berant
et al., 2013). Certainly, one can develop special-
ized LSTMs that directly accommodate text evi-
dences without revising questions. We have modi-
fied QA-LSTM and ATTENTIVE-LSTM (Tan et al.,
2016) accordingly (See Section 4). However, so
far the performance is not as good as the question
revision approach.

2 Question Revisions

We formalize three kinds of question revi-
sions, namely entity-centric, answer-centric, and
relation-centric that revise the question with re-
spect to evidences from topic entity type, answer
type, and relation description. As illustrated in
Figure 2, we design revisions to capture general-
izations at different granularities while preserving
the question structure.

Let sr (e.g., Activist) and or (e.g.,
ActivismIssue) denote the subject
and object types of a KB relation r (e.g.,
AreaOfActivism), respectively. Let α
(type.object.name) denote a function
returning the textual description of a KB element
(e.g., relation, entity, or type). Assuming that a
candidate answer set is retrieved by executing a
KB relation r from a topic entity in question, we
can uniquely identify the types of topic entity and
answer for the hypothesis by sr and or, respec-
tively. It is also possible that a chain of relations
r = r1r2 . . . rk is used to retrieve an answer set

Figure 2: Illustration of different question revision
strategies on the running example w.r.t KB relation
activism.activist.area of activism.

from a topic entity. When k = 2, by abuse of
notation, we define sr1r2 = sr1 , or1r2 = or2 , and
α(r1r2) = concat(α(r1), α(r2)).

Let m : (q, r) 7→ q′ denote a mapping from
a given question q = [w1, w2, . . . , wL] and a KB
relation r to revised question q′. We denote the
index span of wh-words (e.g., “what”) and topic
entity (e.g., “Mary Wollstonecraft”) in question q
by [is, ie] and [js, je], respectively.
Entity-Centric (EC). Entity-centric question re-
vision aims a generalization at the entity level.
We construct it by replacing topic entity tokens
with its type. For the running example, it be-
comes “what did [activist] fight for”. Formally,
mEC(q, r) = [w[1:js−1];α(sr);w[je+1:L]].
Answer-Centric (AC). It is constructed by aug-
menting the wh-words of entity-centric question
revision with the answer type. The running ex-
ample is revised to “[what activism issue] did
[activist] fight for”. We formally define it as
mAC(q, r) = [w′[1:ie];α(or);w

′
[ie+1:L′]], where

w′i’s are the tokens of entity-centric question re-
vision mEC(q, r) of length L′ with [is, ie] still de-
noting the index span of wh-words in w′.
Relation-Centric (RC). Here we augment the wh-
words with the relation description instead of an-
swer type. This form of question revision has the
most expressive power in distinguishing between
the KB relations in question context, but it can
suffer more from the training data sparsity. For
the running example, it maps to “[what area of
activism] did [activist] fight for”. Formally, it is
defined as mRC(q, r) = [w′[1:ie];α(r);w

′
[ie+1:L′]].

3 Model

3.1 Task Formulation
Given a question q, we first run an existing QA
system to answer q. Suppose it returns r as the top
predicted relation and r′ is a candidate relation that
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is ranked lower. Our objective is to decide if there
is a need to replace r with r′. We formulate this
task as finding a scoring function s : (q, r) → R
and a confidence margin threshold t ∈ R>0 such
that the function

replace(r, r′, q)=

{
1, if s(q, r′)− s(q, r) ≥ t
0, otherwise

(1)

makes the replacement decision.

3.2 Encoding Question Revisions
Let q′ = (w′1, w

′
2, . . . , w

′
l) denote a question re-

vision. We first encode all the words into a d-
dimensional vector space using an embedding ma-
trix. Let ei denote the embedding of word w′i. To
obtain the contextual embeddings for words, we
use bi-directional LSTM

−→
h i = LSTMfwd(

−→
h i−1, ei) (2)

←−
h i = LSTMbwd(

←−
h i+1, ei) (3)

with
−→
h 0 = 0 and

←−
h l+1 = 0. We combine

forward and backward contextual embeddings by
hi = concat(

−→
h i,
←−
h i). We then generate the fi-

nal encoding of revised question q′ by enc(q′) =
concat(h1,hl).

3.3 Training Objective
Score Function. Given a question revision map-
ping m, a question q, and a relation r, our scoring
function is defined as s(q, r) = wTenc(m(q, r))
wherew is a model parameter that is jointly learnt
with the LSTM parameters.
Loss Function. Let T = {(q, aq)} denote a set
of training questions paired with their true answer
set. Let U(q) denote the set of all candidate KB
relations for question q. Let f(q, r) denote the F1

value of an answer set obtained by relation r when
compared to aq. For each candidate relation r ∈
U(q) with a positive F1 value, we define

N(q, r) = {r′ ∈ U(q) : f(q, r) > f(q, r′)} (4)

as the set of its negative relations for question q.
Similar to a hinge-loss in (Bordes et al., 2014), we
define the objective function J(θ,w,E) as
∑

(q,r,r′)

max(0, δλ(q, r, r
′)− s(q, r) + s(q, r′)) (5)

where the sum is taken over all valid {(q, r, r′)}
triplets and the penalty margin is defined as
δλ(q, r, r

′) = λ(f(q, r)− f(q, r′)).

We use this loss function because: i) it allows us
to exploit partially correct answers via F1 scores,
and ii) training with it updates the model param-
eters towards putting a large margin between the
scores of correct (r) and incorrect (r′) relations,
which is naturally aligned with our prediction re-
finement objective defined in Equation 1.

4 Alternative Solutions

Our approach directly integrates additional textual
evidences with the question itself, which can be
processed by any sequence oriented model, and
benefit from its future updates without signifi-
cant modification. However, we could also design
models taking these textual evidences into specific
consideration, without even appealing to question
revision. We have explored this option and tried
two methods that closely follow QA-LSTM and
ATTENTIVE-LSTM (Tan et al., 2016). The lat-
ter model achieves the state-of-the-art for passage-
level question answer matching. Unlike our ap-
proach, they encode questions and evidences for
candidate answers in parallel, and measure the se-
mantic similarity between them using cosine dis-
tance. The effectiveness of these architectures has
been shown in other studies (Neculoiu et al., 2016;
Hermann et al., 2015; Chen et al., 2016; Mueller
and Thyagarajan, 2016) as well.

We adopt these models in our setting as fol-
lows: (1) Textual evidences α(sr) (equiv. of EC
revision), α(or) (equiv. of AC revision) or α(r)
(equiv. of RC revision) of a candidate KB relation
r is used in place of a candidate answer a in the
original model, (2) We replace the entity mention
with a universal #entity# token as in (Yih et al.,
2015) because individual entities are rare and un-
informative for semantic similarity, (3) We train
the score function sim(q, r) using the objective
defined in Eq. 5. Further details of the alternative
solutions can be found in Appendix A.

5 Experiments

Datasets. For evaluation, we use the WEBQUES-
TIONS (Berant et al., 2013), a benchmark dataset
for QA on Freebase. It contains 5,810 questions
whose answers are annotated from Freebase us-
ing Amazon Mechanical Turk. We also use SIM-
PLEQUESTIONS (Bordes et al., 2015), a collection
of 108,442 question/Freebase-fact pairs, for train-
ing data augmentation in some of our experiments,
which is denoted by +SimpleQ. in results.
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Method F1

(Dong et al., 2015) 40.8
(Yao, 2015) 44.3
(Berant and Liang, 2015) 49.7
STAGG (Yih et al., 2015) 52.5
(Reddy et al., 2016) 50.3
(Xu et al., 2016b) 53.3
(Xu et al., 2016a) 53.8
QUESREV on STAGG 53.9

Ensemble
STAGG-RANK (Yavuz et al., 2016) 54.0
QUESREV on STAGG-RANK 54.3

Table 2: Comparison of our question revision approach
(QUESREV) on STAGG with variety of recent KB-QA works.

Training Data Preparation. WEBQUESTIONS

only provides question-answer pairs along with
annotated topic entities. We generate candidates
U(q) for each question q by retrieving 1-hop and
2-hop KB relations r from annotated topic entity e
in Freebase. For each relation r, we query (e, r, ?)
against Freebase and retrieve the candidate an-
swers ra. Then, we compute f(q, r) by comparing
the answer set ra with the annotated answers.

5.1 Implementation Details
Word embeddings are initialized with pretrained
GloVe (Pennington et al., 2014) vectors1, and up-
dated during the training. We take the dimen-
sion of word embeddings and the size of LSTM
hidden layer equal and experiment with values in
{50, 100, 200, 300}. We apply dropout regulariza-
tion on both input and output of LSTM encoder
with probability 0.5. We hand tuned penalty mar-
gin scalar λ as 1. The model parameters are op-
timized using Adam (Kingma and Ba, 2015) with
batch size of 32. We implemented our models in
tensorflow (Abadi et al., 2016).

To refine predictions r of a base QA system, we
take its second top ranked prediction as the refine-
ment candidate r′, and employ replace(r, r′, q) in
Eq. 1. Confidence margin threshold t is tuned
by grid search on the training data after the score
function is trained. QUESREV-AC + RC model
is obtained by a linear combination of QUESREV-
AC and QUESREV-RC, which is formally de-
fined in Appendix B. To evaluate the alternative
solutions for prediction refinement, we apply the
same decision mechanism in Eq. 1 with the trained
sim(q, r) in Section 4 as the score function.

We use a dictionary2 to identify wh-words in a
question. We find topic entity spans using Stan-

1http://nlp.stanford.edu/projects/glove/
2what, who, where, which, when, how

Refinement Model WebQ. + SimpleQ.

QA-LSTM-(equiv EC) 51.9 52.5
QA-LSTM-(equiv AC) 52.4 52.9
QA-LSTM-(equiv RC) 52.6 53.0
ATTENTIVE-LSTM-(equiv EC) 52.2 52.6
ATTENTIVE-LSTM-(equiv AC) 52.7 53.0
ATTENTIVE-LSTM-(equiv RC) 52.9 53.1
QUESREV-EC 52.9 52.8
QUESREV-AC 53.5 53.6
QUESREV-RC 53.2 53.8
QUESREV-AC + RC 53.3 53.9

Table 3: F1 performance of variants of our model QUESREV
and alternative solutions on base QA system STAGG.

ford NER tagger (Manning et al., 2014). If there
are multiple matches, we use the first matching
span for both.

5.2 Results

Table 2 presents the main result of our prediction
refinement model using STAGG’s results. Our ap-
proach improves the performance of a strong base
QA system by 1.4% and achieves 53.9% in F1

measure, which is slightly better than the state-of-
the-art KB-QA system (Xu et al., 2016a). How-
ever, it is important to note here that Xu et al.
(2016a) uses DBPedia knowledge base in addition
to Freebase and the Wikipedia corpus that we do
not utilize. Moreover, applying our approach on
the STAGG predictions reranked by (Yavuz et al.,
2016), referred as STAGG-RANK in Table 2, leads
to a further improvement over a strong ensem-
ble baseline. These suggest that our system cap-
tures orthogonal signals to the ones exploited in
the base QA models. Improvements of QUESREV

over both STAGG and STAGG-RANK are statisti-
cally significant.

In Table 3, we present variants of our approach.
We observe that AC model yields to best refine-
ment results when trained only on WEBQUES-
TIONS data (e.g., WebQ. column). This empirical
observation is intuitively expected because it has
more generalization power than RC, which might
make AC more robust to the training data sparsity.
This intuition is further justified by observing that
augmenting the training data with SIMPLEQUES-
TIONS improves the performance of RC model
most as it has more expressive power.

Although both QA-LSTM and ATTENTIVE-
LSTM lead to successful prediction refinements on
STAGG, question revision approach consistently
outperforms both of the alternative solutions. This
suggests that our way of incorporating the new
textual evidences by naturally blending them in
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Example Predictions and Replacements
1. What position did vince lombardi play in college ?
STAGG: person.education / education.institution (2-hop)
- what position did person play in college
QUESREV-EC: football player.position s
- what position did american football player play in college
2. What did mary wollstonecraft fight for ?
STAGG: person.profession
- what profession did person fight for
QUESREV-AC: activist.area of activism
- what activism issue did activist fight for
3. Where was anne boleyn executed ?
STAGG: person.place of birth
- where place of birth was person executed
QUESREV-RC: deceased person.place of death
- where place of death was deceased person executed
4. Where does the zambezi river start ?
STAGG: river.mouth
- where mouth does the river start
QUESREV-RC: river.origin
- where origin does the river start

Table 4: Example predictions of STAGG (Yih et al., 2015) and
replacements proposed by variants of QUESREV, followed by
their corresponding question revisions. The colors red and
blue indicate wrong and correct, respectively. Domain names
of KB relations are dropped for brevity.

the question context leads to a better mechanism
for checking the consistency of KB relations with
the question. It is possible to argue that part of the
improvements of refinement models over STAGG

in Table 3 may be due to model ensembling. How-
ever, the performance gap between QUESREV and
the alternative solutions enables us to isolate this
effect for query revision approach.

6 Related Work

One of the promising approaches for KB-QA is se-
mantic parsing, which uses logical language CCG
(Kwiatkowski et al., 2013; Reddy et al., 2014;
Choi et al., 2015) or DCS (Berant et al., 2013)
for finding the right grounding of the natural lan-
guage on knowledge base. Another major line of
work (Bordes et al., 2014; Yih et al., 2015; Xu
et al., 2016b) exploit vector space embedding ap-
proach to directly measure the semantic similar-
ity between questions and candidate answer sub-
graphs in KB. In this work, we propose a post-
inspection step that can help existing KB-QA sys-
tems recover from answer prediction errors.

Our work is conceptually related to traditional
query expansion, a well-explored technique (Qiu
and Frei, 1993; Mitra et al., 1998; Navigli and Ve-
lardi, 2003; Riezler et al., 2007; Fang, 2008; Sor-
doni et al., 2014; Diaz et al., 2016) in information

retrieval area. The intuition behind query expan-
sion is to reformulate the original query to improve
retrieval performance. Our approach revises ques-
tions using candidate answers already retrieved by
a base QA system. Revised questions are then
used for reasoning about the corresponding pre-
dictions themselves, not for retrieving more candi-
dates. Hence, it is specialized rather as a reasoning
component than a retrieval one.

Hypothesis generation steps in (Téllez-Valero
et al., 2008) and (Trischler et al., 2016) are re-
lated to our question revision process. However,
hypotheses in these approaches need to be further
compared against supporting paragraphs for rea-
soning. This limits the applicability of them in
KB-QA setting due to lack of supporting texts.
Our approach modifies the appropriate parts of
the question using different KB evidences behind
candidate answers that are more informative and
generalizable. This enables us to make reasoning
about candidate predictions directly via revised
questions without relying on any supporting texts.

7 Conclusion

We present a prediction refinement approach for
question answering over knowledge bases. We in-
troduce question revision as a tailored augmenta-
tion of the question via various textual evidences
from KB relations. We exploit revised questions
as a way to reexamine the consistency of candi-
date KB relations with the question itself. We
show that our method improves the quality of an-
swers produced by STAGG on the WEBQUES-
TIONS dataset.
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A Implementation details of alternative
solutions

Following (Tan et al., 2016), we use the same bidi-
rectional LSTM for both questions and textual ev-
idences. For the attentive model, we apply the at-
tention mechanism on the question side because
our objective is to match textual evidences to the
question context unlike the original model. We use
average pooling for both models and compute the
general attention via a bilinear term that has been
shown effective in (Luong et al., 2015).

For the model and training parameters, we fol-
low the strategy described in Section 5.1 with a
difference that λ is tuned to be 0.2 in this set-
ting. This intuitively makes sense because the
score sim(q, r) is in [−1, 1].

To clarify the question and answer sides for the
alternative models, we provide concrete examples
in Table 5 for the running example.

Question Side Answer Side Model Name

what did #entity# fight for activist ALT.-(equiv EC)
what did #entity# fight for activism issue ALT.-(equiv AC)
what did #entity# fight for area of activism ALT.-(equiv RC)

Table 5: Question (q) and answer (a) sides used for alter-
native (e.g., ALT.) solutions QA-LSTM and ATTENTIVE-
LSTM.

B Combining multiple question revision
strategies

We also performed experiments combining multi-
ple question revisions that may potentially capture
complementary signals. To this end, let s1, . . . , sk
be the trained scoring functions with question
revisions constructed by m1, . . . ,mk, we define
s(q, r) =

∑k
i=1 γisi(q, r) where γ ∈ Rk is a

weight vector that is trained using the same objec-
tive defined in Equation 5. This strategy is used to
obtain AC+RC model reported in experimental
results by combining AC and RC for k = 2.
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proving question answering by combining multi-
ple systems via answer validation. In International
Conference on Computational Linguistics and Intel-
ligent Text Processing (CICLING).

Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer
Suleman. 2016. Natural language comprehension
with epireader. In Empirical Methods on Natural
Language Processing (EMNLP).

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2016a. Hybrid question answer-
ing over knowledge base and free text. In Inter-
national Conference on Computational Linguistics
(COLING).

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016b. Question answering on
freebase via relation extraction and textual evidence.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Xuchen Yao. 2015. Lean question answering over free-
base from scratch. In The North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Semih Yavuz, Izzeddin Gur, Yu Su, Mudhakar Srivatsa,
and Xifeng Yan. 2016. Improving semantic parsing
via answer type inference. In Empirical Methods on
Natural Language Processing (EMNLP).

Wen-tau Yih, MingWei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Annual Meeting of the Association for
Computational Linguistics (ACL).

909



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 910–919
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

An empirical study on the effectiveness of images in Multimodal Neural
Machine Translation

Jean-Benoit Delbrouck and Stéphane Dupont
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Abstract

In state-of-the-art Neural Machine Trans-
lation (NMT), an attention mechanism is
used during decoding to enhance the trans-
lation. At every step, the decoder uses this
mechanism to focus on different parts of
the source sentence to gather the most use-
ful information before outputting its tar-
get word. Recently, the effectiveness of
the attention mechanism has also been ex-
plored for multimodal tasks, where it be-
comes possible to focus both on sentence
parts and image regions that they describe.
In this paper, we compare several atten-
tion mechanism on the multimodal trans-
lation task (English, image → German)
and evaluate the ability of the model to
make use of images to improve translation.
We surpass state-of-the-art scores on the
Multi30k data set, we nevertheless iden-
tify and report different misbehavior of the
machine while translating.

1 Introduction

In machine translation, neural networks have at-
tracted a lot of research attention. Recently,
the attention-based encoder-decoder framework
(Sutskever et al., 2014; Bahdanau et al., 2014) has
been largely adopted. In this approach, Recurrent
Neural Networks (RNNs) map source sequences
of words to target sequences. The attention mech-
anism is learned to focus on different parts of the
input sentence while decoding. Attention mecha-
nisms have shown to work with other modalities
too, like images, where their are able to learn to
attend the salient parts of an image, for instance
when generating text captions (Xu et al., 2015).
For such applications, Convolutional Neural Net-
works (CNNs) such as Deep Residual (He et al.,

2016) have shown to work best to represent im-
ages.

Multimodal models of texts and images em-
power new applications such as visual question an-
swering or multimodal caption translation. Also,
the grounding of multiple modalities against each
other may enable the model to have a better under-
standing of each modality individually, such as in
natural language understanding applications.

In the field of Machine Translation (MT), the ef-
ficient integration of multimodal information still
remains a challenging task. It requires combining
diverse modality vector representations with each
other. These vector representations, also called
context vectors, are computed in order the capture
the most relevant information in a modality to out-
put the best translation of a sentence.

To investigate the effectiveness of informa-
tion obtained from images, a multimodal machine
translation shared task (Specia et al., 2016) has
been addressed to the MT community1. The best
results of NMT model were those of Huang et al.
(2016) who used LSTM fed with global visual
features or multiple regional visual features fol-
lowed by rescoring. Recently, Calixto et al. (2017)
proposed a doubly-attentive decoder that outper-
formed this baseline with less data and without
rescoring.

Our paper is structured as follows. In section 2,
we briefly describe our NMT model as well as the
conditional GRU activation used in the decoder.
We also explain how multi-modalities can be im-
plemented within this framework. In the following
sections (3 and 4), we detail three attention mech-
anisms and explain how we tweak them to work
as well as possible with images. Finally, we report
and analyze our results in section 5 then conclude
in section 6.

1http://www.statmt.org/wmt16/multimodal-task.html
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2 Neural Machine Translation

In this section, we detail the neural machine trans-
lation architecture by Bahdanau et al. (2014), im-
plemented as an attention-based encoder-decoder
framework with recurrent neural networks (§2.1).
We follow by explaining the conditional GRU
layer (§2.2) - the gating mechanism we chose for
our RNN - and how the model can be ported to a
multimodal version (§2.3).

2.1 Text-based NMT
Given a source sentence X = (x1, x2, . . . , xM ),
the neural network directly models the condi-
tional probability p(Y |X) of its translation Y =
(y1, y2, . . . , yN ). The network consists of one en-
coder and one decoder with one attention mecha-
nism. The encoder computes a representation C
for each source sentence and a decoder generates
one target word at a time and by decomposing the
following conditional probability :

log p(Y |X) =
n∑

t=1

log p(yt|y < t, C) (1)

Each source word xi and target word yi are a col-
umn index of the embedding matrix EX and EY .
The encoder is a bi-directional RNN with Gated
Recurrent Unit (GRU) layers (Chung et al., 2014;
Cho et al., 2014), where a forward RNN

−→
Ψ enc

reads the input sequence as it is ordered (from
x1 to xM ) and calculates a sequence of forward
hidden states (

−→
h 1,
−→
h 2, . . . ,

−→
hM ). A backward

RNN
←−
Ψ enc reads the sequence in the reverse

order (from xM to x1), resulting in a sequence of
backward hidden states (

←−
hM ,

←−
hM−1, . . . ,

←−
h 1).

We obtain an annotation for each word xi by con-
catenating the forward and backward hidden state
ht = [

−→
h t;
←−
h t]. Each annotation ht contains the

summaries of both the preceding words and the
following words. The representation C for each
source sentence is the sequence of annotations
C = (h1,h2, . . . ,hM ).

The decoder is an RNN that uses a condi-
tional GRU (cGRU, more details in §2.2) with
an attention mechanism to generate a word yt at
each time-step t. The cGRU uses it’s previous
hidden state st−1, the whole sequence of source
annotations C and the previously decoded symbol
yt−1 in order to update it’s hidden state st :

st = cGRU (st−1, yt−1, C) (2)

In the process, the cGRU also computes a time-
dependent context vector ct. Both st and ct are
further used to decode the next symbol. We use
a deep output layer (Pascanu et al., 2014) to com-
pute a vocabulary-sized vector :

ot = Lo tanh(Lsst +Lcct +LwEY [yt−1]) (3)

where Lo, Ls, Lc, Lw are model parameters. We
can parameterize the probability of decoding each
word yt as:

p(yt|yt−1, st, ct) = Softmax(ot) (4)

The initial state of the decoder s0 at time-step t =
0 is initialized by the following equation :

s0 = finit(hM ) (5)

where finit is a feedforward network with one hid-
den layer.

2.2 Conditional GRU
The conditional GRU 2 consists of two stacked
GRU activations called REC1 and REC2 and an
attention mechanism fatt in between (called ATT
in the footnote paper). At each time-step t, REC1
firstly computes a hidden state proposal s′t based
on the previous hidden state st−1 and the previ-
ously emitted word yt−1:

z′t = σ
(
W ′

zEY [yt−1] +U ′zst−1
)

r′t = σ
(
W ′

rEY [yt−1] +U ′rst−1
)

s′t = tanh
(
W ′EY [yt−1] + r′t � (U ′st−1)

)

s′t =(1− z′t)� s′t + z′t � st−1 (6)

Then, the attention mechanism computes ct over
the source sentence using the annotations se-
quence C and the intermediate hidden state pro-
posal s′t:

ct = fatt
(
C, s′t

)
(7)

Finally, the second recurrent cell REC2, com-
putes the hidden state st of the cGRU by looking
at the intermediate representation s′t and context
vector ct:

zt =σ
(
Wzct +Uzs

′
t

)

rt =σ
(
Wrct +Urs

′
t

)

st =tanh
(
Wct + rt � (Us′t)

)

st =(1− zt)� st + zt � s′t (8)
2https://github.com/nyu-dl/

dl4mt-tutorial/blob/master/docs/cgru.pdf
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2.3 Multimodal NMT
Recently, Calixto et al. (2017) proposed a dou-
bly attentive decoder (referred as the ”MNMT”
model in the author’s paper) which can be seen as
an expansion of the attention-based NMT model
proposed in the previous section. Given a se-
quence of second a modality annotations I =
(a1,a2, . . . ,aL), we also compute a new context
vector based on the same intermediate hidden state
proposal s′t:

it = f ′att
(
I, s′t

)
(9)

This new time-dependent context vector is an ad-
ditional input to a modified version of REC2
which now computes the final hidden state st us-
ing the intermediate hidden state proposal s′t and
both time-dependent context vectors ct and it :

zt =σ
(
Wzct +Wzit +Uzs

′
t

)

rt =σ
(
Wrct +Writ +Urs

′
t

)

st =tanh
(
Wct +Wit + rt � (Us′t)

)

st =(1− zt)� st + zt � s′t (10)

The probabilities for the next target word (from
equation 3) also takes into account the new context
vector it:

Lo tanh(Lsst +Lcct +Liit +LwEY [yt−1])
(11)

where Li is a new trainable parameter.
In the field of multimodal NMT, the second
modality is usually an image computed into fea-
ture maps with the help of a CNN. The annotations
a1, a2, . . . , aL are spatial features (i.e. each anno-
tation represents features for a specific region in
the image) . We follow the same protocol for our
experiments and describe it in section 5.

3 Attention-based Models

We evaluate three models of the image attention
mechanism f ′att of equation 7. They have in com-
mon the fact that at each time step t of the de-
coding phase, all approaches first take as input the
annotation sequence I to derive a time-dependent
context vector that contain relevant information
in the image to help predict the current target
word yt. Even though these models differ in how
the time-dependent context vector is derived, they
share the same subsequent steps. For each mech-
anism, we propose two hand-picked illustrations
showing where the attention is placed in an image.

3.1 Soft attention
Soft attention has firstly been used for syntactic
constituency parsing by Vinyals et al. (2015) but
has been widely used for translation tasks ever
since. One should note that it slightly differs
from Bahdanau et al. (2014) where their attention
takes as input the previous decoder hidden state
instead of the current (intermediate) one as shown
in equation 7. This mechanism has also been
successfully investigated for the task of image
description generation (Xu et al., 2015) where
a model generates an image’s description in
natural language. It has been used in multimodal
translation as well (Calixto et al., 2017), for which
it constitutes a state-of-the-art.

The idea of the soft attentional model is to
consider all the annotations when deriving the
context vector it. It consists of a single feed-
forward network used to compute an expected
alignment et between modality annotation al and
the target word to be emitted at the current time
step t. The inputs are the modality annotations
and the intermediate representation of REC1 s′t:

et,l = vT tanh(Uas
′
t +Waal) (12)

The vector et has length L and its l-th item con-
tains a score of how much attention should be put
on the l-th annotation in order to output the best
word at time t. We compute normalized scores to
create an attention mask αt over annotations:

αt,i =
exp(et,i)∑L
j=1 exp(et,j)

(13)

it =

L∑

i=1

αt,iai (14)

Finally, the modality time-dependent context vec-
tor it is computed as a weighted sum over the an-
notation vectors (equation 14). In the above ex-
pressions, vT , Ua andWa are trained parameters.

Figure 1: Die beiden Kinder spielen auf dem
Spielplatz .
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Figure 2: Ein Junge sitzt auf und blickt aus einem
Mikroskop .

3.2 Hard Stochastic attention
This model is a stochastic and sampling-based
process where, at every timestep t, we are making
a hard choice to attend only one annotation. This
corresponds to one spatial location in the image.
Hard attention has previously been used in the
context of object recognition (Mnih et al., 2014;
Ba et al., 2015) and later extended to image
description generation (Xu et al., 2015). In the
context of multimodal NMT, we can follow Xu
et al. (2015) because both our models involve the
same process on images.

The mechanism f ′att is now a function that
returns a sampled intermediate latent variables
γt,i based upon a multinouilli distribution
parameterized by α:

γt ∼ Multinoulli({α1,...,L}) (15)

where γt,i an indicator one-hot variable which is
set to 1 if the i-th annotation (out of L) is the one
used to compute the context vector it:

p(γt,i = 1|γ < t, I) =αt,i (16)

it =
L∑

i=1

γt,iai (17)

Context vector it is now seen as the random vari-
able of this distribution. We define the variational
lower bound L(γ) on the marginal log evidence
log p(y|I) of observing the target sentence y given
modality annotations I .

L(γ) =
∑

γ

p(γ|I) log p(y|γ, I)

≤ log
∑

γ

p(γ|I)p(y|γ, I)

= log p(y|I) (18)

The learning rules can be derived by taking
derivatives of the above variational free energy

L(γ) with respect to the model parameterW :

∂L
∂W

=
∑

γ

p(γ|I)

[
∂ log p(y|γ, I)

∂W
+

log p(y|γ, I)
∂ log p(γ|I)

∂W

]

(19)

In order to propagate a gradient through this
process, the summation in equation 19 can then be
approximated using Monte Carlo based sampling
defined by equation 16:

∂L
∂W

≈ 1

N

N∑

n=1

[
∂ log p(y|γ̃n, I)

∂W
+

log p(y|γ̃n, I)
∂ log p(γ̃n|I)

∂W

]

(20)

To reduce variance of the estimator in equation
20, we use a moving average baseline estimated
as an accumulated sum of the previous log likeli-
hoods with exponential decay upon seeing the k-th
mini-batch:

bk = 0.9× bk−1 + 0.1× log p(y|γ̃k, I) (21)

Figure 3: Ein Mann sitzt neben einem
Computerbildschirm .

Figure 4: Ein Mann in einem orangefarbenen
Hemd und mit Helm .

3.3 Local Attention
In this section, we propose a local attentional
mechanism that chooses to focus only on a small
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subset of the image annotations. Local Attention
has been used for text-based translation (Luong
et al., 2015) and is inspired by the selective
attention model of Gregor et al. (2015) for image
generation. Their approach allows the model
to select an image patch of varying location
and zoom. Local attention uses instead the
same ”zoom” for all target positions and still
achieved good performance. This model can be
seen as a trade-off between the soft and hard
attentional models. The model picks one patch
in the annotation sequence (one spatial location)
and selectively focuses on a small window of
context around it. Even though an image can’t be
seen as a temporal sequence, we still hope that
the model finds points of interest and selects the
useful information around it. This approach has
an advantage of being differentiable whereas the
stochastic attention requires more complicated
techniques such as variance reduction and rein-
forcement learning to train as shown in section
3.2. The soft attention has the drawback to attend
the whole image which can be difficult to learn,
especially because the number of annotations L
is usually large (presumably to keep a significant
spatial granularity).

More formally, at every decoding step t, the
model first generates an aligned position pt.
Context vector it is derived as a weighted
sum over the annotations within the window
[pt − N ; pt + N ] where N is a fixed model
parameter chosen empirically3. These selected
annotations correspond to a squared region in the
attention maps around pt. The attention mask
αt is of size 2N + 1. The model predicts pt as
an aligned position in the annotation sequence
(referred as Predictive alignment (local-m) in
the author’s paper) according to the following
equation:

pt = S · sigmoid(vT tanh(Uas
′
t)) (22)

where vT and Ua are both trainable model pa-
rameters and S is the annotation sequence length
|I|. Because of the sigmoid, pt ∈ [0, S]. We use
equation 12 and 13 respectively to compute the ex-
pected alignment vector et and the attention mask
αt. In addition, a Gaussian distribution centered
around pt is placed on the alphas in order to favor

3We pick N = |ai|/4 = 49

annotations near pt:

αt,i = αt,i exp

(
− (i− pt)2

2σ2

)
(23)

where standard deviation σ = D
2 . We obtain con-

text vector it by following equation 14.

Figure 5: Ein Mädchen mit einer Schwimmweste
schwimmt im Wasser .

Figure 6: Ein kleiner schwarzer Hund springt über
Hindernisse .

4 Image attention optimization

Three optimizations can be added to the attention
mechanism regarding the image modality. All
lead to a better use of the image by the model and
improved the translation scores overall.

At every decoding step t, we compute a gat-
ing scalar βt ∈ [0, 1] according to the previous
decoder state st−1:

βt = σ(Wβst−1 + bβ) (24)

It is then used to compute the time-dependent im-
age context vector :

it = βt

L∑

l=1

αt,lal (25)

Xu et al. (2015) empirically found it to put more
emphasis on the objects in the image descriptions
generated with their model.

We also double the output size of trainable
parameters Ua, Wa and vT in equation 12 when
it comes to compute the expected annotations
over the image annotation sequence. More
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formally, given the image annotation sequence
I = (a1,a2, . . . ,aL),ai ∈ RD, the three ma-
trices are of size D × 2D, D × 2D and 2D × 1
respectively. We noticed a better coverage of the
objects in the image by the alpha weights.

Lastly, we use a grounding attention inspired
by Delbrouck and Dupont (2017). The mech-
anism merge each spatial location ai in the
annotation sequence I with the initial decoder
state s0 obtained in equation 5 with non-linearity
:

I ′ =(f(a1 + s0), f(a2 + s0), . . . , f(aL + s0))
(26)

where f is tanh function. The new annota-
tions go through a L2 normalization layer fol-
lowed by two 1 × 1 convolutional layers (of size
D → 512, 512 → 1 respectively) to obtain L × 1
weights, one for each spatial location. We nor-
malize the weights with a softmax to obtain a
soft attention map α. Each annotation ai is then
weighted according to its corresponding αi:

I =(α1a1,α2a2, . . . ,αLaL) (27)

This method can be seen as the removal of unnec-
essary information in the image annotations ac-
cording to the source sentence. This attention is
used on top of the others - before decoding - and
is referred as ”grounded image” in Table 1.

5 Experiments

For this experiments on Multimodal Machine
Translation, we used the Multi30K dataset (Elliott
et al., 2016) which is an extended version of the
Flickr30K Entities. For each image, one of the
English descriptions was selected and manually
translated into German by a professional transla-
tor. As training and development data, 29,000 and
1,014 triples are used respectively. A test set of
size 1000 is used for metrics evaluation.

5.1 Training and model details
All our models are build on top of the nematus
framework (Sennrich et al., 2017). The encoder
is a bidirectional RNN with GRU, one 1024D
single-layer forward and one 1024D single-layer
backward RNN. Word embeddings for source and
target language are of 620D and trained jointly
with the model. Word embeddings and other
non-recurrent matrices are initialized by sampling

from a Gaussian N (0, 0.012), recurrent matrices
are random orthogonal and bias vectors are all
initialized to zero.

To create the image annotations used by our
decoder, we used a ResNet-50 pre-trained on
ImageNet and extracted the features of size
14 × 14 × 1024 at its res4f layer (He et al.,
2016). In our experiments, our decoder operates
on the flattened 196 × 1024 (i.e L × D). We
also apply dropout with a probability of 0.5
on the embeddings, on the hidden states in the
bidirectional RNN in the encoder as well as in the
decoder. In the decoder, we also apply dropout
on the text annotations hi, the image features
ai, on both modality context vector and on all
components of the deep output layer before the
readout operation. We apply dropout using one
same mask in all time steps (Gal and Ghahramani,
2016).

We also normalize and tokenize English and
German descriptions using the Moses tokenizer
scripts (Koehn et al., 2007). We use the byte pair
encoding algorithm on the train set to convert
space-separated tokens into subwords (Sennrich
et al., 2016), reducing our vocabulary size to
9226 and 14957 words for English and German
respectively.

All variants of our attention model were trained
with ADADELTA (Zeiler, 2012), with mini-
batches of size 80 for our monomodal (text-only)
NMT model and 40 for our multimodal NMT. We
apply early stopping for model selection based
on BLEU4 : training is halted if no improvement
on the development set is observed for more than
20 epochs. We use the metrics BLEU4 (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014) and TER (Snover et al., 2006) to evaluate
the quality of our models’ translations.

5.2 Quantitative results

We notice a nice overall progress over Calixto
et al. (2017) multimodal baseline, especially
when using the stochastic attention. With im-
provements of +1.51 BLEU and -2.2 TER on both
precision-oriented metrics, the model shows a
strong similarity of the n-grams of our candidate
translations with respect to the references. The
more recall-oriented metrics METEOR scores
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Model Test Scores

BLEU↑ METEOR↑ TER↓
Monomodal (text only)
Caglayan et al. (2016) 32.50 49.2
Calixto et al. (2017) 33.70 52.3 46.7
NMT 34.11 ↑ +0.41 52.4 ↑ +0.1 46.2 ↓ -0.5

Multimodal
Caglayan et al. (2016) 27.82 45.0 -
Huang et al. (2016) 36.50 54.1 -
Calixto et al. (2017) 36.50 55.0 43.7
Soft attention 37.10 ↑ +0.60 54.8 ↓ -0.2 42.8 ↓ -0.9
Local attention 37.55 ↑ +1.05 54.8 ↓ -0.2 42.4 ↓ -1.3
Stochastic attention 38.01 ↑ +1.51 55.4 ↑ +0.4 41.5 ↓ -2.2
Soft attention + grounded image 37.62 ↑ +1.12 55.3 ↑ +0.3 41.8 ↓ -1.9
Stochastic attention + grounded image 38.17 ↑ +1.67 55.4 ↑ +0.4 41.5 ↓ -2.2

Table 1: Results on the 1000 test triples of the Multi30K dataset. We pick Calixto et al. (2017) scores
as baseline and report our results accordingly (green for improvement and red for deterioration). In each
of our experiments, Soft attention is used for text. The comparison is hence with respect to the attention
mechanism used for the image modality.

are roughly the same across our models which is
expected because all attention mechanisms share
the same subsequent step at every time-step t,
i.e. taking into account the attention weights of
previous time-step t − 1 in order to compute the
new intermediate hidden state proposal and there-
fore the new context vector it. Again, the largest
improvement is given by the hard stochastic
attention mechanism (+0.4 METEOR): because it
is modeled as a decision process according to the
previous choices, this may reinforce the idea of
recall. We also remark interesting improvements
when using the grounded mechanism, especially
for the soft attention. The soft attention may
benefit more of the grounded image because of
the wide range of spatial locations it looks at,
especially compared to the stochastic attention.
This motivates us to dig into more complex
grounding techniques in order to give the machine
a deeper understanding of the modalities.

Note that even though our baseline NMT
model is basically the same as Calixto et al.
(2017), our experiments results are slightly better.
This is probably due to the different use of dropout
and subwords. We also compared our results to
Caglayan et al. (2016) because our multimodal
models are nearly identical with the major ex-

ception of the gating scalar (cfr. section 4). This
motivated some of our qualitative analysis and
hesitation towards the current architecture in the
next section.

5.3 Qualitative results

For space-saving and ergonomic reasons, we
only discuss about the hard stochastic and soft
attention, the latter being a generalization of the
local attention.
As we can see in Figure 7, the soft attention model
is looking roughly at the same region of the image
for every decoding step t. Because the words
”hund”(dog), ”wald”(forest) or ”weg”(way) in left
image are objects, they benefit from a high gating
scalar. As a matter of fact, the attention mech-
anism has learned to detect the objects within a
scene (at every time-step, whichever word we
are decoding as shown in the right image) and
the gating scalar has learned to decide whether
or not we have to look at the picture (or more
accurately whether or not we are translating an
object). Without this scalar, the translation scores
undergo a massive drop (as seen in Caglayan
et al. (2016)) which means that the attention
mechanisms don’t really understand the more
complex relationships between objects, what is
really happening in the scene. Surprisingly, the
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Figure 7: Representative figures of the soft-attention behavior discussed in §5.3

gating scalar happens to be really low in the
stochastic attention mechanism: a significant
amount of sentences don’t have a summed gating
scalar ≥ 0.10. The model totally discards the
image in the translation process.

It is also worth to mention that we use a
ResNet trained on 1.28 million images for a
classification tasks. The features used by the
attention mechanism are strongly object-oriented
and the machine could miss important information
for a multimodal translation task. We believe
that the robust architecture of both encoders
{←−Ψ enc,

−→
Ψ enc} combined with a GRU layer and

word-embeddings took care of the right trans-
lation for relationships between objects and
time-dependencies. Yet, we noticed a common
misbehavior for all our multimodal models: if the
attention loose track of the objects in the picture
and ”gets lost”, the model still takes it into account
and somehow overrides the information brought
by the text-based annotations. The translation
is then totally mislead. We illustrate with an
example:

Source: A child claps while riding on a
woman ’s shoulders .

GT: Ein Kind sitzt auf den Schultern einer
Frau und klatscht .

Mono: Ein Kind sitzt auf den Schultern einer
Frau und schläft .

Soft: Ein Kind , das sich auf der Schultern
eines Frau reitet , fährt auf den
Schultern .

Hard: Ein Kind in der Haltung , während er
auf den Schultern einer Frau fährt .

The monomodal translation has a sentence-level
BLEU of 82.16 whilst the soft attention and hard
stochastic attention scores are of 16.82 and 34.45
respectively. Figure 8 shows the attention maps
for both mechanism. Nevertheless, one has to
concede that the use of images indubitably helps
the translation as shown in the score tabular.

Figure 8: Wrong detection for both Soft attention
(top) and Hard stochastic attention (bottom)

6 Conclusion and future work

We have tried different attention mechanism and
tweaks for the image modality. We showed im-
provements and encouraging results overall on the
Flickr30K Entities dataset. Even though we iden-
tified some flaws of the current attention mecha-
nisms, we can conclude pretty safely that images
are an helpful resource for the machine in a trans-
lation task. We are looking forward to try out
richer and more suitable features for multimodal
translation (ie. dense captioning features). An-
other interesting approach would be to use visu-
ally grounded word embeddings to capture visual
notions of semantic relatedness.
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Abstract

To be able to interact better with humans,
it is crucial for machines to understand
sound – a primary modality of human per-
ception. Previous works have used sound
to learn embeddings for improved generic
semantic similarity assessment. In this
work, we treat sound as a first-class cit-
izen, studying downstream 6textual tasks
which require aural grounding. To this
end, we propose sound-word2vec – a new
embedding scheme that learns specialized
word embeddings grounded in sounds. For
example, we learn that two seemingly (se-
mantically) unrelated concepts, like leaves
and paper are similar due to the similar
rustling sounds they make. Our embed-
dings prove useful in textual tasks requir-
ing aural reasoning like text-based sound
retrieval and discovering Foley sound ef-
fects (used in movies). Moreover, our em-
bedding space captures interesting depen-
dencies between words and onomatopoeia
and outperforms prior work on aurally-
relevant word relatedness datasets such as
AMEN and ASLex.

1 Introduction
Sound and vision are the dominant perceptual sig-
nals, while language helps us communicate com-
plex experiences via rich abstractions. For exam-
ple, a novel can stimulate us to mentally construct
the image of the scene despite having never phys-
ically perceived it. Indeed, language has evolved
to contain numerous constructs that help depict vi-
sual concepts. For example, we can easily form
the picture of a white, furry cat with blue eyes via.
a description of the cat in terms of its visual at-
tributes (Lampert et al., 2009; Parikh and Grau-
man, 2011).

Need for Onomatopoeia. However, how would
one describe the auditory instantiation of cats?
While a first thought might be to use audio de-
scriptors like loud, shrill, husky etc. as mid-level
constructs or “attributes”, arguably, it is difficult to
precisely convey and comprehend sound through
such language. Indeed, Wake and Asahi (1998)
find that humans first communicate sounds using
“onomatopoeia” – words that are suggestive of
the phonetics of sounds while having no explicit
meaning e.g. meow, tic-toc. When asked for
further explanation of sounds, humans provide
descriptions of potential sound sources or impres-
sions created by the sound (pleasant, annoying,
etc.)

Need for Grounding in Sound. While ono-
matopoeic words exist for commonly found
concepts, a vast majority of concepts are not as
perceptually striking or sufficiently frequent for
us to come up with dedicated words describing
their sounds. Even worse, some sounds, say,
musical instruments, might be difficult to mimic
using speech. Thus, for a large number of
concepts there seems to be a gap between sound
and its counterpart in language (Sundaram and
Narayanan, 2006). This becomes problematic in
specific situations where we want to talk about the
heavy tail of concepts and their sounds, or while
describing a particular sound we want to create
as an effect (say in movies). To alleviate this, a
common literary strategy is to provide metaphors
to more relatable exemplars. For example, when
we say, “He thundered angrily”, we compare the
person’s angry speech to the sound of thunder to
convey the seriousness of the situation. However,
without this grounding in sound, thunder and
anger both appear to be seemingly unrelated
concepts in terms of semantics.
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Contributions. In this work, we learn em-
beddings to bridge the gap between sound and its
counterpart in language. We follow a retrofitting
strategy, capturing similarity in sounds associated
with words, while using distributional semantics
(from word2vec) to provide smoothness to the
embeddings. Note that we are not interested in
capturing phonetic similarity, but the grounding
in sound of the concept associated with the
word (say “rustling” of leaves and paper.) We
demonstrate the effectiveness of our embeddings
on three downstream tasks that require reasoning
about related aural cues:
1. Text-based sound retrieval – Given a textual
query describing the sound and a database con-
taining sounds and associated textual tags, we
retrieve sound samples by matching text (Sec. 5.1)
2. Foley Sound Discovery – Given a short phrase
that outlines the technique of producing Foley
sounds1, we discover other relevant words (ob-
jects or actions) which can produce similar sound
effects (Sec. 5.2)
3. Aurally-relevant word relatedness assessment
on AMEN and ASLex (Kiela and Clark, 2015)
(Sec. 5.3)

We also qualitatively compare with word2vec to
highlight the unique notions of word relatedness
captured by imposing auditory grounding.

2 Related Work

Audio and Word Embeddings. Multiple works
in the recent past (Bruni et al., 2014; Lazaridou
et al., 2015; Lopopolo and van Miltenburg,
2015; Kiela and Clark, 2015; Kottur et al., 2016)
have explored using perceptual modalities like
vision and sound to learn language embeddings.
While Lopopolo and van Miltenburg (2015)
show preliminary results on using sound to learn
distributional representations, Kiela and Clark
(2015) build on ideas from Bruni et al. (2014) to
learn word embeddings that respect both linguistic
and auditory relationships by optimizing a joint
objective. Further, they propose various fusion
strategies to combine knowledge from both the

1Foley sounds are sound effects (typically ambient
sounds) that are added to movies in the post-production stage
to make actions or situations appear more realistic. These
sounds are generally created using easily available proxy ob-
jects that mimic the sound of the true situation being depicted.
For example, sound of breaking celery sticks is used to create
the effect of breaking bones.

modalities. Instead, we “specialize” embeddings
to exclusively respect relationships defined by
sounds, while initializing with word2vec embed-
dings for smoothness. Similar to previous findings
(Melamud et al., 2016), we observe that our spe-
cialized embeddings outperform language-only
as well as other multi-modal embeddings in the
downstream tasks of interest.
In an orthogonal and interesting direction, other
recent works (Chung et al., 2016; He et al., 2016;
Settle and Livescu, 2016) learn word representa-
tions based on similarity in their pronunciation
and not the sounds associated with them. In other
words, phonetically similar words that have near
identical pronunciations are brought closer in the
embedding space (e.g., flower and flour).
Sundaram and Narayanan (2006) study the appli-
cability of onomatopoeia to obtain semantically
meaningful representations of audio. Using
a novel word-similarity metric and principal
component analysis, they find representations for
sounds and cluster them in this derived space to
reason about similarities. In contrast, we are inter-
ested in learning word representations that respect
aural-similarity. More importantly, our approach
learns word representations for in a data-driven
manner without having to first map the sound or
its tags to corresponding onomatopoeic words.

Multimodal Learning with Surrogate Su-
pervision. Kottur et al. (2016) and Owens
et al. (2016) use a surrogate modality to induce
supervision to learn representations for a desired
modality. While the former learns word embed-
dings grounded in cartoon images, the latter learns
visual features grounded in sound. In contrast, we
use sound as the surrogate modality to supervise
representation learning for words.

3 Datasets

Freesound. We use the freesound database (Font
et al., 2013), also used in prior work (Kiela
and Clark, 2015; Lopopolo and van Miltenburg,
2015) to learn the proposed sound-word2vec
embeddings. Freesound is a freely available,
collaborative dataset consisting of user uploaded
sounds permitting reuse. All uploaded sounds
have human descriptions in the form of tags and
captions in natural language. The tags contain
a broad set of relevant topics for a sound (e.g.,
ambience, electronic, birds, city, reverb) and

921



captions describing the content of the sound, in
addition to details pertaining to audio quality.
For the text-based sound retrieval task, we use a
subset of 234,120 sounds from this database and
divide it into training (80%), validation (10%)
and testing splits (10%). Further, for foley sound
discovery, we aggregate descriptions of foley
sound production provided by sound engineers
(epicsound, accessed 23-Jan-2017; Singer, ac-
cessed 23-Jan-2017) to create a list of 30 foley
sound pairs, which forms our ground truth for the
task. For example, the description to produce a
foley “driving on gravel” sound is to record the
“crunching sound of plastic or polyethene bags”.

AMEN and ASLex. AMEN and ASLex (Kiela
and Clark, 2015) are subsets of the standard
MEN (Bruni et al., 2014) and SimLex (Hill
et al., 2015) word similarity datasets consisting
of word-pairs that “can be associated with a
distinctive associated sound”. We evaluate on
this dataset for completeness to benchmark our
approach against previous work. However, we
are primarily interested in the slightly different
problem of relating words with similar auditory
instantions that may or may not be semantically
related as opposed to relating semantically similar
words that can be associated with some common
auditory signal.

4 Approach
We use the Freesound database to construct a
dataset of tuples {s, T}, where s is a sound and
T is the set of associated user-provided tags. We
then aim to learn an embedding space for the
tags that respects auditory grounding using sound
information as cross-modal context – similar
to word2vec (Mikolov et al., 2013) that uses
neighboring words as context / supervision. We
now explain our approach in detail.

Audio Features and Clustering. We repre-
sent each sound s by a feature vector consisting
of the mean and variance of the following audio
descriptors that are readily available as part of
Freesound database:
• Mel-Frequency Cepstral Co-efficients: This

feature represents the short-term power spec-
trum of an audio and closely approximates the
response of the human auditory system – com-
puted as given in (Ganchev et al., 2005).
• Spectral Contrast: It is the magnitude difference

Figure 1: The model used to learn the proposed sound-
word2vec embeddings. The projection matrix WP contain-
ing that is used as the sound-word2vec embedding is learned
by training the model to accurately predict the cluster assign-
ment of the sound.

in the peaks and valleys of the spectrum – com-
puted according to (Akkermans et al., 2009).
• Dissonance: It measures the perceptual rough-

ness of the sound (Plomp and Levelt, 1965).
• Zero-crossing Rate: It is the percentage of sign

changes between consecutive signal values and
is indicative of noise content.
• Spectral Spread: This feature is the concatena-

tion of the k-order moments of the spectrum,
where k ∈ {0, 1, 2, 3, 4}.
• Pitch Salience: This feature helps discriminate

between musical and non-musical tones. While,
pure tones and unpitched sounds have values
near 0, musical sounds containing harmonics
have higher values (Ricard, 2004).

We then use K-Means algorithm to cluster the
sounds in this feature space to assign each sound
to a cluster C(s) ∈ {1, . . .K}. We set K to 30
by evaluating the performance of the embeddings
on text-based audio-retrieval on the held out
validation set. Note that the clustering is only
performed once, prior to representation learning
described below.

Representation Learning. We represent each tag
t ∈ T using a |V| dimensional one-hot encoding
denoted by vt, where V is the set of all unique
tags in the training set (the size of our dictionary).
This one-hot vector vt is projected into a D-
dimensional vector space via WP ∈ R|V|×D, the
projection matrix. This projection matrix com-
putes the representation for each word in V . The
idea of our approach is to use WP to accurately
predict cluster assignments (for sounds associated
with words), which enforces grounding in sound.
For each data-point, we obtain the summary of
the tags T , by averaging the projections of all tags
in the set as 1

|T |
∑

t∈T W
′
Pvt. We then transform

the so obtained summary representation via a
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linear layer (with parameters WO) and pass the
output through the softmax function to obtain a
distribution, p(c|T ) over the K sound clusters.
We perform maximum-likelihood training for the
correct cluster assignment C(s)2, optimizing for
parameters WP and WO:

max
WP ,WO

logP (c = C(s)|T ) (1)

We use SGD with momentum to optimize this
objective which essentially is the cross-entropy
between cluster assignments and p(c|T ). We
set D to 300 to be consistent with the publicly
available word2vec embeddings.

Initialization. We initialize WP with word2vec
embeddings (Mikolov et al., 2013) trained on the
Google news corpus dataset with ∼3M words.
We fine-tune on a subset of 9578 tags which are
present in both Freesound as well as Google news
corpus datasets, which is 55.68% of the original
tags in the Freesound dataset. This helps us
remove noisy tags unrelated to the content of the
sound.

In addition to enlarging the vocabulary, the pre-
training helps induce smoothness in the sound-
word2vec embeddings – allowing us to transfer
semantics learnt from sounds to words that were
not present as tags in the Freesound database. In-
deed, we find that word2vec pre-training helps im-
prove performance (Sec. 5.3). Our use of language
embeddings as an initialization to fine-tune (spe-
cialize) from, as opposed to formulating a joint
objective with language and audio context (Kiela
and Clark, 2015) is driven by the fact that we are
interested in embeddings for words grounded in
sounds, and not better generic word similarity.

5 Results
Ablations. In addition to the language-only base-
line word2vec (Mikolov et al., 2013), we com-
pare against tag-word2vec – that predicts a tag us-
ing other tags of the sound as context, inspired
by (Font et al., 2014). We also report results with
a randomly initialized projection matrix (sound-
word2vec(r) to evaluate the effectiveness of pre-
training with word2vec.
Prior work. We compare against previous works
Lopopolo and van Miltenburg (2015) and Kiela
and Clark (2015). While the former uses a stan-
dard bag of words and SVD pipeline to arrive at

2We also tried to regress directly to sound features instead
of clustering, but found that it had poor performance.

distributional representations for words, the latter
trains under a joint objective that respects both lin-
guistic and auditory similarity. We use the openly
available implementation for Lopopolo and van
Miltenburg (2015) and re-implement Kiela and
Clark (2015) and train them on our dataset for
a fair comparison of the methods. In addition,
we show a comparison to word-vectors released
by (Kiela and Clark, 2015) in the supplementary
material. All approaches use an embedding size
of 300 for consistency.

5.1 Text-based Sound Retrieval

Given a textual description of a sound as query,
we compare it with tags associated with sounds
in the database to retrieve the sound with the
closest matching tags. Note that this is a purely
textual task, albeit one that needs awareness of
sound. In a sense, this task exactly captures what
we want our model to be able to do – bridge
the semantic gap between language and sound.
We use the training split (Sec. 3) to learn the
sound-word2vec vectors, validation to pick the
number of clusters (K), and report results on
the test split. For retrieval, we represent sounds
by averaging the learnt embeddings for the
associated tags. We embed the caption provided
for the sound (in the Freesound database) in a
similar manner, and use it as the query. We
then rank sounds based on the cosine similarity
between the tag and query representations for
retrieval. We evaluate using standard retrieval
metrics – Recall@{1,10,50,100}. Note that
the entire testing set (≈10k sounds) is present in
the retrieval pool. So, recall@100 corresponds
to obtaining the correct result in the top 1% of
the search results, which is a relatively stringent
evaluation criterion.

Results. Table. 1 shows that our sound-word2vec
embeddings outperform the baselines. We see that
specializing the embeddings for sound using our
two-stage training outperforms prior work(Kiela
and Clark (2015) and Lopopolo and van Mil-
tenburg (2015)), which did not do specialization.
Among our approaches, tag-word2vec performs
second best – this is intuitive since the tag dis-
tributions implicitly capture auditory relatedness
(a sound may have tags cat and meow), while
word2vec and sound-word2vec(r) have the lowest
performance.
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Embedding Recall
@1 @10 @50 @100

word2vec 6.47±0.00 14.25±0.05 21.72±0.12 26.03±0.22
tag-word2vec 6.95±0.02 15.10±0.03 22.43±0.09 27.21±0.24

sound-word2vec(r) 6.49±0.00 14.98±0.03 21.96±0.11 26.43±0.20
(Lopopolo and van Miltenburg, 2015) 6.48±0.02 15.09±0.05 21.82±0.13 26.89±0.23

(Kiela and Clark, 2015) 6.52±0.01 15.21±0.03 21.92±0.08 27.74±0.21
sound-word2vec 7.11±0.02 15.88±0.04 23.14±0.09 28.67±0.17

Table 1: Text-based sound retrieval (higher is better). We find
that our sound-word2vec model outperforms all baselines.

Embedding Spearman Correlation ρs
AMEN ASLex

(Lopopolo and van Miltenburg, 2015) 0.410±0.09 0.237±0.04
(Kiela and Clark, 2015) 0.648±0.08 0.366±0.11

sound-word2vec 0.674±0.05 0.391±0.06

Table 2: Comparison to state of the art AMEN and ASLex
datasets (Kiela and Clark, 2015) (higher is better). Our ap-
proach performs better than Kiela and Clark (2015).

5.2 Foley Sound Discovery

In this task, we evaluate how well embeddings
identify matching pairs of target sounds (flapping
bird wings) and descriptions of Foley sound
production techniques (rubbing a pair of gloves).
Intuitively, one expects sound-aware word embed-
dings to do better at this task than sound-agnostic
ones. We setup a ranking task by constructing a
set of original Foley sound pairs and decoy pairs
formed by pairing the target description with every
word from the vocabulary. We rank using cosine
similarity between the average word-vectors in
each member of the pair. A good embedding is
one in which the original Foley sound pair has the
lowest rank. We use the mean rank of the Foley
sound in the dataset for evaluation. We transfer
the embeddings from Sec. 5.1 to this task, without
additional training.

Results. We find that Sound-word2vec per-
forms the best with a mean rank of 34.6 compared
to other baselines tag-word2vec (38.9), sound-
word2vec(r) (114.3) and word2vec (189.45). As
observed previously, the second best performing
approach is tag-word2vec. Lopopolo and van
Miltenburg (2015) and Kiela and Clark (2015)
perform worse than tag-word2vec with a mean
rank of 48.4 and 42.1 respectively. Note that ran-
dom chance gets a rank of (|V|+ 1)/2 = 4789.5.

5.3 Evaluation on AMEN and ASLex
AMEN and ASLex (Kiela and Clark, 2015) are
subsets of the MEN and SimLex-999 datasets for
word relatedness grounded in sound. From Ta-
ble 2, we can see that our embeddings outper-
form (Kiela and Clark, 2015) on both AMEN and
ASLex. These datasets were curated by annotating

word word2vec sound-word2vec

apple apples, pear, fruit bite, snack, chips
berry, pears, strawberry chew, munch, carton

wood lumber, timber, softwoods, wooden, snap, knock,
hardwoods, cedar, birch smack, whack, snapping

bones skull, femur, skeletons, eggshell, carrot, arm
thighbone, pelvis, molar blood, polystyrene, crunch

glass hand-blown, glassware, tumbler, shattered, ceramic, smash
Plexiglass, wine-glass, bottle clink, beer, spoon

Onomatopoeic query words

boom booms, booming, bubble, bomb, bang, explosion
craze, downturn, upswing bombing, exploding, ecstatic

jingle song, commercial, catchy-tune, magic, tinkle, nails
ditty, slogan, anthem bells, key, doorbell

slam slams, piledriver, uranage shut, lock, opening
spinkick, hiptoss, hit closing, latch, door

quack charlatan, quackery, crackpot duck, snort, calling
homeopaths, concoctions, snake-oil chirp, tweet, oink

Table 3: We show nearest neighbors in both word2vec and
sound-word2vec spaces for eight words (‘regular’ words, top
half and onomatopoeic words, bottom half).

concepts related by sound; however we observe
that relatedness is often confounded. For exam-
ple, (river, water), (automobile, car) are marked
as aurally related however they do not stand out
as aurally-related examples as they are already se-
mantically related. In contrast, we are interested in
how onomatopoeic words relate to regular words
(Table 3), which we study by explicit grounding
in sound. Thus while we show competitive perfor-
mance on this dataset, it might not be best suited
for studying the benefits of our approach.

6 Discussion and Conclusion
We show nearest neighbors in both sound-
word2vec and word2vec space (Table 3) to quali-
tatively demonstrate the unique dependencies cap-
tured due to auditory grounding. While word2vec
maps a word (say, apple) to other semantically
similar words (other fruits), similar ‘sounding’
words (chips) or onomatopoeia (munch) are closer
in our embedding space. Moreover, onomatopoeic
words (say, boom and slam) are mapped to rele-
vant objects (explosion and door). Interestingly,
parts (e.g., lock, latch) and actions (closing) are
also closer to the onomatopoeic query – exhibit-
ing an understanding of the auditory scene.
Conclusion. In this work we introduce a novel
word embedding scheme that respects auditory
grounding. We show that our embeddings provide
strong performance on text-based sound retrieval,
Foley sound discovery along with intuitive nearest
neighbors for onomatopoeia that are tasks in text
requiting auditory reasoning. We hope our work
motivates further efforts on understanding and re-
lating onomatopoeia words to “regular” words.
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Abstract
In this paper, we make a simple observa-
tion that questions about images often con-
tain premises – objects and relationships
implied by the question – and that reason-
ing about premises can help Visual Ques-
tion Answering (VQA) models respond
more intelligently to irrelevant or previ-
ously unseen questions.

When presented with a question that is ir-
relevant to an image, state-of-the-art VQA
models will still answer purely based on
learned language biases, resulting in non-
sensical or even misleading answers. We
note that a visual question is irrelevant to
an image if at least one of its premises
is false (i.e. not depicted in the image).
We leverage this observation to construct
a dataset for Question Relevance Predic-
tion and Explanation (QRPE) by searching
for false premises. We train novel question
relevance detection models and show that
models that reason about premises consis-
tently outperform models that do not.

We also find that forcing standard VQA
models to reason about premises during
training can lead to improvements on tasks
requiring compositional reasoning.

1 Introduction

The task of providing natural language answers to
free-form questions about an image – i.e. Visual
Question Answering (VQA) – has received sub-
stantial attention in the past few years (Malinowski
and Fritz, 2014; Antol et al., 2015; Malinowski
et al., 2015; Zitnick et al., 2016; Kim et al., 2016;
Wu et al., 2016; Lu et al., 2016; Andreas et al.,

∗Denotes equal contribution.

Figure 1: Questions asked about images often contain
‘premises’ that imply visual semantics. From the above ques-
tion, we can infer that a relevant image must contain a man,
a racket, and that the man must be holding the racket. We
extract these premises from visually grounded questions and
use them to construct a new dataset and models for question
relevance prediction. We also find that augmenting standard
VQA training with simple premise-based questions results in
improvements on tasks requiring compositional reasoning.

2016; Lu et al., 2017) and has quickly become a
popular problem area. Despite significant progress
on VQA benchmarks (Antol et al., 2015), current
models still present a number of unintelligent and
problematic tendencies.

When faced with questions that are irrelevant
or not applicable for an image, current ‘forced
choice’ models will still produce an answer. For
example, given an image of a dog and a query
“What color is the bird?”, standard VQA models
might answer “Red” confidently, based solely on
language biases in the training set (i.e. an over-
abundance of the word “red”). In these cases, the
predicted answers are senseless at best and mis-
leading at worst, with either case posing serious
problems for real-world applications. Like Ray
et al. (2016), we argue that practical VQA sys-
tems must be able to identify and explain irrelevant
questions. For instance, a more intelligent VQA
model with this capability might answer “There is
no bird in the image” for this example.
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Premises. In this paper, we show that question
premises - i.e. objects and relationships implied by
a question - can enable VQA models to respond
more intelligently to irrelevant or previously un-
seen questions. We develop a premise extraction
pipeline based on SPICE (Anderson et al., 2016)
and demonstrate how these premises can be used
to improve modern VQA models in the face of ir-
relevant or previously unseen questions.

Concretely, we define premises as facts implied
by the language of questions, for example the
question “What brand of racket is the man hold-
ing?” shown in Fig. 1 implies the existence of
a man, a racket, and that the man is holding the
racket. For visually grounded questions (i.e. those
asked about a particular image) these premises im-
ply visual qualities, including the presence of ob-
jects as well as their attributes and relationships.

Broadly speaking, we explore the usefulness of
premises in two settings – when visual questions
are known to be relevant to the images they are
asked on (e.g. in the VQA dataset) and in real-
life situations where such an assumption cannot
be made (e.g. when generated by visually im-
paired users). In the former case, we show that
knowing that a question is relevant allows us to
perform data augmentation by creating additional
simple question-answer pairs using the premises
of source questions. In the latter case, we show
that explicitly reasoning about premises provides
an effective and interpretable way of determining
whether a question is relevant to an image.

Irrelevant Question Detection. We consider a
question to be relevant to an image if all of the
question’s premises apply to the corresponding
image, that is to say all objects, attributes, and
interactions implied by the question are depicted
in the image. We refer to premises that apply for
a given image as true premises and those that do
not apply as false premises. In order to train and
evaluate models for this task, we curate a new ir-
relevant question detection dataset which we call
the Question Relevance Prediction and Explana-
tion (QRPE) dataset. QRPE is automatically cu-
rated from annotations already present in existing
datasets, requiring no additional labeling.

We collect the QRPE dataset by taking each
image-question pair in the VQA dataset (Antol
et al., 2015) and finding the most visually simi-
lar other image for which exactly one of the ques-
tion premises is false. In this way, we collect tu-

ples consisting of two images, a question, and a
premise where the question is relevant for one im-
age and not for the other due to the premise being
false.

For context, the only other existing irrelevant
question detection dataset (Ray et al., 2016) col-
lected irrelevant question-image pairs by human
verification of random pairs. In comparison,
QRPE is substantially larger, balanced between
irrelevant and relevant examples, and presents a
considerably more difficult task due to the close-
ness of the image pairs both visually and with re-
spect to question premises.

We train novel models for irrelevant question
detection on the QRPE dataset and compare to ex-
isting methods. In these experiments, we show
that models that explicitly reason about question
premises consistently outperform baseline models
that do not.

VQA Data Augmentation. Finally, we also in-
troduce an approach to generate simple, templated
question-answer pairs about elementary concepts
from premises of complex training questions. In
initial experiments, we show that adding these
simple question-answer pairs to VQA training
data can improve performance on tasks requiring
compositional reasoning. These simple questions
improve training by bringing implicit training con-
cepts “to the surface”, i.e. introducing direct su-
pervision of important implicit concepts by trans-
forming them to simple training pairs.

2 Related Work

Visual Question Answering: Starting from
simple bag-of-word and CNN+LSTM models
(Antol et al., 2015), VQA architectures have seen
considerable innovation. Many top-performing
models integrate attention mechanisms (over the
image, the question, or both) to focus on impor-
tant structures (Fukui et al., 2016; Lu et al., 2016,
2017), and some have been designed with com-
positionality in mind (Andreas et al., 2016; Hen-
dricks et al., 2016). However, improving compo-
sitionality or performance through data augmenta-
tion remains a largely unstudied area.

Some other recent work has developed models
which produce natural language explanations for
their outputs (Park et al., 2016; Wang et al., 2016),
but there has not been work on generating expla-
nations for irrelevant questions or false premises.
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Question Relevance: Most related to our work
is that of Ray et al. (2016), which introduced
the task of irrelevant question detection for VQA.
To evaluate on this task, they created the Visual
True and False Question (VTFQ) dataset by pair-
ing VQA questions with random VQA images and
having human annotators verify whether or not the
question was relevant. As a result, many of the ir-
relevant image-question pairs exhibit a complete
mismatch of image and question content. Our
Question Relevance Prediction and Explanation
(QRPE) dataset on the other hand is collected such
that irrelevant images for each question closely re-
semble the source image both visually and seman-
tically. We also provide premise-level annotations
which can be used to develop models that not only
decide whether a question is relevant, but also pro-
vide explanations for why that is the case.

Semantic Tuple Extraction: Extracting struc-
tured facts in the form of semantic tuples from text
is a well studied problem (Schuster et al., 2015;
Anderson et al., 2016; Elhoseiny et al., 2016);
however, recent work has begun extending these
techniques to visual domains (Xu et al., 2017;
Johnson et al., 2015). Additionally, the Visual
Genome (Krishna et al., 2016) dataset contains
dense image annotations for objects and their at-
tributes and relationships. However, we are the
first to consider these facts to reason about ques-
tion relevancy and compositionality in VQA.

3 Extracting Premises of a Question

In Section 1, we introduced the concept of
premises and how they can be used. We now for-
malize this concept and explain how premises can
be extracted from questions.

We define question premises as facts implied
about an image from a question asked about
it, which we represent as tuples. Returning to
our running example question “What brand of
racket is the man holding?”, we can express these
premises as the tuples ‘<man>’, ‘<racket>’, and
‘<man, holding, racket>’ respectively. We cat-
egorize these tuples into three groups based on
their complexity. First-order premises represent-
ing the presence of objects (‘<man>’, ‘<cat>’,
‘<sky>’), second-order premises capturing the at-
tributes of objects (‘<man, tall>’, ‘<car, mov-
ing>’), and third-order premises containing in-
teractions between objects (e.g. ‘<man, kicking,
ball>’, ‘<cat, above, car>’).

What color 
of jacket is  
the tall man 
 wearing?

<man> 
<man, tall> 
<jacket> 

<man, wearing, 
jacket>

Man

Wearing

Jacket

Tall

Figure 2: Premise Extraction Pipeline. Objects (gray), at-
tributes (green), and relations (blue) scene graph nodes are
converted into 1st, 2nd, and 3rd order premises respectively.

Premise Extraction: To extract premises from
questions, we use the semantic tuple extraction
pipeline used in the SPICE metric (Anderson
et al., 2016). Originally defined as a metric for
image captioning, SPICE transforms a sentence
into a scene graph using the Stanford Scene Graph
Parser (Schuster et al., 2015) and then extracts
semantic tuples from this representation. Fig. 2
shows this process for a sample question. The
question is represented as a graph of objects, at-
tributes, and relationships from which first, sec-
ond, and third order premises are extracted respec-
tively. As this pipeline was originally designed
for descriptive captions rather than questions, we
found a number of minor modifications helpful
in extracting quality question premises, including
disabling pronoun resolution, verb lemmatization
and METEOR-based Synset matching. We will
release our premise extraction code publicly to en-
courage reproducibility.

While this extraction process typically pro-
duces high quality premise tuples, there are some
sources of noise which must be filtered out. The
SPICE process occasionally produces duplicate
nodes or object nodes not linked to nouns in the
question, which we filter out. We also remove
premises containing words like photo, image, etc.
that refer to the image rather than its content.

A more nuanced source of erroneous premises
comes from the ambiguity in existential questions,
i.e. those about the existence of certain image con-
tent. For example, while the question “Is the lit-
tle girl moving?” contains the premise ‘<girl,
little>’, it is unclear without the answer whether
‘<girl, moving>’ is also a premise. Similarly, for
the question “How many giraffes are in the im-
age?”, ‘<giraffe, many>’ cannot be considered a
premise as there may be 0 giraffes in the image.
To avoid introducing false premises, we filter out
existential and counting questions.
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Figure 3: Some Examples from QRPE Dataset. For a given question Q and a relevant image I+, we find an irrelevant image
I− for which exactly one premise P of the question is false. If there are multiple such candidates, we select the candidate most
visually most similar to I+. As can be seen from these examples, the QRPE dataset is very challenging, with only minor visual
and semantic differences separating the relevant and irrelevant images.

4 Question Relevance Prediction and
Explanation (QRPE) Dataset

As discussed in Section 1, modern VQA models
fail to differentiate between relevant and irrele-
vant questions, answering either with confidence.
This behavior is detrimental to the real world ap-
plication of VQA systems. In this section, we cu-
rate a new dataset for question relevance in VQA
which we call the Question Relevance Prediction
and Explanation (QRPE) dataset. We plan to re-
lease QRPE publicly to help future efforts.

In order to train and evaluate models for irrele-
vant question detection, we would like to create
a dataset of tuples (I+, Q, P, I−) comprised of
a natural language question Q, an image I+ for
which Q is relevant, and an image I− for which Q
is irrelevant because premise P is false. While it
is not required to collect both a relevant and irrele-
vant image for each question, we argue that doing
so is a simple way to balance the dataset and it
ensures that biases against rarer questions (which
would be irrelevant for most images) cannot be ex-
ploited to inflate performance.

We base our dataset on the existing VQA corpus
(Antol et al., 2015), taking the human-generated
(and therefore relevant) image-question pairs from
VQA as I+ and Q. As previously discussed, we
can define the relevancy of a question in terms of
the validity of its premises for an image, so we
extract premises from each question Q and must
find a suitable irrelevant image I−. However, there
are certainly many images for which one or more
of Q’s premises are false and an important design
decision is then how to select I− from this set.

To ensure our dataset is as realistic and chal-
lenging as possible, we consider irrelevant images
which only have a single false question premise
under Q which we denote P . For example, the
question “Is the big red dog old?” could be
matched with an image containing a big, white dog
or a small red dog, but not a small white dog. In
this way, we ensure that image content is seman-
tically appropriate for the question topic but not
quite relevant. Additionally, this provides each
irrelevant image with an explanation for why the
question does not apply.

Furthermore, we sort this subset of irrelevant
image by their visual distance to the source image
I+ based on image encodings from a VGGNet (Si-
monyan and Zisserman, 2014) pretrained on Ima-
geNet (Russakovsky et al., 2012). This ensures
that the relevant and irrelevant images are visually
similar and act as difficult examples.

A major difficulty with our proposed data col-
lection process is how to verify whether a premise
if true or false for any given image in order to iden-
tify irrelevant images. We detail dataset construc-
tion and our approach for this problem in the fol-
lowing section.

4.1 Dataset Construction

We curate our QRPE dataset automatically from
existing annotations in COCO (Lin et al., 2014)
and Visual Genome (Krishna et al., 2016). COCO
is a set of over 300,000 images annotated with ob-
ject segmentations and presence information for
80 classes as well as text descriptions of image
content. Visual Genome builds on this dataset,
providing more detailed object, attribute, and rela-
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Figure 4: A comparison of the QRPE and VTFQ Datasets. On the left, we plot the Euclidean distance between VGGNet-fc7
features extracted from each relevant-irrelevant image pair for each dataset. Note that VTFQ has significantly higher visual
distances. On the right, we show some qualitative examples of irrelevant images for questions that occur in both datasets.
VTFQ images are significantly less related to the source image and question than in our dataset.

tionship annotations for over 100,000 COCO im-
ages. We make use of these data sources to extract
first and second order premises from VQA ques-
tions which are also based on COCO images.

For first order premises (i.e. existential
premises), we consider only the 80 classes present
in COCO (Lin et al., 2014). As VQA and COCO
share the same images, we can easily determine if
a first order premise is true or false for a candidate
irrelevant image simply by checking for the
absence of the appropriate class annotation.

For second order premises (i.e. attributed ob-
jects), we rely on Visual Genome (Krishna et al.,
2016) annotations for object and attribute labels.
Unlike in COCO, the lack of a particular object la-
bel in an image for Visual Genome does not nec-
essarily indicate that the object is not present, both
due to annotation noise and the use of multiple
synonyms for objects by human labelers. As a
consequence, we restrict the set of candidate ir-
relevant images to those which contain a match-
ing object to the question premise but a differ-
ent attribute. Without further restriction, the se-
lected irrelevant attributes do not tend to be mutu-
ally exclusive with the source attribute (i.e. match-
ing ‘<dog, old>’ and ‘<dog, red>’). To correct
this and ensure a false premise, we further re-
strict the set to attributes which are antonyms (e.g.
‘<young>’ for source attribute ‘<old>’) or taxo-
nomic sister terms (e.g. ‘<green>’ for source at-
tribute ‘<red>’) of the original premise attribute.
We also experimented with third order premises;

however, the lack of a corresponding sense of mu-
tual exclusion for verbs and the sparsity of <ob-
ject, relationship, object> premises made finding
non-trivial irrelevant images difficult.

To recap, our data collection approach is to
take each image-question pair in the VQA dataset
and extract its first and second order question
premises. For each premise, we find all images
which lack only this premise and rank them by
their visual distance. The closest of these is kept as
the irrelevant image for each image-question pair.

4.2 Exploring the Dataset

Fig. 3 shows sample (I+, Q, P, I−) tuples from
our dataset. These examples illustrate the diffi-
culty of our dataset. For instance, the images in
the second column differ only by the presence of
the water bottle and images in the fourth column
are differentiated by the color of the devices. Both
of these are fine details of the image content.

The QRPE dataset contains 53,911
(I+, Q, P, I−) tuples generated from as many
premises. In total, it contains 1530 unique
premises and 28,853 unique questions. Among
the 53,911 premises, 3876 are second-order,
attributed object premises while the remaining
50,035 are first-order object/scene premises. We
divide our dataset into two parts – a training set
with 35,486 tuples that are generated from the
VQA training set and a validation set with 18,425
tuples generated from the VQA validation set.
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Manual Validation. We also manually vali-
dated 1000 randomly selected (I+, Q, P, I−) tu-
ples from our dataset. We noted that 99.10% of the
premises P were valid (i.e. implied by the ques-
tion) in I+ and 97.3% were false for the negative
image I−. This demonstrates the high reliability
of our automated annotation pipeline.

4.3 Comparison to VTFQ

We contrast our approach to the VTFQ dataset of
Ray et al. (2016). As discussed prior, VTFQ was
collected by selecting a random question and im-
age from the VQA set and asking human anno-
tators to report if the question was relevant, pro-
ducing a pair. This approach results in irrelevant
image-question pairs that are unambiguously un-
related, with the visual content of the image hav-
ing nothing at all to do with the question or its
source image from VQA.

To quantify this effect and compare to QRPE,
we pair each irrelevant image-question pair
(I−, Q) from VTFQ with a relevant image from
the VQA dataset. Specifically, we find the near-
est neighbor question Qnn in the VQA dataset to
Q based on an average of the word2vec (Mikolov
et al., 2013) embedding of each word, and select
the image on which Qnn was asked as I+ to form
(I+, Q, P, I−) tuples like in our proposed dataset.

In Fig. 4, we present a quantitative and qual-
itative comparison of the two datasets based on
these tuples. On the left side of the figure, we
plot the distributions of Euclidean distance be-
tween the fc7 features of each (I+, I−) pair in
both datasets. We find that the mean distance in
the VTFQ dataset is nearly twice that of our QRPE
dataset, indicating that irrelevant images in VTFQ
are less visually related to source images though
we do note the distribution of distances in both
datasets is long tailed.

On the right side of Fig. 4, we also provide qual-
itative examples of questions that occur in both
datasets. The example on the last row is perhaps
most striking. The source question is asking the
color of a fork and the relevant image shows an
overhead view of a meal with an orange fork set
nearby. The irrelevant image in QRPE is a similar
image of food, but with chopsticks! Conversely,
the image from VTFQ is a man playing baseball.

5 Question Relevance Detection

In this section, we introduce a simple baseline for
irrelevant question detection on the QRPE dataset
and demonstrate that explicitly reasoning about
premises improves performance for both our new
model and existing methods. More formally, we
consider the binary classification task of predict-
ing if a question Qi from an image-question pair
(Ii, Qi) is relevant to image Ii.

A Simple Premise-Aware Model. Like the
standard VQA task, question relevance detection
also requires making a prediction based on an en-
coded image and question. With this in mind, we
begin with a straight-forward approach based on
the Deeper LSTM VQA model architecture of An-
tol et al. (2015). This model encodes the image I
via a VGGNet and the question Q with an LSTM
over one-hot word encodings. The concatenation
of these embeddings are input to a multi-layer per-
ceptron. We fine-tune this model for the binary
question relevance detection task starting from a
model pretrained on the VQA task. We denote this
model as VQA-Bin.

We extend the VQA-Bin model to explicitly
reason about premises. We extract first and second
order premises from the question Q and encode
them as two concatenated one-hot vectors. We add
an additional LSTM to encode the premises and
concatenate this added feature to the image and
question feature. We refer to this premise-aware
model as VQA-Bin-Premise.

Attention Models. We also extend the attention
based Hierarchical Co-Attention VQA model of
Lu et al. (2016) for the task of question rele-
vance in a way similar to Deeper LSTM model.
We call this model HieCoAtt-Bin. The cor-
responding premise-aware model is referred to as
HieCoAtt-Bin-Prem.

Existing Methods. We compare our approaches
with the best performing model of Ray et al.
(2016). This model (which we denote QC-Sim)
uses a pretrained captioning model to automati-
cally provide natural language image descriptions
and reasons about relevance based on a learned
similarity between the question and image caption.

Specifically, the approach uses NeuralTalk2
(Karpathy and Li, 2015) trained on the MS COCO
dataset (Lin et al., 2014) to generate a caption for
each image. Both the caption and question are
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Figure 5: Question relevance explanation: We provide selected examples of predictions from the False Premise Detection
model (FPD) on the QRPE test set. Reasoning about premises presents the opportunity to produce natural language statements
indicating why a question is irrelevant to an image, by pointing to the premise that is invalid.

Models Overall First Order Second Order

VQA-Bin 66.50 67.36 53.00
VQA-Bin-Prem 66.77 67.04 54.38

HieCoAtt-Bin 70.74 71.35 61.54
HieCoAtt-Bin-Prem 73.34 73.97 60.35

QC-Sim 74.35 75.82 55.12
PC-Sim 75.05 76.47 56.04

QPC-Sim 75.31 76.67 55.95

Table 1: Accuracy of Question Relevance models on the
QRPE test set. We find that premise-aware models consis-
tently outperform alternative models.

embedded as a fixed length vector through an en-
coding LSTM (with words being represented as
word2vec (Mikolov et al., 2013) vectors). These
question and caption embeddings are concatenated
and fed to a multilayer perceptron to predict rele-
vance. We consider two additional versions of this
approach that consider only premise-caption sim-
ilarity (PC-Sim) and question-premise-caption
similarities (QPC-Sim).

Results. We train each model on the QRPE train
split and report results on the test set in Table 1. As
the dataset is balanced in the label space, random
accuracy stands at 50%. We find that the simple
VQA-Bin model achieves 66.5% accuracy while
the attention based model HieCoAtt-Bin at-
tains 70.74% accuracy. Surprisingly, the caption-
similarity based QC-Sim model significantly out-
performs these baseline, obtaining an accuracy
of 74.35% while only reasoning about relevancy
from textual descriptions of images. We note that
the caption similarity based approaches use a large
amount of outside data during pretraining of the
captioning model and the word2vec embeddings,
which may have contributed to the effectiveness of
these methods.

Most interestingly, we find that the addi-
tion of extracted premise representations con-
sistently improves performance of base mod-
els. VQA-Bin-Prem, HieCoAtt-Bin-Prem,
PC-Sim, and QPC-Sim outperform their no-

premise information counterparts, with QPC-Sim
being the overall best performing approach at
75.31% accuracy. This is especially interesting
given that the models already have access to the
question from which the premises were extracted.
This result seems to imply there is value in explic-
itly isolating premises from sentence grammar.

We further divide our test set into two splits
consisting of (Q, I) pairs created by either falsi-
fying first-order and second-order premises. We
find that all our models perform significantly bet-
ter on the first-order split. We hypothesize that
the significant diversity in visual representations
of attributed objects and comparatively fewer ex-
amples for each type makes it more difficult to
learn subtle differences for second-order premises.

5.1 Question Relevance Explanation

In addition to identifying whether a question is ir-
relevant to an image, being able to indicate why
carries significant real-world utility. From an in-
terpretability perspective, reporting which premise
is false is more informative than simply answering
the question in the negative, as it can help to cor-
rect the questioner’s misconception regarding the
scene. We propose to generate such explanations
by identifying the particular question premise(s)
that do not apply to an image.

By construction, irrelevant images in the QRPE
dataset are picked on the basis of negating a single
premise – we now use our dataset to train mod-
els to detect false premises, and use the premises
classified as irrelevant to generate templated natu-
ral language explanations.

Fig. 5 illustrates the task setup for false premise
detection. Given a question-image pair, say “What
color is the cat’s tie?”, the objective is to iden-
tify which (if any) question premises are not
grounded in the image, in this case both <cat>
and <tie>. Alternatively, for the question “What
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kind of building is the large white building?”,
both premises <building, large> and <building,
white> are true premises grounded in the image.

We train a simple false premise detection model
for this task. Our model is a multilayer percep-
tron that takes one-hot encodings of premises and
VGGNet (Simonyan and Zisserman, 2014) image
features as input to predict whether the premise
is grounded in the image or not. We trained our
false premise detection model (FPD) model on all
premises in the QRPE dataset.

Our FPDmodel achieves an accuracy of 61.12%
on the QRPE dataset. In Fig. 5, we present quali-
tative results of our premise classification and ex-
planation pipeline. For the question “What color
is the cat’s tie?”, the model correctly recognizes
‘cat’ and ‘tie’ as false premises, and we gener-
ate statements in natural language indicating the
same. Thus, determining question relevance by
reasoning about each premise presents the oppor-
tunity to generate simple explanations that can
provide valuable feedback to the questioner, and
help improve model trust.

6 Premise-Based Visual Question
Answering Data Augmentation

In this section, we develop a premise-based data
augmentation scheme for VQA that generates
simple, templated questions based on premises
present in complex visually-grounded questions
from the VQA (training) dataset.

Using the pipeline presented in Section 3,
we extract premises from questions in the VQA
dataset and apply a simple templated question gen-
eration strategy to transform premises into ques-
tion and answer pairs. Note that because the
source questions come from sighted humans about
an image, we do not need to filter out binary or
counting questions in order to avoid false premises
as in Section 3. We do however filter based
on SPICE similarity between the generated and
source questions to avoid generating duplicates.

We design templates for each type of premise
– first-order (e.g. ‘<man>’ – “Is there a man?”
Yes), second-order (e.g. ‘<man, walking>’ –
“What is the man doing?” Walking, and ‘<car,
red>’ – “What is the color of the car?” Red), and
third-order (‘<man, holding, racket>’ – “What
is the man holding?” Racket, “Who is holding
the racket?” Man). This process transforms im-
plicit premise concepts which previously had to

Training Data Other Number Yes No Total

Source 123,817 29,698 57217 35842 246,574
Premise 137,483 1,850 387,941 0 527,274

Table 2: Answer type distribution of source and premise
questions on the Compositional VQA train set.

be learned as part of understanding more complex
questions into simple, explicit training examples
that can be directly supervised.

Fig. 6 shows sample premise questions pro-
duced from source VQA questions using our
pipeline. We note that the distribution of premise
questions varies drastically from the source VQA
distribution (see Table 2).

We evaluate multiple models with and without
premise augmentation on two splits of the VQA
dataset - the standard split and the compositional
split of Agrawal et al. (2017). The compositional
split is specifically designed to test a model’s abil-
ity to generalize to unseen/rarely seen combina-
tions of concepts at test time.

Augmentation Strategies. We evaluate the
Deeper LSTM model of Lu et al. (2015) on the
standard and compositional splits with two aug-
mentation strategies - All which includes the
entire set of premise questions and Top-1k-A
which includes only questions with answers in the
top 1000 most common VQA answers. The re-
sults are listed in Table 3. We find minor im-
provement of 0.34% on the standard split under
Top-1k-A premise question augmentation. On
the compositional split, we observe a 1.16% gain
with Top-1k-A augmentation over no augmen-
tation. In this setting, explicitly reasoning about
objects and attributes seen in the questions seems
to help the model disentangle objects from their
common characteristics.

Other Models. To check the general effec-
tiveness of our approach, we further evaluate
Top-1k-A augmentation for three additional
VQA models on the compositional split. We
find inconsistent improvements for these more ad-
vanced models with some improving while others
see reductions in accuracy when adding premises.

7 Conclusions and Future Work

In this paper, we made the simple observation that
questions about images often contain premises im-
plied by the question and that reasoning about
premises can help VQA models respond more in-
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What player number is about to
swing at the ball?

Why is the man looking at the
lady?

How many people are wearing
safety jackets?

Is there a player number? Yes Who is looking at the lady? Man Can you see people in the image? Yes
Is there a ball in the image? Yes Is there a lady in the image? Yes What are the people wearing? Jacket

Is there a number in the image? Yes Is there a man in the image? Yes Who is wearing the jacket? People

What is the child sitting on? Where is the pink hat? What is the item called that the
cat is looking at?

What is the child doing? Sitting What is the color of hat? Pink Is there a cat in the image? Yes
Is there a child in the image? Yes Is there a hat in the image? Yes Is there an item in the image? Yes

Figure 6: Sample generated premise questions from source questions. Source questions are in bold. Ground-truth answers are
extracted using the premise tuples.

Augmentation Overall Other Number Yes/No

St
an

da
rd None 54.23 40.34 33.27 79.82

All 53.74 39.28 33.38 79.89
Top-1k-A 54.47 40.56 33.24 80.19

C
om

p. None 46.69 31.92 29.73 70.49
All 47.63 31.97 30.77 72.52
Top-1k-A 47.85 32.58 30.59 72.38

Table 3: Accuracy on the standard and compositional VQA
validation sets for different augmentation strategies for Deep-
erLSTM(Antol et al., 2015).

VQA Model Baseline +Premises

DeeperLSTM(Lu et al., 2015) 46.69 47.85
HieCoAtt(Lu et al., 2016) 50.17 49.98
NMN(Andreas et al., 2016) 49.05 48.43
MCB(Fukui et al., 2016) 50.13 50.57

Table 4: Overall accuracy of different VQA models on the
Compositional VQA test split using Top-1k-A augmentation.

telligently to irrelevant or novel questions.
We develop a system for automatically ex-

tracting these question premises. Using these
premises, we automatically created a novel dataset
for Question Relevance Prediction and Expla-
nation (QRPE) which consists of 53,911 ques-
tion, relevant image, and irrelevant image triplets.
We also train novel question relevance prediction
models and show that models that take advantage
of premise information outperform models that do
not. Furthermore, we demonstrated that questions
generated from premises may be an effective data
augmentation technique for VQA tasks that re-
quire compositional reasoning.

Integrating Question Relevance Prediction and
Explanation (QRPE) models with existing VQA
systems would form a natural extension to our ap-
proach. In this setting, the relevance prediction
model would determine the applicability of a ques-

tion to an image, and select an appropriate path
of action. If the question is classified as rele-
vant, the VQA model would generate a prediction;
otherwise, a question relevance explanation model
would provide a natural language sentence indicat-
ing which premise(s) are not valid for the image.
Such systems would be a step in the direction of
making VQA systems move beyond academic set-
tings to real-world environments.
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Abstract

Existing image captioning models do not
generalize well to out-of-domain images
containing novel scenes or objects. This
limitation severely hinders the use of these
models in real world applications deal-
ing with images in the wild. We address
this problem using a flexible approach
that enables existing deep captioning ar-
chitectures to take advantage of image tag-
gers at test time, without re-training. Our
method uses constrained beam search to
force the inclusion of selected tag words
in the output, and fixed, pretrained word
embeddings to facilitate vocabulary ex-
pansion to previously unseen tag words.
Using this approach we achieve state of
the art results for out-of-domain caption-
ing on MSCOCO (and improved results
for in-domain captioning). Perhaps sur-
prisingly, our results significantly outper-
form approaches that incorporate the same
tag predictions into the learning algorithm.
We also show that we can significantly im-
prove the quality of generated ImageNet
captions by leveraging ground-truth la-
bels.

1 Introduction

Automatic image captioning is a fundamental task
that couples visual and linguistic learning. Re-
cently, models incorporating recurrent neural net-
works (RNNs) have demonstrated promising re-
sults on this challenging task (Vinyals et al., 2015;
Fang et al., 2015; Devlin et al., 2015), leverag-
ing new benchmark datasets such as the MSCOCO
dataset (Lin et al., 2014). However, these datasets
are generally only concerned with a relatively
small number of objects and interactions. Unsur-

Input image containing 

previously unseen object 

(‘suitcase’)

CNN-RNN

Captioning 

Model

A cat sitting inside of

a suitcase.
cat, suitcase, 

inside

Constrained

Beam

Search

Beam

Search

A cat sitting on top of

a refrigerator.

Image Tags

Figure 1: We successfully caption images contain-
ing previously unseen objects by incorporating se-
mantic attributes (i.e., image tags) during RNN de-
coding. Actual example from Section 4.2.

prisingly, models trained on these datasets do not
generalize well to out-of-domain images contain-
ing novel scenes or objects (Tran et al., 2016).
This limitation severely hinders the use of these
models in real world applications dealing with im-
ages in the wild.

Although available image-caption training data
is limited, many image collections are augmented
with ground-truth text fragments such as semantic
attributes (i.e., image tags) or object annotations.
Even if these annotations do not exist, they can be
generated using (potentially task specific) image
taggers (Chen et al., 2013; Zhang et al., 2016) or
object detectors (Ren et al., 2015; Krause et al.,
2016), which are easier to scale to new concepts.
In this paper our goal is to incorporate text frag-
ments such as these during caption generation, to
improve the quality of resulting captions. This
goal poses two key challenges. First, RNNs are
generally opaque, and difficult to influence at test
time. Second, text fragments may include words
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that are not present in the RNN vocabulary.
As illustrated in Figure 1, we address the first

challenge (guidance) by using constrained beam
search to guarantee the inclusion of selected words
or phrases in the output of an RNN, while leaving
the model free to determine the syntax and addi-
tional details. Constrained beam search is an ap-
proximate search algorithm capable of enforcing
any constraints over resulting output sequences
that can be expressed in a finite-state machine.
With regard to the second challenge (vocabulary),
empirically we demonstrate that an RNN can suc-
cessfully generalize from similar words if both the
input and output layers are fixed with pretrained
word embeddings and then expanded as required.

To evaluate our approach, we use a held-out
version of the MSCOCO dataset. Leveraging im-
age tag predictions from an existing model (Hen-
dricks et al., 2016) as constraints, we demonstrate
state of the art performance for out-of-domain
image captioning, while simultaneously improv-
ing the performance of the base model on in-
domain data. Perhaps surprisingly, our results
significantly outperform approaches that incorpo-
rate the same tag predictions into the learning
algorithm (Hendricks et al., 2016; Venugopalan
et al., 2016). Furthermore, we attempt the ex-
tremely challenging task of captioning the Ima-
geNet classification dataset (Russakovsky et al.,
2015). Human evaluations indicate that by lever-
aging ground truth image labels as constraints, the
proportion of captions meeting or exceeding hu-
man quality increases from 11% to 22%. To facil-
itate future research we release our code and data
from the project page1.

2 Related Work

While various approaches to image caption gen-
eration have been considered, a large body of
recent work is dedicated to neural network ap-
proaches (Donahue et al., 2015; Mao et al., 2015;
Karpathy and Fei-Fei, 2015; Vinyals et al., 2015;
Devlin et al., 2015). These approaches typically
use a pretrained Convolutional Neural Network
(CNN) image encoder, combined with a Recurrent
Neural Network (RNN) decoder trained to pre-
dict the next output word, conditioned on previ-
ous words and the image. In each case the decod-
ing process remains the same—captions are gener-
ated by searching over output sequences greedily

1www.panderson.me/constrained-beam-search

or with beam search.
Recently, several works have proposed mod-

els intended to describe images containing ob-
jects for which no caption training data exists (out-
of-domain captioning). The Deep Compositional
Captioner (DCC) (Hendricks et al., 2016) uses a
CNN image tagger to predict words that are rel-
evant to an image, combined with an RNN lan-
guage model to estimate probabilities over word
sequences. The tagger and language models are
pretrained separately, then fine-tuned jointly using
the available image-caption data.

Building on the DCC approach, the Novel Ob-
ject Captioner (NOC) (Venugopalan et al., 2016)
is contemporary work with ours that also uses pre-
trained word embeddings in both the input and
output layers of the language model. Another re-
cent work (Tran et al., 2016) combines specialized
celebrity and landmark detectors into a captioning
system. More generally, the effectiveness of in-
corporating semantic attributes (i.e., image tags)
into caption model training for in-domain data has
been established by several works (Fang et al.,
2015; Wu et al., 2016; Elliot and de Vries, 2015).

Overall, our work differs fundamentally from
these approaches as we do not attempt to intro-
duce semantic attributes, image tags or other text
fragments into the learning algorithm. Instead, we
incorporate text fragments during model decod-
ing. To the best of our knowledge we are the first
to consider this more loosely-coupled approach to
out-of-domain image captioning, which allows the
model to take advantage of information not avail-
able at training time, and avoids the need to retrain
the captioning model if the source of text frag-
ments is changed.

More broadly, the problem of generating
high probability output sequences using finite-
state machinery has been previously explored
in the context of poetry generation using
RNNs (Ghazvininejad et al., 2016) and machine
translation using n-gram language models (Al-
lauzen et al., 2014).

3 Approach

In this section we describe the constrained beam
search algorithm, the base captioning model used
in experiments, and our approach to expanding the
model vocabulary with pretrained word embed-
dings.
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3.1 Constrained Beam Search

Beam search (Koehn, 2010) is an approximate
search algorithm that is widely used to decode out-
put sequences from Recurrent Neural Networks
(RNNs). We briefly describe the RNN decod-
ing problem, before introducing constrained beam
search, a multiple-beam search algorithm that en-
forces constraints in the sequence generation pro-
cess.

Let yt = (y1, ..., yt) denote an output sequence
of length t containing words or other tokens from
vocabulary V . Given an RNN modeling a proba-
bility distribution over such sequences, the RNN
decoding problem is to find the output sequence
with the maximum log-probability, where the log
probability of any partial sequence yt is typically
given by

∑t
j=1 log p(yj | y1, ..., yj−1).

As it is computationally infeasible to solve this
problem, beam search finds an approximate solu-
tion by maintaining a beamBt containing only the
b most likely partial sequences at each decoding
time step t, where b is known as the beam size. At
each time step t, the beam Bt is updated by retain-
ing the b most likely sequences in the candidate
set Et generated by considering all possible next
word extensions:

Et =
{

(yt−1, w) | yt−1 ∈ Bt−1, w ∈ V
}

(1)

To decode output sequences under constraints, a
naive approach might impose the constraints on
sequences produced at the end of beam search.
However, if the constraints are non-trivial (i.e.
only satisfied by relatively low probability output
sequences) it is likely that an infeasibly large beam
would be required in order to produce sequences
that satisfy the constraints. Alternatively, impos-
ing the constraints on partial sequences generated
by Equation 1 is also unacceptable, as this would
require that constraints be satisfied at every step
during decoding—which may be impossible.

To fix ideas, suppose that we wish to generate
sequences containing at least one word from each
constraint set C1 = {‘chair’, ‘chairs’} and C2 =
{‘desk’, ‘table’}. Note that it is possible to rec-
ognize sequences satisfying these constraints us-
ing the finite-state machine (FSM) illustrated in
Figure 2, with start state s0 and accepting state
s3. More generally, any set of constraints that can
be represented with a regular expression can also
be expressed as an FSM (either deterministic or

Figure 2: Example of constrained beam search de-
coding. Each output sequence must include the
words ‘chair’ or ‘chairs’, and ‘desk’ or ‘table’
from vocabulary V . A finite-state machine (FSM)
that recognizes valid sequences is illustrated at
top. Each state in the FSM corresponds to a beam
in the search algorithm (bottom). FSM state tran-
sitions determine the destination beam for each
possible sequence extension. Valid sequences are
found in Beam 3, corresponding to FSM accepting
state s3.

non-deterministic) that recognizes sequences sat-
isfying those constraints (Sipser, 2012).

Since RNN output sequences are generated
from left-to-right, to generate constrained se-
quences, we take an FSM that recognizes se-
quences satisfying the required constraints, and
use the following multiple-beam decoding algo-
rithm. For each state s ∈ S in the FSM, a cor-
responding search beam Bs is maintained. As in
beam search, each Bs is a set containing at most
b output sequences, where b is the beam size. At
each time step, each beamBs

t is updated by retain-
ing the b most likely sequences in its candidate set
Est given by:

Est =
⋃

s′∈S

{
(yt−1, w) | yt−1 ∈ Bs′

t−1, w ∈ V,

δ(s′, w) = s
}

(2)

where δ : S × V 7→ S is the FSM state-transition
function that maps states and words to states. As
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specified by Equation 2, the FSM state-transition
function determines the appropriate candidate set
for each possible extension of a partial sequence.
This ensures that sequences in accepting states
must satisfy all constraints as they have been rec-
ognized by the FSM during the decoding process.

Initialization is performed by inserting an
empty sequence into the beam associated with the
start state s0, so B0

0 := {ε} and Bi 6=0
0 := ∅. The

algorithm terminates when an accepting state con-
tains a completed sequence (e.g., containing an
end marker) with higher log probability than all in-
complete sequences. In the example contained in
Figure 2, on termination captions in Beam 0 will
not contain any words from C1 or C2, captions in
Beam 1 will contain a word from C1 but not C2,
captions in Beam 2 will contain a word from C2
but not C1, and captions in Beam 3 will contain a
word from both C1 and C2.

3.1.1 Implementation Details
In our experiments we use two types of con-
straints. The first type of constraint consists of
a conjunction of disjunctions C = D1, ..., Dm,
where each Di = wi,1, ..., wi,ni and wi,j ∈ V .
Similarly to the example in Figure 2, a partial cap-
tion yt satisfies constraint C iff for each Di ∈ C,
there exists a wi,j ∈ Di such that wi,j ∈ yt. This
type of constraint is used for the experiments in
Section 4.2, in order to allow the captioning model
freedom to choose word forms. For each image
tag, disjunctive sets are formed by using Word-
Net (Fellbaum, 1998) to map the tag to the set of
words in V that share the same lemma.

The use of WordNet lemmas adds minimal
complexity to the algorithm, as the number of
FSM states, and hence the number of search
beams, is not increased by adding disjunctions.
Nevertheless, we note that the algorithm maintains
one beam for each of the 2m subsets of disjunctive
constraints Di. In practice m ≤ 4 is sufficient for
the captioning task, and with these values our GPU
constrained beam search implementation based on
Caffe (Jia et al., 2014) generates 40k captions for
MSCOCO in well under an hour.

The second type of constraint consists of a sub-
sequence that must appear in the generated cap-
tion. This type of constraint is necessary for
the experiments in Section 4.3, because WordNet
synsets often contain phrases containing multiple
words. In this case, the number of FSM states, and
the number of search beams, is linear in the length

of the subsequence (the number of states is equal
to number of words in a phrase plus one).

3.2 Captioning Model

Our approach to out-of-domain image captioning
could be applied to any existing CNN-RNN cap-
tioning model that can be decoding using beam
search, e.g., (Donahue et al., 2015; Mao et al.,
2015; Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Devlin et al., 2015). However, for empir-
ical evaluation we use the Long-term Recurrent
Convolutional Network (Donahue et al., 2015)
(LRCN) as our base model. The LRCN consists
of a CNN visual feature extractor followed by
two LSTM layers (Hochreiter and Schmidhuber,
1997), each with 1,000 hidden units. The model is
factored such that the bottom LSTM layer receives
only language input, consisting of the embedded
previous word. At test time the previous word
is the predicted model output, but during train-
ing the ground-truth preceding word is used. The
top LSTM layer receives the output of the bottom
LSTM layer, as well as a per-timestep static copy
of the CNN features extracted from the input im-
age.

The feed-forward operation and hidden state
update of each LSTM layer in this model can be
summarized as follows. Assuming N hidden units
within each LSTM layer, theN -dimensional input
gate it, forget gate ft, output gate ot, and input
modulation gate gt at timestep t are updated as:

it = sigm (Wxixt +Whiht−1 + bi) (3)

ft = sigm (Wxfxt +Whfht−1 + bf ) (4)

ot = sigm (Wxoxt +Whoht−1 + bo) (5)

gt = tanh (Wxcxt +Whcht−1 + bc) (6)

where xt ∈ RK is the input vector, ht ∈ RN is
the LSTM output,W ’s and b’s are learned weights
and biases, and sigm (·) and tanh(·) are the sig-
moid and hyperbolic tangent functions, respec-
tively, applied element-wise. The above gates con-
trol the memory cell activation vector ct ∈ RN and
output ht ∈ RN of the LSTM as follows:

ct = ft � ct−1 + it � gt (7)

ht = ot � tanh (ct) (8)

where � represents element-wise multiplication.
Using superscripts to represent the LSTM layer

index, the input vector for the bottom LSTM is an
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encoding of the previous word, given by:

x1t = WeΠt (9)

where We is a word embedding matrix, and Πt

is a one-hot column vector identifying the input
word at timestep t. The top LSTM input vector
comprises the concatenated output of the bottom
LSTM and the CNN feature descriptor of the im-
age I , given by:

x2t = (h1t ,CNNθ(I)) (10)

For the CNN component of the model, we evalu-
ate using the 16-layer VGG (Simonyan and Zis-
serman, 2015) model and the 50-layer Residual
Net (He et al., 2016), pretrained on ILSVRC-
2012 (Russakovsky et al., 2015) in both cases. Un-
like Donahue et. al. (2015), we do not fix the
CNN weights during initial training, as we find
that performance improves if all training is con-
ducted end-to-end. In training, we use only very
basic data augmentation. All images are resized
to 256 × 256 pixels and the model is trained on
random 224 × 224 crops and horizontal flips us-
ing stochastic gradient descent (SGD) with hand-
tuned learning rates.

3.3 Vocabulary Expansion
In the out-of-domain scenario, text fragments used
as constraints may contain words that are not ac-
tually present in the captioning model’s vocabu-
lary. To tackle this issue, we leverage pretrained
word embeddings, specifically the 300 dimen-
sion GloVe (Pennington et al., 2014) embeddings
trained on 42B tokens of external text corpora.
These embeddings are introduced at both the word
input and word output layers of the captioning
model and fixed throughout training. Concretely,
the ith column of the We input embedding matrix
is initialized with the GloVe vector associated with
vocabulary word i. This entails reducing the di-
mension of the original LRCN input embedding
from 1,000 to 300. The model output is then:

vt = tanh (Wvh
2
t + bv) (11)

p(yt | yt−1, ..., y1, I) = softmax (W T
e vt) (12)

where vt represents the top LSTM output pro-
jected to 300 dimensions,W T

e contains GloVe em-
beddings as row vectors, and p(yt | yt−1, ..., y1, I)
represents the normalized probability distribution
over the predicted output word yt at timestep t,

given the previous output words and the image.
The model is trained with the conventional soft-
max cross-entropy loss function, and learns to pre-
dict vt vectors that have a high dot-product sim-
ilarity with the GloVe embedding of the correct
output word.

Given these modifications — which could be
applied to other similar captioning models — the
process of expanding the model’s vocabulary at
test time is straightforward. To introduce an addi-
tional vocabulary word, the GloVe embedding for
the new word is simply concatenated with We as
an additional column, increasing the dimension of
both Πt and pt by one. In total there are 1.9M
words in our selected GloVe embedding, which
for practical purposes represents an open vocab-
ulary. Since GloVe embeddings capture seman-
tic and syntactic similarities (Pennington et al.,
2014), intuitively the captioning model will gen-
eralize from similar words in order to understand
how the new word can be used.

4 Experiments

4.1 Microsoft COCO Dataset

The MSCOCO 2014 captions dataset (Lin et al.,
2014) contains 123,293 images, split into a 82,783
image training set and a 40,504 image valida-
tion set. Each image is labeled with five human-
annotated captions.

In our experiments we follow standard prac-
tice and perform only minimal text pre-processing,
converting all sentences to lower case and tokeniz-
ing on white space. It is common practice to filter
vocabulary words that occur less than five times in
the training set. However, since our model does
not learn word embeddings, vocabulary filtering is
not necessary. Avoiding filtering increases our vo-
cabulary from around 8,800 words to 21,689, al-
lowing the model to potentially extract a useful
training signal even from rare words and spelling
mistakes (which are generally close to the cor-
rectly spelled word in embedding space). In all
experiments we use a beam size of 5, and we also
enforce the constraint that a single word cannot be
predicted twice in a row.

4.2 Out-of-Domain Image Captioning

To evaluate the ability of our approach to per-
form out-of-domain image captioning, we repli-
cate an existing experimental design (Hendricks
et al., 2016) using MSCOCO. Following this ap-
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Out-of-Domain Test Data In-Domain Test Data

Model CNN SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

DCC (Hendricks et al., 2016) VGG-16 13.4 21.0 59.1 39.8 15.9 23.0 77.2
NOC (Venugopalan et al., 2016) VGG-16 - 21.4 - 49.1 - - -
Base VGG-16 12.4 20.4 57.7 0 17.6 24.9 93.0
Base+T1 VGG-16 13.6 21.7 68.9 27.2 17.9 25.0 93.4
Base+T2 VGG-16 14.8 22.6 75.4 38.7 18.2 25.0 92.8
Base+T3 VGG-16 15.5 23.0 77.5 48.4 18.2 24.8 90.4
Base+T4 VGG-16 15.9 23.3 77.9 54.0 18.0 24.5 86.3

Base+T3* VGG-16 18.7 27.1 119.6 54.5 22.0 29.4 135.5
Base All Data VGG-16 17.8 25.2 93.8 59.4 17.4 24.5 91.7

Base ResNet-50 12.6 20.5 56.8 0 18.2 24.9 93.2
Base+T1 ResNet-50 14.2 21.7 68.1 27.3 18.5 25.2 94.6
Base+T2 ResNet-50 15.3 22.7 74.7 38.5 18.7 25.3 94.1
Base+T3 ResNet-50 16.0 23.3 77.8 48.2 18.7 25.2 92.3
Base+T4 ResNet-50 16.4 23.6 77.6 53.3 18.4 24.9 88.0

Base+T3* ResNet-50 19.2 27.3 117.9 54.5 22.3 29.4 133.7
Base All Data ResNet-50 18.6 26.0 96.9 60.0 18.0 25.0 93.8

Table 1: Evaluation of captions generated using constrained beam search with 1 – 4 predicted image
tags used as constraints (Base+T1 – 4). Our approach significantly outperforms both the DCC and NOC
models, despite reusing the image tag predictions of the DCC model. Importantly, performance on in-
domain data is not degraded but can also improve.

Model bottle bus couch microwave pizza racket suitcase zebra Avg

DCC (Hendricks et al., 2016) 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8
NOC (Venugopalan et al., 2016) 17.8 68.8 25.6 24.7 69.3 68.1 39.9 89.0 49.1
Base+T4 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0

Table 2: F1 scores for mentions of objects not seen during caption training. Our approach (Base+T4)
reuses the top 4 image tag predictions from the DCC model but generates higher F1 scores by interpreting
tag predictions as constraints. All results based on use of the VGG-16 CNN.

proach, all images with captions that mention one
of eight selected objects (or their synonyms) are
excluded from the image caption training set. This
reduces the size of the caption training set from
82,783 images to 70,194 images. However, the
complete caption training set is tokenized as a bag
of words per image, and made available as image
tag training data. As such, the selected objects
are unseen in the image caption training data, but
not the image tag training data. The excluded ob-
jects, selected by Hendricks et. al. (2016) from the
80 main object categories in MSCOCO, are: ‘bot-
tle’, ‘bus’, ‘couch’, ‘microwave’, ‘pizza’, ‘racket’,
‘suitcase’ and ‘zebra’.

For validation and testing on this task, we use
the same splits as in prior work (Hendricks et al.,
2016; Venugopalan et al., 2016), with half of the
original MSCOCO validation set used for vali-
dation, and half for testing. We use the vali-

dation set to determine hyperparameters and for
early-stopping, and report all results on the test
set. For evaluation the test set is split into in-
domain and out-of-domain subsets, with the out-
of-domain designation given to any test image that
contains a mention of an excluded object in at least
one reference caption.

To evaluate generated caption quality, we use
the SPICE (Anderson et al., 2016) metric, which
has been shown to correlate well with human
judgment on the MSCOCO dataset, as well as
the METEOR (Denkowski and Lavie, 2014) and
CIDEr (Vedantam et al., 2015) metrics. For con-
sistency with previously reported results, scores
on out-of-domain test data are macro-averaged
across the eight excluded object classes. To im-
prove the comparability of CIDEr scores, the in-
verse document frequency statistics used by this
metric are determined across the entire test set,
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Base: A woman
is playing tennis
on a tennis court.
Tags: tennis,
player, ball,
racket. Base+T4:
A tennis player
swinging a racket
at a ball.

Base: A man
standing next to
a yellow train.
Tags: bus, yel-
low, next, street.
Base+T4: A man
standing next to a
yellow bus on the
street.

Base: A close
up of a cow on
a dirt ground.
Tags: zebra, zoo,
enclosure, stand-
ing. Base+T4:
A zebra standing
in front of a zoo
enclosure.

Base: A dog is sitting
in front of a tv. Tags:
dog, head, television, cat.
Base+T4: A dog with a cat
on its head watching televi-
sion.

Base: A group of people
playing a game of tennis.
Tags: pink, tennis, crowd,
ball. Base+T4: A crowd
of people standing around a
pink tennis ball.

Figure 3: Examples of out-of-domain captions
generated on MSCOCO using the base model
(Base), and the base model constrained to include
four predicted image tags (Base+T4). Words never
seen in training captions are underlined. The bot-
tom row contains some failure cases.

rather than within subsets. On out-of-domain test
data, we also report the F1 metric for mentions
of excluded objects. To calculate the F1 metric,
the model is considered to have predicted condi-
tion positive if the generated caption contains at
least one mention of the excluded object, and neg-
ative otherwise. The ground truth is considered to
be positive for an image if the excluded object in
question is mentioned in any of the reference cap-
tions, and negative otherwise.

As illustrated in Table 1, on the out-of-domain
test data, our base model trained only with image
captions (Base) receives an F1 score of 0, as it
is incapable of mentioned objects that do not ap-
pear in the training captions. In terms of SPICE,
METEOR and CIDEr scores, our base model per-
forms slightly worse than the DCC model on
out-of-domain data, but significantly better on in-

domain data. This may suggest that the DCC
model achieves improvements in out-of-domain
performance at the expense of in-domain scores
(in-domain scores for the NOC model were not
available at the time of submission).

Results marked with ‘+’ in Table 1 indicate that
our base model has been decoded with constraints
in the form of predicted image tags. However,
for the fairest comparison, and because re-using
existing image taggers at test time is one of the
motivations for this work, we did not train an im-
age tagger from scratch. Instead, in results T1–
4 we use the top 1–4 tag predictions respectively
from the VGG-16 CNN-based image tagger used
in the DCC model. This model was trained by the
authors to predict 471 MSCOCO visual concepts
including adjectives, verbs and nouns. Examples
of generated captions, including failure cases, are
presented in Figure 3.

As indicated in Table 1, using similar model
capacity, the constrained beam search approach
with predicted tags significantly outperforms prior
work in terms SPICE, METEOR and CIDEr
scores, across both out-of-domain and in-domain
test data, utilizing varying numbers of tag pre-
dictions. Overall these results suggest that, per-
haps surprisingly, it may be better to incorporate
image tags into captioning models during decod-
ing rather than during training. It also appears
that, while introducing image tags improves per-
formance on both out-of-domain and in-domain
evaluations, it is beneficial to introduce more tag
constraints when the test data is likely to con-
tain previously unseen objects. This reflects the
trading-off of influence between the image tags
and the captioning model. For example, we noted
that when using two tag constraints, 36% of gen-
erated captions were identical to the base model,
but when using four tags this proportion dropped
to only 3%.

To establish performance upper bounds, we
train the base model on the complete MSCOCO
training set (Base All Data). We also evaluate
captions generated using our approach combined
with an ‘oracle’ image tagger consisting of the top
3 ground-truth image tags (T3*). These were de-
termined by selecting the 3 most frequently men-
tioned words in the reference captions for each test
image (after eliminating stop words). The very
high scores recorded for this approach may mo-
tivate the use of more powerful image taggers in
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future work. Finally, replacing VGG-16 with the
more powerful ResNet-50 (He et al., 2016) CNN
leads to modest improvements as indicated in the
lower half of Table 1.

Evaluating F1 scores for object mentions (see
Table 2), we note that while our approach outper-
forms prior work when four image tags are used, a
significant increase in this score should not be ex-
pected as the underlying image tagger is the same.

4.3 Captioning ImageNet

Consistent with our observation that many image
collections contain useful annotations, and that we
should seek to use this information, in this section
we caption a 5,000 image subset of the ImageNet
(Russakovsky et al., 2015) ILSVRC 2012 classi-
fication dataset for assessment. The dataset con-
tains 1.2M images classified into 1,000 object cat-
egories, from which we randomly select five im-
ages from each category.

For this task we use the ResNet-50 (He et al.,
2016) CNN, and train the base model on a com-
bined training set containing 155k images com-
prised of the MSCOCO (Chen et al., 2015) train-
ing and validation datasets, and the full Flickr
30k (Young et al., 2014) captions dataset. We
use constrained beam search and vocabulary ex-
pansion to ensure that each generated caption in-
cludes a phrase from the WordNet (Fellbaum,
1998) synset representing the ground-truth image
category. For synsets that contain multiple en-
tries, we run constrained beam search separately
for each phrase and select the predicted caption
with the highest log probability overall.

Note that even with the use of ground-truth
object labels, the ImageNet captioning task re-
mains extremely challenging as ImageNet con-
tains a wide variety of classes, many of which are
not evenly remotely represented in the available
image-caption training datasets. Nevertheless, the
injection of the ground-truth label frequently im-
proves the overall structure of the caption over the
base model in multiple ways. Examples of gen-
erated captions, including failure cases, are pre-
sented in Figure 4.

As the ImageNet dataset contains no exist-
ing caption annotations, following the human-
evaluation protocol established for the MSCOCO
2015 Captioning Challenge (Chen et al., 2015), we
used Amazon Mechanical Turk (AMT) to collect a
human-generated caption for each sample image.

Base: A close up of a pizza
on the ground. Synset: rock
crab. Base+Synset: A large
rock crab sitting on top of a
rock.

Base: A close up shot of an
orange. Synset: pool table,
billiard table, snooker table.
Base+Synset: A close up of
an orange ball on a billiard
table.

Base: A herd or horses
standing on a lush green
field. Synset: rapeseed.
Base+Synset: A group of
horses grazing in a field of
rapeseed.

Base: A black bird is
standing in the grass.
Synset: oystercatcher, oys-
ter catcher. Base+Synset:
A black oystercatcher with
a red beak standing in the
grass.

Base: A man and a woman
standing next to each other.
Synset: colobus, colobus
monkey. Base+Synset: Two
colobus standing next to
each other near a fence.

Base: A bird standing
on top of a grass covered
field. Synset: cricket.
Base+Synset: A bird stand-
ing on top of a cricket field.

Figure 4: Examples of ImageNet captions gen-
erated by the base model (Base), and by the
base model constrained to include the ground-
truth synset (Base+Synset). Words never seen in
the MSCOCO / Flickr 30k caption training set are
underlined. The bottom row contains some failure
cases.

For each of the 5,000 samples images, three hu-
man evaluators were then asked to compare the
caption generated using our approach with the
human-generated caption (Base+Syn v. Human).
Using a smaller sample of 1,000 images, we also
collected evaluations comparing our approach to
the base model (Base+Syn v. Base), and compar-
ing the base model with human-generated captions
(Base v. Human). We used only US-based AMT
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Better Equally
Good

Equally
Poor Worse

Base v. Human 0.05 0.06 0.04 0.86
Base+Syn v. Human 0.12 0.10 0.05 0.73
Base+Syn v. Base 0.39 0.06 0.42 0.13

Table 3: In human evaluations our approach lever-
aging ground-truth synset labels (Base+Syn) im-
proves significantly over the base model (Base)
in both direct comparison and in comparison to
human-generated captions.

Figure 5: AMT evaluations of generated
(Base+Syn) ImageNet captions versus human cap-
tions, by super-category.

workers, screened according to their performance
on previous tasks. For both tasks, the user in-
terface and question phrasing was identical to the
MSCOCO collection process. The results of these
evaluations are summarized in Table 3.

Overall, Base+Syn captions were judged to be
equally good or better than human-generated cap-
tions in 22% of pairwise evaluations (12% ‘bet-
ter’, 10% ‘equally good’), and equally poor or
worse than human-generated captions in the re-
maining 78% of evaluations. Although still a long
way from human performance, this is a signifi-
cant improvement over the base model with only
11% of captions judged to be equally good or bet-
ter than human. For context, using the identical
evaluation protocol, the top scoring model in the
MSCOCO Captioning Challenge (evaluating on
in-domain data) received 11% ‘better’, and 17%
‘equally good’ evaluations.

To better understand performance across
synsets, in Figure 5 we cluster some class labels
into super-categories using the WordNet hierar-
chy, noting particularly strong performances in
super-categories that have some representation
in the caption training data — such as birds,
mammals and dogs. These promising results

suggest that fine-grained object labels can be
successfully integrated with a general purpose
captioning model using our approach.

5 Conclusion and Future Research

We investigate constrained beam search, an ap-
proximate search algorithm capable of enforcing
any constraints over resulting output sequences
that can be expressed in a finite-state machine.
Applying this approach to out-of-domain image
captioning on a held-out MSCOCO dataset, we
leverage image tag predictions to achieve state of
the art results. We also show that we can signifi-
cantly improve the quality of generated ImageNet
captions by using the ground-truth labels.

In future work we hope to use more power-
ful image taggers, and to consider the use of
constrained beam search within an expectation-
maximization (EM) algorithm for learning better
captioning models from weakly supervised data.

Acknowledgements
We thank the anonymous reviewers for providing insightful
comments and for helping to identify relevant prior literature.
This research is supported by an Australian Government Re-
search Training Program (RTP) Scholarship and by the Aus-
tralian Research Council Centre of Excellence for Robotic
Vision (project number CE140100016).

References
Cyril Allauzen, Bill Byrne, Adrià de Gispert, Gonzalo Igle-
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Abstract

In this paper, we investigate large-scale
zero-shot activity recognition by modeling
the visual and linguistic attributes of ac-
tion verbs. For example, the verb “salute”
has several properties, such as being a light
movement, a social act, and short in dura-
tion. We use these attributes as the internal
mapping between visual and textual rep-
resentations to reason about a previously
unseen action. In contrast to much prior
work that assumes access to gold standard
attributes for zero-shot classes and focuses
primarily on object attributes, our model
uniquely learns to infer action attributes
from dictionary definitions and distributed
word representations. Experimental re-
sults confirm that action attributes inferred
from language can provide a predictive
signal for zero-shot prediction of previ-
ously unseen activities.

1 Introduction

We study the problem of inferring action verb at-
tributes based on how the word is defined and used
in context. For example, given a verb such as
“swig” shown in Figure 1, we want to infer var-
ious properties of actions such as motion dynam-
ics (moderate movement), social dynamics (soli-
tary act), body parts involved (face, arms, hands),
and duration (less than 1 minute) that are generally
true for the range of actions that can be denoted by
the verb “swig”.

Our ultimate goal is to improve zero-shot learn-
ing of activities in computer vision: predicting
a previously unseen activity by integrating back-
ground knowledge about the conceptual properties
of actions. For example, a computer vision system
may have seen images of “drink” activities during

Dictionary 
definitions

drool

drink

chug

sip

swig To drink liquid in 
great gulps

to drink a large 
amount 

especially of beer

To drink in small 
quantities

To let run from 
the mouth

To take into the 
mouth and 

swallow a liquid

medium 
motion

more 
solitary

N/A

activity more 
solitary

more 
solitary

medium 
motion

achieve
ment

solitary 
or 

social
activity

achieve
ment

activity

solitary 
or 

social

no 
motion

low 
motion

low 
motion

Word 
embeddings

zero-shot image

…
sip: 10%
chug: 25%
swig: 65%

Distribution over
Zero-shot labels

attribute-embedding space

Verb attribute induction from languageA)

B) Zero-shot activity recognition

training images

aspect
m

otion   

uses head

has effect 

on object

social

uncork

drool

lick

drink

Figure 1: An overview of our task. Our goal is
twofold. A: we seek to use use distributed word
embeddings in tandem with dictionary definitions
to obtain a high level understanding of verbs. B:
we seek to use these predicted attributes to allow
a classifier to recognize a broader set of activities
than what was seen in training time.

training, but not “swig”. Ideally, the system should
infer the likely visual characteristics of “swig” us-
ing world knowledge implicitly available in dictio-
nary definitions and word embeddings.

However, most existing literature on zero-shot
learning has focused on object recognition with
only a few notable exceptions (see Related Work
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in Section 8). There are two critical reasons: ob-
ject attributes, such as color, shape, and texture,
are conceptually straightforward to enumerate. In
addition, they have distinct visual patterns which
are robust for current vision systems to recognize.
In contrast, activity attributes are more difficult
to conceptualize as they involve varying levels of
abstractness, which are also more challenging for
computer vision as they have less distinct visual
patterns. Noting this difficulty, Antol et al. (2014)
instead employ cartoon illustrations as intermedi-
ate mappings for zero-shot dyadic activity recog-
nition. We present a complementary approach:
that of tackling the abstractness of verb attributes
directly. We develop and use a corpus of verb at-
tributes, using linguistic theories on verb seman-
tics (e.g., aspectual verb classes of Vendler (1957))
and also drawing inspiration from studies on lin-
guistic categorization of verbs and their properties
(Friedrich and Palmer, 2014; Siegel and McKe-
own, 2000).

In sum, we present the first study aiming to re-
cover general action attributes for a diverse collec-
tion of verbs, and probe their predictive power for
zero-shot activity recognition on the recently in-
troduced imSitu dataset (Yatskar et al., 2016). Em-
pirical results show that action attributes inferred
from language can help classifying previously un-
seen activities and suggest several avenues for fu-
ture research on this challenging task. We publicly
share our dataset and code for future research.1

2 Action Verb Attributes

We consider seven different groups of action verb
attributes. They are motivated in part by poten-
tial relevance for visual zero-shot inference, and
in part by classical literature on linguistic theories
on verb semantics. The attribute groups are sum-
marized below.2 Each attribute group consists of
a set of attributes, which sums to K = 24 distinct
attributes annotated over the verbs.3

[1] Aspectual Classes We include the aspectual
verb classes of Vendler (1957):

• state: a verb that does not describe a chang-
ing situation (e.g. “have”, “be”)

1Available at http://github.com/rowanz/verb-attributes
2The full list is available in the supplemental section.
3Several of our attributes are categorical; if converted to

binary attributes, we would have 40 attributes in total.

• achievement: a verb that can be completed in
a short period of time (e.g. “open”, “jump”)

• accomplishment: a verb with a sense of com-
pletion over a longer period of time (e.g.
“climb”)

• activity: a verb without a clear sense of com-
pletion (e.g. “swim”, “walk”, “talk”)

[2] Temporal Duration This attribute group re-
lates to the aspectual classes above, but provides
additional estimation of typical time duration with
four categories. We categorize verbs by best-
matching temporal units: seconds, minutes, hours,
or days, with an additional option for verbs with
unclear duration (e.g., “provide”).

[3] Motion Dynamics This attribute group fo-
cuses on the energy level of motion dynamics in
four categories: no motion (“sleep”), low motion
(“smile”), medium (“walk”), or high (“run”). We
add an additional option for verbs whose motion
level depends highly on context, such as ‘finish.’

[4] Social Dynamics This attribute group fo-
cuses on the likely social dynamics, in particular,
whether the action is usually performed as a soli-
tary act, a social act, or either. This is graded on a
5-part scale from least social (−2) to either (+0)
to most social (+2)

[5] Transitivity This attribute group focuses on
whether the verb can take an object, or be used
without. This gives the model a sense of the im-
plied action dynamics of the verb between the
agent and the world. We record three variables:
whether or not the verb is naturally transitive on a
person (“I hug her” is natural), on a thing (“I eat
it”), and whether the verb is intransitive (“I run”).

[6] Effects on Arguments This attribute group
focuses on the effects of actions on agents and
other arguments. For each of the possible tran-
sitivities of the verb, we annotate whether or not it
involves location change (“travel”), world change
(“spill”), agent or object change (“cry”) , or no
visible change (“ponder”).

[7] Body Involvements This attribute group
specifies prominent body parts involved in carry-
ing out the action. For example, “open” typically
involves “hands” and “arms” when used in a phys-
ical sense. We use five categories: head, arms,
torso, legs, and other body parts.
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Action Attributes and Contextual Variations
In general, contextual variations of action at-
tributes are common, especially for frequently
used verbs that describe everyday physical activi-
ties. For example, while “open” typically involves
“hands”, there are exceptions, e.g. “open one’s
eyes”. In this work, we focus on stereotypical or
prominent characteristics across a range of actions
that can be denoted using the same verb. Thus,
three investigation points of our work include: (1)
crowd-sourcing experiments to estimate the dis-
tribution of human judgments on the prominent
characteristics of everyday physical action verbs,
(2) the feasibility of learning models for inferring
the prominent characteristics of the everyday ac-
tion verbs despite the potential noise in the human
annotation, and (3) their predictive power in zero-
shot action recognition despite the potential noise
from contextual variations of action attributes. As
we will see in Section 7, our study confirms the
usefulness of studying action attributes and moti-
vates the future study in this direction.

Relevance to Linguistic Theories The key idea
in our work that action verbs project certain expec-
tations about their influence on their arguments,
their pre- and post-conditions, and their implica-
tions on social dynamics, etc., relates to the orig-
inal Frame theories of Baker et al. (1998a). The
study of action verb attributes are also closely
related to formal studies on verb categorization
based on the characteristics of the actions or states
that a verb typically associates to (Levin, 1993),
and cognitive linguistics literature that focus on
causal structure and force dynamics of verb mean-
ings (Croft, 2012).

3 Learning Verb Attributes from
Language

In this section we present our models for learn-
ing verb attributes from language. We consider
two complementary types of language-based in-
put: dictionary definitions and word embeddings.
The approach based on dictionary definitions re-
sembles how people acquire the meaning of a new
word from a dictionary lookup, while the approach
based on word embeddings resembles how people
acquire the meaning of words in context.

Overview This task follows the standard super-
vised learning approach where the goal is to pre-
dict K attributes per word in the vocabulary V .

Let xv ∈ X represent the input representation of a
word v ∈ V . For instance, xv could denote a word
embedding, or a definition looked up from a dic-
tionary (modeled as a list of tokens). Our goal is to
produce a model f : X → Rd that maps the input
to a representation of dimension d. Modeling op-
tions include using pretrained word embeddings,
as in Section 3.1, or using a sequential model to
encode a dictionary, as in Section 3.2.

Then, the estimated probability distribution
over attribute k is given by:

ŷv,k = σ(W(k)f(xv)). (1)

If the attribute is binary, then W(k) is a vector of
dimension d and σ is the sigmoid function. Other-
wise, W(k) is of shape dk × d, where dk is the di-
mension of attribute k, and σ is the softmax func-
tion. Let the vocabulary V be partitioned into sets
Vtrain and Vtest; then, we train by minimizing the
cross-entropy loss over Vtrain and report attribute-
level accuracy over words in Vtest.
Connection to Learning Object Attributes
This problem has been studied before for zero-shot
object recognition, but there are several key dif-
ferences. Al-Halah et al. (2016) build the ‘Class-
Attribute Association Prediction’ model (CAAP)
that classifies the attributes of an object class from
its name. They apply it on the Animals with At-
tributes dataset, a dataset containing 50 animal
classes, each described by 85 attributes (Lampert
et al., 2014). Importantly, these attributes are con-
crete details with semantically meaningful names
such as “has horns” and “is furry”. The CAAP
model takes advantage of this, consisting of a ten-
sor factorization model initialized by the word
embeddings of the object class names as well as
the attribute names. On the other hand, verb at-
tributes such as the ones we outline in Section 2,
are technical linguistic terms. Since word embed-
dings principally capture common word senses,
they are unsuited for verb attributes. Thus, we
evaluate two versions of CAAP as a baseline:
one where the model is preinitialized with GloVe
embeddings (Pennington et al., 2014) for the at-
tribute names (CAAP-pretrained), and one where
the model is learned from random initialization
(CAAP-learned).

3.1 Learning from Distributed Embeddings
One way of producing attributes is from dis-
tributed word embeddings such as word2vec
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(Mikolov et al., 2013). Intuitively, we expect sim-
ilar verbs to have similar distributions of nearby
nouns and adverbs, which can greatly help us in
zero-shot prediction. In our experiments, we use
300-dimensional GloVe vectors trained on 840B
tokens of web data (Pennington et al., 2014). We
use logistic regression to predict each attribute, as
we found that extra hidden layers did not improve
performance. Thus, we let femb(xv) = wv, the
GloVe embedding of v, and use Equation 1 to get
the distribution over labels.

We additionally experiment with retrofitted em-
beddings, in which embeddings are mapped in
accordance with a lexical resource. Follow-
ing the approach of Faruqui et al. (2015), we
retrofit embeddings using WordNet (Miller, 1995),
Paraphrase-DB (Ganitkevitch et al., 2013), and
FrameNet (Baker et al., 1998b).

3.2 Learning from Dictionary Definitions
We additionally propose a model that learns the
attribute-grounded meaning of verbs through dic-
tionary definitions. This is similar in spirit to the
task of using a dictionary to predict word embed-
dings (Hill et al., 2016).

BGRU encoder Our first model involves a Bidi-
rectional Gated Recurrent Unit (BGRU) encoder
(Cho et al., 2014). Let xv,1:T be a definition for
verb v, with T tokens. To encode the input, we
pass it through the GRU equation:

~ht = GRU(xv,t, ~ht−1). (2)

Let ~h1 denote the output of a GRU applied on the
reversed input xv,T :1. Then, the BGRU encoder is
the concatenation f bgru = ~hT ‖ ~h1.

Bag-of-words encoder Additionally, we try two
common flavors of a Bag-of-Words model. In the
standard case, we first construct a vocabulary of
5000 words by frequency on the dictionary def-
initions. Then, f bow(xv) represents the one-hot
encoding f bow(xv)i = [i ∈ xv], in other words,
whether word i appears in definiton xv for verb v.

Additionally, we try out a Neural Bag-of-Words
model where the word embeddings in a defini-
tion are averaged (Iyyer et al., 2015). This is
fnbow(xv,1:T ) =

1
|T |
∑T

t=1 f
emb(xv,t).

Dealing with multiple definitions per verb
One potential pitfall with using dictionary defini-
tions is that there are often many defnitions asso-
ciated with each verb. This creates a dataset bias

To drink in large draughts

swig

Attributes

concat
W(k)

femb

~h1
~h2

~h3
~h4

~h5

~h1
~h2

~h3
~h4

~h5

Figure 2: Overview of our combined dictionary +
embedding to attribute model. Our encoding is the
concatenation of a Bidirectional GRU of a defini-
tion and the word embedding for that word. The
encoding is then mapped to the space of attributes
using parameters W(k).

since polysemic verbs are seen more often. Ad-
ditionally, dictionary definitions tend to be sorted
by relevance, thus lowering the quality of the data
if all definitions are weighted equally during train-
ing. To counteract this, we randomly oversample
the definitions at training time so that each verb
has the same number of definitions.4 At test time,
we use the first-occurring (and thus generally most
relevant) definition per verb.

3.3 Combining Dictionary and Embedding
representations

We hypothesize that the two modalities of the dic-
tionary and distributional embeddings are comple-
mentary. Therefore, we propose an early fusion
(concatenation) of both categories. Figure 2 de-
scribes the GRU + embedding model – in other
words, fBGRU+emb = fBGRU‖femb. This can
likewise be done with any choice of definition en-
coder and word embedding.

4 Zero-Shot Activity Recognition

4.1 Verb Attributes as Latent Mappings

Given learned attributes for a collection of activi-
ties, we would like to evaluate their performance at
describing these activities from real world images
in a zero-shot setting. Thus, we consider several
models that classify an image’s label by pivoting
through an attribute representation.

4For the (neural) bag of words models, we also tried con-
catenating the definitions together per verb and then doing the
encoding. However, we found that this gave worse results.
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Overview A formal description of the task is at
follows. Let the space of labels be V , partitioned
into Vtrain and Vtest. Let zv ∈ Z represent an
image with label v ∈ V; our goal is to correctly
predict this label amongst verbs v ∈ Vtest at test
time, despite never seeing any images with labels
in Vtest during training.

Generalization will be done through a lookup
table A, with known attributes for each v ∈ V .
Formally, for each attribute k we define it as:

A
(k)
v′,i =

{
1 if attribute k for verb v′ is i
−1 otherwise

(3)

For binary attributes, we need only one entry per
verb, making A(k) a single column vector. Let our
image encoder be represented by the map g : Z →
Rd. We then use the linear map in Equation 1 to
produce the log-probability distribution over each
attribute k. The distribution over labels is then:

P (·|zv) = softmax
v′

(∑

k

A(k)W(k)g(zv)

)
(4)

where W(k) is a learned parameter that maps the
image encoder to the attribute representation. We
then train our model by minimizing the cross-
entropy loss over the training verbs Vtrain.

Convolutional Neural Network (CNN) Encoder
Our image encoder is a CNN with the Resnet-152
architecture (He et al., 2016). We use weights pre-
trained on ImageNet (Deng et al., 2009) and per-
form additional pretraining on ImSitu using the
classes Vtrain. After this, we remove the top layer
and set g(xv) to be the 2048-dimensional image
representation from the network.

4.1.1 Connection to other attribute models
Our model is similar to those of Akata et al. (2013)
and Romera-Paredes and Torr (2015) in that we
predict the attributes indirectly and train the model
through the class labels.5 It differs from sev-
eral other zeroshot models, such as Lampert et al.
(2014)’s Direct Attribute Prediction (DAP) model,
in that DAP is trained by maximizing the probabil-
ity of predicting each attribute and then multiplies
the probabilities at test time. Our use of joint train-
ing allows the recognition model to directly op-
timize class-discrimination rather than attribute-
level accuracy.

5Unlike these models, however, we utilize (some) cate-
gorical attributes and optimize using cross-entropy.

CNN

embedding 
prediction

attribute 
prediction

attribute 
lookup

embedding 
lookup

Wemb

A(k)

W(k)

g

Aemb

+

label prediction

zv

Figure 3: Our proposed model for combin-
ing attribute-based zero-shot learning and word-
embedding based transfer learning. The embed-
ding and attribute lookup layers are used to predict
a distribution of labels over Vtrain during training
and Vtest during testing.

4.2 Verb Embeddings as Latent Mappings
An additional method of doing zero-shot image
classification is by using word embeddings di-
rectly. Frome et al. (2013) build DeVISE, a model
for zero-shot learning on ImageNet object recog-
nition where the objective is for the image model
to predict a class’s word embedding directly. De-
VISE is trained by minimizing

∑

v′∈Vtrain\{v}
max{0, .1+(wv′−wv)W

embg(zv)}

for each image zv. We compare against a version
of this model with fixed GloVe embeddings w.

Additionally, we employ a variant of our model
using only word embeddings. The equation is the
same as Equation 4, except using the matrix Aemb

as a matrix of word embeddings: i.e., for each la-
bel v we consider, we have Aemb

v = wv.

4.3 Joint prediction from Attributes and
Embeddings

To combine the representation power of the at-
tribute and embedding models, we build an en-
semble combining both models. This is done by
adding the logits before the softmax is applied:

softmax
v′

(∑

k

A(k)W(k)g(zv) +AembWembg(zv)

)

A diagram is shown in Figure 3. We find that
during optimization, this model can easily over-
fit, presumably by excessive coadaption of the em-
bedding and attribute components. To solve this,
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we train the model to minimize the cross entropy
of three sources independently: the attributes only,
the embeddings only, and the sum, weighting each
equally.

Incorporating predicted and gold attributes
We additionally experiment with an ensemble
of our model, combining predicted and gold at-
tributes of Vtest. This allows the model to hedge
against cases where a verb attribute might have
several possible correct answers. A single model
is trained; at test time, we multiply the class level
probabilities P (·|zv) of each together to get the fi-
nal predictions.

5 Actions and Attributes Dataset

To evaluate our hypotheses on action attributes and
zero-shot learning, we constructed a dataset using
crowd-sourcing experiments. The Actions and At-
tributes dataset consists of annotations for 1710
verb templates, each consisting of a verb and an
optional particle (e.g. “put” or “put up”).

We selected all verbs from the ImSitu cor-
pus, consisting of images representing verbs
from many categories (Yatskar et al., 2016),
then extended the set using the MPII movie vi-
sual description dataset and ScriptBase datasets,
(Rohrbach et al., 2015; Gorinski and Lapata,
2015). We used the spaCy dependency parser
(Honnibal and Johnson, 2015) to extract the verb
template for each sentence, and collected annota-
tions on Mechanical Turk to filter out nonliteral
and abstract verbs. Turkers annotated this filtered
set of templates using the attributes described in
Section 2. In total, 1203 distinct verbs are in-
cluded. The templates are split randomly by verb;
out of 1710 total templates, we save 1313 for train-
ing, 81 for validation, and 316 for testing.

To provide signal for classifying these verbs, we
collected dictionary definitions for each verb us-
ing the Wordnik API,6 including only senses that
are explicitly labeled “verb.” This leaves us with
23,636 definitions, an average of 13.8 per verb.

6 Experimental Setup

BGRU pretaining We pretrain the BGRU
model on the Dictionary Challenge, a collection
of 800,000 word-definition pairs obtained from

6Available at http://developer.wordnik.com/
with access to American Heriatge Dictionary, the Century
Dictionary, the GNU Collaborative International Dictionary,
Wordnet, and Wiktionary.

Wordnik and Wikipedia articles (Hill et al., 2016);
the objective is to obtain a word’s embedding
given one of its definitions. For the BGRU model,
we use an internal dimension of 300, and embed
the words to a size 300 representation. The vocab-
ulary size is set to 30,000 (including all verbs for
which we have definitions). During pretraining,
we keep the architecture the same, except a differ-
ent 300-dimensional final layer is used to predict
the GloVe embeddings.

Following Hill et al. (2016), we use a ranking
loss. Let ŵ = Wembf(x) be the predicted word
embeddings for each definition x of a word in the
dictionary (not necessarily a verb). Let w be the
word’s embedding, and w̃ be the embedding of a
random dictionary word. The loss is then given
by:

L = max{0, .1− cos(w, ŵ) + cos(w, w̃)}

After pretraining the model on the Dictionary
Challenge, we fine-tune the attribute weights
W(k) using the cross-entropy over Equation 1.

Zero-shot with the imSitu dataset We build
our image-to-verb model on the newly introduced
imSitu dataset, which contains a diverse collection
of images depicting one of 504 verbs. The images
represent a variety of different semantic role labels
(Yatskar et al., 2016). Figure 4 shows examples
from the dataset. We apply our attribute split to
the dataset and are left with 379 training classes,
29 validation classes, and 96 test classes.

Zero-shot activity recognition baselines We
compare against several additional baseline mod-
els for learning from attributes and embeddings.
Romera-Paredes and Torr (2015) propose “Em-
barassingly Simple Zero-shot Learning” (ESZL),
a linear model that directly predicts class labels
through attributes and incorporates several types
of regularization. We compare against a variant
of Lampert et al. (2014)’s DAP model discussed
in Section 4.1.1. We additionally compare against
DeVISE (Frome et al., 2013), as mentioned in Sec-
tion 4.2. We use a Resnet-152 CNN finetuned on
the imSitu Vtrain classes as the visual features for
these baselines (the same as discussed in Section
4.1).

Additional implementation details are pro-
vided in the Appendix.
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acc-macro acc-micro Body Duration Aspect Motion Social Effect Transi.
most frequent class 61.33 75.45 76.84 76.58 43.67 35.13 42.41 84.97 69.73

E
m

b
CAAP-pretrained 64.96 78.06 84.81 72.15 50.95 46.84 43.67 85.21 71.10
CAAP-learned 68.15 81.00 86.33 76.27 52.85 52.53 45.57 88.29 75.21
GloVe 66.60 79.69 85.76 75.00 50.32 48.73 43.99 86.52 75.84
GloVe + framenet 67.42 80.79 86.27 76.58 49.68 50.32 44.94 88.19 75.95
GloVe + ppdb 67.52 80.75 85.89 76.58 51.27 50.95 43.99 88.21 75.74
GloVe + wordnet 68.04 81.13 86.58 76.90 54.11 50.95 43.04 88.34 76.37

D
ic

t BGRU 66.05 79.44 85.70 76.90 51.27 48.42 40.51 86.92 72.68
BoW 62.53 77.61 83.54 76.58 48.42 35.76 36.39 86.31 70.68
NBoW 65.41 78.96 85.00 76.58 52.85 42.41 43.35 86.87 70.78

D
+E

NBoW + GloVe 67.52 80.76 86.84 75.63 53.48 51.90 41.77 88.03 75.00
BoW + GloVe 63.15 77.89 84.11 77.22 49.68 34.81 38.61 86.18 71.41
BGRU + GloVe 68.43 81.18 86.52 76.58 56.65 53.48 41.14 88.24 76.37

Table 1: Results on the text-to-attributes task. All values reported are accuracies (in %). For attributes
where multiple labels can be selected, the accuracy is averaged over all instances (e.g., the accuracy of
“Body” is given by the average of accuracies from correctly predicting Head, Torso, etc.). As such, we
report two ways of averaging the results: microaveraging (where the accuracy is the average of accuracies
on the underlying labels) and macroaveraging (where the accuracy is averaged together from the groups).

7 Experimental Results

7.1 Predicting Action Attributes from Text

Our results for action attribute prediction from text
are given in Table 1. Several examples are given
in the supplemental section in Table 3. Our results
on the text-to-attributes challenge confirm that it is
a challenging task for two reasons. First, there is
noise associated with the attributes: many verb at-
tributes are hard to annotate given that verb mean-
ings can change in context.7 Second, there is a
lack of training data inherent to the problem: there
are not many common verbs in English, and it
can be difficult to crowdsource annotations for rare
ones. Third, any system must compete with strong
frequency-based baselines, as attributes are gener-
ally sparse. Moreover, we suspect that were more
attributes collected (so as to cover more obscure
patterns), the sparsity would only increase.

Despite this, we report strong baseline results
on this problem, particularly with our embedding
based models. The performance gap between
embedding- and definition-based models can pos-
sibly be explained by the fact that the word em-
beddings are trained on a very large corpus of real-
world examples of the verb, while the definition is
only a single high-level representation meant to be
understood by someone who already speaks that
language. For instance, it is likely difficult for the
definition-based model to infer whether a verb is
transitive or not (Transi.), since definitions might
assume commonsense knowledge about the under-

7 As such, our attributes have a median Krippendorff Al-
pha of α = .359.

lying concepts the verb represents. The strong
performance of embedding models is further en-
hanced by using retrofitted word embeddings, sug-
gesting an avenue for improvement on language
grounding through better representation of linguis-
tic corpora.

We additionally see that both joint dictionary-
embedding models outperform the dictionary-only
models overall. In particular, the BGRU+GloVe
model performs especially well at determining the
aspect and motion attributes of verbs, particularly
relative to the baseline. The strong performance
of the BGRU+GloVe model indicates that there is
some signal that is missing from the distributional
embeddings that can be recovered from the dictio-
nary definition. We thus use the predictions of this
model for zero-shot image recognition.

Based on error analysis, we found that one com-
mon mode of failure is where contextual knowl-
edge is required. To give an example, the embed-
ding based model labels “shop” as a likely soli-
tary action. This is possibly because there are a
lack of similar verbs in Vtrain; by random chance,
“buy” is also in the test set. We see that this can be
partially mitigated by the dictionary, as evidenced
by the fact that the dictionary-based models label
“shop” as in between social and solitary. Still, it
is a difficult task to infer that people like to “visit
stores in search of merchandise” together.

7.2 Zero-shot Action Recognition

Our results for verb prediction from images are
given in Table 2. Despite the difficulty of pre-
dicting the correct label over 96 unseen choices,
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Attributes used v ∈ Vtest
Model atts(P) atts(G) GloVe top-1 top-5

Random 1.04 5.20
DeVISE X 16.50 37.56

ESZL
X 3.60 14.81

X 3.27 13.21

DAP
X 3.35 16.69

X 4.33 17.56

Ours

X 4.79 19.98
X 7.04 22.19
X X 7.71 24.90

X 17.60 39.29
X X 18.10 41.46

X X 16.75 40.44
X X X 18.15 42.17

Table 2: Results on the image-to-verb task.
atts(P) refers to attributes predicted from the
BGRU+GloVe model described in Section 3,
atts(G) to gold attributes, and GloVe to GloVe vec-
tors. The accuracies reported are amongst the 96
unseen labels of Vtest.

our models show predictive power. Although our
attribute models do not outperform our embed-
ding models and DeVISE alone, we note that our
joint attribute and embedding model scores the
best overall, reaching 18.10% in top-1 and 41.46%
in top-5 accuracy when using gold attribute anno-
tations for the zero-shot verbs. This result is possi-
bly surprising given the small number of attributes
(K = 24) in total, of which most tend to be sparse
(as can be seen from the baseline performance in
Table 1). We thus hypothesize that collecting more
activity attributes would further improve perfor-
mance.

We also note the success in performing zero-
shot learning with predicted attributes. Perhaps
paradoxically, our attribute-only models (along
with DAP) perform better in both accuracy met-
rics when given predicted attributes at test time, as
opposed to gold attributes. Further, we get an ex-
tra boost by ensembling predictions of our model
when given two sets of attributes at test time, giv-
ing us the best results overall at 18.15% top-1 ac-
curacy and 42.17% top-5. Interestingly, better per-
formance with predicted attributes is also reported
by Al-Halah et al. (2016): predicting the attributes
with their CAAP model and then running the DAP
model on these predicted attributes outperforms
the use of gold attributes at test time. It is some-

what unclear why this is the case - possibly, there
is some bias in the attribute labeling, which the at-
tribute predictor can correct for.

In addition to quantitative results, we show
some zero-shot examples in Figure 4. The ex-
amples show inherent difficulty of zero-shot ac-
tion recognition. Incorrect predictions are of-
ten reasonably related to the situation (“rub” vs
“dye”) but picking the correct target verb based
on attribute-based inference is still a challenging
task.

Although our results appear promising, we ar-
gue that our model still fails to represent much of
the semantic information about each image class.
In particular, our model is prone to hubness: the
overprediction of a limited set of labels at test
time: those that closely match signatures of ex-
amples in the training set. This problem has pre-
viously been observed with the use of word em-
beddings for zero-shot learning (Marco and Geor-
giana, 2015) and can be seen in our examples (for
instance, the over-prediction of “buy”). Unfortu-
nately, we were unable to mitigate this problem
in a way that also led to better quantitative results
(for instance, by using a ranking loss as in DeVISE
(Frome et al., 2013)). We thus leave resolving the
hubness problem in zero-shot activity recognition
as a question for future work.

8 Related Work

Learning attributes from embeddings
Rubinstein et al. (2015) seek to predict McRae
et al. (2005)’s feature norms from word embed-
dings of concrete nouns. Likewise, the CAAP
model of Al-Halah et al. (2016) predicts the object
attributes of concrete nouns for use in zero-shot
learning. In contrast, we predict verb attributes. A
related task is that of improving word embeddings
using multimodal data and linguistic resources
(Faruqui et al., 2015; Silberer et al., 2013; Ven-
drov et al., 2016). Our work runs orthogonal to
this, as we focus on word attributes as a tool for a
zero-shot activity recognition pipeline.

Zero-shot learning with objects Though dis-
tinct, our work is related to zero-shot learn-
ing of objects in computer vision. There are
several datasets (Nilsback and Zisserman, 2008;
Welinder et al., 2010) and models developed on
this task (Romera-Paredes and Torr (2015); Lam-
pert et al. (2014); Mukherjee and Hospedales
(2016); Farhadi et al. (2010)). In addition,
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shopsquint dye

performcough fling ignite

mourn

Figure 4: Predictions on unseen classes from our attribute+embedding model with gold attributes. The
top and bottom rows show successful and failure cases respectively. The bars to the right of each image
represent a probability distribution, showing the ground truth class and the top 5 scoring incorrect classes.

Ba et al. (2015) augment existing datasets with de-
scriptive Wikipedia articles so as to learn novel ob-
jects from descriptive text. As illustrated in Sec-
tion 1, action attributes pose unique challenges
compared to object attributes, thus models devel-
oped for zero-shot object recognition are not as
effective for zero-shot action recognition, as has
been empirically shown in Section 7.

Zero-shot activity recognition In prior work,
zero-shot activity recognition has been studied on
video datasets, each containing a selection of con-
crete physical actions. The MIXED action dataset,
itself a combination of three action recognition
datasets, has 2910 labeled videos with 21 actions,
each described by 34 action attributes (Liu et al.,
2011). These action attributes are concrete bi-
nary attributes corresponding to low-level physical
movements, for instance, “arm only motion,” “leg:
up-forward motion.” By using word embeddings
instead of attributes, Xu et al. (2017) study video
activity recognition on a variety of action datasets,
albeit in the transductive setting wherein access to
the test labels is provided during training. In com-
parison with our work on imSitu (Yatskar et al.,
2016), these video datasets lack broad coverage
of verb-level classes (and for some, sufficient data
points per class).

The abstractness of broad-coverage activity la-
bels makes the problem much more difficult to
study with attributes. To get around this, Antol
et al. (2014) present a synthetic dataset of car-
toon characters performing dyadic actions, and use
these cartoon illustrations as internal mappings for
zero-shot recognition of dyadic actions in real-
world images. We investigate an alternative ap-
proach by using linguistically informed verb at-

tributes for activity recognition.

9 Future work / Conclusion

Several possibilities remain open for future work.
First, more attributes could be collected and evalu-
ated, possibly integrating other linguistic theories
about verbs, with more accurate modeling of con-
text. Second, while our experiments use attributes
as a pivot between language and vision domains,
the effects of this could be explored more in future
work. In particular, since our experiments show
that unsupervised word embeddings significantly
help performance, it might be desirable to learn
data-driven attributes in an end-to-end fashion di-
rectly from a large corpus or from dictionary defi-
nitions. Third, future research on action attributes
should ideally include videos to better capture at-
tributes that require temporal signals.

Overall, however, our work presents a strong
early step towards zero-shot activity recognition,
a relatively less studied task that poses several
unique challenges over zero-shot object recogni-
tion. We introduce new action attributes motivated
by linguistic theories and demonstrate their empir-
ical use for reasoning about previously unseen ac-
tivities.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and
Bernt Schiele. 2015. A Dataset for Movie Descrip-
tion. arXiv:1501.02530 [cs]. ArXiv: 1501.02530.

Bernardino Romera-Paredes and Philip HS Torr. 2015.
An embarrassingly simple approach to zero-shot
learning. In ICML, pages 2152–2161.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
In Proceedings of the 53nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers).

Eric V Siegel and Kathleen R McKeown. 2000.
Learning methods to combine linguistic indica-
tors: Improving aspectual classification and reveal-
ing linguistic insights. Computational Linguistics,
26(4):595–628.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2013. Models of semantic representation with vi-
sual attributes. In Proceedings of the 51st Annual

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 572–582,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Zeno Vendler. 1957. Verbs and Times. The Philosoph-
ical Review, 66(2):143–160.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2016. Order-embeddings of images and
language. In ICLR.

Peter Welinder, Steve Branson, Takeshi Mita, Cather-
ine Wah, Florian Schroff, Serge Belongie, and Pietro
Perona. 2010. Caltech-ucsd birds 200.

Xun Xu, Timothy Hospedales, and Shaogang Gong.
2017. Transductive zero-shot action recognition by
word-vector embedding. International Journal of
Computer Vision, pages 1–25.

Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi.
2016. Situation recognition: Visual semantic role
labeling for image understanding. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5534–5542.

A Supplemental

Implementation details

Our CNN and BGRU models are built in Py-
Torch8. All of our one-layer neural network mod-
els are built in Scikit-learn (Pedregosa et al., 2011)
using the provided LogisticRegression class (us-
ing one-versus-rest if appropriate). Our neural
models use the Adam optimizer (Kingma and Ba,
2014), though we weak the default hyperparame-
ters somewhat.

Recall that our dictionary definition model is
a bidirectional GRU with a hidden size of 300,
with a vocabulary size of 30,000. After pretraining
on the Dictionary Challenge, we freeze the word
embeddings and apply a dropout rate of 50% be-
fore the final hidden layer. We found that such an
aggressive dropout rate was necessary due to the
small size of the training set. During pretraining,
we used a learning rate of 10−4, a batch size of
64, and set the Adam parameter ε to the default
1e−8. During finetuning, we set ε = 1.0 and the
batch size to 32. In general, we found that setting
too low of an ε during finetuning caused our zero-
shot models to update parameters too aggressively
during the first couple of updates, leading to poor
results.

For our CNN models, we pretrained the Resnet
152 (initialized with imagenet weights) on the

8pytorch.org
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training classes of the imSitu dataset, using a
learning rate of 10−4 and ε = 10−8. During fine-
tuning, we dropped the learning rate to 10−5 and
set ε = 10−1. We also froze all parameters except
for the final resnet block, and the linear attribute
and embedding weights. We also found L2 regu-
larization quite important in reducing overfitting,
and we applied regularization at a weight of 10−4

to all trainable parameters.

Full list of attributes
The following is a full list of the attributes. In
addition to the attributes presented here, we also
crowdsourced attributes for the emotion content of
each verb (e.g., happiness, sadness, anger, and sur-
prise). However, we found these annotations to be
skewed towards “no emotion”, since most verbs
do not strongly associate with a specific emotion.
Thus, we omit them in our experiments.

(1) Aspectual Classes: one attribute with 5 values:

(a) State
(b) Achievement
(c) Accomplishment
(d) Activity
(e) Unclear without context

(2) Temporal Duration: one attribute with 5 values:

(a) Atemporal
(b) On the order of seconds
(c) On the order of hours
(d) On the order of days

(3) Motion Dynamics: One attribute with 5 values:

(a) unclear without context
(b) No motion
(c) Low motion
(d) Medium motion
(e) High motion

(4) Social Dynamics: One attribute with 5 values:

(a) solitary
(b) likely solitary
(c) solitary or social
(d) likely social
(e) social

(5) Transitivity: Three binary attributes:

(a) Intransitive: 1 if the verb can be used intransitively,
0 otherwise

(b) Transitive (person): 1 if the verb can be used in the
form “<someone>”, 0 otherwise

(c) Transitive (object): 1 if the verb can be used in the
form “<verb> something”, 0 otherwise

(6) Effects on Arguments: 12 binary attributes

(a) Intransitive 1: 1 if the verb is intransitive and the
subject moves somewhere

(b) Intransitive 2: 1 if the verb is intransitive and the
external world changes

(c) Intransitive 3: 1 if the verb is intransitive, and the
subject’s state changes

(d) Intransitive 4: 1 if the verb is intransitive, and noth-
ing changes

(e) Transitive (obj) 1: 1 if the verb is transitive for ob-
jects and the object moves somewhere

(f) Transitive (obj) 2: 1 if the verb is transitive for ob-
jects and the external world changes

(g) Transitive (obj) 3: 1 if the verb is transitive for ob-
jects and the object’s state changes

(h) Transitive (obj) 4: 1 if the verb is transitive for ob-
jects and nothing changes

(i) Transitive (person) 1: 1 if the verb is transitive for
people and the object is a person that moves some-
where

(j) ‘Transitive (person) 2: 1 if the verb is transitive for
people and the external world changes

(k) Transitive (person) 3: 1 if the verb is transitive for
people and if the object is a person whose state
changes

(l) Transitive (person) 4: 1 if the verb is transitive for
people and nothing changes

(7) Body Involements: 5 binary attributes

(a) Arms: 1 if arms are used
(b) Head: 1 if head is used
(c) Legs: 1 if legs are used
(d) Torso: 1 if torso is used
(e) Other: 1 if another body part is used
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Model Definition Social Aspect Energy Time Body part

sh
op

GT To visit stores in
search of mer-
chandise or bar-
gains

likely social accomplish. high hours arms,head
embed likely solitary activity medium minutes
BGRU solitary or social activity medium minutes
BGRU+ solitary or social activity medium minutes

m
as

h

GT
To convert malt
or grain into
mash

likely solitary activity high seconds arms
embed likely solitary activity medium seconds arms
BGRU solitary or social achievement medium seconds arms
BGRU+ likely solitary activity high seconds arms

ph
ot

og
ra

ph GT
To take a photo-
graph of

solitary or social achievement low seconds arms,head
embed solitary or social accomplish. medium minutes arms
BGRU solitary or social achievement medium seconds arms
BGRU+ solitary or social unclear low seconds arms

sp
ew

ou
t GT eject or send

out in large
quantities also
metaphorical

solitary or social achievement high seconds head
embed likely solitary achievement medium seconds
BGRU solitary or social achievement high seconds arms
BGRU+ likely solitary achievement medium seconds

te
ar

GT
To pull apart or
into pieces by
force rend

likely solitary achievement low seconds arms
embed solitary or social achievement medium seconds arms
BGRU solitary or social achievement high seconds arms
BGRU+ solitary or social achievement high seconds arms

sq
ui

nt

GT To look with
the eyes partly
closed as in
bright sunlight

likely solitary achievement low seconds head
embed likely solitary achievement low seconds head
BGRU likely solitary achievement low seconds head
BGRU+ likely solitary achievement low seconds head

sh
ak

e

GT To cause to
move to and
fro with jerky
movements

solitary or social activity medium seconds
embed likely solitary achievement medium seconds arms
BGRU likely solitary activity medium seconds
BGRU+ likely solitary activity medium seconds

do
ze

GT
To sleep lightly
and intermit-
tently

likely solitary state none minutes head
embed likely solitary achievement medium seconds
BGRU likely solitary achievement low seconds
BGRU+ likely solitary activity low seconds

w
ri

th
e

GT
To twist as in
pain struggle or
embarrassment

solitary or social activity high seconds arms,torso
embed likely solitary activity medium seconds
BGRU likely solitary activity medium seconds arms
BGRU+ likely solitary activity medium seconds

Table 3: Example sentences and predicted attributes. Due to space constraints, we only list a few repre-
sentative attributes and verbs.
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Abstract

Corpora of referring expressions paired
with their visual referents are a good
source for learning word meanings di-
rectly grounded in visual representations.
Here, we explore additional ways of ex-
tracting from them word representations
linked to multi-modal context: through
expressions that refer to the same ob-
ject, and through expressions that refer
to different objects in the same scene.
We show that continuous meaning rep-
resentations derived from these contexts
capture complementary aspects of sim-
ilarity, even if not outperforming tex-
tual embeddings trained on very large
amounts of raw text when tested on stan-
dard similarity benchmarks. We propose a
new task for evaluating grounded meaning
representations—detection of potentially
co-referential phrases—and show that it
requires precise denotational representa-
tions of attribute meanings, which our
method provides.

1 Introduction

Various routes for linking language to extra-
linguistic context have been explored in recent
years. A lot of research has looked at integrating
visual representations, either directly (Matuszek
et al., 2012; Krishnamurthy and Kollar, 2013; Yu
et al., 2016; Schlangen et al., 2016) or through
mapping into a multi-modal distributional space
(Feng and Lapata, 2010; Bruni et al., 2012; Kiela
and Bottou, 2014; Lazaridou et al., 2015). Young
et al. (2014) have explored a less direct link, by
representing the extension of phrasal expressions
as sets of images, and deriving from this a pre-
cise notion of denotational similarity. In very re-

cake

girl

young lady

grandma

blue shirt

table

old lady

denotational similarity
visual similarity
situational similarity

Figure 1: Dimensions of context in referential, visually
grounded language, and similarity relations that can be de-
rived from it, image from MSCOCO (Lin et al., 2014))

cent work, Cocos and Callison-Burch (2017) use
spatial context from geo-located tweets to induce
word embeddings that capture situational similar-
ity between lexical items.

In this paper, we explore an approach that com-
bines aspects of several of these paths. Start-
ing point is the observation that corpora of ex-
ophoric referring expressions provide richly struc-
tured contexts that go beyond just linking indi-
vidual expressions with their denotations. As an
example consider the scene in Figure 1 depicting
several referents and corresponding referring ex-
pressions produced by different speakers. This
scene provides a learner not only with an exam-
ple of a referent for the word lady, it also pro-
vides the information that lady can co-refer with
girl, and that its denotations can spatially / situ-
ationally co-occur with those of table and cake.
From these types of information we infer word
embeddings, following the method from Levy and
Goldberg (2014) for training embeddings on arbi-
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trary non-linear context, and we show that these
capture complementary aspects of word similarity
that purely textual induction methods conflate. We
also show that these representations handle a more
directly referential similarity task better.

2 Word Embeddings from Multi-Modal
Referential Contexts

We base our study on the REFERIT and REF-
COCO corpus (Kazemzadeh et al., 2014; Yu et al.,
2016) building upon image collections by (Grub-
inger et al., 2006) and (Lin et al., 2014); for the
latter, we also use referring expressions collected
by Mao et al. (2015). This corpus gives us visual
scenes containing sets of objects, s = o1, . . . , on.
Each object is associated with a set of referring
expressions r1, . . . , rm; and we use a standard
method (a ConvNet) for providing a visual rep-
resentation visi for it. Each referring expression,
in turn, is defined as a linear sequence of words
ri = w1 . . . wk. In the following, we structure this
context into four dimensions—visual, textual, sit-
uational and denotational—which we use to derive
different word embeddings.

2.1 Textual Context (TXT)

We learn standard distributional word embeddings
from our corpus, ignoring extra-linguistic context.
We train a skip-gram model (Mikolov et al., 2013)
with negative sampling with window width 5, 300
dimensions. For comparison, we also use the tex-
tual word embeddings provided by Baroni et al.
(2014), trained on a much larger web corpus (5-
word context window, 10 negative samples, 400
dimensions). We distinguish the two textual em-
beddings using the subscripts TXTref , TXTweb.

2.2 Visual Grounding (VIS)

Given a set of referring expressions contain-
ing the word w and their corresponding referent
(oj , rj), w ∈ rj , we can derive a visual context
for the word w by averaging over the visual rep-
resentations of its referents visj , as proposed for
instance by Kiela and Bottou (2014). The vi-
sual context of a word can be seen as a ‘visual
prototype’. We derive representations of our vi-
sual inputs with a convolutional neural network,
“GoogLeNet” (Szegedy et al., 2015), that was
trained on data from the ImageNet corpus (Deng
et al., 2009), and extract the final fully-connected
layer before the classification layer, to give us

a 1024 dimensional representation of the region.
Following (Schlangen et al., 2016), we also add 7
features that encode information about the region
relative to the image, the full representation hence
is a vector of 1031 features. Each word is then
represented as the average over its visual vectors.

2.3 Situational Grounding (SIT)

We also train word embeddings (dim. 300) that
predict words paired with their situational con-
text, following the method by Levy and Gold-
berg (2014). This captures similarities between
words occurring for different objects in the same
scene, e.g. cake in the context of table in Fig-
ure 1. Given a pair of referring expressions
(ri, oi), (rj , oj), oi 6= oj , ri and rj are co-
situational expressions. Thus, for a word wi ∈ ri,
we consider all words wj ∈ rj as its situational
context. In practice, we compute situational con-
texts only for the head nouns of each referring ex-
pression, as we expect situational similarities to be
useful for capturing similarities between nouns.

2.4 Denotational Grounding (DEN)

As our data typically records multiple co-
referential expressions for an object (3 expressions
on average in the REFCOCO data), we define the
denotational context based on sets of expressions
referring to the same object (r1, oi) . . . (rn, oi).
For a word wi ∈ ri, we consider all words wjl
(with wjl ∈ rj) as denotational context, where
rj and ri refer to the same object. When two
words occur in a denotational context, we have
strong evidence that they are semantically com-
patible, i.e. can refer to the same objects as girl
and lady in Figure 1 do. Similar to our train-
ing procedure for situational embeddings, we now
learn 300-dimensional word embeddings that pre-
dict occurrences of a word based on co-referential
contexts, pairing each word with all words from
referring expressions describing the same object.

3 Word Similarity and Relatedness

We now have four different continuous representa-
tions for words; in the following, we evaluate them
for how well they predict semantic relations.

Similarity We evaluate on some similarity data
sets, reporting Spearman ρ correlations between
human ratings and cosine similarities for word
vectors. We use the MEN (Bruni et al., 2012) and

960



Silberer and Lapata (2014)’s data with semantic
(SemSim) and visual similarity (VisSim) ratings.

Compatibility As generic semantic similarity
judgements are known to be “fuzzy” (Faruqui
et al., 2016), we also evaluate on Kruszewski and
Baroni (2015)’s benchmark on semantic compat-
ibility. They define two words as being semanti-
cally compatible “if they can potentially refer to
the same thing”. We expect our denotational and
visual embeddings to be highly useful for this task.
We report unsupervised results obtained from co-
sine similarities between word embeddings.

Hypernym Directionality We adopt an evalu-
ation procedure by Kiela et al. (2015b) on hy-
pernym pairs in the BLESS data set (Baroni and
Lenci, 2011). Given a general (e.g. ‘animal’) and a
concrete noun (e.g. ‘dog’) that stand in the hyper-
nym relation, the task is to identify the noun that
is more general. Lazaridou et al. (2015) found that
the generality or concreteness of a noun’s meaning
is reflected in the entropy of its embedding, and
we adopt that measure for our purposes. Thus, we
compute entropies of our word embeddings and
report accuracies corresponding to the proportion
of noun pairs where the entropy of the more gen-
eral noun is higher than the more concrete noun.

Vocabulary We intersect the vocabularies cov-
ered by the different embeddings, which amounts
to 1960 words in total. We restrict evaluation to
the corresponding word pairs in the above data
sets, coverage is reported in Table 1.

Results As shown in Table 1, the performance of
embeddings learned on referring expression cor-
pora are generally below state-of-the-art distribu-
tional vectors trained on large web corpora. How-
ever, some interesting tendencies can be observed
by comparing embeddings learned from different
context dimensions. Denotational embeddings in
isolation provide a precise representation of mean-
ing that outperforms the other types of embed-
dings on semantic similarity judgements in MEN
and SemSim, and detects hypernym directionality
most accurately. An interesting exception is the
compatibility data set where visual embeddings
clearly outperform textual and denotational em-
beddings. Situational embeddings perform less
well than textual and denotational embeddings
but, interestingly, are similar in performance to vi-
sual embeddings on semantic similarity, suggest-

Model MEN SemSim VisSim Compat. Hyp.Dir.

# pairs 989 2041 2041 4843 334

VIS 0.404 0.469 0.427 0.241 78.14
TXTref 0.550 0.584 0.484 0.230 55.69
DEN 0.646 0.583 0.491 0.163 81.14
SIT 0.470 0.468 0.371 0.134 59.58
DEN‖TXTref 0.654 0.632 0.531 0.207 79.94

TXTweb 0.799 0.708 0.578 0.262 90.42

Table 1: Word similarity and relatedness evaluation

Model TXT DEN SIT VIS

TXT 1 0.60 0.45 0.30
DEN 0.60 1 0.45 0.35
SIT 0.45 0.35 1 0.26
VIS 0.30 0.35 0.26 1

Table 2: Model correlations

ing that visual and situational similarity seem to
be equally important aspects of general semantic
similarity. Concatenation of denotational and tex-
tual embeddings yields the best results for corre-
lations with human similarity judgements. This is
expected as denotational similarity is probably too
restricted for generic semantic similarity. We ex-
perimented with further embedding combinations,
but only the fusion of the textual and denotational
dimension outperformed the embeddings obtained
from a particular grounding dimension.

Table 2 shows correlations on cosine similari-
ties on all word pairs from MEN, SemSim, VisSim
and Compatibility between our word embeddings.
This further corroborates the finding that different
dimensions of grounding lead to complementary
notions of similarity. In particular, correlation be-
tween visual and situational embeddings is rela-
tively low, as compared to more fuzzy textual em-
beddings which correlate well with denotational
embeddings. For a qualitative analysis, more ex-
amples are shown in Appendix A.

Qualitative Discussion Table 3 illustrates sim-
ilarities learned from different grounding dimen-
sions by means of some qualitative examples.
Whereas denotational and visual embeddings rank
semantically compatible words on top (e.g. grass-
grassy), situational embeddings clearly focus
more on topical similarity (grass-clouds). Given
these examples, the finding that visual embed-
dings outperform denotational embeddings on the
semantic compatibility task (see Table 1) seems
rather contradictory. A preliminary error analy-
sis suggests that the compatibility ratings that hu-
mans provide ‘out of context’ in a rating task differ
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woman txtref lady, girl, man, chick
den lady, girl, women, blouse
sit girl, guy, man, lady
vis lady, girl, women, chick

sidewalk txtref pavement, ground, walkway, steps
den street, sidewlak, walkway, pavement
sit buildin, bldg, lamppost, street
vis pavement, street, walkway, concrete

grass txtref shrubs, dirt, bushes, sand
den grassy, patch, bounded, plains
sit clouds, church, trees, building
vis grassy, path, shrubs, bushes

couch txtref sofa, chair, bench, bed
den sofa, pillows, cushions, loveseat
sit sofa, leather, armchair, seater
vis sofa, pillow, pillows, love

Table 3: Top nearest neighbours for some example noun
embeddings

to some extent from referential choices in our cor-
pus. As an example, in the compatibility data set,
the words pigeon and mother are rated as being
equally similar to animal. However, in our cor-
pus of referring expressions, mother is never used
to refer to animal entities and our denotational
embeddings predict them to be highly dissimilar,
whereas visual embeddings are slightly more ro-
bust in this case.

More generally, textual embeddings learned
from referring expressions captures a much more
fuzzy and generic notion of similarity than de-
notational, visual or situational embeddings, e.g.
grass is similar to shrubs and to sand in the tex-
tual space. This fuzziness has been found for word
embeddings trained on large amounts of raw text
as well (Faruqui et al., 2016).

4 Approximate Co-Reference Detection

Another important testbed for models of lexical
meaning is their ability to capture semantic in-
ference, with textual entailment as a well-known
paradigm: here the task is to predict whether a
textual hypothesis h can be inferred from a given
premise p (Dagan et al., 2006). Young et al. (2014)
have proposed a less strict variant of this called
“approximate textual entailment”. The main idea
is that premise and hypothesis candidates can be
automatically extracted from a corpus of cap-
tioned images. Given a set of captions known to
describe the same image and an hypothesis, the
task is to determine whether the hypothesis can de-
scribe the same image as the premise.

Inspired by this approach, we use the multi-
modal corpus of referring expressions to set up a
new task for evaluating word embeddings, which

consists of capturing approximate inferential re-
lations between referring expressions. Thus, in
our case, the hypothesis and the premise are ex-
pressions referring to objects, and the task is to
determine whether they could (potentially) refer
to the same object. Note that this is also similar
to the notion of semantic compatibility proposed
by Kruszewski and Baroni (2015), but extended
to phrasal expressions. We can automatically ex-
tract positive and negative pairs from the data (see
Section 2) by looking at pairs of expressions re-
ferring to objects in the same image and distin-
guishing coreferential expressions referring to
the same entity (e.g. grandma - old lady), and
non-coreferential expressions referring to differ-
ent entities, e.g. old lady - young lady. In con-
trast to the majority of existing similarity and re-
latedness benchmarks which are centered around
nouns, this task requires precise meaning repre-
sentations for attribute-like words (e.g. left-right,
old-young) which occur frequently in our data and
which are frequently used to distinguish between
objects occurring in the same situation. In partic-
ular, as the scenes in our data sets contain many
objects of the same category (e.g. in the REF-
COCO data), the distinction can often not be made
by looking at the noun only, e.g. for classifying
‘old lady’ - ‘young lady’ as non-coreferential.

We call this task approximate coreference de-
tection as the premise and hypothesis might de-
scribe complementary aspects of the same object
such that the distinction cannot be made perfectly
without the original perceptual context. For in-
stance, in some cases, lady in blue and young lady
might denote the same referent, in others not (see
Figure 1). Thus, we note that the upper bound for
automatic (or human) performance in this task is
clearly not 100%. In future work, we plan to com-
bine this with a reference resolution system that
grounds the expressions in a given image.

Data and Set-up Given an image with several
objects and a set of expressions referring to these,
we compute the set of expression pairs P for that
image. This set now divides into positive in-
stances, i.e. expressions that both refer to the same
object in the image, and negative instances, i.e.
expressions that describe distinct entities in the
scene. As this gives us a lot of data, we adopt a su-
pervised learning approach for modeling the task
of approximate co-reference detection. Thus, we
use our embeddings to extract a range of similarity
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measures between the expression pairs and feed
these metrics as features into a classifier, trained to
predict whether two phrases co-refer. This set-up
is largely similar to Young et al. (2014)’s evalua-
tion setting for approximate textual entailment.

Similarity Measures Given a pair P of ex-
pressions ri = wi1 . . . win , rj = wj1 . . . wjm ,
we extract pairwise cosine similarities be-
tween the embeddings cos(wix , wjy), using av-
erage (

∑
(wi,wj)∈P cos(wi, wj) × 1

|P | ), maximum
(max(wi,wj)∈P cos(wi, wj)) and minimum dis-
tance (min(wi,wj)∈P cos(wi, wj)) as features for
classification. Furthermore, we restrict the words
in each expression such that they are disjunct sets
excluding words that occur in both expressions,
wi 6= wj ,∀(wi, wj) ∈ P . We extract the same
average, maximum and minimum distance mea-
sures on these lexically disjunct expressions. Fi-
nally, we compose word embeddings for each ex-
pressions via addition (ri = wi1 + . . .+ win) and
add the cosine between the composed embeddings
(cos(ri, rj)) to our list of features. Here, we com-
pare textual, visual and denotational embeddings,
as our situational embeddings only cover nouns.

Training From REFERIT, we extract 161K
training and 18K test pairs, dividing into 66%
non-coreferential and 34% coreferential expres-
sions. We re-train our embeddings on the train-
ing portions of this data. We only consider non-
coreferential expressions that refer to objects of
the same type, according to their label annotated
in the data set. From REFCOCO, we extract
300k pairs from the training set and 95k pairs
from the test set, dividing into roughly 70% non-
coreferential and 30% coreferential expressions.
We randomly sample these pairs, the overall num-
ber of possible pairs in REFCOCO exceeds 2 mil-
lion. We train a binary logistic regression classi-
fier on each corpus, given the similarity measures
extracted for each word embedding.

Results We report accuracies on co-referential
expression detection in Table 4, on REFERIT and
REFCOCO. Similarities derived from denotational
embeddings clearly outperform the other classi-
fiers on both data sets, including state-of-the-art
textual embeddings learned on a much larger web
corpus. On REFCOCO, only denotational embed-
dings lead to a clear improvement over the major-
ity baseline. While the low performance of stan-
dard distributional embeddings is rather expected

ReferIt RefCoco

Majority 66.05 71.64

VIS 70.14 71.63
TXTref 68.49 71.57
DEN 73.67 74.32

TXTweb 69.16 71.89

Table 4: Accuracies for co-referential expression detection

top txtref upper, bototm, bottom, bottem
den upper, topmost, tippy, above
vis upper, above, of, corner

red text yellow, purple, maroon, blue
den maroon, redman, reddish, allmiddle
vis and, purple, yellow, pink

small txtref large, smaller, big, tiny
den smaller, smallest, little, littiest
vis directly, of, between, slightly

Table 5: Top nearest neighbours for some example adjec-
tives embeddings

on this task (see previous findings on e.g. pre-
dicting antonyms (Nguyen et al., 2016)), the clear
advange of denotational over visual embeddings
is noteworthy. Whereas visual grounding is rel-
atively effective for modeling compatibility be-
tween nouns (see Table 1), it does not seem to
capture attribute meaning accurately as illustrated
in Table 5. Here, the average of all visual ob-
jects referred to as e.g. small seems to be rather
noisy and lead to high similarity with rather ran-
dom words (directly) whereas denotational em-
beddings model accurate compatibility relations
between e.g. small-smaller.

5 Conclusion

Whereas it is notoriously difficult to tailor or spe-
cialise distributional meaning representations in-
ferred from text to particular aspects of seman-
tic relatedness (Kiela et al., 2015a; Nguyen et al.,
2016; Rimell et al., 2017), this work has shown
that a multi-modal corpus of referring expressions
can be used to derive a range of continuous mean-
ing representations grounded in different aspects
of context, capturing different notions of similar-
ity. As compared to visual embeddings used in
previous works, we found that denotational em-
beddings are particularly useful for detecting se-
mantic relations. Other, recently proposed tasks
related to modeling word association (Vulić et al.,
2017), commonsense knowledge (Vedantam et al.,
2015) or child-directed input (Lazaridou et al.,
2016) provide interesting testbeds for future work.
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Abstract

We address the problem of end-to-end vi-
sual storytelling. Given a photo album, our
model first selects the most representative
(summary) photos, and then composes a
natural language story for the album. For
this task, we make use of the Visual Sto-
rytelling dataset and a model composed
of three hierarchically-attentive Recurrent
Neural Nets (RNNs) to: encode the album
photos, select representative (summary)
photos, and compose the story. Automatic
and human evaluations show our model
achieves better performance on selection,
generation, and retrieval than baselines.

1 Introduction
Since we first developed language, humans have
always told stories. Fashioning a good story is
an act of creativity and developing algorithms to
replicate this has been a long running challenge.
Adding pictures as input can provide information
for guiding story construction by offering visual
illustrations of the storyline. In the related task
of image captioning, most methods try to generate
descriptions only for individual images or for short
videos depicting a single activity. Very recently,
datasets have been introduced that extend this task
to longer temporal sequences such as movies or
photo albums (Rohrbach et al., 2016; Pan et al.,
2016; Lu and Grauman, 2013; Huang et al., 2016).

The type of data we consider in this paper pro-
vides input illustrations for story generation in the
form of photo albums, sampled over a few minutes
to a few days of time. For this type of data, gen-
erating textual descriptions involves telling a tem-
porally consistent story about the depicted visual
information, where stories must be coherent and
take into account the temporal context of the im-

ages. Applications of this include constructing vi-
sual and textual summaries of albums, or even en-
abling search through personal photo collections
to find photos of life events.

Previous visual storytelling works can be clas-
sified into two types, vision-based and language-
based, where image or language stories are con-
structed respectively. Among the vision-based ap-
proaches, unsupervised learning is commonly ap-
plied: e.g., (Sigurdsson et al., 2016) learns the la-
tent temporal dynamics given a large amount of
albums, and (Kim and Xing, 2014) formulate the
photo selection as a sparse time-varying directed
graph. However, these visual summaries tend to
be difficult to evaluate and selected photos may
not agree with human selections. For language-
based approaches, a sequence of natural language
sentences are generated to describe a set of pho-
tos. To drive this work (Park and Kim, 2015) col-
lected a dataset mined from Blog Posts. However,
this kind of data often contains contextual infor-
mation or loosely related language. A more direct
dataset was recently released (Huang et al., 2016),
where multi-sentence stories are collected describ-
ing photo albums via Amazon Mechanical Turk.

In this paper, we make use of the Visual Sto-
rytelling Dataset (Huang et al., 2016). While
the authors provide a seq2seq baseline, they only
deal with the task of generating stories given 5-
representative (summary) photos hand-selected by
people from an album. Instead, we focus on the
more challenging and realistic problem of end-to-
end generation of stories from entire albums. This
requires us to either generate a story from all of the
album’s photos or to learn selection mechanisms
to identify representative photos and then generate
stories from those summary photos. We evaluate
each type of approach.

Ultimately, we propose a model of
hierarchically-attentive recurrent neural nets,
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consisting of three RNN stages. The first RNN
encodes the whole album context and each photo’s
content, the second RNN provides weights for
photo selection, and the third RNN takes the
weighted representation and decodes to the
resulting sentences. Note that during training, we
are only given the full input albums and the output
stories, and our model needs to learn the summary
photo selections latently.

We show that our model achieves better perfor-
mance over baselines under both automatic met-
rics and human evaluations. As a side product, we
show that the latent photo selection also reason-
ably mimics human selections. Additionally, we
propose an album retrieval task that can reliably
pick the correct photo album given a sequence of
sentences, and find that our model also outper-
forms the baselines on this task.

2 Related work
Recent years have witnessed an explosion of inter-
est in vision and language tasks, reviewed below.
Visual Captioning: Most recent approaches to
image captioning (Vinyals et al., 2015b; Xu et al.,
2015) have used CNN-LSTM structures to gener-
ate descriptions. For captioning video or movie
content (Venugopalan et al., 2015; Pan et al.,
2016), sequence-to-sequence models are widely
applied, where the first sequence encodes video
frames and the second sequence decodes the de-
scription. Attention techniques (Xu et al., 2015;
Yu et al., 2016; Yao et al., 2015) are commonly
incorporated for both tasks to localize salient tem-
poral or spatial information.
Video Summarization: Similar to documenta-
tion summarization (Rush et al., 2015; Cheng and
Lapata, 2016; Mei et al., 2016; Woodsend and
Lapata, 2010) which extracts key sentences and
words, video summarization selects key frames or
shots. While some approaches use unsupervised
learning (Lu and Grauman, 2013; Khosla et al.,
2013) or intuitive criteria to pick salient frames,
recent models learn from human-created sum-
maries (Gygli et al., 2015; Zhang et al., 2016b,a;
Gong et al., 2014). Recently, to better exploit
semantics, (Choi et al., 2017) proposed textually
customized summaries.
Visual Storytelling: Visual storytelling tries to
tell a coherent visual or textual story about an
image set. Previous works include storyline
graph modeling (Kim and Xing, 2014), unsuper-
vised mining (Sigurdsson et al., 2016), blog-photo

alignment (Kim et al., 2015), and language re-
telling (Huang et al., 2016; Park and Kim, 2015).
While (Park and Kim, 2015) collects data by min-
ing Blog Posts, (Huang et al., 2016) collects sto-
ries using Mechanical Turk, providing more di-
rectly relevant stories.

3 Model
Our model (Fig. 1) is composed of three modules:
Album Encoder, Photo Selector, and Story Gener-
ator, jointly learned during training.

3.1 Album Encoder
Given an album A = {a1, a2, ..., an}, com-
posed of a set of photos, we use a bi-directional
RNN to encode the local album context for each
photo. We first extract the 2048-dimensional vi-
sual representation fi ∈ Rk for each photo using
ResNet101 (He et al., 2016), then a bi-directional
RNN is applied to encode the full album. Fol-
lowing (Huang et al., 2016), we choose a Gated
Recurrent Unit (GRU) as the RNN unit to encode
the photo sequence. The sequence output at each
time step encodes the local album context for each
photo (from both directions). Fused with the vi-
sual representation followed by ReLU, our final
photo representation is (top module in Fig. 1):

fi = ResNet(ai)
~hi = ~GRUalbum(fi,~hi−1)

~hi = ~GRUalbum(fi, ~hi+1)

vi = ReLU([~hi, ~hi] + fi).

3.2 Photo Selector
The Photo Selector (illustrated in the middle yel-
low part of Fig. 1) identifies representative pho-
tos to summarize an album’s content. As dis-
cussed, we do not assume that we are given the
ground-truth album summaries during training, in-
stead regarding selection as a latent variable in
the end-to-end learning. Inspired by Pointer Net-
works (Vinyals et al., 2015a), we use another
GRU-RNN to perform this task 1.

Given the album representation V n×k, the
photo selector outputs probabilities pt ∈ Rn (like-
lihood of selection as t-th summary image) for all
photos using soft attention.

h̄t = GRUselect(pt−1, h̄t−1),

p(yai(t) = 1) = σ(MLP([h̄t, vi])),

1While the pointer network requires grounding labels, we
regard the labels as latent variables
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Figure 1: Model: the album encoder is a bi-directional GRU-RNN that encodes all album photos; the
photo selector computes the probability of each photo being the tth album-summary photo; and finally,
the story generator outputs a sequence of sentences that combine to tell a story for the album.

At each summarization step, t, the GRU takes the
previous pt−1 and previous hidden state as input,
and outputs the next hidden state h̄t. h̄t is fused
with each photo representation vi to compute the
ith photo’s attention pit = p(yai(t) = 1). At test
time, we simply pick the photo with the highest
probability to be the summary photo at step t.

3.3 Story Generator
To generate an album’s story, given the album rep-
resentation matrix V and photo summary proba-
bilities pt from the first two modules, we compute
the visual summary representation gt ∈ Rk (for
the t-th summary step). This is a weighted sum of
the album representations, i.e., gt = pTt V . Each of
these 5 gt embeddings (for t = 1 to 5) is then used
to decode 1 of the 5 story sentences respectively,
as shown in the blue part of Fig. 1.

Given a story S = {st}, where st is t-th sum-
mary sentence. Following Donahue et al. (2015),
the l-th word probability of the t-th sentence is:

wt,l−1 = West,l−1,

h̃t,l = GRUstory(wt,l−1, gt, h̃t,l−1),

p(st,l) = softmax(MLP(h̃t,l)),

(1)

where We is the word embedding. The GRU
takes the joint input of visual summarization gt,
the previous word embedding wt,l, and the pre-
vious hidden state, then outputs the next hidden
state. The generation loss is then the sum of
the negative log likelihoods of the correct words:
Lgen(S) = −∑T

t=1

∑Lt
l=1 log pt,l(st,l).

To further exploit the notion of temporal coher-
ence in a story, we add an order-preserving con-

straint to order the sequence of sentences within a
story (related to the story-sorting idea in Agrawal
et al. (2016)). For each story S we randomly shuf-
fle its 5 sentences to generate negative story in-
stances S′. We then apply a max-margin rank-
ing loss to encourage correctly-ordered stories:
Lrank(S, S

′) = max(0,m−log p(S′)+log p(S)).
The final loss is then a combination of the genera-
tion and ranking losses:

L = Lgen(S) + λLrank(S, S
′). (2)

4 Experiments

We use the Visual Storytelling Dataset (Huang
et al., 2016), consisting of 10,000 albums with
200,000 photos. Each album contains 10-50 pho-
tos taken within a 48-hour span with two anno-
tations: 1) 2 album summarizations, each with 5
selected representative photos, and 2) 5 stories de-
scribing the selected photos.

4.1 Story Generation

This task is to generate a 5-sentence story describ-
ing an album. We compare our model with two
sequence-to-sequence baselines: 1) an encoder-
decoder model (enc-dec), where the sequence of
album photos is encoded and the last hidden state
is fed into the decoder for story generation, 2)
an encoder-attention-decoder model (Xu et al.,
2015) (enc-attn-dec) with weights computed us-
ing a soft-attention mechanism. At each decoding
time step, a weighted sum of hidden states from
the encoder is decoded. For fair comparison, we
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beam size=3
Bleu3 Rouge Meteor CIDEr

enc-dec 19.58 29.23 33.02 4.65
enc-attn-dec 19.73 28.94 32.98 4.96
h-attn 20.53 29.82 33.81 6.84
h-attn-rank 20.78 29.82 33.94 7.38
h-(gd)attn-rank 21.02 29.53 34.12 7.51

Table 1: Story generation evaluation.

enc-dec (29.50%) h-attn-rank (70.50%)
enc-attn-dec (30.75%) h-attn-rank (69.25%)
h-attn-rank (30.50%) gd-truth (69.50%)

Table 2: Human evaluation showing how often
people prefer one model over the other.

use the same album representation (Sec. 3.1) for
the baselines.

We test two variants of our model trained with
and without ranking regularization by controlling
λ in our loss function, denoted as h-attn (without
ranking), and h-attn-rank (with ranking). Eval-
uations of each model are shown in Table 1.
The h-attn outperforms both baselines, and h-attn-
rank achieves the best performance for all met-
rics. Note, we use beam-search with beam size=3
during generation for a reasonable performance-
speed trade-off (we observe similar improvement
trends with beam size = 1).2 To test performance
under optimal image selection, we use one of the
two ground-truth human-selected 5-photo-sets as
an oracle to hard-code the photo selection, denoted
as h-(gd)attn-rank. This achieves only a slightly
higher Meteor compared to our end-to-end model.

Additionally, we also run human evaluations in
a forced-choice task where people choose between
stories generated by different methods. For this
evaluation, we select 400 albums, each evaluated
by 3 Turkers. Results are shown in Table 2. Exper-
iments find significant preference for our model
over both baselines. As a simple Turing test, we
also compare our results with human written sto-
ries (last row of Table 2), indicating room for im-
provement of methods.

4.2 Album Summarization

We evaluate the precision and recall of our gen-
erated summaries (output by the photo selector)
compared to human selections (the combined set

2We also compute the p-value of Meteor on 100K sam-
ples via the bootstrap test (Efron and Tibshirani, 1994), as
Meteor has better agreement with human judgments than
Bleu/Rouge (Huang et al., 2016). Our h-attn-rank model has
strong statistical significance (p = 0.01) over the enc-dec and
enc-attn-dec models (and is similar to the h-attn model).

precision recall
DPP 43.75% 27.41%
enc-attn-dec 38.53% 24.25%
h-attn 42.85% 27.10%
h-attn-rank 45.51% 28.77%

Table 3: Album summarization evaluation.

R@1 R@5 R@10 MedR
enc-dec 10.70% 29.30% 41.40% 14.5
enc-attn-dec 11.60% 33.00% 45.50% 11.0
h-attn 18.30% 44.50% 57.60% 6.0
h-attn-rank 18.40% 43.30% 55.50% 7.0

Table 4: 1000 album retrieval evaluation.

of both human-selected 5-photo stories). For com-
parison, we evaluate enc-attn-dec on the same task
by aggregating predicted attention and selecting
the 5 photos with highest accumulated attention.
Additionally, we also run DPP-based video sum-
marization (Kulesza et al., 2012) using the same
album features. Our models have higher perfor-
mance compared to baselines as shown in Table 3
(though DPP also achieves strong results, indicat-
ing that there is still room to improve the pointer
network).

4.3 Output Example Analysis

Fig. 2 shows several output examples for both
summarization and story generation, comparing
our model to the baseline and ground-truth. More
examples are provided in the supplementary.

4.4 Album Retrieval

Given a human-written story, we introduce a task
to retrieve the album described by that story. We
randomly select 1000 albums and one ground-
truth story from each for evaluation. Using the
generation loss, we compute the likelihood of each
album Am given the query story S and retrieve
the album with the highest generation likelihood,
A = argmaxAmp(S|Am). We use Recall@k and
Median Rank for evaluation. As shown in Ta-
ble 4), we find that our models outperform the
baselines, but the ranking term in Eqn.2 does not
improve performance significantly.

5 Conclusion

Our proposed hierarchically-attentive RNN based
models for end-to-end visual storytelling can
jointly summarize and generate relevant stories
from full input photo albums effectively. Au-
tomatic and human evaluations show that our
method outperforms strong sequence-to-sequence
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Figure 2: Examples of album summarization and storytelling by enc-attn-dec (blue), h-attn-rank (red),
and ground-truth (green). We randomly select 1 out of 2 human album summaries as ground-truth here.

baselines on selection, generation, and retrieval
tasks.
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Abstract

Sports channel video portals offer an ex-
citing domain for research on multimodal,
multilingual analysis. We present meth-
ods addressing the problem of automatic
video highlight prediction based on joint
visual features and textual analysis of the
real-world audience discourse with com-
plex slang, in both English and tradi-
tional Chinese. We present a novel dataset
based on League of Legends champi-
onships recorded from North American
and Taiwanese Twitch.tv channels (will be
released for further research), and demon-
strate strong results on these using multi-
modal, character-level CNN-RNN model
architectures.

1 Introduction

On-line eSports events provide a new setting for
observing large-scale social interaction focused on
a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
nia, and is a significant part of today’s culture, eS-
ports brings this to a new level on several fronts.
One is the global reach, the same games are played
around the world and across cultures by speak-
ers of several languages. Another is the scale of
on-line text-based discourse during matches that is
public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
(and researchers) can see exactly the same views.

1
http://www.lolesports.com/en_US/articles/

2016-league-legends-world-championship-numbers

(a) Twitch

(b) Youtube

(c) Facebook

Figure 1: Pictures of Broadcasting platforms:(a)
Twitch: League of Legends Tournament
Broadcasting, (b) Youtube: News Channel,
(c)Facebook: Personal live sharing

This paper builds on the wealth of interaction
around eSports to develop predictive models for
match video highlights based on the audience’s
online chat discourse as well as the visual record-
ings of matches themselves. ESports journal-
ists and fans create highlight videos of impor-
tant moments in matches. Using these as ground
truth, we explore automatic prediction of high-
lights via multimodal CNN+RNN models for mul-
tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with
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computer vision techniques that can easily identify
some aspects of the state of play. As an example,
computer vision may not understand why Michael
Jordan’s dunk is a highlight over that of another
player, but concurrent fan commentary might re-
veal this.

We collect our dataset from Twitch.tv, one of
the live-streaming platforms that integrates com-
ments (see Fig. 1), and the largest live-streaming
platform for video games. We record matches of
the game League of Legends (LOL), one of the
largest eSports game in two subsets, 1) the spring
season of the North American League of Leg-
ends Championship Series (NALCS), and 2) the
League of Legends Master Series (LMS) hosted in
Taiwan/Macau/HongKong, with chat comments in
English and traditional Chinese respectively. We
use the community created highlights to label each
frame of a match as highlight or not.

In addition to our new dataset, we present
several experiments with multilingual character-
based models, deep-learning based vision mod-
els either per-frame or tied together with a video-
sequence LSTM-RNN, and combinations of lan-
guage and vision models. Our results indicate
that while surprisingly the visual models gener-
ally outperform language-based models, we can
still build reasonably useful language models that
help disambiguate difficult cases for vision mod-
els, and that combining the two sources is the most
effective model (across multiple languages).

2 Related Work

We briefly discuss a small sample of the related
work on language and vision datasets, summariza-
tion, and highlight prediction. There has been a
surge of vision and language datasets focusing on
captions over the last few years, (Rashtchian et al.,
2010; Ordonez et al., 2011; Lin et al., 2014), fol-
lowed by efforts to focus on more specific parts of
images (Krishna et al., 2016), or referring expres-
sions (Kazemzadeh et al., 2014), or on the broader
context (Huang et al., 2016). For video, simi-
lar efforts have collected descriptions (Chen and
Dolan, 2011), while others use existing descrip-
tive video service (DVS) sources (Rohrbach et al.,
2015; Torabi et al., 2015). Beyond descriptions,
other datasets use questions to relate images and
language (Antol et al., 2015; Yu et al., 2015). This
approach is extended to movies in Tapaswi et al.
(2016).

The related problem of visually summariz-
ing videos (as opposed to finding the high-
lights) has produced datasets of holiday and
sports events with multiple users making summary
videos (Gygli et al., 2014) and multiple users se-
lecting summary key-frames (de Avila et al., 2011)
from short videos. For language-based summa-
rization, Extractive models (Filippova and Altun,
2013; Filippova et al., 2015) generate summaries
by selecting important sentences and then assem-
bling these, while Abstractive models (Chopra
et al., 2016; Mei et al., 2016; Nallapati et al., 2016;
See et al., 2017) generate/rewrite the summaries
from scratch.

Closer to our setting, there has been work on
highlight prediction in football (soccer) and bas-
ketball based on audio of broadcasts (Cheng and
Hsu, 2006) (Wang et al., 2004) where commenta-
tors may have an outsized impact or visual fea-
tures (Bertini et al., 2005). In the spirit of our
study, there has been work looking at tweets dur-
ing sporting events (Hsieh et al., 2012), but the
tweets are not as immediate or as well aligned with
the games as the eSports comments. More closely
related to our work, Song (2016) collects videos
for Heroes of the Storm, League of Legends, and
Dota2 on online broadcasting websites of around
327 hours total. They also provide highlight label-
ing annotated by four annotators. Our method, on
the other hand, has a similar scale of data, but we
use existing highlights, and we also employ tex-
tual audience chat commentary, thus providing a
new resource and task for Language and Vision re-
search. In summary, we present the first language-
vision dataset for video highlighting that contains
audience reactions in chat format, in multiple lan-
guages. The community produced ground truth
provides labels for each frame and can be used
for supervised learning. The language side of this
new dataset presents interesting challenges related
to real-world Internet-style slang.

3 Data Collection

Our dataset covers 218 videos from NALCS and
103 from LMS for a total of 321 videos from week
1 to week 9 in 2017 spring series from each tourna-
ment. Each week there are 10 matches for NALCS
and 6 matches for LMS. Matches are best of 3,
so consist of two games or three games. The first
and third games are used for training. The sec-
ond games in the first 4 weeks are used as valida-
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Frame	 48-dim	vector 	

(a) Feature vector of
frame

Highlight	

Template	Matching	
video		

Video	Matching	Result		

Similarity	Response	

(b) Template Matching

Figure 2: Highlight Labeling: (a) The feature rep-
resentation of each frame is calculated by averag-
ing each color channel in each subregion. (b) Af-
ter template matching, the top bar shows the max-
imum of similarity matching of each frame in the
highlight and the bottom bar is the labeling result
of the video.

tion and the remainder of second games are used
as test. Table 1 lists the numbers of videos in train,
validation, and test subsets.

Dataset Train Val Testing Total
NALCS 128 40 50 218
LMS 57 18 28 103

Table 1: Dataset statistics (number of videos).

Each game’s video ranges from 30 to 50 min-
utes in length which contains image and chat data
linked to the specific timestamp of the game. The
average number of chats per video is 7490 with
a standard deviation of 4922. The high value
of standard deviation is mostly due to the fact
that NALCS simultaneously broadcasts matches
in two different channels (nalcs12 and nalcs23)
which often leads to the majority of users watching
the channel with a relatively more popular team
causing an imbalance in the number of chats. If we
only consider LMS which broadcasts with a sin-
gle channel, the average number of chats are 7210
with standard deviation of 2719. The number of
viewers for each game averages about 21526, and
the number of unique users who type in chat is on
average 2185, i.e., roughly 10% of the viewers.

Highlight Labeling For each game, we col-
lected community generated highlights ranging
from 5 minutes to 7 minutes in length. For the pur-
pose of consistency within our data, we collected
the highlights from a single Youtube channel,

2
https://www.twitch.tv/nalcs1

3
https://www.twitch.tv/nalcs2

Onivia,4 which provided highlights for both cham-
pionship tournaments in a consistent arrangement.
We expect such consistency will aid our model to
better pick up characteristics for determining high-
lights. We next need to align the position of the
frames from the highlight video to frames in the
full game video. For this, we adopted a template
matching approach. For each frame in the video
and the highlight, we divide it into 16 regions of
4 by 4 and use the average value of each color
channel in each region as the feature. The feature
representation of each frame ends up as a 48-dim
vector as shown in Figure 2a. For each frame in
the highlight, we can find the most similar frame
in the video by calculating distance between these
two vectors. However, matching a single frame to
another suffers from noise. Therefore, we alterna-
tively concatenate the following frames to form a
window and use template matching to find the best
matching location in the video. We found out that
when the window size is 60 frames, it gives consis-
tent and high quality results. For each frame, the
result contains not only the best matching score
but also the location of that match in the video.5

Figure 2b illustrates this matching process.

4 Model

In this section, we explain the proposed models
and components. We first describe the notation
and definition of the problem, plus the evaluation
metric used. Next, we explain our vision model V-
CNN-LSTM and language model L-Char-LSTM.
Finally, we describe the joint multimodal model
lv-LSTM.

Problem Definition Our basic task is to deter-
mine if a frame of the full input video should
be labeled as being part of the output high-
light or not. To simplify our notation, we use
X = {x1, x2, ..., xt} to denote a sequence of fea-
tures for frames. Chats are expressed as C =
{(c1, ts1), ..., (cn, tsn)}. where each chat c comes
with a timestamp ts. Methods take the image fea-
tures and/or chats and predict labels for the frames,
Y = {y1, y2, ..., yt}.
Evaluation Metric: We refer to the set of frames
with positive ground truth label as Sgt and the set

4
https://www.youtube.com/channel/

UCPhab209KEicqPJFAk9IZEA
5When the window contains a moment of clip transition

in highlights, the best matching score appears low. This is
used to separate all clips in the highlight. Then we can use
the starting and end locations of each clip to label the video.
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Figure 3: Network architecture of proposed models.

of predicted frames with a positive label as Spred.
Following (Gygli et al., 2014; Song et al., 2015),
we use the harmonic mean F-score in Eq.2 widely
used in video summarization task for evaluation:

P =
Sgt ∩ Spred
|Spred|

, R =
Sgt ∩ Spred
|Sgt|

(1)

F =
2PR

P +R
× 100% (2)

V-CNN We use the ResNet-34 model (He et al.,
2016) to represent frames, motivated by its strong
results on the ImageNet Challenge (Russakovsky
et al., 2015). Our naive V-CNN model (Fig-
ure 3a) uses features from the pre-trained version
of this network 6 directly to make prediction at
each frame (which are resized to 224x224).

V-CNN-LSTM In order to exploit visual video
information sequentially over time, we use a
memory-based LSTM-RNN on top of the image
features, so as to model long-term dependencies.
All of our videos are 30FPS. As the difference be-
tween consecutive frames is usually minor, we run
prediction every 10th frame during evaluation and
interpolate predictions between these frames. Dur-
ing training, due to the GPU memory constraints,
we unfold the LSTM cell 16 times. Therefore the
image window size is around 5-seconds (16 sam-
ples every 10th frame from 30fps video). The hid-
den state from the last cell is used as the V-CNN-
LSTM feature. This process is shown in Figure 3b.

L-Word-LSTM and L-Char-LSTM Next, we
discuss our language-based models using the
audience chat text. Word-level LSTM-RNN
models (Sutskever et al., 2014) are a common
approach to embedding sentences. Unfortu-
nately, this does not fit our Internet-slang style
language with irregularities, “mispelled” words
(hapy, happppppy), emojis (ˆ ˆ), abbreviations
(LOL), marks (?!?!?!?!), or onomatopoeic cases

6
https://github.com/pytorch/pytorch

(e.g., 4 which sounds like yes in traditional Chi-
nese). People may type variant length of 4, e.g.,,
4444444 to express their remarks.

Therefore, alternatively, we model the audience
chat with a character-level LSTM-RNN model
(Graves, 2013). Characters of the language, Chi-
nese, English, or Emojis, are expanded to multiple
ASCII characters according to the two-character
Unicode or other representations used on the chat
servers. We encode a 1-hot vector for each ASCII
input character. For each frame we use all chats
that occur in the next Wt seconds which are called
text window size to form the input for L-Char-
LSTM. We concatenate all the chats in a window,
separating them by a special stop character, and
then fed to a 3-layer L-Char-LSTM model.7 This
model is shown in Figure 3c. Following the setting
in Sec. 5, we evaluate the text window size from 5
seconds to 9 seconds, and got the following accu-
racies:32.1%, 29.6%, 41.5%, 28.2%, 34.4%. We
achieved best results with text window size as 7
seconds, and used this in rest of the experiments.

Joint lv-LSTM Model Our final lv-LSTM
model combines the best vision and language
models: V-CNN-LSTM and L-Char-LSTM. For
the vision and language models, we can extract
features Fv and Fl from V-CNN-LSTN and L-
Char-LSTM, respectively. Then we concatenate
Fv and Fl, and feed it into a 2-layer MLP. The
completed model is shown in Figure 3d. We ex-
pect there is room to improve this approach, by
using more involved representations, e.g., Bilinear
Pooling (Fukui et al., 2016), Memory Networks
(Xiong et al., 2016), and Attention Models (Lu
et al., 2016); this is future work.

7The number of these stop characters is then an encod-
ing of the number of chats in the window. Therefore, the
L-Char-LSTM could learn to use this #chats information, if
it is a useful feature. Also, some content has been deleted by
Twitch.tv or the channel itself due to the usage of improper
words. We use symbol ”\n” to replace such cases.
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Method Data UF P R F
L-Char-LSTM C 100% 0.11 0.99 19.6
L-Char-LSTM C last 25% 0.35 0.51 41.5
L-Word-LSTM C last 25% 0.10 0.99 19.2
V-CNN V 100% 0.40 0.93 56.2
V-CNN V last 25% 0.57 0.74 64.0
V-CNN-LSTM V last 25% 0.58 0.82 68.3
lv-LSTM C+V last 25% 0.77 0.72 74.8

Table 2: Ablation Study: Effects of various mod-
els. C:Chat, V:Video, UF: % of frames Used in
highlight clips as positive training examples; P:
Precision, R: Recall, F: F-score.

5 Experiments and Results

Training Details In development and ablation
studies, we use train and val splits of the data from
NALCS to evaluate models in Section 3. For the
final results, models are retrained on the combina-
tion of train and val data (following major vision
benchmarks e.g. PASCAL-VOC and COCO), and
performance is measured on the test set. We sepa-
rate the highlight prediction to three different tasks
based on using different input data: videos, chats,
and videos+chats. The details of dataset split are
in Section 3. Our code is implemented in PyTorch.

To deal with the large number of frames total,
we sample only 5k positive and 5k negative exam-
ples in each epoch. We use batch size of 32 and
run 60 epochs in all experiments. Weight decay is
10−4 and learning rate is set as 10−2 in the first 20
epochs and 10−3 after that. Cross entropy loss is
used. Highlights are generated by fans and consist
of clips. We match each clip to when it happened
in the full match and call this the highlight clip
(non-overlapping). The action of interest (kill, ob-
jective control, etc.) often happens in the later part
of a highlight clip, while the clip contains some
additional context before that action that may help
set the stage. For some of our experimental set-
tings (Table 2), we used a heuristic of only includ-
ing the last 25% frames in every highlight clip as
positive training examples. During evaluation, we
used all frames in the highlight clip.

Ablation Study Table 2 shows the performance
of each module separately on the dev set. For
the basic L-Char-LSTM and V-CNN models, us-
ing only the last 25% of frames in highlight clips
in training works best. In order to evaluate the per-
formance of L-Char-LSTM model, we also train a
Word-LSTM model by tokenizing all the chats and

Method Data NALCS LMS
L-Char-LSTM chat 43.2 39.7
V-CNN-LSTM video 72.2 69.2
lv-LSTM chat+video 74.7 70.0

Table 3: Test Results on the NALCS (English) and
LMS (Traditional Chinese) datasets.

only considering the words that appeared more
than 10 times, which results in 10019 words. We
use this vocabulary to encode the words to 1-hot
vectors. The L-Char-LSTM outperforms L-Word-
LSTM by 22.3%.

Test Results Test results are shown in Table 3.
Somewhat surprisingly, the vision only model is
more accurate than the language only model, de-
spite the real-time nature of the comment stream.
This is perhaps due to the visual form of the game,
where highlight events may have similar anima-
tions. However, including language with vision in
the lv-LSTM model significantly improves over
vision alone, as the comments may exhibit addi-
tional contextual information. Comparing results
between ablation and the final test, it seems more
data contributes to higher accuracy. This effect is
more apparent in the vision models, perhaps due
to complexity. Moreover, L-Char-LSTM performs
better in English compared to traditional Chinese.
From the numbers given in Section 3, variation in
the number of chats in NALCS was much higher
than LMS, which one may expect to have a critical
effect in the language model. However, our results
seem to suggest that the L-Char-LSTM model can
pickup other factors of the chat data (e.g. content)
instead of just counting the number of chats. We
expect a different language model more suitable
for the traditional Chinese language should be able
to improve the results for the LMS data.

6 Conclusion

We presented a new dataset and multimodal meth-
ods for highlight prediction, based on visual cues
and textual audience chat reactions in multiple lan-
guages. We hope our new dataset can encourage
further multilingual, multimodal research.
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Abstract

Sequence-to-sequence models have shown
promising improvements on the temporal
task of video captioning, but they opti-
mize word-level cross-entropy loss dur-
ing training. First, using policy gra-
dient and mixed-loss methods for re-
inforcement learning, we directly opti-
mize sentence-level task-based metrics (as
rewards), achieving significant improve-
ments over the baseline, based on both
automatic metrics and human evaluation
on multiple datasets. Next, we pro-
pose a novel entailment-enhanced reward
(CIDEnt) that corrects phrase-matching
based metrics (such as CIDEr) to only al-
low for logically-implied partial matches
and avoid contradictions, achieving fur-
ther significant improvements over the
CIDEr-reward model. Overall, our
CIDEnt-reward model achieves the new
state-of-the-art on the MSR-VTT dataset.

1 Introduction

The task of video captioning (Fig. 1) is an im-
portant next step to image captioning, with ad-
ditional modeling of temporal knowledge and
action sequences, and has several applications
in online content search, assisting the visually-
impaired, etc. Advancements in neural sequence-
to-sequence learning has shown promising im-
provements on this task, based on encoder-
decoder, attention, and hierarchical models (Venu-
gopalan et al., 2015a; Pan et al., 2016a). How-
ever, these models are still trained using a word-
level cross-entropy loss, which does not correlate
well with the sentence-level metrics that the task
is finally evaluated on (e.g., CIDEr, BLEU). More-
over, these models suffer from exposure bias (Ran-

Figure 1: A correctly-predicted video caption gen-
erated by our CIDEnt-reward model.

zato et al., 2016), which occurs when a model
is only exposed to the training data distribu-
tion, instead of its own predictions. First, us-
ing a sequence-level training, policy gradient ap-
proach (Ranzato et al., 2016), we allow video
captioning models to directly optimize these non-
differentiable metrics, as rewards in a reinforce-
ment learning paradigm. We also address the ex-
posure bias issue by using a mixed-loss (Paulus
et al., 2017; Wu et al., 2016), i.e., combining the
cross-entropy and reward-based losses, which also
helps maintain output fluency.

Next, we introduce a novel entailment-corrected
reward that checks for logically-directed partial
matches. Current reinforcement-based text gener-
ation works use traditional phrase-matching met-
rics (e.g., CIDEr, BLEU) as their reward func-
tion. However, these metrics use undirected n-
gram matching of the machine-generated caption
with the ground-truth caption, and hence fail to
capture its directed logical correctness. Therefore,
they still give high scores to even those generated
captions that contain a single but critical wrong
word (e.g., negation, unrelated action or object),
because all the other words still match with the
ground truth. We introduce CIDEnt, which pe-
nalizes the phrase-matching metric (CIDEr) based
reward, when the entailment score is low. This
ensures that a generated caption gets a high re-
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Figure 2: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr score as reward.

ward only when it is a directed match with (i.e., it
is logically implied by) the ground truth caption,
hence avoiding contradictory or unrelated infor-
mation (e.g., see Fig. 1). Empirically, we show
that first the CIDEr-reward model achieves signif-
icant improvements over the cross-entropy base-
line (on multiple datasets, and automatic and hu-
man evaluation); next, the CIDEnt-reward model
further achieves significant improvements over the
CIDEr-based reward. Overall, we achieve the new
state-of-the-art on the MSR-VTT dataset.

2 Related Work
Past work has presented several sequence-to-
sequence models for video captioning, using at-
tention, hierarchical RNNs, 3D-CNN video fea-
tures, joint embedding spaces, language fusion,
etc., but using word-level cross entropy loss train-
ing (Venugopalan et al., 2015a; Yao et al., 2015;
Pan et al., 2016a,b; Venugopalan et al., 2016).

Policy gradient for image captioning was re-
cently presented by Ranzato et al. (2016), using
a mixed sequence level training paradigm to use
non-differentiable evaluation metrics as rewards.1

Liu et al. (2016b) and Rennie et al. (2016) improve
upon this using Monte Carlo roll-outs and a test in-
ference baseline, respectively. Paulus et al. (2017)
presented summarization results with ROUGE re-
wards, in a mixed-loss setup.

Recognizing Textual Entailment (RTE) is a tra-
ditional NLP task (Dagan et al., 2006; Lai and
Hockenmaier, 2014; Jimenez et al., 2014), boosted
by a large dataset (SNLI) recently introduced
by Bowman et al. (2015). There have been several
leaderboard models on SNLI (Cheng et al., 2016;
Rocktäschel et al., 2016); we focus on the decom-
posable, intra-sentence attention model of Parikh
et al. (2016). Recently, Pasunuru and Bansal
(2017) used multi-task learning to combine video
captioning with entailment and video generation.

1Several papers have presented the relative comparison of
image captioning metrics, and their pros and cons (Vedantam
et al., 2015; Anderson et al., 2016; Liu et al., 2016b; Hodosh
et al., 2013; Elliott and Keller, 2014).

3 Models
Attention Baseline (Cross-Entropy) Our
attention-based seq-to-seq baseline model is
similar to the Bahdanau et al. (2015) architecture,
where we encode input frame level video features
{f1:n} via a bi-directional LSTM-RNN and then
generate the caption w1:m using an LSTM-RNN
with an attention mechanism. Let θ be the model
parameters and w∗1:m be the ground-truth caption,
then the cross entropy loss function is:

L(θ) = −
m∑

t=1

log p(w∗t |w∗1:t−1, f1:n) (1)

where p(wt|w1:t−1, f1:n) = softmax(W Thdt ),
W T is the projection matrix, and wt and hdt are
the generated word and the RNN decoder hidden
state at time step t, computed using the standard
RNN recursion and attention-based context vector
ct. Details of the attention model are in the sup-
plementary (due to space constraints).

Reinforcement Learning (Policy Gradient) In
order to directly optimize the sentence-level test
metrics (as opposed to the cross-entropy loss
above), we use a policy gradient pθ, where θ rep-
resent the model parameters. Here, our baseline
model acts as an agent and interacts with its envi-
ronment (video and caption). At each time step,
the agent generates a word (action), and the gen-
eration of the end-of-sequence token results in a
reward r to the agent. Our training objective is to
minimize the negative expected reward function:

L(θ) = −Ews∼pθ [r(ws)] (2)

where ws is the word sequence sampled from
the model. Based on the REINFORCE algo-
rithm (Williams, 1992), the gradients of this non-
differentiable, reward-based loss function are:

∇θL(θ) = −Ews∼pθ [r(ws) · ∇θ log pθ(ws)] (3)

We follow Ranzato et al. (2016) approximating
the above gradients via a single sampled word

980



Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores.

sequence. We also use a variance-reducing bias
(baseline) estimator in the reward function. Their
details and the partial derivatives using the chain
rule are described in the supplementary.

Mixed Loss During reinforcement learning, op-
timizing for only the reinforcement loss (with au-
tomatic metrics as rewards) doesn’t ensure the
readability and fluency of the generated caption,
and there is also a chance of gaming the metrics
without actually improving the quality of the out-
put (Liu et al., 2016a). Hence, for training our
reinforcement based policy gradients, we use a
mixed loss function, which is a weighted combi-
nation of the cross-entropy loss (XE) and the rein-
forcement learning loss (RL), similar to the previ-
ous work (Paulus et al., 2017; Wu et al., 2016).
This mixed loss improves results on the metric
used as reward through the reinforcement loss
(and improves relevance based on our entailment-
enhanced rewards) but also ensures better read-
ability and fluency due to the cross-entropy loss (in
which the training objective is a conditioned lan-
guage model, learning to produce fluent captions).
Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (4)

where γ is a tuning parameter used to balance
the two losses. For annealing and faster conver-
gence, we start with the optimized cross-entropy
loss baseline model, and then move to optimizing
the above mixed loss function.2

4 Reward Functions

Caption Metric Reward Previous image cap-
tioning papers have used traditional captioning
metrics such as CIDEr, BLEU, or METEOR as
reward functions, based on the match between the
generated caption sample and the ground-truth ref-
erence(s). First, it has been shown by Vedantam

2We also experimented with the curriculum learning
‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the
mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.

et al. (2015) that CIDEr, based on a consensus
measure across several human reference captions,
has a higher correlation with human evaluation
than other metrics such as METEOR, ROUGE,
and BLEU. They further showed that CIDEr gets
better with more number of human references (and
this is a good fit for our video captioning datasets,
which have 20-40 human references per video).

More recently, Rennie et al. (2016) further
showed that CIDEr as a reward in image caption-
ing outperforms all other metrics as a reward, not
just in terms of improvements on CIDEr metric,
but also on all other metrics. In line with these
above previous works, we also found that CIDEr
as a reward (‘CIDEr-RL’ model) achieves the best
metric improvements in our video captioning task,
and also has the best human evaluation improve-
ments (see Sec. 6.3 for result details, incl. those
about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr
performs better than other metrics as a reward, all
these metrics (including CIDEr) are still based on
an undirected n-gram matching score between the
generated and ground truth captions. For exam-
ple, the wrong caption “a man is playing football”
w.r.t. the correct caption “a man is playing bas-
ketball” still gets a high score, even though these
two captions belong to two completely different
events. Similar issues hold in case of a negation
or a wrong action/object in the generated caption
(see examples in Table 1).

We address the above issue by using an entail-
ment score to correct the phrase-matching metric
(CIDEr or others) when used as a reward, ensur-
ing that the generated caption is logically implied
by (i.e., is a paraphrase or directed partial match
with) the ground-truth caption. To achieve an ac-
curate entailment score, we adapt the state-of-the-
art decomposable-attention model of Parikh et al.
(2016) trained on the SNLI corpus (image caption
domain). This model gives us a probability for
whether the sampled video caption (generated by
our model) is entailed by the ground truth caption
as premise (as opposed to a contradiction or neu-
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tral case).3 Similar to the traditional metrics, the
overall ‘Ent’ score is the maximum over the en-
tailment scores for a generated caption w.r.t. each
reference human caption (around 20/40 per MSR-
VTT/YouTube2Text video). CIDEnt is defined as:

CIDEnt =

{
CIDEr− λ, if Ent < β

CIDEr, otherwise
(5)

which means that if the entailment score is very
low, we penalize the metric reward score by de-
creasing it by a penalty λ. This agreement-based
formulation ensures that we only trust the CIDEr-
based reward in cases when the entailment score
is also high. Using CIDEr−λ also ensures the
smoothness of the reward w.r.t. the original CIDEr
function (as opposed to clipping the reward to a
constant). Here, λ and β are hyperparameters
that can be tuned on the dev-set; on light tun-
ing, we found the best values to be intuitive: λ =
roughly the baseline (cross-entropy) model’s score
on that metric (e.g., 0.45 for CIDEr on MSR-VTT
dataset); and β = 0.33 (i.e., the 3-class entailment
classifier chose contradiction or neutral label for
this pair). Table 1 shows some examples of sam-
pled generated captions during our model training,
where CIDEr was misleadingly high for incorrect
captions, but the low entailment score (probabil-
ity) helps us successfully identify these cases and
penalize the reward.

5 Experimental Setup
Datasets We use 2 datasets: MSR-VTT (Xu et al.,
2016) has 10, 000 videos, 20 references/video; and
YouTube2Text/MSVD (Chen and Dolan, 2011)
has 1970 videos, 40 references/video. Standard
splits and other details in supp.
Automatic Evaluation We use several standard
automated evaluation metrics: METEOR, BLEU-
4, CIDEr-D, and ROUGE-L (from MS-COCO
evaluation server (Chen et al., 2015)).
Human Evaluation We also present human eval-
uation for comparison of baseline-XE, CIDEr-RL,
and CIDEnt-RL models, esp. because the au-
tomatic metrics cannot be trusted solely. Rele-
vance measures how related is the generated cap-
tion w.r.t, to the video content, whereas coherence
measures readability of the generated caption.

3Our entailment classifier based on Parikh et al. (2016)
is 92% accurate on entailment in the caption domain, hence
serving as a highly accurate reward score. For other domains
in future tasks such as new summarization, we plan to use the
new multi-domain dataset by Williams et al. (2017).

Training Details All the hyperparameters are
tuned on the validation set. All our results (in-
cluding baseline) are based on a 5-avg-ensemble.
See supplementary for extra training details, e.g.,
about the optimizer, learning rate, RNN size,
Mixed-loss, and CIDEnt hyperparameters.

6 Results
6.1 Primary Results

Table 2 shows our primary results on the popular
MSR-VTT dataset. First, our baseline attention
model trained on cross entropy loss (‘Baseline-
XE’) achieves strong results w.r.t. the previous
state-of-the-art methods.4 Next, our policy gra-
dient based mixed-loss RL model with reward as
CIDEr (‘CIDEr-RL’) improves significantly5 over
the baseline on all metrics, and not just the CIDEr
metric. It also achieves statistically significant im-
provements in terms of human relevance evalua-
tion (see below). Finally, the last row in Table 2
shows results for our novel CIDEnt-reward RL
model (‘CIDEnt-RL’). This model achieves sta-
tistically significant6 improvements on top of the
strong CIDEr-RL model, on all automatic metrics
(as well as human evaluation). Note that in Ta-
ble 2, we also report the CIDEnt reward scores,
and the CIDEnt-RL model strongly outperforms
CIDEr and baseline models on this entailment-
corrected measure. Overall, we are also the new
Rank1 on the MSR-VTT leaderboard, based on
their ranking criteria.

Human Evaluation We also perform small hu-
man evaluation studies (250 samples from the
MSR-VTT test set output) to compare our 3 mod-
els pairwise.7 As shown in Table 3 and Table 4, in
terms of relevance, first our CIDEr-RL model stat.
significantly outperforms the baseline XE model
(p < 0.02); next, our CIDEnt-RL model signif-
icantly outperforms the CIDEr-RL model (p <

4We list previous works’ results as reported by the
MSR-VTT dataset paper itself, as well as their 3
leaderboard winners (http://ms-multimedia-challenge.
com/leaderboard), plus the 10-ensemble video+entailment
generation multi-task model of Pasunuru and Bansal (2017).

5Statistical significance of p < 0.01 for CIDEr, ME-
TEOR, and ROUGE, and p < 0.05 for BLEU, based on the
bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994).

6Statistical significance of p < 0.01 for CIDEr, BLEU,
ROUGE, and CIDEnt, and p < 0.05 for METEOR.

7We randomly shuffle pairs to anonymize model iden-
tity and the human evaluator then chooses the better caption
based on relevance and coherence (see Sec. 5). ‘Not Distin-
guishable’ are cases where the annotator found both captions
to be equally good or equally bad).
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Models BLEU-4 METEOR ROUGE-L CIDEr-D CIDEnt Human*
PREVIOUS WORK

Venugopalan (2015b)? 32.3 23.4 - - - -
Yao et al. (2015)? 35.2 25.2 - - - -
Xu et al. (2016) 36.6 25.9 - - - -
Pasunuru and Bansal (2017) 40.8 28.8 60.2 47.1 - -
Rank1: v2t navigator 40.8 28.2 60.9 44.8 - -
Rank2: Aalto 39.8 26.9 59.8 45.7 - -
Rank3: VideoLAB 39.1 27.7 60.6 44.1 - -

OUR MODELS
Cross-Entropy (Baseline-XE) 38.6 27.7 59.5 44.6 34.4 -
CIDEr-RL 39.1 28.2 60.9 51.0 37.4 11.6
CIDEnt-RL (New Rank1) 40.5 28.4 61.4 51.7 44.0 18.4

Table 2: Our primary video captioning results on MSR-VTT. All CIDEr-RL results are statistically
significant over the baseline XE results, and all CIDEnt-RL results are stat. signif. over the CIDEr-RL
results. Human* refers to the ‘pairwise’ comparison of human relevance evaluation between CIDEr-RL
and CIDEnt-RL models (see full human evaluations of the 3 models in Table 3 and Table 4).

Relevance Coherence
Not Distinguishable 64.8% 92.8%
Baseline-XE Wins 13.6% 4.0%
CIDEr-RL Wins 21.6% 3.2%

Table 3: Human eval: Baseline-XE vs CIDEr-RL.

Relevance Coherence
Not Distinguishable 70.0% 94.6%
CIDEr-RL Wins 11.6% 2.8%
CIDEnt-RL Wins 18.4% 2.8%

Table 4: Human eval: CIDEr-RL vs CIDEnt-RL.

0.03). The models are statistically equal on co-
herence in both comparisons.

6.2 Other Datasets
We also tried our CIDEr and CIDEnt reward mod-
els on the YouTube2Text dataset. In Table 5, we
first see strong improvements from our CIDEr-RL
model on top of the cross-entropy baseline. Next,
the CIDEnt-RL model also shows some improve-
ments over the CIDEr-RL model, e.g., on BLEU
and the new entailment-corrected CIDEnt score. It
also achieves significant improvements on human
relevance evaluation (250 samples).8

6.3 Other Metrics as Reward
As discussed in Sec. 4, CIDEr is the most promis-
ing metric to use as a reward for captioning,
based on both previous work’s findings as well as
ours. We did investigate the use of other metrics
as the reward. When using BLEU as a reward
(on MSR-VTT), we found that this BLEU-RL
model achieves BLEU-metric improvements, but
was worse than the cross-entropy baseline on hu-
man evaluation. Similarly, a BLEUEnt-RL model
achieves BLEU and BLEUEnt metric improve-
ments, but is again worse on human evaluation.

8This dataset has a very small dev-set, causing tuning is-
sues – we plan to use a better train/dev re-split in future work.

Models B M R C CE H*
Baseline-XE 52.4 35.0 71.6 83.9 68.1 -
CIDEr-RL 53.3 35.1 72.2 89.4 69.4 8.4
CIDEnt-RL 54.4 34.9 72.2 88.6 71.6 13.6

Table 5: Results on YouTube2Text (MSVD)
dataset. CE = CIDEnt score. H* refer to the pair-
wise human comparison of relevance.

We also experimented with the new SPICE met-
ric (Anderson et al., 2016) as a reward, but this
produced long repetitive phrases (as also discussed
in Liu et al. (2016b)).

6.4 Analysis
Fig. 1 shows an example where our CIDEnt-
reward model correctly generates a ground-truth
style caption, whereas the CIDEr-reward model
produces a non-entailed caption because this cap-
tion will still get a high phrase-matching score.
Several more such examples are in the supp.

7 Conclusion
We first presented a mixed-loss policy gradi-
ent approach for video captioning, allowing for
metric-based optimization. We next presented an
entailment-corrected CIDEnt reward that further
improves results, achieving the new state-of-the-
art on MSR-VTT. In future work, we are apply-
ing our entailment-corrected rewards to other di-
rected generation tasks such as image caption-
ing and document summarization (using the new
multi-domain NLI corpus (Williams et al., 2017)).
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Tim Rocktäschel, Edward Grefenstette, Karl Moritz
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Abstract

Verbs can only be used with a few spe-
cific arrangements of their arguments (syn-
tactic frames). Most theorists note that
verbs can be organized into a hierarchy
of verb classes based on the frames they
admit. Here we show that such a hierar-
chy is objectively well-supported by the
patterns of verbs and frames in English,
since a systematic hierarchical clustering
algorithm converges on the same structure
as the handcrafted taxonomy of VerbNet,
a broad-coverage verb lexicon. We also
show that the hierarchies capture meaning-
ful psychological dimensions of general-
ization by predicting novel verb coercions
by human participants. We discuss limi-
tations of a simple hierarchical represen-
tation and suggest similar approaches for
identifying the representations underpin-
ning verb argument structure.

1 Introduction

Why can Sally like to read but not *appreciate to
read? Key to the grammar of sentences are verbs
and the arguments with which they appear. How
children learn the constraints that govern the ways
verbs and arguments combine is a central question
in language acquisition.

Theorists have long noted that verbs can be or-
ganized into classes based on their syntactic con-
structions and the events they express (see Levin
and Rappaport Hovav, 2005 for review). Verb
classes are included in most theories of argument
structure acquisition, whether as first class objects
(Perfors et al., 2010) or mere epiphenomena of
other claims about the structure of form-meaning
mappings (Pinker, 1989; Goldberg, 1995).

Most theories also propose further structure be-
tween classes. One common assumption is that
verb argument structure can be at least partially
described by a hierarchy: Each verb belongs to
a class, which itself may belong to a number of
broader superclasses.

While many theories predict more complex
structure (e.g. cross-cutting categories; Levin
and Rappaport Hovav, 2005), providing (psy-
cho)linguistic evidence for a simple hierarchy of
verbs is an important starting point for investi-
gating more complex theories. VerbNet (Kipper
et al., 2008), the largest English verb argument
structure resource,1 organizes verbs and classes
into a shallow hierarchy, but its structure has been
handcrafted incrementally over time (starting with
seminal work by Levin, 1993). On the other
hand, recently-developed, state-of-the-art machine
learning methods offer a unique alternative ap-
proach to constructing such a hierarchy.

In this paper, we first conduct a broad-coverage
analysis of how verbs might be hierarchically ar-
ranged by comparing VerbNet’s handcrafted hi-
erarchy to structure systematically inferred by a
Bayesian hierarchical clustering algorithm. We
find that the two arrive at similar structure, thus
substantiating both methods (i.e. intuition vs. clus-
tering) and the common hierarchy they find.

Second, we investigate the psychological valid-
ity of this representation: if classes capture mean-
ingful dimensions of generalization, one would in-
tuit that a verb in a class should behave more simi-
larly to verbs in nearby classes than distant classes
according to some measure of “distance”. Indeed,
this kind of assumption plays an important role

1VerbNet combines many important expert-crafted verb
resources into a single database, and thus is used in diverse
NLP applications including semantic parsing (Giuglea and
Moschitti, 2006), natural language inference (Palmer et al.,
2009), and information extraction (Maynard et al., 2009).
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in theoretical (Suttle and Goldberg, 2011; Pinker,
1989) and empirical (Ambridge et al., 2011) work.
We thus ask human participants to rate the compat-
ibility of a wide range of existing verbs in attested
and unattested syntactic frames. We find that such
coercions are indeed predicted by a hierarchical
taxonomy of verbs.

2 Related work

There is a substantial literature from both the
NLP and psycholinguistics communities on un-
supervised learning of verb classes from corpora
and other resources (e.g. Reichart and Korhonen,
2013; Vlachos et al., 2009; Sun et al., 2008; Joanis
and Stevenson, 2003) and computational cogni-
tive models of argument structure acquisition (e.g.
Barak et al., 2016; Ambridge and Blything, 2015;
Barak et al., 2014; Parisien and Stevenson, 2010;
Perfors et al., 2010), respectively.

Our work differs in several ways. First, we do
not consider the basic problem of learning verb
classes from semantic or syntactic primitives (cf.
Sun et al., 2008) or verb usages extracted from
corpora; instead, we examine what higher-level
structure is implied by the gold-standard catalog
of already-clustered verbs and syntactic frames in
VerbNet. Second, we do not attempt to model
incremental learning (cf. Parisien and Stevenson,
2010) or instantiate a specific theory (cf. Am-
bridge and Blything, 2015). Rather, we conduct
an at-scale investigation of verb argument struc-
ture through cluster analysis.

3 Discovering structure via clustering

VerbNet suggests a shallow and disconnected hi-
erarchy of verbs, with lower-level subclasses of
verbs that take the exact same frames, broader
standard classes, and at the top, 101 unrelated
superclasses (Figure 1a). There is a broad as-
sumption of weaker relations between members of
higher-level classes than lower-level classes.

We compared this to the hierarchy obtained
from Bayesian Hierarchical Clustering (BHC;
Heller and Ghahramani, 2005) implemented in
R by Savage et al. (2009), a state-of-the-art ag-
glomerative clustering method that can be seen
as a bottom-up approximation to a Dirichlet Pro-
cess Mixture Model. Unlike traditional hierarchi-
cal clustering algorithms, BHC uses Bayesian hy-
pothesis testing to merge subtrees: at each pro-
posed merge, BHC evaluates the probability p that
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Figure 1: (a) Simplified VerbNet hierarchy, depict-
ing a superclass, standard classes, subclasses, and
toy verbs Vi and frames Fi. (b) We train BHC on
the frame data D. Dotted lines are merges BHC
prefers not to make (p < 0.5). To obtain a flat
clustering, the tree is cut at nodes where p < 0.5
and each subtree is a cluster. (c) Using BHC to
evaluate P (V4 admits F2 | V4 admits F1,D).

the data are generated from a single probabilis-
tic model, rather than two or more different mod-
els consistent with the subtrees.2 Crucially, nodes
with probability p < 0.5 are merges that BHC
prefers not to make; the tree can be cut at these
nodes to obtain a flat clustering (Figure 1b), which
can then be compared to VerbNet.

3.1 Data

As input to BHC, we used VerbNet’s compre-
hensive set of verb-frame combinations. VerbNet
v3.23 can be represented as a 6334 verb× n frame
binary matrix, with 1s in cells with attested verb-
frame pairs (Figure 1a). Thus, each verb is repre-
sented as a binary vector of frames.

The number of frames n depends on what se-
mantic and syntactic annotations are considered to
be part of the frame. VerbNet includes 3 kinds
of annotations: selectional restrictions on argu-
ments, thematic roles, and prepositional literals
(Figure 2). For this paper, we included selectional
restrictions and thematic roles, resulting in 1613
frames. These annotations made it easiest to pro-
duce experimental stimuli in Section 4, although
our analysis produced similar results across the
other possible frame encodings (see Appendix A).

2In our case, the assumed generative model is a set of in-
dependent Beta-Bernoulli models predicting the probability
of occurrence of each frame, with the priors found by opti-
mizing the marginal likelihood of the overall model. For full
details of the algorithm, see Heller and Ghahramani (2005)
and Savage et al. (2009).

3verbs.colorado.edu/verb-index
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thematic
roles

prepositional literals

default encoding

Figure 2: Information associated with a VerbNet
frame entry.

3.2 Evaluation

Here we evaluated the extent to which BHC con-
verged on VerbNet’s structure at low (sub and
standard classes) and high levels (superclasses).

Comparing flat clusterings with H and C
First, we obtained the flat clustering from BHC
(Figure 1b) and asked how it compared to Verb-
Net. Here, we used homogeneity (H) and com-
pleteness (C), entropy-based measures of cluster-
ing similarity analogous to precision and recall in
binary classification (Rosenberg and Hirschberg,
2007). Treating VerbNet classes as ground truth,
H = 1 indicates that every BHC cluster contains
only members of a single VerbNet class. C = 1
indicates that members of a VerbNet class are al-
ways assigned to the same BHC cluster. The worst
case for both is 0.
H and C have different meanings depend-

ing on what we consider to be VerbNet’s flat
ground truth classes. We consider ground
truth classes across the levels of VerbNet gran-
ularity: low-level subclasses (Hsub, Csub), stan-
dard classes (Hstandard, Cstandard), and superclasses
(Hsuper, Csuper) (Table 1).

Table 1: Homogeneity and completeness. Ran-
dom baselines are mean statistics across 1000
clusterings made by uniformly sampling a BHC
cluster for each verb. Csub is trivially 1, since
members of VerbNet subclasses have identical fea-
tures and were always grouped into the same class
by BHC.

Statistic Granularity BHC Random

Hsuper .88 .31
H Hstandard .88 .19

Hsub .83 .34

Csuper .72 .31
C Cstandard .99 .14

Csub 1 .37

The important comparison is with superclasses,
for which both H and C were high. This indi-
cates that BHC clusters rarely included verbs from
multiple VerbNet superclasses (Hsuper = .88) and
rarely split verbs from the same VerbNet super-
class into different BHC clusters (Csuper = .72).

Tanglegram While H and C focus on the size
and membership of two clustering solutions, tan-
glegrams (Huson and Scornavacca, 2012) allow a
more general visualization and comparison of two
hierarchies. Using the heuristic of Scornavacca
et al. (2011),4 we drew the optimal tanglegram
of VerbNet and BHC, where the two trees are
drawn such that lines connect common leaves and
the number of intersections made by these lines
is minimized. We computed the entanglement of
the tanglegram by normalizing the number of in-
tersections to the 0–1 interval by dividing by the
worst case; this is a holistic measure of the simi-
larity of the hierarchies (Galili, 2015).

The tanglegram (Figure 3) shows that qualita-
tively, much of VerbNet’s structure aligns well be-
tween the trees. We observed an entanglement of
0.20, compared to a random baseline of 0.66.

3.3 Discussion

The highH andC (Table 1) and low entanglement
(Figure 3) suggest that both VerbNet’s handcrafted
hierarchical taxonomy and the one systematically
created by BHC converge on similar results. In-
terestingly, both methods result in a fairly shallow
hierarchy with many unrelated subtrees. This sug-
gests that while small clusters of verbs are highly
related, the principles governing verb argument
structure are relatively narrow and do not gener-
alize across more than a small subset of verbs.
Alternatively, it could suggest that a hierarchical
taxonomy is too simple to fully capture argument
structure patterns.

4 Human coercion judgments

We next evaluated the hierarchies for their abil-
ity to account for human generalization. Re-
searchers often test generalization along a spe-
cific dimension through extension to novel verbs
(“wug tests”; Ambridge et al., 2013; Pinker,
1989). While this works well for studies of spe-
cific phenomena, it is difficult to deploy in a large
study like ours, where we do not have hypotheses

4dendroscope.org
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Figure 3: Tanglegram. We prune leaves (verbs)
from BHC and VerbNet so that each leaf here
represents a VerbNet subclass. Dotted lines are
merges BHC prefers not to make. Connectors are
colored by shades of red indicating worse align-
ment, as measured by vertical distance traveled.
The vast majority of lines are light-colored, indi-
cating strong alignment.

about what drives generalization language-wide.
Thus, we assessed generalization through a coer-
cion task, asking whether speakers are more likely
to extend a known verb to a unattested frame if
the frame is attested for verbs in a closely-related
class. This matches a common theoretical claim
that verbs are attracted to the frames of similar
verbs, with the notion of similarity varying by the-
ory (Ambridge et al., 2011; Suttle and Goldberg,
2011).

4.1 Predicting verb-frame coercion

VerbNet makes straightforward coarse predic-
tions. For any syntactic frame, we grouped verbs
into 3 categories: Exact, if the verb can take the
frame; Sibling, if one of the verb’s super or sub-
classes can take the frame; and None otherwise.
Conversely, as a Bayesian probabilistic model,
BHC defines a predictive distribution on new data.
We were interested in whether this precision re-
sulted in better fit, so we also tested BHC: for
any verb and frame, we can evaluate the posterior
probability that the verb admits the frame of inter-
est while conditioning on the verb’s other frames
(Figure 1c; see Appendix B for details).

Table 2: 2 sampled frames and their correspond-
ing sentence templates, each with 3 example
verbs and predicted compatibilities. To form the
stimuli, each verb is placed into the sentence
template, e.g. Beyond the place arose the thing.

Frame Sentence Verb VN1 BHC2

BEYOND Beyond the arise E 6.1
NP.LOCATION place V-ed stretch S −7.6
V NP.THEME the thing assume N −9.1
NP.THEME He V-ed hum E 6.1
V THROUGH through motor S −6.9
NP.LOCATION the place regard N −7.3
1 VerbNet. E = Exact; S = Sibling; N = None
2 log odds P (verb takes frame | verb’s other frames,D)

4.2 Materials and methods

We sampled 10 frames and 10 verbs for each
frame, resulting in 100 verb-frame pairs. To con-
trol for possible verb frequency effects (Braine and
Brooks, 1995), we ensured there was no signif-
icant correlation between the predicted compati-
bility of a verb-frame pair and the Brown corpus
(Kučera and Francis, 1967) frequency of the verb
(r = 0.13, p = 0.17). We then converted verb-
frame pairs into sentence stimuli, which required
that we choose nouns to represent NPs in frames.
We chose the most generic noun compatible with
the thematic role restriction, if present. For exam-
ple, for NP.AGENT, we used a generic name, and
for NP.LOCATION, we used place. Example stim-
uli are located in Table 2.

We recruited 50 native English speakers from
Mechanical Turk. For each sentence, participants
judged the grammaticality of the sentence on a
Likert scale, from 1 (“not at all”) to 5 (“perfect”).

4.3 Results and discussion

First, we noticed that all verbs in some frames re-
ceived consistently low coercion judgments (< 3).
For example, while the verb fly and the frame
THERE V NP.THEME FOR NP.LOCATION is at-
tested (Exact), There flew a thing for the place
received a mean judgment of 2.4. We trans-
lated judgments so that the mean judgments across
verbs for each frame was average (3), to examine
the relative effects of coercing verbs into frames.

Figure 4a shows that VerbNet’s 3 categories pre-
dict differences in the mean coercion ratings of
verb-frame pairs (F = 43.46, p < 0.001). No-
tably, there was a significant difference between
the means of the unattested categories (Sibling vs.
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Figure 4: (a) distribution of mean coercion judg-
ments for verb-frame pairs in the 3 VerbNet cat-
egories. (b) correlation between the same mean
coercion judgments and BHC posterior predictive
predictions, colored by VerbNet category. Error
bars are bootstrapped 95% confidence intervals.

None; t = 3.55, p < 0.01). While there was a
high correlation between the judgments and BHC
predictions (Figure 4b; r = 0.59), BHC’s hierar-
chy did not significantly improve fit to the data.

These results provide additional psychological
evidence for the effects associated with Verb-
Net’s coarse distinctions: for unattested verb-
frame pairs, participants tend to assign a higher
compatibility rating when the verb has sibling
VerbNet classes that can take the frame. However,
the range of compatibility judgments is highly
variable across all three categories, and BHC’s
finer-grained predictions fail to account for much
of this variability. Given the similarity of BHC to
VerbNet’s hierarchy, this result is unsurprising.

5 General discussion

We presented converging evidence that a shallow
hierarchy of verbs (1) is well supported by the
distribution of verbs and syntactic frames in lan-
guage, since VerbNet’s hand-crafted hierarchy and
a systematic unsupervised learner (BHC) reach
similar results; and (2) captures important features
of verb argument structure by predicting human
generalization intuitions in a coercion task.

Of course, it is clear from the variability of
our coercion data that a simple hierarchy is not
a sufficiently sophisticated representation of argu-
ment structure to fully explain language-wide co-
ercion. However, our novel computational frame-
work (unsupervised learning on VerbNet data)
opens up many potentially fruitful avenues for
providing language-wide evidence for argument
structure hypotheses. The lack of broad-coverage
predictions is often a limitation of work in this area

(see Section 2).
Sophisticated machine learning models that

make the assumptions proposed by richer theories
of argument structure and can operate at VerbNet
scale are only recently coming into fruition. For
example, since some theories argue for a cross-
categorization of verbs and argument structures
(Levin and Rappaport Hovav, 2005), using mod-
els that find such a (possibly hierarchical) cross-
categorization (e.g. Mansinghka et al., 2016; Li
and Shafto, 2011) is a particularly interesting av-
enue for further exploration.
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Abstract

We introduce multi-modal, attention-
based Neural Machine Translation (NMT)
models which incorporate visual features
into different parts of both the encoder
and the decoder. Global image features
are extracted using a pre-trained convo-
lutional neural network and are incorpo-
rated (i) as words in the source sentence,
(ii) to initialise the encoder hidden state,
and (iii) as additional data to initialise
the decoder hidden state. In our exper-
iments, we evaluate translations into En-
glish and German, how different strategies
to incorporate global image features com-
pare and which ones perform best. We
also study the impact that adding synthetic
multi-modal, multilingual data brings and
find that the additional data have a posi-
tive impact on multi-modal models. We
report new state-of-the-art results and our
best models also significantly improve on
a comparable Phrase-Based Statistical MT
(PBSMT) model trained on the Multi30k
data set according to all metrics evaluated.
To the best of our knowledge, it is the first
time a purely neural model significantly
improves over a PBSMT model on all met-
rics evaluated on this data set.

1 Introduction

Neural Machine Translation (NMT) has recently
been proposed as an instantiation of the sequence
to sequence (seq2seq) learning problem (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014b;
Sutskever et al., 2014). In this problem, each train-
ing example consists of one source and one tar-
get variable-length sequence, with no prior infor-
mation regarding the alignments between the two.

A model is trained to translate sequences in the
source language into corresponding sequences in
the target. This framework has been successfully
used in many different tasks, such as handwritten
text generation (Graves, 2013), image description
generation (Hodosh et al., 2013; Kiros et al., 2014;
Mao et al., 2014; Elliott et al., 2015; Karpathy and
Fei-Fei, 2015; Vinyals et al., 2015), machine trans-
lation (Cho et al., 2014b; Sutskever et al., 2014)
and video description generation (Donahue et al.,
2015; Venugopalan et al., 2015).

Recently, there has been an increase in the num-
ber of natural language generation models that
explicitly use attention-based decoders, i.e. de-
coders that model an intra-sequential mapping be-
tween source and target representations. For in-
stance, Xu et al. (2015) proposed an attention-
based model for the task of Image Description
Generation (IDG) where the model learns to at-
tend to specific parts of an image (the source) as it
generates its description (the target). In MT, one
can intuitively interpret this attention mechanism
as inducing an alignment between source and tar-
get sentences, as first proposed by Bahdanau et al.
(2015). The common idea is to explicitly frame a
learning task in which the decoder learns to attend
to the relevant parts of the source sequence when
generating each part of the target sequence.

We are inspired by recent successes in using
attention-based models in both IDG and NMT.
Our main goal in this work is to propose end-to-
end multi-modal NMT models which effectively
incorporate visual features in different parts of the
attention-based NMT framework. The main con-
tributions of our work are:

• We propose novel attention-based multi-
modal NMT models which incorporate visual
features into the encoder and the decoder.

• We discuss the impact that adding synthetic
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multi-modal and multilingual data brings to
multi-modal NMT.

• We show that images bring useful informa-
tion to an NMT model and report state-of-
the-art results.

One additional contribution of our work is that
we corroborate previous findings by Vinyals et al.
(2015) that suggested that using image features di-
rectly as additional context to update the hidden
state of the decoder (at each time step) prevents
learning.

The remainder of this paper is structured as fol-
lows. In §1.1 we briefly discuss relevant previous
related work. We then revise the attention-based
NMT framework and further expand it into differ-
ent multi-modal NMT models (§2). In §3 we intro-
duce the data sets we use in our experiments. In §4
we detail the hyperparameters, parameter initiali-
sation and other relevant details of our models. Fi-
nally, in §6 we draw conclusions and provide some
avenues for future work.

1.1 Related work

Attention-based encoder-decoder models for MT
have been actively investigated in recent years.
Some researchers have studied how to improve at-
tention mechanisms (Luong et al., 2015; Tu et al.,
2016) and how to train attention-based models to
translate between many languages (Dong et al.,
2015; Firat et al., 2016).

However, multi-modal MT has only recently
been addressed by the MT community in the form
of a shared task (Specia et al., 2016). We note that
in the official results of this first shared task no
submissions based on a purely neural architecture
could improve on the Phrase-Based SMT (PB-
SMT) baseline. Nevertheless, researchers have
proposed to include global visual features in re-
ranking n-best lists generated by a PBSMT sys-
tem or directly in a purely NMT framework with
some success (Caglayan et al., 2016; Calixto et al.,
2016; Libovický et al., 2016; Shah et al., 2016).
The best results achieved by a purely NMT model
in this shared task are those of Huang et al. (2016),
who proposed to use global and regional image
features extracted with the VGG19 (Simonyan and
Zisserman, 2014) and the RCNN (Girshick et al.,
2014) convolutional neural networks (CNNs).

Similarly to one of the three models we pro-

pose,1 Huang et al. (2016) extract global features
for an image, project these features into the vector
space of the source words and then add it as a word
in the input sequence. Their best model improves
over a strong NMT baseline and is comparable
to results obtained with a PBSMT model trained
on the same data, although not significantly bet-
ter. For that reason, their models are used as base-
lines in our experiments. Next, we point out some
key differences between the work of Huang et al.
(2016) and ours.

Architecture Their implementation is based on
the attention-based model of Luong et al. (2015),
which has some differences to that of Bahdanau
et al. (2015), used in our work (§2.1). Their en-
coder is a single-layer unidirectional LSTM and
they use the last hidden state of the encoder to ini-
tialise the decoder’s hidden state, therefore indi-
rectly using the image features to do so. We use
a bi-directional recurrent neural network (RNN)
with GRU (Cho et al., 2014a) as our encoder, bet-
ter encoding the semantics of the source sentence.

Image features We include image features sep-
arately either as a word in the source sen-
tence (§2.2.1) or directly for encoder (§2.2.2)
or decoder initialisation (§2.2.3), whereas Huang
et al. (2016) only use it as a word. We also show it
is better to include an image exclusively for the en-
coder or the decoder initialisation (Tables 1 and 2).

Data Huang et al. (2016) use object detections
obtained with the RCNN of Girshick et al. (2014)
as additional data, whereas we study the impact
that additional back-translated data brings.

Performance All our models outperform Huang
et al. (2016)’s according to all metrics evaluated,
even when they use additional object detections.
If we use additional back-translated data, the dif-
ference becomes even larger.

2 Attention-based NMT

In this section, we briefly revise the attention-
based NMT framework (§2.1) and expand it into
a multi-modal NMT framework (§2.2).

2.1 Text-only attention-based NMT

We follow the notation of Bahdanau et al. (2015)
and Firat et al. (2016) throughout this section.

1This idea has been developed independently by both re-
search groups.
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Given a source sequence X = (x1, x2, · · · , xN )
and its translation Y = (y1, y2, · · · , yM ), an NMT
model aims at building a single neural network
that translates X into Y by directly learning to
model p(Y |X). Each xi is a row index in a source
lookup matrix Wx ∈ R|Vx|×dx (the source word
embeddings matrix) and each yj is an index in a
target lookup matrix Wy ∈ R|Vy |×dy (the target
word embeddings matrix). Vx and Vy are source
and target vocabularies and dx and dy are source
and target word embeddings dimensionalities, re-
spectively.

A bidirectional RNN with GRU is used as
the encoder. A forward RNN

−→
Φ enc reads X

word by word, from left to right, and gener-
ates a sequence of forward annotation vectors
(
−→
h 1,
−→
h 2, · · · ,

−→
hN ) at each encoder time step

i ∈ [1, N ]. Similarly, a backward RNN
←−
Φ enc reads

X from right to left, word by word, and gener-
ates a sequence of backward annotation vectors
(
←−
h 1,
←−
h 2, · · · ,

←−
hN ), as in (1):

−→
hi =

−→
Φ enc

(
Wx[xi],

−→
h i−1

)
,

←−
hi =

←−
Φ enc

(
Wx[xi],

←−
h i+1

)
. (1)

The final annotation vector for a given time step i
is the concatenation of forward and backward vec-
tors hi =

[−→
hi;
←−
hi
]
.

In other words, each source sequence X is
encoded into a sequence of annotation vectors
h = (h1,h2, · · · ,hN ), which are in turn used by
the decoder: essentially a neural language model
(LM) (Bengio et al., 2003) conditioned on the pre-
viously emitted words and the source sentence via
an attention mechanism.

At each time step t of the decoder, we compute
a time-dependent context vector ct based on the
annotation vectors h, the decoder’s previous hid-
den state st−1 and the target word ỹt−1 emitted by
the decoder in the previous time step.2

We follow Bahdanau et al. (2015) and use a
single-layer feed-forward network to compute an
expected alignment et,i between each source anno-
tation vector hi and the target word to be emitted
at the current time step t, as in (2):

et,i = va
T tanh(Uast−1 +Wahi). (2)

In Equation (3), these expected alignments are

2At training time, the correct previous target word yt−1

is known and therefore used instead of ỹt−1. At test or in-
ference time, yt−1 is not known and ỹt−1 is used instead.
Bengio et al. (2015) discussed problems that may arise from
this difference between training and inference distributions.

normalised and converted into probabilities:

αt,i =
exp (et,i)∑N
j=1 exp (et,j)

, (3)

where αt,i are called the model’s attention
weights, which are in turn used in computing the
time-dependent context vector ct =

∑N
i=1 αt,ihi.

Finally, the context vector ct is used in computing
the decoder’s hidden state st for the current time
step t, as shown in Equation (4):

st = Φdec(st−1,Wy[ỹt−1], ct), (4)
where st−1 is the decoder’s previous hidden state,
Wy[ỹt−1] is the embedding of the word emitted in
the previous time step, and ct is the updated time-
dependent context vector.

We use a single-layer feed-forward neural net-
work to initialise the decoder’s hidden state s0 at
time step t = 0 and feed it the concatenation of the
last hidden states of the encoder’s forward RNN
(
−→
Φ enc) and backward RNN (

←−
Φ enc), as in (5):

s0 = tanh
(
Wdi[

←−
h 1;
−→
hN ] + bdi

)
, (5)

where Wdi and bdi are model parameters. Since
RNNs normally better store information about
recent inputs in comparison to more distant
ones (Hochreiter and Schmidhuber, 1997; Bah-
danau et al., 2015), we expect to initialise the de-
coder’s hidden state with a strong source sentence
representation, i.e. a representation with a strong
focus on both the first and the last tokens in the
source sentence.

2.2 Multi-modal NMT (MNMT)

Our models can be seen as expansions of the
attention-based NMT framework described in §2
with the addition of a visual component to incor-
porate image features.

Simonyan and Zisserman (2014) trained and
evaluated an extensive set of deep Convolutional
Neural Networks (CNNs) for classifying images
into one out of the 1000 classes in ImageNet (Rus-
sakovsky et al., 2015). We use their 19-layer VGG
network (VGG19) to extract image feature vec-
tors for all images in our dataset. We feed an
image to the pre-trained VGG19 network and use
the 4096D activations of the penultimate fully-
connected layer FC73 as our image feature vector,
henceforth referred to as q.

We propose three different methods to incor-
porate images into the attentive NMT framework:

3We use the activations of the FC7 layer, which encode
information about the entire image, of the VGG19 network
(configuration E) in Simonyan and Zisserman (2014)’s paper.
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(a) An encoder bidirectional RNN that
uses image features as words in the
source sequence.

(b) Using an image to initialise the en-
coder hidden states.

(c) Image as additional data to initialise
the decoder hidden state s0.

Figure 1: Multi-modal neural machine translation models IMGW, IMGE, and IMGD.

using an image as words in the source sentence
(§2.2.1), using an image to initialise the source
language encoder (§2.2.2) and the target language
decoder (§2.2.3).

We also evaluated a fourth mechanism to incor-
porate images into NMT, namely to use an image
as one of the different contexts available to the de-
coder at each time step of the decoding process.
We added the image features directly as an addi-
tional context, in addition to Wy[ỹt−1], st−1 and
ct, to compute the hidden state st of the decoder
at a given time step t. We corroborate previous
findings by Vinyals et al. (2015) in that adding the
image features as such prevents the model from
learning.4

2.2.1 Images as source words: IMGW

One way we propose to incorporate images into
the encoder is to project an image feature vector
into the space of the words of the source sentence.
We use the projected image as the first and/or last
word of the source sentence and let the attention
model learn when to attend to the image represen-
tation. Specifically, given the global image feature
vector q ∈ R4096, we compute (6):

d = W 2
I · (W 1

I · q + b1I) + b2I , (6)
whereW 1

I ∈ R4096×4096 andW 2
I ∈ R4096×dx are

image transformation matrices, b1I ∈ R4096 and
b2I ∈ Rdx are bias vectors, and dx is the source
words vector space dimensionality, all trained with
the model. We then directly use d as words in the
source words vector space: as the first word only
(model IMG1W), and as the first and last words of

4Outputs would typically consist of sets of 2-5 words re-
peated many times, usually without any syntax. For com-
parison, translations for the translated Multi30k test set
(described in §3) achieve just 3.8 BLEU (Papineni et al.,
2002), 15.5 METEOR (Denkowski and Lavie, 2014) and 93.0
TER (Snover et al., 2006).

the source sentence (model IMG2W).
An illustration of this idea is given in Figure 1a,

where a source sentence that originally contained
N tokens, after including the image as source
words will contain N + 1 tokens (model IMG1W)
or N + 2 tokens (model IMG2W). In model
IMG1W, the image is projected as the first source
word only (solid line in Figure 1a); in model
IMG2W, it is projected into the source words space
as both first and last words (both solid and dashed
lines in Figure 1a).

Given a sequence X = (x1, x2, · · · , xN ) in the
source language, we concatenate the transformed
image vector d to Wx[X] and apply the forward
and backward encoder RNN passes, generating
hidden vectors as in Figure 1a. When comput-
ing the context vector ct (Equations (2) and (3)),
we effectively make use of the transformed image
vector, i.e. the αt,i attention weight parameters
will use this information to attend or not to the im-
age features.

By including images into the encoder in mod-
els IMG1W and IMG2W, our intuition is that (i) by
including the image as the first word, we propa-
gate image features into the source sentence vector
representations when applying the forward RNN−→
Φ enc (vectors

−→
hi), and (ii) by including the image

as the last word, we propagate image features into
the source sentence vector representations when
applying the backward RNN

←−
Φ enc (vectors

←−
hi).

2.2.2 Images for encoder initialisation: IMGE

In the original attention-based NMT model de-
scribed in §2, the hidden state of the encoder is
initialised with the zero vector

#»
0 . Instead, we

propose to use two new single-layer feed-forward
neural networks to compute the initial states of the
forward RNN

−→
Φ enc and the backward RNN

←−
Φ enc,
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respectively, as illustrated in Figure 1b.
Similarly to §2.2.1, given a global image feature

vector q ∈ R4096, we compute a vector d using
Equation (6), only this time the parameters W 2

I

and b2I project the image features into the same di-
mensionality as the textual encoder hidden states.

The feed-forward networks used to initialise the
encoder hidden state are computed as in (7):←−

h init = tanh
(
Wfd+ bf

)
,

−→
h init = tanh

(
Wbd+ bb

)
, (7)

where Wf and Wb are multi-modal projection
matrices that project the image features d into the
encoder forward and backward hidden states di-
mensionality, respectively, and bf and bb are bias
vectors.

2.2.3 Images for decoder initialisation:
IMGD

To incorporate an image into the decoder, we in-
troduce a new single-layer feed-forward neural
network to be used instead of the one described in
Equation 5. Originally, the decoder’s initial hid-
den state was computed using the concatenation
of the last hidden states of the encoder forward
RNN (

−→
Φ enc) and backward RNN (

←−
Φ enc), respec-

tively
−→
hN and

←−
h 1.

Our proposal is that we include the image fea-
tures as additional input to initialise the decoder
hidden state at time step t = 0, as in (8):
s0 = tanh

(
Wdi[

←−
h 1;
−→
hN ] +Wmd+ bdi

)
, (8)

whereWm is a multi-modal projection matrix that
projects the image features d into the decoder hid-
den state dimensionality and Wdi and bdi are the
same as in Equation (5).

Once again we compute d by applying Equa-
tion (6) onto a global image feature vector
q ∈ R4096, only this time the parameters W 2

I and
b2I project the image features into the same dimen-
sionality as the decoder hidden states. We illus-
trate this idea in Figure 1c.

3 Data set

Our multi-modal NMT models need bilingual sen-
tences accompanied by one or more images as
training data. The original Flickr30k data set con-
tains 30K images and 5 English sentence descrip-
tions for each image (Young et al., 2014). We
use the translated and the comparable Multi30k
datasets (Elliott et al., 2016), henceforth referred
to as M30kT and M30kC, respectively, which are
multilingual expansions of the original Flickr30k.

For each of the 30K images in the Flickr30k,
the M30kT has one of its English descriptions
manually translated into German by a professional
translator. Training, validation and test sets con-
tain 29K, 1014 and 1K images, respectively, each
accompanied by one sentence pair (the original
English sentence and its German translation). For
each of the 30K images in the Flickr30k, the
M30kC has five descriptions in German collected
independently of the English descriptions. Train-
ing, validation and test sets contain 29K, 1014 and
1K images, respectively, each accompanied by 5
English and 5 German sentences.

We use the scripts in Moses (Koehn et al., 2007)
to normalise, truecase and tokenize English and
German descriptions and we also convert space-
separated tokens into subwords (Sennrich et al.,
2016b). All models use a common vocabulary
of ∼83K English and ∼91K German subword to-
kens. If sentences in English or German are longer
than 80 tokens, they are discarded.

We use the entire M30kT training set for train-
ing, its validation set for model selection with
BLEU, and its test set to evaluate our models.
In order to study the impact that additional train-
ing data brings to the models, we use the base-
line model described in §2 trained on the textual
part of the M30kT data set (German→English and
English→German) without the images to build
back-translation models (Sennrich et al., 2016a).
We back-translate the 145K German (English) de-
scriptions in the M30kC into English (German)
and include the triples (synthetic English descrip-
tion, German description, image) as additional
training data when translating into German, and
(synthetic German description, English descrip-
tion, image) when translating into English.

We train models to translate from English into
German and from German into English, and re-
port evaluation of cased, tokenized sentences with
punctuation.

4 Experimental setup

Our encoder is a bidirectional RNN with GRU
(one 1024D single-layer forward RNN and one
1024D single-layer backward RNN). Source and
target word embeddings are 620D each and both
are trained jointly with our model. All non-
recurrent matrices are initialised by sampling from
a Gaussian (µ = 0, σ = 0.01), recurrent matrices
are orthogonal and bias vectors are all initialised
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to zero. Our decoder RNN also uses GRU and is
a neural LM (Bengio et al., 2003) conditioned on
its previous emissions and the source sentence by
means of the source attention mechanism.

Image features are obtained by feeding im-
ages to the pre-trained VGG19 network of Si-
monyan and Zisserman (2014) and using the ac-
tivations of the penultimate fully-connected layer
FC7. We apply dropout with a probability of 0.2
in both source and target word embeddings and
with a probability of 0.5 in the image features (in
all MNMT models), in the encoder and decoder
RNNs inputs and recurrent connections, and be-
fore the readout operation in the decoder RNN.
We follow Gal and Ghahramani (2016) and apply
dropout to the encoder bidirectional RNN and de-
coder RNN using the same mask in all time steps.

Our models are trained using stochastic gra-
dient descent with Adadelta (Zeiler, 2012) and
minibatches of size 40 for improved generalisa-
tion (Keskar et al., 2017), where each training in-
stance consists of one English sentence, one Ger-
man sentence and one image. We apply early stop-
ping for model selection based on BLEU scores,
so that if a model does not improve on the valida-
tion set for more than 20 epochs, training is halted.

We evaluate our models’ translation qual-
ity quantitatively in terms of BLEU4 (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014), TER (Snover et al., 2006), and chrF3
scores5 (Popović, 2015) and we report statisti-
cal significance for the three first metrics us-
ing approximate randomisation computed with
MultEval (Clark et al., 2011).

As our main baseline we train an attention-
based NMT model (§2) in which only the tex-
tual part of M30kT is used for training. We also
train a PBSMT model built with Moses on the
same English→German (German→English) data,
where the LM is a 5–gram LM with modified
Kneser-Ney smoothing (Kneser and Ney, 1995)
trained on the German (English) of the M30kT
dataset. We use minimum error rate training (Och,
2003) for tuning the model parameters for BLEU
scores. Our third baseline (English→German), is
the best comparable multi-modal model by Huang
et al. (2016) and also their best model with addi-
tional object detections: respectively models m1
(image at head) and m3 in the authors’ paper. Fi-
nally, our fourth baseline (German→English) is

5We specifically compute character 6-gram F3 scores.

BLEU4↑ METEOR↑ TER↓ chrF3↑
English→German

PBSMT 32.9 54.1 45.1 67.4
NMT 33.7 52.3 46.7 64.5
Huang 35.1 52.2 — —
+ RCNN 36.5 54.1 — —

IMG1W 37.1†‡ (↑ 3.4) 54.5†‡ (↑ 0.4) 42.7†‡ (↓ 2.4) 66.9 (↓ 0.5)
IMG2W 36.9†‡ (↑ 3.2) 54.3†‡ (↑ 0.2) 41.9†‡ (↓ 3.2) 66.8 (↓ 0.6)
IMGE 37.1†‡ (↑ 3.4) 55.0†‡ (↑ 0.9) 43.1†‡ (↓ 2.0) 67.6 (↑ 0.2)
IMGD 37.3†‡ (↑ 3.6) 55.1†‡ (↑ 1.0) 42.8†‡ (↓ 2.3) 67.7 (↑ 0.3)
IMG2W+D 35.7†‡ (↑ 2.0) 53.6†‡ (↓ 0.5) 43.3†‡ (↓ 1.8) 66.2 (↓ 1.2)
IMGE+D 37.0†‡ (↑ 3.3) 54.7†‡ (↑ 0.6) 42.6†‡ (↓ 2.5) 67.2 (↓ 0.2)

German→English

PBSMT 32.8 34.8 43.9 61.8
NMT 38.2 35.8 40.2 62.8

IMG2W 39.5†‡ (↑ 1.3) 37.1†‡ (↑ 1.3) 37.1†‡ (↓ 3.1) 63.8 (↑ 1.0)
IMGE 41.1†‡ (↑ 2.9) 37.7†‡ (↑ 1.9) 37.9†‡ (↓ 2.3) 65.7 (↑ 2.9)
IMGD 41.3†‡ (↑ 3.1) 37.8†‡ (↑ 2.0) 37.9†‡ (↓ 2.3) 65.7 (↑ 2.9)
IMG2W+D 39.9†‡ (↑ 1.7) 37.2†‡ (↑ 1.4) 37.0†‡ (↓ 3.2) 64.4 (↑ 1.6)
IMGE+D 41.9†‡ (↑ 3.7) 37.9†‡ (↑ 2.1) 37.1†‡ (↓ 3.1) 66.0 (↑ 3.2)

Table 1: BLEU4, METEOR, chrF3 (higher is bet-
ter) and TER scores (lower is better) on the M30kT
test set for the two text-only baselines PBSMT
and NMT, the two multi-modal NMT models by
Huang et al. (2016) (English→German only) and
our MNMT models that: (i) use images as words
in the source sentence (IMG1W, IMG2W), (ii) use
images to initialise the encoder (IMGE), and (iii)
use images as additional data to initialise the de-
coder (IMGD). Best text-only baselines are un-
derscored and best overall results appear in bold.
We highlight in parentheses the improvements
brought by our models compared to the best cor-
responding text-only baseline score. Results differ
significantly from PBSMT baseline (†) or NMT
baseline (‡) with p = 0.05.

the best-performing model in the WMT’16 multi-
modal MT shared task (Shah et al., 2016), hence-
forth PBSMT+. It uses image features as well as
additional data from WordNet (Miller, 1995) to re-
rank n-best lists.

4.1 Results

The Multi30K dataset contains images and bilin-
gual descriptions. Overall, it is a small dataset
with a small vocabulary whose sentences have
simple syntactic structures and not much ambigu-
ity (Elliott et al., 2016). This is reflected in the
fact that even the simplest baselines perform fairly
well on it, i.e. the smallest BLEU scores of 32.9
for translating into German, which are still reason-
ably good results.
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BLEU4↑ METEOR↑ TER↓ chrF3↑
English→German

original training data
IMG2W 36.9 54.3 41.9 66.8
IMGE 37.1 55.0 43.1 67.6
IMGD 37.3 55.1 42.8 67.7

+ back-translated training data
PBSMT 34.0 55.0 44.7 68.0
NMT 35.5 53.4 43.3 65.3

IMG2W 36.7†‡ (↑ 1.2) 54.6†‡ (↓ 0.4) 42.0†‡ (↓ 1.3) 66.8 (↓ 1.2)
IMGE 38.5†‡ (↑ 3.0) 55.7†‡ (↑ 0.9) 41.4†‡ (↓ 1.9) 68.3 (↑ 0.3)
IMGD 38.5†‡ (↑ 3.0) 55.9†‡ (↑ 1.1) 41.6†‡ (↓ 1.7) 68.4 (↑ 0.4)

German→English

PBSMT+ 42.5 39.5 35.6 68.7

original training data
IMG2W 39.5 37.1 37.1 63.8
IMGE 41.1 37.7 37.9 65.7
IMGD 41.3 37.8 37.9 65.7

+ back-translated training data
NMT 42.6 38.9 36.1 67.6

IMG2W 42.4†‡ (↓ 0.2) 39.0†‡ (↑ 0.1) 34.7†‡ (↓ 1.4) 67.6 (↑ 0.0)

IMGE 43.9†‡ (↑ 1.3) 39.7†‡ (↑ 0.8) 34.8†‡ (↓ 1.3) 68.7 (↑ 1.1)
IMGD 43.4†‡ (↑ 0.8) 39.3†‡ (↑ 0.4) 35.2†‡ (↓ 0.9) 67.8 (↑ 0.2)

Improvements (original vs. + back-translated)
English→German / German→English

IMG2W ↓ 0.2 / ↑ 2.9 ↑ 0.1 / ↑ 1.9 ↑ 0.1 / ↓ 2.4 ↑ 0.0 / ↑ 3.8
IMGE ↑ 1.4 / ↑ 2.8 ↑ 0.7 / ↑ 2.0 ↓ 1.8 / ↓ 3.1 ↑ 0.7 / ↑ 2.9
IMGD ↑ 1.2 / ↑ 2.1 ↑ 0.8 / ↑ 1.5 ↓ 1.2 / ↓ 2.7 ↑ 0.7 / ↑ 2.1

Table 2: BLEU4, METEOR, TER and chrF3
scores on the M30kT test set for models trained on
original and additional back-translated data. Best
text-only baselines are underscored and best over-
all results in bold. We highlight in parentheses
the improvements brought by our models com-
pared to the best baseline score. Results differ
significantly from PBSMT baseline (†) or NMT
baseline (‡) with p = 0.05. We also show the
improvements each model yields in each metric
when only trained on the original M30kT training
set vs. also including additional back-translated
data. PBSMT+ is the best model in the multi-
modal MT shared task (Specia et al., 2016).

Multi30k In Table 1, we show results
for translating from English→German and
German→English. When translating into Ger-
man, our multi-modal models perform well, with
models IMGE and IMGD improving on both
baselines according to all metrics analysed. We
also note that all models but IMG2W+D perform
consistently better than the strong multi-modal
NMT baseline of Huang et al. (2016), even when
this model has access to more data (+RCNN
features).6 Combining image features in the

6In fact, model IMG2W+D still improves on the multi-
modal baseline of Huang et al. (2016) when trained on the

encoder and the decoder at the same time does not
seem to improve results compared to using the
image features in only the encoder or the decoder
when translating into German. To the best of
our knowledge, it is the first time a purely neural
model significantly improves over a PBSMT
model in all metrics on this data set.

When translating into English, all multi-modal
models significantly improve over the NMT
baseline, with the only exception being model
IMG2W’s BLEU scores. In this scenario, model
IMGE+D is the best performing one according to
all but one metric. However, differences between
multi-modal models are not statistically signifi-
cant, i.e. all multi-modal models but IMG2W and
IMG2W+D perform comparably.

Additional back-translated data Arguably, the
main downside of applying multi-modal NMT in
a real-world scenario is the small amount of pub-
licly available training data (∼30K entries). For
that reason, we back-translated the German and
English sentences in the M30kC and created two
sets of 145K synthetic triples, one for each trans-
lation direction, as described in §3.

In Table 2, we present results for some of
the models evaluated in Table 1 but when also
trained on the additional data. In order to add
more data to our PBSMT baseline, we simply
added the German sentences in the M30kC to train
the LM.7 We also include results for PBSMT+,
which uses image features as well as additional
features extracted using WordNet (Shah et al.,
2016). When translating into German, both our
models IMGE and IMGD that use global im-
age features to initialise the encoder and the de-
coder, respectively, significantly improve accord-
ing to BLEU, METEOR and TER with the ad-
ditional back-translated data, and also achieved
better chrF3 scores. When translating into En-
glish, IMGE is the only model to significantly im-
prove over both baselines according to all met-
rics with the additional back-translated data, also
improving chrF3 scores. We highlight that our
best-performing model IMGE significantly outper-
forms PBSMT+ according to BLEU and TER, and
all our other multi-modal models perform com-
parably to it. This is a noteworthy finding, since

same data.
7Adding the synthetic sentence pairs to train the baseline

PBSMT model, as we did with all neural MT models, deteri-
orated the results.
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Multi30k test set (English→German)
Ensemble? BLEU4 ↑ METEOR↑ TER↓ chrF3↑

IMGD × 37.3 55.1 42.8 67.7

IMGD + IMGE X 40.1 (↑ 2.8) 58.5 (↑ 3.4) 40.7 (↓ 2.1) 68.1 (↑ 0.4)

IMGD + IMGE + IMG2W X 41.0 (↑ 3.7) 58.9 (↑ 3.8) 39.7 (↓ 3.1) 68.3 (↑ 0.6)

IMGD + IMGE + IMG2W + IMGD X 41.3 (↑ 4.0) 59.2 (↑ 4.1) 39.5 (↓ 3.3) 68.5 (↑ 0.8)

Table 3: Results for different combinations of multi-modal models, all trained on the original M30kT
training data only, evaluated on the M30kT test set.

PBSMT+ uses image features as well as additional
data from WordNet and, to the best of our knowl-
edge, is the best published model in this language
pair and data set to date.

Ensemble decoding We now report on how can
ensemble decoding be used to improve transla-
tions obtained with our multi-modal NMT mod-
els. In order to do that, we use different combi-
nations of models trained on the original M30kT
training set to translate from English into German.
We built ensembles of different models by start-
ing with our best performing multi-modal model
on this language pair and data set, IMGD, and by
adding new models to the ensemble one by one,
until we reach a maximum of four independent
models, all of which are trained separately and on
the original M30kT training data only. In Table 3,
we show results when translating the M30kT’s test
set. These models were also evaluated in our re-
cent participation in the WMT 2017 multi-modal
MT shared task (Calixto et al., 2017a).

We first note that to add more models to the en-
semble seems to always improve translations, and
by a considerable margin (∼ 3 BLEU/METEOR
points). Adding model IMG2W to the ensemble
already consisting of models IMGE and IMGD im-
proves translations according to all metrics evalu-
ated. This is an interesting result, since compared
to these other two multi-modal models, model
IMG2W performs poorly according to BLEU, ME-
TEOR and chrF3. Regardless of that fact, our
best results are obtained with an ensemble of four
different multi-modal models, including model
IMG2W.

By using an ensemble of four different multi-
modal NMT models trained on the translated
Multi30k training data, we were able to obtain
translations comparable to or even better than
those obtained with the strong multi-modal NMT
model of Calixto et al. (2017b), which is pre-
trained on large amounts of English–German data

and uses local image features. Finally, we have
recently participated in the WMT 2017 multi-
modal MT shared task, and our system submis-
sions ranked among the best performing systems
under the constrained data regime (Calixto et al.,
2017a). We note that our models performed par-
ticularly well on the ambiguous MSCOCO test
set (Elliott et al., 2017), which indicate its abil-
ity to use the image information in disambiguating
difficult source sentences into their correct transla-
tions.

5 Error Analysis

In Table 4 we show translations into German gen-
erated by different models for one entry of the
M30k test set. In this example, the last three multi-
modal models extrapolate the reference+image
and describe “ceremony” as a “wedding cere-
mony” (IMG2W) and as an “Olympics ceremony”
(IMGE and IMGD). This could be due to the
fact that the training set is small, depicts a small
variation of different scenes and contains different
forms of biasses (van Miltenburg, 2015).

In Table 5, we draw attention to an example
where some models generate what seems to be
novel visual terms. Neither the source German
sentence nor the English reference translation con-
tained the translated units “having fun” or “Mex-
ican restaurant”, although both could have been
inferred at least partially from the image. In this
example, the visual term “having fun” is also gen-
erated by the baseline NMT model, making it clear
that at times what seems like a translation ex-
tracted exclusively from the image may have been
learnt from the training text data. However, none
of the two baselines translated “Mexikanischen
Setting” as “Mexican restaurant”, but four out of
the five multi-modal models did. The multi-modal
models also had problems translating the German
“trinkt Shots” (drinking shots). We observe trans-
lations such as “having drinks” (IMG2W), which
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src. a woman with long hair is at a graduation ceremony .
ref. eine Frau mit langen Haaren bei einer Abschluss Feier.

NMT eine Frau mit langen Haaren ist an einer StaZeremonie.
PBSMT eine Frau mit langen Haaren steht an einem Abschluss
IMG1W eine Frau mit langen Haaren ist an einer warmen Zeremonie teil
IMG2W eine Frau mit langen Haaren steht bei einer Hochzeit Feier.
IMGE eine lang haarige Frau bei einer olympischen Zeremonie.
IMGD eine lang haarige Frau bei einer olympischen Zeremonie.

Table 4: Translations for the 668th example in the M30k test set.

src. eine Gruppe junger Menschen trinkt Shots in einem Mexikanischen Setting .
ref. a group of young people take shots in a Mexican setting .

NMT a group of young people are having fun in an auditorium .
PBSMT a group of young people drinking at a Shots Mexikanischen Setting .
IMG2W a group of young people having drinks in a Mexican restaurant .
IMGE a group of young people drinking apples in a Mexican restaurant .
IMGD a group of young people drinking food in a Mexican restaurant .
IMG2W+D a group of young people having fun in a Mexican room .
IMGE+D a group of young people drinking dishes in a Mexican restaurant .

Table 5: Translations for 300th example in the M30k test set.

although not a novel translation is still correct, but
also “drinking apples” (IMGE), “drinking food”
(IMGD), and “drinking dishes” (IMGE+D), which
are clearly incorrect.

6 Conclusions and future work

In this work, we introduced models that incor-
porate images into state-of-the-art attention-based
NMT, by using images as words in the source sen-
tence, to initialise the encoder’s hidden state and
as additional data in the initialisation of the de-
coder’s hidden state. The intuition behind our ef-
fort is to use images to visually ground transla-
tions, and consequently increase translation qual-
ity. We demonstrate with extensive experiments
that adding global image features into NMT sig-
nificantly improves the translations of image de-
scriptions compared to text-only NMT and PB-
SMT. It also improves significantly on the previ-
ous state-of-the-art model of Huang et al. (2016)
(English→German), and performs comparably to
the best published results of Shah et al. (2016)
(German→English). Overall, we note that using
images as words in the source sequence (IMG1W,
IMG2W), an idea similarly entertained by Huang
et al. (2016), does not fare as well as to directly
incorporate the image either in the encoder or the
decoder (IMGE and IMGD), independently of the
target language. The fact that multi-modal NMT
models can benefit from back-translated data is

also an interesting finding.
In future work, we will conduct a more sys-

tematic study on the impact that synthetic back-
translated data brings to multi-modal NMT, and
run an error analysis to identify what particular
types of errors our models make (and prevent).
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

Ozan Caglayan, Walid Aransa, Yaxing Wang,
Marc Masana, Mercedes Garcı́a-Martı́nez, Fethi
Bougares, Loı̈c Barrault, and Joost van de Weijer.
2016. Does Multimodality Help Human and
Machine for Translation and Image Captioning? In
Proceedings of the First Conference on Machine
Translation. Berlin, Germany, pages 627–633.
http://www.aclweb.org/anthology/W/W16/W16-
2358.

Iacer Calixto, Koel Dutta Chowdhury, and Qun Liu.
2017a. DCU System Report on the WMT 2017
Multi-modal Machine Translation Task. In Proceed-
ings of the Second Conference on Machine Transla-
tion. Copenhagen, Denmark.

Iacer Calixto, Desmond Elliott, and Stella Frank. 2016.
DCU-UvA Multimodal MT System Report. In
Proceedings of the First Conference on Machine
Translation. Berlin, Germany, pages 634–638.
http://www.aclweb.org/anthology/W/W16/W16-
2359.

Iacer Calixto, Qun Liu, and Nick Campbell. 2017b.
Doubly-Attentive Decoder for Multi-modal Neural
Machine Translation. In Proceedings of the 55th
Conference of the Association for Computational
Linguistics: Volume 1, Long Papers. Vancouver,
Canada (Paper Accepted).

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
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torož, Slovenia, pages 1–4.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey
Donahue, Raymond Mooney, Trevor Darrell, and
Kate Saenko. 2015. Sequence to Sequence - Video
to Text. In Proceedings of the IEEE International
Conference on Computer Vision. Santiago, Chile,
pages 4534–4542.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015.
Boston, Massachusetts, pages 3156–3164.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. 2015. Show, at-
tend and tell: Neural image caption genera-
tion with visual attention. In Proceedings of
the 32nd International Conference on Machine

Learning (ICML-15). JMLR Workshop and Confer-
ence Proceedings, Lille, France, pages 2048–2057.
http://jmlr.org/proceedings/papers/v37/xuc15.pdf.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics 2:67–78.

Matthew D. Zeiler. 2012. ADADELTA: An Adap-
tive Learning Rate Method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

1003



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1004–1015
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Mapping Instructions and Visual Observations to Actions
with Reinforcement Learning

Dipendra Misra†, John Langford‡, and Yoav Artzi†

† Dept. of Computer Science and Cornell Tech, Cornell University, New York, NY 10044
{dkm, yoav}@cs.cornell.edu

‡ Microsoft Research, New York, NY 10011
jcl@microsoft.com

Abstract

We propose to directly map raw visual ob-
servations and text input to actions for in-
struction execution. While existing ap-
proaches assume access to structured envi-
ronment representations or use a pipeline
of separately trained models, we learn a
single model to jointly reason about lin-
guistic and visual input. We use reinforce-
ment learning in a contextual bandit set-
ting to train a neural network agent. To
guide the agent’s exploration, we use re-
ward shaping with different forms of su-
pervision. Our approach does not re-
quire intermediate representations, plan-
ning procedures, or training different mod-
els. We evaluate in a simulated environ-
ment, and show significant improvements
over supervised learning and common re-
inforcement learning variants.

1 Introduction
An agent executing natural language instructions
requires robust understanding of language and its
environment. Existing approaches addressing this
problem assume structured environment represen-
tations (e.g.,. Chen and Mooney, 2011; Mei et al.,
2016), or combine separately trained models (e.g.,
Matuszek et al., 2010; Tellex et al., 2011), includ-
ing for language understanding and visual reason-
ing. We propose to directly map text and raw im-
age input to actions with a single learned model.
This approach offers multiple benefits, such as
not requiring intermediate representations, plan-
ning procedures, or training multiple models.

Figure 1 illustrates the problem in the Blocks
environment (Bisk et al., 2016). The agent ob-
serves the environment as an RGB image using a
camera sensor. Given the RGB input, the agent

North

South

EastWest

Put the Toyota block in the same row as the SRI block, in
the first open space to the right of the SRI block
Move Toyota to the immediate right of SRI, evenly aligned
and slightly separated
Move the Toyota block around the pile and place it just to
the right of the SRI block
Place Toyota block just to the right of The SRI Block
Toyota, right side of SRI

Figure 1: Instructions in the Blocks environment. The
instructions all describe the same task. Given the ob-
served RGB image of the start state (large image), our
goal is to execute such instructions. In this task, the
direct-line path to the target position is blocked, and
the agent must plan and move the Toyota block around.
The small image marks the target and an example path,
which includes 34 steps.

must recognize the blocks and their layout. To un-
derstand the instruction, the agent must identify
the block to move (Toyota block) and the destina-
tion (just right of the SRI block). This requires
solving semantic and grounding problems. For
example, consider the topmost instruction in the
figure. The agent needs to identify the phrase re-
ferring to the block to move, Toyota block, and
ground it. It must resolve and ground the phrase
SRI block as a reference position, which is then
modified by the spatial meaning recovered from
the same row as or first open space to the right
of, to identify the goal position. Finally, the agent
needs to generate actions, for example moving the
Toyota block around obstructing blocks.

To address these challenges with a single model,
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we design a neural network agent. The agent exe-
cutes instructions by generating a sequence of ac-
tions. At each step, the agent takes as input the
instruction text, observes the world as an RGB im-
age, and selects the next action. Action execution
changes the state of the world. Given an obser-
vation of the new world state, the agent selects
the next action. This process continues until the
agent indicates execution completion. When se-
lecting actions, the agent jointly reasons about its
observations and the instruction text. This enables
decisions based on close interaction between ob-
servations and linguistic input.

We train the agent with different levels of su-
pervision, including complete demonstrations of
the desired behavior and annotations of the goal
state only. While the learning problem can be eas-
ily cast as a supervised learning problem, learning
only from the states observed in the training data
results in poor generalization and failure to recover
from test errors. We use reinforcement learn-
ing (Sutton and Barto, 1998) to observe a broader
set of states through exploration. Following recent
work in robotics (e.g., Levine et al., 2016; Rusu
et al., 2016), we assume the training environment,
in contrast to the test environment, is instrumented
and provides access to the state. This enables a
simple problem reward function that uses the state
and provides positive reward on task completion
only. This type of reward offers two important ad-
vantages: (a) it is a simple way to express the ideal
agent behavior we wish to achieve, and (b) it cre-
ates a platform to add training data information.

We use reward shaping (Ng et al., 1999) to ex-
ploit the training data and add to the reward ad-
ditional information. The modularity of shap-
ing allows varying the amount of supervision, for
example by using complete demonstrations for
only a fraction of the training examples. Shap-
ing also naturally associates actions with imme-
diate reward. This enables learning in a contex-
tual bandit setting (Auer et al., 2002; Langford
and Zhang, 2007), where optimizing the immedi-
ate reward is sufficient and has better sample com-
plexity than unconstrained reinforcement learn-
ing (Agarwal et al., 2014).

We evaluate with the block world environment
and data of Bisk et al. (2016), where each instruc-
tion moves one block (Figure 1). While the orig-
inal task focused on source and target prediction
only, we build an interactive simulator and formu-

late the task of predicting the complete sequence
of actions. At each step, the agent must select be-
tween 81 actions with 15.4 steps required to com-
plete a task on average, significantly more than
existing environments (e.g., Chen and Mooney,
2011). Our experiments demonstrate that our re-
inforcement learning approach effectively reduces
execution error by 24% over standard supervised
learning and 34-39% over common reinforcement
learning techniques. Our simulator, code, models,
and execution videos are available at: https:
//github.com/clic-lab/blocks.

2 Technical Overview
Task Let X be the set of all instructions, S
the set of all world states, and A the set of all
actions. An instruction x̄ ∈ X is a sequence
〈x1, . . . , xn〉, where each xi is a token. The agent
executes instructions by generating a sequence of
actions, and indicates execution completion with
the special action STOP. Action execution mod-
ifies the world state following a transition func-
tion T : S × A → S. The execution ē of an
instruction x̄ starting from s1 is an m-length se-
quence 〈(s1, a1), . . . , (sm, am)〉, where sj ∈ S,
aj ∈ A, T (sj , aj) = sj+1 and am = STOP. In
Blocks (Figure 1), a state specifies the positions
of all blocks. For each action, the agent moves
a single block on the plane in one of four direc-
tions (north, south, east, or west). There are 20
blocks, and 81 possible actions at each step, in-
cluding STOP. For example, to correctly execute
the instructions in the figure, the agent’s likely first
action is TOYOTA-WEST, which moves the Toyota
block one step west. Blocks can not move over or
through other blocks.
Model The agent observes the world state via
a visual sensor (i.e., a camera). Given a world
state s, the agent observes an RGB image I gen-
erated by the function IMG(s). We distinguish be-
tween the world state s and the agent context1 s̃,
which includes the instruction, the observed image
IMG(s), images of previous states, and the pre-
vious action. To map instructions to actions, the
agent reasons about the agent context s̃ to generate
a sequence of actions. At each step, the agent gen-
erates a single action. We model the agent with a

1We use the term context similar to how it is used in the
contextual bandit literature to refer to the information avail-
able for decision making. While agent contexts capture in-
formation about the world state, they do not include physical
information, except as captured by observed images.
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neural network policy. At each step j, the network
takes as input the current agent context s̃j , and pre-
dicts the next action to execute aj . We formally
define the agent context and model in Section 4.
Learning We assume access to training data
with N examples {(x̄(i), s(i)1 , ē(i))}Ni=1, where x̄(i)

is an instruction, s(i)1 is a start state, and ē(i) is
an execution demonstration of x̄(i) starting at s(i)1 .
We use policy gradient (Section 5) with reward
shaping derived from the training data to increase
learning speed and exploration effectiveness (Sec-
tion 6). Following work in robotics (e.g., Levine
et al., 2016), we assume an instrumented environ-
ment with access to the world state to compute the
reward during training only. We define our ap-
proach in general terms with demonstrations, but
also experiment with training using goal states.
Evaluation We evaluate task completion error
on a test set {(x̄(i), s(i)1 , s

(i)
g )}Mi=1, where x̄(i) is an

instruction, s(i)1 is a start state, and s(i)g is the goal
state. We measure execution error as the distance
between the final execution state and s(i)g .

3 Related Work
Learning to follow instructions was studied ex-
tensively with structured environment represen-
tations, including with semantic parsing (Chen
and Mooney, 2011; Kim and Mooney, 2012,
2013; Artzi and Zettlemoyer, 2013; Artzi et al.,
2014a,b; Misra et al., 2015, 2016), alignment
models (Andreas and Klein, 2015), reinforcement
learning (Branavan et al., 2009, 2010; Vogel and
Jurafsky, 2010), and neural network models (Mei
et al., 2016). In contrast, we study the problem of
an agent that takes as input instructions and raw vi-
sual input. Instruction following with visual input
was studied with pipeline approaches that use sep-
arately learned models for visual reasoning (Ma-
tuszek et al., 2010, 2012; Tellex et al., 2011; Paul
et al., 2016). Rather than decomposing the prob-
lem, we adopt a single-model approach and learn
from instructions paired with demonstrations or
goal states. Our work is related to Sung et al.
(2015). While they use sensory input to select and
adjust a trajectory observed during training, we
are not restricted to training sequences. Executing
instructions in non-learning settings has also re-
ceived significant attention (e.g., Winograd, 1972;
Webber et al., 1995; MacMahon et al., 2006).

Our work is related to a growing interest in
problems that combine language and vision, in-

cluding visual question answering (e.g., Antol
et al., 2015; Andreas et al., 2016b,a), caption gen-
eration (e.g., Chen et al., 2015, 2016; Xu et al.,
2015), and visual reasoning (Johnson et al., 2016;
Suhr et al., 2017). We address the prediction of the
next action given a world image and an instruction.

Reinforcement learning with neural networks
has been used for various NLP tasks, including
text-based games (Narasimhan et al., 2015; He
et al., 2016), information extraction (Narasimhan
et al., 2016), co-reference resolution (Clark and
Manning, 2016), and dialog (Li et al., 2016).

Neural network reinforcement learning tech-
niques have been recently studied for behavior
learning tasks, including playing games (Mnih
et al., 2013, 2015, 2016; Silver et al., 2016) and
solving memory puzzles (Oh et al., 2016). In con-
trast to this line of work, our data is limited. Ob-
serving new states in a computer game simply re-
quires playing it. However, our agent also consid-
ers natural language instructions. As the set of in-
structions is limited to the training data, the set of
agent contexts seen during learning is constrained.
We address the data efficiency problem by learn-
ing in a contextual bandit setting, which is known
to be more tractable (Agarwal et al., 2014), and us-
ing reward shaping to increase exploration effec-
tiveness. Zhu et al. (2017) address generalization
of reinforcement learning to new target goals in vi-
sual search by providing the agent an image of the
goal state. We address a related problem. How-
ever, we provide natural language and the agent
must learn to recognize the goal state.

Reinforcement learning is extensively used in
robotics (Kober et al., 2013). Similar to recent
work on learning neural network policies for robot
control (Levine et al., 2016; Schulman et al., 2015;
Rusu et al., 2016), we assume an instrumented
training environment and use the state to compute
rewards during learning. Our approach adds the
ability to specify tasks using natural language.

4 Model
We model the agent policy π with a neural net-
work. The agent observes the instruction and an
RGB image of the world. Given a world state
s, the image I is generated using the function
IMG(s). The instruction execution is generated
one step at a time. At each step j, the agent
observes an image Ij of the current world state
sj and the instruction x̄, predicts the action aj ,
and executes it to transition to the next state sj+1.
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Place the Toyota east of SRIx̄ :

h1

SOUTH

Visual State v10

LSTM

hdhb

TOYOTA

SoftMax Layers

Task Specific

TOYOTA-SOUTH Action a10

TOYOTA-SOUTH

CNN

l1 l2 l3 l4 l5 l6

Instruction Representation x̄

I10

I8 I9

Previous Action a9

Agent Context s̃10

Figure 2: Illustration of the policy architecture showing the 10th step in the execution of the instruction Place the
Toyota east of SRI in the state from Figure 1. The network takes as input the instruction x̄, image of the current
state I10, images of previous states I8 and I9 (with K = 2), and the previous action a9. The text and images are
embedded with LSTM and CNN. The actions are selected with the task specific multi-layer perceptron.

This process continues until STOP is predicted and
the agent stops, indicating instruction completion.
The agent also has access to K images of previ-
ous states and the previous action to distinguish
between different stages of the execution (Mnih
et al., 2015). Figure 2 illustrates our architecture.

Formally,2 at step j, the agent consid-
ers an agent context s̃j , which is a tuple
(x̄, Ij , Ij−1, . . . , Ij−K , aj−1), where x̄ is the natu-
ral language instruction, Ij is an image of the cur-
rent world state, the images Ij−1, . . . , Ij−K repre-
sent K previous states, and aj−1 is the previous
action. The agent context includes information
about the current state and the execution. Consid-
ering the previous action aj−1 allows the agent to
avoid repeating failed actions, for example when
trying to move in the direction of an obstacle. In
Figure 2, the agent is given the instruction Place
the Toyota east of SRI, is at the 10-th execution
step, and considers K = 2 previous images.

We generate continuous vector representations
for all inputs, and jointly reason about both text
and image modalities to select the next action.
We use a recurrent neural network (RNN; Elman,
1990) with a long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) recurrence
to map the instruction x̄ = 〈x1, . . . , xn〉 to
a vector representation x̄. Each token xi is
mapped to a fixed dimensional vector with the
learned embedding function ψ(xi). The instruc-
tion representation x̄ is computed by applying the
LSTM recurrence to generate a sequence of hid-
den states li = LSTM(ψ(xi), li−1), and comput-
ing the mean x̄ = 1

n

∑n
i=1 li (Narasimhan et al.,

2015). The current image Ij and previous im-
ages Ij−1,. . . ,Ij−K are concatenated along the
channel dimension and embedded with a convolu-
tional neural network (CNN) to generate the vi-

2We use bold-face capital letters for matrices and bold-
face lowercase letters for vectors. Computed input and state
representations use bold versions of the symbols. For exam-
ple, x̄ is the computed representation of an instruction x̄.

sual state v (Mnih et al., 2013). The last ac-
tion aj−1 is embedded with the functionψa(aj−1).
The vectors vj , x̄, and ψa(aj−1) are concatenated
to create the agent context vector representation
s̃j = [vj , x̄, ψa(aj−1)].

To compute the action to execute, we use a feed-
forward perceptron that decomposes according to
the domain actions. This computation selects the
next action conditioned on the instruction text and
observations from both the current world state and
recent history. In the block world domain, where
actions decompose to selecting the block to move
and the direction, the network computes block and
direction probabilities. Formally, we decompose
an action a to direction aD and block aB . We com-
pute the feedforward network:

h1 = max(W(1)s̃j + b(1), 0)

hD = W(D)h1 + b(D)

hB = W(B)h1 + b(B) ,

and the action probability is a product of the com-
ponent probabilities:

P (aDj = d | x̄, sj , aj−1) ∝ exp(hDd )

P (aBj = b | x̄, sj , aj−1) ∝ exp(hBb ) .

At the beginning of execution, the first action a0
is set to the special value NONE, and previous im-
ages are zero matrices. The embedding function ψ
is a learned matrix. The function ψa concatenates
the embeddings of aDj−1 and aBj−1, which are ob-
tained from learned matrices, to compute the em-
bedding of aj−1. The model parameters θ include
W(1), b(1), W(D), b(D), W(B), b(B), the param-
eters of the LSTM recurrence, the parameters of
the convolutional network CNN, and the embed-
ding matrices. In our experiments (Section 7), all
parameters are learned without external resources.

5 Learning
We use policy gradient for reinforcement learn-
ing (Williams, 1992) to estimate the parameters
θ of the agent policy. We assume access to a
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training set of N examples {(x̄(i), s(i)1 , ē(i))}Ni=1,
where x̄(i) is an instruction, s(i)1 is a start state, and
ē(i) is an execution demonstration starting from
s
(i)
1 of instruction x̄(i). The main learning chal-

lenge is learning how to execute instructions given
raw visual input from relatively limited data. We
learn in a contextual bandit setting, which provides
theoretical advantages over general reinforcement
learning. In Section 8, we verify this empirically.
Reward Function The instruction execution
problem defines a simple problem reward to mea-
sure task completion. The agent receives a posi-
tive reward when the task is completed, a negative
reward for incorrect completion (i.e., STOP in the
wrong state) and actions that fail to execute (e.g.,
when the direction is blocked), and a small penalty
otherwise, which induces a preference for shorter
trajectories. To compute the reward, we assume
access to the world state. This learning setup is
inspired by work in robotics, where it is achieved
by instrumenting the training environment (Sec-
tion 3). The agent, on the other hand, only uses
the agent context (Section 4). When deployed, the
system relies on visual observations and natural
language instructions only. The reward function
R(i) : S ×A → R is defined for each training ex-
ample (x̄(i), s

(i)
1 , ē(i)), i = 1 . . . N :

R(i)(s, a) =





1.0 if s = sm(i) and a = STOP

−1.0 s 6= sm(i) and a = STOP

−1.0 a fails to execute
−δ else

,

where m(i) is the length of ē(i).
The reward function does not provide interme-

diate positive feedback to the agent for actions that
bring it closer to its goal. When the agent explores
randomly early during learning, it is unlikely to
encounter the goal state due to the large number
of steps required to execute tasks. As a result, the
agent does not observe positive reward and fails
to learn. In Section 6, we describe how reward
shaping, a method to augment the reward with ad-
ditional information, is used to take advantage of
the training data and address this challenge.
Policy Gradient Objective We adapt the policy
gradient objective defined by Sutton et al. (1999)
to multiple starting states and reward functions:

J =
1

N

N∑

i=1

V (i)
π (s

(i)
1 ) ,

where V (i)
π (s

(i)
1 ) is the value given by R(i) start-

ing from s
(i)
1 under the policy π. The summation

expresses the goal of learning a behavior parame-

terized by natural language instructions.
Contextual Bandit Setting In contrast to most
policy gradient approaches, we apply the objec-
tive to a contextual bandit setting where immedi-
ate reward is optimized rather than total expected
reward. The primary theoretical advantage of con-
textual bandits is much tighter sample complexity
bounds when comparing upper bounds for contex-
tual bandits (Langford and Zhang, 2007) even with
an adversarial sequence of contexts (Auer et al.,
2002) to lower bounds (Krishnamurthy et al.,
2016) or upper bounds (Kearns et al., 1999) for
total reward maximization. This property is par-
ticularly suitable for the few-sample regime com-
mon in natural language problems. While re-
inforcement learning with neural network poli-
cies is known to require large amounts of train-
ing data (Mnih et al., 2015), the limited number
of training sentences constrains the diversity and
volume of agent contexts we can observe during
training. Empirically, this translates to poor results
when optimizing the total reward (REINFORCE
baseline in Section 8). To derive the approximate
gradient, we use the likelihood ratio method:

∇θJ =
1

N

N∑

i=1

E[∇θ log π(s̃, a)R(i)(s, a)] ,

where reward is computed from the world state but
policy is learned on the agent context. We approx-
imate the gradient using sampling.

This training regime, where immediate reward
optimization is sufficient to optimize policy pa-
rameters θ, is enabled by the shaped reward we
introduce in Section 6. While the objective is de-
signed to work best with the shaped reward, the al-
gorithm remains the same for any choice of reward
definition including the original problem reward or
several possibilities formed by reward shaping.
Entropy Penalty We observe that early in train-
ing, the agent is overwhelmed with negative re-
ward and rarely completes the task. This results in
the policy π rapidly converging towards a subopti-
mal deterministic policy with an entropy of 0. To
delay premature convergence we add an entropy
term to the objective (Williams and Peng, 1991;
Mnih et al., 2016). The entropy term encourages a
uniform distribution policy, and in practice stimu-
lates exploration early during training. The regu-
larized gradient is:
∇θJ =

1

N

N∑

i=1

E[∇θ log π(s̃, a)R(i)(s, a) + λ∇θH(π(s̃, ·))] ,
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Algorithm 1 Policy gradient learning

Input: Training set {(x̄(i), s(i)1 , ē(i))}Ni=1, learning rate µ,
epochs T , horizon J , and entropy regularization term λ.

Definitions: IMG(s) is a camera sensor that reports an RGB
image of state s. π is a probabilistic neural network
policy parameterized by θ, as described in Section 4.
EXECUTE(s, a) executes the action a at the state s, and
returns the new state. R(i) is the reward function for
example i. ADAM(∆) applies a per-feature learning rate
to the gradient ∆ (Kingma and Ba, 2014).

Output: Policy parameters θ.
1: » Iterate over the training data.
2: for t = 1 to T , i = 1 to N do
3: I1−K , . . . , I0 = ~0

4: a0 = NONE, s1 = s
(i)
1

5: j = 1
6: » Rollout up to episode limit.
7: while j ≤ J and aj 6= STOP do
8: » Observe world and construct agent context.
9: Ij = IMG(sj)

10: s̃j = (x̄(i), Ij , Ij−1, . . . , Ij−K , a
d
j−1)

11: » Sample an action from the policy.
12: aj ∼ π(s̃j , a)
13: sj+1 = EXECUTE(sj , aj)
14: » Compute the approximate gradient.
15: ∆j ← ∇θ log π(s̃j , aj)R

(i)(sj , aj)
+λ∇θH(π(s̃j , ·))

16: j+ = 1

17: θ ← θ + µADAM( 1
j

∑j
j′=1 ∆j′)

18: return θ

where H(π(s̃, ·)) is the entropy of π given the
agent context s̃, λ is a hyperparameter that con-
trols the strength of the regularization. While
the entropy term delays premature convergence, it
does not eliminate it. Similar issues are observed
for vanilla policy gradient (Mnih et al., 2016).
Algorithm Algorithm 1 shows our learning al-
gorithm. We iterate over the data T times. In each
epoch, for each training example (x̄(i), s

(i)
1 , ē(i)),

i = 1 . . . N , we perform a rollout using our policy
to generate an execution (lines 7 - 16). The length
of the rollout is bound by J , but may be shorter if
the agent selected the STOP action. At each step
j, the agent updates the agent context s̃j (lines 9 -
10), samples an action from the policy π (line 12),
and executes it to generate the new world state
sj+1 (line 13). The gradient is approximated us-
ing the sampled action with the computed reward
R(i)(sj , aj) (line 15). Following each rollout, we
update the parameters θ with the mean of the gra-
dients using ADAM (Kingma and Ba, 2014).

6 Reward Shaping
Reward shaping is a method for transforming a
reward function by adding a shaping term to the

Low

High

Figure 3: Visualization of the shaping potentials for
two tasks. We show demonstrations (blue arrows), but
omit instructions. To visualize the potentials intensity,
we assume only the target block can be moved, while
rewards and potentials are computed for any block
movement. We illustrate the sparse problem reward
(left column) as a potential function and consider only
its positive component, which is focused on the goal.
The middle column adds the distance-based potential.
The right adds both potentials.

problem reward. The goal is to generate more in-
formative updates by adding information to the re-
ward. We use this method to leverage the train-
ing demonstrations, a common form of supervi-
sion for training systems that map language to ac-
tions. Reward shaping allows us to fully use this
type of supervision in a reinforcement learning
framework, and effectively combine learning from
demonstrations and exploration.

Adding an arbitrary shaping term can change
the optimality of policies and modify the orig-
inal problem, for example by making bad poli-
cies according to the problem reward optimal ac-
cording to the shaped function.3 Ng et al. (1999)
and Wiewiora et al. (2003) outline potential-based
terms that realize sufficient conditions for safe
shaping.4 Adding a shaping term is safe if the
order of policies according to the shaped reward
is identical to the order according to the original
problem reward. While safe shaping only applies
to optimizing the total reward, we show empiri-
cally the effectiveness of the safe shaping terms
we design in a contextual bandit setting.

We introduce two shaping terms. The final
shaped reward is a sum of them and the problem
reward. Similar to the problem reward, we define
example-specific shaping terms. We modify the
reward function signature as required.
Distance-based Shaping (F1) The first shaping
term measures if the agent moved closer to the
goal state. We design it to be a safe potential-based

3For example, adding a shaping term F = −R will result
in a shaped reward that is always 0, and any policy will be
trivially optimal with respect to it.

4For convenience, we briefly overview the theorems of Ng
et al. (1999) and Wiewiora et al. (2003) in Appendix A.
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term (Ng et al., 1999):
F

(i)
1 (sj , aj , sj+1) = φ

(i)
1 (sj+1)− φ(i)

1 (sj) .

The potential φ(i)1 (s) is proportional to the nega-
tive distance from the goal state s(i)g . Formally,
φ
(i)
1 (s) = −η‖s− s(i)g ‖, where η is a constant

scaling factor, and ‖.‖ is a distance metric. In the
block world, the distance between two states is the
sum of the Euclidean distances between the posi-
tions of each block in the two states, and η is the
inverse of block width. The middle column in Fig-
ure 3 visualizes the potential φ(i)1 .
Trajectory-based Shaping (F2) Distance-
based shaping may lead the agent to sub-optimal
states, for example when an obstacle blocks the
direct path to the goal state, and the agent must
temporarily increase its distance from the goal to
bypass it. We incorporate complete trajectories
by using a simplification of the shaping term
introduced by Brys et al. (2015). Unlike F1, it
requires access to the previous state and action.
It is based on the look-back advice shaping
term of Wiewiora et al. (2003), who introduced
safe potential-based shaping that considers the
previous state and action. The second term is:
F

(i)
2 (sj−1, aj−1, sj , aj) = φ

(i)
2 (sj , aj)−φ(i)

2 (sj−1, aj−1) .

Given ē(i) = 〈(s1, a1), . . . , (sm, am)〉, to com-
pute the potential φ(i)2 (s, a), we identify the closest
state sj in ē(i) to s. If η‖sj − s‖ < 1 and aj = a,
φ
(i)
2 (s, a) = 1.0, else φ(i)2 (s, a) = −δf , where δf

is a penalty parameter. We use the same distance
computation and parameter η as in F1. When the
agent is in a state close to a demonstration state,
this term encourages taking the action taken in the
related demonstration state. The right column in
Figure 3 visualizes the effect of the potential φ(i)2 .

7 Experimental Setup
Environment We use the environment of Bisk
et al. (2016). The original task required predicting
the source and target positions for a single block
given an instruction. In contrast, we address the
task of moving blocks on the plane to execute in-
structions given visual input. This requires gen-
erating the complete sequence of actions needed
to complete the instruction. The environment con-
tains up to 20 blocks marked with logos or digits.
Each block can be moved in four directions. In-
cluding the STOP action, in each step, the agent
selects between 81 actions. The set of actions is
constant and is not limited to the blocks present.

The transition function is deterministic. The size
of each block step is 0.04 of the board size. The
agent observes the board from above. We adopt
a relatively challenging setup with a large action
space. While a simpler setup, for example decom-
posing the problem to source and target prediction
and using a planner, is likely to perform better, we
aim to minimize task-specific assumptions and en-
gineering of separate modules. However, to better
understand the problem, we also report results for
the decomposed task with a planner.

Data Bisk et al. (2016) collected a corpus of in-
structions paired with start and goal states. Fig-
ure 1 shows example instructions. The original
data includes instructions for moving one block or
multiple blocks. Single-block instructions are rel-
atively similar to navigation instructions and re-
ferring expressions. While they present much of
the complexity of natural language understanding
and grounding, they rarely display the planning
complexity of multi-block instructions, which are
beyond the scope of this paper. Furthermore,
the original data does not include demonstrations.
While generating demonstrations for moving a
single block is straightforward, disambiguating
action ordering when multiple blocks are moved is
challenging. Therefore, we focus on instructions
where a single block changes its position between
the start and goal states, and restrict demonstra-
tion generation to move the changed block. The
remaining data, and the complexity it introduces,
provide an important direction for future work.

To create demonstrations, we compute the
shortest paths. While this process may introduce
noise for instructions that specify specific trajecto-
ries (e.g., move SRI two steps north and . . . ) rather
than only describing the goal state, analysis of the
data shows this issue is limited. Out of 100 sam-
pled instructions, 92 describe the goal state rather
than the trajectory. A secondary source of noise is
due to discretization of the state space. As a re-
sult, the agent often can not reach the exact target
position. The demonstrations error illustrates this
problem (Table 3). To provide task completion re-
ward during learning, we relax the state compari-
son, and consider states to be equal if the sum of
block distances is under the size of one block.

The corpus includes 11,871/1,719/3,177 in-
structions for training/development/testing. Ta-
ble 1 shows corpus statistic compared to the com-
monly used SAIL navigation corpus (MacMahon
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SAIL Blocks
Number of instructions 3,237 16,767
Mean instruction length 7.96 15.27

Vocabulary 563 1,426
Mean trajectory length 3.12 15.4

Table 1: Corpus statistics for the block environment we
use and the SAIL navigation domain.

et al., 2006; Chen and Mooney, 2011). While the
SAIL agent only observes its immediate surround-
ings, overall the blocks domain provides more
complex instructions. Furthermore, the SAIL en-
vironment includes only 400 states, which is in-
sufficient for generalization with vision input. We
compare to other data sets in Appendix D.
Evaluation We evaluate task completion error
as the sum of Euclidean distances for each block
between its position at the end of the execution
and in the gold goal state. We divide distances
by block size to normalize for the image size. In
contrast, Bisk et al. (2016) evaluate the selection
of the source and target positions independently.
Systems We report performance of ablations,
the upper bound of following the demonstrations
(Demonstrations), and five baselines: (a) STOP:
the agent immediately stops, (b) RANDOM: the
agent takes random actions, (c) SUPERVISED: su-
pervised learning with maximum-likelihood es-
timate using demonstration state-action pairs,
(d) DQN: deep Q-learning with both shaping
terms (Mnih et al., 2015), and (e) REINFORCE:
policy gradient with cumulative episodic reward
with both shaping terms (Sutton et al., 1999). Full
system details are given in Appendix B.
Parameters and Initialization Full details are
in Appendix C. We consider K = 4 previous im-
ages, and horizon length J = 40. We initialize our
model with the SUPERVISED model.

8 Results
Table 2 shows development results. We run each
experiment three times and report the best result.
The RANDOM and STOP baselines illustrate the
task complexity of the task. Our approach, includ-
ing both shaping terms in a contextual bandit set-
ting, significantly outperforms the other methods.
SUPERVISED learning demonstrates lower perfor-
mance. A likely explanation is test-time execution
errors leading to unfamiliar states with poor later
performance (Kakade and Langford, 2002), a form
of the covariate shift problem. The low perfor-
mance of REINFORCE and DQN illustrates the
challenge of general reinforcement learning with
limited data due to relatively high sample com-

Algorithm Distance Error Min. Distance
Mean Med. Mean Med.

Demonstrations 0.35 0.30 0.35 0.30
Baselines
STOP 5.95 5.71 5.95 5.71
RANDOM 15.3 15.70 5.92 5.70
SUPERVISED 4.65 4.45 3.72 3.26
REINFORCE 5.57 5.29 4.50 4.25
DQN 6.04 5.78 5.63 5.49
Our Approach 3.60 3.09 2.72 2.21

w/o Sup. Init 3.78 3.13 2.79 2.21
w/o Prev. Action 3.95 3.44 3.20 2.56
w/o F1 4.33 3.74 3.29 2.64
w/o F2 3.74 3.11 3.13 2.49
w/ Distance 8.36 7.82 5.91 5.70

Reward
Ensembles
SUPERVISED 4.64 4.27 3.69 3.22
REINFORCE 5.28 5.23 4.75 4.67
DQN 5.85 5.59 5.60 5.46
Our Approach 3.59 3.03 2.63 2.15

Table 2: Mean and median (Med.) development results.

Algorithm Distance Error Min. Distance
Mean Med. Mean Med.

Demonstrations 0.37 0.31 0.37 0.31
STOP 6.23 6.12 6.23 6.12
RANDOM 15.11 15.35 6.21 6.09
Ensembles
SUPERVISED 4.95 4.53 3.82 3.33
REINFORCE 5.69 5.57 5.11 4.99
DQN 6.15 5.97 5.86 5.77
Our Approach 3.78 3.14 2.83 2.07

Table 3: Mean and median (Med.) test results.

plexity (Kearns et al., 1999; Krishnamurthy et al.,
2016). We also report results using ensembles of
the three models.

We ablate different parts of our approach. Ab-
lations of supervised initialization (our approach
w/o sup. init) or the previous action (our ap-
proach w/o prev. action) result in increase in er-
ror. While the contribution of initialization is mod-
est, it provides faster learning. On average, af-
ter two epochs, we observe an error of 3.94 with
initialization and 6.01 without. We hypothesize
that the F2 shaping term, which uses full demon-
strations, helps to narrow the gap at the end of
learning. Without supervised initialization and F2,
the error increases to 5.45 (the 0% point in Fig-
ure 4). We observe the contribution of each shap-
ing term and their combination. To study the bene-
fit of potential-based shaping, we experiment with
a negative distance-to-goal reward. This reward
replaces the problem reward and encourages get-
ting closer to the goal (our approach w/distance
reward). With this reward, learning fails to con-
verge, leading to a relatively high error.

Figure 4 shows our approach with varying
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Figure 4: Mean distance error as a function of the ratio
of training examples that include complete trajectories.
The rest of the data includes the goal state only.

amount of supervision. We remove demonstra-
tions from both supervised initialization and the
F2 shaping term. For example, when only 25%
are available, only 25% of the data is available for
initialization and the F2 term is only present for
this part of the data. While some demonstrations
are necessary for effective learning, we get most
of the benefit with only 12.5%.

Table 3 provides test results, using the ensem-
bles to decrease the risk of overfitting the develop-
ment. We observe similar trends to development
result with our approach outperforming all base-
lines. The remaining gap to the demonstrations
upper bound illustrates the need for future work.

To understand performance better, we measure
minimal distance (min. distance in Tables 2 and
3), the closest the agent got to the goal. We ob-
serve a strong trend: the agent often gets close to
the goal and fails to stop. This behavior is also
reflected in the number of steps the agent takes.
While the mean number of steps in development
demonstrations is 15.2, the agent generates on av-
erage 28.7 steps, and 55.2% of the time it takes
the maximum number of allowed steps (40). Test-
ing on the training data shows an average 21.75
steps and exhausts the number of steps 29.3% of
the time. The mean number of steps in training
demonstrations is 15.5. This illustrates the chal-
lenge of learning how to be behave at an absorbing
state, which is observed relatively rarely during
training. This behavior also shows in our video.5

We also evaluate a supervised learning variant
that assumes a perfect planner.6 This setup is sim-
ilar to Bisk et al. (2016), except using raw image
input. It allows us to roughly understand how well
the agent generates actions. We observe a mean
error of 2.78 on the development set, an improve-
ment of almost two points over supervised learn-
ing with our approach. This illustrates the com-

5https://github.com/clic-lab/blocks
6As there is no sequence of decisions, our reinforcement

approach is not appropriate for the planner experiment. The
architecture details are described in Appendix B.

plexity of the complete problem.
We conduct a shallow linguistic analysis to un-

derstand the agent behavior with regard to dif-
ferences in the language input. As expected, the
agent is sensitive to unknown words. For instruc-
tions without unknown words, the mean develop-
ment error is 3.49. It increases to 3.97 for instruc-
tions with a single unknown word, and to 4.19 for
two.7 We also study the agent behavior when ob-
serving new phrases composed of known words by
looking at instructions with new n-grams and no
unknown words. We observe no significant corre-
lation between performance and new bi-grams and
tri-grams. We also see no meaningful correlation
between instruction length and performance. Al-
though counterintuitive given the linguistic com-
plexities of longer instructions, it aligns with re-
sults in machine translation (Luong et al., 2015).

9 Conclusions
We study the problem of learning to execute in-
structions in a situated environment given only
raw visual observations. Supervised approaches
do not explore adequately to handle test time er-
rors, and reinforcement learning approaches re-
quire a large number of samples for good conver-
gence. Our solution provides an effective combi-
nation of both approaches: reward shaping to cre-
ate relatively stable optimization in a contextual
bandit setting, which takes advantage of a signal
similar to supervised learning, with a reinforce-
ment basis that admits substantial exploration and
easy avenues for smart initialization. This com-
bination is designed for a few-samples regime, as
we address. When the number of samples is un-
bounded, the drawbacks observed in this scenario
for optimizing longer term reward do not hold.
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Abstract

We present a machine learning analysis of
eye-tracking data for the detection of mild
cognitive impairment, a decline in cogni-
tive abilities that is associated with an in-
creased risk of developing dementia. We
compare two experimental configurations
(reading aloud versus reading silently), as
well as two methods of combining infor-
mation from the two trials (concatenation
and merging). Additionally, we anno-
tate the words being read with information
about their frequency and syntactic cate-
gory, and use these annotations to generate
new features. Ultimately, we are able to
distinguish between participants with and
without cognitive impairment with up to
86% accuracy.

1 Introduction

As the global population ages, the prevalence of
dementia is increasing (Prince et al., 2013). The
term “dementia” refers to an atypical and patho-
logical decline in cognitive abilites, encompassing
a range of possible underlying causes. Detecting
the onset of dementia as early as possible is impor-
tant for a number of reasons, including timely ac-
cess to medication and treatment, increasing sup-
port for activities of daily living (such as main-
taining proper nutrition and hygiene), reducing the
individual’s engagement in potentially risky activ-
ities (e.g. driving an automobile), and giving in-
dividuals, families, and caregivers time to prepare
(Solomon and Murphy, 2005; Ashford et al., 2006;
Calzà et al., 2015).

In this study, we investigate the possibility of
using eye-tracking data and machine learning to
detect early, subtle signs of cognitive impairment.
Previous work has suggested that changes in eye

movements while reading do occur in Alzheimer’s
disease (Lueck et al., 2000; Fernández et al., 2013;
Pereira et al., 2014; Biondi et al., 2017). However,
our participants do not have a dementia diagnosis;
rather, they have been diagnosed with “mild cog-
nitive impairment”, meaning they are starting to
show very early signs of cognitive decline, and are
at an increased risk of developing dementia. We
test the relative merits of collecting eye-tracking
data while reading silently and aloud, and explore
the idea of augmenting eye-tracking features with
linguistic information.

We begin by presenting some background infor-
mation on cognitive and linguistic changes in de-
mentia, and discuss previous work on eye-tracking
and natural language processing approaches to de-
tecting cognitive decline. We then explain our ex-
perimental set-up, feature extraction, and machine
learning pipeline. We present results for reading
silently and reading aloud, and discuss the over-
all implications and interpretation of our results.
Finally we acknowledge the limitations of the cur-
rent work and suggest areas of future research.

2 Background

There are several different types of dementia,
Alzheimer’s disease (AD) being the most com-
mon one. AD typically debuts with symptoms re-
lated to executive cognitive functioning and mem-
ory, but also included are specific linguistic im-
pairments, primarily related to semantic process-
ing. Mild cognitive impairment (MCI) can be seen
as a stage of pre-clinical dementia, and may man-
ifest years before an actual dementia diagnosis.
Persons with MCI show symptoms across several
cognitive domains, where global cognitive abil-
ity, episodic memory, perceptual speed, and exec-
utive functioning are most clearly affected. How-
ever, the performance of persons with MCI over-
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lap greatly with the performance of healthy con-
trols, which highlights the complexity and hetero-
geneity of the diagnosis (Bäckman et al., 2005).

Taler and Phillips (2008) reviewed the literature
on language impairments in MCI and Alzheimer’s
disease, and found that the linguistic deficits seen
in AD are also present in MCI, albeit to a lesser de-
gree. The main deficits are located on the seman-
tic level (for example, difficulty naming pictures
or coming up with words from a particular seman-
tic category), whereas there are no clear evidence
of problems regarding syntactic processing. Sen-
tence comprehension is typically impaired in per-
sons with MCI, but there is a great degree of indi-
vidual variation. Previous research suggests that
using tasks that include a possibility to analyse
temporal measures (such as reaction time) will im-
prove the ability to distinguish between MCI and
healthy controls, and may also be useful as a prog-
nostic factor when investigating which subjects
with MCI will convert to AD (Taler and Phillips,
2008).

There has been growing interest in applying ma-
chine learning techniques to detect mild cognitive
impairment from various linguistic data. Roark
et al. (2011) measured the complexity and infor-
mation content of narrative story re-tellings from
37 participants with MCI and 37 healthy controls,
and was able to classify the groups with an AUC of
0.73 using these features alone, or 0.86 by combin-
ing this information with clinical test scores. Tóth
et al. (2015) leveraged acoustic features (includ-
ing articulation rate, speech rate, utterance length,
pause duration, number of pauses, and hesitation
rate) to distinguish between 32 participants with
MCI and 19 elderly controls with a best accuracy
of 80.4%.

Other research has considered the closely re-
lated problem of distinguishing dementia pa-
tients from controls through automated analysis of
speech and language production (Thomas et al.,
2005; Pakhomov et al., 2010; Guinn and Habash,
2012; Meilán et al., 2014; Jarrold et al., 2014;
Fraser et al., 2016; Rentoumi et al., 2014; Garrard
et al., 2014; Prud’hommeaux and Roark, 2015;
Yancheva et al., 2015).

In contrast, computational analyses of language
processing and comprehension for the goal of de-
tecting cognitive decline are much rarer, possibly
because it is more difficult to quantify automati-
cally. Classical studies of language processing in

dementia have considered both listening (for ex-
ample, Rochon et al. 1994; Kempler et al. 1998;
Welland et al. 2002) and reading (for example,
Patterson et al. 1994; Storandt et al. 1995); here we
focus on reading as the input modality. One well-
established method for estimating the processing
demands during reading comprehension is through
eye-tracking. There is a vast literature on eye-
tracking in reading which we will not attempt to
fully summarize here, but merely introduce some
key vocabulary and basic concepts.

When reading, the eye moves through the text
in a series of fixations and saccades. A fixa-
tion occurs when the eye temporarily rests on a
word. This time is used to process the incom-
ing information, and to plan the next eye move-
ment. Fixations typically last for around 200-300
ms, and are on average slightly longer in oral read-
ing than in silent reading (Rayner, 1998). In be-
tween fixations, the eye makes a rapid movement
called a saccade. Saccades can move the eye for-
ward through the text (a forward saccade) or back-
ward (a saccadic regression or simply a regres-
sion). Saccades tend to be around 6-8 charac-
ters in size in English (although this is language-
dependent; for example, Liversedge et al. (2016)
found longer saccades in Finnish and shorter sac-
cades in Chinese), and around 10-15% of sac-
cades in reading are regressions. Both strong and
poor readers make regressions, but stronger read-
ers seem to have the ability to accurately direct
their eyes back to a difficult or ambiguous pas-
sage, whereas weaker readers perform more gen-
eral back-tracking (Murray and Kennedy, 1988).

Whether a word is fixated on, and for how
long, is influenced by a number of word-level and
contextual factors. Content words are fixated on
approximately 85% of the time, while function
words are fixated on only 35% of the time (Rayner,
1998). There is some evidence that word type ef-
fects may be even more fine-grained, as work by
Barrett et al. (2016) demonstrates the possibility
for part-of-speech tagging based on eye-tracking
information. The number and duration of fixa-
tions is also affected by word frequency (Raney
and Rayner, 1995), word predictability in context
(Kliegl et al., 2004), the position of the word in
the sentence (Rayner et al., 2000), the emotional
valence of the word (Scott et al., 2012), and word
length (Rayner, 1998).

While sharing several features, silent reading
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and reading aloud are believed to potentially differ
in some ways. The main division between the two
types of reading is related to the access of phono-
logical and semantic representations in the brain.
In silent reading, there has been a great deal of dis-
cussion on whether the decoding of orthographic
information is directly mapped to semantic mean-
ing, or whether letters are mapped to phonemes,
which are then connected to semantic meaning.
By using a computational approach based on pre-
vious research about reading, Harm and Seiden-
berg (2004) investigate the two proposed routes
and suggest a combined model, where the phono-
logical path and direct path are simultaneously ac-
tivated and share the workload depending on fac-
tors such as word frequency and spelling-sound
consistency. The activation of semantic informa-
tion during reading aloud is also a matter that has
been discussed and researched for some time. It
was previously thought that during reading aloud,
the semantic level of information did not need to
be activated, but rather letters could be matched
directly to phonemes and then articulated. How-
ever, computational models (Coltheart et al., 2001)
and for example fMRI data (Graves et al., 2010)
have shown that semantic processing is involved
in reading aloud, but to varying degrees.

Previous work has identified differences be-
tween the eye-movements of individuals with cog-
nitive impairment relative to healthy controls.
Lueck et al. (2000) reported that participants with
AD had more irregular eye movements when read-
ing, longer fixation times, and more saccadic re-
gressions. Fernández et al. (2013) found that par-
ticipants with AD had an increased number of
fixations and regressions, and also skipped more
words than healthy controls. Pereira et al. (2014)
presented a review of the literature on eye-tracking
in MCI and AD, and suggested that such tech-
niques may be able to predict the conversion from
MCI to AD, partly due to the sensitivity of eye-
movements to early changes in memory, visual,
and executive processes.

Earlier this year, in a paper posted on arXiv,
Biondi et al. (2017) reported a classification ac-
curacy of 88.3% in distinguishing between partic-
ipants with AD and healthy controls through eye-
tracking measures. They recorded eye movements
from 40 healthy elderly adults and 20 AD patients
while they read 120 sentences. The sentences var-
ied in terms of predictability and familiarity (for

example, some of the sentences were well-known
proverbs). Each sentence was recorded as a sep-
arate trial. After removing 10% of the trials as
outliers, 90% of the remaining trials were used
to train a deep sparse-autoencoder, and 10% were
reserved as test data. It is assumed that some of
the training data and test data originated from the
same participants.

In this paper, we first aim to reproduce aspects
of the Biondi et al. (2017) study, although with
some notable differences. Our study was con-
ducted in Swedish, rather than Spanish, and in
each trial the participant was presented with an
entire paragraph, rather than individual sentences,
which affects our feature calculations and choice
of classifiers. Additionally, we present a compar-
ison of two different trial configurations (reading
silently versus reading aloud), and introduce new
word-level features to associate linguistic informa-
tion with the eye-tracking features. Furthermore,
perhaps the most critical difference from a clinical
standpoint is that our participants are in a milder
stage of cognitive decline, and have not received
AD diagnoses. Thus we aim explore whether this
promising approach can be used to detect the ear-
liest stages of cognitive impairment.

3 Methods

3.1 Participants

The participants were recruited from the Gothen-
burg MCI study, which is a large longitudinal
study on mild cognitive impairment (Wallin et al.,
2016). The overall Gothenburg MCI study is
approved by the local ethical committee review
board (reference number: L09199, 1999; T479-
11, 2011); while the currently described study was
approved by the local ethical committee decision
206-16, 2016.

To be included in this study, the participants
had to fulfill certain inclusion and exclusion crite-
ria: participants had to be native Swedish speakers
and had to be able to read and understand informa-
tion about the project, and be able to give consent.
Participants could not have dyslexia or other read-
ing difficulties not relating to their current cogni-
tive impairment. We also excluded patients with
deep depression, ongoing substance abuse, poor
vision that cannot be corrected with glasses or
contact lenses, and participants that were diag-
nosed with other serious psychiatric, neurological
or brain-related diseases, such as Parkinson’s dis-
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MCI (n = 27) HC (n = 30)
Age (years) 70.3 (5.8) 68.0 (7.5)
Education (years) 14.2 (3.6) 13.3 (3.7)
Sex (M/F) 13/14 9/21
MMSE 28.2 (1.3) 29.6 (0.6)

Table 1: Demographic information for partici-
pants with mild cognitive impairment (MCI) and
healthy controls (HC). Age, education, and Mini-
Mental State Exam (MMSE) scores are given
in the format: mean (standard deviation). The
MMSE is a general test of cognitive status and has
a maximum score of 30.

ease, amyotrophic lateral sclerosis, brain tumour
or stroke. Three groups of participants took part
in the study: persons with mild cognitive impair-
ment (MCI), persons with subjective cognitive im-
pairment (SCI), and healthy controls (HC). Partici-
pants have all been assessed with a battery of tests,
from neuropsychological examinations to struc-
tural MRI, blood tests, and lumbar punctures. The
groups analysed and compared in this paper are
the MCI group and the control group. Six con-
trol participants and five MCI participants were
excluded from the current analysis as a result of
calibration problems with the eye-tracker (e.g. due
to cataracts or eye inflammation).

Participant information can be seen in Table 1.
There is no significant difference between the
groups on age or education. The controls do
have significantly higher Mini-Mental State Exam
(MMSE) scores, on average (p < 0.0001). How-
ever, we note that the average MMSE score for our
MCI participants is 28.2 (out of 30), which is con-
sidered to be “normal” (Grut et al., 1993). We con-
trast this with the AD participants in the study by
Biondi et al. (2017), who had an average MMSE
score of 24.2. In fact, the healthy control partici-
pants in that study had an average MMSE of 27.8,
very similar to our MCI group. This indicates the
subtle nature of the impairment seen in the MCI
category.

3.2 Eye-tracking experiments

The eye-tracking experiments were carried out in a
quiet lab environment. We used an EyeLink 1000
Desktop Mount with monocular eye-tracking, and
used a headrest for head stabilization. Head stabi-
lization provides an increased eye-tracking perfor-
mance. The sampling rate was set to 1000 Hz.

The participants read two short texts, and af-
ter each text they answered five questions about
the texts. The first text was read silently, while
the second text was read aloud. Both texts were
taken from the International Reading Speed Texts
(IReST), which is a collection of texts that is avail-
able in 17 different languages. They are 146
words long in Swedish, and were developed to be
used as an evaluation tool for impairments in vi-
sion or reading ability (Trauzettel-Klosinski et al.,
2012). We chose to present complete paragraphs
(rather than individual sentences) to simulate a
more natural reading task, requiring the integra-
tion and recollection of information from the be-
ginning through to the end of the paragraph.

Areas of interest (AOIs) were defined in the
text, and each word was labeled as a separate AOI.
Eye movements, such as saccades and fixations,
are then calculated with respect to the predefined
AOIs. Fixations occurring outside the AOIs are
not considered in this analysis.

The eye-tracker was calibrated for each partic-
ipant using a 9-point calibration procedure, and
drift-corrected between Trial 1 and Trial 2. How-
ever, visual inspection of the data revealed a ten-
dency for downward drift, particularly in the sec-
ond trial. This was corrected manually, where nec-
essary, to the degree agreed upon by two of the
authors (K.C.F. and K.L.F.).

3.3 Features
As our baseline, we consider the 13 features pre-
sented in Biondi et al. (2017), and summarized in
Table 2. Duration and amplitude features were
log-transformed before computing the mean and
standard deviation (Wotschack, 2009). The first
fixation of each trial is discarded, and analysis
starts from the second fixation (Holmqvist et al.,
2011). As in Biondi et al. (2017), we partition the
fixations into 4 categories: first-pass first fixations,
later-pass first fixations1, multi-fixations, and re-
fixations. These definitions are given in Table 2,
but for the sake of clarity we also present a simple
truth table summarizing the four types of fixations
in Table 3.

We then augment these baseline features with
information about the words in the text, namely
their frequency and word type. We first perform
basic syntactic and morphological analysis of the

1Biondi et al. (2017) refer to these as “unique” fixations,
but this terminology could be ambiguous and thus we have
avoided it here.
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Gaze duration (mean and s.d.) The mean and standard deviation of the length of time spent
fixating on a word, averaged over all words in a trial.

Saccade amplitude (mean and s.d.) The mean and standard deviation of the amplitude of the
saccades, averaged over all saccades in a trial.

Total fixations The total number of fixations in a trial.
Total first-pass first fixations The total number of first fixations occurring in the first pass

of a trial. That is, a first-pass first fixation occurs when it is the first fixation on the given
word, and there have been no fixations on any words occurring later in the text.

Total later-pass first fixations The total number of first fixations occurring outside the first-
pass of a trial. That is, a later-pass first fixation occurs when it is the first fixation on the
given word, but there have already been fixations on words occurring later in the text.

Total multi-fixations The total number of fixations on a word in the first-pass, excluding the
first fixation. That is, a multi-fixation occurs when a word is fixated on multiple times in
the run which starts with a first-pass first fixation.

Total re-fixations The total number of fixations on a word outside the first pass, excluding the
first fixation.

First-pass first fixation duration (mean and s.d.) The mean and standard deviation of the
duration of the first-pass first fixations.

Later-pass first fixation duration (mean and s.d.) The mean and standard deviation of the
duration of the later-pass first fixations.

Table 2: Eye-movement features.

Have any later words been visited?
No Yes

H
as

th
is

w
or

d
be

en
vi

si
te

d
ye

t? No First-pass Later-pass
first fixation first fixation

Yes Multi-fixation Re-fixation

Table 3: Four types of fixations

two texts using the Sparv annotation tool2 (Borin
et al., 2016). Specifically, each word was lemma-
tized and labeled with its part-of-speech (POS).

We assign a frequency value for each word
lemma according to the number of times it oc-
curs (per one million words) in the “Modern” lan-
guage section of the Korp Swedish language cor-
pus3, which contained 10.7 billion word tokens at
the time of writing (Borin et al., 2012). These fre-
quency values are POS-disambiguated. We then
partition the frequency values into high and low
frequencies, with a threshold of 20 occurrences
per million words. This threshold was chosen

2https://spraakbanken.gu.se/eng/
research/infrastructure/sparv

3https://spraakbanken.gu.se/eng/
korp-info

manually by observing the frequency distribution
of the words in the two texts. We also partition
the POS labels into two categories: content words
and function words. Content words are defined as
nouns, verbs, adjectives, and adverbs; everything
else is considered to be a function word.

We then define an augmented feature set, here-
after Biondi+word, which takes into account these
word-level annotations. Specifically, we create
new features corresponding to each of the fixation-
based baseline features. (The original feature set
also includes saccade amplitude, the computation
of which is not attached to any one particular
word.) When the original feature involves a mean
and standard deviation, we compute the ratio of
those values computed on the low:high frequency
words and the content:function words. To give an
example, for “mean gaze duration”, we compute
the ratio of the mean gaze duration on low fre-
quency words to mean gaze duration on high fre-
quency words, and the ratio of gaze duration on
content words to gaze duration on function words.
When the original feature is a raw count, we com-
pute a proportion instead. So for “total fixations”,
we compute the proportion of total fixations which
occur on low-frequency words, and the proportion
of total fixations which occur on content words. In
this way we define 22 new features to augment the
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original Biondi set.
Clearly, we expect these new features to be

somewhat correlated with each other, since func-
tion words tend also be high-frequency words.
However, many content words are also labeled as
high-frequency in our methodology, such as bil
(English: car) and potatis (English: potato).

3.4 Classification framework

We consider three classification algorithms: naı̈ve
Bayes (NB), support vector machine (SVM), and
logistic regression (LR), implemented in WEKA
Version 3.9.1 (Hall et al., 2009). Given the small
size of our data set, we forego parameter optimiza-
tion and use the default parameters; i.e., for LR we
use a ridge regression parameter of 10−8, and for
SVM we use a first degree polynomial kernel and
a complexity parameter of 1.0. For feature selec-
tion, we use a wrapper method with a NB classi-
fier. We evaluate the classifier using leave-one-out
cross validation, in which at every iteration one
data point is held out as a test point, and all re-
maining points are used for feature selection and
classifier training. We report the average classifi-
cation accuracy across folds. For our dataset, the
majority class baseline is 52.6%.

4 Results

4.1 Individual trials

We first consider each trial individually, as we ex-
pect there may be differences in eye-movements
when reading silently (Trial 1) versus reading
aloud (Trial 2). The results for each classifier and
each feature set for the first trial are given in Ta-
ble 4a. Using the augmented feature set hurts clas-
sification accuracy in all cases, and the best accu-
racy of 75.4% is achieved using the naı̈ve Bayes
classifier and the Biondi feature set.

When using the data from Trial 2 (Table 4b),
the augmented feature set again leads to lower ac-
curacies in all cases, and the best result of 66.7%
is achieved by the SVM and naı̈ve Bayes classi-
fiers with the Biondi feature set. In every case, we
observe that the classification accuracies are the
same or worse on Trial 2 compared to Trial 1. That
is, we are able to extract less diagnostically-useful
information when the participant is reading aloud
than when they are reading silently. This makes
sense, since reading aloud is a more constrained
task: the reader must keep moving forward at a
reasonable pace to avoid disruptions in the spo-

SVM NB LR
Biondi 66.7 75.4 73.6
Biondi+word 64.9 71.9 68.4

(a) Trial 1: Reading silently

SVM NB LR
Biondi 66.7 66.7 64.9
Biondi+word 63.1 64.9 63.1

(b) Trial 2: Reading aloud

Table 4: Classifier accuracies for individual trials.

ken narrative. This limits the opportunity for the
eyes to move freely around the text. Furthermore,
in the reading aloud paradigm, the examiner pre-
sented the comprehension questions as soon as the
participant had reached the end of the text, in con-
trast to the silent reading paradigm, in which the
participants themselves indicated when they were
ready for the questions to be displayed.

4.2 Combining the trials

We now examine whether we can combine infor-
mation from the two trials to improve classifica-
tion accuracy. We consider two different methods
for combining the data: (1) concatenating the fea-
ture vectors from each trial, and (2) computing the
features across both trials, as if they are simply
two halves of a single trial. The first method has
the advantage of preserving any salient differences
between the two experimental paradigms (e.g. if
a feature is relevant only when reading silently,
that signal will remain in the data). The second
method, which we will refer to as merging, has the
benefit of essentially doubling the amount of data
used to compute each feature, possibly leading to
more accurate estimates.

The results for each combination are given in
Table 5. In most cases, the best accuracy is
achieved using the Biondi feature set alone. How-
ever, the highest accuracy is 86.0%, which occurs
in the merged configuration using the naı̈ve Bayes
classifier with the Biondi+word feature set. In ev-
ery case, a higher accuracy is achieved by merg-
ing, rather than concatenating, the data.

4.3 Classification summary

Figure 1 shows the results for each trial and feature
set, averaged over the three classifiers. In general,
the classifiers trained on Trial 2 did worse than
those trained on Trial 1. Concatenating the feature
vectors from the two trials resulted in better accu-
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SVM NB LR
Biondi 64.9 73.7 68.4
Biondi+word 63.2 73.7 66.7

(a) Concatenated trials

SVM NB LR
Biondi 84.2 82.5 78.9
Biondi+word 84.2 86.0 77.2

(b) Merged trials

Table 5: Classifier accuracies for combined trials.

Figure 1: Average accuracies for each trial and
feature set, averaged across classifiers.

racies than using Trial 2 data alone, but marginally
worse accuracies than using Trial 1 data alone.
The best results were achieved by merging the data
from the two trials. Using the Biondi feature set
alone did better than using the augmented feature
set in the first three cases, but the Biondi+word
feature set led to slightly higher accuracies in the
merged configuration.

However, not all of the observed trends are sta-
tistically significant. A 2-way ANOVA revealed
a significant effect of trial (p = 5.0× 10−7) but
not feature set on classification accuracy. A Tukey
post-hoc test determined that the accuracies in the
merged trials are significantly better than in Trial
1 (p = 6.8× 10−4), Trial 2 (p = 4.0× 10−7), and
the concatenated trials (p= 1.2×10−5). However,
there is no significant difference between Trial 1
and Trial 2, nor between either of those trials and
the concatenated trials.

4.4 Feature analysis

To determine which features help distinguish be-
tween the groups, we perform a two-tailed het-
eroscedastic t-test on all of the features, with Bon-
ferroni correction for repeated comparisons. For
this analysis, we consider data from the merged
trials, since they led to the best accuracies. Only
two features were found to be significantly differ-

Feature HC
mean

MCI
mean

p

First-pass
first fixations

98.9 69.1 5.2×10−4

Later-pass
first fixations

100.9 133.7 5.8×10−6

Table 6: Features which differ significantly be-
tween the groups.

ent between the groups after correction; these are
given in Table 6. Consistent with the classification
results, none of the frequency or word type fea-
tures are significant. The total number of first-pass
first fixations is significantly higher in the control
group but, in contrast, the number of later-pass
first fixations is higher in the MCI group. This
suggests that the controls have a greater tendency
to read through the text from start-to-finish, while
the MCI participants tend to skip over words and
then return to them later. An example of these
different reading patterns can be seen in Figure 2.
While this figure only shows data for two partici-
pants, it is interesting to note that there is a qual-
itatively greater difference on the silent trial (Fig-
ure 2a and Figure 2c) than in the reading aloud
trial (Figure 2b and Figure 2d).

Fernández et al. (2013) found that participants
with AD had an increased number of total fix-
ations, first-pass fixations, and second-pass fixa-
tions. However, they noted that the second-pass
fixations showed an even more striking increase
than first-pass fixations. Our results are consistent
with this notable increase in second-pass fixations,
but not with the reported increase in first pass fix-
ations. One potential reason for this discrepancy
could lie in the definition of “first pass fixations”,
which in Fernández et al. (2013) is given as “the
initial reading consisting of all forward fixations
on a word”, while second-pass fixations are de-
fined as “re-reading”; it is possible that our later-
pass first fixations could be classified as first pass
fixations under this framework. Nonetheless, both
the Fernandez study and our current results sug-
gest a pattern of skipping and back-tracking that is
not seen in the control data.

5 Limitations

In this study, as in many studies involving clini-
cal data, our sample is rather small. Furthermore,
the two texts were not particularly difficult to read,
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(a) Control participant, reading silently.
(b) Control participant, reading aloud.

(c) MCI participant, reading silently. (d) MCI participant, reading aloud.

Figure 2: Examples of eye movements from a cognitively healthy participant (top) and an MCI partic-
ipant (bottom), as they read the text from Trial 1 silently (left) and the text from Trial 2 aloud (right).
Each blue box in the figures represents an AOI (i.e. a word in the text); the circles indicate fixations and
the lines show the movements of the eye. Figure (a) illustrates an example of a relatively straightforward
path through the Text 1, while Figure (c) shows one containing more backtracking and re-reading.

nor did they specifically contain words that might
be difficult to people with cognitive impairment
(for example, low-frequency words with irregular
pronunciation, as in Patterson et al. 1994). Addi-
tionally, some data had to be either adjusted or in
some cases excluded altogether due to calibration
quality.

6 Conclusions and future work

In this analysis, we found that we can use eye-
tracking information to distinguish between MCI
participants and controls with over 80% accuracy,
and up to 86% accuracy in the best case. As
expected, this is somewhat lower than the accu-
racy for distinguishing between controls and AD
participants reported in Biondi et al. (2017), but
demonstrates that eye-tracking may hold promise
as a method for detecting the earliest stages of cog-
nitive decline.

We also found that tracking eye movements
while the participant reads silently provides more
diagnostic information than when reading aloud.
Merging data from the two trial conditions led
to a significant increase in classification accuracy,
compared to using either trial alone. In the merged
data set, significant differences between the partic-

ipant groups were observed for the number of first-
pass first fixations (higher in the control group)
and later-pass first fixations (higher in the MCI
group), suggesting a somewhat disorganized and
non-linear path through the text.

Although annotating fixations with the fre-
quency and syntactic category of the word on
which the fixation occurs did ultimately lead to
the highest classification accuracy, this improve-
ment was not statistically significant, and none of
the augmented features showed a significant dif-
ference between the HC and MCI groups. It may
be that the participants were too early in their de-
cline (and the texts too linguistically simple) for
any effect to be seen, or it could be that these vari-
ables are not capturing the most relevant linguistic
information. In particular, the features were very
coarse, making only a binary distinction between
high/low frequency words and function/content
words. One avenue for future research will be to
design more sophisticated ways of incorporating
linguistic information into the eye-tracking model,
especially features that take into account context,
rather than operating at the single word level.

Another untapped source of information is the
acoustic signal in the reading aloud trial. Corre-
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lating eye movements with acoustic information,
such as pauses, fillers, hesitations, and word errors
may provide a more complete representation of
cognitive processing while reading. Furthermore,
other eye-tracking features in addition to those in-
cluded in the Biondi study may prove to be more
sensitive to early cognitive impairment.

In future work we also plan to explore the con-
nection between eye movements and reading com-
prehension. Each participant in this study also
answered comprehension questions related to the
passages they read. Analysing the relationship be-
tween different eye movement features and the ac-
curacy of the responses may help us better under-
stand the reading strategies used by healthy and
cognitively impaired readers.

Finally, future work will include the subjective-
cognitive impairment (SCI) group in the analysis.
These participants score normally on neuropsy-
chological tests, and so a reliable method for dis-
tinguishing them from healthy controls could help
provide an early warning system, even before clin-
ical symptoms develop.
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Stålhammar, Marie Eckerström, Silke Kern, Anne
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Abstract

Identifying temporal relations between
events is an essential step towards nat-
ural language understanding. However,
the temporal relation between two events
in a story depends on, and is often dic-
tated by, relations among other events.
Consequently, effectively identifying tem-
poral relations between events is a chal-
lenging problem even for human annota-
tors. This paper suggests that it is im-
portant to take these dependencies into ac-
count while learning to identify these re-
lations and proposes a structured learning
approach to address this challenge. As a
byproduct, this provides a new perspective
on handling missing relations, a known is-
sue that hurts existing methods. As we
show, the proposed approach results in sig-
nificant improvements on the two com-
monly used data sets for this problem.

1 Introduction

Understanding temporal information described in
natural language text is a key component of nat-
ural language understanding (Mani et al., 2006;
Verhagen et al., 2007; Chambers et al., 2007;
Bethard and Martin, 2007) and, following a se-
ries of TempEval (TE) workshops (Verhagen et al.,
2007, 2010; UzZaman et al., 2013), it has drawn
increased attention. Time-slot filling (Surdeanu,
2013; Ji et al., 2014), storyline construction (Do
et al., 2012; Minard et al., 2015), clinical narra-
tives processing (Jindal and Roth, 2013; Bethard
et al., 2016), and temporal question answering
(Llorens et al., 2015) are all explicit examples of
temporal processing.

The fundamental tasks in temporal process-
ing, as identified in the TE workshops, are 1)
time expression (the so-called “timex”) extraction

and normalization and 2) temporal relation (also
known as TLINKs (Pustejovsky et al., 2003a)) ex-
traction. While the first task has now been well
handled by the state-of-the-art systems (Heidel-
Time (Strötgen and Gertz, 2010), SUTime (Chang
and Manning, 2012), IllinoisTime (Zhao et al.,
2012), NavyTime (Chambers, 2013), UWTime
(Lee et al., 2014), etc.) with end-to-end F1 scores
being around 80%, the second task has long been
a challenging one; even the top systems only
achieved F1 scores of around 35% in the TE work-
shops.

The goal of the temporal relation task is to gen-
erate a directed temporal graph whose nodes rep-
resent temporal entities (i.e., events or timexes)
and edges represent the TLINKs between them.
The task is challenging because it often re-
quires global considerations – considering the en-
tire graph, the TLINK annotation is quadratic in
the number of nodes and thus very expensive, and
an overwhelming fraction of the temporal relations
are missing in human annotation. In this paper,
we propose a structured learning approach to tem-
poral relation extraction, where local models are
updated based on feedback from global inferences.
The structured approach also gives rise to a semi-
supervised method, making it possible to take ad-
vantage of the readily available unlabeled data. As
a byproduct, this approach further provides a new,
effective perspective on handling those missing re-
lations.

In the common formulations, temporal relations
are categorized into three types: the E-E TLINKs
(those between a pair of events), the T-T TLINKs
(those between a pair of timexes), and the E-T
TLINKs (those between an event and a timex).
While the proposed approach can be generally ap-
plied to all three types, this paper focuses on the
majority type, i.e., the E-E TLINKs. For exam-
ple, consider the following snippet taken from the
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training set provided in the TE3 workshop. We
want to construct a temporal graph as in Fig. 1 for
the events in boldface in Ex1.

Ex1 . . . tons of earth cascaded down a hillside,
ripping two houses from their foundations.
No one was hurt, but firefighters ordered the
evacuation of nearby homes and said they’ll
monitor the shifting ground.. . .

cascaded

hurt

ripping

ordered

monitor

BEFORE INCLUDED

Figure 1: The desired event temporal graph for Ex1. Re-
verse TLINKs such as hurt is after ripping are omitted for
simplicity.

As discussed in existing work (Verhagen, 2004;
Bramsen et al., 2006; Mani et al., 2006; Chambers
and Jurafsky, 2008), the structure of a temporal
graph is constrained by some rather simple rules:

1. Symmetry. For example, if A is before B, then
B must be after A.

2. Transitivity. For example, if A is before B and
B is before C, then A must be before C.

This particular structure of a temporal graph (es-
pecially the transitivity structure) makes its nodes
highly interrelated, as can be seen from Fig. 1. It
is thus very challenging to identify the TLINKs
between them, even for human annotators: The
inter-annotator agreement on TLINKs is usually
about 50%-60% (Mani et al., 2006). Fig. 2 shows
the actual human annotations provided by TE3.
Among all the ten possible pairs of nodes, only
three TLINKs were annotated. Even if we only
look at main events in consecutive sentences and
at events in the same sentence, there are still quite
a few missing TLINKs, e.g., the one between hurt
and cascaded and the one between monitor and
ordered.

Early attempts by Mani et al. (2006); Chambers
et al. (2007); Bethard et al. (2007); Verhagen and
Pustejovsky (2008) studied local methods – learn-
ing models that make pairwise decisions between
each pair of events. State-of-the-art local meth-
ods, including ClearTK (Bethard, 2013), UTTime

cascaded

hurt

ripping

ordered

monitor

BEFORE INCLUDED BEFORE NO RELATION

Figure 2: The human-annotation for Ex1 provided in TE3,
where many TLINKs are missing due to the annotation diffi-
culty. Solid lines: original human annotations. Dotted lines:
TLINKs inferred from solid lines. Dashed lines: missing re-
lations.

(Laokulrat et al., 2013), and NavyTime (Cham-
bers, 2013), use better designed rules or more fea-
tures such as syntactic tree paths and achieve bet-
ter results. However, the decisions made by these
(local) models are often globally inconsistent (i.e.,
the symmetry and/or transitivity constraints are
not satisfied for the entire temporal graph). Integer
linear programming (ILP) methods (Roth and Yih,
2004) were used in this domain to enforce global
consistency by several authors including Bram-
sen et al. (2006); Chambers and Jurafsky (2008);
Do et al. (2012), which formulated TLINK ex-
traction as an ILP and showed that it improves
over local methods for densely connected graphs.
Since these methods perform inference (“I”) on
top of pre-trained local classifiers (“L”), they are
often referred to as L+I (Punyakanok et al., 2005).
In a state-of-the-art method, CAEVO (Chambers
et al., 2014), many hand-crafted rules and machine
learned classifiers (called sieves therein) form a
pipeline. The global consistency is enforced by
inferring all possible relations before passing the
graph to the next sieve. This best-first architecture
is conceptually similar to L+I but the inference is
greedy, similar to Mani et al. (2007); Verhagen and
Pustejovsky (2008).

Although L+I methods impose global con-
straints in the inference phase, this paper argues
that global considerations are necessary in the
learning phase as well (i.e., structured learning).
In parallel to the work presented here, Leeuwen-
berg and Moens (2017) also proposed a structured
learning approach to extracting the temporal rela-
tions. Their work focuses on a domain-specific
dataset from Clinical TempEval (Bethard et al.,
2016), so their work does not need to address some
of the difficulties of the general problem that our
work addresses. More importantly, they compared
structured learning to local baselines, while we
find that the comparison between structured learn-
ing and L+I is more interesting and important for
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understanding the effect of global considerations
in the learning phase. In difference from exist-
ing methods, we also discuss how to effectively
use unlabeled data and how to handle the over-
whelming fraction of missing relations in a princi-
pled way. Our solution targets on these issues and,
as we show, achieves significant improvements on
two commonly used evaluation sets.

The rest of this paper is organized as follows.
Section 2 clarifies the temporal relation types and
the evaluation metric of a temporal graph used in
this paper, Section 3 explains the structured learn-
ing approach in detail, and Section 4 discusses the
practical issue of missing relations. We provide
experiments and discussion in Section 5 and con-
clusion in Section 6.

2 Background

2.1 Temporal Relation Types

Existing corpora for temporal processing often
follows the interval representation of events pro-
posed in Allen (1984), and makes use of 13 rela-
tion types in total. In many systems, vague or none
is also included as another relation type when a
TLINK is not clear or missing. However, current
systems usually use a reduced set of relation types,
mainly due to the following reasons.

1. The non-uniform distribution of all the rela-
tion types makes it difficult to separate low-
frequency ones from the others (see Table 1
in Mani et al. (2006)). For example, rela-
tions such as immediately before or immedi-
ately after barely exist in a corpus compared
to before and after.

2. Due to the ambiguity in natural language,
determining relations like before and imme-
diately before can be a difficult task itself
(Chambers et al., 2014).

In this work, we follow the reduced set of temporal
relation types used in CAEVO (Chambers et al.,
2014): before, after, includes, is included, equal,
and vague.

2.2 Quality of A Temporal Graph

The most recent evaluation metric in TE3, i.e., the
temporal awareness (UzZaman and Allen, 2011),
is adopted in this work. Specifically, let Gsys and
Gtrue be two temporal graphs from the system
prediction and the ground truth, respectively. The

precision and recall of temporal awareness are de-
fined as follows.

P =
|G−sys ∩G+

true|
|G−sys|

, R =
|G−true ∩G+

sys|
|G−true|

where G+ is the closure of graph G, G− is the
reduction of G, “∩” is the intersection between
TLINKs in two graphs, and |G| is the number of
TLINKs in G. The temporal awareness metric
better captures how “useful” a temporal graph is.
For example, if system 1 produces ripping is be-
fore hurt and hurt is before monitor, and system
2 adds ripping is before monitor on top of sys-
tem 1. Since system 2 is simply a transitive clo-
sure of system 1, they would have the same eval-
uation scores. Note that vague relations are usu-
ally considered as non-existing TLINKs and are
not counted during evaluation.

3 A Structured Training Approach

As shown in Fig. 1, the learning problem in tem-
poral relation extraction is global in nature. Even
the top local method in TE3, UTTime (Laokulrat
et al., 2013), only achieved F1=56.5 when pre-
sented with a pair of temporal entities (Task C–
relation only (UzZaman et al., 2013)). Since the
success of an L+I method strongly relies on the
quality of the local classifiers, a poor local classi-
fier is obviously a roadblock for L+I methods. Fol-
lowing the insights from Punyakanok et al. (2005),
we propose to use a structured learning approach
(also called “Inference Based Training” (IBT)).

Unlike the current L+I approach, where local
classifiers are trained independently beforehand
without knowledge of the predictions on neigh-
boring pairs, we train local classifiers with feed-
back that accounts for other relations, by perform-
ing global inference in each round of the learning
process. In order to introduce the structured learn-
ing algorithm, we first explain its most important
component, the global inference step.

3.1 Inference

In a document with n pairs of events, let φi ∈ X ⊆
Rd be the extracted d-dimensional feature and
yi ∈ Y be the temporal relation for the i-th pair
of events, i = 1, 2, . . . , n, where Y = {rj}6j=1

is the label set for the six temporal relations we
use. Moreover, let x = {φ1, . . . , φn} ∈ X n and
y = {y1, . . . , yn} ∈ Yn be more compact rep-
resentations of all the features and labels in this
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document. Given the weight vector wr of a lin-
ear classifier trained for relation r ∈ Y (i.e., using
the one-vs-all scheme), the global inference step
is to solve the following constrained optimization
problem:

ŷ = arg max
y∈C(Yn)

f(x,y), (1)

where C(Yn) ⊆ Yn constrains the temporal graph
to be symmetrically and transitively consistent,
and f(x,y) is the scoring function:

f(x,y) =

n∑

i=1

fyi(φi) =

n∑

i=1

ew
T
yi
φi

∑
r∈Y e

wT
r φi

.

Specifically, fyi(φi) is the probability of the i-th
event pair having relation yi. f(x, y) is simply
the sum of these probabilities over all the event
pairs in a document, which we think of as the con-
fidence of assigning y = {y1, ..., yn} to this doc-
ument and therefore, it needs to be maximized in
Eq. (1).

Note that when C(Yn) = Yn, Eq. (1) can be
solved for each ŷi independently, which is what
the so-called local methods do, but the resulting
ŷ may not satisfy global consistency in this way.
When C(Yn) 6= Yn, Eq. (1) cannot be decou-
pled for each ŷi and is usually formulated as an
ILP problem (Roth and Yih, 2004; Chambers and
Jurafsky, 2008; Do et al., 2012). Specifically, let
Ir(ij) ∈ {0, 1} be the indicator function of rela-
tion r for event i and event j and fr(ij) ∈ [0, 1] be
the corresponding soft-max score. Then the ILP
objective for global inference is formulated as fol-
lows.

Î = argmax
I

∑
ij∈E

∑
r∈Y fr(ij)Ir(ij) (2)

s.t. ΣrIr(ij) = 1
(uniqueness)

, Ir(ij) = Ir̄(ji),
(symmetry)

Ir1(ij) + Ir2(jk)− ΣN
m=1Irm3 (ik) ≤ 1,

(transitivity)

for all distinct events i, j, and k, where E =
{ij | sentence dist(i, j)≤ 1}, r̄ is the reverse of r,
and N is the number of possible relations for r3

when r1 and r2 are true.
Our formulation in Eq. (2) is different from

previous work (Chambers and Jurafsky, 2008;
Do et al., 2012) in two aspects: 1) We re-
strict our event pairs ij to a smaller set E =
{ij | sentence dist(i, j)≤ 1} where pairs that are
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Figure 3: #TLINKs vs sentence distance on the TE3 Plat-
inum dataset. The tail of equal is due to event coreference
and beyond our focus.

more than one sentence away are deleted for com-
putational efficiency and (usually) for better per-
formance. In fact, to make better use of global
constraints, we should have allowed more event
pairs in Eq. (2). However, fr(ij) is usually more
reliable when i and j are closer in text. Many
participating systems in TE3 (UzZaman et al.,
2013) have used this pre-filtering strategy to bal-
ance the trade-off between confidence in fr(ij)
and global constraints. We observe that the strat-
egy fits very well to the existing datasets: As
shown in Fig. 3, annotated TLINKs barely exist
if two events are two sentences away. 2) Previ-
ously, transitivity constraints were formulated as
Ir1(ij) + Ir2(jk) − Ir3(ik) ≤ 1, which is a spe-
cial case when N = 1 and can be understood as
“r1 and r2 determine a single r3”. However, it was
overlooked that, although some r1 and r2 cannot
uniquely determine r3, they can still constrain the
set of labels r3 can take. For example, as shown
in Fig. 4, when r1=before and r2=is included, r3

is not determined but we know that r3 ∈ {before,
is included}1. This information can be easily ex-
ploited by allowing N > 1.

A B

C1

C2
Time

<

Figure 4: When A is before B and B is included in C, A
can either be before C1 or is included in C2. We propose to
incorporate this via the transitivity constraints for Eq. (2).

With these two differences, the optimization
problem (2) can still be efficiently solved us-
ing off-the-shelf ILP packages such as GUROBI

1The transitivity table in Allen (1983) shows two more
possible relations, overlap and immediately before, which are
not in our label set.
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(Gurobi Optimization, Inc., 2012).

3.2 Learning
With the inference solver defined above, we pro-
pose to use the structured perceptron (Collins,
2002) as a representative for the inference based
training (IBT) algorithm to learn those weight vec-
tors wr. Specifically, let L = {xk,yk}Kk=1 be the
labeled training set of K instances (usually doc-
uments). The structured perceptron training algo-
rithm for this problem is shown in Algorithm 1.
The Illinois-SL package (Chang et al., 2010) was
used in our experiments for its structured percep-
tron component. In terms of the features used in
this work, we adopt the same set of features de-
signed for E-E TLINKs in Sec. 3.1 of Do et al.
(2012).

In Algorithm 1, Line 6 is the inference step as
in Eq. (1) or (2), which is augmented with a clo-
sure operation on ŷ in the following line. In the
case in which there is only one pair of events in
each instance (thus no structure to take advantage
of), Algorithm 1 reduces to the conventional per-
ceptron algorithm and Line 6 simply chooses the
top scoring label. With a structured instance in-
stead, Line 6 becomes slower to solve, but it can
provide valuable information so that the percep-
tron learner is able to look further at other labels
rather than an isolated pair. For example in Ex1
and Fig. 1, the fact that (ripping,ordered)=before is
established through two other relations: 1) ripping
is an adverbial participle and thus included in cas-
caded and 2) cascaded is before ordered. If (rip-
ping,ordered)=before is presented to a local learn-
ing algorithm without knowing its predictions on
(ripping,cascaded) and (cascaded,ordered), then
the model either cannot support it or overfits it.
In IBT, however, if the classifier was correct in de-
ciding (ripping,cascaded) and (cascaded,ordered),
then (ripping,ordered) would be correct automat-
ically and would not contribute to updating the
classifier.

3.3 Semi-supervised Structured Learning
The scarcity of training data and the difficulty in
annotation have long been a bottleneck for tempo-
ral processing systems. Given the inherent global
constraints in temporal graphs, we propose to per-
form semi-supervised structured learning using
the constraint-driven learning (CoDL) algorithm
(Chang et al., 2007, 2012), as shown in Algo-
rithm 2, where the function “Learn” in Lines 2
and 9 represents any standard learning algorithm

Algorithm 1: Structured perceptron algorithm
for temporal relations

Input: Training set L = {xk,yk}Kk=1,
learning rate λ

1 Perform graph closure on each yk
2 Initialize wr = 0, ∀r ∈ Y
3 while convergence criteria not satisfied do
4 Shuffle the examples in L
5 foreach (x,y) ∈ L do
6 ŷ = arg maxy∈C f(x,y)
7 Perform graph closure on ŷ
8 if ŷ 6= y then
9 wr = wr + λ(

∑
i:yi=r

φi−∑
i:ŷi=r

φi), ∀r ∈ Y

10 return {wr}r∈Y

(e.g., perceptron, SVM, or even structured percep-
tron; here we used the averaged perceptron (Fre-
und and Schapire, 1998)) and subscript “r” means
selecting the learned weight vector for relation
r ∈ Y . CoDL improves the model learned from a
small amount of labeled data by repeatedly gener-
ating feedback through labeling unlabeled exam-
ples, which is in fact a semi-supervised version of
IBT. Experiments show that this scheme is indeed
helpful in this problem.

Algorithm 2: Constraint-driven learning algo-
rithm
Input: Labeled set L, unlabeled set U ,

weighting coefficient γ
1 Perform closure on each graph in L
2 Initialize wr = Learn(L)r, ∀ r ∈ Y
3 while convergence criteria not satisfied do
4 T = ∅
5 foreach x ∈ U do
6 ŷ = arg maxy∈C f(x,y)
7 Perform graph closure on ŷ
8 T = T ∪ {(x, ŷ)}
9 wr = γwr + (1− γ)Learn(T )r,∀ r ∈ Y

10 return {wr}r∈Y

4 Missing Annotations

Since even human annotators find it difficult to an-
notate temporal graphs, many of the TLINKs are
left unspecified by annotators (compare Fig. 2 to
Fig. 1). While some of these missing TLINKs can
be inferred from existing ones, the vast majority
still remain unknown as shown in Table 1. De-
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spite the existence of denser annotation schemes
(e.g., Cassidy et al. (2014)), the TLINK annotation
task is quadratic in the number of nodes, and it is
practically infeasible to annotate complete graphs.
Therefore, the problem of identifying these un-
known relations in training and test is a major is-
sue that dramatically hurts existing methods.

Table 1: Categories of E-E TLINKs in the TE3 Platinum
dataset. Among all pairs of events, 98.2% of them are left
unspecified by the annotators. Graph closure can automati-
cally add 8.7%, but most of the event pairs are still unknown.

Type #TLINK %
Annotated 582 1.8

Missing
Inferred 2840 8.7

Unknown 29240 89.5
Total 32662 100

We could simply use these unknown pairs (or
some filtered version of them) to design rules or
train classifiers to identify whether a TLINK is
vague or not. However, we propose to exclude
both the unknown pairs and the vague classifier
from the training process – by changing the struc-
tured loss function to ignore the inference feed-
back on vague TLINKs (see Line 9 in Algorithm 1
and Line 9 in Algorithm 2). The reasons are dis-
cussed below.

First, it is believed that a lot of the unknown
pairs are not really vague but rather pairs that the
annotators failed to look at (Bethard et al., 2007;
Cassidy et al., 2014; Chambers et al., 2014). For
example, (cascaded, monitor) should be annotated
as before but is missing in Fig. 2. It is hard to
exclude this noise in the data during training. Sec-
ond, compared to the overwhelmingly large num-
ber of unknown TLINKs (89.5% as shown in Ta-
ble 1), the scarcity of non-vague TLINKs makes
it hard to learn a good vague classifier. Third,
vague is fundamentally different from the other
relation types. For example, if a before TLINK
can be established given a sentence, then it always
holds as before regardless of other events around
it, but if a TLINK is vague given a sentence, it
may still change to other types afterwards if a
connection can later be established through other
nodes from the context. This distinction empha-
sizes that vague is a consequence of lack of back-
ground/contextual information, rather than a con-
crete relation type to be trained on. Fourth, with-
out the vague classifier, the predicted temporal
graph tends to become more densely connected,
thus the global transitivity constraints can be more
effective in correcting local mistakes (Chambers

and Jurafsky, 2008).
However, excluding the local classifier for

vague TLINKs would undesirably assign non-
vague TLINKs to every pair of events. To handle
this, we take a closer look at the vague TLINKs.
We note that a vague TLINK could arise in two
situations if the annotators did not fail to look at it.
One is that an annotator looks at this pair of events
and decides that multiple relations can exist, and
the other one is that two annotators disagree on
the relation (similar arguments were also made in
Cassidy et al. (2014)). In both situations, the an-
notators first try to assign all possible relations to
a TLINK, and then change the relation to vague if
more than one can be assigned. This human an-
notation process for vague is different from many
existing methods, which either identify the exis-
tence of a TLINK first (using rules or machine-
learned classifiers) and then classify, or directly
include vague as a classification label along with
other non-vague relations.

In this work, however, we propose to mimic
this mental process by a post-filtering method2.
Specifically, we take each TLINK produced by
ILP and determine whether it is vague using its
relative entropy (the Kullback-Leibler divergence)
to the uniform distribution. Let {rm}Mm=1 be the
set of relations that the i-th pair of events can take,
we filter the i-th TLINK given by ILP by:

δi =

M∑

m=1

frm(φi) log (Mfrm(φi)),

where frm(φi) is the soft-max score of rm, ob-
tained by the local classifier for rm. We then com-
pare δi to a fixed threshold τ to determine the
vagueness of this TLINK; we accept its originally
predicted label if δi > τ , or change it to vague oth-
erwise. Using relative entropy here is intuitively
appealing and empirically useful as shown in the
experiments section; better metrics are of course
yet to be designed.

5 Experiments

5.1 Datasets
The TempEval3 (TE3) workshop (UzZaman et al.,
2013) provided the TimeBank (TB) (Pustejovsky
et al., 2003b), AQUAINT (AQ) (Graff, 2002), Sil-
ver (TE3-SV), and Platinum (TE3-PT) datasets,

2Some systems (e.g., TARSQI (Verhagen and Puste-
jovsky, 2008)) employed a similar idea from a different stand-
point, by thresholding TLINKs based on confidence scores.
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where TB and AQ are usually for training, and
TE3-PT is usually for testing. The TE3-SV
dataset is a much larger, machine-annotated and
automatically-merged dataset based on multiple
systems, with the intention to see if these “silver”
standard data can help when included in training
(although almost all participating systems saw per-
formance drop with TE3-SV included in training).

Two popular augmentations on TB are the Verb-
Clause temporal relation dataset (VC) and Time-
bankDense dataset (TD). The VC dataset has spe-
cially annotated event pairs that follow the so-
called Verb-Clause structure (Bethard et al., 2007),
which is usually beneficial to be included in train-
ing (UzZaman et al., 2013). The TD dataset
contains 36 documents from TB which were re-
annotated using the dense event ordering frame-
work proposed in Cassidy et al. (2014). The exper-
iments included in this paper will involve the TE3
datasets as well as these augmentations. There-
fore, some statistics on them are shown in Table 2
for the readers’ information.

Table 2: Facts about the datasets used in this paper. The
TD dataset is split into train, dev, and test in the same way as
in Chambers et al. (2014). Note that the column of TLINKs
only counts the non-vague TLINKs, from which we can see
that the TD dataset has a much higher ratio of #TLINKs to
#Events. The TLINK annotations in TE3-SV is not used in
this paper and its number is thus not shown.

Dataset Doc Event TLINK Note
TB+AQ 256 12K 12K Training
VC 132 1.6K 0.9K Training
TD 36 1.6K 5.7K Training
TD-Train 22 1K 3.8K Training
TD-Dev 5 0.2K 0.6K Dev
TD-Test 9 0.4K 1.3K Eval
TE3-PT 20 0.7K 0.9K Eval
TE3-SV 2.5K 81K - Unlabeled

5.2 Baseline Methods

In addition to the state-of-the-art systems, another
two baseline methods were also implemented for
a better understanding of the proposed ones. The
first is the regularized averaged perceptron (AP)
(Freund and Schapire, 1998) implemented in the
LBJava package (Rizzolo and Roth, 2010) and is
a local method. On top of the first baseline, we
performed global inference in Eq.(2), referred to
as the L+I baseline (AP+ILP). Both of them used
the same feature set (i.e., as designed in Do et al.
(2012)) as in the proposed structured perceptron
(SP) and CoDL for fair comparisons. To clarify,

SP and CoDL are training algorithms and their im-
mediate outputs are the weight vectors {wr}r∈Y
for local classifiers. An ILP inference was per-
formed on top of them to yield the final output,
and we refer to it as “S+I” (i.e., structured learn-
ing+inference) methods.

Table 3: Temporal awareness scores on TE3-PT given gold
event pairs. Systems that are significantly better (per McNe-
mar’s test with p < 0.0005) than the previous rows are under-
lined. The last column shows the relative improvement in F1
score over AP-1, which identifies the source of improvement:
5.2% from additional training data, 9.3% (14.5%-5.2%) from
constraints, and 10.4% from structured learning.

Method P R F1 %
UTTime 55.6 57.4 56.5 +5.0
AP-1 56.3 51.5 53.8 0
AP-2 58.0 55.3 56.6 +5.2
AP+ILP 62.2 61.1 61.6 +14.5
SP+ILP 69.1 65.5 67.2 +24.9

5.3 Results and Discussion

5.3.1 TE3 Task C - Relation Only
To show the benefit of using structured learn-
ing, we first tested one scenario where the gold
pairs of events that have a non-vague TLINK were
known priori. This setup was a standard task pre-
sented in TE3, so that the difficulty of detecting
vague TLINKs was ruled out. This setup also
helps circumvent the issue that TE3 penalizes sys-
tems which assign extra labels that do not exist in
the annotated graph, while these extra labels may
be actually correct because the annotation itself
might be incomplete. UTTime (Laokulrat et al.,
2013) was the top system in this task in TE3. Since
UTTime is not available to us, and its performance
was reported in TE3 in terms of both E-E and E-T
TLINKs together, we locally trained an E-T clas-
sifier based on Do et al. (2012) and included its
prediction only for fair comparison.

UTTime is a local method and was trained on
TB+AQ and tested on TE3-PT. We used the same
datasets for our local baseline and its performance
is shown in Table 3 under the name “AP-1”. Note
that the reported numbers below are the temporal
awareness scores obtained from the official evalu-
ation script provided in TE3. We can see that UT-
Time is about 3% better than AP-1 in the absolute
value of F1, which is expected since UTTime in-
cluded more advanced features derived from syn-
tactic parse trees. By adding the VC and TD
datasets into the training set, we retrained our local
baseline and achieved comparable performance to
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Table 4: Temporal awareness scores given gold events but with no gold pairs, which show that the proposed S+I methods
outperformed state-of-the-art systems in various settings. The fourth column indicates the annotation sources used, with addi-
tional unlabeled dataset in the parentheses. The “Filters” column shows if the pre-filtering method (Sec. 3.1) or the proposed
post-filtering method (Sec. 4) were used. The last column is the relative improvement in F1 score compared to baseline systems
on line 1, 7, and 11, respectively. Systems that are significantly better than the “*”-ed systems are underlined (per McNemar’s
test with p < 0.0005).

No. System Method Anno. (Unlabeled) Testset Filters P R F1 %
1 ClearTK Local TB, AQ, VC, TD TE3-PT pre 37.2 33.1 35.1 0
2 AP* Local TB, AQ, VC, TD TE3-PT pre 35.3 37.1 36.1 +2.8
3 AP+ILP L+I TB, AQ, VC, TD TE3-PT pre 35.7 35.0 35.3 +0.6
4 SP+ILP S+I TB, AQ, VC, TD TE3-PT pre 32.4 45.2 37.7 +7.4
5 SP+ILP S+I TB, AQ, VC, TD TE3-PT pre+post 33.1 49.2 39.6 +12.8
6 CoDL+ILP S+I TB, AQ, VC, TD (TE3-SV) TE3-PT pre+post 35.5 46.5 40.3 +14.8
7 ClearTK* Local TB, VC TE3-PT pre 35.9 38.2 37.0 0
8 SP+ILP S+I TB, VC TE3-PT pre+post 30.7 47.1 37.2 +0.5
9 CoDL+ILP S+I TB, VC (TE3-SV) TE3-PT pre+post 33.9 45.9 39.0 +5.4

10 ClearTK Local TD-Train TD-Test pre 46.04 20.90 28.74 -
11 CAEVO* L+I TD-Train TD-Test pre 54.17 39.49 45.68 0
12 SP+ILP S+I TD-Train TD-Test pre+post 45.34 48.68 46.95 +3.0
13 CoDL+ILP S+I TD-Train (TE3-SV) TD-Test pre+post 45.57 51.89 48.53 +6.3

UTTime (“AP-2” in Table 3). On top of AP-2,
a global inference step enforcing symmetry and
transitivity constraints (“AP+ILP”) can further im-
prove the F1 score by 9.3%, which is consistent
with previous observations (Chambers and Juraf-
sky, 2008; Do et al., 2012). SP+ILP further im-
proved the performance in precision, recall, and
F1 significantly (per the McNemar’s test (Everitt,
1992; Dietterich, 1998) with p <0.0005), reaching
an F1 score of 67.2%. This meets our expectation
that structured learning can be better when the lo-
cal problem is difficult (Punyakanok et al., 2005).

5.3.2 TE3 Task C
In the first scenario, we knew in advance which
TLINKs existed or not, so the “pre-filtering” (i.e.,
ignoring distant pairs as mentioned in Sec. 3.1 and
“post-filtering” methods were not used when gen-
erating the results in Table 3. We then tested a
more practical scenario, where we only knew the
events, but did not know which ones are related.
This setup was Task C in TE3 and the top sys-
tem was ClearTK (Bethard, 2013). Again, for fair
comparison, we simply added the E-T TLINKs
predicted by ClearTK. Moreover, 10% of the train-
ing data was held out for development. Corre-
sponding results on the TE3-PT testset are shown
in Table 4.

From lines 2-4, all systems see significant drops
in performance if compared with the same entries
in Table 3. It confirms our assertion that how to
handle vague TLINKs is a major issue for this
temporal relation extraction problem. The im-
provement of SP+ILP (line 4) over AP (line 2) was
small and AP+ILP (line 3) was even worse than
AP, which necessitates the use of a better approach

towards vague TLINKs. By applying the post-
filtering method proposed in Sec. 4, we were able
to achieve better performances using SP+ILP (line
5), which shows the effectiveness of this strat-
egy. Finally, by setting U in Algorithm 2 to be
the TE3-SV dataset, CoDL+ILP (line 6) achieved
the best F1 score with a relative improvement over
ClearTK being 14.8%. Note that when using TE3-
SV in this paper, we did not use its annotations
on TLINKs because of its well-known large noise
(UzZaman et al., 2013).

In UzZaman et al. (2013), we notice that the
best performance of ClearTK was achieved when
trained on TB+VC (line 7 is higher than its re-
ported values in TE3 because of later changes in
ClearTK), so we retrained the proposed systems
on the same training set and results are shown on
lines 8-9. In this case, the improvement of S+I
over Local was small, which may be due to the
lack of training data. Note that line 8 was still
significantly different to line 7 per the McNemar’s
test, although there was only 0.2% absolute dif-
ference in F1, which can be explained from their
large differences in precision and recall.

5.3.3 Comparison with CAEVO
The proposed structured learning approach was
further compared to a recent system, a CAscading
EVent Ordering architecture (CAEVO) proposed
in Chambers et al. (2014) (lines 10-13). We used
the same training set and test set as CAEVO in the
S+I systems. Again, we added the E-T TLINKs
predicted by CAEVO to both S+I systems. In
Chambers et al. (2014), CAEVO was reported on
the straightforward evaluation metric including the
vague TLINKs, but the temporal awareness scores
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were used here, which explains the difference be-
tween line 11 in Table 4 and what was reported in
Chambers et al. (2014).

ClearTK was reported to be outperformed
by CAEVO on TD-Test (Chambers et al.,
2014), but we observe that ClearTK on line
10 was much worse even than itself on line 7
(trained on TB+VC) and on line 1 (trained on
TB+AQ+VC+TD) due to the annotation scheme
difference between TD and TB/AQ/VC. ClearTK
was designed mainly for TE3, aiming for high pre-
cision, which is reflected by its high precision on
line 10, but it does not have enough flexibility to
cope with two very different annotation schemes.
Therefore, we have chosen CAEVO as the base-
line system to evaluate the significance of the pro-
posed ones. On the TD-Test dataset, all systems
other than ClearTK had better F1 scores compared
to their performances on TE3-PT. This notable dif-
ference (i.e., 48.53 vs 40.3) indicates the better
quality of the dense annotation scheme that was
used to create TD (Cassidy et al., 2014). SP+ILP
outperformed CAEVO and if additional unlabeled
dataset TE3-SV was used, CoDL+ILP achieved
the best score with a relative improvement in F1

score being 6.3%.
We notice that the proposed systems often have

higher recall than precision, and that this is less an
issue on a densely annotated testset (TD-Test), so
their low precision on TE3-PT possibly came from
the missing annotations on TE3-PT. It is still under
investigation how to control precision and recall in
real applications.

6 Conclusion

We develop a structured learning approach to iden-
tifying temporal relations in natural language text
and show that it captures the global nature of this
problem better than state-of-the-art systems do. A
new perspective towards vague relations is also
proved to gain from fully taking advantage of the
structured approach. In addition, the global na-
ture of this problem gives rise to a better way of
making use of the readily available unlabeled data,
which further improves the proposed method. The
improved performance on both TE3-PT and TD-
Test, two differently annotated datasets, clearly
shows the advantage of the proposed method over
existing methods. We plan to build on the notable
improvements shown here and expand this study
to deal with additional temporal reasoning prob-
lems in natural language text.
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Abstract

Knowledge base population (KBP) sys-
tems take in a large document corpus and
extract entities and their relations. Thus
far, KBP evaluation has relied on judge-
ments on the pooled predictions of exist-
ing systems. We show that this evalua-
tion is problematic: when a new system
predicts a previously unseen relation, it is
penalized even if it is correct. This leads
to significant bias against new systems,
which counterproductively discourages in-
novation in the field. Our first contribu-
tion is a new importance-sampling based
evaluation which corrects for this bias by
annotating a new system’s predictions on-
demand via crowdsourcing. We show this
eliminates bias and reduces variance using
data from the 2015 TAC KBP task. Our
second contribution is an implementation
of our method made publicly available as
an online KBP evaluation service. We pi-
lot the service by testing diverse state-of-
the-art systems on the TAC KBP 2016 cor-
pus and obtain accurate scores in a cost ef-
fective manner.

1 Introduction

Harnessing the wealth of information present in
unstructured text online has been a long stand-
ing goal for the natural language processing com-
munity. In particular, knowledge base popula-
tion seeks to automatically construct a knowl-
edge base consisting of relations between entities
from a document corpus. Knowledge bases have
found many applications including question an-
swering (Berant et al., 2013; Fader et al., 2014;

∗ Authors contributed equally.

Fisher’s mother, entertainer Debbie Reynolds, said on 
Twitter on Sunday that her daughter was stabilizing.

Debbie Reynolds , title,  entertainer 

Debbie Reynolds, per:parents,   Fisher  

Fisher

Debbie Reynolds

daughter

her

Twitter

Relation 
instances

Linked Entities

Knowledge Base
title  entertainer 

child of 

+

Figure 1: An example describing entities and re-
lations in knowledge base population.

Reddy et al., 2014), automated reasoning (Kalyan-
pur et al., 2012) and dialogue (Han et al., 2015).

Evaluating these systems remains a challenge
as it is not economically feasible to exhaustively
annotate every possible candidate relation from a
sufficiently large corpus. As a result, a pooling-
based methodology is used in practice to construct
datasets, similar to them methodology used in in-
formation retrieval (Jones and Rijsbergen, 1975;
Harman, 1993). For instance, at the annual NIST
TAC KBP evaluation, all relations predicted by
participating systems are pooled together, anno-
tated and released as a dataset for researchers to
develop and evaluate their systems on. However,
during development, if a new system predicts a
previously unseen relation it is considered to be
wrong even if it is correct. The discrepancy be-
tween a system’s true score and the score on the
pooled dataset is called pooling bias and is typi-
cally assumed to be insignificant in practice (Zo-
bel, 1998).

The key finding of this paper contradicts this as-
sumption and shows that the pooling bias is actu-
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ally significant, and it penalizes newly developed
systems by 2% F1 on average (Section 3). Novel
improvements, which typically increase scores by
less than 1% F1 on existing datasets, are there-
fore likely to be clouded by pooling bias during
development. Worse, the bias is larger for a sys-
tem which predicts qualitatively different relations
systematically missing from the pool. Of course,
systems participating in the TAC KBP evaluation
do not suffer from pooling bias, but this requires
researchers to wait a year to get credible feedback
on new ideas.

This bias is particularly counterproductive for
machine learning methods as they are trained as-
suming the pool is the complete set of positives.
Predicting unseen relations and learning novel pat-
terns is penalized. The net effect is that researchers
are discouraged from developing innovative ap-
proaches, in particular from applying machine
learning, thereby slowing progress on the task.

Our second contribution, described in Sec-
tion 4, addresses this bias through a new evalua-
tion methodology, on-demand evaluation, which
avoids pooling bias by querying crowdworkers,
while minimizing cost by leveraging previous sys-
tems’ predictions when possible. We then com-
pute the new system’s score based on the predic-
tions of past systems using importance weighting.
As more systems are evaluated, the marginal cost
of evaluating a new system decreases. We show
how the on-demand evaluation methodology can
be applied to knowledge base population in Sec-
tion 5. Through a simulated experiment on eval-
uation data released through the TAC KBP 2015
Slot Validation track, we show that we are able to
obtain unbiased estimates of a new systems score’s
while significantly reducing variance.

Finally, our third contribution is an implementa-
tion of our framework as a publicly available eval-
uation service at https://kbpo.stanford.
edu, where researchers can have their own KBP
systems evaluated. The data collected through the
evaluation process could even be valuable for rela-
tion extraction, entity linking and coreference, and
will also be made publicly available through the
website. We evaluate three systems on the 2016
TAC KBP corpus for about $150 each (a fraction
of the cost of official evaluation). We believe the
public availability of this service will speed the
pace of progress in developing KBP systems.

Humans

System A

System B

System C

i1 : (s1, r, o1, p1)

i2 : (s1, r, o2, p2)

i3 : (s1, r, o3, p3)

i4 : (s1, r, o2, p4)

i5 : (s1, r, o3, p5)

i6 : (s1, r, o4, p6)

X
X
X
X
×
X

Figure 2: In pooled evaluation, an evaluation
dataset is constructed by labeling relation in-
stances collected from the pooled systems (A and
B) and from a team of human annotators (Hu-
mans). However, when a new system (C) is evalu-
ated on this dataset, some of its predictions (i6) are
missing and can not be fairly evaluated. Here, the
precision and recall for C should be 3

3 and 3
4 re-

spectively, but its evaluation scores are estimated
to be 2

3 and 2
3 . The discrepancy between these two

scores is called pooling bias.

2 Background

In knowledge base population, each relation is
a triple (SUBJECT, PREDICATE, OBJECT) where
SUBJECT and OBJECT are some globally unique
entity identifiers (e.g. Wikipedia page titles) and
PREDICATE belongm to a specified schema.1 A
KBP system returns an output in the form of re-
lation instances (SUBJECT, PREDICATE, OBJECT,
PROVENANCE), where PROVENANCE is a descrip-
tion of where exactly in the document corpus the
relation was found. In the example shown in Fig-
ure 1, CARRIE FISHER and DEBBIE REYNOLDS

are identified as the subject and object, respec-
tively, of the predicate CHILD OF, and the whole
sentence is provided as provenance. The prove-
nance also identifies that CARRIE FISHER is ref-
erenced by Fisher within the sentence. Note that
the same relation can be expressed in multiple sen-
tences across the document corpus; each of these
is a different relation instance.

Pooled evaluation. The primary source of eval-
uation data for KBP comes from the annual TAC
KBP competition organized by NIST (Ji et al.,

1The TAC KBP guidelines specify a total of 65
predicates (including inverses) such as per:title or
org:founded on, etc. Subject entities can be people, or-
ganizations, geopolitical entities, while object entities also
include dates, numbers and arbitrary string-values like job ti-
tles.

1039



2011). Let E be a held-out set of evaluation en-
tities. There are two steps performed in parallel:
First, each participating system is run on the docu-
ment corpus to produce a set of relation instances;
those whose subjects are in E are labeled as either
positive or negative by annotators. Second, a team
of annotators identify and label correct relation in-
stances for the evaluation entities E by manually
searching the document corpus within a time bud-
get (Ellis et al., 2012). These labeled relation in-
stances from the two steps are combined and re-
leased as the evaluation dataset. In the example in
Figure 2, systems A and B were used in construct-
ing the pooling dataset, and there are 3 distinct re-
lations in the dataset, between s1 and o1, o2, o3.

A system is evaluated on the precision of its
predicted relation instances for the evaluation en-
tities E and on the recall of the corresponding pre-
dicted relations (not instances) for the same enti-
ties (see Figure 2 for a worked example). When
using the evaluation data during system develop-
ment, it is common practice to use the more le-
nient anydoc score that ignores the provenance
when checking if a relation instance is true. Un-
der this metric, predicting the relation (CARRIE

FISHER, CHILD OF, DEBBIE REYNOLDS) from
an ambiguous provenance like “Carrie Fisher and
Debbie Reynolds arrived together at the awards
show” would be considered correct even though it
would be marked wrong under the official metric.

3 Measuring pooling bias

The example in Figure 2 makes it apparent that
pooling-based evaluation can introduce a system-
atic bias against unpooled systems. However, it
has been assumed that the bias is insignificant in
practice given the large number of systems pooled
in the TAC KBP evaluation. We will now show
that the assumption is not valid using data from
the TAC KBP 2015 evaluation.2

Measuring bias. In total, there are 70 system
submissions from 18 teams for 317 evaluation en-
tities (E) and the evaluation set consists of 11,008
labeled relation instances.3 The original evalua-

2Our results are not qualitatively different on data from
previous years of the shared task.

3The evaluation set is actually constructed from composi-
tional queries like, “what does Carrie Fisher’s parents do?”:
these queries select relation instances that answer the ques-
tion “who are Carrie Fisher’s parents?”, and then use those
answers (e.g. “Debbie Reynolds”) to select relation instances
that answer “what does Debbie Reynolds do?”. We only con-

Median bias
Precision Recall Macro F1

Official 17.93% 17.00% 15.51%
anydoc 2.34% 1.93% 2.05%

Figure 3: Median pooling bias (difference be-
tween pooled and unpooled scores) on the top 40
systems of TAC KBP 2015 evaluation using the
official and anydoc scores. The bias is much
smaller for the lenient anydoc metric, but even
so, it is larger than the largest difference between
adjacent systems (1.5%F1) and typical system im-
provements (around 1% F1).

tion dataset gives us a good measure of the true
scores for the participating systems. Similar to Zo-
bel (1998), which studied pooling bias in informa-
tion retrieval, we simulate the condition of a team
not being part of the pooling process by removing
any predictions that are unique to its systems from
the evaluation dataset. The pooling bias is then the
difference between the true and unpooled scores.

Results. Figure 3 shows the results of measur-
ing pooling bias on the TAC KBP 2015 eval-
uation on the F1 metric using the official and
anydoc scores.45 We observe that even with le-
nient anydoc heuristic, the median bias (2.05%
F1) is much larger than largest difference between
adjacently ranked systems (1.5% F1). This ex-
periment shows that pooling evaluation is signif-
icantly and systematically biased against systems
that make novel predictions!

sider instances selected in the first part of this process.
4We note that anydoc scores are on average 0.88%F1

larger than the official scores.
5 The outlier at rank 36 corresponds to a University of

Texas, Austin system that only filtered predictions from other
systems and hence has no unique predictions itself.
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4 On-demand evaluation with
importance sampling

Pooling bias is fundamentally a sampling bias
problem where relation instances from new sys-
tems are underrepresented in the evaluation
dataset. We could of course sidestep the prob-
lem by exhaustively annotating the entire docu-
ment corpus, by annotating all mentions of en-
tities and checking relations between all pairs of
mentions. However, that would be a laborious and
prohibitively expensive task: using the interfaces
we’ve developed (Section 6), it costs about $15 to
annotate a single document by non-expert crowd-
workers, resulting in an estimated cost of at least
$1,350,000 for a reasonably large corpus of 90,000
documents (Dang, 2016). The annotation effort
would cost significantly more with expert annota-
tors. In contrast, labeling relation instances from
system predictions can be an order of magnitude
cheaper than finding them in documents: using our
interfaces, it costs only about $0.18 to verify each
relation instance compared to $1.60 per instance
extracted through exhaustive annotations.

We propose a new paradigm called on-demand
evaluation which takes a lazy approach to dataset
construction by annotating predictions from sys-
tems only when they are underrepresented, thus
correcting for pooling bias as it arises. In this sec-
tion, we’ll formalize the problem solved by on-
demand evaluation independent of KBP and de-
scribe a cost-effective solution that allows us to
accurately estimate evaluation scores without bias
using importance sampling. We’ll then instantiate
the framework for KBP in Section 5.

4.1 Problem statement

Let X be the universe of (relation) instances, Y ⊆
X be the unknown subset of correct instances,
X1, . . . Xm ⊆ X be the predictions for m sys-
tems, and let Yi = Xi ∩ Y . Let X =

⋃m
i=1Xi

and Y =
⋃m

i=1 Yi. Let f(x) def
= I[x ∈ Y] and

gi(x) = I[x ∈ Xi], then the precision, πi, and
recall, ri, of the set of predictions Xi is

πi
def
= Ex∼pi [f(x)] ri

def
= Ex∼p0 [gi(x)],

where pi is a distribution over Xi and p0 is a dis-
tribution over Y . We assume that pi is known, e.g.
the uniform distribution overXi and that we know
p0 up to normalization constant and can sample
from it.

In on-demand evaluation, we can query f(x)
(e.g. labeling an instance) or draw a sample
from p0; typically, querying f(x) is significantly
cheaper than sampling from p0. We obtain predic-
tion sets X1, . . . , Xm sequentially as the systems
are submitted for evaluation. Our goal is to esti-
mate πi and ri for each system i = 1, . . . ,m.

4.2 Simple estimators

We can estimate each πi and ri independently with
simple Monte Carlo integration. Let X̂1, . . . , X̂m

be multi-sets of n1, . . . , nj i.i.d. samples from
X1, . . . , Xm respectively, and let Ŷ0 be a multi-
set of n0 samples drawn from Y . Then, the simple
estimators for precision and recall are:

π̂
(simple)
i =

1

ni

∑

x∈X̂i

f(x) r̂
(simple)
i =

1

n0

∑

x∈Ŷ0

gi(x).

4.3 Joint estimators6

The simple estimators are unbiased but have
wastefully large variance because evaluating a new
system does not leverage labels acquired for pre-
vious systems.

On-demand evaluation with the joint estimator
works as follows: First Ŷ0 is randomly sampled
from Y once when the evaluation framework is
launched. For every new set of predictions Xm

submitted for evaluation, the minimum number of
samples nm required to accurately evaluate Xm is
calculated based on the current evaluation data, Ŷ0
and X̂1, . . . , X̂m−1. Then, the set X̂m is added to
the evaluation data by evaluating f(x) on nm sam-
ples drawn from Xm. Finally, estimates πi and ri
are updated for each system i = 1, . . . ,m using
the joint estimators that will be defined next. In
the rest of this section, we will answer the follow-
ing three questions:

1. How can we use all the samples X̂1, . . . X̂m

when estimating the precision πi of system i?

2. How can we use all the samples X̂1, . . . , X̂m

with Ŷ0 when estimating recall ri?

3. Finally, to form X̂m, how many samples
should we draw fromXm given existing sam-
ples and X̂1, . . . , X̂m−1 and Ŷ0?

Estimating precision jointly. Intuitively, if two
systems have very similar predictions Xi and Xj ,

6Proofs for claims made in this section can be found in
Appendix B of the supplementary material.
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we should be able to use samples from one to es-
timate precision on the other. However, it might
also be the case that Xi and Xj only overlap on a
small region, in which case the samples from Xj

do not accurately represent instances in Xi and
could lead to a biased estimate. We address this
problem by using importance sampling (Owen,
2013), a standard statistical technique for estimat-
ing properties of one distribution using samples
from another distribution.

In importance sampling, if X̂i is sampled from
qi, then 1

ni

∑
x∈X̂i

pi(x)
qi(x)

f(x) is an unbiased esti-
mate of πi. We would like the proposal distribu-
tion qi to both leverage samples from all m sys-
tems and be tailored towards system i. To this
end, we first define a distribution over systems j,
represented by probabilities wij . Then, define qi
as sampling a j and drawing x ∼ pj ; formally
qi(x) =

∑m
j=1wijpj(x).

We note that qi(x) not only significantly differs
between systems, but also changes as new systems
are added to the evaluation pool. Unfortunately,
the standard importance sampling procedure re-
quires us to draw and use samples from each dis-
tribution qi(x) independently and thus can not ef-
fectively reuse samples drawn from different dis-
tributions. To this end, we introduce a practical
refinement to the importance sampling procedure:
we independently draw nj samples according to
pj(x) from each of the m systems independently
and then numerically integrate over these samples
using the weights wij to “mix” them appropriately
to produce and unbiased estimate of πi while re-
ducing variance. Formally, we define the joint pre-
cision estimator:

π̂
(joint)
i

def
=

m∑

j=1

wij

nj

∑

x∈X̂j

pi(x)f(x)

qi(x)
,

where each X̂j consists of nj i.i.d. samples drawn
from pj .

It is a hard problem to determine what the op-
timal mixing weights wij should be. However,
we can formally verify that if Xi and Xj are dis-
joint, then wij = 0 minimizes the variance of
πi, and if Xi = Xj , then wij ∝ nj is opti-
mal. This motivates the following heuristic choice
which interpolates between these two extremes:
wij ∝ nj

∑
x∈X pj(x)pi(x).

Estimating recall jointly. The recall of system
i can be expressed can be expressed as a product

ri = θνi, where θ is the recall of the pool, which
measures the fraction of all positive instances pre-
dicted by the pool (any system), and νi is the
pooled recall of system i, which measures the frac-
tion of the pool’s positive instances predicted by
system i. Letting g(x) def

= I[x ∈ X], we can de-
fine these as:

νi
def
= Ex∼p0 [gi(x) | x ∈ X] θ

def
= Ex∼p0 [g(x)].

We can estimate θ analogous to the simple recall
estimator r̂i, except we use the pool g instead a
system gi. For νi, the key is to leverage the work
from estimating precision. We already evaluated
f(x) on X̂i, so we can compute Ŷi

def
= X̂i ∩Y and

form the subset Ŷ =
⋃m

i=1 Ŷi. Ŷ is an approx-
imation of Y whose bias we can correct through
importance reweighting. We then define estima-
tors as follows:

ν̂i
def
=

∑m
j=1

wij

nj

∑
x∈Ŷj

p0(x)gi(x)
qi(x)∑m

j=1
wij

nj

∑
x∈Ŷj

p0(x)
qi(x)

r̂
(joint)
i

def
= θ̂ν̂i θ̂

def
=

1

n0

∑

x∈Ŷ0

g(x).

where qi and wij are the same as before.

Adaptively choosing the number of samples.
Finally, a desired property for on-demand evalu-
ation is to label new instances only when the cur-
rent evaluation data is insufficient, e.g. when a new
set of predictionsXm contains many instances not
covered by other systems. We can measure how
well the current evaluation set covers the predic-
tions Xm by using a conservative estimate of the
variance of π̂(joint)

m .7 In particular, the variance
of π̂(joint)

m is a monotonically decreasing function
in nm, the number of samples drawn from Xm.
We can easily solve for the minimum number of
samples required to estimate π̂(joint)

m within a con-
fidence interval ε by using the bisection method
(Burden and Faires, 1985).

5 On-demand evaluation for KBP

Applying the on-demand evaluation framework to
a task requires us to answer three questions:

1. What is the desired distribution over system
predictions pi?

7Further details can be found in Appendix B of the sup-
plementary material.
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2. How do we label an instance x, i.e. check if
x ∈ Y?

3. How do we sample from the unknown set of
true instances x ∼ p0?

In this section, we present practical implementa-
tions for knowledge base population.

5.1 Sampling from system predictions
Both the official TAC-KBP evaluation and the
on-demand evaluation we propose use micro-
averaged precision and recall as metrics. However,
in the official evaluation, these metrics are com-
puted over a fixed set of evaluation entities chosen
by LDC annotators, resulting in two problems: (a)
defining evaluation entities requires human inter-
vention and (b) typically a large source of vari-
ability in evaluation scores comes from not hav-
ing enough evaluation entities (see e.g. (Webber,
2010)). In our methodology, we replace manu-
ally chosen evaluation entities by sampling entities
from each system’s output according pi. In effect,
pi makes explicit the decision process of the anno-
tator who chooses evaluation entities.

Identifying a reasonable distribution pi is an im-
portant implementation decision that depends on
what one wishes to evaluate. Our goal for the on-
demand evaluation service we have implemented
is to ensure that KBP systems are fairly evalu-
ated on diverse subjects and predicates, while at
the same time, ensuring that entities with multiple
relations are represented to measure completeness
of knowledge base entries. As a result, we propose
a distribution that is inversely proportional to the
frequency of the subject and predicate and is pro-
portional to the number of unique relations iden-
tified for an entity (to measure knowledge base
completeness). See Appendix A in the supplemen-
tary material for an analysis of this distribution and
a study of other potential choices.

5.2 Labeling predicted instances
We label predicted relation instances by present-
ing the instance’s provenance to crowdworkers
and asking them to identify if a relation holds be-
tween the identified subject and object mentions
(Figure 4a). Crowdworkers are also asked to link
the subject and object mentions to their canoni-
cal mentions within the document and to pages on
Wikipedia, if possible, for entity linking. On av-
erage, we find that crowdworkers are able to per-
form this task in about 20 seconds, correspond-

ing to about $0.05 per instance. We requested 5
crowdworkers to annotate a small set of 200 rela-
tion instances from the 2015 TAC-KBP corpus and
measured a substantial inter-annotator agreement
with a Fleiss’ kappa of 0.61 with 3 crowdworkers
and 0.62 with 5. Consequently, we take a majority
vote over 3 workers in subsequent experiments.

5.3 Sampling true instances

Sampling from the set of true instances Y is diffi-
cult because we can’t even enumerate the elements
of Y . As a proxy, we assume that relations are
identically distributed across documents and have
crowdworkers annotate a random subset of doc-
uments for relations using an interface we devel-
oped (Figure 4b). Crowdworkers begin by iden-
tifying every mention span in a document. For
each mention, they are asked to identify its type,
canonical mention within the document and asso-
ciated Wikipedia page if possible. They are then
presented with a separate interface to label predi-
cates between pairs of mentions within a sentence
that were identified earlier.

We compare crowdsourced annotations against
those of expert annotators using data from the TAC
KBP 2015 EDL task on 10 randomly chosen docu-
ments. We find that 3 crowdworkers together iden-
tify 92% of the entity spans identified by expert
annotators, while 7 crowdworkers together iden-
tify 96%. When using a token-level majority vote
to identify entities, 3 crowdworkers identify about
78% of the entity spans; this number does not
change significantly with additional crowdwork-
ers. We also measure substantial token-level inter-
annotator agreement using Fleiss’ kappa for iden-
tifying typed mention spans (κ = 0.83), canonical
mentions (κ = 0.75) and entity links (κ = 0.75)
with just three workers. Based on this analysis, we
use token-level majority over 3 workers in subse-
quent experiments.

The entity annotation interface is far more in-
volved and takes on average about 13 minutes per
document, corresponding to about $2.60 per docu-
ment, while the relation annotation interface takes
on average about $2.25 per document. Because
documents vary significantly in length and com-
plexity, we set rewards for each document based
on the number of tokens (.75c per token) and men-
tion pairs (5c per pair) respectively. With 3 work-
ers per document, we paid about $15 per document
on average. Each document contained an average
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Sys. P R F1

TAC KBP evaluation
P 47.6% 11.0% 17.9%
P+L 35.5% 18.4% 24.2%
P+L+N 26.3% 27.0% 26.6%

On-demand evaluation
P 74.7% 5.8% 10.8%
P+L 54.7% 7.6% 13.3%
P+L+N 34.0% 9.8% 15.2%

(f)

Figure 4: (a, b): Interfaces for annotating relations and entities respectively. (c, d): A comparison of
bias for the pooling, simple and joint estimators on the TAC KBP 2015 challenge. Each point in the figure
is a mean of 500 repeated trials; dotted lines show the 90% quartile. Both the simple and joint estimators
are unbiased, and the joint estimator is able to significantly reduce variance. (e): A comparison of the
number of samples used to estimate scores under the fixed and adaptive sample selection scheme. Each
faint line shows the number of samples used during a single trial, while solid lines show the mean over
100 trials. The dashed line shows a square-root relationship between the number of systems evaluated
and the number of samples required. Thus joint estimation combined with adaptive sample selection can
reduce the number of labeled annotations required by an order of magnitude. (f): Precision (P ), recall
(R) and F1 scores from a pilot run of our evaluation service for ensembles of a rule-based system (R), a
logistic classifier (L) and a neural network classifier (N) run on the TAC KBP 2016 document corpus.
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9.2 relations, resulting in a cost of about $1.61 per
relation instance. We note that this is about ten
times as much as labeling a relation instance.

We defer details regarding how documents
themselves should be weighted to capture diverse
entities that span documents to Appendix A.

6 Evaluation

Let us now see how well on-demand evaluation
works in practice. We begin by empirically study-
ing the bias and variance of the joint estimator pro-
posed in Section 4 and find it is able to correct for
pooling bias while significantly reducing variance
in comparison with the simple estimator. We then
demonstrate that on-demand evaluation can serve
as a practical replacement for the TAC KBP eval-
uations by piloting a new evaluation service we
have developed to evaluate three distinct systems
on TAC KBP 2016 document corpus.

6.1 Bias and variance of the on-demand
evaluation.

Once again, we use the labeled system predictions
from the TAC KBP 2015 evaluation and treat them
as an exhaustively annotated dataset. To evaluate
the pooling methodology we construct an evalua-
tion dataset using instances found by human an-
notators and labeled instances pooled from 9 ran-
domly chosen teams (i.e. half the total number
of participating teams), and use this dataset to
evaluate the remaining 9 teams. On average, the
pooled evaluation dataset contains between 5,000
and 6,000 labeled instances and evaluates 34 dif-
ferent systems (since each team may have submit-
ted multiple systems). Next, we evaluated sets of 9
randomly chosen teams with our proposed simple
and joint estimators using a total of 5,000 samples:
about 150 of these samples are drawn from Y , i.e.
the full TAC KBP 2015 evaluation data, and 150
samples from each of the systems being evaluated.

We repeat the above simulated experiment 500
times and compare the estimated precision and
recall with their true values (Figure 4). The
simulations once again highlights that the pooled
methodology is biased, while the simple and joint
estimators are not. Furthermore, the joint estima-
tors significantly reduce variance relative to the
simple estimators: the median 90% confidence
intervals reduce from 0.14 to 0.06 precision and
from 0.14 to 0.08 for recall.

6.2 Number of samples required by
on-demand evaluation

Separately, we evaluate the efficacy of the adaptive
sample selection method described in Section 4.3
through another simulated experiment. In each
trial of this experiment, we evaluate the top 40
systems in random order. As each subsequent sys-
tem is evaluated, the number of samples to pick
from the system is chosen to meet a target variance
and added to the current pool of labeled instances.
To make the experiment more interpretable, we
choose the target variance to correspond with the
estimated variance of having 500 samples. Fig-
ure 4 plots the results of the experiment. The
number of samples required to estimate systems
quickly drops off from the benchmark of 500 sam-
ples as the pool of labeled instances covers more
systems. This experiment shows that on-demand
evaluation using joint estimation can scale up to
an order of magnitude more submissions than a
simple estimator for the same cost.

6.3 A mock evaluation for TAC KBP 2016

We have implemented the on-demand evaluation
framework described here as an evaluation service
to which researchers can submit their own system
predictions. As a pilot of the service, we evaluated
three relation extraction systems that also partici-
pated in the official 2016 TAC KBP competition.
Each system uses Stanford CoreNLP (Manning
et al., 2014) to identify entities, the Illinois Wiki-
fier (Ratinov et al., 2011) to perform entity linking
and a combination of a rule-based system (P), a
logistic classifier (L), and a neural network classi-
fier (N) for relation extraction. We used 15,000
Newswire documents from the 2016 TAC KBP
evaluation as our document corpus. In total, 100
documents were exhaustively annotated for about
$2,000 and 500 instances from each system were
labeled for about $150 each. Evaluating all three
system only took about 2 hours.

Figure 4f reports scores obtained through on-
demand evaluation of these systems as well
as their corresponding official TAC evaluation
scores. While the relative ordering of systems be-
tween the two evaluations is the same, we note
that precision and recall as measured through on-
demand evaluation are respectively higher and
lower than the official scores. This is to be ex-
pected because on-demand evaluation measures
precision using each systems output as opposed
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to an externally defined set of evaluation entities.
Likewise, recall is measured using exhaustive an-
notations of relations within the corpus instead of
annotations from pooled output in the official eval-
uation.

7 Related work

The subject of pooling bias has been extensively
studied in the information retrieval (IR) commu-
nity starting with Zobel (1998), which examined
the effects of pooling bias on the TREC AdHoc
task, but concluded that pooling bias was not a
significant problem. However, when the topic was
later revisited, Buckley et al. (2007) identified that
the reason for the small bias was because the sub-
missions to the task were too similar; upon repeat-
ing the experiment using a novel system as part
of the TREC Robust track, they identified a 23%
point drop in average precision scores!8

Many solutions to the pooling bias problem
have been proposed in the context of information
retrieval, e.g. adaptively constructing the pool to
collect relevant data more cost-effectively (Zobel,
1998; Cormack et al., 1998; Aslam et al., 2006),
or modifying the scoring metrics to be less sen-
sitive to unassessed data (Buckley and Voorhees,
2004; Sakai and Kando, 2008; Aslam et al., 2006).
Many of these ideas exploit the ranking of docu-
ments in IR which does not apply to KBP. While
both Aslam et al. (2006) and Yilmaz et al. (2008)
estimate evaluation metrics by using importance
sampling estimators, the techniques they propose
require knowing the set of all submissions before-
hand. In contrast, our on-demand methodology
can produce unbiased evaluation scores for new
development systems as well.

There have been several approaches taken to
crowdsource data pertinent to knowledge base
population (Vannella et al., 2014; Angeli et al.,
2014; He et al., 2015; Liu et al., 2016). The most
extensive annotation effort is probably Pavlick
et al. (2016), which crowdsources a knowledge
base for gun-violence related events. In contrast to
previous work, our focus is on evaluating systems,
not collecting a dataset. Furthermore, our main
contribution is not a large dataset, but an evalua-
tion service that allows anyone to use crowdsourc-
ing predictions made by their system.

8For the interested reader, Webber (2010) presents an ex-
cellent survey of the literature on pooling bias.

8 Discussion

Over the last ten years of the TAC KBP task, the
gap between human and system performance has
barely narrowed despite the community’s best ef-
forts: top automated systems score less than 36%
F1 while human annotators score more than 60%.
In this paper, we’ve shown that the current eval-
uation methodology may be a contributing factor
because of its bias against novel system improve-
ments. The new on-demand framework proposed
in this work addresses this problem by obtaining
human assessments of new system output through
crowdsourcing. The framework is made economi-
cally feasible by carefully sampling output to be
assessed and correcting for sample bias through
importance sampling.

Of course, simply providing better evaluation
scores is only part of the solution and it is clear
that better datasets are also necessary. However,
the very same difficulties in scale that make eval-
uating KBP difficult also make it hard to collect
a high quality dataset for the task. As a result,
existing datasets (Angeli et al., 2014; Adel et al.,
2016) have relied on the output of existing sys-
tems, making it likely that they exhibit the same
biases against novel systems that we’ve discussed
in this paper. We believe that providing a fair and
standardized evaluation platform as a service al-
lows researchers to exploit such datasets and while
still being able to accurately measure their perfor-
mance on the knowledge base population task.

There are many other tasks in NLP that are even
harder to evaluate than KBP. Existing evaluation
metrics for tasks with a generation component—
such as summarization or dialogue—leave much
to be desired. We believe that adapting the ideas
of this paper to those tasks is a fruitful direction, as
progress of a research community is strongly tied
to the fidelity of evaluation.
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Abstract

In order to adopt deep learning for infor-
mation retrieval, models are needed that
can capture all relevant information re-
quired to assess the relevance of a docu-
ment to a given user query. While pre-
vious works have successfully captured
unigram term matches, how to fully em-
ploy position-dependent information such
as proximity and term dependencies has
been insufficiently explored. In this work,
we propose a novel neural IR model
named PACRR aiming at better modeling
position-dependent interactions between a
query and a document. Extensive experi-
ments on six years’ TREC Web Track data
confirm that the proposed model yields
better results under multiple benchmarks.

1 Introduction

Despite the widespread use of deep neural mod-
els across a range of linguistic tasks, to what
extent such models can improve information re-
trieval (IR) and which components a deep neural
model for IR should include remain open ques-
tions. In ad-hoc IR, the goal is to produce a rank-
ing of relevant documents given an open-domain
(“ad hoc”) query and a document collection. A
ranking model thus aims at evaluating the inter-
actions between different documents and a query,
assigning higher scores to documents that better
match the query. Learning to rank models, like
the recent IRGAN model (Wang et al., 2017), rely
on handcrafted features to encode query docu-
ment interactions, e.g., the relevance scores from
unsupervised ranking models. Neural IR mod-
els differ in that they extract interactions directly
based on the queries and documents. Many early
neural IR models can be categorized as seman-

tic matching models, as they embed both queries
and documents into a low-dimensional space, and
then assess their similarity based on such dense
representations. Examples in this regard include
DSSM (Huang et al., 2013) and DESM (Mitra
et al., 2016). The notion of relevance is inher-
ently asymmetric, however, making it different
from well-studied semantic matching tasks such as
semantic relatedness and paraphrase detection. In-
stead, relevance matching models such as Match-
Pyramid (Pang et al., 2016), DRMM (Guo et al.,
2016) and the recent K-NRM (Xiong et al., 2017)
resemble traditional IR retrieval measures in that
they directly consider the relevance of documents’
contents with respect to the query. The DUET
model (Mitra et al., 2017) is a hybrid approach
that combines signals from a local model for rel-
evance matching and a distributed model for se-
mantic matching. The two classes of models are
fairly distinct. In this work, we focus on relevance
matching models.

Given that relevance matching approaches mir-
ror ideas from traditional retrieval models, the
decades of research on ad-hoc IR can guide us
with regard to the specific kinds of relevance sig-
nals a model ought to capture. Unigram matches
are the most obvious signals to be modeled, as
a counterpart to the term frequencies that appear
in almost all traditional retrieval models. Be-
yond this, positional information, including where
query terms occur and how they depend on each
other, can also be exploited, as demonstrated in
retrieval models that are aware of term proxim-
ity (Tao and Zhai, 2007) and term dependen-
cies (Huston and Croft, 2014; Metzler and Croft,
2005). Query coverage is another factor that can
be used to ensure that, for queries with mul-
tiple terms, top-ranked documents contain mul-
tiple query terms rather than emphasizing only
one query term. For example, given the query
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“dog adoption requirements”, unigram matching
signals correspond to the occurrences of the in-
dividual terms “dog”, “adoption”, or “require-
ments”. When considering positional informa-
tion, text passages with “dog adoption” or “re-
quirements for dog adoption” are highlighted, dis-
tinguishing them from text that only includes in-
dividual terms. Query coverage, meanwhile, fur-
ther emphasizes that matching signals for “dog”,
“adoption”, and “requirements” should all be in-
cluded in a document.

Similarity signals from unigram matches are
taken as input by DRMM (Guo et al., 2016)
after being summarized as histograms, whereas
K-NRM (Xiong et al., 2017) directly digests a
query-document similarity matrix and summarizes
it with multiple kernel functions. As for posi-
tional information, both the MatchPyramid (Pang
et al., 2016) and local DUET (Mitra et al., 2017)
models account for it by incorporating convolu-
tional layers based on similarity matrices between
queries and documents. Although this leads to
more complex models, both have difficulty in sig-
nificantly outperforming the DRMM model (Guo
et al., 2016; Mitra et al., 2017). This indicates
that it is non-trivial to go beyond unigrams by
utilizing positional information in deep neural IR
models. Intuitively, unlike in standard sequence-
based models, the interactions between a query
and a document are sequential along the query
axis as well as along the document axis, making
the problem multi-dimensional in nature. In addi-
tion, this makes it non-trivial to combine match-
ing signals from different parts of the documents
and over different query terms. In fact, we argue
that both MatchPyramid and local DUET mod-
els fail to fully account for one or more of the
aforementioned factors. For example, as a pio-
neering work, MatchPyramid is mainly motivated
by models developed in computer vision, result-
ing in its disregard of certain IR-specific consider-
ations in the design of components, such as pool-
ing sizes that ignore the query and document di-
mensions. Meanwhile, local DUET’s CNN filters
match entire documents against individual query
terms, neglecting proximity and possible depen-
dencies among different query terms.

We conjecture that a suitable combination of
convolutional kernels and recurrent layers can lead
to a model that better accounts for these factors.
In particular, we present a novel re-ranking model

called PACRR (Position-Aware Convolutional-
Recurrent Relevance Matching). Our approach
first produces similarity matrices that record the
semantic similarity between each query term and
each individual term occurring in a document.
These matrices are then fed through a series of
convolutional, max-k-pooling, and recurrent lay-
ers so as to capture interactions corresponding to,
for instance, bigram and trigram matches, and fi-
nally to aggregate the signals in order to produce
global relevance assessments. In our model, the
convolutional layers are designed to capture both
unigram matching and positional information over
text windows with different lengths; k-max pool-
ing layers are along the query dimension, preserv-
ing matching signals over different query terms;
the recurrent layer combines signals from differ-
ent query terms to produce a query-document rel-
evance score.
Organization. The rest of this paper unfolds as
follows. Section 2 describes our approach for
computing similarity matrices and the architecture
of our deep learning model. The setup and results
of our extensive experimental evaluation can be
found in Section 3, before concluding in Section 4.

2 The PACRR Model

We now describe our proposed PACRR approach,
which consists of two main parts: a relevance
matching component that converts each query-
document pair into a similarity matrix sim |q|×|d|
and a deep architecture that takes a given query-
document similarity matrix as input and produces
a query-document relevance score rel(q, d). Note
that in principle the proposed model can be trained
end-to-end by backpropagating through the word
embeddings, as in (Xiong et al., 2017). In this
work, however, we focus on highlighting the
building blocks aiming at capturing positional in-
formation, and freeze the word embedding layer to
achieve better efficiency. The pipeline is summa-
rized in Figure 1.

2.1 Relevance Matching

We first encode the query-document relevance
matching via query-document similarity matri-
ces sim |q|×|d| that encodes the similarity be-
tween terms from a query q and a document
d, where simij corresponds to the similarity be-
tween the i-th term from q and the j-th term
from d. When using cosine similarity, we have
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Figure 1: The pipeline of PACRR. Each query q and document d is first converted into a query-document
similarity matrix sim |q|×|d|. Thereafter, a distillation method (firstk is displayed) transforms the raw
similarity matrix into unified dimensions, namely, sim lq×ld . Here, lg − 1 convolutional layers (CNN)
are applied to the distilled similarity matrices. As lg = 3 is shown, layers with kernel size 2 and 3
are applied. Next, max pooling is applied, leading to lg matrices C1 · · ·C lg . Following this, ns-max
pooling captures the strongest ns signals over each query term and n-gram size, and the case for ns = 2
is shown here. Finally, the similarity signals from different n-gram sizes are concatenated, the query
terms’ normalized IDFs are added, and a recurrent layer combines these signals for each query term into
a query-document relevance score rel(q, d).

sim ∈ [−1, 1]|q|×|d|. As suggested in (Hui et al.,
2017), query-document similarity matrices pre-
serve a rich signal that can be used to perform
relevance matching beyond unigram matches. In
particular, n-gram matching corresponds to con-
secutive document terms that are highly similar to
at least one of the query terms. Query coverage is
reflected in the number of rows in sim that include
at least one cell with high similarity. The similar-
ity between a query term q and document term d
is calculated by taking the cosine similarity using
the pre-trained1 word2vec (Mikolov et al., 2013).

The subsequent processing in PACRR’s convo-
lutional layers requires that each query-document
similarity matrix have the same dimensionality.
Given that the lengths of queries and documents
vary, we first transform the raw similarity matri-
ces sim |q|×|d| into sim lq×ld matrices with uniform
lq and ld as the number of rows and columns. We
unify the query dimension lq by zero padding it
to the maximum query length. With regard to the
document dimension ld, we describe two strate-
gies: firstk and kwindow.

PACRR-firstk. Akin to (Mitra et al., 2017), the
firstk distillation method simply keeps the first k
columns in the matrix, which correspond to the
first k terms in the document. If k > |d|, the re-
maining columns are zero padded.

1https://code.google.com/archive/p/
word2vec/

PACRR-kwindow. As suggested in (Guo et al.,
2016), relevance matching is local. Document
terms that have a low query similarity relative to
a document’s other terms cannot contribute sub-
stantially to the document’s relevance score. Rele-
vance matching can be extracted in terms of pieces
of text that include relevant information. That
is, one can segment documents according to rel-
evance relative to the given query and retain only
the text that is highly relevant to the given query.
Given this observation, we prune query-document
similarity cells with a low similarity score. In the
case of unigrams, we simply choose the top ld
terms with the highest similarity to query terms. In
the case for text snippets beyond length n, we pro-
duce a similarity matrix simn

lq×ld for each query-
document pair and each n, because n consecutive
terms must be co-considered later on. For each
text snippet with length n in the document, kwin-
dow calculates the maximum similarity between
each term and the query terms, and then calculates
the average similarity over each n-term window.
It then selects the top k = bld/nc windows by av-
eraging similarity and discards all other terms in
the document. The document dimension is zero
padded if bld/nc is not a multiple of k. When the
convolutional layer later operates on a similarity
matrix produced by kwindow, the model’s stride
is set to n (i.e., the sliding window moves ahead n
terms at a time rather than one term at a time) since
it can consider at most n consecutive terms that are
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present in the original document. This variant’s
output is a similarity matrix simn

lq×ld for each n.

2.2 Deep Retrieval Model

Given a query-document similarity matrix
sim lq×ld as input, our deep architecture relies on
convolutional layers to match every text snippet
with length n in a query and in a document
to produce similarity signals for different n.
Subsequently, two consecutive max pooling
layers extract the document’s strongest similarity
cues for each n. Finally, a recurrent layer ag-
gregates these salient signals to predict a global
query-document relevance score rel(q, d).

Convolutional relevance matching over local
text snippets. The purpose of this step is to match
text snippets with different length from a query
and a document given their query-document sim-
ilarity matrix as input. This is accomplished by
applying multiple two-dimensional convolutional
layers with different kernel sizes to the input simi-
larity matrix. Each convolutional layer is responsi-
ble for a specific n; by applying its kernel on n×n
windows, it produces a similarity signal for each
window. When the firstk method is used, each con-
volutional layer receives the same similarity ma-
trix sim lq×ld as input because firstk produces the
same similarity matrix regardless of the n. When
the kwindow method is used, each convolutional
layer receives a similarity matrix simn

lq×ld corre-
sponding to the convolutional layer with a n × n
kernel. We use lg−1 different convolutional layers
with kernel sizes 2 × 2, 3 × 3, . . . , lg × lg, corre-
sponding to bi-gram, tri-gram, . . . , lg-gram match-
ing, respectively, where the length of the longest
text snippet to consider is governed by a hyper-
parameter lg. The original similarity matrix cor-
responds to unigram matching, while a convolu-
tional layer with kernel size n×n is responsible for
capturing matching signals on n-term text snip-
pets. Each convolutional layer applies nf differ-
ent filters to its input, where nf is another hyper-
parameter. We use a stride of size (1, 1) for the
firstk distillation method, meaning that the convo-
lutional kernel advances one step at a time in both
the query and document dimensions. For the kwin-
dow distillation method, we use a stride of (1, n)
to move the convolutional kernel one step at a time
in the query dimension, but n steps at a time in the
document dimension. This ensures that the con-
volutional kernel only operates over consecutive

terms that existed in the original document. Thus,
we end up with lg − 1 matrices Cnlq×ld×nf , and the
original similarity matrix is directly employed to
handle the signals over unigrams.

Two max pooling layers. The purpose of this step
is to capture the ns strongest similarity signals for
each query term. Measuring the similarity signals
separately for each query term allows the model to
consider query term coverage, while capturing the
ns strongest similarity signals for each query term
allows the model to consider signals from different
kinds of relevance matching patterns, e.g., n-gram
matching and non-contiguous matching. In prac-
tice, we use a small ns to prevent the model from
being biased by document length; while each sim-
ilarity matrix contains the same number of doc-
ument term scores, longer documents have more
opportunity to contain terms that are similar to
query terms. To capture the strongest ns similar-
ity signals for each query term, we first perform
max pooling over the filter dimension nf to keep
only the strongest signal from the nf different fil-
ters, assuming that there only exists one particular
true matching pattern in a given n × n window,
which serves different purposes compared with
other tasks, such as the sub-sampling in computer
vision. We then perform k-max pooling (Kalch-
brenner et al., 2014) over the query dimension lq
to keep the strongest ns similarity signals for each
query term. Both pooling steps are performed on
each of the lg − 1 matrices Ci from the convolu-
tional layer and on the original similarity matrix,
which captures unigram matching, to produce the
3-dimensional tensor Plq×lg×ns . This tensor con-
tains the ns strongest signals for each query term
and for each n-gram size across all nf filters.

Recurrent layer for global relevance. Finally,
our model transforms the query term similarity
signals in Plq×lg×ns into a single document rele-
vance score rel(q, d). It achieves this by applying
a recurrent layer toP , taking a sequence of vectors
as input and learning weights to transform them
into the final relevance score. More precisely, akin
to (Guo et al., 2016), the IDF of each query term
qi is passed through a softmax layer for normal-
ization. Thereafter, we split up the query term
dimension to produce a matrix Plg×ns for each
query term qi, subsequently forming the recurrent
layer’s input by flattening each matrix Plg×ns into
a vector by concatenating the matrix’s rows to-
gether and appending query term qi’s normalized
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IDF onto the end of the vector. This sequence
of vectors for each query term qi is passed into
a Long Short-Term Memory (LSTM) recurrent
layer (Hochreiter and Schmidhuber, 1997) with an
output dimensionality of one. That is, the LSTM’s
input is a sequence of query term vectors where
each vector is composed of the query term’s nor-
malized IDF and the aforementioned salient sig-
nals for the query term along different kernel sizes.
The LSTM’s output is then used as our document
relevance score rel(q, d).

Training objective. Our model is trained on
triples consisting of a query q, relevant document
d+, and non-relevant document d−, minimizing a
standard pairwise max margin loss as in Eq. 1.

L(q,d+,d−;Θ)=max(0,1−rel(q,d+)+rel(q,d−)) (1)

3 Evaluation

In this section, we empirically evaluate PACRR
models using manual relevance judgments from
the standard TREC Web Track. We compare
them against several state-of-the-art neural IR
models2, including DRMM (Guo et al., 2016),
DUET (Mitra et al., 2017), MatchPyramid (Pang
et al., 2016), and K-NRM (Xiong et al., 2017).
The comparisons are over three task settings: re-
ranking search results from a simple initial ranker
(RERANKSIMPLE); re-ranking all runs from the
TREC Web Track (RERANKALL); and examining
neural IR models’ classification accuracy between
document pairs (PAIRACCURACY).

3.1 Experimental Setup
We rely on the widely-used 2009–2014 TREC Web
Track ad-hoc task benchmarks3. The benchmarks
are based on the CLUEWEB09 and CLUEWEB12
datasets as document collections. In total, there
are 300 queries and more than 100k judgments
(qrels). Three years (2012–14) of query-likelihood
baselines4 provided by TREC5 serve as baseline
runs in the RERANKSIMPLE benchmark. In the
RERANKALL setting, the search results from
runs submitted by participants from each year
are also considered: there are 71 (2009), 55

2We also attempted to include IRGAN (Wang et al., 2017)
model as a baseline, but failed to obtain reasonable results
when training on TREC data.

3http://trec.nist.gov/tracks.html
4Terrier (Ounis et al., 2006) version without filtering spam

documents
5https://github.com/trec-web/

trec-web-2014

Figure 2: The training loss, ERR@20 and
nDCG@20 per iteration on validation data when
training on Web Track 2010–14. The x-axis de-
notes the iterations. The y-axis indicates the
ERR@20/nDCG@20 (left) and the loss (right).
The best performance appears on 109th iteration
with ERR@20=0.242. The lowest training loss
(0.767) occurs after 118 iterations.

(2010), 62 (2011), 48 (2012), 50 (2013), and 27
(2014) runs. ERR@20 (Chapelle et al., 2009) and
nDCG@20 (Järvelin and Kekäläinen, 2002) are
employed as evaluation measures, and both are
computed with the script from TREC6.

Training. At each step, we perform Stochastic
Gradient Descent (SGD) with a mini-batch of 32
triples. For the purpose of choosing the triples,
we consider all documents that are judged with a
label more relevant than Rel7 as highly relevant,
and put the remaining relevant documents into a
relevant group. To pick each triple, we sample
a relevance group with probability proportional to
the number of documents in the group within the
training set, and then we randomly sample a docu-
ment with the chosen label to serve as the positive
document d+. If the chosen group is the highly
relevant group, we randomly sample a document
from the relevant group to serve as the negative
document d−. If the chosen group is the relevant
group, we randomly sample a non-relevant doc-
ument as d−. This sampling procedure ensures
that we differentiate between highly relevant doc-
uments (i.e., those with a relevance label of HRel,
Key or Nav) and relevant documents (i.e., those
are labeled as Rel). The training continues until a

6http://trec.nist.gov/data/web/12/gdeval.pl
7Judgments from TREC include junk pages (Junk), non-

relevance (NRel), relevance (Rel), high relevance (HRel), key
pages (Key) and navigational pages (Nav).
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given number of iterations is reached. The model
is saved at every iteration. We use the model with
the best ERR@20 on the validation set to make
predictions. Proceeding in a round-robin manner,
we report test results on one year by exploiting the
respective remaining five years (250 queries) for
training. From these 250 queries, we reserve 50
random queries as a held-out set for validation and
hyper-parameter tuning, while the remaining 200
queries serve as the actual training set.

As mentioned, model parameters and training
iterations are chosen by maximizing the ERR@20
on the validation set. The selected model is then
used to make predictions on the test data. An ex-
ample of this training procedure is shown in Fig-
ure 2. There are four hyper-parameters that gov-
ern the behavior of the proposed PACRR-kwindow
and PACRR-firstk: the unified length of the doc-
ument dimension ld, the k-max pooling size ns,
the maximum n-gram size lg, and the number of
filters used in convolutional layers nf . Due to
limited computational resources, we determine the
range of hyper-parameters to consider based on pi-
lot experiments and domain insights. In partic-
ular, we evaluate ld ∈ [256, 384, 512, 640, 768],
ns ∈ [1, 2, 3, 4], and lg ∈ [2, 3, 4]. Due to the
limited possible matching patterns given a small
kernel size (e.g., lg = 3), nf is fixed to 32. For
PACRR-firstk, we intuitively desire to retain as
much information as possible from the input, and
thus ld is always set to 768.

DRMM (DRMMLCH×IDF ), DUET, Match-
Pyramid and K-NRM are trained under the same
settings using the hyperparameters described in
their respective papers. In particular, as our fo-
cus is on the deep relevance matching model as
mentioned in Section 1, we only compare against
DUET’s local model, denoted as DUETL. In addi-
tion, K-NRM is trained slightly different from the
one described in (Xiong et al., 2017), namely, with
a frozen word embedding layer. This is to guar-
antee its fair comparison with other models, given
that most of the compared models can be enhanced
by co-training the embedding layers, whereas the
focus here is the strength coming from the model
architecture. A fully connected middle layer with
30 neurons is added to compensate for the reduc-
tion of trainable parameters in K-NRM, mirroring
the size of DRMM’s first fully connected layer.

All models are implemented with Keras (Chol-
let et al., 2015) using Tensorflow as backend, and

are trained on servers with multiple CPU cores. In
particular, the training of PACRR takes 35 seconds
per iteration on average, and in total at most 150
iterations are trained for each model variant.

3.2 Results

RERANKSIMPLE. We first examine the proposed
model by re-ranking the search results from the
QL baseline on Web Track 2012–14. The results
are summarized in Table 1. It can be seen that
DRMM can significantly improve QL on WT12
and WT14, whereas MatchPyramid fails on WT12
under ERR@20. While DUETL and K-NRM can
consistently outperform QL, the two variants of
PACRR are the only models that can achieve sig-
nificant improvements at a 95% significance level
on all years under both ERR@20 and nDCG@20.
More remarkably, by solely re-ranking the search
results from QL, PACRR-firstk can already rank
within the top-3 participating systems on all three
years as measured by both ERR and nDCG. The
re-ranked search results from PACRR-kwindow
also ranks within the top-5 based on nDCG@20.
On average, both PACRR-kwindow and PACRR-
firstk achieve 60% improvements over QL.

RERANKALL. In this part, we would like to fur-
ther examine the performance of the proposed
models in re-ranking different sets of search re-
sults. Thus, we extend our analysis to re-rank
search results from all submitted runs from six
years of the TREC Web Track ad-hoc task. In
particular, we only consider the judged documents
from TREC, which loosely correspond to top-20
documents in each run. The tested models make
predictions for individual documents, which are
used to re-rank the documents within each sub-
mitted run. Given that there are about 50 runs for
each year, it is no longer feasible to list the scores
for each re-ranked run. Instead, we summarize the
results by comparing the performance of each run
before and after re-ranking, and provide statistics
over each year to compare the methods under con-
sideration in Table 2. In the top portion of Table 2,
we report the relative changes in metrics before
and after re-ranking in terms of percentages (“av-
erage ∆ measure score”). In the bottom portion,
we report the percentage of systems whose results
have increased after re-ranking. Note that these
results assess two different aspects: the average ∆
measure score in Table 2 captures the degree to
which a model can improve an initial run, while
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Measure Years PACRR-firstk Rank PACRR-kwindow Rank DUETL Rank DRMM Rank MatchPyramid Rank K-NRM Rank QL Rank

ERR@20
wt12 0.318 (mQ) 2 0.313 (MQ) 4 0.281 (Q) 10 0.289 (Q) 10 0.227 16 0.258 (Q) 12 0.177 26
wt13 0.166 (DKQ) 3 0.139 (Q) 14 0.147 (Q) 12 0.124 25 0.141 (q) 13 0.134 (q) 14 0.101 38
wt14 0.221 (LMQ) 2 0.208 (Q) 3 0.179 (Q) 12 0.193 (Q) 10 0.176 (Q) 12 0.201 (Q) 8 0.131 25

nDCG@20
wt12 0.243 (DLMQ) 2 0.250 (DLMQ) 2 0.186 (Q) 11 0.197 (Q) 8 0.164 (Q) 16 0.222 (Q) 4 0.106 39
wt13 0.295 (DLkQ) 3 0.279 (DQ) 4 0.248 (q) 11 0.228 20 0.258 (Q) 7 0.251 (Q) 11 0.190 36
wt14 0.339 (LMQ) 1 0.331 (LMQ) 1 0.267 (q) 11 0.300 (Q) 6 0.278 (Q) 10 0.324 (Q) 2 0.231 23

Table 1: ERR@20 and nDCG@20 on TREC Web Track 2012–14 when re-ranking search results from
QL. The comparisons are conducted between two variants of PACRR and DRMM (D/d), DUETL (L/l),
MatchPyramid (M/m) and K-NRM (K/k). All methods are compared against the QL (Q/q) baseline.
The upper/lower-case characters in the brackets indicate a significant difference under two-tailed paired
Student’s t-tests at 95% or 90% confidence levels relative to the corresponding approach. In addition, the
relative ranks among all runs within the respective years according to ERR@20 and nDCG@20 are also
reported directly after the absolute scores.

Measures Tested Methods wt09 wt10 wt11 wt12 wt13 wt14

average ∆ measure score over each year (%):
re-rank score−original score

original score

ERR@20

PACRR-firstk 66% (DLK) 362% (dm) 43% (DLMK) 76% (DLMK) 37% (DLMK) 41% (DLMK)
PACRR-kwindow 70% (DLmK) 393% (DlM ) 10% (LMK) 83% (DLMK) 21% (DLM ) 36% (DLMK)

DUETL 80% (DMK) 316% 15% (DMK) 64% (M ) 26% (DM ) 19% (MK)
DRMM 54% (LMK) 315% 11% (LMK) 61% (M ) 5% (LMK) 19% (MK)

MatchPyramid 65% (DL) 313% 2% (DLK) 48% (DLK) 29% (DLK) 14% (DLK)
K-NRM 59% (DL) 333% 31% (DLM ) 63% (M ) 25% (DM ) 32% (DLM )

nDCG@20

PACRR-firstk 69% (DLMK) 304% (LM ) 56% (DLMK) 100% (DLMK) 31% (DLMK) 31% (DLM )
PACRR-kwindow 63% (DmK) 345% (DLMK) 27% (DLMK) 113% (DLMK) 23% (DLK) 30% (DLM )

DUETL 62% (DMK) 237% (DK) 17% (DMK) 55% (DMK) 17% (DMK) 10% (DMK)
DRMM 49% (LMK) 274% (LMk) 8% (LMK) 70% (LMK) 9% (LMK) 15% (LK)

MatchPyramid 59% (DLk) 232% (DK) 1% (DLK) 37% (DLK) 21% (DLk) 14% (LK)
K-NRM 52% (DLm) 288% (dLM ) 36% (DLM ) 85% (DLM ) 19% (DLm) 30% (DLM )

% of runs that get better performance
after re-ranking

ERR@20

PACRR-firstk 94% 95% 97% 92% 87% 100%
PACRR-kwindow 97% 100% 47% 96% 65% 76%

DUETL 94% 95% 61% 86% 69% 59%
DRMM 82% 95% 47% 86% 40% 66%

MatchPyramid 85% 93% 40% 78% 81% 59%
K-NRM 87% 95% 89% 82% 67% 86%

nDCG@20

PACRR-firstk 94% 100% 100% 100% 92% 93%
PACRR-kwindow 93% 100% 84% 100% 81% 86%

DUETL 86% 93% 69% 92% 79% 59%
DRMM 86% 100% 50% 88% 62% 55%

MatchPyramid 76% 93% 39% 80% 81% 69%
K-NRM 94% 100% 97% 96% 81% 93%

Table 2: The average statistics when re-ranking all runs from the TREC Web Track 2009–14 based
on ERR@20 and nDCG@20. The average differences of the scores for individual runs are reported in
the top portion. The comparisons are conducted between two variants of PACRR and DRMM (D/d),
DUETL (L/l), MatchPyramid (M/m) and K-NRM (K/k). The upper/lower-case characters in parentheses
indicate a significant difference under two-tailed paired Student’s t-tests at 95% or 90% confidence levels,
respectively, relative to the corresponding approach. The percentage of runs that show improvements in
terms of a measure is summarized in the bottom portion.

the percentages of runs indicate to what extent an
improvement can be achieved over runs from dif-
ferent systems. In other words, the former mea-
sures the strength of the models, while the lat-
ter measures the adaptability of the models. Both
PACRR variants improve upon existing rankings
by at least 10% across different years. Remark-
ably, in terms of nDCG@20, at least 80% of the
submitted runs are improved after re-ranking by
the proposed models on individual years, and on
2010–12, all submitted runs are consistently im-

proved by PACRR-firstk. Moreover, both variants
of PACRR can significantly outperform all base-
line models on at least three years out of the six
years in terms of average improvement. However,
it is clear that none of the tested models can make
consistent improvements over all submitted runs
across all six years. In other words, there still exist
document pairs that are predicted contradicting to
the judgments from TREC. Thus, in the next part,
we further investigate the performance in terms of
prediction over document pairs.
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Label Pairs Volume (%) # Queries
Tested Methods

PACRR-firstk PACRR-kwindow DUETL DRMM MatchPyramid K-NRM

Nav-HRel 0.3% 49 45.8% 45.5% 45.2% 48.2% 47.3% 51.6%
Nav-Rel 1.1% 65 56.0% (m) 56.3% (M ) 54% 57% (M ) 53.2% (D) 57.4%

Nav-NRel 3.6% 67 76.1% (DLMK) 76.6% (DLMK) 67.1% (M ) 71.5% (M ) 64.7% (DLK) 70.8% (M )
HRel-Rel 8.4% 257 57.3% 57.0% 55.5% 55.8% 52.8% 56.1%

HRel-NRel 23.1% 262 76.7% (DLMK) 76.4% (DLMK) 68.4% (K) 70.1% (MK) 65.6% (DK) 72.5% (DLM )
Rel-NRel 63.5% 290 73.0% (DLMK) 72.5% (DLMK) 63.9% (DMK) 65.9% (LMK) 61.4% (DLK) 68.7% (DLM )

weighted average 72.4% 72.0% 64.2% 66.1% 61.6% 68.4%

Table 3: Comparison among tested methods in terms of accuracy when comparing document pairs with
different labels. The “volume” column indicates the percentage of occurrences of each label combination
out of the total pairs. The “# Queries” column records the number of queries that include a particular
label combination. The comparisons are conducted between two variants of PACRR and DRMM (D/d),
DUETL (L/l), MatchPyramid (M/m) and K-NRM (K/k). The upper/lower-case characters in parentheses
indicate a significant difference under two-tailed paired Student’s t-tests at 95% or 90% confidence levels,
respectively, relative to the corresponding approach. In the last row, the average accuracy among different
kinds of label combinations is computed, weighted by their corresponding volume.

PAIRACCURACY. The ranking of documents can
be decomposed into rankings of document pairs as
suggested in (Radinsky and Ailon, 2011). Specif-
ically, a model’s retrieval quality can be examined
by checking across a range of individual document
pairs, namely, how likely a model can assign a
higher score for a more relevant document. Thus,
it is possible for us to compare different models
over the same set of complete judgments, remov-
ing the issue of different initial runs. Moreover,
although ranking is our ultimate target, a direct in-
spection of pairwise prediction results can indicate
which kinds of document pairs a model succeeds
at or fails on. We first convert the graded judg-
ments from TREC into ranked document pairs by
comparing their labels. Document pairs are cre-
ated among documents that have different labels.
A prediction is counted as correct if it assigns a
higher score to the document from the pair that
is labeled with a higher degree of relevance. The
judgments from TREC contain at most six rele-
vance levels, and we merge and unify the original
levels from the six years into four grades, namely,
Nav, HRel, Rel and NRel. We compute the ac-
curacy for each pair of labels. The statistics are
summarized in Table 3. The volume column lists
the percentage of a given label combination out
of all document pairs, and the # query column
provides the number of queries for which the la-
bel combination exists. In Table 3, we observe
that both PACRR models always perform better
than all baselines on label combinations HRel vs.
NRel, Rel vs. NRel and Nav vs. NRel, which in to-

tal cover 90% of all document pairs. Meanwhile,
apart from Nav-Rel, there is no significant differ-
ence when distinguishing Nav from other types.
K-NRM and DRMM perform better than the other
two baseline models.

3.3 Discussion

Hyper-parameters. As mentioned, models are
selected based on the ERR@20 over validation
data. Hence, it is sufficient to use a reasonable
and representative validation dataset, rather than
handpicking a specific set of parameter settings.
However, to gain a better understanding of the
influence of different hyper-parameters, we ex-
plore PACRR-kwindow’s effectiveness when sev-
eral hyper-parameters are varied. The results when
re-ranking QL search results are given in Figure 3.
The results are reported based on the models with
the highest validation scores after fixing certain
hyper-parameters. For example, the ERR@20 in
the leftmost figure is obtained when fixing ld to
the values shown. The crosses in Figure 3 corre-
spond to the models that were selected for use on
the test data, based on their validation set scores. It
can be seen that the selected models are not neces-
sarily the best model on the test data, as evidenced
by the differences between validation and test data
results, but we consistently obtain scores within
a reasonable margin. Owing to space constraints,
we omit the plots for PACRR-firstk.

Choice between kwindow and firstk approaches.
As mentioned, both PACRR-kwindow and PACRR-
firstk serve to address the variable-length chal-
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Figure 3: The ERR@20 of re-ranked QL with PACRR-kwindow when applying different hyper-
parameters: ld, ns and lg. The x-axis reflects the settings for hyper-parameters, and the y-axis is the
ERR@20. Crosses correspond to the selected models.

lenge for documents and queries, and to make the
training feasible and more efficient. In general, if
both training and test documents are known to be
short enough to fit in memory, then PACRR-firstk
can be used directly. Otherwise, PACRR-kwindow
is a reasonable choice to provide comparable re-
sults. Alternatively, one can regard this choice
as another hyper-parameter, and make a selection
based on held-out validation data.

Accuracy in PAIRACCURACY. Beyond the ob-
servations in Section 3.2, we further examine
the methods’ accuracy over binary judgments by
merging the Nav, HRel and Rel labels. The accura-
cies become 73.5%, 74.1% and 67.4% for PACRR-
kwindow, PACRR-firstk, and DRMM, respectively.
Note that the manual judgments that indicate a
document as relevant or non-relevant relative to
a given query contain disagreements (Carterette
et al., 2008; Voorhees, 2000) and errors (Alonso
and Mizzaro, 2012). In particular, a 64% agree-
ment (cf. Table 2 (b) therein) is observed over
the inferred relative order among document pairs
based on graded judgments from six trained
judges (Carterette et al., 2008). When reproducing
TREC judgments, Al-Maskari et al. (Al-Maskari
et al., 2008) reported a 74% agreement (cf. Ta-
ble 1 therein) with the original judgments from
TREC when a group of users re-judged 56 queries
on the TREC-8 document collections. Meanwhile,
Alonso and Mizzaro (Alonso and Mizzaro, 2012)
observed a 77% agreement relative to judgments
from TREC when collecting judgments via crowd-
sourcing. Therefore, the more than 73% agree-
ment achieved by both PACRR methods is close to
the aforementioned agreement levels among dif-
ferent human assessors. However, when distin-
guishing Nav, HRel, and Rel, the tested models

still fall significantly short of the human judges’
agreement levels. These distinctions are impor-
tant for a successful ranker, especially when mea-
suring with graded metrics such as ERR@20 and
nDCG@20. Hence, further research is needed for
better discrimination among relevant documents
with different degrees of relevance. In addition,
as for the distinction between Nav documents and
Rel or HRel documents, we argue that since Nav
actually indicates that a document mainly satisfies
a navigational intent, this makes such documents
qualitatively different from Rel and HRel docu-
ments. Specifically, a Nav is more relevant for
a user with navigational intent, whereas for other
users it may in some cases be less useful than a
document that directly includes highly pertinent
information content. Therefore, we hypothesize
that further improvements can be obtained by in-
troducing a classifier for user intents, e.g., naviga-
tional pages, before employing neural IR models.

4 Conclusion

In this work, we have demonstrated the impor-
tance of preserving positional information for neu-
ral IR models by incorporating domain insights
into the proposed PACRR model. In particular,
PACRR captures term dependencies and proximity
through multiple convolutional layers with differ-
ent sizes. Thereafter, following two max-pooling
layers, it combines salient signals over different
query terms with a recurrent layer. Extensive ex-
periments show that PACRR substantially outper-
forms four state-of-the-art neural IR models on
TREC Web Track ad-hoc datasets and can dramat-
ically improve search results when used as a re-
ranking model.
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Abstract

Rapid progress has been made towards
question answering (QA) systems that can
extract answers from text. Existing neu-
ral approaches make use of expensive bi-
directional attention mechanisms or score
all possible answer spans, limiting scala-
bility. We propose instead to cast extrac-
tive QA as an iterative search problem:
select the answer’s sentence, start word,
and end word. This representation re-
duces the space of each search step and al-
lows computation to be conditionally allo-
cated to promising search paths. We show
that globally normalizing the decision pro-
cess and back-propagating through beam
search makes this representation viable
and learning efficient. We empirically
demonstrate the benefits of this approach
using our model, Globally Normalized
Reader (GNR), which achieves the sec-
ond highest single model performance on
the Stanford Question Answering Dataset
(68.4 EM, 76.21 F1 dev) and is 24.7x
faster than bi-attention-flow. We also in-
troduce a data-augmentation method to
produce semantically valid examples by
aligning named entities to a knowledge
base and swapping them with new entities
of the same type. This method improves
the performance of all models considered
in this work and is of independent interest
for a variety of NLP tasks.

1 Introduction

Question answering (QA) and information extrac-
tion systems have proven to be invaluable in wide
variety of applications such as medical informa-
tion collection on drugs and genes (Quirk and

Who was first to recognize that the Analytical Engine
had applications beyond pure calculation?

Ada Lovelace was known 
for her work on Charles 
Babbage's Analytical 
Engine.

She was the first to 
recognize that the machine 
had applications beyond 
calculation.

Ada Lovelace was 
known for her work 
on Charles 
Babbage's Analytical 
Engine.

Lovelace was known 
for her work on 
Charles Babbage's 
Analytical Engine.

Charles Babbage's 
Analytical Engine.

Charles Babbage’s 
Analytical Engine

Charles BabbageAda Lovelace

Span Stop

Span Start

Sentence
0.510.49

0.55 0.09 0.36

0.64 0.160.20

Decision Boundary
0.9 State probability

Prediction
Decision

Word pick
Question

Figure 1: GNR answering a question. It first
picks a sentence, then start word, then end word.
Probabilities are global and normalized over the
beam. Model initially picks the wrong sentence,
but global normalization lets it recover. Final
prediction’s probability (0.64) exceeds sentence
pick (0.49), whereas with local normalization each
probability is upper bounded by the previous step.

Poon, 2016), large scale health impact studies (Al-
thoff et al., 2016), or educational material develop-
ment (Koedinger et al., 2015). Recent progress in
neural-network based extractive question answer-
ing models are quickly closing the gap with human
performance on several benchmark QA tasks such
as SQuAD (Rajpurkar et al., 2016), MS MARCO
(Nguyen et al., 2016), or NewsQA (Trischler et al.,
2016a). However, current approaches to extractive
question answering face several limitations:
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1. Computation is allocated equally to the en-
tire document, regardless of answer location,
with no ability to ignore or focus computation
on specific parts. This limits applicability to
longer documents.

2. They rely extensively on expensive bi-
directional attention mechanisms (Seo et al.,
2016) or must rank all possible answer spans
(Lee et al., 2016).

3. While data-augmentation for question an-
swering have been proposed (Zhou et al.,
2017), current approaches still do not pro-
vide training data that can improve the per-
formance of existing systems.

In this paper we demonstrate a methodology for
addressing these three limitations, and make the
following claims:

1. Extractive Question Answering can be cast
as a nested search process, where sentences
provide a powerful document decomposition
and an easy to learn search step. This fac-
torization enables conditional computation to
be allocated to sentences and spans likely to
contain the right answer.

2. When cast as a search process, models with-
out bi-directional attention mechanisms and
without ranking all possible answer spans can
achieve near state of the art results on extrac-
tive question answering.

3. Preserving narrative structure and explicitly
incorporating type and question information
into synthetic data generation is key to gener-
ating examples that actually improve the per-
formance of question answering systems.

Our claims are supported by experiments on the
SQuAD dataset where we show that the Globally
Normalized Reader (GNR), a model that performs
an iterative search process through a document
(shown visually in Figure 1), and has computation
conditionally allocated based on the search pro-
cess, achieves near state of the art Exact Match
(EM) and F1 scores without resorting to more ex-
pensive attention or ranking of all possible spans.
Furthermore, we demonstrate that Type Swaps, a
type-aware data augmentation strategy that aligns
named entities with a knowledge base and swaps
them out for new entities that share the same type,

improves the performance of all models on extrac-
tive question answering.

We structure the paper as follows: in Section 2
we introduce the task and our model. Section 3 de-
scribes our data-augmentation strategy. Section 4
introduces our experiments and results. In Section
5 we discuss our findings. In Section 6 we relate
our work to existing approaches. Conclusions and
directions for future work are given in Section 7.

2 Model

Given a document d and a question q, we pose ex-
tractive question answering as a search problem.
First, we select the sentence, the first word of the
span, and finally the last word of the span. A ex-
ample of the output of the model is shown in Fig-
ure 1, and the network architecture is depicted in
Figure 2.

More formally, let d1, . . . , dn denote each sen-
tence in the document, and for each sentence di,
let di,1, . . . , di,mi denote the word vectors corre-
sponding to the words in the sentence. Similarly,
let q1, . . . , q` denote the word vectors correspond-
ing to words in the question. An answer is a tuple
a = (i∗, j∗, k∗) indicating the correct sentence i∗,
start word in the sentence j∗ and end word in the
sentence k∗. Let A(d) denote the set of valid an-
swer tuples for document d. We now describe each
stage of the model in turn.

2.1 Question Encoding

Each question is encoded by running a stack
of bidirectional LSTM (Bi-LSTM) over each
word in the question, producing hidden states
(hfwd

1 , hbwd
1 ), . . . , (hfwd

` , hbwd
` ) (Graves and

Schmidhuber, 2005). Following Lee et al.
(2016), these hidden states are used to compute a
passage-independent question embedding, qindep.
Formally,

sj = w>q MLP([hbwd
j ;hfwd

j ]) (1)

αj =
exp(sj)∑`
j′=1 exp(sj′)

(2)

qindep =
∑̀

j=1

αj [h
bwd
j ;hfwd

j ], (3)

where wq is a trainable embedding vector, and
MLP is a two-layer neural network with a Relu
non-linearity. The question is represented by
concatenating the final hidden states of the for-
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ward and backward LSTMs and the passage-
independent embedding, q = [hbwd

1 ;hfwd
` ; qindep].

2.2 Question-Aware Document Encoding

Conditioned on the question vector, we compute
a representation of each document word that is
sensitive to both the surrounding context and the
question. Specifically, each word in the document
is represented as the concatenation of its word vec-
tor di,j , the question vector q, boolean features
indicating if a word appears in the question or is
repeated, and a question-aligned embedding from
Lee et al. (2016). The question-aligned embed-
ding qalign

i,j is given by

si,j,k = MLP(di,j)>MLP(qk) (4)

αi,j,k =
exp(si,j,k)∑`

k′=1 exp(si,j,k′)
(5)

q
align
i,j =

∑̀

k=1

αi,j,kqk. (6)

The document is encoded by a separate stack of
Bi-LSTMs, producing a sequence of hidden states
(hfwd

1,1 , h
bwd
1,1 ), . . . , (hfwd

n,mn , h
bwd
n,mn). The search

procedure then operates on these hidden states.

2.3 Answer Selection

Sentence selection. The first phase of our search
process picks the sentence that contains the answer
span. Each sentence di is represented by the hid-
den state of the first and last word in the sentence
for the backward and forward LSTM respectively,
[hbwd
i,1 ;hfwd

i,mi
], and is scored by passing this repre-

sentation through a fully connected layer that out-
puts the unnormalized sentence score for sentence
di, denoted φsent(di).

Span start selection. After selecting a sentence
di, we pick the start of the answer span within
the sentence. Each potential start word di,j is rep-
resented as its corresponding document encoding
[hfwd
i,j ;hbwd

i,j ], and is scored by passing this encod-
ing through a fully connected layer that outputs the
unnormalized start word score for word j in sen-
tence i, denoted φsw(di,j).

Span end selection. Conditioned on sentence
di and starting word di,j , we select the end
word from the remaining words in the sen-
tence di,j , . . . , di,mi . To do this, we run a Bi-
LSTM over the remaining document hidden states

(hfwd
i,j , h

bwd
i,j ), . . . , (hfwd

i,mi
, hbwd

i,mi
) to produce repre-

sentations (h̃fwd
i,j , h̃

bwd
i,j ), . . . , (h̃fwd

i,mi
, h̃bwd

i,mi
). Each

end word di,k is then scored by passing
[h̃fwd
i,k ; h̃bwd

i,k ] through a fully connected layer that
outputs the unnormalized end word score for
word k in sentence i, with start word j, denoted
φew(di,j:k).

2.4 Global Normalization
The scores for each stage of our model can be nor-
malized at the local or global level. Previous work
demonstrated that locally-normalized models have
a weak ability to correct mistakes made in previ-
ous decisions, while globally normalized models
are strictly more expressive than locally normal-
ized models (Andor et al., 2016; Zhou et al., 2015;
Collins and Roark, 2004).

In a locally normalized model each decision is
made conditional on the previous decision. The
probability of some answer a = (i, j, k) is decom-
posed as

P(a|d, q) =Psent(i|d, q) · Psw(j|i, d, q)·
Pew(k|j, i, d, q).

(7)

Each sub-decision is locally normalized by apply-
ing a softmax to the relevant selection scores:

Psent(i|d, q) =
exp(φsent(di))∑n
x=1 exp(φsent(dx))

, (8)

Psw(j|i, d, q) =
exp(φsw(di,j))∑mi
x=1 exp(φsw(di,x))

, (9)

Pew(k|j, i, d, q) =
exp(φew(di,j:k))∑mi
x=j exp(φew(di,j:x))

.

(10)
To allow our model to recover from incorrect

sentence or start word selections, we instead glob-
ally normalize the scores from each stage of our
procedure. In a globally normalized model, we
define

score(a, d, q) = φsent(di)+φsw(di,j)+φew(di,j:k).
(11)

Then, we model

P(a | d, q) = exp(score(a, d, q))
Z

, (12)

where Z is the partition function

Z =
∑

a′∈A(d)
exp(score(a′, d, q)). (13)
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Figure 2: Globally Normalized Reader’s search process. Same color Bi-LSTMs share weights.

In contrast to locally-normalized models, the
model is normalized over all possible search paths
instead of normalizing each step of search proce-
dure. At inference time, the problem is to find

arg max
a∈A(d)

P(a | d, q), (14)

which can be approximately computed using beam
search.

2.5 Objective and Training

We minimize the negative log-likelihood on the
training set using stochastic gradient descent.
For a single example (a, d, q), the negative log-
likelihood

−score(a, d, q) + logZ (15)

requires an expensive summation to compute
logZ. Instead, to ensure learning is efficient, we
use beam search during training and early updates
(Andor et al., 2016; Zhou et al., 2015; Collins and
Roark, 2004). Concretely, we approximate Z by
summing only over candidates on the final beam
B:

Z ≈
∑

a′∈B
exp(score(a′, d, q)). (16)

At training time, if the gold sequence falls off
the beam at step t during decoding, a stochastic
gradient step is performed on the partial objective
computed through step t and normalized over the
beam at step t.

2.6 Implementation

Our best performing model uses a stack of 3 Bi-
LSTMs for the question and document encodings,
and a single Bi-LSTM for the end of span predic-
tion. The hidden dimension of all recurrent layers
is 200.

We use the 300 dimensional 8.4B token Com-
mon Crawl GloVe vectors (Pennington et al.,
2014). Words missing from the Common Crawl
vocabulary are set to zero. In our experiments,
all architectures considered have sufficient capac-
ity to overfit the training set. We regularize the
models by fixing the word embeddings throughout
training, dropping out the inputs of the Bi-LSTMs
with probability 0.3 and the inputs to the fully-
connected layers with probability 0.4 (Srivastava
et al., 2014), and adding gaussian noise to the re-
current weights with σ = 10−6. Our models are
trained using Adam with a learning rate of 0.0005,
β1 = 0.9, β2 = 0.999, ε = 10−8 and a batch size
of 32 (Kingma and Ba, 2014).

All our experiments are implemented in Ten-
sorflow (Abadi et al., 2016), and we tokenize us-
ing Ciseau (Raiman, 2017). Despite perform-
ing beam-search during training, our model trains
to convergence in under 4 hours through the use
of efficient LSTM primitives in CuDNN (Chetlur
et al., 2014) and batching our computation over
examples and search beams. We release our code
and augmented dataset.1

1https://github.com/baidu-research/
GloballyNormalizedReader
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Our implementation of the GNR is 24.7
times faster at inference time than the official
Bi-Directional Attention Flow implementation2.
Specifically, on a machine running Ubuntu 14
with 40 Intel Xeon 2.6Ghz processors, 386GB
of RAM, and a 12GB TitanX-Maxwell GPU, the
GNR with beam size 32 and batch size 32 requires
51.58 ± 0.266 seconds (mean ± std)3 to process
the SQUAD validation set. By contrast, the Bi-
Directional Attention Flow model with batch size
32 requires 1260.23±17.26 seconds. We attribute
this speedup to avoiding expensive bi-directional
attention mechanisms and making computation
conditional on the search beams.

3 Type Swaps

Question: Who said in April 25, 2011
December 2012

that the

fight would change from military to law enforce-
ment?
Answer: Sheryl Sandberg

Jeh Johnson
Document (snippet): . . . Basic objectives of
the Cabinet of Japan

Bush administration

“war on terror”, such as

targeting al Qaeda and building international
counterterrorism alliances, remain in place. In
April 25, 2011

December 2012

, Sheryl Sandberg
Jeh Johnson

, the General

Counsel of the ministry of education
Department of Defense

, stated

that the military fight will be replaced by a
law enforcement operation when speaking at
Ain Shams University

Oxford University

. . .

Figure 3: Type Swaps example. Replacements un-
derlined with originals underneath.

In extractive question answering, the set of pos-
sible answer spans can be pruned by only keeping
answers whose nature (person, object, place, date,
etc.) agrees with the question type (Who, What,
Where, When, etc.). While this heuristic helps hu-
man readers filter out irrelevant parts of a docu-
ment when searching for information, no explicit
supervision of this kind is present in the dataset.
Despite this absence, the distribution question rep-
resentations learned by our models appear to uti-
lize this heuristic. The final hidden state of the

2https://github.com/allenai/
bi-att-flow

3All numbers are averaged over 5 runs.

question-encoding LSTMs naturally cluster based
on question type (Table 1).

In other words, the task induces a question en-
coding that superficially respects type informa-
tion. This property is a double-edged sword: it
allows the model to easily weed out answers that
are inapplicable, but also leads it astray by select-
ing a text span that shares the answer’s type but
has the wrong underlying entity. A similar obser-
vation was made in the error analysis of (Weis-
senborn et al., 2017). We propose Type Swaps, an
augmentation strategy that leverages this emergent
behavior in order to improve the model’s ability
to prune wrong answers, and make it more robust
to surface form variation. This strategy has three
steps:

1. Locate named entities in document and ques-
tion.

2. Collect surface variation for each entity type:

human → {Ada Lovelace, Daniel Kah-
nemann,...},

country→ {USA, France, ...}, ...

3. Generate new document-question-answer ex-
amples by swapping each named entity in
an original triplet with a surface variant that
shares the same type from the collection.
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number (2868)
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country (381)

monarchy (21)

commercial building (8)

international conference (1)

Variations per Type

Figure 4: The majority of the surface variations
occur for people, numbers, dates, and organiza-
tions.

Assigning types to named entities in natural lan-
guage is an open problem, nonetheless when faced
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Table 1: Top bigrams in K-means (K = 7) clusters of question after Bi-LSTM. We observe emergent
clustering according to question type: e.g. Where→ Cluster 7, Who→ Cluster 3. “What” granularity
only observable with more clusters.

Cluster 1 2 3 4 5 6 7
Size 84789 42187 53061 130022 27549 16894 28377

Bigram Bigram Occurences
what is 3339 520 87 3736 20 8 138

what did 2463 3 3 112 1 0 1
how many 2 5095 1 1 0 0 0
how much 7 1102 0 12 0 0 0

who was 2 0 1934 0 0 0 1
who did 2 0 683 2 0 0 0

what was 2177 508 105 2034 71 31 92
when did 0 0 0 1 2772 0 0

when was 0 0 1 1 1876 0 0
what year 0 0 0 1 13 2690 0

in what 52 3 9 727 110 1827 518
where did 0 0 0 13 1 0 955

where is 0 1 0 11 0 0 665

with documents where we can safely assume that
the majority of the entities will be contained in
a large knowledge base (KB) such as Wikidata
Vrandečić and Krötzsch (2014) we find that sim-
ple string matching techniques are sufficiently ac-
curate. Specifically, we use a part of speech tagger
(Honnibal, 2017) to extract nominal groups in the
training data and string-match them with entities
in Wikidata. Using this technique, we are able to
extract 47,598 entities in SQuAD that fall under
6,380 Wikidata instance of4 types. Addition-
ally we assign “number types” (e.g. year, day of
the week, distance, etc.) to nominal groups that
contain dates, numbers, or quantities5. These ex-
traction steps produce 84,632 unique surface vari-
ants (on average 16.93 per type) with the majority
of the variation found in humans, numbers or or-
ganizations as visible in Figure 4.

With this method, we can generate 2.92 · 10369
unique documents (average of 3.36 · 10364 new
documents for each original document). To ensure
there is sufficient variation in the generated docu-
ments, we sample from this set and only keep vari-
ations where the question or answer is mutated. At
each training epoch, we train on T Type Swap ex-

4https://www.wikidata.org/wiki/
Property:P31

5In our experiments we found that not including numeri-
cal variation in the generated examples led to an imbalanced
dataset and lower final performance.

amples and the full original training data. An ex-
ample output of the method is shown in Figure 3.

4 Results

We evaluate our model on the 100,000 example
SQuAD dataset (Rajpurkar et al., 2016) and per-
form several ablations to evaluate the relative im-
portance of the proposed methods.

4.1 Learning to Search

In our first experiment, we aim to quantify the im-
portance of global normalization on the learning
and search process. We use T = 104 Type Swap
samples and vary beam width B between 1 and 32
for a locally and globally normalized models and
summarize the Exact-Match and F1 score of the
model’s predicted answer and ground truth com-
puted using the evaluation scripts from (Rajpurkar
et al., 2016) (Table 3). We additionally report an-
other metric, the Sentence score, which is a mea-
sure for how often the predicted answer came from
the correct sentence. This metric provides a mea-
sure for where mistakes are made during predic-
tion.

4.2 Type Swaps

In our second experiment, we evaluate the impact
of the amount of augmented data on the perfor-
mance of our model. In this experiment, we use
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Table 2: Model comparison

Model EM F1
Human (Rajpurkar et al., 2016) 80.3 90.5
Single model
Sliding Window (Rajpurkar et al., 2016) 13.3 20.2
Match-LSTM (Wang and Jiang, 2016) 64.1 73.9
DCN (Xiong et al., 2016) 65.4 75.6
Rasor (Lee et al., 2016) 66.4 74.9
Bi-Attention Flow (Seo et al., 2016) 67.7 77.3
R-Net(Wang et al., 2017) 72.3 80.6
Globally Normalized Reader w/o Type Swaps (Ours) 66.6 75.0
Globally Normalized Reader (Ours) 68.4 76.21

Table 3: Impact of Beam Width B

Model B EM F1 Sentence

Local, T = 104

1 65.7 74.8 89.0
2 66.6 75.0 88.3

10 66.7 75.0 88.6
32 66.3 74.6 88.0
64 66.6 75.0 88.8

Global, T = 104

1 58.8 68.4 84.5
2 64.3 73.0 86.8

10 66.6 75.2 88.1
32 68.4 76.21 88.4
64 67.0 75.6 88.4

the best beam sizes for each model (B = 10 for lo-
cal andB = 32 for global) and vary the augmenta-
tion from T = 0 (no augmentation) to T = 5 ·104.
The results of this experiment are summarized in
(Table 4).

We observe that both models improve in perfor-
mance with T > 0 and performance degrades past
T = 104. Moreover, data augmentation and global
normalization are complementary. Combined, we
obtain 1.6 EM and 2.0 F1 improvement over the
locally normalized baseline.

We also verify that the effects of Type Swaps
are not limited to our specific model by observ-
ing the impact of augmented data on the DCN+
(Xiong et al., 2016)6. We find that it strongly re-
duces generalization error, and helps improve F1,
with potential further improvements coming by re-

6 The DCN+ is the DCN with additional hyperpa-
rameter tuning by the same authors as submitted on the
SQuAD leaderboard https://rajpurkar.github.
io/SQuAD-explorer/.

Table 4: Impact of Augmentation Sample Size T .

Model T EM F1 Sentence
Local 0 65.8 74.0 88.0
Local 103 66.3 74.6 88.9
Local 104 66.7 74.9 89.0
Local 5 · 104 66.7 75.0 89.0
Local 105 66.2 74.5 88.6
Global 0 66.6 75.0 88.2
Global 103 66.9 75.0 88.1
Global 104 68.4 76.21 88.4
Global 5 · 104 66.8 75.3 88.3
Global 105 66.1 74.3 86.9

Table 5: Impact of Type Swaps on the DCN+

T Train F1 Dev F1
0 81.3 78.1
5 · 104 72.5 78.2

ducing other forms of regularization (Table 5).

5 Discussion

In this section we will discuss the results presented
in Section 4, and explain how they relate to our
main claims.

5.1 Extractive Question Answering as a
Search Problem

Sentences provide a natural and powerful docu-
ment decomposition for search that can be eas-
ily learnt as a search step: for all the models and
configurations considered, the Sentence score was
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above 88% correct (Table 3)7. Thus, sentence se-
lection is the easy part of the problem, and the
model can allocate more computation (such as the
end-word selection Bi-LSTM) to spans likely to
contain the answer. This approach avoids wasteful
work on unpromising spans and is important for
further scaling these methods to long documents.

5.2 Global Normalization

The Globally Normalized Reader outperforms
previous approaches and achieves the second
highest EM behind (Wang et al., 2017), with-
out using bi-directional attention and only scor-
ing spans in its final beam. Increasing the beam
width improves the results for both locally and
globally normalized models (Table 3), suggest-
ing search errors account for a significant por-
tion of the performance difference between mod-
els. Models such as Lee et al. (2016) and Wang
and Jiang (2016) overcome this difficulty by rank-
ing all possible spans and thus never skipping a
possible answer. Even with large beam sizes, the
locally normalized model underperforms these ap-
proaches. However, by increasing model flexi-
bility and performing search during training, the
globally normalized model is able to recover from
search errors and achieve much of the benefits of
scoring all possible spans.

5.3 Type-Aware Data Augmentation

Type Swaps, our data augmentation strategy, of-
fers a way to incorporate the nature of the ques-
tion and the types of named entities in the answers
into the learning process of our model and reduce
sensitivity to surface variation. Existing neural-
network approaches to extractive QA have so far
ignored this information. Augmenting the dataset
with additional type-sensitive synthetic examples
improves performance by providing better cover-
age of different answer types. Growing the num-
ber of augmented samples used improves the per-
formance of all models under study (Table 4-5).
With T ∈ [104, 5 · 104], (EM, F1) improve from
(65.8 → 66.7, 74.0 → 75.0) for locally normal-
ized models, and (66.6 → 68.4, 75.0 → 76.21)

7The objective function difference explains the lower per-
formance of globally versus locally normalized models on the
Sentence score: local models must always assign the high-
est probability to the correct sentence, while global models
only ensure the correct span has the highest probability. Thus
global models do not need to enforce a high margin between
the correct answer’s sentence score and others and are more
likely to keep alternate sentences around.

for globally normalized models.
Past a certain amount of augmentation, we ob-

serve performance degradation. This suggests that
despite efforts to closely mimic the original train-
ing set, there is a train-test mismatch or excess du-
plication in the generated examples.

Our experiments are conducted on two vastly
different architectures and thus these benefits are
expected to carry over to different models (Weis-
senborn et al., 2017; Seo et al., 2016; Wang et al.,
2017), and perhaps more broadly in other natu-
ral language tasks that contain named entities and
have limited supervised data.

6 Related Work

Our work is closely related to existing approaches
in learning to search, extractive question answer-
ing, and data augmentation for NLP tasks.

Learning to Search. Several approaches to
learning to search have been proposed for various
NLP tasks and conditional computation. Most re-
cently, Andor et al. (2016) and Zhou et al. (2015)
demonstrated the effectiveness of globally normal-
ized networks and training with beam search for
part of speech tagging and transition-based depen-
dency parsing, while Wiseman and Rush (2016)
showed that these techniques could also be applied
to sequence-to-sequence models in several appli-
cation areas including machine translation. These
works focus on parsing and sequence prediction
tasks and have a fixed computation regardless of
the search path, while we show that the same tech-
niques can also be straightforwardly applied to
question answering and extended to allow for con-
ditional computation based on the search path.

Learning to search has also been used in con-
text of modular neural networks with conditional
computation in the work of Andreas et al. (2016)
for image captioning. In their work reinforcement
learning was used to learn how to turn on and off
computation, while we find that conditional com-
putation can be easily learnt with maximum like-
lihood and the help of early updates (Andor et al.,
2016; Zhou et al., 2015; Collins and Roark, 2004)
to guide the training process.

Our framework for conditional computation
whereby the search space is pruned by a sequence
of increasingly complex models is broadly rem-
iniscent of the structured prediction cascades of
(Weiss and Taskar, 2010). Trischler et al. (2016b)
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also explored this approach in the context of ques-
tion answering.

Extractive Question Answering. Since the in-
troduction of the SQuAD dataset, numerous sys-
tems have achieved strong results. Seo et al.
(2016); Wang et al. (2017) and Xiong et al. (2016)
make use of a bi-directional attention mecha-
nisms, whereas the GNR is more lightweight and
achieves similar results without this type of at-
tention mechanism. The document representation
used by the GNR is very similar to Lee et al.
(2016). However, both Lee et al. (2016) and
Wang and Jiang (2016) must score all O(N2)
possible answer spans, making training and infer-
ence expensive. The GNR avoids this complex-
ity by learning to search during training and out-
performs both systems while scoring only O(B)
spans. Weissenborn et al. (2017) is a locally nor-
malized model that first predicts start and then
end words of each span. Our experiments lead
us to believe that further factorizing the problem
and using global normalization along with our
data augmentation would yield corresponding im-
provements.

Data augmentation. Several works use data
augmentation to control the generalization error of
deep learning models. Zhang and LeCun (2015)
use a thesaurus to generate new training examples
based on synonyms. Vijayaraghavan et al. (2016)
employs a similar method, but uses Word2vec and
cosine similarity to find similar words. Jia and
Liang (2016) use a high-precision synchronous
context-free grammar to generate new semantic
parsing examples. Our data augmentation tech-
nique, Type Swaps, is unique in that it leverages
an external knowledge-base to provide new ex-
amples that have more variation and finer-grained
changes than methods that use only a thesaurus or
Word2Vec, while also keeping the narrative and
grammatical structure intact.

More recently Zhou et al. (2017) proposed a
sequence-to-sequence model to generate diverse
and realistic training question-answer pairs on
SQuAD. Similar to their approach, our technique
makes use of existing examples to produce new
examples that are fluent, however we also are able
to explicitly incorporate entity type information
into the generation process and use the generated
data to improve the performance of question an-
swering models.

7 Conclusions and Future Work

In this work, we provide a methodology that over-
comes several limitations of existing approaches
to extractive question answering. In particular,
our proposed model, the Globally Normalized
Reader, reduces the computational complexity of
previous models by casting the question answer-
ing as search and allocating more computation to
promising answer spans. Empirically, we find that
this approach, combined with global normaliza-
tion and beam search during training, leads to near
state of the art results. Furthermore, we find that
a type-aware data augmentation strategy improves
the performance of all models under study on the
SQuAD dataset. The method is general, only re-
quiring that the training data contains named enti-
ties from a large KB. We expect it to be applicable
to other NLP tasks that would benefit from more
training data.

As future work we plan to apply the GNR
to other question answering datasets such as
MS MARCO (Nguyen et al., 2016) or NewsQA
(Trischler et al., 2016a), as well as investigate the
applicability and benefits of Type Swaps to other
tasks like named entity recognition, entity link-
ing, machine translation, and summarization. Fi-
nally, we believe there a broad range of structured
prediction problems (code generation, generative
models for images, audio, or videos) where the
size of original search space makes current tech-
niques intractable, but if cast as learning-to-search
problems with conditional computation, might be
within reach.
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Abstract

We present the first unsupervised LSTM
speech segmenter as a cognitive model
of the acquisition of words from unseg-
mented input. Cognitive biases toward
phonological and syntactic predictability
in speech are rooted in the limitations of
human memory (Baddeley et al., 1998);
compressed representations are easier to
acquire and retain in memory. To model
the biases introduced by these memory
limitations, our system uses an LSTM-
based encoder-decoder with a small num-
ber of hidden units, then searches for a
segmentation that minimizes autoencod-
ing loss. Linguistically meaningful seg-
ments (e.g. words) should share regu-
lar patterns of features that facilitate de-
coder performance in comparison to ran-
dom segmentations, and we show that
our learner discovers these patterns when
trained on either phoneme sequences or
raw acoustics. To our knowledge, ours is
the first fully unsupervised system to be
able to segment both symbolic and acous-
tic representations of speech.

1 Introduction

This paper describes a new cognitive model of the
acquisition of word-like units from unsegmented
input. The model is intended to describe the pro-
cess by which pre-linguistic infants learn their ear-
liest words, a stage they pass through during the
first year of life (Jusczyk and Aslin, 1995; Bergel-
son and Swingley, 2012). Our model is based
on the standard memory model of Baddeley and
Hitch (1974) in which the listener encodes lexical
items into phonological working memory, but rep-
resents the entire sentence as a higher-level syn-

tactic structure without phonological detail. Our
model implements this architecture using encoder-
decoder LSTMs with limited memory capacity,
then searches for word segmentations which make
it easy to remember the sentence.1

Word learning has been extensively studied in
previous research, both with transcribed symbolic
input and acoustics. Why attempt yet another ap-
proach? Our model has three main advantages.
First, as a cognitive model, it relates the kinds
of learning biases used in previous work to the
wider literature on working memory. Second, its
sequence-to-sequence neural architecture allows it
to handle either one-hot symbolic input or dense
vectors of acoustic features. In contrast, existing
models are typically designed for “clean” sym-
bolic input, then retrofitted with additional mech-
anisms to cope with acoustics. Finally, neural net-
works have been impressively successful in super-
vised language processing domains, yet are still
underused in unsupervised learning. Even sys-
tems which do use neural nets to model lexical ac-
quisition generally require an auxiliary model for
clustering the embeddings, which can make their
learning objectives difficult to understand. Our
system uses the well-understood autoencoder ob-
jective to perform the segmentation task without
requiring auxiliary clustering, and thus suggests a
new direction for neural unsupervised learning.

In an experiment conducted on the widely used
Brent corpus (Brent, 1999), our system achieves
performance close to that of Fleck (2008), al-
though subsequent systems outperform ours by a
wider margin. We show that memory limitations
do indeed drive the performance of the system,
with smaller LSTM hidden states outperforming
larger ones in the development set.

In a follow-up experiment designed to ex-
1The system is available from https://github.

com/melsner/neural-segmentation.
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plore the flexibility of our model, we deploy the
segmenter on acoustic input: the English por-
tion of the Zerospeech 2015 challenge (Versteegh
et al., 2015). Our model outperforms the win-
ning model from that challenge (Räsänen et al.,
2015), although we underperform more recent un-
supervised acoustic segmentation systems (Kam-
per et al., 2016; Räsänen et al., under review).

To our knowledge, our system is the first un-
supervised LSTM speech segmenter, as well as
the first unsupervised speech segmenter to succeed
on both symbolic and acoustic representations of
speech. Our results are of note for several reasons.
First, they provide modeling support for the claim
that memory limitations encourage lexical acquisi-
tion. Second, they show that a general strategy of
searching for maximally compressible represen-
tations can realistically guide lexical acquisition
without explicit reference to perceptual biases (c.f.
e.g. Räsänen et al., 2015), regardless of input rep-
resentation. And third, they demonstrate the bene-
fits of our adaptation of neural sequence modeling
to unsupervised learning.

2 Motivations

We begin with a short overview of previous ap-
proaches to the word learning problem, then ex-
plain each of our main contributions in detail.
Many cognitive models of the word learning prob-
lem draw on Brent (1999), which used a sim-
ple unigram model of the lexicon to discover re-
peated patterns in phonemically transcribed input.
Brent’s model laid the groundwork for later gen-
erative models with more sophisticated prior dis-
tributions over word frequencies, co-occurrence
statistics and phonological shapes (Johnson and
Goldwater, 2009, among others). Other model-
ing architectures for segmentation have focused on
detecting phonological boundaries between words
using transitional probabilities (Christiansen et al.,
1998, among others) or inducing words procedu-
rally by “subtracting” known word forms from ut-
terances (Lignos, 2011).

All these modeling architectures are designed
to work with phonemically transcribed input, and
require some degree of retrofitting to work with
more realistic inputs. In the Bayesian framework,
this typically takes the form of a transducer which
probabilistically transforms “underlying” lexical
items to “surface” acoustics (Lee et al., 2015) or
discrete symbols (Elsner et al., 2013); the same

framework is used for morphological segmenta-
tion in Cotterell et al. (2015). For transition-
based models, the input must be transformed into
discrete symbols from which segment-to-segment
probabilities can be extracted; this transforma-
tion requires an externally trained preprocessor (a
phone recognizer). Transition-based models are
fairly robust to variation in the symbols (Rytting,
2007; Rytting et al., 2010; Daland and Pierrehum-
bert, 2011; Fleck, 2008) and can be relatively suc-
cessful in this framework. Extensions using neural
nets (Christiansen et al., 1998; Rytting et al., 2010)
are discussed in more detail below (subsec. 2.3).
Lignos (2011) requires the most complex prepro-
cessing of the input (segmentation into syllables,
with marked lexical stresses); adapting it to noisy
input is an open problem.

2.1 Working memory and learning biases

Cognitive models of word segmentation rely on
two kinds of learning biases to structure their in-
ferred lexicons: predictability within words (of-
ten expressed as a prior over phonological forms),
and Zipfian unigram and bigram frequencies of
words (a prior over word distributions). These
biases control the entropy of utterances, making
it easy for adult listeners to remember what they
hear and reconstruct any missing parts from con-
text (Piantadosi et al., 2012). The biases corre-
spond to different components in a standard model
of working memory (Baddeley, 2007; Baddeley
and Hitch, 1974). In this model, listeners can
store the last few items they heard in a phonolog-
ical loop, from which words are transferred into
episodic memory which represents them at a syn-
tactic/semantic level.

Baddeley et al. (1998) claim that the phonologi-
cal loop functions in word learning as well as pro-
cessing by proficient listeners, aiding in the ac-
quisition of unfamiliar words. They summarize
a number of studies showing that the vocabulary
size of typically developing infants correlates with
their ability to remember a sequence of phono-
logically plausible non-words, a test of phonolog-
ical loop capacity. Children with Specific Lan-
guage Impairment, meanwhile, remember non-
words poorly, a deficit which may contribute to
their atypically small vocabularies. Baddeley et al.
(1998) argue that the ability to remember an unfa-
miliar phonological form in the short term is es-
sential if it is to be transferred to long-term mem-
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ory as a datapoint for lexical learning. This ac-
count of word learning is one of a growing number
which attempt to unify acquisition and speech pro-
cessing in terms of the same real-time, resource-
constrained mechanisms (Apfelbaum and McMur-
ray, 2016).

In our model, memorization itself can be viewed
as the objective for early word learning. The
model attempts to reconstruct its input from mem-
ory; chunks that are easy to reconstruct (and that
make the context reconstructible) are good can-
didate words. The working memory model ac-
counts for the two types of bias normally found
in Bayesian segmenters. Phonological predictabil-
ity due to consistent word shapes (Börschinger and
Johnson, 2014; Johnson and Goldwater, 2009) re-
duces the load on the phonological loop. Pre-
dictability between words reduces the load on syn-
tactic memory. The two memory systems draw on
different cognitive resources, which correspond to
different parameters of the model.

2.2 Input representations

As stated above, traditional segmentation models
operate on phonemic transcriptions and must be
adapted to cope with phonetic or acoustic input.
For models which infer an explicit lexicon (i.e.,
those which do not simply count segment transi-
tions), this takes the form of a mapping between
the data and the space of “underlying” latent word
forms.

Learning such a mapping can be problematic.
Traditional generative learning models use para-
metric distributions over the data— for acoustics,
Gaussians (Vallabha et al., 2007; Feldman et al.,
2009) or Gaussian-HMMs (Lee and Glass, 2012;
Lee et al., 2015). But these are a notoriously poor
fit to real speech sounds (Glass, 2003).

An example of an alternative approach to rep-
resentation learning from acoustics is Räsänen
et al. (2015). They exploit known acoustic indi-
cators of syllable boundaries to infer syllable seg-
ments, cluster those segments using expectation-
maximization (EM), and then identify multisyl-
labic words by searching for recurring cluster n-
grams. As a result, their system is constrained
to propose word boundaries only at proposed syl-
lable boundaries regardless of the representations
acquired downstream. Furthermore, EM is known
to find non-optimal solutions for many problems
in natural language (Johnson, 2007). To the ex-

tent that this inhibits their system’s ability to ex-
ploit information in the acoustic feature space, it
might lead to misidentification of recurrent sylla-
ble n-grams and consequently to segmentation er-
ror.

Latent underlying representations can also
cause search problems, since the model must ex-
plore all the possible underlying forms which
might map to some utterance on the surface. In
a probabilistic system capable of mapping every
word to every possible realization, this quickly be-
comes intractable. Many systems use dynamic
programming (Mochihashi et al., 2009; Neubig
et al., 2010), sometimes with pruning (Van Gael
et al., 2008). But these algorithms require Markov
models with small context windows, and in any
case can still be slow and prone to search errors.

Neural nets, on the other hand, learn a non-
linear mapping between input and output. This
allows them to model speech more flexibly, out-
competing Gaussian/HMMs for supervised speech
recognition (Graves et al., 2013; Hinton et al.,
2012). Recurrent neural nets also produce hidden
representations differently than HMMs. Rather
than use dynamic programming to search a latent
space, they produce a single vector deterministi-
cally at each timestep. Models such as LSTMs
(Hochreiter and Schmidhuber, 1997) can learn
long-distance sequential dependencies in their in-
put without making inference more expensive.

2.3 Neural unsupervised learning

A few previous papers have used neural networks
for word segmentation. Christiansen et al. (1998),
drawing on older work with Simple Recurrent
Networks (Elman, 1990), trains a recurrent net-
work as a language model. Word boundaries are
extracted at points where the network predicts an
upcoming utterance boundary; that is, utterance
boundaries are used as distant supervision for the
locations of word boundaries. While effective, this
system uses symbolic rather than acoustic input.
Moreover, it may have trouble with word endings
which do not end utterances, such as the endings
of function words; experiments show that infants
learn detailed representations of function words by
13 months (Shi et al., 2006) and use known words
as “anchors” for segmentation within utterances
(Bortfeld et al., 2005).

Rytting (2007) adapts the Christiansen model
to variable input by using the posterior probabil-
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ity distribution from a phone recognizer as its fea-
ture representation. This system was run on natu-
ral data; results for word boundary detection were
significantly above chance, though still much less
accurate than results for symbolic input. The use
of utterance boundaries as distant supervision may
create problems for this system similar to those
pointed out for Christiansen above. Moreover, the
use of an SRN rather than an LSTM means that the
system is essentially phonotatic; it makes its deci-
sions based on the previous one or two phones,
without the capacity to remember whole lexical
items.

Recent work (Kamper et al., 2016) has at-
tempted to harness the flexibility of neural fea-
ture extractors within the generative model frame-
work. This model has a hybrid architecture con-
sisting of a neural feature extractor, the Correspon-
dence Autoencoder, pretrained using distant su-
pervision (Kamper et al., 2015), and a Bayesian
clustering/segmentation model. The system repre-
sents each word by neurally encoding its frames,
then downsampling to obtain a fixed-dimensional
word vector; the clustering model assumes that
these vectors can be modeled with Gaussian clus-
ters. The advantage of this approach is its ability
to exploit the known strengths of both Bayesian
and neural learning systems. The disadvantage is
its indirectness: there is no end-to-end objective
to be optimized, and the system’s lexical learning
does not inform its phonetic representations.

Even outside the domain of segmentation, neu-
ral networks have been most successful for super-
vised problems, and are not widely used for un-
supervised learning of discrete structures (trees,
clusters, segment boundaries). While some re-
searchers have proposed information-theoretic ob-
jectives for learning clusters (Klapper-Rybicka
et al., 2001), the most widely used unsupervised
objective is the one used here: autoencoding.
Yet autoencoders are rarely used to learn discrete
hidden structures. One exception, Socher et al.
(2011), uses autencoders to find a latent tree struc-
ture for sentiment analysis by greedily merging
adjacent nodes so as to minimize the reconstruc-
tion error.

Chung et al. (2017) describe a model similar
to our own which performs a segmentation task
using autoencoders. Both models use multiscale
autoencoding to learn a sequence model with un-
known segment boundaries. The main difference

is the different technique used to deal with the
discontinuities caused by switching discrete seg-
ment boundary variables. However, they evaluate
their model on downstream tasks (notably, char-
acter language modeling) without evaluating the
segmentations directly.

3 The Model

The model uses a basic encoder-decoder archi-
tecture now typical in machine translation (Cho
et al., 2014) and image captioning (Vinyals et al.,
2015). In a typical encoder-decoder, the input is
fed into an LSTM sequence model (Hochreiter and
Schmidhuber, 1997) which represents it as a la-
tent numeric embedding. This embedding is then
fed into another sequence model, which uses it to
generate an output sequence. Our two-level model
performs this process in stages, first encoding ev-
ery word, character-by-character, and then encod-
ing the word sequence, vector-by-vector. In an au-
toencoder, the objective is to make input and out-
put match; thus, the decoder performs the encod-
ing stages in reverse. We provide the final encoder
hidden state as input to each decoder unit. To force
the system’s learned embeddings to be robust to
noise caused by mishearing or misremembering,
we use dropout (Srivastava et al., 2014) at the in-
put (deleting individual timesteps) and at the word
encoding layer (deleting entire words). This archi-
tecture is illustrated in Figure 1.

The encoder-decoder does not predict segment
boundaries directly, but gives an objective func-
tion (reconstruction loss) which can be used to
guide segmentation. Because the segment bound-
ary decisions are hard (there are no “partial”
boundaries), the loss function is not differentiable
as a function of the boundary indicators. We use
sampling to estimate the gradient, as in previous
work (Mnih et al., 2014; Xu et al., 2015). Our
sampling system works as follows: we begin with
a proposal distribution Pseg over sequences of seg-
ment boundaries for the current utterance x. We
sample m sequences of boundaries, B1:m from
Pseg. Each boundary sequence splits the utterance
into words. We use the autoencoder network to
encode and decode the words, and obtain the loss
(the cross-entropy of the reconstructed input) for
each sequence, L1:m.

We can use the cross-entropy to estimate the
posterior probability of the data given a breakpoint
sequence (Eq. 1), assuming a uniform prior over

1073



Figure 1: Architecture of the model: top two panels show the encoder/decoder, bottom panels show
computation of breakpoints and resulting loss. Horizontal arrows represent LSTMs.

break positions. We then treat each breakpoint t in
the utterance independently: for each one, we use
the losses and the proposal probabilities to com-
pute an importance weightwti for sample i and po-
sition t (Eq. 2), then compute the expected prob-
ability of a boundary at that position by summing
over the weighted samples (Eq. 3). Essentially,
a breakpoint will be more likely if it appeared in
samples with low reconstruction loss, especially if
it is not encouraged by the current proposal.

P (x|Bi) =
P (Bi|x)P (Bi)

P (x)
≈ exp(Li)∑

j exp(Lj)
(1)

wti =
P (x|Bi)
P tseg(B

t
i)

(2)

E[B(t)] ≈ 1∑
iw

t
i

∑

i

wtiB
t
i (3)

We initialize by making random breakpoint pro-
posals (with probability .1 at each position). The
random proposal does not search the space of seg-
mentation boundaries particularly efficiently, so
we train a better proposal using another LSTM.
This LSTM simply reads the input from left to
right and predicts a binary output (segment or not)
at each timestep. We update the proposal LSTM
by using the sampling-derived Pseg as a training
target after each batch. Thus, the proposal learns
to predict segment boundaries that are likely to re-
sult in low reconstruction loss for the main net-
work. To force the system to explore the space,
we smooth the learned proposal by interpolating it
with a uniform distribution: Pseg = .9×PLSTM+
.1× 1

2 .

We control the memory capacity of the system
using four tunable parameters: the number of hid-
den states at the phonological level (Hp) and at
the utterance level (Hu) and the dropout probabil-
ity of mishearing a phonological segment (Dp) or
a word (Du). We discuss parameter tuning results
below.

The system also has several other parameters
which were not tuned against the evaluation met-
ric. For convenience in GPU training, we treat all
sequences as fixed length, either clipping them or
padding with a dummy symbol. This requires us
to set a maximum length for each word (in charac-
ters), and each utterance (in words and characters);
we set these parameters to ensure 99% coverage
of the input (for the Brent corpus, 7, 10, and 30
respectively).

Clipping creates the possibility of pathological
outcomes where the system deliberately creates
extremely long words, exploiting the fact that the
excess characters will be discarded and will not
have to be predicted in the output. We penalize this
by subtracting 50 for each deleted character. Fi-
nally, we find that, despite pre-training, the system
may settle into an initial state where the phono-
logical network simply embeds the characters and
the utterance network learns a character LM. To
avoid this, we subtract 10 from the objective for
each one-symbol word. These parameters were
tuned only lightly; we increased the values until
the problematic behavior (segmentation of the en-
tire utterance as one word, or each character as a
word) ceased.

We implemented the network in Keras (Chollet,
2015), using Adam (Kingma and Ba, 2014) with

1074



default settings for optimization. We use mini-
batches of 128 and take 100 samples of potential
segment boundaries per sequence. We perform 10
iterations of pretraining with random boundaries,
10 iterations of boundary induction with random
proposals, and 70 iterations of full training with
the learned LSTM proposal.

4 Results

4.1 Brent Corpus

The Brent corpus (Brent, 1999) is a standard
benchmark dataset for segmentation, consisting
of 9790 utterances from Bernstein-Ratner (1987),
translated into phonemic transcription using the
CMU dictionary. The standard metrics for seg-
mentation are F-score for word boundary detec-
tion (treating each boundary in isolation) and F-
score for word token segmentation (a word is cor-
rect only if both its boundaries are correct and no
spurious boundaries intervene). Although early
work on Brent used all 9790 utterances for both
development and test, we use the first 8000 utter-
ances for parameter tuning. Thus, we present re-
sults for the whole corpus (for comparison with
previous work) and clean test results for the last
1790.

We tune the four parameters of our system,
Hp, Hu, Dp and Du, using a grid search (see Fig-
ure 2). Each subplot shows a particular dropout
setting, Dp/Du; the cells within represent set-
tings of Hp (rows) and Hu (columns), where
darker cells have higher boundary F-score. Exces-
sive noise decreases scores, especially high word
dropout (right side of the plot). For low levels
of dropout, the best systems tend to have small
numbers of hidden units (dark regions in the lower
left); for larger dropout, more hidden units can be
useful. For instance, compare the top left subplot,
with 0 dropout and good performance with Hp =
20, Hu = 100, to subplot 3,3, with optimal per-
formance at Hp = 80, Hu = 200. In other words,
limiting the system’s memory resources is indeed
the key to its performance. The best score occurs
at Hp = 80, Hu = 400, Dp = 0.5, Du = 0.25
with a dev boundary F-score of 83%. We used
these parameters for our final evaluation, along
with 100 hidden units in the proposal network.

To further demonstrate that limited memory
can bias the network to learn a low-entropy lexi-
con, we perform a separate experiment using the
phonological encoder/decoder alone. We create
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Figure 2: Tuning results on Brent development.
Cell axes represent Hu and Hp, darker cells have
higher scores (best 83%, worst 60%).
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Figure 3: Reconstruction accuracy of the phono-
logical encoder/decoder on real words vs. length-
matched pseudowords from Brent.

networks with varying Hp (setting Dp to 0); for
each network size, we train one net on real words
from the gold segmentation of Brent, and another
on length-matched pseudowords sampled by ran-
domly segmenting the Brent corpus. Figure 3
shows the reconstruction error rates as a function
of Hp. The gap between the green and orange
lines shows the difference in reconstruction error
obtained by using real words rather than pseu-
dowords. For the smallest Hp, neither network
does a good job; for the largest, both networks
learn the sequences perfectly. For values in be-
tween, however, the lines are relatively far apart,
showing that the real words are easier for the net-
work to remember.

Our results for Brent, along with selected com-
parisons, are shown in Table 1.2 Our system per-

2Comparison system scores are those reported in their
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System Bd P Bd R Bd F Wd F
Goldwater 09 90 74 87 74
Johnson 09 - - - 88
Berg-
Kirkpatrick
10

- - - 88

Fleck 08 95 74 83 71
Ours (all) 81 85 83 72
Ours (test) 81 86 83 72

Table 1: Selected segmentation results on Brent.

forms at the lower end of the reported range for
Brent segmenters, scoring 83% for boundary de-
tection and 72% for word detection (comparable to
(Fleck, 2008)). (Lignos (2011) scores 93% bound-
ary F on a different corpus with marked syllable
boundaries.) From a cognitive modeling point of
view, it is not clear what performance we should
expect on Brent to model the performance of a
young human infant. Models of early word seg-
mentation are motivated by studies showing that,
by their first birthday, infants can distinguish many
common words from nonwords (Vihman et al.,
2004; Swingley, 2005). But this does not im-
ply that they learn every word they hear, or that
they can use their word knowledge to segment ev-
ery utterance correctly. Thus, while our result is
not state-of-the-art, it is good enough to conform
with the reported infant results and suggest that
our neural architecture is a promising direction.

Learning curves for segmentation on the Brent
corpus are shown in Figure 4. The first 10 it-
erations show a gradual increase in segmentation
performance using the random proposal. Perfor-
mance increases sharply with the activation of the
learned proposal, then climbs slowly over time.
Precision initially exceeds recall (that is, the sys-
tem proposes too few boundaries) but recall climbs
over time as the system exploits known words as
“anchors” to discover new ones, a pattern consis-
tent with the infant data (Bortfeld et al., 2005).

4.2 Zerospeech 2015 acoustic segmentation
We began by claiming that an advantage of our
model was its flexible architecture that permits
dense acoustic features as input (rather than sym-
bolic phone labels) with little modification. In
this section, we present preliminary results from

respective publications, except for Goldwater et al. (2009),
which are corrected numbers published with their software
release. Not all systems report all metrics.
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Figure 4: Boundary precision, recall, and F1 score
by iteration on the entire Brent dataset.

a follow-up experiment in which we tested this
claim by deploying our system as an acoustic seg-
menter on the English portion of the Zerospeech
2015 challenge dataset (Versteegh et al., 2015).
We preprocess the raw acoustic data by extract-
ing 25ms 13-dimensional mel frequency cepstral
coefficients with first and second order deltas at a
step size of 10ms. We then train the network on
the resulting sequences of 39-dimensional frames.

Given that the goal of the experiment was to
test the existing architecture on a novel task, we
intentionally conducted this experiment with min-
imal parameter tuning or architectural modifica-
tion. However, we made several key changes in
response to the unique challenges presented by
acoustic input.

First, since we are now reconstructing dense
vectors of acoustic features, we use mean squared
error (MSE) instead of categorical cross-entropy
as the autoencoder loss function. We consequently
rescale our clipping penalty from 50 to 1, a coeffi-
cient which seemed more in balance with the vari-
ation in decoder loss produced by MSE. We also
increase our one-letter penalty from 10 to 50, mod-
eling our strong prior assumption that a 1-frame
segment will never correspond to a word.

Second, in contrast to the phoneme sequences
in the Brent corpus discussed above, utterance
boundaries are not observed in acoustic input. The
input to the two-level autoencoder must be divided
into sequences of utterances, so we imposed utter-
ance boundaries by iteratively consuming the next
discovered word in the time series up to the maxi-
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System Bd P Bd R Bd F Wd F
Lyzinski 15 18.8 64.0 29.0 2.4
Räsänen 15 75.7 33.7 46.7 9.6
Räsänen new 61.1 50.1 55.2 12.4
Kamper 16 66.5 58.8 62.4 20.6
Ours 62.4 43.2 51.1 9.3

Table 2: Selected word segmentation results on the
the Zerospeech 2015 English corpus.

mum utterance length (in frames). The aforemen-
tioned clipping penalties punish the system for ut-
terances that contain too many words, preventing
it from optimizing its autoencoder loss by seg-
menting everywhere.

Third, for our initial proposal distribution we
use the speech region segmentation provided by
the Zerospeech challenge, consisting of speech in-
tervals identified through automatic voice activ-
ity detection (VAD), rather than using the uniform
initialization described above for symbolic mode.
We interpolate the initial distribution with a uni-
form prior as described above.

Fourth, we discovered in practice that the as-
sumption of independence between samples made
by the importance scoring scheme as implemented
for symbolic mode was distortionary in acoustic
mode, such that the “best” segmentation discov-
ered through sampling often contained many times
more segments than any of its component sam-
ples.3 To prevent this from happening, we simply
used 1-best rather than importance sampling for
acoustic segmentation.

We trained the system for 80 iterations using pa-
rameters Hp = 20, Hu = 400, Dp = 0, Du =
0.25 and 1500 hidden units in the proposal LSTM.
In the auto-encoder network, we limited frames
per utterance, words per utterance, and frames per
word to 400, 16, and 100, respectively. Results
are presented in Table 2, along with a compari-
son to results from other systems. Lyzinski et al.
(2015) and Räsänen et al. (2015) were entrants in
the Zerospeech 2015 challenge, in which Räsänen
et al. (2015) performed best in the word bound-

3We believe this is driven by training batches in which
multiple samples receive similar scores but have fairly non-
overlapping segmentations. In this case, the output segmen-
tation can contain something close to the union of the best
samples’ segmentation points, leading to oversegmentation.
This effect is likely exaggerated in acoustic mode as com-
pared to symbolic mode because acoustic word segments are
generally much longer (in frames) than their corresponding
symbolic word segments (in characters).

ary detection measure. As shown in the table, our
system beats both of these competitors’ boundary
detection scores, with a word detection score com-
parable to that of Räsänen et al. (2015). How-
ever, since the challenge concluded, Räsänen et al.
(under review) have modified their system and
improved their segmentation score,4 and Kamper
et al. (2016) have established a new state of the
art for this task. While our system currently re-
mains far from these newer benchmarks, we ex-
pect that with systematic parameter tuning and in-
vestigation into appropriate sampling procedures
for acoustic input, we might be able to improve
substantially on the results presented here. We be-
lieve that the results of this preliminary investiga-
tion into the acoustic domain are promising, and
that they bear out our claims about the flexibility
of our general architecture.

5 Conclusions and future directions

This work presented a new unsupervised LSTM
architecture for discovering meaningful segments
in representations of continuous speech. Mem-
ory limitations in the autoencoder part of the net-
work apply pressure to discover compressed rep-
resentations much as human memory limitations
have been argued to guide lexical acquisition. By
varying the size of the LSTM’s hidden state, we
showed that word segmentation performance on
the Brent corpus is driven by memory limitations,
with performance improving (up to a point) as we
constrain the system’s memory capacity. And by
successfully deploying our system on both sym-
bolic (character) and acoustic representations of
speech, we demonstrated that our approach is flex-
ible enough to adapt to either representation of the
speech stimulus.

In the future we hope to pursue a number of
lines of inquiry. We plan to conduct more de-
tailed parameter tuning in the acoustic domain and
to segment the Xitsonga dataset supplied with the
Zerospeech 2015 challenge. We also intend to
introduce additional layers into the autoencoder
network so as to allow for joint acquisition of
phone-like, morph-like, and/or word-like units in
the acoustic signal; this may benefit from the al-
ternate model structure of Chung et al. (2017).
And we plan to explore clustering techniques that

4The new results are not yet published. Those reported
above are copied from the results summary in Kamper et al.
(2016).
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would allow our system to discover categories in
addition to probable segmentation points.
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Abstract

Research in computational semantics is in-
creasingly guided by our understanding
of human semantic processing. However,
semantic models are typically studied in
the context of natural language process-
ing system performance. In this paper, we
present a systematic evaluation and com-
parison of a range of widely-used, state-
of-the-art semantic models in their abil-
ity to predict patterns of conceptual repre-
sentation in the human brain. Our results
provide new insights both for the design
of computational semantic models and for
further research in cognitive neuroscience.

1 Introduction

Recent years have witnessed many breakthroughs
in data-driven semantic modelling: from the log-
linear skip-gram model of Mikolov et al. (2013a)
to multi-modal meaning representations (Bruni
et al., 2012; Kiela and Bottou, 2014; Kiela and
Clark, 2015; Kiela et al., 2015a). These models
boast of a higher performance accuracy in numer-
ous semantic tasks, including modeling seman-
tic similarity and relatedness (Silberer and Lap-
ata, 2012), lexical entailment (Kiela et al., 2015b),
analogy (Mikolov et al., 2013b) and metaphor
(Shutova et al., 2016). However, less is known
about the extent to which such models correlate
with and reflect human conceptual representation.

Much research in the cognitive neuroscience
community has been concerned with uncovering
how the brain represents conceptual knowledge,
by leveraging brain activation data associated with
the meanings of concepts obtained during func-
tional magnetic resonance imaging (fMRI) exper-
iments. In the computational linguistics commu-
nity, the availability of such fMRI data provides

researchers with a benchmark for evaluating se-
mantic model performance in terms of their abil-
ity to represent human semantic memory. Mitchell
et al. (2008) were the first to demonstrate that
distributional semantic models encode some of
the patterns found in the fMRI data. Other re-
searchers followed in their steps, evaluating tra-
ditional count-based distributional models (Dev-
ereux et al., 2010; Murphy et al., 2012), topic
model-based semantic features (Pereira et al.,
2013), psycholinguistic and behavioural features
(Palatucci et al., 2009; Chang et al., 2010; Fer-
nandino et al., 2015) and visual representations
(Anderson et al., 2013, 2017). While all of these
studies report correlation between the investigated
semantic models and patterns found in the brain
imaging data, their focus on individual models and
the use of different datasets and prediction meth-
ods make their results difficult to compare and
to integrate into a coherent evaluation landscape.
The work of Murphy et al. (2012) is an exception,
in that the authors systematically compare several
distributional models with a range of parameters
on the same brain imaging dataset. However, they
focus on the traditional count-based distributional
models only.

We take inspiration from the works of Mitchell
et al. (2008) and Murphy et al. (2012); however,
we conduct a more extensive study of the ability
of different types of semantic models to predict
the patterns of brain activity associated with con-
ceptual representation. We evaluate and compare
several kinds of semantic models, using different
modalities and data sources: (1) traditional count-
based distributional models (with word window-
based and dependency-based contexts) learnt from
text; (2) log-linear skip-gram models (with word
window-based and dependency-based contexts);
(3) behavioural models based on the free associ-
ation task; (4) word representations learnt from
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visual data; and (5) multi-modal word repre-
sentations combining linguistic and visual infor-
mation. Unlike previous studies, where evalu-
ations were typically conducted using a single
technique, we evaluate our models using several
methods: ridge regression (Hoerl and Kennard,
1970), similarity-based encoding and similarity-
based decoding (Anderson et al., 2016). Such
an experimental setup allows for a comprehensive
evaluation and comparison of the models.

To the best of our knowledge the dependency-
based skip-gram model and the free association-
based model, as well as their multimodal coun-
terparts, have not been previously evaluated on
the brain activity prediction task. Other mod-
els have been evaluated individually and have not
yet been systematically compared within a sin-
gle evaluation framework. Providing such a com-
parison, our experiments and results demonstrate
that (1) visual information is a stronger predic-
tor of brain activity than the linguistic informa-
tion for concrete nouns; (2) sparse text-based mod-
els, whether dependency-based or built using lin-
ear bag-of-words context, tend to predict neu-
ral activity more accurately than dense models;
(3) cognitively-motivated association-based mod-
els perform on par with or better than other lin-
guistic models, which suggests that they provide
an interesting avenue in computational semantics
research.

2 Related work

The seminal work of Mitchell et al. (2008) in-
troduced a new semantic model able to predict
brain activation data associated with the meanings
of concrete nouns from their corpus-harvested se-
mantic representations. They chose a set of 25
verbs to act as semantic features in their distri-
butional model, inspired by the importance of
sensory-motor features in neural representations
of concepts (Cree and McRae, 2003).

Since then, various studies have shown that dis-
tributional semantic models encode and are able to
predict neural activation patterns associated with
concepts (Devereux et al., 2010; Murphy et al.,
2012; Pereira et al., 2013). Devereux et al. (2010)
build on the work of Mitchell et al. (2008) and
show that automatically acquired feature-norm
like semantic representations can make equally
powerful predictions about brain activity associ-
ated with the presentation of words. Pereira et al.

(2013) use semantic features learnt from topic
models on Wikipedia to predict neural activation
patterns for unseen concepts.

Several other studies have demonstrated the fit
of semantic models built from human behavioural
data with regard to predicting neural activation
patterns (Palatucci et al., 2009; Chang et al., 2010;
Fernandino et al., 2015). Chang et al. (2010) use
brain region encodings as well as detailed taxo-
nomic encodings of McRae et al. (2005) feature
norms to predict brain activation patterns using a
linear regression model. They demonstrate that
learned brain activity patterns can be used to de-
code mental states. Fernandino et al. (2015) use
human elicited attribute salience scores based on
five sensory-motor attributes (sound, color, visual
motion, shape and manipulation) to derive fMRI
brain activation patterns for concrete words, but
are unsuccessful at modeling neural activation pat-
terns for abstract words.

Recent advances in multi-modal semantics have
shown that grounding semantic models in sen-
sory modalities improves performance on a variety
of tasks (Silberer and Lapata, 2012; Bruni et al.,
2012; Kiela and Bottou, 2014; Bulat et al., 2016).
Anderson et al. (2013) show that semantic models
built from visual data correlate highly with fMRI-
based brain activation patterns. Anderson et al.
(2015) find that similarity in activity in the brain
areas related to linguistic processing can be bet-
ter predicted from text-based semantic representa-
tions, whilst image-based representations perform
better at predicting similarity in the visual process-
ing areas of the brain. In line with the dual coding
theory, Anderson et al. (2017) demonstrate an ad-
vantage in decoding brain activity patterns of ab-
stract words for text-based semantic models over
the image-based ones. Contrary to previous find-
ings, Anderson et al. (2017) find no advantage in
decoding neural activity patterns associated with
concrete words for image-based models.

Murphy et al. (2012) present the first study sys-
tematically comparing several text-based seman-
tic models on the brain activity prediction task.
They focus on the traditional count-based distri-
butional models and achieve the best performance
using dependency-based features. Our study is
more extensive than that of Murphy et al. (2012),
as we evaluate both the count-based models and
the more recent skip-gram word embeddings, as
well as comparing them to free association-based,
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visual and multi-modal semantic representations.
While Murphy and colleagues evaluate the mod-
els using one method only — linear regression,
we compare predicted neural activation patterns
obtained using both regression and the similarity-
based encoding and decoding methods proposed
by Anderson et al. (2016).

3 Brain imaging data

We use the dataset of fMRI neural activation pat-
terns associated with the meanings of nouns, cre-
ated by Mitchell et al. (2008) as described below.

3.1 fMRI experiment
Nine right-handed adults between the age of 18
and 32 (five female) participated in the study.
They were presented with line drawings and noun
labels for 60 concrete nouns from 12 semantic
classes – animals, body parts, buildings, building
parts, clothing, furniture, insects, kitchen items,
tools, vegetables, vehicles and man-made objects
– with five exemplars per class. The task for the
participants during the scanning was to think about
the properties of the noun stimuli they were pre-
sented with. The entire set of 60 stimulus words
was presented six times to every participant, in a
different order for each presentation.

The fMRI images were acquired on a Siemens
Allegra 3.0T scanner. The initial data was cor-
rected for slice timing, motion and linear trend;
spatially normalised and resampled to 3x3x6mm3

voxels. Only those voxels overlapping with the
cortex were selected (approximately 20000 for ev-
ery participant).

3.2 Voxel selection
We employ the same voxel selection procedure
as Mitchell et al. (2008) for evaluating the sim-
ilarity between actual fMRI images and model-
predicted fMRI images. Similarity is computed by
only taking into account 500 voxels with the most
stable activation profile across words – with pro-
files compared across the six presentations. The
evaluation is performed using leave-two-out cross
validation. Voxel selection was performed inde-
pendently for each of the cross validation folds, at
training time. A voxel’s stability score across the
six presentations was approximated as the mean
pairwise Pearson correlation between its activation
profiles over the 58 training words in the cross-
validation fold. The 500 voxels with the highest
stability score were chosen.

3.3 Brain activity vectors

We evaluate our models on the data of each par-
ticipant independently. Following Mitchell et al.
(2008), we obtain a single fMRI image per con-
cept (a representative image) by first computing
the mean fMRI response over its six presentations,
and then subtracting the mean of all 60 of these
representative images from each. In the rest of
this paper we will refer to these representations as
brain activity vectors.

4 Semantic models

MITCHELL As a benchmark for all other seman-
tic models, we use the publicly available1 co-
occurrence based semantic vectors developed in
the Mitchell et al. (2008) study. The features of
this semantic space are 25 sensory-motor verbs.
Co-occurrence statistics were collected using a
window size of 5 words either side of the tar-
get word, on a trillion-word corpus provided by
Google.

4.1 Text-based semantic models

We train a variety2 of context-counting and
context-predicting text-based semantic models on
the January 2016 dump of Wikipedia, which was
tokenised using the Stanford NLP tools3, lemma-
tised with the Morpha lemmatiser (Minnen et al.,
2001), and parsed with the C&C parser (Clark and
Curran, 2007).

DISTRIB We obtain count-based distributional se-
mantic models, using the top 10K most frequent
lemmatised words in the corpus (excluding stop-
words) as contexts. The context window is de-
fined as sentence boundaries. Counts are re-
weighted using positive pointwise mutual infor-
mation (PPMI) and vectors are L2-normalised.

SVD300 We also construct 300-dimensional dense
semantic representations by applying singular
value decomposition (SVD) (Deerwester et al.,
1990) to DISTRIB.

1https://www.cs.cmu.edu/afs/cs/
project/theo-73/www/science2008/data.
html

2We have experimented with different parameter settings
for each type of language-based semantic space (e.g. size of
the vectors, number of iterations when learning the embed-
dings etc.) and found that the reported vectors with “stan-
dard’ settings perform the best (or do not get significantly
outperformed).

3https://nlp.stanford.edu/software/
index.shtml
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DEPS Following Murphy et al. (2012), who find
that dependency-based semantic vectors perform
best on a neurosemantic decoding task, we also
include such a semantic space in our compari-
son. Vector representations are created by leverag-
ing the dependency relations output by the C&C
parser (Clark and Curran, 2007) as features. We
use both the incoming and outgoing dependency
relations as features; for example, given the de-
pendency relation (RUN, DOBJ, MARATHON) we
extract the tuple (DOBJ, MARATHON) as a fea-
ture for RUN and (!DOBJ, RUN) as a feature for
MARATHON. The top 10K most frequent depen-
dency features are used as contexts and counts are
re-weighted using PPMI.

DEPS-SVD300 We also obtain 300-dimensional
dense dependency-based semantic representations
by applying SVD to DEPS.

EMBED-BOW We train 300-dimensional embed-
dings using the standard log-linear skipgram
model with negative sampling of Mikolov et al.
(2013a). The embeddings were trained using lin-
ear bag-of-words contexts, with the window de-
fined as k = 2 (EMBED-BOW2) or k = 5
(EMBED-BOW5) words either side of the target
word. We use 10 negative samples per word-
context pair and 15 iterations over the corpus.

EMBED-DEPS In addition to the embeddings
trained with linear bag-of-words contexts, we also
obtain 300-dimensional dependency-based word
embeddings using the Levy and Goldberg (2014)
implementation of the generalised skip-gram with
arbitrary contexts model. Using both incoming
and outgoing dependency relations output by the
C&C parser, we create word-context pairs using
all words and contexts occurring more than 400
times in the corpus. This resulted in a vocabulary
of about 92,000 words, with over 250,000 distinct
syntactic contexts. We use 10 negative samples
per word-context pair and 15 iterations over the
corpus.

4.2 Association-based semantic model

Free word association datasets (Nelson et al.,
2004; De Deyne et al., 2016) represent a rich
source of semantic information and have been suc-
cessfully used in NLP, including research on se-
mantic memory (Steyvers et al., 2004) and multi-
modal semantics (Hill and Korhonen, 2014). Re-
cent studies have shown the superiority of se-

mantic models built using data collected from
multiple-response free association tasks — where
subjects are asked to list multiple associative
cues for every target word rather than a sin-
gle association — over the models built from
single-response ones (De Deyne et al., 2013).
Moreover, such association-based semantic mod-
els have been shown to outperform current state-
of-the-art text-based language models on concept
relatedness and similarity judgments (De Deyne
et al., 2016).

We make use of the word association dataset
collected as part of the Small World of Words4

project, where more than 100K fluent English
speakers were asked to list three associations for
each target word. The dataset contains multiple-
response association data for over 10K words. We
use a subset of this dataset, where all target words
have at least 50 primary, 50 secondary and 50 ter-
tiary responses and all responses also appear as
normed target words5.

ASSOC We construct a count-based semantic
model of word associations (henceforth ASSOC)
similarly to a count-based distributional model:
the responses are treated as semantic features, and
counts are replaced by the sum of primary, sec-
ondary and tertiary association frequencies be-
tween the target word and the responses. Counts
are re-weighted using PPMI and vectors are L2-
normalised. The association-based representa-
tions obtained for the 60 target words in the
Mitchell et al. (2008) dataset under this model are
9854-dimensional.

4.3 Image-based semantic model

We also build state-of-the-art deep visual seman-
tic representations (henceforth VISUAL) for the 60
concepts in the Mitchell et al. (2008) dataset. Fol-
lowing previous work in multi-modal semantics
(Bergsma and Goebel, 2011; Kiela and Bottou,
2014) and the findings of a recent study of sys-
tem architectures and data sources for construct-
ing visual representations (Kiela et al., 2016), we
retrieve 10 images per concept from Google Im-
ages. We use the MMFeat toolkit6 (Kiela, 2016)
to build our image representations. We extract the
4096-dimensional pre-softmax layer from a for-

4https://smallworldofwords.org/
5Total of 9854 words (appearing as both target and re-

sponses) and 1092251 association pairs
6https://github.com/douwekiela/mmfeat
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ward pass through a convolutional neural network
(Krizhevsky et al., 2012), which has been pre-
trained on the ImageNet classification task using
Caffe (Jia et al., 2014). We obtain the visual rep-
resentation for a given concept by taking the mean
of the 10 resulting image representations.

4.4 Multi-modal semantic models
We also included multi-modal semantic spaces
in our analysis, as these are currently widely
used in NLP and have been previously shown to
achieve the best performance at predicting con-
ceptual encodings in the brain (Anderson et al.,
2015). Multi-modal semantic spaces are con-
structed by combining the visual (VISUAL) and
respective linguistic (e.g. MITCHELL, DISTRIB,
DEPS) or association-based (ASSOC) representa-
tions into a multi-modal representation by con-
catenating their respective L2-normalized vectors.

5 Methods

In this study, we use two different ways of
analysing the correlation between the semantic
models described in Section 4 and the fMRI brain
activation patterns used as a proxy for human con-
ceptual representation. First, we compare these se-
mantic models in their predictive power, by look-
ing at how well they can synthesise, i.e. predict,
brain activation patterns for unseen concepts (Sec-
tion 5.1). Secondly, we look at how well they
are able to decode neural activation patterns by
measuring their success at predicting the stimulus
that produced an unlabeled (unseen) fMRI pattern
(Section 5.2).

5.1 Predicting brain activity patterns
The brain activity prediction task has been used in
previous NLP research as a method of evaluating
different semantic models in their ability to model
conceptual representation. Most of these studies
learn a mapping function between the semantic
model of choice and the fMRI neural activity pat-
terns using regression techniques (Mitchell et al.,
2008; Devereux et al., 2010; Murphy et al., 2012).
Recent work by Anderson et al. (2016) introduce
a new method for synthesising fMRI activity pat-
terns through similarity-based encoding that does
not require model fitting. We compare the predic-
tion performance of the semantic models detailed
in Section 4 by implementing both a regression-
based model and the similarity-based encoding al-
gorithm of Anderson et al. (2016).

Regression-based learning Following previous
work (Mitchell et al., 2008; Devereux et al., 2010;
Murphy et al., 2012), for every participant, we
learn a mapping function between semantic model
features and brain activation vectors using lin-
ear regression. The learned weights are used to
make predictions about brain activation vectors as-
sociated with concepts that were not seen during
training. We implement Ridge regression (Hoerl
and Kennard, 1970), a multiple linear regression
model that uses a least squares loss function and
L2 regularisation.

Similarity-based encoding We implement the
similarity-based encoding method introduced by
Anderson et al. (2016). This method predicts the
brain activity vector for an unseen concept by ex-
ploiting its similarity (with respect to a particular
semantic model) to words for which we have ob-
served brain activity vectors.

The first step in predicting a brain activity vec-
tor for an unseen concept is to compute its se-
mantic model similarity code. This is a N -
dimensional7 vector of similarity scores — com-
puted using Pearson’s correlation — between the
unseen concept and the N words for which we
have brain activation vectors8. The predicted brain
activity vector for the unseen concept is then “syn-
thesised” by using its semantic model similarity
code to weight a superposition of brain activity
vectors:

~b′ = 1

C

N∑

i=1

~bi · corr(~vi, ~vN+1) (1)

Assuming the unseen word is indexedN+1 and
~vj is the semantic model representation of word j,
C is a normalisation constant defined as the sum of
absolute values of elements in the semantic model
similarity code:

C = |
N∑

i=1

corr(~vi, ~vN+1)| (2)

5.2 Decoding neural activity patterns
We then evaluate our semantic models in terms of
their ability to decode unseen fMRI activation pat-
terns. The analysis in this case does not involve

7Assuming that we haveN words for which we have both
semantic model representations (e.g. DISTRIB vectors) and
observed brain activation vectors.

8The similarities are measured w.r.t. the semantic model
we use as “predictor”, e.g. DISTRIB, SVD300 or VISUAL
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synthesising brain activation vectors for new con-
cepts, but predicting the correct label (stimulus)
associated with a given fMRI pattern.

We implement the similarity-based decoding
procedure as detailed in Anderson et al. (2016).
The first step is to obtain the semantic model simi-
larity matrix — by computing the semantic model
similarity codes for each of the 60 concepts in the
Mitchell et al. (2008) dataset (as described above)
— and the brain activity similarity matrix — by
computing brain activity similarity codes.

At test time, two of the N words are chosen for
decoding, together with their respective semantic
model similarity codes (~si, ~sj) and brain activity
similarity codes (~ai,~aj). Next, ~s′i,

~s′j ,
~a′i and ~a′j are

obtained by removing the i-th and j-th elements in
~si, ~sj ,~ai and~aj respectively, because entries in the
similarity vectors corresponding to the test words
would reveal the correct answer in the matching
task. We will refer to ~s′i and ~s′j as reduced seman-

tic model similarity codes, and by analogy to ~a′i
and ~a′j as reduced neural similarity codes.

Decoding is considered a success if the sum of
Pearson’s correlations for the correct pairings
( corr(~s′i,

~a′i) + corr(~s′j ,
~a′j) ) is higher than the

sum of Pearson’s correlations for the incorrect
pairings ( corr(~s′i,

~a′j) + corr(~s′j ,
~a′i) ).

6 Experiments

All semantic spaces presented in Section 4 have
full coverage on the Mitchell et al. (2008) dataset.
All experiments detailed in this section were per-
formed separately for every participant and evalu-
ated using leave-two-out cross validation.

6.1 Regression experiments
We repeatedly train a regression model to fit brain
activation vectors for each of the semantic spaces
described in Section 4, using only 58 of the 60
available concept representations (leave-two-out
cross validation). This resulted in 1770 cross-
validation folds.9 The only hyperparameter in
the regression is λ, which controls the degree of
regularisation. The λ hyperparameter was opti-
mised when training each cross-validation fold, by
choosing from the range 0.0001 to 100 through
generalised cross validation (i.e. λ was optimised
by only looking at the training items during each
cross-validation fold).

9There are (60 choose 2) ways to choose two test items
from the 60 Mitchell et al. (2008) concepts.

During each testing round, we used the learned
mapping function to construct predicted brain acti-
vation vectors for the two held out words.We eval-
uated each of the semantic models by computing
its accuracy of matching the two predicted brain
activation vectors with the two observed ones. A
matching score was computed by analysing the
cosine similarity between the predicted and the
observed brain activation vectors. If the sum
of similarities for the correct pairing was higher
than the one for the incorrect pairing the match-
ing accuracy was set to 1 for this cross-validation
fold, and otherwise it was set to 0. If the model
was choosing the match at random, the expected
accuracy is 0.50. The similarity between two
brain activation vectors was computed by only
taking into account the 500 most stable voxels
(during each cross-validation fold) as detailed in
Section 3.2. The cross-validated accuracies for
each of our semantic models are presented in Ta-
ble 1, with selected results also shown in Figure 1.
We only report results on two multi-modal mod-
els (VISUAL+MITCHELL and VISUAL+ASSOC), as
there was no significant difference in performance
between any pair of multi-modal models.

All semantic models learn to predict neu-
ral activation patterns for unseen words signif-
icantly above chance level. Association-based
semantic models (ASSOC) significantly10 outper-
form all dense semantic representations (whether
embedding-based or SVD-reduced), with p <
0.05. Sparse text-based representations with linear
context (DISTRIB and DEPS) significantly outper-
form some dense semantic representations. How-
ever, no dense semantic models significantly out-
perform DISTRIB and DEPS. There is no signif-
icant difference between the performance of AS-
SOC, DISTRIB and DEPS. Contrary to the findings
of Murphy et al. (2012), we do not find any advan-
tage in predicting brain activation patterns from
dependency-based text models.

Both VISUAL and multi-modal models signifi-
cantly outperform text-based models overall (p <
0.05), excepting MITCHELL with p < 0.11 when
comparing to VISUAL and p < 0.09 when compar-
ing against multi-modal semantic models. These
results support previous findings regarding the im-
portance of grounding semantic models in percep-
tual input. These grounded semantic models per-

10We used (pairwise) paired t-tests to judge the statistical
significance of the difference in performance between any
two models within the same experiment.
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MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 mean
MITCHELL 0.78 0.72 0.71 0.75 0.76 0.56 0.71 0.63 0.63 0.70
DISTRIB 0.85 0.67 0.73 0.84 0.72 0.55 0.70 0.54 0.69 0.70
SVD300 0.85 0.65 0.68 0.77 0.67 0.53 0.66 0.52 0.62 0.66
DEPS 0.85 0.70 0.77 0.86 0.74 0.40 0.70 0.59 0.72 0.70
DEPS-SVD300 0.80 0.68 0.74 0.81 0.70 0.32 0.68 0.61 0.66 0.67
EMBED-BOW2 0.85 0.65 0.70 0.78 0.64 0.55 0.60 0.57 0.65 0.66
EMBED-BOW5 0.83 0.62 0.72 0.74 0.66 0.56 0.70 0.56 0.58 0.66
EMBED-DEPS 0.82 0.60 0.67 0.81 0.67 0.49 0.63 0.62 0.72 0.67
ASSOC 0.90 0.65 0.78 0.87 0.74 0.51 0.75 0.60 0.67 0.72
VISUAL 0.90 0.78 0.85 0.88 0.69 0.56 0.75 0.57 0.69 0.74
VISUAL+ASSOC 0.90 0.78 0.84 0.86 0.70 0.58 0.76 0.56 0.70 0.74
VISUAL+MITCHELL 0.90 0.78 0.84 0.86 0.70 0.58 0.76 0.56 0.70 0.74

Table 1: Regression results. Cross-validated accuracies for models trained on participants P1
through P9, together with mean over participants.

form as well as models that encode mental repre-
sentations through associations (ASSOC). There is
no significant advantage for multi-modal models
over VISUAL.

6.2 Similarity-based encoding experiments

We also compare performance of the semantic
models when the predicted brain activation vec-
tor is computed using the Anderson et al. (2016)
similarity based encoding method. We use a
leave-two-out cross validation strategy, to match
previous work and our experiments detailed in
Section 6.1. The similarity-based encoding ap-
proach does not require any mapping function to
be learned, hence is a robust and fast way to ob-
tain synthesised brain activation vectors for un-
seen words.

During each cross-validation fold, semantic
model similarity codes of the two test words were
computed using the procedure outlined in Sec-
tion 5.1. Predicted brain activation vectors were
then synthesised for the two test words by weight-
ing a superposition of brain activity vectors using
their semantic model similarity codes. The match-
ing score for each of the cross-validation folds was
computed in the same way as in the case of the
regression model (Section 6.1). The only differ-
ence was that we measured the similarity between
the two brain activation vectors using Pearson’s
correlation coefficient, following Anderson et al.
(2016). As in the previous experiment, the ex-
pected chance performance of this method is 0.5.
The cross-validated accuracies for each of our se-
mantic models are shown in Table 2, with selected
results also shown in Figure 1.

All semantic models perform significantly
above chance level. As in the case of the re-

gression experiments, there is a clear advantage
in synthesising brain activation vectors for visu-
ally grounded models (VISUAL and multi-modal
models) over the language-based ones (this time
including MITCHELL), as well as ASSOC. When
looking at the performance of the text-based mod-
els in general, there is no difference in perfor-
mance when comparing context-predicting mod-
els to count-based ones, or sparse semantic models
to dense ones.

6.3 Brain activation pattern decoding

In the similarity-based decoding experiments, we
assess the ability of semantic models to iden-
tify the correct stimulus for a given brain activa-
tion pattern, using the same leave-two-out cross-
validation strategy. At test time, we obtain the re-
duced semantic model similarity codes and the re-
duced neural similarity codes for the two test items
as described in Section 5.2. It is important to note
that these similarity code vectors do not contain
any information about the true labeling, since en-
tries corresponding to the test items were removed.
Decoding is considered successful if the matching
score (computed as the sum of Pearson’s correla-
tions) is higher for the congruent pair than for the
incorrect one. Again, the expected performance
for a model decoding at random is 0.50. Table 3
shows the performance of our semantic models,
with selected results also shown in Figure 1.

The performance of all semantic models in
the decoding task is significantly above chance
level. Grounded semantic models (visual and
multi-modal) prove once again to have a signif-
icant advantage in decoding brain activation pat-
terns over the text-based models and association-
based model (p < 0.05). There is no signifi-
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MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 mean
MITCHELL 0.79 0.76 0.74 0.8 0.78 0.66 0.69 0.62 0.74 0.73
DISTRIB 0.87 0.69 0.79 0.89 0.79 0.75 0.75 0.52 0.79 0.76
SVD-300 0.89 0.72 0.79 0.90 0.79 0.74 0.78 0.56 0.83 0.78
DEPS 0.88 0.74 0.83 0.91 0.81 0.68 0.76 0.58 0.83 0.78
DEPS-SVD300 0.89 0.75 0.84 0.91 0.81 0.67 0.77 0.57 0.83 0.78
EMBED-BOW2 0.92 0.74 0.81 0.91 0.75 0.75 0.77 0.59 0.81 0.78
EMBED-BOW5 0.91 0.73 0.83 0.91 0.76 0.73 0.79 0.55 0.80 0.78
EMBED-DEPS 0.91 0.71 0.80 0.92 0.75 0.71 0.79 0.62 0.85 0.78
ASSOC 0.91 0.72 0.81 0.91 0.73 0.69 0.75 0.62 0.79 0.77
VISUAL 0.94 0.82 0.88 0.90 0.78 0.76 0.83 0.65 0.82 0.82
VISUAL+ASSOC 0.94 0.82 0.88 0.90 0.79 0.76 0.83 0.65 0.83 0.82
VISUAL+MITCHELL 0.94 0.82 0.88 0.90 0.78 0.76 0.83 0.65 0.82 0.82

Table 2: Similarity based encoding results: Cross-validated accuracies for models trained on
participants P1 through P9, together with mean over participants.

MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 mean
MITCHELL 0.80 0.76 0.75 0.82 0.77 0.7 0.71 0.65 0.75 0.75
DISTRIB 0.87 0.70 0.79 0.90 0.80 0.76 0.77 0.58 0.80 0.77
SVD300 0.88 0.73 0.79 0.89 0.80 0.76 0.79 0.61 0.85 0.79
DEPS 0.88 0.75 0.84 0.91 0.80 0.70 0.78 0.61 0.84 0.79
DEPS-SVD300 0.89 0.76 0.84 0.90 0.81 0.70 0.79 0.61 0.85 0.79
EMBED-BOW2 0.91 0.75 0.81 0.90 0.76 0.76 0.78 0.60 0.82 0.79
EMBED-BOW5 0.91 0.74 0.83 0.91 0.77 0.75 0.80 0.58 0.82 0.79
EMBED-DEPS 0.91 0.71 0.80 0.92 0.75 0.71 0.79 0.62 0.85 0.78
ASSOC 0.90 0.73 0.79 0.90 0.73 0.69 0.76 0.63 0.81 0.77
VISUAL 0.94 0.83 0.89 0.90 0.79 0.78 0.84 0.65 0.84 0.83
VISUAL+ASSOC 0.94 0.83 0.89 0.90 0.79 0.78 0.84 0.65 0.84 0.83
VISUAL+MITCHELL 0.94 0.83 0.89 0.90 0.79 0.78 0.84 0.65 0.84 0.83

Table 3: Similarity based decoding results: Cross-validated accuracies for models trained on
participants P1 through P9, together with mean over participants.

cant difference in performance between any of the
multi-modal models and VISUAL.

6.4 Discriminating between words in the
same semantic class

Following Mitchell et al. (2008), we also compare
the models in their ability to make accurate pre-
dictions when the two test words are exemplars of
the same semantic category11. This formulation of
the task is more difficult, since items in the same
semantic class (e.g. dog and cat) are more simi-
lar than items from different semantic classes (e.g.
eye and desk).

In order to measure the performance of our
models in this task, we recompute the cross-
validated accuracies for all three experiments
(regression-based learning, encoding and decod-
ing) by only taking into account the performance
on the 120 cross-validation folds where the test
items share the same semantic class. The results
across models and experiments show very simi-
lar trends as the ones computed using all 1770

11The 60 concepts are exemplars of 12 semantic classes.

cross-validation folds. The majority of the mod-
els still perform above chance level, but as ex-
pected they perform worse than when evaluated
using the entire dataset. Visually-grounded mod-
els still perform the best in all three experiments
(mean performance across participants for multi-
modal models in all three tasks is in the [0.61-
0.63] range).

7 Conclusion and future work

We presented the first systematic comparison of
a range of widely-used, state-of-the-art seman-
tic models in their ability to predict patterns of
conceptual representation in the human brain.
Firstly, we demonstrated that visual information is
a stronger predictor of brain activity than linguis-
tic information for concrete nouns. These findings
provide further support to the existing hypotheses
about the interplay of linguistic, conceptual and
perceptual systems in the human brain (Barsalou,
2008). These results also resonate with the success
of the rapidly growing field of multimodal seman-
tics (Kiela et al., 2016).
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Figure 1: (TOP) Comparison of individual and mean model performance for five selected models
(MITCHELL, DEPS, ASSOC, VISUAL, VISUAL+ASSOC), using results in Table 1 (Ridge regression), Table
2 (Similarity-based encoding) and Table 3 (Similarity-based decoding). (BOTTOM) Mean±SE accuracy
of participants for all models.

Secondly, our results suggest that sparse text-
based models, whether dependency-based or built
using linear bag-of-words context, predict neural
activity more accurately than dense models. We
also show that the structure of the text-based se-
mantic model (sparse vs. dense) has more influ-
ence on the performance than the type of informa-
tion used to construct the context (linear bag-of-
words vs. dependency-based).

Finally, we found that cognitively-motivated
association-based models perform on par with or
better than other linguistic models. These re-
sults are in line with the previous findings of be-
havioural research suggesting that humans repre-
sent the meanings of concepts through association
with other concepts (Barsalou et al., 2008) which
in turn endorses the association-based semantic
models as a promising direction in computational
semantics research.

An interesting avenue for future work would be
to investigate the variance of results amongst in-
dividual participants (Figure 1). Previous stud-
ies that use fMRI data always report variation
across participants (Devereux et al., 2010; Ander-
son et al., 2017) and most often attribute it to head
motion. However, understanding how individual
variations in participants can impact modeling de-

cisions would be of great value to the computa-
tional semantics community.
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Abstract

The rapid increase in multimedia data
transmission over the Internet necessitates
the multi-modal summarization (MMS)
from collections of text, image, audio and
video. In this work, we propose an extrac-
tive multi-modal summarization method
that can automatically generate a textual
summary given a set of documents, im-
ages, audios and videos related to a specif-
ic topic. The key idea is to bridge the se-
mantic gaps between multi-modal content.
For audio information, we design an ap-
proach to selectively use its transcription.
For visual information, we learn the joint
representations of text and images using a
neural network. Finally, all of the multi-
modal aspects are considered to generate
the textual summary by maximizing the
salience, non-redundancy, readability and
coverage through the budgeted optimiza-
tion of submodular functions. We further
introduce an MMS corpus in English and
Chinese, which is released to the public1.
The experimental results obtained on this
dataset demonstrate that our method out-
performs other competitive baseline meth-
ods.

1 Introduction

Multimedia data (including text, image, audio and
video) have increased dramatically recently, which
makes it difficult for users to obtain important in-
formation efficiently. Multi-modal summarization
(MMS) can provide users with textual summaries
that can help acquire the gist of multimedia data in
a short time, without reading documents or watch-
ing videos from beginning to end.

1http://www.nlpr.ia.ac.cn/cip/jjzhang.htm

The existing applications related to MMS in-
clude meeting record summarization (Erol et al.,
2003; Gross et al., 2000), sport video sum-
marization (Tjondronegoro et al., 2011; Hasan
et al., 2013), movie summarization (Evangelopou-
los et al., 2013; Mademlis et al., 2016), pictorial
storyline summarization (Wang et al., 2012), time-
line summarization (Wang et al., 2016b) and social
multimedia summarization (Del Fabro et al., 2012;
Bian et al., 2013; Schinas et al., 2015; Bian et al.,
2015; Shah et al., 2015, 2016). When summariz-
ing meeting recordings, sport videos and movies,
such videos consist of synchronized voice, visual
and captions. For the summarization of pictorial
storylines, the input is a set of images with text
descriptions. None of these applications focus on
summarizing multimedia data that contain asyn-
chronous information about general topics.

In this paper, as shown in Figure 1, we propose
an approach to a generate textual summary from
a set of asynchronous documents, images, audios
and videos on the same topic.

Since multimedia data are heterogeneous and
contain more complex information than pure tex-
t does, MMS faces a great challenge in address-
ing the semantic gap between different modali-
ties. The framework of our method is shown in
Figure 1. For the audio information contained in
videos, we obtain speech transcriptions through
Automatic Speech Recognition (ASR) and design
a method to use these transcriptions selectively.
For visual information, including the key-frames
extracted from videos and the images that appear
in documents, we learn the joint representations
of texts and images by using a neural network; we
then can identify the text that is relevant to the im-
age. In this way, audio and visual information can
be integrated into a textual summary.

Traditional document summarization involves t-
wo essential aspects: (1) Salience: the summa-
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Twenty-four MSF doctors, 

nurses, logisticians and 

hygiene and sanitation experts 

are already in the country, 

while additional staff will 

strengthen the team in the 

coming days. With the help of 

the local community, MSF’s

emergency 

teams 
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searching.

The decease’s symptoms 

include severe fever and 
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Ebola haemorrhagic fever 

is a rare but serious 

disease that spreads 

rapidly through direct 

contact with infected 

people.

Emergency teams focus 

on searching.

...

Figure 1: The framework of our MMS model.

ry should retain significant content of the input
documents. (2) Non-redundancy: the summary
should contain as little redundant content as pos-
sible. For MMS, we consider two additional as-
pects: (3) Readability: because speech transcrip-
tions are occasionally ill-formed, we should try to
get rid of the errors introduced by ASR. For ex-
ample, when a transcription provides similar in-
formation to a sentence in documents, we should
prefer the sentence to the transcription presented
in the summary. (4) Coverage for the visual in-
formation: images that appear in documents and
videos often capture event highlights that are usu-
ally very important. Thus, the summary should
cover as much of the important visual information
as possible. All of the aspects can be jointly opti-
mized by the budgeted maximization of submodu-
lar functions (Khuller et al., 1999).

Our main contributions are as follows:

• We design an MMS method that can automat-
ically generate a textual summary from a set
of asynchronous documents, images, audios
and videos related to a specific topic.

• To select the representative sentences, we
consider four criteria that are jointly opti-
mized by the budgeted maximization of sub-
modular functions.

• We introduce an MMS corpus in English and
Chinese. The experimental results on this
dataset demonstrate that our system can take
advantage of multi-modal information and
outperforms other baseline methods.

2 Related Work

2.1 Multi-document Summarization

Multi-document summarization (MDS) attempts
to extract important information for a set of docu-
ments related to a topic to generate a short sum-

mary. Graph based methods (Mihalcea and Ta-
rau, 2004; Wan and Yang, 2006; Zhang et al.,
2016) are commonly used. LexRank (Erkan and
Radev, 2011) first builds a graph of the docu-
ments, in which each node represents a sentence
and the edges represent the relationship between
sentences. Then, the importance of each sentence
is computed through an iterative random walk.

2.2 Multi-modal Summarization

In recent years, much work has been done to sum-
marize meeting recordings, sport videos, movies,
pictorial storylines and social multimedia.

Erol et al. (2003) aim to create important seg-
ments of a meeting recording based on audio, tex-
t and visual activity analysis. Tjondronegoro et
al. (2011) propose a way to summarize a sporting
event by analyzing the textual information extract-
ed from multiple resources and identifying the im-
portant content in a sport video. Evangelopoulos
et al. (2013) use an attention mechanism to detect
salient events in a movie. Wang et al. (2012) and
Wang et al. (2016b) use image-text pairs to gen-
erate a pictorial storyline and timeline summariza-
tion. Li et al. (2016) develop an approach for mul-
timedia news summarization for searching results
on the Internet, in which the hLDA model is intro-
duced to discover the topic structure of the news
documents. Then, a news article and an image are
chosen to represent each topic. For social medi-
a summarization, Fabro et al. (2012) and Schinas
et al. (2015) propose to summarize the real-life
events based on multimedia content such as pho-
tos from Flickr and videos from YouTube. Bian et
al. (2013; 2015) propose a multimodal LDA to de-
tect topics by capturing the correlations between
textual and visual features of microblogs with em-
bedded images. The output of their method is a set
of representative images that describe the events.
Shah et al. (2015; 2016) introduce EventBuilder
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which produces text summaries for a social event
leveraging Wikipedia and visualizes the event with
social media activities.

Most of the above studies focus on synchronous
multi-modal content, i.e., in which images are
paired with text descriptions and videos are paired
with subtitles. In contrast, we perform summa-
rization from asynchronous (i.e., there is no given
description for images and no subtitle for videos)
multi-modal information about news topics, in-
cluding multiple documents, images and videos,
to generate a fixed length textual summary. This
task is both more general and more challenging.

3 Our Model

3.1 Problem Formulation

The input is a collection of multi-modal dataM =
{D1, ..., D|D|, V1, ..., V|V |} related to a news topic
T , where each document Di = {Ti, Ii} consist-
s of text Ti and image Ii (there may be no image
for some documents). Vi denotes video. | · | de-
notes the cardinality of a set. The objective of our
work is to automatically generate textual summary
to represent the principle content ofM.

3.2 Model Overview

There are many essential aspects in generating a
good textual summary for multi-modal data. The
salient content in documents should be retained,
and the key facts in videos and images should be
covered. Further, the summary should be readable
and non-redundant and should follow the fixed
length constraint. We propose an extraction-based
method in which all these aspects can be jointly
optimized by the budgeted maximization of sub-
modular functions defined as follows:

max
S⊆T
{F(S) :

∑

s∈S
ls ≤ L} (1)

where T is the set of sentences, S is the summary,
ls is length (number of words) of sentence s, L is
budget, i.e., length constraint for the summary, and
submodular function F(S) is the summary score
related to the above-mentioned aspects.

Text is the main modality of documents, and in
some cases, images are embedded in documents.
Videos consist of at least two types of modalities:
audio and visual. Next, we give overall processing
methods for different modalities.

Audio, i.e., speech, can be automatically tran-
scribed into text by using an ASR system2. Then,
we can leverage a graph-based method to calcu-
late the salience score for all of the speech tran-
scriptions and for the original sentences in doc-
uments. Note that speech transcriptions are of-
ten ill-formed; thus, to improve the readability, we
should try to avoid the errors introduced by ASR.
In addition, audio features including acoustic con-
fidence (Valenza et al., 1999), audio power (Chris-
tel et al., 1998) and audio magnitude (Dagtas and
Abdel-Mottaleb, 2001) have proved to be helpful
for speech and video summarization which will
benefit our method.

For visual, which is actually a sequence of im-
ages (frames), because most of the neighboring
frames contain redundant information, we first ex-
tract the most meaningful frames, i.e., the key-
frames, which can provide the key facts for the
whole video. Then, it is necessary to perform se-
mantic analysis between text and visual. To this
end, we learn the joint representations for textu-
al and visual modalities and can then identify the
sentence that is relevant to the image. In this way,
we can guarantee the coverage of generated sum-
mary for the visual information.

3.3 Salience for Text
We apply a graph-based LexRank algorith-
m (Erkan and Radev, 2011) to calculate salience
score of the text unit, including the sentences
in documents and the speech transcriptions from
videos. LexRank first constructs a graph based on
the text units and their relationship and then con-
ducts an iteratively random walk to calculate the
salience score of the text unit, sa(ti), until conver-
gence using the following equation:

Sa(ti) = µ
∑

j

Sa(tj) ·Mji +
1− µ
N

(2)

where µ is the damping factor that is set to 0.85.
N is the total number of the text units. Mji is the
relationship between text unit ti and tj , which is
computed as follows:

Mji = sim(tj , ti) (3)

The text unit ti is represented by averaging the
embeddings of the words (except stop-words) in
ti. sim(·) denotes cosine similarity between two
texts (negative similarities are replaced with 0).

2We use IBM Watson Speech to Text service:
www.ibm.com/watson/developercloud/speech-to-text.html
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Figure 2: LexRank with guidance strategies. e1
is guided because speech transcription v3 is relat-
ed to document sentence v1; e2 and e3 are guided
because of audio features. Other edges without ar-
row are bidirectional.

For MMS task, we propose two guidance strate-
gies to amend the affinity matrix M and calculate
salience score of the text as shown in Figure 2.

3.3.1 Readability Guidance Strategies
The random walk process can be understood as a
recommendation: Mji in Equation 2 denotes that
tj will recommend ti to the degree of Mji. The
affinity matrix M in the LexRank model is sym-
metric, which means Mij = Mji. In contrast,
for MMS, considering the unsatisfactory quality
of speech recognition, symmetric affinity matri-
ces are inappropriate. Specifically, to improve
the readability, for a speech transcription, if there
is a sentence in document that is related to this
transcription, we would prefer to assign the tex-
t sentence a higher salience score than that as-
signed to the transcribed one. To this end, the pro-
cess of a random walk should be guided to con-
trol the recommendation direction: when a doc-
ument sentence is related to a speech transcrip-
tion, the symmetric weighted edge between them
should be transformed into a unidirectional edge,
in which we invalidate the direction from docu-
ment sentence to the transcribed one. In this way,
speech transcriptions will not be recommended by
the corresponding document sentences. Impor-
tant speech transcriptions that cannot be covered
by documents still have the chance to obtain high
salience scores. For the pair of a sentence ti and
a speech transcription tj , Mij is computed as fol-
lows:

Mij =

{
0, if sim(ti, tj) > Ttext
sim(ti, tj), otherwise

(4)
where threshold Ttext is used to determine whether
a sentence is related to others. We obtain the
proper semantic similarity threshold by testing on
Microsoft Research Paraphrase (MSRParaphrase)
dataset (Quirk et al., 2004). It is a publicly avail-

able paraphrase corpus that consists of 5801 pairs
of sentences, of which 3900 pairs are semantically
equivalent.

3.3.2 Audio Guidance Strategies
Some audio features can guide the summariza-
tion system to select more important and read-
able speech transcriptions. Valenza et al. (1999)
use acoustic confidence to obtain accurate and
readable summaries of broadcast news program-
s. Christel et al. (1998) and Dagtas and Abdel-
Mottaleb (2001) apply audio power and audio
magnitude to find significant audio events. In
our work, we first balance these three feature s-
cores for each speech transcription by dividing
their respective maximum values among the whole
amount of audio, and we then average these scores
to obtain the final audio score for speech transcrip-
tion. For each adjacent speech transcription pair
(tk, tk′ ), if the audio score a(tk) for tk is small-
er than a certain threshold while a(tk′ ) is greater,
which means that tk′ is more important and read-
able than tk, then tk should recommend tk′ , but
tk′ should not recommend tk. We formulate it as
follows:

{
Mkk′ = sim(tk, tk′ )
Mk′k = 0

if a(tk) < Taudio and a(tk′ ) > Taudio

(5)

where the threshold Taudio is the average audio s-
core for all the transcriptions in the audio.

Finally, affinity matrices are normalized so that
each row adds up to 1.

3.4 Text-Image Matching
The key-frames contained in videos and the im-
ages embedded in documents often captures news
highlights in which the important ones should be
covered by the textual summary. Before measur-
ing the coverage for images, we should train the
model to bridge the gap between text and image,
i.e., to match the text and image.

We start by extracting key-frames of videos
based on shot boundary detection. A shot is de-
fined as an unbroken sequence of frames. The
abrupt transition of RGB histogram features often
indicates shot boundaries (Zhuang et al., 1998).
Specifically, when the transition of the RGB his-
togram feature for adjacent frames is greater than
a certain ratio3 of the average transition for the w-
hole video, we segment the shot. Then, the frames

3The ratio is determined by testing on the
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in the middle of each shot are extracted as key-
frames. These key-frames and images in docu-
ments make up the image set that the summary
should cover.

Next, it is necessary to perform a semantic anal-
ysis between the text and the image. To this end,
we learn the joint representations for textual and
visual modalities by using a model trained on the
Flickr30K dataset (Young et al., 2014), which con-
tains 31,783 photographs of everyday activities,
events and scenes harvested from Flickr. Each
photograph is manually labeled with 5 textual de-
scriptions. We apply the framework of Wang et
al. (2016a), which achieves state-of-the-art perfor-
mance for text-image matching task on the Flick-
r30K dataset. The image is encoded by the VG-
G model (Simonyan and Zisserman, 2014) that
has been trained on the ImageNet classification
task following the standard procedure (Wang et al.,
2016a). The 4096-dimensional feature from the
pre-softmax layer is used to represent the image.
The text is first encoded by the Hybrid Gaussian-
Laplacian mixture model (HGLMM) using the
method of Klein et al. (2014). Then, the HGLM-
M vectors are reduced to 6000 dimensions through
PCA. Next, the sentence vector vs and image vec-
tor vi are mapped to a joint space by a two-branch
neural network as follows:

{
x =W2 · f(W1 · vs + bs)
y = V2 · f(V1 · vi + bi)

(6)

where W1 ∈ R2048×6000, bs ∈ R2048, W2 ∈
R512×2048, V1 ∈ R2048×4096, bi ∈ R2048, V2 ∈
R512×2048, f is Rectified Linear Unit (ReLU).

The max-margin learning framework is applied
to optimize the neural network as follows:

L =
∑

i,k

max[0,m+ s(xi, yi)− s(xi, yk)]

+ λ1
∑

i,k

max[0,m+ s(xi, yi)− s(xk, yi)]
(7)

where for positive text-image pair (xi, yi), the
top K most violated negative pairs (xi, yk) and
(xk, yi) in each mini-batch are sampled. The ob-
jective function L favors higher matching score
s(xi, yi) (cosine similarity) for positive text-image
pairs than for negative pairs4.

shot detection dataset of TRECVID. http://www-
nlpir.nist.gov/projects/trecvid/

4In the experiments, K = 50, m = 0.1 and λ1 = 2.
Wang et al. (2016a) also proved that structure-preserving con-
straints can make 1% Recall@1 improvement.

Note that the images in Flickr30K are similar
to our task. However, the image descriptions are
much simpler than the text in news, so the mod-
el trained on Flickr30K cannot be directly used
for our task. For example, some of the informa-
tion contained in the news, such as the time and
location of events, cannot be directly reflected by
images. To solve this problem, we simplify each
sentence and speech transcription based on seman-
tic role labelling (Gildea and Jurafsky, 2002), in
which each predicate indicates an event and the
arguments express the relevant information of this
event. ARG0 denotes the agent of the event, and
ARG1 denotes the action. The assumption is that
the concepts including agent, predicate and ac-
tion compose the body of the event, so we ex-
tract “ARG0+predicate+ARG1” as the simplified
sentence that is used to match the images. It is
worth noting that there may be multiple predicate-
argument structures for one sentence and we ex-
tract all of them.

After the text-image matching model is trained
and the sentences are simplified, for each text-
image pair (Ti, Ij) in our task, we can identify the
matched pairs if the score s(Ti, Ij) is greater than
a threshold Tmatch. We set the threshold as the
average matching score for the positive text-image
pair in Flickr30K, although the matching perfor-
mance for our task could in principle be improved
by adjusting this parameter.

3.5 Multi-modal Summarization

We model the salience of a summary S as the sum
of salience scores Sa(ti)5 of the sentence ti in
the summary, combining a λ-weighted redundan-
cy penalty term:

Fs(S) =
∑

ti∈S
Sa(ti)−

λs
|S|

∑

ti,tj∈S
sim(ti, tj) (8)

We model the summary S coverage for the im-
age set I as the weighted sum of image covered by
the summary:

Fc(S) =
∑

pi∈I
Im(pi)bi (9)

where the weight Im(pi) for the image pi is
the length ratio between the shot pi and the w-
hole videos. bi is a binary variable to indicate

5Normalized by the maximum value among all the sen-
tences.

1096



whether an image pi is covered by the summary,
i.e., whether there is at least one sentence in the
summary matching the image.

Finally, considering all the modalities, the ob-
jective function is defined as follows:

Fm(S) =
1

Ms

∑

ti∈S
Sa(ti) +

1

Mc

∑

pi∈I
Im(pi)bi

− λm
|S|

∑

i,j∈S
sim(ti, tj)

(10)
where Ms is the summary score obtained by E-
quation 8 and Mc is the summary score obtained
by Equation 9. The aim of Ms and Mc is to bal-
ance the aspects of salience and coverage for im-
ages. λs, and λm are determined by testing on
development set. Note that to guaranteed mono-
tone of F , λs, and λm should be lower than the
minimum salience score of sentences. To further
improve non-redundancy, we make sure that sim-
ilarity between any pair of sentences in the sum-
mary is lower than Ttext.

Equations 8,9 and 10 are all monotone submod-
ular functions under the budget constraint. Thus,
we apply the greedy algorithm (Lin and Bilmes,
2010) guaranteeing near-optimization to solve the
problem.

4 Experiment

4.1 Dataset
There is no benchmark dataset for MMS. We con-
struct a dataset as follows. We select 50 news top-
ics in the most recent five years, 25 in English and
25 in Chinese. We set 5 topics for each language as
a development set. For each topic, we collect 20
documents within the same period using Google
News search6 and 5-10 videos in CCTV.com7 and
Youtube8. More details of the corpus are illustrat-
ed in Table 1. Some examples of news topics are
provided Table 2.

We employ 10 graduate students to write ref-
erence summaries after reading documents and
watching videos on the same topic. We keep 3 ref-
erence summaries for each topic. The criteria for
summarizing documents lie in: (1) retaining im-
portant content of the input documents and videos;
(2) avoiding redundant information; (3) having a

6http://news.google.com/
7http://www.cctv.com/
8https://www.youtube.com/

good readability; (4) following the length limit.
We set the length constraint for each English and
Chinese summary to 300 words and 500 charac-
ters, respectively.

#Sentence #Word #Shot Video Length

English 492.1 12,104.7 47.2 197s
Chinese 402.1 9,689.3 49.3 207s

Table 1: Corpus statistics.

English

(1) Nepal earthquake
(2) Terror attack in Paris
(3) Train derailment in India
(4) Germanwings crash
(5) Refugee crisis in Europe

Chinese

(6) “东方之星”客船翻沉
(“Oriental Star”passenger ship sinking)
(7)银川公交大火
(The bus fire in Yinchuan)
(8)香港占中
(Occupy Central in HONG KONG)
(9)李娜澳网夺冠
(Li Na wins Australian Open)
(10)抗议“萨德”反导系统
(Protest against “THAAD”anti-missile system)

Table 2: Examples of news topics.

4.2 Comparative Methods
Several models are compared in our experiments,
including generating summaries with differen-
t modalities and different approaches to leverage
images.

Text only. This model generates summaries on-
ly using the text in documents.

Text + audio. This model generates summaries
using the text in documents and the speech tran-
scriptions but without guidance strategies.

Text + audio + guide. This model generates
summaries using the text in documents and the
speech transcriptions with guidance strategies.

The following models generate summaries us-
ing both documents and videos but take advantage
of images in different ways. The salience scores
for text are obtained with guidance strategies.

Image caption. The image is first captioned
using the model of Vinyals et al. (2016) which
achieved first place in the 2015 MSCOCO Image
Captioning Challenge. This model generates sum-
maries using text in documents, speech transcrip-
tion and image captions.

Note that the above-mentioned methods gener-
ate summaries by using Equation 8 and the follow-
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ing methods using Equation 8 ,9 and 10.
Image caption match. This model uses gener-

ated image captions to match the text; i.e., if the
similarity between a generated image caption and
a sentence exceeds the threshold Ttext, the image
and the sentence match.

Image alignment. The images are aligned to
the text in the following ways: The images in a
document are aligned to all the sentences in this
document and the key-frames in a shot are aligned
to all the speech transcriptions in this shot.

Image match. The texts are matched with im-
ages using the approach introduced in Section 3.4.

4.3 Implementation Details
We perform sentence9 and word tokenization, and
all the Chinese sentences are segmented by S-
tanford Chinese Word Segmenter (Tseng et al.,
2005). We apply Stanford CoreNLP toolkit (Levy
and D. Manning, 2003; Klein and D. Manning,
2003) to perform lexical parsing and use se-
mantic role labelling approach proposed by Yang
and Zong (2014). We use 300-dimension skip-
gram English word embeddings which are pub-
licly available10. Given that text-image match-
ing model and image caption generation model are
trained in English, to create summaries in Chinese,
we first translate the Chinese text into English vi-
a Google Translation11 and then conduct text and
image matching.

4.4 Multi-modal Summarization Evaluation
We use the ROUGE-1.5.5 toolkit (Lin and Hov-
y, 2003) to evaluate the output summaries. This
evaluation metric measures the summary quality
by matching n-grams between generated summa-
ry and reference summary. Table 3 and Table 4
show the averaged ROUGE-1 (R-1), ROUGE-2
(R-2) and ROUGE-SU4 (R-SU4) F-scores regard-
ing to the three reference summaries for each topic
in English and Chinese.

For the results of the English MMS, from
the first three lines in Table 3 we can see that
when summarizing without visual information, the
method with guidance strategies performs slight-
ly better than do the first two methods. Because
Rouge mainly measures word overlaps, manual e-
valuation is needed to confirm the impact of guid-
ance strategies on improving readability. It is in-

9We exclude sentences containing less than 5 words.
10https://code.google.com/archive/p/word2vec/
11https://translate.google.com

Method R-1 R-2 R-SU4

Text only 0.422 0.114 0.166
Text + audio 0.422 0.109 0.164
Text + audio + guide 0.440 0.117 0.171
Image caption 0.435 0.111 0.167
Image caption match 0.429 0.115 0.166
Image alignment 0.409 0.082 0.082
Image match 0.442 0.133 0.187

Table 3: Experimental results (F-score) for En-
glish MMS.

Method R-1 R-2 R-SU4

Text only 0.409 0.113 0.167
Text + audio 0.407 0.111 0.166
Text + audio + guide 0.411 0.115 0.173
Image caption match 0.381 0.092 0.149
Image alignment 0.368 0.096 0.143
Image match 0.414 0.125 0.173

Table 4: Experimental results (F-score) for Chi-
nese MMS.

troduced in Section 4.5. The rating ranges from 1
(the poorest) to 5 (the best). When summarizing
with textual and visual modalities, performances
are not always improved, which indicates that the
models of image caption, image caption match
and image alignment are not suitable to MMS.
The image match model has a significant advan-
tage over other comparative methods, which illus-
trates that it can make use of multi-modal infor-
mation.

Table 4 shows the Chinese MMS results, which
are similar to the English results that the image
match model achieves the best performance. We
find that the performance enhancement for the im-
age match model is smaller in Chinese than it is
in English, which may be due to the errors intro-
duced by machine translation.

We provides a generated summary in English
using the image match model, which is shown in
Figure 3.

4.5 Manual Summary Quality Evaluation

The readability and informativeness for sum-
maries are difficult to evaluate formally. We ask
five graduate students to measure the quality of
summaries generated by different methods. We
calculate the average score for all of the topics,
and the results are displayed in Table 5. Overal-
l, our method with guidance strategies achieves
higher scores than do the other methods, but it
is still obviously poorer than the reference sum-
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Ramchandra Tewari , a passenger who suffered a head injury , said he was 

asleep when he was suddenly flung to the floor of his coach . The impact of 

the derailment was so strong that one of the coaches landed on top of 

another , crushing the one below , said Brig. Anurag Chibber , who was 

heading the army 's rescue team . `` We fear there could be many more dead 

in the lower coach , '' he said , adding that it was unclear how many people 

were in the coach . Kanpur is a major railway junction , and hundreds of 

trains pass through the city every day . `` I heard a loud noise , '' passenger 

Satish Mishra said . Some railway officials told local media they suspected 

faulty tracks caused the derailment . Fourteen cars in the 23-car train 

derailed , Modak said . We do n't expect to find any more bodies , '' said 

Zaki Ahmed , police inspector general in the northern city of Kanpur , about 

65km from the site of the crash in Pukhrayan . When they tried to leave 

through one of the doors , they found the corridor littered with bodies , he 

said . The doors would n't open but we somehow managed to come out . But 

it has a poor safety record , with thousands of people dying in accidents 

every year , including in train derailments and collisions . By some analyst 

estimates , the railways need 20 trillion rupees (  $ 293.34 billion )  of 

investment by 2020 , and India is turning to partnerships with private 

companies and seeking loans from other countries to upgrade its network .

Figure 3: An example of generated summary for the news topic “India train derailment”. The sentences
covering the images are labeled by the corresponding colors. The text can be partly related to the image
because we use simplified sentence based on SRL to match the images. We can find some mismatched
sentences, such as the sentence “Fourteen cars in the 23-car train derailed , Modak said .” where our
text-image matching model may misunderstand the “car ” as a “motor vehicle” but not a “coach”.

maries. Specifically, when speech transcription-
s are not considered, the informativeness of the
summary is the worst. However, adding speech
transcriptions without guidance strategies decreas-
es readability to a large extent, which indicates
that guidance strategies are necessary for MMS.
The image match model achieves higher informa-
tiveness scores than do the other methods without
using images.

We give two instances of readability guidance
that arise between document text (DT) and speech
transcriptions (ST) in Table 6. The errors intro-
duced by ASR include segmentation (instance A)
and recognition (instance B) mistakes.

Method Read Inform

English

Text only 3.72 3.28
Text + audio 3.08 3.44
Text + audio + guide 3.68 3.64
Image match 3.67 3.83
Reference 4.52 4.36

Chinese

Text only 3.64 3.40
Text + audio 3.16 3.48
Text + audio + guide 3.60 3.72
Image match 3.62 3.92
Reference 4.88 4.84

Table 5: Manual summary quality evaluation.
“Read” denotes “Readability” and “Inform” de-
notes “informativeness”.

A
DT There were 12 bodies at least pulled from

the rubble in the square.
ST Still being pulled from the rubble.

CST
Many people are still being pulled from
the rubble.

B

DT Conflict between police and protesters
lit up on Tuesday.

ST
Late night tensions between police and
protesters briefly lit up this Baltimore
neighborhood Tuesday.

CST
Late-night tensions between police and
protesters briefly lit up in a Baltimore
neighborhood Tuesday.

Table 6: Guidance examples. “CST” denotes man-
ually modified correct ST. ASR errors are marked
red and revisions are marked blue.

4.6 How Much is the Image Worth

Text-image matching is the toughest module for
our framework. Although we use a state-of-the-art
approach to match the text and images, the per-
formance is far from satisfactory. To find a some-
what strong upper-bound of the task, we choose
five topics for each language to manually label the
text-image matching pairs. The MMS results on
these topics are shown in Table 7 and Table 8. The
experiments show that with the ground truth text-
image matching result, the summary quality can
be promoted to a considerable extent, which indi-
cates visual information is crucial for MMS.

An image and the corresponding texts obtained
using different methods are given in Figure 4 an d
Figure 5. We can conclude that the image caption
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Image caption:
A group of people standing on top of a lush green field.
Image caption match:
We could barely stay standing.
Image hard alignment:
The need for doctors would grow as more survivors were pulled 
from the rubble.
Image match:
The search, involving US, Indian and Nepali military choppers and a 
battalion of 400 Nepali soldiers, has been joined by two MV-22B 
Osprey.
Image manually match:
The military helicopter was on an aid mission in Dolakha district 
near Tibet.

Figure 4: An example image with corresponding
English texts that different methods obtain.

and the image caption match contain little of the
image’s intrinsically intended information. The
image alignment introduces more noise because
it is possible that the whole text in documents or
the speech transcriptions in shot are aligned to the
document images or the key-frames, respectively.
The image match can obtain similar results to the
image manually match, which illustrates that the
image match can make use of visual information
to generate summaries.

Method R-1 R-2 R-SU4

Text + audio + guide 0.426 0.105 0.167
Image caption 0.423 0.106 0.167
Image caption match 0.400 0.086 0.149
Image alignment 0.399 0.069 0.136
Image match 0.436 0.126 0.177
Image manually match 0.446 0.150 0.207

Table 7: Experimental results (F-score) for En-
glish MMS on five topics with manually labeled
text-image pairs.

Method R-1 R-2 R-SU4

Text + audio + guide 0.417 0.115 0.171
Image caption match 0.396 0.095 0.152
Image alignment 0.306 0.072 0.111
Image match 0.401 0.127 0.179
Image manually match 0.419 0.162 0.208

Table 8: Experimental results (F-score) for Chi-
nese MMS on five topics with manually labeled
text-image pairs.

Image caption match:
就 星 州 民众 举行 抗议 集会 ， 文尚 均 表示 ， 国防部 愿意 与 
当地 居民 沟通 。
(On behalf of the protest rally of people in Seongju, Moon Sang-
gyun said that the Ministry of National Defense is willing to 
communicate with local residents.)
Image hard alignment:
朴槿惠 在 国家 安全 保障 会议 上 呼吁 民众 支持 “ 萨德 ” 部
署 。
(Park Geun-hye called on people to support the "THAAD" 
deployment in the National Security Council. )
Image match:
从 7月 12日 开始 ， 当地 民众 连续 数日 在 星 州郡 厅 门口 请
愿 。
(The local people petitioned in front of the Seongju County Office 
for days from July 12.)
Image manually match:
 当天 ， 星 州郡 数千 民众 集会 ， 抗议 在 当地 部署 “ 萨
德 ”
(On that day, thousands of people gathered in Seongju to protest the 
local deployment of "THAAD". )

Figure 5: An example image with corresponding
Chinese texts that different methods obtain.

5 Conclusion

This paper addresses an asynchronous MMS task,
namely, how to use related text, audio and video
information to generate a textual summary. We
formulate the MMS task as an optimization prob-
lem with a budgeted maximization of submodular
functions. To selectively use the transcription of
audio, guidance strategies are designed using the
graph model to effectively calculate the salience
score for each text unit, leading to more readable
and informative summaries. We investigate vari-
ous approaches to identify the relevance between
the image and texts, and find that the image match
model performs best. The final experimental re-
sults obtained using our MMS corpus in both En-
glish and Chinese demonstrate that our system can
benefit from multi-modal information.

Adding audio and video does not seem to im-
prove dramatically over text only model, which
indicates that better models are needed to capture
the interactions between text and other modalities,
especially for visual. We also plan to enlarge our
MMS dataset, specifically to collect more videos.
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Abstract

Multimodal sentiment analysis is an in-
creasingly popular research area, which
extends the conventional language-based
definition of sentiment analysis to a mul-
timodal setup where other relevant modal-
ities accompany language. In this paper,
we pose the problem of multimodal senti-
ment analysis as modeling intra-modality
and inter-modality dynamics. We intro-
duce a novel model, termed Tensor Fusion
Network, which learns both such dynam-
ics end-to-end. The proposed approach is
tailored for the volatile nature of spoken
language in online videos as well as ac-
companying gestures and voice. In the ex-
periments, our model outperforms state-of-
the-art approaches for both multimodal and
unimodal sentiment analysis.

1 Introduction

Multimodal sentiment analysis (Morency et al.,
2011; Zadeh et al., 2016b; Poria et al., 2015) is
an increasingly popular area of affective comput-
ing research (Poria et al., 2017) that focuses on
generalizing text-based sentiment analysis to opin-
ionated videos, where three communicative modal-
ities are present: language (spoken words), visual
(gestures), and acoustic (voice).

This generalization is particularly vital to part
of the NLP community dealing with opinion min-
ing and sentiment analysis (Cambria et al., 2017)
since there is a growing trend of sharing opinions
in videos instead of text, specially in social media
(Facebook, YouTube, etc.). The central challenge
in multimodal sentiment analysis is to model the
inter-modality dynamics: the interactions between

† means equal contribution

Figure 1: Unimodal, bimodal and trimodal interac-
tion in multimodal sentiment analysis.

language, visual and acoustic behaviors that change
the perception of the expressed sentiment.

Figure 1 illustrates these complex inter-modality
dynamics. The utterance “This movie is sick” can
be ambiguous (either positive or negative) by itself,
but if the speaker is also smiling at the same time,
then it will be perceived as positive. On the other
hand, the same utterance with a frown would be per-
ceived negatively. A person speaking loudly “This
movie is sick” would still be ambiguous. These
examples are illustrating bimodal interactions. Ex-
amples of trimodal interactions are shown in Fig-
ure 1 when loud voice increases the sentiment to
strongly positive. The complexity of inter-modality
dynamics is shown in the second trimodal exam-
ple where the utterance “This movie is fair” is still
weakly positive, given the strong influence of the
word “fair”.

A second challenge in multimodal sentiment
analysis is efficiently exploring intra-modality dy-
namics of a specific modality (unimodal interac-
tion). Intra-modality dynamics are particularly
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challenging for the language analysis since mul-
timodal sentiment analysis is performed on spo-
ken language. A spoken opinion such as “I think
it was alright . . . Hmmm . . . let me think . . . yeah
. . . no . . . ok yeah” almost never happens in writ-
ten text. This volatile nature of spoken opinions,
where proper language structure is often ignored,
complicates sentiment analysis. Visual and acous-
tic modalities also contain their own intra-modality
dynamics which are expressed through both space
and time.

Previous works in multimodal sentiment analysis
does not account for both intra-modality and inter-
modality dynamics directly, instead they either per-
form early fusion (a.k.a., feature-level fusion) or
late fusion (a.k.a., decision-level fusion). Early fu-
sion consists in simply concatenating multimodal
features mostly at input level (Morency et al., 2011;
Pérez-Rosas et al., 2013; Poria et al., 2016). This
fusion approach does not allow the intra-modality
dynamics to be efficiently modeled. This is due to
the fact that inter-modality dynamics can be more
complex at input level and can dominate the learn-
ing process or result in overfitting. Late fusion,
instead, consists in training unimodal classifiers in-
dependently and performing decision voting (Wang
et al., 2016; Zadeh et al., 2016a). This prevents the
model from learning inter-modality dynamics in
an efficient way by assuming that simple weighted
averaging is a proper fusion approach.

In this paper, we introduce a new model, termed
Tensor Fusion Network (TFN), which learns both
the intra-modality and inter-modality dynamics
end-to-end. Inter-modality dynamics are modeled
with a new multimodal fusion approach, named
Tensor Fusion, which explicitly aggregates uni-
modal, bimodal and trimodal interactions. Intra-
modality dynamics are modeled through three
Modality Embedding Subnetworks, for language,
visual and acoustic modalities, respectively.

In our extensive set of experiments, we show (a)
that TFN outperforms previous state-of-the-art ap-
proaches for multimodal sentiment analysis, (b) the
characteristics and capabilities of our Tensor Fu-
sion approach for multimodal sentiment analysis,
and (c) that each of our three Modality Embed-
ding Subnetworks (language, visual and acoustic)
are also outperforming unimodal state-of-the-art
unimodal sentiment analysis approaches.

2 Related Work

Sentiment Analysis is a well-studied research area
in NLP (Pang et al., 2008). Various approaches
have been proposed to model sentiment from lan-
guage, including methods that focus on opinionated
words (Hu and Liu, 2004; Taboada et al., 2011; Po-
ria et al., 2014b; Cambria et al., 2016), n-grams and
language models (Yang and Cardie, 2012), senti-
ment compositionality and dependency-based anal-
ysis (Socher et al., 2013; Poria et al., 2014a; Agar-
wal et al., 2015; Tai et al., 2015), and distributional
representations for sentiment (Iyyer et al., 2015).

Multimodal Sentiment Analysis is an emerg-
ing research area that integrates verbal and
nonverbal behaviors into the detection of user
sentiment. There exist several multimodal
datasets that include sentiment annotations,
including the newly-introduced CMU-MOSI
dataset (Zadeh et al., 2016b), as well as other
datasets including ICT-MMMO (Wöllmer et al.,
2013), YouTube (Morency et al., 2011), and
MOUD (Pérez-Rosas et al., 2013), however CMU-
MOSI is the only English dataset with utterance-
level sentiment labels. The newest multimodal sen-
timent analysis approaches have used deep neural
networks, including convolutional neural networks
(CNNs) with multiple-kernel learning (Poria et al.,
2015), SAL-CNN (Wang et al., 2016) which learns
generalizable features across speakers, and support
vector machines (SVMs) with a multimodal dictio-
nary (Zadeh, 2015).

Audio-Visual Emotion Recognition is closely
tied to multimodal sentiment analysis (Poria et al.,
2017). Both audio and visual features have been
shown to be useful in the recognition of emo-
tions (Ghosh et al., 2016a). Using facial expres-
sions and audio cues jointly has been the focus of
many recent studies (Glodek et al., 2011; Valstar
et al., 2016; Nojavanasghari et al., 2016).

Multimodal Machine Learning has been a grow-
ing trend in machine learning research that is
closely tied to the studies in this paper. Creative
and novel applications of using multiple modali-
ties have been among successful recent research
directions in machine learning (You et al., 2016;
Donahue et al., 2015; Antol et al., 2015; Specia
et al., 2016; Tong et al., 2017).

3 CMU-MOSI Dataset

Multimodal Opinion Sentiment Intensity (CMU-
MOSI) dataset is an annotated dataset of video
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Figure 2: Distribution of sentiment across different opinions (left) and opinion sizes (right) in CMU-MOSI.

opinions from YouTube movie reviews (Zadeh
et al., 2016a). Annotation of sentiment has closely
followed the annotation scheme of the Stanford
Sentiment Treebank (Socher et al., 2013), where
sentiment is annotated on a seven-step Likert scale
from very negative to very positive. However,
whereas the Stanford Sentiment Treebank is seg-
mented by sentence, the CMU-MOSI dataset is
segmented by opinion utterances to accommodate
spoken language where sentence boundaries are not
as clear as text. There are 2199 opinion utterances
for 93 distinct speakers in CMU-MOSI. There are
an average 23.2 opinion segments in each video.
Each video has an average length of 4.2 seconds.
There are a total of 26,295 words in the opinion
utterances. These utterance are annotated by five
Mechanical Turk annotators for sentiment. The
final agreement between the annotators is high in
terms of Krippendorf’s alpha α = 0.77. Figure 2
shows the distribution of sentiment across different
opinions and different opinion sizes. CMU-MOSI
dataset facilitates three prediction tasks, each of
which we address in our experiments: 1) Binary
Sentiment Classification 2) Five-Class Sentiment
Classification (similar to Stanford Sentiment Tree-
bank fine-grained classification with seven scale
being mapped to five) and 3) Sentiment Regres-
sion in range [−3, 3]. For sentiment regression, we
report Mean-Absolute Error (lower is better) and
correlation (higher is better) between the model
predictions and regression ground truth.

4 Tensor Fusion Network

Our proposed TFN consists of three major compo-
nents: 1) Modality Embedding Subnetworks take as
input unimodal features, and output a rich modality
embedding. 2) Tensor Fusion Layer explicitly mod-
els the unimodal, bimodal and trimodal interactions
using a 3-fold Cartesian product from modality em-
beddings. 3) Sentiment Inference Subnetwork is a

network conditioned on the output of the Tensor
Fusion Layer and performs sentiment inference.
Depending on the task from Section 3 the network
output changes to accommodate binary classifica-
tion, 5-class classification or regression. Input to
the TFN is an opinion utterance which includes
three modalities of language, visual and acoustic.
The following three subsections describe the TFN
subnetworks and their inputs in detail.

4.1 Modality Embedding Subnetworks

Spoken Language Embedding Subnetwork:
Spoken text is different than written text (reviews,
tweets) in compositionality and grammar. We re-
visit the spoken opinion: “I think it was alright
. . . Hmmm . . . let me think . . . yeah . . . no . . . ok
yeah”. This form of opinion rarely happens in
written language but variants of it are very com-
mon in spoken language. The first part conveys the
actual message and the rest is speaker thinking out
loud eventually agreeing with the first part. The
key factor in dealing with this volatile nature of
spoken language is to build models that are capable
of operating in presence of unreliable and idiosyn-
cratic speech traits by focusing on important parts
of speech.

Our proposed approach to deal with challenges
of spoken language is to learn a rich representa-
tion of spoken words at each word interval and
use it as input to a fully connected deep network
(Figure 3). This rich representation for ith word
contains information from beginning of utterance
through time, as well as ith word. This way as the
model is discovering the meaning of the utterance
through time, if it encounters unusable information
in word i+ 1 and arbitrary number of words after,
the representation up until i is not diluted or lost.
Also, if the model encounters usable information
again, it can recover by embedding those in the long
short-term memory (LSTM). The time-dependent
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Figure 3: Spoken Language Embedding Subnet-
work (Ul)

encodings are usable by the rest of the pipeline by
simply focusing on relevant parts using the non-
linear affine transformation of time-dependent em-
beddings which can act as a dimension reducing
attention mechanism. To formally define our pro-
posed Spoken Language Embedding Subnetwork
(Ul), let l = {l1, l2, l3, . . . , lTl ; lt ∈ R300}, where
Tl is the number of words in an utterance, be the
set of spoken words represented as a sequence of
300-dimensional GloVe word vectors (Pennington
et al., 2014).

A LSTM network (Hochreiter and Schmidhuber,
1997) with a forget gate (Gers et al., 2000) is used
to learn time-dependent language representations
hl = {h1, h2, h3, . . . , hTl ;ht ∈ R128} for words
according to the following LSTM formulation.




i
f
o
m


 =




sigmoid
sigmoid
sigmoid
tanh


Wld

(
XtWle

ht−1

)

ct = f � ct−1 + i�m
ht = o⊗ tanh(ct)

hl = [h1;h2;h3; . . . ;hTl ]

hl is a matrix of language representations formed
from concatenation of h1, h2, h3, . . . hTl . hl is then
used as input to a fully-connected network that
generates language embedding zl:

zl = Ul(l; Wl) ∈ R128

where Wl is the set of all weights in the Ul net-
work (including Wld , Wle ,Wlfc , and blfc), σ is the
sigmoid function.

Visual Embedding Subnetwork: Since opin-
ion videos consist mostly of speakers talking to
the audience through close-up camera, face is the
most important source of visual information. The
speaker’s face is detected for each frame (sampled
at 30Hz) and indicators of the seven basic emotions

(anger, contempt, disgust, fear, joy, sadness, and
surprise) and two advanced emotions (frustration
and confusion) (Ekman, 1992) are extracted using
FACET facial expression analysis framework1. A
set of 20 Facial Action Units (Ekman et al., 1980),
indicating detailed muscle movements on the face,
are also extracted using FACET. Estimates of head
position, head rotation, and 68 facial landmark loca-
tions also extracted per frame using OpenFace (Bal-
trušaitis et al., 2016; Zadeh et al., 2017).

Let the visual features v̂j = [v1j , v
2
j , v

3
j , . . . , v

p
j ]

for frame j of utterance video contain the set of p
visual features, with Tv the number of total video
frames in utterance. We perform mean pooling
over the frames to obtain the expected visual fea-
tures v = [E[v1],E[v2],E[v3], . . . ,E[vl]]. v is
then used as input to the Visual Embedding Sub-
network Uv. Since information extracted using
FACET from videos is rich, using a deep neural
network would be sufficient to produce meaningful
embeddings of visual modality. We use a deep neu-
ral network with three hidden layers of 32 ReLU
units and weights Wv. Empirically we observed
that making the model deeper or increasing the
number of neurons in each layer does not lead to
better visual performance. The subnetwork output
provides the visual embedding zv:

zv = Uv(v; Wv) ∈ R32

Acoustic Embedding Subnetwork: For each
opinion utterance audio, a set of acoustic fea-
tures are extracted using COVAREP acoustic anal-
ysis framework (Degottex et al., 2014), including
12 MFCCs, pitch tracking and Voiced/UnVoiced
segmenting features (using the additive noise ro-
bust Summation of Residual Harmonics (SRH)
method (Drugman and Alwan, 2011)), glottal
source parameters (estimated by glottal inverse
filtering based on GCI synchronous IAIF (Drug-
man et al., 2012; Alku, 1992; Alku et al., 2002,
1997; Titze and Sundberg, 1992; Childers and Lee,
1991)), peak slope parameters (Degottex et al.,
2014), maxima dispersion quotients (MDQ) (Kane
and Gobl, 2013), and estimations of the Rd shape
parameter of the Liljencrants-Fant (LF) glottal
model (Fujisaki and Ljungqvist, 1986). These ex-
tracted features capture different characteristics of
human voice and have been shown to be related to
emotions (Ghosh et al., 2016b).

1http://goo.gl/1rh1JN
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Figure 4: Left: Commonly used early fusion (multimodal concatenation). Right: Our proposed tensor
fusion with three types of subtensors: unimodal, bimodal and trimodal.

For each opinion segment with Ta audio frames
(sampled at 100Hz; i.e., 10ms), we extract the set
of q acoustic features âj = [a1j , a

2
j , a

3
j , . . . , a

q
j ] for

audio frame j in utterance. We perform mean
pooling per utterance on these extracted acous-
tic features to obtain the expected acoustic fea-
tures a = [E[a1],E[a2],E[a3], . . . ,E[q]]. Here, a
is the input to the Audio Embedding Subnetwork
Ua. Since COVAREP also extracts rich features
from audio, using a deep neural network is suffi-
cient to model the acoustic modality. Similar to
Uv, Ua is a network with 3 layers of 32 ReLU units
with weights Wa.

Here, we also empirically observed that mak-
ing the model deeper or increasing the number
of neurons in each layer does not lead to better
performance. The subnetwork produces the audio
embedding za:

za = Ua(a;Wa) ∈ R32

4.2 Tensor Fusion Layer
While previous works in multimodal research has
used feature concatenation as an approach for multi-
modal fusion, we aim to build a fusion layer in TFN
that disentangles unimodal, bimodal and trimodal
dynamics by modeling each of them explicitly. We
call this layer Tensor Fusion, which is defined as
the following vector field using three-fold Carte-
sian product:
{

(zl, zv, za) | zl ∈
[
zl

1

]
, zv ∈

[
zv

1

]
, za ∈

[
za

1

]}

The extra constant dimension with value 1 gener-
ates the unimodal and bimodal dynamics. Each
neural coordinate (zl, zv, za) can be seen as a 3-D
point in the 3-fold Cartesian space defined by the
language, visual, and acoustic embeddings dimen-
sions [zl1]T , [zv1]T , and [za1]T .

This definition is mathematically equivalent to a
differentiable outer product between zl, the visual
representation zv, and the acoustic representation
za.

zm =

[
zl

1

]
⊗
[
zv

1

]
⊗
[
za

1

]

Here⊗ indicates the outer product between vectors
and zm ∈ R129×33×33 is the 3D cube of all pos-
sible combination of unimodal embeddings with
seven semantically distinct subregions in Figure 4.
The first three subregions zl, zv, and za are uni-
modal embeddings from Modality Embedding Sub-
networks forming unimodal interactions in Tensor
Fusion. Three subregions zl ⊗ zv, zl ⊗ za, and
zv ⊗ za capture bimodal interactions in Tensor
Fusion. Finally, zl ⊗ zv ⊗ za captures trimodal
interactions.

Early fusion commonly used in multimodal re-
search dealing with language, vision and audio,
can be seen as a special case of Tensor Fusion with
only unimodal interactions. Since Tensor Fusion
is mathematically formed by an outer product, it
has no learnable parameters and we empirically
observed that although the output tensor is high
dimensional, chances of overfitting are low.
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We argue that this is due to the fact that the out-
put neurons of Tensor Fusion are easy to interpret
and semantically very meaningful (i.e., the mani-
fold that they lie on is not complex but just high
dimensional). Thus, it is easy for the subsequent
layers of the network to decode the meaningful
information.

4.3 Sentiment Inference Subnetwork

After Tensor Fusion layer, each opinion utterance
can be represented as a multimodal tensor zm. We
use a fully connected deep neural network called
Sentiment Inference Subnetwork Us with weights
Ws conditioned on zm. The architecture of the net-
work consists of two layers of 128 ReLU activation
units connected to decision layer. The likelihood
function of the Sentiment Inference Subnetwork
is defined as follows, where φ is the sentiment
prediction:

arg max
φ

p(φ | zm;Ws) = arg max
φ

Us(zm;Ws)

In our experiments, we use three variations of the
Us network. The first network is trained for binary
sentiment classification, with a single sigmoid out-
put neuron using binary cross-entropy loss. The
second network is designed for five-class sentiment
classification, and uses a softmax probability func-
tion using categorical cross-entropy loss. The third
network uses a single sigmoid output, using mean-
squarred error loss to perform sentiment regression.

5 Experiments

In this paper, we devise three sets of experiments
each addressing a different research question:

Experiment 1: We compare our TFN with previ-
ous state-of-the-art approaches in multimodal sen-
timent analysis.

Experiment 2: We study the importance of the
TFN subtensors and the impact of each individual
modality (see Figure 4). We also compare with the
commonly-used early fusion approach.

Experiment 3: We compare the performance
of our three modality-specific networks (language,
visual and acoustic) with state-of-the-art unimodal
approaches.

Section 5.4 describes our experimental method-
ology which is kept constant across all experiments.
Section 6 will discuss our results in more details
with a qualitative analysis.

Multimodal
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

Random 50.2 48.7 23.9 1.88 -
C-MKL 73.1 75.2 35.3 - -
SAL-CNN 73.0 - - - -
SVM-MD 71.6 72.3 32.0 1.10 0.53
RF 71.4 72.1 31.9 1.11 0.51
TFN 77.1 77.9 42.0 0.87 0.70
Human 85.7 87.5 53.9 0.71 0.82

∆SOTA ↑ 4.0 ↑ 2.7 ↑ 6.7 ↓ 0.23 ↑ 0.17

Table 1: Comparison with state-of-the-art ap-
proaches for multimodal sentiment analysis. TFN
outperforms both neural and non-neural approaches
as shown by ∆SOTA.

5.1 E1: Multimodal Sentiment Analysis

In this section, we compare the performance of
TFN model with previously proposed multimodal
sentiment analysis models. We compare to the
following baselines:

C-MKL (Poria et al., 2015) Convolutional
MKL-based model is a multimodal sentiment clas-
sification model which uses a CNN to extract tex-
tual features and uses multiple kernel learning for
sentiment analysis. It is current SOTA (state of the
art) on CMU-MOSI.

SAL-CNN (Wang et al., 2016) Select-Additive
Learning is a multimodal sentiment analysis model
that attempts to prevent identity-dependent infor-
mation from being learned in a deep neural network.
We retrain the model for 5-fold cross-validation us-
ing the code provided by the authors on github.

SVM-MD (Zadeh et al., 2016b) is a SVM
model trained on multimodal features using early
fusion. The model used in (Morency et al., 2011)
and (Pérez-Rosas et al., 2013) also similarly use
SVM on multimodal concatenated features. We
also present the results of Random Forest RF-MD
to compare to another non-neural approach.

The results first experiment are reported in Ta-
ble 1. TFN outperforms previously proposed neu-
ral and non-neural approaches. This difference is
specifically visible in the case of 5-class classifica-
tion.

5.2 E2: Tensor Fusion Evaluation

Table 4 shows the results of our ablation study. The
first three rows are showing the performance of
each modality, when no intermodality dynamics are
modeled. From this first experiment, we observe
that the language modality is the most predictive.
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Baseline Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

TFNlanguage 74.8 75.6 38.5 0.99 0.61
TFNvisual 66.8 70.4 30.4 1.13 0.48
TFNacoustic 65.1 67.3 27.5 1.23 0.36

TFNbimodal 75.2 76.0 39.6 0.92 0.65
TFNtrimodal 74.5 75.0 38.9 0.93 0.65
TFNnotrimodal 75.3 76.2 39.7 0.919 0.66

TFN 77.1 77.9 42.0 0.87 0.70
TFNearly 75.2 76.2 39.0 0.96 0.63

Table 2: Comparison of TFN with its subtensor
variants. All the unimodal, bimodal and trimodal
subtensors are important. TFN also outperforms
early fusion.

As a second set of ablation experiments, we test
our TFN approach when only the bimodal subten-
sors are used (TFNbimodal) or when only the tri-
modal subtensor is used (TFNbimodal). We observe
that bimodal subtensors are more informative when
used without other subtensors. The most interest-
ing comparison is between our full TFN model
and a variant (TFNnotrimodal) where the trimodal
subtensor is removed (but all the unimodal and bi-
modal subtensors are present). We observe a big
improvement for the full TFN model, confirming
the importance of the trimodal dynamics and the
need for all components of the full tensor.

We also perform a comparison with the early fu-
sion approach (TFNearly) by simply concatenating
all three modality embeddings < zl, za, zv > and
passing it directly as input to Us. This approach
was depicted on the left side of Figure 4. When
looking at Table 4 results, we see that our TFN
approach outperforms the early fusion approach2.

5.3 E3: Modality Embedding Subnetworks
Evaluation

In this experiment, we compare the performance
of our Modality Embedding Networks with state-
of-the-art approaches for language-based, visual-
based and acoustic-based sentiment analysis.

5.3.1 Language Sentiment Analysis
We selected the following state-of-the-art ap-
proaches to include variety in their techniques,

2We also performed other comparisons with variants of the
early fusion model TFNearly where we increased the number
of parameters and neurons to replicate the numbers from our
TFN model. In all cases, the performances were similar to
TFNearly (and lower than our TFN model). Because of space
constraints, we could not include them in this paper.

Language
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

RNTN - - - - -
(73.7) (73.4) (35.2) (0.99) (0.59)

DAN 73.4 73.8 39.2 - -
(68.8) (68.4) (36.7) - -

D-CNN 65.5 66.9 32.0 - -
(62.1) (56.4) (32.4) - -

CMKL-L 71.2 72.4 34.5 - -
SAL-CNN-L 73.5 - - - -
SVM-MD-L 70.6 71.2 33.1 1.18 0.46
TFNlanguage 74.8 75.6 38.5 0.98 0.62

∆SOTA
language ↑ 1.1 ↑ 1.8 ↓ 0.7 ↓ 0.01 ↑ 0.03

Table 3: Language Sentiment Analysis. Compari-
son of with state-of-the-art approaches for language
sentiment analysis. ∆SOTA

language shows improvement.

based on dependency parsing (RNTN), distribu-
tional representation of text (DAN), and convolu-
tional approaches (DynamicCNN). When possible,
we retrain them on the CMU-MOSI dataset (per-
formances of the original pre-trained models are
shown in parenthesis in Table 3) and compare them
to our language only TFNlanguage.

RNTN (Socher et al., 2013)The Recursive Neu-
ral Tensor Network is among the most well-known
sentiment analysis methods proposed for both bi-
nary and multi-class sentiment analysis that uses
dependency structure.

DAN (Iyyer et al., 2015) The Deep Average Net-
work approach is a simple but efficient sentiment
analysis model that uses information only from
distributional representation of the words and not
from the compositionality of the sentences.

DynamicCNN (Kalchbrenner et al., 2014) Dy-
namicCNN is among the state-of-the-art models
in text-based sentiment analysis which uses a con-
volutional architecture adopted for the semantic
modeling of sentences.

CMK-L, SAL-CNN-L and SVM-MD-L are
multimodal models from section using only lan-
guage modality 5.1.

Results in Table 3 show that our model using
only language modality outperforms state-of-the-
art approaches for the CMU-MOSI dataset. While
previous models are well-studied and suitable mod-
els for sentiment analysis in written language, they
underperform in modeling the sentiment in spoken
language. We suspect that this underperformance is
due to: RNTN and similar approaches rely heavily
on dependency structure, which may not be present
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Visual
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

3D-CNN 56.1 58.4 24.9 1.31 0.26
CNN-LSTM 60.7 61.2 25.1 1.27 0.30
LSTM-FA 62.1 63.7 26.2 1.23 0.33
CMKL-V 52.6 58.5 29.3 - -
SAL-CNN-V 63.8 - - - -
SVM-MD-V 59.2 60.1 25.6 1.24 0.36
TFNvisual 69.4 71.4 31.0 1.12 0.50

∆SOTA
visual ↑ 5.6 ↑ 7.7 ↑ 1.7 ↓ 0.11 ↑ 0.14

Table 4: Visual Sentiment Analysis. Comparison
with state-of-the-art approaches for visual senti-
ment analysis and emotion recognition. ∆SOTA

visual

shows the improvement.

in spoken language; DAN and similar sentence em-
beddings approaches can easily be diluted by words
that may not relate directly to sentiment or mean-
ing; D-CNN and similar convolutional approaches
rely on spatial proximity of related words, which
may not always be present in spoken language.

5.3.2 Visual Sentiment Analysis
We compare the performance of our models using
visual information (TFNvisual) with the following
well-known approaches in visual sentiment anal-
ysis and emotion recognition (retrained for senti-
ment analysis):

3DCNN (Byeon and Kwak, 2014) a network us-
ing 3D CNN is trained using the face of the speaker.
Face of the speaker is extracted in every 6 frames
and resized to 64× 64 and used as the input to the
proposed network.

CNN-LSTM (Ebrahimi Kahou et al., 2015) is a
recurrent model that at each timestamp performs
convolutions over facial region and uses output to
an LSTM. Face processing is similar to 3DCNN.

LSTM-FA similar to both baselines above, infor-
mation extracted by FACET is used every 6 frames
as input to an LSTM with a memory dimension of
100 neurons.

SAL-CNN-V, SVM-MD-V, CMKL-V, RF-V
use only visual modality in multimodal baselines
from Section 5.1.

The results in Table 5 show that Uv is able to
outperform state-of-the-art approaches on visual
sentiment analysis.

5.3.3 Acoustic Sentiment Analysis
We compare the performance of our models using
visual information (TFNacoustic) with the following
well-known approaches in audio sentiment analysis

Acoustic
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

HL-RNN 63.4 64.2 25.9 1.21 0.34
Adieu-Net 59.2 60.6 25.1 1.29 0.31
SER-LSTM 55.4 56.1 24.2 1.36 0.23
CMKL-A 52.6 58.5 29.1 - -
SAL-CNN-A 62.1 - - - -
SVM-MD-A 56.3 58.0 24.6 1.29 0.28
TFNacoustic 65.1 67.3 27.5 1.23 0.36

∆SOTA
acoustic ↑ 1.7 ↑ 3.1 ↓ 1.6 ↑ 0.02 ↑ 0.02

Table 5: Acoustic Sentiment Analysis. Compari-
son with state-of-the-art approaches for audio sen-
timent analysis and emotion recognition. ∆SOTA

acoustic

shows improvement.

and emotion recognition (retrained for sentiment
analysis):

HL-RNN (Lee and Tashev, 2015) uses an
LSTM on high-level audio features. We use the
same features extracted for Ua averaged over time
slices of every 200 intervals.

Adieu-Net (Trigeorgis et al., 2016) is an end-
to-end approach for emotion recognition in audio
using directly PCM features.

SER-LSTM (Lim et al., 2016) is a model that
uses recurrent neural networks on top of convolu-
tion operations on spectrogram of audio.

SAL-CNN-A, SVM-MD-A, CMKL-A, RF-A
use only acoustic modality in multimodal baselines
from Section 5.1.

5.4 Methodology
All the models in this paper are tested us-
ing five-fold cross-validation proposed by CMU-
MOSI (Zadeh et al., 2016a). All of our experiments
are performed independent of speaker identity, as
no speaker is shared between train and test sets
for generalizability of the model to unseen speak-
ers in real-world. The best hyperparameters are
chosen using grid search based on model perfor-
mance on a validation set (using last 4 videos in
train fold). The TFN model is trained using the
Adam optimizer (Kingma and Ba, 2014) with the
learning rate 5e4. Uv and Ua, Us subnetworks are
regularized using dropout on all hidden layers with
p = 0.15 and L2 norm coefficient 0.01. The train,
test and validation folds are exactly the same for
all baselines.

6 Qualitative Analysis

We analyze the impact of our proposed TFN mul-
timodal fusion approach by comparing it with the
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# Spoken words +
acoustic and visual behaviors

TFN-
Acoustic

TFN-
Visual

TFN-
Language

TFN-
Early TFN Ground

Truth

1
“You can’t even tell funny jokes” +

frowning expression
-0.375 -1.760 -0.558 -0.839 -1.661 -1.800

2
“I gave it a B” + smile expression +

excited voice
1.967 1.245 0.438 0.467 1.215 1.400

3

“But I must say those are some pretty

big shoes to fill so I thought maybe

it has a chance” + headshake

-0.378 -1.034 1.734 1.385 0.608 0.400

4

“The only actor who can really sell

their lines is Erin Eckart” + frown +
low-energy voice

-0.970 -0.716 0.175 -0.031 -0.825 -1.000

Table 6: Examples from the CMU-MOSI dataset. The ground truth sentiment labels are between strongly
negative (-3) and strongly positive (+3). For each example, we show the prediction output of the three
unimodal models ( TFNacoustic, TFNvisual and TFNlanguage), the early fusion model TFNearly and our
proposed TFN approach. TFNearly seems to be mostly replicating language modality while our TFN
approach successfully integrate intermodality dynamics to predict the sentiment level.

early fusion approach TFNearly and the three uni-
modal models. Table 6 shows examples taken
from the CMU-MOSI dataset. Each example is
described with the spoken words as well as the
acoustic and visual behaviors. The sentiment pre-
dictions and the ground truth labels range between
strongly negative (-3) and strongly positive (+3).

As a first general observation, we observe that
the early fusion model TFNearly shows a strong
preference for the language modality and seems to
be neglecting the intermodality dynamics. We can
see this trend by comparing it with the language
unimodal model TFNlanguage. In comparison, our
TFN approach seems to capture more complex in-
teraction through bimodal and trimodal dynamics
and thus performs better. Specifically, in the first
example, the utterance is weakly negative where
the speaker is referring to lack of funny jokes in
the movie. This example contains a bimodal inter-
action where the visual modality shows a negative
expression (frowning) which is correctly captured
by our TFN approach.

In the second example, the spoken words are
ambiguous since the model has no clue what a B is
except a token, but the acoustic and visual modal-
ities are bringing complementary evidences. Our
TFN approach correctly identify this trimodal inter-
action and predicts a positive sentiment. The third
example is interesting since it shows an interac-
tion where language predicts a positive sentiment

but the strong negative visual behaviors bring the
final prediction of our TFN approach almost to a
neutral sentiment. The fourth example shows how
the acoustic modality is also influencing our TFN
predictions.

7 Conclusion

We introduced a new end-to-end fusion method
for sentiment analysis which explicitly represents
unimodal, bimodal, and trimodal interactions be-
tween behaviors. Our experiments on the publicly-
available CMU-MOSI dataset produced state-of-
the-art performance when compared against both
multimodal approaches. Furthermore, our ap-
proach brings state-of-the-art results for language-
only, visual-only and acoustic-only multimodal sen-
timent analysis on CMU-MOSI.
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Abstract

Manual annotations are a prerequisite for
many applications of machine learning.
However, weaknesses in the annotation
process itself are easy to overlook. In par-
ticular, scholars often choose what infor-
mation to give to annotators without ex-
amining these decisions empirically. For
subjective tasks such as sentiment analy-
sis, sarcasm, and stance detection, such
choices can impact results. Here, for the
task of political stance detection on Twit-
ter, we show that providing too little con-
text can result in noisy and uncertain an-
notations, whereas providing too strong a
context may cause it to outweigh other
signals. To characterize and reduce these
biases, we develop ConStance, a gen-
eral model for reasoning about annotations
across information conditions. Given con-
flicting labels produced by multiple an-
notators seeing the same instances with
different contexts, ConStance simultane-
ously estimates gold standard labels and
also learns a classifier for new instances.
We show that the classifier learned by
ConStance outperforms a variety of base-
lines at predicting political stance, while
the model’s interpretable parameters shed
light on the effects of each context.

1 Introduction

When annotators are asked for objective judg-
ments about a text (e.g., POS tags), the broader
context in which the text is situated is often ir-
relevant. However, many NLP tasks focus on in-
ference of factors beyond words and syntax. For
example, the present work addresses the task of
detecting political stance on Twitter. We ask an-

notators to determine whether a given Twitter user
supports Donald Trump or Hillary Clinton. How-
ever, inferring something about a user from a sin-
gle tweet that she writes may prove difficult. Prior
work on stance has relied on annotations collected
this way (Mohammad et al., 2016b), but individual
tweets do not always contain clear indicators.

One solution to this issue is to supply the anno-
tator with more information about the user. For ex-
ample, for the similar task of classifying a Twitter
user’s political affiliation, Cohen and Ruths (2013)
display the user’s last 10 tweets. Nguyen et al.
(2013), studying gender and age, ask annotators to
label users by leveraging all information available
in their profile. Thus, researchers have provided
a range of contexts (or more broadly, information
conditions) to annotators in an attempt to balance
annotators’ exposure to the data needed for accu-
racy with reasonable costs in terms of time, money
and cognitive load.

However, while scholars routinely make such
decisions about what information to show anno-
tators, they rarely examine how such decisions ac-
tually impact annotations. The first contribution
of this paper (Section 3) is to show that, at least
for political stance detection on Twitter, displaying
different kinds of context to annotators yields sig-
nificantly different annotations for the same user.
As a result of these discrepancies, the accuracy of
models trained on these annotations varies widely.

While it is possible one could select a “best”
context for a given task, our results suggest that
doing so a priori is difficult and that, moreover,
different contexts provide complementary infor-
mation. What we would prefer, instead, is a
model that learns how contexts affect annotators
and combines annotations from multiple contexts
to create gold standard labels.

Fortunately, prior work suggests mechanisms
for such a model. Typically in annotation tasks,
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each item is judged by several annotators, and the
resulting labels are aggregated, usually by major-
ity vote, to create a gold standard. As an alterna-
tive to majority vote, Raykar et al. (2010) develop
an elegant probabilistic approach for learning to
aggregate labels produced by annotators of vary-
ing quality. Their model jointly estimates gold
standard labels (in the form of probability scores),
infers annotator error rates, and learns a classifier
for use on out-of-sample data.

Our second contribution (Section 4) is an ex-
tension of Raykar et al.’s model to handle labels
not only created by annotators of varying quality,
but also produced under information conditions of
varying quality. We call this model ConStance1.
Like Raykar et al. (2010), who find that even low-
quality annotators are useful, we find that low-
quality contexts can be useful. Specifically, we
find that the classifier produced from our model
performs better than any classifier trained by ma-
jority vote from the same labels. Furthermore, the
model provides an unsupervised method for com-
paring the information conditions by examining
their respective error patterns.

Intuitively, ConStance performs a role analo-
gous to boosting for annotations: for an arbitrary
task, it permits collection of labels that capture dif-
ferent aspects of the instances at hand, then com-
bines them automatically to determine which are
more reliable and to produce a classifier that takes
all this into account.

2 Annotating Political Stance

2.1 Political Stance Detection

Stance detection is defined as the task of determin-
ing whether an individual is in favor of, against,
or neutral towards a target concept based on the
content they have generated (Mohammad et al.,
2016b). It is related to but distinct from sentiment
analysis: a given document can have negative sen-
timent but a positive stance towards a particular
target, or vice versa. Further, for stance detec-
tion, the target need not be explicitly mentioned.
These points are best illustrated via example: the
tweet “I hope that the Democrats get destroyed in
this election!” has a negative sentiment (towards
Democrats), and (therefore, most likely) implies a

1 Replication materials for this work, including code
for ConStance, are available at https://github.com/
kennyjoseph/constance. The paper’s Supplementary
Material can also be accessed there.

positive stance towards Donald Trump.
As a case study for how context impacts an-

notations, we focus on political stance detection
on Twitter—specifically, determining stance to-
wards Hillary Clinton and Donald Trump during
the 2016 U.S. election season. This task illus-
trates the challenges of annotation, since individ-
ual tweets are often ambiguous with respect to
stance, contexts on Twitter are inherently frac-
tured, and differing contexts can make annotators
lean in different directions.

Note that a user’s stance, as we use the term in
this paper, is a latent (and stable) property of the
user. However, short of interviewing the user, we
can never be completely certain of her stance. As
such, the examples here and evaluations later rely
on the authors’ best estimates of stance, using all
available information.

A user’s tweets, in turn, may or may not reveal
her stance. This means that, by our definitions,
an annotator might accurately perceive no stance
in a tweet, yet have their annotation be considered
incorrect with respect to the user’s true stance. We
would consider this case an annotator error caused
by lack of context.

As examples of the task, consider annotating the
following three tweets: (i) “crooked Hillary - #lock-

HerUp,” (ii) “Lester thinks he can control the crowd when

he can’t even keep Trump on topic lmao,” and (iii) “Set-

tling in for #debatenight Hoping to hear an adult conversa-

tion.” In the case of (i), a passing familiarity with
American politics gives us high confidence that
the author is pro-Trump. The tweets in (ii) and
(iii) are more ambiguous, but the authors’ stances
become clearer with access to varying forms of
context. For (ii), a Pepe the frog image (a sym-
bol used by the American alt-right movement) in
the user profile reveals that the user is probably
a Trump supporter. Similarly, for (iii), a profile
description that reads “Stereotypical Iowan who enjoys

Hillary Clinton, progressive politics. Chair of CYDIWomen.

Previously @HillaryForIA and @NARAL.” suggests sup-
port for Clinton and distaste for Trump.

In order to explore the effects on annotation
quality of providing these kinds of context to an-
notators, we crowd-source annotations for a set
of tweets and vary the additional information pro-
vided to annotators. For ease of comparison with
related work and within our own study, we asso-
ciate each user with a single anchor tweet. Thus,
both annotators and classifiers are asked to deter-
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mine the stance of a user using data from one par-
ticular time window.

2.2 Data
We collected tweets during the general election
season (7/29/2016–11/7/2016) from over 40,000
Twitter users we had previously matched to voter
registration records. Matching Twitter users to
voter registrations (using methods similar to Bar-
berá, 2016; Hobbs et al., 2017) helps ensure that
the accounts we study are controlled by humans,
and it supplies additional demographic variables:
gender, race and party registered with.

We identified as a political tweet any tweet
that mentioned the official handle for Donald
Trump (@realDonaldTrump) or Hillary Clinton
(@HillaryClinton), or that contained one or more
of the following terms or hashtags: Hillary, Clin-
ton, Trump, Donald, #maga, #imwithher, #de-
batenight, #election2016, #electionnight. We re-
moved all reply tweets, quote tweets and tweets
that directly retweeted the candidates. Finally, we
kept only those users who posted at least three po-
litical tweets.

From these users, we sampled 562 political
tweets for crowd-sourced stance annotation, se-
lecting at most one tweet per user. These tweets
were all sampled from users who were registered
Democrats or Republicans. Half the tweets were
paired with Hillary Clinton as the target, the other
half with Donald Trump. We also sampled and set
aside an additional 250 + 318 tweet/target pairs
to use as development and validation data, respec-
tively (see Section 2.5).

2.3 Annotation Task
We used Amazon Mechanical Turk (AMT) for an-
notation. Annotators were presented a triplet of
{tweet, target, context} and were asked to make
their decisions on a 5-point Likert scale, ranging
from “Definitely Opposes [target]” to “Definitely
Supports [target]”. Both prior work (Mohammad
et al., 2016b) and our pilot studies suggested con-
fusion between options for a tweet’s irrelevance
towards a target and the tweet’s neutrality towards
the target, so we used the center of the scale for
both options. For this paper, we use a narrower
three-point scale formed by merging the “Defi-
nitely” and “Probably” options.

Further, while tweets were annotated with re-
spect to different targets, we combine all anno-
tations into a single task by assuming that “anti-

Context Displays the anchor tweet plus . . .
No Context No additional information
Partial Profile Profile image, name, and handle

Full Profile
Author’s profile image, name, han-
dle, and description

Previous
Tweets

Author’s two most recent tweets in
general prior to the anchor

(Previous) Po-
litical Tweets

Author’s two most recent political
tweets prior to the anchor

Political Party
Political affiliation (if any) from the
author’s voter registration

Table 1: Descriptions of the six contexts (informa-
tion conditions) presented to the annotators.

Trump” means “pro-Clinton”, and vice-versa.
This assumption seems reasonable given that the
voting population was strongly polarized during
the general (post-primary) election season, and it
doubles the amount of data we can use to train the
models. Thus, throughout this work the labels
we use are taken from the set {“Support Trump /
Oppose Clinton” = −1, “Neutral / I don’t know”
= 0, “Oppose Trump / Support Clinton” = 1}.

2.4 Contexts Studied

Each of the 562 “anchor” tweets was annotated
under six different contexts (also referred to as in-
formation conditions) described in Table 1. (The
Supplementary Material provides visual examples
of each.) We collected at least three annotations
for each tweet/condition pair. Every AMT worker
was shown 40 different tweets, one by one, ran-
domly distributed across contexts. Two additional
artificial tweets were used to control for task com-
petency.

We selected the conditions in Table 1 based on
two factors. First, we included conditions that var-
ied in how much we expected them to impact an-
notations. For example, we expected the partial
profile information to have a relatively small ef-
fect, and political party a larger one. Second, we
restricted our options to sets of information that
we believed would minimally impact task comple-
tion times. We confirmed this empirically by re-
gressing the (logged) time to completion for each
annotator on the number of tweets she saw for
each context, finding no significant effects from
any context.

2.5 Gold Standard Labels

Ideally, we would evaluate annotation quality and
downstream performance by comparing to ground
truth. Unfortunately, ground truth is difficult to
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characterize for tasks as subjective as stance de-
tection or sentiment analysis (Passonneau and Car-
penter, 2014; DiMaggio, 2015). In light of this,
we constructed our own labels, using all available
information about users, and we use them as an
approximation of ground truth.

We constructed these labels in order to evaluate
downstream classification performance, and they
cover a set of users not shown to the AMT work-
ers. Given our resource constraints and the numer-
ous (at least 18), often conflicting labels already
available for tweets shown to AMT workers, we
did not create definitive labels for that set.

To create these “gold standard” (GS) labels,
we considered all information found on the user’s
Twitter timeline, including everything AMT an-
notators could see, plus friend/following relation-
ships, all of their previous tweets, demographics
from the voter file, etc. Anecdotally, we found cer-
tain cases time-consuming to investigate, which
argues for continuing to limit how much informa-
tion we ask annotators to consider. All gold stan-
dard labels were agreed upon by at least two au-
thors, who first labeled the data independently and
then came together to discuss disagreements.

Our GS set consists of 318 users (with their as-
sociated anchor tweets). Each user is assigned
a label from the tertiary Trump/Neutral/Clinton
scale. Another 250 manually labeled accounts
were used for model development but are not part
of reported results. The GS is approximately
equally divided among registered Democrats, reg-
istered Republicans, and people not registered
with either party; the last category includes self-
declared Independents and voters not affiliated
with any party. We include this third set in order
to ensure the models generalize beyond registered
Democrats and Republicans.

3 Annotation Quality For Individual
Contexts

In this section, we examine how annotator agree-
ment varies depending on the context in which the
labels were obtained, and how classifiers trained
on majority-vote labels from each individual con-
text, as well as on labels from all contexts com-
bined, perform on the GS. First, we introduce the
classifier and features used for the latter task, then
discuss results for agreement and classifier perfor-
mance.

3.1 Classifier, Labels, Features, & Evaluation

For each of the six contexts separately, we con-
struct labels with which to train a classifier. Train-
ing labels are constructed using majority vote; we
also tried weighting the training instances to match
the distribution of labels, but it did not perform as
well. We also construct a seventh set of labels us-
ing all annotations from all conditions. We then
train a classifier on each set of labels. We use
Random Forest models, as they outperformed reg-
ularized logistic regression and SVMs with linear
kernels on the development set. Note that the only
difference among the models in this section is the
labels they are trained on.

The feature set used, shown in Table 2, is meant
as a straightforward representation of the informa-
tion seen by annotators; parts of it follow Ebrahimi
et al. (2016). We construct three types of features
for each tweet: text, sentiment and user features.
For text features, we collapse the anchor tweet
plus all additional textual context seen by any an-
notator into a single string, then compute vari-
ous n-grams from it. For sentiment, we compute
various scores from the anchor tweet alone. For
user features, we include the user’s race and gen-
der, which annotators might have learned from the
user’s profile picture. Note that because we want
models to generalize beyond registered Democrats
or Republicans, we do not include a feature for po-
litical party.

Classifier performance on the GS is measured,
following prior work (Mohammad et al., 2016a;
Ebrahimi et al., 2016), on the average of the F1
scores on the two classes of interest (“Clinton”
and “Trump”). Additionally, we report the aver-
age log-loss (the negative log-likelihood, accord-
ing to the classifier, of the true label). Log-loss
and F1 can be seen as complementary measures:
whereas F1 evaluates the quality of the ranking
of test instances, log-loss evaluates the quality of
their individual probability estimates. To compute
the probability estimate from a Random Forest, we
compute mean class probabilities across all trees.

To assess the statistical significance of differ-
ences between two models, we first obtain prob-
ability estimates for all GS items. For log-loss, we
use a Mann-Whitney test on the scores from the
two models being compared. For F1, we create
1000 bootstrap iterations of the sample, compute
the average F1 of each, and run a non-parametric
difference-in-means test, using 95% confidence
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Category Data Source Feature Representation
Text Anchor tweet,

previous (political) tweets,
profile description

Character n-grams (n ∈ [3, 5]), word n-grams (n ∈ [1, 3]).
Preprocessing: only use tokens appearing ≥ 10 times, apply tf-idf weighting.

Sentiment Anchor tweet
VADER score (Hutto and Gilbert, 2014)
Dictionary approach (Joseph et al., 2017): valence, dominance & arousal scores

User Voter registration record Race, gender

Table 2: Features used in classification.

Model Agreement Log-Loss Avg F1
No Context 0.84 0.72 0.61

Partial Profile 0.83 0.71 0.68
Full Profile 0.82 0.69 0.62

Previous Tweets 0.84 0.65 0.71
Political Tweets 0.88 0.61 0.70
Political Party 0.88 0.63 0.68
All Combined 0.77 0.62 0.71

Table 3: Inter-annotator agreement, then perfor-
mance of classifier trained on majority vote labels.
(Best possible is 1 for agreement and F1, 0 for log-
loss.)

intervals.

3.2 Effects of the Contexts

Before evaluating classification results, we con-
sider annotator agreement within each context,
calculated like Mohammad et al. (2016b) as the
average, across tweets, of the percentage of anno-
tations that match the majority vote. As shown
in Table 3, annotators shown No Context achieve
an agreement score of 0.84, similar to the 0.8185
reported by Mohammad et al. (2016b). Relative
to this baseline, some contexts increase agreement
more than others. As one might expect, Previ-
ous Political Tweets and Political Party show the
strongest signals. Their effects are statistically
(p < .01, Mann-Whitney test) and practically sig-
nificant, increasing the number of labels having
full agreement by 15% and 10%, respectively.

However, annotators shown different contexts
did not necessarily converge to the same labels.
Notice the low agreement for the All Combined
condition: the majority labels held stronger ma-
jorities within any individual context than across
all of them. In fact, if we look at the six major-
ity vote labels for each tweet, only in 43% of the
tweets are these labels in full agreement. At the
end of Section 5, we return to the question of why
agreement was so low across conditions, with the
help of parameters estimated by ConStance.

In the classification task, the results in Ta-
ble 3 further suggest that Previous Political Tweets

serves as the strongest single context. There is a
good case to be made for choosing this individ-
ual context, which is statistically significantly bet-
ter than many others. For example, providing an-
notators with Previous Political Tweets provides a
statistically significant increase in both average F1
scores and log-loss (with p < .01) over both the
No Context and Full Profile conditions. Perhaps
most noteworthy is that the All Combined classi-
fier, created from the naive combination of all an-
notations, is no better than the classifiers from the
individual conditions.

To summarize, results suggest that providing
annotators with appropriate additional context can
improve annotation quality, as measured via an-
notator agreement and downstream classification
performance. However, it was not obvious in ad-
vance which context would be most helpful, and
performing such an analysis as this requires the
time-intensive construction of better “gold stan-
dard” labels against which to check the labels al-
ready being outsourced to annotators. In addition,
the heterogeneity of the labels produced in differ-
ent contexts suggests that the contexts provide di-
verse signals we might be able to leverage; how-
ever, simply combining all the annotations does
not result in improvements.

4 ConStance: General Unified Model

The prior section thus suggests that it may be bet-
ter to limit a priori decisions and instead to lever-
age multiple kinds of context during annotation.
Like Raykar et al. (2010) assumes for annotators,
we might expect (and indeed find) that even those
contexts that turn out to be worse on some metrics
still might be useful for other purposes. Here, we
present a model for such an approach.

ConStance learns a classifier for items. For
our purposes here, an item is a user together with
their anchor tweet and the additional information
from which features were derived (see Table 2);
more broadly, it is whatever we choose to put into
the feature vector. One could choose a differ-
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Figure 1: Graphical model for ConStance.

Var. Meaning
Xi Feature vector of item i
Yi Latent true label of item i
Sci Latent context-specific label of item i after noise

from context c
Rcai Label given by annotator a to item i in context c
V Set of values for labels and annotations:

{−1, 0, 1}
N # of items, indexed by i
C Set of contexts, indexed by c
A Set of annotators, indexed by a
M Learned classifier
γc V × V parameter matrix for context c
αa V × V parameter matrix for annotator a
D All observed data: all values of Xi and Rcai
Z All latent variables: all values of Yi and Si
θ All model parameters:M, γ, α
Ti All latent variables for item i: (Yi, Si)
τi(ys) Current estimate of all latent values for item i:

p(Yi = y, Si = s | D, θ)

Table 4: Model variables.

ent setup; for example, an item could be a user
and ten anchor tweets. However, the current ar-
rangement allows for straightforward comparison
to prior stance work on Twitter (Mohammad et al.,
2016a).

Note that in general, the features need not be
restricted to those annotators could have seen.
Rather, they could include anything useful to a
classifier. Note also that the feature set provided to
ConStance is the same used by the baseline mod-
els; only the models themselves differ.

4.1 Overview

The model we develop is shown in Figure 1. There
are N items to be labeled. Each item can be
viewed in up toC different contexts. Finally, there
are A total annotators labeling the items; each an-
notator sees multiple items. Each item can have a
different number of annotations, produced by any
assignment of annotators and information condi-
tions to items. In our dataset, every item is labeled

in 6 conditions (every |Ci| = 6), and within every
context, every item is labeled by at least 3 annota-
tors (every |Aci | ≥ 3).

The model’s generative story works as follows.
Item i has feature vector Xi and a “true” label
Yi ∈ V . The relationship between Xi and Yi can
be described by some model M, which we will
ultimately learn. When the item is viewed with
context c, the item’s true label Yi is transformed
by noise into a “context-specific” label Sci ∈ V .
In other words, the true label may appear differ-
ently when seen through the lens of each context.
The variable Sci represents what an ideal annotator
would say about item i given only as much infor-
mation as is preserved by context c.

The “noise” introduced by context c is de-
scribed by parameter γc. The parameter γc is a
V × V matrix of transition probabilities from true
labels to context-specific labels. These probabil-
ities depend only on Yi and γc, not on the item’s
features Xi.

Importantly, annotators themselves are also im-
perfect. When annotator a sees item i, she may
also distort the label she sees, Sci , into the observed
annotation Rcai ∈ V . The annotator-specific noise
process is described by parameter αa, another
V × V transition matrix.

For a better understanding of the role of γc

(and by anology, αa), consider the depictions in
Figure 2. The matrix on the top left refers to
the No Context condition. Its top row describes
what an annotator with perfect judgment would
think about a user whose true label is Trump [sup-
porter], with no context. The top left cell, with a
value around 0.65, is the probability the annotator
would think Trump; the lighter middle cell, with
a value around 0.35, is the probability she would
think Neutral/Don’t know; and the probability she
would think Clinton is almost 0.

4.2 Learning

Like Raykar et al. (2010), we perform infer-
ence using Expectation Maximization (EM). A
full derivation is provided in the Supplementary
Material; here, we sketch the main steps.

The model’s incomplete data likelihood func-
tion, Eq. (1), describes the joint probability, across
all items, of Yi, all values of Sci , and all values of
Rcai assuming Xi is known and fixed. Uppercase
denotes random variables; lowercase, specific val-
ues. In line (2), we substitute in the equivalent
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model parameters.

p(D|θ,X) =
N∏

i=1

V∑

y

p(Yi = y|xi,M)

Ci∏

c

V∑

s

p(Sci = s|y, γ)
Aci∏

a

p(rcai |s, α) (1)

=

N∏

i=1

V∑

y

My(xi)

Ci∏

c

V∑

s

γcys

Aci∏

a

αasr

(2)

The EM derivation is difficult because both Yi
and Si are unobserved. Our solution is to treat the
latent variables as a block, describing their joint
configuration with a single term Ti = (Yi, Si). In
our data, since |Ci| = 6, Ti can take on 7|V | pos-
sible values, a number small enough to enumerate
over when we need to marginalize out Ti.

We define membership indicator variables
Ti(ys) ∈ {0, 1} such that Ti(ys) = 1 if Ti has
the specific values (y, s). During learning, we
use analogous variables τi(ys) ∈ [0, 1] to represent
the posterior probabilities of each configuration:
τi(ys) = p(Ti(ys) = 1 | D, θ). The expected value
of the complete data log-likelihood is:

EZ [`(D, Z|θ,X)] =

N∑

i=1

V∑

y




V∑

s1i

. . .

V∑

s
Ci
i




τi(ys)(log p(Ti(ys) | xi,M, γ) +

Ci∑

c

Aci∑

a

logαasr)

(3)

For the E step, we update the membership esti-
mates τi(ys) using the current parameters θ. With
Bayes’ rule, each item’s new value of τi(ys) is
shown to be the full joint likelihood of item i (see
Eq. (2)) when setting Yi = y and Si = s, divided
by the sum, over all possible settings of Yi and Si,
of that same joint likelihood.

For the M step, we update the model parame-
ters using the current membership estimates. To
update the classifier M, following the guidance
of Raykar et al. (2010), we retrain the classifier
using the current estimates of Yi as weights for
items. The estimates of Yi can be obtained from
τiys by marginalizing out Si, thus EZ [Yi = y] =∑V

s1i
. . .
∑V

s
Ci
i

τiys. We then use sampling to con-

struct a discrete set of labels for model training
based on these weights.

Model Log-Loss Avg F1
Best baselines 0.61 0.71
ConStance 0.57 0.77
Ablations
1. Only Political Tweets 0.59 0.73
2. Context Labels Masked 0.57 0.75
3. Annotator Labels Masked 0.65 0.75

Table 5: Classification performance of ConStance
and model ablations. Boldface highlights best
scores. Significance tests use the the p < .05
level for log-loss. Compared to the best baselines,
all scores that appear better are statistically signif-
icant. Italics indicate the scores that are signifi-
cantly worse than ConStance.

To update γ and α, we maximize them with re-
spect to Eq. (3). For γ, the entry γcys (i.e., row y,
column s of matrix γc) denotes p(Sci = s | Yi =
y). Each matrix entry can be updated individually
by taking the partial derivative of Eq. (3) and us-
ing, as a Lagrange multiplier term, the constraint
that the row must sum to 1. The updated value for
γcys turns out to be a fraction in which the numera-
tor is the weighted (by τ ) number of items having
Yi = y and Sci = s, and the denominator is the
weighted number of items having Yi = y (and any
value for Sci ). For α, a similar derivation yields
the following update to αasr: the weighted number
of labels by annotator a, in any context, having
Sci = s and Rcai = r, divided by the weighted
number of labels by annotator a, in any context,
having Sci = s.

5 Model Results and Discussion

The top portion of Table 5 displays ConStance’s
performance compared to the best results from
Section 3. Using the same experimental setup as
Section 3—the model type and features, M and
X respectively, are the same as in the baselines—
ConStance improves over the best baseline mod-
els for each metric. This improvement is statisti-
cally significant for both metrics (at the p < .05
level for log-loss). Further, the model converges
rapidly, within 5-7 iterations of the EM algorithm
and 3-5 minutes on a single machine.2

In addition to comparing to the baselines pro-
vided in Section 3, we investigate which informa-
tion the model is leveraging to be successful. We
do so by exploring three ablations of the model.
Variation #1 (“Only Political Tweets” in Table 5)

2As above, a development set is used for coarse hyperpa-
rameter tuning; see the Supplementary Material for details.
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uses the full model, but only gives it the annota-
tions from the Political Tweets condition. This
tests whether simply modeling differences in an-
notators’ error rates, as Raykar et al. (2010) do,
with a single (“best”) context is helpful. We find
that it is: the performance of this variation is sig-
nificantly better on both metrics than the Political
Tweets baseline from Table 3.

In the second and third variations, we check
whether the effectiveness of ConStance stems
from modeling differences between annotators
rather than differences in contexts, or vice versa.
Variation #2 (“Context Labels Masked”), like #1,
models only annotator effects; however, it instead
uses the entire set of annotations, treating them as
if from a single context (i.e., “masking” context in-
formation from the model). Variation #3 (“Anno-
tator Labels Masked”) is the complement of Vari-
ation #2: it models differences in contexts, and it
uses the entire set of annotations, treating them as
if from a single annotator.

The results of the model ablation experiments
are three-fold. First, we see that each piece of the
model on its own is effective in moving beyond
baseline approaches that use only one context or
naively combine labels across contexts and anno-
tators (the “All Combined” baseline). All model
variations achieve significantly higher Avg. F1
than the baselines, and Variations #1 and #2 im-
prove on log-loss. Second, we see that model-
ing annotators alone is clearly better than not: not
only does Variation #1 outperform the Political
Tweets baseline (significantly), but also Variation
#2 outperforms the All Combined baseline (signif-
icantly) and ConStance outperforms Variation #3
(with significance in one measure). Finally, the
best results come from using the full model. Even
if the differences between ConStance and the vari-
ations are not all statistically significant, model-
ing both annotators and contexts appears to be the
most complete and effective approach.

In addition to model performance, we can also
examine what ConStance has learned about the
quality of labels from each context. Recall that the
model produces a parameter matrix for each con-
text, γc, which describes how a context distorts the
“true” labels the model assumes. Each γc is a tran-
sition matrix, so a context that perfectly preserves
true labels would show up as the identity matrix;
off-diagonal entries show error patterns.

Figure 2 visualizes parameter estimates for γ.

Previous Tweets Political Tweets Political Party

No Context Partial Profile Full Profile

Trump Neutral Clinton Trump Neutral Clinton Trump Neutral Clinton

Clinton
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Trump
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Figure 2: Parameter matrices γc learned by Con-
Stance for each context. Darker shading indicates
higher values.

We see that in the No Context, Partial Profile and
Full Profile conditions, annotators often selected
the “Neutral” option (x-axis) when the model in-
ferred the true label was “Clinton” or “Trump” (y-
axis). This finding is in line with intuitions; an-
notators who saw these conditions simply lacked
enough information to determine any label.

On the other extreme, in the Political Party con-
text, annotators selected “Trump” or “Clinton” too
often when the model settled on the “Neutral” op-
tion. That is, even when a user’s stance was not
clear to annotators in other conditions, annotators
who saw political party still inferred stance from
the text. Here, one could argue annotators were
shown “too much” or “too strong” a context—they
saw stance even where the content produced by the
user did not suggest one. Indeed, further manual
inspection of 90 tweets on which annotations dis-
agreed across contexts implies that annotators who
saw political affiliation were often wrong because
they focused too little on text content relative to
the provided political affiliations.

In presenting these findings, a key point to high-
light is that unlike the results of Section 3, Figure 2
was produced without access to any full informa-
tion labels, which depend on a significant level
of manual effort beyond annotations gathered on
AMT.

6 Related Work

Recent work has shown that cognitive biases such
as stereotypes (Carpenter et al., 2016) and anchor-
ing (Berzak et al., 2016) can negatively impact
text annotation and resulting models, even for ob-
jective tasks like POS tagging (Blodgett et al.,
2016). Still, researchers often decide what con-
text to show annotators without rigorously evalu-
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ating how their decisions will affect annotations,
on tasks from gender identification to political
leanings (Chen et al., 2015; Nguyen et al., 2014;
Burger et al., 2011; Cohen and Ruths, 2013). Our
work suggests an interesting avenue of develop-
ment towards reducing annotation bias by explic-
itly modeling it and reducing the need for a priori
decisions on which context is best for which par-
ticular task.

In doing so, we draw on a large body of work
around improving annotation quality for NLP
data. Our work aligns with efforts to improve
task design (e.g. Schneider et al., 2013; Morstatter
and Liu, 2016; Schneider, 2015), and to develop
better models of annotation. With respect to the
former and specific to Twitter, Frankenstein et al.
(2016) show that for the task of labeling the senti-
ment of reply tweets, annotations vary depending
on whether or not the original tweet (being replied
to) is also shown. With respect to the latter, sev-
eral recent models beyond Raykar et al. (2010)
have been proposed (Guan et al., 2017; Tian and
Zhu, 2012; Wauthier and Jordan, 2011; Passon-
neau and Carpenter, 2014). However, our work is
most similar to efforts outside the domain of NLP,
where Dai et al. (2013) have developed a method
of switching between task workflows based on an-
notation quality for particular items, and Nguyen
et al. (2016) have developed a Bayesian model
similar to ours to study annotation quality for other
kinds of slightly subjective tasks.

In a closely related vein, recent work has also
considered how text annotations may vary in im-
portant ways based on the characteristics of anno-
tators (rather than how the task is posed, as we
study here) (Sen et al., 2015). An interesting av-
enue of future work is to understand the intersec-
tion between the design of NLP annotation tasks
and the characteristics of the annotating popula-
tion.

7 Conclusion and Future Work

Annotated data serves as a foundational layer for
many NLP tasks. While some annotation tasks
only require information from short texts, in many
others, we can elicit higher-quality labels by pro-
viding annotators with additional contextual infor-
mation. However, asking annotators to consider
too much information would make their task slow
and burdensome.

In this paper we demonstrate how exposing an-

notators to short contextual information leads to
better labels and better classification results. How-
ever, different contexts lead to results of different
quality, and it is not obvious a priori which con-
text is best, nor—even given ground truth—how
to combine labels produced across contexts to ex-
ploit the information present in each. We then pro-
pose ConStance, a generalizable model that learns
the effects of both individual contexts and individ-
ual annotators on the labeling process. The model
infers (probability estimates for) ground truth la-
bels, plus learns a classifier that can be applied to
new instances. We show that this classifier signif-
icantly improves classification of political stance
compared to the standard practice of training mod-
els on majority vote labels.

The focus of this work is on improving both
the annotation process for nuanced, context-
dependent tasks and the use of the resulting labels.
While ConStance’s label estimation can be used
in conjunction with any classification method, this
paper does not address the optimization of the
classifier itself. Thus, while we consider an as-
sortment of contexts and use a rich feature rep-
resentation, using additional contexts or different
features may lead to better performance on stance
detection. Finally, the model is versatile enough
we could consider treating different tweets as dif-
ferent “contexts” for the same user, augmenting
the extensively annotated tweets with other types
of data, and, naturally, applying the same frame-
work to other annotation tasks.
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Meder, and F. M. G. de Jong. 2014. Why gender and
age prediction from tweets is hard: Lessons from a
crowdsourcing experiment. In Proceedings of COL-
ING 2014.

Rebecca J. Passonneau and Bob Carpenter. 2014. The
benefits of a model of annotation. Transactions
of the Association for Computational Linguistics,
2:311–326.

Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Ger-
ardo Hermosillo Valadez, Charles Florin, Luca
Bogoni, and Linda Moy. 2010. Learning from
crowds. Journal of Machine Learning Research,
11(Apr):1297–1322.

Nathan Schneider. 2015. What I’ve learned about an-
notating informal text (and why you shouldn’t take
my word for it). In The 9th Linguistic Annotation
Workshop Held in Conjuncion with NAACL 2015,
page 152.

Nathan Schneider, Brendan O’Connor, Naomi Saphra,
David Bamman, Manaal Faruqui, Noah A. Smith,
Chris Dyer, and Jason Baldridge. 2013. A frame-
work for (under) specifying dependency syntax
without overloading annotators. arXiv preprint
arXiv:1306.2091.

Shilad Sen, Isaac L. Johnson, Rebecca Harper, Huy
Mai, Samuel Horlbeck Olsen, Benjamin Math-
ers, Laura Souza Vonessen, Matthew Wright, and
Brent J. Hecht. 2015. Towards Domain-Specific Se-
mantic Relatedness: A Case Study from Geography.
In IJCAI, pages 2362–2370.

Yuandong Tian and Jun Zhu. 2012. Learning from
crowds in the presence of schools of thought. In
Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, pages 226–234. ACM.

Fabian L. Wauthier and Michael I. Jordan. 2011.
Bayesian bias mitigation for crowdsourcing. In Ad-
vances in Neural Information Processing Systems,
pages 1800–1808.

1124



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1125–1135
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Deeper Attention to Abusive User Content Moderation

John Pavlopoulos
Straintek, Athens, Greece
ip@straintek.com

Prodromos Malakasiotis
Straintek, Athens, Greece
mm@straintek.com

Ion Androutsopoulos
Athens University of Economics

and Business, Greece
ion@aueb.gr

Abstract

Experimenting with a new dataset of 1.6M
user comments from a news portal and an
existing dataset of 115K Wikipedia talk
page comments, we show that an RNN op-
erating on word embeddings outpeforms
the previous state of the art in moderation,
which used logistic regression or an MLP

classifier with character or word n-grams.
We also compare against a CNN operat-
ing on word embeddings, and a word-list
baseline. A novel, deep, classification-
specific attention mechanism improves the
performance of the RNN further, and can
also highlight suspicious words for free,
without including highlighted words in the
training data. We consider both fully auto-
matic and semi-automatic moderation.

1 Introduction

User comments play a central role in social me-
dia and online discussion fora. News portals
and blogs often also allow their readers to com-
ment to get feedback, engage their readers, and
build customer loyalty.1 User comments, how-
ever, and more generally user content can also
be abusive (e.g., bullying, profanity, hate speech)
(Cheng et al., 2015). Social media are under pres-
sure to combat abusive content, but so far rely
mostly on user reports and tools that detect fre-
quent words and phrases of reported posts.2 Wul-
czyn et al. (2017) estimated that only 17.9% of
personal attacks in Wikipedia discussions were
followed by moderator actions. News portals also

1 See, for example, http://niemanreports.org/
articles/the-future-of-comments/.

2 Consult, for example, https://www.facebook.
com/help/131671940241729 and https://www.
theguardian.com/technology/2017/feb/07/
twitter-abuse-harassment-crackdown.

suffer from abusive user comments, which dam-
age their reputations and make them liable to fines,
e.g., when hosting comments encouraging illegal
actions. They often employ moderators, who are
frequently overwhelmed, however, by the volume
and abusiveness of comments.3 Readers are dis-
appointed when non-abusive comments do not ap-
pear quickly online because of moderation delays.
Smaller news portals may be unable to employ
moderators, and some are forced to shut down
their comments sections entirely.

We examine how deep learning (Goodfellow
et al., 2016; Goldberg, 2016, 2017) can be em-
ployed to moderate user comments. We experi-
ment with a new dataset of approx. 1.6M manually
moderated (accepted or rejected) user comments
from a Greek sports news portal (called Gazzetta),
which we make publicly available.4 This is one
of the largest publicly available datasets of mod-
erated user comments. We also provide word em-
beddings pre-trained on 5.2M comments from the
same portal. Furthermore, we experiment on the
‘attacks’ dataset of Wulczyn et al. (2017), approx.
115K English Wikipedia talk page comments la-
beled as containing personal attacks or not.

In a fully automatic scenario, there is no moder-
ator and a system accepts or rejects comments. Al-
though this scenario may be the only available one,
e.g., when news portals cannot afford moderators,
it is unrealistic to expect that fully automatic mod-
eration will be perfect, because abusive comments
may involve irony, sarcasm, harassment without
profane phrases etc., which are particularly diffi-
cult for a machine to detect. When moderators
are available, it is more realistic to develop semi-

3See, e.g., https://www.wired.com/2017/04/
zerochaos-google-ads-quality-raters and
https://goo.gl/89M2bI.

4The portal is http://www.gazzetta.gr/. In-
structions to download the dataset will become available at
http://nlp.cs.aueb.gr/software.html.
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Figure 1: Semi-automatic moderation.

automatic systems aiming to assist, rather than re-
place the moderators, a scenario that has not been
considered in previous work. In this case, com-
ments for which the system is uncertain (Fig. 1)
are shown to a moderator to decide; all other com-
ments are accepted or rejected by the system. We
discuss how moderation systems can be tuned, de-
pending on the availability and workload of the
moderators. We also introduce additional evalu-
ation measures for the semi-automatic scenario.

On both datasets (Gazzetta and Wikipedia com-
ments) and for both scenarios (automatic, semi-
automatic), we show that a recurrent neural net-
work (RNN) outperforms the system of Wulczyn
et al. (2017), the previous state of the art for com-
ment moderation, which employed logistic regres-
sion or a multi-layer Perceptron (MLP), and rep-
resented each comment as a bag of (character or
word) n-grams. We also propose an attention
mechanism that improves the overall performance
of the RNN. Our attention mechanism differs from
most previous ones (Bahdanau et al., 2015; Lu-
ong et al., 2015) in that it is used in a classifi-
cation setting, where there is no previously gen-
erated output subsequence to drive the attention,
unlike sequence-to-sequence models (Sutskever
et al., 2014). In that sense, our attention is similar
to that of of Yang et al. (2016), but our attention
mechanism is a deeper MLP and it is only applied
to words, whereas Yang et al. also have a second
attention mechanism that assigns attention scores
to entire sentences. In effect, our attention detects
the words of a comment that affect most the clas-
sification decision (accept, reject), by examining
them in the context of the particular comment.

Although our attention mechanism does not al-
ways improve the performance of the RNN, it has
the additional advantage of allowing the RNN to
highlight suspicious words that a moderator could
consider to decide more quickly if a comment
should be accepted or rejected. The highlighting

Dataset/Split Accepted Rejected Total
G-TRAIN-L 960,378 (66%) 489,222 (34%) 1.45M
G-TRAIN-S 67,828 (68%) 32,172 (32%) 100,000

G-DEV 20,236 (68%) 9,464 (32%) 29,700
G-TEST-L 20,064 (68%) 9,636 (32%) 29,700
G-TEST-S 1,068 (71%) 432 (29%) 1,500

G-TEST-S-R 1,174 (78%) 326 (22%) 1,500
W-ATT-TRAIN 61,447 (88%) 8,079 (12%) 69,526

W-ATT-DEV 20,405 (88%) 2,755 (12%) 23,160
W-ATT-TEST 20,422 (88%) 2,756 (12%) 23,178

Table 1: Statistics of the datasets used.

comes for free, i.e., the training data do not con-
tain highlighted words. We also show that words
highlighted by the attention mechanism correlate
well with words that moderators would highlight.

Our main contributions are: (i) We release a
dataset of 1.6M moderated user comments. (ii) We
introduce a novel, deep, classification-specific at-
tention mechanism and we show that an RNN with
our attention mechanism outperforms the previous
state of the art in user comment moderation. (iii)
Unlike previous work, we also consider a semi-
automatic scenario, along with threshold tuning
and evaluation measures for it. (iv) We show that
the attention mechanism can automatically high-
light suspicious words for free, without manually
highlighting words in the training data.

2 Datasets

We first discuss the datasets we used, to help ac-
quaint the reader with the problem.

2.1 Gazzetta comments

There are approx. 1.45M training comments (cov-
ering Jan. 1, 2015 to Oct. 6, 2016) in the Gazzetta
dataset; we call them G-TRAIN-L (Table 1). Some
experiments use only the first 100K comments of
G-TRAIN-L, called G-TRAIN-S. An additional set
of 60,900 comments (Oct. 7 to Nov. 11, 2016)
was split to development (G-DEV, 29,700 com-
ments), large test (G-TEST-L, 29,700), and small
test set (G-TEST-S, 1,500). Gazzetta’s moderators
(2 full-time, plus journalists occasionally helping)
are occasionally instructed to be stricter (e.g., dur-
ing violent events). To get a more accurate view
of performance in normal situtations, we manu-
ally re-moderated (labeled as ‘accept’ or ‘reject’)
the comments of G-TEST-S, producing G-TEST-S-
R. The reject ratio is approx. 30% in all subsets,
except for G-TEST-S-R where it drops to 22%, be-
cause there are no occasions where the moderators
were instructed to be stricter in G-TEST-S-R.
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Figure 2: Re-moderated comments with at least
one snippet of the corresponding category.

Each G-TEST-S-R comment was re-moderated
by five annotators. Krippendorff’s (2004) alpha
was 0.4762, close to the value (0.45) reported by
Wulczyn et al. (2017) for the Wikipedia ‘attacks’
dataset. Using Cohen’s Kappa (Cohen, 1960), the
mean pairwise agreement was 0.4749. The mean
pairwise percentage of agreement (% of comments
each pair of annotators agreed on) was 81.33%.
Cohen’s Kappa and Krippendorff’s alpha lead to
lower scores, because they account for agreement
by chance, which is high when there is class im-
balance (22% reject, 78% accept in G-TEST-S-R).

During the re-moderation of G-TEST-S-R, the
annotators were also asked to highlight snippets
they considered suspicious, i.e., words or phrases
that could lead a moderator to consider reject-
ing each comment.5 We also asked the annota-
tors to classify each snippet into one of the fol-
lowing categories: calumniation (e.g., false accu-
sations), discrimination (e.g., racism), disrespect
(e.g., looking down at a profession), hooliganism
(e.g., calling for violence), insult (e.g., making fun
of appearance), irony, swearing, threat, other. Fig-
ure 2 shows how many comments of G-TEST-S-R

contained at least one snippet of each category, ac-
cording to the majority of annotators; e.g., a com-
ment counts as containing irony if at least 3 anno-
tators annotated it with an irony snippet (not nec-
essarily the same). The gold class of each com-
ment (accept or reject) is determined by the ma-
jority of the annotators. Irony and disrespect are
particularly frequent in both classes, followed by
calumniation, swearing, hooliganism, insults. No-
tice that comments that contain irony, disrespect
etc. are not necessarily rejected. They are, how-
ever, more likely in the rejected class, consider-
ing that the accepted comments are 2.5 times more

5Treating snippet overlaps as agreements, the mean pair-
wise Dice coefficient for snippet highlighting was 50.03%.

than the rejected ones (78% vs. 22%).
We also provide 300-dimensional word em-

beddings, pre-trained on approx. 5.2M comments
(268M tokens) from Gazzetta using WORD2VEC

(Mikolov et al., 2013a,b).6 This larger dataset can-
not be used to directly train classifiers, because
most of its comments are from a period (before
2015) when Gazzetta did not employ moderators.

2.2 Wikipedia comments

The Wikipedia ‘attacks’ dataset (Wulczyn et al.,
2017) contains approx. 115K English Wikipedia
talk page comments, which were labeled as con-
taining personal attacks or not. Each comment was
labeled by at least 10 annotators. Inter-annotator
agreement, measured on a random sample of 1K
comments using Krippendorff’s (2004) alpha, was
0.45. The gold label of each comment is deter-
mined by the majority of annotators, leading to bi-
nary labels (accept, reject). Alternatively, the gold
label is the percentage of annotators that labeled
the comment as ‘accept’ (or ‘reject’), leading to
probabilistic labels.7 The dataset is split in three
parts (Table 1): training (W-ATT-TRAIN, 69,526
comments), development (W-ATT-DEV, 23,160),
and test (W-ATT-TEST, 23,178). In all three parts,
the rejected comments are 12%, but this is an arti-
ficial ratio (Wulczyn et al. oversampled comments
posted by banned users). By contrast, the ratio of
rejected comments in all the Gazzetta subsets is
the truly observed one. The Wikipedia comments
are also longer (median length 38 tokens) com-
pared to Gazzetta’s (median length 25 tokens).

Wulczyn et al. (2017) also provide two ad-
ditional datasets of English Wikipedia talk page
comments, which are not used in this paper. The
first one, called ‘aggression’ dataset, contains the
same comments as the ‘attacks’ dataset, now la-
beled as ‘aggressive’ or not. The (probabilistic)
labels of the ‘attacks’ and ‘aggression’ datasets are
very highly correlated (0.8992 Spearman, 0.9718
Pearson) and we did not consider the aggression
dataset any further. The second additional dataset,
called ‘toxicity’ dataset, contains approx. 160K
comments labeled as being toxic or not. Experi-
ments we reported elsewhere (Pavlopoulos et al.,
2017) show that results on the ‘attacks’ and ‘tox-
icity’ datasets are very similar; we do not include

6We used CBOW, window size 5, min. term freq. 5, nega-
tive sampling, obtaining a vocabulary size of approx. 478K.

7 We also construct probabilistic labels for G-TEST-S-R,
where there are five annotators.
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results on the latter in this paper to save space.

3 Methods

We experimented with an RNN operating on word
embeddings, the same RNN enhanced with our
attention mechanism (a-RNN), a vanilla convo-
lutional neural network (CNN) also operating on
word embeddings, the DETOX system of Wulczyn
et al. (2017), and a baseline that uses word lists.

3.1 DETOX

DETOX (Wulczyn et al., 2017) was the previous
state of the art in comment moderation, in the
sense that it had the best reported results on the
Wikipedia datasets (Section 2.2), which were in
turn the largest previous publicly available dataset
of moderated user comments.8 DETOX represents
each comment as a bag of word n-grams (n ≤ 2,
each comment becomes a bag containing its 1-
grams and 2-grams) or a bag of character n-grams
(n ≤ 5, each comment becomes a bag containing
character 1-grams, . . . , 5-grams). DETOX can rely
on a logistic regression (LR) or MLP classifier, and
it can use binary or probabilistic gold labels (Sec-
tion 2.2) during training.

We used the DETOX implementation provided
by Wulczyn et al. and the same grid search (and
code) to tune the hyper-parameters of DETOX that
select word or character n-grams, classifier (LR

or MLP), and gold labels (binary or probabilis-
tic). For Gazzetta, only binary gold labels were
possible, since G-TRAIN-L and G-TRAIN-S have a
single gold label per comment. Unlike Wulczyn
et al., we tuned the hyper-parameters by evalu-
ating (computing AUC and Spearman, Section 4)
on a random 2% of held-out comments of W-ATT-
TRAIN or G-TRAIN-S, instead of the development
subsets, to be able to obtain more realistic results
from the development sets while developing the
methods. For both Wikipedia and Gazzetta, the
tuning selected character n-grams, as in the work
of Wulczyn et al. Also, for both Wikipedia and
Gazzetta, it preferred LR to MLP, whereas Wul-
czyn et al. reported slightly higher performance

8Two of the co-authors of Wulczyn et al. (2017) are with
Jigsaw, who recently announced Perspective, a system to
detect ‘toxic’ comments. Perspective is not the same as
DETOX (personal communication), but we were unable to
obtain scientific articles describing it. An API for Perspec-
tive is available at https://www.perspectiveapi.
com/, but we did not have access to the API at the time the
experiments of this paper were carried out.

for the MLP on W-ATT-DEV.9 The tuning also se-
lected probabilistic labels for Wikipedia, as in the
work of Wulczyn et al.

3.2 RNN-based methods

RNN: The RNN method is a chain of GRU cells
(Cho et al., 2014) that transforms the tokens
w1 . . . , wk of each comment to the hidden states
h1 . . . , hk, followed by an LR layer that uses hk
to classify the comment (accept, reject). Formally,
given the vocabulary V , a matrixE ∈ Rd×|V | con-
taining d-dimensional word embeddings, an initial
h0, and a comment c = 〈w1, . . . , wk〉, the RNN

computes h1, . . . , hk as follows (ht ∈ Rm):

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t
zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

where h̃t ∈ Rm is the proposed hidden state at po-
sition t, obtained by considering the word embed-
ding xt of token wt and the previous hidden state
ht−1;� denotes element-wise multiplication; rt ∈
Rm is the reset gate (for rt all zeros, it allows the
RNN to forget the previous state ht−1); zt ∈ Rm
is the update gate (for zt all zeros, it allows the
RNN to ignore the new proposed h̃t, hence also
xt, and copy ht−1 as ht); σ is the sigmoid func-
tion; Wh,Wz,Wr ∈ Rm×d; Uh, Uz, Ur ∈ Rm×m;
bh, bz, br ∈ Rm. Once hk has been computed, the
LR layer estimates the probability that comment c
should be rejected, with Wp ∈ R1×m, bp ∈ R:

PRNN(reject|c) = σ(Wphk + bp)

a-RNN: When the attention mechanism is added,
the LR layer considers the weighted sum hsum of
all the hidden states, instead of just hk (Fig. 3):10

hsum =
k∑

t=1

atht (1)

Pa−RNN(reject|c) = σ(Wphsum + bp)

The weights at are produced by an attention mech-

9We repeated the tuning by evaluating on W-ATT-DEV,
and again character n-grams with LR were selected.

10We tried replacing the LR layer by a deeper classification
MLP, and the RNN chain by a bidirectional RNN (Schuster and
Paliwal, 1997), but there were no improvements.
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anism, which is an MLP with l layers:

a
(1)
t = RELU(W (1)ht + b(1)) (2)

. . .

a
(l−1)
t = RELU(W (l−1)a(l−2)t + b(l−1))

a
(l)
t = W (l)a

(l−1)
t + b(l)

at = softmax(a
(l)
t ; a

(l)
1 , . . . , a

(l)
k ) (3)

where a(1)t , . . . , a
(l−1)
t ∈ Rr, a(l)t , at ∈ R, W (1) ∈

Rr×m, W (2), . . . ,W (l−1) ∈ Rr×r, W (l) ∈ R1×r,
b(1), . . . , b(l−1) ∈ Rr, b(l) ∈ R. The softmax
operates across the a(l)t (t = 1, . . . , k), making
the weights at sum to 1. Our attention mecha-
nism differs from most previous ones (Mnih et al.,
2014; Bahdanau et al., 2015; Xu et al., 2015; Lu-
ong et al., 2015) in that it is used in a classifi-
cation setting, where there is no previously gen-
erated output subsequence (e.g., partly generated
translation) to drive the attention (e.g., assign more
weight to source words to translate next), unlike
seq2seq models (Sutskever et al., 2014). It assigns
larger weights at to hidden states ht correspond-
ing to positions where there is more evidence that
the comment should be accepted or rejected.

Yang et al. (2016) use a similar attention mech-
anism, but ours is deeper. In effect they always
set l = 2, whereas we allow l to be larger (tuning
selects l = 4).11 On the other hand, the attention
mechanism of Yang et al. is part of a classification
method for longer texts (e.g., product reviews).
Their method uses two GRU RNNs, both bidirec-
tional (Schuster and Paliwal, 1997), one turning
the word embeddings of each sentence to a sen-
tence embedding, and one turning the sentence
embeddings to a document embedding, which is
then fed to an LR layer. Yang et al. use their at-
tention mechanism in both RNNs, to assign atten-
tion scores to words and sentences. We consider
shorter texts (comments), we have a single RNN,
and we assign attention scores to words only.12

da-CENT: We also experiment with a variant of
a-RNN, called da-CENT, which does not use the
hidden states of the RNN. The input to the first
layer of the attention mechanism is now directly
the embedding xt instead of ht (cf. Eq. 2), and

11Yang et al. use tanh instead of RELU in Eq. 2, which
works worse in our case, and no bias b(l) in the l-th layer.

12We tried a bidirectional instead of unidirectional GRU
chain in our methods, also replacing the LR layer by a deeper
classification MLP, but there were no improvements.
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Figure 3: Illustration of a-RNN.

hsum is now the weighted sum (centroid) of word
embeddings hsum =

∑k
t=1 atxt (cf. Eq. 1).13

We set l = 4, d = 300, r = m = 128, hav-
ing tuned all hyper-parameters on the same 2%
held-out comments of W-ATT-TRAIN or G-TRAIN-
S that were used to tune DETOX. We use Glorot
initialization (Glorot and Bengio, 2010), categor-
ical cross-entropy loss, and Adam (Kingma and
Ba, 2015).14 Early stopping evaluates on the same
held-out subsets. For Gazzetta, word embeddings
are initialized to the WORD2VEC embeddings we
provide (Section 2.1). For Wikipedia, they are ini-
tialized to GLOVE embeddings (Pennington et al.,
2014).15 In both cases, the embeddings are up-
dated during backpropagation. Out of vocabulary
(OOV) words, meaning words for which we have
no initial embeddings, are mapped to a single ran-
domly initialized embedding, also updated.

3.3 CNN

We also compare against a vanilla CNN operating
on word embeddings. We describe the CNN only
briefly, because it is very similar to that of of Kim
(2014); see also Goldberg (2016) for an introduc-
tion to CNNs, and Zhang and Wallace (2015).

For Wikipedia comments, we use a ‘narrow’
convolution layer, with kernels sliding (stride 1)
over (entire) embeddings of word n-grams of sizes
n = 1, . . . , 4. We use 300 kernels for each n
value, a total of 1,200 kernels. The outputs of
each kernel, obtained by applying the kernel to
the different n-grams of a comment c, are then

13 For experiments with additional variants of a-RNN, con-
sult Pavlopoulos et al. (2017).

14We implemented the methods of this sub-section using
Keras (keras.io) and TensorFlow (tensorflow.org).

15See https://nlp.stanford.edu/projects/
glove/. We use ‘Common Crawl’ (840B tokens).
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ta : accept
threshold

tr : reject
threshold

0.0 1.0rejectgrayaccept

Figure 4: Illustration of threshold tuning.

max-pooled, leading to a single output per ker-
nel. The resulting feature vector (1,200 max-
pooled outputs) goes through a dropout layer (Hin-
ton et al., 2012) (p = 0.5), and then to an LR layer,
which provides PCNN(reject|c). For Gazzetta, the
CNN is the same, except that n = 1, . . . , 5, lead-
ing to 1,500 features per comment. All hyper-
parameters were tuned on the 2% held-out com-
ments of W-ATT-TRAIN or G-TRAIN-S that were
used to tune the other methods. Again, we use
300-dimensional embeddings, which are now ran-
domly initialized, since tuning indicated this was
better than initializing to pre-trained embeddings.
OOV words are treated as in the RNN-based meth-
ods. All embeddings are updated during back-
propagation. Early stopping evaluates on the held-
out subsets. Again, we use Glorot initialization,
categorical cross-entropy loss, and Adam.16

3.4 LIST baseline
A baseline, called LIST, collects every word w
that occurs in more than 10 (for W-ATT-TRAIN,
G-TRAIN-S) or 100 comments (for G-TRAIN-L)
in the training set, along with the precision of w,
i.e., the ratio of rejected training comments con-
taining w divided by the total number of training
comments containing w. The resulting lists con-
tain 10,423, 16,864, and 21,940 word types, when
using W-ATT-TRAIN, G-TRAIN-S, G-TRAIN-L, re-
spectively. For a comment c, LIST returns as
PLIST(reject|c) the maximum precision of all the
words in c.

3.5 Tuning thresholds
All methods produce a p = P (reject|c) per com-
ment c. In semi-automatic moderation (Fig. 1), a
comment is directly rejected if its p is above a re-
jection theshold tr, it is directly accepted if p is
below an acceptance threshold ta, and it is shown
to a moderator if ta ≤ p ≤ tr (gray zone of Fig. 4).

In our experience, moderators (or their employ-
ers) can easily specify the approximate percent-
age of comments they can afford to check manu-
ally (e.g., 20% daily) or, equivalently, the approx-
imate percentage of comments the system should

16We implemented the CNN directly in TensorFlow.

handle automatically. We call coverage the latter
percentage; hence, 1 − coverage is the approxi-
mate percentage of comments to be checked man-
ually. By contrast, moderators are baffled when
asked to tune tr and ta directly. Consequently,
we ask them to specify the approximate desired
coverage. We then sort the comments of the de-
velopment set (G-DEV or W-ATT-DEV) by p, and
slide ta from 0.0 to 1.0 (Fig. 4). For each ta value,
we set tr to the value that leaves a 1 − coverage
percentage of development comments in the gray
zone (ta ≤ p ≤ tr). We then select the ta (and
tr) that maximizes the weighted harmonic mean
Fβ(Preject, Paccept) on the development set:

Fβ(Preject, Paccept) =
(1 + β2) · Preject · Paccept

β2 · Preject + Paccept

where Preject is the rejection precision (correctly
rejected comments divided by rejected comments)
and Paccept is the acceptance precision (correctly
accepted divided by accepted). Intuitively, cover-
age sets the width of the gray zone, whereas Preject

and Paccept show how certain we can be that the
red (reject) and green (accept) zones are free of
misclassified comments. We set β = 2, emphasiz-
ing Paccept, because moderators are more worried
about wrongly accepting abusive comments than
wrongly rejecting non-abusive ones.17 The se-
lected ta, tr (tuned on development data) are then
used in experiments on test data. In fully auto-
matic moderation, coverage = 100 and ta = tr;
otherwise, threshold tuning is identical.

4 Experimental results

4.1 Comment classification evaluation

Following Wulczyn et al. (2017), we report in Ta-
ble 2 AUC scores (area under ROC curve), along
with Spearman correlations between system-
generated probabilities P (accept|c) and human
probabilistic gold labels (Section 2.2) when prob-
abilistic gold labels are available.18 Wulczyn et
al. reported DETOX results only on W-ATT-DEV,
shown in brackets. Table 2 shows that RNN is

17More precisely, when computing Fβ , we reorder the de-
velopment comments by time posted, and split them into
batches of 100. For each ta (and tr) value, we compute Fβ
per batch and macro-average across batches. The resulting
thresholds lead to Fβ scores that are more stable over time.

18When computing AUC, the gold label is the majority la-
bel of the annotators. When computing Spearman, the gold
label is probabilistic (% of annotators that accepted the com-
ment). The decisions of the systems are always probabilistic.
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Training Evaluation Score RNN a-RNN da-CENT CNN DETOX LIST

G-TRAIN-S

G-DEV AUC 75.75 76.19 74.91 70.97 72.50 61.47
G-TEST-L AUC 75.10 76.15 74.72 71.34 72.06 61.59
G-TEST-S AUC 74.40 75.83 73.79 70.88 71.59 61.26

G-TEST-S-R
AUC 80.27 80.41 78.82 76.03 75.67 64.19

Spearman 51.89 52.51 49.22 42.88 43.80 24.33

G-TRAIN-L

G-DEV AUC 79.50 79.64 78.73 77.57 – 67.04
G-TEST-L AUC 79.41 79.58 78.64 77.35 – 67.06
G-TEST-S AUC 79.23 79.67 78.62 78.16 – 66.17

G-TEST-S-R
AUC 84.17 84.69 83.53 83.98 – 69.51

Spearman 59.31 60.87 57.82 55.90 – 33.61

W-ATT-TRAIN
W-ATT-DEV

AUC 97.39 97.46 96.58 96.91 96.26 (96.59) 93.05
Spearman 71.92 71.59 68.59 70.06 67.75 (68.17) 55.39

W-ATT-TEST
AUC 97.71 97.68 96.83 97.07 96.71 92.91

Spearman 72.79 72.32 68.86 70.21 68.09 54.55

Table 2: Comment classification results. Scores reported by Wulczyn et al. (2017) are shown in brackets.

Figure 5: F2 scores for varying coverage. Dotted lines were obtained using a larger training set.

always better than CNN and DETOX; there is no
clear winner between CNN and DETOX. Fur-
thermore, a-RNN is always better than RNN on
Gazzetta comments, but not on Wikipedia com-
ments, where RNN is overall slightly better accord-
ing to Table 2. Also, da-CENT is always worse
than a-RNN and RNN, confirming that the hid-
den states (intuitively, context-aware word embed-
dings) of the RNN chain are important, even with
the attention mechanism. Increasing the size of
the Gazzetta training set (G-TRAIN-S to G-TRAIN-
L) significantly improves the performance of all
methods. The implementation of DETOX could not
handle the size of G-TRAIN-L, which is why we
do not report DETOX results for G-TRAIN-L. No-
tice, also, that the Wikipedia dataset is easier than
the Gazzetta one (all methods perform better on
Wikipedia comments, compared to Gazzetta).

Figure 5 shows F2(Preject, Paccept) on G-TEST-
L and W-ATT-TEST, when ta, tr are tuned on G-
DEV, W-ATT-DEV for varying coverage. For G-
TEST-L, we show results training on G-TRAIN-S

(solid lines) and G-TRAIN-L (dotted). The differ-

ences between RNN and a-RNN are again small,
but it is now easier to see that a-RNN is overall
better. Again, a-RNN and RNN are better than
CNN and DETOX. All three deep learning meth-
ods benefit from the larger training set (dotted).
In Wikipedia, a-RNN obtains Paccept, Preject ≥
0.94 for all coverages (Fig. 5, call-outs). On the
more difficult Gazzetta dataset, a-RNN still ob-
tains Paccept, Preject ≥ 0.85 when tuned for 50%
coverage. When tuned for 100% coverage, com-
ments for which the system is uncertain (gray
zone) cannot be avoided and there are inevitably
more misclassifications; the use of F2 during
threshold tuning places more emphasis on avoid-
ing wrongly accepted comments, leading to high
Paccept (0.82), at the expense of wrongly rejected
comments, i.e., sacrificing Preject (0.59). On the
re-moderated G-TEST-S-R (similar diagrams, not
shown), Paccept, Preject become 0.96, 0.88 for cov-
erage 50%, and 0.92, 0.48 for coverage 100%.

We also repeated the annotator ensemble exper-
iment of Wulczyn et al. (2017) on 8K randomly
chosen comments of W-ATT-TEST (4K comments
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Figure 6: Word highlighting by a-RNN.

from random users, 4K comments from banned
users).19 The decisions of 10 randomly chosen
annotators (possibly different per comment) were
used to construct the gold label of each comment.
The gold labels were then compared to the deci-
sions of the systems and the decisions of an en-
semble of k other annotators, k ranging from 1 to
10. Table 3 shows the mean AUC and Spearman
scores, averaged over 25 runs of the experiment,
along with standard errrors (in brackets). We con-
clude that RNN and a-RNN are as good as an en-
semble of 7 human annotators; CNN is as good as
4 annotators; DETOX is as good as 4 in AUC and 3
annotators in Spearman correlation, which is con-
sistent with the results of Wulczyn et al. (2017).

k AUC Spearman
1 84.34 (0.64) 53.82 (0.77)
2 92.14 (0.42) 61.61 (0.51)
3 95.05 (0.41) 65.20 (0.55)
4 96.43 (0.31) 67.25 (0.52)
5 97.17 (0.25) 68.46 (0.49)
6 97.68 (0.22) 69.45 (0.40)
7 97.99 (0.21) 70.16 (0.33)
8 98.21 (0.18) 70.67 (0.31)
9 98.39 (0.15) 71.12 (0.32)
10 98.51 (0.14) 71.50 (0.34)

RNN 98.03 (0.13) 70.58 (0.27)
a-RNN 98.00 (0.13) 70.19 (0.30)

CNN 97.29 (0.14) 67.92 (0.32)
DETOX 97.00 (0.14) 66.21 (0.32)

Table 3: Comparing to an ensemble of k humans.

4.2 Snippet highlighting evaluation

To investigate if the attention scores of a-RNN

can highlight suspicious words, we focused on G-
TEST-S-R, the only dataset with suspicious snip-
pets annotated by humans. We removed comments
with no human-annotated snippets, leaving 841
comments (515 accepted, 326 rejected), a total of
40,572 tokens, of which 13,146 were inside a sus-
picious snippet of at least one annotator. In each
remaining comment, each token was assigned a
gold suspiciousness score, defined as the percent-
age of annotators that included it in their snippets.

We evaluated three methods that score each to-
ken wt of a comment c for suspiciousness. The
first one assigns to each wt the attention score at

19We used the protocol, code, and data of Wulczyn et al.

Figure 7: Suspicious snippet highlighting results.

(Eq. 3) of a-RNN (trained on G-TRAIN-L). The
second method assigns to each wt its precision, as
computed by LIST (Section 3.4). The third method
(RAND) assigns to each wt a random (uniform dis-
tribution) score between 0 and 1. In the latter two
methods, a softmax is applied to the scores of
all the tokens per comment, as in a-RNN. Figure 6
shows three comments (from W-ATT-TEST) high-
lighted by a-RNN; heat corresponds to attention.20

We computed Pearson and Spearman correla-
tions between the gold suspiciousness scores and
the scores of the three methods on the 40,572 to-
kens. Figure 7 shows the correlations on com-
ments that were accepted (left) and rejected (right)
by the majority of moderators. In both cases,
a-RNN performs better than LIST and RAND by
both Pearson and Spearman correlations. The high
Pearson correlations of a-RNN also show that its
attention scores are to a large extent linearly re-
lated to the gold ones. By contrast, LIST performs
reasonably well in terms of Spearman correlation,
but much worse in terms of Pearson, indicating
that its precision scores rank reasonably well the
tokens from most to least suspicious ones, but are
not linearly related to the gold scores.

5 Related work

Djuric et al. (2015) experimented with 952K man-
ually moderated comments from Yahoo Finance,
but their dataset is not publicly available. They
convert each comment to a comment embedding
using DOC2VEC (Le and Mikolov, 2014), which
is then fed to an LR classifier. Nobata et al. (2016)
experimented with approx. 3.3M manually mod-
erated comments from Yahoo Finance and News;
their data are also not available.21 They used
Vowpal Wabbit22 with character n-grams (n =
3, . . . , 5) and word n-grams (n = 1, 2), hand-
crafted features (e.g., number of capitalized or
black-listed words), features based on dependency

20In innocent comments, a-RNN spreads its attention to all
tokens, leading to quasi-uniform low color intensity.

21According to Nobata et al., their clean test dataset (2K
comments) would be made available, but it is currently not.

22See http://hunch.net/˜vw/.
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trees, averages of WORD2VEC embeddings, and
DOC2VEC-like embeddings. Character n-grams
were the best, on their own outperforming Djuric
et al. (2015). The best results, however, were ob-
tained using all features. We use no hand-crafted
features and parsers, making our methods more
easily portable to other domains and languages.

Mehdad et al. (2016) train a (token or character-
based) RNN language model per class (accept, re-
ject), and use the probability ratio of the two mod-
els to accept or reject user comments. Experi-
ments on the dataset of Djuric et al. (2015), how-
ever, showed that their method (RNNLMs) per-
formed worse than a combination of SVM and
Naive Bayes classifiers (NBSVM) that used char-
acter and token n-grams. An LR classifier operat-
ing on DOC2VEC-like comment embeddings (Le
and Mikolov, 2014) also performed worse than
NBSVM. To surpass NBSVM, Mehdad et al. used
an SVM to combine features from their three other
methods (RNNLMs, LR with DOC2VEC, NBSVM).

Wulczyn et al. (2017) experimented with char-
acter and word n-grams. We included their dataset
and moderation system (DETOX) in our experi-
ments. Waseem et al. (2016) used approx. 17K
tweets annotated for hate speech. Their best re-
sults were obtained using an LR classifier with
character n-grams (n = 1, . . . , 4), plus gender.
Warner and Hirschberg (2012) aimed to detect
anti-semitic speech, experimenting with 9K para-
graphs and a linear SVM. Their features consider
windows of at most 5 tokens, examining the to-
kens of each window, their order, POS tags, Brown
clusters etc., following Yarowsky (1994).

Cheng et al. (2015) aimed to predict which users
would be banned from on-line communities. Their
best system used a random forest or LR classifier,
with features examining readability, activity (e.g.,
number of posts daily), community and moderator
reactions (e.g., up-votes, number of deleted posts).

Sood et al. (2012a; 2012b) experimented with
6.5K comments from Yahoo Buzz, moderated via
crowdsourcing. They showed that a linear SVM,
representing each comment as a bag of word bi-
grams and stems, performs better than word lists.
Their best results were obtained by combining the
SVM with a word list and edit distance.

Yin et al. (2009) used posts from chat rooms
and discussion fora (<15K posts in total) to train
an SVM to detect online harassment. They used
TF-IDF, sentiment, and context features (e.g., sim-

ilarity to other posts in a thread). Our methods
might also benefit by considering threads, rather
than individual comments. Yin at al. point out that
unlike other abusive content, spam in comments
or dicsussion fora (Mishne et al., 2005; Niu et al.,
2007) is off-topic and serves a commercial pur-
pose. Spam is unlikely in Wikipedia discussions
and not an issue in the Gazzetta dataset (Fig. 2).

For a more extensive discussion of related work,
consult Pavlopoulos et al. (2017).

6 Conclusions

We experimented with a new publicly available
dataset of 1.6M moderated user comments from
a Greek sports news portal and an existing dataset
of 115K English Wikipedia talk page comments.
We showed that a GRU RNN operating on word
embeddings outpeforms the previous state of the
art, which used an LR or MLP classifier with char-
acter or word n-gram features, also outperform-
ing a vanilla CNN operating on word embeddings,
and a baseline that uses an automatically con-
structed word list with precision scores. A novel,
deep, classification-specific attention mechanism
improves further the overall results of the RNN,
and can also highlight suspicious words for free,
without including highlighted words in the train-
ing data. We considered both fully automatic and
semi-automatic moderation, along with threshold
tuning and evaluation measures for both.

We plan to consider user-specific information
(e.g., ratio of comments rejected in the past)
(Cheng et al., 2015; Waseem and Hovy, 2016)
and explore character-level RNNs or CNNs (Zhang
et al., 2015), e.g., as a first layer to produce em-
beddings of unknown words from characters (dos
Santos and Zadrozny, 2014; Ling et al., 2015),
which would then be passed on to our current
methods that operate on word embeddings.
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Abstract

This article evaluates three proposed laws
of semantic change. Our claim is that in
order to validate a putative law of seman-
tic change, the effect should be observed
in the genuine condition but absent or re-
duced in a suitably matched control condi-
tion, in which no change can possibly have
taken place. Our analysis shows that the
effects reported in recent literature must be
substantially revised: (i) the proposed neg-
ative correlation between meaning change
and word frequency is shown to be largely
an artefact of the models of word represen-
tation used; (ii) the proposed negative cor-
relation between meaning change and pro-
totypicality is shown to be much weaker
than what has been claimed in prior art;
and (iii) the proposed positive correlation
between meaning change and polysemy
is largely an artefact of word frequency.
These empirical observations are corrob-
orated by analytical proofs that show that
count representations introduce an inher-
ent dependence on word frequency, and
thus word frequency cannot be evaluated
as an independent factor with these repre-
sentations.

1 Introduction

The increasing availability of digitized histori-
cal corpora, together with newly developed tools
of computational analysis, make the quantitative
study of language change possible on a larger scale
than ever before. Thus, many important ques-
tions may now be addressed using a variety of
NLP tools that were originally developed to study
synchronic similarities between words. This has
catalyzed the evolution of an exciting new field

of historical distributional semantics, which has
yielded findings that inform our understanding of
the dynamic structure of language (Sagi et al.,
2009; Wijaya and Yeniterzi, 2011; Mitra et al.,
2014; Hilpert and Perek, 2015; Frermann and La-
pata, 2016; Dubossarsky et al., 2016). Recent
research has even proposed laws of change that
predict the conditions under which the meaning
of words is likely to change (Dubossarsky et al.,
2015; Xu and Kemp, 2015; Hamilton et al., 2016).
This is an important development, as traditional
historical linguistics has generally been unable to
provide predictive models of semantic change.

However, these preliminary results should be
addressed with caution. To date, analyses of
changes in words’ meanings have relied on the
comparison of word representations at different
points in time. Thus any proposed change in
meaning is contingent on a particular model of
word representation and the method used to mea-
sure change. Distributional semantic models typi-
cally count words and their co-occurrence statis-
tics (explicit models) or predict the embedding
contexts of words (implicit models). In this paper,
we show that the choice of model may introduce
biases into the analysis. We therefore suggest that
empirical findings may be used to support laws of
semantic change only after a proper control can be
shown to eliminate artefactual factors as the un-
derlying cause of the empirical observations.

Regardless of the specific representation used,
a frequent method of measuring the semantic
change a word has undergone (Gulordava and Ba-
roni, 2011; Jatowt and Duh, 2014; Kim et al.,
2014; Dubossarsky et al., 2015; Kulkarni et al.,
2015; Hamilton et al., 2016) is to compare the
word’s vector representations between two points
in time using the cosine distance:

cosDist(x, y) = 1− x · y
‖x‖2‖y‖2

(1)
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This choice naturally assumes that greater dis-
tances correspond to greater semantic changes.
However, this measure introduces biases that may
affect our interpretation of meaning change.

We examine various representations of word
meaning, in order to identify inherent confounds
when meaning change is evaluated using the co-
sine distance. In addition to the empirical evalua-
tion, in Section 5 we provide an analytical account
of the influence of word frequency on cosine dis-
tance scores when using these representations.

In our empirical investigation, we highlight the
critical role of control conditions in the validation
of experimental findings. Specifically, we argue
that every observation about a change of mean-
ing over time should be subjected to a control test.
The control condition described in Section 2.1 is
based on the construction of an artificially gener-
ated corpus, which resembles the historical corpus
in most respects but where no change of mean-
ing over time exists. In order to establish the va-
lidity of an observation about meaning change -
and even more importantly, the validity of a law-
like generalization about meaning change - the re-
sult obtained in a genuine experimental condition
should be demonstrated to be lacking (or at least
significantly diminished) in the control condition.

As we show in Section 4, some recently re-
ported laws of historical meaning change do not
survive this proposed test. In other words, sim-
ilar results are obtained in the genuine and con-
trol conditions. These include the correlation of
meaning change with word frequency, polysemy
(the number of different meanings a word has),
and prototypicality (how representative a word is
of its category). These factors lie at the basis of
the following proposed laws of semantic change:

• The Law of Conformity, according to which
frequency is negatively correlated with se-
mantic change (Hamilton et al., 2016).

• The Law of Innovation, according to which
polysemy is positively correlated with se-
mantic change (Hamilton et al., 2016).

• The Law of Prototypicality, according to
which prototypicality is negatively correlated
with semantic change (Dubossarsky et al.,
2015).

Our analysis shows that these laws have only
residual effects, suggesting that frequency and

prototypicality may play a smaller role in semantic
change than previously claimed. The main artefact
underlying the emergence of the first two laws in
both the genuine and control conditions may be
due to the SVD step used for the embedding of the
PPMI word representation (see Section 2.5).

2 Methods

The historical corpus used here is Google Books
5-grams of English fiction. Equally sized sam-
ples of 10 million 5-grams per year were ran-
domly sampled for the period of 1900-1999 (Kim
et al., 2014) to prevent the more prolific publi-
cation years from biasing the results, and were
grouped into ten-year bins. Uncommon words
were removed, keeping the 100,000 most frequent
words as the vocabulary for subsequent model
learning. All words were lowercased and stripped
of punctuation.

This corpus served as the genuine condition,
and was used to replicate and evaluate findings
from previous studies. In this corpus, words are
expected to change their meaning between decadal
bins, as they do in a truly random sample of texts.
According to the distributional hypothesis (Firth,
1957), one can extract a word’s meaning from the
contexts in which it appears. Therefore, if words’
meanings change over time, as has been argued
at least since Reisig (1839), it follows that the
words’ contexts should change accordingly, and
this change should be detected by our model.

2.1 Control condition setup

Complementary to the genuine condition, a con-
trol condition was created where no change of
meaning is expected. Therefore, any observed
change in a word’s meaning in the control con-
dition can only stem from random “noise“, while
changes in meaning in the genuine condition are
attributed to “real“ semantic change in addition to
“noise“. Two methods were used to construct the
corpus in the control condition:

Chronologically shuffled corpus (shuffle): 5-
grams were randomly shuffled between decadal
bins, so that each bin contained 5-grams from all
the decades evenly. This was chosen as a control
condition for two reasons. First, this condition re-
sembles the genuine condition in size of the vocab-
ulary, size of the corpus, overall variance in words’
usage, and size of the decadal bins. Second and
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crucially, words are not expected to show any ap-
parent change in their meaning between decades
in the control condition, because their various us-
age contexts are shuffled across decades.

One synchronous corpus (subsample): All 5-
grams of the year 1999, which amount to 250 mil-
lion 5-grams, were selected from Google Books
English fiction. 10 million 5-grams were ran-
domly subsampled from this selection, and this
process was repeated 30 times. This is suggested
as an additional control condition since the under-
lying assumption is always that words in the same
year do not change their meaning. Again, unlike
in the genuine condition, any changes that are ob-
served based on these 30 subsamples can be at-
tributed only to ”noise” that stems from random
sampling, rather than real change in meaning.

2.2 Measures of interest
Meaning change: Meaning change was evalu-
ated as the cosine distance between vector rep-
resentations of the same word in consecutive
decades. This was done separately for each pro-
cessing stage (see Section 2.5). For the subsample
condition, this was defined as the average cosine
distance between the vectors in all 30 samples.

Frequency: Words’ frequencies were computed
separately for each decadal bin as the number of
times a word appeared divided by the total number
of words in that decade. For the subsample control
condition, it was computed as the number of times
a word appeared among the 250 million 5-grams,
divided by the total number of words.

2.3 Construct validity
To establish the adequacy of our control condition,
we compared the meaning change scores (before
log-transformation and standardization) between
the genuine and the shuffled control conditions.
Change scores were obtained by taking the aver-
age meaning change over all words in each decade
using the representation of the final processing
stage (SVD). An adequate control condition will
exhibit a lower degree of change compared to the
genuine condition, and is expected to show a fixed
rate of change across decades (see 3a).

2.4 Statistical analysis
Following common practice (Hamilton et al.,
2016), the 10k most frequent words, as measured
by their average decadal bin frequencies, were

used for the analysis of semantic change. Change
scores and frequencies were log-transformed, and
all variables were subsequently standardized.

A linear mixed effects model was used to evalu-
ate meaning change in both the genuine and shuf-
fled control conditions. Frequency was set as a
fixed effect while random intercepts were set per
word. The model attempts to account for semantic
change scores using frequency, while controlling
for the variability between words by assuming that
each word’s behavior is strongly correlated across
decades and independent across words as follows:

∆w
(t)
i = β0 + βffreq

(t)
wi + zwi + ε(t)wi (2)

Here ∆w
(t)
i is the semantic change score of the

i’th word measured between two specific consec-
utive decades, β0 is the model’s intercept, βf is
the fixed-effect predictor coefficient for frequency,
zwi ∼ N(0, σ) is a random intercept for the i’th
word, and ε(t)wi is an error term associated with the
i’th word. We report the predictor coefficient as
well as the proportion of variance explained1 by
each model. Only statistically significant results
(p < .01) are reported. All statistical tests are per-
formed in R (lme4 and MuMln packages).

2.5 Word meaning representation
We used a cascade of processing stages based
on the explicit meaning representation of words
(i.e., word counts, PPMI, SVD, as explained be-
low) as commonly practiced (Baroni et al., 2014;
Levy et al., 2015). For each of these stages, we
sought to evaluate the relationship between word
frequency and meaning change, by computing the
corresponding correlations between these two fac-
tors in the subsample control condition.

Counts: Co-occurrence counts were collected
for all the words in the vocabulary per decade.

PPMI: Sparse square matrices of vocabulary
size containing positive pointwise mutual infor-
mation (PPMI) scores were constructed for each
decade based on the co-occurrence counts. We
used the context distribution smoothing parameter
α = 0.75, as recommended by (Levy et al., 2015),
using the following procedure:

PPMIα(w, c) = max

(
log

(
P̂ (w, c)

P̂ (w)P̂α(c)

)
, 0

)

1R2 for mixed linear models (Nakagawa and Schielzeth,
2013)
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(a) (b) (c)

Figure 1: Correlations in the control condition between change scores in the year 1999 and word fre-
quency for three word representation types, based on: (a) Counts, (b) PPMI, (c) SVD. Correlation coef-
ficients are reported above each subplot. LS regression lines are shown in dashed green.

where P̂ (w, c) denotes the probability that word c
appears as a context word of w, while P̂ (w) and
P̂α(c) = #(c)α∑

C #(c)α denote the marginal probabili-
ties of the word and its context, respectively.

SVD: Each PPMI matrix was approximated by
a truncated singular value decomposition as de-
scribed in (Levy et al., 2015). This embedding was
shown to improve results on downstream tasks
(Baroni et al., 2014; Bullinaria and Levy, 2012;
Turney and Pantel, 2010). Specifically, the top 300
elements of the diagonal matrix of singular values
Σ, denoted Σd, were retained to represent a new,
dense embedding of the word vectors, using the
truncated left hand orthonormal matrix Ud:

WSV D
i = (Ud · Σd)i (3)

These representations were subsequently
aligned with the orthogonal Procrustes method
following (Hamilton et al., 2016).

Relation to other models: (Levy and Gold-
berg) have shown that the Skip-Gram with Neg-
ative Sampling (SGNS) embedding model, e.g.
word2vec (Mikolov et al., 2013) - perhaps the
most popular model of word meaning representa-
tion, implicitly factorizes the values of the word-
context PMI matrix. Hence, the optimization goal
and the sources of information available to SGNS
and our model are in fact very similar. We there-
fore hypothesize that conclusions similar to those
reported below can be drawn for SGNS models.

3 Results

3.1 Confound of frequency

There are many factors that may confound the
measurement of meaning change. Here we focus

Figure 2: Cosine distances between PPMI and ap-
proximated PPMI representations (y-axis), plotted
against frequency (x-axis). Correlation coefficient
is reported above the plot.

on frequency, and investigate the existence of an
artefactual relation between frequency and mean-
ing change. This is done by evaluating this re-
lation in the subsample control condition. Any
changes observed in this condition must be the
consequence of inherent noise, since this con-
trol condition contains random samples from the
same year (and the baseline assumption is that no
change can be observed within the same year).

We first plotted the change scores that use the
representation based on word count vs. word fre-
quency. This resulted in a robust correlation (r =
−0.915) between the two variables, as shown in
Fig. 1a (see the analytical account in Section 5).
We repeated the same procedure using the PPMI
representation, which showed a much weaker cor-
relation with frequency (r = −0.295), see Fig. 1b.

Finally, we repeated the same procedure us-
ing the final explicit representation after SVD em-
bedding2, see Fig. 1c. Surprisingly, the negative
correlation with frequency was reinstated (r =
−0.793). To investigate how this came about,

2Similar results were obtained for the implicit embedding
(word2vec-SGNS) described in Section 2.5.
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(a) (b) (c)

Figure 3: (a) Average change score per decade for the genuine and control conditions. Bars represent
standard deviations. (b-c) Change scores (y-axis), relative to their frequency (x-axis): (b) genuine his-
torical corpus, (c) chronologically shuffled historical corpus. LS regression lines are shown in dashed
green.

we computed the change in the PPMI vectors be-
fore and after the low-rank SVD embedding using
the cosine-distance. As apparent from Fig. 2, it
turns out that the SVD procedure distorts data in
an uneven manner - frequent words are distorted
less than infrequent words. Thus we demonstrate
that this reinstatement of correlation between fre-
quency and change scores is merely an artefactual
consequence of the truncated SVD factorization.

3.2 Construct validity

Potential confounding factors can be addressed by
comparing any experimental finding to a validated
control condition. Here we validate the use of the
shuffled condition as a proper control. To this end,
the average change scores of words per decade in
both the genuine and shuffled conditions are com-
pared within each processing stage. In the genuine
condition, words appear in different usage con-
texts between decades, while in the shuffled condi-
tion they do not, because the random shuffling cre-
ates a homogeneous corpus. Therefore, the valid-
ity of the control condition is established if: (a) the
change scores are diminished as compared to the
genuine condition; (b) change scores are uniform
across decades (since decades are shuffled); (c) the
variance of change scores is smaller that in the
genuine condition. As seen in Fig. 3a, all these re-
quirements are met by the control condition. Note
that the change scores in the shuffled condition are
all significantly positive, namely, meaning change
allegedly exists in this control condition. This sup-
ports the claim that any measurement is signifi-
cantly affected by unrelated noise.

Thus, we have established that the shuffled con-
dition is a suitable control for meaning change.

While validity was established for each of the pro-
cessing stages, the most robust effect was seen for
the PPMI representation, following by SVD and
word counts.

3.3 Accounting for the frequency confound

In Section 3.1 we used the subsample control con-
dition to establish the confounding effect of fre-
quency on meaning change. We now examine the
extent to which this frequency confound exists in a
historical corpus. We do so by comparing the fre-
quency confound between the genuine historical
corpus and the shuffled historical corpus.

To visualize the frequency confound in a man-
ner comparable to the analysis presented in Sec-
tion 3.1, we again plot change scores vs. fre-
quency, ignoring the time dimension of the data.
Fig. 3b presents this plot for the genuine condi-
tion. The same analysis is repeated in the shuffled
condition, see Fig. 3c.

Both plots reveal a highly significant correla-
tion between change scores and frequency. Fur-
thermore, the fact that the correlation coefficients
are virtually identical in the genuine and shuffled
conditions, with r = −0.748 and r = −0.747 re-
spectively, suggests that they are due to artefactual
factors in both conditions and not to true change
of meaning over time. In fact, this pattern of re-
sults is reminiscent of the spurious pattern we see
in Fig. 1c.

The relation between frequency and meaning
change can also be represented by a linear mixed
effect model, with the benefit that this model en-
ables the addition of more explanatory variables to
the data. The regression model found frequency
to have a negative influence on change scores,
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PPMI + SVD PPMI
Genuine Shuffled Genuine Shuffled

Frequency
(one-predictor)

β -0.91 -0.75 -0.29 0.06
explained variance (σ2) 67% 56% 8% 0%

Frequency +
Polysemy
(two-predictor)

β frequency -1.22 -1.12 -0.69 0.53
β polysemy 0.43 0.40 0.49 -0.52
explained variance (σ2) 68% 60% 9% 4%

Frequency +
Prototypicality
(two-predictor)

β frequency -0.71 -0.70 -0.02 0.07
β polysemy 0.22 0.21 0.12 0.02
explained variance (σ2) 65% 60% 2% 0%

Table 1: Results of one-predictor and two-predictor regression analysis in all conditions.

with βf=-0.91 and βf=-0.75, for the genuine and
shuffled conditions respectively. Importantly, fre-
quency accounted for 67% of the variance in the
change scores in the genuine condition, and was
only slightly diminished in the shuffled condition,
accounting for 56% of the variance. Similar re-
sults were obtained for the PPMI representation
(see Table 1).

4 Revisiting previous studies

We replicated three recent results that were af-
fected by this frequency effect, since they all de-
fine change as the word’s cosine distance relative
to itself at two time points. These studies report
laws of semantic change that measure the role of
frequency in semantic change either directly (Law
of Conformity), or indirectly through another lin-
guistic variable that is dependent on frequency
(Laws of Innovation and Prototypicality).

4.1 Laws of conformity and innovation

Continuing the work described in Section 3.1, we
replicated the model and analysis procedure de-
scribed in (Hamilton et al., 2016), where two pre-
dictors were used together to explain the change
scores: frequency and polysemy. Polysemy, which
describes the number of different senses a word
has, naturally differs among words, where some
words are more polysemous than others (com-
pare bank and date to wine). Following (Hamil-
ton et al., 2016), we defined polysemy as the
words’ secondary connections patterns - the con-
nections between each word’s co-occurring words
(using the entries in the PPMI representation for
that word). The more interconnected these sec-
ondary connections are, the less polysemic a word
is, and vice versa. Polysemy scores were com-

puted using the authors’ provided code3. We then
log-transformed and standardized the polysemy
scores. Next, frequency and polysemy were set as
two fixed effect predictors in a linear mixed effect
model, like the one described in Section 2.4.

Thus we were able to replicate the results in
the genuine condition as reported in (Hamilton
et al., 2016). Interestingly, the same pattern of
results emerged, again, in the shuffled condition
(see Table 1). Importantly, the difference in ef-
fect size between conditions, as evaluated by the
explained variance of frequency and polysemy to-
gether, showed a modest effect of 8% over the
shuffled condition, pointing to the conclusion that
the putative effects may indeed be real, but to a far
lesser extent than had been claimed. We conclude
that adding polysemy to the analysis contributed
very little to the model’s predictive power.

Since the PPMI representation (the explicit rep-
resentation without dimensionality reduction with
SVD) seems much less affected by spurious ef-
fects correlated with frequency (see Fig. 1b), we
repeated the analysis of frequency described here
and in Section 3.1 while using this representation.
The results are listed in Table 1, showing a similar
pattern of rather small frequency effect.

4.2 Prototypicality

Prototypicality is the degree to which a word is
representative of the category of which it is a
member (a robin is a more prototypical bird than
a parrot). According to the proposed Law of Pro-
totypicality, words with more prototypical mean-
ings will show less semantic change, and vice
versa. Following (Dubossarsky et al., 2015), we
computed words’ prototypicality scores for each
decade as the cos-distance between a word’s vec-

3https://github.com/williamleif/histwords
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tor and its k-means cluster’s centroid, and ex-
tended the analysis to encompass the entire 20th
century. The previous regression model assumed
independence between words, and therefore as-
signed words to a random effect variable. How-
ever, when modeling prototypicality, this assump-
tion is invalid as relations between words are what
inherently define prototypicality. We therefore
designed a model in which decades, rather than
words, are the random effect variable.

With this analysis the prototypicality effect
seems to be substantiated in two ways. First, the
addition of prototypicality explains an additional
5% of the variance. Second, the effect of proto-
typicality meets the more stringent requirement of
being diminished in the shuffle condition (see Ta-
ble 1). Nevertheless, here too the effect originally
reported was found to be drastically reduced after
being compared with the proper control.

5 Theoretical analysis

We show in Section 5.1 that the average cosine dis-
tance between two vectors representing the same
word is equivalent to the variance of the popula-
tion of vectors representing the same word in inde-
pendent samples, and is therefore always positive.
This is true for any word vector representation.

In Sections 5.2-5.3 we prove that the average
cosines distance between two count vectors rep-
resenting the same word is negatively correlated
with the frequency of the word, and positively cor-
related with the polysemy score of the word.

5.1 Sampling variability and the cos distance

Lemma 1. Assume two random variables x, y of
length ‖x‖2 = ‖y‖2 = 1, distributed iid with ex-
pected value µ and covariance matrix Σ. The ex-
pected value of the cosine distance between them
is equal to the sum of the diagonal elements of Σ.

Proof.

E(x− y)2 =E(x− µ)2 + E(y − µ)2+

2E(x− µ)(y − µ)

=2
∑

E(xi − µi)2 = 2
∑

V ar(xi)

E(x− y)2 =E(x2) + E(y2)− 2E(x · y)

=2− 2E

(
x · y

‖x‖2‖y‖2

)

=2E(cosDist(x, y))

It follows that

E(cosDist(x, y)) =
∑

V ar(xi) (4)

Implication: The average cosine distance be-
tween two samples of the same random variables
is directly related to the variance of the variable,
or the sampling noise. This variance should be
measured empirically whenever cosine distance is
used, since only distances that are larger than the
empirical variance can be relied upon to support
significant observations.

5.2 Cos distance of count vectors: frequency
Next, we analyze the cosine distance between 2
iid samples from a normalized multinomial ran-
dom variable. This distribution models the dis-
tribution of the count vector representation. Let
ki, 1 ≤ i ≤ m denote the number of times word
i appeared in the context of word w, and let m
denote the size of the dictionary not including w.
Let n =

∑
ki denote the number of words in the

count vector of w; n determines the word’s fre-
quency score. Assume that the counts are sampled
from the distribution Multinomial(n, ~p), namely

Prob(k1, · · · , km) =

(
n

k1 · · · , km

)
pk11 · · · pkmm

Lemma 2. The expected value of the cosine dis-
tance between two count vectors x, y sampled iid
from this distribution is monotonically decreasing
with n.

Proof. By definition, 1−E[cosDist(x, y)] equals

E

[
x · y

‖x‖2‖y‖2

]
=
∑

i

[
E

xi
‖x‖2

]2
=
∑

i

E2
i (5)

We compute the expected value of Ei directly:

Ei =
∑

(k1,··· ,km)

ki√∑
j k

2
j

(
n

k1 · · · , km

)
pk11 · · · pkmm

Using Taylor expansion:

ki√∑
j k

2
j

=
ki
n√

(
∑

j
kj
n )2 −∑l 6=j

kjkl
n2

=
ki
n

1√
1−∑l 6=j

kjkl
n2

=
ki
n

(
1 +

ε

2
+O(ε2)

)
(6)
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where ε =
∑

l 6=j
kjkl
n2 .

The expected value of the 0-order term with re-
spect to ε in (6) equals pi, which is independent of
n. We conclude the proof by focusing on the first
order term with respect to ε in (6), to be denoted
f1, showing that its expected value is monotoni-
cally decreasing with n. Specifically:

f1 =
∑

~k

∑

l 6=j

ki
n

kj
n

kl
n

(
n

k1 · · · , km

)
pk11 · · · pkmm

We switch the summation order and compute
each expression in the external sum, considering
two cases separately: when l 6= j 6= i

∑

(k1,··· ,km)

ki
n

kj
n

kl
n

(
n

k1 · · · , km

)
pk11 · · · pkmm

=
n(n− 1)(n− 2)

n3
pipjpl

When l 6= j = i w.l.g, we rewrite kikj =
ki(ki − 1) + ki, and the sum above becomes
n(n−1)(n−2)

n3 p2i pl + n(n−1)
n2 pipl. Thus

f1 =
n− 1

n
pi


n− 2

n

∑

l,j:l 6=j
pjpl + (1− pi)




and it readily follows that f1 is monotonically in-
creasing with n.

Since n measures the frequency score of word
w, it follows from (5) that the expected value of the
cosine distance between two iid samples from the
distribution of the count vector of w is monotoni-
cally decreasing with the word’s frequency.

5.3 Cos distance of count vectors: polysemy
We start our investigation of polysemy by mod-
eling the distribution of the parameters of the
multinomial distribution from which count vec-
tors are sampled. A common prior distribution
on the vector ~pw in m-simplex, which defines the
multinomial distribution generating the context of
word w, is the Dirichlet distribution f(~pw; ~αw) =
f(p1, · · · , pm;α1, · · · , αm).
~αw is a sparse vector of prior counts on all

the words in the dictionary, by which the co-
occurrence context of word w is modeled. We
divide the set of none-zero indices of ~αw into
two subsets: i1, · · · , im0 correspond to the words
which always appear in the context of w, while
j1, · · · , im1 correspond to the words which appear
in the context of w in one given meaning. If w is

polysemous and has two meanings, then there is a
third set of indices k1, · · · , km2 which correspond
to the words appearing in the context of w in its
second meaning. If w has more then two mean-
ings, they can be modeled with additional sets of
disjoint indices.

Lemma 3. Under certain conditions specified in
the proof, given two count vectors x, y sampled
iid from the above distribution of w, the expected
value of the cosine distance between them in-
creases with the number of sets of disjoint indices
which represent different meanings of w.

Proof. We will prove that when w has two mean-
ings, the expected value of the cosine distance is
larger than in the case of a single meaning. The
proof for the general case immediately follows.

Starting from (6) while keeping only the 0-order
term in ε, it follows from the derivations in the
proof of Lemma 2 that the expected cosine dis-
tance between two count vector samples of w, to
be denotedM , is 1−∑ p2i . In our current model ~p
is a random variable, and we shall compute the ex-
pected value of this random variable under the two
conditions, when w has either one or two mean-
ings.

We start by observing that, given the definition
of the Dirichlet distribution, it follows that

E(p2i ) =V ar(pi) + E(pi)
2 =

αi(1 + αi)

α0(1 + α0)

αo =
∑

αi

=⇒M =
∑

E(p2i ) =
α0 +

∑
α2
i

α0(1 + α0)
(7)

Considering the different sets of indices in iso-
lation, let ϕo =

∑im0
i=i1

αi, ϕ1 =
∑jm1

i=j1
αi, and

ϕ2 =
∑km2

i=k1
αi. Let ψo =

∑im0
i=i1

α2
i , ψ1 =

∑jm1
i=j1

α2
i , and ψ2 =

∑km2
i=k1

α2
i .

We rewrite (7) for the two conditions:

1. w has one meaning:

M (1) =
ϕ0 + ϕ1 + ψ0 + ψ1

(ϕ0 + ϕ1)(1 + ϕ0 + ϕ1)

2. w has two meanings:

M (2) =
ϕ0 + ϕ1 + ϕ2 + ψ0 + ψ1 + ψ2

(ϕ0 + ϕ1 + ϕ2)(1 + ϕ0 + ϕ1 + ϕ2)
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With some algebraic manipulations, it can be
shown that M (1) > M (2) if the following holds:

(ϕ0 + ϕ1)
2ϕ2 + (ψ0 + ψ1)ϕ

2
2 (8)

+2(ψ0 + ψ1)(ϕ0 + ϕ1)ϕ2 + (ψ0 + ψ1)ϕ2

+(ϕ0 + ϕ1)(ϕ
2
2 − ψ2) > ψ2(ϕ0 + ϕ1)

2

Thus when (8) holds, the average cosine distance
between two samples of a certain word w gets
larger as w acquires more meanings.

(8) readily holds under reasonable conditions,
e.g., when the prior counts for each meaning are
similar (as a set) and much bigger than the prior
counts of the joint context words (i.e., ϕ0 = ψ0 =
ε, ϕ1 = ϕ2, ψ1 = ψ2).

6 Conclusions and discussion

In this article we have shown that some reported
laws of semantic change are largely spurious re-
sults of the word representation models on which
they are based. While identifying such laws is
probably within the reach of NLP analyses of mas-
sive digital corpora, we argued that a more strin-
gent standard of proof is necessary in order to put
them on a firm footing. Specifically, it is nec-
essary to demonstrate that any proposed law of
change has to be observable in the genuine con-
dition, but to be diminished or absent in a control
condition. We replicated previous studies claim-
ing to establish such laws, which propose that se-
mantic change is negatively correlated with fre-
quency and prototypicality, and positively corre-
lated with polysemy. None of these laws - at least
in their strong versions - survived the more strin-
gent standard of proof, since the observed correla-
tions were found in the control conditions.

In our analysis, the Law of Conformity, which
claims a negative correlation between word fre-
quency and meaning change, was shown to have a
much smaller effect size than previously claimed.
This indicates that word frequency probably does
play a role - but a small one - in semantic change.
According to the Law of Innovation, polysemy
was claimed to correlate positively with meaning
change. However, our analysis showed that pol-
ysemy is highly collinear with frequency, and as
such, did not demonstrate independent contribu-
tion to semantic change. For similar reasons, the
alleged role of prototypicality was diminished.

These results may be more consonant than pre-
vious ones with the findings of historical linguis-

tics, as it is commonly assumed that the factors
leading to semantic change are more diverse than
purely distributional factors. For example, socio-
cultural, political, and technological changes are
known to impact semantic change (Bochkarev
et al., 2014; Newman, 2015). Furthermore, some
regularities of semantic change have been imputed
to ‘channel bias‘, inherent biases of utterance pro-
duction and interpretation on the part of speakers
and listeners, e.g., (Moreton, 2008). As such, it
would be surprising if word frequency, polysemy,
and prototypicality were to capture too high a de-
gree of variance. In other words, since semantic
change may result from the interaction of many
factors, small effects may be a priori more credi-
ble than large ones.

The results of our empirical analysis showed
that the spurious effects of frequency were
much weaker for the explicit PPMI representa-
tion unaugmented by SVD dimensionality reduc-
tion. We therefore conclude that the artefactual
frequency effects reported are inherent to the type
of word representations upon which these analy-
ses are based. As the analytical proof in Section 5
demonstrates, it is count vectors that introduce an
artefactual dependence on word frequency.

Intuitively, one might expect that the average
value for the cosine distance between a given
word’s vector in any two samples would be 0.
However, Lemma 1 above shows that this is not
the case, and the average distance is the vari-
ance of the population of vectors representing the
same word. This result is independent of the spe-
cific method used to represent words as vectors.
Lemma 2 proves that the average cosine distance
between two samples of the same word, when us-
ing count vector representations, is negatively cor-
related with the word’s frequency. Thus, the role
of frequency cannot be evaluated as an indepen-
dent predictor in any model based on count vector
representations. It remains for future research to
establish whether other approaches to word repre-
sentation, e.g. (Blei et al., 2003; Mikolov et al.,
2013), have inherent biases.

While our findings may seem to be mainly nega-
tive, since they invalidate proposed laws of seman-
tic change, we would like to point to the positive
contribution made by articulating more stringent
standards of proof and devising replicable control
conditions for future research on language change
based on distributional semantics representations.
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Abstract

We pose the general task of user-factor
adaptation — adapting supervised learn-
ing models to real-valued user factors in-
ferred from a background of their lan-
guage, reflecting the idea that a piece of
text should be understood within the con-
text of the user that wrote it. We intro-
duce a continuous adaptation technique,
suited for real-valued user factors that are
common in social science and bringing us
closer to personalized NLP, adapting to
each user uniquely. We apply this tech-
nique with known user factors including
age, gender, and personality traits, as well
as latent factors, evaluating over five tasks:
POS tagging, PP-attachment, sentiment
analysis, sarcasm detection, and stance de-
tection. Adaptation provides statistically
significant benefits for 3 of the 5 tasks:
up to +1.2 points for PP-attachment, +3.4
points for sarcasm, and +3.0 points for
stance.

1 Introduction

Language use is personal. Knowing who wrote
a piece of text can help to better understand it.
For instance, knowing the age and gender groups
of authors has been shown to improve document
classification (Hovy, 2015) and sentiment ana-
lysis (Volkova et al., 2013).

However, putting people into discrete groups
(e.g. age groups, binary gender) often relies on
arbitrary boundaries which may not correspond to
meaningful changes in language use. A wealth of
psychological research suggests people should not
be characterized as discrete types (or domains) but
rather as mixtures of continuous factors (McCrae

and Costa Jr., 1989; Ruscio and Ruscio, 2000;
Widiger and Samuel, 2005).

Here, we ask how one can adapt NLP models
to real-valued human factors – continuous valued
attributes that capture fine-grained differences be-
tween users (e.g. real-valued age, continuous gen-
der scores). We refer to this problem as user-
factor adaptation, and investigate a solution to it
in the context of social media, a genre where lan-
guage is generated by a particularly diverse set
of users (Duggan and Smith, 2013). Importantly,
user-factor adaptation brings us closer to person-
alized NLP in that with real-valued factors we can
now adapt uniquely for each user.

Our approach composes user factor information
with the linguistic features, similar to feature aug-
mentation (Daumé III, 2007), a widely used do-
main adaptation technique which allows for easy
integration with most feature-based learning mod-
els. Since relevant user information often is not
explicitly available, we use a background of tweets
from the user to infer user factors. We evaluate
our approach over five tasks — POS tagging, PP-
attachment, sentiment analysis, sarcasm detection,
and stance detection — and with a variety of in-
ferred user factors including (a) known factors:
age, gender, and personality traits, as well as (b)
latent factors derived from past user tweets.

Contributions. The main contributions of this
work include (a) adaptation based simply on back-
ground language (e.g. past tweets; no required a
priori user knowledge or “domain”), (b) a method
for adapting models based on continuous vari-
ables, (c) adaptation to other user attributes be-
yond age and gender (personality and latent fac-
tors), and (d) empirical evidence that standard
NLP models can often be improved by user-factor
adaptation with a range of inferred factors.
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2 User-Factor Adaptation

User-factor adaptation is especially critical for so-
cial media, where content is generated by a di-
verse user base (Duggan and Smith, 2013). Adap-
tation requires two components: 1) a user factor
representation that captures salient traits indicative
of language differences between users, and 2) an
adaptation technique that uses this representation
to modify learning appropriately.

User factors, even simple ones such as age and
gender, may not always be readily available. The
messages posted by users, however, are often pub-
lic and can be used to infer many known linguisti-
cally relevant user traits including personality, as
well as latent language factors (described next).
Given this background information about users,
the user-factor adaptation problem is to learn a
single model that is sensitive to both the varia-
tions and commonalities in language across differ-
ent users.

3 User Factors

The first step in our adaptation approach is to cre-
ate a representation of users that relates to their
language use. To this end, we explore two sets of
factors: 1) inferred demographics and personality
traits, and 2) latent language factors that directly
capture language use variations among users.

Different from prior work, we model these hu-
man attributes as real-valued factors, as is com-
mon in psychology literature. Although they may
refer to discrete classes such as cluster member-
ship, a factor representation is able to capture
more nuanced differences and characteristics that
are best understood as a continuum (McCrae and
Costa Jr., 1989; Ruscio and Ruscio, 2000; Widiger
and Samuel, 2005). This is critical for our goal
of moving beyond group-level adaptation toward
personalization.

3.1 Demographic and Personality Factors

Many studies have linked language variations with
demographic (Argamon et al., 2007; Cheshire,
2005), occupational (Preoţiuc-Pietro et al., 2016)
and other psychosocial variables such as person-
ality (Schwartz et al., 2013). We investigate the
relevance of a subset of these social variables as
user factors for adaptation.

However, we may not have direct access to such
information. Unlike the tweets posted by a user,

their demographic and personality traits are not al-
ways publicly available. We use automatic classi-
fication models for obtaining real-valued age and
gender estimates (Sap et al., 2014) and personality
traits (Park et al., 2015). In addition to being rea-
sonably accurate (e.g. age prediction has a Pear-
son r of .83 with true age), language based estima-
tion of factor scores may capture linguistic prefer-
ences more clearly. For instance, Bamman et al.
(2014b) found that perceived gender was strongly
linked to the gender makeup of a user’s social net-
work, and may be a better descriptor of linguistic
preferences than self-reported gender.

3.2 Latent Language Factors
We also explore methods to derive latent factors
that capture language use similarities and varia-
tions across users. The main idea is to derive a la-
tent d-dimensional representation of each user us-
ing their background tweets. While there are many
choices here, we explore a factorization technique
(generative factor analysis), a clustering technique
(k-means with TF-IDF), and a hybrid (word2vec
with k-means).

Generative Factor Analysis. Factorization
methods allow us to build latent representations
of users by finding low-rank approximations of
the original high-dimensional representations of
their text. We use a general method called factor
analysis (FA) (Lawley and Maxwell, 1971). Intu-
itively, FA seeks to capture the variability across
correlated variables as a weighted linear combi-
nation of a given number of latent dimensions,
thus allowing a low-dimensional representation of
words1.

Formally, let M|U|×|V| denote the user-term ma-
trix, whose entries Mij indicate the number of
times word j is used by user i. FA factorizes this
high-dimensional representation into two matrices
F and L as follows: M = FL + E where E is an
error matrix consisting of residual errors not cap-
tured by FL and where the residual noise is as-
sumed to be Gaussian distributed with zero mean.

Clustering. We also explore commonly used
text clustering-based methods to derive latent fac-
tors from the users’ tweets. The idea is to cluster
the users based on their tweets. In one case we use
TF-IDF based representations, and in the other we
use word2vec embeddings (Mikolov et al., 2013).
1In this sense FA is a more flexible method than singular
value decomposition in that it allows factors to be correlated.
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We produce a k-means clustering on this re-
duced dimensional space to create clusters of users
who have similar language use. We derive real-
valued factors from these clusters using the dis-
tance of the user to the centers of each cluster.
Cluster membership yields the discrete represen-
tation. Refer to section 5.1 for implementation de-
tails.

4 Adaptation Models

Given a factor representation of each user, the
adaptation task is to learn a model that is sen-
sitive to both the differences and commonalities
across all users. This is similar to the objective
for domain adaptation tasks, where the task data
is drawn from one or more underlying domains
and learning needs to account for both the simi-
larities and differences in the domains. We formu-
late user-factor adaptation as a domain adaptation
technique based on feature augmentation (Daumé
III, 2007) but rather than force users into discrete
domains, we develop a continuous formulation
that allows us to make good use of the real-valued
user factors.

Here we first describe a direct discrete formula-
tion of feature augmentation and then describe our
proposed continuous formulation.

4.1 Discrete Adaptation

Feature augmentation uses domain information to
transform instances into a new augmented space
such that instances from the same domain have
higher similarity in the augmented space com-
pared to instances from different domains. A
learner operating over this augmented space can
now learn to model both domain-specific and
domain-general influences of the features.

The discrete adaptation method is a direct ap-
plication of this idea, where the training and test
instances are mapped into domains based on some
grouping that we induce from the user factors. For
example, the user factor age induces three discrete
domains: low (age < 24), middle (24 < age <
28), and high (age > 28).

Given the instance domain mapping, feature
augmentation transforms the instances based on
their domain. Suppose the original instances have
n features and suppose there are d discrete fac-
tor classes (F1, · · · , Fd) i.e., d domains. Given
an instance which is mapped to a factor class Fi,
augmentation creates a new feature vector that has

User Factor Augmented Instance
Classes Φ(x, u)

User 1 F1 〈x,x,0,0,· · · , 0〉
User 2 F2 〈x,0,x,0,· · · , 0〉
User 3 F1, F3 〈x,x,0,x,· · · , 0〉
User 4 Fk 〈x,0,0,· · · , 0, x〉

Table 1: Discrete Factor Adaptation: Augmen-
tations of an original instance vector x under dif-
ferent factor class mappings. With k domains the
augmented feature vector is of length n(k + 1).

d + 1 feature sets of length n each. The origi-
nal features are copied over to the first feature set
for all instances regardless of their domain. For
instances from domain i, the original features are
copied over to feature set i + 1. The other feature
sets are zeroes. Table 1 shows some examples of
this augmentation strategy for a single instance, x,
under different factor class mappings.

These augmented instances are used for train-
ing and testing without any further modifications
to the original learning formulation.

4.2 Continuous Adaptation

Discrete adaptation ignores the continuous nature
of user factors. Unlike the commonly considered
domains, people don’t fit neatly into discrete bins.
Many psychological studies have shown the in-
effectiveness of treating user factors as discrete
types (McCrae and Costa Jr., 1989); we expect
an adaptation method which does so to be sim-
ilarly ineffective. For most factors the bound-
aries for determining classes is unclear, and such
arbitrarily-drawn boundaries may not correspond
to big changes in language use.

Figure 1 illustrates the advantage of continuous
adaptation for a single feature — whether the cur-
rent instance contains an intensifier — using sar-
casm detection as an example. The colored shapes
show the feature values for instances from four
users, with green squares representing “sarcastic”
tweets and yellow circles representing “not sar-
castic” ones. The model is unable to distinguish
between sarcastic and non-sarcastic tweets in the
no adaptation and discrete adaptation case. While
discrete adaptation could induce some separabil-
ity, in this case it fails to account for the variations
between differently-aged over 30 users. On the
other hand, if we use features values that are pro-
portional to the actual age, it can result in a better
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Figure 1: Comparison of feature augmentation under discrete and continuous adaptations. Each shape
represents a particular observation (e.g. a tweet) to be classified, each from a different user. The x-
axis represents a particular boolean feature: whether the tweet has an intensifier. The y-axis represents
how the feature is augmented by the users’ age using both discrete adaptation (middle) and continuous
adaptation (right). Continuous adaptation allows us to distinguish observations where discrete may not.

separation as shown in the figure.
A compositional function c combines d user

factor scores fu,d with original feature values x:

Φ(x, u) = 〈x, c(fu,1,x), c(fu,2,x), · · · , c(fu,d,x)〉
Thus, a version of each feature exists with and
without the factor information integrated. We
will explore a simple multiplicative compositional
function (i.e., c(fu,d,x) = fu,d · x) but others can
be imagined (e.g. additive, multiplicative with ker-
nel functions).

Multiplicative composition has the property of
reducing Φ to discrete adaptation when the factors
are binary i.e., c(fu,d,x) = x when u ∈ Fd and
c(fu,d,x) = 0 otherwise. As with discrete adapta-
tion, learning then proceeds unmodified with these
augmented instances.

The augmented training data (trainaug) is thus
associated with the features x of the tweet, the task
labels y, and the user information u. Following the
feature augmentation formulation, any supervised
learning task of finding a parametrized function hθ
over the original labeled training data can now be
specified in terms of the augmented training data
along with the transformed instances:

arg min
θ

∑

(x,y,u)∈trainaug
loss (hθ (Φ(x, u), y))

For test instances we apply the same transforma-
tion function Φ before prediction.

5 Evaluation

We apply user-factor adaptation to five popular
NLP tasks: part-of-speech tagging, prepositional-

phrase attachment, sentiment analysis, sarcasm
detection, and stance detection. These represent
both syntactic and semantic tasks; include some
of the key steps in an NLP application pipeline;
and use different types of learning formulations
including logistic regression, conditional random
fields, and support vector machines.

We demonstrate the value of user-factor adap-
tation on strong baselines for each task. Table 2
provides the specific details for each task includ-
ing the systems used and their configurations.

5.1 Implementation Details

We learn factors from a user’s background lan-
guage, or past tweets2. To do so, we collect up
to 200 tweets per user; users with fewer than 20
tweets were excluded. Retweets were not included
and all tweets were tokenized using the Happier
Fun Tokenizer3.

Demographics and Personality. We derive
real-valued demographics and personality scores
using the models introduced in section 3.1. For
demographics, our model predicts continuous age
and a gender score where higher values imply
more “femaleness”. For personality, these scores
represent the Big Five personality traits: open-
ness to experience, conscientiousness, extraver-
sion, agreeableness, and neuroticism (Goldberg,
1990; McCrae and Costa Jr., 1997). Age, gender,
and the five personality dimensions are each a sin-
gle factor.

2Factor inference code is available at:
https://stonybrooknlp.github.io/user-factor-adaptation/

3https://github.com/dlatk/happierfuntokenizing
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Task POS Tagging PP-Attachment Sentiment Sarcasm Stance

Output POS tags ranked attachments positive, neutral,
negative

sarcastic, not
sarcastic for, against, neutral

System Owoputi et al.
(2013)

variant on Belinkov
et al. (2014)

Mohammad et al.
(2013)

Bamman and
Smith (2015)

Mohammad et al.
(2016)

Features Brown clusters,
lexical features

n-grams, Treebank,
WordNet

word/char n-grams,
lexicon features all tweet features word/char n-grams

Learning
Alg.

conditional
random field

SVM-Rank
(Joachims, 2006) linear-SVM logistic

regression SVM

Dataset Owoputi et al.
(2013)

Kong et al. (2014)
+ 986 new tweets

SemEval 2013
(Nakov et al., 2013)

Bamman and
Smith (2015)

SemEval 2016
(Mohammad et al.,

2016)

Eval Train/Test,
Accuracy

Cross-validation,
Accuracy Train/Test, F1 Cross-validation,

F1 Train/Test, F1

Tweets 1544 1319 10339 17084 3021
Users 1541 1319 9917 10966 2349

Instances 22723 2365 10339 17084 3021

Table 2: Overview of the experimental setup for all tasks. Choices were dictated primarily by the
literature on top performing systems for each task.

Latent Language Factors. We use three meth-
ods to derive latent factors: (1) tf-idf: The TF-IDF
approach uses unigrams, bigrams, and trigrams
occurring in more than 20% but fewer than 80%
of documents. (2) word2vec: The skip-grams al-
gorithm (Mikolov et al., 2013) was used to pro-
duce 50-dimensional word embeddings. (3) user-
embed: d-dimensional user embeddings from
generative factor analysis (Child, 1990) over rel-
ative frequencies of n-grams per user-background.
The TF-IDF and word2vec representations are
then clustered to produce a low-dimensional repre-
sentation of the users. Each dimension is a single
factor. We primarily report results for d=5 for all
latent factors, although we explore alternate values
in Section 5.3.

Discrete Adaptation. Each user is mapped to a
single “domain” per factor. For inferred age, we
select three equally-sized domains: age < 24,
24 < age < 28, and age > 28. TF-IDF and
word2vec define their domains based on cluster
membership. Gender, personality, and user em-
beddings have two domains, above and below the
mean, which is done on a per-dimension basis.

Continuous Adaptation. We apply transforma-
tions to the raw factor scores before using them
for adaptation. For demographic and personality
factors, we apply a min-max transformation. Be-
cause language often does not vary linearly with
age (Pennebaker and Stone, 2003), we addition-
ally use the square root of the predicted age. For
the cluster based latent factors, we use the inverse
of the Euclidean distance of the user-background

from the cluster centroid, amplifying the power of
those users who are closest to each cluster. User
embeddings from factor analysis are used with-
out any transforms since they naturally produce a
Gaussian distribution.

5.2 Results

Table 3 presents the main adaptation results. We
compare the performance of adaptation techniques
against two baselines: no inclusion of additional
factors or adaptation, and models with factors ran-
domly drawn from a Gaussian distribution – a sit-
uation requiring learning the same number of pa-
rameters as our most augmented models. For the
random factor baseline, we take the average per-
formance across five iterations for both discrete
and continuous adaptation. To establish signifi-
cance of difference in error between adaptation re-
sults and the no-adaptation baseline, we use per-
mutation testing for stance detection and McNe-
mar’s test for the others. Our findings follow.
While these conclusions were drawn from our
own experiments, we encourage future researchers
to see what works best on their own tasks and
datasets.
(i) Adaptation improves over unadapted baselines:
The results show significant gains with adaptation
for PP-attachment (+1.0), sentiment (+1.0),
sarcasm (+3.4), and stance (+3.0). Adaptation
yields better results for sarcasm and stance, se-
mantic tasks where we’d expect user preferences
to be an important factor. While prior studies
have shown POS variations across demographic
factors (Pennebaker and Stone, 2003; Schwartz
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pos tagging pp-attachment sentiment sarcasm stance
eval measure acc. acc. F1 F1 F1
adaptation factors disc cont disc cont disc cont disc cont disc cont
baselines
no adaptation 91.7 91.7 71.0 71.0 60.6 60.6 73.9 73.9 64.9 64.9
random factors 91.4 91.7 71.0 70.7 59.1 61.1 73.4 74.0 65.5 65.3
user-factor adaptation — known factors
age 91.5 91.7 69.6 70.8 60.0 61.4 74.9† 74.8† 66.3 64.9
gender 91.6 91.9 69.7 70.7 61.0 61.0 75.0† 75.1† 66.2 65.1
personality 91.1 91.2 71.3 70.2 58.6 61.2 74.3 75.6† 67.7† 66.3
user-factor adaptation — latent factors
user embed (d=5) 91.2 90.9 70.7 70.8 59.8 60.7 73.9 77.3† 64.6 67.9†
tf-idf (d=5) 91.4 91.5 70.5 72.0† 58.7 61.6 73.8 74.7† 66.8 64.9
word2vec (d=5) 91.6 90.7 70.3 71.1 56.30 60.5 76.4† 76.9† 67.0 66.2

Table 3: Results of user-factor adaptation across all tasks. Adaptation results are shown in comparison
with baseline performance (1) without adaptation and (2) with adaptation using randomly-assigned fac-
tors. disc denotes discrete adaptation results, and cont denotes continuous adaptation results. † indicates
statistically significant results at 0.05 level, in comparison to the no-adaptation baseline.

et al., 2013), we hypothesize that the ambiguity in
POS reduces greatly when conditioning on local
context compared to demographic preferences.
This coupled with the ceiling effect in a strong
baseline may explain the lack of improvements.

(ii) Continuous is better than discrete: For PP-
attachment, sarcasm, and sentiment, continuous
adaptation is better than discrete in all but three
of the eighteen configurations. Binning people
into discrete groups is hard and lossy; using
continuous weights helps avoid this issue. Stance,
however, is the one task where discrete works
better for most factors. As we show in Section 5.4,
demographics and personality scores are them-
selves highly predictive of stances on issues; we
believe this makes the simpler binning approach
more reliable than the continuous model.

(iii) Both known and latent factors are helpful:
Sarcasm benefits from age, gender and personality
based adaptations, while stance benefits from
personality. The demographic and personality
factors do not help PP-attachment. Language
factors help all tasks except POS tagging.

(iv) Latent factors provide best gains: The latent
language factors provide the best observed gains
for all of the tasks where we saw a significant
improvement: PP-attachment, sentiment, sarcasm,
and stance. The language factors model users di-
rectly in terms of the similarities (and differences)
in their entire language use, whereas the inferred
demographic and personality factors focus more
on a subset of their language as it relates to the
particular attribute.

(v) Expanding feature space alone is not enough:

One possible explanation for the gains with
factors are that the expanded feature space could
somehow provide more capacity for learners to
generalize. However, adapting to random factors
typically lowered results, suggesting that models
using more features but not more information
naturally take a hit.

5.3 Background Size and Number of Factors

The amount of background available directly af-
fects the factor measurement, which in turn may
impact adaptation effectiveness. Figure 2a shows
how varying the background size affects adap-
tation effectiveness for sarcasm. In general,
larger backgrounds lead to bigger gains as ex-
pected. Even with small amounts of background
(50 tweets) adaptation can provide gains, suggest-
ing that even with imperfect predictions of the user
attributes, there is still some benefit to adaptation.

Figure 2b compares how performance varies
with the number of latent factors for sarcasm. We
see gains for all d sizes we explored. Perfor-
mance improves with d first and then tapers off; its
best is +3.4 at d=5 and 7. As the number of fac-
tors increases, there is greater potential for a fine-
grained characterization of language use differ-
ences. However, this is offset by the increased risk
of overwhelming the learner with too many param-
eters to learn during adaptation. We also find that
the impact of number of factors also varies with
the type of task (e.g., for PP-attachment we find
d=3 gives the best performance of 72.2, a +1.2
gain over the baseline).
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(a) Background size effects for cases with large adaptation
gains: sarcasm when using personality and user-embedding
factors.

(b) Gains over unadapted baseline for sarcasm using TF-IDF,
user embeddings, and word2vec with varying number of fac-
tors.

Figure 2: Adaptation performance compared against background size and number of factors.

5.4 Factors as Direct Features
One way to use the factors is to add them as di-
rect features to the instances, without adaptation.
Table 4 compares how the most beneficial known
factor, personality, performs when added directly
as a feature to the two tasks where it had the high-
est impact.

task base direct adapt best
sarcasm 73.9 75.6† 75.6† 77.3†
stance 64.9 65.5 67.7† 67.9†

Table 4: Effects of including personality scores as
direct features, rather than doing adaptation. Other
tasks had no benefit from direct features. Best col-
umn shows best result achieved with adaptation
using any factor.

For sarcasm, adding personality as a direct fea-
ture itself leads to a strong improvement on par
with using it for adaptation. For stance, however,
we see that while there is an improvement over
the baseline, it is not as large as that from adap-
tation. We observed little-to-no improvement for
POS tagging, sentiment or PP-attachment when
using personality as direct features. This reflects
the relative complexity of the relationships be-
tween user factors and class labels for each task.
Note that while direct features provide benefits,
the overall possible gain with adaptation using any
factor (shown in best column) is larger.

Including user factors as direct features is ben-
eficial when there is a linear relationship with
the class label, such as with gender and sarcasm
use. In contrast, user-factor adaptation can capture
more complex relationships between user groups
and their language expression. Figure 3, for in-

Figure 3: There is a positive correlation between
gender and adjective use for sarcastic tweets, and
a negative correlation for non-sarcastic tweets.
Higher gender scores indicate a greater degree
of “femaleness”, whereas lower scores represent
more “maleness” according to the gender predic-
tion model.

stance, shows a three-way interaction between
gender scores, adjective use and sarcasm. Increase
in the number of adjectives is a positive indicator
of sarcasm for women (high gender scores) but is
a negative indicator for men (low gender scores).
We observe similar trends for age: phrases such as
“thanks” and “love it” tend to be meant sarcasti-
cally by younger users and sincerely by older ones.
User-factor adaptation can model these interaction
relationships when direct features alone may not.

5.5 Comparison of Latent Representations

To understand the advantage of continuous latent
adaptation, we look at how well discrete and con-
tinuous factor representations capture meaning-
ful information about users. To do so, we select
two dimensions from the TF-IDF latent factors for
stance detection and examine the extent to which
they differentiate users based on their attributes
(i.e. age) and posting behavior (i.e. URL use).
This is shown in Figure 4. The top row gives the
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Figure 4: Kernel densities (top) and scatter plots
(bottom) of users’ age and use of URLs broken
down by TF-IDF latent dimension. Colors rep-
resent each dimension and are consistent across
plots. Lines in scatter plots represent best-fit linear
regression. Shaded regions indicate standard er-
ror. On the left, discrete latent factors do not seem
to distinguish by age (top) but come apart when
treated continuously (bottom). On the other hand,
discrete and continuous seem to partially capture a
dimension of how often someone mentions URLs.

discrete representation: kernel density plots show
age and URL use distributions for users binned
into the two factor dimensions, shown here in red
and blue. The bottom gives the continuous repre-
sentation: scatter plots show the relationship be-
tween age and URL use and the factor score for
each dimension.

In the discrete view, age distributions are similar
for both factors; there is no apparent relationship
between factor membership and age. However, in
the continuous view there is a clear negative corre-
lation for age with the factor score for blue and a
positive one for red. This indicates that the fac-
tors are capturing meaningful information about
user age: those with a high factor score for blue
tend to be younger, whereas those with a low fac-
tor score are older. The reverse is true for red. The
URL use shows some difference between the two
dimensions in the discrete view, and again we see
strong and differing linear relationships with the
continuous view.

Overall, the latent factors appear to capture both
user attributes and posting behavior, with the con-
tinuous version providing additional benefits in
characterizing these relationships. The lack of a
clear differentiation in the discrete case hints at the
difficulty in capturing linguistic variance by split-
ting users into discrete groups.

6 Related Work

Modeling users has a long history of successful
applications in providing personalized informa-
tion access (Dou et al., 2007; Teevan et al., 2005)
and recommendations (Guy et al., 2009; Li et al.,
2010; Morales et al., 2012). In contrast, this work
models users to better understand their content via
language processing tasks following ideas from
demographics-aware and domain adaptation.

User-level language variance affects lexical
choices (Preoţiuc-Pietro et al., 2016) and
even syntactic aspects of language (Johannsen
et al., 2015). Such variations can result in
demographics-based bias in low-level tasks such
as POS tagging (Hovy and Søgaard, 2015) and can
also impact high-level applications such as senti-
ment analysis (Volkova et al., 2013) and machine
translation (Mirkin et al., 2015), motivating demo-
graphics and personality-based adaptations.

Consequently, recent works have explored
demographics-aware NLP (Volkova et al., 2013;
Bamman et al., 2014a; Kulkarni et al., 2016;
Hovy, 2015; Yang and Eisenstein, 2015). Volkova
et al. (2013) propose a gender-aware model and
demonstrate superior performance over a gender-
agnostic model on the task of sentiment ana-
lysis. Bamman et al. (2014a) and Kulkarni et al.
(2016) analyze regional linguistic variation using
region-specific word embeddings on online so-
cial media. Hovy (2015) advances this line of
research further and learns group-specific word
embeddings, showing improvements over general
embeddings on three types of text classification
tasks. When author demographics are not avail-
able, Yang and Eisenstein (2015) show that learn-
ing community-specific embeddings using social
networks can help improve sentiment analysis. A
similar approach with a social theory-based opti-
mization also showed improvements for sentiment
analysis (Hu et al., 2013). For sarcasm detection,
historical information about the author and their
past context (e.g. entities they discuss) have been
shown to be helpful (Bamman and Smith, 2015;
Khattri et al., 2015; Rajadesingan et al., 2015).

Our work builds on these ideas and explores
the general task of user-factor adaptation. Com-
pared to past work, our method (a) is more gen-
eral – working with both continuous and discrete
factors, (b) uses factors beyond demographics –
characteristics like personality are known to in-
fluence language beyond demographics (Schwartz
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et al., 2013), and (c) only requires a background of
language – by using inferred factors from a back-
ground of language, we require no a priori knowl-
edge of user traits.

7 Conclusion

Language on social media reflects the diversity in
its user base and motivates the need for robust
models that can handle the resulting variations by
user attributes. We have introduced user-factor
adaptation, a method to adapt typical supervised
language classifiers based on factors of the user
authoring the language. Our approach requires
nothing more than a background of language by
the user and only needs access to the features used
by the supervised learner. Since it requires no
other modifications to the learner, our approach
can be easily applied to many NLP tasks.

To the best of our knowledge, this represents
the first work to use the idea of continuous-
valued variables for language processing adapta-
tion. Continuous adaptation to a variety of user
factors brings us closer to personalized NLP and
outperforms discrete adaptation over four different
tasks: part-of-speech tagging, preposition-phrase
attachment, sentiment analysis, and sarcasm de-
tection. Adaptations with data-driven latent fac-
tors produced the largest gains. We see this work
as part of a growing trend to put language not just
within its document-wide context, but also within
the context of the human being that wrote it.
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Abstract

Word Sense Disambiguation models ex-
ist in many flavors. Even though super-
vised ones tend to perform best in terms of
accuracy, they often lose ground to more
flexible knowledge-based solutions, which
do not require training by a word expert
for every disambiguation target. To bridge
this gap we adopt a different perspective
and rely on sequence learning to frame
the disambiguation problem: we propose
and study in depth a series of end-to-end
neural architectures directly tailored to the
task, from bidirectional Long Short-Term
Memory to encoder-decoder models. Our
extensive evaluation over standard bench-
marks and in multiple languages shows
that sequence learning enables more ver-
satile all-words models that consistently
lead to state-of-the-art results, even against
word experts with engineered features.

1 Introduction

As one of the long-standing challenges in Natural
Language Processing (NLP), Word Sense Disam-
biguation (Navigli, 2009, WSD) has received con-
siderable attention over recent years. Indeed, by
dealing with lexical ambiguity an effective WSD
model brings numerous benefits to a variety of
downstream tasks and applications, from Infor-
mation Retrieval and Extraction (Zhong and Ng,
2012; Delli Bovi et al., 2015) to Machine Trans-
lation (Carpuat and Wu, 2007; Xiong and Zhang,
2014; Neale et al., 2016). Recently, WSD has also
been leveraged to build continuous vector repre-
sentations for word senses (Chen et al., 2014; Ia-
cobacci et al., 2015; Flekova and Gurevych, 2016).

Inasmuch as WSD is described as the task of as-
sociating words in context with the most suitable

entries in a pre-defined sense inventory, the ma-
jority of WSD approaches to date can be grouped
into two main categories: supervised (or semi-
supervised) and knowledge-based. Supervised
models have been shown to consistently outper-
form knowledge-based ones in all standard bench-
marks (Raganato et al., 2017), at the expense,
however, of harder training and limited flexibil-
ity. First of all, obtaining reliable sense-annotated
corpora is highly expensive and especially diffi-
cult when non-expert annotators are involved (de
Lacalle and Agirre, 2015), and as a consequence
approaches based on unlabeled data and semi-
supervised learning are emerging (Taghipour and
Ng, 2015b; Başkaya and Jurgens, 2016; Yuan
et al., 2016; Pasini and Navigli, 2017).

Apart from the shortage of training data, a cru-
cial limitation of current supervised approaches is
that a dedicated classifier (word expert) needs to
be trained for every target lemma, making them
less flexible and hampering their use within end-
to-end applications. In contrast, knowledge-based
systems do not require sense-annotated data and
often draw upon the structural properties of lexico-
semantic resources (Agirre et al., 2014; Moro
et al., 2014; Weissenborn et al., 2015). Such sys-
tems construct a model based only on the underly-
ing resource, which is then able to handle multiple
target words at the same time and disambiguate
them jointly, whereas word experts are forced to
treat each disambiguation target in isolation.

In this paper our focus is on supervised WSD,
but we depart from previous approaches and adopt
a different perspective on the task: instead of
framing a separate classification problem for each
given word, we aim at modeling the joint disam-
biguation of the target text as a whole in terms of a
sequence labeling problem. From this standpoint,
WSD amounts to translating a sequence of words
into a sequence of potentially sense-tagged tokens.
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With this in mind, we design, analyze and com-
pare experimentally various neural architectures
of different complexities, ranging from a single
bidirectional Long Short-Term Memory (Graves
and Schmidhuber, 2005, LSTM) to a sequence-to-
sequence approach (Sutskever et al., 2014). Each
architecture reflects a particular way of model-
ing the disambiguation problem, but they all share
some key features that set them apart from pre-
vious supervised approaches to WSD: they are
trained end-to-end from sense-annotated text to
sense labels, and learn a single all-words model
from the training data, without fine tuning or ex-
plicit engineering of local features.

The contributions of this paper are twofold.
First, we show that neural sequence learning rep-
resents a novel and effective alternative to the tra-
ditional way of modeling supervised WSD, en-
abling a single all-words model to compete with
a pool of word experts and achieve state-of-the-art
results, while also being easier to train, arguably
more versatile to use within downstream applica-
tions, and directly adaptable to different languages
without requiring additional sense-annotated data
(as we show in Section 6.2); second, we carry
out an extensive experimental evaluation where
we compare various neural architectures designed
for the task (and somehow left underinvestigated
in previous literature), exploring different config-
urations and training procedures, and analyzing
their strengths and weaknesses on all the standard
benchmarks for all-words WSD.

2 Related Work

The literature on WSD is broad and compre-
hensive (Agirre and Edmonds, 2007; Navigli,
2009): new models are continuously being de-
veloped (Yuan et al., 2016; Tripodi and Pelillo,
2017; Butnaru et al., 2017) and tested over a
wide variety of standard benchmarks (Edmonds
and Cotton, 2001; Snyder and Palmer, 2004;
Pradhan et al., 2007; Navigli et al., 2007, 2013;
Moro and Navigli, 2015). Moreover, the field
has been explored in depth from different angles
by means of extensive empirical studies and
evaluation frameworks (Pilehvar and Navigli,
2014; Iacobacci et al., 2016; McCarthy et al.,
2016; Raganato et al., 2017).

As regards supervised WSD, traditional ap-
proaches are generally based on extracting local
features from the words surrounding the target,
and then training a classifier (Zhong and Ng,

2010; Shen et al., 2013) for each target lemma.
In their latest developments, these models include
more complex features based on word embed-
dings (Taghipour and Ng, 2015b; Rothe and
Schütze, 2015; Iacobacci et al., 2016).

The recent upsurge of neural networks has
also contributed to fueling WSD research: Yuan
et al. (2016) rely on a powerful neural language
model to obtain a latent representation for the
whole sentence containing a target word w;
their instance-based system then compares that
representation with those of example sentences
annotated with the candidate meanings of w.
Similarly, Context2Vec (Melamud et al., 2016)
makes use of a bidirectional LSTM architecture
trained on an unlabeled corpus and learns a
context vector for each sense annotation in the
training data. Finally, Kågebäck and Salomonsson
(2016) present a supervised classifier based
on bidirectional LSTM for the lexical sample
task (Kilgarriff, 2001; Mihalcea et al., 2004). All
these contributions have shown that supervised
neural models can achieve state-of-the-art per-
formances without taking advantage of external
resources or language-specific features. However,
they all consider each target word as a separate
classification problem and, to the best of our
knowledge, very few attempts have been made
to disambiguate a text jointly using sequence
learning (Ciaramita and Altun, 2006).

Sequence learning, especially using
LSTM (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005; Graves, 2013),
has become a well-established standard in nu-
merous NLP tasks (Zhou and Xu, 2015; Ma and
Hovy, 2016; Wang and Chang, 2016). In par-
ticular, sequence-to-sequence models (Sutskever
et al., 2014) have grown increasingly popular and
are used extensively in, e.g., Machine Transla-
tion (Cho et al., 2014; Bahdanau et al., 2015),
Sentence Representation (Kiros et al., 2015), Syn-
tactic Parsing (Vinyals et al., 2015), Conversation
Modeling (Vinyals and Le, 2015), Morphological
Inflection (Faruqui et al., 2016) and Text Summa-
rization (Gu et al., 2016). In line with this trend,
we focus on the (so far unexplored) context of
supervised WSD, and investigate state-of-the-art
all-words approaches that are based on neural
sequence learning and capable of disambiguating
all target content words within an input text, a key
feature in several knowledge-based approaches.
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Figure 1: Bidirectional LSTM sequence labeling
architecture for WSD (2 hidden layers). We use
the notation of Navigli (2009) for word senses: wip
is the i-th sense of w with part of speech p.

3 Sequence Learning for Word Sense
Disambiguation

In this section we define WSD in terms of a se-
quence learning problem. While in its classical
formulation (Navigli, 2009) WSD is viewed as a
classification problem for a given word w in con-
text, with word senses of w being the class la-
bels, here we consider a variable-length sequence
of input symbols ~x = 〈x1, ..., xT 〉 and we aim
at predicting a sequence of output symbols ~y =
〈y1, ..., yT ′〉.1 Input symbols are word tokens
drawn from a given vocabulary V .2 Output sym-
bols are either drawn from a pre-defined sense in-
ventory S (if the corresponding input symbols are
open-class content words, i.e., nouns, verbs, adjec-
tives or adverbs), or from the same input vocabu-
lary V (e.g., if the corresponding input symbols
are function words, like prepositions or determin-
ers). Hence, we can define a WSD model in terms
of a function that maps sequences of symbols xi ∈
V into sequences of symbols yj ∈ O = S ∪ V .

Here all-words WSD is no longer broken
down into a series of distinct and separate clas-
sification tasks (one per target word) but rather
treated directly at the sequence level, with a sin-
gle model handling all disambiguation decisions.
In what follows, we describe three different mod-
els for accomplishing this: a traditional LSTM-
based model (Section 3.1), a variant that incorpo-
rates an attention mechanism (Section 3.2), and an
encoder-decoder architecture (Section 3.3).

1In general ~x and ~y might have different lengths, e.g., if ~x
contains a multi-word expression (European Union) which is
mapped to a unique sense identifier (European Union1

n).
2V generalizes traditional vocabularies used in WSD and

includes both word lemmas and inflected forms.

3.1 Bidirectional LSTM Tagger

The most straightforward way of modeling WSD
as formulated in Section 3 is that of considering a
sequence labeling architecture that tags each sym-
bol xi ∈ V in the input sequence with a label
yj ∈ O. Even though the formulation is rather
general, previous contributions (Melamud et al.,
2016; Kågebäck and Salomonsson, 2016) have al-
ready shown the effectiveness of recurrent neural
networks for WSD. We follow the same line and
employ a bidirectional LSTM architecture: in fact,
important clues for disambiguating a target word
could be located anywhere in the context (not nec-
essarily before the target) and for a model to be
effective it is crucial that it exploits information
from the whole input sequence at every time step.

Architecture. A sketch of our bidirectional
LSTM tagger is shown in Figure 1. It consists of:

• An embedding layer that converts each word
xi ∈ ~x into a real-valued d-dimensional
vector xi via the embedding matrix W ∈
Rd× |V |;

• One or more stacked layers of bidirectional
LSTM (Graves and Schmidhuber, 2005).
The hidden state vectors hi and output vec-
tors oi at the ith time step are then obtained as
the concatenations of the forward and back-
ward pass vectors

−→
h i,
−→o i and

←−
h i,
←−o i;

• A fully-connected layer with softmax activa-
tion that turns the output vector oi at the ith

time step into a probability distribution over
the output vocabulary O.

Training. The tagger is trained on a dataset
of N labeled sequences {(~xk, ~yk)}Nk=1 directly
obtained from the sentences of a sense-annotated
corpus, where each ~xk is a sequence of word
tokens, and each ~yk is a sequence containing both
word tokens and sense labels. Ideally ~yk is a copy
of ~xk where each content word is sense-tagged.
This is, however, not the case in many real-world
datasets, where only a subset of the content words
is annotated; hence the architecture is designed
to deal with both fully and partially annotated
sentences. Apart from sentence splitting and
tokenization, no preprocessing is required on the
training data.
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3.2 Attentive Bidirectional LSTM Tagger

The bidirectional LSTM tagger of Section 3.1 ex-
ploits information from the whole input sequence
~x, which is encoded in the hidden state hi. How-
ever, certain elements of ~xmight be more discrim-
inative than others in predicting the output label at
a given time step (e.g., the syntactic subject and
object when predicting the sense label of a verb).

We model this hunch by introducing an atten-
tion mechanism, already proven to be effective in
other NLP tasks (Bahdanau et al., 2015; Vinyals
et al., 2015), into the sequence labeling architec-
ture of Section 3.1. The resulting attentive bidi-
rectional LSTM tagger augments the original ar-
chitecture with an attention layer, where a context
vector c is computed from all the hidden states
h1, ...,hT of the bidirectional LSTM. The atten-
tive tagger first reads the entire input sequence ~x
to construct c, and then exploits c to predict the
output label yj at each time step, by concatenat-
ing it with the output vector oj of the bidirectional
LSTM (Figure 2).

We follow previous work (Vinyals et al., 2015;
Zhou et al., 2016) and compute c as the weighted
sum of the hidden state vectors h1, ...,hT . For-
mally, let H ∈ Rn×T be the matrix of hidden
state vectors [h1, ...,hT ], where n is the hidden
state dimension and T is the input sequence length
(cf. Section 3). c is obtained as follows:

u = ωT tanh(H)

a = softmax(u)

c = HaT (1)

where ω ∈ Rn is a parameter vector, and a ∈ RT
is the vector of normalized attention weights.

3.3 Sequence-to-Sequence Model

The attentive tagger of Section 3.2 performs a
two-pass procedure by first reading the input se-
quence ~x to construct the context vector c, and
then predicting an output label yj for each ele-
ment in ~x. In this respect, the attentive archi-
tecture can effectively be viewed as an encoder
for ~x. A further generalization of this model
would then be a complete encoder-decoder ar-
chitecture (Sutskever et al., 2014) where WSD
is treated as a sequence-to-sequence mapping
(sequence-to-sequence WSD), i.e., as the “transla-
tion” of word sequences into sequences of poten-
tially sense-tagged tokens.
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Figure 2: Attentive bidirectional LSTM sequence
labeling architecture for WSD (2 hidden layers).

In the sequence-to-sequence framework, a
variable-length sequence of input symbols ~x is
represented as a sequence of vectors ~x =
〈x1, ..., xT 〉 by converting each symbol xi ∈ ~x into
a real-valued vector xi via an embedding layer,
and then fed to an encoder, which generates a
fixed-dimensional vector representation of the se-
quence. Traditionally, the encoder function is a
Recurrent Neural Network (RNN) such that:

ht = f(ht−1, xt)
c = q({h1, ...,hT }) (2)

where ht ∈ Rn is the n-dimensional hidden state
vector at time t, c ∈ Rn is a vector generated
from the whole sequence of input states, and f
and q are non-linear functions.3 A decoder is then
trained to predict the next output symbol yt given
the encoded input vector c and all the previously
predicted output symbols 〈y1, ..., yt−1〉. More for-
mally, the decoder defines a probability over the
output sequence ~y = 〈y1, ..., yT ′〉 by decompos-
ing the joint probability into ordered conditionals:

p(~y | ~x) =
T ′∏

t=1

p(yt | c, 〈y1, ..., yt−1〉) (3)

Typically a decoder RNN defines the hidden state
at time t as st = g(st−1, {c, yt−1}) and then feeds
st to a softmax layer in order to obtain a condi-
tional probability over output symbols.

3For instance, Sutskever et al. (2014) used an LSTM as f ,
and q({h1, ..., hT }) = hT .
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Figure 3: Encoder-decoder architecture for sequence-to-sequence WSD, with 2 bidirectional LSTM lay-
ers and an attention layer.

In the context of WSD framed as a sequence
learning problem, a sequence-to-sequence model
takes as input a training set of labeled sequences
(cf. Section 3.1) and learns to replicate an in-
put sequence ~x while replacing each content word
with its most suitable word sense from S. In other
words, sequence-to-sequence WSD can be viewed
as the combination of two sub-tasks:

• A memorization task, where the model learns
to replicate the input sequence token by token
at decoding time;

• The actual disambiguation task where the
model learns to replace content words across
the input sequence with their most suitable
senses from the sense inventory S.

In the latter stage, multi-word expressions (such
as nominal entity mentions or phrasal verbs) are
replaced by their sense identifiers, hence yielding
an output sequence that might have a different
length than ~x.

Architecture. The encoder-decoder architecture
generalizes over both the models in Sections 3.1
and 3.2. In particular, we include one or more bidi-
rectional LSTM layers at the core of both the en-
coder and the decoder modules. The encoder uti-
lizes an embedding layer (cf. Section 3.1) to con-
vert input symbols into embedded representations,
feeds it to the bidirectional LSTM layer, and then
constructs the context vector c, either by simply
letting c = hT (i.e., the hidden state of the bidi-
rectional LSTM layer after reading the whole in-
put sequence), or by computing the weighted sum
described in Section 3.2 (if an attention mecha-
nism is employed). In either case, the context vec-
tor c is passed over to the decoder, which gener-
ates the output symbols sequentially based on c

and the current hidden state st, using one or more
bidirectional LSTM layers as in the encoder mod-
ule. Instead of feeding c to the decoder only at
the first time step (Sutskever et al., 2014; Vinyals
and Le, 2015), we condition each output symbol
yt on c, allowing the decoder to peek into the in-
put at every step, as in Cho et al. (2014). Finally, a
fully-connected layer with softmax activation con-
verts the current output vector of the last LSTM
layer into a probability distribution over the out-
put vocabulary O. The complete encoder-decoder
architecture (including the attention mechanism)
is shown in Figure 3.

4 Multitask Learning with Multiple
Auxiliary Losses

Several recent contributions (Søgaard and Gold-
berg, 2016; Bjerva et al., 2016; Plank et al., 2016;
Luong et al., 2016) have shown the effectiveness
of multitask learning (Caruana, 1997, MTL) in
a sequence learning scenario. In MTL the idea
is that of improving generalization performance
by leveraging training signals contained in related
tasks, in order to exploit their commonalities and
differences. MTL is typically carried out by train-
ing a single architecture using multiple loss func-
tions and a shared representation, with the under-
lying intention of improving a main task by incor-
porating joint learning of one or more related aux-
iliary tasks. From a practical point of view, MTL
works by including one task-specific output layer
per additional task, usually at the outermost level
of the architecture, while keeping the remaining
hidden layers common across all tasks.

In line with previous approaches, and guided by
the intuition that WSD is strongly linked to other
NLP tasks at various levels, we also design and
study experimentally a multitask augmentation of
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the models described in Section 3. In particular,
we consider two auxiliary tasks:

• Part-of-speech (POS) tagging, a standard
auxiliary task extensively studied in previous
work (Søgaard and Goldberg, 2016; Plank
et al., 2016). Predicting the part-of-speech
tag for a given token can also be informa-
tive for word senses, and help in dealing with
cross-POS lexical ambiguities (e.g., book a
flight vs. reading a good book);

• Coarse-grained semantic labels (LEX)
based on the WordNet (Miller et al., 1990)
lexicographer files,4 i.e., 45 coarse-grained
semantic categories manually associated with
all the synsets in WordNet on the basis of
both syntactic and logical groupings (e.g.,
noun.location, or verb.motion). These very
coarse semantic labels, recently employed
in a multitask setting by Alonso and Plank
(2017), group together related senses and
help the model to generalize, especially over
senses less covered at training time.

We follow previous work (Plank et al., 2016;
Alonso and Plank, 2017) and define an auxiliary
loss function for each additional task. The overall
loss is then computed by summing the main loss
(i.e., the one associated with word sense labels)
and all the auxiliary losses taken into account.

As regards the architecture, we consider both
the models described in Sections 3.2 and 3.3 and
modify them by adding two softmax layers in ad-
dition to the one in the original architecture. Fig-
ure 4 illustrates this for the attentive tagger of Sec-
tion 3.2, considering both POS and LEX as auxil-
iary tasks. At the jth time step the model predicts
a sense label yj together with a part-of-speech tag
POSj and a coarse semantic label LEXj .5

5 Experimental Setup

In this section we detail the setup of our experi-
mental evaluation. We first describe the training
corpus and all the standard benchmarks for
all-words WSD; we then report technical details
on the architecture and on the training process for
all the models described throughout Section 3 and
their multitask augmentations (Section 4).

4https://wordnet.princeton.edu/man/
lexnames.5WN.html

5We use a dummy LEX label (other) for punctuation
and function words.
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Figure 4: Multitask augmentation (with both POS
and LEX as auxiliary tasks) for the attentive bidi-
rectional LSTM tagger of Section 3.2.

Evaluation Benchmarks. We evaluated our
models on the English all-words WSD task,
considering both the fine-grained and coarse-
grained benchmarks (Section 6.1). As regards
fine-grained WSD, we relied on the evaluation
framework of Raganato et al. (2017), which
includes five standardized test sets from the
Senseval/SemEval series: Senseval-2 (Edmonds
and Cotton, 2001, SE2), Senseval-3 (Snyder and
Palmer, 2004, SE3), SemEval-2007 (Pradhan
et al., 2007, SE07), SemEval-2013 (Navigli
et al., 2013, SE13) and SemEval-2015 (Moro
and Navigli, 2015, SE15). Due to the lack of a
reasonably large development set for our setup,
we considered the smallest among these test
sets, i.e., SE07, as development set and excluded
it from the evaluation of Section 6.1. As for
coarse-grained WSD, we used the SemEval-2007
task 7 test set (Navigli et al., 2007), which is
not included in the standardized framework,
and mapped the original sense inventory from
WordNet 2.1 to WordNet 3.0.6 Finally, we carried
out an experiment on multilingual WSD using
the Italian, German, French and Spanish data
of SE13. For these benchmarks we relied on
BabelNet (Navigli and Ponzetto, 2012)7 as unified
sense inventory.

6We utilized the original sense-key mappings available
at http://wordnetcode.princeton.edu/3.0 for
nouns and verbs, and the automatic mappings by Daudé et al.
(2003) for the remaining parts of speech (not available in the
original mappings).

7http://babelnet.org
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Dev Test Datasets
SE07 SE2 SE3 SE13 SE15

BLSTM 61.8 71.4 68.8 65.6 69.2
BLSTM + att. 62.4 71.4 70.2 66.4 70.8
BLSTM + att. + LEX 63.7 72.0 69.4 66.4 72.4
BLSTM + att. + LEX + POS 64.8 72.0 69.1 66.9 71.5
Seq2Seq 60.9 68.5 67.9 65.3 67.0
Seq2Seq + att. 62.9 69.9 69.6 65.6 67.7
Seq2Seq + att. + LEX 64.6 70.6 67.8 66.5 68.7
Seq2Seq + att. + LEX + POS 63.1 70.1 68.5 66.5 69.2

IMS 61.3 70.9 69.3 65.3 69.5
IMS+emb 62.6 72.2 70.4 65.9 71.5
Context2Vec 61.3 71.8 69.1 65.6 71.9
Leskext+emb ?56.7 63.0 63.7 66.2 64.6
UKBgloss w2w 42.9 63.5 55.4 ?62.9 63.3
Babelfy 51.6 ?67.0 63.5 66.4 70.3

MFS 54.5 65.6 ?66.0 63.8 ?67.1

Concatenation of All Test Datasets
Nouns Verbs Adj. Adv. All

70.2 56.3 75.2 84.4 68.9
71.0 58.4 75.2 83.5 69.7
71.6 57.1 75.6 83.2 69.9
71.5 57.5 75.0 83.8 69.9
68.7 54.5 74.0 81.2 67.3
69.5 57.2 74.5 81.8 68.4
70.4 55.7 73.3 82.9 68.5
70.1 55.2 75.1 84.4 68.6

70.5 55.8 75.6 82.9 68.9
71.9 56.6 75.9 84.7 70.1
71.2 57.4 75.2 82.7 69.6
70.0 51.1 51.7 80.6 64.2
64.9 41.4 69.5 69.7 61.1
68.9 50.7 73.2 79.8 66.4

67.7 49.8 73.1 80.5 65.5

Table 1: F-scores (%) for English all-words fine-grained WSD on the test sets in the framework of Ra-
ganato et al. (2017) (including the development set SE07). The first system with a statistically significant
difference from our best models is marked with ? (unpaired t-test, p < 0.05).

At testing time, given a target word w, our
models used the probability distribution over O,
computed by the softmax layer at the correspond-
ing time step, to rank the candidate senses of w;
we then simply selected the top ranking candidate
as output of the model.

Architecture Details. To set a level playing field
with comparison systems on English all-words
WSD, we followed Raganato et al. (2017) and,
for all our models, we used a layer of word
embeddings pre-trained8 on the English ukWaC
corpus (Baroni et al., 2009) as initialization, and
kept them fixed during the training process. For
all architectures we then employed 2 layers of
bidirectional LSTM with 2048 hidden units (1024
units per direction).

As regards multilingual all-words WSD (Sec-
tion 6.2), we experimented, instead, with two
different configurations of the embedding layer:
the pre-trained bilingual embeddings by Mrkšić
et al. (2017) for all the language pairs of interest
(EN-IT, EN-FR, EN-DE, and EN-ES), and the
pre-trained multilingual 512-dimensional em-
beddings for 12 languages by Ammar et al. (2016).

8We followed Iacobacci et al. (2016) and used the
Word2Vec (Mikolov et al., 2013) skip-gram model with 400
dimensions, 10 negative samples and a window size of 10.

Training. We used SemCor 3.0 (Miller et al.,
1993) as training corpus for all our experiments.
Widely known and utilized in the WSD literature,
SemCor is one of the largest corpora annotated
manually with word senses from the sense inven-
tory of WordNet (Miller et al., 1990) for all open-
class parts of speech. We used the standardized
version of SemCor as provided in the evaluation
framework9 which also includes coarse-grained
POS tags from the universal tagset. All models
were trained for a fixed number of epochs E = 40
using Adadelta (Zeiler, 2012) with learning rate
1.0 and batch size 32. After each epoch we evalu-
ated our models on the development set, and then
compared the best iterations (E∗) on the develop-
ment set with the reported state of the art in each
benchmark.

6 Experimental Results

Throughout this section we identify the models
based on the LSTM tagger (Sections 3.1-3.2) by
the label BLSTM, and the sequence-to-sequence
models (Section 3.3) by the label Seq2Seq.

6.1 English All-words WSD
Table 1 shows the performance of our models on
the standardized benchmarks for all-words fine-
grained WSD. We report the F1-score on each in-

9http://lcl.uniroma1.it/wsdeval
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SemEval-2007 task 7
BLSTM + att. + LEX 83.0 IMS 81.9
BLSTM + att. + LEX + POS 83.1 Chen et al. (2014) 82.6
Seq2Seq + att. + LEX 82.3 Yuan et al. (2016) 82.8
Seq2Seq + att. + LEX + POS 81.6 UKB w2w 80.1

Table 2: F-scores (%) for coarse-grained WSD.

dividual test set, as well as the F1-score obtained
on the concatenation of all four test sets, divided
by part-of-speech tag.

We compared against the best supervised and
knowledge-based systems evaluated on the same
framework. As supervised systems, we considered
Context2Vec (Melamud et al., 2016) and It Makes
Sense (Zhong and Ng, 2010, IMS), both the orig-
inal implementation and the best configuration
reported by Iacobacci et al. (2016, IMS+emb),
which also integrates word embeddings using ex-
ponential decay.10 All these supervised systems
were trained on the standardized version of Sem-
Cor. As knowledge-based systems we consid-
ered the embeddings-enhanced version of Lesk by
Basile et al. (2014, Leskext+emb), UKB (Agirre
et al., 2014) (UKBgloss w2w) , and Babelfy (Moro
et al., 2014). All these systems relied on the
Most Frequent Sense (MFS) baseline as back-off
strategy.11 Overall, both BLSTM and Seq2Seq
achieved results that are either state-of-the-art or
statistically equivalent (unpaired t-test, p < 0.05)
to the best supervised system in each benchmark,
performing on par with word experts tuned over
explicitly engineered features (Iacobacci et al.,
2016). Interestingly enough, BLSTM models
tended consistently to outperform their Seq2Seq
counterparts, suggesting that an encoder-decoder
architecture, despite being more powerful, might
be suboptimal for WSD. Furthermore, introducing
LEX (cf. Section 4) as auxiliary task was gener-
ally helpful; on the other hand, POS did not seem
to help, corroborating previous findings (Alonso
and Plank, 2017; Bingel and Søgaard, 2017).

The overall performance by part of speech
was consistent with the above analysis, show-
ing that our models outperformed all knowledge-
based systems, while obtaining results that are su-
perior or equivalent to the best supervised mod-

10We are not including Yuan et al. (2016), as their models
are not available and not replicable on the standardized test
sets, being based on proprietary data.

11Since each system always outputs an answer, F-score
equals both precision and recall, and statistical significance
can be expressed with respect to any of these measures.

SemEval-2013 task 12
IT FR DE ES

BLSTM (bilingual) 61.6 55.2 69.2 65.0
BLSTM (multilingual) 62.0 55.5 69.2 66.4
UMCC-DLSI 65.8 60.5 62.1 71.0
DAEBAK! 61.3 53.8 59.1 60.0

MFS 57.5 45.3 67.4 64.5

Table 3: F-scores (%) for multilingual WSD.

els. It is worth noting that RNN-based ar-
chitectures outperformed classical supervised ap-
proaches (Zhong and Ng, 2010; Iacobacci et al.,
2016) when dealing with verbs, which are shown
to be highly ambiguous (Raganato et al., 2017).

The performance on coarse-grained WSD fol-
lowed the same trend (Table 2). Both BLSTM and
Seq2Seq outperformed UKB (Agirre et al., 2014)
and IMS trained on SemCor (Taghipour and Ng,
2015a), as well as recent supervised approaches
based on distributional semantics and neural archi-
tectures (Chen et al., 2014; Yuan et al., 2016).

6.2 Multilingual All-words WSD

All the neural architectures described in this pa-
per can be readily adapted to work with different
languages without adding sense-annotated data in
the target language. In fact, as long as the first
layer (cf. Figures 1-3) is equipped with bilingual
or multilingual embeddings where word vectors in
the training and target language are defined in the
same space, the training process can be left un-
changed, even if based only on English data. The
underlying assumption is that words that are trans-
lations of each other (e.g., house in English and
casa in Italian) are mapped to word embeddings
that are as close as possible in the vector space.

In order to assess this, we considered one of our
best models (BLSTM+att.+LEX) and replaced the
monolingual embeddings with bilingual and mul-
tilingual embeddings (as specified in Section 5),
leaving the rest of the architecture unchanged. We
then trained these architectures on the same En-
glish training data, and ran the resulting models
on the multilingual benchmarks of SemEval-2013
for Italian, French, German and Spanish. While
doing this, we exploited BabelNet’s inter-resource
mappings to convert WordNet sense labels (used
at training time) into BabelNet synsets compliant
with the sense inventory of the task.

F-score figures (Table 3) show that bilingual and
multilingual models, despite being trained only on
English data, consistently outperformed the MFS
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baseline and achieved results that are competitive
with the best participating systems in the task. We
also note that the overall F-score performance did
not change substantially (and slightly improved)
when moving from bilingual to multilingual mod-
els, despite the increase in the number of target
languages treated simultaneously.

6.3 Discussion and Error Analysis
All the neural models evaluated in Section 6.1
utilized the MFS back-off strategy for instances
unseen at training time, which amounted to
9.4% overall for fine-grained WSD and 10.5%
for coarse-grained WSD. Back-off strategy aside,
85% of the times the top candidate sense for a tar-
get instance lay within the 10 most probable en-
tries in the probability distribution over O com-
puted by the softmax layer.12 In fact, our sequence
models learned, on the one hand, to associate a
target word with its candidate senses (something
word experts are not required to learn, as they
only deal with a single word type at a time); on
the other, they tended to generate softmax distri-
butions reflecting the semantics of the surronding
context. For example, in the sentence:

(a) The two justices have been attending federal-
ist society events for years,

our model correctly disambiguated justices with
the WordNet sense justice3n (public official)
rather than justice1n (the quality of being just),
and the corresponding softmax distribution was
heavily biased towards words and senses related
to persons or groups (commissioners, defendants,
jury, cabinet, directors). On the other hand, in the
sentence:

(b) Xavi Hernandez, the player of Barcelona, has
106 matches,

the same model disambiguated matches with the
wrong WordNet sense match1n (tool for start-
ing a fire). This suggests that the signal car-
ried by discriminative words like player vanishes
rather quickly. In order to enforce global coher-
ence further, recent contributions have proposed
more sophisticated models where recurrent archi-
tectures are combined with Conditional Random
Fields (Huang et al., 2015; Ma and Hovy, 2016).
Finally, a number of errors were connected to
shorter sentences with limited context for disam-
biguation: in fact, we noted that the average pre-

12We refer here to the same model considered in Section
6.2 (i.e., BLSTM+att.+LEX).

cision of our model, without MFS back-off, in-
creased by 6.2% (from 74.6% to 80.8%) on sen-
tences with more than 20 word tokens.

7 Conclusion

In this paper we adopted a new perspective on su-
pervised WSD, so far typically viewed as a clas-
sification problem at the word level, and framed it
using neural sequence learning. To this aim we
defined, analyzed and compared experimentally
different end-to-end models of varying complex-
ities, including augmentations based on an atten-
tion mechanism and multitask learning.

Unlike previous supervised approaches, where a
dedicated model needs to be trained for every con-
tent word and each disambiguation target is treated
in isolation, sequence learning approaches learn a
single model in one pass from the training data,
and then disambiguate jointly all target words
within an input text. The resulting models con-
sistently achieved state-of-the-art (or statistically
equivalent) figures in all benchmarks for all-words
WSD, both fine-grained and coarse-grained, effec-
tively demonstrating that we can overcome the so
far undisputed and long-standing word-expert as-
sumption of supervised WSD, while retaining the
accuracy of supervised word experts.

Furthermore, these models are sufficiently flex-
ible to allow them, for the first time in WSD, to
be readily adapted to languages different from the
one used at training time, and still achieve compet-
itive results (as shown in Section 6.2). This crucial
feature could potentially pave the way for cross-
lingual supervised WSD, and overcome the short-
age of sense-annotated data in multiple languages
that, to date, has prevented the development of su-
pervised models for languages other than English.

As future work, we plan to extend our evalua-
tion to larger sense-annotated corpora (Raganato
et al., 2016) as well as to different sense invento-
ries and different languages. We also plan to ex-
ploit the flexibility of our models by integrating
them into downstream applications, such as Ma-
chine Translation and Information Extraction.
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Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is Multitask Learning Effective? Seman-
tic Sequence Prediction under Varying Data Condi-
tions. In Proc. of ACL, pages 44–53.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A. Smith.
2016. Massively Multilingual Word Embeddings.
CoRR, abs/1602.01925.
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Abstract

Search systems are often focused on pro-
viding relevant results for the “now”, as-
suming both corpora and user needs that
focus on the present. However, many
corpora today reflect significant longitudi-
nal collections ranging from 20 years of
the Web to hundreds of years of digitized
newspapers and books. Understanding the
temporal intent of the user and retrieving
the most relevant historical content has be-
come a significant challenge. Common
search features, such as query expansion,
leverage the relationship between terms
but cannot function well across all times
when relationships vary temporally. In this
work, we introduce a temporal relation-
ship model that is extracted from longitu-
dinal data collections. The model supports
the task of identifying, given two words,
when they relate to each other. We present
an algorithmic framework for this task and
show its application for the task of query
expansion, achieving high gain.

1 Introduction

The focus of large-scale Web search engines is
largely on providing the best access to present
snapshots of text – what we call the “Now Web”.
The system constraints and motivating use cases
of traditional information retrieval (IR) systems,
coupled with the relatively short history of the
Web, has meant that little attention has been paid
to how search engines will function when search
must scale not only to the number of documents
but also temporally. Most IR systems assume fixed
language models and lexicons. They focus only
on the leading edge of query behavior (i.e., what
does the user likely mean today when they type

“Jaguar”). In this context, features as basic as dis-
ambiguation and spelling corrections are fixed to
what is most likely today or within the past few
years (Radinsky et al., 2013), query expansions
and synonyms are weighted towards current infor-
mation (Shokouhi and Radinsky, 2012), and re-
sults tend to include the most recent and popular
content. While this problem would seem to be
speculative in that it will be years until we need to
address it, the reality is the rate of change (Adar
et al., 2009) of the Web, language, and culture
have simply compressed the time in which critical
changes happen.

The “Now Web” assumptions are entirely rea-
sonable for temporally coherent text collections
and allow users (and search engines) to ignore the
complexity of changing language and concentrate
on a narrower (though by no means simpler) set of
issues. The reality is that this serves a significant
user population effectively. There are nonethe-
less a growing number of both corpora and users
who require access not just to what is relevant
at a particular instant (e.g., Hathitrust (Willis and
Efron, 2013), historical news corpora, the Internet
Archives, and even fast changing Twitter feeds).
Within such contexts, a search engine will need
to vary the way it functions (e.g., disambigua-
tion) and interacts (e.g., suggested query expan-
sions) depending on the period and temporal scale
of documents being queried. This, of course, is
further complicated by the fact that Web pages are
constantly evolving and replaced.

Take for example the query “Prime Minister
Ariel Sharon”. When fed into a news archive
search engine, the likely intent was finding results
about Sharon’s role as Israel’s Prime Minister, a
role held from 2001 to 2006. Singh et al. (2016)
refer to this as a Historical Query Intent. However,
most popular search engines return results about
Sharon’s death in 2011, when he was no longer
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prime minister. The searcher may take the addi-
tional step of filtering results to a time period, but
this requires knowing what that period should be.
Other query features are also unresponsive to tem-
poral context. For example, the top query sugges-
tions for this query focus on more recent events
of his death: “Former prime minister Sharon dies
at 85”, “Former prime minister Sharon’s condi-
tion worsens”, etc. While these might satisfy the
searcher if they are looking for the latest results,
or the results most covered by the press, there are
clearly other possible needs (Bingham, 2010).

In this paper, we focus on the task of measuring
word relatedness over time. Specifically, we infer
whether two words (tokens) relate to each other
during a certain time range. This task is an essen-
tial building block of many temporal applications
and we specifically target time-sensitive query ex-
pansion (QE). Our focus is on semantic related-
ness rather than semantic similarity. Relatedness
assumes many different kinds of specific relations
(e.g. meronymy, antonymy, functional associa-
tion) and is often more useful for computational
linguistics applications than the more narrow no-
tion of similarity (Budanitsky and Hirst, 2006).

We present several temporal word-relatedness
algorithms. Our method utilizes a large scale tem-
poral corpus spanning over 150 years (The New
York Times archive) to generate temporal deep
word embeddings. We describe several algorithms
to measure word relatedness over time using these
temporal embeddings. Figure 1a presents the per-
formance of one of those algorithms on the words
“Obama” and “President”. Note that the high-
est relatedness score for the words appears during
the presidential term of Barack Obama. Similarly,
Figure 1b shows a high score for “Ariel Sharon”
and “prime minister” only during his term.

Using the approach above, we present a spe-
cific application – producing temporally appropri-
ate query-expansions. For example, consider the
query: “Trump Businessman”. Figure 2 shows the
non-temporal query expansion suggestions which
focus heavily on the first entity (i.e., “Trump”) and
his current “state” (i.e., a focus on Donald Trump
as President, rather than presenting suggestions
about Trump’s business activity as implied by the
query). We present an empirical analysis present-
ing the strengths and weaknesses of the different
temporal query-expansion algorithms and compar-
ing them to current word-embeddings-based QE

(a)

(b)

Figure 1: Similarity identified by our algorithms
between words over time. Dark gray indicates
high similarity whereas light gray indicates non-
significant similarity.

algorithms (Kuzi et al., 2016; Diaz et al., 2016).
In this paper we describe a novel problem of

evaluating word relatedness over time and con-
tribute our datasets to evaluate this task to the com-
munity1. Second, we present novel representa-
tions and algorithms for evaluating this task and
show high performance. We share our code with
the community as well. Finally, we present the
application of this task to query-expansion and
present several methods built on top of the tem-
poral relatedness algorithms that show high per-
formance for QE.

2 Related Work

Understanding the semantic change of words has
become an active research topic (Section 2.1).
Most work has focused on identifying semantic

1https://github.com/guyrosin/
learning-word-relatedness
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Figure 2: Query expansions for the terms “Trump
Businessman”. Most results are referring to his
term as president and not to his business activity.

drifts and word meaning changes. A lot of effort
has been made into analyzing texts temporally:
several methods for temporal information extrac-
tion were recently proposed (Ling and Weld, 2010;
Kuzey and Weikum, 2012; Talukdar et al., 2012),
as well as publicly released knowledge bases, such
as YAGO2 (Hoffart et al., 2013). These meth-
ods automatically extract temporal relational facts
from free text or semi-structured data. In addi-
tion, Pustejovsky et al. (2003); UzZaman et al.
(2012) and others annotated texts temporally, and
extracted events as well as temporal expressions.

Work in Information Retrieval (IR, Section 2.2)
has discussed the concept of ‘time’ as a contextual
parameter for understanding user intent. Largely,
this research utilizes query-log analysis with the
time of the query as a context signal. In this work,
we leverage the temporal variation in word relat-
edness to understand, and better accommodate, in-
tent.

2.1 Word Dynamics
Continuous word embeddings (Mikolov et al.,
2013) have been shown to effectively encapsu-
late relatedness between words. Radinsky et al.
(2011) used temporal patterns of words from a
large corpus for the task of word similarity. They
showed that words that co-occur in history have a
stronger relation. In our work, we focus on iden-
tifying when a relation holds. Numerous projects
have studied the change of word meanings over
time, and specifically focused on identification of
the change itself. Sagi et al. (2009) used Latent
Semantic Analysis for detecting changes in word
meaning. Wijaya and Yeniterzi (2011) character-
ized 20 clusters to describe the nature of meaning
change over time, whereas Mitra et al. (2014) used
other clustering techniques to find changes in word
senses. Mihalcea and Nastase (2012) identified
changes in word usage over time by the change in
their related part-of-speech. Others have investi-
gated the use of word frequency to identify epochs
(Popescu and Strapparava, 2013).

Jatowt and Duh (2014) represented a word em-
bedding over the Google Books corpus (granu-
larity of decades) and presented qualitative eval-
uation for several words. Hamilton et al. (2016)
built Word2Vec embedding models on the Google
Books corpus to detect known word shifts over 30
words and presented a dozen new shifts from the
data. The authors presented two laws that gov-
ern the change of words – frequent words change
more slowly and polysemous words change more
quickly. Finally, Kenter et al. (2015) studied
changes in meaning (represented by a few seed
words), and monitored the changing set of words
that are used to denote it.

In our work, we focus on learning relatedness of
words over time. We evaluate the technique using
a large scale analysis showing its prediction accu-
racy. Moreover, we define the task of identifying
the temporality of relatedness between two words.
We show that understanding the temporal behavior
of entities improves performance on IR tasks.

2.2 Temporal Search

The temporal aspects of queries and ranking
gained significant attention in IR literature. Some
have focused on characterizing query behavior
over time. For example, different queries change
in popularity over time (Wang et al., 2003) and
even by time of day (Beitzel et al., 2004). Jones
and Diaz (2007) described queries to have three
temporarilty patterns: atemporal, temporally un-
ambiguous and temporally ambiguous. Others
have leveraged temporal variance to look for in-
dicators of query intent (Kulkarni et al., 2011).
Several efforts (Shimshoni et al., 2009; Chien
and Immorlica, 2005; M. Vlachos and Gunop-
ulos, 2004; Zhao et al., 2006; Shokouhi, 2011;
Radinsky et al., 2012) were done to not only
characterize the temporal query behavior but also
model it via time-series analysis. Radinsky and
colleagues modeled changes in the frequency of
clicked URLs, queries, and clicked query-URL
pairs by using time-series analysis and show its
application for improving ranking and query auto-
suggestions (Radinsky et al., 2013; Shokouhi and
Radinsky, 2012). Singh et al. (2016) focused on
serving the specific needs of historians, and intro-
duced the notion of a Historical Query Intent for
this purpose.

Whereas prior work mainly focuses on query-
log analysis and understanding the user’s intent
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based on the time the query was issued or the
document was changed, our work focuses on un-
derstanding the subtle changes of language over
time that indicate a temporal intent. We show that
understanding the temporal relatedness between
words is a building block needed for understand-
ing better query intent. Given two words or en-
tities we identify when their relatedness was the
strongest to help produce better query expansions.

3 Temporal Relatedness Dynamics and
Semantics

To address the task of understanding temporal re-
latedness, our approach consists of three main
steps: (1) Represent relatedness using word em-
beddings over time (Section 3.1). (2) Model re-
latedness change over time as a time series (Sec-
tion 3.2). (3) Combine these to identify when re-
latedness relations hold temporally (Section 3.3).

3.1 Representing Relatedness using Word
Embeddings

In our work we leverage the distributed represen-
tation framework of Word2Vec (Mikolov et al.,
2013) (specifically skip-grams). Intuitively, given
a word wt, skip-grams attempt to predict sur-
rounding words, e.g. wt−2, wt−1, wt+1, wt+2 for
a window size of c = 2.

Definition 3.1. Let Ci be the word context for a
word wi. In this work, we consider the context to
be the surrounding words of a window size of n
Ci = {wi−n, wi−1, wi+1, wi+n}. We define Cti to
be the context for a word wi in time period t, i.e.
only in the documents written during time t.

Definition 3.2. We define the word context of a
specific embedding of a year y for a word wi,
to be {wc ∈ Cyi }. Intuitively, a specific embed-
ding represents the embedding of a word in a cer-
tain year. We denote the vector representation of a
word wi in a year y by vyi .

Definition 3.3. We define the word context of a
global embedding for a word wi to be Ci. Intu-
itively, a global embedding represents the embed-
ding of a word over all time periods. We denote
the vector representation of a word wi by vi.

Using Word2Vec, we approximate the seman-
tic relatedness between two entities by the co-
sine similarity between their embeddings (Turney
et al., 2010).

Definition 3.4. A temporal relation (e1, e2, t),
where ei are entities and t is a referenced time pe-
riod, is said to be true if e1, e2 relate during t, i.e.
their semantic relatedness during that time is rela-
tively high. For example: (Christopher Nolan, The
Dark Knight, 2008) is true, due to the fact that the
movie, which was released in 2008, was directed
by Nolan.

Definition 3.5. The dynamics of two entities
e1, e2 is defined to be the time series of the se-
mantic relatedness of e1 and e2:

Dynamics(e1, e2) =〈
cos(vt11 , v

t1
2 ), . . . , cos(vtn1 , v

tn
2 )
〉

(1)

where t1, . . . , tn are all the time periods.

We model entities’ relatedness change over time
by constructing their dynamics. Recall Figure 1a,
which shows the semantic distance between the
vector representations of Barack Obama and Pres-
ident over the years. Semantic distance is an accu-
rate indicator of the time period when Obama was
president. Therefore, our goal is to detect the time
periods of high relatedness using peak detection.

3.2 Understanding Relatedness Dynamics

When considering a relationship between entities,
detecting time periods of high relatedness enables
us to reveal and identify what we call “periods of
interest” – time periods in which the entities were
the closest. In this section, we present an algo-
rithm to identify these “periods of interest”. Intu-
itively, when considering the dynamics of two en-
tities, its peaks represent the lowest distances over
time. More formally, given two entities e1, e2 we
want to construct their dynamics and find peaks
in it, i.e. the following sequence of time peri-
ods:

{
ti | cos(vti1 , vti2 ) is relatively high, and ti <

tj if i < j
}

.
Traditional peak detection algorithms focus on

detecting peaks that are sharp and isolated (i.e.
not too many surrounding points have similar val-
ues) (Palshikar et al., 2009). In our case, rela-
tions often imply continuous periods of peaks, e.g.
Obama was president for eight years. Therefore,
we need to detect peaks, as well as periods of con-
tinuous peaks (i.e., steps).

Let L = (t1, v1), (t2, v2), . . . , (tn.vn) be a list
of tuples, where ti are time periods and vi are val-
ues. Given L, the algorithm returns a list of peak
periods, i.e. {t ∈ L | t contains a peak}.
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The first step is to find relative maxima: we
scan L and look for pairs (ti, vi) such that vi−1 <
vi > vi+1, i.e. vi is a local maximum. We apply
two minimum thresholds in order to filter insignifi-
cant points: An absolute threshold, which below it
we consider the peak not to be significant enough,
and a relative threshold which facilitates removing
points that are much lower than the highest max-
imum. The final step of the algorithm is to find
plateaus which will also be considered part of the
peak. For each peak point, the algorithm considers
the point’s surrounding neighbors. Using a thresh-
old relative to the current peak, those identified as
close in their value to the current peak are added
to the peak list.

3.3 Learning Temporal Relatedness

We define the task of learning temporal related-
ness: given two entities e1, e2, identify whether
they relate to each other during a certain year y,
i.e., whether the temporal relation (e1, e2, y) is
true. For example, in Figure 1a, Obama was re-
lated to President in 2010 but not in 2005.

3.3.1 Specific Classifier
The first method we present to classify word re-
latedness, employs a classifier that receives as in-
puts vi corresponding to the entities ei and an ad-
ditional feature of the year. In our evaluation (Sec-
tion 4) we will use about 40 years of data, i.e.
the year feature will have 40 possible values. The
classifier will predict, given two entities, whether
they relate to each other during a referenced year.

Let Cl : Rn → {0, 1} be a classifier mapping a
vector of n features F = (f1, . . . , fn) to a label
L ∈ {0, 1}. Let our feature vector be of the form:

F = (vy1‖vy2‖y) (2)

where vy1 is the first entity’s specific embedding
(i.e. at time y), vy2 is the second entity’s spe-
cific embedding and y is the year. As a prelimi-
nary step, we need to train Cl on a diverse dataset
of positive and negative examples, i.e. true and
false temporal relations. For this purpose, we uti-
lize our temporal relations dataset (Section 3.4.2).
From each relation, we extract a temporal relation
(e1, e2, y), calculate its feature vector and use it
for training.

Given a new temporal relation, we apply Cl to
predict whether it is true, i.e. whether its entities
relate during the referenced time.

3.3.2 Temporal Classifier
Here we use a classifier similar to the one de-
scribed in Section 3.3.1 (training is performed the
same way), combined with input from the enti-
ties dynamics. First, we build the dynamics, i.e.
build specific word embeddings of e1 and e2 for
every year y, and calculate their cosine similarity
cos(vy1 , v

y
2). We then apply our peak detection al-

gorithm (Section 3.2) on the dynamics and use its
output as one of the classifier’s features (denoted
by isPeak). As a result, our feature vector is:

F = (vy1‖vy2‖y‖isPeak) (3)

3.4 Leveraging World Knowledge
We apply our techniques to two corpora: the first is
a temporal corpora (Section 3.4.1), which we used
for creating word embeddings, and the second is a
relational corpora (Section 3.4.2), which we used
for training our models and for evaluation.

3.4.1 Temporal Corpora
For constructing the corpora, we used The New
York Times archive2, with articles from 1981
to 2016 (9GB of text in total). Specific word
embeddings were generated for every time pe-
riod (i.e., year) using Word2Vec. Each year’s
data was used to create word embeddings using
Word2Vec’s skip-gram with negative sampling ap-
proach (Mikolov et al., 2013), with the Gensim li-
brary (Řehůřek and Sojka, 2010). We trained the
models with the following parameters: window
size of 5, learning rate of 0.05 and dimensional-
ity of 140. We filtered out words with less than 30
occurrences during that year.

We observe both ambiguity (Apple, the com-
pany and the fruit) and variability (different
phrases referring to the same entity, e.g., Presi-
dent Obama, Barack H. Obama, Obama). While
such ‘noise’ may be problematic, both the scale of
the data and stylistic standards of The New York
Times help. Additionally, we ensure a connection
to an entity database (Wikipedia) and perform ad-
ditional cleaning methods (lemmatization, remov-
ing stopwords).

3.4.2 Relational Corpora
In this work, we use YAGO2 (Hoffart et al., 2013)
as our relational corpora due to its temporal focus.
The YAGO2 knowledge base contains millions of
facts about entities, automatically extracted from

2http://spiderbites.nytimes.com/
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Relation Type Count %

Directed 37713 47.42
HoldsPoliticalPosition 2765 3.48

IsMarriedTo 2210 2.78
PlaysFor 4376 5.50
Produced 23567 29.63

HappenedIn 8899 11.19

Total 79530 100

Table 1: Relations Dataset Composition

Wikipedia and other sources. We use relations
from YAGO2 to build our own dataset of tempo-
ral relations, which we use in all of our algorithms
and evaluation – as a source for temporal relations.

The dataset consists of temporal relations in the
following format: (entity1, entity2, year, type,
class), where entity1 and entity2 are entities,
type is a relation type, and class is true if the
relation holds on year. For example, (Tim Bur-
ton, Batman Returns, 1992, Directed, true) and
(Battle Mogadishu, Somalia, 2010, HappenedIn,
true). Table 1 shows the exact dataset composi-
tion. We built our dataset on all the relation types
that have a temporal dimension in YAGO2: Di-
rected, HoldsPoliticalPosition, IsMarriedTo, Pro-
duced, PlaysFor, HappenedIn. The dataset con-
tains 80K of such relations.

4 Evaluation

4.1 Experimental Methodology

We compare the methods described in Section 3.3,
where for Cl we chose to use a Support Vector
Machine (SVM)3, with an RBF kernel and C=1.0
(chosen empirically). Two baselines were used
for comparison. The first is the common non-
temporal model, i.e. a classifier that uses the
global (all-time) word embeddings and the follow-
ing features: the two entities’ global embeddings,
and a year. More formally,

F = (v1||v2||y) (4)

Given a new temporal relation, the classifier pre-
dicts whether it is true during the referenced year,
and we output the classifier’s prediction. The sec-
ond baseline we compare against is a standard text

3We used the implementation by the scikit-learn li-
brary (Pedregosa et al., 2011).

classifier that uses the global word embeddings as
its only features, i.e. F = (v1||v2).

The dataset on which we perform the evalua-
tion is described in Section 4.2. The dataset is not
balanced: it contains more negative examples than
positive ones. Therefore, for evaluating the meth-
ods that involve a classifier we use stratified 10-
fold cross validation. We remove relations from
consideration if there is insufficient data in the cor-
pora for that year (i.e., one of the entities was fil-
tered out due to low incidence).

4.2 Dataset Construction

Recall that our relational corpora consists of
80K temporal relations in the following format:
(entity1, entity2, year, type, class), where type
is a relation type, and class is true if the relation
holds on year.

For training and evaluating our classifiers we
need negative examples as well as positive exam-
ples. We generate negative examples in the follow-
ing way: for every relation in the corpora, we ran-
domly sample 10 negative examples. We exclude
the years of the true examples from the dataset’s
year range, and then randomly choose years for the
negative examples. To illustrate, let us observe the
case of Obama, President: Obama was president
from 2009-2016, so we sample negative examples
from 1981 to 2008, such as (Obama, President,
1990, HoldsPoliticalPosition, false). The resulting
dataset contains 420K relations. We refer to it as
the Temporal Relations Dataset4.

4.3 Main Results

Table 2 presents the results of our experiments.
Baselines: The Global and Global+Year base-

lines produced an AUC of 0.55 and 0.57, respec-
tively. They both performed much worse com-
pared to our methods, with F1 of 0.13.

Specific Classifier produced an AUC of 0.72. It
has the highest recall score of all methods (0.88),
but its other scores are relatively low.

Temporal Classifier produced an AUC of 0.83.
As reported in Table 2, it performed significantly
better compared to all other methods, with p <
0.05. We applied the Wilcoxon signed-rank test to
calculate statistical significance.

4https://github.com/guyrosin/
learning-word-relatedness
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Algorithm Acc. Rec. Pr. F1 AUC

Global 0.67 0.26 0.08 0.13 0.57
Global+Year 0.52 0.39 0.08 0.13 0.55

Specific 0.52 0.91 0.32 0.47 0.73
Temporal 0.81 0.67 0.58 0.62 0.84

Table 2: Relatedness Learning Evaluation Results
(Accuracy, Recall, Precision, F1, AUC)

4.4 Performance Analysis

We tuned Word2Vec parameters by empirically
testing on a random subset of our dataset: we
set the vector size to be 140 and used a mini-
mum threshold of 30 occurrences (per year). We
found that this balanced the removal of noisy data
while ensuring that key entities were retained. For
constructing the Word2Vec models, the amount of
data is crucial or it may lead to unreliable (Hellrich
and Hahn, 2016) or inaccurate results. We saw
a clear correlation between accuracy and num-
ber of occurrences of a participating word. That
drove our decision to evaluate our algorithms only
on New York Times articles from 1981 onwards
– where the number of articles per year is suffi-
ciently large.

5 Task Example: Query Expansion

Temporal relatedness learning can be used for var-
ious NLP and IR-related tasks. For example, it is
a common practice in IR to expand user queries to
improve retrieval performance (Carpineto and Ro-
mano, 2012). Our technique allows us to produce
temporally appropriate expansions. Specifically,
given a query of n entities Q = {e1, e2, . . . , en},
our task is to expand Q with additional search
terms to add to it to improve retrieval of relevant
documents.

For example, consider the query “Trump Busi-
nessman” (Figure 2). Current QE methods, which
do not have a temporal aspect, focus on Donald
Trump as President of the United States, a poten-
tially erroneous result depending on the temporal
focus of the searcher. A reasonable temporal ex-
pansion, might contain terms that relate to Donald
Trump’s business activity, such as “billionaire” or
“real estate”. Using our technique, the temporal
focus of a query can be identified and appropriate
expansions offered to the end-user. Specifically,
we can analyze the relationship between the query

entities to identify the “most relevant” time period
– when those entities were strongly connected. In-
tuitively, the QE algorithms will identify the most
relevant time period t for the query entities, and
find semantically related terms from that time, to
expand the query with.

To tackle this task, we use the algorithms de-
scribed in Section 3.3. Several different algo-
rithms can utilize the temporal relation models for
the task of query expansion. Let us introduce the
following definitions for our QE algorithms:

Definition 5.1. LetNN t
K(e) be the set ofK terms

that are the closest to an entity e in time t.

Definition 5.2. Let NNK(e) be the set of “glob-
ally” (all-time) closest terms to an entity e .

Definition 5.3. Mutual closeness between an en-
tity x and a query Q is defined by the sum of co-
sine similarities between x and every e ∈ Q, i.e.

Mcos(x,Q) :=
∑

e∈Q
cos(x, e) (5)

5.1 Query Expansion Algorithms
We describe alternative strategies to provide tem-
poral query expansion ranging from a generic
baseline to algorithms that leverage our embed-
ding and classifiers. As a running example, we
use the query: “Steven Spielberg, Saving Private
Ryan” (Spielberg directed the movie in 1998).
‘Reasonable’ (temporally relevant) expansions for
this query might include: actors who played in this
movie, other Spielberg films or similar films from
the same time and genre, etc.

5.1.1 Baseline
Following the results of Roy et al. (2016), we con-
sider a baseline method that expands each entity
separately, based on global Word2Vec similarity.
We define the set of candidate expansion terms as

C =
⋃

e∈Q
NNK(e) (6)

i.e., for each entity, we choose the closestK global
terms. For each c ∈ C, we compute the mu-
tual closeness Mcos(c,Q) and sort the terms in
C on the basis of this value. The top K candi-
dates are selected as the actual expansion terms.
The baseline (poorly) expands the query “Steven
Spielberg, Saving Private Ryan” with “Inglourious
[Basterds], George Lucas”. In some sense, one
can see the relation – both are war movies, and
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Lucas and Spielberg have worked together. How-
ever, Inglourious Basterds was created at 2009 and
was directed by Quentin Tarantino.

5.1.2 Globally-Based Classifier
We use a heuristic and assume that the most rele-
vant time period t for the entities of the query is
the time when the entities were the closest. We
use the classifier from our baseline method in Sec-
tion 4.1, whose goal is to estimate how relevant
a year is to a given set of n entities. Its features
are the global word embeddings, as well as a year:
F = (v1‖v2‖ . . . ‖vn‖y).

We apply the classifier to every year y, and
choose the one with the highest returned proba-
bility of the true label as the most relevant time t.

t = argmax
y
{Cl(v1, v2, . . . , vn, y)} (7)

We take as candidate-expansion terms the K clos-
est terms to each entity from that year, separately:

C =
⋃

e∈Q
NN t

K(e) (8)

C is then filtered as described in the baseline.
To train the classifier, for each temporal rela-

tion in our temporal relations dataset, we calculate
its feature vector and use it for training. Consid-
ering our example, this method wrongly chooses
t = 2004. In that year the entity Saving Private
Ryan does not exist, so we end up with a wrong
expansion of “Francis Ford Coppola film”.

5.1.3 Temporal Classifier
As we have seen in the previous subsection, the
globally-based classifier is limited in cases where
time-specific knowledge might yield better results.
Thus, in this method we use the specific classi-
fier from Section 3.3.1. Its features are the en-
tities’ specific embeddings, and a year: F =
(vy1‖vy2‖ . . . ‖vyn‖y). We then continue as de-
scribed in the previous method (find t, choose can-
didate terms and filter).

For our example, this method chooses correctly
t = 1998, which is exactly the year of Saving Pri-
vate Ryan release. Its expansion is “Tom Hanks,
Movie”. Since Tom Hanks had a lead role in the
movie, the expansion is reasonable. The next al-
gorithm produces the same expansion as well.

5.1.4 Temporal Model Classifier
This method uses the temporal classifier from
Section 3.3.2. Its feature vector is: F =

(vy1‖vy2‖ . . . ‖vyn‖y‖isPeak). The rest is the same
as described in Section 5.1.3.

5.2 Query Expansion Evaluation

Dataset. To evaluate temporal query expansion
we use our temporal relations dataset, which will
be made publicly available (described in Sec-
tion 3.4.2). First, we evaluate on queries consist-
ing of two entities (n = 2): for each relation, we
create a distinct query that consists of its two enti-
ties concatenated. We search The New York Times
corpus with this query5. We compare search per-
formance when applying the various QE methods
described in Section 5.1. To evaluate the methods
that involve a classifier, we use stratified 10-fold
cross validation, as the previous task was evalu-
ated (Section 4.1). We use K = 2 for all methods,
i.e. we generate two expansion terms per query.

In addition, we evaluate on queries consisting of
three entities (n = 3): we created a new dataset,
which contains triplets of entities instead of pairs,
by merging every two related (true) relations from
our relations dataset. Two relations are considered
related if they share an entity, and their time peri-
ods overlap. We then generate negative relations
as described in Section 4.2. In this new dataset,
each temporal relation consists of three entities, a
year and a binary classification.

Evaluation Metrics. Though a complete eval-
uation of QE is beyond the scope of this paper we
describe here an evaluation suited for the tempo-
ral case. It should be noted that the technique we
propose here would likely be used alongside es-
tablished QE techniques (e.g., log mining).

First, when providing query expansions and
suggestions we would like for them to not only
retrieve relevant content, but temporally-relevant
content. To test the latter we say that given a
temporal relation, a retrieved article is considered
“true” if it were published within the referenced
time, and “false” otherwise. Additional manual
validation was done to evaluate its relevance to the
query. This metric, while not the most accurate
one, allows us to distinguish between results from
the most relevant time period and others. Preci-
sion of the top 10 retrieved documents (P@10) is
used to evaluate the retrieval effectiveness.

Results. The results of the QE evaluation are
reported in Table 3. We observe a consistent be-

5the archive was indexed using Solr (https://
lucene.apache.org/solr/)

1175



Method
P@10

n = 2 n = 3

Baseline (Roy et al., 2016) 14.0% 17.7%
Globally-Based Classifier 18.0% 22.7%

Temporal Classifier 27.1% 38.5%
Temporal Model Classifier 29.4% 39%

Table 3: Results of QE Algorithms Evaluation

havior for different query sizes (n = 2, 3). For
our temporal classifiers, for n = 3 there is a 30%
increase in precision, compared to n = 2.

All of our methods performed significantly bet-
ter compared to the baseline (statistical signifi-
cance testing has been performed using paired t-
test with p < 0.05). This establishes our claim
that utilizing temporal knowledge yields more
temporal–promising results. The Temporal Model
Classifier showed the best performance of all.
This, too, suits our claim and fits to the results
from the previous task (Section 4.3).

5.3 Textual Relevance

To validate results, we compared our query expan-
sion algorithms’ performance on different relation
types and found big differences. On the relations
HoldsPoliticalPosition, HappenedIn and IsMar-
riedTo, the temporal algorithms achieved around
50% accuracy, while on Directed and Produced
they got only 20%. This difference is reasonable,
as our models were built upon a news corpus.

Let us observe an example of using the QE al-
gorithms with the query “Vicente Fox President”
(Fox was president of Mexico from 2000 to 2006).
The baseline expands with Mexico’s two previous
presidents (Zedillo and Salinas). This makes sense
as the baseline doesn’t take time into account. The
globally-based classifier expands with Roh Moo-
hyun, who was president of Korea during the same
time period. Temporal Classifier expands with
“Ricardo Lagos, National Action Party” (Lagos
was president of Chile during that time. The lat-
ter is Fox’s political party). The Temporal Model
Classifier expands with ‘presidential’ and Fran-
cisco Labastida (the candidate who lost the elec-
tions to Fox).

Figure 3 shows the similarity between Apple
and its top products since 1990. We can infer
which products were the most significant at each
time. Take as example the query “Apple Steve

Figure 3: Similarity between Apple and its top
products over time. The y-axis is cosine similarity.

Jobs”. Using our technique, we can find the most
relevant time period for this query, which is from
Apple’s foundation in 1976 until Jobs’ death in
2011. Leveraging Figure 3, we can expand this
query focusing on the most popular products of
that time.

6 Conclusions

We believe that as corpora evolve to include
temporally-varying datasets, new techniques must
be devised to support traditional and new IR meth-
ods. In this paper, we introduced a novel technique
for extracting relations in temporal datasets. The
technique is efficient at large scales and works in
an unsupervised manner. Our experiments demon-
strate the viability of the extraction technique as
well as describing ways that it can be used in
downstream applications. We specifically demon-
strate a number of query expansion algorithms that
can benefit from this technique.
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Abstract

Sentence pair modeling is a crucial prob-
lem in the field of natural language pro-
cessing. In this paper, we propose a model
to measure the similarity of a sentence
pair focusing on the interaction informa-
tion. We utilize the word level similarity
matrix to discover fine-grained alignment
of two sentences. It should be emphasized
that each word in a sentence has a different
importance from the perspective of seman-
tic composition, so we exploit two novel
and efficient strategies to explicitly calcu-
late a weight for each word. Although
the proposed model only use a sequen-
tial LSTM for sentence modeling with-
out any external resource such as syntactic
parser tree and additional lexicon features,
experimental results show that our model
achieves state-of-the-art performance on
three datasets of two tasks.

1 Introduction

Given two pieces of sentences S and T , sentence
pair modeling (SPM) is a fundamental task whose
applications include question answering (Lin,
2007), natural language inference (Bowman et al.,
2015), paraphrase identification (Socher et al.,
2011a) and sentence completion (Wan et al., 2016)
and so on. In general, each of the two sentences
are firstly mapped to a representation, and then
a model is designed to determine the relation be-
tween them. Traditional methods use lexicon fea-
tures such as Bag-of-Words(BOW) to map sen-
tences. As we know, features design and selection
are time-consuming and high dimensional features
may suffer from sparsity because of the varia-
tion of linguistic. Recently, deep learning tech-

∗Corresponding author

niques have been applied to develop end-to-end
models for NLP tasks, such as sentence model-
ing (Socher et al., 2011b; Kim, 2014), relation
classification (Socher et al., 2012) and machine
translation (Sutskever et al., 2014). These works
show that deep learning models can be compara-
ble with hand-crafted features based models and
often outperform them.

Existing DNN models are based on pre-trained
word embeddings which map each word to one
low dimensional vector and compose word em-
beddings to represent sentence. Some models
are developed directly from the sentence models.
They obtain single vector representation for each
sentence separately and then determine the rela-
tion based on two vectors (Huang et al., 2013; Qiu
and Huang, 2015; Palangi et al., 2016). Because
of the absence of interaction, these models can not
achieve state-of-the-art performance.

Inspired by attention mechanism in computer
vision and machine translation, some elaborate
models have been proposed (Rocktäschel et al.,
2016; Zhou et al., 2016; Wang and Jiang, 2016)
which take interaction information into consid-
eration. Meanwhile, to grasp the fine-grained
information for semantic similarity, some prior
works (Pang et al., 2016; He and Lin, 2016) firstly
compute a word level similarity matrix according
to word representation, and utilize multiple convo-
lution layers and extract features from the similar-
ity matrix in a perspective of image recognition.

In this paper, we focus on solving SPM problem
by measuring semantic similarity between two
sentences. We propose a new deep learning model
based on two facts that previous works always ne-
glected. As we know, in the aspect of semantic,
each word in the sentence is of different impor-
tance. When calculating a sentence representation
we should endow each word with a weight indi-
cating its importance. Taking following sentences
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as an example:
A: a man with a red helmet is riding a

motorbike along a roadway.
B: a man is riding a motorbike along a

roadway.
C: a man with a red helmet is riding a

bicycle along a roadway.
We can see that sentence A is more similar with
sentence B than with sentence C while a conven-
tional model probably makes an opposite conclu-
sion because the phrase ”with a red helmet” will
bias the meaning of A to C meanwhile the dif-
ference between ”motorbike” and ”bicycle” is not
large enough. If the model can realize that the
phrase ”with a red helmet” has little effect on se-
mantic composition, the mistake will be avoided.
Since we have to analyse a pair of sentences, the
weights should be related to not only the sentence
itself, but also its partner. From this point, we pro-
pose a novel inter-weighted layer to measure the
importance of each word.

On the other hand, the more similar two sen-
tences are, the more probably we can align each
word of sentence S with several words of sentence
T , and vice versa. On account of the variety of ex-
pression, the position and length of two aligned
parts are very likely different, so we apply soft-
alignment mechanism and build an effective align-
ment layer.

In summary, our contributions are as follows:

1. We propose an Inter-Weighted Alignment
Network (IWAN) for SPM, which builds an
alignment layer to compute similarity score
according to the degree of alignment.

2. Considering the importance of each word in
a sentence is different, we argue that an inter-
weighted layer for evaluating the weight of
each word is crucial to semantic composi-
tion. We propose two strategies for calcu-
lating weights. Experimental results demon-
strate their effectiveness.

3. Experimental results on semantic relatedness
benchmark dataset SICK and two answer se-
lection datasets show that proposed model
achieves state-of-the-art performances with-
out any external information.

2 Related Work

2.1 Sentence Models

For sentence modeling, RNN (Elman, 1990;
Mikolov et al., 2010) and CNN (Kim, 2014) are
both powerful and widely used. RNN models a
sentence sequentially by updating the hidden state
which represents context recurrently. As sentence
length grows, RNN will suffer from gradient van-
ishing problem. However, gated mechanism, such
as Long Short Term Memory(LSTM) (Hochre-
iter and Schmidhuber, 1997) is introduced to ad-
dress it. RecNN exploits syntatic information and
models sentences under a tree structure. Gated
mechanism can also improve the performance of
RecNN (Tai et al., 2015). CNN can extract
and combine important local context meanwhile
model sentences in a hierarchical way (Kim, 2014;
Kalchbrenner et al., 2014). All of the above mod-
els can be adapted to SPM by modeling two sen-
tences separately.

2.2 Attentive Models

Hermann et al. (2015) firstly introduces atten-
tion mechanism into question answering under an
RNN architecture. Rocktäschel et al. (2016) ap-
plies a similar model to natural language inference
which attends over the premise conditioned on the
hypothesis. Zhou et al. (2016) combines attention
mechanism with tree-structured RecNN encoder.
Some prior works (Wang et al., 2016b; Parikh
et al., 2016; Wang et al., 2017) compute soft-
alignment representation for each word in sen-
tences attentively with word level similarity and
then compose the alignment representations to de-
termine the relation. Our model is also under this
framework however we focus on explicitly calcu-
lating weights for each word to get more reason-
able semantic composition.

2.3 Similarity Matrix Based Models

Pang et al. (2016) adopts CNN on word level sim-
ilarity matrix to extract fine-grained matching pat-
terns from different text granularity. He and Lin
(2016) uses a similar architecture with a 19-layer
CNN in order to make full use of its power. Yin
and Schütze (2015) proposes a hierarchical archi-
tecture to model different granularity representa-
tion and computes several similarity matrices for
interaction.
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Figure 1: The architecture of IWAN. The blocks with same color have shared parameters.

3 Proposed Model

Given two sentences S and T , we aim to cal-
culate a score to measure their similarity. Fig-
ure 1 shows the architecture of IWAN model. To
learn representations with context information, we
firstly use a bi-direction LSTM sentence model
which takes word embeddings as inputs to obtain
a context-aware representation for each position
(Sec. 3.1). The context-aware representations are
used to compute the word level similarity matrix
(Sec. 3.2). Inspired by attention mechanism, we
exploit soft-alignment to find semantic counter-
part in one sentence for each position in the other
and compute a weighted sum vector of one sen-
tence as the alignment representation of each po-
sition of the other with an alignment layer (Sec.
3.3). Meanwhile, taking the context-aware repre-
sentation of S and T as inputs, we apply an inter-
weighted layer to compute a weight for each posi-
tion in S and T . We argue that this weight can in-
dicate the importance in semantic interaction and a
weighted summation of the representations at each
position is more interpretable than other compo-
sition method including max or average pooling
and LSTM layer. We propose two strategies for
computing those weights (Sec. 3.4). The weighted
vectors are fed to full connection layers and a soft-
max layer is used to give the final prediction(Sec.
3.5).

As Figure 1 illustrates, our model is symmetric
about S and T . So for simplicity, we only describe
the left part of IWAN model which is mainly about
modeling S from here. Right part is exactly same
except the roles of S and T exchange.

3.1 BiLSTM Layer

With pre-trained d dimension word embed-
ding, we can obtain sentence matrices Se =
[s1

e, . . . , s
m
e ] and Te = [t1e, . . . , t

n
e ] where si

e ∈ Rd

is embedding of the i-th word in sentence S. m
and n are the length of S and T respectively. In
order to capture contextual information, we run a
bi-direction LSTM (Hochreiter and Schmidhuber,
1997) on two matrices. Let hidden layer dimen-
sion of LSTM be u. Given the word embedding
xt at time step t, previous hidden vector ht−1 and
cell state ct−1, LSTM recurrently computes ht and
ct as follows:

gt = ϕ(Wgxt + Vght−1 + bg),
it = σ(Wixt + Wiht−1 + bi),
ft = σ(Wfxt + Wfht−1 + bf ),
ot = σ(Woxt + Woht−1 + bo),
ct = gt ⊙ it + ct−1 ⊙ ft,
ht = ct ⊙ ot.

where all W ∈ Ru×d, V ∈ Ru×u and b ∈ Ru. σ
is sigmoid function and ϕ is tanh function. ⊙ indi-
cates the element-wise multiplication of two vec-
tors. The input gates i, forget gates f and output
gates o control information flow self-adaptively,
moreover cell state ct can memorize long-distance
information. ht is regarded as the representation
of time step t.

We feed Se and Te separately into a parame-
ter shared LSTM sentence model. If we run an
LSTM model on the sequence of Se from left to
right, we can get the forward hidden vector Sfh =
[s1

fh, . . . , sm
fh]. For applying bi-direction LSTM,

we also run another LSTM backward and get
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Sbh = [s1
bh, . . . , sm

bh]. Then we concatenate them
to one vector representation. So after bi-direction
LSTM layer, we obtain Sh = [s1

h, . . . , sm
h ] and

Th = [t1h, . . . , tnh] where si
h =

[
si
fh

si
bh

]
.

3.2 Word Level Similarity Matrix

As mentioned above, the word level similarity ma-
trix is crucial to making use of the interaction in-
formation. Pang et al. (2016) and Wang et al.
(2016b) compute the similarity matrix between
two word embeddings. We have argued that word
embedding can not express the word meaning in
context. From the view of RNN, si

fh contains the
most semantic information about i-th word in S
and less about the leftmost words, while si

bh also
contains the most semantic information about i-
th word in S and less about the rightmost words.
Therefore, the hidden vector of BiLSTM keeps the
most information of corresponding word as well
as integrated with the context information. Com-
puting similarity matrix between BiLSTM hidden
vectors is expected to improve the interaction re-
sults. We regard the inner dot of two vectors as
their similarity. For the similarity matrix M , its
element Mij indicates the similarity between si

h

and tjh:

Mij = siT
h · tjh.

3.3 Alignment Layer

We design the alignment layer for an intuitive idea:
more similar S and T are, more probably we can
find semantic counterpart in T for each part in
S, and vice versa. To some degree, people are
likely to find semantic correspondences between
two sentences and evaluate their similarity. He and
Lin (2016) are also inspired by similar intuition,
but they use deep CNN to recognize the alignment
patterns implicitly. However, for each sentence,
we explicitly calculate the alignment representa-
tion and alignment residual which we believe are
good indicators of sentence pair similarity.

For calculating the alignment representation,
we apply attention mechanism (Bahdanau et al.,
2014) to conduct a soft-alignment. The original at-
tention mechanism outputs the alignment weights
from an extra full connection layer while we think
the inner dot can represent the semantic related-
ness adequately. Therefore, we consider the i-th
row of M as the similarity between the i-th posi-
tion of S and each position in T and normalize it

as follows:

αij =
exp(Mij)∑n

k=1 exp(Mik)
, i = 1, . . . , m

while we also normalize each column of M for
T counterpart. αij always belongs to [0, 1] and
can be regarded as weight. Then the alignment
representation Sa = [s1

a, . . . , s
m
a ] is computed as a

weighted sum of {tjh}:

si
a =

n∑

k=1

αikt
k
h, i = 1, . . . , m

For T counterpart, the alignment representation is
Ta = [t1a, . . . , t

n
a ].

In order to measure the gap between the align-
ment representation and original representation, a
direct strategy is to compute the absolute value of
their difference: si

r = |si
h − si

a|. We call Sr =
[s1

r, . . . , s
m
r ] alignment residual which is consid-

ered as alignment feature for subsequent process-
ing.

We also utilize an orthogonal decomposition
strategy which is first proposed by Wang et al.
(2016b): the component si

p of si
h parallel to si

a rep-
resents the alignment component and component
si
o orthogonal to si

a represents alignment residual.
We compute these two component as follows:

si
p =

si
h · si

a

si
a · si

a

si
a, parallel component

si
o = si

h − si
p, orthogonal component

Then we can replace Sr with Sp and So to measure
the degree of alignment where Sp = [s1

p, . . . , s
m
p ]

and So = [s1
o, . . . , s

m
o ].

3.4 Inter-Weighted Layer

3.4.1 Inter-Attention Layer
(Lin et al., 2017) firstly proposes a self-attention
sentence model which explicitly computes a
weight for each word and uses the weighted sum-
mation of word representations as sentence em-
bedding. Inspired by this work, we apply a full
connection neural network to measure the impor-
tance to semantic interaction of every word. We
extend the self-attention model to inter-attention
layer in order to compute the weights combined
with interaction information which composing the
alignment representation benefits from. As the
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Figure 2: The illustration of computing sf i
skip.

name suggests, these weights of S are not only de-
pendent on S but also T and the parameters of the
inter-attention layer are shared for S and T .

Formally, we take Sh and Th as inputs and the
inter-attention layer outputs a vector ws with size
m for S:

ws = softmax(w2tanh(W1

[
Sh

(tavg ⊗ em)

]
)),

where tavg = 1
n

∑n
k=1 tkh and Sh ∈ R2u×m. We

calculate the average of {tkh} as the representation
of T . We also try to replace average operator with
a self-attention layer (Lin et al., 2017) but get a
worse performance. em is a vector of 1s with size
m and ⊗ represents outer product operator. We
feed the concatenated matrix containing pairwise
information into a 2-layer neural network. The pa-
rameter W1 ∈ Rs×4u projects inputs into a hidden
layer with s units. The output layer is parameter-
ized by a vector w2 with size s and a softmax
operator ensures all the element of output sum up
to 1. Then we can use ws to sum up Sr, Sp and So

weightedly across the position dimension:

swr = Sr ∗ (ws)
T ,

swp = Sp ∗ (ws)
T ,

swo = So ∗ (ws)
T .

We can get twr, twp and two in the same way.
We call these inter-features for final prediction.

3.4.2 Inter-Skip Layer
We also explore another novel strategy to com-
pute ws from the intuition that if the i-th word
in S has a low contribution to semantic composi-
tion, we will obtain a similar representation si

skip

if we feed all word embeddings sequentially ex-
cept si

e into BiLSTM. Unfortunately, the O(m2)
complexity of running BiLSTM model m times is
too high so we exploit an approximate method to
compute {si

skip}:

si
skip =

[
si−1
fh

si+1
bh

]

Then we compute a skip feature as following:

sf i
skip = (si

skip − Si
h) ⊙ th,

where th =

[
tnfh

t1bh

]
is the BiLSTM hidden repre-

sentation of T . Figure 2 illustrates how to com-
pute sf i

skip. We think the difference between si
skip

and si
h approximately reflects the contribution the

i-th word makes to semantic composition. On the
one hand, if the difference is small or even close
to zero, the importance of correspond word should
be small. On the other hand, if the difference (a
vector) is not similar to the representation of T ,
correspond word is probably of less importance
in measuring semantic similarity. From these two
points, we think sfskip = [sf1

skip, . . . , sf
m
skip] is

a good feature to measure word importance. The
process of computing ws is similar:

ws = softmax(w2tanh(W1sfskip)),

We can use ws outputted by inter-skip layer to ob-
tain inter-features in the same way.

3.5 Output Layer
For more rich information, we combine alignment
information with sentence embeddings of S and T
for final prediction. We run the simple but effec-
tive self-attention (Lin et al., 2017) model on Sh

to obtain its embedding swh:

swh = Sh ∗ (softmax(w′
2tanh(W ′

1 ∗ Sh)))T ,

where W ′
1 and w′

2 are trainable. We compute swh

and twh with parameter shared self-attention layer
which is similar with the inter-attention layer ex-
cept inputs.

Following Tai et al. (2015), we compute their
element-wise product h× = swh ⊙ twh and their
absolute difference h+ = |swh − twh| as self-
features. If we use direct strategy, we combine
the features as follows:

hdi = [hT
×; hT

+; sT
wr; t

T
wr]

T .
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Strategy SICK TrecQA WikiQA
r ρ MSE MAP MRR MAP MRR

DI 0.8774 0.8229 0.2374 0.815 0.882 0.724 0.739
OD 0.8810 0.8261 0.2289 0.822 0.889 0.730 0.744

Table 1: Performances of our model with differ-
ent strategies in alignment layer on three datasets.

If we use orthogonal decomposition strategy, we
combine the features as follows:

hod = [hT
×; hT

+; sT
wp; t

T
wp; s

T
wo; t

T
wo]

T .

Following previous works, the sentence pair mod-
eling problem can always be considered as a clas-
sification task, so we finally calculate a probability
distribution with a 2-layer neural network:

p̂θ = softmax(V2ReLU(V1h + b1) + b2),

where h can be hdi or hod and the hidden size is l.
We use rectified linear units (ReLU) as activation
function.

4 Experimental Setup

4.1 Dataset and Evaluation Metric

To evaluate the proposed model, we conduct ex-
periments on two tasks: semantic relatedness and
answer selection.

For semantic relatedness task, we use the
Sentences Involving Compositional Knowledge
(SICK) dataset (Marelli et al., 2014), which con-
sists of 9927 sentence pairs in a 4500/500/4927
train/dev/test split. The sentences are derived from
existing image and video description and each sen-
tence pair has a relatedness score y ∈ [1, 5], where
the larger score indicates more similarity between
two sentences. As the goal of this task is to cal-
culate sentence pair similarity, we can directly
evaluate our model on SICK. Following previ-
ous works, we use Pearson’s Correlation r, Spear-
man’s Correlation ρ and mean square error (MSE)
as evaluation metrics.

For answer selection task, we experiment on
two datasets: TrecQA and WikiQA. The TrecQA
dataset (Wang et al., 2007) from the Text Retrieval
Conferences has been widely used for the answer
selection task during the past decade. The origi-
nal TrecQA train dataset consists of 1,229 ques-
tions with 53,417 question-answer pairs, 82 ques-
tions with 1,148 pairs in development set, and
100 questions with 1,517 pairs in test set. Recent
works (dos Santos et al., 2016; Rao et al., 2016;

Wang et al., 2016b) removed questions in develop-
ment and test set with no answers or with only pos-
itive/negative answers, thus there are 65 questions
with 1,117 pairs in Clean version development set
and 68 questions with 1,442 pairs in Clean ver-
sion test set. Rao et al. (2016) has showed the per-
formances on Original TrecQA and Clean version
TrecQA are not comparable. Therefore, for a fair
comparison, we only display the results on Clean
version TrecQA which are posted on the website
of Wiki of the Association for Computational Lin-
guistics1. The open domain question-answering
WikiQA (Yang et al., 2015) is constructed from
real queries of Bing and Wikipedia. We follow
Yang et al. (2015) to remove all questions with no
correct candidate answers. The excluded WikiQA
has 873/126/243 questions and 8627/1130/2351
question-answer pairs for train/dev/test split. To
adapt our model to this task, we use semantic sim-
ilarity to measure the probability of matching be-
tween a question and a candidate answer. We eval-
uate models by mean average precision (MAP)
and mean reciprocal rank (MRR).

4.2 Training Details
For experiments on SICK, we follows Tai et al.
(2015) to transform the relatedness score y to a
sparse target distribution p:

pi =





y − ⌊y⌋, i = ⌊y⌋ + 1

⌊y⌋ + 1 − y, i = ⌊y⌋
0, otherwise

for 1 ≤ i ≤ 5. The training objective is to mini-
mize the KL-divergence loss between p and p̂θ:

loss =
1

|D|

|D|∑

k=1

KL(p(k) ∥ p̂θ
(k))

where |D| is the number of training examples.
We regard the answer selection problem as

“yes” or “no” binary classification and the train-
ing objective is to minimize the negative log-
likelihood in training stage:

loss = − 1

|D|

|D|∑

k=1

logp̂θ
(k)(y(k)|x(k))

where x(k) represents a question-answer pair and
y(k) indicates whether the candidate answer is cor-

1https://www.aclweb.org/aclwiki/index.php?title=Question
Answering (State of the art)
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rect to the question. In test stage, we sort condi-
date answers for same question in descending or-
der by probability of “yes” category and calculate
MAP and MRR.

In all experiments, we use 300-dimension
GloVe word embeddings2 (Pennington et al.,
2014) and fix the embeddings during training. The
LSTM hidden size u is set to 150. The hidden size
of inter-attention and self-attention layer s and full
connection network l are both set to 50. The L2
regularization strength is set to 3×10−5. We train
the model with Adagrad (Duchi et al., 2011) op-
timization algorithm with a learning rate of 0.05.
The minibatch size is always 25. We exploit early
stopping strategy according to MSE on develop-
ment set for SICK and MAP on development set
for TrecQA and WikiQA.

Model r ρ MSE
Meaning Factory (Jiménez et al.,
2014)

0.8268 0.7721 0.3224

ECNU (Zhao et al., 2014) 0.8414 - -
BiLSTM (Tai et al., 2015) 0.8567 0.7966 0.2736
Tree-LSTM (Tai et al., 2015) 0.8676 0.8083 0.2532
MPCNN (He et al., 2015) 0.8686 0.8047 0.2606

PWIM (He and Lin, 2016) 0.8784 0.8199 0.2329

Att Tree-LSTM (Zhou et al., 2016) 0.8730 0.8117 0.2426
Skip-thought+COCO∗ (Kiros et al.,
2015)

0.8655 0.7995 0.2561

MaLSTM∗◦ (Mueller and
Thyagarajan, 2016)

0.8822 0.8345 0.2286

IWAN-att (Proposed) 0.8810 0.8261 0.2289
IWAN-skip (Proposed) 0.8833 0.8263 0.2236

Table 2: Test results on SICK. The symbol ∗ indi-
cates the models with pre-training. The symbol ◦

indicates the models with data augmentation strat-
egy.

Model MAP MRR
Wang and Ittycheriah (2015) 0.746 0.820
QA-LSTM (Tan et al., 2015) 0.728 0.832
Att-pooling (dos Santos et al., 2016) 0.753 0.851
LDC (Wang et al., 2016b) 0.771 0.845
MPCNN (He et al., 2015) 0.777 0.836
PWIM (He and Lin, 2016) 0.738 0.827
NCE-CNN (Rao et al., 2016) 0.801 0.877
BiMPM (Wang et al., 2017) 0.802 0.875
IWAN-att (Proposed) 0.822 0.889
IWAN-skip (Proposed) 0.801 0.861

Table 3: Test results on Clean version TrecQA.

4.3 Results

Firstly, we evaluate the effectiveness of two strate-
gies in alignment layer. We use inter-attention
model in inter-weighted layer and we find or-

2http://nlp.stanford.edu/projects/glove/

Model MAP MRR
NASM (Miao et al., 2016) 0.689 0.707
Att-pooling (dos Santos et al., 2016) 0.689 0.696
LDC (Wang et al., 2016b) 0.706 0.723
MPCNN (He et al., 2015) 0.693 0.709
PWIM (He and Lin, 2016) 0.709 0.723
NCE-CNN (Rao et al., 2016) 0.701 0.718
IARNN◦ (Wang et al., 2016a) 0.734 0.742
BiMPM (Wang et al., 2017) 0.718 0.731
IWAN-att (Proposed) 0.730 0.744
IWAN-skip (Proposed) 0.733 0.750

Table 4: Test results on WikiQA. The symbol ◦

indicates the models with data augmentation strat-
egy.

thogonal decomposition (OD) strategy has a su-
perior performance to direct (DI) strategy on all
datasets. The comparison results are posted in Ta-
ble 1. In following experiments, we always choose
OD strategy in alignment layer.

Semantic Relatedness Table 3 shows the perfor-
mances of our model and compared models on
SICK dataset. IWAN-att and IWAN-skip repre-
sents our models using inter-attention layer and
inter-skip layer respectively. IWAN-skip outper-
forms IWAN-att in all metrics by a small margin.
The traditional feature engineering based mod-
els in first group have much poorer performances
than deep learning models. MaLSTM (Mueller
and Thyagarajan, 2016) benefits from the data
argumentation strategy with Wordnet informa-
tion and pre-training process. Ablation experi-
ments (Mueller and Thyagarajan, 2016) illustrates
a 0.04 degradation of Pearson’s r without data
argumentation strategy. Therefore it is unfair to
compare with this model directly, but our models
achieve a comparable performance with it. Our
models both outperform all other deep learning
models. IWAN-skip outperforms Attentive Tree-
LSTM (Zhou et al., 2016) by 0.01 in Pearson’s
r, over 0.01 in Spearman’s ρ and almost 0.02
in MSE, although it exploits syntactic parser in-
formation. Our model significantly outperforms
sentence modeling based models with CNN or
RNN which results from the absence of interac-
tion information. He and Lin (2016) proposes
Pairwise Word Interaction Model (PWIM) which
constructs 19-layer CNN on similarity matrix to
capture fine-grained interaction information and
shows most competitive. However our model out-
performs it in all metrics with much fewer parame-
ters (about 0.65 million versus 1.7 million (He and
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Figure 3: Visualization of weights outputted by inter-weighted layer of words in a sentence pair in SICK
test set.

Lin, 2016)).

Answer Selection We compare our model with
several state-of-the-art models on Clean version
TrecQA and WikiQA in Table 3 and Table 4 re-
spectively. Our two models both have a state-
of-the-art performance on two datasets. IWAN-
att outperform all previous works on TrecQA and
make a significant improvement of state-of-the-
art. IWAN-skip and IARNN (Wang et al., 2016a)
which solves bias problem of attention mecha-
nism beat all other models on WikiQA, while the
latter is trained on an argumented dataset with
negative sampling. Wang et al. (2016b) first
proposes the orthogonal decomposition but their
LDC model compute the similarity matrix be-
tween word embeddings which are lack of con-
text information and IWAN-att outperforms it dra-
matically by 0.02-0.05 in MAP and MRR on
both datasets. The PWIM (He and Lin, 2016) is
still competitive on WikiQA but gets an inferior
performance on TrecQA. However, our models
both have state-of-the-art performances on three
datasets which demonstrates our models have ex-
cellent generalization ability in different datasets.

4.4 Ablation Tests

Table 5 show the results of ablations tests on SICK
dataset in r metric. From IWAN-att, we remove
or replace one component at a time and evalu-
ate performance of partial models. If removing
inter-features, the r degrades with a 0.013 decline
which proves the interaction information is cru-
cial for sentence pair modeling. Whereas, the
degradation from removing self-features is much

Ablation setting Pearson’s r
Full Model (IWAN-att) 0.8810
• w/o inter-features -0.0130
• w/o self-features -0.0070
• w/o BiLSTM layer -0.0387
• w/o inter-attention layer -0.0075
• Replace inter-attention weights with
self-attention weights -0.0063
• w/o parallel component -0.0037
• w/o orthogonal component -0.0046

Table 5: Ablation test on SICK dataset, removing
each component separately.

smaller. We found a large decline when remov-
ing BiLSTM layer, which confirms our conjecture
that context information is useful. It is worth men-
tioning that He and Lin (2016) posts the degra-
dation of their model from removing BiLSTM is
0.1225 in r which is much larger than 0.0387 of
us. Removing inter-attention layer means we per-
form a mean-pooling on inter-features instead of
a weighted summation. A 0.0075 r degradation
proves importance weighting can result in a signif-
icant improvement. If the weights are only about
single sentence information, the performance still
gets worse. The last two settings show both com-
ponents from orthogonal decomposition are infor-
mative. More or less unexpected, parallel compo-
nent is almost as useful as orthogonal component.

4.5 Visualization of Inter-Weighted Layer
In order to illustrate the effect of inter-weighted
layer in proposed model, we take a sentence pair
in SICK test set as an example and display the
weights outputted by inter-attention layer of each
word in Figure 3. The ground truth of this pair is
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3.2 and the prediction given by IWAN-att model
is 3.507 which is much more accurate than 4.356
given by the model without inter-attention layer.
We can find the inter-attention layer gives very
high weights over 0.25 (while the average weight
is about 0.14) to “sleeping” and “eating” which are
the only difference between two sentences. There-
fore, the difference will be attended in following
processing. Meanwhile, the weights of the arti-
cle “the” and the preposition “with” which are not
as important as other real words in semantic com-
position are much lower. These prove the inter-
weighted mechanism is reasonable and effective.

5 Conclusion

This work proposes a weighted alignment model
for sentence pair modeling. We utilize an align-
ment layer to measure the similarity of sen-
tence pairs according to their degree of alignment.
Moreover, we propose an inter-weighted layer to
measure the importance of different parts in sen-
tences. Two strategies for this layer have been ex-
plored which are both effective. The composition
of alignment features can benefit from the inter-
weighted weights. Experiment results shows that
proposed models achieve the state-of-the-art per-
formance on three datasets. In the future work, we
will improve the inter-weighted layer with more
sophisticated module and evaluate our model on
other large scale datasets.
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Abstract

A taxonomy is a semantic hierarchy, con-
sisting of concepts linked by is-a relations.
While a large number of taxonomies have
been constructed from human-compiled
resources (e.g., Wikipedia), learning tax-
onomies from text corpora has received a
growing interest and is essential for long-
tailed and domain-specific knowledge ac-
quisition. In this paper, we overview re-
cent advances on taxonomy construction
from free texts, reorganizing relevant sub-
tasks into a complete framework. We also
overview resources for evaluation and dis-
cuss challenges for future research.

1 Introduction

A taxonomy is a semantic hierarchy that organizes
concepts by is-a relations, which exhibits the capa-
bility of improving many NLP and IR tasks, such
as query understanding (Hua et al., 2017), per-
sonalized recommendation (Zhang et al., 2014),
question answering (Yang et al., 2017), etc. It
also supports a variety of real-world applica-
tions, including information management (Nicker-
son et al., 2013), e-commerce (Aanen et al., 2015)
and biomedical systems (Köhler et al., 2014).

With massive Web data available, a num-
ber of taxonomies are constructed from human-
compiled resources such as Wikipedia, Wikidata,
etc (Suchanek et al., 2007; Ponzetto and Navigli,
2009; Flati et al., 2014; Mahdisoltani et al., 2015).
But even large taxonomies may lack domain-
specific and long-tailed knowledge. Recently, sev-
eral methods have been developed to induce tax-
onomies from text corpora (Wu et al., 2012; Yang,
2012; Luu et al., 2014). However, this task is
far from being solved for three reasons: i) Text

∗Corresponding author.

corpora may vary in size, topic and quality. It
is unlikely to develop a “one-size-fits-all” solu-
tion for all scenarios. For example, given an ex-
tremely large corpus, Hearst-pattern based method
is employed to build Probase (Wu et al., 2012).
For domain-specific corpora, learning hypernymy
embedding is more suitable (Luu et al., 2016b).
ii) The accuracy of free-text taxonomies is usu-
ally lower than many Wikipedia-based taxonomies
because it is difficult to extract knowledge com-
pletely from texts; iii) The task of taxonomy learn-
ing is still insufficiently studied a) in emerging and
specific domains and b) for non-English or under-
resourced languages (Wei et al., 2014; Alfarone
and Davis, 2015; Wang et al., 2015).

In this paper, we overview recent advances on
taxonomy construction from text corpora, reorga-
nizing relevant subtasks into a complete frame-
work. The subtasks include hyponym acquisi-
tion, hypernym prediction, taxonomy induction,
etc. We also summarize resources, evaluation met-
rics and state-of-the-art results. We also discuss
issues and directions for future research.

2 Taxonomy Construction Techniques

Although workflows of different methods vary, a
free text-based taxonomy construction system typ-
ically operates in two steps: i) extracting is-a rela-
tions using pattern-based (Sect. 2.1) or distribu-
tional methods (Sect. 2.2); ii) constructing a com-
plete taxonomy from is-a relations (Sect. 2.3).

2.1 Pattern-based Methods
Traditional pattern based methods predict that
there is an is-a relation between a term pair (x, y),
if x and y appear in the same sentence and satisfy
a particular pattern. The earliest and most influen-
tial work in this field is Hearst (1992), which hand-
crafts several lexical patterns to harvest is-a rela-
tions. A typical pattern is “[C] such as [E]”, where
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[C] and [E] are placeholders of noun phrases that
are regarded as the hypernym (class) y and the hy-
ponym (entity) x respectively for an is-a relation
(x, y). Based on Hearst patterns, Probase is con-
structed from billions of Web pages. It consists
of 2.65 million concepts and 20.76 million is-a re-
lations (Wu et al., 2012). Similar approaches are
presented in Etzioni et al. (2004); Kozareva and
Hovy (2010), which employ Hearst patterns to in-
duce taxonomies from Web pages.

Despite the successful applications, these pat-
terns are too specific to cover all linguistic cir-
cumstances, thus recall is sacrificed (Wu et al.,
2012). Simple pattern matching is prone to error
due to idiomatic expressions, parsing errors, in-
complete/uninformative extractions and ambigu-
ous issues (Kozareva et al., 2008; Etzioni et al.,
2004). In the next part, we summarize key tech-
niques to improve precision and recall for pattern-
based methods. Note that a robust is-a relation ex-
traction system may combine multiple techniques
to achieve high precision and recall.

2.1.1 Methods Improving Recall
Pattern Generalization Several approaches ei-
ther extend original Hearst patterns by linguistic
rules or learn more generalized lexico-syntactic
patterns. Ritter et al. (2009) increase recall by re-
placing the noun phrase “[E]” (i.e., candidate hy-
ponym) in Hearst patterns with a list of k noun
phrases. Luu et al. (2014) design more flexible
patterns where a few words in such patterns are in-
terchangeable. Automatic methods mine is-a pat-
terns given a collection of seed instances as in-
put. Snow et al. (2004) use the dependency path
of two terms to represent the pattern, where both
syntactic and lexical connections of two terms can
be modeled. This practice is more resistent to
noise than surface matching and is employed by a
number of relation extraction systems (Snow et al.,
2006; Banko et al., 2007; Shwartz et al., 2016).

The number of patterns generated from a text
corpus is sufficiently large, causing the feature
sparsity problem. Learning more abstract patterns
from these “raw” patterns can improve the gen-
erality of these patterns, hence increases recall.
Navigli and Velardi (2010) introduce the concept
“star pattern” (which use wildcards to replace non-
frequent words in sentences). More general pat-
terns are created by clustering star patterns. In the
PATTY system (Nakashole et al., 2012), a subset
of words along the dependency path are replaced

by their POS tags, ontological types or wildcards.

Iterative Extraction Incorrect relations are fre-
quently extracted from overly generalized pat-
terns due to language ambiguity and semantic
drift (Carlson et al., 2010). In contrast to above-
mentioned approaches, an opposite idea is to use
extremely specific patterns. Kozareva et al. (2008)
employ “doubly-anchored” patterns (e.g., “cars
such as Ford and *”) to harvest hyponyms for a
particular hypernym and expand both hyponyms
and hypernyms by a bootstrapping loop. It uses
each pattern as a query and takes search engine
results as a Web corpus. Another advantage is
that the ambiguity of terms can be eliminated by
“doubly-anchored” patterns. Similar to Kozareva
and Hovy (2010); Carlson et al. (2010), new is-a
relations and hypernym patterns are iteratively ex-
tracted in an automatic manner.

Hypernym Inference This type of methods
overcome the limitation where x and y must ap-
pear in the same sentence. The idea of Ritter et al.
(2009) is that if y is a hypernym of x and another
term x

′
is sufficiently similar to x, there is a high

probability that y is a hypernym of x
′
. They train

an HMM to learn a better similarity measure than
vector-based approaches. In the Syntactic Con-
textual Subsumption (SCS) method (Luu et al.,
2014), given a non-taxonomic relation r, denote
Sr(x) as the collection of objects such that for
each s ∈ Sr(x), x and s has the relation r. If
Sr(y) mostly contains Sr(x) but not vice versa,
we can infer y is a hypernym of x.

Syntactic inference on hyponym modifiers can
generate additional is-a relations. For example, the
machine can infer a grizzly bear is a bear based on
the evidence that the head word of “grizzly bear”
is ”bear”. In Taxify (Alfarone and Davis, 2015),
the system adds the linguistic head of a multi-word
term as its direct hypernym if the term is added to
the taxonomy. Suchanek et al. (2007) link con-
ceptual Wikipedia categories to WordNet synsets
based on category head words. Gupta et al. (2016)
introduce linguistic heuristics to derive is-a rela-
tions from Wikipedia category network. Besides
English, a similar observation also holds for Chi-
nese, as shown in Fu et al. (2013); Li et al. (2015).

2.1.2 Methods Improving Precision
Confidence Assessment After candidate is-a
pairs (x, y) are extracted, statistical measures can
be used to estimate confidence scores. Relations
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with low scores are discarded. In KnowItAll (Et-
zioni et al., 2004), the system estimates the point-
wise mutual information (PMI) of x and y by
search engine hit counts. Probase (Wu et al., 2012)
employs the ratio of likelihood to determine the
most possible hypernym y for a concept x, and re-
versely the most possible hyponym x for a concept
y. Wu et al. (2012) further calculate the plausibil-
ity of extracted is-a pairs based on a Naive Bayes
classifier. Besides statistics from extraction re-
sults, Luu et al. (2014, 2015) consider external fac-
tors, such as the inclusion of concepts in WordNet
and dictionaries, as well as the trustworthiness of
data sources (e.g. Web pages). The experience of
building Google’s Knowledge Vault (Dong et al.,
2014) shows that assessing confidence scores is
essential for acquiring and fusing knowledge from
different extractors.

It is worth nothing that the negative evidence
can be also employed to estimate confidence
scores. A recent approach (Wang and He, 2016)
uses statistics of both hypernym and co-hyponym
patterns to give each pair a positive score and a
negative score. Experiments show that using neg-
ative scores improves precision by discarding co-
hyponym relations that are incorrectly predicted as
is-a relations by their model.

Classification-based Validation These meth-
ods train a classifier f to predict the correctness
of an extracted pair (x, y). Models of choice typi-
cally include SVM, logistic regression and neural
nets. The features for f can be roughly divided
into following categories: surface name, syntax,
statistics, external resources, etc. In the literature,
Snow et al. (2004, 2006) use the dependency paths
between x and y as features in the corresponding
lexico-syntactic patterns. Ritter et al. (2009) in-
troduce a list of features based the frequency of
matches between a pair and Hearst patterns, such
as the number of matches for “x is a y” in a cor-
pus. Surface name features (Bansal et al., 2014)
consider the word formation of x and y, includ-
ing whether x and y are capitalized, whether x
ends with y. Bansal et al. (2014) further employ
statistics derived from matches of Hearst patterns
in the corpus and Wikipedia abstracts. This is be-
cause abstracts in Wikipedia contain definitions
and summaries about concepts that can be used for
inferring is-a relations.

Using both pattern-based and distributional rep-
resentations of x and y can also enhance the per-

formance of the classifier, as shown in Shwartz
et al. (2016). This technique can be viewed as
a combination of pattern-based and distributional
methods, which will be discussed in details in
Sect. 2.2.4.

2.2 Distributional Methods
Distributional methods predict is-a relations be-
tween terms based on their distributional rep-
resentations, by either unsupervised measures
(Sect. 2.2.2) or supervised models (Sect. 2.2.3).
Because they directly predict is-a relations instead
of extracting all is-a relations in a corpus, we
briefly introduce how to obtain key terms to form
term pairs as candidate is-a relations (Sect. 2.2.1).

2.2.1 Key Term Extraction
The first step for predicting is-a relations is to gen-
erate candidate hyponyms/hypernyms. For free
texts, they are usually key terms, which are nouns,
noun phases and/or named entities that frequently
appear in the corpus. The key terms can be iden-
tified by applying POS tagging or NER tools to
the corpora and then using rule-based extractors
(Yang, 2012; Zhu et al., 2013; Luu et al., 2014).
Existing keyword or key phrase extractors can
be also used to recognize these terms automati-
cally (Navigli et al., 2011; Qureshi et al., 2012;
da Silva Conrado et al., 2013; Liu et al., 2015).

For learning domain-specific taxonomies, an
important post-processing step after extracting key
terms is domain filtering. This filters out terms
not in the domain of interest, improving the taxon-
omy precision. A term can be filtered by statistics-
based cuts, which include TF, TF-IDF, domain rel-
evance, domain consensus (Navigli and Velardi,
2004; de Knijff et al., 2013) and domain specificity
scores (Alfarone and Davis, 2015). To ensure the
extracted terms are important concepts in a partic-
ular domain, several methods only harvest terms
from domain definitive sentences (Navigli et al.,
2011; Velardi et al., 2013; Anke et al., 2016b).
Specially, Navigli et al. (2011) propose to use do-
main weights to select sentences that define unam-
biguous terms pertained to the domain of interest.

2.2.2 Unsupervised Measures
We first survey various unsupervised measures for
is-a relation identification. After that, feature rep-
resentations are introduced for these measures.

Distributional Similarity Measures Early
work of distributional similarity measures mostly
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focuses on symmetric measures such as cosine,
Jaccard, Jensen-Shannon divergence and the
widely cited LIN measure (Lin, 1998):

LIN(x, y) =

∑
f∈Fx∩Fy wx(f) + wy(f)∑

f∈Fx wx(f) +
∑

f∈Fy wy(f)

where x and y are candidate hyponyms and hyper-
nyms respectively. Fx and Fy are features of x and
y. wx(f) is the weight of feature f for word x. But
they only learn semantic similarity of words.

Asymmetric measures model the asymmetric
property of is-a relations, following the Distribu-
tional Inclusion Hypothesis (DIH) (Geffet and Da-
gan, 2005; Zhitomirsky-Geffet and Dagan, 2009).
It assumes that a hyponym only appears in some of
its hypernym’s contexts, but a hypernym appears
in all contexts of its hyponyms. For example, the
concept “fruit” has a broader spectrum of contexts
than its hyponyms, such as “apple”, “banana” and
“pear”. As an example, Weeds et al. (2004) pro-
pose a simple measure WeedsPrec to compute the
weighted inclusion of features of y within features
of x:

WeedsPrec(x, y) =

∑
f∈Fx∩Fy wy(f)∑
f∈Fy wy(f)

Other asymmetric measures are introduced in
a variety of research, e.g., WeedsRec (Weeds
et al., 2004), BalAPInc (Kotlerman et al.,
2010), ClarkeDE (Clarke, 2009), cosWeeds, in-
vCL (Lenci and Benotto, 2012), WeightedCo-
sine (Rei and Briscoe, 2014). Detailed summa-
rization of distributional similarity measures can
be found in an early survey on vector space se-
mantic models (Turney and Pantel, 2010).

More recently, several studies suggest that DIH
is not correct for all the cases (Santus et al., 2014;
Rimell, 2014). For example, “American” is a
hypernym of “Barack Obama” but the (politics-
related) contexts of “Barack Obama” cannot be
covered by those of “American”. Most contexts of
a hypernym are less informative and more general
than those of its hyponyms. To solve this prob-
lem, Santus et al. (2014) propose an entropy-based
measure SLQS for hypernym detection. Roller
et al. (2014) introduce the Selective Distributional
Inclusion Hypothesis, which means the original
DIH is correct, but only for relevant dimensions.

Features For each term x, a collection of fea-
tures Fx are generated from the text corpus, where

each feature f ∈ Fx represents a contextual word
with which x co-occurs (Lin, 1998; Weeds et al.,
2004). In some work, f also specifies the syn-
tactic relation between x and f (Lin, 1998). As
stated in Padó and Lapata (2003), the usage of
syntactic-based vector space model can better dis-
tinguish different lexical relations than the sim-
ple “Bag-of-Words” co-occurrence model. In ad-
dition, Schütze (1993) use the context word and
the position relative to the target term as features.
Baroni and Lenci (2010) propose a Distributional
Memory framework to generate word-link-word
features. Yamada et al. (2009) use raw verb-
noun dependencies and cluster such dependencies
to generate feature vectors

The value of each feature is determined by a
weight functionwx(f), which quantifies the statis-
tical association between the feature f and the cor-
responding word x. Choices of wx(f) include the
(point-wise) Mutual Information (PPMI) (Weeds
et al., 2004), Local Mutual Information (LMI)
(Evert, 2005). Dimension reduction methods such
as SVD can be employed to create dense vectors
(Roller and Erk, 2016).

2.2.3 Supervised Models
With training sets available, classification/ranking
methods train a model to predict hypernymy based
on the representations of a term pair (x, y). Hy-
pernym generation approaches directly model how
to “generate” hypernyms based on the representa-
tions of hyponyms in the embedding space.

Classification In classification methods, the
most popular representations for x and y are word
embeddings generated by pre-trained neural lan-
guage models such as Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and ivLBL
(Mnih and Kavukcuoglu, 2013). SensEmbed (Ia-
cobacci et al., 2015) generates different embed-
dings for different senses of the same word.

The concat model combines term-pair vectors
by ~x⊕ ~y where ~x is the embedding vector of word
x, then trains an off-the-shelf classifier such as
SVM (Baroni et al., 2012). This model is regarded
as a strong baseline in some papers (Kruszewski
et al., 2015; Shwartz et al., 2016; Mirza and
Tonelli, 2016). Recent work points out that it has
a serious problem of lexical memorization (Roller
et al., 2014; Levy et al., 2015; Weeds et al., 2014).
It means that the classifier learns the semantics of
terms rather than the relations between the terms.
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Consequently, when the training sets and testing
sets are significantly different, the model suffers
from a poor performance.

To over this problem, the diff model uses vector
offsets as features, represented as ~y − ~x (Rimell,
2014; Weeds et al., 2014; Fu et al., 2014). The
asym model is presented in Roller et al. (2014),
using both vector difference and squared vector
difference features. The simDiff model (Turney
and Mohammad, 2015) employs the difference of
two word-context matrices (i.e., domain matrix
and function matrix) as features for relation classi-
fication. Additionally, other combinations of vec-
tors are mentioned in the literature, such as vec-
tor sum ~x + ~y, and dot-product ~x · ~y (Shwartz
et al., 2016). Roller and Erk (2016) exploit Hearst
patterns in distributional vectors and introduce a
PCA-like iterative procedure to learn concat clas-
sifiers. Kruszewski et al. (2015) learn mappings
from distributional vectors to boolean-valued vec-
tors, where the output vectors correspond to en-
tailment between words.

In neural language models (Mikolov et al.,
2013; Pennington et al., 2014), words that occur
in similar contexts have similar embeddings. Yu
et al. (2015) argue that this modeling technique is
not strong enough to learn term embeddings for
is-a relation prediction. For each word x, they
learn two types of embeddings ~xo and ~xe, rep-
resenting the embeddings of x when x functions
as a hyponym and a hypernym, respectively. The
embeddings are generated by training a distance-
margin based neural net. Luu et al. (2016b) fur-
ther extend this approach by modeling the con-
texts between hypernyms and hyponyms in a dy-
namic weighting neural net. Li et al. (2016) de-
sign a joint model based on negative sampling to
embed entities and categories jointly into the same
semantic space. The high performance shows that
using task-specific embeddings is more effective
than general-purpose embeddings.

Hypernym Generation Hypernym generation
approaches make prediction for a pair (x, y) by
whether the model can map ~x to a vector close
to ~y. Fu et al. (2014) is a pioneer work in this
field, which employs uniform linear projection and
piecewise linear projection to map the embeddings
of a hyponym to its hypernym. After that, three
approaches (Wang and He, 2016; Yamane et al.,
2016; Tan et al., 2015) have been proposed to ex-
tend Fu et al. (2014). Wang and He (2016) up-

date transition matrices and extract new is-a rela-
tions iteratively. They improve the performance
of the piecewise projection model when training
sets and test sets have little overlap in the seman-
tic space. Yamane et al. (2016) learn the number
of clusters and transition matrices jointly by dy-
namically clustering is-a pairs. Tan et al. (2015)
replace the transition matrix with the embedding
of “is-a”. As shown in Yamane et al. (2016), these
methods are comparable to state-of-the-art classi-
fication approaches in terms of F-measure. Addi-
tionally, by domain clustering, the approach (Fu
et al., 2014) is modified to a transfer learning ver-
sion that is sensitive to target data sources for do-
main adaptation (Anke et al., 2016a).

The negative sampling technique proves ef-
fective to enhance projection learning. This is
because the representations of hypernymy rela-
tions are sometimes confused with synonymy,
co-hyponymy and meronymy. In Ustalov et al.
(2017), an additional regularization term is added
to the model of Fu et al. (2014) to take the advan-
tage of the semantics of not-is-a relations. Wang
et al. (2017) explicitly learn the representations of
not-is-a relations so that the true hypernymy rela-
tions are better distinguished. This method con-
siders the representations of both is-a and not-is-a
relations, hypernym-level similarity and linguistic
rules in a transductive learning setting.

Ranking As an alternative approach, Fu et al.
(2013) present a ranking model to select the most
probable hypernym for an entity. Replacing a clas-
sification model with a ranking model is not a
common practice for extracting is-a relations, due
to its low recall. However, this method is specif-
ically engineered for the Chinese language. As
shown in (Fu et al., 2014; Wang et al., 2015; Li
et al., 2015; Wang and He, 2016), learning Chinese
is-a relations is fundamentally challenging due to
flexible language expressions. Thus it is necessary
to train a ranking model to extract Chinese is-a re-
lations with high precision.

2.2.4 Discussion
In the literature, there are some disagreements
on which methods are more effective for is-a re-
lation prediction. For example, Shwartz et al.
(2016) claim that distributional methods outper-
form pattern-based approaches, while Levy et al.
(2015) hold the opinion that distributional meth-
ods do not even work. We overview major view-
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points in the research community and analyze pros
and cons for both types of methods.

Pattern-based methods extract is-a relations
(x, y) based on the lexico-syntactic paths connect-
ing x and y in a corpus, which explicitly express
the relation. The original Hearst patterns (Hearst,
1992) and more generalized patterns have been
used in a large number of taxonomies (Wu et al.,
2012; Navigli et al., 2011). A disadvantage is that
using patterns as features may result in the sparsity
of the feature space (Nakashole et al., 2012). Most
methods require x and y to co-occur in the same
sentence. Hence, the recall is limited. Besides,
they are overly language-dependent and difficult
to use if there are few Hearst-like patterns in other
languages. For example, as shown in Fu et al.
(2014); Wang and He (2016), they suffer from ex-
tremely low recall for the Chinese language.

In contrast, distributional approaches use word
representations derived from contexts, indepen-
dent of its hyponym or hypernym. The usage of
word embeddings (Mikolov et al., 2013) allows
machines to make predictions based on the entire
corpus. However, distributional methods are less
precise in detecting specific, strict is-a relations
and tend to discover broad semantic similarity be-
tween terms (Shwartz et al., 2016; Yu et al., 2015).
As Weeds et al. (2014) discover, some terms de-
tected by distributional methods are co-hyponyms
and meronyms, rather than hypernyms. Another
drawback is that the representations are domain
dependent and the models are heavily related to
the training set (Roller et al., 2014). Yet a further
criticism is pointed out by Levy et al. (2015). They
find that supervised distributional methods actu-
ally learn whether y is a “prototypical hypernym”,
instead of the relation between x and y. This is
because the features ~x and ~y are generated inde-
pendently. They integrate the intra-pair similarity
with the diff model by kernel functions but only
achieves an incremental improvement.

Despite their own disadvantages, pattern-based
and distributional methods have been considered
complementary. The idea of integrating them has
been proposed early (Mirkin et al., 2006; Kaji and
Kitsuregawa, 2008) but have not drawn much at-
tention over the years. Recently, the HyperNET
system (Shwartz et al., 2016) represents a pair
(x, y) by both distributional and pattern-based fea-
tures. Each pattern is represented by a dependency
path, and embedded by an LSTM model (Hochre-

iter and Schmidhuber, 1997). Experiments show
that the joint representation improves the perfor-
mance notably, having F1-scores of 0.901 and
0.700 over two large datasets. In contrast, the best
pattern-based method (i.e., an extension of Snow
et al. (2004)) has the performance of 0.761 and
0.660. The best distributional approach based on
the concat model has the performance of 0.746
and 0.637. An extension of the previous model
named LexNET (Shwartz and Dagan, 2016) is
proposed to recognize multiple relations.

2.3 Taxonomy Induction

In this part, we summarize techniques for creating
taxonomies from is-a relations.

Incremental Learning Several methods con-
struct an entire taxonomy from a “seed” taxon-
omy via incremental learning. Snow et al. (2006)
enrich WordNet by maximizing the probability
of an extended taxonomy based on the evidence
of is-a and cousin relations harvested from texts.
They focus on extracting new entities and attach-
ing them to the semantic hierarchy of WordNet.
Shen et al. (2012) observe that the extracted terms
can either refer to existing entities in the taxonomy
or new ones, and propose a graph-based method
to link these terms to the taxonomy or insert new
entities into the taxonomy. While these methods
rely heavily on existing taxonomies, Kozareva and
Hovy (2010) take a root concept as input only and
iteratively extract is-a relations to expand the tax-
onomy. Alfarone and Davis (2015) further con-
sider the problem that a “seed” taxonomy cannot
be obtained in a specific domain. They construct
the “seed” taxonomy by Hearst pattern matching
and heuristic rules.

Clustering Taxonomy learning can be modeled
as a clustering problem where similar terms clus-
tered together may share the same hypernym. Hi-
erarchical clustering is employed to cluster simi-
lar terms into a taxonomy (Hjelm and Buitelaar,
2008; de Knijff et al., 2013; Meijer et al., 2014).
Song et al. (2015) improve the hierarchical clus-
tering technique by scalable Bayesian Rose Trees.
A similar idea is also introduced in Alfarone and
Davis (2015) where the lowest common ancestor
of a collection of terms clustered by K-Medoids
is inferred as their common hypernym. The SCS
method (Luu et al., 2014) (see Sect. 2.1.1) is
also related to clustering because it groups simi-
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lar terms by non-taxonomic relations, and infer its
hypernyms to improve the taxonomy coverage.

Graph-based Induction Graph-based ap-
proaches are naturally suitable for this task be-
cause taxonomies are generally graphs. Kozareva
and Hovy (2010) derive the path from the root to
a target term by finding the longest path in a raw
graph where edges represent noisy is-a relations.
Anke et al. (2016b) calculate the path weights by
multiplying the domain pertinence scores of its
edges. Another frequently used algorithm is the
optimal branching algorithm (Velardi et al., 2013;
Luu et al., 2014). It first assigns edge weights
based on graph connectivity (e.g., in-degree, be-
tweenness, etc.), and finds an optimal branching
based on Chu-Liu/Edmonds’s algorithm (Karp,
1971). After noisy edge removal, a rooted tree
is constructed with maximum weights. Bansal
et al. (2014) employ a factor graph model to
represent terms and is-a relations. The learning of
a taxonomy is regarded as a structured learning
problem for the model, solved by loopy belief
propagation.

Taxonomy Cleansing The final step of taxon-
omy learning is taxonomy cleansing, which re-
moves wrong is-a relations to improve the qual-
ity. A recent study on Probase (Wu et al., 2012)
shows that incorrect is-a relations may exist in
taxonomies in the form of cycles (Liang et al.,
2017a). By eliminating cycles, 74K wrong is-a re-
lations are detected. This cycle removal process is
also applied in Deshpande et al. (2013); Fu et al.
(2014); Li et al. (2015).

Another issue is entity ambiguity. As discussed
in Liang et al. (2017b), the transitivity property
does not necessarily hold in automatically con-
structed taxonomies. For example, the facts “(Al-
bert Einstein, is-a, professor)” and “(professor, is-
a, position)” do not mean that “(Albert Einstein,
is-a, position)”. The ambiguity issue has been
addressed in a few systems (Anke et al., 2016b;
Wu et al., 2012; Ponzetto and Navigli, 2009) by
word sense disambiguation. However, it is not
fully solved. While learning multiple senses of
the word “bank” (a financial institution or river-
side) is easy nowadays, it is more challenging to
distinguish whether the word “professor” refers to
a particular person or a job title in the taxonomy
learning process. Based on Liang et al. (2017b),
we can safely conclude that there is a long way

Contributor/Paper #Positive #Negative
Kotlerman et al. (2010) 1,068 2,704
Baroni and Lenci (2011) 1,337 13,210
Baroni et al. (2012) 1,385 1,385
Jurgens et al. (2012) 1,154 1,154
Levy et al. (2014) 945 11,657
Rei and Briscoe (2014) 3,074 -
Weeds et al. (2014) 2,564 3,771
Turney and Mohammad (2015) 920 772
Shwartz et al. (2016) (Lex) 5,659 22,636
Shwartz et al. (2016) (Rnd) 14,135 56,544

Table 1: Test sets for is-a relation prediction.

towards learning a fully-disambiguated taxonomy.

3 Resources and Analysis

In this section, we summarize resources and met-
rics for taxonomy learning. Results and recom-
mendations for future research are also discussed.

3.1 Resources
There have been a variety of resources for the re-
search of is-a relation prediction. The first type
is high-quality taxonomies. knowledge bases and
semantic networks. The knowledge in these sys-
tems can be used for generating training sets for
distant supervised model learning. Typical En-
glish resources include WordNet (Miller, 1995),
YAGO (Suchanek et al., 2007), WiBi (Flati et al.,
2014) and DefIE (Bovi et al., 2015). For lan-
guages other than English, refer to multilingual
systems (e.g., YAGO3 (Mahdisoltani et al., 2015),
BabelNet (Navigli and Ponzetto, 2012), Multi-
WiBi (Flati et al., 2016)). We need to point out that
these systems are not necessarily all taxonomies
but contain rich type hierarchical knowledge. We
also summarize some recent (2010∼) test sets and
statistics in Table 11.

Two shared tasks are designed specifically for
taxonomy learning, i.e., TExEval (SemEval-2015
Task 17) (Bordea et al., 2015) and TExEval-2
(SemEval-2016 Task 13) (Bordea et al., 2016)2.
In TExEval, the goal is to construct taxonomies
in four target domains (i.e. chemicals, equipment,
food and science), each with gold-standard pro-
vided. The setting is expanded to cover four Euro-
pean languages (i.e., English, Dutch, French and

1Statistics combine training, validation and test sets. Pa-
pers that use subsets of these datasets are not listed. Dataset
(Jurgens et al., 2012) is not directly capable of evaluating the
task and is processed by Turney and Mohammad (2015).

2Due to the relatively large number of submissions, we do
not provide citations to every system submitted to TExEval
tracks. Readers can refer to the two reports for details.
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Italian) in TExEval-2. In this task, the partici-
pants are encouraged to use the Wikipedia cor-
pus as input but there are no restrictions on the
data sources. In previous studies, several domain-
specific corpora have also been employed as inputs
for taxonomies, including AI papers (Velardi et al.,
2013), biomedical corpora (Alfarone and Davis,
2015), Web pages related to animals, plants and
vehicles (Kozareva et al., 2008) and MH370 (Luu
et al., 2016a), terrorism reports (Luu et al., 2014),
disease reports and emails (Luu et al., 2016a) and
Wikipedia corpora related to specific topics.

3.2 Evaluation Metrics
Evaluating hypernymy prediction algorithms is by
no means easy. Given a collection of is-a and not-
is-a term pairs as ground truth, standard relation
classification metrics such as Precision (P), Recall
(R) and F-score (F) can be employed to make the
comparison (Shwartz et al., 2016; Yu et al., 2015).

However, evaluating the quality of an entire tax-
onomy is a non-trivial task due to i) the large
size of a taxonomy, ii) the difficulty of obtaining
gold standard and iii) the existence of multiple as-
pects that should be considered such as topology,
correctness and coverage. If gold standard tax-
onomies are available, denote S = (VS , ES) and
G = (VG, EG) as the extracted and gold standard
taxonomies where VS and VG are node sets, ES
and EG are edge sets. Evaluation metrics intro-
duced in the two shared tasks (Bordea et al., 2015,
2016) are briefly summarized as follows:

• Node coverage: |VS ∩ VG|, |VS ∩ VG|/|VG|;

• Edge coverage: |ES ∩EG|, |ES ∩EG|/|EG|,
(|ES | − |ES ∩ EG|)/|EG|;

• Edge correctness: P = |ES∩EG|/|ES |,R =
|ES ∩ EG|/|EG|, F = 2(P ·R)/(P +R);

• Cumulative Fowlkes&Mallows (Cumulative
F&M) measure (Velardi et al., 2013).

The second type of metrics compares tax-
onomies generated by different methods. Size
(|VS | and |ES |) and quality are two factors to
be considered. Human assessment is required to
estimate the accuracy by sampling and labeling
edges. Additionally, topological statistics, includ-
ing the numbers of simple directed cycles, con-
nected components and intermediate nodes, can
check whether the taxonomy is a Direct Acyclic
Graph (DAG) and well-structured.

3.3 Result Analysis and Discussion
While we have discussed is-a relation prediction
in Sect. 2.2.4, we mostly focus on the overall per-
formance for taxonomy learning in this part.

We first analyze results of the two shared
tasks (Bordea et al., 2015, 2016) as they re-
port performance of a variety of methods. In
both task, two pattern-based methods (i.e., IN-
RIASAC (Grefenstette, 2015) in TExEval and
TAXI (Panchenko et al., 2016) in TExEval-2)
consistently outperform others. INRIASAC uses
frequency-based co-occurrence statistics, and sub-
string inclusion heuristics to extract a set of hy-
pernyms for hyponyms. TAXI crawls a domain-
specific corpora and employs lexico-syntactic pat-
terns and substrings for domain is-a relation ex-
traction. However, the potential of distributional
methods is not fully exploited as only one sys-
tem uses such techniques. Besides, different sys-
tems may use their own corpora in these tasks
and hence the results do not directly reflect the
“goodness” of these algorithms. In multilingual
tasks, there is a large decrease in performance
w.r.t. other languages in TAXI. The research (Fu
et al., 2014; Wang and He, 2016) shares a similar
experience when several effective algorithms for
English do not really work for Chinese. This phe-
nomenon calls for language-specific algorithms
for non-English language sources.

For other works, although knowledge sources
and domains may differ, we notice that they suf-
fer from the low recall problem. For example,
recall values of Bansal et al. (2014); Luu et al.
(2014); Navigli et al. (2011); Kozareva and Hovy
(2010) are lower than 50% in most cases and do-
mains. While improving precision is relatively
easy by imposing constraints, increasing recall is
more challenging because we aim to identify all
is-a relations, no matter whether the relations are
expressed explicitly or implicitly, in one or multi-
ple sentences (Shwartz et al., 2016). This problem
becomes severe when less focused and dynamic
domains are considered (Velardi et al., 2013).

3.4 Our Recommendations
Based on our analysis, we discuss our recommen-
dations to improve the performance of taxonomy
learning that have not been sufficiently addressed.

Ensemble Representations and Deep Architec-
tures Shwartz et al. (2016) show that combin-
ing pattern-based and distributional methods can
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improve the performance of is-a relation extrac-
tion. We suggest that the performance can be fur-
ther improved by studying how the two types of
approaches reinforce each other. Neural network
models (Yu et al., 2015; Luu et al., 2016b) are ef-
fective to learn deeper representations of both fea-
tures. In our opinion, It is also possible to solve
the problem put forward by Levy et al. (2015)
by adding the information of semantic relatedness
between term pairs mined from patterns to dis-
tributed representations.

Another related topic is that despite several em-
bedding learning methods mentioned above, there
is only limited success of deep learning paradigms
for the taxonomy induction. We believe this is
mostly because it is difficult to design a single
objective for neural networks to optimize for this
task. Hence how to take advantage of the deep
learning boom for taxonomy induction is worth re-
searching in the future.

Benchmarks and Evaluation Benchmarks for
taxonomy learning are crucial to quantify the per-
formance of state-of-the-arts. Benchmarks should
contain text corpora, gold standards and evalua-
tion metrics. Bordea et al. (2015, 2016) have pro-
vided some gold standard taxonomies in several
domains and languages but do not require all the
systems to run over the same corpus. Other works
use standard test sets and data sources, as we have
summarized in Sect. 3.1.

Several issues in current benchmarks and meth-
ods have already been pointed out by previous
works. Levy et al. (2015) show that supervised
systems actually over-perform due to the lexical
memorization problem. Shwartz et al. (2017) sug-
gest that unsupervised approaches are more robust
than supervised methods but supervised meth-
ods outperform unsupervised ones. Camacho-
Collados (2017) discuss whether the hypernymy
detection task is indeed an appropriate task for
evaluating is-a relations in the context of taxon-
omy learning systems or their integration in down-
stream applications. We can see that more in-
depth research should be done towards a complete,
widely-accepted benchmark for evaluation.

Unambiguous and Canonicalized Terms For
lexical taxonomies, a term may have multiple
surface forms and senses. The ambiguity issue
makes taxonomy-based applications prone to er-
ror (Liang et al., 2017b). It is desirable to con-

struct taxonomies where each node represents an
unambiguous term associated with its possible sur-
face forms and their contexts. In this way, the
taxonomy automatically supports entity linking
and is beneficial for IR applications (e.g., Web
search) (Shen et al., 2015; Hua et al., 2017).

Incorporating Domain Knowledge Domain
knowledge is essential for term and relation ex-
traction in domain-specific corpora but it is dif-
ficult to obtain from such limited corpora. By
exploiting facts derived from domain knowledge
bases, a domain taxonomy would be learned via
distant supervision and have higher coverage than
existing methods (Alfarone and Davis, 2015).
Thus, it is an important task to construct a taxon-
omy based on a text corpus and a knowledge base
of a specific domain.

Non-English and Under-resourced Languages
The task addressed in this paper has not been ex-
tensively studied for under-resourced languages.
Specifically, pattern-based methods, although ef-
fective for English, are language-dependent to a
large extent. How to apply existing approaches to
languages that are significantly different from En-
glish (e.g., Chinese, Arabic and Japanese) is wor-
thy of research.

4 Conclusion

In this paper, we present a survey on taxonomy
learning from text corpora. We overview pattern-
based and distributional methods to learn hyper-
nymy from texts, and discuss how to induce tax-
onomies from is-a relations. While there is signifi-
cant success, this task is still far from being solved.
By addressing the issues discussed in this paper,
we suggest that high-quality taxonomies can be
constructed in more domains and languages, hav-
ing a greater influence in NLP and IR research.
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Abstract

Idioms are peculiar linguistic construc-
tions that impose great challenges for rep-
resenting the semantics of language, es-
pecially in current prevailing end-to-end
neural models, which assume that the se-
mantics of a phrase or sentence can be
literally composed from its constitutive
words. In this paper, we propose an idiom-
aware distributed semantic model to build
representation of sentences on the basis
of understanding their contained idioms.
Our models are grounded in the literal-
first psycholinguistic hypothesis, which
can adaptively learn semantic composi-
tionality of a phrase literally or idiomat-
ically. To better evaluate our models, we
also construct an idiom-enriched senti-
ment classification dataset with consider-
able scale and abundant peculiarities of id-
ioms. The qualitative and quantitative ex-
perimental analyses demonstrate the effi-
cacy of our models. The newly-introduced
datasets are publicly available at http:
//nlp.fudan.edu.cn/data/

1 Introduction

Currently, neural network models have achieved
great success for many natural language process-
ing (NLP) tasks , such as text classification (Zhao
et al., 2015; Liu et al., 2017), semantic matching
(Liu et al., 2016a,b), and machine translation (Cho
et al., 2014). The key factor of these neural mod-
els is how to compose a phrase or sentence rep-
resentation from its constitutive words. Typically,
a shared compositional function is used to com-
pose word vectors recursively until obtaining the
representation of the phrase or sentence. The form

∗Corresponding author.

of compositional function involves many kinds of
neural networks, such as recurrent neural networks
(Hochreiter and Schmidhuber, 1997; Chung et al.,
2014), convolutional neural networks (Collobert
et al., 2011; Kalchbrenner et al., 2014), and re-
cursive neural networks (Socher et al., 2013; Tai
et al., 2015; Zhu et al., 2015).

However, these methods show an obvious de-
fect in representing idiomatic phrases, whose se-
mantics are not literal compositions of the individ-
ual words. For example, “pulling my leg”
is idiomatic, and its meaning cannot be directly
derived from a literal combination of its con-
tained words. Due to its importance, some pre-
vious work focuses on automatic identification
of idioms (Katz and Giesbrecht, 2006; Li and
Sporleder, 2009; Fazly et al., 2009; Peng et al.,
2014; Salton et al., 2016). However, challenge re-
mains to take idioms into account to improve neu-
ral based semantic representations of phrases or
sentences.

Motivated by the literal-first psycholinguistic
hypothesis proposed by Bobrow and Bell (1973),
in this paper, we propose an end-to-end neural
model for idiom-aware distributed semantic rep-
resentation, in which we adopt a neural architec-
ture of recursive network (Socher et al., 2013; Tai
et al., 2015; Zhu et al., 2015) to learn the composi-
tional semantics over a constituent tree. More con-
cretely, we introduce a neural idiom detector for
each phrase in a sentence to adaptively determine
their compositionality: literal or idiomatic man-
ner. For the literal phrase, we compute its seman-
tics from its constituents while for the idiomatic
phrase, we design two different ways to learn rep-
resentations of idioms grounded in two different
linguistic views of idioms (Katz, 1963; Fraser,
1970; Nunberg et al., 1994).

To evaluate our models towards the ability to
understand sentences with idioms, we conduct our
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experiments on sentiment classification task due
to the following reasons: 1) Idioms typically im-
ply an affective stance toward something and they
are common in reviews and comments (Williams
et al., 2015). 2) The error analysis of sentiment
classification results reveals that a large number of
errors are caused by idioms (Balahur et al., 2013).

The contributions of this work are summarized
as follows:

• We grow the capacity of recursive neural net-
work, enabling it to model idiomatic phrases
and handle ubiquitous phenomenon of id-
iomatic variations when learning a sentential
representation.
• We integrate idioms understanding into a

real-world NLP task instead of evaluating id-
iom detection as a standalone task.
• We construct a new real-world dataset cover-

ing abundant idioms with original and vari-
ational forms. The elaborate qualitative and
quantitative experimental analyses show the
effectiveness of our models.

2 Linguistic Interpretation of Idioms

Recently, idioms have raised eyebrows among lin-
guists, psycholinguists, and lexicographers due to
their pervasiveness in daily discourse and their fas-
cinating properties in linguistics literature (Villav-
icencio et al., 2005; Salton et al., 2014). As pecu-
liar linguistic constructions (Villavicencio et al.,
2005; Salton et al., 2014), idioms have three fol-
lowing properties:

Invisibility Idioms always disguise themselves as
normal multi-words in sentences. It makes
end-to-end training hard since we should de-
tect idioms first, and then understand them.

Idiomaticity Idioms are semantically opaque,
whose meanings cannot be derived from
their constituent words. Existing composi-
tional distributed approaches fail due to the
hypothesis that the meaning of any phrase
can be composed of the meanings of its con-
stituents.

Flexibility While structurally fixed, idioms allow
variations. The words of some idioms can be
removed or substituted by other words.

Table 1 shows the three properties of idioms
and the resulting challenges for distributed com-
positional semantics. To address these challenges,

Property Challenges V1 V2

Invisibility End-to-end training is difficult X X
Idiomaticity Difficult to predict meanings

of idioms × X

Flexibility Hard to handle variation and
generalize X ×

Table 1: The main properties of idioms and cor-
responding challenges. V1 and V2 represent
two different linguistic perspectives towards idiom
comprehension: arbitrary and compositional per-
spectives. X indicates the perspective suffers from
the corresponding challenge.

two different perspectives have been held for id-
iom comprehension.

The first perspective treats idioms as long words
whose meanings are stipulated arbitrarily and can
not be predict from its constituent (Katz, 1963;
Fraser, 1970). However, a lot of idioms have
shown certain degree of flexibility in term of mor-
phology and lexeme, so this kind of method han-
dles variation badly and fails to generalize.

The second perspective considers idioms as lin-
guistic expressions (Nunberg et al., 1994), whose
meanings are determined by the meanings of their
constituent parts and some compositional rules
can be used to combine them. This fully compo-
sitional view may handle lexical variations, but
it suffers from the idiomaticity problem, for the
meanings of idioms are opaque.

3 Proposed Models

We propose an end-to-end neural model for idiom-
aware distributed semantic representation. Specifi-
cally, in terms of invisibility, we introduce a neural
idiom detector to adaptively distinguish literal and
idiomatic meaning of each phrase when learning
sentence representations. For the literal phrase, we
compute its semantics from its constituents with
Tree-structured LSTM (TreeLSTM) (Tai et al.,
2015; Zhu et al., 2015). For the idiomatic phrase,
we design two different ways to learn representa-
tions of idioms grounded in two different linguis-
tic views of idioms, which considers the idiomatic-
ity and flexibility properties of idioms. Figure 1 il-
lustrates the framework of our proposed models,
which consist of three modules: literal interpreter,
idiom detector and idiomatic interpreter.

1205



Figure 1: Illustration of different modules for our proposed idiom-aware composition network corre-
sponding to the sentence “The plot speaks volumes”

3.1 Literal Interpreter
The literal interpreter is basically a composi-
tional semantic model, in which the semantics of
a phrase is composed by literal meanings of its
constituent words. Several existing models could
serve as literal interpreter. In this paper, we adopt
TreeLSTM (Tai et al., 2015) due to its superior
performance.

Formally, given a binary constituency tree T in-
duced by a sentence, each non-leaf node corre-
sponds to a phrase. We refer to hj and cj as the
hidden state and memory cell of each node j. The
transition equations of node j are as follows:




c̃j
oj
ij
f lj
f rj



=




tanh
σ
σ
σ
σ



TA,b



xj
hlj
hrj


 , (1)

cj = c̃j � ij + clj � f lj + crj � f rj , (2)

hj = oj � tanh (cj) , (3)

where xj denotes the input vector and is non-zero
if and only if it is a leaf node. The superscript l
and r represent the left child and right child re-
spectively. σ represents the logistic sigmoid func-
tion and � denotes element-wise multiplication.
TA,b is an affine transformation which depends on
parameters of the network A and b. Figure 1-(a)
gives an illustration of TreeLSTM unit.

3.2 Idiom Detector
Despite the success of TreeLSTM, there is still ex-
isting potential weakness of the hypothesis that the
meaning of a phrase or a sentence can be com-
posed from the meanings of its constituents. Pre-
vious neural sentence models are poor at learning

the meanings of idiomatic phrases, not to mention
modeling the idiomatic variations.

Therefore, we introduce a parameterized idiom
detector, which is used for detecting the boundary
between literal and idiomatic meanings. Specifi-
cally, if a compositional interpretation is nonsen-
sical in the context of a sentence, then the de-
tector is supposed to check whether an idiomatic
sense should be taken and whether it makes sense.
This literal-first model of idiom comprehension is
motivated by the psycholinguistic hypothesis pro-
posed by Bobrow and Bell (1973).

Due to ignoring the context information,
TreeLSTM suffers from the problem of disam-
biguation. For example, the phrase “in the
bag” is compositional in the sentence “The
dictionary is in the bag” while it
has idiomatic meaning in the sentence “The
election is in the bag unless the
voters find out about my past”. To
address this problem, we explicitly model the
context representation and integrate it into the
process of sentence composition.

Context Representation More concretely, for
each non-leaf node i and its corresponding phrase
pi, we defineC as a word set which contains words
surrounding the phrase pi. Then the context repre-
sentation si can be obtained as follow:

si = f(c1, c2, ..., ck; θ) (4)

where f is a function with learnable parameter
θ. Here, the function is implemented in two ap-
proaches, NBOW and LSTM.

Detector The detector outputs a scalar α to de-
termine whether the meaning of a phrase is literal
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or idiomatic. Formally, for the phrase i (non-leaf
node i) with its context information si and literal
meaning h

(l)
i , we compute the semantic composi-

tional score αi using a single layer multilayer per-
ceptron.

αi = σ(vTs tanh(Ws[h
(l)
i , si])), (5)

where Ws ∈ Rd×2d and vs ∈ Rd are learnable
parameters.

3.3 Idiomatic Interpreter

Idiomatic phrases pose a clear challenge to cur-
rent compositional models of language compre-
hension. However, until recently, there is little in-
vestigation of learning idiomatic phrases in a real-
world task. Here, based on different views of id-
ioms (Katz, 1963; Fraser, 1970; Nunberg et al.,
1994), we propose two idiomatic interpreters to
model them.

Direct Look-Up Model Inspired by the direct
access theory for idiom comprehension (Glucks-
berg, 1993), in this model, once a phrase p is de-
tected as an idiom, it will be regarded as a long
word like a key, and then their meanings can be
directly retrieved from an external memory M ,
which is a table and stores idiomatic information
for each idiom as depicted in the top subfigure in
Figure 1-(c). Formally, the idiomatic meaning for
a phrase can be obtained as:

h(i) = M[k] (6)

where k denotes the index of the corresponding
phrase p.

Morphology-Sensitive Model Since most id-
ioms enjoy certain flexibility in morphology, lex-
icon, syntax, the above model suffers from the
problem of idiom variations. To remedy this, in-
spired by the compositional view of idioms (Nun-
berg et al., 1994) and recent success of character-
based models (Kim et al., 2016; Lample et al.,
2016; Chung et al., 2016), we propose to use
CharLSTM to directly encode the meaning of a
phrase in an idiomatic space and generate an id-
iomatic representation, which is not contaminated
by its literal meaning and sensitive to different
variations.

Formally, for each non-leaf node i and its cor-
responding phrase pi in a constituency tree, we
apply charLSTM to phrase pi as depicted in the

bottom subfigure in Figure 1-(c) and utilize the
emitted hidden states rj to represent the idiomatic
meaning of the phrase.

rj = Char-LSTM(rj−1, cj−1,xj) (7)

where j = 1, 2, · · · ,m and m represents the
length of the input phrase.

Then, we can obtain the idiomatic representa-
tion:

h(i) = rm (8)

After obtaining the literal or idiomatic mean-
ings, we can compute the final representation for
phrase pi:

hi = αih
(i)
i + (1− αi)h(l)

i (9)

3.4 Analysis of Two Proposed Idiomatic
Interpreters

Given a phrase, both interpreters can generate a
corresponding semantic representation, which is
not contaminated by its literal meaning. The dif-
ference is that Look-Up Model takes a totally non-
compositional view that the meanings of idioms
can be directly accessed from an external dictio-
nary. This straightforward retrieval mechanism is
more efficient and can introduce external prior
knowledge by utilizing pre-trained external dictio-
nary.

By contrast, Morphology-Sensitive Model
holds the idea that idiomatic meanings can still
be composed in an idiomatic space, which allows
this model to understand idioms better in terms of
flexibility. Besides, this kind of model does not
require an extra dictionary.

4 iSent: A Benchmark for
Idiom-Enriched Sentiment
Classification Dataset

To evaluate our models, we need a task that heav-
ily depends on the understanding of idioms. In
this paper, we choose sentiment classification task
due to following reasons: 1) Idioms typically im-
ply an affective stance toward something and they
are common in reviews and comments (Williams
et al., 2015). 2) The error analysis of sentiment
classification results reveals that a large number of
errors are caused by idioms (Balahur et al., 2013).

In this section, we will first give a brief descrip-
tion of the most commonly used datasets for sen-
timent classification so as to motivate the need for
a new benchmark dataset.
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Dataset Train Dev. Test Class Lavg |V|
MR 9596 - 1066 2 22 21K

SST-1 8544 1101 2210 5 19 18K
SST-2 6920 872 1821 2 18 15K
SUBJ 9000 - 1000 2 21 21K

Table 2: Statistics of the four mainstream datasets
for sentiment classification. Lavg denotes the av-
erage length of documents; |V| denotes the size of
vocabulary.

4.1 Mainstream Datasets for Sentiment
Classification

We list four kinds of datasets which are most com-
monly used for sentiment classification in NLP
community. Additionally, we also evaluate our
models on these datasets to make a comparison
with many recent proposed models. Each dataset
is briefly described as follows.

• SST-1 The movie reviews with five classes
(negative, somewhat negative, neutral, some-
what positive, positive) in the Stanford Senti-
ment Treebank1 (Socher et al., 2013).
• SST-2 The movie reviews with binary

classes. It is also derived from the Stanford
Sentiment Treebank.
• MR The movie reviews with two classes

2(Pang and Lee, 2005).
• SUBJ Subjectivity data set where the goal is

to classify each instance (snippet) as being
subjective or objective. (Pang and Lee, 2004)

The detailed statistics about these four datasets
are listed in Table 2.

4.2 Reasons for a New Dataset
Differing from previous work, which evaluating
idiom detection as a standalone task, we want to
integrate idiom understanding into sentiment clas-
sification task. However, most of existing senti-
ment datasets do not cover enough idioms or re-
lated linguistic phenomenon. To better evaluate
our models on idiom understanding task, we pro-
posed an idiom-enriched sentiment classification
dataset, in which each sentence contains at least
one idiom.

Additionally, considering most idioms have cer-
tain flexibility in morphology, lexicon and syn-
tax, we enrich our dataset by introducing different
types of idiom variations so that we can further

1http://nlp.stanford.edu/sentiment.
2https://www.cs.cornell.edu/people/

pabo/movie-review-data/.

evaluate the ability that the model handle different
idiomatic variations. As shown in Table 3, we sum
up two types of phenomena towards idiom vari-
ations and, for each variation, we obtain several
corresponding sentences from a large corpora.

4.3 Data collection

We crawl the website rottentomatoes.com
to excerpt movie reviews with corresponding
scores and collect the idioms from dictionary
(Flavell and Flavell, 2006). The idiom dictionary
contains lexical variations while has no morphol-
ogy variations. To address this problem, we man-
ually annotate the morphological variation of each
idiom in term of verb(tense), noun(plural or singu-
lar).

Then we filter these movie reviews with idioms
ensuring that each sentence covers at least one id-
iom. After that, we obtain nearly 15K movie re-
views covering 1K idioms. To further improve the
quality of these idiom-enriched sentences, we take
some strategies to filter the dataset and finally con-
struct 13K idiom-enriched sentences.

• If the occurrence of an idiom in all the re-
views is less than 3, we threw this idiom and
corresponding reviews. 3

• We find some “idioms” in sentences are
movie names rather than expressing id-
iomatic meanings and we filtered this kind of
noise.

4.4 Statistics

The iSent dataset finally contains 9752 training
samples , 1020 development samples and 2003 test
samples. Besides, the development and test sets
cover different types of idiom variations allow-
ing us to test the model’s generalization. Table 4
shows the detailed statistics and Figure 2 shows
the distribution of the number of reviews over dif-
ferent lengths.

5 Experiment

We first evaluate our proposed models on four
popular sentiment datasets, so that we can make
a comparison with varieties of competitors. And
then, we use the newly-introduced dataset to make
more detailed experiment analyses.

3The reason is that, for some idioms, we should split their
corresponding reviews into train/dev/test sets.
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Variations Examples

Morp. Verb go bananas→ went bananas
Noun in a nutshell→ in nutshells

Lexical Add. in the lurch→ in the big lurch
Sub. on the same page→ on different pages

Table 3: Idiom variations at morphological and
lexical level. Add. and Sub. refer to lexical addi-
tion and substitution respectively.

Train Dev Test
O M L O M L

Idiom 1247 124 21 40 124 21 40
Sent. 9752 720 200 100 1403 400 200

Table 4: Key statistics for the idioms and sen-
tences in iSent dataset. O(Original) denotes the
idioms in dev/test sets are in original forms and
have appeared in training set. M(Morphology) and
L(Lexical) represent the morphology and lexical
idiom variations respectively and they are unseen
in training set.
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Figure 2: The distribution of the number of re-
views over different lengths.

5.1 Experimental Settings

Loss Function Given a sentence and its label,
the output of neural network is the probabilities
of the different classes. The parameters of the net-
work are trained to minimise the cross-entropy of
the predicted and true label distributions. To mini-
mize the objective, we use stochastic gradient de-
scent with the diagonal variant of AdaGrad (Duchi
et al., 2011).

Initialization and Hyperparameters In all of
our experiments, the word embeddings for all of
the models are initialized with the GloVe vectors
(Pennington et al., 2014). The other parameters are
initialized by randomly sampling from uniform
distribution in [−0.1, 0.1].

For each task, we take the hyperparameters
which achieve the best performance on the devel-
opment set via a small grid search over combina-

tions of the initial learning rate [0.1, 0.01, 0.001],
l2 regularization [0.0, 5E−5, 1E−5] The final
hyper-parameters are as follows. The initial learn-
ing rate is 0.1. The regularization weight of the
parameters is 1E−5.

For all the sentences from the five datasets, we
parse them with constituency parser (Klein and
Manning, 2003) to obtain the trees for our and
some competitor models.

5.2 Competitor Models
We give some descriptions about the setting of our
models and several baseline models.

• CharLSTM: Character level LSTM.
• TLSTM: Vanilla tree-based LSTM, proposed

by Tai et al. (2015).
• Cont-TLSTM: Context-dependent tree-based

LSTM, introduced by Bowman et al. (2016).
• iTLSTM-Lo: Proposed model with Look-Up

idiomatic interpreter.
• iTLSTM-Mo: Proposed model with

Morphology-Sensitive interpreter.

5.3 Evaluation over Mainstream Datasets
The experimental results are shown in Table 5.
We can see Cont-TLSTM outperforms TLSTM on
all four tasks, showing the importance of context-
sensitive composition. Besides, both iTLSTM-Lo
and iTLSTM-Mo achieve better results than TL-
STM and Cont-LSTM, which indicates the ef-
fectiveness of our introduced modules (detector
and idiomatic interpreter). Additionally, compared
with iTLSTM-Lo, iTLSTM-Mo behaves better,
suggesting its char-based idiomatic interpreter is
more powerful.

Although four mainstream datasets are not rich
in idioms, we could also observe substantial im-
provement gained from our models. We attribute
this success to the power of introduced detector in
identifying other non-compositional collocations
besides idioms. We will discuss about this later.

5.4 Evaluation over iSent Dataset
Since iSent is a newly-introduced dataset, there
is no existing baselines. Nevertheless, we provide
several strong baselines implemented by ourselves
as shown in Table 6, and we can observe that:

• Differing from the improvement achieved on
mainstream datasets, proposed models have
shown their advantages on idiom-enriched
sentences. They obtain more significant im-
provements.
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Model MR SST-1 SST-2 SUBJ

NBOW 77.2 42.4 80.5 91.3
RAE
(Socher et al., 2011) 77.7 43.2 82.4 -

MV-RNN
(Socher et al., 2012) 79.0 44.4 82.9 -

RNTN
(Socher et al., 2013) - 45.7 85.4 -

DCNN
(Kalchbrenner et al., 2014) - 48.5 86.8 -

CNN-multichannel
(Kim, 2014) 81.5 47.4 88.1 93.2

CharLSTM 75.2 44.0 85.2 90.2
TLSTM 78.7 48.5 86.1 91.0
Cont-TLSTM 79.5 48.9 86.4 91.7
iTLSTM-Lo 81.6 49.9 87.7 93.2
iTLSTM-Mo 82.5 51.2 88.2 94.5

Table 5: Accuracies of our models on four datasets
against state-of-the-art neural models.

Model Train Dev. Test

NBOW 80.9 77.1 74.5
LSTM 87.5 76.9 75.0
BiLSTM 93.4 76.8 76.3
CharLSTM 92.4 75.1 74.4
TLSTM 88.2 75.3 74.9
Cont-TLSTM 90.8 76.2 75.5

iTLSTM-Lo 88.9 79.6 78.1
iTLSTM-Mo 91.3 81.1 80.0

Table 6: Accuracies of our models on iSent dataset
against typical baselines. BiLSTM represents bidi-
rectional LSTM.

• Additionally, iTLSTM-Lo performs worse
than iTLSTM-Mo while still surpasses
baseline models, which also indicates the
variation-sensitive model (iTLSTM-Mo) of
idioms could further improve the perfor-
mance.

5.5 Analysis
In this section, we will provide more detailed
quantitative and qualitative analysis in terms of
three properties of idioms described in Table 1:
flexibility, invisibility and idiomaticity.

Flexibility Besides the overall accuracies on the
test set, we also list the performance achieved by
different models over the different parts of test set:
original, morphological and lexical, which repre-
sents different types of variations and have been
described in Table 4.

We can see from Figure 3, both idiom-aware
models achieve better performance than Cont-

original morphology lexical
65

70

75

80

#
A

cc
.

Cont-TLSTM iTLSTM-Lo iTLSTM-Mo

Figure 3: Performances achieved by different
models are subdivided into three parts. Origi-
nal, Morphology, Lexical represents accuracies
achieved by corresponding part of test data.

TLSTM by a large margin on the original part of
test set, which indicates the importance of under-
standing idiomatic phrases during sentence mod-
elling. Additionally, iTLSTM+Mo outperforms
the other two models on the test set, suggesting
the effectiveness of morphology-based model for
modeling idiom variations.

Invisibility and Idiomaticity Previous experi-
mental results have shown the effectiveness of our
models. Here, we want to know how the intro-
duced idiom detector contributes to the improve-
ment of performance. Toward this end, we analyze
all the 157 samples which our model predicts cor-
rectly while baseline model (Cont-TLSTM) fails
on iSent, and find more than 120 sentences are
given wrong sentiment by Cont-TLSTM due to ig-
noring the figurative meanings of idioms. For ex-
ample, as shown in Figure 4, we randomly sam-
ple a sentence and analyze the changes of the pre-
dicted sentiment score at different nodes of the
tree.

The sentence “The movie enable my
friends to blow a gasket” has negative
sentiment. Cont-TLSTM gives a wrong predic-
tion due to ignoring the information expressed
by the idiomatic phrase “blow a gasket”.
By contrast, our model correctly detects this
idiom, whose meaning plays a major role in final
sentiment prediction.

Non-compositional Phrases Detection Besides
idioms, we find the introduced detector can
also pick up other types of non-compositional
phrases4. We roughly sum up these non-

4An idiom itself is a non-compositional phrase.
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Figure 4: The change of the predicted sentiment score at different nodes of the tree. The red and blue
color represent positive and negative sentiment respectively, where darker indicates higher confidence.
Dashed triangle or square box denote not being selected by detector.

PN VP NP AP

Notting Hill let alone short cuts on earth
Holly Bolly take cover deja vu at once
star wars saga rips off black comedy all in all
Barry Skolnick thumb down femme fatale not only
Apollo 13 fall apart no problem at times

Table 7: PN, VP, NP and AP represent proper
noun, noun phrase, verb phrase and adverbial
phrase respectively.

compositional phrases picked up by introduced
detector from all the five development sets and list
them in Table 7.

From the table, we can see that most of
these phrases either imply an affective stance to-
ward something: “thumbs down”, or are criti-
cal to the understanding of sentences such as the
“Verb Phrases” and “Adverb Phrases”. For exam-
ple, the sentence “More often than not,
this mixed bag hit its mark” has a
positive sentiment. Cont-TLSTM pays much more
attention to the word “not” without realizing
that it belongs to the collocation “more often
than not”, which expresses neutral emotion. In
comparison, our model regards this collocation as
a whole with neutral sentiment, which is crucial
for the final prediction.

6 Related Work

Previous work related to idioms focused on
their identification, which falls in two kinds of
paradigms: idiom type classification (Gedigian
et al., 2006; Shutova et al., 2010) and idiom to-
ken classification (Katz and Giesbrecht, 2006; Li
and Sporleder, 2009; Fazly et al., 2009; Peng et al.,
2014; Salton et al., 2016). Different with these
work, we integrate idioms understanding into a
real-world task and consider different peculiarities

of idioms in an end-to-end trainable framework.
Recently, there are some work exploring the

compositionality of various types of phrases (Kart-
saklis et al., 2012; Muraoka et al., 2014; Hermann,
2014; Hashimoto and Tsuruoka, 2016). Compared
with these work, we focus on how to properly
model idioms under the context of sentence rep-
resentations.

More recently, Zhu et al. (2016) propose a
DAG-structured LSTM to incorporate external
semantics including non-compositional or holis-
tically learned semantics. Its key characteris-
tic is that a DAG needs be built in advance,
which merges some detected n-grams as the non-
compositional phrases based on external knowl-
edge. Different from this work, we focus on how
to integrate detection and understanding of idioms
into a unified end-to-end model, in which an id-
iomatic detector is introduced to adaptively con-
trol the semantic compositionality. Particularly, in
the whole process no extra information is given
to tell which phrases should be regarded as non-
compositional.

7 Conclusion and Future Work

In this paper, we lay idioms understanding in the
context of sentence-level semantic representation
based on two linguistic perspectives. To apply
our model into the real-world task, we introduce
a sizeable idiom-enriched sentiment classification
dataset, which covers abundant peculiarities of id-
ioms. We make an elaborate experiment design
and case analysis to evaluate the effectiveness of
our proposed models.

In future work, we would like to investigate
more complicated idiom-enriched NLP tasks, such
as machine translation.
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Abstract

To learn a semantic parser from denota-
tions, a learning algorithm must search
over a combinatorially large space of log-
ical forms for ones consistent with the an-
notated denotations. We propose a new
online learning algorithm that searches
faster as training progresses. The two
key ideas are using macro grammars to
cache the abstract patterns of useful log-
ical forms found thus far, and holistic trig-
gering to efficiently retrieve the most rele-
vant patterns based on sentence similarity.
On the WIKITABLEQUESTIONS dataset,
we first expand the search space of an ex-
isting model to improve the state-of-the-
art accuracy from 38.7% to 42.7%, and
then use macro grammars and holistic trig-
gering to achieve an 11x speedup and an
accuracy of 43.7%.

1 Introduction

We consider the task of learning a semantic
parser for question answering from question-
answer pairs (Clarke et al., 2010; Liang et al.,
2011; Berant et al., 2013; Artzi and Zettlemoyer,
2013; Pasupat and Liang, 2015). To train such
a parser, the learning algorithm must somehow
search for consistent logical forms (i.e., logical
forms that execute to the correct answer denota-
tion). Typically, the search space is defined by a
compositional grammar over logical forms (e.g., a
context-free grammar), which we will refer to as
the base grammar.

To cover logical forms that answer complex
questions, the base grammar must be quite general
and compositional, leading to a huge search space
that contains many useless logical forms. For ex-
ample, the parser of Pasupat and Liang (2015) on

Rank Nation Gold Silver Bronze
r1 : 1 France 3 1 1
r2 : 2 Ukraine 2 1 2
r3 : 3 Turkey 2 0 1
r4 : 4 Sweden 2 0 0
r5 : 5 Iran 1 2 1

Table 1: A knowledge base for the question x =
“Who ranked right after Turkey?”. The target de-
notation is y = {Sweden}.

Wikipedia table questions (with beam size 100)
generates and featurizes an average of 8,400 par-
tial logical forms per example. Searching for con-
sistent logical forms is thus a major computational
bottleneck.

In this paper, we propose macro grammars to
bias the search towards structurally sensible logi-
cal forms. To illustrate the key idea, suppose we
managed to parse the utterance “Who ranked right
after Turkey?” in the context of Table 1 into the
following consistent logical form (in lambda DCS)
(Section 2.1):

R[Nation].R[Next].Nation.Turkey,

which identifies the cell under the Nation column
in the row after Turkey. From this logical form,
we can abstract out all relations and entities to pro-
duce the following macro:

R[{Rel#1}].R[Next].{Rel#1}.{Ent#2},

which represents the abstract computation: “iden-
tify the cell under the {Rel#1} column in the row
after {Ent#2}.” More generally, macros capture
the overall shape of computations in a way that
generalizes across different utterances and knowl-
edge bases. Given the consistent logical forms of
utterances parsed so far, we extract a set of macro
rules. The resulting macro grammar consisting of
these rules generates only logical forms conform-
ing to these macros, which is a much smaller and
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higher precision set compared to the base gram-
mar.

Though the space of logical forms defined by
the macro grammar is smaller, it is still expensive
to parse with them as the number of macro rules
grows with the number of training examples. To
address this, we introduce holistic triggering: for
a new utterance, we find the K most similar utter-
ances and only use the macro rules induced from
any of their consistent logical forms. Parsing now
becomes efficient as only a small subset of macro
rules are triggered for any utterance. Holistic trig-
gering can be contrasted with the norm in semantic
parsing, in which logical forms are either triggered
by specific phrases (anchored) or can be triggered
in any context (floating).

Based on the two ideas above, we propose
an online algorithm for jointly inducing a macro
grammar and learning the parameters of a se-
mantic parser. For each training example, the
algorithm first attempts to find consistent logi-
cal forms using holistic triggering on the current
macro grammar. If it succeeds, the algorithm uses
the consistent logical forms found to update model
parameters. Otherwise, it applies the base gram-
mar for a more exhaustive search to enrich the
macro grammar. At test time, we only use the
learned macro grammar.

We evaluate our approach on the WIKITABLE-
QUESTIONS dataset (Pasupat and Liang, 2015),
which features a semantic parsing task with open-
domain knowledge bases and complex questions.
We first extend the model in Pasupat and Liang
(2015) to achieve a new state-of-the-art test ac-
curacy of 42.7%, representing a 10% relative im-
provement over the best reported result (Haug
et al., 2017). We then show that training with
macro grammars yields an 11x speedup compared
to training with only the base grammar. At test
time, using the learned macro grammar achieves a
slightly better accuracy of 43.7% with a 16x run
time speedup over using the base grammar.

2 Background

We base our exposition on the task of question an-
swering on a knowledge base. Given a natural lan-
guage utterance x, a semantic parser maps the ut-
terance to a logical form z. The logical form is
executed on a knowledge base w to produce deno-
tation JzKw. The goal is to train a semantic parser
from a training set of utterance-denotation pairs.

2.1 Knowledge base and logical forms
A knowledge base refers to a collection of enti-
ties and relations. For the running example “Who
ranked right after Turkey?”, we use Table 1 from
Wikipedia as the knowledge base. Table cells
(e.g., Turkey) and rows (e.g., r3 = the 3rd row)
are treated as entities. Relations connect enti-
ties: for example, the relation Nation maps r3 to
Turkey, and a special relation Next maps r3 to r4.

A logical form z is a small program that can be
executed on the knowledge base. We use lambda
DCS (Liang, 2013) as the language of logical
forms. The smallest units of lambda DCS are en-
tities (e.g., Turkey) and relations (e.g., Nation).
Larger logical forms are composed from smaller
ones, and the denotation of the new logical form
can be computed from denotations of its con-
stituents. For example, applying the join operation
on Nation and Turkey gives Nation.Turkey,
whose denotation is JNation.TurkeyKw = {r3},
which corresponds to the 3rd row of the table. The
partial logical form Nation.Turkey can then be
used to construct a larger logical form:

z = R[Nation].R[Next].Nation.Turkey, (1)

where R[·] represents the reverse of a relation.
The denotation of the logical form z with respect
to the knowledge base w is equal to JzKw =
{Sweden}. See Liang (2013) for more details
about the semantics of lambda DCS.

2.2 Grammar rules
The space of logical forms is defined recursively
by grammar rules. In this setting, each constructed
logical form belongs to a category (e.g., Entity,
Rel, Set), with a special category Root for com-
plete logical forms. A rule specifies the categories
of the arguments, category of the resulting logi-
cal form, and how the logical form is constructed
from the arguments. For instance, the rule

Rel[z1] + Set[z2]→ Set[z1.z2] (2)

specifies that a partial logical form z1 of category
Rel and z2 of category Set can be combined into
z1.z2 of category Set. With this rule, we can
construct Nation.Turkey if we have constructed
Nation of type Rel and Turkey of type Set.

We consider the rules used by Pasupat and
Liang (2015) for their floating parser.1 The rules

1Their grammar and our implementation use more fine-
grained categories (Atomic, V alues, Records) instead of
Set. We use the coarser category here for simplicity.
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Root[z1]
R[Nation].R[Next].Nation.Turkey

Set[R[z1].z2]
R[Nation].R[Next].Nation.Turkey

Set[R[Next].z1]
R[Next].Nation.Turkey

Set[z1.z2]
Nation.Turkey

Set[z1]
Turkey

Ent[Turkey]
Turkey

Rel[Nation]
Nation

Rel[Nation]
Nation

∅ →

∅ →

“Turkey”→

(a) Derivation tree (zi represents the ith child)

Root[z1]

Set[R[z1].z2]

Set[R[Next].z1]

Set[z1.z2]

Set[z1]

Ent

Rel

(b) Macro

Root[z1]

M2

Sub-macro M3

Set[z1]

Ent

Sub-macro M1

Set[R[z1].z2]

Set[R[Next].z1]

Set[z1.z2]

M1Rel

Sub-macro M2

(c) Atomic sub-macros

Figure 1: From the derivation tree (a), we extract a
macro (b), which can be further decomposed into
atomic sub-macros (c). Each sub-macro is con-
verted into a macro rule.

are divided into compositional rules and terminal
rules. Rule (2) above is an example of a compo-
sitional rule, which combines one or more partial
logical forms together. A terminal rule has one of
the following forms:

TokenSpan[span]→ c[f(span)] (3)

∅ → c[f(∅)] (4)

where c is a category. A rule with the form (3) con-
verts an utterance token span (e.g., “Turkey”) into
a partial logical form (e.g., Turkey). A rule with
the form (4) generates a partial logical form with-
out any trigger. This allows us to generate logical
predicates that do not correspond to any part of the
utterance (e.g., Nation).

A complete logical form is generated by recur-
sively applying rules. We can represent the deriva-
tion process by a derivation tree such as in Fig-

ure 1a. Every node of the derivation tree corre-
sponds to one rule. The leaf nodes correspond to
terminal rules, and the intermediate nodes corre-
spond to compositional rules.

2.3 Learning a semantic parser
Parameters of the semantic parser are learned from
training data {(xi, wi, yi)}ni=1. Given a training
example with an utterance x, a knowledge base
w, and a target denotation y, the learning algo-
rithm constructs a set of candidate logical forms
indicated by Z . It then extracts a feature vector
φ(x,w, z) for each z ∈ Z , and defines a log-linear
distribution over the candidates z:

pθ(z | x,w) ∝ exp(θ>φ(x,w, z)), (5)

where θ is a parameter vector. The straightfor-
ward way to construct Z is to enumerate all possi-
ble logical forms induced by the grammar. When
the search space is prohibitively large, it is a com-
mon practice to use beam search. More precisely,
the algorithm constructs partial logical forms re-
cursively by the rules, but for each category and
each search depth, it keeps only the B highest-
scoring logical forms according to the model prob-
ability (5).

During training, the parameter θ is learned by
maximizing the regularized log-likelihood of the
correct denotations:

J(θ) =
1

n

n∑

i=1

log pθ(yi | xi, wi)− λ‖θ‖1, (6)

where the probability pθ(yi | xi, wi) marginalizes
over the space of candidate logical forms:

pθ(yi | xi, wi) =
∑

z∈Zi:JzKwi=yi
pθ(z | xi, wi).

The objective is optimized using AdaGrad (Duchi
et al., 2010). At test time, the algorithm selects a
logical form z ∈ Z with the highest model prob-
ability (5), and then executes it on the knowledge
base w to predict the denotation JzKw.

3 Learning a macro grammar

The base grammar usually defines a large search
space containing many irrelevant logical forms.
For example, the grammar in Pasupat and Liang
(2015) can generate long chains of join opera-
tions (e.g., R[Silver].Rank.R[Gold].Bronze.2)
that rarely express meaningful computations.
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Algorithm 1: Processing a training example
Data: example (x,w, y), macro grammar,

base grammar with terminal rules T
1 Select a setR of macro rules (Section 3.4);
2 Generate a set Z of candidate logical forms

from rulesR∪ T (Section 2.3);
3 if Z contains consistent logical forms then
4 Update model parameters (Section 3.5);
5 else
6 Apply the base grammar to search for a

consistent logical form (Section 2.3);
7 Augment the macro grammar

(Section 3.6);
8 end
9 Associate utterance x with the highest-

scoring consistent logical form found;

The main contribution of this paper is a new al-
gorithm to speed up the search based on previous
searches. At a high-level, we incrementally build
a macro grammar which encodes useful logical
form macros discovered during training. Algo-
rithm 1 describes how our learning algorithm pro-
cesses each training example. It first tries to use an
appropriate subset of rules in the macro grammar
to search for logical forms. If the search succeeds,
then the semantic parser parameters are updated
as usual. Otherwise, it falls back to the base gram-
mar, and then add new rules to the macro grammar
based on the consistent logical form found. Only
the macro grammar is used at test time.

We first describe macro rules and how they are
generated from a consistent logical form. Then we
explain the steps of the training algorithm in detail.

3.1 Logical form macros

A macro characterizes an abstract logical form
structure. We define the macro for any given log-
ical form z by transforming its derivation tree as
illustrated in Figure 1b. First, for each terminal
rule (leaf node), we substitute the rule by a place-
holder, and name it with the category on the right-
hand side of the rule. Then we merge leaf nodes
that represent the same partial logical form. For
example, the logical form (1) uses the relation
Nation twice, so in Figure 1b, we merge the two
leaf nodes to impose such a constraint.

While the resulting macro may not be tree-like,
we call each node root or leaf if it is a root node
or a leaf node of the associated derivation tree.

3.2 Constructing macro rules from macros

For any given macro M , we can construct a set
of macro rules that, when combined with termi-
nal rules from the base grammar, generates exactly
the logical forms that satisfy the macro M . The
straightforward approach is to associate a unique
rule with each macro: assuming that its k leaf
nodes contain categories c1, . . . , ck, we can define
a rule:

c1[z1] + · · ·+ ck[zk]→ Root[f(z1, . . . , zk)], (7)

where f substitutes z1, . . . , zk into the corre-
sponding leaf nodes of macro M . For example,
the rule for the macro in Figure 1b is

Rel[z1]+Ent[z2]→ Root[R[z1].R[Next].z1.z2].

3.3 Decomposed macro rules

Defining a unique rule for each macro is computa-
tionally suboptimal since the common structures
shared among macros are not being exploited.
For example, while max(R[Rank].Gold.Num.2)
and R[Nation].argmin(Gold.Num.2, Index) be-
long to different macros, the partial logical form
Gold.Num.2 is shared, and we wish to avoid gen-
erating and featurizing it more than once.

In order to reuse such shared parts, we de-
compose macros into sub-macros and define rules
based on them. A subgraph M ′ of M is a sub-
macro if (1) M ′ contains at least one non-leaf
node; and (2) M ′ connects to the rest of the macro
M\M ′ only through one node (the root of M ′). A
macroM is called atomic if the only sub-macro of
M is itself.

Given a non-atomic macro M , we can find an
atomic sub-macro M ′ of M . For example, from
Figure 1b, we first find sub-macro M ′ = M1. We
detach M ′ from M and define a macro rule:

c′1[z1] + · · ·+ c′k[zk]→ c′out[f(z1, . . . , zk)], (8)

where c′1, . . . , c
′
k are categories of the leaf nodes

of M ′, and f substitutes z1, . . . , zk into the sub-
macro M ′. The category c′out is computed by
serializing M ′ as a string; this way, if the sub-
macro M ′ appears in a different macro, the cat-
egory name will be shared. Next, we substitute
the subgraph M ′ in M by a placeholder node with
name c′out. The procedure is repeated on the new
graph until the remaining macro is atomic. Finally,
we define a single rule for the atomic macro. The
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macro grammar uses the decomposed macro rules
in replacement of Rule (7).

For example, the macro in Figure 1b is decom-
posed into three macro rules:

Ent[z1]→M1[z1],

Rel[z1] +M1[z2]→M2[R[z1].R[Next].z1.z2],

M2[z1]→ Root[z1].

These correspond to the three atomic sub-macros
M1, M2 and M3 in Figure 1c. The first and the
second macro rules can be reused by other macros.

Having defined macro rules, we now describe
how Algorithm 1 uses and updates the macro
grammar when processing each training example.

3.4 Triggering macro rules

Throughout training, we keep track of a set S of
training utterances that have been associated with
a consistent logical form. (The set S is updated
by Step 9 of Algorithm 1.) Then, given a train-
ing utterance x, we compute its K-nearest neigh-
bor utterances in S, and select all macro rules that
were extracted from their associated logical forms.
These macro rules are used to parse utterance x.

We use token-level Levenshtein distance as
the distance metric for computing nearest neigh-
bors. More precisely, every utterance is writ-
ten as a sequence of lemmatized tokens x =
(x(1), . . . , x(m)). After removing all determiners
and infrequent nouns that appear in less than 2% of
the training utterances, the distance between two
utterances x and x′ is defined as the Levenshtein
distance between the two sequences. When com-
puting the distance, we treat each word token as
an atomic element. For example, the distance be-
tween “highest score” and “best score” is 1. De-
spite its simplicity, the Levenshtein distance does
a good job in capturing the structural similarity
between utterances. Table 2 shows that nearest
neighbor utterances often map to consistent logi-
cal forms with the same macro.

In order to compute the nearest neighbors effi-
ciently, we pre-compute a sorted list of Kmax =
100 nearest neighbors for every utterance before
training starts. During training, calculating the in-
tersection of this sorted list with the set S gives the
nearest neighbors required. For our experiments,
the preprocessing time is negligible compared to
the overall training time (less than 3%), but if com-
puting nearest neighbors is expensive, then paral-

Who ranked right after Turkey?
Who took office right after Uriah Forrest?
How many more passengers flew to Los Angeles

than to Saskatoon in 2013?
How many more Hungarians live in the Serbian

Banat region than Romanians in 1910?
Which is deeper, Lake Tuz or Lake Palas Tuzla?
Which peak is higher, Mont Blanc or Monte Rosa?

Table 2: Examples of nearest neighbor utterances
in the WIKITABLEQUESTIONS dataset.

lelization or approximate algorithms (e.g., Indyk,
2004) could be used.

3.5 Updating model parameters
Having computed the triggered macro rulesR, we
combine them with the terminal rules T from the
base grammar (e.g., for building Ent and Rel) to
create a per-example grammar R ∪ T for the ut-
terance x. We use this grammar to generate logi-
cal forms using standard beam search. We follow
Section 2.3 to generate a set of candidate logical
forms Z and update model parameters.

However, we deviate from Section 2.3 in one
way. Given a set Z of candidate logical forms
for some training example (xi, wi, yi), we pick the
logical form z+i with the highest model probability
among consistent logical forms, and pick z−i with
the highest model probability among inconsistent
logical forms, then perform a gradient update on
the objective function:

J(θ) =
1

n

n∑

i=1

[
log

p+i
p+i + p−i

]
− λ‖θ‖1, (9)

where p+i = pθ(z
+
i | xi, wi)

p−i = pθ(z
−
i | xi, wi).

Compared to (6), this objective function only con-
siders the top consistent and inconsistent logical
forms for each example instead of all candidate
logical forms. Empirically, we found that opti-
mizing (9) gives a 2% gain in prediction accuracy
compared to optimizing (6).

3.6 Updating the macro grammar
If the triggered macro rules fail to find a consis-
tent logical form, we fall back to performing a
beam search on the base grammar. For efficiency,
we stop the search either when a consistent logical
form is found, or when the total number of gener-
ated logical forms exceeds a threshold T . The two
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stopping criteria prevent the search algorithm from
spending too much time on a complex example.
We might miss consistent logical forms on such
examples, but because the base grammar is only
used for generating macro rules, not for updat-
ing model parameters, we might be able to induce
the same macro rules from other examples. For
instance, if an example has an uttereance phrase
that matches too many knowledge base entries, it
would be more efficient to skip the example; the
macro that would have been extracted from this
example can be extracted from less ambiguous ex-
amples with the same question type. Such omis-
sions are not completely disastrous, and can speed
up training significantly.

When the algorithm succeeds in finding a con-
sistent logical form z using the base grammar,
we derive its macro M following Section 3.1,
then construct macro rules following Section 3.3.
These macro rules are added to the macro gram-
mar. We also associate the utterance x with the
consistent logical form z, so that the macro rules
that generate z can be triggered by other examples.
Parameters of the semantic parser are not updated
in this case.

3.7 Prediction

At test time, we follow Steps 1–2 of Algorithm 1
to generate a set Z of candidate logical forms
from the triggered macro rules, and then output the
highest-scoring logical form in Z . Since the base
grammar is never used at test time, prediction is
generally faster than training.

4 Experiments

We report experiments on the WIKITABLEQUES-
TIONS dataset (Pasupat and Liang, 2015). Our al-
gorithm is compared with the parser trained only
with the base grammar, the floating parser of Pa-
supat and Liang (2015) (PL15), the Neural Pro-
grammer parser (Neelakantan et al., 2016) and the
Neural Multi-Step Reasoning parser (Haug et al.,
2017). Our algorithm not only outperforms the
others, but also achieves an order-of-magnitude
speedup over the parser trained with the base
grammar and the parser in PL15.

4.1 Setup

The dataset contains 22,033 complex questions on
2,108 Wikipedia tables. Each question comes with
a table, and the tables during evaluation are dis-

“Which driver appears the most?”
argmax(R[Driver].Type.Row,R[λx.count(Driver.x)])

“What language was spoken more during
the Olympic oath, English or French?”

argmax(English t French,R[λx.count(Language.x)])

“Who is taller, Rose or Tim?”
argmax(Rose t Tim,R[λx.R[Num].R[Height].Name.x)])

Table 3: Several example logical forms our gram-
mar can generate that are not covered by PL15.

joint from the ones during training. The train-
ing and test sets contain 14,152 and 4,344 exam-
ples respectively.2 Following PL15, the develop-
ment accuracy is averaged over the first three 80-
20 training data splits given in the dataset package.
The test accuracy is reported on the train-test data
split.

We use the same features and logical form prun-
ing strategies as PL15, but generalize their base
grammar. To control the search space, the actual
system in PL15 restricts the superlative operators
argmax and argmin to be applied only on the set
of table rows. We allow these operators to be ap-
plied on the set of tables cells as well, so that the
grammar captures certain logical forms that are
not covered by PL15 (see Table 3). Additionally,
for terminal rule (3), we allow f(span) to pro-
duce entities that approximately match the token
span in addition to exact matches. For example,
the phrase “Greenville” can trigger both entities
Greenville Ohio and Greensville.

We chose hyperparameters using the first train-
dev split. The beam size B of beam search is cho-
sen to be B = 100. The K-nearest neighbor pa-
rameter is chosen as K = 40. Like PL15, our
algorithm takes 3 passes over the dataset for train-
ing. The maximum number of logical forms gen-
erated in step 6 of Algorithm 1 is set to T = 5,000
for the first pass. For subsequent passes, we set
T = 0 (i.e., never fall back to the base grammar)
so that we stop augmenting the macro grammar.
During the first pass, Algorithm 1 falls back to the
base grammar on roughly 30% of the training ex-
amples.

For training the baseline parser that only relies
on the base grammar, we use the same beam size
B = 100, and take 3 passes over the dataset for
training. There is no maximum constraint on the

2The remaining 3,537 examples were not included in the
original data split.
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Dev Test
Pasupat and Liang (2015) 37.0% 37.1%
Neelakantan et al. (2016) 37.5% 37.7%
Haug et al. (2017) - 38.7%
This paper: base grammar 40.6% 42.7%
This paper: macro grammar 40.4% 43.7%

Table 4: Results on WIKITABLEQUESTIONS.

number of logical forms that can be generated for
each example.

4.2 Coverage of the macro grammar

With the base grammar, our parser generates
13,700 partial logical forms on average for each
training example, and hits consistent logical forms
on 81.0% of the training examples. With the
macro rules from holistic triggering, these num-
bers become 1,300 and 75.6%. The macro rules
generate much fewer partial logical forms, but at
the cost of slightly lower coverage.

However, these coverage numbers are com-
puted based on finding any logical form that ex-
ecutes to the correct denotation. This includes
spurious logical forms, which do not reflect the
semantics of the question but are coincidentally
consistent with the correct denotation. (For exam-
ple, the question “Who got the same number of sil-
vers as France?” on Table 1 might be spuriously
parsed as R[Nation].R[Next].Nation.France,
which represents the nation listed after France.)
To evaluate the “true” coverage, we sample 300
training examples and manually label their logi-
cal forms. We find that on 48.7% of these exam-
ples, the top consistent logical form produced by
the base grammar is semantically correct. For the
macro grammar, this ratio is also 48.7%, meaning
that the macro grammar’s effective coverage is as
good as the base grammar.

The macro grammar extracts 123 macros in to-
tal. Among the 75.6% examples that were covered
by the macro grammar, the top 34 macros cover
90% of consistent logical forms. By examining
the top 34 macros, we discover explicit semantic
meanings for 29 of them, which are described in
detail in the supplementary material.

4.3 Accuracy and speedup

We report prediction accuracies in Table 4. With
a more general base grammar (additional superla-
tives and approximate matching), and by optimiz-

Time (ms/ex)
Acc. Train Pred

PL15 37.0% 619 645
Ours: base grammar 40.6% 1,117 1,150
Ours: macro grammar 40.4% 99 70

no holistic triggering 40.1% 361 369
no macro decomposition 40.3% 177 159

Table 5: Comparison and ablation study: the
columns report averaged prediction accuracy,
training time, and prediction time (milliseconds
per example) on the three train-dev splits.

ing the objective function (9), our base parser out-
performs PL15 (42.7% vs 37.1%). Learning a
macro grammar slightly improves the accuracy to
43.7% on the test set. On the three train-dev splits,
the averaged accuracy achieved by the base gram-
mar and the macro grammar are close (40.6% vs
40.4%).

In Table 5, we compare the training and predic-
tion time of PL15 as well as our parsers. For a
fair comparison, we trained all parsers using the
SEMPRE toolkit (Berant et al., 2013) on a ma-
chine with Xeon 2.6GHz CPU and 128GB mem-
ory without parallelization. The time for con-
structing the macro grammar is included as part
of the training time. Table 5 shows that our parser
with the base grammar is more expensive to train
than PL15. However, training with the macro
grammar is substantially more efficient than train-
ing with only the base grammar— it achieves 11x
speedup for training and 16x speedup for test time
prediction.

We run two ablations of our algorithm to evalu-
ate the utility of holistic triggering and macro de-
composition. The first ablation triggers all macro
rules for parsing every utterance without holistic
triggering, while the second ablation constructs
Rule (7) for every macro without decomposing it
into smaller rules. Table 5 shows that both vari-
ants result in decreased efficiency. This is be-
cause holistic triggering effectively prunes irrele-
vant macro rules, while macro decomposition is
important for efficient beam search and featuriza-
tion.

4.4 Influence of hyperparameters

Figure 2a shows that for all beam sizes, training
with the macro grammar is more efficient than
training with the base grammar, and the speedup
rate grows with the beam size. The test time ac-
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(a) Varying beam size (b) Varying neighbor size (c) Varying base grammar usage count

Figure 2: Prediction accuracy and training time (per example) with various hyperparameter choices,
reported on the first train-dev split.

curacy of the macro grammar is robust to varying
beam sizes as long as B ≥ 25.

Figure 2b shows the influence of the neighbor
size K. A smaller neighborhood triggers fewer
macro rules, leading to faster computation. The
accuracy peaks at K = 40 then decreases slightly
for large K. We conjecture that the smaller num-
ber of neighbors acts as a regularizer.

Figure 2c reports an experiment where we limit
the number of fallback calls to the base grammar
to m. After the limit is reached, subsequent train-
ing examples that require fallback calls are simply
skipped. This limit means that the macro gram-
mar will get augmented at most m times during
training. We find that for small m, the prediction
accuracy grows with m, implying that building a
richer macro grammar improves the accuracy. For
larger m, however, the accuracies hardly change.
According to the plot, a competitive macro gram-
mar can be built by calling the base grammar on
less than 15% of the training data.

Based on Figure 2, we can trade accuracy for
speed by choosing smaller values of (B,K,m).
With B = 50, K = 40 and m = 2000, the macro
grammar achieves a slightly lower averaged devel-
opment accuracy (40.2% rather than 40.4%), but
with an increased speedup of 15x (versus 11x) for
training and 20x (versus 16x) for prediction.

5 Related work and discussion

A traditional semantic parser maps natural lan-
guage phrases into partial logical forms and

composes these partial logical forms into com-
plete logical forms. Parsers define composi-
tion based on a grammar formalism such as
Combinatory Categorial Grammar (CCG) (Zettle-
moyer and Collins, 2007; Kwiatkowski et al.,
2011, 2013; Kushman and Barzilay, 2013; Krish-
namurthy and Kollar, 2013), Synchronous CFG
(Wong and Mooney, 2007), and CFG (Kate and
Mooney, 2006; Chen and Mooney, 2011; Berant
et al., 2013; Desai et al., 2016), while others use
the syntactic structure of the utterance to guide
composition (Poon and Domingos, 2009; Reddy
et al., 2016). Recent neural semantic parsers al-
low any sequence of logical tokens to be generated
(Dong and Lapata, 2016; Jia and Liang, 2016; Ko-
ciský et al., 2016; Neelakantan et al., 2016; Liang
et al., 2017; Guu et al., 2017). The flexibility of
these composition methods allows arbitrary logi-
cal forms to be generated, but at the cost of a vastly
increased search space.

Whether we have annotated logical forms or
not has dramatic implications on what type of ap-
proach will work. When logical forms are avail-
able, one can perform grammar induction to mine
grammar rules without search (Kwiatkowski et al.,
2010). When only annotated denotations are avail-
able, as in our setting, one must use a base gram-
mar to define the output space of logical forms.
Usually these base grammars come with many re-
strictions to guard against combinatorial explosion
(Pasupat and Liang, 2015).

Previous work on higher-order unification for
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lexicon induction (Kwiatkowski et al., 2010) us-
ing factored lexicons (Kwiatkowski et al., 2011)
also learns logical form macros with an online al-
gorithm. The result is a lexicon where each entry
contains a logical form template and a set of possi-
ble phrases for triggering the template. In contrast,
we have avoided binding grammar rules to particu-
lar phrases in order to handle lexical variations. In-
stead, we use a more flexible mechanism—holistic
triggering—to determine which rules to fire. This
allows us to generate logical forms for utterances
containing unseen lexical paraphrases or where the
triggering is spread throughout the sentence. For
example, the question “Who is X, John or Y” can
still trigger the correct macro extracted from the
last example in Table 3 even when X and Y are
unknown words.

Our macro grammars bears some resemblance
to adaptor grammars (Johnson et al., 2006) and
fragment grammars (O’Donnell, 2011), which are
also based on the idea of caching useful chunks of
outputs. These generative approaches aim to solve
the modeling problem of assigning higher proba-
bility mass to outputs that use reoccurring parts.
In contrast, our learning algorithm uses caching as
a way to constrain the search space for computa-
tional efficiency; the probabilities of the candidate
outputs are assigned by a separate discriminative
model. That said, the use of macro grammars does
have a small positive modeling contribution, as it
increases test accuracy from 42.7% to 43.7%.

An orthogonal approach for improving search
efficiency is to adaptively choose which part of
the search space to explore. For example, Berant
and Liang (2015) uses imitation learning to strate-
gically search for logical forms. Our holistic trig-
gering method, which selects macro rules based on
the similarity of input utterances, is related to the
use of paraphrases (Berant and Liang, 2014; Fader
et al., 2013) or string kernels (Kate and Mooney,
2006) to train semantic parsers. While the input
similarity measure is critical for scoring logical
forms in these previous works, we use the measure
only to retrieve candidate rules, while scoring is
done by a separate model. The retrieval bar means
that our similarity metric can be quite crude.

6 Summary

We have presented a method for speeding up se-
mantic parsing via macro grammars. The main
source of efficiency is the decreased size of the

logical form space. By performing beam search
on a few macro rules associated with the K-
nearest neighbor utterances via holistic triggering,
we have restricted the search space to semanti-
cally relevant logical forms. At the same time,
we still maintain coverage over the base logical
form space by occasionally falling back to the base
grammar and using the consistent logical forms
found to enrich the macro grammar. The higher ef-
ficiency allows us expand the base grammar with-
out having to worry much about speed: our model
achieves a state-of-the-art accuracy while also en-
joying an order magnitude speedup.
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T. Kociský, G. Melis, E. Grefenstette, C. Dyer,
W. Ling, P. Blunsom, and K. M. Hermann. 2016.
Semantic parsing with semi-supervised sequential
autoencoders. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1078–1087.

J. Krishnamurthy and T. Kollar. 2013. Jointly learning
to parse and perceive: Connecting natural language
to the physical world. Transactions of the Associa-
tion for Computational Linguistics (TACL), 1:193–
206.

N. Kushman and R. Barzilay. 2013. Using semantic
unification to generate regular expressions from nat-
ural language. In Human Language Technology and
North American Association for Computational Lin-
guistics (HLT/NAACL), pages 826–836.

T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer.
2013. Scaling semantic parsers with on-the-fly on-
tology matching. In Empirical Methods in Natural
Language Processing (EMNLP).

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and
M. Steedman. 2010. Inducing probabilistic CCG

grammars from logical form with higher-order unifi-
cation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1223–1233.

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and
M. Steedman. 2011. Lexical generalization in CCG
grammar induction for semantic parsing. In Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1512–1523.

C. Liang, J. Berant, Q. Le, and K. D. F. N. Lao.
2017. Neural symbolic machines: Learning seman-
tic parsers on Freebase with weak supervision. In
Association for Computational Linguistics (ACL).

P. Liang. 2013. Lambda dependency-based composi-
tional semantics. arXiv preprint arXiv:1309.4408.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
Association for Computational Linguistics (ACL),
pages 590–599.

A. Neelakantan, Q. V. Le, and I. Sutskever. 2016.
Neural programmer: Inducing latent programs with
gradient descent. In International Conference on
Learning Representations (ICLR).

T. J. O’Donnell. 2011. Productivity and Reuse in
Language. Ph.D. thesis, Massachusetts Institute of
Technology.

P. Pasupat and P. Liang. 2015. Compositional semantic
parsing on semi-structured tables. In Association for
Computational Linguistics (ACL).

H. Poon and P. Domingos. 2009. Unsupervised seman-
tic parsing. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).
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Abstract

A major challenge in paraphrase research
is the lack of parallel corpora. In this pa-
per, we present a new method to collect
large-scale sentential paraphrases from
Twitter by linking tweets through shared
URLs. The main advantage of our method
is its simplicity, as it gets rid of the classi-
fier or human in the loop needed to select
data before annotation and subsequent ap-
plication of paraphrase identification algo-
rithms in the previous work. We present
the largest human-labeled paraphrase cor-
pus to date of 51,524 sentence pairs and
the first cross-domain benchmarking for
automatic paraphrase identification. In ad-
dition, we show that more than 30,000
new sentential paraphrases can be easily
and continuously captured every month
at ∼70% precision, and demonstrate their
utility for downstream NLP tasks through
phrasal paraphrase extraction. We make
our code and data freely available.1

1 Introduction

A paraphrase is a restatement of meaning using
different expressions (Bhagat and Hovy, 2013). It
is a fundamental semantic relation in human lan-
guage, as formalized in the Meaning-Text linguis-
tic theory which defines meaning as ‘invariant of
paraphrases’ (Milićević, 2006). Researchers have
shown benefits of using paraphrases in a wide
range of applications (Madnani and Dorr, 2010),
including question answering (Fader et al., 2013),
semantic parsing (Berant and Liang, 2014), in-
formation extraction (Sekine, 2006; Zhang et al.,

1The code and data can be obtained from the first and last
author’s websites.

2015), machine translation (Mehdizadeh Seraj
et al., 2015), textual entailment (Dagan et al.,
2006; Bjerva et al., 2014; Marelli et al., 2014; Iza-
dinia et al., 2015), vector semantics (Faruqui et al.,
2015; Wieting et al., 2015), and semantic textual
similarity (Agirre et al., 2015; Li and Srikumar,
2016). Studying paraphrases in Twitter can also
help track unfolding events (Vosoughi and Roy,
2016) or the spread of information (Bakshy et al.,
2011) on social networks.

In this paper, we address a major challenge
in paraphrase research — the lack of parallel
corpora. There are only two publicly available
datasets of naturally occurring sentential para-
phrases and non-paraphrases:2 the MSRP corpus
derived from clustered news articles (Dolan and
Brockett, 2005) and the PIT-2015 corpus from
Twitter trending topics (Xu et al., 2014, 2015).
Our goal is not only to create a new annotated
paraphrase corpus, but to identify a new data
source and method that can narrow down the
search space of paraphrases without using the
classifier-biased or human-in-the-loop data selec-
tion as in MSRP and PIT-2015. This is so that sen-
tential paraphrases can be conveniently and con-
tinuously harvested in large quantities to benefit
downstream applications.

We present an effective method to collect sen-
tential paraphrases from tweets that refer to the
same URL and contribute a new gold-standard an-
notated corpus of 51,524 sentence pairs, which is
the largest to date (Table 1). We show the differ-
ent characteristics of this new dataset contrasting
the two existing corpora through the first system-

2Meaningful non-paraphrases (pairs of sentences that
have similar wordings or topics but different meanings, and
that are not randomly or artificially generated) have been very
difficult to obtain but are very important, because they serve
as necessary distractors in training and evaluation.
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Name Genre Size Sentence Length Multi-Ref. Non-Para.
MSR Paraphrase Corpus (MSRP) news 5801 pairs 18.9 words no yes
Twitter Paraphrase Corpus (PIT-2015) Twitter 18,762 pairs 11.9 words some yes
Twitter News URL Corpus (this work) Twitter 44,365 pairs 14.8 words yes yes
MSR Video Description Corpus YouTube 123,626 sentences 7.03 words yes no

Table 1: Summary of publicly available large sentential paraphrase corpora with manual quality assur-
ance. Our Twitter News URL Corpus has the advantages of including both meaningful non-paraphrases
(Non-Para.) and multiple references (Multi-Ref.), which are important for training paraphrase identifi-
cation and evaluating paraphrase generation, respectively.

atic study of paraphrase identification across mul-
tiple datasets. Our new corpus is complementary
to previous work, as the corpus contains multiple
references of both formal well-edited and informal
user-generated texts. This is also the first work
that provides a continuously growing collection,
with more than 30,000 new sentential paraphrases
per month automatically labeled at ∼70% preci-
sion. We demonstrate that up-to-date phrasal para-
phrases can then be extracted via word alignment
(see examples in Table 2). We plan to continue
collecting paraphrases using our method and re-
lease a constantly updating paraphrase resource.

a 15-year-old girl, a 15yr old, a 15 y/o girl
fetuses, fetal tissue, miscarried fetuses
responsible for, guilty of, held liable for, liable for
UVA administrator, UVa official, U-Va. dean, Univer-
sity of Virginia dean
FBI Director backs CIA finding, FBI agrees with CIA,
FBI backs CIA view, FBI finally backs CIA view, FBI
now backs CIA view, FBI supports CIA assertion, FBI-
Clapper back CIA’s view, The FBI backs the CIA’s as-
sessment, FBI Backs CIA,
Donald Trump, DJT, Mr Trump, Donald @realTrump,
D*nald Tr*mp, Comrade #Trump, GOPTrump, Pres-
elect Trump, President-Elect Trump, President-elect
Donald J. Trump, PEOTUS Trump, He-Who-Must-
Not-Be-Named3

Table 2: Up-to-date phrasal paraphrases automati-
cally extracted from Twitter with our new method.

2 Existing Paraphrase Corpora and
Their Limitations

To date, there exist only two publicly available
corpora of both sentential paraphrases and non-
paraphrases:

MSR Paraphrase Corpus [MSRP] (Dolan
et al., 2004; Dolan and Brockett, 2005) This cor-
pus contains 5,801 pairs of sentences from news
articles, with 4,076 for training and the remaining
1,725 for testing. It was created from clustered
news articles by using an SVM classifier (using

3Another 12 name variations are omitted in the paper due
to their offensive nature.

features including string similarity and WordNet
synonyms) to gather likely paraphrases, then an-
notated by human on semantic equivalence. The
MSRP corpus has a known deficiency skewed to-
ward over-identification (Das and Smith, 2009),
because the “purpose was not to evaluate the po-
tential effectiveness of the classifier itself, but to
identify a reasonably large set of both positive and
plausible ‘near-miss’ negative examples” (Dolan
and Brockett, 2005). It contains a large portion of
sentence pairs with many ngrams shared in com-
mon.

Twitter Paraphrase Corpus [PIT-2015] (Xu
et al., 2014, 2015) This corpus was derived from
Twitter’s trending topic data. The training set con-
tains 13,063 sentence pairs on 400 distinct top-
ics, and the test set contains 972 sentence pairs
on 20 topics. As numerous Twitter users sponta-
neously talk about varied topics, this dataset con-
tains many lexically divergent paraphrases. How-
ever, this method requires a manual step of select-
ing topics to ensure the quality of collected para-
phrases, because many topics detected automati-
cally are either incorrect or too broad. For exam-
ple, the topic “New York” relates to tweets with a
wide range of information and cannot narrow the
search space down enough for human annotation
and the subsequent application of classification al-
gorithms.

3 Constructing the Twitter URL
Paraphrase Corpus

For paraphrase acquisition, it has been crucial to
find a simple and effective way to locate para-
phrase candidates (see related work in Section 6).
We show the efficacy of tracking URLs in Twit-
ter. This method does not rely on automatic news
clustering as in MSRP or topic detection as in PIT-
2015, but it keeps collecting good candidate para-
phrase pairs in large quantities.
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Twitter News URL Corpus
Original Tweet Samsung halts production of its Galaxy Note 7 as battery problems linger

#Samsung temporarily suspended production of its Galaxy #Note7 devices following reports
News hit that @Samsung is temporarily halting production of the #GalaxyNote7.

Paraphrase Samsung still having problems with their Note 7 battery overheating. Completely halt production.
SAMSUNG HALTS PRODUCTS OF GALAXY NOTE 7 . THE BATTERIES ARE * STILL * EX-
PLODING .
in which a phone bonfire in 1995–a real one–is a metaphor for samsung’s current note 7 problems

Non-Paraphrase samsung decides, “if we don’t build it, it won’t explode.”
Samsung’s Galaxy Note 7 Phones AND replacement phones have been going up in flames due to the
defective batteries

Table 3: A representative set of tweets linked by a URL originated from news agencies (this work).

1 dasviness louistomlinson overhears harrystyles on the phone
Twitter Streaming when she likes tall guys ??? ??? vine by justjamiie

URL Data shineeasvines jonghyun when he wears shoe lifts
idaliaorellana kimmvanny ladyfea 21 hahaha if he does it he needs heels

Table 4: A representative set of tweets linked by a URL in streaming data (generally poor readability).

3.1 Data Source: News Tweets vs. Streaming

We extracted the embedded URL in each tweet
and used Twitter’s Search API to retrieve all tweets
that contain the same URL. Some tweets use short-
ened URLs, which we resolve as full URLs. We
tracked 22 English news accounts in Twitter to
create the paraphrase corpus in this paper (see ex-
amples in Table 3). We will extend the corpus
to include other languages and domains in future
work.

As shown in Table 5, nearly all the tweets
posted by news agencies have embedded URLs.
About 51.17% of posts contain two URLs, usually
one pointing to a news article and the other to me-
dia such as a photo or video. Although close to
half of the tweets in Twitter streaming data4 con-
tain at least one URL, most of them are very hard
to read (see examples in Table 4).

Data Source tweets avg #url avg # url
w/o url per tweet (news)

Streaming Data 55.8% 0.52 per tweet
@nytimes 1.2% 1.31 0.988
@cnnbrk 0.0% 1.17 1

@BBCBreaking 1.0% 1.32 0.99
@CNN 0.0% 1.85 1
@ABC 1.7% 1.26 0.983

@NBCNews 1.1% 1.63 0.989

Table 5: Statistics of tweets in Twitter’s streaming
data and news account data. Many tweets contain
more than one URL because media such as photo
or video is also represented by URLs.

4We used Twitters Streaming API which provided a real-
time stream of public tweets posted on Twitter.

3.2 Filtering of Retweets

Retweeting is an important feature in Twitter.
There are two types: automatic and manual
retweets. An automatic retweet is done by click-
ing the retweet button on Twitter and is easy to
remove using the Twitter API. A manual retweet
occurs when the user creates a new tweet by copy-
ing and pasting the original tweet and possibly
adding some extras, such as hashtags, usernames
or comments. It is crucial to remove these re-
dundant tweets with minor variations, which oth-
erwise represent a significant portion of the data
(Table 6). We preprocessed the tweets using a tok-
enizer5 (Gimpel et al., 2011) and an in-house sen-
tence splitter. We then filtered out manual retweets
using a set of rules, checking if one tweet was a
sub- string of the other, or if it only differed in
punctuation, or the contents of the “twitter:title” or
“twitter:description” tag in the linked HTML file
of the news article.

Table 6 shows the effectiveness of the filter-
ing. We used PINC, a standard paraphrase met-
ric, to measure ngram-based dissimilarity (Chen
and Dolan, 2011), and Jaccard metric to measure
token-based string similarity (Jaccard, 1912). Af-
ter filtering, the dataset contains tweets with more
significant rephrasing as indicated by higher PINC
and lower Jaccard scores.

avg #tweets (STD) avg PINC avg Jaccard
before filtering 205.51 (219.66) 0.6153 0.3635
after filtering 74.75 (94.39) 0.7603 0.2515

Table 6: Impact of filtering of manual retweets.

5http://www.cs.cmu.edu/˜ark/TweetNLP/
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3.3 Gold Standard Corpus

To get the gold-standard paraphrase corpus, we
obtained human labels on Amazon Mechanical
Turk. We showed annotators an original sentence,
and asked them to select sentences with the same
meaning from 10 candidate sentences. For each
question, we recruited 6 annotators and paid $0.03
to each worker.6 On average, each question took
about 53 seconds to finish. For each sentence pair,
we aggregated the paraphrase and non-paraphrase
labels using the majority vote.

We constructed the largest gold standard para-
phrase corpus to date, with 42,200 tweets of 4,272
distinct URLs annotated in the training set and
9,324 tweets of 915 distinct URLs in the test
set. The training data was collected between
10/10/2016 and 11/22/2016, and testing data be-
tween 01/09/2017 and 01/19/2017. In Section 4,
we contrast the characteristics of our data against
existing paraphrase corpora.

Quality Control We evaluated the annotation
quality of each worker using Cohen’s kappa agree-
ment (Artstein and Poesio, 2008) against the ma-
jority vote of other workers. We asked the best
workers (the top 528 out of 876) to label more
data by republishing the questions done by work-
ers with low reliability (Cohen’s kappa <0.4).

Inter-Annotator Agreement In addition, we
had 300 sampled sentence pairs independently an-
notated by an expert. The annotated agreement is
0.739 by Cohen’s kappa between the expert and
the majority vote of 6 crowdsourcing workers. If
we assume the expert annotation is gold, the pre-
cision of worker vote is 0.871, the recall is 0.787,
and F1 is 0.827, similar to those of PIT-2015.

3.4 Continuous Harvesting of Sentential
Paraphrases

Since our method directly applies to raw tweets,
it can continuously extract sentential paraphrases
from Twitter. In Section 4, we show that this ap-
proach can produce a silver-standard paraphrase
corpus at about 70% precision that grows by more
than 30,000 new sentential paraphrases per month.
Section 5 presents experiments demonstrating the
utility of these automatically identified sentential
paraphrases.

6The low pricing helps to not attract spammers to this
easy-to-finish task. We gave bonus to workers based on qual-
ity and the average hourly pay for each worker is about $7.

4 Comparison of Paraphrase Corpora

Though paraphrasing has been widely studied,
supporting analyses and experiments have thus far
often only been conducted on a single dataset. In
this section, we present a comparative analysis of
our newly constructed gold-standard corpus with
two existing corpora by 1) individually examin-
ing the instances of paraphrase phenomena and
2) benchmarking a range of automatic paraphrase
identification approaches.

4.1 Paraphrase Phenomena

In order to show the differences across these three
datasets, we sampled 100 sentential paraphrases
from each training set and counted occurrences
of each phenomenon in the following categories:
Elaboration (textual pairs can differ in total infor-
mation content, such as Trump’s ex-wife Ivana and
Ivana Trump), Phrasal (alternates of phrases, such
as taking over and replaces), Spelling (spelling
variants, such as Trump and Trumpf ), Synonym
(such as said and told), Anaphora (a full noun
phrase in one sentence that corresponds to the
counterpart, such as @MarkKirk and Kirk) and
Reordering (when a word, phrase or the whole
sentence reorders, or even logically reordered,
such as Matthew Fishbein questioned him and un-
der questioning by Matthew Fishbein). We report
the average number of occurrences of each para-
phrase type per sentence pair for each corpus in
Table 7. As sentences tend to be longer in MSRP
and shorter in PIT-2015, we also normalized the
numbers by the length of sentences to be more
comparable to the URL dataset.

These three datasets exhibit distinct and com-
plementary compositions of paraphrase phenom-

per sentence MSRP PIT-2015 URL
Elaboration 0.60 0.23 0.79

Spelling 0.17 0.13 0.35
Synonym 0.26 0.10 0.13
Phrasal 0.42 0.56 0.35

Anaphora 0.27 0.08 0.33
Reordering 0.53 0.33 0.49

adjusted by sent length* MSRP* PIT-2015* URL
Elaboration 0.42 0.36 0.79

Spelling 0.12 0.21 0.35
Synonym 0.18 0.16 0.13
Phrasal 0.29 0.89 0.35

Anaphora 0.19 0.13 0.33
Reordering 0.37 0.52 0.49

Table 7: Mean number of instances of paraphrase
phenomena per sentence pair across three corpora.
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ena. MSRP has more synonyms, because au-
thors of different news articles may use different
and rather sophisticated words. PIT-2015 con-
tains many phrasal paraphrases, probably due to
the fact that most tweets under the same trend-
ing topic are written spontaneously and indepen-
dently. Our URL dataset shows more elabora-
tion, spelling and anaphora paraphrase phenom-
ena, showing that many URL-embedded tweets
are created by users with a conscious intention to
rephrase the original news headline.

4.2 Automatic Paraphrase Identification

We provide a benchmark on paraphrase identifica-
tion to better understand various models, as well
as the characteristics of our new corpus compared
to the existing ones. We focus on binary classi-
fication of paraphrase/non-paraphrase, and report
the maximum F1 measure of any point on the
precision-recall curve.

4.2.1 Models
We chose several representative technical ap-
proaches for automatic paraphrase identification:

GloVe (Pennington et al., 2014) This is a word
representation model trained on aggregated global
word-word co-occurrence statistics from a corpus.
We used 300-dimensional word vectors trained on
Common Crawl and Twitter, summed the vectors
for each sentence, and computed the cosine simi-
larity.

LR The logistic regression (LR) model incorpo-
rates 18 features based on 1-3 gram overlaps be-
tween two sentences (s1 and s2) (Das and Smith,
2009). The features are of the form precisionn
(number of n-gram matches divided by the num-
ber of n-grams in s1), recalln (number of n-gram
matches divided by the number of n-grams in s2),
and Fn (harmonic mean of recall and precision).
The model also includes lemmatized versions of
these features.

WMF/OrMF Weighted Matrix Factorization
(WMF) (Guo and Diab, 2012) is an unsupervised
latent space model. The unobserved words are
carefully handled, which results in more robust
embeddings for short texts. Orthogonal Matrix
Factorization (OrMF) (Guo et al., 2014) is the
extension of WMF, with an additional objective
to obtain nearly orthogonal dimensions in matrix
factorization to discount redundant information.

Method F1 Precision Recall
Random 0.799 0.665 1.0
Edit Distance 0.799 0.666 1.0
GloVe 0.812 0.707 0.952
LR 0.829 0.741 0.941
WMF (vec) 0.817 0.713 0.956
LEX-WMF (vec) 0.836 0.751 0.943
OrMF (vec) 0.820 0.733 0.930
LEX-OrMF (vec) 0.833 0.741 0.950
WMF (sim) 0.812 0.728 0.918
LEX-WMF (sim) 0.831 0.732 0.962
OrMF (sim) 0.815 0.699 0.976
LEX-OrMF (sim) 0.832 0.735 0.958
MultiP 0.800 0.667 0.998
DeepPairwiseWord 0.834 0.763 0.919

Table 8: Paraphrase models in the MSR Para-
phrase Corpus (MSRP). The bold font in the table
represents top three models in the dataset.

Method F1 Precision Recall
Random 0.346 0.209 1.0
Edit Distance 0.363 0.236 0.789
GloVe 0.484 0.396 0.617
LR 0.645 0.669 0.623
WMF (vec) 0.594 0.681 0.526
LEX-WMF (vec) 0.635 0.655 0.617
OrMF (vec) 0.594 0.681 0.526
LEX-OrMF (vec) 0.638 0.579 0.709
WMF (sim) 0.553 0.570 0.537
LEX-WMF (sim) 0.651 0.657 0.646
OrMF (sim) 0.563 0.591 0.537
LEX-OrMF (sim) 0.644 0.632 0.657
MultiP 0.721 0.705 0.737
DeepPairwiseWord 0.667 0.725 0.617

Table 9: Paraphrase models in the Twitter Para-
phrase Corpus (PIT-2015).

Method F1 Precision Recall
Random 0.327 0.195 1.000
Edit Distance 0.526 0.650 0.442
GloVe 0.583 0.607 0.560
LR 0.683 0.669 0.698
WMF (vec) 0.660 0.640 0.680
LEX-WMF (vec) 0.693 0.687 0.698
OrMF (vec) 0.662 0.625 0.703
LEX-OrMF (vec) 0.691 0.709 0.674
WMF (sim) 0.659 0.595 0.738
LEX-WMF (sim) 0.688 0.632 0.754
OrMF (sim) 0.660 0.690 0.632
LEX-OrMF (sim) 0.688 0.630 0.758
MultiP 0.536 0.386 0.875
DeepPairwiseWord 0.749 0.803 0.702

Table 10: Paraphrase models in Twitter URL Cor-
pus (this work).
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(a) Twitter URL (b) PIT-2015 (c) MSRP

Figure 1: Comparison of ngram dissimilarity (PINC score) in sentential paraphrases across three corpora.
The MSRP contains sentential paraphrases with more ngram overlaps (low PINC). Our URL corpus and
PIT-2015 contain more lexically divergent paraphrases (high PINC).

Specifically, for the (vec) version, vectors of a pair
of sentences ~v1 and ~v2 are converted into one fea-
ture vector, [~v1 + ~v2, |~v1 − ~v2|], by concatenating
the element-wise sum ~v1 + ~v2 and absolute differ-
ence |~v1 − ~v2|. We also provide the (sim) varia-
tion, which directly uses the single cosine similar-
ity score between two sentence vectors.

LEX-WMF/LEX-OrMF This is an open-
sourced adaptation (Xu et al., 2014) of LEXDIS-
CRIM (Ji and Eisenstein, 2013) that have
shown comparable performance. It combines
WMF/OrMF with n-gram overlapping features to
train a LR classifier.

MultiP MultiP (Xu et al., 2014) is a multi-
instance learning model suited for short messages
on Twitter. The at-least-one-anchor assumption in
this model looks for two sentences that have a top-
ical phrase in common, plus at least one pair of an-
chor words that carry a similar key meaning. This
model achieved the best performance in the PIT-
2015 (Xu et al., 2014) dataset.

DeepPairwiseWord He et al. (2016) developed
a deep neural network model that focuses on im-
portant pairwise word interactions across input
sentences. This model innovates in proposing a
similarity focus layer and a 19-layer very deep
convolutional neural network to guide model at-
tention to important word pairs. It has shown state-
of-the-art performance on several textual similar-
ity measurement datasets.

4.2.2 Model Performance and Dataset
Difference

The results on three benchmark paraphrase cor-
pora are shown in Table 8, 9 and 10. The ran-
dom baseline reflects that close to 80% sentence

pairs are paraphrases in the MSPR corpus. This is
atypical in the real-world text data and may cause
falsely positive predictions.

Both the edit distance and the LR models ex-
ploit surface word features. In particular, the LR
model that uses lemmatization and ngram overlap
features achieves very competitive performance
on all datasets. Figure 1 shows a closer look
at ngram differences across datasets measured by
the PINC metric (Chen and Dolan, 2011), which
is the opposite of BLEU (Papineni et al., 2002).
MSRP consists of paraphrases with more ngram
overlap (lower PINC), while PIT-2015 contains
shorter and more lexically dissimilar sentences.
Our new URL corpus is in between the two, and
is more similar to PIT-2015. It includes user’s in-
tentional rephrasing of an original tweet from a
news agency with some words untouched, as well
as some dramatic paraphrases that are challenging
for any automatic identification methods, such as
CO2 levels mark ‘new era’ in the world’s chang-
ing climate and CO2 levels haven’t been this high
for 3 to 5 million years.

MultiP exploits a restrictive constraint that the
candidate sentence pairs share a same topical
phrase. It achieves the best performance on PIT-
2015, which naturally contains such phrases. For
MSRP and URL datasets, we uses the named en-
tity tagged with the longest span as an approxima-
tion of a shared topic phrase and thus suffered a
performance drop.

Both Glove and WMT/OrMF utilize the under-
lying co-occurrence statistics of the text corpus.
WMT/OrMF use global matrix factorization to
project sentences into lower dimension and show
great advantages on measuring sentence-level se-
mantic similarities over Glove, which focuses on
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Figure 2: Comparison of OrMF-based distributional semantic similarity across three paraphrase corpora.

word representations. Figure 2 shows that the fine-
grained distribution of the OrMF-based cosine
similarities and that the URL-linked Twitter data
works well with OrMF to yield sentential para-
phrases. Once combined with ngram overlap fea-
tures, LEX-WMF and LEX-OrMF show consis-
tently high performance across different datasets,
close to the more complicated DeepPairwiseWord.
The similarity focus mechanism on important pair-
wise word interactions in DeepPairwiseWord is
more helpful for the two Twitter datasets, due to
the fact that they contain lexically divergent para-
phrases while MSRP has an artificial bias toward
sentences with high n-gram overlap.

5 Extracting Phrasal Paraphrases

We can apply paraphrase identification models
trained on our gold standard corpus to unlabeled
Twitter data and continuously harvest sentential
paraphrases in large quantities. We used the open-
sourced LEX-OrMF model and obtained 114,025
sentential paraphrases (system predicted probabil-
ity ≥ 0.5 and average precision = 69.08%) from
raw 1% free Twitter data between 10/10/2016 and
01/10/2017. To demonstrate the utility, we show
that we can extract up-to-date lexical and phrasal
paraphrases from this data.

5.1 Phrase Extraction and Ranking

One of the most successful ideas to obtain lexi-
cal and phrasal paraphrases in large quantities is
through word alignment, then ranking for better
quality. This approach was proposed by Bannard
(Bannard and Callison-Burch, 2005) and previ-
ously applied to bilingual parallel data to create
PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015). There has been little previous work utiliz-
ing monolingual parallel data to learn paraphrases
since it is not as naturally available as bitexts.

We used the GIZA++ word aligner in the Moses
machine translation toolkit (Koehn et al., 2007)
and extracted 245,686 phrasal paraphrases. Some
examples are shown in Table 2. We additionally
explored two supervised monolingual aligners: Ja-
cana aligner (Yao et al., 2013) and Md Sultan’s
aligner (Sultan et al., 2014). We ranked the phrase
pairs using four different scores:

• Language Model Score Let w−2w−1pw1w2

be the context of the phrase p. We consid-
ered a phrase p′ to be a good substitute for
p if w−2w−1p′w1w2 is a likely sequence ac-
cording to a language model (Heafield, 2011)
trained on Twitter data.

• Translation Score Moses provides transla-
tion probabilities ϕ(p|p′).
• Glove Score We used Glove (Penning-

ton et al., 2014) pretrained 100-dimensional
Twitter word vectors and cosine similarity.

• Our Score We trained a supervised SVM re-
gression model using 500 phrase pairs with
human ratings. We used the language model,
translation, and glove scores as features, and
additionally used the inverse phrase trans-
lation probability ϕ(p′|p), lexical weighting
lex(p|p′), and lex(p′|p) from Moses.

Figure 3 compares the different ranking meth-
ods against the human judgments on 200 phrase
pairs randomly sampled from GIZA++.

5.2 Paraphrase Quality Evaluation

We compared the quality of paraphrases extracted
by our method with the closest previous work
(BUCC-2013) (Xu et al., 2013), in which a sim-
ilar phrase table was created using Moses from
monolingual parallel tweets that contain the same
named entity and calendar date. We randomly
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(a) Language Model Score
(ρ = 0.3151)

(b) Translation Score
(ρ = 0.4115)

(c) Glove Score
(ρ = 0.4718)

(d) Our Score
(ρ = 0.5720)

Figure 3: Correlation between automatic scores (vertical axis) and 5-point human scores (horizontal axis)
for ranking phrasal paraphrases. The darker squares along the diagonal line indicate a higher ranking.

sampled 500 phrase pairs from each phrase ta-
ble and collected human judgements on a 5-
point Likert scale, as described in Callison-Burch
(Callison-Burch, 2008). Table 11 shows the eval-
uation results. We focused on the highest-quality
paraphrases that rated as 5 (“all of the meaning
of the original phrase is retained, and nothing is
added”) and their presence among all extracted
paraphrases sorted by ranking scores.

We were also interested in how these phrasal
paraphrases compared with those in PPDB. We
sampled an equal amount of 420 paraphrase pairs
from our phrase tables and PPDB, and then
checked what percentage out of the total 840 could
be found in our phrase tables and PPDB, respec-
tively. As shown in Table 12, there is little overlap
between URL data and PPDB, only 1.3% (51.3-
50%) plus 0.8% (50.8-50%). Our Twitter URL
data complements well with the existing para-
phrase resources, such as PPDB, which are pri-
marily derived from well-edited texts.

Top Rankings BUCC 2013 GIZA++ Jacana Sultan
10% 76.0 85.5 90.0 90.0
20% 65.6 86.5 91.0 91.0
30% 62.7 79.2 86.0 88.0
40% 56.6 73.2 85.5 84.5
50% 52.1 68.1 83.4 84.8

100% (all) 36.3 49.8 75.8 77.2

Table 11: Percentage of high-quality phrasal para-
phrases extracted from Twitter URL data (this
work) by GIZA++, Jacana, Sultan aligners , com-
paring to the previous work (BUCC-2013).

6 Related Work

Sentential Paraphrase Data Researchers have
found several data sources from which to collect
sentential paraphrases: multiple news agencies
reporting the same event (MSRP) (Dolan et al.,
2004; Dolan and Brockett, 2005), multiple trans-

PPDB URL GIZA++ Jacana Sultan
Sample Size 50% 50% 16.7% 16.7% 16.7%

Coverage 51.3% 50.8% 18.7% 32.1% 34.4%

Table 12: Coverage comparison of phrasal para-
phrases extracted from Twitter URL data (sampled
1:1:1 from GIZA++, Jacana and Sultan’s aligner
outputs) and the PPDB (Ganitkevitch et al., 2013).

lated versions of a foreign novel (Barzilay and
Elhadad, 2003; Barzilay and Lee, 2003) or other
texts (Cohn et al., 2008), multiple definitions of
the same concept (Hashimoto et al., 2011), de-
scriptions of the same video clip from multiple
workers (Chen and Dolan, 2011) or rephrased sen-
tences (Burrows et al., 2013; Toutanova et al.,
2016). However, all these data collection methods
are incapable of obtaining sentential paraphrases
on a large scale (i.e. limited number of news agen-
cies or books with multiple translated versions),
and/or lack meaningful negative examples. Both
of these properties are crucial for developing ma-
chine learning models that identify paraphrases
and measure semantic similarities.

Non-sentential Paraphrase Data There are
other phrasal and syntactic paraphrase data, such
as DIRT (Lin and Pantel, 2001), POLY (Grycner
et al., 2016), PATTY (Nakashole et al., 2012), DE-
FIE (Bovi et al., 2015), and PPDB (Ganitkevitch
et al., 2013; Pavlick et al., 2015). Most of these
works focus on news or web data. Other earlier
works on Twitter paraphrase extraction used unsu-
pervised approaches (Xu et al., 2013; Wang et al.,
2013) or small datasets (Zanzotto et al., 2011; An-
toniak et al., 2015).

7 Conclusion and Future Work

In this paper, we show how a simple method can
effectively and continuously collect large-scale
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sentential paraphrases from Twitter. We rigor-
ously evaluated our data with automatic identifi-
cation classification models and various measure-
ments. We will share our new dataset with the
research community; this dataset includes 51,524
sentence pairs manually labeled and a monthly
growth of 30,000 sentential paraphrases automati-
cally labeled. Future work could include expand-
ing into many different languages present in social
media and developing language-independent auto-
matic paraphrase identification models.
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Abstract

Existing studies on semantic parsing
mainly focus on the in-domain setting. We
formulate cross-domain semantic parsing
as a domain adaptation problem: train a
semantic parser on some source domains
and then adapt it to the target domain.
Due to the diversity of logical forms in
different domains, this problem presents
unique and intriguing challenges. By con-
verting logical forms into canonical utter-
ances in natural language, we reduce se-
mantic parsing to paraphrasing, and de-
velop an attentive sequence-to-sequence
paraphrase model that is general and flex-
ible to adapt to different domains. We
discover two problems, small micro vari-
ance and large macro variance, of pre-
trained word embeddings that hinder their
direct use in neural networks, and pro-
pose standardization techniques as a rem-
edy. On the popular OVERNIGHT dataset,
which contains eight domains, we show
that both cross-domain training and stan-
dardized pre-trained word embedding can
bring significant improvement.

1 Introduction

Semantic parsing, which maps natural language
utterances into computer-understandable logical
forms, has drawn substantial attention recently as
a promising direction for developing natural lan-
guage interfaces to computers. Semantic pars-
ing has been applied in many domains, includ-
ing querying data/knowledge bases (Woods, 1973;
Zelle and Mooney, 1996; Berant et al., 2013), con-
trolling IoT devices (Campagna et al., 2017), and
communicating with robots (Chen and Mooney,
2011; Tellex et al., 2011; Artzi and Zettlemoyer,

2013; Bisk et al., 2016).
Despite the wide applications, studies on se-

mantic parsing have mainly focused on the in-
domain setting, where both training and testing
data are drawn from the same domain. How to
build semantic parsers that can learn across do-
mains remains an under-addressed problem. In
this work, we study cross-domain semantic pars-
ing. We model it as a domain adaptation prob-
lem (Daumé III and Marcu, 2006), where we are
given some source domains and a target domain,
and the core task is to adapt a semantic parser
trained on the source domains to the target domain
(Figure 1). The benefits are two-fold: (1) by train-
ing on the source domains, the cost of collecting
training data for the target domain can be reduced,
and (2) the data of source domains may provide in-
formation complementary to the data collected for
the target domain, leading to better performance
on the target domain.

This is a very challenging task. Traditional
domain adaptation (Daumé III and Marcu, 2006;
Blitzer et al., 2006) only concerns natural lan-
guages, while semantic parsing concerns both nat-
ural and formal languages. Different domains of-
ten involve different predicates. In Figure 1, from
the source BASKETBALL domain a semantic parser
can learn the semantic mapping from natural lan-
guage to predicates like team and season, but in
the target SOCIAL domain it needs to handle pred-
icates like employer instead. Worse still, even
for the same predicate, it is legitimate to use ar-
bitrarily different predicate symbols, e.g., other
symbols like hired by or even predicate1 can
also be used for the employer predicate, reminis-
cent of the symbol grounding problem (Harnad,
1990). Therefore, directly transferring the map-
ping from natural language to predicate symbols
learned from source domains to the target domain
may not be much beneficial.
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When did Alice start working 
for Mckinsey?

Start date of employee Alice 
whose employer is Mckinsey

Target
Domain When did Alice start working 

for Mckinsey?

Start date of employee Alice 
whose employer is Mckinsey

Target
Domain

In which seasons did Kobe Bryant 
play for the Lakers?

Season of player Kobe Bryant 
whose team is Los Angeles Lakers

R[season].(player.KobeBryant 

            team.Lakers)
Source 

Domains

Input Utterance Canonical Utterance Logical Form

In which seasons did Kobe Bryant 
play for the Lakers?

Season of player Kobe Bryant 
whose team is Los Angeles Lakers

R[season].(player.KobeBryant 

            team.Lakers)
Source 

Domains

Input Utterance Canonical Utterance Logical Form

Paraphrase
Model

External Language Resources 
pre-trained word embeddings, 
monolingual parallel corpora, 

    

R[start].(employee.Alice 

          employer.Mckinsey)

Figure 1: Cross-domain semantic parsing via paraphrasing framework. In a deterministic way, logical forms are first converted
into canonical utterances in natural language. A paraphrase model then learns from the source domains and adapts to the target
domain. External language resources can be incorporated in a consistent way across domains.

Inspired by the recent success of paraphrasing
based semantic parsing (Berant and Liang, 2014;
Wang et al., 2015), we propose to use natural lan-
guage as an intermediate representation for cross-
domain semantic parsing. As shown in Figure 1,
logical forms are converted into canonical utter-
ances in natural language, and semantic parsing
is reduced to paraphrasing. It is the knowledge
of paraphrasing, at lexical, syntactic, and seman-
tic levels, that will be transferred across domains.

Still, adapting a paraphrase model to a new do-
main is a challenging and under-addressed prob-
lem. To give some idea of the difficulty, for each of
the eight domains in the popular OVERNIGHT (Wang
et al., 2015) dataset, 30% to 55% of the words
never occur in any of the other domains, a sim-
ilar problem observed in domain adaptation for
machine translation (Daumé III and Jagarlamudi,
2011). The paraphrase model therefore can get
little knowledge for a substantial portion of the
target domain from the source domains. We
introduce pre-trained word embeddings such as
WORD2VEC (Mikolov et al., 2013) to combat the vo-
cabulary variety across domains. Based on recent
studies on neural network initialization, we con-
duct a statistical analysis of pre-trained word em-
beddings and discover two problems that may hin-
der their direct use in neural networks: small mi-
cro variance, which hurts optimization, and large
macro variance, which hurts generalization. We
propose to standardize pre-trained word embed-
dings, and show its advantages both analytically
and experimentally.

On the OVERNIGHT dataset, we show that cross-
domain training under the proposed framework
can significantly improve model performance. We

also show that, compared with directly using pre-
trained word embeddings or normalization as in
previous work, the proposed standardization tech-
nique can lead to about 10% absolute improve-
ment in accuracy.

2 Cross-domain Semantic Parsing

2.1 Problem Definition
Unless otherwise stated, we will use u to denote
input utterance, c for canonical utterance, and z
for logical form. We denote U as the set of all pos-
sible utterances. For a domain, suppose Z is the
set of logical forms, a semantic parser is a map-
ping f : U → Z that maps every input utterance
to a logical form (a null logical form can be in-
cluded in Z to reject out-of-domain utterances).

In cross-domain semantic parsing, we assume
there are a set of K source domains {Zi}Ki=1, each
with a set of training examples {(uij , zij)}Nij=1. It
is in principle advantageous to model the source
domains separately (Daumé III and Marcu, 2006),
which retains the possibility of separating domain-
general information from domain-specific infor-
mation, and only transferring the former to the
target domain. For simplicity, here we merge the
source domains into a single domainZs with train-
ing data {(ui, zi)}Nsi=1. The task is to learn a se-
mantic parser f : U → Zt for a target domain
Zt, for which we have a set of training examples
{(ui, zi)}Nti=1. Some characteristics can be sum-
marized as follows:

• Zt and Zs can be totally disjoint.

• The input utterance distribution of the source
and the target domains can be independent
and differ remarkably.
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• Typically Nt � Ns.

In the most general and challenging case, Zt
and Zs can be defined using different formal lan-
guages. Because of the lack of relevant datasets,
here we restrain ourselves to the case where
Zt and Zs are defined using the same formal
language, e.g., λ-DCS (Liang, 2013) as in the
OVERNIGHT dataset.

2.2 Framework

Our framework follows the research line of seman-
tic parsing via paraphrasing (Berant and Liang,
2014; Wang et al., 2015). While previous work fo-
cuses on the in-domain setting, we discuss its ap-
plicability and advantages in the cross-domain set-
ting, and develop techniques to address the emerg-
ing challenges in the new setting.

Canonical utterance. We assume a one-to-one
mapping g : Z → C, where C ⊂ U is the set of
canonical utterances. In other words, every logi-
cal form will be converted into a unique canoni-
cal utterance deterministically (Figure 1). Previ-
ous work (Wang et al., 2015) has demonstrated
how to design such a mapping, where a domain-
general grammar and a domain-specific lexicon
are constructed to automatically convert every log-
ical form to a canonical utterance. In this work,
we assume the mapping is given1, and focus on
the subsequent paraphrasing and domain adapta-
tion problems.

This design choice is worth some discussion.
The grammar, or at least the lexicon for map-
ping predicates to natural language, needs to be
provided by domain administrators. This indeed
brings an additional cost, but we believe it is rea-
sonable and even necessary for three reasons: (1)
Only domain administrators know the predicate
semantics the best, so it has to be them to reveal
that by grounding the predicates to natural lan-
guage (the symbol grounding problem (Harnad,
1990)). (2) Otherwise, predicate semantics can
only be learned from supervised training data of
each domain, bringing a significant cost on data
collection. (3) Canonical utterances are under-
standable by average users, and thus can also be
used for training data collection via crowdsourc-
ing (Wang et al., 2015; Su et al., 2016), which can
amortize the cost.

1In the experiments we use the provided canonical utter-
ances of the OVERNIGHT dataset.

Take comparatives as an example. In logi-
cal forms, comparatives can be legitimately de-
fined using arbitrarily different predicates in dif-
ferent domains, e.g., <, smallerInSize, or even
predicates with an ambiguous surface form, like
lt. When converting logical form to canonical
utterance, however, domain administrators have
to choose common natural language expressions
like “less than” and ”smaller”, providing a shared
ground for cross-domain semantic parsing.

Paraphrase model. In the previous work based
on paraphrasing (Berant and Liang, 2014; Wang
et al., 2015), semantic parsers are implemented as
log-linear models with hand-engineered domain-
specific features (including paraphrase features).
Considering the recent success of representation
learning for domain adaptation (Glorot et al.,
2011; Chen et al., 2012), we propose a para-
phrase model based on the sequence-to-sequence
(Seq2Seq) model (Sutskever et al., 2014), which
can be trained end to end without feature engineer-
ing. We show that it outperforms the previous log-
linear models by a large margin in the in-domain
setting, and can easily adapt to new domains.

Pre-trained word embeddings. An advantage of
reducing semantic parsing to paraphrasing is that
external language resources become easier to
incorporate. Observing the vocabulary variety
across domains, we introduce pre-trained word
embeddings to facilitate domain adaptation. For
the example in Figure 1, the paraphrase model
may have learned the mapping from “play for” to
“whose team is” in a source domain. By acquir-
ing word similarities (“play”-“work” and “team”-
“employer”) from pre-trained word embeddings,
it can establish the mapping from “work for” to
“whose employer is” in the target domain, even
without in-domain training data. We analyze sta-
tistical characteristics of the pre-trained word em-
beddings, and propose standardization techniques
to remedy some undesired characteristics that may
bring a negative effect to neural models.

Domain adaptation protocol. We will use the
following protocol: (1) train a paraphrase model
using the data of the source domain, (2) use the
learned parameters to initialize a model in the tar-
get domain, and (3) fine-tune the model using the
training data of the target domain.
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2.3 Prior Work

While most studies on semantic parsing so far
have focused on the in-domain setting, there are
a number of studies of particular relevance to this
work. In the recent efforts of scaling seman-
tic parsing to large knowledge bases like Free-
base (Bollacker et al., 2008), researchers have
explored several ways to infer the semantics
of knowledge base relations unseen in training,
which are often based on at least one (often both)
of the following assumptions: (1) Distant super-
vision. Freebase entities can be linked to external
text corpora, and serve as anchors for seeking se-
mantics of Freebase relations from text. For exam-
ple, Cai and Alexander (2013), among others (Be-
rant et al., 2013; Xu et al., 2016), use sentences
from Wikipedia that contain any entity pair of a
Freebase relation as the support set of the relation.
(2) Self-explaining predicate symbols. Most Free-
base relations are described using a carefully cho-
sen symbol (surface form), e.g., place of birth,
which provides strong cues for their semantics.
For example, Yih et al. (2015) directly compute
the similarity of input utterance and the surface
form of Freebase relations via a convolutional neu-
ral network. Kwiatkowski et al. (2013) also ex-
tract lexical features from input utterance and the
surface form of entities and relations. They have
actually evaluated their model on Freebase sub-
domains not covered in training, and have shown
impressive results. However, in the more general
setting of cross-domain semantic parsing, we may
have neither of these luxuries. Distant supervi-
sion may not be available (e.g., IoT devices involv-
ing no entities but actions), and predicate symbols
may not provide enough cues (e.g., predicate1).
In this case, seeking additional inputs from do-
main administrators is probably necessary.

In parallel of this work, Herzig and Be-
rant (2017) have explored another direction of se-
mantic parsing with multiple domains, where they
use all the domains to train a single semantic
parser, and attach a domain-specific encoding to
the training data of each domain to help the se-
mantic parser differentiate between domains. We
pursue a different direction: we train a semantic
parser on some source domains and adapt it to
the target domain. Another difference is that their
work directly maps utterances to logical forms,
while ours is based on paraphrasing.

Cross-domain semantic parsing can be seen as

a way to reduce the cost of training data col-
lection, which resonates with the recent trend in
semantic parsing. Berant et al. (2013) propose
to learn from utterance-denotation pairs instead
of utterance-logical form pairs, while Wang et
al. (2015) and Su et al. (2016) manage to employ
crowd workers with no linguistic expertise for data
collection. Jia and Liang (2016) propose an inter-
esting form of data augmentation. They learn a
grammar from existing training data, and generate
new examples from the grammar by recombining
segments from different examples.

We use natural language as an intermediate
representation to transfer knowledge across do-
mains, and assume the mapping from the interme-
diate representation (canonical utterance) to log-
ical form can be done deterministically. Sev-
eral other intermediate representations have also
been used, such as combinatory categorial gram-
mar (Kwiatkowski et al., 2013; Reddy et al.,
2014), dependency tree (Reddy et al., 2016, 2017),
and semantic role structure (Goldwasser and Roth,
2013). But their main aim is to better represent in-
put utterances with a richer structure. A separate
ontology matching step is needed to map the in-
termediate representation to logical form, which
requires domain-dependent training.

A number of other related studies have also used
paraphrasing. For example, Fader et al. (2013)
leverage question paraphrases to for question an-
swering, while Narayan et al. (2016) generate
paraphrases as a way of data augmentation.

Cross-domain semantic parsing can greatly ben-
efit from the rich literature of domain adapta-
tion and transfer learning (Daumé III and Marcu,
2006; Blitzer et al., 2006; Pan and Yang, 2010;
Glorot et al., 2011). For example, Chelba and
Acero (2004) use parameters trained in the source
domain as prior to regularize parameters in the tar-
get domain. The feature augmentation technique
from Daumé III (2009) can be very helpful when
there are multiple source domains. We expect to
see many of these ideas to be applied in the future.

3 Paraphrase Model

In this section we propose a paraphrase model
based on the Seq2Seq model (Sutskever et al.,
2014) with soft attention. Similar models have
been used in semantic parsing (Jia and Liang,
2016; Dong and Lapata, 2016) but for directly
mapping utterances to logical forms. We demon-
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strate that it can also be used as a paraphrase model
for semantic parsing. Several other neural mod-
els have been proposed for paraphrasing (Socher
et al., 2011; Hu et al., 2014; Yin and Schütze,
2015), but it is not the focus of this work to com-
pare all the alternatives.

For an input utterance u = (u1, u2, . . . , um)
and an output canonical utterance c =
(c1, c2, . . . , cn), the model estimates the condi-
tional probability p(c|u) =

∏n
j=1 p(cj |u, c1:j−1).

The tokens are first converted into vectors via a
word embedding layer φ. The initialization of
the word embedding layer is critical for domain
adaptation, which we will further discuss in
Section 4.

The encoder, which is implemented as a
bi-directional recurrent neural network (RNN),
first encodes u into a sequence of state vectors
(h1, h2, . . . , hm). The state vectors of the for-
ward RNN and the backward RNN are respec-
tively computed as:

−→
h i = GRUfw(φ(ui),

−→
h i−1)

←−
h i = GRUbw(φ(ui),

←−
h i+1)

where gated recurrent unit (GRU) as defined in
(Cho et al., 2014) is used as the recurrence. We
then concatenate the forward and backward state
vectors, hi = [

−→
h i,
←−
h i], i = 1, . . . ,m.

We use an attentive RNN as the decoder, which
will generate the output tokens one at a time. We
denote the state vectors of the decoder RNN as
(d1, d2, . . . , dn). The attention takes a form simi-
lar to (Vinyals et al., 2015). For the decoding step
j, the decoder is defined as follows:

d0 = tanh(W0[
−→
h m,
←−
h 1])

uji = vT tanh(W1hi +W2dj)

αji =
uji∑m
i′=1 uji′

h′j =
m∑

i=1

αjihi

dj+1 = GRU([φ(cj), h
′
j ], dj)

p(cj |u, c1:j−1) ∝ exp(U [dj , h
′
j ])

where W0,W1,W2, v and U are model parame-
ters. The decoder first calculates normalized at-
tention weights αji over encoder states, and get a
summary state h′j . The summary state is then used
to calculate the next decoder state dj+1 and the
output probability distribution p(cj |u, c1:j−1).

Training. Given a set of training examples
{(ui, ci)}Ni=1, we minimize the cross-entropy loss
− 1
N

∑N
i=1 log p(ci|ui), which maximizes the log

probability of the correct canonical utterances. We
apply dropout (Hinton et al., 2012) on both input
and output of the GRU cells to prevent overfitting.

Testing. Given a domain {Z, C}, there are two
ways to use a trained model. One is to use it to
generate the most likely output utterance u′ given
an input utterance u (Sutskever et al., 2014),

u′ = argmax
u′ ∈U

p(u′|u).

In this case u′ can be any utterance permissable
by the output vocabulary, and may not necessarily
be a legitimate canonical utterance in C. This is
more suitable for large domains with a lot of log-
ical forms, like Freebase. An alternative way is
to use the model to rank the legitimate canonical
utterances (Kannan et al., 2016):

c = argmax
c∈C

p(c|u),

which is more suitable for small domains having
a limited number of logical forms, like the ones
in the OVERNIGHT dataset. We will adopt the sec-
ond strategy. It is also very challenging; random
guessing leads to almost no success. It is also pos-
sible to first find a smaller set of candidates to rank
via beam search (Berant et al., 2013; Wang et al.,
2015).

4 Pre-trained Word Embedding for
Domain Adaptation

Pre-trained word embeddings like WORD2VEC have
a great potential to combat the vocabulary va-
riety across domains. For example, we can
use pre-trained WORD2VEC vectors to initialize the
word embedding layer of the source domain, with
the hope that the other parameters in the model
will co-adapt with the word vectors during train-
ing in the source domain, and generalize better
to the out-of-vocabulary words (but covered by
WORD2VEC) in the target domain. However, deep
neural networks are very sensitive to initializa-
tion (Erhan et al., 2010), and a statistical analysis
of the pre-trained WORD2VEC vectors reveals some
characteristics that may not be desired for initial-
izing deep neural networks. In this section we
present the analysis and propose a standardization
technique to remedy the undesired characteristics.
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Initialization L2 norm Micro Variance Cosine Sim.

Random 17.3± 0.45 1.00± 0.05 0.00± 0.06
WORD2VEC 2.04± 1.08 0.02± 0.02 0.13± 0.11
WORD2VEC + ES 17.3± 0.05 1.00± 0.00 0.13± 0.11
WORD2VEC + FS 16.0± 8.47 1.09± 1.31 0.12± 0.10
WORD2VEC + EN 1.00± 0.00 0.01± 0.00 0.13± 0.11

Table 1: Statistics of the word embedding matrix with dif-
ferent initialization strategies. Random: random sampling
from U(−

√
3,
√
3), thus unit variance. WORD2VEC: raw

WORD2VEC vectors. ES: per-example standardization. FS:
per-feature standardization. EN: per-example normalization.
Cosine similarity is computed on a randomly selected (but
fixed) set of 1M word pairs.

Analysis. Our analysis will be based on the 300-
dimensional WORD2VEC vectors trained on the
100B-word Google News corpus2. It contains 3
million words, leading to a 3M-by-300 word em-
bedding matrix. The “rule of thumb” to randomly
initialize word embedding in neural networks is to
sample from a uniform or Gaussian distribution
with unit variance, which works well for a wide
range of neural network models in general. We
therefore use it as a reference to compare different
word embedding initialization strategies. Given a
word embedding matrix, we compute the L2 norm
of each row and report the mean and the standard
deviation. Similarly, we also report the variance
of each row (denoted as micro variance), which
indicates how far the numbers in the row spread
out, and pair-wise cosine similarity, which indi-
cates the word similarity captured by WORD2VEC.

The statistics of the word embedding matrix
with different initialization strategies are shown
in Table 1. Compared with random initialization,
two characteristics of the WORD2VEC vectors stand
out: (1) Small micro variance. Both the L2 norm
and the micro variance of the WORD2VEC vectors
are much smaller. (2) Large macro variance. The
variance of different WORD2VEC vectors, reflected
by the standard deviation of L2 norm, is much
larger (e.g., the maximum and the minimum L2
norm are 21.1 and 0.015, respectively). Small mi-
cro variance can make the variance of neuron acti-
vations starts off too small3, implying a poor start-
ing point in the parameter space. On the other
hand, because of the magnitude difference, large
macro variance may make a model hard to gener-

2https://code.google.com/archive/p/
word2vec/

3Under some conditions, including using Xavier initial-
ization (also introduced in that paper and now widely used)
for weights, Glorot and Bengio (2010) have shown that the
activation variances in a feedforward neural network will be
roughly the same as the input variances (word embedding
here) at the beginning of training.

alize to words unseen in training.

Standardization. Based on the above analysis,
we propose to do unit variance standardization
(standardization for short) on pre-trained word
embeddings. There are two possible ways, per-
example standardization, which standardizes each
row of the embedding matrix to unit variance by
simply dividing by the standard deviation of the
row, and per-feature standardization, which stan-
dardizes each column instead. We do not make
the rows or columns zero mean. Per-example
standardization enjoys the goodness of both ran-
dom initialization and pre-trained word embed-
dings: it fixes the small micro variance problem
as well as the large macro variance problem of
pre-trained word embeddings, while still preserv-
ing cosine similarity, i.e., word similarity. Per-
feature standardization does not preserve cosine
similarity, nor does it fix the large macro vari-
ance problem. However, it enjoys the benefit of
global statistics, in contrast to the local statistics
of individual word vectors used in per-example
standardization. Therefore, in problems where
the testing and training vocabularies are similar,
per-feature standardization may be more advan-
tageous. Both standardizations lose vector mag-
nitude information. Levy et al. (2015) have sug-
gested per-example normalization4 of pre-trained
word embeddings for lexical tasks like word simi-
larity and analogy, which do no involve deep neu-
ral networks. Making the word vectors unit length
alleviates the large macro variance problem, but
the small micro variance problem remains (Ta-
ble 1).

Discussion. This is indeed a pretty simple trick,
and per-feature standardization (with zero mean)
is also a standard data preprocessing method.
However, it is not self-evident that this kind of
standardization shall be applied on pre-trained
word embeddings before using them in deep neu-
ral networks, especially with the obvious down-
side of rendering the word embedding algorithm’s
loss function sub-optimal.

We expect this to be less of a issue for large-
scale problems with a large vocabulary and abun-
dant training examples. For example, Vinyals
et al. (2015) have found that directly using the
WORD2VEC vectors for initialization can bring a

4It can also be found in the implementation of
Glove (Pennington et al., 2014): https://github.com/
stanfordnlp/GloVe
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consistent, though small, improvement in neural
constituency parsing. However, for smaller-scale
problems (e.g., an application domain of semantic
parsing can have a vocabulary size of only a few
hundreds), this issue becomes more critical. Ini-
tialized with the raw pre-trained vectors, a model
may quickly fall into a poor local optimum and
may not have enough signal to escape. Because of
the large macro variance problem, standardization
can be critical for domain adaptation, which needs
to generalize to many words unseen in training.

The proposed standardization technique ap-
pears in a similar spirit to batch normaliza-
tion (Ioffe and Szegedy, 2015). We notice two
computational differences, that ours is applied on
the inputs while batch normalization is applied
on internal neuron activations, and that ours stan-
dardizes the whole word embedding matrix be-
forehand while batch normalization standardizes
each mini-batch on the fly. In terms of motiva-
tion, the proposed technique aims to remedy some
undesired characteristics of pre-trained word em-
beddings, and batch normalization aims to reduce
the internal covariate shift. It is of interest to study
the combination of the two in future work.

5 Evaluation

5.1 Data Analysis

The OVERNIGHT dataset (Wang et al., 2015) con-
tains 8 different domains. Each domain is based
on a separate knowledge base, with logical forms
written in λ-DCS (Liang, 2013). Logical forms
are converted into canonical utterances via a sim-
ple grammar, and the input utterances are collected
by asking crowd workers to paraphrase the canon-
ical utterances. Different domains are designed to
stress different types of linguistic phenomena. For
example, the CALENDAR domain requires a seman-
tic parser to handle temporal language like “meet-
ings that start after 10 am”, while the BLOCKS do-
main features spatial language like “which block is
above block 1”.

Vocabularies vary remarkably across domains
(Table 2). For each domain, only 45% to 70% of
the words are covered by any of the other 7 do-
mains. A model has to learn the out-of-vocabulary
words from scratch using in-domain training data.
The pre-trained WORD2VEC embedding covers most
of the words of each domain, and thus can con-
nect the domains to facilitate domain adaptation.

Words that are still missing are mainly stop words
and typos, e.g., “ealiest”.

5.2 Experiment Setup

We compare our model with all the previous meth-
ods evaluated on the OVERNIGHT dataset. Wang et
al. (2015) use a log-linear model with a rich set
of features, including paraphrase features derived
from PPDB (Ganitkevitch et al., 2013), to rank
logical forms. Xiao et al. (2016) use a multi-layer
perceptron to encode the unigrams and bigrams of
the input utterance, and then use a RNN to predict
the derivation sequence of a logical form under a
grammar. Similar to ours, Jia and Liang (2016)
also use a Seq2Seq model with bi-directional RNN
encoder and attentive decoder, but it is used to pre-
dict linearized logical forms. They also propose
a data augmentation technique, which further im-
proves the average accuracy to 77.5%. But it is
orthogonal to this work and can be incorporated in
any model including ours, therefore not included.

The above methods are all based on the in-
domain setting, where a separate parser is trained
for each domain. In parallel of this work, Herzig
and Berant (2017) have explored another direction
of cross-domain training: they use all of the do-
mains to train a single parser, with a special do-
main encoding to help differentiate between do-
mains. We instead model it as a domain adap-
tation problem, where training on the source and
the target domains are separate. Their model is
the same as Jia and Liang (2016). It is the current
best-performing method on the OVERNIGHT dataset.

We use the standard 80%/20% split of training
and testing, and randomly hold out 20% of training
for validation. In cross-domain experiments, for
each target domain, all the other domains are com-
bined as the source domain. Hyper-parameters are
selected based on the validation set. State size of
both the encoder and the decoder are set to 100,
and word embedding size is set to 300. Input and
output dropout rate of the GRU cells are 0.7 and
0.5, respectively, and mini-batch size is 512. We
use Adam with the default parameters suggested
in the paper for optimization. We use gradient
clipping with a cap for global norm at 5.0 to al-
leviate the exploding gradients problem of recur-
rent neural networks. Early stopping based on
the validation set is used to decide when to stop
training. The selected model is retrained using
the whole training set (training + validation). The
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Metric CALENDAR BLOCKS HOUSING RESTAURANTS PUBLICATIONS RECIPES SOCIAL BASKETBALL

# of example (N ) 837 1995 941 1657 801 1080 4419 1952
# of logical form (|Z| , |C|) 196 469 231 339 149 124 624 252
vocab. size (|V|) 228 227 318 342 203 256 533 360
% ∈ other domains 71.1 61.7 60.7 55.8 65.6 71.9 46.0 45.6
% ∈ WORD2VEC 91.2 91.6 88.4 88.6 91.1 93.8 86.9 86.9
% ∈ other domains + WORD2VEC 93.9 93.8 90.9 90.4 95.6 97.3 89.3 89.4

Table 2: Statistics of the domains in the OVERNIGHT dataset. Pre-trained WORD2VEC embedding covers most of the words in
each domain, paving a way for domain adaptation.

Method CALENDAR BLOCKS HOUSING RESTAURANTS PUBLICATIONS RECIPES SOCIAL BASKETBALL Avg.

Previous Methods
Wang et al. (2015) 74.4 41.9 54.0 75.9 59.0 70.8 48.2 46.3 58.8
Xiao et al. (2016) 75.0 55.6 61.9 80.1 75.8 – 80.0 80.5 72.7
Jia and Liang (2016) 78.0 58.1 71.4 76.2 76.4 79.6 81.4 85.2 75.8
Herzig and Berant (2017) 82.1 62.7 78.3 82.2 80.7 82.9 81.7 86.2 79.6

Our Methods
Random + I 75.6 60.2 67.2 77.7 77.6 80.1 80.7 86.5 75.7
Random + X 79.2 54.9 74.1 76.2 78.5 82.4 82.5 86.7 76.9

WORD2VEC + I 67.9 59.4 52.4 75.0 64.0 73.2 77.0 87.5 69.5
WORD2VEC + X 78.0 54.4 63.0 81.3 74.5 83.3 81.5 83.1 74.9

WORD2VEC + EN + I 63.1 56.1 60.3 75.3 65.2 69.0 76.4 81.8 68.4
WORD2VEC + EN + X 78.0 52.6 63.5 74.7 65.2 80.6 79.9 80.8 71.2

WORD2VEC + FS + I 78.6 62.2 67.7 78.6 75.8 85.7 81.3 86.7 77.1
WORD2VEC + FS + X 82.7 59.4 75.1 80.4 78.9 85.2 81.8 87.2 78.9

WORD2VEC + ES + I 79.8 60.2 71.4 81.6 78.9 84.7 82.9 86.2 78.2
WORD2VEC + ES + X 82.1 62.2 78.8 83.7 80.1 86.1 83.1 88.2 80.6

Table 3: Main experiment results. We combine the proposed paraphrase model with different word embedding initializations. I:
in-domain, X: cross-domain, EN: per-example normalization, FS: per-feature standardization, ES: per-example standardization.

evaluation metric is accuracy, i.e., the proportion
of testing examples for which the top prediction
yields the correct denotation. Our model is imple-
mented in Tensorflow (Abadi et al., 2016), and the
code can be found at https://github.com/
ysu1989/CrossSemparse.

5.3 Experiment Results

5.3.1 Comparison with Previous Methods
The main experiment results are shown in Table 3.
Our base model (Random + I) achieves an accu-
racy comparable to the previous best in-domain
model (Jia and Liang, 2016). With our main nov-
elties, cross-domain training and word embedding
standardization, our full model is able to outper-
form the previous best model, and achieve the best
accuracy on 6 out of the 8 domains. Next we ex-
amine the novelties separately.

5.3.2 Word Embedding Initialization
The in-domain results clearly show the sensitivity
of model performance to word embedding initial-
ization. Directly using the raw WORD2VEC vectors
or with per-example normalization, the perfor-
mance is significantly worse than random initial-
ization (6.2% and 7.3%, respectively). Based on
the previous analysis, however, one should not be
too surprised. The small micro variance problem
hurts optimization. In sharp contrast, both of the

proposed standardization techniques lead to better
in-domain performance than random initialization
(1.4% and 2.5%, respectively), setting a new best
in-domain accuracy (78.2%) on OVERNIGHT. The
results show that the pre-trained WORD2VEC vectors
can indeed provide useful information, but only
when they are properly standardized.

5.3.3 Cross-domain Training
A consistent improvement from cross-domain
training is observed across all word embedding
initialization strategies. Even for raw WORD2VEC

embedding or per-example normalization, cross-
domain training helps the model escape the poor
initialization, though still inferior to the alterna-
tive initializations. The best results are again
obtained with standardization, with per-example
standardization bringing a slightly larger improve-
ment than per-feature standardization. We observe
that the improvement from cross-domain training
is correlated with the abundance of the in-domain
training data of the target domain. To further ex-
amine this observation, we use the ratio between
the number of examples (N ) and the vocabulary
size (|V|) to indicate the data abundance of a do-
main (the higher, the more abundant), and com-
pute the Pearson correlation coefficient between
data abundance and accuracy improvement from
cross-domain training (X−I). The results in Ta-
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Word Embedding Initialization Correlation

Random −0.698
WORD2VEC −0.730
WORD2VEC + EN −0.461
WORD2VEC + FS −0.770
WORD2VEC + ES −0.514

Table 4: Correlation between in-domain data abundance and
improvement from cross-domain training. The gain of cross-
domain training is more significant when in-domain training
data is less abundant.

Figure 2: Results with downsampled in-domain training data.
The experiment with each downsampling rate is repeated for
3 times and average results are reported. For simplicity,
we only report the average accuracy over all domains. Pre-
trained word embedding with per-example standardization is
used in both settings.

ble 4 show a consistent, moderate to strong neg-
ative correlation between the two variables. In
other words, cross-domain training is more benefi-
cial when in-domain training data is less abundant,
which is reasonable because in that case the model
can learn more from the source domain data that is
missing in the training data of the target domain.

5.3.4 Using Downsampled Training Data

Compared with the vocabulary size and the num-
ber of logical forms, the in-domain training data
in the OVERNIGHT dataset is indeed abundant. In
cross-domain semantic parsing, we are more in-
terested in the scenario where there is insufficient
training data for the target domain. To emulate this
scenario, we downsample the in-domain training
data of each target domain, but still use all train-
ing data from the source domain (thus Nt � Ns).
The results are shown in Figure 2. The gain of
cross-domain training is most significant when in-
domain training data is scarce. As we collect more
in-domain training data, the gain becomes smaller,
which is expected. These results reinforce those
from Table 4. It is worth noting that the effect
of downsampling varies across domains. For do-
mains with quite abundant training data like SO-

CIAL, using only 30% of the in-domain training
data, the model can achieve an accuracy almost as
good as when using all the data.

6 Discussion

Scalability, including vertical scalability, i.e., how
to scale up to handle more complex inputs and
logical constructs, and horizontal scalability, i.e.,
how to scale out to handle more domains, is one
of the most critical challenges semantic parsing
is facing today. In this work, we took an early
step towards horizontal scalability, and proposed
a paraphrasing based framework for cross-domain
semantic parsing. With a sequence-to-sequence
paraphrase model, we showed that cross-domain
training of semantic parsing can be quite effective
under a domain adaptation setting. We also stud-
ied how to properly standardize pre-trained word
embeddings in neural networks, especially for do-
main adaptation.

This work opens up a number of future direc-
tions. As discussed in Section 2.3, many conven-
tional domain adaptation and representation learn-
ing ideas can find application in cross-domain se-
mantic parsing. In addition to pre-trained word
embeddings, other language resources like para-
phrase corpora (Ganitkevitch et al., 2013) can be
incorporated into the paraphrase model to further
facilitate domain adaptation. In this work we re-
quire a full mapping from logical form to canoni-
cal utterance, which could be costly for large do-
mains. It is of practical interest to study the case
where only a lexicon for mapping schema items to
natural language is available. We have restrained
ourselves to the case where domains are defined
using the same formal language, and we look
forward to evaluating the framework on domains
of different formal languages when such datasets
with canonical utterances become available.
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Abstract

We introduce a new method for frame-
semantic parsing that significantly im-
proves the prior state of the art. Our model
leverages the advantages of a deep bidi-
rectional LSTM network which predicts
semantic role labels word by word and a
relational network which predicts seman-
tic roles for individual text expressions
in relation to a predicate. The two net-
works are integrated into a single model
via knowledge distillation, and a unified
graphical model is employed to jointly
decode frames and semantic roles during
inference. Experiments on the standard
FrameNet data show that our model sig-
nificantly outperforms existing neural and
non-neural approaches, achieving a 5.7 F1
gain over the current state of the art, for
full frame structure extraction.

1 Introduction

One way to represent meaning is through organi-
zation of semantic structures. Consider the follow-
ing sentences “John sells Marry a car.” and “Mary
buys a car from John.”. While having different
syntactic structures, they express the same type of
event that involves a buyer, a seller, and goods.
Such meaning can be represented using seman-
tic frames – structured representations that char-
acterize events, scenarios, and the participants.
Researchers have developed FrameNet (Baker
et al., 1998; Fillmore et al., 2003), a large lexi-
cal database of English that comes with sentences
annotated with semantic frames. It has been con-
sidered a valuable resource for Natural Language
Processing and useful for studying tasks such as

information extraction, machine translation, and
question answering (Surdeanu et al., 2003; Shen
and Lapata, 2007; Liu and Gildea, 2010).

Here we consider the task of automatic extrac-
tion of semantic frames as defined in FrameNet.
This include target identification – identifying
frame-evoking predicates, frame identification –
identifying which frame each predicate evokes,
and semantic role labeling (SRL) – identifying
phrasal arguments of each evoked frame and la-
beling them with the frame’s semantic roles. Con-
sider the sentence “We decided to treat the pa-
tient with combination chemotherapy.”. Here “de-
cided” evokes the DECIDING frame and “treat”
evokes the CURE frame. Each frame takes a set of
arguments that fill the semantic roles of the frame,
as illustrated below:

[WeCOGNIZER] decided [to treat
the patient with combination
chemotherapyDECISION].

[WeHEALER] decided to treat [the
patientPATIENT] [with combination
chemotherapyTREATMENT].

We address frame identification and semantic
role labeling in this work.1 Frame identification
can be addressed as a word sense disambiguation
problem, while semantic role labeling can be for-
mulated as a structured prediction problem. We
train different neural network models for these two
problems, and interpret their outputs as factors in
a graphical model for performing joint inference
over the distribution of frames and semantic roles.

Specifically, our frame identification model is a
simple multi-layer neural network that learns ap-

1We do not consider target identification due to the lack
of consistent labeled data (Das et al., 2014).
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propriate feature representations for frame disam-
biguation. Our SRL model is an integrated model
of an LSTM-based network that learns to pre-
dict semantic roles on a word-by-word basis and
a multi-layer network that learns to directly pre-
dict semantic roles for individual text spans in re-
lation to a given predicate. The sequential neu-
ral network is powerful for modeling sentence-
level information while the relational neural net-
work is good at capturing span-level dependen-
cies between predicate and arguments. To lever-
age the power of these two networks, we transfer
the knowledge in the sequential model, encoded as
its predictive distributions. Specifically, we do this
by training a single relational model with an ob-
jective that measures both its prediction accuracy
with respect to the true semantic role labels, and
its match to the probability distributions provided
by the sequential model.

We evaluate our models for frame identification,
SRL, and full structure extraction on the FrameNet
1.5 data. Our full model achieves 76.6 F1, a 5.7
absolute gain over the prior state of the art. We
also evaluate our SRL model on CoNLL 2005. It
demonstrates strong performance that is close to
the best published results. Error analysis further
confirms the benefits of integrating sequential and
relational models and performing joint inference
over frames and semantic roles.

2 Related Work

Research on automatic semantic structure extrac-
tion has been widely studied since the pioneer-
ing work of Gildea and Jurafsky (2002). This
work focuses on extracting semantic frames de-
fined in FrameNet (Baker et al., 1998), which in-
cludes predicting frame types and frame-specific
semantic roles. Our model can be easily adapted
to predict PropBank-style semantic roles (Palmer
et al., 2005), where role labels are generic instead
of frame-specific.

The core problem in semantic frame extraction
is semantic role labeling (SRL). Earlier SRL sys-
tems employ linear classifiers which rely heav-
ily on hand-engineered feature templates to repre-
sent argument structures (Johansson and Nugues,
2007; Das et al., 2010; Das, 2014). Recent work
has exploited neural networks to learn better fea-
ture representations. Roth and Woodsend (2014)
improves the feature-based system by adding word
embeddings as features. Roth and Lapata (2016)

further includes dependency path embeddings as
features. FitzGerald et al. (2015) embeds the stan-
dard SRL features into a low-dimensional vector
space using a feed-forward neural network and
demonstrates state-of-the-art results on FrameNet.

Different neural network architectures have also
been explored for SRL. Collobert et al. (2011)
first applies a convolutional neural network to
extract features from a window of words. Zhou
and Xu (2015) employs a deep bi-directional
LSTM (DB-LSTM) network and achieves state-
of-the-art results on PropBank-style SRL. Re-
cently, Swayamdipta et al. (2016) employs stack
LSTMs (Dyer et al., 2015) for joint syntactic-
semantic dependency parsing. He et al. (2017) re-
cently proposed further improvements to the DB-
LSTM architecture which significantly improve
the state of the art results on PropBank SRL.

In order to enforce structural consistency, most
existing work applies different types of structural
constraints during inference. The inference prob-
lem are typically solved via Integer Linear Pro-
gramming (ILP) (Punyakanok et al., 2008). Täck-
ström et al. (2015) improves the inference effi-
ciency with a dynamic programming algorithm
that encodes tractable global constraints. Re-
cently, Belanger et al. (2017) models SRL using
end-to-end structured prediction energy networks
and demonstrates benefits of accounting for com-
plex structural dependencies during training. In
this work, we explicitly encode structural con-
straints as factors in a graphical model, and adopt
the Alternating Directions Dual Decomposition
(AD3) algorithm (Martins et al., 2011) for efficient
inference.

3 Overview

We aim to extract frame-semantic structures from
text. Each semantic frame contains a frame-
evoking predicate, its frame type, the arguments
of the predicate, and their semantic roles.

Both FrameNet (Baker et al., 1998) and Prop-
Bank (Palmer et al., 2005) provide sentences an-
notated with predicates and the semantic roles of
arguments of the predicates, but there are some
differences. In FrameNet, a semantic frame can be
evoked by a set of lexical units. For example, the
COMMERCE BUY frame can be evoked by buy.v,
purchase.n, and purchase.v. Each frame is also as-
sociated with a set of roles, some of which are
core roles (necessary components) of the frame.
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Figure 1: DB-LSTM network (four layers) with a
CRF prediction layer. The network learns to pre-
dict a sequence of argument role labels given a
sentence (e.g., “I have a cat”) and a predicate (e.g.,
“have”).

For example, the COMMERCE BUY frame con-
tains core roles such as BUYER and GOODS, and
non-core roles such as MONEY and MEANS. In
PropBank, a semantic frame is corresponding to a
verb senses. Each verb sense is associated with a
set of semantic roles. For example, the verb sense
buy.01 is associated with roles A0 (i.e., agent),
A1 (i.e., patient), A2 (i.e., instrument), etc. The
semantic roles in PropBank use generic labels.
There are about 30 different role labels in total
(vs ∼ 103 role labels in FrameNet). Among them
7 are core role labels (A0-A5 and AA) and the
rest are non-core (modifier) roles (e.g., the loca-
tive role LOC and the temporal role TMP).

In the rest of the paper, we first describe our
models for SRL (§ 4), including a sequential neu-
ral model, a relational neural model, and the in-
tegration of the two. Then, we present our frame
identification model (§ 5), followed by a joint in-
ference algorithm for full frame-semantic struc-
ture extraction that enforces structural constraints
among predicates and arguments (§ 6).

4 Semantic Role Labeling

Given a predicate and its frame, we seek to iden-
tify arguments of the predicate and their semantic
roles in relation to the predicate’s frame. Denote
a predicate as p, its frame as f , and a sentence
as x. We want to output a set of argument spans
A = {a1, ..., ak}, where each ai is labeled with a
semantic role that takes values from a set of role
labelsRf with respect to the frame f .

4.1 Sequential Neural Model

The SRL task can be formulated as a sequence
labeling problem, where the semantic role labels
are encoded using the “IOB” tagging scheme, as
in (Collobert et al., 2011; Zhou and Xu, 2015),
where “I” indicates the inside of a chunk, “B” indi-
cates the beginning of a chunk, and “O” indicates
being outside of a chunk.

We employ DB-LSTM, a deep bidirectional
Long Short-Term Memory neural network with
a Condidtional Random Field (CRF) layer intro-
duced by Zhou and Xu (2015) for PropBank-style
SRL. The architecture is illustrated in Figure 1. In
this work, we adapt it to perform both FrameNet-
style and PropBank-style SRL.

At each time step t, the DB-LSTM network is
provided with a set of input features φ(wt, p), in-
cluding the current word wt, the predicate word p,
and a position mark that denotes whether the cur-
rent word is in the neighborhood of the predicate
(within a window of 5 words)2. Each word fea-
ture is associated with a parameter vector which is
initialized using the pre-trained paraphrastic word
embeddings (Wieting et al., 2015). The input rep-
resentation at time step t is the concatenation of
the above features. As proposed in (Zhou and Xu,
2015), we stack 8 layers of the LSTM unit to pro-
duce the hidden representation for each time step.
Then, we employ a CRF layer on top to estimate
the sequence-level label distributions.

During training, we minimize the negative con-
ditional log-likelihood of N training examples.
Each example consists of a sentence x, a predicate
p, and a label sequence y = {y1, ..., yn}, where
n is the length of the sentence. The conditional
probability is given by:

Pseq(y | p, f ;θ) =

1

Zf
exp

( n∑

t=1

Ct,yt +

n∑

t=0

Tyt,yt+1

) (1)

where Zf is a normalization constant depending
on the frame f , as we only normalize over role la-
bel sequences that are compatible with the frame.
For PropBank-style SRL, we simply drop the de-
pendency on f and compute normalization over all
possible role label sequences. Ct,yt is the score
output by DB-LSTM for assigning the t-th word

2We did not use the predicate context features as in Zhou
and Xu (2015) since they did not improve performance in our
implementation.
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Figure 2: A relational network architecture. The
network learns to predict a relation between a
predicate p and an argument a given the predicate-
argument pair and the sentence that contains it.

with label yt and Tyt,yt+1 is the score of transition-
ing from label yt to yt+1. θ denotes the model pa-
rameters, including the DB-LSTM parameters and
the transition matrix T .

4.2 Relational Neural Model
An alternative way to formulate the SRL problem
is to enumerate all possible argument spans for a
given predicate and employ multi-class classifica-
tion on every argument span. We describe how to
obtain candidate argument spans in Section § 7.2.

Denote a set of candidate argument spans as Ã.
For each argument span a ∈ Ã, we seek to esti-
mate the conditional probability given by:

Prel(r | a, p, f ;ψ) =

exp(g(r, a, p;ψ))∑
r′∈Rf∪∅ exp(g(r′, a, p;ψ))

(2)

where g(r, a, p;ψ) is a potential function for scor-
ing the assignment of semantic role r to an argu-
ment span a with respect to predicate p,ψ denotes
the model parameters, Rf is a set of valid seman-
tic roles with respect to frame f and ∅ is an empty
class that indicates invalid semantic roles.

We estimate g using a neural network as de-
picted in Figure 2. The inputs to the network are
discrete features: φ(a) denotes argument-specific
features, which include words within the argument
span, the dependents of the argument’s head, and
their dependency labels; φ(p) denotes predicate-
specific features, which include the predicate
word, its dependents, and their dependency labels;
φ(p, a) denotes predicate-argument relation fea-
tures, which include the words between p and a
and the lexicalized shortest dependency path.

We then map these features into a low dimen-
sional space. Specifically, we compute an embed-

ding of the argument features: ea = [v̄aw; v̄ad; v̄
a
l ],

where v̄aw ∈ Rk is the average of argument word
embeddings, v̄ad ∈ Rk is the average embedding
of the argument’s dependents, and v̄al ∈ Rk is
the average embedding of the corresponding de-
pendency labels. Similarly, the embedding of the
predicate features is: ep = [v̄pw; v̄pd; v̄

p
l ], which

is the concatenation of the average embeddings
for the predicate words, the predicate’s depen-
dents, and their dependency labels. For the rela-
tional features, we have ep,a = [v̄paw ;vpath], where
v̄paw ∈ Rk is the average embedding for words be-
tween p and a, and vpath ∈ Rk is a dependency
path embedding, which is the final hidden state of
an LSTM network that operates over the depen-
dency path between p and a, with the input at each
time step being the concatenation of a dependency
label embedding and a word embedding.

The feature embeddings are then integrated
through a non-linear hidden layer:

hp,a = ReLu(Wp,a · [ea; ep; ep,a]) (3)

where Wp,a is an m× 8k matrix and ReLu(x) =
max(0, x). Finally, we compute the potential
function: g(r, a, p;ψ) = wT

r hp,a, where wr ∈
Rm is a weight vector to be learned.

During training, we minimize the negative con-
ditional log-likelihood of the training examples,
with the conditional probability for each example
given by Eq. 2.

4.3 An Integrated Model
Our integrated model is essentially a relational
neural model that is learned using the knowledge
distilled from the sequential model.

Note that the sequential model estimates prob-
abilities for semantic role label sequences over
words instead of over text spans. These learned
probabilities carry important information about
how the sequential model learns to generalize. We
identify them as the learned knowledge of the se-
quential model. To make use of such knowledge
in the relational model, we first transform the se-
quence distributions into span-based distributions.
Specifically, we derive the marginal distribution
for any given span a = (ws, ..., wt), 1 ≤ s ≤
t < n, and a non-empty semantic role label r as:

Pseq(r | a) =

Pseq(ys = Br, ..., yt = Ir, yt+1 6= Ir | a)
(4)

Here we drop the dependency on p, and f for
brevity. Br, Ir, and O denote the beginning, the
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inside, and the outside of the filler of role r re-
spectively. The probability for an empty role is:

Pseq(r = ∅ | a) = 1−
∑

r∈Rf
Pseq(r | a) (5)

After obtaining the span-based role distributions,
we incorporate them into the training objective of
a relational model P̃rel by adding a regularization
term that minimizes the KL divergence:

L = − log P̃rel(r | a) + βKL(Pseq||P̃rel) (6)

which is equivalent to minimizing

− log P̃rel(r | a)+β
∑

r

Pseq(r | a) log P̃rel(r | a)

where β is a weight parameter. We refer to P̃rel
as the integrated model. At inference time, it com-
putes the predictive distributions of semantic roles
in the same way as a vanilla relational model.

5 Frame Identification

Our semantic role labeling model is conditioned
on a predicate and its frame. We now describe how
to estimate the probabilities of a frame f given a
predicate p.

Denote F as a set of semantic frames, we learn
to estimate the probability:

Pf (f | p) =
exp

(
u(f, p;λ)

)
∑

f ′∈F exp
(
u(f ′, p;λ)

) (7)

The potential function u(f, p;λ) is computed us-
ing a multi-layer neural network, whose architec-
ture is similar to Figure 2. The input features are
φ(p) as defined in § 4.2. The embedding layer
computes ep as described above, and the hidden
layer computes:

hp = ReLu(Wp · ep)

where Wp is an m × 3k matrix. The potential
function is then estimated as u(f, p;λ) = wT

f hp,
where wf ∈ Rm is a weight vector to be learned.
Training is done by minimizing the negative con-
ditional log-likelihood of the training examples
where the conditional probability for each exam-
ple is given by Eq. 7.

6 Joint Inference

Finally, we want to jointly assign frames and roles
to all predicates and their arguments.

Given a set of predicates P = {p1, ..., pN}
and a set of candidate argument spans Ã =
{a1, ..., aM}, we optimize the following objective:

arg max
s. t. (f ,r)∈Q

N∑

j=1

Pf (fj | pj)
M∑

i=1

P̃rel(ri | ai, pj , fj)

(8)
where f is a vector of frame assignments, r is a
vector of role assignments, and Q is a constrained
set of frame and role assignments.

We employ the standard structural constraints
for SRL, including avoiding non-overlapping ar-
gument spans and repeated core roles for each
frame. In addition, we introduce two constraints:
one encodes the compatibility between frame
types and semantic roles, for example, INSTRU-
MENT is not a valid role for the frame COMMER-
CIAL TRANSACTION, and the other encodes type
consistencies of semantic role fillers of different
frames, e.g., the same named entity cannot play
both a PERSON role and a VEHICLE role. We con-
sider six common entity types (that are mutually
exclusive): PERSON, LOCATION, WEAPON, VE-
HICLE, VALUE, and TIME.3

We solve the inference problem (8) using the
AD3 algorithm (Martins et al., 2011), which al-
lows for more efficient constrained optimization
than generic Integer Linear Programming solvers.

7 Experiment

7.1 Datasets

We evaluate our approach on semantic frame ex-
traction using the FrameNet 1.5 release4. We use
the same train/development/test split of the fully-
annotated text documents as in previous work. We
also include the partially-annotated exemplar sen-
tences (i.e., each exemplar has only one annotated
frame.) in FrameNet as training data.5 We use
the standard evaluation script that measures frame

3We simply check if the role name contains any of the en-
tity type names like “person”, “location”. We plan to incorpo-
rate an automatic semantic typing model into our framework
in future work.

4http://framenet.icsi.berkeley.edu
5Existing work also makes use of the exemplars, but

mainly as a lexicon. We found that adding the exemplar sen-
tences generally introduces a 3-4 F1 gain for FrameNet SRL.
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structure extraction precision, recall and F16.
For PropBank-style SRL, we use the

CoNLL2005 data set (Carreras and Màrquez,
2005) with the official scripts7 for evaluation. It
contains section 2-21 of WallStreet Journal (WSJ)
data as training set, section 24 as development
set and section 23 of WSJ concatenated with 3
sections from Brown corpus as the test set.

For data pre-processing, we parse all the
sentences with the part-of-speech tagger and
the dependency parser provided in the Stanford
CoreNLP toolkit (Manning et al., 2014).

7.2 Argument candidate extraction

Existing work relied on either constituency syn-
tax (Xue and Palmer, 2004) or dependency syn-
tax (Täckström et al., 2015) to derive heuris-
tic rules for extracting candidate arguments. In-
stead, we extract candidate arguments using a pre-
trained sequential SRL model (described in § 4.1).
Specifically, we extract the argument spans from
the K-best semantic role label sequences output
by the sequential model. We choose K from
{5,10,20,50}. Increasing K will increase the re-
call of unlabeled arguments but lower the preci-
sion. We tune K based on the argument extrac-
tion performance of our relational model (in § 4.2)
using the development data. In all our experi-
ments, we set K = 10, which gives an unla-
beled argument recall/precision of 89.6%/24.8%
on FrameNet and 92.4%/29.4% on CoNLL2005.

7.3 Implementation details

All of our models are implemented using Theano
on a single GPU. We set the embedding dimen-
sion k to 300 and the hidden dimension m to
100. We initialize the word embeddings using the
pre-trained word embeddings from (Wieting et al.,
2015) while randomly initializing the embeddings
for out-of-vocabulary words and the embeddings
for the dependency labels within (−0.01, 0.01).
All these embeddings are updated during the train-
ing process. We apply dropout to the embedding
layer with rate 0.5, and train using Adam with de-
fault settings (Kingma and Ba, 2014). The weight
parameter β in Eq. 6 is set to 1 in our experiments.
All the models are trained for 50 epochs with early
stopping based on development results.

6http://www.cs.cmu.edu/˜ark/SEMAFOR/
eval/

7http://www.lsi.upc.edu/˜srlconll/
srl-eval.pl

Model All Ambiguous

LOG-LINEAR WORDS 87.3 70.5
LOG-LINEAR EMBEDDING 86.7 70.3
WSABIE EMBEDDING 88.4 73.1

Ours (Frame Only) 88.2 75.7

Table 1: Accuracy results on frame identification,
including results on all predicates and ambiguous
predicates in the FrameNet lexicon.

For all our experimental results, we perform sta-
tistical significance tests using the paired bootstrap
test (Efron and Tibshirani, 1994) with 1000 boot-
strap samples of the evaluated examples, and use ∗
to indicate statistical significance (p < 0.05) of the
differences between our best model and our sec-
ond best model.

7.4 FrameNet Results

Frame Identification. We first evaluate our frame
identification model in § 5. For baselines, we con-
sider the prior state-of-the-art approach WSABIE

EMBEDDING (Hermann et al., 2014), which learns
feature representations based on word embeddings
and dependency path embeddings using the WSA-
BIE algorithm (Weston et al., 2011). We also in-
clude two strong baselines implemented in Her-
mann et al. (2014): LOG-LINEAR WORDS and
LOG-LINEAR EMBEDDINGS, which are both log-
linear models, one with standard linguistic fea-
tures and one with embedding features. Table 1
shows the results.8 We can see that our model in
general gives competitive performance and it out-
performs all the baselines on predicting frames for
ambiguous predicates (i.e., seen with more than
one possible frames in the FrameNet lexicon).

Semantic Role Labeling. Next, we evaluate
our SRL models with gold-standard frames, so
that we can focus on the performance for argument
identification. Our SRL models include the se-
quential model described in § 4.1 (denoted as Seq);
the relational model described in § 4.2 (denoted as
Rel); and the integrated model described in § 4.3
(denoted as Seq+Rel).

Table 2 shows the results for argument span ex-

8We consider the FULL LEXICON evaluation setting and
copy the results from the updated version of the paper from
the author’s website http://www.dipanjandas.com/
pages/papers. Note that the set of ambiguous predicates
we consider is different from the set used by Hermann et al.
(2014). This is because we process the lexical units with the
Stanford POS tagger.
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Model Prec. Rec. F1

SEMAFOR 65.6 53.8 59.1
SEMAFOR (best) 66.0 60.4 63.1

Ours (Seq) 63.4 66.4 64.9
Ours (Rel) 71.8 57.7 64.0
Ours (Seq+Rel) 70.2 60.2 65.5∗

Table 2: Argument only evaluation results on the
FrameNet test set in comparison to the results
in Kshirsagar et al. (2015).

Model Prec. Rec. F1

SEMAFOR 78.4 73.1 75.7
Framat 80.3 71.7 75.8
Framat+context 80.4 73.0 76.5

Ours (Seq) 78.5 79.9 79.2
Ours (Rel) 84.8 75.5 80.0
Ours (Seq+Rel) 84.2 77.1 80.5∗

Table 3: Full structure extraction results on the
FrameNet test set (with gold frames) in compar-
ison to the results in Roth and Lapata (2015).

traction. Our baselines include SEMAFOR (Das
et al., 2014)9, a widely used frame-semantic parser
for English, and SEMAFOR (BEST), an im-
proved SEMAFOR system that is trained with
heterogeneous resources (Kshirsagar et al., 2015).
We can see that all of our models outperform these
two systems in terms of F1, especially, our sequen-
tial model provides the best recall, our relation
model provides the best precision, and our inte-
grated model gives the best F1 score.

Table 3 shows results for full structure extrac-
tion (i.e., the accuracies of the frame-argument
structure as a whole). We compare to the results
reported in Roth and Lapata (2015). Framat is an
open-source semantic role labeling tool provided
by mate-tools (Björkelund et al., 2010), and Fra-
mat+context is an extension of Framat that uses ad-
ditional context features. All of our models sig-
nificantly outperform the baselines in F1. In par-
ticular, our integrated model achieves the best F1
score of 80.5%.

Full Semantic Structure Extraction. We now
evaluate our models on full semantic frame ex-
traction. Previous work implements the task in a
two-stage pipeline: first apply a frame identifica-
tion model to assign a frame to each predicate, and
then apply a SRL model to assign a frame-specific

9http://www.cs.cmu.edu/˜ark/SEMAFOR/

Model Prec. Rec. F1

SEMAFOR 69.2 65.1 67.1
Framat 71.1 63.7 67.2
Framat+context 71.1 64.8 67.8

Hermann 74.3 66.0 69.9
Täckström (Struct.) 75.4 65.8 70.3
FitzGerald (Struct.) 74.8 65.5 69.9
FitzGerald (Struct., PoE) 74.6 66.3 70.2
FitzGerald (Local, PoE, Joint) 75.0 67.3 70.9

Ours (Seq) 69.6 70.9 70.2
Ours (Rel) 77.1 68.7 72.7
Ours (Seq+Rel) 77.3 71.2 74.1
Ours (JointAll) 78.8 74.5 76.6∗

Table 4: Full structure extraction results on the
FrameNet test set in comparison to the previously
published results.

role label or ∅ to each candidate argument span.
We compare with previous work using four model
variants: three are pipeline models that combine
our frame identification model with each of our
SRL models and JointAll is the joint model that
simultaneously predicts frames and roles as de-
scribed in § 6.

Table 4 compares our models with previously
published results. The first block shows results
from Roth and Lapata (2015) and the second block
shows results from FitzGerald et al. (2015). All
these previous methods implements a pipeline of
frame identification and semantic role labeling.
The first block uses SEMAFOR for frame iden-
tification and the second block uses the WSABIE

model from Hermann et al. (2014). For the seman-
tic role labeling step, Hermann is a standard log-
linear classification model used in Hermann et al.
(2014); Täckström (Struct.) is a graphical model with
global factors (Täckström et al., 2015); FitzGer-
ald (Struct.) is an improved version of the graphi-
cal model with non-linear potential functions in-
stead of linear ones; FitzGerald (Struct., PoE) further
employs an ensemble with the product-of-experts
(PoE) (Hinton, 2002); and FitzGerald (Local, PoE, Joint)

indicates the best reported results in FitzGerald
et al. (2015) which uses local factors and addi-
tional training data from CoNLL 2005. We can
see that our sequential model alone is already
close to the state of the art. Our relational model
demonstrates superior performance on precision,
which confirms the benefit of modeling predicate-
argument interactions at the span level. The inte-
grated model further improves over the relational
model in both precision and recall. Finally, by
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Method Dev WSJ Brown

Surdeanu (Ensemble) - 80.6 70.1
Toutanova (Ensemble) 78.6 80.3 68.8
Punyakanok (Ensemble) 77.4 79.4 67.8
Zhou (DB-LSTM) 79.6 82.8 69.4
Täckström (Struct.) 78.6 79.9 71.3
FitzGerald (Struct.) 78.3 79.4 71.2
FitzGerald (Struct., PoE) 78.9 80.3 72.2

Ours (Seq) 78.5 80.5 70.8
Ours (Rel) 79.2 81.4 71.3
Ours (Seq+Rel) 80.3 81.9 72.0∗

Table 5: Semantic role labeling results on CoNLL
2005.

joint inference of both frames and semantic roles,
our model performs even better, achieving a 5.7
absolute F1 gain over the prior state of the art.

7.5 CoNLL Results
Table 5 shows the results of our SRL models on
the CoNLL 2005 data. Our baselines include
the best feature-based systems of Surdeanu et al.
(2007), Toutanova et al. (2008), and Punyakanok
et al. (2008), the recurrent neural network model
(DB-LSTM) (Zhou and Xu, 2015), the graphi-
cal model with global factors (Täckström et al.,
2015) and the improved versions that use neural
network factors (FitzGerald et al., 2015). Note
that our sequential model in this setting is essen-
tially the same as the DB-LSTM model (Zhou and
Xu, 2015) since all the frame-specific constraints
are removed, except that we use simpler input fea-
tures.10 We observe a similar performance trend
among our models. However, the performance
gain introduced by our integrated model is rel-
atively small compared to our FrameNet results.
Note that the argument structures in CoNLL 2005
is much simpler and less diverse than the ones
in FrameNet. This may lead to less complemen-
tary information captured by the sequential model
and the relational model. Overall, our integrated
model achieves comparable performance to the
previously published results.

7.6 Analysis
We perform further analysis of our results on
FrameNet to better understand our models.

We first look at how well our models perform
on sentences of different lengths. In general,

10Our reimplementation using the same feature set as Zhou
and Xu (2015) did not achieve the same performance,
see § 4.1 for details.

Figure 3: Full structure F1 on the FrameNet test
set by the sentence length.

Figure 4: Examples of semantic frames output by
different models.

longer sentences tend to have more predicates and
are more likely to contain complex long-range
predicate-argument dependencies. We divide the
FrameNet test set into 7 bins based on sentence
lengths, each with length increased by 10, and the
last bin contains sentences of length > 60. Fig-
ure 3 shows the F1 scores for full structure extrac-
tion for each bin. For all our models, performance
tends to degrade as sentence length increases. In-
terestingly, our relational model consistently out-
performs our sequential model at different sen-
tence lengths, which demonstrates its robustness
of handling relations of different ranges. The com-
bination of the two models leads to consistent per-
formance gains, and our final joint model performs
the best across different sentence lengths.

Next, we analyze the errors made by different
models. In general, our sequential model produces
higher recall than the relational model and the in-
tegrated model, but it has lower precision. For ex-
ample, for the first sentence in Figure 4, the se-
quential model mistakenly predicts “by $50 mil-
lion” as a means to earn while both the relational
and integrated models avoid this mistake. This
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shows that performing sequential predictions over
individual words has limitations. Although our
relational models are good at reducing precision
errors, they can be affected by frame identifica-
tion errors if they are used in a pipeline. This is
demonstrated by the second sentence in Figure 4,
where only the JointAll model correctly predicts
that the word “train” triggers a “Vehicle” frame.
All the pipeline approaches mistakenly predict the
“Education teaching” frame in the first stage. In
the second stage, the sequential model further ex-
tracts wrong semantic roles “Student” and “Insti-
tution”. While the relational model and the inte-
grated model extract no semantic roles, the frame
prediction mistake remains.

8 Conclusion

We presented a new method for frame-semantic
parsing that achieves the new state of the art results
on standard FrameNet data. Our model integrates
a sequential neural network into the learning of a
relational neural network for more accurate span-
based semantic role labeling. During inference,
it jointly predicts frames and semantic roles us-
ing a graphical model with neural network factors.
Empirical results demonstrate that our approach
significantly outperforms existing neural and non-
neural approaches on FrameNet data. Our model
can also be adapted to perform PropBank-style
SRL and it demonstrates comparable performance
with the state of the art on CoNLL 2005 data.
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Abstract

This paper proposes to tackle the AMR
parsing bottleneck by improving two com-
ponents of an AMR parser: concept iden-
tification and alignment. We first build a
Bidirectional LSTM based concept iden-
tifier that is able to incorporate richer
contextual information to learn sparse
AMR concept labels. We then extend an
HMM-based word-to-concept alignment
model with graph distance distortion and
a rescoring method during decoding to in-
corporate the structural information in the
AMR graph. We show integrating the two
components into an existing AMR parser
results in consistently better performance
over the state of the art on various datasets.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic representation
where the meaning of a sentence is encoded as a
rooted, directed graph. A number of AMR parsers
have been developed in recent years (Flanigan
et al., 2014; Wang et al., 2015b; Artzi et al.,
2015; Pust et al., 2015; Peng et al., 2015; Zhou
et al., 2016; Goodman et al., 2016a), and the
initial benefit of AMR parsing has been demon-
strated in various downstream applications such as
Information Extraction (Pan et al., 2015; Huang
et al., 2016), Machine Comprehension (Sachan
and Xing, 2016), and Language Generation (Flani-
gan et al., 2016b; Butler, 2016). However, AMR
parsing parsing accuracy is still in the high 60%,
as measured by the SMatch score (Cai and Knight,
2013), and a significant improvement is needed in
order for it to positively impact a larger number of
applications.

Previous research has shown that concept iden-
tification is the bottleneck to further improvement
of AMR parsing. For example, JAMR (Flani-
gan et al., 2014), the first AMR parser, is able
to achieve an F-score of 80% (close to the inter-
annotator agreement of 83) if gold concepts are
provided. Its parsing accuracy drops sharply to
62.3% when the concepts are identified automat-
ically.

One of the challenges in AMR concept iden-
tification is data sparsity. A large portion of
AMR’s concepts are either word lemmas or
sense-disambiguated lemmas drawn from Prop-
bank (Palmer et al., 2005). Since the AMR Bank
is relatively small, many of the concept labels in
the development or test set only occur a few times
or never appear in the training set. Werling et
al. (2015) addresses this problem by defining a
set of generative actions that maps words in the
sentence to their AMR concepts and use a local
classifier to learn these actions. Given such sparse
data, making full use of contextual information is
crucial to accurate concept labeling. Bidirectional
LSTM has shown its success on many sequence la-
beling tasks since it is able to combine contextual
information from both directions and avoid man-
ual feature engineering. However, it is non-trivial
to formalize concept identification as a sequence
labeling problem because of the large concept la-
bel set. Inspired by Foland and Martin (2016;
2017), who first apply the Bidirectional LSTM to
AMR concept identification by categorizing the
large labels into a finite set of predefined types,
we propose to address concept identification us-
ing Bidirectional LSTM with Factored Concept
Labels (FCL), where we re-group the concept la-
bel set based on their shared graph structure. This
makes it possible for different concepts to be rep-
resented by one common label that captures the
shared semantics of these concepts.
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Accurate concept identification also crucially
depends on the word-to-AMR-concept alignment.
Since there is no manual alignment in the AMR
annotation, typically either a rule-based or un-
supervised aligner is applied to the training data
to extract the mapping between words and con-
cepts. This mapping will then be used as ref-
erence data to train concept identification mod-
els. The JAMR aligner (Flanigan et al., 2014)
greedily aligns a span of words to graph frag-
ments using a set of heuristics. While it can easily
incorporate information from additional linguis-
tic sources such as WordNet, it is not adaptable
to other domains. Unsupervised aligners borrow
techniques from Machine Translation and treat
sentence-to-AMR alignment as a word alignment
problem between a source sentence and its lin-
earized AMR graph (Pourdamghani et al., 2014)
and solve it with IBM word alignment models
(Brown et al., 1993). However, the distortion
model in the IBM models is based on the lin-
ear distance between source side words while the
linear order of the AMR concepts has no lin-
guistic significance, unlike word order in natural
language. A more appropriate sentence-to-AMR
alignment model should be one that takes the hi-
erarchical structure of the AMR into account. We
develop a Hidden Markov Model (HMM)-based
sentence-to-AMR alignment method with a novel
Graph Distance distortion model to take advan-
tage of the structural information in AMR, and ap-
ply a structural constraint to re-score the posterior
during decoding time.

We present experimental results that show
incorporating these two improvements to
CAMR (Wang et al., 2016), a state-of-the-art
transition-based AMR parser, results in consis-
tently better Smatch scores over the state of the art
on various datasets. The rest of paper is organized
as follows. Section 2 describes related work on
AMR parsing. Section 3 describes our improved
LSTM based concept identification model, and
Section 4 describes our alignment method. We
present experimental results in Section 5, and
conclude in Section 6.

2 Related Work

Existing AMR parsers are either transition-based
or graph-based. Transition-based AMR parsers
(Wang et al., 2015b,a; Goodman et al., 2016a,b),
focus on modeling the correspondence between

the dependency tree and the AMR graph of a sen-
tence by designing a small set of actions that trans-
form the dependency tree into the AMR graph.
Pust et al. (2015) formulates AMR parsing as a
machine translation problem in which the sen-
tence is the source language input and the AMR
is the target language output. AMR parsing sys-
tems that focus on modeling the graph aspect of
the AMR includes JAMR (Flanigan et al., 2014,
2016a; Zhou et al., 2016), which treats AMR pars-
ing as a procedure for searching for the Maxi-
mum Spanning Connected Subgraphs (MSCGs)
from an edge-labeled, directed graph of all pos-
sible relations. Parsers based on Hyperedge Re-
placement Grammars (HRG) (Chiang et al., 2013;
Björklund et al., 2016; Groschwitz et al., 2015) put
more emphasis on modeling the formal properties
of the AMR graph. One practical implementation
of HRG-based parsing is that of (Peng et al., 2015;
Peng and Gildea, 2016). The adoption of Combi-
natory Categorical Grammar (CCG) in AMR pars-
ing has also been explored in (Artzi et al., 2015;
Misra and Artzi, 2016), where a number of exten-
sions have been proposed to enable CCG to work
on the broad-coverage AMR corpus.

More recently, Foland and Martin (2016; 2017)
describe a neural network based model that de-
composes the AMR parsing task into a series
of subproblems. Their system first identifies
the concepts using a Bidirectional LSTM Recur-
rent Neural Network (Hochreiter and Schmidhu-
ber, 1997), and then locates and labels the argu-
ments and attributes for each predicate, and fi-
nally constructs the AMR using the concepts and
relations identified in previous steps. (Barzdins
and Gosko, 2016) first applies the sequence-to-
sequence model (Sutskever et al., 2014) typically
used in neural machine translation to AMR pars-
ing by simply treating the pre-order traversal of
AMR as foreign language strings. (Peng et al.,
2017) also adopts the sequence-to-sequence model
for neural AMR parsing and focuses on reducing
data sparsity in neural AMR parsing with cate-
gorization of the concept and relation labels. In
contrast, (Konstas et al., 2017) adopts a differ-
ent approach and tackles the data sparsity prob-
lem with a self-training procedure that can utilize
a large set of unannotated external corpus. (Buys
and Blunsom, 2017) design a generic transition-
based system for semantic graph parsing and ap-
ply sequence-to-sequence framework to learn the
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transformation from natural language sequences to
action sequences.

3 Concept Identification with
Bidirectional LSTM

In this section, we first introduce how we catego-
rize AMR concepts using Factored Concept La-
bels. We then integrate character-level informa-
tion into a Bidirectional LSTM through Convolu-
tional Neural Network (CNN)-based embeddings.

3.1 Background and Notation
Given a pair of AMR graph G and English sen-
tence S, a look-up tableM is first generated which
maps a span of tokens to concepts using an aligner.
Although there are differences among results gen-
erated by different aligners, in general, the aligned
AMR concepts can be classified into the following
types:

• PREDICATE. Concepts with sense tags,
which are frames borrowed from Propbank,
belong to this case. Most of the tokens
aligned to this type are verbs and nouns that
have their own argument structures.
• NON-PREDICATE. This type of concepts

are mostly lemmatized word tokens from the
original English sentences.
• CONST. Most of the numerical expressions

in English sentences are aligned to this type,
where AMR concepts are normalized numer-
ical expressions.
• MULTICONCEPT. In this type, one or more

word tokens in an English sentence are
aligned to multiple concepts that form a
sub-structure in an AMR graph. The most
frequent case is named entity subgraphs.
For example, in Figure 1, “Mr. Vinken”
is aligned to subgraph (p / person
:name (m / name :op1 "Mr."
:op2 "Vinken").

3.2 Factored Concept Labels
To be able to fit AMR’s large concept label space
into a sequence labeling framework, redefining the
label set is necessary in order to make the learning
process feasible. While it is trivial to categorize
the PREDICATE, NON-PREDICATE, CONST cases,
there is no straightforward way to deal with the
MULTICONCEPT type. Foland and Martin (2016)
only handle named entities, which constitute the

Figure 1: An example AMR graph for sentence:
“Mr. Vinken is chairman of Elsevier N.V., the
Dutch publishing group.”.

majority of the MULTICONCEPT cases, where they
adopt BIOES tags to detect the boundary and use
an additional Bidirectional LSTM to learn the fine-
grained named entity concept types. For other
MULTICONCEPT cases, they only use the leaf con-
cepts and ignore other parts of the subgraphs. Fig-
ure 2 shows the concept label distribution on de-
velopment set of LDC2015E86, where we can see
nearly half of the MULTICONCEPTcases are not
named entities.
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Figure 2: AMR concept label distribution for de-
velopment set of LDC2015E86

Based on the observation that many of the
MULTICONCEPT cases are actually similarly
structured subgraphs that only differ in the lexical
items, we choose to factor the lexical items out of
the subgraph fragments and use the skeletal struc-
ture as the fine-grained labels, which we refer as
Factored Concept Label (FCL).

Figure 4 shows that although English words
“visitor” and “worker” have been aligned to differ-
ent subgraph fragments, after replacing the lexical
items, in this case the leaf concepts visit-01
and work-01 with a placeholder “x”, we are able
to arrive at the same FCL. The strategy for deter-
mining the FCL for a word is simple: for each En-
glish word w and the subgraph s it aligns to, if
the length of the longest overlapping substring be-
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Figure 3: One example of generating FCL for sentence “NATO allies said the cyber attack was unprece-
dented.”

Figure 4: One example of generating FCL

tween w and the leaf concept c of s is greater than
4, we replace c with a placeholder.

Despite this simple strategy, our results show
that it can capture a wide range of MULTICON-
CEPT cases while keeping the new label space
manageable. While the named entity can be
easily categorized using FCL, it can also cover
some other common cases such as morphologi-
cal expressions of negation (e.g., “inadequate”)
and comparatives (e.g., “happier”). Setting a fre-
quency threshold to prune out the noisy labels,
we are able to extract 91 canonical FCL labels
on the training set. Our empirical results show
that this canonical FCL label set can cover 96%
of the MULTICONCEPT cases on the development
set. Figure 3 gives one full example of FCLs gen-
erated for one sentence. For the PREDICATE cases,
following (Foland and Martin, 2016), we only use
the sense tag as its label.

We use label 〈other〉 to label stop words that
do not map to AMR concepts. The MULTICON-
CEPT cases are handled by FCL. The FCL label
set generated by this procedure can be treated as
an abstraction of the original AMR concept label
space, where it groups concepts that have similar
AMR subgraphs into the same category.

3.3 CNN-based Character-level Embedding

After constructing the new label set with FCL, we
set up a baseline Bidirectional LSTM using the
concatenation of word and NER embeddings as
the input. For each input word w and its NER tag
t, their embeddings ew and et are extracted from a
word embedding matrix Wwd ∈ Rdwd×|Vwd| and a
NER tag embedding matrix Wt ∈ Rdt×|Vt| respec-
tively, where dwd and dt are the dimensions of the
word and NER tag embedding matricies, |Vwd| and
|Vt| are the sizes of the word and NER tag vocab-
ulary.

Although this architecture is able to capture
long-range contextual information, it fails to ex-
tract information originating from the word form
itself. As we have discussed above, in some of
the MULTICONCEPT cases the concepts are asso-
ciated with the word forms themselves and won’t
benefit from its contextual information. For ex-
ample, in “unprecedented”, the prefix “un” itself
already gives enough information to predict the
FCL label 〈x〉 : polarity -, which indicates neg-
ative polarity. In order to incorporate such mor-
phological and shape information, we choose to
add a convolutional layer to extract character-level
representations. A similar technique has been ap-
plied to Named Entity Recognition (Santos and
Guimaraes, 2015; Chiu and Nichols, 2015) and
we only provide a brief description of the archi-
tecture here. For a word w composed of charac-
ters {c1, c2, . . . , cl}, where l is the length of word
w, we learn a character embedding matrix Wc ∈
Rdc×|Vc|, where dc is the character embedding di-
mension defined by the user and Vc is character
vocabulary size. After retrieving the character em-
bedding chi for each character ci in word w, we
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obtain a sequence of vectors {ch1, ch2, . . . , chl}.
This serves as the input to convolutional layer.

Figure 5: The architecture of the CNN-based
character-level embedding.

The convolutional layer applies a linear trans-
formation to the local context of a character in the
input sequence, where the local context is parame-
terized by window size k. Here we define the local
context of the character embedding chi to be:

fi = (chi−(k−1)/2, . . . , chi+(k−1)/2)
> (1)

The j-th element of the convolutional layer out-
put vector ewch is computed by element-wise max-
pooling (Ranzato et al., 2007):

[ewch]j = max
1≤i≤l

[W 0fi + b0]j (2)

W 0 and b0 are the parameters of the convolutional
layer. And the output vector ewch is the character
level representation of the word w. The architec-
ture of the model is shown in Figure 5.

The final input to the Bidirectional LSTM is the
concatenation of three embeddings [ew, et, ewch]
for each word position.

4 Aligning an English Sentence to its
AMR graph

Given an AMR graph G and English sentence
e = {e1, e2, . . . , ei, . . . , eI}, in order to fit them
into the traditional word alignment framework, the
AMR graph G is normally linearized using depth
first search by printing each node as soon as it
it visited. The re-entrance node is printed but
not expanded to preserve the multiple mentions of

concept. The relation (also called AMR role to-
ken) between concepts are preserved in the unsu-
pervised aligner (Pourdamghani et al., 2014) be-
cause they also try to align relations to English
words. We ignore the relations here since we
focus on aligning concepts. Therefore the lin-
earized concept sequences can be represented as
g = {g1, g2, . . . , gj , . . . , gJ}. However, although
this configuration makes it easy to adopt existing
word alignment models, it also ignores the struc-
tural information in the AMR graph.

In this section, we proposes a method that in-
corporates the structural information in the AMR
graph through a distortion model inside an HMM-
based word aligner. We then further improve the
model with a re-scoring method during decoding
time.

4.1 HMM-based Aligner with Graph
Distance Distortion

Given a sequence pair (e, g), the HMM-based
word alignment model assumes that each source
word is assigned to exactly one target word, and
defines an asymmetric alignment for the sentence
pair as a = {a1, a2, . . . , ai, . . . , aI}, where each
ai ∈ [0, J ] is an alignment from source position i
to target position ai, ai = 0 means that ei is not
aligned to any target words. Note that in the AMR
to English alignment context, both the alignment
and the graph structure is asymmetric, since we
only have AMR graph annotation on in linearized
AMR sequence g. Unlike the traditional word
alignment for machine translation, here we will
have different formulas for each translation direc-
tion. In this section, we only discuss the transla-
tion from English (source) to linearized AMR con-
cepts (target) and we will discuss the AMR to En-
glish direction in the following section.

The HMM-based model breaks the generative
alignment process into two factors:

P (e,a | g)

=
I∏

i=1

Pd(ai | ai−1, J)Pt(ei|gai)
(3)

where Pd is the distortion model and Pt is the
translation model. Traditionally, the distortion
probability Pd(j | j′, J) is modeled to depend
only on the jump width (j−j′) (Vogel et al., 1996)
and is defined as:

Pd(j | j′, J) =
ct(j − j′)

∑J
j′′=1 ct(j

′′ − j′)
(4)
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where ct(j − j′) is the count of jump width. This
formula simultaneously satisfies the normalization
constraint and captures the locality assumption
that words that are adjacent in the source sentence
tend to align to words that are closer in the target
sentence.

As the linear locality assumption does not hold
among linearized AMR concepts, we choose in-
stead to encode the distortion probability through
graph distance, which is given by:

Pgd(j | j′, G) =
ct(d(j, j′))∑
j′′ ct(d(j′′, j′))

(5)

The graph distance d(j, j′) is the length of short-
est path on AMR graph G from concept j to con-
cept j′. Note that we have to artificially normal-
ize Pgd(j | j′, G), because unlike the linear dis-
tance between word tokens in a sentence, there can
be multiple concepts that can have the same dis-
tance from the j′-th concept in the AMR graph, as
pointed out in (Kondo et al., 2013).

During training, just like the original HMM-
based aligner, an EM algorithm can be applied to
update the parameters of the model.

4.2 Improved Decoding with Posterior
Rescoring

So far, we have integrated the graph structure
information into the forward direction (English
to AMR). To also improve the reverse direction
model (AMR to English), we choose to use the
graph structure to rescore the posterior during de-
coding time.

Compared with Viterbi decoding, posterior
thresholding has shown better results in word
alignment tasks (Liang et al., 2006). Given thresh-
old γ, for all possible alignments, we select the
final alignment based on the following criteria:

a = {(i, j) : p(aj = i | g, e) > γ} (6)

where the state probability p(aj = i | g, e) is
computed using the forward-backward algorithm.
The forward algorithm is defined as:

αj,i

=
∑

i′
αj−1,i′p(aj = i | aj−1 = i′)p(gj | eaj )

(7)

To incorporate the graph structure, we rescale the
distortion probability in reverse direction model

as:

pnew(aj = i |aj−1 = i′)

= p(aj = i | aj−1 = i′)e
∆d (8)

where the scaling factor ∆d = dj − dj−1 is the
graph depth difference between the adjacent AMR
concepts gj and gj−1. We also apply the same pro-
cedure for the backward computation. Note that
since the model is in reverse direction, the distor-
tion p(aj = i | aj−1 = i′) here is still based on
English word distance, jump width.

This rescaling procedure is based on the intu-
ition that after we have processed the last con-
cept gj−1 in some subgraph, the next concept gj’s
aligned English position i is not necessarily re-
lated to the last aligned English position i′. Fig-
ure 6 illustrates this phenomenon: Although we
and current are adjacent concepts in linearized
AMR sequence, they are actually far away from
each other in the graph (with a graph depth differ-
ence of -2). However, the distortion based on the
English word distance mostly tends to choose the
closer word, which may yield a very low proba-
bility for our correct answer here (the jump width
between “Currently” and “our” is -6). By apply-
ing the exponential scaling factor, we are able to
reduce the differences between different distortion
probabilities. On the contrary, when the distor-
tion probability is reliable (the absolute value of
the graph depth difference is small), the model
chooses to trust the distortion and picks the closer
English word.

The rescaling factor can be viewed as a selec-
tion filter for decoding, where it relies on the graph
depth difference ∆d to control the effect of learned
distortion probability. Note that after the rescaling,
the resulting distortion probability no longer sat-
isfies the normalization constraint. However, we
only apply this during decoding time and experi-
ments show that the typical threshold γ = 0.5 still
works well for our case.

4.3 Combining Both Directions

Empirical results show that combining alignments
from both directions improve the alignment qual-
ity (DeNero and Klein, 2007; Och and Ney, 2003;
Liang et al., 2006). To combine the alignments,
we adopt a slightly modified version of posterior
thresholding, competitive thresholding, as pro-
posed in (DeNero and Klein, 2007), which tends
to select alignments that form a contiguous span.
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Figure 6: AMR graph annotation, linearized con-
cepts for sentence “Currently, there is no asbestos
in our products”. The concept we in solid line
is the (j − 1)-th token in linearized AMR. It is
aligned to English word “our” and its depth in
graph dj−1 is 3. While the word distance-based
distortion prefers an alignment near “our”, the cor-
rect alignment needs a longer distortion.

5 Experiments

We first test the performance of our Bidirectional
LSTM concept identifier and HMM-based aligner
as standalone tasks, where we investigate the ef-
fectiveness of each component in AMR parsing.
Then we report the final results by incorporating
both components to CAMR (Wang et al., 2016).
At the model development stage, we mainly use
the dataset LDC2015E86 used in the SemEval
Shared Task (May, 2016). Note that this dataset
includes :wiki relations where every named en-
tity concept is linked to its wikipedia entry. We re-
move this information in the training data through-
out the development of our models. At the final
testing stage, we add wikification using an off-the-
shelf AMR wikifier (Pan et al., 2015) as a post-
processing step. All AMR parsing results are eval-
uated using the Smatch (Cai and Knight, 2013)
scorer.

5.1 Bidirectional LSTM Concept
Identification Evaluation

In order to isolate the effects of our concept iden-
tifier, we first use the official alignments provided
by SemEval. The alignment is generated by the
unsupervised aligner described in (Pourdamghani
et al., 2014). After getting the alignment table, we
generate our FCL label set by filtering out noisy
FCL labels that occur fewer than 30 times in the
training data. The remaining FCL labels account
for 96% of the MULTICONCEPT cases in the de-

velopment set. Adding other labels that include
PREDICATE, NON-PREDICATE and CONST gives
us 116 canonical labels. UNK label is added to
handle the unseen concepts.

In the Bidirectional LSTM, the hyperparameter
settings are as follows: word embedding dimen-
sion dwd = 128, NER tag embedding dimension
dt = 8, character embedding dimension dc = 50,
character level embedding dimension dwch = 50,
convolutional layer window size k = 2.

Input P R F1 Acc
word,NER 81.2 80.6 80.9 85.4
word,NER,CNN 83.3 82.7 83.0 87.0

Table 1: Performance of Bidirectional LSTM with
different input.

Table 1 shows the performance on the develop-
ment set of LDC2015E86, where the precision, re-
call and F-score are computed by treating 〈other〉
as the negative label and accuracy is calculated
using all labels. We include accuracy here since
correctly predicting words that don’t invoke con-
cepts is also important. We can see that utilizing
CNN-based character level embedding yields an
improvement of around 2 percentage points abso-
lute for both F-score and accuracy, which indicates
that morphological and word shape information is
important for concept identification.

Impact on AMR Parsing In order to test the
impact of our concept identification component on
AMR parsing, we add the predicted concept labels
as features to CAMR. Here is the detailed feature
set we add to CAMR’s feature templates. To clar-
ify the notation, we refer the concept labels pre-
dicted by our concept identifier as cpred and the
candidate concept labels in CAMR as ccand:

• pred label. cpred used directly as a fea-
ture.

• is eq sense. A binary feature of whether
a cpred and ccand have the same sense (if ap-
plicable).

One reason why we choose to add the concept la-
bel and sense as features to predict the concept
rather than using the predicted label to recover the
concept directly is that the latter is not a straight-
forward process. For example, since we generalize
all the predicates to a compact form <pred-xx>,
for irregular verbs like “became”⇒ become-01,
simply stemming the inflected verb form will not
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give us the correct concept even if the sense is
predicted correctly. However, since CAMR uses
the alignment table to store all possible concept
candidates for a word, adding our predicated la-
bel as a feature could potentially help the parser
to choose the correct concept. In order to take
full advantage of the predicted concept labels, we
also extend CAMR so that it can discover candi-
date concepts outside of the alignment table. To
achieve this, during the FCL label generation pro-
cess, we first store the string-to-concept mapping
as a template. For example, when we generate
the FCL label (person :ARG0-of <x>-01)
from “worker”, we also store the template <x>er
-> (person :ARG0-of <x>-01). Then
during decoding time, we would enumerate every
template and try to use the left hand side of the
template (which is <x>er) as a regular expres-
sion to match current word. Once we find a match
in all the template entries, we would substitute the
placeholder in right hand side with the matched
substring to get the candidate concept label. As a
result, even we haven’t seen “teacher”, by match-
ing teacher with the regular expression (.?)er,
we could generate the correct answer (person
:ARG0-of teach-01). We refer this process
as unknown concept generation. Table 2 summa-
rizes the impact of our proposed methods on de-
velopment set of LDC2015E86. We can see that
by utilizing the unknown concept generation and
features derived from cpred , both precision and re-
call improve by about 1 percentage point, which
indicates that the new feature brings richer infor-
mation to the concept prediction model to help
correctly score candidate concepts from the align-
ment table.

Parsers P R F1

CAMR (Wang et al., 2016) 72.3 61.4 66.5
CAMR-gen 72.1 62.0 66.6
CAMR-gen-cpred 73.6 62.6 67.6

Table 2: Performance of AMR parsing with
cpred features without wikification on dev set of
LDC2015E86. The first row is performance of the
baseline parser. The second row adds unknown
concept generation and the last row additionally
extends the baseline parser with cpred features.

5.2 HMM-based AMR-to-English Aligner
Evaluation

To validate the effectiveness of our proposed
alignment methods, we first evaluate our for-
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Figure 7: Our improved forward (graph) and re-
verse(rescale) model compared with HMM base-
line on hand aligned development set.

ward (English-to-AMR) and reverse (AMR-to-
English) aligners against the baseline HMM word
alignment model, which is the Berkeley aligner
toolkit (DeNero and Klein, 2007). Then we com-
bine the forward and reverse alignment results us-
ing competitive thresholding. We set the threshold
γ to be 0.5 in the following experiments. To evalu-
ate the alignment quality, we use 200 hand-aligned
sentences from (Pourdamghani et al., 2014) split
equally as the development and test sets. We
process the English sentences by removing stop
words, following similar procedure as in (Pour-
damghani et al., 2014). When linearizing AMR
graphs, we instead remove all the relations and
only keep the concepts. For all models, we run
5 iterations of IBM Model 1 and 2 iterations of
HMM on the whole dataset.

From Figure 7a, we can see that our graph-
distance based model improves both the precision
and recall by a large margin, which indicates the
graph distance distortion better fits the English-
to-AMR alignment task. For the reverse model,
although our HMM rescaling model loses accu-
racy in recall, it is able to improve the precision
by around 4 percentage points, which confirms
our intuition that the rescoring factor is able to
keep reliable alignments and penalize unreliable
ones. We then combine our forward and reverse
alignment result using competitive thresholding.
Table 3 shows the combined result against hand-
aligned dev and test sets.

Datasets P R F1

dev 97.7 84.3 90.5
test 96.9 84.6 90.3

Table 3: Combined HMM alignment result evalu-
ation.
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Dataset Aligner P R F1

Dev
JAMR 73.6 62.6 67.6
ISI 72.8 64.6 68.4
Our HMM 73.6 63.6 68.2

Test
JAMR 71.6 61.3 66.0
ISI 70.6 62.7 66.4
Our HMM 72.1 62.5 67.0

Table 4: AMR parsing result (without wikifica-
tion) with different aligner on development and
test of LDC2015E86, where JAMR is the rule-
based aligner, ISI is the modified IBM Model 4
aligner

Impact on AMR Parsing To investigate our
aligner’s contribution to AMR parsing, we replace
the alignment table generated by the best perform-
ing aligner (the forward and reverse combined) in
the previous section and re-train CAMR with the
predicted concept label features included.

From Table 4, we can see that the unsuper-
vised aligner (ISI and HMM) generally outper-
forms the JAMR rule-based aligner, and our im-
proved HMM aligner is more consistent than the
ISI aligner (Pourdamghani et al., 2014), which is
a modified version of IBM Model 4.

5.3 Comparison with other Parsers

We first add the wikification information to the
parser output using the off-the-shelf AMR wiki-
fier (Pan et al., 2015) and compare results with the
state-of-the-art parsers in 2016 SemEval Shared
Task. We also report our result on the previous
release (LDC2014T12), AMR annotation Release
1.0, which is another popular dataset that most of
the existing parsers report results on. Note that the
Release 1.0 annotation doesn’t include wiki infor-
mation.

Dataset Parsers P R F1

SemEval
Test

CAMR 70.3 63.1 66.5
RIGA - - 67.2
JAMR(2016a) 70 65 67
Our parser 71.7 64.9 68.1

SemEval
Blind
Test

CAMR 67.4 57.3 62.0
RIGA 68.0 57.0 62.0
JAMR(2016a) - - 56
Our parser 68.2 59.5 63.6

Table 5: Comparison with the winning systems in
SemEval (with wikification) on test and blind test
sets

CAMR and RIGA (Barzdins and Gosko, 2016)
are the two best performing parsers that partici-
pated in SemEval 2016 shared task. While we use
CAMR as our baseline system, the parser from
RIGA is also based on a version of CAMR ex-
tended with a error-correction wrapper and an en-
semble with a character-level neural sequence-to-
sequence model. Our parser outperforms both
systems by around 1.5 percentage points, where
the improvement in recall is more significant, at
around 2 percentage points.

Parsers P R F1

CAMR 71.3 62.2 66.5
(Zhou et al., 2016) 70 62 66
(Pust et al., 2015) - - 65.8
Our parser 72.7 64.0 68.07

Table 6: Comparison with the existing parsers on
full test set of LDC2014T12

Table 6 shows the performance of our parser on
the full test set of LDC2014T12. We include the
previous best results on this dataset. The parser
proposed in (Zhou et al., 2016) jointly learns the
concept and relation through an incremental joint
model. We also include the AMR parser by
(Pust et al., 2015) that models AMR parsing as
a machine translation task and incorporates vari-
ous external resources. Our parser still achieves
the best result without incorporating external re-
sources other than the NER information.

6 Conclusion

In this paper, we presents work that improves
AMR parsing performance by focusing on two
components of the parser: concept identification
and alignment. We first build a Bidirectional
LSTM based concept identifier which is able to
incorporate richer context and learn sparse con-
cept labels. Then we extend the HMM-based word
alignment model with a graph distance distortion
and a rescoring method during decoding to incor-
porate the graph structure information. By inte-
grating the two components into an existing AMR
parser, our parser is able to outperform state-of-
the-art AMR parsers and establish a new state of
the art.
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Abstract

We present a transition-based AMR parser
that directly generates AMR parses from
plain text. We use Stack-LSTMs to repre-
sent our parser state and make decisions
greedily. In our experiments, we show
that our parser achieves very competitive
scores on English using only AMR train-
ing data. Adding additional information,
such as POS tags and dependency trees,
improves the results further.

1 Introduction

Transition-based algorithms for natural language
parsing (Yamada and Matsumoto, 2003; Nivre,
2003, 2004, 2008) are formulated as a series of
decisions that read words from a buffer and incre-
mentally combine them to form syntactic struc-
tures in a stack. Apart from dependency pars-
ing, these models, also known as shift-reduce al-
gorithms, have been successfully applied to tasks
like phrase-structure parsing (Zhang and Clark,
2011; Dyer et al., 2016), named entity recognition
(Lample et al., 2016), CCG parsing (Misra and
Artzi, 2016) joint syntactic and semantic parsing
(Henderson et al., 2013; Swayamdipta et al., 2016)
and even abstract-meaning representation parsing
(Wang et al., 2015b,a; Damonte et al., 2016).

AMR parsing requires solving several natural
language processing tasks; mainly named entity
recognition, word sense disambiguation and joint
syntactic and semantic role labeling.1 Given the
difficulty of building an end-to-end system, most
prior work is based on pipelines or heavily de-
pendent on precalculated features (Flanigan et al.,
2014; Zhou et al., 2016; Werling et al., 2015;
Wang et al., 2015b, inter-alia).

1Check (Banarescu et al., 2013) for a complete descrip-
tion of AMR graphs.

Inspired by Wang et al. (2015b,a); Goodman
et al. (2016); Damonte et al. (2016) and Dyer et al.
(2015), we present a shift-reduce algorithm that
produces AMR graphs directly from plain text.
Wang et al. (2015b,a); Zhou et al. (2016); Good-
man et al. (2016) presented transition-based tree-
to-graph transducers that traverse a dependency
tree and transforms it to an AMR graph. Damonte
et al. (2016)’s input is a sentence and it is therefore
more similar (with a different parsing algorithm)
to our approach, but their parser relies on external
tools, such as dependency parsing, semantic role
labeling or named entity recognition.

The input of our parser is plain text sentences
and, through rich word representations, it predicts
all actions (in a single algorithm) needed to gen-
erate an AMR graph representation for an input
sentence; it handles the detection and annotation
of named entities, word sense disambiguation and
it makes connections between the nodes detected
towards building a predicate argument structure.
Even though the system that runs with just words
is very competitive, we further improve the results
incorporating POS tags and dependency trees into
our model.

Stack-LSTMs2 have proven to be useful in tasks
related to syntactic and semantic parsing (Dyer
et al., 2015, 2016; Swayamdipta et al., 2016) and
named entity recognition (Lample et al., 2016). In
this paper, we demonstrate that they can be effec-
tively used for AMR parsing as well.

2 Parsing Algorithm

Our parsing algorithm makes use of a STACK (that
stores AMR nodes and/or words) and a BUFFER

that contains the words that have yet to be pro-
cessed. The parsing algorithm is inspired from

2We use the dynamic framework of Neubig et al. (2017)
to implement our parser.
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the semantic actions presented by Henderson et al.
(2013), the transition-based NER algorithm by
Lample et al. (2016) and the arc-standard algo-
rithm (Nivre, 2004). As in (Ballesteros and Nivre,
2013) the buffer starts with the root symbol at the
end of the sequence. Figure 2 shows a running ex-
ample. The transition inventory is the following:

• SHIFT: pops the front of the BUFFER and
push it to the STACK.

• CONFIRM: calls a subroutine that predicts
the AMR node corresponding to the top of
the STACK. It then pops the word from the
STACK and pushes the AMR node to the
STACK. An example is the prediction of a
propbank sense: From occured to occur-01.

• REDUCE: pops the top of the STACK. It oc-
curs when the word/node at the top of the
stack is complete (no more actions can be ap-
plied to it). Note that it can also be applied
to words that do not appear in the final output
graph, and thus they are directly discarded.

• MERGE: pops the two nodes at the top
of the STACK and then it merges them, it
then pushes the resulting node to the top of
STACK. Note that this can be applied recur-
sively. This action serves to get multiword
named entities (e.g. New York City).

• ENTITY(label): labels the node at the top of
the STACK with an entity label. This action
serves to label named entities, such as New
York City or Madrid and it is normally run
after MERGE when it is a multi-word named
entity, or after SHIFT if it is a single-word
named entity.

• DEPENDENT(label,node): creates a new node
in the AMR graph that is dependent on the
node at the top of the STACK. An example
is the introduction of a negative polarity to a
given node: From illegal to (legal, polarity
-).

• LA(label) and RA(label): create a left/right
arc with the top two nodes at the top of the
STACK. They keep both the head and the
dependent in the stack to allow reentrancies
(multiple incoming edges). The head is now
a composition of the head and the dependent.
They are enriched with the AMR label.

• SWAP: pops the two top items at the top of
the STACK, pushes the second node to the
front of the BUFFER, and pushes the first one
back into the STACK. This action allows non-
projective arcs as in (Nivre, 2009) but it also
helps to introduce reentrancies. At oracle
time, SWAP is produced when the word at
the top of the stack is blocking actions that
may happen between the second element at
the top of the stack and any of the words in
the buffer.

Figure 1 shows the parser actions and the effect
on the parser state (contents of the stack, buffer)
and how the graph is changed after applying the
actions.

We implemented an oracle that produces the se-
quence of actions that leads to the gold (or close
to gold) AMR graph. In order to map words in
the sentences to nodes in the AMR graph we need
to align them. We use the JAMR aligner provided
by Flanigan et al. (2014).3 It is important to men-
tion that even though the aligner is quite accurate,
it is not perfect, producing a F1 score of around
0.90. This means that most sentences have at least
one alignment error which implies that our oracle
is not capable of perfectly reproducing all AMR
graphs. This has a direct impact on the accuracy
of the parser described in the next section since it
is trained on sequences of actions that are not per-
fect. The oracle achieves 0.895 F1 Smatch score
(Cai and Knight, 2013) when it is run on the de-
velopment set of the LDC2014T12.

The algorithm allows a set of different con-
straints that varies from the basic ones (not al-
lowing impossible actions such as SHIFT when
the buffer is empty or not generating arcs when
the words have not yet been CONFIRMed and thus
transformed to nodes) to more complicated ones
based on the propbank candidates and number of
arguments. We choose to constrain the parser to
the basic ones and let it learn the more compli-
cated ones.

3 Parsing Model

In this section, we revisit Stack-LSTMs, our pars-
ing model and our word representations.

3We used the latest version of the aligner (Flanigan et al.,
2016)
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Stackt Buffert Action Stackt+1 Buffert+1 Graph
S u,B SHIFT u, S B —
u, S B CONFIRM n, S B —
u, S B REDUCE S B —
u, v, S B MERGE (u, v), S B —
u, S B ENTITY(l) (u : l), S B —
u, S B DEPENDENT(r, d) u, S B u

r→ d

u, v, S B RA(r) u, v, S B u
r→ v

u, v, S B LA(r) u, v, S B u
r← v

u, v, S B SWAP u, S v,B —

Figure 1: Parser transitions indicating the action applied to the stack and buffer and the resulting state.

ACTION STACK BUFFER

INIT It, should, be, vigorously, advocated, R
SHIFT it should, be, vigorously, advocated, R
CONFIRM it should, be, vigorously, advocated, R
SHIFT should, it be, vigorously, advocated, , R
CONFIRM recommend-01, it be, vigorously, advocated, R
SWAP recommend-01 it, be, vigorously, advocated, R
SHIFT it, recommend-01 be, vigorously, advocated, R
SHIFT be, it, recommend-01 vigorously, advocated, R
REDUCE it, recommend-01 vigorously, advocated, R
SHIFT vigorously, it, recommend-01 advocated, R
CONFIRM vigorous, it, recommend-01 advocated, R
SWAP vigorous, recommend-01 it, advocated, R
SWAP vigorous recommend-01, it, advocated, R
SHIFT recommend-01, vigorous it, advocated, R
SHIFT it, recommend-01, vigorous advocated , R
SHIFT it, recommend-01, vigorous advocated, R
SHIFT advocated, it, recommend-01, vigorous R
CONFIRM advocate-01, it, recommend-01, vigorous R
LA(ARG1) advocate-01, it, recommend-01, vigorous R
SWAP advocate-01, recommend-01, vigorous it R
SHIFT it, advocate-01, recommend-01, vigorous R
REDUCE advocate-01, recommend-01, vigorous R
RA(ARG1) advocate-01, recommend-01, vigorous R
SWAP advocate-01, vigorous recommend-01, R
SHIFT recommend01, advocate-01, vigorous R
SHIFT R, recommend01, advocate-01, vigorous
LA(root) R, recommend01, advocate-01, vigorous
REDUCE recommend01, advocate-01, vigorous
REDUCE advocate-01, vigorous
LA(manner) advocate-01, vigorous
REDUCE vigorous
REDUCE

(r / recommend-01
:ARG1 (a / advocate-01

:ARG1 (i / it)
:manner (v / vigorous)))

Figure 2: Transition sequence for the sentence It
should be vigorously advocated. R represents the
root symbol

3.1 Stack-LSTMs

The stack LSTM is an augmented LSTM
(Hochreiter and Schmidhuber, 1997; Graves,
2013) that allows adding new inputs in the same
way as LSTMs but it also provides a POP opera-
tion that moves a pointer to the previous element.
The output vector of the LSTM will consider the
stack pointer instead of the rightmost position of
the sequence.4

4We refer interested readers to (Dyer et al., 2015) for fur-
ther details.

3.2 Representing the State and Making
Parsing Decisions

The state of the algorithm presented in Section 2 is
represented by the contents of the STACK, BUFFER

and a list with the history of actions (which are
encoded as Stack-LSTMs).5 All of this forms the
vector st that represents the state which s calcu-
lated as follows:

st = max {0,W[stt;bt;at] + d} ,
where W is a learned parameter matrix, d is a bias
term and stt, bt,at represent the output vector of
the Stack-LSTMs at time t.

Predicting the Actions: Our model then uses
the vector st for each timestep t to compute the
probability of the next action as:

p(zt | st) =
exp

(
g>ztst + qzt

)
∑

z′∈A exp
(
g>z′st + qz′

) (1)

where gz is a column vector representing the (out-
put) embedding of the action z, and qz is a bias
term for action z. The set A represents the ac-
tions listed in Section 2. Note that due to parsing
constraints the set of possible actions may vary.
The total number of actions (in the LDC2014T12
dataset) is 478; note that they include all possible
labels (in the case of LA and RA ) and the differ-
ent dependent nodes for the DEPENDENT action

Predicting the Nodes: When the model selects
the action CONFIRM, the model needs to decide
the AMR node6 that corresponds to the word at

5 Word representations, input and hidden representations
have 100 dimensions, action and label representations are of
size 20.

6When the word at the top of stack is an out of vocabu-
lary word, the system directly outputs the word itself as AMR
node.
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the top of the STACK, by using st, as follows:

p(et | st) =
exp

(
g>etst + qet

)
∑

e′∈N exp
(
g>e′st + qe′

) (2)

whereN is the set of possible candidate nodes for
the word at the top of the STACK. ge is a column
vector representing the (output) embedding of the
node e, and qe is a bias term for the node e. It
is important to mention that this implies finding
a propbank sense or a lemma. For that, we rely
entirely on the AMR training set instead of using
additional resources.

Given that the system runs two softmax opera-
tions, one to predict the action to take and the sec-
ond one to predict the corresponding AMR node,
and they both share LSTMs to make predictions,
we include an additional layer with a tanh nonlin-
earity after st for each softmax.

3.3 Word Representations
We use character-based representations of words
using bidirectional LSTMs (Ling et al., 2015b;
Ballesteros et al., 2015). They learn represen-
tations for words that are orthographically simi-
lar. Note that they are updated with the updates
to the model. Ballesteros et al. (2015) and Lam-
ple et al. (2016) demonstrated that it is possible
to achieve high results in syntactic parsing and
named entity recognition by just using character-
based word representations (not even POS tags, in
fact, in some cases the results with just character-
based representations outperform those that used
explicit POS tags since they provide similar vec-
tors for words with similar/same morphosyntac-
tic tag (Ballesteros et al., 2015)); in this paper
we show a similar result given that both syntactic
parsing and named-entity recognition play a cen-
tral role in AMR parsing.

These are concatenated with pretrained word
embeddings. We use a variant of the skip n-gram
model provided by Ling et al. (2015a) with the
LDC English Gigaword corpus (version 5). These
embeddings encode the syntactic behavior of the
words (see (Ling et al., 2015a)).

More formally, to represent each input token,
we concatenate two vectors: a learned character-
based representation (w̃C); and a fixed vector rep-
resentation from a neural language model (w̃LM).
A linear map (V) is applied to the resulting vector
and passed through a component-wise ReLU,

x = max {0,V[w̃C; w̃LM] + b} .

where V is a learned parameter matrix, b is a bias
term and wC is the character-based learned rep-
resentation for each word, w̃LM is the pretrained
word representation.

3.4 POS Tagging and Dependency Parsing

We may include preprocessed POS tags or depen-
dency parses to incorporate more information into
our model. For the POS tags we use the Stanford
tagger (Toutanova et al., 2003) while we use the
Dyer et al. (2015)’s Stack-LSTM parser trained
on the English CoNLL 2009 dataset (Hajič et al.,
2009) to get the dependencies.

POS tags: The POS tags are preprocessed and
a learned representation tag is concatenated with
the word representations. This is the same setting
as (Dyer et al., 2015).

Dependency Trees: We use them in the same
way as POS tags by concatenating a learned rep-
resentation dep of the dependency label to the
parent with the word representation. Additionally,
we enrich the state representation st, presented in
Section 3.2. If the two words at the top of the
STACK have a dependency between them, st is en-
riched with a learned representation that indicates
that and the direction; otherwise st remains un-
changed. st is calculated as follows:

st = max {0,W[stt;bt;at;dept] + d} ,

where dept is the learned vector that represents
that there is an arc between the two top words at
the top of the stack.

4 Experiments and Results

We use the LDC2014T12 dataset7 for our experi-
ments. Table 1 shows results, including compari-
son with prior work that are also evaluated on the
same dataset.8

7This dataset is a standard for comparison and has been
used for evaluation in recent papers like (Wang et al., 2015a;
Goodman et al., 2016; Zhou et al., 2016). We use the standard
training/development/test split: 10,312 sentences for training,
1,368 sentences for development and 1,371 sentences held-
out for testing.

8The first entry for Damonte et al. is calculated us-
ing a pretrained LDC2015 model, available at https://
github.com/mdtux89/amr-eager, but evaluated on
the LDC2014 dataset. This means that the score is not di-
rectly comparable with the rest. The second entry (0.64) for
Damonte et al. is calculated by training their parser with the
LDC2014 training set which makes it directly comparable
with the rest of the parsers.
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Model F1(Newswire) F1(ALL)
Flanigan et al. (2014)* (POS, DEP) 0.59 0.58
Flanigan et al. (2016)* (POS, DEP, NER) 0.62 0.59
Werling et al. (2015)* (POS, DEP, NER) 0.62 –
Damonte et al. (2016)8(POS, DEP, NER, SRL) – 0.61
Damonte et al. (2016)8(POS, DEP, NER, SRL) – 0.64
Artzi et al. (2015) (POS, CCG) 0.66 –
Goodman et al. (2016)* (POS, DEP, NER) 0.70 –
Zhou et al. (2016)* (POS, DEP, NER, SRL) 0.71 0.66
Pust et al. (2015) (LM, NER) – 0.61
Pust et al. (2015) (Wordnet, LM, NER) – 0.66
Wang et al. (2015b)* (POS, DEP, NER) 0.63 0.59
Wang et al. (2015a)* (POS, DEP, NER, SRL) 0.70 0.66
OUR PARSER (NO PRETRAINED-NO CHARS) 0.64 0.59
OUR PARSER (NO PRETRAINED-WITH CHARS) 0.66 0.61
OUR PARSER (WITH PRETRAINED-NO CHARS) 0.66 0.62
OUR PARSER 0.68 0.63
OUR PARSER (POS) 0.68 0.63
OUR PARSER (POS, DEP) 0.69 0.64

Table 1: AMR results on the LDC2014T12
dataset; Newsire section (left) and full (right).
Rows labeled with OUR-PARSER show our re-
sults. POS indicates that the system uses prepro-
cessed POS tags, DEP indicates that it uses pre-
processed dependency trees, SRL indicates that it
uses preprocessed semantic roles, NER indicates
that it uses preprocessed named entitites. LM in-
dicates that it uses a LM trained on AMR data and
WordNet indicates that it uses WordNet to predict
the concepts. Systems marked with * are pipeline
systems that require a dependency parse as input.
(WITH PRETRAINED-NO CHARS) shows the re-
sults of our parser without character-based rep-
resentations. (NO PRETRAINED-WITH CHARS)
shows results without pretrained word embed-
dings. (NO PRETRAINED-NO CHARS) shows re-
sults without character-based representations and
without pretrained word embeddings. The rest
of our results include both pretrained embeddings
and character-based representations.

Our model achieves 0.68 F1 in the newswire
section of the test set just by using character-based
representations of words and pretrained word em-
beddings. All prior work uses lemmatizers, POS
taggers, dependency parsers, named entity rec-
ognizers and semantic role labelers that use ad-
ditional training data while we achieve competi-
tive scores without that. Pust et al. (2015) reports
0.66 F1 in the full test by using WordNet for con-
cept identification, but their performance drops to
0.61 without WordNet. It is worth noting that we
achieved 0.64 in the same test set without Word-
Net. Wang et al. (2015b,a) without SRL (via Prop-
bank) achieves only 0.63 in the newswire test set
while we achieved 0.69 without SRL (and 0.68
without dependency trees).

In order to see whether pretrained word em-
beddings and character-based embeddings are use-

ful we carried out an ablation study by show-
ing the results of our parser with and with-
out character-based representations (replaced by
standard lookup table learned embeddings) and
with and without pretrained word embeddings.
By looking at the results of the parser without
character-based embeddings but with pretrained
word embeddings we observe that the character-
based representation of words are useful since they
help to achieve 2 points better in the Newswire
dataset and 1 point more in the full test set. The
parser with character-based embeddings but with-
out pretrained word embeddings, the parser has
more difficulty to learn and only achieves 0.61 in
the full test set. Finally, the model that does not
use neither character-based embeddings nor pre-
trained word embeddings is the worst achieving
only 0.59 in the full test set, note that this model
has no explicity way of getting any syntactic infor-
mation through the word embeddings nor a smart
way to handle out of vocabulary words.

All the systems marked with * require that the
input is a dependency tree, which means that they
solve a transduction task between a dependency
tree and an AMR graph. Even though our parser
starts from plain text sentences when we incorpo-
rate more information into our model, we achieve
further improvements. POS tags provide small im-
provements (0.6801 without POS tags vs 0.6822
for the model that runs with POS tags). Depen-
dency trees help a bit more achieving 0.6920.

5 Conclusions and Future Work

We present a new transition-based algorithm for
AMR parsing and we implement it using Stack-
LSTMS and a greedy decoder. We present com-
petitive results, without any additional resources
and external tools. Just by looking at the words,
we achieve 0.68 F1 (and 0.69 by preprocessing
dependency trees) in the standard dataset used for
evaluation.
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Abstract

Given a question and a set of answer
candidates, answer triggering determines
whether the candidate set contains any
correct answers. If yes, it then outputs
a correct one. In contrast to existing
pipeline methods which first consider in-
dividual candidate answers separately and
then make a prediction based on a thresh-
old, we propose an end-to-end deep neu-
ral network framework, which is trained
by a novel group-level objective function
that directly optimizes the answer trig-
gering performance. Our objective func-
tion penalizes three potential types of er-
ror and allows training the framework in
an end-to-end manner. Experimental re-
sults on the WIKIQA benchmark show
that our framework outperforms the state
of the arts by a 6.6% absolute gain under
F1 measure1.

1 Introduction
Question Answering (QA) aims at automatically
responding to natural language questions with di-
rect answers (Heilman and Smith, 2010; Severyn
and Moschitti, 2013; Yao et al., 2013; Berant and
Liang, 2014; Yih et al., 2015; Sun et al., 2015;
Miller et al., 2016; Sun et al., 2016). Most existing
QA systems always output an answer for any ques-
tion, no matter whether their answer candidate set
contains correct answers or not (Feng et al., 2015;
Severyn and Moschitti, 2015; Yang et al., 2016;
Rao et al., 2016). In practice, however, this can
greatly hurt user experience, especially when it is
hard for users to judge answer correctness. In this
paper, we study the critical yet under-addressed

1Our code is available at https://github.com/
jiez-osu/answer-triggering.

Answer Triggering (Yang et al., 2015) problem:
Given a question and a set of answer candidates,
determine whether the candidate set contains any
correct answer, and if so, select a correct answer
as system output.

The answer triggering problem can be logi-
cally divided into two sub-problems: P1: Build
an individual-level model to rank answer candi-
dates so that a correct one (if it exists) gets the
highest score. P2: Make a group-level binary pre-
diction on the existence of correct answers within
the candidate set. Previous work (Yang et al.,
2015; Jurczyk et al., 2016) attack the problem via
a pipeline approach: First solve P1 as a ranking
task and then solve P2 by choosing an optimal
threshold upon the previous step’s highest ranking
score. However, the yielded answer triggering per-
formance is far from satisfactory, with F1 between
32% and 36%. An alternative pipeline approach is
to first solve P2 and then P1, i.e., first determine
whether there’s a correct answer in the candidate
set and then rank all candidates to find a correct
one. However, as we will show using state-of-the-
art Multiple Instance Learning (MIL) algorithms
in Section 4, P2 by itself is currently a very chal-
lenging task, partly because of the difficulty of ex-
tracting features from a set of candidate answers
that are effective for answer triggering. Because
both P1 and P2 performances are far from perfect,
the above pipeline approaches also suffer from er-
ror propagation (Finkel et al., 2006; Zeng et al.,
2015).

We propose Group-level Answer Triggering
(GAT), an end-to-end framework for jointly opti-
mizing P1 and P2. Our key contribution in GAT
is a novel group-level objective function, which
aggregates individual-level information and penal-
izes three potential error types in answer triggering
as a group-level task. By optimizing this objec-
tive function, we can directly back-propagate the
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final answer triggering errors to the entire frame-
work and learn all the parameters simultaneously.
We conduct evaluation using the same dataset and
measure as in previous work (Yang et al., 2015;
Jurczyk et al., 2016), and our framework improves
the F1 score by 6.6% (from 36.65% to 43.27%),
compared with the state of the art.

2 Framework
Notations. Let i and j respectively be the index of
question and answer candidate, li,j be the binary
label of the j-th answer candidate for question qi,
and li be the group label of the answer candidate
set of qi (1 if it contains any correct answer; 0 oth-
erwise). mi,j denotes an individual-level match-
ing score, measuring how likely question qi can be
correctly addressed by its j-th answer candidate.

The GAT framework is illustrated in Figure 1,
which consists of three components: (1) Encoder.
Two separate encoders process questions and an-
swer candidates respectively, mapping them from
token sequences into two different vector spaces.
(2) QA Matching. For each question and answer
candidate pair, we concatenate their encoded vec-
tors, and pass it through a feed forward neural
network with a binary softmax output layer. The
output is an individual-level matching score, i.e.,
mi,j . (3) Signed Max Pooling. Max pooling is
applied on all the matching scores in a candidate
set. During training when each candidate is posi-
tively/negatively labeled on whether they can an-
swer the question or not, we use the labels to di-
vide the scores into two disjoint subsets and per-
form max pooling separately:

m+
i = max

j:li,j=1
mi,j , m−i = max

j:li,j=0
mi,j ,

where m+
i is the maximum score among correct

answers (if there’s any) and m−i is that among
wrong ones. At testing time when labels are un-
available, it reduces to normal max pooling and
pools a single score mi = maxjmi,j . The an-
swer triggering prediction is then made by com-
paring mi with a predefined threshold (0.5) to de-
cide whether to return the top-scored answer can-
didate to the user.

The GAT framework design is generic in that
the Encoder component can be instantiated with
different network architectures. In this paper, we
implement it with Bidirectional RNNs (Bi-RNN)
(Schuster and Paliwal, 1997) with GRU cells (Cho
et al., 2014), and use the temporal average pooling

DNNEncoder

QA Matching

Signed Max Pooling

best answer

max pooling

Y

Feed Forward NN

answer existence ?

softmax

question answer candidateanswer candidateanswer candidate

DNN

Figure 1: GAT: An end-to-end deep framework to be trained
with a novel group-level objective function. Rounded rectan-
gles at the bottom represent input data.

over the hidden states as the encoding represen-
tation. We choose Bi-RNN mainly because of its
good performance in many QA problems (Wang
and Nyberg, 2015; Wang et al., 2016).

2.1 Learning
The cost function for negative groups (answer can-
didate sets without correct answers) and positive
groups (those with correct answers) are treated dif-
ferently. For each negative group, the highest QA
matching score is penalized by a hinge loss:

O1 =
1

Nneg

∑

i: li=0

max(0, d− − (0.5−m−i )),

where the maximum matching score m−i is com-
pared with 0.5, a fixed threshold for our frame-
work. The variable d− here, as well as d+ and d±

that will appear shortly after, are all margin hyper-
parameters. O1 is normalized by Nneg, which is
the number of negative groups (with li = 0). We
use O1 to reduce false-positive answer existence
predictions by penalizing the top matching score
that is not safely below the 0.5 threshold.

For a positive group, it is more complicated be-
cause answer triggering prediction can have the
following two error types: (1) the top matching
score is below the threshold, or (2) the top ranked
answer candidate is a wrong answer. We design
loss terms O2 and O3 to penalize these two types
of error, respectively. O2 is a hinge loss that pe-
nalizes the case where the highest score among
the correct answers in a group is not large enough
to signify answer existence. O3 is to penalize the
case where the highest score is obtained by an in-
correct candidate answer. Formally:

O2 =
1

Npos

∑

i: li=1

max(0, d+ − (m+
i − 0.5))

O3 =
1

Npos

∑

i: li=1

max(0, d± − (m+
i −m−i ))
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Finally, the overall objective function in Equa-
tion 1 is a linear combination of the three loss
terms and a standard `2-regularization. Θ denotes
all the trainable parameters in the framework. α,
β and λ are hyper-parameters.

O = O1 + αO2 + βO3 + λ‖Θ‖2 (1)

2.2 A Naive Objective Baseline
For comparison, we provide an alternative objec-
tive formulation, which equivalently treats posi-
tive and negative groups, and does not explicitly
penalize cases where an incorrect candidate an-
swer obtains the highest QA matching score in a
positive group.

O∗2 =
1

Npos

∑

i: li=1

max(0, d+ − (mi − 0.5))

O∗1 = O1; O∗ = O∗1 + α∗O∗2 + λ∗‖Θ‖2
(2)

Here d+ is a margin and α∗, λ∗ are weights. We
hypothesize this formulation will work worse than
the objective in Equation 1, and will use experi-
ments to verify it.

3 Experiments
3.1 Dataset
We use the WIKIQA dataset (Yang et al., 2015) for
evaluation. It contains 3,047 questions from Bing
query logs, each associated with a group of candi-
date answer sentences from Wikipedia and manu-
ally labeled via crowdsourcing. Several intuitive
features are also included in WIKIQA: two word
matching features (IDF-weighted and unweighted
word-overlapping counts between questions and
candidate answers, denoted as Cnt), the length
of a question (QLen), and the length of a candi-
date answer (SLen). As in previous works, we
also test the effect of these features, by combining
them with other features as input into the Softmax
layer in our framework. We use the standard 70%
(train), 10% (dev), and 20% (test) split of WIK-
IQA. We also use the same data pre-processing
steps for fair comparison: Truncate questions and
sentences to a maximum of 40-token long and
initialize the 300-dimensional word vectors using
pretrained word2vec embedding (Mikolov et al.,
2013).

3.2 Implementation Details
We implement our full framework using Tensor-
Flow (Abadi et al., 2016) and train it using the
AdaDelta optimizer (Zeiler, 2012) with learning

rate 0.1 and decay factor 0.95. Dropout is used
during training to prevent overfitting. The default
threshold in Signed Max Pooling is set at 0.5.
We select the hyper-parameters using the dev set
and set α=1.2, β=1.0, d+=0.2, d−=0.3, d±=0.5,
λ=1e−4. The RNN’s hidden state size is 200 in
both directions. The feed-forward network in QA
Matching has two layers of 400 hidden units.

3.3 Evaluation Metrics
We use precision, recall, and F1, defined in the
same way as in previous work. A question is
treated as a positive case only if it contains one or
more correct answers in its candidate set. For the
prediction of a question, only the candidate with
the highest matching score is considered. A true
positive prediction shall meet two criteria: (1) the
score is above a threshold (0.5 for our framework;
tuned on dev set in other work), and (2) the candi-
date is labeled as a correct answer to the question.

3.4 Results
a. Comparison with Baselines
We evaluate the effectiveness of the proposed GAT
framework by comparing with several baseline
models. To the best of our knowledge, there has
only been limited work so far on answer trigger-
ing, and they are the first two baselines below. (1)
Yang et al. (2015) propose CNN-Cnt, which is
a combination of the CNN model from Yu et al.
(2014) and two Cnt features. We use their best
reported result which is achieved when CNN-Cnt
is combined with QLen features. (2) Jurczyk et
al. (2016) extend the previous work with various
network structures and add some more sophisti-
cated features. Here we compare with their best
model on WIKIQA, which is a CNN model com-
bined with carefully designed tree-matching fea-
tures, extracted from expensive dependency pars-
ing results. (3) We include a third Naive baseline
where the objective function in Equation 2 is used
to train our architecture in Figure 1. Due to space
limits, we show its best result obtained among var-
ious feature combinations.

The results are summarized in Table 1.
We can see that GAT combined with Cnt fea-

tures improves the F1 score from Yang et al.
(2015) and Jurczyk et al. (2016) by around 11.1%
and 6.6% (from 32.17 and 36.65 to 43.27), which
shows the effectiveness of our framework. We
denote this configuration as our full framework.
Through the comparison between Naive and GAT,
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Model Prec Rec F1
(Yang et al., 2015) 27.96 37.86 32.17
(Jurczyk et al., 2016) 29.43 48.56 36.65
Naive +Cnt 27.36 48.84 35.07
GAT 32.70 48.59 39.09
GAT +Cnt (Full) 33.54 60.92 43.27
GAT +Cnt+QLen 33.12 59.09 42.45
GAT +Cnt+SLen 28.03 64.60 39.10
GAT +All 31.35 58.82 40.90

Table 1: Results on the test set.

we can see that our proposed objective function
has a great advantage over the Naive one which
does not model the complexity of answer trigger-
ing for positive candidate sets. Different from
Yang et al. (2015)’s results, combining with the
QLen feature does not further improve the per-
formance in our case, possibly because we choose
Bi-RNN as our encoder, which may capture some
question characteristics better than a length fea-
ture.

b. Framework Breakdown
Now we conduct further analysis in order to bet-
ter understand the contribution of each component
in our full framework. Since the code from (Yang
et al., 2015) is available, we use it (rather than (Ju-
rczyk et al., 2016)) to assist our analysis.

We first test a variant of our full framework by
replacing the Encoder and QA Matching compo-
nent with the CNN based model from (Yang et al.,
2015)2, denoted as GAT w/ CNN, and train it with
our objective. From the first two rows in Table 2,
we observe that: (1) Using our current design Bi-
RNN and feed-foward NN improves from 35.03%
to 43.27%, in comparison with the CNN based
model, partly because their CNN only consists
of one convolution layer and one average pooling
layer. However, we leave more advanced encoder
and QA matching design for future work, and an-
ticipate that more complex CNN based models can
achieve similar or better results than our current
design, as in many other QA-related work (Hu
et al., 2014; He and Lin, 2016). (2) Compared with
the best result from (Yang et al., 2015) in Table 1,
training the CNN based model end-to-end using
our objective improves from 32.17% to 35.03%.
This directly shows an end-to-end learning strat-
egy works better than the pipeline approach in
(Yang et al., 2015).

Now we detach the Encoder component ENC
2Where the QA matching score is obtained first through

CNN encoding and then a bilinear model.

Framework F1 score
dev test

End-to-End Full 44.63 43.27
GAT w/ CNN 39.67 35.03

Pipeline -ENC 39.13 33.42
-ENC -QAM 38.69 33.20

Table 2: GAT framework breakdown. All variants are trained
with our proposed objective function (Equation 1).

from our end-to-end full framework. To obtain
semantic vectors of questions and candidate an-
swers as input to the subsequent QA Matching
component, we leverage Yang et al.(2015)’s re-
leased code to train the Encoder component (with
CNN) through their well-tuned individual-level
optimization, and use their learnt semantic vec-
tors. Then our framework without ENC, i.e.,
-ENC, is trained and tested as before. We fur-
ther detach the QA matching component QAM
in a similar way: We directly use the matching
score between a question and a candidate answer
obtained by Yang et al. (2015), and concate-
nate it with Cnt features as input to the Soft-
max layer, which is our framework without ENC
or QAM, denoted as -ENC -QAM, and trained
by our group-level objective. By comparing them
with our end-to-end frameworks on both dev and
test sets, we can see that it is beneficial to jointly
train the entire framework.

3.5 Error Analysis

We now demonstrate some typical mistake types
made by our framework to inspire future improve-
ments.

Q: What city was the convention when Gerald
Ford was nominated?
A: Held in Kemper arena in Kansas City , Mis-
souri , the convention nominated president Gerald
Ford for a full term, but only after narrowly de-
feating a strong challenge from former California
governor Ronald Reagan.

In this case, A is correct, but our framework
made a false negative prediction. Although al-
ready being the highest ranked in a set of 4 can-
didate answers, A only got a score of 0.134, pos-
sibly due to its complicated semantic structure (at-
tribute clause) and the extra irrelevant information
(defeating Reagan).

Q: What can SQL 2005 do?
A1: Microsoft SQL server is a relational database
management system developed by Microsoft.
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A2: As a database , it is a software product whose
primary function is to store and retrieve data as re-
quested by other software applications, be it those
on the same computer or those running on another
computer across a [TRUNCATED END]

The incorrect answer A1 is ranked higher than
the correct answer A2, both with scores above 0.5.
This is a false positive case, with incorrect rank-
ing as well. Possible reasons are that the detailed
functionality of SQL explained in A2 is hard to be
captured and related to the question, and A2 gets
truncated to 40 tokens long in our experiments.
On the other hand, the “database management sys-
tem” phrase in A1 sounds close to an explanation
of functionality, if not carefully distinguished.

Both cases above show that the semantic rela-
tion between a question and its answer is hard to
capture. For future research, more advanced mod-
els can be incorporated in the Encoder and QA
Matching components of our framework.

4 Related Work
Answer Selection. Answer selection (a.k.a., an-
swer sentence selection) is the task of assigning
answer candidates with individual-level ranking
scores given a question, which is similar to P1 de-
fined in Section 1. Existing QA systems based on
answer selection just select the top-scored candi-
date as answer, without considering the possibility
that the true answer doesn’t even exist. However,
many neural network models recently explored in
the answer existence literature (Hu et al., 2014;
Wang and Nyberg, 2015; Feng et al., 2015) could
be utilized for answer selection as well in the fu-
ture. For example, Tan et al. (2016) explore the
respective advantages of different network archi-
tectures such as Long Short-Term Memory Net-
works (LSTMs) and CNNs. They also develop
hybrid models for answer selection. Various at-
tention mechanisms have been proposed such as
(Wang et al., 2016) for RNNs and (Yin et al., 2015;
dos Santos et al., 2016) for CNNs. Answer se-
lection is also formulated as a sentence similar-
ity measurement problem (He and Lin, 2016; He
et al., 2015) or a pairwise ranking problem as in
(Severyn and Moschitti, 2015; Yang et al., 2016;
Rao et al., 2016).

Multiple Instance Learning We have briefly
mentioned MIL (Babenko et al., 2011; Amores,
2013; Cheplygina et al., 2015) in Section 1. Many
MIL algorithms can not be directly applied for an-
swer triggering, because individual-level annota-

tions and predictions are often assumed unavail-
able and unnecessary in MIL (Maron and Lozano-
Pérez, 1998; Babenko et al., 2011; Amores, 2013;
Cheplygina et al., 2015), but not in the an-
swer triggering setting, where the correctness of
each answer candidate is annotated during train-
ing and needs to be predicted during testing.
We experimented with two popular MIL algo-
rithms that explicitly discriminate individual-level
labels: MI-SVM(Andrews et al., 2003) and Sb-
MIL (Bunescu and Mooney, 2007) implemented
in one of the state-of-the-art MIL toolkits (Do-
ran and Ray, 2014), where we represented each
question/answer with encoder vectors as in Sec-
tion 3.4. Unfortunately, both algorithms predict
no correct answer exists for any question, possibly
because the training data are biased towards nega-
tive groups and the input features are not effective
enough. This indicates that using MIL for answer
triggering is challenging and still open for future
research.

5 Conclusion
In conclusion, we address the critical answer
triggering challenge with an effective framework
based on deep neural networks. We propose a
novel objective function to optimize the entire
framework end-to-end, where we focus more on
the group-level prediction and take into account
multiple important factors. In particular, the ob-
jective function explicitly penalizes three potential
errors in answer triggering: (1) false-positive and
(2) false-negative predictions of the existence of a
correct answer, as well as (3) ranking incorrect an-
swers higher than correct ones. We experimented
with different objective function settings and show
that our GAT framework outperforms the previous
state of the arts by a remarkable margin.
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Abstract

This paper looks at the task of pre-
dicting word association strengths across
three datasets; WordNet Evocation (Boyd-
Graber et al., 2006), University of South-
ern Florida Free Association norms (Nel-
son et al., 2004), and Edinburgh Associa-
tive Thesaurus (Kiss et al., 1973). We
achieve results of r = 0.357 and ρ =
0.379, r = 0.344 and ρ = 0.300, an
ρ = 0.292 and ρ = 0.363, respectively.
We find Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) co-
sine similarities, as well as vector offsets,
to be the highest performing features. Fur-
thermore, we examine the usefulness of
Gaussian embeddings (Vilnis and McCal-
lum, 2014) for predicting word association
strength, the first work to do so.

1 Introduction

Word embeddings such as Word2Vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014)
have received increasing attention in the world
of natural language processing and computational
linguistics. Under such embeddings, the seman-
tic relatedness of two words is generally taken to
be the cosine similarity of their word vectors. Al-
though this approach performs well for variety of
applications, it is not without its limitations. First,
it defines “relatedness” quite narrowly as the ex-
tent to which the two words appear in similar con-
texts. Second, it fails to capture how humans in-
ternally represent words (De Deyne et al., 2016b).

Word associations offer a more flexible view
of semantic relatedness by leveraging “lexical
knowledge acquired through world experience”
(Nelson et al., 2004). While word embeddings
capture distributional relationships, word associ-

ations are able to capture more nuanced relation-
ships “which are based on human perception and
experiences [and] are not reflected in common lan-
guage usage.” (Ma, 2013) For example, “yellow”
is so closely associated with “banana” that many
people would only specify a banana’s colour if it
is not yellow. This is backed up by De Deyne et al.
(2016b) which found word associations performed
better than word embeddings across a variety of
semantic relatedness tasks.

Furthermore, word associations, unlike cosine
similarities, are asymmetric; when presented with
the word “beer”, many people think of the word
“glass” but when presented with the word “glass”,
few people think of the word “beer” (Ma, 2013).
This directionality allows for more fine-grained
exploration of semantic links, with applications in
word similarity (Jabeen et al., 2013) and computa-
tional humour (Cattle and Ma, 2016).

Although several word association datasets ex-
ist, such as the Edinburgh Associative Thesaurus
(EAT, Kiss et al., 1973), the University of South
Florida Free Association Norms (USF, Nelson
et al., 2004), or WordNet Evocation (Evocation,
Boyd-Graber et al., 2006), their reliance on human
annotations mean they all suffer from coverage is-
sues relating to limited vocabularies or sparse con-
nectivity (Cattle and Ma, 2016; De Deyne et al.,
2016b). Although these issues would be some-
what alleviated by the creation of larger datasets,
collecting human judgments for all possible word
pairs is impractical. Therefore, the ability to pre-
dict association strengths between arbitrary word
pairs represents the best solution to these coverage
issues (Boyd-Graber et al., 2006).

Although the prediction of Evocation ratings
has attracted some attention (Boyd-Graber et al.,
2006; Hayashi, 2016), to the best of our knowl-
edge this is the first work to focus on the prediction
of USF or EAT strengths. As described in Sec-
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tion 2, USF and EAT have several advantages over
Evocation, such as the ability to work with am-
biguous words instead of WordNet synsets. Fol-
lowing Hayashi (2016)’s work on Evocation pre-
diction, we frame word association prediction as
a supervised regression task and introduce several
new and modified features, including the first use
of Gaussian embeddings (Vilnis and McCallum,
2014) to better capture the asymmetric nature of
word associations.

2 Previous Work

Word association has been used in psychologi-
cal and psycholinguistic experiments for well over
100 years (Boyd-Graber et al., 2006; De Deyne
and Storms, 2008). Word association datasets such
as USF or EAT have typically framed word asso-
ciation as “a task that requires participants to pro-
duce the first word to come to mind that is related
in a specified way to a presented cue” (Nelson
et al., 2000). These datasets use forward strengths,
the proportion of participants who produce a spe-
cific response, to “index the relative accessibility
of related words in memory [for a given cue]”
(Nelson et al., 2004).

This cue/response framework has several draw-
backs. First, since forward strengths are relative,
comparing strengths across different cue words is
difficult. Second, both cues and responses are
ambiguous, with each participant’s responses be-
ing greatly influenced by how they chose to inter-
pret a given cue. For example, someone respond-
ing to the cue “brother” with “monk” is consid-
ering a different sense of “brother” than someone
who responds “sister” (Ma, 2013). As such, for-
ward strengths are biased toward responses which
presume more readily apparent cue word senses.
Third, limiting participants to a single response
can lead to weaker associations being underre-
ported or omitted entirely.

Evocation solves the ambiguity issue by fo-
cusing on associations between WordNet synsets.
Boyd-Graber et al. (2006) presented participants
with randomly selected synset pairs and asked
them to score how much the first synset evoked
(i.e. brought to mind) the second. Unlike forward
strengths, these Evocation ratings are absolute,
meaning they can be directly compared across dif-
ferent cues. While randomly selecting synset pairs
ensured that weaker associations would not be un-
derreported, it did have the disadvantage that 67%

of pairs were unanimously rated as having no con-
nection (Boyd-Graber et al., 2006).

Despite attempts to address this spareness issue
by expanding Evocation with data gathered from
Amazon Mechanical Turk1 (Nikolova et al., 2009)
or word-sense disambiguated USF cue/response
pairs (Ma, 2013), obtaining human judgments
for all possible synset pairs is impractical. As
such, the prediction of Evocation ratings presents
the most promising solution to this coverage is-
sue. Boyd-Graber et al. (2006) detailed a sim-
ple Evocation estimator which used a combina-
tion of WordNet structure-based features, Word-
Net definition-based features, and corpus-based
word co-occurrence features. However, this ap-
proach is somewhat limited in that it frames Evo-
cation prediction as a classification task, consider-
ing only five Evocation levels.

The main drawback of Evocation prediction as
a classification task is that it is too coarse-grained
to deal with very weak associations, such as those
in remote triads (De Deyne et al., 2016a), or very
slight variations in association strength, such as
those useful for computational humour (Cattle and
Ma, 2016). To this end, Hayashi (2016) framed
Evocation prediction as a supervised regression
task. They employed a combination of WordNet
structure-based features, word embedding-based
features, and lexical features and found that vector
offsets, i.e. the mathematical difference between
vectors, were a strong indicator of Evocation rat-
ings.

While Evocation’s use of unambiguous synsets
is useful for many applications, it is not without its
own drawbacks. First, it requires texts to be word
sense disambiguated; a non-trivial task. Second,
since humans do not conceptualize words as a dis-
crete set of independent word senses, Evocation is
unable to capture natural associations owing to ho-
mography, homophony, or polysemy (Ma, 2013).
As such, despite their drawbacks, word associa-
tions may provide a more flexible, more holistic
view of mental semantics.

By allowing participants to record more than
one response, De Deyne and Storms (2008), and
their derivative works De Deyne et al. (2013) and
De Deyne et al. (2016b), were able to better rep-
resent weaker associations. However, this intro-
duced its own set of problems as great care had
to be taken to avoid chaining, i.e. responding to a

1https://mturk.com/
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previous response instead of the cue, and retrieval
inhibition. De Deyne and Storms (2008) frames
word association collection as a continuous task,
meaning not only that the vocabulary is ever grow-
ing but also that changes in associations over time
can be observed and tracked. But despite the steps
taken to improve the size and quality of their asso-
ciation dataset, practicality dictates that coverage
issues cannot be completely eliminated.

3 System Definition

Our word association prediction system extends
the method in Hayashi (2016) with several mod-
ifications to make it better suited to the USF and
EAT datasets.

First, we modify Hayashi (2016)’s lexVector.
Hayashi (2016) represent each word’s part-of-
speech (POS) using a one-hot encoded five dimen-
sional vector (one of each POS in WordNet). Sim-
ilarly, they represent each word’s lexical category
using a one-hot encoded 45 dimensional vector
(one for each WordNet lexicographer file). This
results in a 100 dimensional vector representing
the POS and lexical categories of both the cue
and the response. Since words in USF and EAT
can be associated with multiple synsets and we
want to be able to capture associations related to
polysemy, instead using a one-hot encoding we
employ count vectors specifying the number of
synsets from each POS/lexical category each word
belongs to.

Second, instead of computing Wu-Palmer sim-
ilarity (WUP, Wu and Palmer, 1994) between
a single synset pair, we compute it for all cue
synset/response synset pairs and record the maxi-
mum and average values. Following Boyd-Graber
et al. (2006) and Ma (2013), we also explored the
use of path and Leacock-Chodorow (Leacock and
Chodorow, 1998) similarities but found they did
not add any advantage over WUP alone. We take
a similar approach for adapting load and between-
ness centralities (Barthelemy, 2004) as well as Au-
toExtend (AutoEx, Rothe and Schütze, 2015) sim-
ilarity.

Third, we extend the notion of dirRel, intro-
duced in Hayashi (2016) to leverage the seman-
tic network structure of WordNet. Given a graph
where nodes represent synsets and arcs represent
WordNet relations such as hypernym/hyponym
and holonym/meronym, dirRel(s,t,k) is the propor-
tion of k-step neighbours of s that are also k-step

neighbours of t. In the original formula, s and
t are nodes representing a single synset. We in-
stead consider a set of nodes S and a set of nodes
T representing the set of synsets associated with
the cue and response words, respectively, as shown
in Equation 1. This may increase the probability
that |nb(S, k)∩nb(T, k)|>0, a shortcoming of the
original dirRel due to WordNet’s “relatively sparse
connective structure” (Hayashi, 2016).

dirRel(S, T, k) =
|nb(S, k) ∩ nb(T, k)|

|nb(S, k)| (1)

Fourth, in addition to the Word2Vec (w2v) co-
sine similarity between cue/response pairs calcu-
lated using Google’s pre-trained 300 dimension
Word2Vec embeddings2. We also examine the ef-
fectiveness of Stanford’s pre-trained 300 dimen-
sion GloVe embeddings3.

Fifth, in order to better capture asymmetric
word associations, we propose using Gaussian em-
beddings. Gaussian embeddings (Vilnis and Mc-
Callum, 2014) represent words not as a fixed point
in vector space but as “potential functions”, con-
tinuous densities in latent space; therefore, they
are more suitable for capturing asymmetric rela-
tionships. More specifically, for each cue/response
pair, we calculate both the KL-divergence and
cosine similarities of their Gaussian embeddings.
The embeddings have a dimensionality of 300
and are trained on English Wikipedia using the
Word2Gauss4 (w2g) and the hyperparameters re-
ported by the developer5

Sixth, since cue and response words are not
associated with a single synset, the AutoEx em-
beddings employed in Hayashi (2016) to compute
vector offsets are not well suited for our task. In-
stead, we experiment with offsets calculated using
w2v, GloVe, and w2g embeddings.

Finally, our 300 topic LDA model (Blei et al.,
2003) was trained using Gensim6 on full En-
glish Wikipedia instead of the subset of English
Wikipedia used in Hayashi (2016).

Using the above features, we trained a multi-
layer perceptron for each of our three datasets;
Evocation, USF, and EAT. In the case of Evo-
cation, we discarded any synset information and

2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://github.com/seomoz/word2gauss
5https://github.com/seomoz/word2gauss/issues/18#issuecomment-

286203006
6https://radimrehurek.com/gensim/
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Feature
Evocation USF EAT
r ρ r ρ r ρ

Hayashi (2016) 0.374 0.401 — — — —
All (w/ w2v offsets) 0.357 0.379 0.344 0.300 0.292 0.363

betweenness (max) −0.000 0.004 0.008 0.019 0.035 0.112
betweenness (avg) −0.002 −0.001 0.012 0.004 0.002 0.021
load (max) −0.009 −0.010 0.017 0.025 0.039 0.118
load (avg) −0.007 −0.006 0.002 0.004 0.002 0.017
WUP sim (max) 0.098 0.136 0.092 0.111 0.049 −0.026
WUP sim (avg) 0.051 0.062 0.045 0.051 0.033 0.014
lexVector 0.115 0.117 0.091 0.077 0.105 0.249
dirRel 0.177 0.149 0.152 0.130 0.124 0.049

LDA cos sim 0.129 0.033 0.054 0.040 0.046 0.007
AutoEx cos sim (max) 0.135 0.144 0.124 0.132 0.054 −0.034
AutoEx cos sim (avg) 0.148 0.174 0.082 0.089 0.045 0.019
w2v cos sim 0.265 0.264 0.229 0.226 0.150 0.094
GloVe cos sim 0.239 0.262 0.222 0.232 0.117 −0.010
w2g cos sim 0.227 0.246 0.173 0.185 0.109 0.046
w2g KL-divergence 0.110 0.185 −0.013 −0.011 0.086 0.205

w2v offsets 0.010 0.009 0.092 0.076 0.144 0.299
GloVe offsets 0.007 0.009 0.127 0.098 0.162 0.344
w2g offsets −0.005 −0.003 0.073 0.065 0.111 0.186

Table 1: Individual feature performance after 50
epochs

simply use each synset’s headword (e.g. given the
sysnet entity.n.01, we only considered the word
entity). Following the setup used in Hayashi
(2016), all neural networks are trained using the
Chainer7 Python library with rectified linear units,
dropout, and two hidden layers, each with 50% of
the number of units in the input layer. All were
trained on 80% of their respective dataset, with
20% held out for testing. Mean squared error was
used as a loss function and optimization was per-
formed using Adam algorithm (Kingma and Ba,
2014). To act as a baseline, we also reimple-
mented the system described in Hayashi (2016)
and trained it on the same 80/20 split of Evocation
as our system. In addition to the reported results,
we also performed feature selection experiments
using 20% of the training sets as validation.

4 Results and Discussion

The performance of individual features are re-
ported in Table 1 while the results of our ablation
experiments are reported in Table 2. For all ex-
periments we report both the Pearson correlation
coefficient (as r) and Spearman’s rank correlation
coefficient (as ρ).

The best performing single feature on Evocation
and USF is w2v cosine similarity. However, its re-
moval in the ablation test had little effect. This is
likely due to redundancy between w2v and GloVe;
not only does GloVe perform similarly to w2v but
removing both features at the same time produced
the largest drop in performance. It is unclear
why word embedding cosine similarities in gen-

7http://chainer.org/

Feature
Evocation USF EAT
r ρ r ρ r ρ

All (w/ w2v offsets) 0.357 0.379 0.344 0.300 0.292 0.363

- betweenness (max) 0.360 0.383 0.341 0.301 0.270 0.360
- betweenness (avg) 0.357 0.376 0.331 0.298 0.284 0.353
- load (max) 0.358 0.382 0.339 0.299 0.290 0.375
- load (avg) 0.360 0.381 0.340 0.304 0.279 0.353
- WUP sim (max) 0.367 0.376 0.333 0.294 0.283 0.367
- WUP sim (avg) 0.355 0.374 0.335 0.296 0.291 0.364
- lexVector 0.351 0.365 0.336 0.300 0.275 0.339
- dirRel 0.356 0.375 0.334 0.293 0.283 0.362

- LDA cos sim 0.357 0.377 0.340 0.299 0.291 0.361
- AutoEx cos sim (max) 0.362 0.382 0.347 0.299 0.280 0.358
- AutoEx cos sim (avg) 0.358 0.377 0.346 0.305 0.278 0.357
- w2v cos sim 0.352 0.377 0.331 0.294 0.280 0.345
- GloVe cos sim 0.352 0.367 0.332 0.292 0.284 0.360
- w2v and GloVe sims 0.329 0.342 0.284 0.255 0.261 0.353
- w2g cos sim 0.358 0.378 0.348 0.304 0.284 0.357
- w2g KL-divergence 0.351 0.356 0.344 0.299 0.286 0.348

- w2v offsets 0.361 0.386 0.303 0.280 0.239 0.271

Table 2: Ablation performance after 50 epochs

eral performed relatively poorly on EAT. While
the USF and EAT datasets are very similar, EAT
does seem to contain a greater number of multi-
word cues/responses which would not be in the
word embedding vocabularies. In such cases, per-
haps a multi-word embedding like Doc2Vec (Le
and Mikolov, 2014) would be more appropriate.
However, if this were indeed the issue, one would
expect vector offsets to perform equally poorly.
This is not the case, with GloVe offsets being the
best performing single feature on EAT and the re-
moval of w2v offsets causing the greatest drop in
performance in the EAT ablation tests.

The results of our Hayashi (2016) implementa-
tion are roughly comparable to those reported in
the original paper (r = 0.374, ρ = 0.401 com-
pared to r = 0.439, ρ = 0.400). Our slightly
lower Pearson’s R may be due to differences in
way we split our training and test data as well as
due to randomness in the training process itself.

On Evocation, our system does not perform as
well as Hayashi (2016). This is expected as we ex-
plicitly ignore any synset information and instead
attempt to predict association strengths between
word-sense ambiguous words. Despite this, our
performance is not appreciably lower, indicating
the fitness of our system.

The fact that we perform better on Evocation
than either USF or EAT is quite interesting consid-
ering our system was designed with USF and EAT
in mind. There are several possible explanations
for this. First, as mentioned in Section 2, 67% of
cue/response pairs in Evocation have a strength of
zero. This uniformity in Evocation strengths may
make them easier to predict. Second, due to the
way USF and EAT were collected, there are no
true zeros in the datasets. This lack of grounding
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may skew the predictions. Third, this may be an
indication that predicting associations in a word-
sense ambiguous context is a harder task than pre-
dicting them in a word-sense disambiguated one.
Boyd-Graber et al. (2006) explicitly told annota-
tors to ignore associations based on polysemy or
rhyme. It could be the case that these effects are
more difficult to identify.

Another possible explanation for this relatively
lower performance is a lack of bespoke features.
For example, we heavily rely on WordNet-based
features which make sense in a word-sense disam-
biguated context but are less suited for ambiguous
contexts. In fact, removal of several of these fea-
tures, such as betweenness or AutoEx similarity,
seem to slightly improve performance. One expla-
nation is that, despite noting in Section2 that word
association strengths are influenced by word-sense
frequencies, our system instead implicitly assumes
all synsets are equally likely.

The most surprising finding was the poor per-
formance of Gaussian embeddings overall, and
KL-divergence in particular. Given the asymmet-
ric nature of word associations, KL-divergence
seemed to be a natural fit. However, it is
vastly outperformed by even cosine similarity
on the same set of embeddings. Despite this,
the usefulness of Gaussian embeddings cannot
be ruled out. While we used pre-trained em-
beddings for Word2Vec and GloVe, we had to
train our own Gaussian embedding model. Not
only were Word2Vec and GloVe trained on much
larger corpora than Gaussian embedding’s English
Wikipedia, but the pre-trained embeddings likely
underwent a greater degree of hyperparameter tun-
ing.

5 Conclusions and Future Works

In this paper we explored the effectiveness of
various features for predicting Evocation, USF,
and EAT association strengths, finding GloVe and
Word2Vec cosine similarities as well as vector off-
sets to be the most useful features. We also exam-
ined the effectiveness of Gaussian embeddings for
capturing the asymmetric nature of word embed-
dings but found it to be less effective than tradi-
tional word embeddings.

Although we report a lower performance than
that in Hayashi (2016), potentially indicating that
predicting association strengths in word-sense am-
biguous contexts is a harder task, we believe our

results are a promising start. Training Gaussian
embeddings on a larger corpus may lead to im-
proved effectiveness. Future works should also
consider incorporating word-sense frequencies or
developing word-sense agnostic features, with a
particular focus on asymmetric features.
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Abstract

Recent advances in RST discourse parsing
have focused on two modeling paradigm-
s: (a) high order parsers which jointly
predict the tree structure of the discourse
and the relations it encodes; or (b) linear-
time parsers which are efficient but mostly
based on local features. In this work, we
propose a linear-time parser with a novel
way of representing discourse constituents
based on neural networks which takes into
account global contextual information and
is able to capture long-distance dependen-
cies. Experimental results show that our
parser obtains state-of-the art performance
on benchmark datasets, while being effi-
cient (with time complexity linear in the
number of sentences in the document) and
requiring minimal feature engineering.

1 Introduction

The computational treatment of discourse phe-
nomena has recently attracted much attention, due
to their increasing importance for potential ap-
plications. Knowing how text units can be com-
posed into a coherent document and how they re-
late to each other e.g., whether they express con-
trast, cause, or elaboration, can usefully aid down-
stream tasks such summarization (Yoshida et al.,
2014), question answering (Chai and Jin, 2004),
and sentiment analysis (Somasundaran, 2010).

Rhetorical Structure Theory (RST, Mann and
Thompson 1988), one of the most influential
frameworks in discourse processing, represents
texts by trees whose leaves correspond to Elemen-
tary Discourse Units (EDUs) and whose nodes
specify how these and larger units (e.g., multi-
sentence segments) are linked to each other by
rhetorical relations. Discourse units are further

The projections are in the neighborhood 
of 50 cents a share to 75 cent,

compared with a restated 
$1.65 a share a year earlier,

when profit was $107.8 million 
on sales of $435.5 million.

nucleus satellite 

COMPARISON

[Cray Research Inc. said]e1 [it sold one of its newest and largest computer systems, 
the Cray Y-MP/832, to the United Kingdom Meteorological Office.]e2

[The system is the first]e3 [to be sold through the joint marketing agreement between 
Cray and Control Data Corp.]e4

[Only a few months ago, the 124-year-old securities 
firm seemed to be on the verge of a meltdown,]e1 
[racked by internal squabbles and defections.]e2 
[Its relationship with parent General Electric Co. 
had been frayed since a big Kidder insider-trading 
scandal two years ago.]e3

e1 e2

consequence

e1:2 e3

list

e1:3

Figure 1: Example text (bottom) composed of two
sentences (three EDUs) and its RST discourse tree
representation (top).

characterized in terms of their importance in tex-
t: nuclei denote central segments, whereas satel-
lites denote peripheral ones. Figure 1 shows an
example of a discourse tree representing two sen-
tences with three EDUs (e1,e2, and e3). EDUs e1
and e2 are connected with a mononuclear relation
(i.e., Consequence), where e1 is the nucleus and
e2 the satellite (indicated by the left pointing ar-
row in the figure). Span e1:2 is related to e3 via
List, a multi-nuclear relation, expressing the fact
that both spans are equally important and there-
fore both nucleus.

Given such tree-based representations of dis-
course structure, it is not surprising that RST-style
document analysis is often viewed as a parsing
task. State-of-the-art performance on RST parsing
is achieved by cubic-time parsers (Li, Li, and Hov-
y, 2014; Li, Li, and Chang, 2016), with O(n3) time
complexity (where n denotes the number of sen-
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tences in the document). These systems model the
relations between all possible adjacent discourse
segments and use a CKY-style algorithm to gen-
erate a global optimal tree. The high order com-
plexity renders such parsers inefficient in prac-
tice, especially when processing large documents.
As a result, more efficient linear-time discourse
parsers have been proposed (Feng and Hirst, 2014;
Ji and Eisenstein, 2014) which make local de-
cisions and model the structure of the discourse
and its relations separately. In this case, features
are extracted from a local context (i.e., a smal-
l window of discourse constituents) without con-
sidering document-level information, which has
been previously found useful in discourse analy-
sis (Feng and Hirst, 2012).

In this paper, we propose a simple and efficient
linear-time discourse parser with a novel way of
learning contextual representations for discourse
constituents. To guarantee linear-time complexity,
we use a two-stage approach: we first parse each
sentence in a document into a tree whose leaves
correspond to EDUs, and then parse the document
into a tree whose leaves correspond to already pre-
processed sentences. The feature learning process
for both stages is based on neural network model-
s. At the sentence level, Long-Short Term Mem-
ory Networks (LSTMs; Hochreiter and Schmid-
huber 1997) learn representations for EDUs and
larger constituents, whereas at the document level,
LSTMs learn representations for entire sentences.
Treating a sentence as a sequence of EDUs and
a document as a sequence of sentences allows to
incorporate important contextual information on
both levels capturing long-distance dependencies.

Recurrent neural networks excel at modeling
sequences, but cannot capture hierarchical struc-
ture which is important when analyzing multi-
sentential discourse. We therefore adopt a more
structure-aware representation at the documen-
t level which we argue is complementary to the flat
representations obtained from the LSTM. We rep-
resent documents as trees using recursive neural
networks (Socher et al., 2012). Experimental eval-
uation on the RST Treebank shows that our parser
yields comparable performance to previous linear-
time systems, without requiring extensive manu-
al feature engineering and improves upon related
neural models (Li et al., 2014, 2016) on discourse
relation classification, while being more efficient.

The rest of this paper is organized as follows.

We overview related work in the following sec-
tion. We describe the general flow of our pars-
er in Section 3 and provide details on our pars-
ing algorithm and feature learning method in Sec-
tion 4. Experimental results are reported in Sec-
tion 5. Section 7 concludes the paper.

2 Related Work

Recent advances in discourse modeling have
greatly benefited from the availability of resources
annotated with discourse-level information such
as the RST Discourse Treebank (RST-DT; Carl-
son et al. 2003) and the Penn Discourse Treebank
(PDTB, Prasad et al. 2008). In this work, we fo-
cus on RST-style discourse parsing, where a tree
representation is derived for an entire document.
In PDTB, discourse relations are annotated most-
ly between adjacent sentences and no global tree
structure is provided.

Early approaches to discourse parsing (Marcu,
2000; LeThanh et al., 2004) have primarily fo-
cused on overt discourse markers (or cue words)
and used a series of rules to derive the discourse
tree structure. Soricut and Marcu (2003) employed
a standard bottom-up chart parsing algorithm with
syntactic and lexical features to conduct sentence-
level parsing. Baldridge and Lascarides (2005)
and Sagae (2009) used probabilistic head-driven
parsing techniques. Subba and Di Eugenio (2009)
were the first to incorporate rich compositional
semantics into sentence- and document-level dis-
course parsing.

HILDA (Hernault et al., 2010) has been
one of the most influential document-level dis-
course parsers paving the way for many machine
learning-based models. HILDA parses a document
pre-segmented into EDUs with two support vec-
tor machine classifiers working iteratively in a
pipeline. At each iteration, a binary SVM predicts
which adjacent units should be merged and then
a multi-class SVM predicts their discourse rela-
tion. Subsequent work (Feng and Hirst, 2014; Joty
et al., 2013) has shown that two-stage systems are
not only efficient but can also achieve competitive
performance. CKY-based parsers which guarantee
globally optimal results have also been developed
(Joty et al., 2013; Li et al., 2014).

Ji and Eisenstein (2014) were the first to ap-
ply neural network models to RST discourse pars-
ing; their shift-reduce parser uses a feedforward
neural network to learn the representations of the
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transition stack and queue. Li et al. (2014) pro-
posed a CKY-based parser which uses recursive
neural networks to learn representations for EDUs
and their composition during the tree-building pro-
cess. More recently, Li et al. (2016) designed a
CKY-based parser which uses LSTMs to model
text spans and a tensor-based transformation to
compose adjacent spans.

Our own work joins others (Feng and Hirst,
2014; Joty et al., 2013) in adopting a two-stage
architecture for our discourse parser. However,
rather than considering each discourse constituen-
t independently, we learn contextually-aware rep-
resentations capturing long-range dependencies
across sentences and documents. Discourse con-
stituents at all levels are modeled with recurrent
neural networks adopting a relatively simple, yet
efficient, architecture compared to previously pro-
posed neural systems (Li et al., 2016). Finally,
we experimentally assess whether sequence-based
representations are expressive enough by compar-
ing them to those obtained (with recursive neural
networks) from structured inputs.

3 Discourse Parser Overview

In RST discourse parsing, a document is first seg-
mented into EDUs and a parser then builds a dis-
course tree with the EDUs as leaves. The first sub-
task is considered relatively easy with state-of-art
accuracy at above 90% (Hernault et al., 2010). As
a result, recent research focuses on the second sub-
task and often uses manual EDU segmentation.

Joty et al. (2013) found that a two-stage pars-
ing strategy, which separates intra-sentential from
multi-sentential parsing, has some advantages for
document-level discourse parsing, since the distri-
bution of discourse relations and useful features
are different in the two stages. Based on their
findings, our model also follows a two-stage ap-
proach and is composed by two components: an
intra-sentential parser and a multi-sentential pars-
er. Given a document pre-segmented into EDUs,
our intra-sentential parser first builds a sentence-
level discourse tree for individual sentences. Then,
our multi-sentential parser creates a discourse tree
for the entire document.

To guarantee linear-time complexity, both
parsers adopt a greedy bottom-up tree-building
process (Hernault et al., 2010) and are based on
two conditional random field (CRF) models, one
for creating discourse structure and another one

for assigning relations. The intra-sentential pars-
er considers adjacent EDUs and decides whether
they should be connected (based on the scores pre-
dicted by the first CRF) and their relation (based
on predictions of the second CRF). The multi-
sentential parser follows the same procedure while
operating over sentences.

The CRFs employ feature representations
which we obtain using neural networks. Specifi-
cally, discourse constituents at all levels are mod-
eled with recurrent neural networks (see Sec-
tion 4.2 for details). In addition, for inter-sentential
constituents, we complement the flat text span rep-
resentation with recursive neural networks (see
Section 4.4). We argue that the combination is ad-
vantageous; a sequential text span representation
is in principle unsuitable for capturing hierarchi-
cal discourse structure, whereas a tree-based rep-
resentation can be more precise, albeit less robust
(due to the accumulation of errors from the recur-
sive tree-building process).

4 Parsing Model

4.1 Intra-sentential Parser

To parse a sentence, we start with EDUs,
which can be viewed as discourse constituents
at the first level. As mentioned earlier, our intra-
sentential parser is based on two linear-chain
CRFs, the structure CRF decides which pair of
constituents should be merged at the current lev-
el and the relation CRF assigns discourse rela-
tions to non-leaf constituents. For example, let
C1 = {e1,e2, · · · ,em} denote a sentence with a se-
quence of EDUs, where ei is the ith EDU in the
sentence. Suppose the structure CRF decides to
merge together e2 and e3, then the next-level se-
quence is C2 = {e1,e2:3,e4, · · · ,em} and the rela-
tion CRF will assign a discourse relation to e2:3,
the only non-leaf constituent so far. This process
iterates until all EDUs are merged and a discourse
subtree is generated for the entire sentence.

A linear-chain CRF for intra-sentential dis-
course parsing is shown in Figure 2. Here,
C = {c0, · · · ,ct , · · · ,cn} are observed discourse
constituents and L = {l1, · · · , lt , · · · , ln} are hidden
structure nodes; label lt ∈ {1,0} denotes whether
constituents ct and ct+1 should be connected. Our
model differs from standard linear-chain CRFs in
that the score between adjacent hidden nodes is
not calculated based on a transition matrix, but
is learned from observations instead. Specifically,
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l1
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Figure 2: Intra-sentential structure CRF with pair-
wise modeling.

given a constituent sequence C, the probability of
forming the structure sequence Y str is written as:

p(Y str|C) =
1
Z

n

∏
t=1

exp(ustr
t +bstr

t,t+1) (1)

ustr
t = θ(ct ,ct+1,yt) (2)

bstr
t,t+1 = γ(ct−1,ct ,ct+1,yt ,yt+1) (3)

where the ustr
t represents the unary potential s-

core of structure node lt = yt , depending on con-
stituents ct and ct+1. The binary potential score
bstr

t,t+1 for st = yt ,st+1 = yt+1 is calculated based
on ct−1,ct and ct+1. The binary potential pro-
vides information for discriminating between st =
0,st+1 = 1 and st = 1,st+1 = 0. Also, we impose
the constraint that one constituent can be merged
with at most one other adjacent constituent.

Figure 3 depicts the relation CRF for intra-
sentential parsing. Similar to the structure CRF,
C = {c0, · · · ,ct , · · · ,cn} are observed constituents
and R = {r1, · · · ,rt , · · · ,rn} hidden nodes, corre-
sponding to discourse relations. The CRF will as-
sign a relation to a non-leaf constituent ct based
on its right and left children, ct,L and ct,R, respec-
tively. If a constituent is a single EDU, we force its
hidden node to be the special label LEAF , whereas
hidden nodes for constituents which are the prod-
uct of merging cannot be LEAF . Given a sequence
of constituents C, the probability of the relation la-
bel sequence Y rel can be written as:

p(Y rel|C) =
1
Z

n

∏
t=1

exp(urel
t +brel

t,t+1) (4)

urel
t = θ(ct ,yt) (5)

brel
t,t+1 = γ(ct ,ct+1,yt ,yt+1) (6)

4.2 Intra-sentential Feature Learning
Instead of adopting a high order parsing model,
we use neural networks to capture contextual in-
formation and recover the meaning of discourse
constituents. Aside from modeling long distance
dependencies, our representation learning process

rt rt+1

c0,L c0,R

rnr0

c0

ct,L ct,R

ct ct+1 cn

Figure 3: Intra-sentential relation CRF with pair-
wise modeling.

alleviates the need for elaborate feature engineer-
ing and selection. Our approach is based on L-
STMs (Hochreiter and Schmidhuber, 1997) which
have recently emerged as a popular architecture
for modeling sequences and have been success-
fully applied to a variety of tasks ranging from
machine translation (Sutskever et al., 2014), to
speech recognition (Graves et al., 2013), and im-
age description generation (Vinyals et al., 2015b).
LSTMs have also been incorporated into syntactic
parsing in a variety of ways (Vinyals et al. 2015a;
Kiperwasser and Goldberg 2016; Dyer et al. 2015,
inter alia). Of particular relevance to this work
is LSTM-minus, a method for learning embed-
dings of text spans, which has achieved compet-
itive performance in both dependency and con-
stituency parsing (Wang and Chang, 2016; Cross
and Huang, 2016). We describe below how we ex-
tend this method which is based on subtraction be-
tween LSTM hidden vectors to discourse parsing.

We represent each sentence as a sequence of
word embeddings [wwwsos,www1, · · · ,wwwi, · · · ,wwwn,wwweos]
and insert a special embedding wE to indicate the
boundaries of EDUs. We run a bidirectional LST-
M over the sentence and obtain the output vector
sequence [hhh0, · · · ,hhhi, · · · ,hhht ], where hhhi = [~hhhi, ~hhhi] is
the output vector for the ith word, and ~hhhi and ~hhhi

are the output vectors from the forward and back-
ward directions, respectively. We represent a con-
stituent c from position a to b with a span vec-
tor sssppp which is the concatenation of the vector d-
ifferences~hhhb+1−~hhha and ~hhha−1− ~hhhb:

sssppp = [~hhhb+1−~hhha, ~hhha−1− ~hhhb] (7)

As illustrated in Figure 4, spans are represented
using output from both backward and forward L-
STM components. Intuitively, this allows to obtain
representations for EDUs and larger constituents
in context, as embeddings are learned based on in-
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EDUk EDUk+1EDUk-1

Figure 4: Modeling discourse constituents by LSTM-minus features. The feature vector sssppp j for a con-
stituent covering EDUk and EDUk+1 is [~hhhk+1−~hhhi+3, ~hhhk−1− ~hhhi+6]. Blue nodes indicate word embeddings
and LSTM outputs for words, while gray nodes represent EDU separators. Black nodes are learned
LSTM-minus features for constituents.

ct-1 ct

lt

ct+1

lt+1

ct-3 ct-2

lt-1

ct+2

lt+2lt

H1
H2

H3

Figure 5: Multi-sentential structure CRF with
sliding-window. The window size is 3, H1,H2, and
H3 denote the windows for predicting st , which is
highlighted by the shaded rectangle.

formation from the span itself and the words sur-
rounding it.

The structure CRF model calculates the unary
potential score ustr

t and the binary potential s-
core bstr

t,t+1 based on the span vector as follows:

uuustr
t =WWW str

u [sssppp j,sssppp j+1] (8)

bbbstr
t,t+1 =WWW str

b [sssppp j−1,sssppp j,sssppp j+1] (9)

where sssppp j is the span vector for the jth constituent
in the current sequence; and WWW str

u ∈ Rd×2,WWW str
b ∈

Rd×4 are weight matrices. bbbstr
t is reshaped into a

2× 2 matrix, where the (i, j)th entry indicates the
score of the transition from label i to label j be-
tween constituent ct and ct+1.

Analogously, unary and binary potential scores
for the relation CRF are calculated as:

uuurel
t =WWW rel

u [sssppp j,L,sssppp j,R] (10)

bbbrel
t,t+1 =WWW rel

b [sssppp j,L,sssppp j,R,sssppp j+1,L,sssppp j+1,R] (11)

where sssppp j,L and sssppp j,R are span vector represen-
tations for the left and right child of the jth con-
stituent; WWW rel

u ∈ Rd×nr ,WWW rel
b ∈ Rd×n2

r , and nr is the

ct-1 ct

rt

ct+1

rt+1

ct-3 ct-2

rt-1 rt+2rt

c0,L c0,R c0,L c0,R c0,L c0,R

H1

H2

H3

Figure 6: Multi-sentential relation CRF with
sliding-window. The window size is 3, H1,H2 and
H3 denote the windows for predicting rt , which
highlighted by the shaded rectangle.

number of discourse relations; bbbrel
t is also reshaped

into a nr× nr matrix. For a constituent that is a s-
ingle EDU, sssppp j,R and sssppp j+1,R are special vectors
wwwLEAFL and wwwLEAFR .

4.3 Multi-sentential Parser

The multi-sentential discourse parser treats sen-
tences as the smallest possible discourse units,
following a process similar to the intra-sentential
model. Unfortunately, it is practically unfeasible
to model all constituents with one CRF when pro-
cessing entire documents. The forward-backward
algorithm for calculating the CRF normalization
factor on a sequence with T units has time com-
plexity O(T M2), where M is the number of labels,
leading to O(T 2M2) time for parsing a document.

We therefore modify the two CRFs into sliding-
window versions. Specifically, at each level, when
decoding a constituent sequence, for each hidden
structure node li or relation node ri, we find al-
l windows of constituents that contain the hidden
node, and set the hidden node’s label according to
the window with the maximum joint probability.
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We present the modified sliding-window CRFs in
Figure 5 (structure) and Figure 6 (relation).

4.4 Multi-sentential Feature Learning
For multi-sentential parsing, we also use the
LSTM-minus method to model constituents, how-
ever, the minimum units here are sentences rather
than EDUs. We represent individual sentences
with the same bidirectional LSTM used for intra-
sentential parsing. For sentence si, the LSTM out-
put vector of the first token hhh0 and the last token hhhn

are taken to form the sentence representation vvvi:

vvvi = [hhh0,hhhn] (12)

In order to capture additional contextual infor-
mation, we then build another bidirectional LSTM
over a sequence of sentence vectors. We learn rep-
resentations for constituents (aka text spans with-
in a document) with the LSTM-minus method and
use fff lll to denote the resulting vectors. Although
this flat representation is relatively straightforward
to obtain, it is perhaps overly simplistic for mod-
eling documents where the number of sentences
can be relative large. Moreover, it is not clear that
it is discriminating enough for modeling relations
between constituents. Such relations follow struc-
tural regularities (e.g., they can be asymmetric or
symmetric, left- or right-branching) which cannot
be captured when adopting a sequence-based doc-
ument view.

To inject structural knowledge in our represen-
tation, we also model constituents as subtrees with
recursive neural networks (Socher et al., 2012).
The latter operate over tree structures which we
obtain during training from the RST Discourse
Treebank (Carlson et al., 2003). The representa-
tion for each parent is computed based on its chil-
dren iteratively, in a bottom-up fashion. More for-
mally, let vectors hhhL and hhhR denote the left and
right children of constituent c and dis their rhetor-
ical relation. The vector for parent c is:

hhhc = tanh(WWW dis[hhhL,hhhR]+bbbdis) (13)

where [hhhL,hhhR] is the concatenation of the chil-
dren representations hhhL ∈Rd and hhhR ∈Rd , WWW dis ∈
R2d×d , and bbbdis ∈Rd is the bias vector. We hence-
forth use the term tree vector tttrrr to refer to the rep-
resentation in Equation (13) since constituents are
now subtrees in a document-wide discourse tree.

In multi-sentential parsing, the span vector sssppp
now becomes the concatenation of the flat vec-

vi

words in a sentence

vi-1 vi vi+1

hi-1 hi hi+1

sentence 
representation

vi vi+1vi-1

tr

tree 
representation

flat
representation

Figure 7: Document-level constituents with
LSTM-minus features. Blue nodes are LSTM
outputs for words, light green nodes represent
vectors for sentences, dark green nodes are LSTM
outputs for sentences, and black nodes are learned
constituent representations.

tor fff lll and the tree vector tttrrr:

sssppp = [ fff lll, tttrrr] (14)

The representation above, attempts to capture rich-
er semantic features during the tree building pro-
cess while benefiting from the robustness afforded
by the flat LSTM-based text spans. An example of
this representation is given in Figure 7.

Unary and binary potential scores for the struc-
ture and relation CRFs are calculated as in intra-
sentential parsing (see Section 4.2).

4.5 Training

We first train the intra-sentential parser and use
the learned LSTM as a component of the multi-
sentential parser. During training, we maximize
the log-likelihood of the correct label sequence Y
given a constituent sequence C, which is p(Y str|C)
for the structure CRFs and p(Y rel|C) for the rela-
tion CRFs. Stochastic gradient descent with mo-
mentum is used to update the parameters of the
network. In our experiments, the momentum is set
to 0.9 and the learning rate is 0.001. The LSTMs
in our paper have one hidden layer.

5 Experimental Setup

In this section we present our experimental set-
up for assessing the performance of the discourse
parser described above. We give details on the

1294



datasets we used, evaluation protocol, and model
training.

Evaluation We evaluated our model on the
RST Discourse Treebank (RST-DT; Carlson et al.
2003), which is partitioned into 347 documents for
training and 38 documents for testing. Following
previous work (Joty et al., 2013; Li et al., 2016),
we converted non-binary relations into a cascade
of right-branching binary relations.

Predicted RST-trees are typically evaluated by
computing F1 against gold standard trees (Mar-
cu, 2000). Evaluation metrics for RST-style dis-
course parsing include: (a) span (S) which mea-
sures whether the predicted subtrees match the
goldstandard; (b) nucleus (N) which measures
whether subtrees have the same nucleus as in the
goldstandard and (c) relation (R) which measures
whether discourse relations have been identified
correctly. The three metrics are interdependent, er-
rors on the span metric propagate to the nuclearity
metric, and in turn to the relation metric. Follow-
ing other RST-style discourse parsing systems (H-
ernault et al., 2010), we evaluate the relation met-
ric using 18 coarse-grained relation classes, and
with nuclearity attached, we have a total of 41 dis-
tinct relations.1 Since EDU segmentation falls out-
side the scope of this work, we evaluate our system
on gold-standard EDUs. Comparison systems are
also assessed in the same setting.

Training Details Word embeddings were pre-
trained with the Gensim2 implementation of
word2vec (Mikolov et al., 2013) on the English
GigaWord corpus (with case left intact). The di-
mensionality of the word embeddings was set
to 50. Following Li et al. (2016), the embed-
dings were fine-tuned using a mapping matrix WWW ∈
R50×50 trained with the following criterion:

min
WWW ,bbb
‖LLLTTT tuned−LLLTTT preWWW +bbb‖ (15)

where LLLTTT tuned , and LLLTTT pre are lookup tables for
fine-tuned and pre-trained word embeddings in the
training set. Matrix W can be subsequently used to
to estimate fine-tuned embeddings for words in the
test set.

Tokenization, POS tagging and sentence s-
plitting were performed using the Stanford

1For calculating the binary potential scores, 41 relations
will lead to a large number of parameters; to avoid this, we
only use 18 relations without nuclearity.

2https://radimrehurek.com/gensim/

CIDER S N R
Tree Span 79.5 68.1 56.6
Flat Span (−minus) 82.7 69.3 55.6
Flat Span (+minus) 83.6 70.1 55.4
Tree + Flat Span (+minus) 83.6 71.1 57.3

Table 1: CIDER performance using different con-
stituent representations (RST-DT test set).

CoreNLP toolkit (Manning et al., 2014). All neu-
ral network parameters were initialized random-
ly with Xavier’s initialization (Glorot and Bengio,
2010). The hyper-parameters are tuned by cross-
validation on the training set.

Additional Features Most existing state-of-the-
art systems rely heavily on handcrafted features
(Hernault et al., 2010; Feng and Hirst, 2014; Joty
et al., 2013) some of which have been also proved
helpful in neural network models (Li et al., 2014,
2016). In our experiments, we use the following
basic features which have been widely adopted
in various discourse parsing models: (1) the first
three words and the last two words of each con-
stituent; (2) the POS tags of the first three words
and the last two words of each constituent; (3) the
number of EDUs; and (4) the number of tokens
of each constituent. We concatenate these features
with the constituent vectors learned by our neural
networks, and train new CRF models.

6 Results
In this paper we have presented two views for
modeling discourse constituents, namely as trees
or sequences. We experimentally assessed whether
these two views are overlapping or complemen-
tary. Table 1 reports the performance of our pars-
er which we call CIDER (as a shorthand for
Contextually Informed Discourse Parser) without
the additional features introduced in Section 5.
The first row presents a version of CIDER based
solely on tree span representations. In the second
row, CIDER uses flat representations without LST-
M minus features. Specifically, each constituent is
represented as the average of the LSTM output-
s within it. In the third row, CIDER’s representa-
tions are computed with the LSTM minus method,
while the fourth row shows results for the full sys-
tem.

As can be seen, on the span (S) metric, CIDER

with flat span representations is much better than
CIDER with tree span representations; on the nu-
clearity (N) metric tree representations are still in-
ferior to flat representations but the performance
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Discourse Parsers S N R Speed
Ji and Eisenstein (2014) 82.1 71.1 61.6 0.21
Feng and Hirst (2014) 85.7 71.0 58.2 9.88
Heilman and Sagae (2015) 83.5 68.1 55.1 0.40
CIDER (−AF) 83.6 71.1 57.3 3.80
CIDER (+AF) 85.0 71.1 59.0 3.80
Li et al. (2014) 84.0 70.8 58.6 26.00
Li et al. (2016) 85.8 71.7 58.9 –
Human 88.7 77.7 65.8 –

Table 2: Comparison with state-of-the-art system-
s (RST-DT test set). Speed indicates the average
number seconds taken to parse a document.

gap is narrower, whereas on the the relation (R)
metric, tree span representations are superior. We
believe this can be explained by the fact that re-
lation identification relies on more semantic in-
formation while span identification relies on more
shallow features, like the beginning and the end of
the span (Ji and Eisenstein, 2014). Span features
based on the LSTM minus method bring improve-
ments over vanilla LSTM representations on the s-
pan and nuclearity metrics. Perhaps unsurprising-
ly, the combination of span and tree representa-
tions achieves the best results overall.

In Table 2, we compare our system with sev-
eral state-of-the-art discourse parsers, which can
be classified in two groups depending on their
time complexity. Linear-time systems (first block
in the table) include two transition-based parser-
s (Ji and Eisenstein, 2014; Heilman and Sagae,
2015) and one CRF-based parser (Feng and Hirst,
2014), whereas cubic-time parsers (second block)
include two neural network models (Li, Li, and
Hovy, 2014; Li, Li, and Chang, 2016). CIDER

falls in the first group as it is a liner-time parser,
while it shares with parsers in the second group
the use of neural architectures for automated fea-
ture extraction. We report CIDER scores with and
without the additional features (AF) discussed in
the previous section. As an upper bound, we also
report inter-annotator agreement on the discourse
parsing task (last row in the table).

Amongst linear-time systems, our parser
achieves comparable results on the span and
relation metric, and best performance on the
nuclearity metric. Note that the three metrics
evaluate different aspects of a discourse parser,
and CIDER achieves the most balanced results
across all metrics. As far as other comparison
systems are concerned, Ji and Eisenstein (2014)
employ a shift-reduce discourse parser. They

represent EDUs with word-count vectors and use
a projection matrix to combine them into text
spans. A support vector machine classifier is used
to decide the actions of the parser. Heilman and
Sagae (2015) also adopt a shift-reduce approach
and use multi-class logistic regression to select
the best parsing action. Their classifier considers
a variety of lexical, syntactic, and positional
features. Feng and Hirst’s (2014) system is closest
to ours in their use of linear-chain CRFs, but
their features are mainly extracted from local con-
stituents. Furthermore, they adopt a post-editing
method which modifies the discourse trees their
parser creates with height features.

With regard to previously proposed cubic-time
systems, CIDER outperforms Li et al. (2014)
across all metrics. Their CYK-based parser adopts
a recursive deep model for composing EDUs hi-
erarchically together with several additional fea-
tures to boost performance. CIDER performs s-
lightly worse on span and nuclearity compared to
Li et al. (2016), but is better at identifying relation-
s. Their system uses an attention-based hierarchi-
cal neural network for modeling text spans and a
tensor-based transformation for combining two s-
pans. A CKY-like algorithm is used to generate the
discourse tree structure. In comparison, CIDER is
conceptually simpler, and more efficient.

We used paired bootstrap re-sampling (Efron
and Tibshirani, 1993) to assess whether dif-
ferences in performance are statistically signif-
icant. CIDER is significantly better than Feng
and Hirst’s 2014 system on the relation metric
(p< 0.05); it is also significantly better (p< 0.05)
than Heilman and Sagae (2015) on all three met-
rics and better than Ji and Eisenstein (2014) on the
span metric. Compared to Li et al. (2014), CIDER

is significantly better on the span and relation met-
rics (p< 0.05). Unfortunately, we cannot perform
significance tests against Li et al. (2016) as we do
not have access to the output of their system.

We also evaluated the speed of CIDER and
comparison discourse parsers on a platform with
Intel Core-i5-7200U CPU at 2.50GHz. We report
the average number of seconds taken to parse a
document in the RST-DT test set. The times shown
in Table 2 do not include pre-processing, which for
CIDER is only part-of-speech tagging, whereas all
other linear-time systems rely on a syntactic pars-
er. As can be seen CIDER is quite efficient com-
pared to related systems (Feng and Hirst, 2014;
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Heilman and Sagae, 2015) whilst requiring less
feature engineering.

7 Conclusions
In this paper we described CIDER, a simple and
efficient discourse parser which adopts a two-
stage parsing strategy, whilst exploiting a more
global feature space. We proposed a novel way
to learn contextually informed representations of
constituents with the LSTM minus method, at the
sentence and document level. We also demonstrat-
ed that flat representations of text spans can be
usefully complemented with tree-based ones lead-
ing to a more accurate characterization of dis-
course relations. Experimental results showed that
CIDER performs on par with the state of the art (Li
et al., 2016), despite the greedy parsing algorith-
m and relatively simple neural architecture. In the
future, we would like to improve parsing accura-
cy by leveraging unlabeled text rather than relying
exclusively on human annotated training data.
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Abstract

We present a novel multi-task attention-
based neural network model to address
implicit discourse relationship representa-
tion and identification through two type-
s of representation learning, an attention-
based neural network for learning dis-
course relationship representation with t-
wo arguments and a multi-task framework
for learning knowledge from annotated
and unannotated corpora. The extensive
experiments have been performed on t-
wo benchmark corpora (i.e., PDTB and
CoNLL-2016 datasets). Experimental re-
sults show that our proposed model out-
performs the state-of-the-art systems on
benchmark corpora.

1 Introduction

The task of implicit discourse relation (or rhetor-
ical relation) identification is to recognize how t-
wo adjacent text spans without explicit discourse
marker (i.e., connective, e.g., because or but ) be-
tween them are logically connected to one anoth-
er (e.g., cause or contrast). It is considered to
be a crucial step for discourse analysis and lan-
guage generation and helpful to many downstream
NLP applications, e.g., QA, MT, sentiment analy-
sis, machine comprehension, etc.

With the release of PDTB 2.0 (Prasad et al.,
2008), lots of work has been done for discourse re-
lation identification on natural (i.e., genuine) dis-
course data (Pitler et al., 2009; Lin et al., 2009;
Wang et al., 2010; Zhou et al., 2010; Braud and
Denis, 2015; Fisher and Simmons, 2015) with the
use of traditional NLP linguistically informed fea-
tures and machine learning algorithms. Recently,
more and more researchers resorted to neural net-
works for implicit discourse recognition (Zhang

et al., 2015; Chen et al., 2016; Liu et al., 2016b;
Qin et al., 2016a; Liu and Li, 2016; Braud and
Denis, 2016; Wu et al., 2016). Meanwhile, to
alleviate the shortage of labeled data, researcher-
s explored multi-task learning with the aid of u-
nannotated data for implicit discourse recognition
either in traditional machine learning framework
(Collobert and Weston, 2008; Lan et al., 2013) or
recently in neural network framework (Wu et al.,
2016; Liu et al., 2016b).

In this work, we present a novel multi-task
attention-based neural network to address implic-
it discourse relationship representation and recog-
nition. It performs two types of representation
learning at the same time. An attention-based neu-
ral network conducts discourse relationship repre-
sentation learning through interaction between t-
wo discourse arguments. Meanwhile, a multi-task
learning framework leverages knowledge from
auxiliary task to enhance the performance of main
task. Furthermore, these two types of learning
are integrated into one neural network framework
and work together to maximize the overall perfor-
mance.

The contributions of this work are listed as fol-
lows.

• We propose a multi-task attention-based neu-
ral network model to address implicit dis-
course relationship representation and recog-
nition, which benefits from both the interac-
tion between discourse arguments and the in-
teraction between different learning tasks;

• Our method achieves the best results on two
benchmark corpora in comparison with the
state-of-the-art systems so far.

The organization of this work is as follows.
Section 2 describes the proposed novel multi-task
neural network. Section 3 introduces the exper-
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imental settings in detail. Section 4 reports the
comprehensive experimental results on two bench-
mark corpora. Section 5 summarized related work.
Finally, Section 6 concludes this work.

2 Multi-task Attention-based Neural
Networks Models

2.1 Motivation

The idea of learning two types of interactive
knowledge from arguments and from multi-tasks
is motivated by the following observations and
analysis.

On the one hand, to recognize the discourse re-
lationships, our system needs to understand the
meaning of each argument and infer the discourse
sense transferred between two arguments (denoted
as Arg-1 and Arg-2). Learning the semantic rep-
resentation of each argument (sentence) has been
studied with the use of many neural network mod-
els and their variants (e.g., CNN, RNN, LSTM,
Bi-LSTM, ect). However, learning the complicat-
ed and various types of discourse relationships be-
tween arguments may not be performed by simply
summing up or concatenating two argument repre-
sentations. We analyze the discourse with contrast
relationship and find that the contrast information
may result from different parts of sentence, e.g.,
tenses (e.g., previous vs. now), entities (their vs
our), or even the whole arguments, etc. There-
fore, in order to learn the relationship represen-
tation between two arguments, we propose an at-
tention mechanism that can select out the most im-
portant part from two arguments and perform the
information interaction between two arguments.

On the other hand, one common issue involved
in implicit discourse relationship identification is
the lack of labeled data. In this work, we state
that the relevant information from unlabelled da-
ta might be helpful and we present a novel multi-
task learning framework. In contrast with previ-
ous multi-task learning framework in traditional
machine learning, we improve multi-task learning
framework with representation learning for better
discourse relationship representation.

Inspired by the above considerations, we
present a novel multi-task attention-based neural
network model by integrating attention mechanis-
m with multi-task learning for information inter-
action between arguments and between tasks.

2.2 Learning Discourse Representation

To learn the semantic representation of each argu-
ment in discourse, a lot of neural network mod-
els and their variants have been proposed, such
as, convolutional neural network (CNN), recurren-
t neural network (RNN) and so on. As a variant
of RNN, long-short term memory (LSTM) neural
network specifically addresses the issue of learn-
ing long-term dependencies and is good at model-
ing over a sequence of words with consideration
of the contextual information. Therefore, in this
work we adopt LSTM to model discourse argu-
ment.

2.2.1 LSTM for Argument Representation

Figure 1 shows the traditional LSTM model for
representation learning of arguments. First of al-

word embedding word embedding

+

Arg-1 Arg-2

softmax

LSTM LSTM

Loss

RArg1 RArg2

Figure 1: LSTM for discourse argument pair rep-
resentation learning.

l, through the embedding layer, we associate each
word w in the vocabulary with a vector represen-
tation xw ∈ Rdw . Let x1

i (x2
i ) be the i-th word

vector in Arg-1 (Arg-2), then these two discourse
arguments are represented as:

Arg-1: [x1
1,x

1
2, · · · ,x1

L1
] (1)

Arg-2: [x2
1,x

2
2, · · · ,x2

L2
] (2)

where Arg-1 (Arg-2) has L1 (L2) words.
Given the word representations of the argument

[x1,x2, · · · ,xL] as the input sequence, an LSTM
computes the state sequence [h1,h2, · · · ,hL] for
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each time step i using the following formulation:

ii = σ(Wi[xi,hi−1] + bi) (3)

fi = σ(Wf [xi,hi−1] + bf ) (4)

oi = σ(Wo[xi,hi−1] + bo) (5)

c̃i = tanh(Wc[xi,hi−1] + bc) (6)

ci = ii � c̃i + fi � ci−1 (7)

hi = oi � tanh(ci) (8)

where [ ] means the concatenation operation of
vectors, σ denotes the sigmoid function and � de-
notes element-wise product. Besides, ii, fi, oi
and ci denote the input gate, forget gate, output
gate and memory cell, respectively. Moreover, we
also use bidirectional LSTM (Bi-LSTM) which is
able to capture the context from both past and fu-
ture rather than LSTM which only considers the
context information from the past. Therefore, at
each position i of the sequence, we obtain two s-
tates

−→
h i and

←−
h i, where

−→
h i,
←−
h i ∈ Rdh . Then

we concatenate them to get the intermediate state,
i.e. hi = [

−→
h i,
←−
h i]. After that, we sum up the

sequence states [h1,h2, · · · ,hL] to get the repre-
sentations of Arg-1 and Arg-2 respectively as fol-
lows:

RArg1 =

L1∑

i=1

h1
i (9)

RArg2 =

L2∑

i=1

h2
i (10)

Finally we concatenate the two argument repre-
sentations RArg1 and RArg2 as the argument pair
representation, i.e.,Rpair = [RArg1 ,RArg2 ].

Clearly, in this way, there is no any correla-
tion and interaction between the two arguments.
That is, whatever the types of discourse relation-
ship they hold, the argument pair representation
Rpair is independent fromRArg1 orRArg2 .

2.2.2 Attention Neural Network for
Relationship Representation

In order to effectively capture the complicated and
various types of relationships between arguments,
we proposed a novel attention-based neural net-
work model shown in Figure 2.

To do it, we first compute the match between
RArg1 (RArg2) and each state h2

i (h1
i ) of Arg-2

(Arg-1) by taking the inner product followed by a

word embedding word embedding

x x x x x

Arg-1 Arg-2

x x x x

+

softmax

LSTM LSTM

Loss

RArg2
RArg1

p
1

p
2

′RArg1
′RArg2

Figure 2: Attention Neural Network for represen-
tation learning of arguments.

softmax as follows:

p1i = Softmax(RT
Arg2h

1
i ) (11)

p2i = Softmax(RT
Arg1h

2
i ) (12)

where Softmax(zi) = ezi/
∑

j e
zi . Here p is an

attention (probability) vector over the inputs and
can be viewed as the weights of the words mea-
suring to what degree our model should pay atten-
tion to. It is worth noting that p1 and p2 are de-
termined byRArg2 andRArg1 respectively, which
means the representation of one argument depends
on the representation of the other.

Next, we sum over the state hi weighted by the
attention vector p to compute the new representa-
tions for Arg-1 and Arg-2 respectively as below:

R′Arg1 =

L1∑

i=0

h1
i p

1
i (13)

R′Arg2 =

L2∑

i=0

h2
i p

2
i (14)

The representation of Arg-2 (RArg2) is used to
compute the weights of words in Arg-1 (i.e., p1)
and RArg1 is used to compute the weights of
words in Arg-2 (i.e., p2). In this way, the new
representations of the two arguments interact with
each other. Therefore, this attention mechanism
enables our model to focus on specific spans in the
two arguments, which is crucial to recognize the
discourse relations. We then concatenate R′Arg1
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andR′Arg2 to get the argument pair representation
Rpair = [R′Arg1 ,R

′
Arg2

].
Finally, we feed the argument pair vectorRpair

to a fully-connected softmax layer which outputs
the probabilities of different classes for the clas-
sification task. Here we choose the cross-entropy
loss between the outputs of the softmax layer and
the ground-truth class labels as our loss function.

2.3 Multi-task Attention-based Neural
Networks

The model presented in Section 2.2 can perfor-
m implicit discourse relation recognition in it-
self. However, similar with many models in deep
learning, one big issue is the lack of labeled da-
ta. Therefore, we propose a multi-task attention-
based neural network by integrating the aforemen-
tioned model into a multi-task learning framework
to address the implicit discourse relation recogni-
tion with the aid of large amount of unlabelled da-
ta. Figure 3 shows the general framework of our
proposed multi-task attention-based neural net-
work model.

Arg Pair

representation

Arg Pair

representation

Arg-1 Arg-2 Arg-1 Arg-2

Share

hidden layer

softmax

Main Task Aux Task

Loss
main

Loss
aux

R
main

R
aux

Figure 3: The framework of our proposed multi-
task attention-based neural network model.

We use the aforementioned attention-based
neural network to map the argument pair in-
to a low-dimensional vector (Rpair) denoted
as Arg Pair representation componen-
t in Figure 3. Under the multi-task learning
framework, the parameters of the Arg Pair
representation components are shared be-
tween the main task and the auxiliary tasks. We
denote Rmain and Raux as the representations of
argument pair for main and auxiliary tasks, respec-
tively. And we add a hidden layer afterRmain and

Raux to learn the task-specific representations fol-
lowed by the softmax layers used to compute the
loss of the main task (Lossmain) and the loss of
the auxiliary task (Lossaux), respectively.

Regarding the strategy of sharing knowledge
learnt from auxiliary to main task, we propose the
following three methods.

2.3.1 Equal Share
A simple and straightforward way is to equally
share the knowledge learned from main task and
auxiliary task. Therefore, the total loss of the
multi-task neural network is calculated as:

Loss = Lossmain + Lossaux (15)

where Lossaux has the same weight as Lossmain.

2.3.2 Weighted Share
Another method is to give different weights to the
main and auxiliary task as below:

Loss = Lossmain + w ∗ Lossaux (16)

where w ∈ (0, 1] is a weight parameter. Clearly, a
lower value of w means less importance of auxil-
iary task.

2.3.3 Sigmoid (Gated) Interaction
The above two ways of sharing knowledge actual-
ly have no deep interaction between the main and
auxiliary tasks. They only share equal or weighted
contributions from tasks to final result. Therefore,
we propose a model that can perform interaction
between tasks, which is shown in Figure 4.

We introduce two important parameters
Winter ∈ Rdpair×dpair and binter ∈ Rdpair
(dpair is the length of the argument pair repre-
sentation vector Rpair) to fulfil the interaction
between main and auxiliary tasks. As shown in
the following Formula (17) and (18), the new
representation of argument pair R′main is updated
by the combination of Winter and Raux using a
Sigmoid function.

R′main = Rmain � σ(WinterRaux + binter)
(17)

R′aux = Raux � σ(WinterRmain + binter)
(18)

Winter and the Sigmoid function (σ) work to-
gether to make information interacted between t-
wo tasks and select useful relevant information out
of the opposite tasks as well. Clearly, Winter is
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Arg Pair

representation

Arg Pair

representation

Arg-1 Arg-2 Arg-1 Arg-2

Share

hidden layer

softmax

Main Task Aux Task

WR
main

R
aux

′R
aux

′R
main

Loss
main

Loss
aux

Figure 4: Sigmoid (Gated) interaction shared in
multi-task framework (GShare).

a parameter to be trained. This mechanism act-
s as a gate to determine how much the informa-
tion would pass through to the final result. There-
fore, under the framework of multi-task and gated
mechanism, the main and auxiliary tasks are capa-
ble of not only sharing the parameters of learning
argument pair representation but also interacting
the representations learning from each other.

2.4 Parameter Learning

We tried various settings of word embeddings
trained on the BLLIP corpus with different dimen-
sions dWE = [50, 100, 150, 200] by word2vec
tool1 and finally set dimensionality as 50 based
on the results on development set. we also ex-
plored the hidden state dh = [50, 100, 150, 200]
and the size of hidden layer in multi-task frame-
work dmulti−task = [50, 80, 120, 150]. Finally,
for binary classification and four way classifica-
tion on PDTB, we chose dh = 50 and dmulti−task =
80. For multi-class classification on CoNLL-2016,
we chose dh = 100 and dmulti−task = 120. We
applied dropout to the penultimate layer and set
the dropout rate as 0.5. These parameters remain
the same in experiments except the share weight
w varies which will be discussed later. We chose
the cross-entropy loss as loss function and adopt-
ed AdaGrad (Duchi et al., 2011) with a learning
rate of 0.001 and a minibatch size of 64 to train
the model.

1http://www.code.google.com/p/word2vec

3 Experiment Settings

3.1 Datasets

We adopted three corpora: PDTB 2.0 and CoNLL-
2016 datasets are annotated for discourse relation
recognition evaluation, and the BLLIP corpus is
unlabeled and used as auxiliary task.

PDTB 2.0 is the largest annotated corpus of dis-
course relations, which contains 2, 312 Wall Street
Journal (WSJ) articles. The sense label of dis-
course relations is hierarchically with three lev-
els, i.e., class, type and sub-type. The top level
contains four major semantic classes: Comparison
(denoted as Comp.), Contingency (Cont.), Expan-
sion (Exp.) and Temporal (Temp.). For each class,
a set of types is used to refine relation sense. The
set of subtypes is to further specify the semantic
contribution of each argument. We focus on the
top level (class) relations. Following (Pitler et al.,
2009), we used sections 2-20 as training set, sec-
tions 21-22 as test set, and sections 0-1 as develop-
ment set. Table 1 summarizes the statistics of four
top level implicit discourse relations in PDTB.

Relation Train Dev Test
Comp. 1942 197 152
Cont. 3342 295 279
Exp. 7004 671 574
Temp. 760 64 85

Table 1: The statistics of four top level implicit
discourse relations in PDTB 2.0.

The CoNLL-2016 Shared Task focuses on
shallow discourse parsing, which provides two test
datasets, i.e., one from PDTB section 23 denot-
ed as CoNLL-Test set, and the other from a sim-
ilar source and domain (English Wikinews2) de-
noted as CoNLL-Blind test set. Different from
the sense labels in PDTB, the CoNLL-Test set has
three sense levels and the EntRel label. Moreover,
it merges several labels in the original annotation
to reduce some sparsity without losing too much
of the utility and the semantics of the sense.

BLLIP The North American News Text (Com-
plete) is used as unlabeled data source to generate
synthetic labeled data for auxiliary task. We re-
move the explicit discourse connectives from raw
texts and grant the explicit relations as the synthet-
ic implicit relations. We obtain a resulting corpus
with 100, 000 implicit relations by random sam-
pling.

2https://en.wikinews.org/
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3.2 Evaluation Measures
We adopt precision (P), recall (R) and their har-
monic mean, i.e., F1 for performance evaluation.
We also report accuracy for direct comparison
with previous works.

4 Results and Discussion

4.1 Results on PDTB in multiple binary
classification

To be consistent with previous work, we first per-
form multiple binary classification (one-versus-
other) on the four top level classes in PDTB. Sev-
eral previous studies merged EntRel with Expan-
sion, which is also explored in our study and noted
as Exp+. Table 2 shows the results of our proposed
three models in terms of F1 (%) on PDTB using
multiple binary classification, where STL means
single task learning, Eshare, Wshare and Gshare
denote the equal share, weighted share and gated
interaction share under multi-task framework re-
spectively, Imp denotes the standard implicit re-
lations dataset in PDTB (similarly, Imp denotes
standard implicit relations dataset in the CoNLL
dataset when we perform experiments on the CoN-
LL dataset) used for training, Exp denotes all ex-
plicit relations in sections 00-24 in PDTB (similar-
ly, all explicit relations in the CoNLL dataset when
we perform experiments on the CoNLL dataset),
and BLLIP denotes the synthetic implicit relations
extracted from BLLIP. For example, Imp + BLLIP
indicates that Imp is used for main task and BLLIP
is for auxiliary task.

The first three rows in Table 2 list the result-
s of LSTM, Bi-LSTM and attention neural net-
work in the single task learning (STL) framework,
which act as baselines for comparison with multi-
task learning. We see that Bi-LSTM achieve s-
lightly better performance than LSTM, which is
consistent with previous work as Bi-LSTM con-
siders the forward and backward direction contex-
tual information while LSTM only considers the
forward information. Compared with LSTM and
Bi-LSTM, the attention neural network achieves
much better performance. This indicates the effec-
tiveness of attention mechanism for capturing the
interaction between discourse arguments, which is
crucial for relationship representation.

Generally, under the multi-task neural network
framework, the three proposed multi-task neural
networks, i.e., Eshare, Wshare and Gshare, out-
perform the single task learning methods. Com-

paring with Eshare and Wshare, we see that us-
ing a low value of w is able to boost the perfor-
mance and reduce the negative influence brought
by auxiliary task. We then use the best w value
in Wshare to construct the loss of Gshare and the
Gshare achieves the best performance among all
methods through information interaction between
main and auxiliary tasks.

Comparing Imp + Exp with Imp + BLLIP, we
see that using Exp as auxiliary task achieves low-
er performance than using BLLIP and even hurt-
s the performance compared with the single task.
The possible reasons may result from (1) there is
difference between explicit and implicit discourse
relations and (2) the size of Exp dataset is much
smaller than that of BLLIP and thus it is not large
enough to boost the performance.

4.2 Results on PDTB and CoNLL-2016 in
multi-class classification

We also perform multi-class classification on
PDTB and CoNLL-2016. That is, a four-way clas-
sification on the four top-level classes in PDTB
and a 15-way classification on the 15 sense label-
s in CoNLL dataset. Table 3 shows the results of
multi-class classification on PDTB and CoNLL-
2016 corpora in terms of accuracy (%) and macro-
averaged F1 (%).

The results of multi-class classification are con-
sistent with the results of binary classification.
First, the attention neural network achieves bet-
ter performance than LSTM and Bi-LSTM. Sec-
ond, the multi-task learning methods outperform
the single-task learning method. Thrid, the Gshare
method achieves the best performance.

4.3 Comparison with the state-of-the-art
Systems

Table 4 lists the performance of our best mod-
el with the reported state-of-the-art systems on
PDTB and CoNLL-2016. We see that our mod-
el achieves F1 improvements of 1.64% on Con-
t., 0.97% on Exp., and 1.35% on Exp.+ against
the best reported systems in binary classification.
And in multi-class classification, our model also
achieves the best performance of F1 in four-way
classification and accuracy in CoNLL-2016 Blind
test set, which indicates that our model has good
generality.

Specially, (Liu et al., 2016b) and (Liu and
Li, 2016) listed in Table 4, which adopted neu-
ral network-based multi-task framework, are quite
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Comp. Cont. Exp. Exp+ Temp

STL
LSTM 33.50 52.09 67.51 76.12 27.88
Bi-LSTM 33.82 52.30 67.47 76.36 29.01
Attention 38.15 56.07 70.53 79.80 36.72

Eshare Imp + Exp 35.07 54.62 69.97 79.15 34.57
Imp + BLLIP 37.67 56.82 70.81 80.43 35.48

Wshare Imp + Exp 37.51 (w=0.1) 55.83 (w=0.2) 70.37 (w=0.3) 80.22(w=0.2) 35.71 (w=0.3)
Imp + BLLIP 39.13 (w=0.2) 57.78(w=0.2) 71.88(w=0.1) 80.84 (w=0.3) 37.76(w=0.3)

Gshare Imp + Exp 38.91 56.91 71.41 80.02 36.92
Imp + BLLIP 40.73 58.96 72.47 81.36 38.50

Table 2: Performance of multiple binary classification on the top level classes in PDTB corpus in terms
of F1 (%).

PDTB (Four way) CoNLL-Test (Acc) CoNLL-Blind (Acc)

STL
LSTM F1: 36.16; Acc: 56.12 34.45 35.07
Bi-LSTM F1: 36.54; Acc: 54.30 34.85 35.83
Attention F1: 45.57; Acc: 57.55 37.41 38.36

Eshare Imp + Exp F1: 44.17; Acc: 55.65 35.56 37.06
Imp + BLLIP F1: 44.57; Acc: 55.85 36.66 38.28

Wshare Imp + Exp F1: 45.03; Acc: 56.21 (w=0.3) 36.24 (w=0.2) 37.34 (w=0.3)
Imp + BLLIP F1: 45.80; Acc: 58.95 (w=0.2) 38.13 (w=0.1) 39.14 (w=0.4)

Gshare Imp + Exp F1: 45.70; Acc: 57.17 37.84 38.10
Imp + BLLIP F1: 47.80; Acc: 57.39 39.40 40.12

Table 3: Performance of multi-class classification on PDTB and CoNLL-2016 in terms of accuracy (Acc)
(%) and macro-averaged F1 (%).

Binary Classification (F1) Multi-class Classification (Acc)
Comp. Cont. Exp. Exp+ Temp PDTB (Four way) CoNLL-Test(Acc) CoNLL-Blind(Acc)

(Chen et al., 2016) 40.17 54.76 - 80.62 31.32 - - -
(Qin et al., 2016b) 41.55 57.32 71.50 80.96 35.43 - - -
(Liu and Li, 2016) 39.86 54.48 70.43 80.86 38.84 F1: 46.29; Acc: 57.57 - -
(Wu et al., 2016) - - - - - F1: 42.50; Acc: - - -
(Qin et al., 2016a) 38.67 54.91 - 80.66 32.76 - - -
(Liu et al., 2016b) 37.91 55.88 69.97 - 37.17 F1: 44.98; Acc: 57.27 - -
(Lan et al., 2013) 31.53 47.52 70.01 - 29.51 - - -
(Wang and Lan, 2016) - - - - - - 40.91 34.20
(Rutherford and Xue, 2016) - - - - - - 36.13 37.67
Our model 40.73 58.96 72.47 81.36 38.50 F1: 47.80; Acc: 57.39 39.40 40.12

Table 4: Comparison with the state-of-the-art systems reported on PDTB and CoNLL-2016, where -
means N.A.

relevant to this work. (Liu et al., 2016b) present-
ed a multi-task neural network, which considered
information sharing between the main and auxil-
iary task. Different from their work, our work inte-
grates the attention-based interaction between ar-
guments and the multi-task based interaction be-
tween tasks into the final model. This is the
main reason why our model achieves better per-
formance in all types of relations, which shows the
effectiveness of integrating gated mechanism into
multi-task framework. Besides, (Liu and Li, 2016)
used a complicated multi-level attention mecha-
nism and the performance of our attention neural
network in the single task is comparable to their
results. Our multi-task attention model achieves
better performance in most types with the aid of

multi-task framework.
Besides, our previous work in (Lan et al.,

2013) listed in Table 4, also presented a multi-
task framework with traditional machine learning
method to address implicit discourse recognition
using BLLIP to obtain synthetic data. Clearly, un-
der neural network-based multi-task framework,
the attention and gated mechanism significantly
improved the results and outperformed traditional
machine learning method in all types of relations.

4.4 Effects of parameters w
Figure 5 shows the performance of four binary
classification on four top level classes influenced
by different share weights w in Wshare multi-task
framework. We see that the best performance is
achieved when we use a lower value of w. This
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Figure 5: Results of top level implicit discourse
relations in PDTB 2.0 with different weights w.

indicates that a low value of w can boost perfor-
mance and reduce the negative influence brought
by auxiliary task and enable our model to pay
more attention to the main task.

5 Related Work

5.1 Implicit Discourse

With the release of PDTB 2.0, a number of studies
performed discourse relation recognition on nat-
ural (i.e., genuine) discourse data with the use of
traditional NLP techniques to extract linguistically
informed features and traditional machine learn-
ing algorithms (Pitler et al., 2009; Lin et al., 2009;
Wang et al., 2010; Braud and Denis, 2015; Fisher
and Simmons, 2015).

Later, to make a full use of unlabelled data, sev-
eral studies performed multi-task or unsupervised
learning methods (Lan et al., 2013; Braud and De-
nis, 2015; Fisher and Simmons, 2015; Rutherford
and Xue, 2015).

Recently, with the development of deep learn-
ing, researchers resorted to neural networks meth-
ods (Ji and Eisenstein, 2015; Zhang et al., 2015;
Chen et al., 2016; Liu et al., 2016b; Qin et al.,
2016a; Liu and Li, 2016; Braud and Denis, 2016;
Wu et al., 2016).

5.2 Multi-task learning

Multi-task learning framework adopts traditional
machine learning with human-selected effective
knowledge and the shared part is integrated into
the cost function to prefer the main task learning.
(Collobert and Weston, 2008) proposed a multi-

task neural network trained jointly on the rele-
vant tasks using weight-sharing (sharing the word
embeddings with tasks). (Liu et al., 2016a) pro-
posed the multi-task neural network by modifying
the recurrent neural network for text classification
tasks. (Lan et al., 2013) present a multi-task learn-
ing based system which can effectively use syn-
thetic data for implicit discourse relation recogni-
tion. (Wu et al., 2016) use bilingually-constrained
synthetic implicit data for implicit discourse rela-
tion recognition a multi-task neural network. (Liu
et al., 2016b) propose a convolutional neural net-
work embedded multi-task learning system to im-
prove the performance of implicit discourse iden-
tification.

5.3 Deep learning with Attention

Recently deep learning with attention has been
widely adopted by NLP researchers. (Zhou et al.,
2016) proposed an attention-based Bi-LSTM for
relation classification. (Wang et al., 2016c) pro-
posed an attention-based LSTM for aspect-level
sentiment classification. (Tan et al., 2016) pro-
posed a attentive LSTMs for Question Answer
Matching. (Wang et al., 2016a) proposed an in-
ner attention based RNN (add attention informa-
tion before RNN hidden representation) for An-
swer Selection in QA. (Wang et al., 2016b) pro-
posed multi-level attention CNNs for relation clas-
sification. (Yin et al., 2016) proposed an attentive
convolutional neural network for QA.

6 Concluding Remarks

We present a novel multi-task attention-based neu-
ral network model for implicit discourse relation-
ship representation and identification. Our method
captures both the discourse relationships through
interactions between discourse arguments and the
complementary knowledge through interactions
between annotated and unannotated data. The ex-
perimental results showed that our proposed mod-
el outperforms the state-of-the-art systems on two
benchmark corpora.
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Abstract

Existing approaches for Chinese zero pro-
noun resolution typically utilize only syn-
tactical and lexical features while ignoring
semantic information. The fundamental
reason is that zero pronouns have no de-
scriptive information, which brings diffi-
culty in explicitly capturing their semantic
similarities with antecedents. Meanwhile,
representing zero pronouns is challenging
since they are merely gaps that convey no
actual content. In this paper, we address
this issue by building a deep memory net-
work that is capable of encoding zero pro-
nouns into vector representations with in-
formation obtained from their contexts and
potential antecedents. Consequently, our
resolver takes advantage of semantic in-
formation by using these continuous dis-
tributed representations. Experiments on
the OntoNotes 5.0 dataset show that the
proposed memory network could substan-
tially outperform the state-of-the-art sys-
tems in various experimental settings.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence,
which refers to an entity that supplies the neces-
sary information for interpreting the gap (Zhao
and Ng, 2007). A ZP can be either anaphoric
if it corefers to one or more preceding noun
phrases (antecedents) in the associated text, or
non-anaphoric if there are no such noun phrases.
Below is an example of ZPs and their antecedents,
where “φ” denotes the ZP.
[警方] 表示 他们 自杀 的 可能性 很高， 不
过 φ1也不排除 φ2有他杀的可能。

∗Email corresponding.

([The police] said that they are more likely to
commit suicide, but φ1 could not rule out φ2 the
possibility of homicide.)

In this example, the ZP “φ1” is an anaphoric
ZP that refers to the antecedent “警方/The police”
while the ZP “φ2” is non-anaphoric. Unlike overt
pronouns, ZPs lack grammatical attributes such
as gender and number that have been proven to
be essential in pronoun resolution (Chen and Ng,
2014a), which makes ZP resolution a more chal-
lenging task than overt pronoun resolution.

Automatic Chinese ZP resolution is typically
composed of two steps, i.e., anaphoric zero pro-
noun (AZP) identification that identifies whether a
ZP is anaphoric; and AZP resolution, which deter-
mines antecedents for AZPs. For AZP identifica-
tion, state-of-the-art resolvers use machine learn-
ing algorithms to build AZP classifiers in a super-
vised manner (Chen and Ng, 2013, 2016). For
AZP resolution, literature approaches include un-
supervised methods (Chen and Ng, 2014b, 2015),
feature-based supervised models (Zhao and Ng,
2007; Kong and Zhou, 2010), and neural network
models (Chen and Ng, 2016). Neural network
models for AZP resolution are of growing interest
for their capacity to learn task-specific represen-
tations without extensive feature engineering and
to effectively exploit lexical information for ZPs
and their candidate antecedents in a more scalable
manner than feature-based models.

Despite these advantages, existing supervised
approaches (Zhao and Ng, 2007; Chen and Ng,
2013, 2016) for AZP resolution typically utilize
only syntactical and lexical information through
features. They overlook semantic information that
is regarded as an important factor in the resolution
of common noun phrases (Ng, 2007). The fun-
damental reason is that ZPs have no descriptive
information, which results in difficulty in calcu-
lating semantic similarities and relatedness scores
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between the ZPs and their antecedents. Therefore,
the proper representations of ZPs are required so
as to take advantage of semantic information when
resolving ZPs. However, representing ZPs is chal-
lenging because they are merely gaps that convey
no actual content.

One straightforward method to address this is-
sue is to represent ZPs with supplemental informa-
tion provided by some available components, such
as contexts and candidate antecedents. Motivated
by Chen and Ng (2016) who encode a ZP’s lex-
ical contexts by utilizing its preceding word and
governing verb, we notice that a ZP’s context can
help to describe the ZP itself. As an example of
its usefulness, given the sentence “φ taste spicy”,
people may resolve the ZP “φ” to the candidate an-
tecedent “red peppers”, but can hardly regard “my
shoes” as its antecedent, because they naturally
look at the ZP’s context “taste spicy” to resolve
it (“my shoes” cannot “taste spicy”). Meanwhile,
considering that the antecedents of a ZP provide
the necessary information for interpreting the gap
(ZP), it is a natural way to express a ZP by its po-
tential antecedents. However, only some subsets
of candidate antecedents are needed to represent
a ZP1. To achieve this goal, a desirable solution
should be capable of explicitly capturing the im-
portance of each candidate antecedent and using
them to build up the representation for the ZP.

In this paper, inspired by the recent success of
computational models with attention mechanism
and explicit memory (Sukhbaatar et al., 2015;
Tang et al., 2016; Kumar et al., 2015), we focus
on AZP resolution, proposing the zero pronoun-
specific memory network (ZPMN) that is com-
petent for representing a ZP with information ob-
tained from its contexts and candidate antecedents.
These representations provide our system with an
ability to take advantage of semantic information
when resolving ZPs. Our ZPMN consists of mul-
tiple computational layers with shared parameters.
With the underlying intuition that not all candidate
antecedents are equally relevant for representing
the ZP, we develop each computational layer as an
attention-based model, which first learns the im-
portance of each candidate antecedent and then
utilizes this information to calculate the continu-

1A common way to do this task is to first extract a set
of candidate antecedents, and then select antecedents from
the candidate set. Therefore, only those candidates who are
possibly the correct antecedent of the given ZP are suitable
for interpreting it.

ous distributed representation of the ZP. The at-
tention weights over candidate antecedents with
respect to the ZP’s representation obtained by the
last layer are regarded as the ZP coreference clas-
sification result. Given that every component is
differentiable, the entire model could be efficiently
trained end-to-end with gradient descent.

We evaluate our method on the Chinese portions
of the OntoNotes 5.0 corpus by comparing with
the baseline systems in different experimental set-
tings. Results show that our approach significantly
outperforms the baseline algorithms and achieves
state-of-the-art performance.

2 Zero Pronoun-specific Memory
Network

We describe our deep memory network approach
for AZP resolution in this section. We first give an
overview of our model and then describe its com-
ponents. Finally, we present the training and ini-
tialization details.

2.1 An Overview of the Method

In this part, we present an overview of the zero
pronoun-specific memory network (ZPMN) for
AZP resolution. Given an AZP zp, we first ex-
tract a set of candidate antecedents. Following
Chen and Ng (2016), we regard all and only those
maximal or modifier noun phrases (NPs) that pre-
cede zp in the associated text and are at most two
sentences away from it, to be its candidate an-
tecedents. Suppose k candidate antecedents are
extracted, our task is to determine the correct an-
tecedent of zp from its candidate antecedent set
A(zp) = {c1, c2, ..., ck}.

Specifically, these candidate antecedents are
represented in form of vectors {vc1 , vc2 , ..., vck},
which are stacked and regarded as the external
memory mem ∈ Rl×k, where l is the dimen-
sion of vc. Meanwhile, we represent each word
as a continuous and real-valued vector, which is
known as word embedding (Bengio et al., 2003).
These word vectors can be randomly initialized, or
be pre-trained from text corpus with learning al-
gorithms (Mikolov et al., 2013; Pennington et al.,
2014). In this work, we adopt the latter strategy
since it can better exploit the semantics of words.
All the word vectors are stacked in a word embed-
ding matrix Lw ∈ Rd×|V |, where d is the dimen-
sion of the word vector and |V | is the size of the
word vocabulary. The embedding of word w is
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Figure 1: Illustration of the zero pronoun-specific memory network with three computational layers
(hops). vzp and vc denote the vector representation of an AZP and its candidate antecedents. The left
part in dashed box shows the details of the first hop.

notated as e ∈ Rd×1, which is the column in Lw.

An illustration of ZPMN is given in Figure 1,
which is inspired by the memory network utilized
in question answering (Sukhbaatar et al., 2015).
Our model consists of multiple computational lay-
ers, each of which contains an attention layer and a
linear layer. First, we represent the AZP zp by uti-
lizing its contextual information, that is, propos-
ing the ZP-centered LSTM that encodes zp into
its distributed vector representation (i.e. vzp in
Figure 1). We then regard vzp as the initial rep-
resentation of zp, and feed it as the input to the
first computational layer (hop 1). In the first com-
putational layer, we calculate the attention weight
across the AZP for each candidate antecedent, by
which our model adaptively selects important in-
formation from the external memory (candidate
antecedents). The output of the attention layer and
the linear transformation of vzp are summed to-
gether as the input of to the next layer (hop 2).

We stack multiple hops by repeating the same
process for multiple times in a similar manner. We
call the abstractive information obtained from the
external memory the “key extension” of the AZP.
Note that the attention and linear layer parame-
ters are shared in different hops. Regardless of
the number of hops the model employs, they uti-
lize the same number of parameters. Finally, after
going through all the hops, we regard the atten-
tion weight of each candidate antecedent with re-
spect to the AZP representation generated by the
last hop as the probability that the candidate an-
tecedent is the correct antecedent, and predict the
highest-scoring (most probable) one to be the an-
tecedent of the given AZP.

2.2 Modeling Zero Pronouns by Contexts
A vector representation of AZP is required when
computing the ZPMN. As aforementioned, a ZP
contains no actual content, it is therefore needed to
employ some supplemental information to gener-
ate its initial representation. To achieve this goal,
we develop the ZP-centered LSTM that encodes
an AZP into a vector representation by utilizing
its contextual information.

Admittedly, one efficient method to model a
variable-length sequence of words (context words)
is to utilize a recurrent neural network (Elman,
1991). A recurrent neural network (RNN) stores
the sequence history in a real-valued history vec-
tor, which captures information of the whole se-
quence. LSTM (Hochreiter and Schmidhuber,
1997) is one of the classical variations of RNN that
mitigate the gradient vanish problem of RNN. As-
suming x = {x1, x2, ..., xn} is an input sequence,
each time step t has an input xt and a hidden state
ht. The internal mechanics of the LSTM is defined
by:

it = σ(W (i) · [xt;ht−1] + b(i)) (1)

ft = σ(W (f) · [xt;ht−1] + b(f)) (2)

ot = σ(W (o) · [xt;ht−1] + b(o)) (3)

C̃t = tanh(W (c) · [xt;ht−1] + b(c)) (4)

Ct = it � C̃t + ft � Ct−1 (5)

ht = ot � tanh(Ct) (6)

where � is an element-wise product and W (i),
b(i), W (f), b(f), W (o), b(o), W (c), and b(c) are the
parameters of the LSTM network.

Intuitively, the words near an AZP generally
contain richer information to express it. To bet-
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Figure 2: ZP-centered LSTM for encoding the AZP by its context words. wi means the i-th word in the
sentence, wzp−i is the i-th last word before the ZP and wzp+i is the i-th word behind the ZP.

ter utilize the information of words surrounding
the AZP, on the basis of the traditional LSTM,
we propose the ZP-centered LSTM to encode the
AZPs. A graphical representation of this model
is displayed in Figure 2. Specifically, the ZP-
centered LSTM contains two standard LSTM neu-
ral networks, i.e., the LSTMp that encodes the pre-
ceding context of the AZP in a left-to-right man-
ner, and the LSTMf that models the following
context in the reverse direction. Ideally, the ZP-
centered LSTM models the preceding and follow-
ing contexts of the AZP separately, so that the
words near the AZP are regarded as the last hid-
den units and could contribute more in represent-
ing the AZP. Afterward, we obtain the represen-
tation of the AZP by concatenating the last hid-
den vectors of LSTMp and LSTMf , which sum-
marizes the useful contextual information centered
around the AZP. Averaging or summing the last
hidden vectors of LSTMp and LSTMf could also
be attempted as alternatives. We regard it as the
initial vector representation of the AZP and feed it
to the first computational layer to go through the
remaining procedures of our system.

2.3 Generating the External Memory

We describe our method for generating the exter-
nal memory in this subsection. For a given AZP,
a set of noun phrases (NPs) is extracted as its can-
didate antecedents. Specifically, we generate the
external memory by utilizing these candidate an-
tecedents. One way to encode an NP candidate is
to utilize its head word embedding (Chen and Ng,
2016). However, this method has a major draw-
back of not utilizing contextual information that is
essential for representing a phrase. Besides, some
approaches (Socher et al., 2013; Sun et al., 2015)
encode a phrase by utilizing the average word em-
bedding it contains. We argue that such an aver-
aging operation simply treats all the words in a

phrase equally, which is inaccurate because some
words might be more informative than others.

A helpful property of LSTM is that it could
keep useful history information in the mem-
ory cell by exploiting input, output and forget
gates to decide how to utilize and update the
memory of previous information. Given a se-
quence of words {w1, w2, ..., wn}, previous re-
search (Sutskever et al., 2014) utilizes the last hid-
den vector of LSTM to represent the information
of the whole sequence. For wordwt in a sequence,
its corresponding hidden vector ht can capture
useful information before and including wt.

...

...

...

...

1cw  [ ]c mw
1cw  nw1w

[ ] 1c c m cv h h  


' '

[1] 1c c cv h h  


...

...

...

[1]cw
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1h 1ch  [1]ch [ ]c mh

[1]ch
nh1ch 


[ ]c mh

Figure 3: Illustration for modeling a candidate an-
tecedent through its context and content words.
Candi represents the candidate antecedent. Sup-
pose the candidate antecedent contains m words,
wc[j] denotes its j-th word. wi is the i-th word in
the sentence, andwc+1(−1) is the word appears im-
mediately after (before) the candidate antecedent.

Inspired by this, we propose a novel method
to produce representations of the candidate an-
tecedents by utilizing both their contexts and con-
tent words. Specifically, we use the subtraction be-
tween LSTM hidden vectors to encode the candi-
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date antecedents, as illustrated in Figure 3. Given
a candidate antecedent c with m words, two stan-
dard LSTM neural networks are employed for en-
coding c in the forward and backward direction,
respectively. For the forward LSTM, we extract a
sequence of words related with c in a left-to-right
manner, i.e., {w1, w2, ..., wc−1, wc[1], ..., wc[m]}.
Subsequently, the forward vector representation
of c can be calculated as −→vc = hc[m] − hc−1,
where hc[m] and hc−1 indicate the hidden vec-
tors of the forward LSTM corresponding to wc[m]

and wc−1, respectively. Meanwhile, the back-
ward LSTM models a sequence of words that
are extracted in the reverse direction, that is,
{wn, wn−1, ..., wc+1, wc[m], ..., wc[1]}. We then
perform the similar operation, computing the
backward representation of c as←−vc = h

′
c[1]−h

′
c+1,

where h
′
c[1] and h

′
c+1 indicate the hidden vectors

of the backward LSTM corresponding to wc[1] and
wc+1. Finally, we concatenate these two vectors
together as the ultimate vector representation of c,
vc =

−→vc ||←−vc .
This method enables our model to encode a can-

didate antecedent by the information both outside
and inside the phrase, which provides our model
a strong ability to access to sentence-level infor-
mation when modeling the candidate antecedents.
In this manner, we generate the vector repre-
sentations of the candidate antecedents, and re-
gard them as the external memory, i.e., mem =
{vc1 , vc2 , ..., vck}.

2.4 Attention Mechanism

In this part, we introduce our attention mecha-
nism. This strategy has been widely used in many
nature language processing tasks, such as fac-
toid question answering (Hermann et al., 2015),
entailment (Rocktäschel et al., 2015) and disflu-
ency detection (Wang et al., 2016). The basic
idea of attention mechanism is that it assigns a
weight/importance to each lower position when
computing an upper-level representation (Bah-
danau et al., 2015). With the underlying intuition
that not all candidate antecedents are equally rel-
evant for representing the AZP, we employ the
attention mechanism as to dynamically align the
more informative candidate antecedents from the
external memory, mem = {vc1 , vc2 , ..., vck} with
regard to the given AZP, and use them to build up
the representation of the AZP.

As shown in Chen and Ng (2016), traditional

hand-crafted features are crucial for the resolver’s
success since they capture the syntactic, positional
and other relationships between an AZP and its
candidate antecedents. Therefore, to evaluate the
importance of each candidate antecedent in a com-
prehensive manner, following Chen and Ng (2016)
who encode hand-crafted features as inputs to their
network, we integrate a set of features that are uti-
lized in Chen and Ng (2016), in the form of vec-
tor (v(feature)) into our attention model. For each
multi-valued feature, we convert it into a corre-
sponding set of binary-valued features2.

Specifically, for the t-th candidate antecedent in
the memory, vct , taking the vector representation
of the AZP vzp and the corresponding feature vec-
tor v(feature)t as inputs, we compute the attention
score as αt = G(vct , vzp, v

(feature)
t ). The scoring

function G is defined by:

st = tanh(W (att) · [vct ; vzp; v(feature)t ] + b(att))
(7)

αt =
exp(st)∑k
t′=1

exp(st′ )
(8)

where W (att) and b(att) are the attention parame-
ters and k indicates the number of candidate an-
tecedents. After obtaining the attention scores for
all the candidate antecedents {a1, a2, ..., ak}, our
attention layer outputs a continuous vector vec
that is computed as the weighted sum of each piece
of memory in mem:

vec =

k∑

i=1

αivci (9)

2.5 Training Details

We initialize our word embeddings with 100 di-
mensional ones produced by the word2vec toolkit
(Mikolov et al., 2013) on the Chinese portion of
the training data from the OntoNotes 5.0 corpus.
We randomly initialize the parameters from a uni-
form distribution U(−0.03, 0.03) and minimize
the training objective using stochastic gradient de-
scent with learning rate equals to 0.01. In addition,
to regularize the network, we apply L2 regulariza-
tion to the network weights and dropout with a rate
of 0.5 on the output of each hidden layer.

2If one feature has k different values, we will convert it
into k binary features.
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The model is trained in a supervised manner by
minimizing the cross-entropy error of ZP corefer-
ence classification. Suppose the training set con-
tainsN AZPs {zp1, zp2, ..., zpN}. LetA(zpi) de-
note the set of candidate antecedents of an AZP
zpi, and P (c|zpi) represents the probability of
predicting candidate c as the antecedent of zpi
(i.e., the attention weight of candidate antecedent
c with respect to the AZP representation generated
by the last hop), the loss is given by:

loss = −
N∑

i=1

∑

c∈A(zpi)
δ(zpi, c)log(P (c|zpi))

(10)
where δ(zp, c) is 1 or 0, indicating whether zp and
c are coreferent.

3 Experiments

3.1 Experimental Setup

Datasets: Following Chen and Ng (2016, 2015),
we run experiments on the Chinese portion of
the OntoNotes Release 5.0 dataset3 used in the
CoNLL 2012 Shared Task (Pradhan et al., 2012).
The dataset consists of three parts, i.e., a training
set, a development set and a test set. Since only
the training set and the development set contain
ZP coreference annotations, we train our model on
the training set and utilize the development set for
testing purposes. Meanwhile, we reserve 20% of
the training set as a held-out development set for
tuning the hyperparameters of our network. The
same experimental data setting is utilized in the
baseline system (Chen and Ng, 2016). Table 1
shows the statistics of our corpus. Besides, doc-
uments in the datasets come from six sources, i.e.,
broadcast news (BN), newswires (NW), broadcast
conversations (BC), telephone conversations (TC),
web blogs (WB) and magazines (MZ).

Documents Sentences Words AZPs
Training 1,391 36,487 756K 12,111

Test 172 6,083 110K 1,713

Table 1: Statistics on the training and test corpus.

Evaluation metrics: Same as previous studies on
Chinese ZP resolution (Zhao and Ng, 2007; Chen
and Ng, 2016), we use three metrics to evaluate the
quality of our model: recall, precision and F-score
(denoted as R, P and F, respectively).

3http://catalog.ldc.upenn.edu/LDC2013T19

Experimental settings: We employ three Chinese
ZP resolution systems as our baselines, i.e., Zhao
and Ng (2007); Chen and Ng (2015, 2016). Con-
sistent with Chen and Ng (2015, 2016), three ex-
perimental settings are designed to evaluate our
approach. In Setting 1, we directly employ the
gold syntactic parse trees and gold AZPs that are
obtained from the OntoNotes dataset. In Setting
2, we utilize gold syntactic parse trees and system
(automatically identified) AZPs4. In Setting 3, we
employ system AZP and system syntactic parse
trees that obtained through the Berkeley parser5,
which is the state-of-the-art parsing model.

3.2 Experimental Results

Table 2 shows the experimental results of the base-
line systems and our model on entire test set. Our
approach is abbreviated to ZPMN (k), where k
indicates the number of hops. The best meth-
ods in each of the three experimental settings
are in bold text. From Table 2, we can ob-
serve that our approach outperforms all previous
baseline systems by a substantial margin. Mean-
while, among all our models from single hop to
six hops, using more computational layers could
generally lead to better performance. The best per-
formance is achieved by the model with six hops
under experimental Setting 1 and 2, and with four
hops in experimental Setting 3. Furthermore, the
ZPMN (with six hops) significantly outperforms
the state-of-the-art baseline system (Chen and Ng,
2016) under three experimental settings by 2.7%,
2.7%, and 3.9% in terms of overall F-score6, re-
spectively. In all words, our model is an ex-
tremely strong performer and substantially outper-
forms baseline methods, which demonstrate the
efficiency of the proposed zero pronoun-specific
memory network.

It is well accepted that computational models
that are composed of multiple processing layers
could learn representations of data with multiple
levels of abstraction (LeCun et al., 2015). In our
approach, multiple computation layers allow the
model to learn representations of AZPs with mul-
tiple levels of abstraction generated by candidate
antecedents. Each layer/hop retrieves important
candidate antecedents, and transforms the repre-

4In this study, we adopt the learning-based method uti-
lized in (Chen and Ng, 2016) to identify system AZPs, in-
cluding the location and identification of AZPs.

5https://github.com/slavpetrov/berkeleyparser
6All significance tests are paired t-tests, with p < 0.05.
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Setting 1 Setting 2 Setting 3
Gold Parse + Gold AZP Gold Parse + System AZP System Parse + System AZP
R P F R P F R P F

Zhao and Ng (2007) 41.5 41.5 41.5 22.4 24.4 23.3 12.7 14.2 13.4
Chen and Ng (2015) 50.0 50.4 50.2 35.7 26.2 30.3 19.6 15.5 17.3
Chen and Ng (2016) 51.8 52.5 52.2 39.6 27.0 32.1 21.9 15.8 18.4

ZPMN (1) 53.0 53.3 53.1 37.9 30.0 33.4 27.8 17.4 21.4
ZPMN (2) 53.7 54.0 53.9 38.8 30.6 34.0 28.1 18.2 22.1
ZPMN (3) 53.9 54.2 54.1 38.6 30.4 34.2 28.2 17.7 21.7
ZPMN (4) 54.4 54.7 54.5 39.0 30.7 34.3 29.3 18.5 22.7
ZPMN (5) 54.1 54.4 54.3 38.8 30.6 34.2 28.6 17.8 22.0
ZPMN (6) 54.8 55.1 54.9 39.4 31.1 34.8 28.9 18.2 22.3

Table 2: Experimental results on the test data. ZPMN represents the proposed zero pronoun-specific
memory network model, and the number beside ZPMN in each row denotes the number of hops.

Setting 1: Gold Parse + Gold AZP Setting 2: Gold Parse + System AZP Setting 3: System Parse + System AZP
Baseline ZPMN Baseline ZPMN Baseline ZPMN

R P F R P F R P F R P F R P F R P F
NW 48.8 48.8 48.8 48.8 48.8 48.8 34.5 26.4 29.9 39.5 34.3 36.7 11.9 12.8 12.3 21.0 19.9 20.5
MZ 41.4 41.6 41.5 46.3 46.3 46.3 34.0 22.4 27.0 34.6 35.0 34.8 9.3 7.3 8.2 17.1 15.7 16.4
WB 56.3 56.3 56.3 59.8 59.8 59.8 44.7 25.1 32.2 41.2 28.7 33.8 23.9 16.1 19.2 31.3 17.6 22.6
BN 55.4 55.4 55.4 58.2 58.6 58.4 36.9 31.9 34.2 43.8 30.0 35.6 22.1 23.2 22.6 35.1 20.7 26.1
BC 50.4 51.3 50.8 52.9 53.6 53.2 37.6 25.6 30.5 35.6 29.4 32.2 21.2 14.6 17.3 25.6 15.6 19.4
TC 51.9 54.2 53.1 54.8 54.8 54.8 46.3 29.0 35.6 36.9 32.9 34.8 31.4 15.9 21.1 33.2 21.0 25.8

Table 3: Experimental results on each source of test data. The strongest F-score in each row is in bold.

sentation at previous level into a representation at a
higher, slightly more abstract level. We regard this
representation as the “key extension” of the AZP,
by which our model learns to encode the AZP in
an efficient manner.

For per-source results, we conduct experiments
by comparing the ZPMN (with six hops) with
the state-of-the-art baseline system (Chen and Ng,
2016) on six sources of test data, as shown in Ta-
ble 3. The rows in Table 3 are the experimental re-
sults from different sources under the three exper-
imental settings. In experimental Settings 1 and
3, ZPMN improves results further across all the
six sources of data. Under experimental Setting
2, our model outperforms the baseline system in
five of the six sources of data, only slightly under-
performs in source TC. All these prove that our
approach achieves a considerable improvement in
Chinese ZP resolution.

Moreover, to evaluate the effectiveness of our
methods for modeling the AZP and candidate an-
tecedents proposed in Section 2.2 and 2.3, we
compare with three models that are all simpli-
fied versions of the ZPMN, namely, ZPCon-
textFree where an AZP is initially represented by
its governing verb and preceding word; AntCon-
tentAvg where the candidate antecedents are en-
coded by their averaged content word embed-
dings; and AntContentHead where each candi-

date antecedent is represented by the embedding
of its head word. To make comparison as fair as
possible, we keep the other parts of these mod-
els unchanged from the ZPMN with six compu-
tational layers (hop 6). To minimize the external
influence, we run experiments under experimen-
tal Setting 1 (gold parse and gold AZPs). Table 4
shows the results.

R P F
ZPContextFree 53.5 53.8 53.6
AntContentAvg 52.6 52.9 52.7
AntContentHead 53.8 54.1 53.9
ZPMN (hop 6) 54.8 55.1 54.9

Table 4: Experimental results of different models.

With an intuition that contexts of an AZP pro-
vide more sufficient information than only a few
specific of words in expressing the AZP, the per-
formance of ZPContextFree is unsurprisingly
worse than that of the ZPMN, which reflects the
effects of the ZP-centered LSTM proposed to gen-
erate the initial representation for the AZP. In
addition, the performance of AntContentAvg is
relatively low. We attribute this to the model
assigning the same importance to all the con-
tent words in a phrase, which causes difficulty
for the model to capture informative words in a
candidate antecedent. Meanwhile, AntContent-
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Head only models limited information when en-
coding candidate antecedents, thereby underper-
forms the ZPMN whose external memory con-
tains sentence-level information both outside and
inside the candidate antecedents. These demon-
strate the utility of the method for modeling can-
didate antecedents.

3.3 Attention Model Visualization

这次 近 50 年 来 印度 发生 的 T 强烈 地b b级 强，φ 波及 范围 N，印度 
a国I 尼泊尔 也 受到 了 影响 c

The earthqua-e that ,5 the 5tro0ge5t o0e occur5 ,0 I0d,a w,th,0 rece0t 
50 year5 ha5 a h,gh � mag0,tude, φ ,0f.ue0ce5 a .arge ra0ge of area5, 
a0d the 0e,ghbour,0g cou0try of I0d,a .,-e Nepa. ,5 a.5o affected.

中国中国政府 印度 中国红十
字会

这次...强烈
的地b
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Figure 4: Example of attention weights in different
hops. ZP is denoted as φ. The rows show the at-
tention weights of candidates in each hop. Darker
color means higher weight.

To obtain a better understanding of our deep
memory network, we visualize the attention
weights of the ZPMN, as is shown in Figure 4.
We can observe that in the first three hops, the
fourth candidate “中国红十字会/Red Cross Soci-
ety of China” gains a higher attention weight than
the others. Nevertheless, in hop 5 and 6, the atten-
tion weight of “这次...强烈的地震/the earthquake
that ... in India” increases and the model finally
predicts it correctly as the antecedent. This case
illustrates the effects of multiple hops.

4 Related Work

4.1 Zero Pronoun Resolution

Chinese zero pronoun resolution. Early stud-
ies utilize heuristic rules to resolve ZPs in Chi-
nese (Converse, 2006; Yeh and Chen, 2007).
More recently, supervised approaches have been
vastly explored. Zhao and Ng (2007) first
present a machine learning approach to identify
and resolve ZPs. By employing the J48 de-
cision tree algorithm, various kinds of features

are integrated into their model. Kong and Zhou
(2010) develop a kernel-based approach, employ-
ing context-sensitive convolution tree kernels to
model syntactic information. Chen and Ng (2013)
further extend the study of Zhao and Ng (2007)
by proposing several novel features and introduc-
ing the coreference links between ZPs. Despite the
effectiveness of feature engineering, it is labor in-
tensive and highly relies on annotated corpus. To
handle these weaknesses, Chen and Ng (2014b)
propose an unsupervised method. They first re-
cover each ZP into ten overt pronouns and then
apply a ranking model to rank the antecedents.
Chen and Ng (2015) propose an end-to-end unsu-
pervised probabilistic model, utilizing a salience
model to capture discourse information. In recent
years, Chen and Ng (2016) develop a deep neural
network approach to learn useful task-specific rep-
resentations and effectively exploit lexical features
through word embeddings. Different from previ-
ous studies, in this work, we propose a novel mem-
ory network to perform the task. By encoding ZPs
and candidate antecedents through the composi-
tion of texts based on the representation of words,
our model benefits from the semantic information
when resolving the ZPs.

Zero pronoun resolution for other languages.
There have been various studies on ZP resolution
for other languages besides Chinese. Ferrández
and Peral (2000) propose a set of hand-crafted
rules for resolving ZPs in Spanish texts. Recently,
supervised approaches have been widely exploited
for ZP resolution in Korean (Han, 2006), Ital-
ian (Iida and Poesio, 2011) and Japanese (Isozaki
and Hirao, 2003; Iida et al., 2006, 2007; Imamura
et al., 2009; Sasano and Kurohashi, 2011; Iida
and Poesio, 2011; Iida et al., 2015). Iida et al.
(2016) propose a multi-column convolutional neu-
ral network for Japanese intra-sentential subject
zero anaphora resolution, where both the surface
word sequence and dependency tree of a target
sentence are exploited as clues in their model.

4.2 Attention and Memory Network

Attention mechanisms have been widely used in
many studies and have achieved promising perfor-
mances on a variety of NLP tasks (Rocktäschel
et al., 2015; Rush et al., 2015; Liu et al., 2017).
Recently, the memory network has been proposed
and applied to question answering task (Weston
et al., 2014), which is defined to have four compo-
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nents: input (I), generalization (G), output (O) and
response (R). After then, memory networks have
been adopted in many other NLP tasks, such as
aspect sentiment classification (Tang et al., 2016),
dialog systems (Dodge et al., 2015), and informa-
tion extraction (Xiaocheng et al., 2017).

5 Conclusion

In this study, we propose a novel zero pronoun-
specific memory network that is capable of en-
coding zero pronouns into the vector represen-
tations with supplemental information obtained
from their contexts and candidate antecedents.
Consequently, these continuous distributed vec-
tors provide our model with an ability to take ad-
vantage of the semantic information when resolv-
ing zero pronouns. We evaluate our method on
the Chinese portion of OntoNotes 5.0 dataset and
report substantial improvements over the state-of-
the-art systems in various experimental settings.
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Abstract

This article evaluates purported progress
over the past years in RST discourse pars-
ing. Several studies report a relative er-
ror reduction of 24 to 51% on all met-
rics that authors attribute to the introduc-
tion of distributed representations of dis-
course units. We replicate the standard
evaluation of 9 parsers, 5 of which use
distributed representations, from 8 stud-
ies published between 2013 and 2017, us-
ing their predictions on the test set of the
RST-DT. Our main finding is that most re-
cently reported increases in RST discourse
parser performance are an artefact of dif-
ferences in implementations of the eval-
uation procedure. We evaluate all these
parsers with the standard Parseval proce-
dure to provide a more accurate picture
of the actual RST discourse parsers per-
formance in standard evaluation settings.
Under this more stringent procedure, the
gains attributable to distributed representa-
tions represent at most a 16% relative error
reduction on fully-labelled structures.

1 Introduction

While several theories of discourse structure for
text exist, discourse parsing work has largely
concentrated on Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) and the RST
Discourse Treebank (RST-DT) (Carlson et al.,
2003), which is the largest corpus of texts anno-
tated with full discourse structures. The RST-DT,
annotated in the style of RST, consists of 385 news
articles from the Penn Treebank, split into a train-
ing and test sets of 347 and 38 documents.The
standard evaluation procedure for RST discourse
parsing, RST-Parseval, proposed by Marcu (2000),
adapts the Parseval procedure for syntactic pars-
ing (Black et al., 1991). RST-Parseval computes
scores on discourse structures with no label (S

for Span) or labelled with nuclearity (N), relation
(R) or both (F for Full). The semantic nature of
discourse relations makes discourse parsing a dif-
ficult task. However, the recent introduction of
distributed representations of discourse units has
seemingly led to significant improvements, with a
claimed relative error reduction of 51% on fully
labelled structures. As part of a broader study of
methods and evaluation metrics for discourse pars-
ing, we collected predictions from nine RST dis-
course parsers and reimplemented RST-Parseval.
In section 2, we present these RST parsers and re-
port their published scores on RST-Parseval. In
section 3, we replicate their evaluation and show
that most of the heterogeneity in performance
across RST parsers arises from differences in their
evaluation procedures. In section 4, we replace
RST-Parseval with the standard Parseval proce-
dure and obtain a more accurate picture of the ac-
tual performance of RST parsers.

2 A sample of RST discourse parsers

Almost all RST discourse parsers are evaluated on
the test section of the RST-DT using manually seg-
mented Elementary Discourse Units (EDUs). We
contacted by email the main or corresponding au-
thor of each recently (2013–2017) published, text-
level RST discourse parser evaluated in this set-
ting and asked the authors to provide us with the
predictions they used in their study or a proce-
dure that would enable us to reproduce identical
or at least similar predictions. When our attempts
were unsuccessful we tried to reproduce similar
predictions from published materiel (source code,
binaries, model). We managed to obtain or re-
produce predictions for 9 parsers from 8 stud-
ies. The first parser, denoted HHN16 HILDA, is
a reimplementation (Hayashi et al., 2016) of the
classic, bottom-up, greedy HILDA parser with a
linear SVM model (Hernault et al., 2010) ; this
parser serves as a reference point to evaluate the
progress made by more recent parsers. SHV15
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D is a variant of the HILDA parser with different
models (perceptron for attachment of discourse
units, logistic regression for relation labelling) and
a slightly different feature set adapted to use pre-
dicted syntactic dependency trees (Surdeanu et al.,
2015). JCN15 1S-1S is a two stage (sentence-
then document-level) CKY chart parser with Dy-
namic Conditional Random Field (DCRF) mod-
els, in its 1 sentence - 1 subtree (1S-1S) vari-
ant that builds a document-level RST tree on top
of sentence-level subtrees built for each sentence
independently (Joty et al., 2013, 2015). FH14
gCRF is a two stage (sentence- then document-
level) bottom-up, greedy parser with linear-chain
CRF models (Feng and Hirst, 2014). We use the
version of the parser available on the author’s web-
page, that lacks post-editing and contextual fea-
tures. BPS16 is a sequence-to-sequence parser,
heuristically constrained to build trees, with a hi-
erarchical neural network model (hierarchical bi-
LSTM) (Braud et al., 2016). LLC16 is a CKY
chart parser with a hierarchical neural network
model (attention-based hierarchical bi-LSTM) (Li
et al., 2016). BCS17 mono, BCS17 cross+dev
are two variants of a transition-based parser that
uses a feed-forward neural network model (Braud
et al., 2017). JE14 DPLP is a shift-reduce parser
that uses an SVM model (Ji and Eisenstein, 2014).
We use predictions provided by the author, from
an improved, unpublished version of the parser.

The first four parsers (HHN16 HILDA, SHV15
D, JCN15 1S-1S, FH14 gCRF) use, as features,
only localist representations of the input and pars-
ing state, i.e. surface-form and syntactic informa-
tion: length of discourse units (DUs), distance be-
tween DUs, n-grams of words and POS tags, rela-
tions of syntactic dominance between DUs. . . The
last five parsers (BPS16, LLC16, BCS17 mono
and cross+dev, JE14 DPLP concat) build dis-
tributed representations of DUs, complemented
with a subset of localist representations.

The authors used various implementations of
RST-Parseval, but all applied a right-heavy bi-
narization procedure to the reference RST trees:
Each node of arity greater than 2 is replaced with
a right-branching cascade of binary nodes. In the
publications, the tables of results provide a unique
score for labeled structures, corresponding to ei-
ther the R or F metric, with no explicit distinc-
tion. The F1 scores published in the literature for
the parsers in our sample are reported in Table 1,

where an en-dash (–) indicates missing scores. We
also report the scores of human agreement, com-
puted and reported by Joty (2015), over the doubly
annotated subset of the RST-DT consisting of 53
documents (48 from train, 5 from test).

parser S N R or F

HHN16 HILDA 82.6 66.6 54.2
SHV15 D – – 55.2
JCN15 1S-1S 82.6 68.3 55.8
FH14 gCRF 84.9 69.9 57.2

BPS16 83.6 69.8 55.1
LLC16 85.8 71.1 58.9
BCS17 mono 85.0 72.3 60.1
BCS17 cross+dev 85.1 73.1 61.4
JE14 DPLP concat 82.1 71.1 61.6

human 88.7 77.7 65.8

Table 1: Published F1 scores.

The parsers in the second group seem to per-
form markedly better than the parsers in the first
group, especially on the hardest subtasks of pre-
dicting (partly or fully) labelled structures (N
and R or F). Collectively, the parsers in the sec-
ond group claim absolute improvements over the
parsers in the first group by 0.9, 3.2 and 4.2 points,
corresponding to a relative error reduction of 24%
on S, 41% on N and 51% on R or F, compared
to human agreement. While discourse parsing is
a difficult, semantic task with relatively little an-
notated training data, authors attribute these sig-
nificant gains to the capacity of distributed repre-
sentations to capture latent semantic information
and generalize over a long tail of alternative sur-
face forms. As a preliminary step towards probing
these claims, we replicated the evaluation of these
parsers’ predictions.

3 Evaluation

We collected or reproduced predictions from each
parser and replicated the evaluation procedure 1.
The predictions came in various formats: brack-
eted strings as in the RST-DT, lists of span de-
scriptions, trees or lists of attachment decisions.
We wrote custom functions to load and normalize
the predictions from each parser into RST trees.
While we favor evaluating against the original,

1The source code and material are available at https:
//github.com/irit-melodi/rst-eval

1320



non binarized reference RST trees, we conformed
in this replicative study to the de facto standard
in the RST parsing literature: We transformed the
reference RST trees into right-branching binary
trees and used these binary trees as reference in
all our evaluation procedures. We also examined
the source code from the evaluation procedures
provided by the authors to determine whether the
published scores corresponded to the R or F met-
ric. In so doing we noticed a potentially impor-
tant discrepancy in the various implementations
of the RST-Parseval procedure: the implemen-
tations used to evaluate the parsers in the first
group compute micro-averaged F1 scores, as is
standard practice in the syntactic parsing commu-
nity, whereas the implementations used to evaluate
the parsers in the second group compute macro-
averaged F1 scores across documents. The micro-
averaged F1 score is computed globally over the
predicted and reference spans from all documents
; the macro-averaged F1 score across documents is
the average of F1 scores computed independently
for each document.

We implemented both strategies and report
the corresponding scores in two separate tables.
Parsers originally evaluated with micro-averaging
scores are in the top half of each table, parsers
originally evaluated with macro-averaged scores
in the bottom half. An asterisk (*) marks parsers
for which we reproduced predictions using code
and material made available by the authors, al-
though the experimental settings are not guar-
anteed to match exactly those from the original
study. A double asterisk (**) marks a parser for
which we used predictions generated by the au-
thor using an improved, unpublished version of the
parser posterior to the original study. Lines with
no asterisk in Tables 2 to 4 correspond to parsers
whose authors sent us their original predictions.
Replicated scores expected to match scores in Ta-
ble 1 are underlined.

Table 2 contains the micro-averaged F1 scores
on each metric (S, N, R, F). As expected, parsers in
the first group obtain micro-averaged scores equal
or close to their published scores reported in Ta-
ble 1. More strikingly, the micro-averaged scores
for the parsers in the second group are much lower
than their published scores 2 and most of their
claimed advantages over the parsers in the first

2The milder decrease of the DPLP scores, especially on
S, is directly attributable to improvements in the latest, un-
published version of the parser.

parser S N R F

HHN16 HILDA 82.6 66.6 54.6 54.3
SHV15 D * 82.6 67.1 55.4 54.9
JCN15 1S-1S 82.6 68.3 55.8 55.4
FH14 gCRF * 84.3 69.4 56.9 56.2

BPS16 79.7 63.6 47.7 47.5
LLC16 82.2 66.5 51.4 50.6
BCS17 mono 81.0 67.7 55.7 55.3
BCS17 cross+dev 81.3 68.1 56.3 56.0
JE14 DPLP ** 82.0 68.2 57.8 57.6

human 88.3 77.3 65.4 64.7

Table 2: Micro-averaged F1 scores.

group has vanished. On S and N, parsers in the
second group do not improve over parsers in the
first group ; on R and F the best parser in the sec-
ond group provides an absolute improvement of
0.9 and 1.4 points. This improvement corresponds
to a relative error reduction of 11% on R and 16%
on F, much lower than the 51% claimed in the lit-
erature. 3

parser S N R F

HHN16 HILDA 85.9 72.1 60.0 59.4
SHV15 D * 85.1 71.1 59.8 59.1
JCN15 1S-1S 85.7 73.0 60.9 60.2
FH14 gCRF * 87.0 74.1 61.1 60.5

BPS16 83.6 69.8 55.4 55.1
LLC16 85.4 70.8 58.4 57.6
BCS17 mono 85.0 72.3 60.8 60.1
BCS17 cross+dev 85.1 73.1 61.6 61.4
JE14 DPLP ** 85.0 71.6 62.0 61.9

human 89.6 78.3 66.7 65.3

Table 3: Macro-averaged F1 scores.

Table 3 contains the macro-averaged F1 scores.
Parsers in the first group obtain macro-averaged
scores markedly higher than the micro-averaged
scores from Table 2. Parsers in the second group
obtain macro-averaged scores that are equal or
close to the published scores reported in Table 1,
which confirms our analysis of the source code of
their evaluation procedures. The global picture on

3 Our replicated scores for human agreement are 0.4
points lower than those published on S, N, R, possibly due
to different approaches in handling divergences in EDU seg-
mentation on the doubly annotated subset of documents.
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macro-averaged scores is consistent with that on
micro-averaged scores: On S and N, parsers in the
second group do not improve over parsers the first
group and the best parser brings an absolute im-
provement of 0.9 and 1.4 points on R and F. On
each metric, the two lowest scores are obtained by
parsers from the second group.

To sum up, parsers in the first group have iden-
tical scores in Tables 1 and 2, except for slight dif-
ferences between our evaluation procedure and the
authors’, or between the predictions used in our
evaluation compared to the original study. The
second group of parsers have identical scores in
Tables 1 and 3, modulo the same factors. The (ex-
actly or nearly) matching entries between Tables 1,
2 and 3, underlined in Tables 2 and 3, are evidence
of the two averaging strategies (micro in Table 2,
macro in Table 3) used by the authors in their pub-
lications (Table 1). A comparison between Ta-
bles 2 and 3 reveals that the averaging strategy
similarly affects both groups of parsers. As a re-
sult, the performance level among recent RST dis-
course parsers is much more homogeneous than
the situation depicted in the literature. The dis-
tributed representations of DUs computed and
used in JE14 DPLP (Ji and Eisenstein, 2014) and
possibly BCS17 cross+dev (Braud et al., 2017)
plausibly capture semantic information that helps
with predicting discourse relations and structure,
but the current experimental results do not pro-
vide a similarly strong support for BPS16 (Braud
et al., 2016), LLC16 (Li et al., 2016) and BCS17
mono (Braud et al., 2017).

More generally, it is important that authors
compute and report scores that accord with stan-
dard practice, unless duly motivated. The standard
practice in syntactic parsing is to report micro-
averaged scores for overall performance, often
complemented with macro-averaged scores over
classes to gain valuable insight into the average
performance of parsers across labels, especially
infrequent ones. Early work in RST discourse
parsing follows this practice, reporting micro-
averaged scores for global performance, plus dis-
tinct scores for each relation class or macro-
averaged scores over all relation classes (Hernault
et al., 2010; Feng and Hirst, 2014). The latter
should not be confused with the scores published
for BPS16, LLC16, BCS17 (mono, cross+dev)
and JE14 DPLP, which are macro-averaged over
documents.

4 Elements for a fairer evaluation

RST-Parseval crucially relies on an encoding of
RST trees into constituency trees such that the
rhetorical relation names are placed on the chil-
dren nodes, and the nuclei of mononuclear re-
lations are conventionally labelled SPAN. RST-
Parseval resembles the original Parseval, except it
considers a larger set of nodes to collect all nu-
clearity and relation labels in this encoding: the
root node (whose label and nuclearity are fixed by
convention) is excluded and the leaves, the EDUs,
are included. On the one hand, RST-Parseval can
handle discourse units of arity greater than 2, in
particular those consisting of a nucleus indepen-
dently modified by two satellites through distinct
mononuclear relations. This avoids introducing
discourse units that were not part of the origi-
nal annotation, which a preliminary binarization
of trees would have induced. On the other hand,
RST-Parseval considers approximately twice as
many nodes as the original Parseval would on bi-
narized trees (at most 2n − 2 nodes for n EDUs,
compared to n − 1 attachments in a binary tree),
and the relation labels of most nuclei are redun-
dant with the nuclearity of a node and its sis-
ter (SPAN for a nucleus whose sisters are satel-
lites, and the same label as its sisters for a nucleus
whose sisters are nuclei). Both aspects artificially
raise the level of agreement between RST trees,
especially when using manual EDU segmentation.

However, all the parsers in our sample except
(Sagae, 2009; Heilman and Sagae, 2015) predict
binary trees over manually segmented EDUs and
evaluate them against right-heavy binarized refer-
ence trees. In this setting, Marcu’s encoding of
RST trees RST-Parseval are no longer motivated.
We can thus revert to using the standard Parseval
procedure on a representation of binary RST trees
where each internal node is a labelled attachment
decision to obtain a more accurate evaluation of
RST parser performance. Figure 1 represents (a)
an original RST tree using Marcu’s encoding, (b)
its right-heavy binarized version, (c) the tree of la-
belled attachment decisions for the right-heavy bi-
narized tree. To the best of our knowledge, we are
the first to explicitly use an evaluation procedure
for RST parsing closer to the original Parseval
for syntax, although the trees of labelled attach-
ment decisions we use directly correspond to the
trees built by many RST parsers, eg. shift-reduce
parsers. Table 4 provides the micro-averaged F1
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Figure 1: Original RST tree, right-heavy binariza-
tion and labelled attachment decisions

scores for the parsers in our sample, using Parse-
val.

Parseval is more stringent than RST-Parseval,
with the best system obtaining 46.3 on fully la-
belled structures (F). Parsers in the first group are
competitive with parsers in the second group, out-
performing them on S and to a lesser extent on N.
Parsers in the second group reduce relative error
by 8% on R and 16% on F, much lower than the
published figures in the literature.

5 Conclusion

We replicated standard evaluation procedures in
RST discourse parsing for 9 parsers and showed
that most gains reported in recent publications
are an artefact of implicit differences in evalua-

parser S N R F

HHN16 HILDA 65.1 54.6 44.7 44.1
SHV15 D * 65.3 54.2 45.1 44.2
JCN15 1S-1S 65.1 55.5 45.1 44.3
FH14 gCRF * 68.6 55.9 45.8 44.6

BPS16 59.5 47.2 34.7 34.3
LLC16 64.5 54.0 38.1 36.6
BCS17 mono 61.9 53.4 44.5 44.0
BCS17 cross+dev 62.7 54.5 45.5 45.1
JE14 DPLP ** 64.1 54.2 46.8 46.3

human 78.7 66.8 57.1 55.0

Table 4: Micro-averaged F1 scores on labelled
attachment decisions (original Parseval).

tion procedures. We also showed how to use the
standard Parseval procedure instead of Marcu’s
adaptation RST-Parseval, which artificially raises
scores. Overall, the recent gains attributable to
distributed representations represent at most a rel-
ative error reduction of 16%. Our study reveals an
urgent need for the RST discourse parsing com-
munity to re-examine and standardize their evalu-
ation procedures.
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Abstract

In this paper, we address the problem of
predicting one of three functions for the
English pronoun ‘it’: anaphoric, event ref-
erence or pleonastic. This disambigua-
tion is valuable in the context of machine
translation and coreference resolution. We
present experiments using a MAXENT

classifier trained on gold-standard data
and self-training experiments of an RNN

trained on silver-standard data, annotated
using the MAXENT classifier. Lastly, we
report on an analysis of the strengths of
these two models.

1 Introduction

We address the problem of disambiguating the
English pronoun ‘it’, which may function as a
pleonastic, anaphoric, or event reference pronoun.
As an anaphoric pronoun, ‘it’ corefers with a noun
phrase (called the antecedent), as in example (1):

(1) I have a bicycle. It is red.

Pleonastic pronouns, in contrast, do not refer to
anything but are required to fill the subject position
in many languages, including English, French and
German:

(2) It is raining.

Event reference pronouns are anaphoric, but in-
stead of referring to a noun phrase, they refer to
a verb, verb phrase, clause or even an entire sen-
tence, as in example (3):

(3) He lost his job. It came as a total surprise.

We propose the identification of the three usage
types of it, namely anaphoric, event reference, and

pleonastic, with a single system. We present sev-
eral classification experiments which rely on infor-
mation from the current and previous sentences, as
well as on the output of external tools.

2 Related Work

Due to its difficulty, proposals for the identifi-
cation and the subsequent resolution of abstract
anaphora (i.e., event reference) are scarce (Eckert
and Strube, 2000; Byron, 2002; Navarretta, 2004;
Müller, 2007). The automatic detection of in-
stances of pleonastic ‘it’, on the other hand, has
been addressed by the non-referential ‘it’ detec-
tor NADA (Bergsma and Yarowsky, 2011), and
also in the context of several coreference resolu-
tion systems, including the Stanford sieve-based
coreference resolution system (Lee et al., 2011).

The coreference resolution task focuses on the
resolution of nominal anaphoric pronouns, de
facto grouping our event and pleonastic categories
together and discarding both of them. The coref-
erence resolution task can be seen as a two-step
problem: mention identification followed by an-
tecedent identification. Identifying instances of
pleonastic ‘it’ typically takes place in the men-
tion identification step. The recognition of event
reference ‘it’ is, however, to our knowledge not
currently included in any such systems, although
from a linguistic point of view, event instances are
also referential (Boyd et al., 2005). As suggested
by Lee et al., (2016), it would be advantageous to
incorporate event reference resolution in the sec-
ond step.

In the context of machine translation, work by
Le Nagard and Koehn (2010); Novák et al. (2013);
Guillou (2015) and Loáiciga et al. (2016) have
also considered disambiguating the function of the
pronoun ‘it’ in the interest of improving pronoun
translation into different languages.
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3 Disambiguating ‘it’

3.1 Labeled Data
The ParCor corpus (Guillou et al., 2014) and Dis-
coMT2015.test dataset (Hardmeier et al., 2016)
were used as gold-standard data. Under the Par-
Cor annotation scheme, which was used to anno-
tate both corpora, pronouns are manually labeled
according to their function: anaphoric, event ref-
erence, pleonastic, etc. For all instances of ‘it’ in
the corpora, we extracted the sentence-internal po-
sition of the pronoun, the sentence itself, and the
two previous sentences. All examples were shuf-
fled before the corpus was divided, ensuring a bal-
anced distribution of the classes (Table 1).

The pronouns ‘this’ and ‘that’, when used as
event reference pronouns, may often be used
interchangeably with the pronoun ‘it’ (Guillou,
2016). We therefore automatically substituted all
instances of event reference ‘this’ and ‘that’ with
‘it’ to increase the number of training examples.

Data set Event Anaphoric Pleonastic Total
Training 504 779 221 1,504
Dev 157 252 92 501
Test 169 270 62 501
Total 830 1,301 375 2,506

Table 1: Distribution of classes in the data.

3.2 Baselines
We provide two different baselines (MC and LM
BASELINE in Table 2). The first is a setting in
which all instances are assigned to the majority
class it-anaphoric. The second baseline system
is a 3-gram language model built using KenLM
(Heafield, 2011) and trained on a modified version
of the annotated corpus in which every instance
of ‘it’ is concatenated with its function (e.g. ‘it-
event’). At test time, the ‘it’ position is filled with
each of the three it-function labels in turn, the lan-
guage model is queried, and the highest scoring
option is chosen.

3.3 Features
We designed features to capture not only the token
context, but also the syntactic and semantic con-
text preceding the pronouns and, where appropri-
ate, their antecedents/referents, as well as the pro-
noun head. We used the output of the POS tagger
and dependency parser of Bohnet et al. (2013)1,

1We used the pre-trained models for English that
are available online https://code.google.com/p/

and of the TreeTagger lemmatizer (Schmid, 1994)
to extract the following information for each train-
ing example:

Token context (tok) 1. Previous three tokens
and next two tokens. This includes words, punctu-
ation and the tokens in the previous sentence when
the ‘it’ occupies the first position of the current
sentence. 2. Lemmas of the next two tokens.

Pronoun head (hea) 3. Head word and its
lemma. Most of the time the head word is a verb.
4. If the head verb is copular, we include its com-
plement head and not the verb itself (for the verbs
be, appear, seem, look, sound, smell, taste, feel,
become and get). 5. Whether the head word takes
a ‘that’ complement (verbs only). 6. Tense of
head word (verbs only), computed as described by
Loáiciga et al. (2014).

Syntactic context (syn) 7. Whether a ‘that’
complement appears in the previous sentence.
8. Closest NP head to the left and to the right.
9. Presence or absence of extraposed sentential
subjects as in ‘So it’s difficult to attack malaria
from inside malarious societies, [...]. 10. Closest
adjective to the right.

Semantic context (sem) 11. VerbNet selectional
restrictions of the verb. VerbNet (Kipper et al.,
2008) specifies 36 types of argument that verbs
can take. We limited ourselves to the values
of abstract, concrete and unknown. 12. Likeli-
hood of head word taking an event subject (verbs
only). An estimate of the likelihood of a verb tak-
ing a event subject was computed over the Anno-
tated English Gigaword v.5 corpus (Napoles et al.,
2012). We considered two cases favouring event
subjects that may be identified by exploiting the
parse annotation of the Gigaword corpus. The first
case is when the subject is a gerund and the sec-
ond case is composed of ‘this’ pronoun subjects.
13. Non-referential probability assigned to the in-
stance of ‘it’ by NADA (Bergsma and Yarowsky,
2011).

3.4 MaxEnt

The MAXENT classifier is trained using the Stan-
ford Maximum Entropy package (Manning and
Klein, 2003) with all of the features described
above. We also experimented with other features
and options. For features 1 and 2, a window

mate-tools/downloads/list
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Dev-set Test-set
MC BASELINE Precision Recall F1 Accuracy Precision Recall F1 Accuracy
it-anaphoric 0.539 1 0.700 (252/501) 0.503 1 0.669 (270/501)

0.503 0.539
LM BASELINE Precision Recall F1 Accuracy Precision Recall F1 Accuracy
it-anaphoric 0.613 0.290 0.394 (166/501) 0.732 0.263 0.387 (163/501)
it-pleonastic 0.169 0.523 0.255 0.331 0.139 0.694 0.231 0.325
it-event 0.459 0.287 0.353 0.521 0.290 0.373
MAXENT Precision Recall F1 Accuracy Precision Recall F1 Accuracy
it-anaphoric 0.685 0.758 0.719 (326/501) 0.716 0.756 0.735 (344/501)
it-pleonastic 0.884 0.543 0.633 0.651 0.750 0.726 0.738 0.687
it-event 0.545 0.541 0.543 0.564 0.521 0.542
RNN-GOLD Precision Recall F1 Accuracy Precision Recall F1 Accuracy
it-anaphoric 0.544 0.560 0.552 (221/501) 0.595 0.659 0.626 (250/501)
it-pleonastic 0.274 0.217 0.242 0.441 0.177 0.177 0.177 0.499
it-event 0.355 0.382 0.368 0.436 0.361 0.394
RNN-SILVER Precision Recall F1 Accuracy Precision Recall F1 Accuracy
it-anaphoric 0.661 0.611 0.635 (286/501) 0.706 0.552 0.620 (286/501)
it-pleonastic 0.725 0.402 0.517 0.571 0.542 0.516 0.529 0.571
it-event 0.438 0.605 0.508 0.455 0.621 0.525
RNN-COMBINED Precision Recall F1 Accuracy Precision Recall F1 Accuracy
it-anaphoric 0.697 0.492 0.577 (280/501) 0.794 0.530 0.636 (315/501)
it-pleonastic 0.633 0.543 0.585 0.559 0.582 0.742 0.652 0.629
it-event 0.434 0.675 0.529 0.520 0.746 0.613

Table 2: Comparison of baselines and classification results.
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Figure 1: Feature ablation – MAXENT system.

of three tokens showed a degradation in perfor-
mance. For feature 8, adding one of the 26 Word-
Net (Princeton University, 2010) types of nouns
had no effect. The feature combination of noun
and adjectives to the left or right also had no effect.
Feature ablation tests revealed that while combin-
ing all features is beneficial for the prediction of
the anaphoric and pleonastic classes, the same is

not true for the event class. In particular, the in-
clusion of semantic features, which we designed
as indicators of eventness, appears to be harmful
(Figure 1).

3.5 Unlabeled Data

Given the small size of the gold-standard data,
and with the aim of gaining insight from unstruc-
tured and unseen data, we used the MAXENT clas-
sifier to label additional data from the pronoun
prediction shared task at WMT16 (Guillou et al.,
2016). This new silver-standard training corpus
comprises 1,101,922 sentences taken from the Eu-
roparl (3,752,440 sentences), News (344,805 sen-
tences) and TED talks (380,072 sentences) sec-
tions of the shared task training data.

3.6 RNN

Our second system is a bidirectional recurrent neu-
ral network (RNN) which reads the context words
and then makes a decision based on the representa-
tions that it builds. Concretely, it consists on word-
level embeddings of size 90, two layers of Gated
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REFERENCE RELATIONSHIP MAXENT RNN-COMBINED

(1) NP antecedent in previous 2 sentences *(191/248) (136/248)
e.g. The infectious disease that’s killed more humans than any other is malaria. It’s
carried in the bites of infected mosquitos, and it’s probably our oldest scourge.

0.770 0.548

(2) VP antecedent in previous 2 sentences (25/38) (27/38)
e.g. And there’s hope in this next section, of this brain section of somebody else
with M.S., because what it illustrates is, amazingly, the brain can repair itself. It
just doesn’t do it well enough.

0.658 0.711

(3) NP or VP antecedent further away in the text (not in snippet) (28/47) (28/47)
e.g. It has spread. It has more ways to evade attack than we know. It’s a shape-
shifter, for one thing.

0.596 0.596

(4) Sentential or clausal antecedent (52/88) *(66/88)
e.g. Pension systems have a hugely important economic and social role and are
affected by a great variety of factors. It has been reflected in EU policy on pensions,
which has become increasingly comprehensive over the years.

0.591 0.750

(5) Pleonastic constructions (43/59) (42/59)
e.g. And it seemed to me that there were three levels of acceptance that needed to
take place.

0.729 0.728

(6) Ambiguous between event and anaphoric (3/12) (7/12)
e.g. Today, multimedia is a desktop or living room experience, because the appara-
tus is so clunky . It will change dramatically with small, bright, thin, high-resolution
displays.

0.250 0.583

(7) Ambiguous between event and pleonastic (2/5) (1/5)
e.g. I did some research on how much it cost, and I just became a bit obsessed with
transportation systems. And it began the idea of an automated car.

0.400 0.200

(8) Annotation errors (0/4) (0/4)
e.g. Youth unemployment is particularly worrying in it context, as the lost opportu-
nity for jobless young people to develop professional skills is likely to translate into
lower productivity and lower earnings over a longer period of time.

– –

Table 3: Accuracy scores of the systems in different portions of the test-set. For each category, we test
whether MAXENT is better or worse than RNN-COMBINED. A * indicates significance at p < 0.001
using McNemar’s χ2 test.

Recurrent Units (GRUs) of size 90 as well, and a
final softmax layer to make the predictions. The
network uses a context window of 50 tokens both
to the left and right of the ‘it’ to be predicted. The
features described above are also fed to the net-
work in the form of one-hot vectors. The system
uses the adam optimizer and the categorical cross-
entropy loss function. We chose this architecture
following the example of Luotolahti et al. (2016),
who built a system for the related task of cross-
lingual pronoun prediction.

4 Discussion

We report all of the results in Table 2. MAXENT

and RNN-GOLD are trained on the gold-standard
data only. RNN-SILVER is trained on the silver-
standard data (annotated using the MAXENT clas-
sifier). RNN-COMBINED is trained on both the
silver-standard and gold-standard data.

The MAXENT and RNN models show improve-
ments, albeit small for the it-event class, over the

baseline systems. Since they are trained on the
same gold-standard data, one would expect RNN-
GOLD to perform similarly to MAXENT. How-
ever, in the case of the RNN-gold, the 50 tokens
window may actually not have enough words to
be filled with, because the gold-standard data is
composed of the sentence with the it-pronoun and
the three previous sentences, which in addition
tend to be short. For the RNN-SILVER system
this is not a problem, since the sentences of inter-
est have not been taken out of their original con-
text, fully exploiting the RNN capacity to learn the
entirety of the context window they are presented
with, even if the data is noisy. As expected, RNN-
COMBINED performs better than RNN-GOLD and
RNN-SILVER. Although it does not perform over-
whelmingly better than MAXENT, there are gains
in precision for the it-anaphoric class, and in recall
for the it-pleonastic and it-event classes, suggest-
ing that the system benefits from the inclusion of
gold-standard data.
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With the two-fold goal of gaining a better under-
standing of the difficulties of the task and strengths
of the systems, we re-classified the test set in a
stratified manner. We present the systems with
seven scenarios reflecting the different types of
reference relationships observed in the corpora
(Table 3). Our scenarios are exhaustive, thus some
only have few examples. The analysis reveals
that the MAXENT is a better choice for nominal
reference (case (1), mostly it-anaphoric) whereas
the RNN-COMBINED system is better at identify-
ing difficult antecedents such as cases (4) and (6).
RNN-COMBINED performs slightly better at de-
tecting verbal antecedents, case (2), while both
systems perform similarly at learning pleonastic
instances (5) or when the antecedent is not in the
snippet (3). Finally, we found 4 instances of an-
notation errors (8). These correspond to some of
the automatically substituted cases of ‘this’/‘that’
with ‘it’, for which the ‘this’/‘that’ should not have
been marked as a pronoun by the human annotator
in the first place. Case (8) is not taken into account
in the evaluation.

Taking the complete test set, we found that
the MAXENT system performs better than the
RNN-COMBINED system in absolute terms (χ2 =
50.8891, p < 0.001), but this is because case (1)
is the most frequent one, which is also the case the
MAXENT system is strongest at.

5 Conclusions and Future Work

We have shown that distinguishing between nomi-
nal anaphoric and event reference realizations of
‘it’ is a complex task. Our results are promis-
ing, but there is room for improvement. The self-
training experiment demonstrated the benefit of
combining gold-standard and silver-standard data.

We also found that the RNN-COMBINED sys-
tem is better at handling difficult and ambigu-
ous referring relationships, while the MAXENT

performed better for the nominal anaphoric case,
when the antecedent is close. Since the two mod-
els have different strengths, in future work we
plan to enrich the training data with re-training in-
stances from the silver data where the two systems
agree, in order to reduce the amount of noise, fol-
lowing the example of Jiang et al. (2016).

Ultimately, we aim towards integrating the it-
prediction system within a full machine translation
pipeline and a coreference resolution system. In
the first case, the different translations of pronoun

‘it’ can be constrained according to their function.
In the second case, the performance of a corefer-
ence resolution system vs a modified version using
the three-way distinction can be measured.
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Abstract

Selectional preferences have long been
claimed to be essential for coreference res-
olution. However, they are mainly mod-
eled only implicitly by current corefer-
ence resolvers. We propose a dependency-
based embedding model of selectional
preferences which allows fine-grained
compatibility judgments with high cover-
age. We show that the incorporation of
our model improves coreference resolu-
tion performance on the CoNLL dataset,
matching the state-of-the-art results of a
more complex system. However, it comes
with a cost that makes it debatable how
worthwhile such improvements are.

1 Introduction

Selectional preferences have long been claimed to
be useful for coreference resolution. In his sem-
inal work on “Resolving Pronominal References”
Hobbs (1978) proposed a semantic approach that
requires reasoning about the “demands the pred-
icate makes on its arguments.” For example, se-
lectional preferences allow resolving the pronoun
it in the text “The Titanic hit an iceberg. It sank
quickly.” Here, the predicate sink ‘prefers’ certain
subject arguments over others: It is plausible that
a ship sinks, but implausible that an iceberg does.

Work on the automatic acquisition of selectional
preferences has shown considerable progress (Da-
gan and Itai, 1990; Resnik, 1993; Agirre and Mar-
tinez, 2001; Pantel et al., 2007; Erk, 2007; Ritter
et al., 2010; Van de Cruys, 2014). However, to-
day’s coreference resolvers (Martschat and Strube,
2015; Wiseman et al., 2016; Clark and Manning,
2016a, i.a.) capture selectional preferences only

∗ These authors contributed equally to this work.

implicitly at best, e.g., via a given mention’s de-
pendency governor and other contextual features.

Since negative results do not often get reported,
there is no clear evidence in the literature re-
garding the non-utility of particular knowledge
sources. Consequently, an absence of the explicit
modeling of selectional preferences in the recent
literature is an indicator that incorporating this
knowledge source has not been very successful for
coreference resolution.

More than ten years ago, Kehler et al. (2004)
declared the “non-utility of predicate-argument
structures for pronoun resolution” and observed
that minor improvements on a small dataset were
due to fortuity rather than selectional preferences
having captured meaningful world knowledge re-
lations.

The claim by Kehler et al. (2004) is based on
selectional preferences extracted from a, by cur-
rent standards, small number of 2.8m predicate-
argument pairs. Furthermore, they employ a sim-
ple (linear) maximum entropy classifier, which re-
quires manual definition of feature combinations
and is unlikely to fully capture the complex inter-
action between selectional preferences and other
coreference features. Therefore, it is worth revis-
iting how a better selectional preference model af-
fects the performance of a more complex corefer-
ence resolver.

In this work, we propose a fine-grained, high-
coverage model of selectional preferences and
study its impact on a state-of-the-art, non-linear
coreference resolver. We show that the incorpora-
tion of our selectional preference model improves
the performance. However, it is debatable whether
such small improvements, that cost notable extra
time or resources, are advantageous.
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Figure 1: Dependency-based embedding model of selectional preferences.

2 Modeling Selectional Preferences

The main design choice when modeling selec-
tional preferences is the selection of a relation in-
ventory, i.e. the concepts and entities that can be
relation arguments, and the semantic relationships
that hold between them.

Prior work has studied many relation invento-
ries. Predicate-argument statistics for word-word
pairs (eat, food)1 are easy to obtain but do not
generalize to unseen pairs (Dagan and Itai, 1990).
Class-based approaches generalize via word-class
pairs (eat, /nutrient/food) (Resnik, 1993) or class-
class pairs (/ingest, /nutrient/food) (Agirre and
Martinez, 2001), but require disambiguation of
words to classes and are limited by the coverage
of the lexical resource providing such classes (e.g.
WordNet).

Other possible relation inventories include se-
mantic representations such as FrameNet frames
and roles, event types and arguments, or abstract
meaning representations. While these semantic
representations are arguably well-suited to model
meaningful world knowledge relationships, auto-
matic annotation is limited in speed and accu-
racy, making it difficult to obtain a large num-
ber of such “more semantic” predicate-argument
pairs. In comparison, syntactic parsing is both
fast and accurate, making it trivial to obtain a
large number of accurate, albeit “less semantic”
predicate-argument pairs. The drawback of a syn-
tactic model of selectional preferences is suscep-
tibility to lexical and syntactic variation. For ex-
ample, The Titanic sank and The ship went under
differ lexically and syntactically, but would have
the same or a very similar representation in a se-
mantic framework such as FrameNet.

Our model of selectional preferences (Figure 1)

1Examples due to Agirre and Martinez (2001).

overcomes this drawback via distributed represen-
tation of predicate-argument pairs, using (syntac-
tic) dependencies that were specifically designed
for semantic downstream tasks, and by resolving
named entities to their fine-grained entity types.

Distributed representation. Inspired by Struc-
tured Vector Space (Erk and Padó, 2008), we
embed predicates and arguments into a low-
dimensional space in which (representations of)
predicate slots are close to (representations of)
their plausible arguments, as should be arguments
that tend to fill the same slots of similar predi-
cates, and predicate slots that have similar argu-
ments. For example, captain should be close to
pilot, ship to airplane, the subject of steer close to
both captain and pilot, and also to, e.g., the subject
of drive. Such a space allows judging the plausi-
bility of unseen predicate-argument pairs.2

We construct this space via dependency-based
word embeddings (Levy and Goldberg, 2014). To
see why this choice is better-suited for modeling
selectional preferences than alternatives such as
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014), consider the following ex-
ample:

captain
nsubj←−− steers

dobj−−→ ship
:: ::

pilot
nsubj←−− steers

dobj−−→ airplane

Here, captain and ship, have high syntagmatic
similarity, i.e., these words are semantically re-
lated and tend to occur close to each other. This
also holds for pilot and airplane. In contrast, cap-
tain and pilot, as well as ship and airplane have
high paradigmatic similarity, i.e., they are seman-

2Prior work generalizes to unseen predicate-argument
pairs via WordNet synsets (Resnik, 1993), a generalization
corpus (Erk, 2007), or tensor factorization (Van de Cruys,
2010). Closest to our approach is neural model by Van de
Cruys (2014), which, however, has much lower coverage
since it is limited to 7k verbs and 30k arguments.
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tically similar and occur in similar contexts. A
model of selectional preferences requires paradig-
matic similarity: The representations of captain
and pilot in such a model should be similar, since
they both can plausibly fill the subject slot of the
predicate steer. Due to their use of linear con-
text windows, word2vec and GloVe capture syn-
tagmatic similarity, while dependency-based em-
beddings capture paradigmatic similarity (cf. Levy
and Goldberg, 2014).

Enhanced++ dependencies. Due to distributed
representation, our model generalizes over syn-
tactic variation such as active/passive alternations:
For example, steer@dobj3 is highly similar to
steer@nsubjpass (see Appendix for more exam-
ples). To further mitigate the effect of employ-
ing syntax as a proxy for semantics, we use En-
hanced++ dependencies (Schuster and Manning,
2016). Enhanced++ dependencies aim to sup-
port semantic applications by modifying syntac-
tic parse trees to better reflect relations between
content words. For example, the plain syntactic
parse of the sentence Both of the girls laughed
identifies Both as subject of laughed. The En-
hanced++ representation introduces a subject re-
lation between girls and laughed, which allows
learning more meaningful selectional preferences:
Our model should learn that girls (and other hu-
mans) laugh, while learning that an unspecified
both laughs is not helpful.

Fine-grained entity types. A good model of
selectional preferences needs to generalize over
named entities. For example, having encountered
sentences like The Titanic sank, our model should
be able to judge the plausibility of an unseen sen-
tence like The RMS Lusitania sank. For popular
named entities, we can expect the learned repre-
sentations of Titanic and RMS Lusitania to be sim-
ilar, allowing our model to generalize, i.e., it can
judge the plausibility of The RMS Lusitania sank
by virtue of the similarity between Titanic and
RMS Lusitania. However, this will not work for
rare or emerging named entities, for which no, or
only low-quality, distributed representations have
been learned. To address this issue, we incorpo-
rate fine-grained entity typing (Ling and Weld).
For each named entity encountered during train-
ing, we generate an additional training instance
by replacing the named entity with its entity type,

3In this work, a predicate’s argument slots are denoted
predicate@slot.

e.g. (Titanic, sank@nsubj) yields (/product/ship,
sank@nsubj).

3 Implementation

We train our model by combining term-context
pairs from two sources. Noun phrases and their
dependency context are extracted from GigaWord
(Parker et al., 2011) and entity types in context
from Wikilinks (Singh et al., 2012). Term-context
pairs are obtained by parsing each corpus with
the Stanford CoreNLP dependency parser (Man-
ning et al., 2014). After filtering, this yields
ca. 1.4 billion phrase-context pairs such as (Ti-
tanic, sank@nsubj) from GigaWord and ca. 12.9
million entity type-context pairs such as (/prod-
uct/ship, sank@nsubj) from Wikilinks. Finally,
we train dependency-based embeddings using the
generalized word2vec version by Levy and Gold-
berg (2014), obtaining distributed representations
of selectional preferences. To identify fine-grained
types of named entities at test time, we first per-
form entity linking using the system by Heinzer-
ling et al. (2016), then query Freebase (Bollacker
et al., 2008) for entity types and apply the mapping
to fine-grained types by Ling and Weld.

The plausibility of an argument filling a partic-
ular predicate slot can now be computed via the
cosine similarity of their associated embeddings.
For example, in our trained model, the similarity
of (Titanic, sank@nsubj) is 0.11 while the similar-
ity of (iceberg, sank@nsubj) is -0.005, indicating
that an iceberg sinking is less plausible.

4 Do Selectional Preferences Benefit
Coreference Resolution?

We now investigate the effect of incorporating se-
lectional preferences, implicitly and explicitly, in
coreference resolution.

Figure 2 shows the selectional preference sim-
ilarity of 10.000 coreferent and 10.000 non-
coreferent mention pairs sampled randomly from
the CoNLL 2012 training set. As we can see,
while coreferent mention pairs are more similar
than non-coreferent mention pairs according to the
selectional preference similarity, there is not a di-
rect relation between the similarity values and the
coreferent relation. This indicates that coreference
does not have a linear relation to the selectional
preference similarities. However, it is worth in-
vestigating how these similarity values affect the
overall performance when they are combined with
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MUC B3 CEAFe CoNLL LEA
R P F1 R P F1 R P F1 Avg. F1 R P F1

baseline 70.09 80.01 74.72 57.64 70.09 63.26 54.47 63.92 58.82 65.60 54.02 66.45 59.59

−gov 70.10 79.96 74.71 57.51 70.31 63.27 54.41 64.08 58.85 65.61 53.93 66.76 59.66
+SP 70.85 79.31 74.85 58.93 69.16 63.64 55.25 63.78 59.21 65.90 55.29 65.53 59.98

Reinforce 70.98 78.81 74.69 58.97 69.05 63.61 55.66 63.28 59.23 65.84 55.31 65.32 59.90

Table 1: Results on the CoNLL 2012 test set.

Figure 2: Selectional preference similarities of
10k coreferent and 10k non-coreferent mention
pairs. Lines and boxes represent quartiles, di-
amonds outliers, points subsamples with jitter.
Coreferent mention pairs are more similar than
non-coreferent mention pairs with a Matthews cor-
relation coefficient of 0.30, indicating weak to
moderate correlation.

other knowledge sources in a non-linear way.

We select the ranking model of deep-coref
(Clark and Manning, 2016b) as our baseline.
deep-coref is a neural model that combines the in-
put features through several hidden layers. Base-
line in Table 1 reports our baseline results on the
CoNLL 2012 test set. The results are reported
using MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), CEAFe (Luo, 2005), the average
F1 score of these three metrics, i.e. CoNLL score,
and LEA (Moosavi and Strube, 2016b). deep-
coref includes the embeddings of the dependency
governor of mentions. Combined with the relative
position of a mention to its governor, deep-coref
may be able to implicitly capture selectional pref-
erences to some extent. −gov in Table 1 repre-
sents deep-coref performance when governors are
not incorporated. As we can see, the exclusion of
the governor information does not affect the per-
formance. This result shows that the implicit mod-

MUC B3 CEAFe CoNLL LEA
development

baseline 74.10 63.95 59.73 65.93 60.16
+embedding 74.38 64.42 60.45 66.42 60.65
+binned sim. 74.36 64.54 60.21 66.37 60.77

test
baseline 74.72 63.26 58.82 65.60 59.59
+embedding 74.53 63.41 59.03 65.66 59.69
+binned sim. 74.85 63.64 59.21 65.90 59.98

Table 2: Incorporating the selectional preference
model as new embeddings (+embedding) vs. as
new pairwise features (+binned sim.).

eling of selectional preferences does not provide
any additional information to the coreference re-
solver.

For each mention, we consider (1) the whole
mention string, (2) the whole mention string with-
out articles, (3) mention head, (4) context rep-
resentation, i.e. governor@dependency-relation,
and (5) entity types if the mention is a named en-
tity. We obtain an embedding for each of the above
properties if they exist in the selectional prefer-
ence model, otherwise we set them to unknown.

For each (antecedent, anaphor) pair, we con-
sider all the acquired embeddings of anaphor and
antecedent. We try two different ways of incor-
porating this knowledge into deep-coref includ-
ing: (1) incorporating the computed embeddings
directly as a new set of inputs, i.e. +embedding in
Table 2. We add a new hidden layer on top of the
new embeddings and combine its output with out-
puts of the hidden layers associated with other sets
of inputs; and (2) computing a similarity value be-
tween all possible combinations of the antecedent-
anaphor acquired embeddings and then binarizing
all similarity values, i.e. +binned sim. in Table 2.

Providing selectional preference embeddings
directly to deep-coref adds more complexity to the
baseline coreference resolver. Yet, it performs on-
par with +binned sim. on the development set and
generalizes worse on the test set. +SP in Table 1
is the performance of +binned sim. on the test set.
As we can see from the results, adding selectional
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does [that]ante really impact the case ... [it]ana just shows (impact@nsubj,shows@nsubj)
[it]ante will ask a U.S. bankruptcy court to allow [it]ana (ask@nsubj,allow@dobj)
[a strain that has n’t even presented [itself]ana]ante (presented@nsubj,presented@dobj)

Table 3: Examples of +SP correct links on the development set that do not exist in the baseline output.

Error type Mention type
Proper Common Pronoun

Recall -28 -29 -53
Precision +18 +74 +61

Table 4: Differences in the number of recall and
precision errors on the CoNLL’12 test set in com-
parison to the baseline.

preferences as binary features improves over the
baseline.

Reinforce in Table 1 presents the results of
the reward-rescaling model of Clark and Manning
(2016a) that are so far the highest reported results
on the official test set. The reward rescaling model
of Clark and Manning (2016a) casts the ranking
model of Clark and Manning (2016b) in the rein-
forcement learning framework which considerably
increases the training time, from two days to six
days in our experiments.

We analyze how our selectional preference
model affects the resolution of various types of
mentions. We use Martschat and Strube (2014)’s
toolkit 4 to perform recall and error analyses. The
differences in the number of recall and precision
errors in +SP compared to baseline on the test set
are reported in Table 4.

By using our selectional preference features,
the number of recall errors decreases for all types
of mentions. The recall error reduction is more
prominent for pronouns. On the other hand, the
number of precision errors increases for all types
of mentions. The increase in the precision error is
the highest for common nouns. Overall, +SP cre-
ates about 260 more links than baseline.

Table 3 lists a few examples from the de-
velopment set in which +SP creates a link that
baseline does not. It also includes the similar-
ity that has a high value for the linked mentions
and probably is the reason for creating the link.
For instance, in the first example, based on our
model, similarity(impact@nsubj,shows@nsubj) is
known and it is also higher than similar-
ity(impact@dobj,shows@nsubj).

4https://github.com/smartschat/cort

In order to estimate a higher bound on the ex-
pected performance boost, we run the baseline and
+SP models only on anaphoric mentions. By using
anaphoric mentions, the performance improves by
one percent, based on both the CoNLL score and
LEA. This result indicates that the incorporation of
selectional preferences creates many links for non-
anaphoric mentions, which in turn decreases pre-
cision. Therefore, the overall performance does
not improve substantially when system mentions
are used. deep-coref incorporates anaphoricity
scores at resolution time. One possible way to
further improve the results of +SP is to incorpo-
rate anaphoricity scores at the input level. In this
way, the coreference resolver could learn to use se-
lectional preferences mainly for mentions that are
more likely to be anaphoric. However, given that
the F1 score of current anaphoricity determiners
or singleton detectors is only around 85 percent
(Moosavi and Strube, 2016a, 2017), the effect of
using system anaphoricity scores might be small.

5 Conclusions

We introduce a new model of selectional prefer-
ences, which combines dependency-based word
embeddings and fine-grained entity types. In or-
der to be effective, a selectional preference model
should (1) have a high coverage so it can be used
for large datasets like CoNLL, and (2) be com-
bined with other knowledge sources in a non-
linear way. Our selectional preference model
slightly improves coreference resolution perfor-
mance, but considering the extra resources that are
required to train the model, it is debatable whether
such small improvements are advantageous for
solving coreference.
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Appendix

Query Most sim. predicate slots Most sim. entity types Most sim. phrases

sink@nsubj sink@nsubj:xsubj /product/ship Sea Diamond
sink@nsubjpass /event/natural disaster Prestige oil tanker
sinking@nmod:of /finance/stock exchange Samina
slide@nsubj /astral body Estonia ferry
capsizing@nmod:of /person/religious leader k-159
plunge@nsubj /finance/currency Navy gunboat
sink@nmod:along with /military Dona Paz
sinking@nsubj /geography/glacier ferry Estonia
tumble@nsubj /product/airplane add-fisk-independent-nytsf
slip@nsubj /transit Al-Salam Boccaccio

ship capsize@nmod:of /product/ship vessel
some@nmod:aboard /train cargo ship
experience@nmod:aboard /product/airplane cruise ship
afternoon@nmod:aboard /transit boat
pier@nmod:for /product/spacecraft freighter
escort@nmod:including /location/bridge container ship
lift-off@nmod:of /broadcast/tv channel cargo vessel
disassemble@nsubjpass:xsubj /location Navy ship
near-collision@nmod:with /living thing warship
Conger@compound /chemistry tanker

steer@dobj guide@dobj /broadcast/tv channel business way
steer@nsubjpass /product/car newr nbkg nwer ndjn
shepherd@dobj /organization/sports team BahrainDinar
steering@nmod:of /product/ship reynard-honda
nudge@dobj /product/spacecraft zigzag course
pilot@dobj /event/election team home
propel@dobj /medicine/medical treatment U.S. energy policy
maneuver@dobj /building/theater williams-bmw
divert@dobj /education/department interest-rate policy
lurch@nsubj /product/airplane trimaran

/product/ship Repulse@conj:and /product/airplane battleship Bismarck
destroyer@amod /train pt boat
capsize@nmod:of /product/car battleship
experience@nmod:aboard /park USS Nashville
near-collision@nmod:with /military USS Indianapolis
line@cc /event/natural disaster k-159
brig@conj:and /award frigate
-lrb-@nmod:on /geography/island warship
Umberto@conj:and /person/soldier Oriskany
rumour@xcomp /location/body of water sister ship

Figure 3: Most similar terms for the queries sink@nsubj, ship, steer, and /product/ship.
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Abstract

Topic segmentation plays an important
role for discourse parsing and information
retrieval. Due to the absence of train-
ing data, previous work mainly adopts un-
supervised methods to rank semantic co-
herence between paragraphs for topic seg-
mentation. In this paper, we present an
intuitive and simple idea to automatically
create a “quasi” training dataset, which in-
cludes a large amount of text pairs from
the same or different documents with dif-
ferent semantic coherence. With the train-
ing corpus, we design a symmetric CNN
neural network to model text pairs and
rank the semantic coherence within the
learning to rank framework. Experiments
show that our algorithm is able to achieve
competitive performance over strong base-
lines on several real-world datasets.

1 Introduction

The goal of topic segmentation is to segment a
document into several topically coherent parts,
with different parts corresponding to different top-
ics. Topic segmentation enables better understand-
ing of document structure, and makes long doc-
ument much easier to navigate. It also provides
helpful information for tasks such as information
retrieval, topic tracking etc (Purver, 2011).

Due to the lack of large scale annotated topic
segmentation dataset, previous work mainly focus
on unsupervised models to measure the coherence
between two textual segments. The intuition be-
hind unsupervised models is that two adjacent seg-
ments from the same topic are more coherent than
those from different topics. Under this intuition,
one direction of research attempts to measure co-
herence by computing text similarity. The typi-

cal methods include TextTiling (Hearst, 1997) and
its variants, such as C99 (Choi, 2000), TopicTil-
ing (Riedl and Biemann, 2012b) etc. The other di-
rection of research develops topic modeling tech-
niques to explore topic representation of text and
topic change between textual segments (Yam-
ron et al., 1998; Eisenstein and Barzilay, 2008;
Riedl and Biemann, 2012a; Du et al., 2013; Jameel
and Lam, 2013). With carefully designed gen-
erative process and efficient inference algorithm,
topic models are able to model coherence as latent
variables and outperform lexical similarity based
models.

Though unsupervised models make progress in
modeling text coherence, they mostly suffer from
one of the following two limitations. First, it is
not precise to measure coherence with text sim-
ilarity, since text similarity is just one aspect to
influence coherence. Second, many assumptions
and manually set parameters are usually involved
in the complex modeling techniques, due to the
absence of supervised information. To overcome
aforementioned limitations, we prefer to directly
model the text coherence by exploring possible su-
pervised information. Then, we can learn a func-
tion f(s1, s2) which takes two textual segments
s1 and s2 as input, and directly measure their se-
mantic coherence.

As we know, it is hard to directly compile and
collect a large number of samples with coher-
ence scores labeling. Here we propose an intu-
itive and simple strategy to automatically create
a “quasi” training corpus for supervision. It is a
common sense that the original documents writ-
ten by human are generally more coherent than
a patchwork of sentences or paragraphs randomly
extracted from different documents. In such cases,
two textual segments from the same document
are more coherent than those from different docu-
ments, and two segments from the same paragraph
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are more coherent than those from different para-
graphs. Then, we can get a large set of text pairs
with partial ordering relations, which denote some
text pairs are more coherent than other text pairs.
With these ordering information, we propose to
apply the learning to rank framework to model the
semantic coherence function f(s1, s2), based on
which topic boundaries are identified.

The next key problem is how to model and rep-
resent text pairs. It is fortunate that neural net-
works have emerged as a powerful tool for model-
ing text pairs (Lu and Li, 2013; Severyn and Mos-
chitti, 2015; Yin et al., 2015; Hu et al., 2014), free-
ing us from feature engineering. In this paper, we
develop a symmetric convolutional neural network
(CNN) framework, whose main idea is to jointly
model text representation and interaction between
texts. With our acquired large amount of training
data, our CNN-based method is capable of reason-
ably rank semantic coherence and further conduct
topic segmentation.

2 Model

2.1 Coherence Ordering between Text Pairs
In our work, we define f(s1, s2) as a function,
which returns a real number as semantic coherence
score of the text pair<s1,s2>. To model f(s1, s2)
of any text pair, we aim to explore the partial
ordering relations of coherence between different
text pairs, since it is hard to get a corpus with la-
beled coherence scores.

Next, we exploit the two types of ordering rela-
tions stated in Section 1. To formalize, we notate
a collection of documents as D. Each document
di ∈ D consists of several paragraphs, and each
paragraph pj ∈ di consists of several sentences.
We use T s:(s+k)ij to represent a text segment cover-
ing k sentences starting from the s-th sentence in
document di’s j-th paragraph. To make symbols
less cluttered, we omit k and simply use T sij for
the same meaning. A text pair < T sij , T

s′
i′j′ > is a

tuple of two text segments.
The first one ordering relation is: coherence

score of a text pair from different documents is
lower than that from the same document. For-
mally, its mathematical expression is shown be-
low:

f(< T ·i·, T
·
i′· >) < f( < T ·jm, T

·
jm′ >),

i 6= i′,m 6= m′
(1)

where dot · means arbitrary value.

The second one is: coherence score of text pair
from different paragraphs is lower than those from
the same paragraph, as represented below.

f(< T ·ip, T
·
ip′ >) < f(< Tnjq, T

n+k
jq >), p 6= p′

(2)
As our defined relations are partially ordering,

they have the properties of reflexivity, transitivity,
and antisymmetry, Then we can easily infer that
coherence score of a text pair from different docu-
ments is also lower than that from the same para-
graph.

2.2 Learning to Rank Semantic Coherence
Learning to rank is a widely used learning frame-
work in the field of information retrieval (Liu
et al., 2009). There are generally three formu-
lations (Li, 2011): pointwise ranking, pairwise
ranking, and listwise ranking. The goal is to learn
a ranking function f(w, tpi) → yi where tpi de-
notes a text pair <s1,s2>. f maps tpi to a real
value yi which is semantic coherence score in this
paper, w is weight vector. We examine both point-
wise ranking and pairwise ranking methods, list-
wise ranking is not naturally fit for our task, so it
is not discussed here.

2.2.1 Pointwise Ranking
For pointwise formulation, yi = f(w, tpi) ∈
[0, 1] computes inner product between weight vec-
tor w and text pair tpi’s representation vector hi.
Here we apply a sigmoid non-linearity function.

yi = σ(w · hi) (3)

Representation vectors hi of the text pair can
be jointly learned through a neural network, which
will be introduced in next subsection.

To conform to the partial ordering relations, we
score each training instance tpi as follows.

y∗i =





0, If tpi comes from different documents.
1, If tpi comes from same paragraph.
α, If tpi comes from different paragraphs.

where 0 < α < 1 and α is a hyper-parameter
chosen to maximize performance on validation
dataset.

WithN training instances, we formulate the co-
herence scoring as a regression problem and use
cross entropy as loss function:

min − 1

N

N∑

i=1

(yi log y
∗
i+(1−yi) log(1−y∗i )) (4)
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Generally speaking, pointwise ranking is sim-
ple, scalable and efficient to train.

2.2.2 Pairwise Ranking with Sampling
Pairwise formulation explicitly compares each
pair of training instance and requires a minimal
margin ε between their ranking score.

f(w, tpi) > f(w, tpj) + ε (5)

Here, the text pair tpi has a higher ranking score
than tpj , and yi = f(w, tpi) ∈ (−∞,+∞).
Without loss of generality, we set ε = 1 and use
squared hinge loss as optimization function.

min − 1

M

∑

i,j

max(0, 1 + yj − yi)2 (6)

where M is the number of pairs we need to com-
pare. As we can see, in our problem setting,
M ≈ N2, which makes M an extremely large
number when N ≈ 105.

To make training feasible, we adopt a straight-
forward sampling mechanism, which randomly
samples pairs from different groups to construct
a mini-batch on the fly during training.

Pairwise ranking is reported to have better per-
formance than pointwise ranking, but it is less ef-
ficient to train.

2.3 Semantic Coherence Neural Network

fully connected

max pooling

convolution

merge

embedding

score

fully connected

Figure 1: Semantic Coherence Neural Network

To model the text pair instances, we develop
a symmetric convolutional neural network (CNN)
architecture, as shown in Figure 1. Our model
consists of two symmetric CNN models, and the
two CNNs share their network configuration and

parameters. Each CNN converts one text into a
low-dimensional representation, and two gener-
ated text representation vectors are finally concate-
nated and fed into the scoring layer to get a real
value as the coherence score.

2.4 Inference
At test time, coherence scores between any two
adjacent paragraphs are computed. T − 1 para-
graph boundaries with lowest semantic coherence
score are chosen as topic boundaries, where T is
ground-truth number of topics.

This inference procedure is computationally ef-
ficient. Unlike TextTiling, it doesn’t need to calcu-
late a so-called “depth score”.

3 Experiments

3.1 Experimental Setup
Data In order to train our ranking neural net-
work, we use full English Wikipedia dump, which
consists of more than 5 million documents, to au-
tomatically construct text pairs.

For performance evaluation, we use topic seg-
mentation dataset from (Jeong and Titov, 2010)1.
This dataset consists of 864 manually labeled doc-
uments from four different areas, as shown in Ta-
ble 1.

News Lecture Report Biography
#documents 184 120 160 400

Table 1: Overview of four datasets.

Baselines To compare with our method,
TextTiling (Hearst, 1997), TopicTiling (Riedl and
Biemann, 2012b) and BayesSeg (Eisenstein and
Barzilay, 2008) are adopted as three baselines. We
use open source implementations of TextTiling2

and TopicTiling3, and results of BayesSeg are from
(Jeong and Titov, 2010).
Hyperparameters Our neural network imple-
mentation is based on Tensorflow (Abadi et al.,
2015). We use pre-trained 50 dimensional Glove
vectors (Pennington et al., 2014)4 for word em-
beddings initialization. Each text pair consists of
2 text segments, and each text segment consists of

1We do not compare with MultiSeg model proposed by
(Jeong and Titov, 2010), since our model is for single-
document topic segmentation while MultiSeg is for multi-
document topic segmentation.

2https://github.com/nltk/nltk/tree/develop/nltk/tokenize
3https://github.com/ldulcic/text-segmentation
4http://nlp.stanford.edu/projects/glove/
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News Lecture Report Biography
Pk WD F1 Pk WD F1 Pk WD F1 Pk WD F1

TextTiling 0.340 0.344 0.447 0.204 0.206 0.231 0.466 0.469 0.365 0.335 0.403 0.361
TopicTiling 0.415 0.436 0.338 0.359 0.379 0.571 0.288 0.296 0.383 0.381 0.423 0.390
BayesSeg 0.318 0.326 0.537 0.173 0.190 0.526 0.254 0.255 0.526 0.186 0.208 0.470
Ours-pair-finetune 0.180 0.181 0.570 0.200 0.202 0.560 0.263 0.263 0.492 0.223 0.228 0.448
Ours-point-finetune 0.182 0.183 0.572 0.197 0.200 0.569 0.245 0.247 0.511 0.229 0.232 0.442
Ours-pair-static 0.176 0.178 0.580 0.177 0.180 0.600 0.252 0.253 0.518 0.220 0.224 0.472
Ours-point-static 0.173 0.175 0.587 0.176 0.179 0.608 0.240 0.241 0.529 0.216 0.219 0.479

Table 2: Experimental results. (a) Ours-pair-finetune is pairwise ranking model with word embedding
fine-tuning. (b) Ours-point-static is pointwise ranking model without word embedding fine-tuning, etc.

no more than 3 sentences. Stop words and dig-
its are removed from input text, and all words are
converted to lowercase. We pad input sequence
to 40 tokens. In order to capture information of
different granularity, convolution window size of
both 2 and 3 are used, with 64 filters for each win-
dow size. L2 regularization coefficient is set to
0.001. Adam algorithm (Kingma and Ba, 2014) is
used for loss function minimization. We set α to
0.7 for pointwise ranking.
Evaluation System performance is evaluated
according to three metrics: Pk (Beeferman et al.,
1999), WindowDiff(WD) (Pevzner and Hearst,
2002) and F1 score. Pk and WD are calculated
based on sliding windows, and can assign partial
score to incorrect segmentation. Note that Pk and
WD are penalty metrics, smaller value means bet-
ter performance.

3.2 Results and Analysis

Experimental results are shown in Table 2. Our
proposed model is examined in 4 different set-
tings, including whether to use pointwise ranking
or pairwise ranking algorithm, and whether to
fine-tune word embeddings or not. The best
model Ours-pointwise-static is able to achieve
better or competitive performance compared to
BayesSeg and TopicTiling according to all three
metrics, especially on News dataset. TopicTiling
is reported to perform well on heuristically
constructed dataset (Riedl and Biemann, 2012b),
but behave mediocre on manually labeled dataset
in our experiments.

One interesting phenomenon is that fine-tuned
word embeddings has negative impact on over-
all performance, which is generally not the case
in many NLP tasks. The reason may be that our
task involves domain adaptation, and word embed-

dings should generalize well across different do-
mains rather than adapt to Wikipedia text. Though
our proposed sampling mechanism enables easier
training of pairwise ranking model, it inevitably
loses some ordering information, which makes
pairwise ranking model perform slightly worse
than pointwise ranking model.

Text Pair Score
A: A variety of techniques have been directed toward the

study of blood group antibodies.
B: If I’d work on my place-kicking he thought he could use me.

0.022

A: A second miracle is required for her to proceed to canonization.
B: Mother Teresa inspired a variety of commemorations.

0.587

A: Plants have an amazing ability to respond to stimuli
from their environment.

B: These responses to environmental factors are known as tropisms.
0.861

Table 3: Coherence Score between Text Pairs.

To illustrate what the model has learned, we
show some typical examples of coherence score
for text pair <A,B> in Table 3. There is almost no
lexical overlap for all the three text pairs, cosine
similarity between one-hot vectors would surely
fail to rank them, even though “canonization” and
“commemorations”, “respond” and “responses”,
“environment” and “environmental” are closely
related semantically. As we expect, our proposed
model is able to capture such semantic related-
ness and assign reasonable score to each text pair,
which is a key to topic boundary detection.

4 Conclusion

This paper proposes a novel approach for topic
segmentation by learning to rank semantic coher-
ence. Symmetric convolutional neural network is
used for text pair modeling. Training data can be
automatically constructed from unlabeled docu-
ments, and no labeled data is needed. Experiments
show promising performance on dataset from var-
ious domains.
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Abstract

We present the GrASP algorithm for au-
tomatically extracting patterns that char-
acterize subtle linguistic phenomena. To
that end, GrASP augments each term of
input text with multiple layers of linguis-
tic information. These different facets of
the text terms are systematically combined
to reveal rich patterns. We report highly
promising experimental results in several
challenging text analysis tasks within the
field of Argumentation Mining. We be-
lieve that GrASP is general enough to be
useful for other domains too.

1 Introduction

Many standard text analysis tasks can be ad-
dressed relatively well while exploiting simple
textual features, e.g., Bag-Of-Words representa-
tion and Naive Bayes for document classification
(McCallum and Nigam, 1998). However, the iden-
tification of more subtle linguistic phenomena,
that are further reflected via relatively short texts
– as opposed to whole documents – may require a
wider spectrum of linguistic features.

The main contribution of this work is in out-
lining a simple method to automatically extract
rich linguistic features in the form of patterns, and
demonstrate their utility on tasks related to Ar-
gumentation Mining (Mochales Palau and Moens,
2009), although we believe that the proposed ap-
proach is not limited to this domain.

Argumentation mining involves automatically
identifying argumentative structures within a cor-
pus – e.g., claims or conclusions, and evidence
instances or premises – as well as their inter-
relations. For instance, each of the following sen-
tences includes a claim for a [topic].

∗First two authors contributed equally.

1. Opponents often argue that the open primary is
unconstitutional. [Open Primaries]
2. Prof. Smith suggested that affirmative action
devalues the accomplishments of the chosen. [Af-
firmative Action]
3. The majority stated that the First Amend-
ment does not guarantee the right to offend others.
[Freedom of Speech]

These sentences share almost no words in com-
mon, however, they are similar at a more abstract
level. A human observer may notice the follow-
ing underlying common structure, or pattern:
[someone][argue/suggest/state][that]
[topic term][sentiment term]

We present GrASP, standing for GReedy Aug-
mented Sequential Patterns, an algorithm that aims
to automatically capture such underlying struc-
tures of the given data. Table 1 shows the pat-
tern that GrASP may find for the above examples,
along with its matches in those texts. Such pat-
terns can then be used to detect the existence of
the phenomenon in new texts.

The algorithm starts with augmenting the terms
of the input with various layers of attributes, such
as hypernyms from WordNet (Fellbaum, 1998),
named entity types, and domain knowledge (Sec-
tion 3.1). This multi-layered representation en-
ables GrASP to consider many facets of each term.
Next, it finds the most indicative attributes (Sec-
tion 3.2) and iteratively grows patterns by blend-
ing information from different attributes (Sec-
tion 3.3). A greedy step is performed at the end of
each iteration, when the algorithm only keeps the
top k patterns, ranked by their predictive power.
This results with a set of cross-layered patterns
whose match in a given text instance suggests the
appearance, or the non-appearance, of the target
phenomenon.

Researchers can add layers of attributes of dif-
ferent kinds without being worried about which of
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[noun] [express] [that] [noun,topic] [sentiment]

Opponents often argue that the open primary is unconstitutional .
Prof. Smith suggested that affirmative action devalues the ...
The majority stated that the First Amendment does not guarantee ... to offend others.

Table 1: Claim sentences aligned by their common underlying pattern. [express] stands for all its (in)direct hyponyms,
and [noun,topic] means a noun which is also related to the topic.

them are useful for the detection of the target phe-
nomenon, and how to combine them. GrASP per-
forms feature selection while generating complex
patterns out of these attributes that best capture as-
pects of the target phenomenon.1

In experiments over different argumentation
mining tasks, we show that GrASP outperforms
classical techniques, and boosts full argumenta-
tion mining systems when added to them.

2 Background

While some aspects of GrASP were considered in
the past, to the best of our knowledge, no prior
work has presented a framework that allows users
to: (i) easily add any type of attribute to the pat-
tern alphabet, and (ii) consider all attributes when
searching for patterns. GrASP provides a frame-
work to integrate information from different lay-
ers, choosing the best combination to produce
highly expressive patterns.

The alphabet of Hearst (1992) patterns is mainly
stop words and noun-phrase tags, while Snow
et al. (2004) add syntactic relations. Yangarber
et al. (2000) consider a larger set of attributes
(e.g., named entities, numeric expressions), how-
ever they commit to one generalization of each
term. In contrast, we do not limit our alphabet and
systematically consider all attributes of each term.

Riloff and Wiebe (2003) start with a small set of
syntactic templates, composed of a single syntac-
tic relation and a single POS tag, to learn a variety
of lexicalized patterns that match these templates.
RAPIER (Califf and Mooney, 2003) constraints
are similar to our attributes, but are basic (surface
form, POS tag, and hypernyms only), and expand-
ing them will exponentially increase its complex-
ity. In contrast, adding attributes to GrASP only
increment runtime linearly (see Section 3.2).

To summarize, prior works usually have a basic
alphabet and commit to one rule to generalize each
term. Commonly, they do not allow gaps between
their elements, nor assigning several attributes to a

1Get GrASP cloud service at http://ibm.biz/graspULP

single element of the pattern.
Such characteristics are presented in sequential

patterns (Agrawal and Srikant, 1995) which are
mainly used for data mining and rarely for un-
structured text (Jindal and Liu, 2006). GrASP also
has these characteristics, and in addition it can
learn negative patterns, indicating that the exam-
ined text does not contain the target phenomenon.

The phenomena we target are from the area
of Argumentation Mining (see Lippi and Torroni
(2016) for a survey). We focus on open-domain
argument extraction. In this context, Levy et al.
(2014) detect claims relevant to a debatable topic,
Lippi and Torroni (2015) defined the context-
independent claim detection task, and Rinott et al.
(2015) introduced the context dependent evidence
detection task (which is further split into differ-
ent types of evidence, e.g., a study that supports a
claim or a relevant expert testimony). These tasks
aim to capture a subtle and rare linguistic phe-
nomenon within large corpora, hence are suitable
for demonstrating the potential of GrASP.

3 The GrASP Algorithm

The algorithm depicted in Algorithm 1. Its input
is a set of positive and negative examples for the
target phenomenon. The output is a ranked list of
patterns, aiming to indicate the presence – or ab-
sence – of this phenomenon. In the following, a
pattern is considered to be matched in a text iff all
its elements are found in it, in the specified order,
possibly with gaps between them, within a win-
dow of size w.

3.1 Multi-Layered Term Representations

Consider the verbs (argue/suggest/state) in the ex-
amples in Section 1. Using the POS tag verb to
generalize them will end up with an overly gen-
eral representation, while their hypernym, express,
offers a better level of generalization.

Aiming to formalize this intuition, we start by
augmenting each term in the input with a variety of
linguistic attributes such as its POS tag, its syntac-
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Algorithm 1: The GrASP algorithm.

Input: positive/negative text examples, k1, k2, maxLen
Output: a ranked list of patterns

1 (pos, neg)← augment(positives, negatives)
2 attributes← extractAttributes(pos, neg)
3 alphabet← chooseTopK(attributes, k1)
4 patterns← alphabet
5 last← patterns
6 for length← 2 to maxLen do
7 curr ← θ
8 for p ∈ last do
9 for a ∈ alphabet do

10 curr ← curr ∪ {growRight(p, a)}
11 curr ← curr ∪ {growInside(p, a)}
12 last← curr
13 patterns←

chooseTopK(patterns ∪ current, k2)
14 return patterns

tic relation in a parse tree, and semantic attributes
such as its hypernyms, WordNet superclasses, in-
dications whether it is a named entity, and whether
it bears a sentiment.2 This attributes set can serve
as a starting point for many text analysis tasks.

In addition, GrASP allows to add task-specific
attributes. Thus, for context-dependent arguments
detection we add boolean attributes indicating
whether the term is related to the topic, whether it
appears in a lexicon characterizing argumentative
texts, or in a lexicon characterizing the topic.3

After augmentation, the representation of
argue, from the first example, is: [argue,
VB, hypernyms={present, state,
express}, in claim lexicon, root
node, supeclass = communication].

3.2 Defining the Patterns Alphabet

The augmented representation, described above, is
the first step (line 1 in Algorithm 1). Next, we
define the alphabet of attributes that will be used
to compose longer patterns (lines 2–3). To that
end, we first discard non-frequent attributes that
are matched in less than t1 of all input examples.

Then, we sort all remaining attributes by their
information gain (Mitchell, 1997) with the label,
and select the top k1 attributes. We discard re-
dundant attributes whose correlation to some pre-
viously selected attribute is above t2, measured
by the normalized mutual information (Cover and

2We used OpneNLP POS tagger, Stanford NER, McCord
and Bernth (2010) parser, WordNet superclasses, and the lex-
icon in Hu and Liu (2004) for sentiment words.

3We utilize existing lexicons, learning them is out of the
scope of this work.

Thomas, 2006). The selected k1 attributes consti-
tute the alphabet of the algorithm, or “patterns”
of length 1. Note that considering additional at-
tributes only affects this first iteration, and only
increases it linearly.

3.3 Growing Patterns

Learning longer patterns is done by iteratively
growing patterns selected in previous iterations,
keeping only the most indicative ones (lines 6–13).
We apply two methods for growing a pattern, p
(e.g., [noun]) w.r.t. an attribute a (e.g., obj): (i)
grow right – add a as another term in the pattern
(i.e., [noun][obj]); (ii) grow inside – add a as an-
other attribute to the last term of p, making it more
specific (i.e., [noun,obj]). After each iteration
(line 13), the top k2 patterns are kept (after sort-
ing by information gain and discarding redundant
ones). Iterations continue till reaching maxLen.

Since GrASP relies on information gain for
sorting, it can identify indicative negative patterns,
implying that the target phenomenon is less likely
to be presented in the examined example if such
patterns were matched in it.

GrASP can be seen as a simple formal interface,
allowing the user to examine a wide range of infor-
mation sources letting the algorithm to select and
combine them all and come up with the most use-
ful patterns.

4 Evaluation and Results

In the following experiments we used a logistic re-
gression classifier on top of the extracted patterns.
Each pattern is used as a binary feature, which re-
ceives value of 1 iff it is matched in the candidate.

To demonstrate the robustness of the this ap-
proach, in all experiments we report the results
of a single configuration of GrASP parameters,
selected based on a quick analysis over a small
portion of the claim-sentence detection data (task
(a) below).4 Specifically, we used minimal fre-
quency threshold t1=0.005, correlation threshold
t2=0.5, size of the alphabet k1=100, number of
patterns in the output k2 = 100, maximal pattern
length maxLen=5, and window size w=10.

This configuration is by no means the optimal
one, and we saw that by carefully tuning the pa-
rameters per task, results were improved.

4We randomly chose 10 topics. The performance over
them was somewhat inferior to that over all 58 topics.
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(a) Claim sentence (b) Expert evidence (c) Study evidence
system P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20

Naive Bayes 13.8 10.2 8.1 8.4 9.6 8.0 13.1 11.6 9.3
Basic patterns 21.4 15.5 12.7 16.5 15.2 12.2 18.3 16.1 12.8
CNN 25.5 21.2 16.9 18.2 16.3 14.6 26.5 22.2 18.4
GrASP alphabet 30.0 25.7 22.8 25.8 22.5 18.7 30.5 25.6 21.1

GrASP 41.7** 34.5** 27.0** 29.0* 25.2* 21.9* 35.4* 25.7 20.0

Table 2: Macro-averaged precision results for GrASP over three argumentation mining tasks. Significant results in compari-
son to GrASP alphabet/CNN are marked with **/* respectively (paired t-test with p<0.01/0.02 respectively).

4.1 Direct Evaluation
We consider three context-dependent argumenta-
tion mining tasks: (a) Claim sentence detection
(Levy et al., 2014), (b) Expert evidence detection,
and (c) Study evidence detection. The latter two
tasks are described in Rinott et al. (2015), where
the goal is to detect sentences that can be used as
an evidence to support/contest the topic.5

The benchmark data for these tasks was ex-
tracted from the data released by Rinott et al.
(2015), consisting of 547 Wikipedia articles in
which claims and evidence instances were manu-
ally annotated, in the context of 58 debatable top-
ics. In all tasks the data is highly skewed towards
negative examples (only 2.5% of 80.5K instances
are positives in task (a), 4% of 55.6K in task (b),
and 3.7% of 31.8K in task (c)), making these tasks
especially challenging.

As (Levy et al., 2014; Rinott et al., 2015) we
use a leave-one-topic-out schema; training over 57
topics, testing over the left out topic.

Our group develops debate supportive technolo-
gies which can assist humans to reason, make de-
cisions, or persuade others.6 Since in this scenario
humans mainly consider top results (similar to
information retrieval), precision is more relevant
than recall. Thus, we report the macro-averaged
Precision@K, where K∈{5, 10, 20}.

We considered the following baselines:
Naive Bayes: over BOW representation, dis-

carding unigrams which appear less than 10 times.
Basic Patterns: a baseline that reflects com-

mon practices in the literature where a pattern is
a consecutive ordered list of stop words or POS
tags. We add a symbol for topic match (for the
context-dependent tasks). A brute force process
generates all possible patterns up to size maxLen
and selects top k by the same procedure as GrASP.

5We did not examine the Anecdotal type due to the small
size of the available benchmark data.

6for more details see IBM Debating Technologies.

For each task we report the best results obtained
with k∈{50, 100, .., 400}.

Convolutional Neural Network (CNN): fol-
lowing (Kim, 2014; Vinyals and Le, 2015) we
used CNN whose input is a concatenation of the
topic and the candidate.7 The final state vec-
tor is fed to a LR soft-max layer. Cross-entropy
loss function was used for training. The embed-
ding layer was initialized using word2vec vectors
(Mikolov et al., 2013). Hyper-parameters were
tuned on the same portion of the dataset as used
by GrASP for tuning.

For these baselines, we are not aware of avail-
able methods to incorporate GrASP multi-layered
representation.

GrASP alphabet: a simplified version of
GrASP which uses the chosen alphabet, or “pat-
terns” of length 1. This baseline does utilize all
the information available for GrASP.

Table 2 shows that Naive Bayes performance is
the lowest, demonstrating that a simple represen-
tation is not sufficient for such complex tasks. Us-
ing Basic patterns yields better performance, and
CNN performs even better. GrASP alphabet out-
performs CNN, indicating the potential of explic-
itly incorporating linguistic information. Finally,
using the patterns extracted by GrASP outper-
forms all other methods, emphasizing the added
value of constructing patterns over the initial con-
tribution of the multi-layered representation.

GrASP provides an easy way to analyze the im-
portance of each attribute by inspecting its score
at the end of the first iteration, the one which de-
termines the alphabet. For example, PERCENT
score was very high in the alphabet for Study evi-
dence patterns (task b), and Person and Organiza-
tion were ranked high in the alphabet of the Expert
evidence (task c). Still, these three named enti-

7RNN, LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014) were also considered but resulted with
inferior performance.
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system P@5 P@10 P@20 P@50 R@50

Levy14 – – – 18 40
Levy14-rep 30.9 27.3 23.5 17.6 38.4
GrASP 32.7 30 23.9 17.5 36.2
Combined 40* 32.4* 28* 20.2* 43.2*

Table 3: Adding GrASP to a full claim detection system.
Significant results in comparison to Levy14-rep are marked
by * (paired t-test with p<0.02).

ties were not selected as part of the alphabet for
Claim sentences (task a) – reflecting the impor-
tance of PERCENT in sentences describing stud-
ies and their numeric results, and the importance
of authoritative source (either Person or Organi-
zation) in evidence based on expert testimonies.

For task (a) we performed two ablation tests,
each of them yielded a decrease in performance:
(i) not limiting the match of a pattern in a window
(a decrease of 10.3 for P@5 and 2.8 for P@20),
and (ii) not enforcing the order defined by the pat-
tern (a decrease of 7.6 for P@5 and 2.8 for P@20).

4.2 Indirect Evaluation

In this evaluation we add GrASP patterns as ad-
ditional features to the full claim detection system
of Levy et al. (2014) to inspect their contribution.
This evaluation is performed on a second claim de-
tection benchmark (on which they have reported
results), released by Aharoni et al. (2014) (1,387
annotated claims associated with 33 topics).

The system of Levy et al. (2014) is comprised of
a cascade of three components; (i) detecting sen-
tences which contain claims, (ii) identifying the
exact boundaries of the claim part within the sen-
tence, and (iii) ranking the claim candidates. Each
of these components applies a classifier over ded-
icated features. Results were reported for the full
cascade and for the first component, which is our
task (a). For an idea on how to adapt GrASP for
the claim boundaries detection task, see Section 5.

Table 3 presents measures reported in Levy
et al. (2014) (right hand side) as well as additional
measures which reflect the focus of this work on
the precision of the top ranked candidates (perfor-
mance of all systems on P@200 and R@200 were
comparable and were omitted due to space lim-
itations). The system of Levy et al. (2014), de-
noted Levy14, and our reproduction of it, denoted
Levy14-rep, obtained comparable results.8

8We reproduced their work to perform significant test and
report the additional measures.

Evidently, utilizing GrASP patterns alone
achieve similar performance as Levy14-rep. Con-
sidering the fact that Levy14-rep is a full sys-
tem, tailored for claim detection via a lengthy
feature engineering process, these results, ob-
tained using only GrASP patterns, are promising.
Adding GrASP features to Levy14-rep, denoted
Combined, we observe a significant improvement,
demonstrating their complementary value.

5 Discussion

GrASP extracts rich patterns that characterize sub-
tle linguistic phenomena. It exploits a wide variety
of information layers in a unified manner, iden-
tifying the most discriminative attributes for the
given task, and greedily composes them into pat-
terns. We demonstrated GrASP significant impact
on several argumentation mining tasks.

As this was not the focus of this work, we chose
standard statistical criteria to sort the candidate
patterns and to filter redundant ones. Considering
other criteria, and also more sophisticated search
strategies to explore the huge space of possible
patterns, is left for future work.

In addition to their value in classification tasks,
the patterns revealed by GrASP are easy to in-
terpret, in contrast to alternative techniques, like
Deep Learning. Thus, these patterns can provide
researchers with additional insights regarding the
target phenomenon. These insights can be inte-
grated back to by considering additional attributes
to be explored in subsequent runs. Thus, GrASP
can significantly expedite the research process, es-
pecially when addressing novel tasks.

Finally, we would like to hint on a sequel work
that demonstrates how GrASP can be easily mod-
ified to address another important task – detecting
the claim boundaries within its surrounding sen-
tence (see italic text in the examples in Section 1).
To cope with this unique task, we enhance the term
representation (Section 3.1), by tripling each at-
tribute a to distinguish between its appearance be-
fore (PRE-a), within (IN-a), or after (POST-a)
the candidate claim boundaries. With this change
only, GrASP was able to identify patterns for this
new task, that were used to indicate the boundaries
of a claim with promising preliminary results.
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Abstract
This paper presents an analysis of argumen-
tation strategies in news editorials within
and across topics. Given nearly 29,000 ar-
gumentative editorials from the New York
Times, we develop two machine learning
models, one for determining an editorial’s
topic, and one for identifying evidence
types in the editorial. Based on the distri-
bution and structure of the identified types,
we analyze the usage patterns of argumen-
tation strategies among 12 different topics.
We detect several common patterns that
provide insights into the manifestation of
argumentation strategies. Also, our experi-
ments reveal clear correlations between the
topics and the detected patterns.

1 Introduction
Most current research in computational argumen-
tation addresses argument mining, i.e., the identi-
fication of pro and con arguments in a text. Com-
putational approaches that study how to deliver the
arguments persuasively are still scarce — despite
the importance of such studies for envisaged ap-
plications that deal with the synthesis of effective
argumentation, such as debating systems.

Many studies have indicated that it is important
to follow a specific strategy of how to deliver argu-
ments in order to achieve persuasion in argumenta-
tive texts, and they proposed models for possible
strategies. A recent work in this direction models
the argumentation strategy of a text as an author’s
decision on what types of evidence to include in
the text as well as on how to order them (Al-Khatib
et al., 2016). This is in line with studies in com-
munication theory, where many experiments have
been conducted on the persuasiveness of different
evidence types (Hornikx, 2005) and their combina-
tions (Allen and Preiss, 1997).

Based on the model of Al-Khatib et al. (2016),
the paper at hand investigates the usage patterns of
argumentation strategies within and across topics.
The study is rooted in our hypotheses that (1) ef-
fective strategies for synthesizing an argumentative
text can be derived from the analysis of existing
strategies that humans use in high-quality texts, and
(2) the decision for preferring one strategy over an-
other is affected by several text characteristics such
as genre, provenance, and topic.

We approach our study within three steps. Start-
ing from a collection of argumentative news edito-
rials, we (1) categorize the editorials into n topics,
(2) identify the evidence types (statistics, testimony,
anecdote) in each editorial, and (3) analyze the
selection and ordering of evidence types within ed-
itorials across topics. The output of these steps will
be beneficial for synthesizing an effective argumen-
tative text for a given topic (see Figure 1). The first
two steps are carried out with supervised learning
based on selected linguistic features, whereas the
third step quantifies the distribution of evidence
types and their flows (Wachsmuth et al., 2015).

To evaluate our approach, experiments are con-
ducted on 28,986 editorials extracted from the New
York Times (NYT) Annotated Corpus (Sandhaus,
2008). We automatically categorize these editorials
into 12 coarse-grained topics (such as economics,
arts, health, etc.). Our results expose significant
differences in the distribution of evidence types
across the 12 topics. Furthermore, they discrimi-
nate a number of flows of evidence types which are
common in editorials. Both results provide insights
into what patterns of argumentation strategies exist
in editorials across different topics.

To foster future research on evidence identifi-
cation and argumentation strategies, the topic cat-
egorization of all editorials as well as the devel-
oped evidence classifier are publicly available at
http://www.webis.de.
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Figure 1: Four major steps of an envisioned system for synthesizing argumentative text with a particular
strategy. This paper present approaches to the first three steps, whereas the fourth is left to future work.

2 Topic Categorization
The NYT Annotated Corpus comprises about 1.8
million articles published by the New York Times
between 1987 and 2007. The corpus covers several
types of articles that mainly categorized into 12
topics (the topics are given in Table 3) according
to which section or sub-section the article is placed
into in the news portal’s hierarchy. Each article
comes with 48 metadata tags that were assigned
manually or semi-automatically by employees of
the NYT. The tags cover several types of informa-
tion such as types of material (e.g., review, editorial,
etc.) and taxonomic classifiers (the hierarchy of
articles section), among others.

All 28,986 articles tagged as “editorial” are used
in our analysis. However, identifying an editorial’s
topic is not straightforward: While the NYT classi-
fies the topic of most non-editorial articles, only 6%
of all editorials are provided with topic information.
The remaining 94% are labeled as “opinion”. An-
alyzing the corpus, we observed that several tags
include terms that describe the content of an arti-
cle, such as “global warming”. Some terms even
include the topic itself, such as “Politics and Gov-
ernment”. Thus, we exploited these tags to develop
a standard supervised classifier for the topic catego-
rization of editorials. In particular, we trained the
classifier on all 1.29 million non-editorial articles
that are assigned a topic, and then used it to classify
editorials with unknown topic.

We used the default configuration of the Weka
Naïve Bayes multinomial model with unigram fea-
tures (Hall et al., 2009), as related studies suggest
that this classifier performs particularly well in
topic categorization (Husby and Barbosa, 2012).
Since articles may have more than one topic, we
label each article with all topics given a probability

of at least 0.3 by the classifier. This threshold has
been selected based on the training data.

The 6% of editorials, which are provided with
“topic” labels in the corpus, were used for testing
the effectiveness of our topic classifier. The classi-
fier obtained an accuracy of 0.82 on these articles.

3 Evidence Identification
This section describes and evaluates our approach
for identifying evidence types in an editorial.

All experiments are based on the corpus of Al-
Khatib et al. (2016), which contains 300 editorials
from three news portals: The Guardian, Al Jazeera,
and Fox News. Each of these editorials is separated
into argumentative segments, and every segment
is labeled with one of six types. Three types re-
fer to evidence: (1) statistics, where the segment
states or quotes the results or conclusions of quan-
titative research, studies, empirical data analyses,
or similar, (2) testimony, where the segment states
or quotes that a proposition was made by some
expert, authority, witness, group, organization, or
similar, and (3) anecdote, where the segment states
personal experience of the author, a concrete exam-
ple, an instance, a specific event, or similar. We
use the labels of all three evidence types, whereas
we consider all remaining types in the corpus (e.g.,
assumption) as belonging to the type other.

Each segment in the corpus spans one sentence
or less. Accordingly, it is possible that a sentence
includes multiple types (e.g., testimony and statis-
tics), although the proportion of such sentences
is very low (less than 5%). We hence decided to
simplify the task by identifying only one type for
each sentence; in case a sentence has more than one
type, we favor evidence types over other, and less
frequent evidence types over more frequent ones.
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Thereby, we avoid dealing with argumentative text
segmentation and multi-type classification.

For identifying evidence types, we rely on su-
pervised learning. The task is similar to tasks con-
cerned with the pragmatic level of text, such as
language function analysis (Wachsmuth and Bujna,
2011) or speech act classification (Ferschke et al.,
2012). We employ several features that capture the
content, syntax, style, and semantics of a sentence.
Some of them have been used for the mentioned
tasks, others are tailored to our task—based on our
inspection of the training set of the corpus.

Lexical Features Previous work on speech acts
classification showed a strong positive impact of
lexical features, e.g., (Jeong et al., 2009). In case
of evidence types, words such as “study” and “find”
are indicators for statistics,“according” and “states”
for testimony, and “example” and “year” for anec-
dote, for instance. We represent this feature type
as the frequency of word unigrams, bigrams, and
trigrams. We also consider punctuation and digits
in our features; quotes play an important role for
testimony, numbers for statistics.

Style Features We hypothesize that texts with dif-
ferent evidence types show specific style charac-
teristics. To test this, we use character 1–3-grams,
chunk 1–3-grams, function word 1–3-grams, and
the first 1–3 tokens in a sentence. Similarly, we ex-
pect anecdote and testimony sentences to be longer
than statistics, which we capture by the number
of characters, syllables, tokens, and phrases in a
sentence. Moreover, we assess whether a sentence
is the first, second, or last within a paragraph.

Syntactic Features Syntax plays a role in different
linguistic tasks. For evidence type identification,
narrative tenses may be indicators of anecdotes, for
instance. We model syntax simply via the frequen-
cies of part of speech tag 1–3-grams.

Semantic Features We use the frequency of per-
son, location, organization, and misc entities, as
well as the proportion of each of these entity types.
In many cases, a sentence with evidence refers to
specific entities (e.g., a scientific lab in statistics).
Also, we use the mean SentiWordNet score of the
words in a sentence, once for the word’s first sense
and once for its average sense (Baccianella et al.,
2010). Moreover, we compute the frequency of
each word class of the General Inquirer (http:
//www.wjh.harvard.edu/~inquirer).

In our experiments, the sequential minimal opti-
mization (SMO) implementation of support vector

# Feature Type Accuracy F1-Score

1 Lexical features 0.76 0.73
2 Style features 0.74 0.70
3 Syntactic features 0.74 0.71
4 Semantics features 0.71 0.67

1 – 4 Complete feature set 0.78 0.77

Majority baseline 0.69 0.56

Table 1: Effectiveness of each feature type and the
complete feature set in identifying evidence types.

Type Precision Recall F1-Score

Statistics 0.69 0.40 0.50
Testimony 0.63 0.55 0.59
Anecdote 0.55 0.47 0.51
Other 0.84 0.90 0.87

Table 2: Precision, recall, and F1-Score for all four
classes in the identification of evidence types.

machines from Weka performed best among sev-
eral models on the validation set of the given corpus.
There, SMO achieved the highest results for a cost
hyperparameter value of 5, which we then used to
evaluate SMO on the test set.

Results Table 1 shows the effectiveness of our clas-
sifier in terms of accuracy and weighted average
F1-score for each single feature type as well as for
the complete feature set. In general, lexical features
are the most discriminative, closely followed by the
syntax features. All feature types contribute to the
effectiveness of the complete feature set. Table 2
shows the precision, recall, and F1-score values
for classifying each of the three evidence types as
well as the class other. The classifier achieved the
highest F1-score for other, followed by testimony,
anecdote, and statistics respectively.

Error Analysis The classifier has a small tendency
towards labeling sentences with the majority class
other. However, sampling the training set yielded
worse results for all classes. Overall, the task is
challenging, and the results we obtained are in line
with those that have been reported in speech act
classification. Also, the decision to classify each
sentence with one of the evidence classes (to avoid
segmentation) may render the type identification
itself harder. For example, some features such as
quotation marks can be helpful to identify testi-
mony. However, if some testimony evidence covers
several sentences, the ones which are between the
first and the last sentences might be difficult to be
identified as part of the testimony.
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Evidence Type All Arts Econ. Edu. Envir. Health Law Polit. Relig. Science Sports Style Tech.

AN Anecdote 24.9 31.6 22.1 24.1 25.7 21.9 27.5 24.4 31.1 24.9 31.1 29.7 23.7
TE Testimony 7.7 11.3 6.2 9.6 5.1 5.7 7.4 8.4 10.8 6.3 6.5 7.1 6.3
ST Statistics 3.0 1.5 5.0 4.4 3.4 4.9 2.7 2.1 1.8 3.0 2.8 2.3 2.3
OT Other 64.4 55.6 66.7 62.0 65.8 67.5 62.4 65.1 56.3 65.8 59.6 60.9 67.7

Editorials 28986 1274 3158 1977 1687 2524 2327 12912 243 455 953 960 516

Table 3: Distribution of the four evidence types in all editorials and in those of each topic, given in percent.
The bottom line shows the number of editorials of each topic.Values discussed in Section 4 are in bold.

4 Argumentation Strategy Analysis
In this section, we analyze strategy patterns across
editorials of 12 topics, exploring the selection and
ordering based on the distribution and sequential
flows of evidence types respectively.

To this end, we applied our topic and evidence
type classifiers to all given 28,986 NYT editorials.
As the analysis of argumentation strategies depends
strongly on the effectiveness of evidence type iden-
tification, we consider the impact of classification
errors in the analysis results as follows. For each ev-
idence type t in dataset d, we compute a confidence
interval [lower bound, upper bound] for the n sen-
tences that the classifier labels with t. The interval
is derived from the precision and recall of our clas-
sifier for type t (determined on the ground truth):
We compute the lower bound as n · precision(t)
and the upper bound as n/recall(t).

Based on the mean of lower bound and upper
bound, we perform a significance test among the
evidence type distribution across topics. In partic-
ular, we use the chi-square statistical method with
a significance level of 0.001. For the sequential
flows, however, a consideration of the impact of
misclassified sentences seems unreliable: As each
editorial is represented by only one flow, the 60
editorials in the test set of Al-Khatib et al. (2016)
are not enough for computing precision and recall.
In contrast, we again use chi-square with a sig-
nificance level of 0.001 for specifying significant
differences among the flows.

Distribution of Evidence Types Altogether, the
given 28,986 editorials contain 669,092 sentences
whose type we classified. As Table 3 shows, the
most frequent type is other (64.4%) according to
our classifier, followed by anecdote (24.9%), testi-
mony (7.7%), and statistics (3.0%).

In terms of the performed chi-squared tests, all
pairs of topic-specific type distributions in Table 3
are significantly different from each other with
only one exception: arts and religion. This results

strongly support the hypothesis that topic influ-
ences the usage of evidence types. For anecdotes,
the values of both science and technology differ not
significantly from all. For testimony, law does not
differ significantly from all, and for statistics, the
analog holds for science and sports.

The highest relative frequency of anecdotes is
observed for arts (31.6%) and religion (31.1%),
followed by sports (31.1%). Matching intuition,
authors of arts and religion editorials add much tes-
timony evidence (11.3% and 10.8% respectively).
In contrast, anecdotes and testimony are clearly
below the average for health, while statistics play
a more important role there with 4.9%, the second
highest percentage after economy (5.0%).

Sequential Flows of Evidence Types Following
related research (Wachsmuth et al., 2015), we des-
ignate the flow here as a sequential representation
of all evidence types in an editorial. Following one
the flow generalizations proposed by Wachsmuth
et al. (2015), we abstract flows considering only
changes of evidence types. For example, the flow
(AN, AN, TE) for an editorial will be abstracted
into (AN, TE). Such an abstraction produces more
frequent and thus reliable patterns. Table 4 lists
the resulting evidence change flows that are most
common among all editorials.

The most frequent flow is (AN), representing
16.6% of all editorials across topics. This means
that about one sixth of all editorials contain only
this evidence type. The frequency of (AN) ranges
from 9.3% (education) to 26.7% (style), revealing
the varying importance of anecdotes in editorials
of different topics. The frequency of (AN, TE, AN)
is more stable across topics; only health and tech-
nology show notably lower values there (8.8% and
9.5% respectively). For technology, the percentage
is much above the average for some other flows
based on AN and TE, such as (AN, TE) (10.7% vs.
6.9%) and (TE, AN) (4.3% vs. 2.6%). Hence, the
ordering of evidence seems to make a difference.
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# Evidence Change Flow All Arts Econ. Edu. Envir. Health Law Polit. Relig. Science Sports Style Tech.

1 (AN) 16.6 16.0 13.5 9.3 21.3 17.4 17.4 16.2 11.9 20.4 21.8 26.7 20.9
2 (AN, TE, AN) 13.2 13.5 10.3 10.2 11.6 8.8 14.7 15.1 14.0 13.2 14.1 15.5 9.5
3 (AN, TE) 6.9 7.9 4.6 7.5 5.9 6.7 8.1 7.0 7.8 7.7 7.2 7.0 10.7
4 (AN, ST, AN) 5.3 3.6 6.7 4.1 8.6 7.2 6.2 4.2 4.9 6.8 7.3 5.8 4.7

5 (AN, TE, AN, TE, AN) 5.3 8.4 3.4 4.3 3.9 2.4 6.4 6.3 7.0 3.1 4.6 3.5 6.6
6 (AN, TE, AN, TE) 4.9 6.2 3.3 4.9 3.5 3.2 5.3 5.7 8.2 4.0 4.8 4.0 4.3
7 (TE, AN) 2.6 2.4 2.2 2.3 1.7 2.5 1.8 3.0 <0.5 2.2 2.4 2.3 4.3
8 (AN, ST) 2.2 0.7 3.8 1.9 3.1 4.3 2.4 1.5 1.2 3.1 1.9 2.0 1.6
9 (AN, TE, AN, TE, AN, TE) 2.2 2.9 1.3 1.8 1.2 1.1 2.8 2.8 2.9 0.7 1.3 1.7 1.4

10 (AN, TE, AN, TE, AN, TE, AN) 2.0 4.3 1.5 1.8 0.8 1.0 1.9 2.3 5.8 1.3 1.6 1.7 1.4

11 (TE, AN, TE, AN) 1.8 2.2 0.9 2.5 0.7 1.0 1.5 2.3 2.1 0.7 1.8 1.4 1.0
12 (AN, ST, AN, TE, AN) 1.4 0.9 1.8 1.6 2.4 1.2 0.9 1.3 0.8 2.2 1.8 1.3 0.6
13 (ST, AN) 1.3 <0.5 2.2 1.0 1.3 2.8 1.2 0.9 <0.5 2.0 0.7 1.4 2.3
14 (TE, AN, TE) 1.3 1.4 0.8 1.4 0.7 0.9 1.1 1.6 2.1 1.5 <0.5 0.6 1.9
15 (AN, ST, AN, TE) 1.2 0.7 1.6 1.5 2.0 1.5 1.4 1.0 1.2 0.9 1.3 0.9 1.4

Table 4: Relative frequency of the top 15 evidence change flows in all editorials and in those of each topic,
given in percent. In the flows, the type Other is ignored. Values discussed in Section 4 are in bold.

In accordance with literature on argumentation
in editorials (van Dijk, 1995), many common flows
start with an anecdote and end with one. While
testimony occurs most often between the anec-
dotes, the fourth most frequent flow is (AN, ST,
AN) (5.3%). This flow occurs particularly often in
editorials about environment (8.6%), even though
statistics are not that frequent in these editorials
(see Table 4) — and similar holds for (AN, ST).
Such observations emphasize the role of topic on
ordering decisions in argumentation strategies.

5 Related Work
In addition to the work on argumentation strategies
in editorials (Al-Khatib et al., 2016) that we have
discussed in Section 3, several approaches have
been proposed for modeling and identifying the
types or roles of argumentative units. For instance,
Stab and Gurevych (2014) distinguish premises
from claims and major claims, and Park and Cardie
(2014) unverifiable from verifiable statements.

In this line of research, Rinott et al. (2015) have
proposed a supervised learning model for identify-
ing context-dependent evidence in Wikipedia arti-
cles. While the authors target the same evidence
types that we consider in our work, they approach
a different task. In particular they classify only
evidence that is related to given claims. Hence,
a comparison of their effectiveness results with
ours would be meaningless. Moreover, some of
their features rely on resources that are not publicly
available (e.g., lexicons), which is why could not
resort to their approach or compare it to ours.

The NYT Annotated Corpus has been analyzed
in several papers. Among others, Li et al. (2016)
and Hong and Nenkova (2014) used the metadata
tag abstract, which contains a manually created ar-
ticle summary. Other tags, such as those for people,
locations, and organizations mentioned in an arti-
cle, have been used by Dunietz and Gillick (2014).

6 Conclusion
This paper has studied argumentation strategies
in news editorials of different topics. We have
observed varying distributions of evidence types
across the topics as well as varying sequential flows
of these types. Overall, our analysis has revealed
several patterns of how authors argue in news edi-
torials, and how the topic influences such patterns.
We believe that the obtained results provide valu-
able insights for research on the synthesis of effec-
tive argumentative texts.

Besides text synthesis, we consider this study
as beneficial for argument mining as well as for
the topic categorization of argumentative texts. It
provides insights and empirical results on prior
knowledge regarding distributional and structural
probabilities for evidence usage among topics. Our
findings can be incorporated into unsupervised clas-
sification models (Hu et al., 2015).

In future work, we plan to investigate argumen-
tation strategies across different genres and prove-
nances. Also, we will further explore whether there
are important types of evidence in editorials and
similar texts that we have not considered in this
paper so far, such as analogies.
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Abstract

We study the helpful product reviews i-
dentification problem in this paper. We
observe that the evidence-conclusion dis-
course relations, also known as argu-
ments, often appear in product reviews,
and we hypothesise that some argumen-
t-based features, e.g. the percentage of
argumentative sentences, the evidences-
conclusions ratios, are good indicators of
helpful reviews. To validate this hy-
pothesis, we manually annotate arguments
in 110 hotel reviews, and investigate the
effectiveness of several combinations of
argument-based features. Experiments
suggest that, when being used togeth-
er with the argument-based features, the
state-of-the-art baseline features can enjoy
a performance boost (in terms of F1) of
11.01% in average.

1 Introduction

Product reviews have significant influences on po-
tential customers’ opinions and their purchase de-
cisions (Chatterjee, 2001; Chen et al., 2004; Del-
larocas et al., 2004). Instead of reading a long
list of reviews, customers usually are only will-
ing to view a handful of helpful reviews to make
their purchase decisions. In other words, helpful
reviews have even greater influences on the po-
tential customers’ decision-making processes and
thus on the sales; as a result, the automatic identi-
fication of helpful reviews has received consider-
able research attentions in recent years (Kim et al.,
2006; Liu et al., 2008; Mudambi, 2010; Xiong and
Litman, 2014; Martin and Pu, 2014; Yang et al.,
2015, 2016).

Existing works on helpful reviews identifica-
tion mostly focus on designing efficient features.

Widely used features include external features,
(e.g. date (Liu et al., 2008), product rating (Kim
et al., 2006) and product type (Mudambi, 2010))
and intrinsic features (e.g. semantic dictionar-
ies (Yang et al., 2015) and emotional dictionaries
(Martin and Pu, 2014)). Compared to external fea-
tures, intrinsic features can provide some insight-
s and explanations for the prediction results, and
support better cross-domain generalisation. In this
work, we investigate a new form of intrinsic fea-
tures: the argument features.

An argument is a basic unit people use to per-
suade their audiences to accept a particular state
of affairs (Eckle-Kohler et al., 2015). An argu-
ment usually consists of a claim (also known as
conclusion) and some premises (also known as
evidences) offered in support of the claim. For
example, consider the following review excerpt:
“The staff were amazing, they went out of their
way to help us”; the texts before the comma con-
stitute a claim, and the texts after the comma
give a premise supporting the claim. Argumen-
tation mining (Moens, 2013; Lippi and Torroni,
2016) receives growing research interests in var-
ious domains (Palau and Moens, 2009; Contractor
et al., 2012; Park and Cardie, 2014; Madnani et al.,
2012; Kirschner et al., 2015; Wachsmuth et al.,
2014, 2015). Recent advances in automatic argu-
ments identification (Stab and Gurevych, 2014),
has stimulated the usage of argument features in
multiple domains, e.g. essay scoring (Wachsmuth
et al., 2016) and online forum comments ranking
(Wei12 et al., 2016).

The motivation of this work is a hypothesis
that, the helpfulness of a review is closely relat-
ed to some argument-related features, e.g. the
percentage of argumentative sentences, the aver-
age number of premises in each argument, etc.
To validate our hypothesis, we manually anno-
tate arguments in 110 hotel reviews so as to use
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these “ground truth” arguments to testify the ef-
fectiveness of argument-based features for detect-
ing helpful hotel reviews. Empirical results sug-
gest that, for four baseline feature sets we test,
their performances can be improved, in average,
by 11.01% in terms of F1-score and 10.40% in
terms of AUC when they are used together with
some argument-based features. Furthermore, we
use the effective argument-based features to give
some insights into which product reviews are more
helpful.

2 Corpus

We use the Tripadvisor hotel reviews corpus built
by (O’Mahony and Smyth, 2010) to test the per-
formance of our helpful reviews classifier. Each
entry in this corpus includes the review texts, the
number of people that have viewed this review
(denoted by Y) and the number of people that
think this review is helpful (denoted by X).

We randomly sample 110 hotel reviews from
this corpus to annotate the “ground truth” argu-
ment structures 1. In line with (Wachsmuth et al.,
2015), we view each sub-sentence in the review as
a clause and ask three annotators independently to
annotate each clause as one of the following seven
argument components:

Major Claim: a summary of the main opinion
of a review. For instance, “I have enjoyed the s-
tay in the hotel”, “I am sad to say that i am very
disappointed with this hotel”;

Claim: a subjective opinion on a certain aspect
of a hotel. For example, “The staff was amazing”,
“The room is spacious”;

Premise: an objective reason/evidence support-
ing a claim. For instance, “The staff went out of
their way to help us”, it supports the first example
claim above; “We had a sitting room as well as
a balcony”, it supports the second example claim
above;

Premise Supporting an Implicit Claim (PSIC):
an objective reason/evidence that supporting an
implicit claim, which does appear in review. For
instance, “just five minutes’ walk to the down
town” supports some implicit claims like “the lo-
cation of the hotel is good”, although this implicit
claims has never appeared in the review;

Background: an objective description that does
not give direct opinions but provides some back-

1The annotated corpus can be obtained by contacting the
first author

Component Type Number Kappa
Major claim 143 0.86

Claim 581 0.77
Premise 206 0.65

PSIC 121 0.94
Background 80 0.89

Recommendation 70 1.00
Non-argumentative 145 0.78

Table 1: The number and Fleiss’ kappa for each
argument component type we annotate.

ground information. For example, “We checked
into this hotel at midnight”, “I stayed five nights
at this hotel because i was attending a conference
at the hotel”;

Recommendation: a positive or negative rec-
ommendation for the hotel. For instance, “I would
definitely come to this hotel again the next time I
visit London”, “Do not come to this hotel if you
look for some clean places to live”;

Non-argumentative: for all the other clauses.
We use the Fleiss’ kappa metric (Fleiss, 1971)

to evaluate the quality of the obtained annotation-
s, and the results are presented in Table 1. We
can see that the lowest Kappa scores (for Premise)
is still above 0.6, suggesting that the quality of
the annotations are substantial (Landis and Koch,
1977); in other words, there exist little noises in
the ground truth argument structures. We aggre-
gate the annotations using majority voting.

3 Features

In line with (Yang et al., 2015), we consider the
helpfulness as an intrinsic characteristic of product
reviews, and thus only consider the following four
intrinsic features as our baseline features.

Structural features (STR) (Kim et al., 2006; X-
iong and Litman, 2014): we use the following
structural features: total number of tokens, total
number of sentences, average length of sentences,
number of exclamation marks, and the percentage
of question sentences.

Unigram features (UGR) (Kim et al., 2006; X-
iong and Litman, 2014): we remove all stopwords
and non-frequent words (tf < 3) to build the un-
igram vocabulary. Each review is represented by
the vocabulary with tf-idf weighting for each ap-
peared term.

Emotional features (GALC) (Martin and Pu,
2014): the Geneva Affect Label Coder (GALC)
dictionary proposed by (Scherer, 2005) defines 36
emotion states distinguished by words. We build a
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real feature vector with the number of occurrences
of each emotional word plus one additional dimen-
sion for the number of non-emotional words.

Semantic features (INQUIRER) (Yang et al.,
2015): the General Inquirer (INQUIRER) dictio-
nary proposed by (Stone et al., 1962) maps each
word to some semantic tags, e.g. word absurd
is mapped to tags NEG and VICE; similar to the
GALC features, the semantic features include the
number of occurrences of each semantic tag.

3.1 Argument-based Features

The argument-based features can have differen-
t granularity: for example, the number of argu-
ment components can be used as features, and the
number of tokens (words) in the argument compo-
nents can also be used as features. We consider
four granularity of argument features, detailed as
follows.

Component-level argument features. A nat-
ural feature that we believe to be useful is the
ratio of different argument component number-
s. For example, we may be interested in the
ratio between the number of premises and that
of claims; a high ratio suggests that there are
more premises supporting each claim, indicat-
ing that the review gives many evidences. To
generalise this component ratio feature, we pro-
pose component-combination ratio features: we
compute the ratios between any two argumen-
t components combinations. For example, we
may be interested in the ratio between the num-
ber of MajorClaim+Claim+Premise and that of
Background+Non-argumentative. As there are 7
types of labels, the number of possible combina-
tions is 27−1 = 127, and thus the possible number
of combination ratio pairs is 127 × 126 = 16002.
In other words, the component-level feature is a
16002-dimensional real vector.

Token-level argument features. In a finer-
granularity, we consider the number of tokens in
argument components to build features: for ex-
ample, suppose a review has only two claims, one
has 10 words and the other has 5 words; we may
want to know the average number of words con-
tained in each claim, the total number of words in
claims, etc. In total, for each argument component
type, we consider 5 types of token-level statistic-
s: the total number of words in the given com-
ponent type, the length (in terms of word) of the
shortest/longest component of the given type, and

the mean/variance of the number of words in each
component of the given type. Thus, there are in to-
tal 7×5 = 35 features to represent the token-level
statistics.

In addition, the ratio of some token-level statis-
tics may also be of interests: for example, given
a review, we may want to know the ratio between
the number of words in Claims+MajorClaims and
that in Premises. Thus, the combination ratio can
also be applied here. We consider only the com-
bination ratio for two statistics: the total num-
ber of words and the average number of words
in each component-combination; hence, there are
16002 × 2 = 32004 dimensions for the combi-
nation ratio for the statistics. In total, there are
32004 + 35 = 32039 dimensions for the token-
level argument features.

Letter-level argument features. In the finest-
granularity, we consider the letter-level features,
which may give some information the token-level
features do not contain: for example, if a review
has a big number of letters and a small number of
words, it may suggests that many long and com-
plex words are used in this review, which, in turn,
may suggests that the linguistic complexity of the
review is relative high and the review may gives
some very professional opinions. Similar to the
token-level features above, we design 5 types of
statistics and their combination ratios. Thus, the
dimension for the letter-level features is the same
to that of the token-level features.

Position-level argument features. Another di-
mension to consider argument features is the po-
sitions of argument components: for example, if
the major claims of a review are all at the very be-
ginning, we may think that readers can more eas-
ily grasp the main idea of the review and, thus,
the review is more likely to be helpful. For each
component, we use a real number to represent it-
s position: for example, if a review has 10 sub-
sentences (i.e. clauses) in total and the first sub-
sentence the component overlaps is the second
sub-sentence, then the position for this component
is 2/10 = 0.2. For each type of argument com-
ponent, we may be interested in some statistics for
its positions: for example, if a review has sever-
al premises, we may want to know the location of
the earliest/latest appearance of premises, the av-
erage position of all premises and its variance, etc.
Similar to the token- and letter-level features, we
design the same number of features for position-
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Accuracy Precision Recall F1-score AUC
AF 0.617 0.625 0.617 0.620 0.611

STR 0.600 0.360 0.600 0.450 0.500
STR+AF 0.604 0.614 0.604 0.607 0.599

UGR 0.697 0.760 0.697 0.646 0.627
UGR+AF 0.718 0.718 0.719 0.717 0.706

GALC 0.621 0.605 0.621 0.579 0.560
GALC+AF 0.647 0.654 0.647 0.649 0.640
INQUIRER 0.533 0.512 0.533 0.517 0.493

INQUIRER+AF 0.657 0.664 0.657 0.659 0.651

Table 2: Helpful reviews identification performances using argument-based features and/or baseline fea-
tures. AF stands for argument-based features.

level features.

4 Experiments

Following (O’Mahony and Smyth, 2010; Martin
and Pu, 2014), we model the helpfulness predic-
tion task as a classification problem; thus, we use
accuracy, precision, recall, macro F1 and area un-
der the curve (AUC) to as evaluation metrics. Sim-
ilar to (O’Mahony and Smyth, 2010), we consider
a review as helpful if and only if at least 75% opin-
ions for the review are positive, i.e. X/Y ≥ 0.75
(see X and Y in Sect. 2). For the features whose
number of dimensions is more than 10k (i.e. the
UGR features and argument-based features), to re-
duce their dimensions and to improve the perfor-
mance, we only use the positive-information-gain
features in these feature sets. In line with most ex-
isting works on helpfulness prediction (Martin and
Pu, 2014; Yang et al., 2015), we use the LibSVM
(Chang and Lin, 2011) as our classifier.

The performances of different features are pre-
sented in Table 2. Each number in the table is the
average performance in 10-fold cross-validation
tests. From the table we can see that, when be-
ing used together with the argument-based fea-
tures, either of the four baseline features enjoys
a performance boost in terms of all metrics we
consider. To be more specific, in terms of accu-
racy, precision, recall, F1 and AUC, the average
improvement for the baseline features are 4.33%,
10.30%, 4.32%, 11.01% and 10.40%, respective-
ly. However, we observe that the precision of U-
GR+AF, although gives the second highest score
among all feature combinations, is lower than that
of UGR; we leave it for future work. Also, we
notice that when using the argument-based fea-
tures alone, its performance (in terms of Preci-
sion, F1 and AUC) is superior to those of STR,
GALC and INQUIRER, and is only inferior to U-
GR. However, a major drawback of the UGR fea-

ture is its huge and document-dependent dimen-
sionality, while the dimensionality of argument-
based features is fixed, regardless of the size of
the input documents. Moreover, the UGR features
are sparse and problematic in online learning. To
summarise, compared with the other state-of-the-
art features, argument-based features are effective
in identifying helpful reviews, and can represen-
t some complementary information that cannot be
represented in other features.

5 What Makes a Review Helpful ?

Argument-based features can not only improve
the performance of review helpfulness identifi-
cation, but also can be used to interpret what
makes a review helpful. We analyse the informa-
tion gain ranking of the argument-based features
and find that, among all the positive-information-
gain argument features, 36% are from the token-
level argument feature set, and 29% are from the
letter-level argument feature set, suggesting that
these two feature sets are most effective in iden-
tifying helpful reviews. Among all the token-
level argument features with positive information
gain, 69% are ratios of sum of token number be-
tween component-combinations, and the remain-
ing are ratios of the mean token numbers between
component-combinations. We interpret this ob-
servation as follows: given a review, the larger
number of tokens it contains, and the more like-
ly the review is helpful. In fact, helpful reviews
are tend to occur in those long reviews, which
generally provide with more experiences and com-
ments about the product being reviewed. Among
all the letter-level argument features, around three-
quarters are ratios of the sum of the number of let-
ters between component-combinations. This ob-
servation, again, suggests that the length of re-
views plays an important role in the review help-
fulness identification.
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Moreover, among all the argument-based fea-
tures with positive information gain values, a quar-
ter of features are the position-level argument fea-
ture. This is because the position of each argumen-
t component influences the logic flow of reviews,
which, in turn, influences the readability, convinc-
ingness and helpfulness of the reviews. This infor-
mation can hardly be represented by all the base-
line features we considered, and we believe this
explains why the performances of the baseline fea-
tures are improved when being used together with
the argument-based features. However, among al-
l the argument-based features with positive infor-
mation gain values, only 10% are the component-
level argument feature. This indicates that com-
pared to three finer-granularity argument features
above, the component-level argument feature pro-
vides less useful information in review helpfulness
identification.

6 Conclusion and Future Work

In this work, we propose a novel set of intrinsic
features of identifying helpful reviews, namely the
argument-based features. We manually annotate
110 hotel reviews, and compare the performances
of argument-based features with those of some
state-of-the-art features. Empirical results suggest
that, argument-based features include some com-
plementary information that the other feature sets
do not include; as a result, for each baseline fea-
ture, the performance (in terms of various met-
rics) of jointly using this feature and argument-
based features is higher than using this baseline
feature alone. In addition, by analysing the effec-
tiveness of different argument-based features, we
give some insights into which reviews are more
likely to be helpful, from an argumentation per-
spective.

For future work, an immediate next step is
to explore the usage of automatically extracted
arguments in helpful reviews identification: in
this work, all argument-based features are based
on manually annotated arguments; deep-learning
based argument mining (Li et al., 2017; Eger et al.,
2017) has produced some promising results re-
cently, and we plan to investigate whether the au-
tomatically extracted arguments can be used to i-
dentify helpful reviews, and how the errors made
in the argument extraction stage will influence
the performance of helpful reviews identification.
We also plan to investigate the effectiveness of

argument-based features in other domains.
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Abstract

In order to determine argument structure
in text, one must understand how indi-
vidual components of the overall argu-
ment are linked. This work presents the
first neural network-based approach to link
extraction in argument mining. Specif-
ically, we propose a novel architecture
that applies Pointer Network sequence-to-
sequence attention modeling to structural
prediction in discourse parsing tasks. We
then develop a joint model that extends
this architecture to simultaneously address
the link extraction task and the classifica-
tion of argument components. The pro-
posed joint model achieves state-of-the-art
results on two separate evaluation corpora,
showing far superior performance than the
previously proposed corpus-specific and
heavily feature-engineered models. Fur-
thermore, our results demonstrate that
jointly optimizing for both tasks is crucial
for high performance.

1 Introduction

An important goal in argument mining is to un-
derstand the structure in argumentative text (Pers-
ing and Ng, 2016; Peldszus and Stede, 2015; Stab
and Gurevych, 2016; Nguyen and Litman, 2016).
One fundamental assumption when working with
argumentative text is the presence of Arguments
Components (ACs). The types of ACs are gener-
ally characterized as a claim or a premise (Govier,
2013), with premises acting as support (or possi-
bly attack) units for claims (though some corpora
have further AC types, such as major claim (Stab
and Gurevych, 2016, 2014b)).

The task of processing argument structure en-
capsulates four distinct subtasks (our work fo-

cuses on subtasks 2 and 3): (1) Given a sequence
of tokens that represents an entire argumentative
text, determine the token subsequences that con-
stitute non-intersecting ACs; (2) Given an AC,
determine the type of AC (claim, premise, etc.);
(3) Given a set/list of ACs, determine which ACs
have directed links that encapsulate overall argu-
ment structure; (4) Given two linked ACs, deter-
mine whether the link is a supporting or attack-
ing relation. This can be labeled as a ‘micro’ ap-
proach to argument mining (Stab and Gurevych,
2016). In contrast, there have been a number of
efforts to identify argument structure at a higher
level (Boltuzic and Šnajder, 2014; Ghosh et al.,
2014; Cabrio and Villata, 2012), as well as slightly
re-ordering the pipeline with respect to AC types
(Rinott et al., 2015)).

There are two key assumptions our work makes
going forward. First, we assume subtask 1 has
been completed, i.e. ACs have already been iden-
tified. Second, we follow previous work that as-
sumes a tree structure for the linking of ACs (Palau
and Moens, 2009; Cohen, 1987; Peldszus and
Stede, 2015; Stab and Gurevych, 2016). Specifi-
cally, a given AC can only have a single outgoing
link, but can have numerous incoming links. Fur-
thermore, there is a ‘head’ component that has no
outgoing link (the top of the tree). Depending on
the corpus (see Section 4), an argument structure
can be either a single tree or a forest, consisting of
multiple trees. Figure 1 shows an example that we
will use throughout the paper to concretely explain
how our approach works. First, the left side of
the figure presents the raw text of a paragraph in a
persuasive essay (Stab and Gurevych, 2016), with
the ACs contained in square brackets. Squiggly vs
straight underlining differentiates between claims
and premises, respectively. The ACs have been an-
notated as to how they are linked, and the right side
of the figure reflects this structure. The argument
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First, [
:::::::
cloning

:::::
will

:::
be

::::::::::
beneficial

::::
for

:::::
many

:::::::
people

::::
who

::::
are

:::
in

:::::
need

:::
of

:::::
organ

:::::::::
transplants]AC1. In addition, [it shortens
the healing process]AC2. Usually, [it is
very rare to find an appropriate organ
donor]AC3 and [by using cloning in order
to raise required organs the waiting time
can be shortened tremendously]AC4.

AC1
Claim

AC2
Premise

AC4
Premise

AC3
Premise

Figure 1: An example of argument structure with four ACs. The left side shows raw text that has been
annotated for the presence of ACs. Squiggly or straight underlining means an AC is a claim or premise,
respectively. The ACs in the text have also been annotated for links to other ACs, which is shown in the
right figure. ACs 3 and 4 are premises that link to another premise, AC2. Finally, AC2 links to a claim,
AC1. AC1 therefore acts as the central argumentative component.

structure with four ACs forms a tree, where AC2
has two incoming links, and AC1 acts as the head,
with no outgoing links. We also specify the type
of AC, with the head AC marked as a claim and
the remaining ACs marked as premises. Lastly, we
note that the order of argument components can be
a strong indicator of how components should re-
late. Linking to the first argument component can
provide a competitive baseline heuristic (Peldszus
and Stede, 2015; Stab and Gurevych, 2016).

Given the above considerations, we propose that
sequence-to-sequence attention modeling, in the
spirit of a Pointer Network (PN) (Vinyals et al.,
2015b), can be effective for predicting argument
structure. To the best of our knowledge, a clean,
elegant implementation of a PN-based model has
yet to be introduced for discourse parsing tasks.
A PN is a sequence-to-sequence model (Sutskever
et al., 2014) that outputs a distribution over the en-
coding indices at each decoding timestep. More
generally, it is a recurrent model with attention
(Bahdanau et al., 2014), and we claim that as such,
it is promising for link extraction because it inher-
ently possesses three important characteristics: (1)
it is able to model the sequential nature of ACs, (2)
it constrains ACs to have a single outgoing link,
thus partly enforcing the tree structure, and (3)
the hidden representations learned by the model
can be used for jointly predicting multiple sub-
tasks. Furthermore, we believe the sequence-to-
sequence aspect of the model provides two distinct
benefits: (1) it allows for two separate representa-
tions of a single AC (one for the source and one for
the target of the link), and (2) the decoder network-
could learn to predict correct sequences of linked

indices, which is a second recurrence over ACs.
Note that we also test the sequence-to-sequence
architecture against a simplified model that only
uses hidden states from an encoding network to
make predictions (see Section 5).

The main technical contribution of our work is a
joint model that simultaneously predicts links be-
tween ACs and determines their type. Our joint
model uses the hidden representation of ACs pro-
duced during the encoding step (see Section 3.4).
While PNs were originally proposed to allow a
variable length decoding sequence, our model dif-
fers in that it decodes for the same number of
timesteps as there are inputs. This is a key insight
that allows for a sequence-to-sequence model to
be used for structural prediction. Aside from the
partial assumption of tree structure in the argu-
mentative text, our models do not make any ad-
ditional assumptions about the AC types or con-
nectivity, unlike the work of Peldszus (2014).
Lastly, in respect to the broad task of parsing, our
model is flexible because it can easily handle non-
projective, multi-root dependencies. We evaluate
our models on the corpora of Stab and Gurevych
(2016) and Peldszus (2014), and compare our re-
sults with the results of the aformentioned au-
thors. Our results show that (1) joint model-
ing is imperative for competitive performance on
the link extraction task, (2) the presence of the
second recurrence improves performance over a
non-sequence-to-sequence model, and (3) the joint
model can outperform models with heavy feature-
engineering and corpus-specific constraints.
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2 Related Work

Palau and Moens (2009) is an early work in argu-
ment mining, using a hand-crafted Context-Free
Grammar to determine the structure of ACs in a
corpus of legal texts. Lawrence et al. (2014) lever-
age a topic modeling-based AC similarity to un-
cover tree-structured arguments in philosophical
texts. Recent work offers data-driven approaches
to the task of predicting links between ACs. Stab
and Gurevych (2014b) approach the task as a bi-
nary classification problem. The authors train an
SVM with various semantic and structural fea-
tures. Peldszus and Stede have also used classifi-
cation models for predicting the presence of links
(2015). The first neural network-based model for
argumentation mining was proposed by Laha and
Raykar (2016), who use two recurrent networks in
end-to-end fashion to classify AC types.

Various authors have also proposed to jointly
model link extraction with other subtasks from the
argument mining pipeline, using either an Inte-
ger Linear Programming (ILP) framework (Pers-
ing and Ng, 2016; Stab and Gurevych, 2016) or
directly feeding previous subtask predictions into
a tree-based parser. The former joint approaches
are evaluated on an annotated corpus of persuasive
essays (Stab and Gurevych, 2014a, 2016), and the
latter on a corpus of microtexts (Peldszus, 2014).
The ILP framework is effective in enforcing a tree
structure between ACs when predictions are made
from otherwise naive base classifiers.

Recurrent neural networks have previously been
proposed to model tree/graph structures in a linear
manner. Vinyals et al. (2015c) use a sequence-to-
sequence model for the task of syntactic parsing.
Bowman et al. (2015) experiment on an artificial
entailment dataset that is specifically engineered
to capture recursive logic (Bowman et al., 2014).
Standard recurrent neural networks can take in
complete sentence sequences and perform com-
petitively with a recursive neural network. Multi-
task learning for sequence-to-sequence has also
been proposed (Luong et al., 2015), though none
of the models used a PN for prediction.

In the field of discourse parsing, the work of Li
et al. (2016) is the only work, to our knowledge,
that incorporates attention into the network archi-
tecture. However, the attention is only used in the
process of creating representations of the text it-
self. Attention is not used to predict the overall
discourse structure. In fact, the model still relies

on a binary classifier to determine if textual com-
ponents should have a link. Arguably the most
similar approach to ours is in the field of depen-
dency parsing (Cheng et al., 2016). The authors
propose a model that performs ‘queries’ between
word representations in order to determine a dis-
tribution over potential headwords.

3 Proposed Approach

In this section, we describe our approach to using a
sequence-to-sequence model with attention for ar-
gument mining, specifically, identifying AC types
and extracting the links between them. We begin
by giving a brief overview of these models.

3.1 Pointer Network
A PN is a sequence-to-sequence model (Sutskever
et al., 2014) with attention (Bahdanau et al., 2014)
that was proposed to handle decoding sequences
over the encoding inputs, and can be extended to
arbitrary sets (Vinyals et al., 2015a). The origi-
nal motivation for a pointer network was to allow
networks to learn solutions to algorithmic prob-
lems, such as the traveling salesperson and convex
hull problems, where the solution is a sequence
over input points. The PN model is trained on in-
put/output sequence pairs (E,D), where E is the
source and D is the target (our choice of E,D is
meant to represent the encoding, decoding steps
of the sequence-to-sequence model). Given model
parameters Θ, we apply the chain rule to deter-
mine the probability of a single training example:

p(D|E; Θ) =

m(E)∏

i=1

p(Di|D1, ..., Di−1, E; Θ)

(1)
where the function m signifies that the number of
decoding timesteps is a function of each individual
training example. We will discuss shortly why we
need to modify the original definition of m for our
application. By taking the log-likelihood of Equa-
tion 1, we arrive at the optimization objective:

Θ∗ = arg max
Θ

∑

E,D

log p(D|E; Θ) (2)

which is the sum over all training example pairs.
The PN uses Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) for
sequential modeling, which produces a hidden
layer h at each encoding/decoding timestep. In
practice, the PN has two separate LSTMs, one for
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Component 1 Component 2 Component 3 Component 4

LSTM
D1

LSTM
D2

LSTM
D3

LSTM
D4

LSTM
E1

LSTM
E2

LSTM
E3

LSTM
E4

Figure 2: Applying a Pointer Network to the example paragraph in Figure 1 with LSTMs unrolled over
time. Note that D1 points to itself to denote that it has not outgoing link and is therefore the head of a
tree.

encoding and one for decoding. Thus, we refer to
encoding hidden layers as e, and decoding hidden
layers as d.

The PN uses a form of content-based at-
tention (Bahdanau et al., 2014) to allow the
model to produce a distribution over input ele-
ments. This can also be thought of as a dis-
tribution over input indices, wherein a decoding
step ‘points’ to the input. Formally, given encod-
ing hidden states (e1, ..., en), the model calculates
p(Di|D1, ..., Di−1, E) as follows:

uij = vT tanh(W1ej +W2di) (3)

p(Di|D1, ..., Dj−1, E) = softmax(ui) (4)

where matrices W1, W2 and vector v are param-
eters of the model (along with the LSTM param-
eters used for encoding and decoding). In Equa-
tion 3, prior to taking the dot product with v, the
resulting transformation can be thought of as cre-
ating a joint hidden representation of inputs i and
j. Vector ui in equation 4 is of length n, and in-
dex j corresponds to input element j. Therefore,
by taking the softmax of ui, we are able to create
a distribution over the input.

3.2 Link Extraction as Sequence Modeling
A given piece of text has a set of ACs, which occur
in a specific order in the text: (C1, ..., Cn). There-
fore, at encoding timestep i, the model is fed a
representation of Ci. Since the representation is
large and sparse (see Section 3.3 for details on how
we represent ACs), we add a fully-connected layer
before the LSTM input. Given a representation Ri
for AC Ci, the LSTM input Ai is calculated as:

Ai = σ(WrepRi + brep) (5)

where Wrep, brep in turn become model parame-
ters, and σ is the sigmoid function1. Similarly, the

1We also experimented with relu and elu activations, but
found sigmoid to yield the best performance.

decoding network applies a fully-connected layer
with sigmoid activation to its inputs, see Figure 3.
At encoding step i, the encoding LSTM produces
hidden layer ei, which can be thought of as a hid-
den representation of AC Ci.

In order to make sequence-to-sequence model-
ing applicable to the problem of link extraction,
we explicitly set the number of decoding timesteps
to be equal to the number of input components.
Using notation from Equation 1, the decoding se-
quence length for an encoding sequence E is sim-
ply m(E) = |{C1, ..., Cn}|, which is trivially
equal to n. By constructing the decoding sequence
in this manner, we can associate decoding timestep
i with AC Ci.

From Equation 4, decoding timestep i will out-
put a distribution over input indices. The result of
this distribution will indicate to which AC compo-
nent Ci links. Recall there is a possibility that an
AC has no outgoing link, such as if it’s the root of
the tree. In this case, we state that if AC Ci does
not have an outgoing link, decoding step Di will
output index i. Conversely, if Di outputs index j,
such that j is not equal to i, this implies thatCi has
an outgoing link to Cj . For the argument structure
in Figure 1, the corresponding decoding sequence
is (1, 1, 2, 2). The topology of this decoding se-
quence is illustrated in Figure 2. Observe how C1

points to itself since it has no outgoing link.
Finally, we note that we have a Bidirectional

LSTM (Graves and Schmidhuber, 2005) as the en-
coder, unlike the model proposed by Vinyals et al.
(2015b). Thus, ei is the concatenation of forward
and backward hidden states −→e i and←−e n−i+1, pro-
duced by two separate LSTMs. The decoder re-
mains a standard forward LSTM.

3.3 Representing Argument Components

At each timestep of the encoder, the network takes
in a representation of an AC. Each AC is itself
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Bi-LSTM
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FC1 FC1 FC1 FC1

Bidirectional LSTM Encoder

Component 1 Component 2 Component 3 Component 4

FC2 FC2 FC2 FC2

Claim Premise Premise Premise

LSTM
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LSTM
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E2

Bi-LSTM
E3

Bi-LSTM
E4

FC3 FC3 FC3

Figure 3: Architecture of the joint model applied to the example in Figure 1. Note that D1 points to itself
to denote that it has not outgoing link and is therefore the head of a tree.

a sequence of tokens, similar to the Question-
Answering dataset from Weston et al. (2015). We
follow the work of Stab and Gurevych (2016) and
focus on three different types of features to repre-
sent our ACs: (1) Bag-of-Words of the AC; (2)
Embedding representation based on GloVe em-
beddings (Pennington et al., 2014), which uses av-
erage, max, and min pooling across the token em-
beddings; (3) Structural features: Whether or not
the AC is the first AC in a paragraph, and whether
the AC is in an opening, body, or closing para-
graph. See Section 6 for an ablation study of the
proposed features.

3.4 Joint Neural Model

Up to this point, we focused on the task of extract-
ing links between ACs. However, recent work has
shown that joint models that simultaneously try to
complete multiple aspects of the subtask pipeline
outperform models that focus on a single sub-
task (Persing and Ng, 2016; Stab and Gurevych,
2014b; Peldszus and Stede, 2015). Therefore, we
will modify the single-task architecture so that
it would allow us to perform AC classification
(Kwon et al., 2007; Rooney et al., 2012) together
with link prediction. Knowledge of an individual
subtask’s predictions can aid in other subtasks. For
example, claims do not have an outgoing link, so
knowing the type of AC can aid in the link predic-
tion task. This can be seen as a way of regulariz-
ing the hidden representations from the encoding
component (Che et al., 2015).

At each timestep, predicting AC type is a
straightforward classification task: given AC Ci,
we need to predict whether it is a claim, premise,

or possibly major claim. More generally, this is
another sequence modeling problem: given input
sequence E, we want to predict a sequence of
argument types T . For encoding timestep i, the
model creates hidden representation ei. This can
be thought of as a representation of AC Ci. There-
fore, our joint model will simply pass this repre-
sentation through a fully-connected layer as fol-
lows:

zi = Wclsei + bcls (6)

where Wcls, bcls become elements of the model
parameters, Θ. The dimensionality of Wcls, bcls is
determined by the number of classes. Lastly, we
use softmax to form a distribution over the possi-
ble classes.

Consequently, the probability of predicting the
component type at timestep i is defined as:

p(Ti|Ei; Θ) = softmax(zi) (7)

Finally, combining this new prediction task with
Equation 2, we arrive at the new training objective:

Θ∗ = arg max
Θ

α
∑

E,D

log p(D|E; Θ)

+(1− α)
∑

E

log p(T |E; Θ)
(8)

which simply sums the costs of the individual pre-
diction tasks, and the second summation is the cost
for the new task of predicting AC type. α ∈ [0, 1]
is a hyperparameter that specifies how we weight
the two prediction tasks in our cost function. The
architecture of the joint model, applied to our on-
going example, is illustrated in Figure 3.
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4 Experimental Design

As we have mentioned, our work assumes that
ACs have already been identified. The order of
ACs corresponds directly to the order in which the
ACs appear in the text. We test the effectiveness
of our proposed model on a dataset of persuasive
essays (PEC) (Stab and Gurevych, 2016), as well
as a dataset of microtexts (MTC) (Peldszus, 2014).
The feature space for the PEC has roughly 3,000
dimensions, and the MTC feature space has be-
tween 2,500 and 3,000 dimensions, depending on
the data split. The PEC contains a total of 402 es-
says, with a frozen set of 80 essays held out for
testing. There are three AC types in this corpus:
major claim, claim, and premise. In this corpus,
individual structures can be either trees or forests.
Also, in this corpus, each essay has multiple para-
graphs, and argument structure is only uncovered
within a given paragraph. The MTC contains 112
short texts. Unlike the PEC, each text in this cor-
pus is itself a complete example, as well as a single
tree. Since the dataset is small, the authors have
created 10 sets of 5-fold cross-validation, report-
ing the the average across all splits for final model
evaluation. This corpus contains only two types of
ACs: claim and premise. Note that link prediction
is directed, i.e., predicting a link between the pair
Ci, Cj(i 6= j) is different than Cj , Ci.

We implement our models in TensorFlow
(Abadi et al., 2015). We use the following pa-
rameters: hidden input dimension size 512, hidden
layer size 256 for the bidirectional LSTMs, hidden
layer size 512 for the LSTM decoder, α equal to
0.5, and dropout (Srivastava et al., 2014) of 0.9.
We believe the need for such high dropout is due
to the small amounts of training data (Zarrella and
Marsh, 2016), particularly in the MTC. All models
are trained with Adam optimizer (Kingma and Ba,
2014) with a batch size of 16. For a given training
set, we randomly select 10% to become the valida-
tion set. Training occurs for 4,000 epochs. Once
training is completed, we select the model with the
highest validation accuracy (on the link prediction
task) and evaluate it on the held-out test set. At
test time, we take a greedy approach and select the
index of the probability distribution (whether link
or type prediction) with the highest value.

5 Results

The results of our experiments are presented in Ta-
bles 1 and 2. For each corpus, we present f1 scores

for the AC type classification experiment, with a
macro-averaged score of the individual class f1
scores. We also present the f1 scores for predict-
ing the presence/absence of links between ACs,
as well as the associated macro-average between
these two values.

We implement and compare four types of neural
models: 1) The previously described joint model
from Section 3.4 (called Joint Model in the ta-
bles); 2) The same as 1), but without the fully-
connected input layers (called Joint Model No FC
Input in the table); 3) The same as 1), but the
model only predicts the link task, and is therefore
not optimized for type prediction (called Single-
Task Model in the table); 4) A non-sequence-to-
sequence model that uses the hidden layers pro-
duced by the BLSTM encoder with the same type
of attention as the joint model (called Joint Model
No Seq2Seq in the table). That is, di in Equation
3 is replaced by ei.

In both corpora we compare against the follow-
ing previously proposed models: Base Classifier
(Stab and Gurevych, 2016) is a feature-rich, task-
specific (AC type or link extraction) SVM clas-
sifier. Neither of these classifiers enforce struc-
tural or global constraints. Conversely, the ILP
Joint Model (Stab and Gurevych, 2016) provides
constraints by sharing prediction information be-
tween the base classifiers. For example, the model
attempts to enforce a tree structure among ACs
within a given paragraph, as well as using incom-
ing link predictions to better predict the type class
claim. For the MTC only, we also have the fol-
lowing comparative models: Simple (Peldszus and
Stede, 2015) is a feature-rich logistic regression
classifier. Best EG (Peldszus and Stede, 2015) cre-
ates an Evidence Graph (EG) from the predictions
of a set of base classifiers. The EG models the po-
tential argument structure, and offers a global opti-
mization objective that the base classifiers attempt
to optimize by adjusting their individual weights.
Lastly, MP+p (Peldszus and Stede, 2015) com-
bines predictions from base classifiers with a Min-
imum Spanning Tree Parser (MSTParser).

6 Discussion

First, we point out that the joint model achieves
state-of-the-art on 10 of the 13 metrics in Tables
1 and 2, including the highest results in all met-
rics on the PEC, as well as link prediction on the
MTC. The performance on the MTC is very en-
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Type prediction Link prediction
Model Macro f1 MC f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1
Base Classifier .794 .891 .611 .879 .717 .508 .917
ILP Joint Model .826 .891 .682 .903 .751 .585 .918
Single-Task Model - - - - .709 .511 .906
Joint Model No Seq2Seq .810 .830 .688 .912 .754 .589 .919
Joint Model No FC Input .791 .826 .642 .906 .708 .514 .901
Joint Model .849 .894 .732 .921 .767 .608 .925

Table 1: Results on the Persuasive Essay corpus. All models we tested are joint models, except for
the Single-Task Model model, which only predicts links. All model have a fully-connected input layer,
except for the row titled ‘Joint Model No FC Input’. See Section 5 for a full description of the models.

Type prediction Link prediction
Model Macro f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1
Simple .817 - - .663 .478 .848
Best EG .869 - - .693 .502 .884
MP+p .831 - - .720 .546 .894
Base Classifier .830 .712 .937 .650 .446 .841
ILP Joint Model .857 .770 .943 .683 .486 .881
Joint Model .813 .692 .934 .740 .577 .903

Table 2: Results on the Microtext corpus.

couraging for several reasons. First, the fact that
the model can perform so well with only a hun-
dred training examples is rather remarkable. Sec-
ond, although we motivate the use of an attention
model due to the fact that it partially enforces a
tree structure, other models we compare against
explicitly contain further constraints (for example,
only premises can have outgoing links). More-
over, the MP+p model directly enforces the sin-
gle tree constraint unique to the microtext cor-
pus (the PEC allows forests). Even though the
joint model does not have the tree constraint di-
rectly encoded, it able to learn the structure ef-
fectively from the training examples so that it can
outperform the Mp+p model for link prediction.
As for the other neural models, the joint model
with no seq2seq performs competitively with the
ILP joint model on the PEC, but trails the per-
formance of the joint model. We believe this is
because the joint model is able to create two dif-
ferent representations for each AC, one each in
the encoding/decoding state, which benefits per-
formance in the two tasks. We also believe that
the joint model benefits from a second recurrence
over the ACs, modeling the tree/forest structure in
a linear manner. Conversely, the joint model with
no seq2seq must encode information relating to
type as well as link prediction in a single hidden

representation. On one hand, the joint model no
seq2seq outperforms the ILP model on link pre-
diction, yet it is not able to match the ILP joint
model’s performance on type prediction, primar-
ily due to the poor performance on predicting the
major claim class. Another interesting outcome is
the importance of the fully-connected layer before
the LSTM input. This extra layer seems to be cru-
cial for improving performance on this task. The
results dictate that even a simple fully-connected
layer with sigmoid activation can provide a use-
ful dimensionality reduction step. Finally, and ar-
guably most importantly, the single-task model,
only optimized for link prediction, suffers a large
drop in performance, conveying that the dual op-
timization of the joint model is vital for high per-
formance in the link prediction task. We believe
this is because the joint optimization creates more
expressive representations of the ACs, which cap-
ture the natural relation between AC type and AC
linking.

Table 3 shows the results of an ablation study
for AC feature representation. Regarding link pre-
diction, BOW features are clearly the most impor-
tant, as their absence results in the highest drop in
performance. Conversely, the presence of struc-
tural features provides the smallest boost in per-
formance, as the model is still able to record state-
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Type prediction Link prediction
Model Macro f1 MC f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1
No structural .808 .824 .694 .907 .760 .598 .922
No BOW .796 .833 .652 .902 .728 .543 .912
No Embeddings .827 .874 .695 .911 .750 .581 .918
Only Avg Emb* .832 .873 .717 .917 .751 .583 .918
Only Max Emb* .843 .874 .732 .923 .766 .608 .924
Only Min Emb* .838 .878 .719 .918 .763 .602 .924
All features .849 .894 .732 .921 .767 .608 .925

Table 3: Feature ablation study. * indicates that both BOW and Structural are present, as well as the
stated embedding type.

Type prediction Link prediction
Bin Macro f1 MC f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1

1 ≤ len < 4 .863 .902 .798 .889 .918 .866 .969
4 ≤ len < 8 .680 .444 .675 .920 .749 .586 .912
8 ≤ len < 12 .862* .000* .762 .961 .742 .542 .941

Table 4: Results of binning test data by length of AC sequence. * indicates that this bin does not contain
any major claim labels, and this average only applies to claim and premise classes. However, we do not
disable the model from predicting this class: the model was able to avoid predicting this class on its own.

of-the-art results compared to the ILP Joint Model.
This shows that the Joint Model is able to capture
structural cues through sequence modeling and se-
mantics. When considering type prediction, both
BOW and structural features are important, and it
is the embedding features that provide the least
benefit. The ablation results also provide an in-
teresting insight into the effectiveness of different
pooling strategies for using individual token em-
beddings to create a multi-word embedding. The
popular method of averaging embeddings (which
is used by Stab and Gurevych (2016) in their sys-
tem) is in fact the worst method, although its per-
formance is still competitive with the previous
state-of-the-art. Conversely, max pooling results
are on par with the joint model results in Table 1.

Table 4 shows results on the PEC test set with
the test examples binned by sequence length.
First, it is not surprising to see that the model per-
forms best when the sequences are the shortest (for
link prediction; type prediction actually sees the
worst performance in the middle bin). As the se-
quence length increases, the accuracy on link pre-
diction drops. This is possibly due to the fact that
as the length increases, a given AC has more possi-
bilities as to which other AC it can link to, making
the task more difficult. Conversely, there is actu-
ally a rise in no link prediction accuracy from the
second to third row. This is likely due to the fact

that since the model predicts at most one outgoing
link, it indirectly predicts no link for the remain-
ing ACs in the sequence. Since the chance prob-
ability is low for having a link between a given
AC in a long sequence, the no link performance
is actually better in longer sequences. The results
of the length-based binning could also potentially
give insight into the poor performance on the type
prediction task in the MTC. Since the arguments in
the MTC average 5 ACs, they would be in the sec-
ond bin (row 2) of Table 4. The claim and premise
f1 scores for this bin are similar to those from the
same system’s performance on the MTC.

7 Conclusion

In this paper we have proposed how to use a
joint sequence-to-sequence model with attention
(Vinyals et al., 2015b) to both extract links be-
tween ACs and classify AC type. We evaluate our
models on two corpora: a corpus of persuasive
essays (Stab and Gurevych, 2016), and a corpus
of microtexts (Peldszus, 2014). The Joint Model
records state-of-the-art results on the persuasive
essay corpus, as well as achieving state-of-the-art
results for link prediction on the microtext corpus.
The results show that jointly modeling the two pre-
diction tasks is critical for high performance. Fu-
ture work can attempt to learn the AC representa-
tions themselves, such as in Kumar et al. (2015).
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Lastly, future work can integrate subtasks 1 and
4 into the model. The representations produced
by Equation 3 could potentially be used to predict
link type, i.e. supporting or attacking (the fourth
subtask in the pipeline). In addition, a segment-
ing technique, such as the one proposed by Weston
et al. (2014), can accomplish subtask 1.

Acknowledgments

This work was supported in part by the U.S. Army
Research Office under Grant No. W911NF-16-1-
0174.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916.

Guido Zarrella and Amy Marsh. 2016. Mitre at
semeval-2016 task 6: Transfer learning for stance
detection. arXiv preprint arXiv:1606.03784.

1373



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1374–1379
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Identifying attack and support argumentative relations using deep learning

Oana Cocarascu and Francesca Toni
Department of Computing
Imperial College London

Abstract

We propose a deep learning architecture to
capture argumentative relations of attack
and support from one piece of text to an-
other, of the kind that naturally occur in
a debate. The architecture uses two (uni-
directional or bidirectional) Long Short-
Term Memory networks and (trained or
non-trained) word embeddings, and al-
lows to considerably improve upon exist-
ing techniques that use syntactic features
and supervised classifiers for the same
form of (relation-based) argument mining.

1 Introduction

Argument Mining (AM) is a relatively new re-
search area which involves, amongst others, the
automatic detection in text of arguments, ar-
gument components, and relations between ar-
guments (see (Lippi and Torroni, 2016) for an
overview). We focus on a specific type of AM,
referred to as Relation-based AM (Carstens and
Toni, 2015), which has recently received atten-
tion by several researchers (e.g. see (Bosc et al.,
2016; Carstens and Toni, 2017)). This type of AM
aims at identifying argumentative relations of at-
tack and support between natural language argu-
ments in text, by classifying pairs of pieces of text
as belonging to attack, support or neither attack
nor support relations. For example, consider the
three texts taken from Carstens and Toni (2015):

t1: ‘We should grant politicians immunity from
prosecution’

t2: ‘Giving politicians immunity allows them to
focus on performing their duties’

t3: ‘The ability to prosecute politicians is the ul-
timate protection against abuse of power’

Here t2 supports t1, t3 attacks t1, and t2 and t3
neither attack nor support one another.

Relation-based AM is useful, for example, to
pave the way towards identifying accepted opin-
ions (Bosc et al., 2016) or divisive issues (Konat
et al., 2016) within debates.

We propose a deep learning architecture
for Relation-based AM based on Long-Short
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997).
Within the architecture, each input text is fed, as
a (trained or non-trained) 100-dimensional GloVe
embedding (Pennington et al., 2014), into a (unidi-
rectional or bidirectional) LSTM which produces
a vector representation of the text independently of
the other text being analysed. The two vectors are
then merged (using element-wise sum or concate-
nation) and the resulting vector is fed to a softmax
classifier which predicts whether the pair of input
texts belongs to the attack, support or neither re-
lations. The input texts may be at most 50 words
long, but are not restricted to single sentences.

We experimented with several instances of the
architecture and achieved 89.53% accuracy and
89.07% F1 using unidirectional LSTMs and con-
catenation as the merge layer, considerably outper-
forming feature-based supervised classifiers used
in the studies which presented the corpus we also
use (Carstens and Toni, 2015, 2017).

The remainder of the paper is organised as fol-
lows. In Section 2 we discuss related work and the
corpus we use. In Section 3 we describe our deep
learning architecture and report experiments and
results in Section 4. We conclude the paper and
propose directions for future work in Section 5.
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2 Background

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (Elman,
1990; Mikolov et al., 2010) are a type of neural
networks in which the hidden layer is connected
to itself so that the previous hidden state is used
along with the input at the current step. RNNs
tend to suffer from the vanishing gradients prob-
lem (Bengio et al., 1994) while trying to capture
long-term dependencies.

LSTM models (Hochreiter and Schmidhuber,
1997), a type of RNNs, address this problem by
introducing memory cells and gates into networks.
LSTMs use memory cells to store contextual in-
formation and three types of gates (input, forget,
and output gates) that determine which informa-
tion needs to be added or removed to learn long-
term dependencies within a sequence.

One problem with RNNs/LSTMs in natu-
ral language processing is that they do not
make use of the information of future words.
Bidirectional RNNs/LSTMs (BiRNNs/BiLSTMs)
(Schuster and Paliwal, 1997) solve this problem by
using both previous and future words while pro-
cessing the input sequence with two RNNs: one
in the forward and one in the backward direction,
resulting in two vectors for each input.

2.2 Related work

Identifying relations between texts has recently re-
ceived a great deal of attention, e.g. in Argument
Mining (AM) (see (Lippi and Torroni, 2016) for
a recent overview). In particular, Relation-based
AM (Carstens and Toni, 2015) aims to automat-
ically identify argumentative relations to create
Bipolar Argumentation Frameworks (BAFs) (Cay-
rol and Lagasquie-Schiex, 2005).

BAFs are triples 〈AR, attacks, supports〉 con-
sisting of a set of argumentsAR and two binary re-
lations attacks and supports between arguments.

The example texts introduced in Section 1 form
a BAF with AR = {t1, t2, t3} and attacks,
supports given graphically (as -, + respectively)
as follows:

t2 t3

t1+ −

Carstens and Toni (2017) obtained 61.8% accu-
racy and 62.1% F1 on a news articles using Sup-
port Vector Machines (SVMs) and features such as

distance measures, word overlap, sentence metrics
and occurences of sentiment words.

Bosc et al. (2016) used a corpus consisting of
tweets to determine attack and support relations
between tweets. Using an encoder-decoder ar-
chitecture and two LSTMs (the second LSTM
initialised with the last hidden state of the first
LSTM), they obtained negative results (0.2 F1 for
support and 0.16 F1 for attack).

Other works in AM use deep learning models
to determine relations between arguments, but of a
different kind than in our work. Notably, Habernal
and Gurevych (2016) experimented with LSTM
models extended with an attention mechanism and
a convolution layer over the input pairs to deter-
mine whether an input argument is more convinc-
ing than the other input argument. Thus, their fo-
cus is on determining a “more convincing than”
relation, rather than attack and support argumen-
tative relations, between arguments.

Several authors used neural network models for
tasks related to the form of AM we consider. Yin
et al. (2016) proposed three attention mechanisms
for Convolutional Neural Networks to model pairs
of sentences in tasks such as textual entailment
and answer selection, whereas dos Santos et al.
(2016) proposed a two-way attention mechanism
to jointly learn the representation of two inputs in
an answer selection setting.

Bowman et al. (2015) used stacked LSTMs
to determine entailment, neutral and contradic-
tion relations amongst sentence pairs using the
SNLI (Stanford Natural Language Inference) cor-
pus, with the bottom layer taking as input the
concatenation of the input sentences. Recognis-
ing textual entailment between two sentences was
also addressed in (Rocktäschel et al., 2015) which
used LSTMs and a word-by-word neural attention
mechanism on the SNLI corpus.

Liu et al. (2016) proposed two models captur-
ing the interdependencies between the two paral-
lel LSTMs encoding two input sentences for the
tasks of recognising textual entailment and match-
ing questions and answers. Further, Koreeda et al.
(2016) used a BiRNN with a word-embedding-
based attention model to determine whether a
piece of an evidence supports a claim that a phrase
promotes or suppresses a value, using a dataset of
1000 pairs.
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2.3 Dataset
Determining relations between any texts can be
seen as a three-class problem, with labels L =
{attack, support, neither}. We used a dataset
covering various topics such as movies, technol-
ogy and politics1, where attack relations repre-
sent 31% of the dataset, support relations repre-
sent 32% of the dataset and neither relations rep-
resent 37% of the dataset.

We have also explored the use of other corpora
(e.g. the SNLI corpus (Bowman et al., 2015) and
Araucaria in AIFdb2) that we ultimately decided
not to include due to their structure not being di-
rectly amenable to our analysis.

3 Architecture

Figure 1 summarises the deep learning architec-
ture that we use for predicting which relation from
L = {attack, support, neither} holds between
the first and the second texts in any input pair.

We do not limit input texts to be single sen-
tences, but limit them to 50 words (as this is the
average text length in our corpus): inputs whose
size is smaller than this threshold are padded with
zeros at the end to give sequences of exactly 50
words. The input texts are (separately) embed-
ded as 100-dimensional GloVe vectors (Penning-
ton et al., 2014), with the words that do not ap-
pear in the vectors being treated as unknown. As
we will see in Section 4, we experimented with
the pre-trained word representations (freezing the
weights during learning) as well as learning the
weights.

The architecture relies upon two parallel
LSTMs to model the two texts separately. We ex-
perimented with both unidirectional and bidirec-
tional LSTMs (see Section 4). In both cases, we
set the LSTM dimension to 32, as this proved to be
the best, amongst alternatives (64, 100, 128), for
mitigating overfitting. In addition, our LSTMs use
a Rectified Linear Unit (ReLU) activation, each re-
turning a vector of dimension 32.

Each LSTM network produces a vector repre-
sentation of the input text, independently of the
other text being analysed. The two vectors are then
merged and the resulting vector fed to a softmax
classifier which predicts the label for the relation
between the first and the second input texts. As
we will see in Section 4, we experimented with

1https://www.doc.ic.ac.uk/˜lc1310/
2https://corpora.aifdb.org

text 1

100d embed

(Bi)LSTM 32

text 2

100d embed

(Bi)LSTM 32

merge

Dense 32 ReLU

softmax

Figure 1: Our architecture: two (unidirectional or
bidirectional) LSTMs are run with one text each.
The dashed layer (Dense 32 ReLU) is optional.

Hyper- Value Hyper- Valueparameter parameter
Dropout 0.2 LSTM size 32
Embedding size 100 Dense size 32
Sequence length 50 Batch size 128

Table 1: Hyper-parameters for our (Bi)LSTMs.

two types of merge layer: sum, which performs
element-wise sum, and concat, which performs
tensor concatenation.

After the merge layer, our architecture incorpo-
rates an optional dense feedforward layer. Our ex-
periments (see Section 4) included testing whether
the inclusion of this layer has an impact on the re-
sults. Again, we chose the dimension (32) as it
proved better for mitigating overfitting than alter-
natives that we tried (64).

The values for the hyper-parameters used in our
experiments (see Section 4) are summarised in Ta-
ble 1. We used a mini-batch size of 128 and
cross-entropy loss. To avoid overfitting, we ap-
plied dropout before the merge layer with prob-
ability 0.2, but not on the recurrent units. The
hyper-parameters were optimised using the Adam
method (Kingma and Ba, 2014) with learning rate
0.001, which turned out to give better perfor-
mances than alternative optimisers we tried (Ada-
grad, Adadelta and RMSprop).
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4 Results

We trained for 50 epochs or until the performance
on the development set stopped improving, in or-
der to avoid overfitting. The development set was
20% of the training dataset in the 10-fold cross-
validation setup. In more detail, we run 10 strati-
fied fold cross-validation for 5 times (so that each
fold is a good representative of the whole). We
report the average results of the 5x10 fold cross-
validation in Table 2. As baseline, we used Logis-
tic Regression (LR) and unigrams obtained from
concatenating the two input texts.

We experimented with using BiLSTMs and uni-
directional LSTMs with the two types of merge
layers and using non-trained embeddings, namely
pre-trained word representations (freezing the
weights during learning), or trained embeddings,
learning the weights during training.

We achieved 89.53% accuracy and 89.07% F1

by concatenating the output of the two sepa-
rate LSTMs. Unexpectedly, BiLSTMs performed
worse than LSTMs (Table 2 only includes the best
performing BiLSTM instance of the architecture,
using concatenation and the feedforward layer).
We believe this is because of the size of the dataset
and that this effect could be diminished by acquir-
ing more data. For the LSTM model with trained
embeddings, the accuracy varied between 84.84%
and 90.02%. Concatenating the LSTMs’ output
vectors yields better performance than performing
element-wise sum of the vectors. We believe this
is because this allows the system to encode more
features, allowing the network to use more infor-
mation.

Using the default, pre-trained word embeddings
yields worse results compared to the baseline. We
believe this is because the quality of word embed-
dings is dependent on the training corpora.3 Train-
ing the word embeddings results in better perfor-
mance compared to the baseline with improve-
ments of up to 12% in accuracy and up to 11.5%
in F1.

In all cases, training the word embeddings re-
sults in dramatic improvements compared to freez-
ing the embedding weights during learning, vary-
ing from 9.9% to 21.3% increase in accuracy and
up to 25% in F1. We also report the standard de-
viation of our models with trained embeddings.

3Pennington et al. (2014) computed the 100-dimensional
GloVe embeddings on a a dump of English Wikipedia pages
from 2014 consisting of 400k words.

This shows that our best models (LSTMs with a
concatenation layer) are stable and perform con-
sistently on the task considered. Using One-Way
ANOVA, the result is significant at p < 0.05
(the f-ratio value is 145.45159, the p-value is <
0.00001).

5 Conclusion

We proposed a deep learning architecture based
on Long Short-Term Memory (LSTM) networks
to capture the argumentative relation of attack and
support between any two texts. Our architecture
uses two (unidirectional or bidirectional) LSTMs
to analyse separately two 100-dimensional (non-
trained or trained) GloVe vectors representing the
two input texts. The outputs of the two LSTMs are
then concatenated and fed to a softmax classifier to
predict the relation between the input texts.

Our unidirectional LSTM model with trained
embeddings and a concatenation layer achieved
89.53% accuracy and 89.07% F1. The results indi-
cate that LSTMs may be better suited for Relation-
based Argument Mining at least for non-micro
texts (Bosc et al., 2016) than standard classifiers as
used in e.g. Carstens and Toni (2017), as LSTMs
are better at capturing long-term dependencies be-
tween words and they operate over sequences, as
found in text.

In future work, we plan to test our model on
corpora such as the Language of Opposition from
AIFdb4 (by converting the finer-grained relation
types used in this corpus to argumentative rela-
tions of the kind we considered), on datasets pro-
posed for different tasks (e.g. identifying tex-
tual entailment could be seen as identifying sup-
port) and thus possibly use the corpus proposed by
Bowman et al. (2015), as well as the twitter dataset
of Bosc et al. (2016) once it becomes publicly
available. Also, attack and support relations of
the kind we have considered in this paper may be
seen as special types of discourse relations (Teufel
et al., 1999; Lin et al., 2009). It would be inter-
esting to see whether any corpora for identifying
discourse relations could be useful for furthering
our experimentation. Finally, we plan to incorpo-
rate an attention-based mechanism as well as ad-
ditional features (e.g. extracted through sentiment
analysis) to determine which parts of the texts are
most relevant in identifying attack and support.

4https://corpora.aifdb.org
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Baseline A% P% R% F1%
LR (unigrams) 77.87 78.02 77.87 77.89
Model/ Non-trained embeddings Trained embeddings
Merge/Dense A% P% R% F1% A% P% R% F1% A std F1 std
BiLSTM/c/T 60.72 64.36 52.64 57.36 70.66 73.18 62.96 66.93 2.06 4.60
LSTM/c/F 68.25 72.39 59.07 64.38 89.53 90.80 87.67 89.07 0.47 0.73
LSTM/c/T 68.68 72.77 58.21 63.49 90.02 90.89 88.26 89.41 2.09 2.92
LSTM/s/T 64.21 69.18 51.07 57.09 84.84 86.75 79.98 82.35 5.02 9.26

Table 2: 5x10 fold cross-validation results, using c(oncat) or s(um) for merging the output of the two
(Bi)LSTMs, with (non-)trained embeddings; T (True)/F (False) represent inclusion/omission, respec-
tively, of the Dense 32 ReLU layer. std represents standard deviation of 5x10 fold cross-validation.
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Abstract

The input to a neural sequence-to-
sequence model is often determined by
an up-stream system, e.g. a word seg-
menter, part of speech tagger, or speech
recognizer. These up-stream models are
potentially error-prone. Representing in-
puts through word lattices allows mak-
ing this uncertainty explicit by captur-
ing alternative sequences and their poste-
rior probabilities in a compact form. In
this work, we extend the TreeLSTM (Tai
et al., 2015) into a LatticeLSTM that is
able to consume word lattices, and can be
used as encoder in an attentional encoder-
decoder model. We integrate lattice poste-
rior scores into this architecture by extend-
ing the TreeLSTM’s child-sum and forget
gates and introducing a bias term into the
attention mechanism. We experiment with
speech translation lattices and report con-
sistent improvements over baselines that
translate either the 1-best hypothesis or the
lattice without posterior scores.

1 Introduction

In many natural language processing tasks, we
will require a down-stream system to consume
the input of an up-stream system, such as word
segmenters, part of speech taggers, or automatic
speech recognizers. Among these, one of the most
prototypical and widely used examples is speech
translation, where a down-stream translation sys-
tem must consume the output of an up-stream au-
tomatic speech recognition (ASR) system.

Previous research on traditional phrase-based
or tree-based statistical machine translation have
used word lattices (e.g. Figure 1) as an effective
tool to pass on uncertainties from a previous step

0: <s> 

1: ah 5: qué 
8: </s> 

2: hay 4: qué 

3: que 

6: bueno 

7: bueno 1 

.4 

.6 

1 1 

.2 

.8 1 

0: <s> 

1: ah 5: qué 
8: </s> 

2: hay 4: qué 

3: que 

6: bueno 

7: bueno 

1 

Figure 1: A lattice with 3 possible paths and pos-
terior scores. Translating the whole lattice poten-
tially allows for recovering from errors in its 1-
best hypothesis.

(Ney, 1999; Casacuberta et al., 2004). Several
works have shown quality improvements by trans-
lating lattices, compared to translating only the
single best upstream output. Examples include
translating lattice representations of ASR output
(Saleem et al., 2004; Zhang et al., 2005; Matusov
et al., 2008), multiple word segmentations, and
morphological alternatives (Dyer et al., 2008).

Recently, neural sequence-to-sequence
(seq2seq) models (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015) have often been preferred over the
traditional methods for their strong empirical
results and appealing end-to-end modeling. These
models force us to rethink approaches to handling
lattices, because their recurrent design no longer
allows for efficient lattice decoding using dynamic
programming as was used in the earlier works.

As a remedy, Su et al. (2017) proposed replac-
ing the sequential encoder by a lattice encoder to
obtain a lattice-to-sequence (lat2seq) model. This
is achieved by extending the encoder’s Gated Re-
current Units (GRUs) (Cho et al., 2014) to be
conditioned on multiple predecessor paths. The
authors demonstrate improvements in Chinese-
to-English translation by translating lattices that
combine the output of multiple word segmenters,
rather than a single segmented sequence.
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However, this model does not address one as-
pect of lattices that we argue is critical to obtaining
good translation results: their ability to encode the
certainty or uncertainty of the paths through the
use of posterior scores. Specifically, we postulate
that these scores are essential for tasks that require
handling lattices with a considerable amount of er-
roneous content, such as those produced by ASR
systems. In this paper, we propose a lattice-to-
sequence model that accounts for this uncertainty.
Specifically, our contributions are as follows:

• We employ the popular child-sum TreeLSTM
(Tai et al., 2015) to derive a lattice encoder
that replaces the sequential encoder in an atten-
tional encoder-decoder model. We show empir-
ically that this approach yields only minor im-
provements compared to a baseline fine-tuned
on sequential ASR outputs. This finding stands
in contrast to the positive results by Su et al.
(2017), and by Ladhak et al. (2016) on a lattice
classification task, and suggests higher learning
complexity of our speech translation task.

• We hypothesize that lattice scores are crucial
in aiding training and inference, and propose
several techniques for integrating lattice scores
into the model: (1) We compute weighted child-
sums,1 where hidden units in the lattice en-
coder are conditioned on their predecessor hid-
den units such that predecessors with low prob-
ability are less influential on the current hid-
den state. (2) We bias the TreeLSTM’s forget
gates for each incoming connection toward be-
ing more forgetful for predecessors with low
probability, such that their cell states become
relatively less influential. (3) We bias the at-
tention mechanism to put more focus on source
embeddings belonging to nodes with high lat-
tice scores. We demonstrate empirically that the
third proposed technique is particularly effec-
tive and produces strong gains over the baseline.
According to our knowledge, this is the first at-
tempt of integrating lattice scores already at the
training stage of a machine translation model.

• We exploit the fact that our lattice encoder is a
strict generalization of a sequential encoder by
pre-training on sequential data, obtaining faster
and better training convergence on large corpora
of parallel sequential data.
1This is reminiscent of the weighted pooling strategy by

Ladhak et al. (2016) for spoken utterance classification.

We conduct experiments on the Fisher and Call-
home Spanish–English Speech Translation Cor-
pus (Post et al., 2013) and report improvements of
1.4 BLEU points on Fisher and 0.8 BLEU points
on Callhome, compared to a strong baseline op-
timized for translating 1-best ASR outputs. We
find that the proposed integration of lattice scores
is crucial for achieving these improvements.

2 Background

Our work extends the seminal work on attentional
encoder-decoder models (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015) which we survey in this section.

Given an input sequence x = (x1, x2, . . . , xN ),
the goal is to generate an appropriate output se-
quence y = (y1, y2, . . . , yM ). The conditional
probability p(y | x) is estimated using parame-
ters trained on a parallel corpus, e.g. of sentences
in the source and target language in a translation
task. This probability is factorized as the prod-
uct of conditional probabilities of each token to
be generated: p(y | x) =

∏M
t=1 p(yt | y<t,x).

The training objective is to estimate parameters θ
that maximize the log-likelihood of the sentence
pairs in a given parallel training set D: J(θ) =∑

(x,y)∈D log p(y | x; θ).

2.1 Encoder
In our baseline model, the encoder is a bi-
directional recurrent neural network (RNN), fol-
lowing (Bahdanau et al., 2015). Here, the source
sentence is processed in both the forward and
backward directions with two separate RNNs. For
every input xi, two hidden states are generated as

−→
h i = LSTM

(
Efwd(xi),

−→
h i−1

)
(1)

←−
h i = LSTM

(
Ebwd(xi),

←−
h i+1

)
, (2)

where Efwd and Ebwd are source embedding
lookup tables. We opt for long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
recurrent units because of their high performance
and in order to later take advantage of the Tree-
LSTM extension (Tai et al., 2015). We stack mul-
tiple LSTM layers and concatenate the final layer
into the final source hidden state hi =

−→
h i |

←−
h i,

where layer indices are omitted for simplicity.

2.2 Attention
We use an attention mechanism (Luong et al.,
2015) to summarize the encoder outputs into a
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fixed-size representation. At each decoding time
step j, a context vector cj is computed as a
weighted average of the source hidden states:
cj =

∑N
i=1 αijhi. The normalized attentional

weights αij measure the relative importance of the
source words for the current decoding step and are
computed as a softmax with normalization factor
Z summing over i:

αij =
1

Z
exp

(
s
(
sj−1,hi

))
(3)

s(·) is a feed-forward neural network with a single
layer that estimates the importance of source hid-
den state hi for producing the next target symbol
yj , conditioned on the previous decoder state sj−1.

2.3 Decoder

The decoder creates output symbols one by one,
conditioned on the encoder states via the atten-
tion mechanism. It contains another LSTM, ini-
tialized using the final encoder hidden state: s0 =
hN . The decoding at step j assumes a special
start-of-sequence symbol y0 and is computed as
sj = LSTM

(
Etrg(yj−1), sj−1

)
, and then s̃t =

tanh(Whs[sj ; cj ] + bhs) The conditional proba-
bility that the j-th target word is generated is:
p(yj | y<j ,x) = softmax(Wsos̃t + bso). Here,
Etrg is the target embedding lookup table,Whs and
Wso are weight matrices, and bhs and bso are bias
vectors.

During decoding beam search is used to find an
output sequence with high conditional probability.

3 Attentional Lattice-to-Sequence Model

The seq2seq model described above assumes se-
quential inputs and is therefore limited to taking a
single output of an up-stream model as input. In-
stead, we wish to consume lattices to carry over
uncertainties from an up-stream model.

3.1 Lattices

Lattices (e.g. Figure 1) represent multiple ambigu-
ous or competing sequences in a compact form.
They are a more efficient alternative to enumerat-
ing all hypotheses as an n-best list, as they allow
for avoiding redundant computation over subse-
quences shared between multiple hypotheses. Lat-
tices can either be produced directly, e.g. by an
ASR dumping its pruned search space (Post et al.,
2013), or can be obtained by merging several n-
best sequences (Dyer et al., 2008; Su et al., 2017).

A word lattice G = 〈V,E〉 is a directed, con-
nected, and acyclic graph with nodes V and edges
E. V⊂N is a node set, and (k, i)∈E denotes an
edge connecting node k to node i. C(i) denotes
the set of predecessor nodes for node i. We as-
sume that all nodes follow a topological ordering,
such that k<i ∀ k∈C(i). Each node i is assigned
a word label w(i). 2 Every lattice contains ex-
actly one start-of-sequence node with only outgo-
ing edges, and exactly one end-of-sequence node
with only incoming edges.

3.2 Lattices and the TreeLSTM
One thing to notice here is that lattice nodes can
have multiple predecessor states. In contrast, hid-
den states in LSTMs and other sequential RNNs
are conditioned on only one predecessor state
(h̃j in left column of Table 1), rendering stan-
dard RNNs unsuitable for the modeling of lattices.
Luckily Tai et al. (2015)’s TreeLSTM, which was
designed to compose encodings in trees, is also
straightforward to apply to lattices; the TreeLSTM
composes multiple child states into a parent state,
which can also be applied to lattices to compose
multiple predecessor states into a successor state.
Table 1, middle column, shows the TreeLSTM
in its child-sum variant that supports an arbitrary
number of predecessors. Conditioning on multi-
ple predecessor hidden states is achieved by sim-
ply taking their sum as h̃i. Cell states from multi-
ple predecessor are each passed through their own
forget gates fjk and then summed.

Encoding a lattice results in one hidden state for
each lattice node. Our lat2seq framework uses this
network as encoder, computing the attention over
all lattice nodes.3 In other words we replace (1) by
the following:

−→
h i = LatticeLSTM

(
xi, {
−→
h k | k∈C(i)}

)
(4)

Similarly, we encode the lattice in backward di-
rection and replace (2) accordingly. Figure 2 il-
lustrates the result. The computational complex-
ity of the encoder is O(|V | + |E|), i.e. linear in
the number of nodes plus number of edges in the
graph. The complexity of the attention mechanism
is O(|V |M), where M is the output sequence

2It is perhaps more common to think of each edge repre-
senting a word, but we will motivate why we instead assign
word labels to nodes in §3.3.

3This is similar in spirit to Eriguchi et al. (2016) who used
the TreeLSTM in an attentional tree-to-sequence model.
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Sequential LSTM TreeLSTM Proposed LatticeLSTM

recurrence h̃i = hi−1 h̃i =
∑

k∈C(i) hk h̃i =
∑

k∈C(i)

w
Sh
b/f,k

Zh,k
hk (5)

forget gt. fi = σ
(
Wfxi + Ufh̃i + bf

) fik = σ(Wfxi+

Ufhk + bf)

fik = σ(Wfxi + Ufhk+[
lnwb/f,kSf − Zf,k

]
+ bf)

(6)

input gt. ii = σ
(
Winxi + Uinh̃i + bin

)
as sequential as sequential

output gt. oi = σ
(
Woxi + Uoh̃i + bo

)
as sequential as sequential

update ui = tanh
(
Wuxi + Uuh̃i + bu

)
as sequential as sequential

cell ci = ii � ui + fi � ci−1
ci = ii � ui+∑

k∈C(i) fik � ck
as TreeLSTM

hidden hi = oi � tanh(ci) as sequential as sequential

attention αij ∝ exp (s (·)) αij∝ exp [s (·)+Sa lnwm,i] (7)

Table 1: Formulas for sequential and TreeLSTM encoders according to Tai et al. (2015), the proposed
LatticeLSTM encoder, and conventional vs. proposed integration into the attention mechanism (bottom
row). Inputs xj are word embeddings or hidden states of a lower layer. W· and U· denote parameter
matrices, b· bias terms, other terms are described in the text.

  <s>        ah          hay      que        qué       qué      bueno    bueno      </s> 

Attentional 
Decoder 
…	

<s>        ah          hay      que        qué       qué      bueno    bueno      </s> 

Figure 2: Network structure of a bidirectional lat-
tice encoder with one layer.

length. |V | depends on both the expected input
sentence length and the lattice density.

3.3 Node-labeled Lattices

At this point we take a step back to motivate our
choice of assigning word labels to lattice nodes,
which is in contrast to the prior work by Ladhak
et al. (2016) and Su et al. (2017) who assign word
labels to edges. Recurrent states in edge-labeled
lattice encoders are conditioned not only on mul-
tiple predecessor states, but must also aggregate
words from multiple incoming edges. This implies
that hidden units may represent more than one
word in the lattice. Moreover, in the edge-labeled
case hidden units that are in the same position in
forward and backward encoders represent differ-
ent words, but are nevertheless concatenated and

attended to jointly. For these reasons we find our
approach of encoding word-labeled lattices more
intuitively appealing when used as input to an at-
tentional decoder, although empirical justification
is beyond the scope of this paper. We also note that
it is easy to convert an edge-labeled lattice into a
node-labeled lattice using the line-graph algorithm
(Hemminger and Beineke, 1978), which we utilize
in this work.

4 Integration of Lattice Scores

This section describes the key technical contribu-
tion of our work: integration of lattice scores en-
coding input uncertainty into the lat2seq frame-
work. These lattice scores assign different proba-
bilities to competing paths, and are often provided
by up-stream statistical models. For example, an
ASR may attach posterior probabilities that cap-
ture acoustic evidence and linguistic plausibility
of words in the lattice. In this section, we de-
scribe our method, first explaining how we nor-
malize scores to a format that is easily usable in
our method, then presenting our methods for in-
corporating these scores into our encoder calcula-
tions.

4.1 Lattice Score Normalization

Lattice scores that are obtained from upstream sys-
tems (such as ASR) are typically given in forward-
normalized fashion, interpreted as the probability
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Figure 3: Lattice with forward-normalized,
marginal, and backward-normalized scores.

of a node given its predecessor. Here, outgoing
edges sum up to one, as illustrated in Figure 1.
However, in some of our methods it will be nec-
essary that scores be normalized in the backward
direction, so that the weights from incoming con-
nections sum up to one, or globally normalized,
so that the probability of the node is the marginal
probability of all the paths containing that node.

Letwf ,i,wm,i,wb,i denote forward-normalized,
marginal, and backward-normalized scores for
node i respectively, illustrated in Figure 3. Given
wf ,i, we can compute marginal probabilities recur-
sively as wm,i =

∑
k∈C(i)wm,k·wf ,i by using the

forward algorithm (Rabiner, 1989). Then, we can
normalize backward using wb,i =

wm,i∑
k∈C′(i) wm,k

,

where C ′(i) denotes the successors of node i. All
3 forms are employed in the sections below.

Furthermore, when integrating these scores into
the lat2seq framework, it is desirable to main-
tain flexibility over how strongly they should im-
pact the model. For this purpose, we introduce
a peakiness coefficient S. Given a lattice score
wb,i in backward direction, we compute wSb,i/Zi.
Zi=

∑
k∈C(i)wb,k is a re-normalization term to

ensure that incoming connections still sum up
to one. In the forward direction, we compute
wSf,i/Zi and normalize analogously over outgo-
ing connections. Setting S=0 amounts to ig-
noring the scores by flattening their distribution,
while letting S→∞ puts emphasis solely on the
strongest nodes. S can be optimized jointly with
the other model parameters via back-propagation
during model training.

4.2 Integration Approaches
We suggest three methods to integrate these scores
into our lat2seq model, with equations shown in
the right column of Table 1. These methods can
optionally be combined, and we conduct an abla-
tion study to assess the effectivity of each method
in isolation (§5.3).

The first method consists of computing a

weighted child-sum (WCS), using lattice scores
as weights when composing the hidden state h̃i.
This is based on the intuition that predecessor hid-
den states with high lattice weights should have
a higher influence on their successor than states
with low weights. The precise formulas for WCS
are shown in (5).

The second method biases the forget gate fik
for each predecessor cell state such that prede-
cessors with high lattice score are more likely to
pass through the forget gate (BFG). The intuition
for this is similar to WCS; the composed cell state
is more highly influenced by cell states from pre-
decessors with high lattice score. BFG is imple-
mented by introducing a bias term inside the sig-
moid as in (6).

In the cases of both WCS and BFG, all hid-
den units have their own independent peakiness.
Thus Sh and Sf are vectors, applied element-
wise after broadcasting the lattice score. The re-
normalization terms Zh,k and Zf,k are also vectors
and are applied element-wise. We use backward-
normalized scores wb,i for the forward-directed
encoder, and forward-normalized scores wf ,i for
the backward-directed encoder.

In the third and final method, we bias the atten-
tional weights (BATT) to put more focus on lattice
nodes with high lattice scores. This can potentially
mitigate the problem of having multiple contra-
dicting lattice nodes that may confuse the atten-
tional decoder. BATT is computed by introducing
a bias term to the attention as in (7). Attentional
weights are scalars, so here the peakiness Sa is
also a scalar. We drop the normalization term, re-
lying instead on the softmax normalization. Both
BFG and BATT use the logarithm of lattice scores
so that values will still be in the probability do-
main after the softmax or sigmoid is computed.

4.3 Pre-training

Finally, note that our lattice encoder is a strict
generalization of a sequential encoder. To re-
duce the computational burden, we exploit this
fact and perform a two-step training process where
the model is first pre-trained on sequential data,
then fine-tuned on lattice data.4 The pre-training,
like standard training for neural machine trans-
lation (NMT), allows for efficient training using
mini-batches, and also allows for training on stan-
dard text corpora for which we might not have lat-

4For the sequential data, we set all confidence scores to 1.
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tices available. The fine-tuning is then performed
on parallel data with lattices on the source side.
This is much slower5 than the pre-training because
the network structure changes from sentence to
sentence, preventing us from using efficient mini-
batched calculations. However, fine-tuning for
only a small number of iterations is generally suf-
ficient, as the model is already relatively accurate
in the first place. In practice we found it impor-
tant to use minibatches when fine-tuning, accumu-
lating gradients over several examples before per-
forming parameter updates. This provided negli-
gible speedups but greatly improved optimization
stability.

At test time, the model is able to translate both
sequential and lattice inputs and can therefore be
used even in cases where no lattices are available,
at potentially diminished accuracy.

5 Experiments

5.1 Setting

We conduct experiments on the Fisher and Call-
home Spanish–English Speech Translation Cor-
pus (Post et al., 2013), a corpus of Spanish tele-
phone conversations that includes automatic tran-
scripts and lattices. The Fisher portion consists of
telephone conversations between strangers, while
the Callhome portion contains telephone conver-
sations between relatives or friends. The training
data size is 138,819 sentences (Fisher/Train), and
15,000 sentences (Callhome/Train). Held-out test-
ing data is shown in Table 2. ASR word error
rates (WER) are relatively high, due to the spon-
taneous speaking style and challenging acoustics.
Lattices contain on average 3.4 (Fisher/Train) or
4.5 (Callhome/Train) times more words than the
corresponding reference transcripts.

For preprocessing, we tokenized and lower-
cased source and target sides. We removed punc-
tuation from the reference transcripts on the source
side for consistency with the automatic transcripts
and lattices. All models are pre-trained and fine-
tuned on Fisher/Train unless otherwise noted. Our
source-side vocabulary contains all words from
the automatic transcripts for Fisher/Train, replac-
ing singletons by an unknown word token, total-

5Our implementation processed sequential inputs about
75 times faster than lattice inputs during training, and overall
fine-tuning convergence was 15 times faster. Decoding was
only 1.2 times slower when using lattice inputs. Note that re-
cently proposed approaches for autobatching (Neubig et al.,
2017b) may considerably speed up lattice training.

1-best
WER

oracle
WER

# sent.

Fisher/Dev 41.3 19.3 3,979
Fisher/Dev2 40.0 19.4 3,961
Fisher/Test 36.5 16.1 3,641
Callhome/Devtest 64.7 36.4 3,966
Callhome/Evltest 65.3 37.9 1,829

Table 2: Development data statistics. Average sen-
tence length is between 11.8 and 13.1.

ing 14,648 words. Similarly, on the target side we
used all words from the reference translations of
Fisher/Train, replacing singletons by the unknown
word, yielding 10,800 words in total.

Our implementation is based on lamtram (Neu-
big, 2015) and the DyNet (Neubig et al., 2017a)
toolkit. We use the implemented attentional model
with default parameters: a layer size of 256 per
encoder direction and 512 for the decoder. Word
embedding size was also set to 512. We used two
encoder layers and two decoder layers for better
baseline performance. For the sequential base-
lines, the LSTM variant in the left column of Ta-
ble 1 was employed. We initialized the forget gate
biases to 1 as recommended by Jozefowicz et al.
(2015).

We used Adam (Kingma and Ba, 2014) for
training, with an empirically determined initial
learning rate of 0.001 for pre-training and 0.0001
for fine-tuning. We halve the learning rate when
the dev perplexity (on Fisher/Dev) gets worse.
Pre-training and fine-tuning on 1-best sequences is
performed until convergence, and training on lat-
tices is performed for 2 epochs to keep experimen-
tal effort manageable. On Fisher/Train, this took
3-4 days on a fast CPU.6 Minibatch size was 1000
target words for pre-training, and 20 sentences for
lattice training. Unless otherwise noted, we em-
ployed all three proposed lattice score integration
approaches, and optimized peakiness coefficients
jointly during training. We repeat training 3 times
with different random seeds for parameter initial-
ization and data shuffling, and report averaged re-
sults. We set the decoding beam size to 5.

6For comparison, we tried training on lattices from
scratch, which took 9 days (6 epochs) to converge at a dev
perplexity that was 10% worse than with the pre-training plus
fine-tuning strategy. We also confirmed BLEU scores to be
much inferior without pretraining.
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5.2 Main Results

We compare 4 systems: Performing pre-training
on the sequential reference transcripts only (R),
fine-tuning on 1-best transcripts (R+1), fine-tuning
on lattices without scores (R+L), and fine-tuning
on lattices including lattice scores (R+L+S). At
test time, we try references, lattice oracles,7 1-best
transcripts, and lattices as inputs to all 4 systems.
The former 2 experiments give upper bounds on
achievable translation accuracy, while the latter 2
correspond to a realistic setting. Table 3 shows the
results on Fisher/Dev2 and Fisher/Test.

Before even considering lattices, we can see that
1-best fine-tuning boosted BLEU scores quite im-
pressively (1-best/R vs. 1-best/R+1), with gains
of 1.3 and 0.7 BLEU points. This stands in con-
trast to Post et al. (2013) who find the 1-best tran-
scripts not to be helpful for training a hierarchical
machine translation system. Possible explanations
are learning from repeating error patterns, and im-
proved robustness to erroneous inputs. On top of
these gains, our proposed set-up (lattice/R+L+S)
improve BLEU scores by another 1.4. Removing
the lattice scores (lattice/R+L) diminishes the re-
sults and performs worse than the 1-best baseline
(1-best/R+1), indicating that the proposed lattice
score integration is crucial for good performance.
This demonstrates a clear advantage of our pro-
posed method over that of Su et al. (2017).

As can be seen in the table, models fine-
tuned on lattices show reasonable performance for
both lattice and sequential inputs (1-best/R+L, lat-
tice/R+L, 1-best/R+L+S, lattice/R+L+S). This is
not surprising, given that the lattice training data
includes lattices of varying density, including lat-
tices with very few paths or even only one path.
On the other hand, without fine-tuning on lattices,
using lattices as input performs poorly (lattice/R
and lattice/R+1). A closer look revealed that trans-
lations were often too long, potentially because
implicitly learned mechanisms for length control
were not ready to handle lattice inputs.

Table 3 reports perplexities for Fisher/Dev2.
Unlike the corresponding BLEU scores, the lattice
encoder appears stronger than the 1-best baseline
in terms of perplexity even without lattice scores
(lattice/R+L vs. 1-best/R+1). To understand this
better, we computed the average entropy of the
decoder softmax, a measure of how much con-
fusion there is in the decoder predictions, inde-

7The path through the lattice with the best WER.

pendent of whether it selects the correct answer
or not. Over the first 100 sentences, this value
was 2.24 for 1-best/R+1, 2.39 for lattice/R+L, and
2.15 for lattice/R+L+S. This indicates that the de-
coder is more confused for lattices without scores,
while integrating lattice scores removes this prob-
lem. These numbers also suggest that it may be
possible to obtain further gains using methods that
stabilize the decoder.

5.3 Ablation Experiments
Next, we conduct an ablation study to assess the
impact of the three proposed extensions for inte-
grating lattice scores (§4.2). We train models with
different peakiness coefficients S, either ignoring
lattices scores by fixing S=0, using lattice scores
as-is by fixing S=1, or optimizing S during train-
ing. Table 4 shows the results. Overall, joint train-
ing of S gives similar results as fixing S=1, but
both clearly outperform fixing S=0. Removing
confidences (setting S=0) in one place at a time
reveals that the attention mechanism is clearly the
most important point of integration, while gains
from the integration into child-sum and forget gate
are smaller and not always consistent.

We also analyzed what peakiness values were
actually learned. We found that all 3 models that
we trained for the averaging purposes converged
to Sa=0.62. Sh and Sf had per-vector means
between 0.92 and 1.0, at standard deviations be-
tween 0.02 and 0.04. We conclude that while the
peakiness coefficients were not particularly help-
ful in our experiments, stable convergence behav-
ior makes them safe to use, and they might be
helpful on other data sets that may contain lattice
scores of higher or lower reliability.

5.4 Callhome Experiments
In this experiment, we test a situation in which we
have a reasonable amount of sequential data avail-
able for pre-training, but only a limited amount
of lattice training data for the fine-tuning step.
This may be a more realistic situation, because
speech translation corpora are scarce. To inves-
tigate in this scenario, we again pre-train our mod-
els on Fisher/Train, but then fine-tune them on the
9 times smaller Callhome/Train portion of the cor-
pus. We fine-tune for 10 epochs, all other settings
are as before. We use Callhome/Evltest for testing.
Table 5 shows the results. The trends are consis-
tent to §5.2: The proposed model (lattice/R+L+S)
outperforms the 1-best baseline (1-best/R+1) by
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test-time Trained on Trained on

inputs R R+1 R+L R+L+S R R+1 R+L R+L+S

reference 53.9 (7.1) 53.8 (6.5) 53.7 (6.8) 54.0 (6.7) 52.2 51.8 52.2 52.7

oracle 44.9 (13.4) 45.6 (9.5) 45.2 (10.6) 45.2 (10.6) 44.4 44.6 44.6 44.8

1-best 35.8 (24.7) 37.1 (13.7) 36.2 (16.4) 36.2 (16.3) 35.9 36.6 36.2 36.4

lattice 25.9 (23.4) 25.8 (15.7) 36.9 (13.0) 38.5 (12.6) 26.2 25.8 36.1 38.0

Fisher/Dev2 Fisher/Test

Table 3: BLEU scores (4 references) and perplexities (in brackets). Models are pre-trained only (R),
fine-tuned on either 1-best outputs (R+1), lattices without scores (R+L), or lattices with scores (R+L+S).
Statistically significant improvement (paired bootstrap resampling, p < 0.05) over 1-best/R+1 is in bold.

BATT
Sa

WCS
Sh

BFG
Sf

Fisher
/Dev2

Fisher
/Test

0 0 0 36.9 36.1
1 1 1 38.2 37.4
* * * 38.5 38.0
0 1 1 37.2 36.2
1 0 1 37.9 37.5
1 1 0 38.2 37.8
0 * * 37.0 36.3
* 0 * 38.3 37.9
* * 0 38.1 37.5

1-best/R+1 37.2 36.6

Table 4: BLEU scores (4 references) for differ-
ently configured peakiness coefficients Sa,Sh,Sf .
0/1 means fixing to that value, * indicates opti-
mization during training. Statistically significant
improvement over 1-best/R+1 is in bold.

0.8 BLEU points, which in turn beats the pre-
trained system (1-best/R) by 1.5 BLEU points. In-
cluding the lattice scores is clearly beneficial, al-
though lattices without scores also improve over
1-best inputs in this experiment.

5.5 Impact of Lattice Quality

Next, we analyze the impact of using lattices and
lattice scores as the ASR WER changes. We con-
catenate all test data from Table 2 and divide the
result into bins according to the 1-best WER. We
sample 1000 sentences from each bin, and com-
pare BLEU scores between several models.

The results are shown in Figure 4. For very
good WERs, lattices do not improve over 1-best
inputs, which is unsurprising. In all other cases,
lattices are helpful. Lattice scores are most bene-

test-time Trained on
inputs R R+1 R+L R+L+S

reference 24.7 24.3 24.8 24.4
oracle 15.8 16.8 16.3 15.9

1-best 11.8 13.3 12.4 12.0
lattice 9.3 7.1 13.7 14.1

Table 5: BLEU scores on Callhome/Evltest
(1 reference). All models are pre-trained on
Fisher/Train references (R), and potentially fine-
tuned on Callhome/Train. The best result using
1-best or lattice inputs is in bold. Statistically sig-
nificant improvement over 1-best/R+1 is in bold.

ficial for moderate WERs, and not beneficial for
very high WERs. We speculate that for high
WERs, the lattice scores tend to be less reliable
than for lower WERs.

6 Conclusion

We investigated translating uncertain inputs from
an error-prone up-stream component using a neu-
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Figure 4: BLEU score over varying 1-best WERs.
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ral lattice-to-sequence model. Our proposed
model takes word lattices as input and is able to
take advantage of lattice scores. In our experi-
ments in a speech translation task we find con-
sistent improvements over translating 1-best tran-
scriptions and that consideration of lattice scores,
especially in the attention mechanism, is crucial
for obtaining these improvements.

Promising avenues for future work are investi-
gating consensus networks (Mangu et al., 2000)
for potential gains in terms of speed or quality as
compared to lattice inputs, explicitly dealing with
rare or unknown words in the lattice, and facilitat-
ing GPU training via autobatching (Neubig et al.,
2017b).
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Abstract

Neural machine translation (NMT) has
achieved notable success in recent times,
however it is also widely recognized that
this approach has limitations with han-
dling infrequent words and word pairs.
This paper presents a novel memory-
augmented NMT (M-NMT) architecture,
which stores knowledge about how words
(usually infrequently encountered ones)
should be translated in a memory and then
utilizes them to assist the neural model.
We use this memory mechanism to com-
bine the knowledge learned from a con-
ventional statistical machine translation
system and the rules learned by an NMT
system, and also propose a solution for
out-of-vocabulary (OOV) words based on
this framework. Our experiments on two
Chinese-English translation tasks demon-
strated that the M-NMT architecture out-
performed the NMT baseline by 9.0 and
2.7 BLEU points on the two tasks, respec-
tively. Additionally, we found this archi-
tecture resulted in a much more effective
OOV treatment compared to competitive
methods.

1 Introduction

Neural Machine Translation (NMT) has been
shown to have highly promising performance, par-
ticularly when a large amount of training data is
available (Wu et al., 2016; Johnson et al., 2016; Mi
et al., 2016). Although there are different model
architectures (Sutskever et al., 2014; Bahdanau
et al., 2015), the common principle behind the
NMT approach is the same: encoding the meaning
of the input into a concept space and performing
translation based on this encoding. This ‘meaning

src. 人类共有二十三对染色体。
ref. Humans have 23 pairs of chromosomes.
NMT There are 23-year history of human history.

Table 1: An example of Chinese-to-English
‘meaning drift’ with NMT.

encoding’ principle leads to a deeper understand-
ing and learning of the translation rules, and hence
a better translation than conventional statistic ma-
chine translation (SMT) that considers only sur-
face forms, i.e., words and phrases (Koehn et al.,
2003).

Despite positive results obtained so far, a par-
ticular problem of the NMT approach is that it
has a tendency towards overfitting to frequent ob-
servations (words, word co-occurrences, transla-
tion pairs, etc.), but overlooking special cases that
are not frequently observed. For example, NMT
is good at learning translation pairs that are fre-
quently observed, and can make use of them well
at run-time, but for low-frequency pairs in the
training data, the system may ‘forget’ to use them
when they should be. Unfortunately, rare words
are inevitable for all translation tasks due to Zipf’s
law, and indeed they are often the most impor-
tant parts of a sentence, e.g., domain-specific en-
tity names. Table 1 shows an example, where
the word ‘染色体( chromosomes)’ is an infre-
quent word. As the system does not know (or
has effectively ‘forgotten’) this keyword, it does
not translate correctly, and an irrelevant transla-
tion is produced, leading to the phenomenon of
‘meaning drift’. This weakness with regard to
infrequent words/pairs with NMT has been no-
ticed by a number of researchers, and some stud-
ies have been conducted to address this problem,
e.g., Luong et al. (2014); Cho et al. (2014); Li
et al. (2016); Arthur et al. (2016); Bentivogli et al.
(2016); Zhang et al. (2017).

1390



Superficially, this problem appears to be caused
by the imperfect embeddings of infrequent words
or the limited vocabulary size of NMT systems,
but we argue that the deeper reason should be at-
tributed to the nature of neural models: the trans-
lation function, represented by various neural net-
works, is shared amongst all of the translation
pairs, so high-frequency and low-frequency pairs
impact each other by adapting their shared pa-
rameters. Due to the overwhelming proportion
of high-frequency pairs in the training data, the
resulting trained model will naturally be much
more focused on these frequently observed pairs.
More seriously, because the translation function is
smooth, infrequent pairs tend to be wrongly seen
as noise in the training process and so are largely
ignored by the model.

In contrast to this, the conventional SMT ap-
proach is based on statistics of words and/or
phrases, which, in principle, is a symbolic method
that uses a discrete model and involves little pa-
rameter sharing. The discrete model means that no
matter how infrequently a pair occurs, its probabil-
ity cannot be smoothed out, and the lack of shared
parameters means that the frequent words or pairs
have much less impact on infrequent words or
pairs. Essentially, SMT memorizes as many of
the observed patterns as possible, usually using a
phrase table.

The respective advantages of SMT and NMT
suggest that neither the pure neural approach nor
the pure symbolic approach can provide a com-
plete solution for machine translation, and a com-
bined system that exploits the advantages of both
approaches would be ideal. This idea has been
adopted in early research into neural-based MT
methods, where neural models were utilized to
improve SMT performance (Zhang et al., 2015).
However, this seems to be counterintuitive, as in-
tuitively learning general rules should be the first
step, rather than first memorizing special cases and
then learning general rules. This suggests that the
combined system should be primarily based on the
neural architecture, with symbolic knowledge as a
complementary support.

This paper presents such a neural-symbolic ar-
chitecture, which involves a neural model compo-
nent to deal with frequently seen patterns, and a
memory component to provide knowledge for in-
frequently used words and pairs. More specifi-
cally, each memory element stores a source-target
pair, specifying that a word defined by the source

part should be translated to the word defined by
the target part. This knowledge is then used to
improve the neural model. This is analogy to an
experienced translator, who can work well in most
cases using their own knowledge (i.e. the neural
model aspect), but for unfamiliar and uncommon
words that they have little experience of, they will
still need to refer to a dictionary (i.e., the mem-
ory). This proposed memory-augmented NMT, or
M-NMT, is therefore arguably much more similar
to human translators than either NMT or SMT.

2 Attention-based NMT

Before introducing our M-NMT architecture, we
will give a brief review of our implementation
of the attention-based RNN model first presented
by Bahdanau et al. (2015). This model is regarded
as the state-of-the-art model and will be used as
the baseline system in this study. Additionally, the
neural model component of the M-NMT architec-
ture uses the same attention-based RNN model, as
being presented in the following.

The attention-based RNN model is based on an
encoder-decoder frame, where the input word se-
quence [x1, x2, ...] in the source language is em-
bedded as a sequence of hidden states [h1, h2, ...]
by a bi-directional RNN with GRU as the hidden
units, and another RNN is used to produce the tar-
get sentence [y1, y2, ...]. To force the generation to
focus on a particular segment of the input at each
generation step, Bahdanau et al. (2015) proposed
an attention mechanism. Specifically, when gen-
erating the i-th target word, the attention factor of
the j-th source word (and its neighbors, precisely)
is measured by the relevance between the current
hidden state of the decoder, denoted by st−1, and
the hidden state of the encoder at the j-th word
hj . This can be calculated by any similarity func-
tion, but a multiple layer perceptron (MLP) is of-
ten used, given by:

αij =
eij∑
eik

; eij = a(si−1, hj)

where a(·, ·) is the MLP-based relevance function,
and αij is the attention factor of xj at decoding
step i. The semantic content that the decoder fo-
cuses on, i.e. attended content, is then derived by:

ci =
∑

αijhj .

The decoder updates the hidden state with a re-
current function fd, formulated by:
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Figure 1: The structure of the M-NMT architecture.

si = fd(yi−1, si−1, ci), (1)

and the next word yi is generated according to the
following posterior:

p(yi) = σ(yTi Wzi) (2)

where σ(·) is the softmax function, W is a param-
eter matrix for word vector projection. The inter-
mediate variable zi is computed by a neural net
with a single maxout hidden layer g, given by:

zi = g(yi−1, si−1, ci).

We used Tensorflow to implement this model, and
the training recipe largely followed the seminal pa-
per of Bahdanau et al. (2015).

3 Memory-Augmented NMT

This section presents the M-NMT architecture.
We first introduce the model, and then describe
how the memory is constructed.

3.1 The Architecture
The M-NMT architecture is illustrated in Figure 1.
It involves two components: the model and the
memory components. The model component is a

typical attention-based RNN model as presented
in Section 2, which is regarded as being good at
dealing with frequent words and pairs, and the
memory component provides knowledge for infre-
quent words and pairs that are not easy for the neu-
ral model component to learn. The outputs of the
two components are combined to produce a final
consolidated translation.

3.2 Memory Elements
We define each item of memory as a mapping from
a word in the source language to its translation in
the target language. If there are multiple transla-
tions for a word, then several of the best will be
added to the memory according to the probability
of the translation, until the maximum number of
target words is reached. A memory element can
be formally written by:

ujl =

[
yjl
xj

]

where yjl is the l-th translation of word xj . This
mapping will be saved as a memory element and
will be used during translation. We refer to this
memory as the global memory, which is static dur-
ing all the running time. The global memory is
shown on the bottom-right of Figure 1.

1392



To translate an input sentence, the memory el-
ements the source words of which are in the in-
put sentence are selected to form a local memory.
This is shown in the right-middle of Figure 1. In
order to include the context information in the lo-
cal memory, the source part xj is replaced by its
annotation hj :

ujl =

[
yjl
hj

]

A consequence of the source encoding is that if
a source word occurs multiple times in the sen-
tence, all the occurrences should be put into the
local memory, with different hj to distinguish the
context of each. Finally, the local memory is com-
pressed as follows. For each distinct target word
ỹk in the local memory, all the elements with ỹk as
the target are merged into a single element uk, for
which the source part is the average of the source
part of all the elements to be merged, given by:

uk =

[
ỹk
h̃k

]
=

[
ỹk∑

j p(xj |ỹk)hj

]
; ∀ỹk ∈ {yjl}

(3)
where p(xj |ỹk) means the probability that xj is
translated into ỹk and can be obtained from either
a human-defined dictionary or the dictionary of an
SMT system.

3.3 Memory Attention

In order to use the information stored in the mem-
ory to improve NMT, we need to pick up appropri-
ate elements from the local memory at each trans-
lation step. A similar attention mechanism as in
the neural model is designed. Denote the attention
factor of each memory element uk at each transla-
tion step i by αmik, and assume it is derived from a
relevance function emik:

αmik =
emik∑K
k=1 e

m
ik

,

where K is the number of target words in the
merged memory. The relevance function can be
changed, but in this study, we use a simple design:

emik = (vm)>tanh(Wm
s si−1+W

m
u uk+W

m
y yi−1)

(4)
where tanh(·) is the hyperbolic function, si−1
is the current state of the decoder of the neural

model, and yi−1 is the generated word in the previ-
ous step. The parameters of the memory attention
mechanism include θm = {vm,Wm

s ,W
m
u ,W

m
y },

as defined in Eq. 4.
The attention factor αmik can be used in different

ways, here they are simply treated as the posterior
to predict the next word to generate. Since the nor-
malization is over all the target words in the local
memory rather than the full vocabulary, treating
αmik as the posterior of all words is only an approx-
imation, but was found in our experiments to be
a good solution. This memory-based posterior is
combined with the posterior of the neural model,
resulting in a consolidated posterior, given by:

p̃(yi) = βαmik + (1− β)p(yi)

where p(yi) is the posterior produced by the neu-
ral model, as shown in Eq. 2, and β is a pre-
defined interpolation factor. Here αmik corresponds
to the attention to the same word in the merged
memory as the predicted word yi. This sim-
ple posterior combination indicates the flexibility
of the M-NMT architecture. Existing knowledge
can be compiled into the local memory to im-
prove model-based prediction, or if no knowledge
is available, the system will rely on conventional
NMT.

An advantage of this simple combination is that
the memory component can be trained indepen-
dently of the neural model. We set the objective
of the training is to let the memory attention as
accurate as possible. Given the n-th training se-
quence, at each translation step i, the target at-
tention should be 1 on the current word yni and
0 elsewhere. The objective function therefore can
be written as the cross entropy between the target
attention and the output of the attention function,
given as follows:

L(θ) =
∑

n

∑

i

log(αmikni
)

where kni is the position of yni in the merged
memory. The optimization is conducted with re-
spect to the parameters θm. The optimization al-
gorithm is the stochastic gradient descent (SGD)
with AdaDelta to adjust the learning rate (Zeiler,
2012).

It should be noted that joint training of the mem-
ory and the model is possible, but it requires a
large amount of GPU memory and risks over-
fitting. Therefore, we only train the memory,
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with the model component unchanged. Efficient
model-memory joint training is beyond the scope
of this paper and can be investigated in future
work. Particularly, the parameter β could be opti-
mized to balance the contribution from the model
part and the memory part, but constrains have to be
carefully settled to avoid overfitting to the training
data.

3.4 Memory for SMT Integration

The M-NMT architecture is a flexible framework
that provides extra knowledge to the conventional
model-based NMT. If the knowledge is generated
by a conventional SMT system, it is essentially
an elegant combination of SMT and NMT. In this
work, we use the translation dictionary produced
by an SMT system as the knowledge to create the
memory, which involves first aligning the train-
ing sentence pairs using the GIZA++ toolkit (Och
and Ney, 2003) in both directions, and applying
the “intersection” refinement rules (Koehn et al.,
2003) to get a single one-to-one alignment for
each sentence pair, and then extracting the trans-
lation dictionary based on these alignments. We
can see the dictionary as the phrase pairs of the
length 1 and leave the phrase pairs longer than 1
as future work.

The key information provided by the dictionary
is the conditional probability that a source and a
target word are translated to each other. This in-
formation is used twice during local memory con-
struction. Firstly, the conditional p(yjl|xj) is used
to select the most possible target words yjl to par-
ticipate the local memory, and secondly, the con-
ditional p(xj |ỹk) is used to merge the elements
whose target words are ỹk, as shown in Eq. 3.

3.5 Memory for OOV Treatment

The memory also provides a flexible way to ad-
dress OOV words. OOV words can be defined in
multiple ways, but here we focus on true OOVs
that are totally new in both bilingual and monolin-
gual data (i.e. rare words that are not present in
any training data). One example is when a model
is migrated to a specific domain. To address these
OOVs, we firstly need a manually defined dictio-
nary to specify how an OOV word should be trans-
lated, where the target word could be either an in-
vocabulary word or an OOV.

This dictionary will be used as the knowledge
to construct the local memory at run-time. Specif-
ically, if an OOV word is encountered on either

the source or target side during local memory con-
struction, the vector of a similar word is borrowed
to represent the OOV word. Since the words
are totally new, the similar word has to be de-
fined manually. To avoid any confusion with other
words, the selected similar word should not ap-
pear in the existing input sequence if the OOV is
in the source side, and should not match any target
words in the existing local memory. To achieve
this, several candidates have to be pre-defined for
each OOV, so that alternative choices are available
at run-time. A problem of this approach is that the
vocabulary of the neural model is fixed, so can-
not output probabilities for OOV words. To solve
this, we let the selected similar word entirely over-
written by the OOV word, and any prediction for
the similar word will be ‘re-directed’ to the OOV
word.

4 Related Work

The idea of memory augmentation was inspired
by recent advances in the neural Turing ma-
chine (Graves et al., 2014, 2016) and memory net-
work (Weston et al., 2014). These new models
equip neural networks with an external memory
that can be accessed and manipulated via some
trainable operations. The memory idea has been
utilized in NMT. For example, Wang et al. (2016)
used a memory to extend the state of the decoder
RNN in the attention-based NMT. In this case, the
contribution of the memory is to provide tempo-
rary variables to assist RNN decoding. In contrast,
our work uses memory to store knowledge. The
memory in Wang et al.’s work could be considered
to be note paper, while the memory in our work is
more like a dictionary.

The idea of combining SMT and NMT was
adopted by early NMT research, but these com-
binations were mostly based on the SMT frame-
work, as discussed in depth in the review paper
from Zhang et al. (2015). Cohn et al. (2016) pro-
posed to enhance the attention-based NMT by us-
ing some structural knowledge from a word-based
alignment model. The focus of their work was to
use the extra knowledge to produce a better atten-
tion. In contrast, our work promotes the target
words directly using the word mapping stored in
the memory. Arthur et al. (2016) proposed to in-
volve lexical knowledge to assist with translation,
particularly for low-frequency words. This is sim-
ilar to our proposed idea, with the key difference
that their work uses the attention information to
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select the target words, while ours trains a sepa-
rate attention, based on both the source and target
words.

Regarding handling OOV words, Jean et al.
(2015) presented an efficient training method to
support a larger vocabulary, which helps alleviate
the OOV problem significantly. Stahlberg et al.
(2016) used SMT to produce candidate results in
the form of lattice and NMT to re-score the results.
As SMT uses a larger vocabulary than NMT, some
OOV words can be retained. Sennrich et al. (2016)
proposed a subword approach, where OOV words
are expected to be spelled out by subword units.
Luong et al. (2014) proposed a post-processing ap-
proach that learns the position of the source word
when an UNK symbol is produced during decod-
ing. By this position information, the UNK sym-
bol (unknown words) can be replaced by the cor-
rect translation using a lexical table. Li et al.
(2016) proposed a replace-and-restore approach
that replaces infrequent words with similar words
before the training and decoding, and restores rare
words and their target words, obtained from a lex-
ical table. Compared to the work of (Luong et al.,
2014) and (Li et al., 2016), which relies on post-
processing, our M-NMT approach is more like
pre-processing. This means that the required in-
formation for OOV words is prepared before de-
coding. This seems more flexible than the post-
processing methods, as we can easily deal with
multiple targets for OOVs, by letting the decoder
select which target is the most appropriate. Never-
theless, we do share the same idea of using similar
words as in (Li et al., 2016), which we think is
inevitable if the OOV words are totally new.

5 Experiments

5.1 Data
The experiments were conducted for Chinese-
English translation using two datasets, the rela-
tively small IWSLT dataset, and the much larger
NIST dataset. As we will see, the NMT and SMT
approaches exhibit different behaviours on these
two datasets, and the memory-augmentation ap-
proach offers different contributions to them.

The IWSLT corpus The training data consists of
44K sentences from the tourism and travel do-
main. The development set was composed of the
ASR devset 1 and devset 2 from IWSLT 2005, and
testing used the IWSLT 2005 test set.

The NIST corpus The training data consists of

1M sentence pairs with 19M source tokens and
24M target tokens from the LDC corpora of
LDC2002E18, LDC2003E07, LDC2003E14, and
Hansard’s portion of LDC2004T07, LDC2004T08
and LDC2005T06. We use the NIST 2002 test set
as the development set and the NIST 2003 test set
as the test set.

Memory data To construct the memory, we used
the GIZA++ toolkit (Koehn et al., 2003) to align
the training data in both directions, and kept the
word pairs that appeared in the phrase tables of
both directions. The global memory size is 80K
for the IWSLT task, and 500K for the NIST task.
These word pairs were then filtered according to
the conditional probability p(wt|ws) wherews and
wt are source and target language words, respec-
tively. For each ws, at most two candidates of wt
were retained.

5.2 Systems

We used a conventional SMT system and an
attention-based RNN NMT system as the base-
lines, and investigated a variety of M-NMT archi-
tectures.

SMT baseline: For the SMT system (denoted by
Moses), Moses (Koehn et al., 2007), a state-of-
the-art open-source toolkit, was used. The default
configuration was used where the phrase length
was 7 and the following features were employed:
relative translation frequencies and lexical trans-
lation probabilities on both directions, distortion
distance, language model and word penalty. For
the language model, the KenLM toolkit (Heafield,
2011) was used to build a 5-gram language model
(with the Keneser-Ney smoothing) on the target
side of the training data.

NMT baseline: For NMT, we reproduced the
attention-based RNN model proposed by Bah-
danau et al. (2015), which is denoted by NMT. The
implementation was based on Tensorflow1. We
compared our implementations with a public im-
plementation using Theano2, and achieved com-
parable (even slightly better) performances on the
same data sets with the same parameter settings.

M-NMT system: The M-NMT system was imple-
mented by combining the memory structure and
the NMT system. The model part is the same as
the NMT baseline, while the attention function of

1https://www.tensorflow.org/
2https://github.com/lisa-groundhog/GroundHog
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System Attending Attended
M-NMT(s, uy) si−1 uk(y)
M-NMT(s, uxy) si−1 uk(x), uk(y)
M-NMT(sy, uy) si−1, yi−1 uk(y)
M-NMT(sy, uxy) si−1, yi−1 uk(x), uk(y)

Table 2: M-NMT systems with different configu-
rations.

the memory part was trained. During the training,
if the target word is an UNK symbol, or the target
word is not in the memory (due to the limited word
pairs in the memory), this word is simply skipped
from back-propagation. This skipping is impor-
tant as it avoids bias caused by the large amount
of UNK symbols. The trained M-NMT system can
be readily used to deal with OOV words, without
any re-training.

For M-NMT, the complete form of the
relevance function for memory attention is
emik(si−1, yi−1, uk). Of these, si−1 and yi−1 are
‘attending factors’ that represent the information
used ‘to attend’, while uk, which consists of a
source part uk(x) and a target part uk(y), involves
‘attended factors’ that represent the content ‘to be
attended’. To investigate the contribution of dif-
ferent attending and attended factors, these factors
are combined in different ways, leading to differ-
ent M-NMT variants, as shown in 2. Note that M-
NMT(s;uy) is the simplest configuration and the
attention essentially learns a target-side language
model. M-NMT(s;uxy) involves the source part
of the memory, which implicitly learns a bilingual
language model. Involving the decoding history
yi−1 makes this learning more explicit.

Settings For a fair comparison, the models con-
figurations in the NMT system and the M-NMT
system were intentionally set to be identical. The
number of hidden units, the word embedding di-
mensionality and the vocabulary size were empiri-
cally set to 500, 310 and 30000, respectively. In
the training process, the batch size of the SGD
algorithm was set to 80, and the parameters for
AdaDelta were set to be ρ = 0.95 and ε = 10−6.
The decoding is implemented as a beam search,
where the beam size was set to be 5.

Evaluation metrics The translation performance
was evaluated using the BLEU score with case-
insensitive n ≤ 4-grams (Papineni et al., 2002).

System IWSLT05 NIST03
Moses 52.5 30.6
NMT 43.9 31.3
NMT-L 45.9 31.7
Arthur et al.
M-NMT(s, uy) 49.8 32.3
M-NMT(sy, uy) 50.7 32.5
M-NMT(s, uxy) 51.4 32.8
M-NMT(sy, uxy) 52.9 34.0

Table 3: BLEU scores with different translation
systems on the two Chinese-English translation
datasets.

5.3 SMT-NMT Integration Experiments
In the first experiment, the M-NMT architecture
combined SMT and NMT by using SMT to con-
struct the memory to assist with NMT. For com-
parison purposes, the lexical prediction approach
proposed by (Arthur et al., 2016) was also imple-
mented. This uses the phrase table produced by
SMT to improve NMT. Our implementation is a
linear combination, and for a fair comparison, the
neural model part was kept unchanged. At each
step i, the auxiliary probability provided by the
lexical part is P (yi) =

∑
j αijP (yi|xj), where αij

is the attention weight from the neural model, and
P (yi|xj) is obtained from the phrase table. This
can be regarded as a simple memory approach,
with memory attention borrowed from the neural
model, rather than being learned separately.

Table 3 shows the BLEU results with different
systems. Firstly, it can be observed that with the
small IWSLT05 dataset, the SMT outperforms the
baseline NMT, but with the large NIST dataset,
NMT outperforms SMT. This is unsurprising as
neural models often need more training data. Sec-
ondly, the results show that with both datasets,
the lexical approach (NMT-L) can improve NMT
performance, showing that using SMT knowledge
helps NMT. However, the improvement seems less
significant than reported in (Arthur et al., 2016).
This is likely to be because our implementation
focuses on creating a simple, extensible, and gen-
eralizable system, and therefore does not allow re-
training the neural model.

The M-NMT system provides significant per-
formance improvement, even with the simplest
setting (M-NMT(s, uy)). More information fac-
tors tend to offer better performance, and the best
M-NMT system, M-NMT(sy, uxy), outperforms
the baseline NMT by 9.0 and 2.7 BLEU points
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T-INV T-OOV
System Recall BLEU Recall BLEU
NMT 0.06 15.1 0 13.7
M-NMT 0.05 16.0 0 14.6
NMT-PL 0.09 15.4 0.08 14.3
Luong et al.
M-NMT+OOV 0.28 17.0 0.40 15.9

Table 4: The OOV recall rates and BLEU scores
on sentences with OOV words. ‘T-INV’ refers to
the case where the target words of the OOV input
are in-vocabulary, and ‘T-OOV’ means the case
where the target words are also OOV.

on the two datasets respectively. Notably, the im-
provement with the IWSLT05 dataset is impres-
sive, the best M-NMT system outperforms even
the very strong SMT baseline, which strongly sup-
ports our conjecture that NMT must be equipped
with a symbolic structure to deal with infrequent
words. It also suggests that the M-NMT architec-
ture is a promising way to apply neural methods to
low-resource tasks.

5.4 OOV Treatment Experiments

Here the M-NMT architecture was used to han-
dle OOV words. The experiments were conducted
on the NIST dataset, for which we collected 312
test sentences containing OOV words. This test set
was divided into two subsets: the T-INV set, con-
taining sentences with source OOV words whose
translations are NOT OOV in the target language;
and the T-OOV set, containing sentences with
OOV words that are OOV in both source and trans-
lation. There were 491 source-side OOV words in
total, among which 276 words have in-vocabulary
translations and 215 words only have OOV trans-
lation. We constructed a translation table with
three items for each OOV word: (1) its transla-
tion; (2) its similar word; (3) the similar word of
its translation, if the translation is also an OOV
word. All the above was designed by hand, and
for each OOV word, there was only a single trans-
lation. Although it is not difficult to collect most
of this information automatically (e.g., by using an
SMT phrase table), we are simulating the scenario
where OOV words are newly coined, or where the
system is migrated to a new domain, meaning that
some words are totally new to the system. Han-
dling OOV words of this type is certainly chal-
lenging, but it is also practically valuable.

For comparison, the place-holder approach pro-
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Figure 2: The recall rates of words in different fre-
quency bins.

src. 人类共有二十三对染色体。
ref. Humans have 23 pairs of chromosomes.
Moses A total of 23 human chromosome.
NMT There are 23-year history of human history .
M-NMT There have a total of 23 species of chromosomes .

Table 5: The translations from different systems
for the Chinese-to-English ‘meaning drift’ exam-
ple.

posed by Luong et al. (2014) was also imple-
mented. Here, OOV words in the target language
are substituted by position-aware UNKs, and a
post-processing step is used to replace UNKs with
the correct translation. We denote this system as
‘NMT-PL’. For M-NMT, only the best configu-
ration M-NMT(sy, uxy) was tested in this exper-
iment. Two scenarios were considered: the origi-
nal M-NMT system, and the M-NMT system with
OOV words involved in the memory (denoted by
M-NMT+OOV).

The results with the NIST dataset are shown in
Table 4. In addition to the BLEU scores, we also
report the OOV recall rates, defined as the propor-
tion of OOV words that are correctly translated.
It can be seen that both the basic NMT and M-
NMT systems work badly with OOV words: they
can only process OOV words whose translations
are not OOV in the target language, and the recall
rate is very low (0.05 approximately). The place-
holder approach (NMT-PL) can address both types
of OOV words, but the recall rate is still low. The
M-NMT system with OOV memory, in contrast,
is much more effective in OOV word translation,
as shown in Table 4. We also implemented the
replace-and-restore approach reported by Li et al.
(2016), but found performance to be poor (the
BLEU scores are 13.9 on T-INV and 13.3 on T-
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OOV). This may be due to no re-training of the
neural model (again, in order to keep the extensi-
bility and generalizability of the M-NMT system).

5.5 Frequency Analysis
To form a better understanding of the memory
mechanism, we distribute the test sentences into
four bins according to the lowest word frequency
among the sentence and compute the recall rates
for words in these bins. Once a generated transla-
tion word is also in one of the references, we treat
it as one hit. The experiment was conducted with
the NIST dataset. The results in Figure 2 show that
M-NMT offers more improvement with infrequent
words, in accordance with our argument that the
memory mechanism helps NMT in dealing with
infrequent words.

Finally, we demonstrate the translation with M-
NMT for the example in Table 1, as shown in Ta-
ble 5. It can be clearly seen that the memory has
remembered the infrequent word ‘Chromosome’,
which resulted in an improved translation.

6 Conclusions

This paper presented a memory-augmented NMT
approach, which introduces a memory mechanism
for conventional NMT to assist with translating
words not well learned by the neural model. Our
experiments demonstrated that the new architec-
ture is highly effective, providing performance im-
provement by 9.0 and 2.7 BLEU scores on two
Chinese-English translation datasets, respectively.
Additionally, it offers a very flexible and effective
OOV treatment. In our experiments, The OOV re-
calls are 28% and 40% for the OOV words whose
target words are INV and OOV, respectively, a sig-
nificant improvement on competing methods. Fu-
ture work will investigate better model-memory
integration, e.g., by joint training.
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Abstract

Intelligent selection of training data has
proven a successful technique to simul-
taneously increase training efficiency and
translation performance for phrase-based
machine translation (PBMT). With the
recent increase in popularity of neural
machine translation (NMT), we explore
in this paper to what extent and how
NMT can also benefit from data selection.
While state-of-the-art data selection (Ax-
elrod et al., 2011) consistently performs
well for PBMT, we show that gains are
substantially lower for NMT. Next, we in-
troduce dynamic data selection for NMT, a
method in which we vary the selected sub-
set of training data between different train-
ing epochs. Our experiments show that the
best results are achieved when applying
a technique we call gradual fine-tuning,
with improvements up to +2.6 BLEU over
the original data selection approach and up
to +3.1 BLEU over a general baseline.

1 Introduction

Recent years have shown a rapid shift from
phrase-based (PBMT) to neural machine transla-
tion (NMT) (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014) as the most common
machine translation paradigm. With large quan-
tities of parallel data, NMT outperforms PBMT
for an increasing number of language pairs (Bo-
jar et al., 2016). Unfortunately, training an NMT
model is often a time-consuming task, with train-
ing times of several weeks not being unusual.

Despite its training inefficiency, most work in
NMT greedily uses all available training data for
a given language pair. However, it is unlikely

∗Work done while at University of Amsterdam

that all data is equally helpful to create the best-
performing system. In PBMT, this issue has been
addressed by applying intelligent data selection,
and it has consistently been shown that using more
data does not always improve translation quality
(Moore and Lewis, 2010; Axelrod et al., 2011;
Gascó et al., 2012). Instead, for a given translation
task, the training bitext likely contains sentences
that are irrelevant or even harmful, making it ben-
eficial to keep only the most relevant subset of the
data while discarding the rest, with the additional
benefit of smaller models and faster training.

Motivated by the success of data selection in
PBMT, we investigate in this paper to what ex-
tent and how NMT can benefit from data selec-
tion as well. While data selection has been ap-
plied to NMT to reduce the size of the data (Cho
et al., 2014; Luong et al., 2015b), the effects on
translation quality have not been investigated. In-
tuitively, and confirmed by our exploratory exper-
iments in Section 5.1, this is a challenging task;
NMT systems are known to under-perform when
trained on limited parallel data (Zoph et al., 2016;
Fadaee et al., 2017), and do not have a separate
large-scale target-side language model to compen-
sate for smaller parallel training data.

To alleviate the negative effect of small training
data on NMT, we introduce dynamic data selec-
tion. Following conventional data selection, we
still dramatically reduce the training data size, fa-
voring parts of the data which are most relevant to
the translation task at hand. However, we exploit
the fact that the NMT training process iterates over
the training corpus in multiple epochs, and we al-
ter the quantity or the composition of the training
data between epochs. The proposed method re-
quires no modifications to the NMT architecture
or parameters, and substantially speeds up training
times while simultaneously improving translation
quality with respect to a complete-bitext baseline.
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In summary, our contributions are as follows:
(i) We compare the effects of a commonly used

data selection approach (Axelrod et al., 2011) on
PBMT and NMT using four different test sets. We
find that this method is much less effective for
NMT than for PBMT, while using the exact same
training data subsets.

(ii) We introduce dynamic data selection as a
way to make data selection profitable for NMT.
We explore two techniques to alter the selected
data subsets, and find that our method called grad-
ual fine-tuning improves over conventional static
data selection (up to +2.6 BLEU) and over a
high-resource general baseline (up to +3.1 BLEU).
Moreover, gradual fine-tuning approximates in-
domain fine-tuning in ∼20% of the training time,
even when no parallel in-domain data is available.

2 Static data selection

As a first step towards dynamic data selection
for NMT, we compare the effects of a commonly
used, state-of-the-art data selection method (Axel-
rod et al., 2011) on both neural and phrase-based
MT. Briefly, this approach ranks sentence pairs in
a large training bitext according to their difference
in cross-entropy with respect to an in-domain cor-
pus (i.e., a corpus representing the test data) and a
general corpus. Next, the top n sentence pairs with
the highest rank—thus lowest cross-entropy—are
selected and used for training an MT system.

Formally, given an in-domain corpus I , we first
create language models from the source side f of I
(LMI,f ) and the target side e of I (LMI,e). We then
draw a random sample (similar in size to I) of the
large general corpus G and create language mod-
els from the source and target sides of G: LMG,f

and LMG,e, respectively. Note that the data for
creating these LMs need not be parallel but can be
independent corpora in both languages.

Next, we compute for each sentence pair s in G
four cross-entropy scores, defined as:

HC,sb = −
∑

p (sb) log
(
LMC,b (sb)

)
, (1)

where C ∈ {I,G} is the corpus, b ∈ {f, e} refers
to the bitext side, and sb is the bitext side b of sen-
tence pair s in the parallel training corpus.

To find sentences that are similar to the in-
domain corpus, i.e., have low HI , and at the same
time dissimilar to the general corpus, i.e., have
high HG, we compute for each sentence pair s

the bilingual cross-entropy difference CEDs fol-
lowing Axelrod et al. (2011):

CEDs = (HI,sf −HG,sf )+(HI,se−HG,se). (2)

Finally, we rank all sentence pairs s ∈ G accord-
ing to their CEDs, and then select only the top n
sentence pairs with the lowest CEDs.

Following related work by Moore and Lewis
(2010), we restrict the vocabulary of the LMs to
the words occurring at least twice in the in-domain
corpus. To analyze the quality of the selected data
subsets, we also run experiments on random se-
lections, all performed in threefold. Finally, we
always use the exact same selection of sentence
pairs in equivalent PBMT and NMT experiments.

LSTM versus n-gram The described data se-
lection method uses n-gram LMs to determine the
domain-relevance of sentence pairs. We adhere
to this setting for our comparative experiments on
PBMT and NMT (Section 5.1). However, when
applying data selection to NMT, we examine the
potential benefit of replacing the conventional n-
gram LMs with LSTMs1. These have the advan-
tage to remember longer histories, and do not have
to back off to shorter histories when encountering
out-of-vocabulary words. In this neural variant to
rank sentences, the score for each sentence pair in
G is still computed as the bilingual cross-entropy
difference in Equation (2). In addition, we use the
same in-domain and general corpora as with the n-
gram method, and we again restrict the vocabulary
to the most frequent words.

3 Dynamic data selection

While data selection aims to discard irrelevant
data, it can also exacerbate the problem of low
vocabulary coverage and unreliable statistics for
rarer words in the ‘long tail’, which are major is-
sues in NMT (Luong et al., 2015b; Sennrich et al.,
2016b). In addition, it has been shown that NMT
performance drops tremendously in low-resource
scenarios (Zoph et al., 2016; Fadaee et al., 2017;
Koehn and Knowles, 2017).

To overcome this problem, we introduce dy-
namic data selection, in which we vary the se-
lected data subsets during training. Unlike other
MT paradigms, which require training data to be
fixed during the entire training process, NMT it-
erates over the training corpus in several epochs,

1We use four-layer LSTMs with embedding and hidden
sizes of 1,024, which we train for 30 epochs.
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a) Dynamic data selection: sampling b) Dynamic data selection: gradual fine-tuning
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Figure 1: Illustration of two dynamic bitext selection techniques for NMT: sampling (left) and gradual
fine-tuning (right). Measured over 16 training epochs (which is used in this work), the total training time
of both examples would be ∼30% of the training time needed when using the complete bitext.

allowing to use a different subset of the training
data in every epoch.

Dynamic data selection starts from a relevance-
ranked bitext, which we create using CED scores
as computed in Equation (2). Given this ranking,
we investigate two dynamic data selection tech-
niques2 that vary per epoch the composition or the
size of the selected training data. Both techniques
aim to favor highly relevant sentences over less
relevant sentences while not completely discard-
ing the latter. In all experiments, we use a fixed
vocabulary created from the complete bitext.

While we use in this work a domain-relevance
ranking of the bitext following Axelrod et al.
(2011), dynamic data selection can also be ap-
plied using other ranking criteria, for example lim-
iting redundancy in the training data (Lewis and
Eetemadi, 2013) or complementing similarity with
diversity (Ruder and Plank, 2017).

Sampling sentence pairs In the first technique,
illustrated in Figure 1a, we sample for every epoch
n sentence pairs from G, using a distribution
computed from the domain-specific CEDs scores.
Concretely, this is done as follows:

First, since higher ranked sentence pairs have
lower CEDs scores, and they can be either nega-
tive or positive, we scale and invert CEDs scores
such that 0 ≤ CED′s ≤ 1 for each sentence pair
s ∈ G:

CED′s = 1− CEDs −min(CEDG)
max(CEDG)−min(CEDG)

, (3)

2Code for bitext ranking and both selection techniques:
github.com/marliesvanderwees/dds-nmt.

where CEDG refers to the set of CEDs scores for
bitext G.

Next, we convert CED′s scores to relative
weights, such that

∑
s∈Gw(s) = 1:

w(s) =
CED′s∑

si∈G CED′si
. (4)

We then use {w(s) : s ∈ G} to perform weighted
sampling, drawing for each epoch n sentence pairs
without replacement. While all selection weights
are very close to zero, higher ranked sentences
have a noticeably higher probability of being se-
lected than lower-ranked sentences; in practice
we find that top-ranked sentences get selected in
nearly each epoch, while bottom-ranked sentence
pairs get selected at most once. Note that the sam-
pled selection for any epoch is independent of se-
lections for all other epochs.

Gradual fine-tuning The second dynamic data
selection technique, see Figure 1b, is inspired by
the success of domain-specific fine-tuning (Luong
and Manning, 2015; Zoph et al., 2016; Sennrich
et al., 2016a; Freitag and Al-Onaizan, 2016), in
which a model trained on a large general-domain
bitext is trained for a few additional epochs only
on small in-domain data. However, rather than
training a full model on the complete bitext G, we
gradually decrease the training data size, starting
from G and keeping only the top n sentence pairs
for the duration of η epochs, where the top n pairs
are defined by their CEDs scores. Given its re-
semblance to fine-tuning, we refer to this variant
as gradual fine-tuning.
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During gradual fine-tuning, the selection size n
is a function of epoch i:

n(i) = α · |G| · βb(i−1)/ηc. (5)

Here 0 ≤ α ≤ 1 is the relative start size, i.e., the
fraction of general bitext G used for the first se-
lection, 0 ≤ β ≤ 1 is the retention rate, i.e., the
fraction of data to be kept in each new selection,
and η ≥ 1 is the number of consecutive epochs
each selected subset is used. Note that bi/η + 1c
indicates rounding down i/η+1 to the nearest in-
teger. For example, if we start with the complete
bitext (α = 1), select the top 60% (β = 0.6) every
second epoch (η = 2), then we run epochs 1 and
2 with a subset of size |G|, epochs 3 and 4 with
a subset of size 0.6 · |G|, epochs 5 and 6 with a
subset of size 0.36 · |G|, and so on. For every size
n, the actual selection contains the top n sentences
pairs of G.

4 Experimental settings

We evaluate static and dynamic data selection on
a German→English translation task comprising
four test sets. Below we describe the MT systems
and data specifications.

4.1 Machine translation systems
While the main aim of this paper is to improve data
selection for NMT, we also perform comparative
experiments using PBMT. Our PBMT system is
an in-house system similar to Moses (Koehn et al.,
2007). To create optimal PBMT systems given
the available resources, we apply test-set-specific
parameter tuning using PRO (Hopkins and May,
2011). In addition, we use a linearly interpolated
target-side language model trained with Kneser-
Ney smoothing on 480M tokens of data in various
domains. LM interpolation weights are also opti-
mized per test set. Consistent with Axelrod et al.
(2011), we do not vary the target-side LM between
different experiments on the same test set. All n-
gram models in our work are 5-gram.

For our NMT experiments we use an in-house
encoder-decoder3 model with global attention as
described in Luong et al. (2015a). This choice
comes at the cost of optimal translation quality
but allows for a relatively fast realization of large-
scale experiments given our available resources.
Both the encoder and decoder are four-layer unidi-
rectional LSTMs, with embedding and layer sizes

3github.com/ketranm/tardis

of 1,000. We uniformly initialize all parameters,
and use SGD with a mini-batch size of 64 and an
initial learning rate of 1, which is decayed by a
factor two every epoch after the fifth epoch. We
use dropout with probability 0.3, and a beam size
of 12. We train for 16 epochs and test on the model
from the last epoch. All NMT experiments are run
on a single NVIDIA Titan X GPU.

Train Dev/valid Test

Corpus Lines Tokens Lines Tokens Lines Tokens

EMEA 206K 3.3M 3.9K 59K 5.8K 93K
Movies 101K 1.2M 4.5K 54K 7.1K 87K
TED 189K 3.3M 2.5K 50K 5.4K 99K
WMT 3.8M 84M 3.0K 64K 3.0K 65K

Mix 4.3M 92M 3.5K 61K – –

Table 1: Data specifications with tokens counted
on the German side. The WMT training cor-
pus contains Commoncrawl, Europarl, and News
Commentary but no in-domain news data.

4.2 Training and evaluation data

We evaluate all experiments on four domains: (i)
EMEA medical guidelines (Tiedemann, 2009), (ii)
movie dialogues (van der Wees et al., 2016) con-
structed from OpenSubtitles (Lison and Tiede-
mann, 2016), (iii) TED talks (Cettolo et al.,
2012), and (iv) WMT news. For TED, we use
IWSLT2010 as development set and IWSLT2011-
2014 as test set, and for WMT we use new-
stest2013 as development set and newstest2016
as test set. We train our systems on a mixture
of domains, comprising Commoncrawl, Europarl,
News Commentary, EMEA, Movies, and TED.
Corpus specifications are listed in Table 1.

The in-domain LMs used to rank training sen-
tences for data selection are trained on small por-
tions of in-domain parallel data whenever avail-
able (3.3M, 1.2M and 3.3M German tokens for
EMEA, Movies and TED, respectively). Since
no sizeable in-domain parallel text is available for
WMT, we independently sample 200K sentences
from the WMT monolingual News Crawl corpora
(3.3M German tokens or 3.5M English tokens).
This demonstrates the applicability of data selec-
tion techniques even in cases where one lacks par-
allel in-domain data.

Before running data selection, we preprocess
our data by tokenizing, lowercasing and remov-

1403



0

10

20

30

40

50
B

LE
U

EMEA medical

0

5

10

15

20

25

30

B
LE

U

Movie dialogues

0 5 10 15 20 25 30 35 40 45 50

Selection size (% of complete bitext)

0

5

10

15

20

25

30

B
LE

U

TED talks

0 5 10 15 20 25 30 35 40 45 50

Selection size (% of complete bitext)

0

5

10

15

20

25

30

B
LE

U

WMT news

Size of in-domain bitext

PBMT complete baseline

PBMT Axelrod selection

PBMT random selection

NMT complete baseline

NMT Axelrod selection

NMT random selection

Figure 2: PBMT (purple) and NMT (green) German→English results of Axelrod data selection and
random data selection (average of three runs) for four domains. Purple and green stars indicate BLEU
scores when only the available in-domain data is used. We use selections of the in-domain size |I|, and
5%, 10%, 20%, and 50% of the complete bitext, which are exactly the same for PBMT and NMT.

ing sentences that are longer than 50 tokens or that
are identified as a different language. After selec-
tion, we apply Byte-pair encoding (BPE, Sennrich
et al. (2016b)) with 40K merge operations on ei-
ther side of the complete mix-of-domains training
bitext. For our NMT experiments we use BPE-
processed corpora on both bitext sides, while for
PBMT we only apply BPE to the German side.
Our NMT systems use a vocabulary size of 40K
on both the source and target side.

5 Results

Below we discuss the results of our translation ex-
periments using static and dynamic data selection,
measuring translation quality with case-insensitive
untokenized BLEU (Papineni et al., 2002).

5.1 Static data selection for PBMT and NMT

We first compare the effects of static data selec-
tion with n-gram LMs on both NMT and PBMT
using various selection sizes. Concretely, we se-
lect the top n sentence pairs such that the number
of selected tokens t ∈

{
5%, 10%, 20%, 50%

}
of

G, or t = |I| (the in-domain corpus size). Fig-
ure 2 shows German→English translation perfor-

mance in BLEU for our four test sets. The benefits
of n-gram-based data selection for PBMT (purple
circles) are confirmed: In all test sets, the selec-
tion of size |I| (dotted vertical line) yields better
performance than using only the in-domain data of
the exact same size (purple star), and at least one
of the selected subsets—often using only 5% of
the complete bitext—outperforms using the com-
plete bitext (light purple line). We also show that
the informed selections are superior to random se-
lections of the same size (purple diamonds).

In NMT, results of n-gram-based data selection
(green triangles) vary: While for Movies a selec-
tion of only 10% outperforms the complete bitext
(light green line), none of the selected subsets for
other test sets is noticeably better than the full bi-
text.4 Interestingly, the same selections of size |I|
that proved useful in PBMT, never beat the sys-
tem that uses exactly the available in-domain data
(green star), indicating that the current selections
can be further improved for NMT. In all scenarios
we see that NMT suffers much more from small-
data settings than PBMT. Finally, the random se-

4Validation cross-entropy converges after 10–12 epochs,
never reaching the scores of the complete bitext.
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lections (green squares) show that NMT not only
needs large quantities of data, but it is also affected
when the selected data is of low quality. In PBMT,
both low-quantity and low-quality scenarios ap-
pear to be compensated for by the large monolin-
gual LM on the target side.

When comparing the different test sets, we
observe that the impact of domain mismatch in
NMT with respect to PBMT is largest for the
two domains that are most distinct from the gen-
eral bitext, EMEA and Movies. For WMT, both
MT systems achieve very similar baseline results,
but translation quality deteriorates considerably in
data selection experiments, which is likely caused
by the lack of in-domain data in the general bitext.

LSTM versus n-gram Before proceeding with
dynamic data selection for NMT, we test whether
bitext ranking for NMT can be improved using
LSTMs rather than conventional n-gram LMs. Ta-
ble 2 shows NMT BLEU scores of a few differ-
ent sizes of selected subsets created using n-gram
LMs or LSTMs. While results vary among test
sets and selection sizes, we observe an average im-
provement of 0.4 BLEU when using LSTMs in-
stead of n-gram LMs. For PBMT, similar results
have been reported when replacing n-gram LMs
with recurrent neural LMs (Duh et al., 2013). In all
subsequent experiments we use relevance rankings
computed with LSTMs instead of n-gram LMs.

Selection LM type EMEA Movies TED WMT

5%
n-gram 29.8 17.4 22.6 8.1
LSTM 30.0 17.8 22.6 9.6

10%
n-gram 33.0 19.6 24.5 16.6
LSTM 33.0 19.7 24.7 17.4

20%
n-gram 34.8 19.0 25.6 21.9
LSTM 34.5 19.6 26.6 21.9

Table 2: NMT BLEU comparison between using
n-gram LMs and LSTMs for bitext ranking. Selec-
tion sizes concern the selected bitext subsets; LMs
are created from the exact same in-domain data.

5.2 Dynamic data selection for NMT

Equipped with a relevance ranking of sentence
pairs in bitext G, we now examine two variants of
dynamic data selection as described in Section 3.

We are interested in reducing training time
while limiting the negative effect on BLEU for
various domains. Therefore we report BLEU as

well as the relative training time of each exper-
iment. Since wall-clock times depend on other
factors such as the NMT architecture and memory
speed, we define training time as the total number
of tokens observed while training the NMT sys-
tem, i.e., the sum of tokens in the selected subsets
of all epochs. We report all training times relative
to the training time of our complete-bitext base-
line (i.e., 4.3M tokens × 16 epochs). Note that
this measure of training time corresponds closely
but not exactly to the number of model updates,
as the latter relies on the number of sentences,
which vary in length, rather than the number of
tokens in the training data. For completeness:
Training the 100% baseline takes 106 hours, while
our fastest dynamic selection variant takes 19–21
hours. Computing CED scores takes ∼15 minutes
when using n-gram LMs and 5–6 hours when us-
ing LSTMs.

Figure 3 shows BLEU scores of some selected
experiments as a function of relative training time.
Compared to static data selection (blue lines), our
weighted sampling technique (orange triangles)
yields variable results. When sampling a subset
of 20% of |G| from the top 50% of the ranked bi-
text, we obtain small improvements for TED and
WMT, but small drops for EMEA and Movies.
Other selection sizes (30% and 40%, not shown)
give similar results lacking a consistent pattern.

By contrast, our gradual fine-tuning method
performs consistently better than static selection,
and even beats the general baseline in three out of
four test sets. The displayed version uses settings
(α = 0.5, β = 0.7, η = 2) and is at least as fast as
static selection using 20% of the bitext, yielding
up to +2.6 BLEU improvement (for WMT news)
over this static version. Compared to the com-
plete baseline, this gradual fine-tuning method im-
proves up to +3.1 BLEU (for TED talks).

Table 3 provides detailed information on ad-
ditional experiments using other settings. For
all three test domains which are covered in
the parallel data—EMEA, Movies and TED—
improvements are highest when starting gradual
fine-tuning with only the top 50% of the ranked
bitext, which are also the fastest approaches. For
WMT, which is not covered in the general bi-
text, adding more data clearly benefits translation
quality. These findings are consistent with the
static data selection patterns; Using low-ranked
sentences on top of the most relevant selection
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Figure 3: Selected German→English translation results of dynamic data selection methods (orange and
red markers) compared to conventional static data selection (blue circles). Relative training time equals
the total number of training tokens relative to the complete baseline, which takes 106 hours to train and
is represented by the rightmost blue circle. Note that no parallel in-domain data is available for WMT
news. All y-axes are scaled equally for easy comparison of BLEU differences across domains.

Experiment Relative BLEU

Start size Retention rate β Decrease every training time EMEA Movies TED WMT

Static selection top 20% 20% 34.5 19.6 26.6 21.9

50% (α = 0.5) 0.7 η = 2 epochs 18–20% 36.1 (+1.6) 21.0 (+1.4) 29.1 (+2.5) 24.5 (+2.6)
50% (α = 0.5) 0.5 η = 4 epochs 21–23% 36.0 (+1.5) 21.2 (+1.6) 29.0 (+2.4) 25.0 (+3.1)
50% (α = 0.5) 0.6 η = 4 epochs 25–27% 35.6 (+1.1) 21.0 (+1.4) 28.5 (+1.9) 25.1 (+3.2)

100% (α = 1) 0.6 η = 2 epochs 29–31% 35.5 (+1.0) 21.1 (+1.5) 29.0 (+2.4) 25.6 (+3.7)
100% (α = 1) 0.7 η = 2 epochs 37–39% 35.9 (+1.4) 20.4 (+0.8) 28.2 (+1.6) 25.8 (+3.9)
100% (α = 1) 0.9 η = 1 epoch 50–52% 35.4 (+0.9) 19.6 (±0.0) 27.4 (+0.8) 26.1 (+4.2)

Complete bitext baseline 100% 34.8 18.8 26.0 26.7
Gold: fine-tuning on in-domain data 101–103% 37.7 21.3 30.4 –

Table 3: German→English BLEU results of various gradual fine-tuning experiments sorted by relative
training time. Indicated improvements are with respect to static selection using 20% of the bitext, and
highest scores per test set are bold-faced. Results from the first experiment are also shown in Figure 3.

does not improve translation performance for any
domain except WMT news.

Finally, we compare our data selection exper-
iments to domain-specific fine-tuning (light blue
stars in Figure 3), which is the current state-of-the-
art for domain adaptation in NMT. To this end, we
first train a model on the complete bitext, and then
train for twelve additional epochs on available in-
domain data, using an initial learning rate of 1
which halves every epoch. Depending on the test

set, this approach yields +2.5–4.4 BLEU improve-
ments over our baselines, however it does not
speed up training and requires a parallel in-domain
text which may not be available (e.g., for WMT).
While none of our data selection experiments out-
performs domain-specific fine-tuning, we obtain
competitive translation quality in only 20% of the
training time. In additional experiments we found
that in-domain fine-tuning on top of our selection
approaches does not yield improvements.
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6 Further analysis

In this section we conduct a few additional exper-
iments and analyses. We restrict to one parameter
setting per selection approach: Static selection and
sampling with 20% of the data, and gradual fine-
tuning using (α = 0.5, β = 0.7, η = 2). All have
very similar training times.

First, we hypothesize that dynamic data selec-
tion works well because more different sentence
pairs are observed during training, and it therefore
increases coverage with respect to static data se-
lection. To verify this, we measure for each test
set the number of unseen source word types in the
training data of different selection methods. Fig-
ure 4 shows indeed that the average number of
unseen word types is reduced noticeably in both
of our dynamic selection techniques, being much
closer to the complete bitext baseline than to static
selection. Note that all methods use the same vo-
cabulary during training.
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Figure 4: Test set source words not covered in the
training data of different data selection methods.

Next, following the static data selection exper-
iments in Section 5.1, we examine how well dy-
namic data selection performs using random selec-
tions. To this end, we repeat all techniques using
a bitext which is ranked randomly rather than by
its relevance to the test sets. The results in Table 4
show that the bitext ranking plays a crucial role in
the success of data selection. However, the results
also show that even in the absence of an appropri-
ate bitext ranking, dynamic data selection—and in
particular gradual fine-tuning—is still superior to
static data selection. We explain this result as fol-
lows: Compared to static selection, both sampling
and gradual fine-tuning have better coverage due
to their improved exploration of the data. How-
ever, sampling also suffers from a surprise effect
of observing new data in every epoch. Gradual
fine-tuning on the other hand gradually improves

learning on a subset of the selected data, suggest-
ing that repetition across epochs has a positive ef-
fect on translation quality.

Ranking Method EMEA Movies TED WMT

Relevance
Gradual FT 36.1 21.0 29.1 24.5
Sampling 20% 34.5 19.0 27.6 23.2
Static 20% 34.5 19.6 26.6 21.9

Random
Gradual FT 29.2 16.1 23.2 21.3
Sampling 20% 26.7 14.4 22.0 19.8
Static 20% 25.3 14.4 20.9 18.2

Table 4: BLEU scores of data selection using rel-
evance versus random ranking of the bitext. Grad-
ual fine-tuning uses (α = 0.5, β = 0.7, η = 2),
with relative training times of 18–20%.

One could expect that changing the data during
training results in volatile training behavior. To
test this, we inspect cross-entropy of our devel-
opment sets after every training epoch. Figure 5
shows these results for TED. Clearly, static data
selection converges most steadily. However, both
dynamic selection techniques eventually converge
to a lower cross-entropy value which is reflected
by higher translation quality of the test set. We ob-
serve very similar behavior for the other test sets.
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Figure 5: German→English cross-entropy of the
TED dev set as a function of training time. Each
data point represents a completed training epoch.

By its nature, our gradual fine-tuning technique
uses training epochs of different sizes, and there-
fore also implicitly differs from other methods
in its parameter optimization behavior. Since
we decrease both the training data size and the
SGD learning rate after finishing complete train-
ing epochs, we automatically decay the learning
rate at decreasing time intervals. We therefore
study how this approach is affected when we (i)
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decay the learning rate after a fixed number of
updates (i.e., the same as in static data selection)
rather than per epoch, or (ii) keep the learning rate
fixed. In the first scenario, we observe that trans-
lation performance drops with –1.1–2.0 BLEU.
When keeping a fixed learning rate, BLEU scores
hardly change or even improve, indicating that the
implicit change in search behavior may contribute
to the success of gradual fine-tuning.

7 Related work

A few research topics are related to our work.
Regarding data selection for SMT, previous work
has targeted two goals; to reduce model sizes and
training times, or to adapt to new domains. Data
selection methods for domain adaptation mostly
employ information theory metrics to rank train-
ing sentences by their relevance to the domain at
hand. This has been applied monolingually (Gao
et al., 2002) as well as bilingually (Yasuda et al.,
2008). In more recent work, training sentences are
typically ranked according to their cross-entropy
difference between in-domain and general-domain
data (Moore and Lewis, 2010; Axelrod et al.,
2011, 2015), favoring sentences that are similar
to the test domain and at the same time dissimi-
lar from the general domain. Duh et al. (2013) and
Chen and Huang (2016) present similar methods
in which n-gram LMs are replaced by neural LMs
or neural classifiers, respectively.

Data selection with the aim of model size and
training time reduction has the objective to use the
minimum amount of data while still maintaining
high vocabulary coverage (Eck et al., 2005; Gascó
et al., 2012; Lewis and Eetemadi, 2013). In a com-
parative study, Mirkin and Besacier (2014) find
that similarity-objected methods perform best if
the test domain and general corpus are very differ-
ent, while a coverage-objected method is superior
if test and general corpus are relatively similar. A
comprehensive survey on data selection for SMT
is provided by Eetemadi et al. (2015). While in
this work we have used a similarity objective to
rank our bitext, one could also apply dynamic data
selection using a coverage objective.

In NMT, data selection can serve similar goals
as in PBMT; increasing training efficiency or do-
main adaptation. Domain adaptation in NMT typ-
ically involves training a model on the complete
bitext, followed by fine-tuning the parameters on
a smaller in-domain corpus (Luong and Manning,

2015; Zoph et al., 2016). Other work combines
fine-tuning with model ensembles (Freitag and Al-
Onaizan, 2016) or with domain-specific tags in the
training corpus (Chu et al., 2017). Finally, Sen-
nrich et al. (2016a) adapt their systems by back-
translating in-domain data, which is then added to
the training data and used for fine-tuning.

Some other previous work has addressed train-
ing efficiency for NMT, for example by paral-
lelizing models or data (Wu et al., 2016), modi-
fying the NMT network structure (Kalchbrenner
et al., 2016), decreasing the number of parame-
ters through knowledge distillation (Crego et al.,
2016; Kim and Rush, 2016), or by boosting parts
of the data that are ‘challenging’ to the NMT sys-
tem (Zhang et al., 2016). The latter is most related
to our work since training data is also adjusted dur-
ing training, however we reduce the training data
size much more aggressively and study different
techniques of data selection.

Finally, recent work comparing various aspects
for PBMT and NMT includes (Bentivogli et al.,
2016; Farajian et al., 2017; Toral and Sánchez-
Cartagena, 2017; Koehn and Knowles, 2017).

8 Conclusions

With the recent increase in popularity of neural
machine translation (NMT), we explored in this
paper to what extent and how NMT can benefit
from data selection. We first showed that a state-
of-the-art data selection method yields unreliable
results for NMT while consistently performing
well for PBMT. Next, we have introduced dynamic
data selection for NMT, which entails varying the
selected subset of training data between different
training epochs. We explored two techniques of
dynamic data selection and found that our grad-
ual fine-tuning technique, in which we gradu-
ally reduce training size, improves consistently
over conventional static data selection (up to +2.6
BLEU) and over a high-resource general base-
line (up to +3.1 BLEU). Moreover, gradual fine-
tuning approximates in-domain fine-tuning using
only∼20% of the training time, even when no par-
allel in-domain data is available.
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Sanchis-Trilles, Jesús Andrés-Ferrer, and Francisco
Casacuberta. 2012. Does more data always yield
better translations? In Proceedings of the 13th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 152–161.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1352–1362.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. arXiv preprint arXiv:1610.10099.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317–1327.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,

1409



Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Demo and
Poster Sessions, pages 177–180.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. arXiv
preprint arXiv:1706.03872.

William D. Lewis and Sauleh Eetemadi. 2013. Dra-
matically reducing training data size through vocab-
ulary saturation. In Proceedings of the 8th Workshop
on Statistical Machine Translation, pages 281–291.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016).

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the 12th
International Workshop on Spoken Language Trans-
lation, pages 76–79.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1412–1421.

Minh-Thang Luong, Ilya Sutskever, Quoc Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
11–19.

Shachar Mirkin and Laurent Besacier. 2014. Data se-
lection for compact adapted SMT models. In Pro-
ceedings of the 11th Conference of the Associa-
tion for Machine Translation in the Americas, pages
301–314.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, pages 86–96.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, pages 1715–1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Jörg Tiedemann. 2009. News from OPUS-a collection
of multilingual parallel corpora with tools and inter-
faces. In Recent advances in natural language pro-
cessing, volume 5, pages 237–248.

Antonio Toral and Vı́ctor M. Sánchez-Cartagena. 2017.
A multifaceted evaluation of neural versus phrase-
based machine translation for 9 language directions.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 1063–
1073.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2016. Measuring the effect of conversational
aspects on machine translation quality. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics, pages 2571–
2581.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Keiji Yasuda, Ruiqiang Zhang, Hirofumi Yamamoto,
and Eiichiro Sumit. 2008. Method of selecting train-
ing data to build a compact and efficient translation
model. In International Joint Conference on Natu-
ral Language Processing (IJCNLP), pages 655–660.

Dakun Zhang, Jungi Kim, Joseph Crego, and Jean
Senellart. 2016. Boosting neural machine transla-
tion. arXiv preprint arXiv:1612.06138.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for low-
resource neural machine translation. arXiv preprint
arXiv:1604.02201.

1410



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1411–1420
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Neural Machine Translation
Leveraging Phrase-based Models in a Hybrid Search

Leonard Dahlmann and Evgeny Matusov and Pavel Petrushkov and Shahram Khadivi
eBay Inc.

Kasernenstr. 25
52064 Aachen, Germany

{fdahlmann, ematusov, ppetrushkov, skhadivi}@ebay.com

Abstract

In this paper, we introduce a hybrid search
for attention-based neural machine trans-
lation (NMT). A target phrase learned with
statistical MT models extends a hypoth-
esis in the NMT beam search when the
attention of the NMT model focuses on
the source words translated by this phrase.
Phrases added in this way are scored
with the NMT model, but also with SMT
features including phrase-level translation
probabilities and a target language model.
Experimental results on German→English
news domain and English→Russian e-
commerce domain translation tasks show
that using phrase-based models in NMT
search improves MT quality by up to 2.3%
BLEU absolute as compared to a strong
NMT baseline.

1 Introduction

Neural machine translation has become state-of-
the-art in recent years, reaching higher transla-
tion quality than statistical phrase-based machine
translation (PBMT) on many tasks. Human anal-
ysis (Bentivogli et al., 2016) showed that NMT
makes significantly fewer reordering errors, and
also is able to select correct word forms more of-
ten than PBMT in the case of morphologically
rich target languages. Overall, the fluency of the
MT output improves when NMT is used, and the
number of lexical choice errors is also reduced.
However, state-of-the-art NMT approaches based
on an encoder-decoder architecture with an atten-
tion mechanism as introduced by (Bahdanau et al.,
2014) exhibit weaknesses that sometimes lead to
MT errors which a phrase-based MT system does
not make. In particular, PBMT usually can better
translate rare words (e.g. singletons), as well as

memorize and use phrasal translations. NMT has
problems translating rare words because of limi-
tations on the vocabulary size, as well as the fact
that word embeddings are used to represent both
source and target words. A rare word’s embedding
can not be trained reliably.

Another handicap of NMT is a general diffi-
culty of fixing errors made by a neural MT sys-
tem. Since NMT does not explicitly use or save
word-to-word or phrase-to-phrase mappings, and
its search is a target word beam search with al-
most no constraints, it is difficult to fix errors by
an NMT system. It is important to quickly fix cer-
tain errors in real-life applications of MT systems
to avoid negative user feedback or other (e.g. le-
gal) consequences. An error identified in the out-
put of a PBMT system can be fixed by tracing
which phrase pair was used that resulted in the
error, and down-weighting or even removing the
phrase pair. Also, in PBMT it is easy to add an
“override” translation.

In this work, we combine the strengths of NMT
and PBMT approaches by introducing a novel hy-
brid search algorithm. In this algorithm, the stan-
dard NMT beam search is extended with phrase
translation hypotheses from a statistical phrase ta-
ble. The decision on when to use what phrasal
translations is taken based on the attention mech-
anism of the NMT model, which provides a soft
coverage of the source sentence words. All par-
tial phrasal translations are scored with the NMT
decoder and can be continued with a word-based
NMT translation candidate or another phrasal
translation candidate.

The proposed search algorithm uses a log-linear
model in which the NMT translation score is com-
bined with standard phrase translation scores, in-
cluding a target n-gram language model (LM)
score. Thus, a LM trained on additional monolin-
gual data can be used. The decisions on the word
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order in the produced target translation are taken
based only on the states of the NMT decoder.

This paper is structured as follows. We review
related work in Section 1.1. The baseline NMT
model we use is described in Section 2, where we
also recap the log-linear model combination used
in PBMT. Section 3 presents the details of the pro-
posed hybrid search. Experimental results are pre-
sented in Section 4, followed by conclusions and
outlook in Section 5.

1.1 Related Work

In the line of research closely related to our ap-
proach, neural models are used as additional fea-
tures in vanilla phrase-based systems. Examples
include the work of (Devlin et al., 2014), (Junczys-
Dowmunt et al., 2016), etc. Such approaches have
certain limitations: first, the search space of the
model is still restricted by what can be produced
using a phrase table extracted from parallel data
based on word alignments. Second, the organiza-
tion of the search, in which only a limited target
word history (e.g. 4 last target words) is avail-
able for each partial hypothesis, makes it diffi-
cult to integrate recurrent neural network LMs and
translation models which take all previously gen-
erated target words into account. That is why, for
instance, the attention-based NMT models were
usually applied only in rescoring (Peter et al.,
2016).

In (Stahlberg et al., 2017), a two-step transla-
tion process is used, where in the first step a SMT
translation lattice is generated, and in the second
step the NMT decoder combines NMT scores with
the Bayes-risk of the translations according to the
lattice. In contrast, we explicitly use phrasal trans-
lations and language model scores in an integrated
search.

In (Arthur et al., 2016), a statistical word lex-
icon is used to influence NMT hypotheses, also
based on the attention mechanism. (Gülçehre
et al., 2015) combine target n-gram LM scores
with NMT scores to find the best translation. (He
et al., 2016) also use a target LM, but add fur-
ther SMT features such as word penalty and word
lexica to the NMT beam search. To the best
of our knowledge, no previous work extends the
beam search with phrasal translation hypotheses
of PBMT, like we propose in this paper.

In (Tang et al., 2016), the NMT decoder is
modified to switch between using externally de-

fined phrases and standard NMT word hypothe-
ses. However, only one target phrase per source
phrase is considered, and the reported improve-
ments are significant only when manually selected
phrase pairs (mostly for rare named entities) are
used.

Somewhat related to our work is the concept
of coverage-based NMT (Tu et al., 2016), where
the model architecture is changed to explicitly ac-
count for source coverage. In our work, we use
a standard NMT architecture, but track coverage
with accumulated attention weights.

2 Background

2.1 Neural MT
Neural MT proposed by (Bahdanau et al., 2014)
maximizes the conditional log-likelihood of the
target sentence E : e1, . . . , eI given the source
sentence F : f1, . . . , fJ :

HD = − 1

N

N∑

n=1

log pθ(En|Fn)

where (En, Fn) refers to the n-th training sen-
tence pair in a dataset D, and N denotes the total
number of sentence pairs in the training corpus.
When using the encoder-decoder architecture by
(Cho et al., 2014), the conditional probability can
be written as:
p(e1 · · · eI |f1 · · · fJ) =

I∏

i=1

p(ei|ei−1 · · · e1, c)

with p(ei|ei−1 · · · e1, c) = g(si, ei−1, c), where I
is the length of the target sentence and J is the
length of source sentence, c is a fixed-length vec-
tor to encode the source sentence, si is a hidden
state of RNN at time step i, and g(·) is a non-
linear function to approximate the word probabil-
ity. When the attention mechanism is used, the
vector c in each sentence is replaced by a time-
variant representation ci that is a weighted sum-
mary over a sequence of annotations (h1, . . . , hJ),
and hj contains information about the whole input
sentence, but with a strong focus on the parts sur-
rounding the j-th word (Bahdanau et al., 2014).
Then, the context vector can be defined as:

ci =
J∑

j

αijhj where αij =
exp(rij)∑J
j=1 exp(rij)

.

Therefore, αij is normalized over all source po-
sitions j. Also, rij = a(si−1, hj) is the atten-
tion model used to calculate the log-likelihood of
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aligning the i-th target word to the j-th source
word.

2.2 Phrase-based MT

The log-linear model, as introduced in (Och and
Ney, 2002), allows decomposing the translation
probability Pr(eI1|fJ1 ) by using an arbitrary num-
ber of features hm(fJ1 , e

I
1). Each feature is multi-

plied by a corresponding scaling factor λm:

Pr(eI1|fJ1 ) =
exp

(∑M
m=1 λmhm(f

J
1 , e

I
1)
)

∑
ẽĨ1
exp

(∑M
m=1 λmhm(f

J
1 , ẽ

Ĩ
1)
) .

The standard PBMT approach uses a log-linear
model in which bidirectional phrasal and lexical
scores, language model scores, distortion scores,
word penalties and phrase penalties are combined
as features.

3 Hybrid Approach

In this section we describe our proposed hybrid
NMT approach. The algorithm allows translations
to be generated partially by phrases1 and partially
by words. Section 3.1 describes the models we
use to score hypotheses. The search algorithm is
presented in Section 3.2.

3.1 Log-linear Combination

We use a log-linear model combination to intro-
duce SMT models into the NMT search. Since
translations can be partially generated by phrases,
we introduce the phrase segmentation sK1 as a hid-
den variable into the models similarly to (Zens and
Ney, 2008), where K is the number of phrases
used in the translation. Note that, unlike stan-
dard PBMT, sK1 does not need to cover the whole
source sentence, as parts of the translation can be
generated by words. Using the maximum approx-
imation, the search criterion then is

êÎ1 = argmax
I,eI1

{
max
sK1

M∑

m=1

λmhm(f
J
1 , e

I
1, s

K
1 )

}
.

(1)
Let f̃k, ẽk be the chosen phrase pairs in the seg-
mentation sK1 for k = 1, . . . ,K. In our experi-
ments with the proposed hybrid search, we use the
following features:

1. The NMT feature hNMT.

1As in SMT, phrases can consist of only a single token.

2. The word penalty feature hWP counts the
number of target words. This feature can help
control the length of translations.

3. The source word coverage feature hSWC
counts the number of source words translated
by phrases:

hSWC(f
J
1 , e

I
1, s

K
1 ) =

K∑

k=1

|f̃k|.

The purpose of this feature is to control the
usage of phrases.

4. The phrase penalty feature hPP counts the
number of phrases used. Together with the
word penalty and the source word coverage
feature, the phrase penalty can control the
length of chosen phrases.

5. The n-gram language model feature hLM.
6. The bidirectional phrase features hPhr and
hiPhr. Note that these features are only ap-
plied for those parts of the translation that are
generated by phrases. The other parts get a
phrase score of zero.

The scaling factors λm are tuned with minimum
error rate training (MERT) (Och, 2003) on n-best
lists of the development set.

3.2 Search

The algorithm is based on the beam search for
NMT, which generates translations one word per
time step in a left-to-right fashion. We modify this
search to allow hypothesizing phrases in addition
to normal word hypotheses. The phrases are sug-
gested based on the neural attention, starting from
the source position with the maximal current atten-
tion. We only suggest phrases if a source position
is focused. We check that suggested phrases do
not overlap with already translated source words
by keeping track of the sum of attention in pre-
vious time steps for each source position. Thus,
the problem of global reordering is left entirely to
the NMT model and we follow the attention when
hypothesizing phrases.

Hypotheses are scored by NMT and SMT mod-
els. The beam is divided into two parts of fixed
size: the word beam and the phrase beam. The
phrase beam is used to score target phrases which
were hypothesized from an entry in a previous
word beam. In order to score a target phrase con-
sisting of k words with the NMT model, we use
k time steps, allowing us to keep the efficiency
of batched NMT scoring. Once a target phrase
has been fully scored (and if the hypothesis has
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not been pruned), the hypothesis is returned to the
word beam. Both beams are generated and pruned
independently in each time step.

The algorithm has some hyper-parameters that
need to be set manually. First, we have the beam
size Np for phrase hypotheses and the beam size
Nw for word hypotheses. Second, τfocus is the
minimum attention that needs to be on a source
position to consider it for extending with a phrase
translation candidate whose source phrase starts
on that position. Third, τcov is the minimum sum
of attention of a source position over previous time
steps at which it is considered to be covered. We
do not hypothesize phrases that overlap with cov-
ered positions.

In the following, we describe the search in de-
tail. Let fJ1 be the source sentence. Before search,
we run the standard phrase matching algorithm on
the source sentence to retrieve the translation op-
tions E(j, j′) for source positions 1 ≤ j < j′ ≤ J
from a given SMT phrase table. With each hypoth-
esis h, we associate the following items:
• C(h, j) is the sum of the NMT attention to

source position j involved in generating the
target words of h. This can be considered as
a soft coverage vector for h.
• Q(h) is the partial log-linear score of h ac-

cording to Equation 1.
• E(h) is the n-gram target word history of h.
• If h is a phrase hypothesis with target phrase
ẽ, of which k words already have been scored
by NMT, then P (h) := (ẽ, k) is the phrase
state.

Also, each hypothesis is associated with its cor-
responding NMT hidden state. We initialize the
beam to consist of an empty word hypothesis.
Each step of the beam search proceeds as follows:

1. Let B = [Bw, Bp] be the previous beam with
word/phrase hypotheses, respectively. First,
we generate the attention vector αh,j and the
distribution over target words p̂h(e) for each
hypothesis h ∈ B and word e in the NMT
target vocabulary VT using the NMT model
in batched scoring 2.

2. Initialize new beam [B′w, B
′
p] = [∅, ∅].

3. Generate new word hypotheses: find the
maximal Nw pairs (h, e) with h ∈ Bw and
e ∈ VT according to the score Q(h)+λNMT ·

2If a target word e is not in VT , set p̂h(e) = p̂h(UNK)
where UNK is a special token denoting unknowns. Note that
this almost never happens when using a word segmentation
like BPE (Sennrich et al., 2016b).

log p̂h(e). For the top pairs h′ = (h, e), set

Q(h′) = Q(h) + λNMT · log p̂h(e)
+ λLM · log pLM(e|E(h)) + λWP

and insert h′ into B′w. Update the soft cover-
ageC(h′, j) = C(h, j)+αh,j for 1 ≤ j ≤ J .

4. Generate new phrase hypotheses: for each
previous word hypothesis h ∈ Bw, convert
the soft attention C(h, ·) into a binary cover-
age set C, such that j ∈ C iff. C(h, j) >
τcov. Identify the current NMT focus as

ĵ = argmax
1≤j≤J, αh,j>τfocus

αh,j .

If there is no such j with αh,j > τfocus, no
phrase hypotheses are generated from h in
this step. Otherwise, for each source phrase
length l with C∩{ĵ, ĵ+1, . . . , ĵ+ l−1} = ∅
and each target phrase ẽ ∈ E(ĵ, ĵ+ l), create
a new hypothesis h′ = (h, ẽ1) with the score

Q(h′) = Q(h) + λNMT · log p̂h(e1)
+ λLM · log pLM(ẽ|E(h)) + |ẽ| · λWP

+ λPP + l · λSWC.

(2)

Note that, in this step, the full target phrase is
scored using the language model, while only
the first target word is scored using NMT. Ini-
tialize the phrase state of h′: P (h′) = (ẽ, 1).
As in step 3, update the soft coverage. If
|ẽ| = 1, insert h′ into B′w, otherwise insert
into B′p.

5. Advance previous phrase hypotheses: for
each h ∈ Bp, with phrase state P (h) =
(ẽ, k), score the (k + 1)-th target word of ẽ
using NMT, setting h′ = (h, ẽk+1) and

Q(h′) = Q(h) + λNMT · log p̂h(ẽk+1).

As in step 3, update the soft coverage. Set
the new phrase state as P (h′) = (ẽ, k + 1).
If k + 1 = |ẽ|, we are finished scoring the
phrase and h′ is inserted into B′w. Otherwise,
h′ is inserted in B′p.

6. Prune B′w to Nw entries and B′p to Np entries
according to Q(·).

7. Insert all hypotheses from the prunedB′w and
B′p where the last word is the sentence end
token into the set of finished hypotheses Bf .

8. B := [B′w, B
′
p].

1414



Data set WMT E-commerce
Language German English English Russian

Training
Sentences 5,597,491 2,919,406

Running words 129,083,315 134,469,297 46,715,319 45,305,268
Full vocabulary 1,961,186 884,075 326,015 774,435

Dev
Sentences 2169 (WMT 15) 950

Running words 56,593 51,324 24,487 24,087

Test
Sentences 6002 (WMT 14 + 16) 1051 (item/product descriptions)

Running words 160,469 144,387 29,165 26,476

Table 1: Corpus statistics for the WMT German→English and e-commerce English→Russian MT tasks.

If phrase scores from a phrase table are to be in-
cluded in the search, Equation 2 needs to be modi-
fied by adding λPhr log p(f̃ |ẽ) and λiPhr log p(ẽ|f̃).

As in the pure NMT beam search, this proce-
dure is repeated until either the last word of all
hypotheses in a step is the sentence end token, or
2 · J many beam steps have been performed. Fi-
nally, the best translation is chosen as the one in
Bf with the highest score.

Note that the same target sequence can be gen-
erated with different phrasal segmentations. Dur-
ing search, if two hypotheses have the same full
target history in a beam, we recombine them and
discard the hypothesis with the lower score.

4 Experiments

We perform experiments comparing the transla-
tion quality of our hybrid approach to phrase-
based and pure end-to-end NMT baselines.
We present results on two tasks: an in-
house English→Russian e-commerce task (trans-
lation of real product/item descriptions from
an e-commerce site), and the WMT 2016
German→English task (news domain). The cor-
pus statistics are shown in Table 1.

For the English→Russian task, the parallel
training data consists of an in-domain part (ca.
5.5M running words) of product/item titles and de-
scriptions and other e-commerce content. The rest
is out-of-domain data (UN, subtitles, TAUS data
collections, etc.) sampled to have significant n-
gram overlap with the in-domain description data.
Item descriptions are provided by private sellers
and, like any user-generated content, may con-
tain ungrammatical sentences, spelling errors, and
other noise. Product descriptions usually originate
from product catalogs and are more “clean”, but
on the other hand, are difficult to translate because
of rare domain-specific terminology. Both types

of text contain itemizations, measurement units,
and other structures which are usually not found in
normal sentences. We tune the system on a devel-
opment set that is a mix of product and item de-
scriptions, and evaluate on separate product/item
description test sets. For development and test
sets, two reference translations are used.

The German→English system is trained on par-
allel corpora provided for the constrained WMT
2017 evaluation (Europarl, Common Crawl, and
others). We use the WMT 2015 evaluation data as
development set, and the evaluation is performed
on two sets from the WMT evaluations in 2014
and 2016. Only a single human reference transla-
tion is provided.

For the phrase-based baselines, we use an in-
house phrase-decoder (Matusov and Köprü, 2010)
which is similar to the Moses decoder (Koehn
et al., 2007). We use standard SMT features,
including word-level and phrase-level translation
probabilities, the distortion model, 5-gram LMs,
and a 7-gram joint translation and reordering
model reimplemented based on the work of (Guta
et al., 2015). The language model for the e-
commerce task is trained on additional mono-
lingual Russian item description data containing
28.2M words. For the WMT task, we use the En-
glish News Crawl data containing 3.8B words for
additional language model data. The tuning is per-
formed using MERT (Och, 2003) to increase the
BLEU score on the development set. To stabilize
the optimization on the English→Russian task, we
detach Russian morphological suffixes from the
word stems both in hypotheses and references us-
ing a context-independent “poor man’s” morpho-
logical analysis. We prefix each suffix with a spe-
cial symbol and treat them as separate tokens.

We have implemented our NMT model in
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Item descriptions Product descriptions
System description Beam size BLEU [%] TER [%] BLEU [%] TER [%]
Phrase-based - 21.3 61.6 22.7 56.6
+ 1000-best rescoring with NMT - 23.1 60.1 25.8 54.7
NMT 12 26.4 56.4 28.4 52.0
NMT 128 26.3 56.6 28.5 51.9
Full hybrid approach 128 26.7 56.1 29.9 51.2
+ extra LM data 128 27.4 55.4 30.8 50.5
NMT + WP + LM (with extra data) 128 26.2 57.3 29.0 51.8

Table 2: Overview of translation results on the e-commerce English→Russian task.

Python using the TensorFlow3 deep learning li-
brary. We use the embedding size of 620, RNN
size of 1000 and GRU cells. The model is trained
with maximum likelihood loss for 15 epochs us-
ing Adam optimizer (Kingma and Ba, 2014) on
complete data in batches of 100 sentences. The
learning rate is initialized to 0.0002, decaying by
0.9 each epoch. For regularization we use L2 loss
with weight 10−7 and dropout following Gal and
Ghahramani (2016). We set the dropout probabil-
ity for input and recurrent connections of the RNN
to 0.2 and word embedding dropout probability to
0.1. On the English→Russian task, the model is
then fine-tuned on in-domain data for 10 epochs.
The vocabulary is limited using byte pair encoding
(BPE) (Sennrich et al., 2016b) with 40K splits sep-
arately for each language. To speed up training we
use approximate loss as described in (Jean et al.,
2015). For pure NMT experiments, we employ
length normalization (Wu et al., 2016), as other-
wise short translations would be favored.

For the hybrid approach, we use the same
trained end-to-end model as in the NMT base-
line. We use all the phrase-based model features
plus the NMT score and run MERT as described
in Section 3.1. Language models are trained on
the level of BPE tokens. We consider at most 100
translation options for each source phrase. If not
specified otherwise, we use a beam size of 96 for
phrase hypotheses and a beam size of 32 for word
hypotheses, resulting in a combined beam size
of 128. Furthermore, we set the focus threshold
τfocus = 0.3 and the coverage threshold τcov = 0.7
by default. We also perform experiments where
these hyper-parameters are varied.

3http://tensorflow.org

4.1 E-commerce English→Russian

The results on the e-commerce English→Russian
task are summarized in Table 2.

NMT vs. phrase-based SMT
The pure NMT system exhibits large improve-
ments over the phrase-based baseline4. These im-
provements are also significantly larger than when
we use the NMT model to rescore PBMT 1000-
best lists. NMT results are not improved when the
beam size is increased from 12 to 128.

Hybrid search vs. pure NMT search
For the hybrid approach, we train a phrase-table
on the in-domain data and split the source and tar-
get phrases with BPE afterwards for compatibility
with the NMT vocabulary. With the hybrid ap-
proach, when using a LM trained only on the target
side of bilingual data, we get an improvement of
0.3% BLEU on item descriptions and 1.4% BLEU
on product descriptions over the pure NMT sys-
tem. When we use the LM trained on extra mono-
lingual data, we get total improvements of 1.0%
BLEU and 2.3% BLEU with the hybrid approach.
In contrast, when we add this language model and
a word penalty on top of the pure NMT system
and tune scaling factors with MERT, we get small
improvements (last row of Table 2) only on prod-
uct descriptions. This shows that the hybrid ap-
proach can exploit the LM better than a purely
word-based NMT approach. We have also per-
formed experiments utilizing the additional mono-
lingual data for synthetic training data for NMT
as in (Sennrich et al., 2016a), but did not get im-
provements.

To analyze the improvements of the hybrid sys-
tem, we perform experiments in which we either

4The significance of these improvements was also con-
firmed by an in-house human evaluation with 3 judges.
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Item descriptions Product descriptions
System description BLEU [%] TER [%] BLEU [%] TER [%]
Full hybrid approach 27.4 55.4 30.8 50.5
Without LM 26.5 55.9 29.2 51.0
Without source word coverage feature 26.7 56.1 29.4 51.2
Without phrase scores 27.2 55.9 30.6 50.6
Maximal source phrase length 1 26.7 56.4 29.1 51.6
Minimal source phrase length 2 27.0 55.9 30.0 51.1

Table 3: Translation results of the hybrid approach on the e-commerce English→Russian task with
different SMT model combinations. The first row shows results with all models enabled. In the following
rows, we either remove or limit exactly one model compared to the full system.

disable or limit some of the SMT models. The
results are shown in Table 3. Without the lan-
guage model, the hybrid approach has almost no
improvements over the NMT baseline. This in-
dicates that the language model is crucial in se-
lecting appropriate phrase candidates. Similarly,
when we disable the source word coverage feature,
the translation quality is degraded, suggesting that
this feature helps choose between phrase hypothe-
ses and word hypotheses during the search. Next,
we do not use phrase-level scores. Here, we ob-
serve only a small degradation of translation qual-
ity. Finally, we limit the source length of phrases
used in the search, allowing only one-word source
phrases in one experiment and only source phrases
with two or more words in another experiment. In
both cases, the translation quality decreases. Thus,
both one-word phrases and longer phrases are nec-
essary to obtain the best results.

Tuning the beam size
Next, we study the effect of different beam sizes
on translation quality. The results are shown in
Table 4. Note that we retune the system for each
choice. With a total beam size of 128, we get the
best results by using a phrase beam size of 96 and
a word beam size of 32. When we use a phrase
beam size of 116 or 64 instead, the translation
quality worsens. In another experiment, we de-
crease the total beam size to 64. The translation
quality degrades only slightly, which means that
we can still expect MT quality improvements with
hybrid search even if we optimize the system for
speed. To further test this, we reduce the beam
sizes to Nw = 12 and Np = 4 after tuning with
Nw = 32 and Np = 96. We get BLEU scores of
27.1% on item descriptions and 30.1% on product
descriptions, losing 0.3% and 0.7% BLEU respec-
tively compared to the full beam size.

Beam size Item descr. Product descr.
Np Nw BLEU TER BLEU TER

[%] [%] [%] [%]
116 12 26.7 55.9 29.8 51.1
96 32 27.4 55.4 30.8 50.5
64 64 26.8 55.6 30.1 50.7
32 32 27.1 55.8 30.7 50.5

Table 4: Effect of the beam size (word beam size
Nw + phrase beam size Np) for the hybrid ap-
proach on the e-commerce English→Russian task.

Tuning the attention focus/coverage thresholds
Table 5 shows results with different values for the
coverage threshold τcov. Again, we retune the sys-
tem for each choice. Setting the coverage thresh-
old to 1.0 or even disabling the coverage check (by
setting τcov = ∞) has little effect on the transla-
tion scores on this task. This can be explained by
the fact that translation from English to Russian is
mostly monotonic. We also tried varying the fo-
cus threshold τfocus between 0.0 and 0.3 but did
not notice any significant effect on this task.

Item descr. Product descr.
τfocus τcov BLEU TER BLEU TER

[%] [%] [%] [%]
0.3 0.7 27.4 55.4 30.8 50.5
0.3 1.0 27.2 55.4 30.3 50.3
0.3 ∞ 27.5 55.4 30.4 50.9

Table 5: Effect of the threshold parameters
on the hybrid approach on the e-commerce
English→Russian task.

Analysis
To understand the behavior of the hybrid search,
we count the number of source words that are
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newstest2014 newstest2016
System description Beam size BLEU [%] TER [%] BLEU [%] TER [%]
Phrase-based - 22.9 59.4 26.9 54.1
+ News Crawl LM data - 25.4 59.0 29.2 53.8
NMT 12 26.9 53.0 32.3 47.6
NMT 64 27.0 53.0 32.2 47.6
Hybrid approach 64 27.8 53.2 32.4 48.2
+ tuning τfocus, τcov 64 28.0 53.0 33.3 47.4
+ News Crawl LM data 64 29.7 52.2 35.3 46.7

Table 6: Overview of translation results on the WMT German→English task.

translated by phrases in the product descriptions
test set. Of the 9320 source words, 7109 (76.3%)
are covered by phrase hypotheses. 78.3% of the
source phrases are unigrams, 19.5% are bigrams
and 2.2% are trigrams or longer. Among the many
one-word phrases used, almost all (99.2%) are also
within the top 3 predictions of word-based NMT,
and 90.3% are equal to the top NMT prediction.

Further human analysis by a native Russian
speaker of the pure NMT vs. hybrid search trans-
lations shows that hybrid search is often able to
correct the following known NMT handicaps:

• incorrect translation of rare words (among
other reasons, due to incorrect sub-word unit
translation in which rare words are aggres-
sively segmented).
• repetition of same or similar words as a result

of multiple attention to the same source word,
as well as untranslated words that received no
attention.
• incorrect or partially correct word-by-word

translation when a phrasal (non-literal) trans-
lation should be used instead.

In all of these cases, the usage of phrasal trans-
lations is able to better enforce the coverage, and
this, in turn, leads to improved lexical choice. The
fact that not many long phrase pairs are selected
indicates, in our opinion, that the search and mod-
eling problem in NMT is far from being solved:
with the right, diverse model scores, the proposed
hybrid search is able to select and extend better hy-
potheses with words, most of which already had a
high NMT probability. Yet they are not always
selected in the pure NMT beam search, among
other reasons, due to competition from words erro-
neously placed near them in the embedding space.

4.2 WMT 2016 German→English

The results on the WMT German→English task
are shown in Table 6. The initial phrase-based
baseline uses the 5-gram language model esti-
mated on the target side of bilingual data. By
adding the News Crawl LM data, we gain 2.5%
and 2.3% BLEU on the test sets, but PBMT still is
behind NMT.

For the hybrid approach, we use a beam size
of 64 and a maximal number of beam steps of
1.5 · J (instead of 2 · J) to speed up experiments.
We use separate word penalty features, one for
word-based hypotheses and one for phrase-based
hypotheses to allow for more control of transla-
tion lengths. With the hybrid approach, using the
5-gram language model estimated on the target
side of bilingual data, and phrase scores, we get
small improvements in BLEU over the NMT base-
line. However, the TER increases. We experiment
with different thresholds, setting τfocus = 0.1 and
τcov = 1.0. With this hybrid system, we get im-
provements of 1.0% and 1.1% BLEU over pure
NMT. Finally, we add the News Crawl LM data
on top. This significantly improves the results
by 1.7% and 2.0% BLEU. In total, we gain 2.7%
and 3.1% BLEU over pure NMT. These results re-
inforce the fact that, similar to PBMT, language
model quality is important for the proposed hybrid
search. In contrast, we have also tried applying
only the LM (including News Crawl data) with a
word penalty on top of NMT, but did not get con-
sistent improvements.

Figure 1 shows an example for the phrase pairs
chosen by the hybrid system on top of the NMT
attention. The hybrid approach correctly trans-
lates the German idiom “nach und nach” as “grad-
ually”, while the pure NMT system incorrectly
translates it word-by-word as “after and after”.
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Figure 1: Example alignment from the hybrid
search, with the source sentence on the bottom and
the translation on the left. The blue rectangles sig-
nify phrase pairs on top of the NMT attention. The
pure NMT translation is “the system is tested af-
ter and after testing and improved by testing pro-
grams.”

5 Conclusion

In this work, we proposed a novel hybrid search
that extends NMT with phrase-based models. The
NMT beam search was modified to insert phrasal
translations based on the current and accumulated
attention weights of the NMT decoder RNN. The
NMT model score was used in a log-linear model
with standard phrase-based scores as well as an
n-gram language model. We described the algo-
rithm in detail, in which we keep separate beams
for NMT word hypotheses and hypotheses with
an incomplete phrasal translation, as well as in-
troduce parameters which control the source sen-
tence coverage. Numerous experiments on two
large vocabulary translation tasks showed that the
hybrid search improves BLEU scores significantly
as compared to a strong NMT baseline that already
outperforms phrase-based SMT by a large margin.

In the future, we plan to focus on integration of
phrasal components into NMT training, including
better coverage constraints, as well as methods for
context-dependent translation override within our
hybrid search algorithm.
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Abstract

Phrases play an important role in natu-
ral language understanding and machine
translation (Sag et al., 2002; Villavicencio
et al., 2005). However, it is difficult to in-
tegrate them into current neural machine
translation (NMT) which reads and gener-
ates sentences word by word. In this work,
we propose a method to translate phrases
in NMT by integrating a phrase memory
storing target phrases from a phrase-based
statistical machine translation (SMT) sys-
tem into the encoder-decoder architecture
of NMT. At each decoding step, the phrase
memory is first re-written by the SMT
model, which dynamically generates rel-
evant target phrases with contextual in-
formation provided by the NMT model.
Then the proposed model reads the phrase
memory to make probability estimations
for all phrases in the phrase memory. If
phrase generation is carried on, the NMT
decoder selects an appropriate phrase from
the memory to perform phrase translation
and updates its decoding state by con-
suming the words in the selected phrase.
Otherwise, the NMT decoder generates a
word from the vocabulary as the general
NMT decoder does. Experiment results
on the Chinese→English translation show
that the proposed model achieves signif-
icant improvements over the baseline on
various test sets.

1 Introduction

Neural machine translation (NMT) has been re-
ceiving increasing attention due to its impressive

∗Corresponding author

translation performance (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015; Wu et al., 2016). Sig-
nificantly different from conventional statistical
machine translation (SMT) (Brown et al., 1993;
Koehn et al., 2003; Chiang, 2005), NMT adopts
a big neural network to perform the entire trans-
lation process in one shot, for which an encoder-
decoder architecture is widely used. Specifically,
the encoder encodes a source sentence into a con-
tinuous vector representation, then the decoder
uses the continuous vector representation to gen-
erate the corresponding target translation word by
word.

The word-by-word generation philosophy in
NMT makes it difficult to translate multi-word
phrases. Phrases, especially multi-word expres-
sions, are crucial for natural language understand-
ing and machine translation (Sag et al., 2002;
Villavicencio et al., 2005) as the meaning of a
phrase cannot be always deducible from the mean-
ings of its individual words or parts. Unfortu-
nately current NMT is essentially a word-based or
character-based (Chung et al., 2016; Costa-jussà
and Fonollosa, 2016; Luong and Manning, 2016)
translation system where phrases are not consid-
ered as translation units. In contrast, phrases are
much better than words as translation units in
SMT and have made a significant advance in trans-
lation quality. Therefore, a natural question arises:
Can we translate phrases in NMT?

Recently, there have been some attempts on
multi-word phrase generation in NMT (Stahlberg
et al., 2016b; Zhang and Zong, 2016). However
these efforts constrain NMT to generate either
syntactic phrases or domain phrases in the word-
by-word generation framework. To explore the
phrase generation in NMT beyond the word-by-
word generation framework, we propose a novel
architecture that integrates a phrase-based SMT
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model into NMT. Specifically, we add an auxil-
iary phrase memory to store target phrases in sym-
bolic form. At each decoding step, guided by the
decoding information from the NMT decoder, the
SMT model dynamically generates relevant target
phrase translations and writes them to the mem-
ory. Then the NMT decoder scores phrases in
the phrase memory and selects a proper phrase or
word with the highest probability. If the phrase
generation is carried out, the NMT decoder gen-
erates a multi-word phrase and updates its decod-
ing state by consuming the words in the selected
phrase.

Furthermore, in order to enhance the ability of
the NMT decoder to effectively select appropriate
target phrases, we modify the encoder of NMT to
make it fit for exploring structural information of
source sentences. Particularly, we integrate syn-
tactic chunk information into the NMT encoder,
to enrich the source-side representation. We vali-
date our proposed model on the Chinese→English
translation task. Experiment results show that
the proposed model significantly outperforms the
conventional attention-based NMT by 1.07 BLEU
points on multiple NIST test sets.

The rest of this paper is organized as fol-
lows. Section 2 briefly introduces the attention-
based NMT as background knowledge. Section
3 presents our proposed model which incorporates
the phrase memory into the NMT encoder-decoder
architecture, as well as the reading and writing
procedures of the phrase memory. Section 4
presents our experiments on the Chinese→English
translation task and reports the experiment results.
Finally we discuss related work in Section 5 and
conclude the paper in Section 6.

2 Background

Neural machine translation often adopts the
encoder-decoder architecture with recurrent neu-
ral networks (RNN) to model the translation pro-
cess. The bidirectional RNN encoder which con-
sists of a forward RNN and a backward RNN
reads a source sentence x = x1, x2, ..., xTx and
transforms it into word annotations of the entire
source sentence h = h1, h2, ..., hTx . The de-
coder uses the annotations to emit a target sentence
y = y1, y2, ..., yTy in a word-by-word manner.

In the training phase, given a parallel sentence
(x,y), NMT models the conditional probability as

follows,

P (y|x) =
Ty∏

i=1

P (yi|y<i,x) (1)

where yi is the target word emitted by the decoder
at step i and y<i = y1, y2, ..., yi−1. The condi-
tional probability P (yi|y<i,x) is computed as

P (yi|y<i,x) = softmax(f(si, yi−1, ci)) (2)

where f(·) is a non-linear function and si is the
hidden state of the decoder at step i:

si = g(si−1, yi−1, ci) (3)

where g(·) is a non-linear function. Here we adopt
Gated Recurrent Unit (Cho et al., 2014) as the re-
current unit for the encoder and decoder. ci is the
context vector, computed as a weighted sum of the
annotations h:

ci =

Tx∑

j=1

αt,jhj (4)

where hj is the annotation of source word xj and
its weight αt,j is computed by the attention model.

We train the attention-based NMT model by
maximizing the log-likelihood:

C(θ) =
N∑

n=1

Ty∑

i=1

logP (yni |yn<i,xn) (5)

given the training data with N bilingual sentences
(Cho, 2015).

In the testing phase, given a source sentence x,
we use beam search strategy to search a target sen-
tence ŷ that approximately maximizes the condi-
tional probability P (y|x)

ŷ = argmax
y

P (y|x) (6)

3 Approach

In this section, we introduce the proposed model
which incorporates a phrase memory into the
encoder-decoder architecture of NMT. Inspired by
the recent work on attaching an external struc-
ture to the encoder-decoder architecture (Gulcehre
et al., 2016; Gu et al., 2016; Tang et al., 2016;
Wang et al., 2017), we adopt a similar approach
to incorporate the phrase memory into NMT.
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Figure 1: Architecture of the NMT decoder with
the phrase memory. The NMT decoder per-
forms phrase generation using the balancer and the
phrase memory.

3.1 Framework
Figure 1 shows an example. Given the gener-
ated words “President Bush emphasized that”, the
model generates the next fragment either from
a word generation mode or a phrase generation
mode. If the model selects the word generation
mode, it generates a word by the NMT decoder
as in the standard NMT framework. Otherwise,
it generates a multi-word phrase by enquiring a
phrase memory, which is written by an SMT de-
coder based on the dynamic decoding information
from the NMT model for each step. The trade-off
between word generation mode and phrase gener-
ation mode is balanced by a weight λ, which is
produced by a neural network based balancer.

Formally, a generated translation y =
{y1, y2, . . . , yTy} consists of two sets of frag-
ments: words generated by NMT decoder w =
{w1, w2, . . . , wK} and phrases generated from the
phrase memory p = {p1, p2, . . . , pL} . The prob-
ability of generating y is calculated by

P (y|x) =
∏

wk∈w
(1− λt(wk))Pword(wk)

×
∏

pl∈p
λt(pl)Pphrase(pl) (7)

where Pword(wk) is the probability of generating
the word wk (see Equation 2), Pphrase(pl) is that
of generating the phrase pl which will be described
in Section 3.2, and t(·) is the decoding step to gen-
erate the corresponding fragment.

The balancing weight λ is produced by the bal-
ancer – a multi-layer network. The balancer net-
work takes as input the decoding information, in-
cluding the context vector ci, the previous decod-
ing state si−1 and the previous generated word
yi−1:

λi = σ(fb(si, yi−1, ci)) (8)

where σ(·) is a sigmoid function and fb(·) is
the activation function. Intuitively, the weight λ
can be treated as the estimated importance of the
phrase to be generated. We expect λ to be high if
the phrase is appropriate at the current decoding
step.

Well-Formed Phrases We employ a source-
side chunker to chunk the source sentence, and
only phrases that corresponds to a source chunk
are used in our model. We restrict ourselves to
the well-formed chunk phrases based on the fol-
lowing considerations: (1) In order to take ad-
vantage of dynamic programming, we restrict our-
selves to non-overlap phrases.1 (2) We explicitly
utilize the boundary information of the source-side
chunk phrases, to better guide the proposed model
to adopt a target phrase at an appropriate decoding
step. (3) We enable the model to exploit the syn-
tactic categories of chunk phrases to enhance the
proposed model with its selection preference for
special target phrases. With these information, we
enrich the context vector ci to enable the proposed
model to make better decisions, as described be-
low.

Following the commonly-used strategy in se-
quence tagging tasks (Xue and Shen, 2003), we al-
low the words in a phrase to share the same chunk
tag and introduce a special tag for the beginning
word. For example, the phrase “ &E S� (in-
formation security)” is tagged as a noun phrase
“NP”, and the tag sequence should be “NP B NP”.
Partially motivated by the work on integrating lin-
guistic features into NMT (Sennrich and Haddow,
2016), we represent the encoder input as the com-
bination of word embeddings and chunking tag
embeddings, instead of word embeddings alone in
the conventional NMT. The new input is formu-
lated as follows:

[Ewxi, E
tti] (9)

1Overlapped phrases may result in a high dimensionality
in translation hypothesis representation and make it hard to
employ shared fragments for efficient dynamic programming.
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where Ew ∈ Rdw×|V NMT | is a word embedding
matrix and dw is the word embedding dimension-
ality, Et ∈ Rdt×|V TAG| is a tag embedding matrix
and dt is the tag embedding dimensionality. [·] is
the vector concatenation operation.

3.2 Phrase Memory

The phrase memory stores relevant target phrases
provided by an SMT model, which is trained on
the same bilingual corpora. At each decoding
step, the memory is firstly erased and re-written by
the SMT model, the decoding of which is based
on the translation information provided by the
NMT model. Then, the proposed model enquires
phrases along with their probabilities Pphrase from
the memory.

Writing to Phrase Memory Given a partial
translation y<i = {y1, y2, . . . , yt−1} gener-
ated from NMT, the SMT model picks potential
phrases extracted from the translation table. The
phrases are scored with multiple SMT features,
including the language model score, the trans-
lation probabilities, the reordering score, and so
on. Specially, the reordering score depends on
alignment information between source and target
words, which is derived from attention distribution
produced by the NMT model (Wang et al., 2017).
SMT coverage vector in (Wang et al., 2017) is
also introduced to avoid repeat phrasal recommen-
dations. In our work, the potential phrase is phrase
with high SMT score which is defined as follow-
ing:

SMTscore(pl|y<t,x) =
M∑

m=1

wmhm(pl, x(pl))

(10)
where pl is a target phrase and x(pl) is its cor-
responding source span. hm(pl, x(pl)) is a SMT
feature function and wm is its weight. The feature
weights can be tuned by the minimum error rate
training (MERT) algorithm (Och, 2003).

This leads to a better interaction between SMT
and NMT models. It should be emphasized that
our memory is dynamically updated at each de-
coding step based on the decoding history from
both SMT and NMT models.

The proposed model is very flexible, where the
phrase memory can be either fully dynamically
generated by an SMT model or directly extracted
from a bilingual dictionary, or any other bilingual
resources storing idiomatic translations or bilin-

gual multi-word expressions, which may lead to
a further improvement. 2

Reading Phrase Memory When phrases are
read from the memory, they are rescored by a neu-
ral network based score function. The score func-
tion takes as input the phrase itself and decoding
information from NMT (i = t(pl) denotes the cur-
rent decoding step):

scorephrase(pl) = gs
(
e(pl), si, yi−1, ci

)
(11)

where gs(·) is either an identity or a non-linear
function. e(pl) is the representation of phrase pl,
which is modeled by a recurrent neural networks.
Again, si is the decoder state, yi−1 is the lastly
generated word, and ci is the context vector. The
scores are normalized for all phrases in the phrase
memory, and the probability for phrase pl is calcu-
lated as

Pphrase(pl) = softmax(scorephrase(pl)) (12)

The probability calculation is controlled with pa-
rameters, which are trained together with the pa-
rameters from the NMT model.

3.3 Training
Formally, we train both the default parameters of
standard NMT and the new parameters associated
with phrase generation on a set of training exam-
ples {[xn,yn]}Nn=1:

C(θ) =
N∑

n=1

logP (yn|xn) (13)

where P (yn|xn) is defined in Equation 7. Ideally,
the trained model is expected to produce a higher
balance weight λ and phrase probability Pphrase
when a phrase is selected from the memory, and
lower scores in other cases.

3.4 Decoding
During testing, the NMT decoder generates a tar-
get sentence which consists of a mixture of words
and phrases. Due to the different granularities of
words and phrases, we design a variant of beam
search strategy: At decoding step i, we first com-
pute Pphrase for all phrases in the phrase memory

2Bilingual resources can be utilized in two ways: First,
we can store the bilingual resources in a static memory and
keep all items available to NMT in the whole decoding pe-
riod. Second, we can integrate the bilingual resources into
SMT and then dynamically feed them into the phrase mem-
ory.
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and Pword for all words in NMT vocabulary. Then
the balancer outputs a balancing weight λi, which
is used to scale the phrase and word probabilities :
λi × Pphrase and (1 − λi) × Pword. Now outputs
are normalized probabilities on the concatenation
of phrase memory and the general NMT vocabu-
lary. At last, the NMT decoder generates a proper
phrase or word of the highest probability.

If a target phrase in the phrase memory has the
highest probability, the decoder generates the tar-
get phrase to complete the multi-word phrase gen-
eration process, and updates its decoding state by
consuming the words in the selected phrase as de-
scribed in Equation 3. All translation hypotheses
are placed in the corresponding beams according
to the number of generated target words.

4 Experiments

In this section, we evaluated the effectiveness
of our model on the Chinese→English machine
translation task. The training corpora consisted
of about 1.25 million sentence pairs3 with 27.9
million Chinese words and 34.5 million English
words respectively. We used NIST 2006 (NIST06)
dataset as development set, and NIST 2004
(NIST04), 2005 (NIST05) and 2008 (NIST08)
datasets as test sets. We report experiment results
with case-insensitive BLEU score4.

We compared our proposed model with two
state-of-the-art systems:

* Moses: a state-of-the-art phrase-based SMT
system (Koehn et al., 2007) with its default
settings, where feature function weights are
tuned by the minimum error rate training
(MERT) algorithm (Och, 2003).

* RNNSearch: an in-house implementation of
the attention-based NMT system (Bahdanau
et al., 2015) with its default settings.

For Moses, we used the full bilingual train-
ing data to train the phrase-based SMT model
and the target portion of the bilingual training
data to train a 4-gram language model using
KenLM5. We ran Giza++ on the training data in
both Chinese-to-English and English-to-Chinese

3The corpus includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

4ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
5https://kheafield.com/code/kenlm/

directions and applied the “grow-diag-final” re-
finement rule (Koehn et al., 2003) to obtain word
alignments. The maximum phrase length is set to
7.

For RNNSearch, we generally followed settings
in the previous work (Bahdanau et al., 2015; Tu
et al., 2017a,b). We only kept a shortlist of the
most frequent 30,000 words in Chinese and En-
glish, covering approximately 97.7% and 99.3%
of the data in the two languages respectively. We
constrained our source and target sequences to
have a maximum length of 50 words in the train-
ing data. The size of embedding layer of both sides
was set to 620 and the size of hidden layer was set
to 1000. We used a minibatch stochastic gradient
descent (SGD) algorithm of size 80 together with
Adadelta (Zeiler, 2012) to train the NMT mod-
els. The decay rates ρ and ε were set as 0.95 and
10−6. We clipped the gradient norm to 1.0 (Pas-
canu et al., 2013). We also adopted the dropout
technique. Dropout was applied only on the out-
put layer and the dropout rate was set to 0.5. We
used a simple beam search decoder with beam size
10 to find the most likely translation.

For the proposed model, we used a Chinese
chunker6 (Zhu et al., 2015) to chunk the source-
side Chinese sentences. 13 chunking tags ap-
peared in our chunked sentences and the size
of chunking tag embedding was set to 10. We
used the trained phrase-based SMT to translate the
source-side chunks. The top 5 translations accord-
ing to their translation scores (Equation 10) were
kept and among them multi-word phrases were
used as phrasal recommendations for each source
chunk phrase. For a source-side chunk phrase, if
there exists phrasal recommendations from SMT,
the output chunk tag was used as its chunking tag
feature as described in Section 3.1. Otherwise, the
words in the chunk were treated as general words
by being tagged with the default tag. In the phrase
memory, we only keep the top 7 target translations
with highest SMT scores at each decoding step.
We used a forward neural network with two hid-
den layers for both the balancer (Equation 8) and
the scoring function (Equation 11). The numbers
of units in the hidden layers were set to 2000 and
500 respectively. We used a backward RNN en-
coder to learn the phrase representations of target
phrases in the phrase memory.

6http://www.niuparser.com/
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SYSTEM NIST04 NIST05 NIST08 Avg
Moses 34.74 31.99 23.69 30.14
RNNSearch 37.80 34.70 24.93 32.48

+memory 38.21 35.15 25.48† 32.95
+memory +chunking tag 38.83‡ 35.72‡ 26.09‡ 33.55

Table 1: Main experiment results on the NIST Chinese-English translation task. BLEU scores in the
table are case insensitive. Moses and RNNSearch are SMT and NMT baseline system respectively. “†”:
significantly better than RNNSearch (p < 0.05); “‡”: significantly better than RNNSearch (p < 0.01).

NIST04 NIST05 NIST08
+memory 34.3% 29.4% 22.2%
+chunking tag 66.4% 63.1% 58.4%

Table 2: Percentages of sentences that contain
phrases generated by the proposed model.

4.1 Main Results
Table 1 reports main results of different models
measured in terms of BLEU score. We observe
that our implementation of RNNSearch outper-
forms Moses by 2.34 BLEU points. (+memory)
which is the proposed model with the phrase mem-
ory obtains an improvement of 0.47 BLEU points
over the baseline RNNSearch. With the source-
side chunking tag feature, (+memory+chunking
tag) outperforms the baseline RNNSearch by 1.07
BLEU points, showing the effectiveness of chunk-
ing syntactic categories on the selection of ap-
propriate target phrases. From here on, we use
“+memory+chunking tag” as the default setting in
the following experiments if not otherwise stated.

Number of Sentences Affected by Generated
Phrases We also check the number of transla-
tions that contain phrases generated by the pro-
posed model, as shown in Table 2. As seen,
a large portion of translations take the recom-
mended phrases, and the number increases when
the chunking tag feature is used.7 Considering
BLEU scores reported in Table 1, we believe that
the chunking tag feature benefits the proposed
model on its phrase generation.

4.2 Analysis on Generated Phrases
Syntactic Categories of Generated Phrases
We first investigate which category of phrases
is more likely to be selected by the proposed
approach. There are some phrases, such as

7The numbers on NIST08 are relatively lower since part
of the test set contains sentences from Web forums, which
contain less multi-word expressions.

Type
All New

Total Correct Total Correct
NP 81.0% 38.7% 46.0% 11.5%
VP 8.0% 1.7% 6.5% 0.8%
QP 10.8% 4.1% 6.2% 0.9%

Others 0.2% 0% 0.2% 0%
Sum 100% 44.5% 58.9% 13.2%

Table 3: Percentages of phrase categories to the
total number of generated ones. “All” denotes all
generated phrases, and “New” means new phrases
that cannot be found in translations generated by
the baseline system. “Total” is the total number of
generated phrases and “Correct” denotes the fully
correct ones.

noun phrases (NPs, e.g., “national laboratory” and
“vietnam airlines”) and quantifier phrases (QPs,
e.g., “15 seconds” and “two weeks”) , that we
expect to be favored by our approach. Statistics
shown in Table 3 confirm our hypothesis. Let’s
first concern all generated phrases (i.e., column
“All”): most selected phrases are noun phrases
(81.0%) and quantifier phrases (10.8%). Among
them, 44.5% percent of them are fully correct8.
Specifically, NPs have relative higher generation
accuracy (i.e., 47.8% = 38.7%/81.0%) while VPs
have lower accuracy (i.e., 21.2% = 1.7%/8.0%).
By looking into the wrong cases, we found most
errors are related to verb tense, which is the draw-
back of SMT models.

Concerning the newly introduced phrases that
cannot be found in baseline translations (i.e., col-
umn “New”), 13.2% of generated phrases are both
new and fully correct, which contribute most to the
performance improvement. We can also find that
most newly introduced verb phrases and quantifier
phrases are not correct, the patterns of which can
be well learned by word-based NMT models.

8Fully correct means that the generated phrases can be
retrieved in corresponding references as a whole unit.
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Words
All New

Total Correct Total Correct
2 66.2% 33.6% 34.9% 9.1%
3 20.7% 8.4% 13.4% 3.2%
4 7.4% 1.9% 5.4% 0.6%
>5 5.7% 0.6% 5.2% 0.3%

Table 4: Percentages of phrases with different
word counts to the total number of generated ones.

Number of Words in Generated Phrases Ta-
ble 4 lists the distribution of generated phrases
based on the number of inside words. As seen,
most generated phrases are short phrases (e.g., 2-
gram and 3-gram phrases), which also contribute
most to the new and fully correct phrases (i.e.,
12.3% = 9.1%+3.2%). Focusing on long phrases
(e.g., order> 4), most of them are newly intro-
duced (10.6% out of 13.1%). Unfortunately, only
a few portion of these phrases are fully correct,
since long phrases have higher chance to contain
one or two unmatched words.

SYSTEM Test
+memory 32.95
+memory +NULL 31.63
+memory +chunking tag 33.55
+memory +chunking tag +NULL 30.81

Table 5: Additional experiment results on the
translation task to directly measure the im-
provement obtained by the phrase generation.
“+NULL” denotes that we replace the generated
target phrases with a special symbol /NULL0
in test sets. BLEU scores in the table are case in-
sensitive.

Effect of Generated Phrases on Translation
Performance Note that the proposed model
benefits not only from fully matched phrases, but
also from partially matched phrases. For example,
the baseline system translates “ I[ Ê� ø �
� oÝ” in a word-by-word manner and outputs
“state aviation and space department”. The gener-
ated phrase provided by SMT is “national aviation
and space administration”, but the only correct ref-
erence is “national aeronautics and space adminis-
tration”. The generated phrase is not fully correct
but still useful.

To directly measure the improvement obtained
by the phrase generation, we replace the generated
target phrases with a special symbol “NULL” in

test sets. As shown in Table 5, when deleting the
generated target phrases, (“+memory+chunking
tag”) and (“+memory”) translation performances
decrease by 2.74 BLEU points and 1.32 BLEU
points respectively. Moreover, translation perfor-
mances on NIST08 decrease less than those on
NIST04 and NIST05 in both settings. The rea-
son is that NIST08 which contains sentences from
web data has little influence on generating target
phrases which are provided from a different do-
main 9. The overall results demonstrate that neu-
ral machine translation benefits from phrase trans-
lation.

4.3 Effect of Balancer

Weight Test
Dynamic 33.55
Constant (λ = 0.1) 31.35

Table 6: Translation performance with a variety of
balancing weight strategies. “Dynamic” is the pro-
posed approach and “Constant (λ = 0.1)” denotes
fixing the balancing weight to 0.1. BLEU scores
in the table are case insensitive.

The balancer which is used to coordinate the
phrase generation and word generation is very cru-
cial for the proposed model. We conducted an ad-
ditional experiment to validate the effectiveness of
the neural network based balancer. We use the set-
ting “+memory +chunking tag” as baseline system
to conduct the experiments. In this experiment,
we fixed the balancing weight λ (Equation 8) to
0.1 during training and testing and report the re-
sults. As shown in Table 6, we find that using
the fixed value for the balancing weight (Constant
(λ = 0.1) ) decreases the translation performance
sharply. This demonstrates that the neural network
based balancer is an essential component for the
proposed model.

4.4 Comparison to Word-Level
Recommendations and Discussions

Our approach is related to our previous work
(Wang et al., 2017) which integrates the SMT
word-level knowledge into NMT. To make a com-
parison, we conducted experiments followed set-
tings in (Wang et al., 2017). The comparison re-
sults are reported in Table 7. We find that our
approach is marginally better than the word-level

9The parallel training data are mainly from news domain.
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SYSTEM Test
+word level recommendation 33.27
+memory +chunking tag 33.55

Table 7: Experiment results on the translation task.
“+word level recommendation” is the proposed
model in (Wang et al., 2017). BLEU scores in the
table are case insensitive.

model proposed in (Wang et al., 2017) by 0.28
BLEU points.

In our approach, the SMT model translates
source-side chunk phrases using the NMT decod-
ing information. Although we use high-quality
target phrases as phrasal recommendations, our
approach still suffers from the errors in segmenta-
tion and chunking. For example, the target phrase
“laptop computers” cannot be recommended by
the SMT model if the Chinese phrase “Ã J >
M” is not chunked as a phrase unit. This is the rea-
son why some sentences do not have correspond-
ing phrasal recommendations (Table 2). There-
fore, our approach can be further enhanced if we
can reduce the error propagations from the seg-
menter or chunker, for example, by using n-best
chunk sequences instead of the single best chunk
sequence.

Additionally, we also observe that some target
phrasal recommendations have been also gener-
ated by the baseline system in a word-by-word
manner. These phrases, even taken as parts of fi-
nal translations by the proposed model, do not lead
to improvements in terms of BLEU as they have
already occurred in translations from the baseline
system. For example, the proposed model suc-
cessfully carries out the phrase generation mode
to generate a target phrase “guangdong province”
(the translation of Chinese phrase “2À�”)
which has appeared in the baseline system.

As external resources, e.g., bilingual dictionary,
which are complementary to the SMT phrasal rec-
ommendations, are compatible with the proposed
model, we believe that the proposed model will get
further improvement by using external resources.

5 Related work

Our work is related to the following research top-
ics on NMT:

Generating phrases for NMT In these stud-
ies, the generated NMT multi-word phrases are
either from an SMT model or a bilingual dictio-

nary. In syntactically guided neural machine trans-
lation (SGNMT), the NMT decoder uses phrase
translations produced by the hierarchical phrase-
based SMT system Hiero, as hard decoding con-
straints. In this way, syntactic phrases are gener-
ated by the NMT decoder (Stahlberg et al., 2016b).
Zhang and Zong (2016) use an SMT translation
system, which is integrated an additional bilin-
gual dictionary, to synthesize pseudo-parallel sen-
tences and feed the sentences into the training of
NMT in order to translate low-frequency words or
phrases. Tang et al. (2016) propose an external
phrase memory that stores phrase pairs in sym-
bolic forms for NMT. During decoding, the NMT
decoder enquires the phrase memory and properly
generates phrase translations. The significant dif-
ferences between these efforts and ours are 1) that
we dynamically generate phrase translations via
an SMT model, and 2) that at the same time we
modify the encoder to incorporate structural infor-
mation to enhance the capability of NMT in phrase
translation.

Incorporating linguistic information into NMT
NMT is essentially a sequence to sequence map-
ping network that treats the input/output units, eg.,
words, subwords (Sennrich et al., 2016), charac-
ters (Chung et al., 2016; Costa-jussà and Fonol-
losa, 2016), as non-linguistic symbols. However,
linguistic information can be viewed as the task-
specific knowledge, which may be a useful sup-
plementary to the sequence to sequence mapping
network. To this end, various kinds of linguis-
tic annotations have been introduced into NMT
to improve its translation performance. Sennrich
and Haddow (2016) enrich the input units of NMT
with various linguistic features, including lem-
mas, part-of-speech tags, syntactic dependency la-
bels and morphological features. Garcı́a-Martı́nez
et al. (2016) propose factored NMT using the mor-
phological and grammatical decomposition of the
words (factors) in output units. Eriguchi et al.
(2016) explore the phrase structures of input sen-
tences and propose a tree-to-sequence attention
model for the vanilla NMT model. Li et al.
(2017) propose to linearize source-side parse trees
to obtain structural label sequences and explicitly
incorporated the structural sequences into NMT,
while Aharoni and Goldberg (2017) propose to
incorporate target-side syntactic information into
NMT by serializing the target sequences into lin-
earized, lexicalized constituency trees. Zhang
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et al. (2016) integrate topic knowledge into NMT
for domain/topic adaptation.

Combining NMT and SMT A variety of ap-
proaches have been explored for leveraging the
advantages of both NMT and conventional SMT.
He et al. (2016) integrate SMT features with the
NMT model under the log-linear framework in or-
der to help NMT alleviate the limited vocabulary
problem (Luong et al., 2015; Jean et al., 2015)
and coverage problem (Tu et al., 2016). Arthur
et al. (2016) observe that NMT is prone to mak-
ing mistakes in translating low-frequency content
words and therefore attempt at incorporating dis-
crete translation lexicons into the NMT model, to
alliterate the imprecise translation problem (Wang
et al., 2017). Motivated by the complementary
strengths of syntactical SMT and NMT, differ-
ent combination schemes of Hiero and NMT have
been exploited to form SGNMT (Stahlberg et al.,
2016a,b). Wang et al. (2017) propose an approach
to incorporate the SMT model into attention-based
NMT. They combine NMT posteriors with SMT
word recommendations through linear interpola-
tion implemented by a gating function which dy-
namically assigns the weights. Niehues et al.
(2016) propose to use SMT to pre-translate the in-
puts into target translations and employ the target
pre-translations as input sequences in NMT. Zhou
et al. (2017) propose a neural system combination
framework to directly combine NMT and SMT
outputs. The combination of NMT and SMT has
been also introduced in interactive machine trans-
lation to improve the system’s suggestion quality
(Wuebker et al., 2016). In addition, word align-
ments from the traditional SMT pipeline are also
used to improve the attention mechanism in NMT
(Cohn et al., 2016; Mi et al., 2016; Liu et al.,
2016).

6 Conclusion

In this paper, we have presented a novel model to
translate source phrases and generate target phrase
translations in NMT by integrating the phrase
memory into the encoder-decoder architecture. At
decoding, the SMT model dynamically generates
relevant target phrases with contextual informa-
tion provided by the NMT model and writes them
to the phrase memory. Then the proposed model
reads the phrase memory and uses the balancer to
make probability estimations for the phrases in the
phrase memory. Finally the NMT decoder selects

a phrase from the phrase memory or a word from
the vocabulary of the highest probability to gen-
erate. Experiment results on Chinese→English
translation have demonstrated that the proposed
model can significantly improve the translation
performance.
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Abstract

This paper proposes a hierarchical atten-
tional neural translation model which fo-
cuses on enhancing source-side hierarchi-
cal representations by covering both lo-
cal and global semantic information us-
ing a bidirectional tree-based encoder. To
maximize the predictive likelihood of tar-
get words, a weighted variant of an at-
tention mechanism is used to balance
the attentive information between lexical
and phrase vectors. Using a tree-based
rare word encoding, the proposed model
is extended to sub-word level to allevi-
ate the out-of-vocabulary (OOV) prob-
lem. Empirical results reveal that the
proposed model significantly outperforms
sequence-to-sequence attention-based and
tree-based neural translation models in
English-Chinese translation tasks.

1 Introduction

Neural machine translation (NMT) automatically
learns the abstract features of and semantic re-
lationship between the source and target sen-
tences, and has recently given state-of-the-art re-
sults for various translation tasks (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Bah-
danau et al., 2015). The most widely used model is
the encoder-decoder framework (Sutskever et al.,
2014), in which the source sentence is encoded
into a dense representation, followed by a decod-
ing process which generates the target translation.
By exploiting the attention mechanism (Bahdanau
et al., 2015), the generation of target words is con-
ditional on the source hidden states, rather than
on the context vector alone. From a model archi-
tecture perspective, prior studies of the attentive

∗Corresponding author
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IN11

in
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the room

Figure 1: Induction of phrase and sentence rep-
resentations over the syntactic structure of a sen-
tence.

encoder-decoder translation model are mainly di-
vided into two types.

The sequence-to-sequence model treats a sen-
tence as a sequence of tokens. The most funda-
mental approaches transform the source sentence
sequentially into a fixed-length context vector,
and the annotation vector of each word summa-
rizes the preceding words (Sutskever et al., 2014;
Cho et al., 2014b). Although Bahdanau et al.
(2015) used a bidirectional recurrent neural net-
work (RNN) (Schuster and Paliwal, 1997) to con-
sider preceding and following words jointly, these
sequential representations are insufficient to fully
capture the semantics of a sentence, due to the fact
that they do not account for the syntactic interpre-
tations of sentence structure (Eriguchi et al., 2016;
Tai et al., 2015). By incorporating additional fea-
tures into a sequential model, Sennrich and Had-
dow (2016) and Stahlberg et al. (2016) suggest that
a greater amount of linguistic information can im-
prove the translation performance.

The tree-to-sequence model encodes a source
sentence according to a given syntactic tree
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over the sentence. The existing tree-based en-
coders (Tai et al., 2015; Eriguchi et al., 2016; Zhou
et al., 2016) recursively generate phrase (sentence)
representations in a bottom-up fashion, whereby
the annotation vector of each phrase is derived
from its constituent sub-phrases. As a result, the
learned representations are limited to local infor-
mation, while failing to capture the global mean-
ing of a sentence. As illustrated in Figure 1, the
phrases “take up”1 and “a position”2 have differ-
ent meanings in different contexts. However, in
composing the representations hVP3 and hNP7 for
phrases VP3 and NP7, the current approaches do
not account for the differences in meaning which
arise as a result of ignoring the neighboring con-
text as well as the remote context, i.e. hNP7 ←
hPP8 (sibling) and hVP3 ← hNP7 (child of sibling).
More specifically, at the encoding step t, the gen-
erated phrase is based on the results at the previous
time steps ht−1 and ht−2, but has no information
about the parent phrases ht′ for t′ > t.

To address the above problems, we propose a
novel architecture, a bidirectional hierarchical en-
coder, which extends the existing attentive tree-
structured models (Eriguchi et al., 2016). In con-
trast to the model of Eriguchi et al. (2016), we first
use a bidirectional RNN (Schuster and Paliwal,
1997) at lexical level to concatenate the forward
and backward states as the hidden states of source
words, to capture the preceding and following con-
texts (described in Section 3.1). Secondly, we pro-
pose a bidirectional tree-based encoder (described
in Section 3.2), in which the original bottom-up
encoding model is extended using an additional
top-down encoding process. In the bidirectional
hierarchical model, the vector representations of
the sentence, phrases as well as words, are there-
fore based on the global context rather than local
information.

To effectively leverage hierarchical representa-
tions in generating the target words, we adopt
a variant weighted tree-based attention mecha-
nism (described in Section 3.4) in which a time-
dependent gating scalar is used to control the pro-
portion of conditional information between the
word and phrase vectors. To alleviate the out-of-
vocabulary (OOV) problem, we further extend the
proposed tree-based model to the sub-word level

1Take up has the meanings of start doing something new,
use space/time, accept an offer, etc.

2Position has the meanings of location, job offer,
rank/status, etc.

I take up a
positi

on
in the room

〈eos
〉

hl1 hl2 hl3 hl4 hl5 hl6 hl7 hl8 hl9

hp2,3 hp4,5 hp7,8

hp6,8

hp4,8
hp2,8

hp1,8

Figure 2: The tree-based model of Eriguchi et al.
(2016) comprising a structured and sequential en-
coder.

by integrating byte-pair encoding (BPE) (Sennrich
et al., 2016) into the tree-based model (as de-
scribed in Section 3.3). Experimental results for
the NIST English-to-Chinese translation task re-
veal that the proposed model significantly outper-
forms the vanilla tree-based (Eriguchi et al., 2016)
and sequential NMT models (Bahdanau et al.,
2015) (Section 4.1).

2 Tree-Based Neural Machine
Translation

A neural machine translation system (NMT) aims
to use a single neural network to build a transla-
tion model, which is trained to maximize the con-
ditional distribution of sentence pairs using a par-
allel training corpus (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Cho et al., 2014b,a).
By incorporating syntactic information, the tree-
based NMT exploits an additional syntactic struc-
ture of the source sentence to improve the trans-
lation. Since most existing NMTs generate one
target word at a time, given a source sentence
x = (x1, ..., xN ) and its corresponding syntactic
tree tr, the conditional probability of a target sen-
tence y = (y1, ..., yM ) is formally expressed as:

p(y | x, tr) =
M∏

1

p(yj | y1, ..., yj−1, x, tr; θ),

where θ represents the model parameters. A tree-
based NMT consists of a tree-based encoder and a
decoder.

2.1 Tree-Based Encoder
In a tree-based encoder, the source language x is
encoded according to a given syntactic structure
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tr of the sentence. As shown in Figure 2, Eriguchi
et al. (2016) employed a forward Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997; Gers et al., 2000) recurrent neural network
(RNN) to encode the lexical nodes and a tree-
LSTM (Tai et al., 2015) to generate the phrase
representations in a bottom-up fashion. In the
present study, we utilize the gated recurrent unit
(GRU) (Cho et al., 2014b) instead of an LSTM, in
view of its comparable performance (Chung et al.,
2014) and since it yields even better results for cer-
tain tasks (Józefowicz et al., 2015). The lexical an-
notation vectors (hl1, ..., h

l
N ) are sequentially gen-

erated by using a GRU. The i-th leaf node vector
is calculated as:

hli = f lGRU (xi, h
l
i−1), (1)

where xi is the i-th source word embedding and
hli−1 denotes the previous hidden state. The parent
hidden state h↑i,j summarizes its left child h↑i,k and

right child h↑k+1,j (i < k < j) by applying the
tree-GRU (Zhou et al., 2016) as follows:

z↑i,j = σ(UL(z)h
↑
i,k + UR(z)h

↑
k+1,j + b↑(z))

r↑i,k = σ(UL(rL)h
↑
i,k + UR(rL)h

↑
k+1,j + b↑(rL))

r↑k+1,j = σ(UL(rR)h
↑
i,k + UR(rR)h

↑
k+1,j + b↑(rR))

h̃↑i,j = tanh(UL(h)(r
↑
i,k � h

↑
i,k)

+ UR(h)(r
↑
k+1,j � h

↑
k+1,j) + b↑(h))

h↑i,j = z↑i,j h̃
↑
i,j + (1− z↑i,j)(h

↑
i,k + h↑k+1,j),

where z↑i,j is the update gate; r↑i,k, r↑k+1,j are the

reset gates for the left and right children; h̃↑i,j de-
notes the candidate activation; UL(·) and UR(·) repre-

sent weight matrices; b↑(·) denote bias vectors; σ is
the logistic sigmoid function; and the operator �
denotes element-wise multiplication between vec-
tors. The phrase representations are recursively
built in an upward direction.

2.2 Decoding with a Tree-Based Attention
Mechanism

In generating the target words, we employ a se-
quential decoder with an input-feeding method
(Luong et al., 2015) and attention mechanism
(Bahdanau et al., 2015). The conditional proba-
bility of the j-th target word yj is calculated using

a non-linear function fsoftmax:

p(yj | y1, ..., yj−1, x, tr; θ) = fsoftmax(cj),

where cj is the composite hidden state, which con-
sists of a target hidden state sj and a context vector
dj :

cj = ftanh([sj , dj ]).

Given the previous target word yj−1, the concate-
nation of the previous hidden state sj−1 and the
previous context vector cj−1 (input-feeding) (Lu-
ong et al., 2015), sj , is calculated using a standard
sequential GRU network:

sj = fdecgru(yj−1, [sj−1, cj−1]).

The context vector dj is computed using an at-
tention model which is used to softly summarize
the attended part of the source-side representa-
tions. Eriguchi et al. (2016) adopted a tree-based
attention mechanism to consider both the word
and phrase vectors:

dj =
N∑

i=1

αj(i)h
l
i +

N−1∑

k=1

αj(k)h
p
k, (2)

where hli is the i-th hidden state of the source word
at leaf level, and hpk is the k-th hidden state of the
source phrase. The weight αj(t) of node t is com-
puted by:

αj(t) =
exp(et)∑N

i=1 exp(e
l
i) +

∑N−1
k=1 exp(epk)

et = (Va)
T tanh(Uasj +Waht + ba),

where ht is the hidden state of the node. Va, Ua,
Wa and ba are the model parameters.

3 The Bidirectional Hierarchical Model

Although the tree-based encoder of Eriguchi et al.
(2016) has shown certain advantages in transla-
tion tasks involving distant language pairs, e.g.
English-Japanese, the representation of a phrase
relies solely on its child nodes, and the word rep-
resentation at leaf level only takes into account the
sequential information. We argue that the incor-
poration of more hierarchical information into the
representations may contribute to an improvement
in the translation. In particular, the use of global
information can help in distinguishing the differ-
ences between word meanings. Based on this hy-
pothesis, we propose an alternative architecture,
the bidirectional hierarchical model, to enhance
the source-side representations.
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h↓1 h↓2 h↓3 h↓4 h↓5 h↓6 h↓7 h↓8

h↓2,3 h↓4,5 h↓7,8

h↓6,8
h↓4,8

h↓2,8

h↓1,8

Figure 3: A top-down encoding process updates
the hidden states recursively from root to leaf
nodes. The red and blue lines denote the use of
different learning parameters.

3.1 Bidirectional Leaf-Node Encoding
As discussed in Section 1, the unidirectional re-
current neural network reads an input sequence
in order, from the first symbol to the last. In
order to generate leaf node annotation vectors
which jointly take into account both preceding and
following annotations, we exploit a bidirectional
RNN encoder (Bahdanau et al., 2015). The hidden
state of the i-th leaf node hli is the concatenation
of the forward and backward vectors:

hli = [
−→
h li,
←−
h li],

where
−→
h li is obtained by a rightward GRU, as

shown in Equation 1, and a leftward GRU calcu-
lates

←−
h li, as follows:

←−
h li = f←GRU (xi,

←−
h li−1),

where
←−
h li−1 is the previous hidden state.

3.2 Bidirectional Tree-Node Encoding
Since the hidden states of leaf nodes are derived
in a sequential, context-sensitive way, by gen-
erating phrase annotations in a bottom-up fash-
ion, the sequential context can be propagated to
tree nodes. However, the learned annotation vec-
tors still fail to capture global information from
the upper nodes. To enhance the representations
with global semantic information, we propose to
use a standard GRU recurrent network to update
representations in a top-down fashion, as shown
in Figure 3. The annotation vectors, which are
learned by the previous encoding steps, are fed to
the updating process.

First, we treat the bottom-up hidden state of root
h↑root, which covers the global meaning as well as

the syntactic information of the source sentence,
as the initial state of the top-down GRU network:

h↓root = h↑root.

Given an updated hidden state of the parent node
h↓i,j , the hidden states of left and right children h↓i,k
and h↓k+1,j are calculated as:

h↓i,k = f ldGRU (h
↑
i,k, h

↓
i,j)

h↓k+1,j = f rdGRU (h
↑
k+1,j , h

↓
i,j),

where h↑i,k and h↑k+1,j are the left and right
child annotation vectors generated via the bottom-
up tree-GRU network. Contrary to the simi-
lar top-down encoding for sentiment classifica-
tion (Kokkinos and Potamianos, 2017), which uses
same weighting parameters to handle both left and
right child nodes, f ldGRU and f rdGRU with different
parameters are applied in the proposed model to
distinguish the left and right structural informa-
tion. According to the definition of a GRU (Cho
et al., 2014b), f ldGRU uses an update gate z↓i,k, a

reset gate r↓i,k and a candidate activation h̃↓i,k to

generate h↓i,k, as follows:

z↓i,k = σ(W ld
(z)h

↑
i,k + U ld(z)h

↓
i,j + bld(z))

r↓i,k = σ(W ld
(r)h

↑
i,k + U ld(r)h

↓
i,j + bld(r))

h̃↓i,k = tanh(W ld
(h)h

↑
i,k + U ld(h)(r

↓
i,k � h

↓
i,j) + bld(h))

h↓i,k = (1− z↓i,k)h
↓
i,j + z↓i,kh̃

↓
i,k, (3)

where W ld
(·) and U ld(·) represent weight matrices,

and bld(·) denote bias vectors. f rdGRU is defined in
a similar way.

From a linguistic point of view, in the top-down
GRU network, the reset gate is able to retain the
useful global information and drop irrelevant in-
formation from the parent state h↓i,j , while the pro-
portions of the global context from the top-down
state h↓i,j , and the local context from the bottom-

up state h↑i,k are controlled by the update gate. As
it covers both the partial meaning of the phrase
and the whole meaning of the sentence, h↓i,k is re-
garded as the final representation of nodei,k:

hpi,k = h↓i,k.

With the propagation of information from root to
leaf nodes, the i-th leaf node representation is up-
dated as:

hli = h↓i .
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As each source-side hidden state of the leaf nodes
and tree nodes carries the hierarchical information
of the sentence, we interpret such an encoded state
as a hierarchical representation.

3.3 Handling Out-of-Vocabulary: Tree-Based
Rare Word Encoding

In NMT, the translation of rare words and un-
known words is an open problem, since the com-
putational cost increases with the size of the vo-
cabulary. Sennrich et al. (2016) proposed a sim-
ple and effective approach to handling out-of-
vocabulary by representing rare words as a se-
quence of sub-word units, which are segmented
using byte-pair encoding (BPE) (Gage, 1994).

x1 x2 x1
3 x2

3 x3
3 x4 x5

h1 h2 h4 h5h1
3 h2

3 h3
3

h1,2
3

h1,3
3

Figure 4: Encoding sub-word units with an addi-
tional binary lexical tree, where x13, x

2
3, x

3
3 are the

sub-units of word x3.

We propose a variant tree-based rare word en-
coding approach which extends the tree-based
model to the sub-word level. Sub-word units
are encoded following an additional binary lexical
tree. For a sentence x = (x1, ..., xi, ..., xN ), BPE
segments the word xi into a sequence of sub-word
units (x1i , ..., x

n
i ). The binary lexical tree is sim-

ply built by composing two nodes in a rightwards
fashion, (((x1i , x

2
i ), x

3
i )...), x

n
i ), as shown in Fig-

ure 4. From the i-th leaf node, the original syn-
tactic tree is extended downwards using the binary
lexical tree, and the set of leaf nodes are replen-
ished as x = (x1, ..., x

1
i , x

2
i , ..., x

n
i , ..., xN ). Sub-

word units can therefore be regarded as leaf nodes,
and can be encoded using the proposed encoder, as
illustrated in Figure 5. The experimental results in
Section 4.1 demonstrate the effectiveness of this
simple approach.

3.4 Decoder with Weighted Variant of
Attention Mechanism

Since each representation carries both local and
global information, in this case, attending fairly
to the lexical and phrase representations in each

I take up a posi- -tio
n in the room

〈eos
〉

hl1 hl2 hl3 hl4 hl7 hl8 hl9 hl10hl5 hl6

hp2,3 hp5,6 hp8,9

hp4,6

hp4,9

hp2,9

hp1,9

hp7,9

Figure 5: Illustration of the bidirectional hierar-
chical encoder: representations are enhanced by
a bidirectional leaf-node encoding and a bidirec-
tional tree-node encoding. The green nodes indi-
cate the sub-word representations.

decoding step may cause the problem of over-
translation (repeatedly attending and translating
the same constituent of a sentence). An alterna-
tive approach is to balance the attentive informa-
tion between the lexical and phrase vectors in the
context vector. To effectively leverage these hi-
erarchical representations, we propose a weighted
variant of the tree-based attention mechanism (the
original is defined in Equation 2). Formally, the
calculation of the context vector dj at step j is
modified as:

dj = (1− βj)
n∑

i=1

αj(i)h
l
i + βj

n−1∑

k=1

αj(k)h
p
k (4)

where βj ∈ [0, 1] is used to weight the expected
importance of the representations. Inspired by
work on a multi-modal NMT (Calixto et al., 2017)
which exploits a gating scalar (Xu et al., 2015) to
weight the image context vector, we use such a
scalar in our model in order to dynamically adapt
the weighting scalar. The gating scalar βj at step
j is calculated by :

βj = σ(Wβcj−1 + bβ),

where Wβ and bβ represent the model parame-
ters. In contrast with α, which denotes the cor-
respondence between each source annotation and
the current target hidden state, β is dominated by
the target composite hidden state alone. In other
words, β is a time-dependent scalar in relation to
the current target word, and therefore enables the
attention model to explicitly quantify how far the
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leaf and no-leaf states contribute to the word pre-
diction at each time step. In the proposed model,
the phrase and lexical context vectors are learned
by a single attention model, meaning that they
are dependent, and the gating scalar weights the
phrase and lexical context vectors in complemen-
tary fashion, as shown in Equation 4. This dis-
tinguishes the model from that introduced by Cal-
ixto et al. (2017), in which the context vectors of
the source sentence and image (bi-modal) are mea-
sured using two independent attention models and
the gating scalar is merely used to weight the im-
age context vector.

4 Experiments

4.1 Data

Training Dev Test
LDC En-Zh mt08 mt04 mt05 mt06
1,435,575 1,357 1,788 1,082 1,664

Table 1: Data used in the experiments.

We evaluate the proposed model on an English-
to-Chinese translation task. For reasons of com-
putational efficiency, we extracted 1.4M sentence
pairs, in which the maximum length of the sen-
tence was 40, from the LDC parallel corpus3 as
our training data. The models were developed
using NIST mt08 data and were examined using
NIST mt04, mt05, and mt06 data. The num-
ber of sentences in each dataset is shown in Ta-
ble 1. On the English side, we used the constituent
parser (Zeng et al., 2014, 2015) to produce a bi-
nary syntactic tree for each sentence, in constrast
to the use of the HPSG parser by Eriguchi et al.
(2016). On the Chinese side, the sentences are
segmented using the Chinese word segmentation
toolkit of NiuTrans (Xiao et al., 2012).

To avoid data sparsity, words referring to time,
date and number, which are low in frequency, are
generalized as ‘$time’, ‘$date’ and ‘$number’. In
addition, as described in Section 3.3, the vocab-
ularies are further compressed by segmenting the
rare words into sub-word units using BPE.

4.2 Experimental Settings
As shown in Table 2, which gives the statistics of
the token types, we limit the source and target vo-

3Our training data was selected from LDC2000T46,
LDC2000T50, LDC2003E14, LDC2004T08, LDC2004T08
and LDC2005T10.

Training Set Original Generalization BPE
|V | in En 159k 120k 40k
|V | in Zh 198k 125k 40k

Table 2: The vocabulary size of the training set
before and after applying the generalization and
BPE segmentation.

cabulary size to 40,000, in order to cover all the
English and Chinese tokens. The dimensions of
word embedding and hidden layer are respectively
set as 620 and 1,000. Due to the concatenation in
the bidirectional leaf-node encoding, the dimen-
sions of the forward and backward vectors, which
are half of those of the other hidden states, are set
to 500. In order to prevent over-fitting, the train-
ing data is shuffled following each epoch. More-
over, the model parameters are optimized using
AdaDelta (Zeiler, 2012), due to its capability for
dynamically adapting the learning rate. We set the
mini-batch size to 16 and the beam search size to
5. The accuracy of the translation relative to a ref-
erence is assessed using the BLEU metric (Pap-
ineni et al., 2002). In order to give an equitable
comparison, all the NMT models used for com-
parison are implemented or re-implemented using
GRU in our code, based on dl4mt4.

4.3 Enhanced Hierarchical Representations

Firstly, the effectiveness of the enhanced hierar-
chical representations is evaluated through a set of
experiments, the results of which are summarized
in Table 3.

Compared with the original tree-based en-
coder (Eriguchi et al., 2016), the model with bidi-
rectional leaf-node encoding (described in Sec-
tion 3.1) shows better performance. This also re-
veals that the future context at leaf level can con-
tribute to word prediction. Secondly, although
the representations of leaf nodes are learned in
a sequential, context-sensitive way, the transla-
tion quality is further improved by considering the
global semantic information in the top-down en-
coding (Section 3.2).

By incorporating the above enhancements into
the model, the proposed hierarchical encoder
yields significant improvements over both the se-
quential and the tree-based models. The problem
of OOV is alleviated by further extending the tree-

4https://github.com/nyu-dl/
dl4mt-tutorial
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Model BPE # of params MT04 MT05 MT06 Dev.
sequential encoder no 86.8M 31.26 23.98 24.02 17.20

+ sequential rare word encoding yes 86.8M 32.54 25.09 25.07 18.19
+ tree-based rare word encoding yes 104.1M 32.56 25.30 24.96 18.33

tree-based encoder no 95.0M 31.90 24.68 24.40 17.63
+ bidirectional leaf-node encoding no 92.0M 32.13 24.94 25.02 18.12
+ top-down encoding no 101.1M 32.85 25.37 25.30 18.26
+ tree-based rare word encoding yes 95.0M 33.02 25.62 25.24 18.59

hierarchical encoder (β = 0.5) no 104.1M 32.91↑ 25.55↑ 25.52↑ 18.46↑
hierarchical encoder (β = 0.5) yes 104.1M 33.81⇑ 26.47⇑ 26.31⇑ 19.41⇑

+ gating scalar yes 105.1M 34.33⇑ 26.72⇑ 26.58⇑ 20.10⇑

Table 3: Translation results for the various models. The first column shows the models; the second
column indicates whether the corresponding experiment uses BPE data. The number of parameters (M
= millions) in each model is given in the third column. The remaining columns are the translation
accuracies for the test sets and development set, evaluated using BLEU scores (%). “↑ / ⇑”: indicates
that the hierarchical encoder is significantly better than the vanilla tree-based encoder (p < 0.05/p <
0.01).

based model to sub-word level (Section 3.3). In
addition, we evaluate our tree-based rare word en-
coding method against the conventional rare word
encoding (Sennrich et al., 2016) using the sequen-
tial encoder (Bahdanau et al., 2015). The empir-
ical results confirm that our proposed tree-based
BPE method achieves performance comparable to
that of the standard BPE in the sequential model,
but is applicable to the tree-based NMT model.

Overall, the proposed hierarchical encoder
has demonstrated the ability to effectively model
source-side representations from both the sequen-
tial and structural context. The NMT systems
based on the proposed model significantly outper-
form those of conventional models using the se-
quential encoder and the tree-based encoder.

4.4 Weighted Attention Model
As discussed in Section 3.4, in order to effectively
leverage hierarchical representations in generating
the target word, we adopt a variant weighted tree-
based attention mechanism which incorporates a
scalar to control the proportion of conditional in-
formation between the word and phrase vectors.
By manually or automatically varying the weight
β, the utilization of the weighted attention model
is assessed for four cases:

• β = 0.0: We manually set the weight of
phrase vectors to 0.0; in other words, the de-
coder is forced to ignore the phrase vectors.
The final translation is therefore generated by
merely summarizing the leaf vectors.

• β = 0.5: The representations of non-leaf
nodes and leaf nodes participate equally in
the translation process. The decoder of this
case therefore employs the same attention
mechanism as that of the original model (Sec-
tion 2.2).

• β = 1.0: In the reverse of the first case, the
weight of the leaf nodes is manually set to
0.0. Thus, only the phrase vectors are used to
predict the target words.

• Gating scalar (GS): A gating scalar is used
for dynamically learning to control the pro-
portion in which the lexical and phrase con-
texts contribute to the generation of the target
words (Section 3.4).

Model BLEU Perplexity Avg. Length
β = 1.0 17.16 98.65 21.13
β = 0.5 19.41 94.73 23.08
β = 0.0 19.83 94.68 23.33

GS 20.10 94.18 23.24

Table 4: Translation results for the development
set. The last column indicates the average length
of translation sentences, and the average length of
reference sentences is 23.19.

The experimental results are shown in Table 4.
The model which attends only to lexical annota-
tion vectors (β = 0.0) gives slightly better per-
formance than that which uses equal weights for
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The organization wouldn’t use armed forces in areas outside its member states <eos>

0.00 0.00 0.10 0.38 1.37 0.54 2.85 5.17 15.69 15.77 29.32 15.47 0.31

0.06 0.41 0.76

0.55
5.23

1.90
1.00

4.95
0.240.170.93

α
(10−2)

Our: 该 组织 不会 在在在成员国以外 的 地区使用武力

Ref: 该 组织 不会 在 成员国 以外 的 地区 动用 军队

tr-enc: 该 组织 不会 在 成员国 境外 使用 武力

sq-enc: 该 组织 不会 使用 其 成员国 以外 的 武装力量

β: 0.17 0.14 0.22 0.22 0.27 0.22 0.19 0.44 0.14 0.56

Figure 6: Translations of an English sentence output using the NMT models with bidirectional hierar-
chical model (our), sequential encoder (seq-enc) and original tree-based encoder (tr-enc). Ref indicates
the reference Chinese sentence. The attention scores (α), which are noted over the source-side syntactic
tree, are output by the bidirectional hierarchical model at the step where the fourth target word “在” is
translated. The sequence of scores β denote the value of the gating scalar at each translation step.

lexical and phrase vectors (β = 0.5). The use
of global information contributes to distinguish-
ing the differences between word meanings, al-
though the similar semantic information in the
lexical and phrase representations aggravates the
over-translation problem observed in the transla-
tion results. However, we found that the model
which attends only to phrase representations tends
to generate shorter translation of an average of
21.13 words in length, as shown in the last column
of the first row of Table 4. Furthermore, the model
that neglects the leaf representations (β = 1.0)
is likely to underperform the others that are also
conditioned on the leaf nodes. Even though the
phrase representations are derived from the lexical
level via a bottom-up encoding, we believe it is
unable to fully capture the lexical information of
the source sentence. Through the use of the gating
scalar, the hierarchical model achieves progressive
improvements, as shown in Tables 3 and 4, the
problem of over-translation is also alleviated. The
representations of non-leaf nodes can be regarded
as supplements in the translation process.

5 Qualitative Analysis

Figure 6 shows an English sentence and its binary
tree representation, together with the correspond-
ing Chinese translations produced by the different
NMT models. All the models successfully give
the correct Chinese translation “该 组织 不会”
for the first three words of the English sentence
“the organization wouldn’t”. Differences appear
in the translation of the fourth word, and these lead
to markedly different meanings. The translation

“使用 其 成员国 以外 的 武装力量” output by
the sequential model, means “use the armed forces
other than its member states” where “other than
its member states” is incorrectly interpreted as a
complement to “armed forces”. This is caused by
the intrinsic limitations of the sequential model,
whereby it is unable to properly interpret the syn-
tactic relationship of words. By explicitly incorpo-
rating the syntactic information, both the proposed
hierarchical model and the tree-based model can
accurately attend to the dashed section of Figure 6,
and the translations can be correctly generated to
reflect the meaning of the source sentence. The
distinction between the translations produced by
the original tree-based model and our hierarchical
model is the interpretation of the words “areas out-
side”. The tree-based model interprets it into “境
外 (outside)”, while our model correctly translates
it into “以外的地区 (areas outside)”. We believe
that, with the help of global and local contextual
information, our model is able to capture the short
as well as long range dependencies.

We conducted an in-depth analysis of the BPE
segmented units of rare words. It was observed
that the sub-word units could be categorized into
three groups. The first group of units involve
the phonetic Romanization (Pinyin) of Chinese.
In translation, these are simply transliterated into
the corresponding Chinese characters. As shown
in the second row of Table 5, “Liu/jing/min” is
a person’s name. The segmented units are the
phonetic representations. Both models can suc-
cessfully transliterate this into the Chinese equiv-
alent, “刘/敬/民”. The second group of sub-
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Source Reference Hierarchical Sequential
liu/jing/min 刘/敬/民 刘/敬/民 刘/敬/民

Liú/jı̀ng/mı́n Liú/jı̀ng/mı́n Liú/jı̀ng/mı́n
adventur/er 探险家 探险家 探险者

Tàn xiǎn jiā Tàn xiǎn jiā Tàn xiǎn zhě
hi/k/ed 上调 上升 发生

Shàng tiáo Shàng shēng Fā shēng

Table 5: Translation examples of sub-words,
where ‘/’ indicates a separation between sub-word
units. The first two columns show the segmented
words and their Chinese references. The last two
columns report the translations given by the hier-
archical and sequential models respectively.

word units are likely to represent the word mor-
phemes. The words are segmented into sub-word
units, which are to some extent close to the lin-
guistic word stems and suffixes. For example,
the word “adventurer” is segmented into “adven-
tur/er”, which is correctly translated into the Chi-
nese translations “探险/家” and “探险/者” respec-
tively by the hierarchical and sequential models,
while the third group of sub-word units offer no
linguistic interpretation. It is easy to see, using
the BPE algorithm, that the identification of sub-
word units is merely based on their frequency in
the training data, with the result that not all units
are well-formed linguistic morphemes. However,
an interesting finding arises regarding the transla-
tion of these segmented units. In the sequential
model, the word is incorrectly translated; how-
ever, it can be correctly translated by the hierar-
chical model. Taking “hi/k/ed” as an example,
the sequential model gives an incorrect translation
“发生(happened)”, while the hierarchical model
translates it into “上升(rise)” which is a synonym
of “hiked”. This result indicates that in our hi-
erarchical model, the parent node of hierarchical
representation for sub-word units “hi/k/ed” is bet-
ter able to capture the meaning of the word as a
whole; this cannot be captured independently by
the sequential model.

6 Conclusion

In this paper, we propose an improved NMT sys-
tem with a novel bidirectional hierarchical en-
coder, which enhances the source-side representa-
tions of a sentence, that is, both phrases and words,
with local and global context information. By in-
troducing a tree-based rare word encoding, the hi-

erarchical model is extended to sub-word level in
order to alleviate the problem of OOVs. To ef-
fectively leverage the enhanced hierarchical repre-
sentations, we also propose a weighted variant of
the attention model which dynamically adjusts the
proportion of conditional information between the
lexical and phrase annotation vectors. Experimen-
tal results for NIST English-Chinese translation
tasks demonstrate that the proposed model signif-
icantly outperforms the vanilla tree-based and se-
quential NMT models.
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Abstract

Neural Machine Translation (NMT) has
shown remarkable progress over the past
few years, with production systems now
being deployed to end-users. As the
field is moving rapidly, it has become un-
clear which elements of NMT architec-
tures have a significant impact on trans-
lation quality. In this work, we present
a large-scale analysis of the sensitivity
of NMT architectures to common hyper-
parameters. We report empirical results
and variance numbers for several hundred
experimental runs, corresponding to over
250,000 GPU hours on a WMT English to
German translation task. Our experiments
provide practical insights into the relative
importance of factors such as embedding
size, network depth, RNN cell type, resid-
ual connections, attention mechanism, and
decoding heuristics. As part of this con-
tribution, we also release an open-source
NMT framework in TensorFlow to make
it easy for others to reproduce our results
and perform their own experiments.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014) is an end-to-end approach to
machine translation. NMT has shown impressive
results (Jean et al., 2015; Luong et al., 2015b;
Sennrich et al., 2016a; Wu et al., 2016) surpass-
ing those of phrase-based systems while address-
ing shortcomings, such as the need for hand-
engineered features. The most popular approaches

∗Both authors contributed equally to this work.
†Work done as a member of the Google Brain Residency

program (g.co/brainresidency).

to NMT are based on sequence-to-sequence mod-
els, an encoder-decoder architecture consisting
of two recurrent neural networks (RNNs) and
an attention mechanism that aligns target with
source tokens (Bahdanau et al., 2015; Luong et al.,
2015a).

One drawback of current NMT architectures
is the huge amount of compute required to train
them. Training on real-world datasets of sev-
eral million examples typically requires dozens of
GPUs and convergence time is on the order of days
to weeks (Wu et al., 2016). While sweeping across
large hyperparameter spaces is common in Com-
puter Vision (Huang et al., 2016b), such explo-
ration would be prohibitively expensive for NMT
models, limiting researchers to well-established
architecture and hyperparameter choices. Further-
more, there have been no large-scale studies of
how these hyperparameters affect the performance
of NMT systems. As a result, it remains unclear
why these models perform as well as they do or
how we might improve them.

In this work, we present an extensive analysis of
architectural hyperparameters for NMT systems.
Using a total of more than 250,000 GPU hours,
we explore common variations of NMT architec-
tures and provide insights into which architectural
choices matter most. We report BLEU scores, per-
plexities, model sizes, and convergence time for
all experiments, including variance numbers cal-
culated across several runs of each experiment. In
addition, we release the software framework that
we wrote to facilitate this exploration.

In summary, the main contributions of this work
are as follows:

• We provide immediately applicable insights
into the optimization of NMT models, as well
as promising directions for future research.
For example, we found that deep encoders are
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more difficult to optimize than decoders, that
dense residual connections yield better per-
formance than regular residual connections,
and that a well-tuned beam search is sur-
prisingly critical to obtaining state-of-the-art
results. By presenting practical advice for
choosing baseline architectures, we help re-
searchers avoid wasting time on unpromising
model variations.

• We also establish the extent to which met-
rics such as BLEU are influenced by ran-
dom initialization and slight hyperparameter
variation, allowing researchers to better dis-
tinguish statistically significant results from
noise.

• Finally, we release an open-source Ten-
sorFlow package, specifically designed
to implement reproducible state-of-the-art
sequence-to-sequence models. All experi-
ments were run using this framework and we
include all configuration files and processing
scripts needed to reproduce the experiments
in this paper. We hope to accelerate future
research by releasing this framework to the
public.

2 Background and Preliminaries

2.1 Neural Machine Translation

Our models are based on an encoder-decoder ar-
chitecture with attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015a), as shown in fig-
ure 1. An encoder function fenc takes as input a
sequence of source tokens x = (x1, ..., xm) and
produces a sequence of states h = (h1, ..., hm).
In our base model, fenc is a bi-directional RNN
and the state hi corresponds to the concatenation
of the states produced by the backward and for-
ward RNNs, hi = [

−→
hi ;
←−
hi ]. The decoder fdec is

an RNN that predicts the probability of a target
sequence y = (y1, ..., yk) based on h. The proba-
bility of each target token yi ∈ 1, ...V is predicted
based on the recurrent state in the decoder RNN
si, the previous words, y<i, and a context vector
ci. The context vector ci is also called the atten-
tion vector and is calculated as a weighted average
of the source states.

ci =
∑

j

aijhj (1)

aij =
âij∑
j âij

(2)

âij = att(si, hj) (3)

Here, att(si, hj) is an attention function that
calculates an unnormalized alignment score be-
tween the encoder state hj and the decoder state
si. In our base model, we use a function of the
form att(si, hj) = 〈Whhj ,Wssi〉, where the ma-
trices W are used to transform the source and tar-
get states into a representation of the same size.

The decoder outputs a distribution over a vocab-
ulary of fixed-size V :

P (yi|y1, ..., yi−1,x)
= softmax(W [si; ci] + b)

The whole model is trained end-to-end by min-
imizing the negative log likelihood of the target
words using stochastic gradient descent.

3 Experimental Protocols

3.1 Datasets and Preprocessing

We run all experiments on the WMT’15
English→German task consisting of 4.5M sen-
tence pairs, obtained by combining the Europarl
v7, News Commentary v10, and Common Crawl
corpora. We use newstest2013 as our validation
set and newstest2014 and newstest2015 as our
test sets. We focus on WMT English→German
because it is a morphologically rich language
therefore has been a standard benchmark in
previous important work in Neural Machine
Translation (Jean et al., 2015; Luong et al., 2015a;
Sennrich et al., 2016b; Zhou et al., 2016; Wu
et al., 2016)

To test for generality, we also ran a small num-
ber of experiments on English→French transla-
tion, and we found that the performance was
highly correlated with that of English→German
but that it took much longer to train models on the
larger English→French dataset. Given that trans-
lation from the morphologically richer German is
also considered a more challenging task, we felt
justified in using the English→German translation
task for this hyperparameter sweep.
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Figure 1: Encoder-Decoder architecture with attention module. Section numbers reference experiments
corresponding to the components.

We tokenize and clean all datasets with the
scripts in Moses1 and learn shared subword units
using Byte Pair Encoding (BPE) (Sennrich et al.,
2016b) using 32,000 merge operations for a final
vocabulary size of approximately 37k. We discov-
ered that data preprocessing can have a large im-
pact on final numbers, and since we wish to enable
reproducibility, we release our data preprocessing
scripts together with the NMT framework to the
public. For more details on data preprocessing pa-
rameters, we refer the reader to the code release.

3.2 Training Setup and Software

All of the following experiments are carried out
using our own implementation based on Tensor-
Flow (Abadi et al., 2016). We built this framework
to enable reproducible state-of-the-art implemen-
tations of Neural Machine Translation architec-
tures. As part of our contribution, we are releasing
the framework and all configuration files needed
to reproduce our results. Training is performed
on Nvidia Tesla K40m and Tesla K80 GPUs, dis-
tributed over 8 parallel workers and 6 parameter
servers per experiment. We use a batch size of
128 and decode using beam search with a beam
width of 10 and the length normalization penalty
of 0.6 described in (Wu et al., 2016). BLEU scores
are calculated on tokenized data using the multi-

1https://github.com/moses-smt/mosesdecoder/

bleu.perl script in Moses.2 Each experiment is
run for a maximum of 2.5M steps and replicated
4 times with different initializations. We save
model checkpoints every 30 minutes and choose
the best checkpoint based on the validation set
BLEU score. We report mean and standard de-
viation as well as highest scores (as per cross val-
idation) for each experiment.

3.3 Baseline Model

Based on a review of recent literature, we chose a
baseline model that we knew would perform rea-
sonably well. Our goal was to keep the baseline
model simple and standard, not to advance the
start of the art. The model (described in 2.1) con-
sists of a 2-layer bidirectional encoder (1 layer in
each direction), and a 2 layer decoder with a mul-
tiplicative (Luong et al., 2015a) attention mecha-
nism. We use 512-unit GRU (Cho et al., 2014)
cells for both the encoder and decoder and apply
Dropout of 0.2 at the input of each cell. We train
using the Adam optimizer and a fixed learning rate
of 0.0001 without decay. The embedding dimen-
sionality is set to 512. A more detailed description
of all model hyperparameters can be found in the
supplementary material.

In each of the following experiments, the hy-

2https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl
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perparameters of the baseline model are held con-
stant, except for the one hyperparameter being
studied. We hope that this allows us to isolate the
effect of various hyperparameter changes. We rec-
ognize that this procedure does not account for in-
teractions between hyperparameters, and we per-
form additional experiments when we believe such
interactions are likely to occur (e.g., skip connec-
tions and number of layers).

4 Experiments and Results

For the sake of brevity, we only report mean
BLEU, standard deviation, highest BLEU in
parentheses, and model size in the following ta-
bles. Log perplexity, tokens/sec and convergence
times can be found in the supplementary material
tables. All reported p-values were calculated with
a two-sample t-test that assumed equal variances.

4.1 Embedding Dimensionality

With a large vocabulary, the embedding layer may
account for a significant fraction of the model
parameters. Historically, researchers have used
620-dimensional (Bahdanau et al., 2015) or 1024-
dimensional (Luong et al., 2015a) embeddings.
We expected larger embeddings to result in bet-
ter BLEU scores, or at least lower perplexities,
but this wasn’t always the case. While table 1
shows that 2048-dimensional embeddings yielded
the overall best result, they only outperformed the
smallest 128-dimensional embeddings by a nar-
row yet statistically significant margin (p = 0.01),
but took nearly twice as long to converge. Gradi-
ent updates to both small and large embeddings
did not differ significantly from each other and
the norm of gradient updates to the embedding
matrix stayed approximately constant throughout
training, regardless of size. We did not observe
overfitting with large embeddings and training log
perplexity was almost equal across experiments,
suggesting that the model does not make efficient
use of the extra parameters and that there may be a
need for better optimization techniques. Alterna-
tively, it could be the case that models with large
embeddings simply need far more than 2.5M steps
to converge to the best solution.

4.2 RNN Cell Variant

Both LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014) cells are commonly
used in NMT architectures. While there exist stud-

Dim newstest2013 Params
128 21.50± 0.16 (21.66) 36.13M
256 21.73± 0.09 (21.85) 46.20M
512 21.78± 0.05 (21.83) 66.32M
1024 21.36± 0.27 (21.67) 106.58M
2048 21.86± 0.17 (22.08) 187.09M

Table 1: BLEU scores on newstest2013, varying
the embedding dimensionality.

ies (Greff et al., 2016) that explore cell variants on
small sequence tasks of a few thousand examples,
we are not aware of any such studies in large-scale
NMT settings.

The vanishing gradient problem is a motiva-
tion for gated cells, such as the GRU and LSTM.
Using vanilla RNN cells, deep networks cannot
efficiently propagate information and gradients
through multiple layers and time steps. We ini-
tialize the decoder state to zero instead of passing
the encoder state, and we experiment with using a
vanilla RNN cell in the decoder only (Vanilla-Dec
below). For the LSTM and GRU variants, we vary
cell types in both the encoder and decoder. We use
LSTM cells without peephole connections and ini-
tialize the forget bias of both LSTM and GRU cells
to 1.

Cell newstest2013 Params
LSTM 22.22± 0.08 (22.33) 68.95M
GRU 21.78± 0.05 (21.83) 66.32M
Vanilla-Dec 15.38± 0.28 (15.73) 63.18M

Table 2: BLEU scores on newstest2013, varying
the type of encoder and decoder cell.

In our experiments, LSTM cells consistently
outperformed GRU cells, a result which was sta-
tistically significant (p < 0.00001). Since the
computational bottleneck in our architecture is the
softmax operation, we did not observe large differ-
ences in training speed between LSTM and GRU
cells. Somewhat to our surprise, we found that the
vanilla decoder is unable to learn nearly as well as
the gated variant. This suggests that the decoder
indeed passes information in its own state through
multiple time steps instead of relying solely on the
attention mechanism and current input (which in-
cludes the previous attention context). It could
also be the case that the gating mechanism is nec-
essary to mask out irrelevant parts of the input.
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4.3 Encoder and Decoder Depth
We generally expect deeper networks to converge
to better solutions than shallower ones (He et al.,
2016). While some work (Luong et al., 2015b;
Zhou et al., 2016; Luong and Manning, 2016; Wu
et al., 2016) has achieved state-of-the-art results
using deep networks, others (Jean et al., 2015;
Chung et al., 2016; Sennrich et al., 2016b) have
produced similar results with far shallower ones.
Therefore, it is unclear how important depth is,
and whether shallow networks are capable of pro-
ducing results competitive with those of deep net-
works. Here, we explore the effect of both encoder
and decoder depth up to 8 layers. For the bidi-
rectional encoder, we separately stack the RNNs
in both directions. For example, the Enc-8 model
corresponds to one forward and one backward 4-
layer RNN. For deeper networks, we also exper-
iment with two variants of residual connections
(He et al., 2016; Srivastava et al., 2015) to encour-
age gradient flow. In the standard variant, shown
in equation (4), we insert residual connections be-
tween consecutive layers. If h(l)t (x

(l)
t , h

(l)
t−1) is the

RNN output of layer l at time step t, then:

x
(l+1)
t = h

(l)
t (x

(l)
t , h

(l)
t−1) + x

(l)
t (4)

where x
(0)
t are the embedded input tokens.

We also explore a dense (”ResD” below) variant
of residual connections similar to those used by
(Huang et al., 2016a) in Image Recognition. In
this variant, we add skip connections from each
layer to all other layers:

x
(l+1)
t = h

(l)
t (x

(l)
t , h

(l)
t−1) +

l∑

j=0

x
(j)
t (5)

Our implementation differs from (Huang et al.,
2016a) in that we use addition instead of concate-
nation in order to keep the state size constant.

Table 3 shows results of varying encoder and
decoder depth with and without residual connec-
tion. We found no benefit to increasing encoder
depth beyond two layers, as we observed no statis-
tically significant improvement from going to four
layers and even deeper models generally diverged
during training. The best deep residual models
achieved good results, but only one of four runs
converged, as suggested by the large standard de-
viation.

Depth newstest2013 Params
Enc-2 21.78± 0.05 (21.83) 66.32M
Enc-4 21.85± 0.32 (22.23) 69.47M
Enc-8 21.32± 0.14 (21.51) 75.77M
Enc-8-Res 19.23± 1.96 (21.97) 75.77M
Enc-8-ResD 17.30± 2.64 (21.03) 75.77M
Dec-1 21.76± 0.12 (21.93) 64.75M
Dec-2 21.78± 0.05 (21.83) 66.32M
Dec-4 22.37± 0.10 (22.51) 69.47M
Dec-4-Res 17.48± 0.25 (17.82) 68.69M
Dec-4-ResD 21.10± 0.24 (21.43) 68.69M
Dec-8 01.42± 0.23 (1.66) 75.77M
Dec-8-Res 16.99± 0.42 (17.47) 75.77M
Dec-8-ResD 20.97± 0.34 (21.42) 75.77M

Table 3: BLEU scores on newstest2013, varying
the encoder and decoder depth and type of residual
connections.

On the decoder side, deeper models outper-
formed shallower ones by a small but statisti-
cally significant margin (p < 0.00001), but with-
out residual connections, we were unable to train
decoders with 8 or more layers. Across the deep
decoder experiments, dense residual connections
consistently outperformed regular residual con-
nections (p< 0.00001) and converged much faster
in terms of step count, as shown in figure 2. We ex-
pected deep models to perform better (Sutskever
et al., 2014; Zhou et al., 2016; Wu et al., 2016)
across the board, and we believe that our experi-
ments demonstrate the need for more robust tech-
niques for optimizing deep sequential models. For
example, we may need a better-tuned SGD opti-
mizer or some form of batch normalization, in or-
der to robustly train deep networks with residual
connections.

4.4 Unidirectional vs. Bidirectional Encoder

In the literature, we see bidirectional encoders
(Bahdanau et al., 2015), unidirectional encoders
(Luong et al., 2015a), and a mix of both (Wu
et al., 2016) being used. Bidirectional encoders
are able to create representations that take into ac-
count both past and future inputs, while unidirec-
tional encoders can only take past inputs into ac-
count. The benefit of unidirectional encoders is
that their computation can be easily parallelized on
GPUs, allowing them to run faster than their bidi-
rectional counterparts. We are not aware of any
studies that explore the necessity of bidirectional-
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Figure 2: Training plots for deep decoder with and
without residual connections, showing log per-
plexity on the eval set.

ity. In this set of experiments, we explore unidirec-
tional encoders of varying depth with and without
reversed source inputs, as this is a commonly used
trick that allows the encoder to create richer repre-
sentations for earlier words. Given that errors on
the decoder side can easily cascade, the correct-
ness of early words has disproportionate impact.

Cell newstest2013 Params
Bidi-2 21.78± 0.05 (21.83) 66.32M
Uni-1 20.54± 0.16 (20.73) 63.44M
Uni-1R 21.16± 0.35 (21.64) 63.44M
Uni-2 20.98± 0.10 (21.07) 65.01M
Uni-2R 21.76± 0.21 (21.93) 65.01M
Uni-4 21.47± 0.22 (21.70) 68.16M
Uni-4R 21.32± 0.42 (21.89) 68.16M

Table 4: BLEU scores on newstest2013, varying
the type of encoder. The ”R” suffix indicates a
reversed source sequence.

Table 4 shows that bidirectional encoders gen-
erally outperform unidirectional encoders, but not
by a statistically significant margin. The encoders
with reversed source consistently outperform their
non-reversed counterparts (p = 0.009 for one layer
models, p = 0.0003 for two layers, p = 0.2751
for four layers), but do not beat shallower bidirec-
tional encoders.

4.5 Attention Mechanism
The two most commonly used attention mecha-
nisms are the additive (Bahdanau et al., 2015) vari-
ant, equation (6) below, and the computationally
less expensive multiplicative variant (Luong et al.,
2015a), equation (7) below. Given an attention key
hj (an encoder state) and attention query si (a de-

coder state), the attention score for each pair is cal-
culated as follows:

score(hj , si) = 〈v, tanh(W1hj +W2si)〉 (6)

score(hj , si) = 〈W1hj ,W2si〉 (7)

We call the dimensionality of W1hj and W2si
the ”attention dimensionality” and vary it from
128 to 1024 by changing the layer size. We also
experiment with using no attention mechanism by
initializing the decoder state with the last encoder
state (None-State), or concatenating the last en-
coder state to each decoder input (None-Input).
The results are shown in table 5.

Attention newstest2013 Params
Mul-128 22.03± 0.08 (22.14) 65.73M
Mul-256 22.33± 0.28 (22.64) 65.93M
Mul-512 21.78± 0.05 (21.83) 66.32M
Mul-1024 18.22± 0.03 (18.26) 67.11M
Add-128 22.23± 0.11 (22.38) 65.73M
Add-256 22.33± 0.04 (22.39) 65.93M
Add-512 22.47± 0.27 (22.79) 66.33M
Add-1024 22.10± 0.18 (22.36) 67.11M
None-State 9.98± 0.28 (10.25) 64.23M
None-Input 11.57± 0.30 (11.85) 64.49M

Table 5: BLEU scores on newstest2013, varying
the type of attention mechanism.

We found that the parameterized additive atten-
tion mechanism slightly but consistently outper-
formed the multiplicative one (p = 0.013 for 128
units, p = 0.5 for 256 units, p = 0.0012 for 512
units, and p < 0.00001 for 1024/8 units), with the
attention dimensionality having little effect.

While we did expect the attention-based mod-
els to significantly outperform those without an
attention mechanism, we were surprised by just
how poorly the ”Non-Input” models fared, given
that they had access to encoder information at
each time step. Furthermore, we found that
the attention-based models exhibited significantly
larger gradient updates to decoder states through-
out training. This suggests that the attention mech-
anism acts more like a ”weighted skip connection”
that optimizes gradient flow than like a ”memory”
that allows the encoder to access source states, as
is commonly stated in the literature. We believe
that further research in this direction is necessary
to shed light on the role of the attention mecha-
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nism and whether it may be purely a vehicle for
easier optimization.

4.6 Beam Search Strategies

Beam Search is a commonly used technique to
find target sequences that maximize some scoring
function s(y,x) through tree search. In the sim-
plest case, the score to be maximized is the log
probability of the target sequence given the source.
Recently, extensions such as coverage penalties
(Tu et al., 2016) and length normalizations (Wu
et al., 2016) have been shown to improve decod-
ing results. It has also been observed (Tu et al.,
2017) that very large beam sizes, even with length
penalty, perform worse than smaller ones. Thus,
choosing the correct beam width can be crucial to
achieving the best results.

Beam newstest2013 Params
B1 20.66± 0.31 (21.08) 66.32M
B3 21.55± 0.26 (21.94) 66.32M
B5 21.60± 0.28 (22.03) 66.32M
B10 21.57± 0.26 (21.91) 66.32M
B25 21.47± 0.30 (21.77) 66.32M
B100 21.10± 0.31 (21.39) 66.32M
B10-LP-0.5 21.71± 0.25 (22.04) 66.32M
B10-LP-1.0 21.80± 0.25 (22.16) 66.32M

Table 6: BLEU scores on newstest2013, varying
the beam width and adding length penalties (LP).

Table 6 shows the effect of varying beam widths
and adding length normalization penalties. A
beam width of 1 corresponds to greedy search. We
found that a well-tuned beam search is crucial to
achieving good results, and that it leads to consis-
tent gains of more than one BLEU point. Similar
to (Tu et al., 2017) we found that very large beams
yield worse results and that there is a ”sweet spot”
of optimal beam width. We believe that further re-
search into the robustness of hyperparameters in
beam search is crucial to progress in NMT. We
also experimented with a coverage penalty, but
found no additional gain over a sufficiently large
length penalty.

4.7 Final System Comparison

Finally, we compare our best performing model
across all experiments, as chosen on the new-
stest2013 validation set, to historical results found
in the literature in Table 8. Interestingly, the best
performing model turned out to be nearly equiva-

lent to the base model (described in Section 3.3),
differing only in that it used 512-dimensional ad-
ditive attention. While not the focus on this work,
we were able to achieve further improvements by
combining all of our insights into a single model
described in Table 7.

Hyperparameter Value
embedding dim 512
rnn cell variant LSTMCell
encoder depth 4
decoder depth 4
attention dim 512
attention type Bahdanau
encoder bidirectional
beam size 10
length penalty 1.0

Table 7: Hyperparameter settings for our final
combined model, consisting of all of the individu-
ally optimized values.

Model newstest14 newstest15
Ours (best performing) 22.03 24.75
Ours (combined) 22.19 25.23
OpenNMT 19.34 -
Luong 20.9 -
BPE-Char 21.5 23.9
BPE - 20.5
RNNSearch-LV 19.4 -
RNNSearch - 16.5
Deep-Att* 20.6 -
GNMT* 24.61 -
Deep-Conv* - 24.3

Table 8: Comparison to RNNSearch (Jean et al.,
2015), RNNSearch-LV (Jean et al., 2015), BPE
(Sennrich et al., 2016b), BPE-Char (Chung et al.,
2016), Deep-Att (Zhou et al., 2016), Luong (Lu-
ong et al., 2015a), Deep-Conv (Gehring et al.,
2016), GNMT (Wu et al., 2016), and OpenNMT
(Klein et al., 2017). Systems with an * do not have
a public implementation.

Although we do not offer architectural innova-
tions, we do show that through careful hyperpa-
rameter tuning and good initialization, it is pos-
sible to achieve state-of-the-art performance on
standard WMT benchmarks. Our model is outper-
formed only by (Wu et al., 2016), a model which
is significantly more complex and lacks a public
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implementation.
To test whether our findings generalize to other

languages, we also trained a model with the
same hyperparameter configurations on the AS-
PEC Japanese to English translation task and
achieved a BLEU score of 38.87, which is state-
of-the-art.

5 Open-Source Release

We demonstrated empirically how small changes
to hyperparameter values and different initializa-
tion can affect results, and how factors such as a
well-tuned beam search are critical to high qual-
ity translation results. To move towards repro-
ducible research, we believe it is important that
researchers start building upon common frame-
works and data processing pipelines. With this
goal in mind, we built a modular software frame-
work that allows researchers to explore novel ar-
chitectures with minimal code changes, and define
experimental parameters in a reproducible man-
ner. While our initial experiments are in Ma-
chine Translation, our framework can easily be
adapted to problems in Summarization (e.g., Nal-
lapati et al. (2016)), Conversational Modeling
(e.g., Vinyals and Le (2015); Shang et al. (2015);
Sordoni et al. (2015); Li et al. (2015)) or Image-
To-Text (e.g., Vinyals et al. (2015); Karpathy and
Fei-Fei (2015); Xu et al. (2015)).

Although there exist open-source libraries such
as OpenNMT (Klein et al., 2017) that share simi-
lar goals, they have not yet achieved state-of-the-
art results (see table 8) and lack some important
features, such as support for distributed training.
We hope that by open sourcing our experimental
toolkit, we can help to accelerate research in neu-
ral machine translation and sequence-to-sequence
modeling.

6 Conclusion

We conducted a large-scale empirical analysis of
architecture variations for Neural Machine Trans-
lation, teasing apart the key factors to achieving
state-of-the-art results. We demonstrated a num-
ber of surprising insights, including the fact that
beam search tuning is just as crucial as most archi-
tectural variations, and that with current optimiza-
tion techniques deep models do not always out-
perform shallow ones. Here, we summarize our
practical findings:

• Large embeddings with 2048 dimensions
achieved the best results, but only by a small
margin. Even small embeddings with 128 di-
mensions seem to have sufficient capacity to
capture most of the necessary semantic infor-
mation.

• LSTM Cells consistently outperformed GRU
Cells.

• Bidirectional encoders with 2 to 4 layers per-
formed best. Deeper encoders were signifi-
cantly more likely to diverge, but show po-
tential if they can be optimized well.

• Deep 4-layer decoders slightly outperformed
shallower decoders. Residual connections
were necessary to train decoders with 8 lay-
ers and dense residual connections offer ad-
ditional robustness.

• Parameterized additive attention yielded the
overall best results.

• A well-tuned beam search with length
penalty is crucial. Beam widths of 5 to 10
along with a length penalty of 1.0 seemed to
work well.

We highlighted several important research ques-
tions, including the efficient use of embedding pa-
rameters (4.1), the role of attention mechanisms
as weighted skip connections (4.5) as opposed to
memory units, the need for better optimization
methods for deep recurrent networks (4.3), and the
need for a better beam search (4.6) robust to hyper-
parameter variations.

Finally, given the recent surge in new applica-
tions for sequence-to-sequence models, we believe
our new findings and state-of-the-art open-source
package can significantly accelerate the pace of re-
search in this domain.
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Abstract

Bilingual Lexicon Induction is the task of
learning word translations without bilin-
gual parallel corpora. We model this
task as a matrix completion problem, and
present an effective and extendable frame-
work for completing the matrix. This
method harnesses diverse bilingual and
monolingual signals, each of which may
be incomplete or noisy. Our model
achieves state-of-the-art performance for
both high and low resource languages.

1 Introduction

Machine translation (MT) models typically re-
quire large, sentence-aligned bilingual texts to
learn good translation models (Wu et al., 2016;
Sennrich et al., 2016a; Koehn et al., 2003). How-
ever, for many language pairs, such parallel texts
may only be available in limited quantities, which
is problematic. Alignments at the word- or
subword- levels (Sennrich et al., 2016b) can be in-
accurate in the limited parallel texts, which can in
turn lead to inaccurate translations. Due to the low
quantity and thus coverage of the texts, there may
still be “out-of-vocabulary” words encountered at
run-time. The Bilingual Lexicon Induction (BLI)
task (Rapp, 1995), which learns word translations
from monolingual or comparable corpora, is an at-
tempt to alleviate this problem. The goal is to use
plentiful, more easily obtainable, monolingual or
comparable data to infer word translations and re-
duce the need for parallel data to learn good trans-
lation models. The word translations obtained by
BLI can, for example, be used to augment MT
systems and improve alignment accuracy, cover-
age, and translation quality (Gulcehre et al., 2016;
Callison-Burch et al., 2006; Daumé and Jagarla-
mudi, 2011).
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Figure 1: Our framework allows us to use a di-
verse range of signals to learn translations, in-
cluding incomplete bilingual dictionaries, infor-
mation from related languages (like Indonesian
loan words from Dutch shown here), word embed-
dings, and even visual similarity cues.

Previous research has explored different sources
for estimating translation equivalence from mono-
lingual corpora (Schafer and Yarowsky, 2002;
Klementiev and Roth, 2006; Irvine and Callison-
Burch, 2013, 2017). These monolingual signals,
when combined in a supervised model, can en-
hance end-to-end MT for low resource languages
(Klementiev et al., 2012a; Irvine and Callison-
Burch, 2016). More recently, similarities between
words in different languages have been approxi-
mated by constructing a shared bilingual word em-
bedding space with different forms of bilingual su-
pervision (Upadhyay et al., 2016).

We present a framework for learning transla-
tions by combining diverse signals of translation
that are each potentially sparse or noisy. We use
matrix factorization (MF), which has been shown
to be effective for harnessing incomplete or noisy
distant supervision from multiple sources of in-
formation (Fan et al., 2014; Rocktäschel et al.,
2015). MF is also shown to result in good cross-
lingual representations for tasks such as alignment
(Goutte et al., 2004), QA (Zhou et al., 2013), and
cross-lingual word embeddings (Shi et al., 2015).
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Specifically, we represent translation as a matrix
with source words in the columns and target words
in the rows, and model the task of learning trans-
lations as a matrix completion problem. Starting
from some observed translations (e.g., from exist-
ing bilingual dictionaries,) we infer missing trans-
lations in the matrix using MF with a Bayesian
Personalized Ranking (BPR) objective (Rendle
et al., 2009). We select BPR for a number of
reasons: (1) BPR has been shown to outperform
traditional supervised methods in the presence of
positive-only data (Riedel et al., 2013), which is
true in our case since we only observe positive
translations. (2) BPR is easily extendable to incor-
porate additional signals for inferring missing val-
ues in the matrix (He and McAuley, 2016). Since
observed translations may be sparse, i.e. the “cold
start” problem in the matrix completion task, in-
corporating additional signals of translation equiv-
alence estimated on monolingual corpora is useful.
(3) BPR is also shown to be effective for multi-
lingual transfer learning (Verga et al., 2016). For
low resource source languages, there may be re-
lated, higher resource languages from which we
can project available translations (e.g., translations
of loan words) to the target language (Figure 1).

We conduct large scale experiments to learn
translations from both low and high resource lan-
guages to English and achieve state-of-the-art per-
formance on these languages. Our main contribu-
tions are as follows:
• We introduce a MF framework that learns

translations by integrating diverse bilingual
and monolingual signals of translation, each
potentially noisy/incomplete.
• The framework is easily extendable to incor-

porate additional signals of translation equiv-
alence. Since ours is a framework for integra-
tion, each signal can be improved separately
to improve the overall system.
• Large scale experiments on both low and high

resource languages show the effectiveness of
our model, outperforming the current state-
of-the-art.
• We make our code, datasets, and output trans-

lations publicly available.1

2 Related Work

Bilingual Lexicon Induction Previous research
has used different sources for estimating transla-

1http://www.cis.upenn.edu/%7Ederry/translations.html

tions from monolingual corpora. Signals such as
contextual, temporal, topical, and ortographic sim-
ilarities between words are used to measure their
translation equivalence (Schafer and Yarowsky,
2002; Klementiev and Roth, 2006; Irvine and
Callison-Burch, 2013, 2017).

With the increasing popularity of word em-
beddings, many recent works approximate simi-
larities between words in different languages by
constructing a shared bilingual embedding space
(Klementiev et al., 2012b; Zou et al., 2013; Vulić
and Moens, 2013; Mikolov et al., 2013a; Faruqui
and Dyer, 2014; Chandar A P et al., 2014; Gouws
et al., 2015; Luong et al., 2015; Lu et al., 2015;
Upadhyay et al., 2016). In the shared space,
words from different languages are represented in
a language-independent manner such that similar
words, regardless of language, have similar repre-
sentations. Similarities between words can then be
measured in the shared space. One approach to in-
duce this shared space is to learn a mapping func-
tion between the languages’ monolingual semantic
spaces (Mikolov et al., 2013a; Dinu et al., 2014).
The mapping relies on seed translations which can
be from existing dictionaries or be reliably cho-
sen from pseudo-bilingual corpora of compara-
ble texts e.g., Wikipedia with interlanguage links.
Vulić and Moens (2015) show that by learning a
linear function with a reliably chosen seed lexicon,
they outperform other models with more expen-
sive bilingual signals for training on benchmark
data.

Most prior work on BLI however, either makes
use of only one monolingual signal or uses unsu-
pervised methods (e.g., rank combination) to ag-
gregate the signals. Irvine and Callison-Burch
(2016) show that combining monolingual signals
in a supervised logistic regression model produces
higher accuracy word translations than unsuper-
vised models. More recently, Vulić et al. (2016)
show that their multi-modal model that employs a
simple weighted-sum of word embeddings and vi-
sual similarities can improve translation accuracy.
These works show that there is a need for combin-
ing diverse, multi-modal monolingual signals of
translations. In this paper, we take this step further
by combining the monolingual signals with bilin-
gual signals of translations from existing bilingual
dictionaries of related, “third” languages.

Bayesian Personalized Ranking (BPR) Our
approach is based on extensions to the probabilis-
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tic model of MF in collaborative filtering (Koren
et al., 2009; Rendle et al., 2009). We represent
our translation task as a matrix with source words
in the columns and target words in the rows (Fig-
ure 1). Based on some observed translations in the
matrix found in a seed dictionary, our model learns
low-dimensional feature vectors that encode the
latent properties of the words in the row and the
words in the column. The dot product of these
vectors, which indicate how “aligned” the source
and the target word properties are, captures how
likely they are to be translations.

Since we do not observe false translations in the
seed dictionary, the training data in the matrix con-
sists only of positive translations. The absence of
values in the matrix does not imply that the cor-
responding words are not translations. In fact, we
seek to predict which of these missing values are
true. The BPR approach to MF (Rendle et al.,
2009) formulates the task of predicting missing
values as a ranking task. With the assumption that
observed true translations should be given higher
values than unobserved translations, BPR learns to
optimize the difference between values assigned
to the observed translations and values assigned to
the unobserved translations.

However, due to the sparsity of existing bilin-
gual dictionaries (for some language pairs such
dictionaries may not exist), the traditional for-
mulation of MF with BPR suffers from the
“cold start” issue (Gantner et al., 2010; He and
McAuley, 2016; Verga et al., 2016). In our case,
these are situations in which some source words
have no translations to any word in the target or
related languages. For these words, additional in-
formation, e.g., monolingual signals of translation
equivalence or language-independent representa-
tions such as visual representations, must be used.

We use bilingual translations from the source
to the target language, English, obtained from
Wikipedia page titles with interlanguage links.
Since Wikipedia pages in the source language may
be linked to pages in languages other than English,
we also use high accuracy, crowdsourced transla-
tions (Pavlick et al., 2014) from these third lan-
guages to English as additional bilingual transla-
tions. To alleviate the cold start issue, when a
source word has no existing known translation to
English or other third languages, our model backs-
off to additional signals of translation equivalence
estimated based on its word embedding and visual

representations.

3 Method

In this section, we describe our framework for
integrating bilingual and monolingual signals for
learning translations. First we formulate the task
of Bilingual Lexicon Induction, and introduce our
model for learning translations given observed
translations and additional monolingual/language-
independent signals. Then we derive our learning
procedure using the BPR objective function.

Problem Formulation Given a set of source
words F , a set of target words E, the pair 〈e, f〉
where e ∈ E and f ∈ F is a candidate trans-
lation with an associated score xe,f ∈ [0, 1] in-
dicating the confidence of the translation. The
input to our model is a set of observed transla-
tions T := {〈e, f〉 | xe,f = 1}. These could come
from an incomplete bilingual dictionary. We also
add word identities to the matrix i.e., we define
T identity := {〈e, e〉}, where T identity ⊂ T . The
task of Bilingual Lexicon Induction is then to gen-
erate missing translations: for a given source word
f and a set of target words {e | 〈e, f〉 /∈ T}, pre-
dict the score xe,f of how likely it is for e to be a
translation of f .

Bilingual Signals for Translation One way to
predict xe,f is by using matrix factorization. The
problem of predicting xe,f can be seen as a task of
estimating a matrixX : E×F . X is approximated
by a matrix product of two low-rank matrices P :
|E| × k and Q : |F | × k:

X̂ := PQT

where k is the rank of the approximation. Each
row pe in P can be seen as a feature vector describ-
ing the latent properties of the target word e, and
each row qf of Q describes the latent properties of
the source word f . Their dot product encodes how
aligned the latent properties are and, since these
vectors are trained on observed translations, it en-
codes how likely they are to be translation of each
other. Thus, we can write this formulation of pre-
dicted scores x̂e,f with MF as:

x̂MF
e,f = pTe qf =

k∑

i=1

pei . qfi (1)

Auxiliary Signals for Translation Because the
observed bilingual translations may be sparse, the
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Figure 2: The word tidur (id) is a cold word with
no associated translation in the matrix.

to estimate their latent dimensions accurately (Fig-
ure 2). Additional signals for measuring transla-
tion equivalence can help alleviate this problem.
Hence, in the case of cold words, we use a formu-
lation of x̂u,i that involves auxiliary features about
the words for measuring translation:

x̂AUX
u,i = ✓T

u ✓i

✓i represents an auxiliary feature vector of the cold
word i e.g., its word embedding or image vector
representation, while ✓u is a feature vector to be
trained, whose elements model the interaction be-
tween word u and word i: the extent to which the
word u matches the auxiliary features of word i. In
practice, learning ✓u amounts to learning a classi-
fier, one for each target word u that learns weights
✓u given the feature vectors ✓i of its translations.

Since each word can have multiple additional
feature vectors, we can formulate x̂AUX

u,i as a
weighted combination of all the auxiliary features
available to us:

x̂AUX
u,i = ↵1 ✓

T
u ✓i + ↵2 �

T
u �i + ... + ↵n �

T
u �i

where ↵m are parameters assigned to control the
contribution of each auxiliary feature.

Learning with Bayesian Personalized Ranking
The objective of Bayesian Personalized Ranking
(BPR) is to
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Figure 2: The word tidur (id) is a cold word with
no associated translation in the matrix. Auxiliary
features ✓f about the words can be used to predict
translations for cold words.

Auxiliary Signals for Translation Because the
observed bilingual translations may be sparse, the
MF approach can suffer from the existence of cold
items: words that have too few associated ob-
served translations to estimate their latent dimen-
sions accurately (Figure 2). Additional signals
for measuring translation equivalence can allevi-
ate this problem. Hence, in the case of cold words,
we use a formulation of x̂u,i that involves auxiliary
features about the words in the predicted x̂u,i:

x̂AUX
u,i = ✓T

u ✓i + �T ✓i (2)

✓i represents an auxiliary information about the
cold word i e.g., its word embedding or visual fea-
tures. ✓u is a feature vector to be trained, whose
dot product with ✓i models the extent to which the
word u matches the auxiliary features of word i. In
practice, learning ✓u amounts to learning a classi-
fier, one for each target word u that learns weights
✓u given the feature vectors ✓i of its translations.
� models the target words’ overall bias toward a
given word i.

Since each word can have multiple additional
feature vectors, we can formulate x̂AUX

u,i as a
weighted sum of available auxiliary features1:

x̂AUX
u,i = ↵1 ✓

T
u ✓i + ↵2 �

T
u �i + ... + ↵n �

T
u �i

where ↵m are parameters assigned to control the
contribution of each auxiliary feature.

In practice, we can combine the MF and auxil-
iary formulations by defining:

x̂u,i = x̂MF
u,i + x̂AUX

u,i

1we omit bias terms for brevity

However, since bilingual signals that are input to
x̂MF

u,i are often precise but sparse, while monolin-
gual signals that are input to x̂AUX

u,i are often noisy
and not sparse, in our model we only back-off to
the less precise x̂AUX

u,i for cold source words that
have none or too few associated translations (more
detalis are given in the experiments, Section 4).
For other source words, we use x̂MF

u,i to predict.

Learning with Bayesian Personalized Ranking
The objective of Bayesian Personalized Ranking
(BPR) is to maximize the difference in scores
assigned to the observed translations compared
to those assigned to the unobserved translations.
Given a training set D consisting of triples of the
form hu, i, ji, where hu, ii 2 T and hu, ji /2 T ,
BPR wants to maximize x̂u,i,j , defined as:

x̂u,i,j = x̂u,i � x̂u,j

where x̂u,i and x̂u,j can be defined either by eq.
1 or eq. 2 (for cold words). Specifically, BPR
optimizes (Rendle et al., 2009):

X

hu,i,ji2D

ln �(x̂u,i,j)� �⇥||⇥||2

where � is the logistic sigmoid function, ⇥ is
the parameter vector of x̂u,i,j to be trained, and
�⇥ is its hyperparameter vector. BPR can be
trained using stochastic gradient ascent where a
triple hu, i, ji is sampled from D and parameter
updates are performed:

⇥ ⇥ + ⌘.(�(�x̂u,i,j)
@x̂u,i,j

@⇥
� �⇥⇥)

⌘ is the learning rate. Hence, for the MF formula-
tion of x̂u,i,j , we can sample a triple hu, i, ji from
D and update its parameters as:

pu  pu + ⌘.(�(�x̂MF
u,i,j)(qi � qj)� �P pu)

qi  qi + ⌘.(�(�x̂MF
u,i,j)(pu)� �Q+ qi)

qj  qj + ⌘.(�(�x̂MF
u,i,j)(�pu)� �Q� qj)

while for the auxiliary formulation of x̂u,i,j ; we
we can sample a triple hu, i, ji from D and update
its parameters as:

✓u  ✓u + ⌘.(�(�x̂AUX
u,i,j )(✓i � ✓j)� �⇥ ✓u)

�  � + ⌘.(�(�x̂AUX
u,i,j )(✓i � ✓j)� �� �)

Figure 2: The word tidur (id) is a cold word with
no associated translation in the matrix. Auxiliary
features θf about the words can be used to predict
translations for cold words.

MF approach can suffer from the existence of cold
items: words that have none or too few associ-
ated observed translations to estimate their latent
dimensions accurately (Figure 2). Additional sig-
nals for measuring translation equivalence can al-
leviate this problem. Hence, in the case of cold
words, we use a formulation of x̂e,f that involves
auxiliary features about the words in the predicted
x̂e,f :

x̂AUX
e,f = θTe θf + βT θf (2)

θf represents an auxiliary information about the
cold word f e.g., its word embedding or visual fea-
tures. θe is a feature vector to be trained, whose
dot product with θf models the extent to which
the word e matches the auxiliary features of word
f . In practice, learning θe amounts to learning a
classifier, one for each target word e that learns
weights θe given the feature vectors θf of its trans-
lations. β models the targets’ overall bias toward
a given word f .

Since each word can have multiple additional
feature vectors, we can formulate x̂AUX

e,f as a
weighted sum of available auxiliary features2:

x̂AUX
e,f = α1 θ

T
e θf + α2 γ

T
e γf + ...+ αn δ

T
e δf

where αm are parameters assigned to control the
contribution of each auxiliary feature.

In practice, we can combine the MF and auxil-
iary formulations by defining:

x̂e,f = x̂MF
e,f + x̂AUX

e,f

2We omit bias terms for brevity.

However, since bilingual signals that are input to
x̂MF
e,f are often precise but sparse, while monolin-

gual signals that are input to x̂AUX
e,f are often noisy

and not sparse, in our model we only back-off to
the less precise x̂AUX

e,f for cold source words that
have none or too few associated translations (more
details are given in the experiments, Section 4).
For other source words, we use x̂MF

e,f to predict.

Learning with Bayesian Personalized Ranking
Unlike traditional supervised models that try to
maximize the scores assigned to positive instances
(in our case, observed translations), the objec-
tive of Bayesian Personalized Ranking (BPR) is to
maximize the difference in scores assigned to the
observed translations compared to those assigned
to the unobserved translations. Given a training set
D consisting of triples of the form 〈e, f, g〉, where
〈e, f〉 ∈ T and 〈e, g〉 /∈ T , BPR wants to maxi-
mize x̂e,f,g, defined as:

x̂e,f,g = x̂e,f − x̂e,g

where x̂e,f and x̂e,g can be defined either by eq.
1 or eq. 2 (for cold words). Specifically, BPR
optimizes (Rendle et al., 2009):

∑

〈e,f,g〉∈D
ln σ(x̂e,f,g)− λΘ||Θ||2

where σ is the logistic sigmoid function, Θ is
the parameter vector of x̂e,f,g to be trained, and
λΘ is its hyperparameter vector. BPR can be
trained using stochastic gradient ascent where a
triple 〈e, f, g〉 is sampled from D and parameter
updates are performed:

Θ← Θ + η.(σ(−x̂e,f,g)
∂x̂e,f,g
∂Θ

− λΘΘ)

η is the learning rate. Hence, for the MF formula-
tion of x̂e,f,g, we can sample a triple 〈e, f, g〉 from
D and update its parameters as:

pe ← pe + η.(σ(−x̂MF
e,f,g)(qf − qg)− λP pe)

qf ← qf + η.(σ(−x̂MF
e,f,g)(pe)− λQ+ qf )

qg ← qg + η.(σ(−x̂MF
e,f,g)(−pe)− λQ− qg)

while for the auxiliary formulation of x̂e,f,g, we
can sample a triple 〈e, f, g〉 from D and update its
parameters as:

θe ← θe + η.(σ(−x̂AUX
e,f,g )(θf − θg)− λΘ θe)

β ← β + η.(σ(−x̂AUX
e,f,g )(θf − θg)− λβ β)
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4 Experiments

To implement our approach, we extend the imple-
mentation of BPR in LIBREC3 which is a publicly
available Java library for recommender systems.

We evaluate our model for the task of Bilingual
Lexicon Induction (BLI). Given a source word f ,
the task is to rank all candidate target words e by
their predicted translation scores x̂e,f . We con-
duct large-scale experiments on 27 low- and high-
resource source languages and evaluate their trans-
lations to English. We use the 100K most frequent
words from English Wikipedia as candidate En-
glish target words (E).

At test time, for each source language, we eval-
uate the top-10 accuracy (Acc10): the percent of
source language words in the test set for which a
correct English translation appears in the top-10
ranked English candidates.

4.1 Data
4.1.1 Test sets
We use benchmark test sets for the task of bilin-
gual lexicon induction to evaluate the performance
of our model. The VULIC1000 dataset (Vulic
and Moens, 2016) comprises 1000 nouns in Span-
ish, Italian, and Dutch, along with their one-to-one
ground-truth word translations in English.

We construct a new test set (CROWDTEST) for
a larger set of 27 languages from crowdsourced
dictionaries (Pavlick et al., 2014). For each lan-
guage, we randomly pick up to 1000 words that
have only one English word translation in the
crowdsourced dictionary to be the test set for that
language. On average, there are 967 test source
words with a variety of POS per language. Since
different language treats grammatical categories
such as tense and number differently (for example,
unlike English, tenses are not expressed by spe-
cific forms of words in Indonesian (id); rather,
they are expressed through context), we make
our evaluation on all languages in CROWDTEST
generic by treating a predicted English translation
of a foreign word as correct as long as it has the
same lemma as the gold English translation. To
facilitate further research, we make CROWDTEST
publicly available in our website.

4.1.2 Bilingual Signals for Translation
We use Wikipedia to incorporate information
from a third language into the matrix, with ob-

3https://www.librec.net/index.html
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Figure 3: Wikipedia pages with observed trans-
lations to the source (id) and the target (en) lan-
guages act as a third language in the matrix.

served translations to both the source language
and the target language, English. We first col-
lect all interlingual links from English Wikipedia
pages to pages in other languages. Using
these links, we obtain translations of Wikipedia
page titles in many languages to English e.g.,
id.wikipedia.org/wiki/Kulkas → fridge (en).
The observed translations are projected to fill the
missing translations in the matrix (Figure 3). We
call these bilingual translations WIKI.

From the links that we have collected, we
can also infer links from Wikipedia pages in the
source language to other pages in non-target lan-
guages e.g., id.wikipedia.org/wiki/Kulkas→
it.wikipedia.org/wiki/Frigorifero. The ti-
tles of these pages can be translated to English
if they exist as entries in the dictionaries. These
non-source, non-target language pages can act as
yet another third language whose observed trans-
lations can be projected to fill the missing transla-
tions in the matrix (Figure 3). We call these bilin-
gual translations WIKI+CROWD.

4.1.3 Monolingual Signals for Translation
We define cold source words in our experiments as
source words that have no associated WIKI trans-
lations and fewer than 2 associated WIKI+CROWD
translations. For each cold source word f , we pre-
dict the score of its translation to each candidate
English word e using the auxiliary formulation of
x̂e,f (Equation 2). There are two auxiliary signals
about the words that we use in our experiments:
(1) bilingually informed word embeddings and (2)
visual representations.

Bilingually Informed Word Embeddings For
each language, we learn monolingual embed-
dings for its words by training a standard mono-
lingual word2vec skipgram model (Mikolov
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et al., 2013b) on tokenized Wikipedia pages of
that language using Gensim (Řehůřek and Sojka,
2010). We obtain 100-dimensional word embed-
dings with 15 epochs, 15 negatives, window size
of 5, and cutoff value of 5.

Given two monolingual embedding spaces RdF
and RdE of the source and target languages F and
E, where df and de denote the dimensionality of
the monolingual embedding spaces, we use the set
of crowdsourced translations that are not in the test
set as our seed bilingual translations4 and learn
a mapping function W ∈ RdE×dF that maps the
target language vectors in the seed translations to
their corresponding source language vectors.5

We learn two types of mapping: linear and non-
linear, and compare their performances. The linear
mapping (Mikolov et al., 2013a; Dinu et al., 2014)
minimizes: ||XEW−XF||2F where, following the
notation in (Vulić and Korhonen, 2016), XE and
XF are matrices obtained by respective concate-
nation of target language and source language vec-
tors that are in the seed bilingual translations. We
solve this optimization problem using stochastic
gradient descent (SGD).

We also consider a non-linear mapping (Socher
et al., 2013) using a simple four-layer neural net-
work, W = (φ(1), φ(2), φ(3), φ(4)) that is trained to
minimize:

∑

xf∈XF

∑

xe∈XE

||xf − φ(4)s(φ(3)s(φ(2)s(φ(1)xe)))||2

where φ(1) ∈ Rh1×dE , φ(2) ∈ Rh2×h1 , φ(3) ∈
Rh3×h2 , φ(4) ∈ RdF×h3 , hn is the size of the hid-
den layer, and s = tanh is the chosen non-linear
function.

Once the map W is learned, all candidate target
word vectors xe can be mapped into the source
language embedding space RdF by computing
xTeW. Instead of the raw monolingual word em-
beddings xe, we use these bilingually-informed
mapped word vectors xTeW as the auxiliary word
features WORD-AUX to estimate x̂AUX

e,f .

Visual Representations Pilot Study Recent
work (Vulić et al., 2016) has shown that combin-
ing word embeddings and visual representations
of words can help achieve more accurate bilingual
translations. Since the visual representation of a

4On average, there are 9846 crowdsourced translations
per language that we can use as seed translations.

5We find that mapping from target to source vectors gives
better performances across models in our experiments.

Figure 4: Five images for the French word eau
and its top 4 translations ranked using visual sim-
ularities of images associated with English words
(Bergsma and Van Durme, 2011)

word seems to be language-independent (e.g. the
concept of water has similar images whether ex-
pressed in English or French (Figure 4), the visual
representations of a word may be useful for infer-
ring its translation and for complementing the in-
formation learned in text.

We performed a pilot study to include visual
features as auxiliary features in our framework.
We use a large multilingual corpus of labeled im-
ages (Callahan, 2017) to obtain the visual repre-
sentation of the words in our source and target lan-
guages. The corpus contains 100 images for up to
10k words in each of 100 foreign languages, plus
images of each of their translations into English.
For each of the images, a convolutional neural net-
work (CNN) feature vector is also provided fol-
lowing the method of Kiela et al. (2015). For each
word, we use 10 images provided by this corpus
and use their CNN features as auxiliary visual fea-
tures VISUAL-AUX to estimate x̂AUX

e,f .

4.1.4 Combining Signals
During training, we trained the parameters of x̂MF

e,f

and x̂AUX
e,f using a variety of signals:

• x̂MF−W
e,f is trained using WIKI translations as

the set of observed translations T
• x̂MF−W+C

e,f is trained using WIKI+CROWD
translations as the set of observed T
• x̂AUX−WE

e,f is trained using the set of word
identities T identity and WORD-AUX as θf
• x̂AUX−VIS

e,f is trained using the set of word
identities T identity and VISUAL-AUX as θf

During testing, we use the following back-off
scheme to predict translation scores given a source
word f and a candidate target word e:

1457



x̂e,f =





x̂MF−W
e,f if f has ≥ 1 associated WIKI,
x̂MF−W+C
e,f else if f has ≥ 2

associated WIKI+CROWD,
x̂AUX
e,f otherwise

where x̂AUX
e,f = αwe x̂

AUX−WE
e,f + αvis x̂

AUX−VIS
e,f

4.2 Results
We conduct experiments using the following vari-
ants of our model, each of which progressively in-
corporates more signals to rank candidate English
target words. When a variant uses more than one
formulation of x̂e,f , it applies them using the back-
off scheme that we have described before.

• BPR W uses only x̂MF−W
e,f

• BPR W+C uses x̂MF−W
e,f and x̂MF−W+C

e,f

• BPR LN uses only x̂AUX−WE
e,f with linear

mapping
• BPR NN uses only x̂AUX−WE

e,f with neural
network (NN) mapping
• BPR WE uses x̂MF−W

e,f , x̂MF−W+C
e,f , and

x̂AUX−WE
e,f with NN mapping

• BPR VIS adds x̂AUX−VIS
e,f to BPR WE

Table 1: Acc10 performance on VULIC1000

Baseline BPR+MNN BPR LN BPR WE
(MNN)

IT-EN 78.8% 79.4% 81.3% 86.0%
ES-EN 81.8% 82.1% 83.4% 87.1%
NL-EN 80.8% 81.6% 83.2% 87.2%

We evaluate the performance of BPR WE against
a baseline that is the state-of-the-art model
of Vulić and Korhonen (2016), on benchmark
VULIC1000 (Table 1). The baseline (MNN)
learns a linear mapping between monolingual em-
bedding spaces and finds translations in an unsu-
pervised manner: it ranks candidate target words
based on their cosine similarities to the source
word in the mapped space. As seed translation
pairs, MNN uses mutual nearest neighbor pairs
(MNN) obtained from pseudo-bilingual corpora
constructed from unannotated monolingual data of
the source and target languages (Vulic and Moens,
2016). We train MNN and our models using the
same 100-dimensional word2vec monolingual
word embeddings.

As seen in Table 1, we see the benefit of
learning translations in a supervised manner.

BPR+MNN uses the same MNN seed translations
as MNN, obtained from unannotated monolingual
data of English and the foreign language, to
learn the linear mapping between their embedding
spaces. However, unlike MNN, BPR+MNN uses the
mapped word vectors to predict ranking in a su-
pervised manner with BPR objective. This results
in higher accuracies than MNN. Using seed trans-
lations from crowdsourced dictionaries to learn
the linear mapping (BPR LN) improves accuracies
even further compared to using MNN seed trans-
lations obtained from unannotated data. Finally,
BPR WE that learns translations in a supervised
manner and uses third language translations and
non-linear mapping (trained with crowdsourced
translations not in the test set) performs consis-
tently and very significantly better than the state-
of-the-art on all benchmark test sets. This shows
that incorporating more and better signals of trans-
lation can improve performance significantly.

Evaluating on CROWDTEST, we observe a
similar trend over all 27 languages (Figure 5). Par-
ticularly, we see that BPR W and BPR W+C suffer
from the cold start issue where there are too few or
no observed translations in the matrix to make ac-
curate predictions. Incorporating auxiliary infor-
mation in the form of bilingually-informed word
embeddings improves the accuracy of the predic-
tions dramatically. For many languages, learn-
ing these bilingually-informed word embeddings
with non-linear mapping improves accuracy even
more. The top accuracy scores achieved by the
model vary across languages and seem to be in-
fluenced by the amount of data i.e., Wikipedia to-
kens and seed lexicons entries available for train-
ing. Somali (so) for example, has only 0.9 million
tokens available in its Wikipedia for training the
word2vec embeddings and only 3 thousand seed
translations for learning the mapping between the
word embedding spaces. In comparison, Span-
ish (es) has over 500 million tokens available in
its Wikipedia and 11 thousand seed translations.
We also believe that our choice of tokenization
may not be suitable for some languages – we use
a simple regular-expression based tokenizer for
many languages that do not have a trained NLTK6

tokenization model. This may influence perfor-
mance on languages such as Vietnamese (vi) on
which we have a low performance despite its large
Wikipedia corpus.

6http://www.nltk.org/
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Figure 5: Acc10 on CROWDTEST across all 27 languages show that adding more and better signals
for translation improves translation accuracies. The top accuracies achieved by our model: BPR WE
vary across languages and appear to be influenced by the amount of data (Wikipedia tokens and seed
translations) and tokenization available for the language.

Table 2: Top-5 translations of the Indonesian word kesadaran (awareness) using different model variants

BPR W BPR LN BPR NN BPR WE
kesadaran kesadaran kesadaran kesadaran

consciousness consciousness consciousness conscience
goddess awareness empathy awareness

friendship empathy awareness understanding
night perception perceptions consciousness
nation mindedness perception acquaintance

Some example translations of an Indonesian
word produced by different variants of our model
are shown in Table 2. Adding third language trans-
lation signals on top of the bilingually-informed
auxiliary signals improves accuracies even fur-
ther.7 The accuracies achieved by BPR WE on
these languages are significantly better than pre-
viously reported accuracies (Irvine and Callison-
Burch, 2017) on test sets constructed from the
same crowdsourced dictionaries (Pavlick et al.,
2014)8.

The accuracies across languages appear to im-
prove consistently with the amount of signals be-
ing input to the model. In the following exper-
iments, we investigate how sensitive these im-
provements are with varying training size.

In Figure 6, we show accuracies obtained by

7Actual improvement per language depends on the cover-
age of the Wikipedia interlanguage links for that language

8The comparison however, cannot be made apples-to-
apples since the way Irvine and Callison-Burch (2017) select
test sets from the crowdsourced dictionaries maybe different
and they do not release the test sets

BPR WE with varying sizes of seed translation lex-
icons used to train its mapping. The results show
that a seed lexicon size of 5K is enough across
languages to achieve optimum performance. This
finding is consistent with the finding of Vulić and
Korhonen (2016) that accuracies peak at about 5K
seed translations across all their models and lan-
guages. For future work, it will be interesting
to investigate further why this is the case: e.g.,
how optimal seed size is related to the quality of
the seed translations and the size of the test set,
and how the optimum seed size should be chosen.
Lastly, we experiment with incorporating auxil-
iary visual signals for learning translations on the
multilingual image corpus (Callahan, 2017). The
corpus contains 100 images for up to 10K words
in each of 100 foreign languages, plus images of
each of their translations into English. We train
and test our BPR VIS model to learn translations
of 5 low- and high-resource languages in this cor-
pus. We use the translations of up to 10K words
in each of these languages as test set and use up to
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Figure 6: Acc10 across different seed lexicon sizes

Table 3: Acc10 performance on the multilingual
image corpus test set (Callahan, 2017)

Baseline BPR VIS # Seeds
(CNN-AvgMax)

IT-EN 31.4% 55.8% 581
ES-EN 33.0% 58.3% 488
NL-EN 35.5% 69.2% 1857
FR-EN 37.1% 65.9% 1697
ID-EN 36.9% 45.3% 462

10 images (CNN features) of the words in this set
as auxiliary visual signals to predict their transla-
tions. In this experiment, we weigh auxiliary word
embedding and visual features equally. To train
the mapping of our word embedding features, we
use as seeds crowdsourced translations not in test
set.

We compare the quality of our translations
with the baseline CNN-AVGMAX (Bergsma and
Van Durme, 2011), which considers cosine simi-
larities between individual images from the source
and target word languages and takes average of
their maximum similarities as the final similarity
between a source and a target word. For each
source word, the candidate target words are ranked
according to these final similarities. This base-
line has been shown to be effective for inducing
translations from images, both in the uni-modal
(Bergsma and Van Durme, 2011; Kiela et al.,
2015) and multi-modal models (Vulić et al., 2016).

As seen in Table 3, incorporating additional
bilingual and textual signals to the visual signals
improves translations. Accuracies on these image
corpus’ test sets are lower overall as they contain
a lot of translations from our crowdsourced dictio-
naries; thus we have much less seeds to train our
word embedding mapping. Furthermore, these test
sets contain 10 times as many translations as our
previous test sets. Using more images instead of
just 10 per word may also improve performance.

5 Conclusion

In this paper, we propose a novel framework for
combining diverse, sparse and potentially noisy
multi-modal signals for translations. We view the
problem of learning translations as a matrix com-
pletion task and use an effective and extendable
matrix factorization approach with BPR to learn
translations.

We show the effectiveness of our approach in
large scale experiments. Starting from minimally-
trained monolingual word embeddings, we con-
sistently and very significantly outperform state-
of-the-art approaches by combining these features
with other features in a supervised manner using
BPR. Since our framework is modular, each in-
put to our prediction can be improved separately
to improve the whole system e.g., by learning bet-
ter word embeddings or a better mapping func-
tion to input into the auxiliary component. Our
framework is also easily extendable to incorporate
more bilingual and auxiliary signals of translation
equivalence.
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Hal Daumé and Jagadeesh Jagarlamudi. 2011. Do-
main Adaptation for Machine Translation by Min-
ing Unseen Words. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
407–412, Portland, Oregon.

Georgiana Dinu, Angeliki Lazaridou, and Marco Ba-
roni. 2014. Improving zero-shot learning by miti-
gating the hubness problem. In Proceedings of ICLR
Workshop, San Diego, California.

Miao Fan, Deli Zhao, Qiang Zhou, Zhiyuan Liu,
Thomas Fang Zheng, and Edward Y. Chang. 2014.
Distant Supervision for Relation Extraction with
Matrix Completion. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 839–
849, Baltimore, Maryland.

Manaal Faruqui and Chris Dyer. 2014. Improving Vec-
tor Space Word Representations Using Multilingual
Correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471, Gothenburg,
Sweden.

Zeno Gantner, Lucas Drumond, Christoph Freuden-
thaler, Steffen Rendle, and Lars Schmidt-Thieme.
2010. Learning attribute-to-feature mappings for
cold-start recommendations. In Data Mining
(ICDM), 2010 IEEE 10th International Conference
on, pages 176–185. IEEE.

Cyril Goutte, Kenji Yamada, and Eric Gaussier. 2004.
Aligning words using matrix factorisation. In Pro-
ceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, page 502. Associa-
tion for Computational Linguistics.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast Bilingual Distributed Rep-
resentations without Word Alignments. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, pages 748–756, Lille,
France.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the Unknown Words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 140–
149, Berlin, Germany.

Ruining He and Julian McAuley. 2016. Vbpr: Visual
bayesian personalized ranking from implicit feed-
back. In AAAI Conference on Artificial Intelligence,
pages 144–150. AAAI Press.

Ann Irvine and Chris Callison-Burch. 2013. Super-
vised Bilingual Lexicon Induction with Multiple
Monolingual Signals. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL
2013), pages 518–523, Atlanta, Georgia.

Ann Irvine and Chris Callison-Burch. 2016. End-
to-end statistical machine translation with zero or
small parallel texts. Natural Language Engineering,
22(04):517–548.

Ann Irvine and Chris Callison-Burch. 2017. A Com-
prehensive Analysis of Bilingual Lexicon Induction.
Computational Linguistics, 43(2):273–310.
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Tim Rocktäschel, Sameer Singh, and Sebastian Riedel.
2015. Injecting Logical Background Knowledge
into Embeddings for Relation Extraction. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1119–1129, Denver, Colorado.

Charles Schafer and David Yarowsky. 2002. Inducing
Translation Lexicons via Diverse Similarity Mea-
sures and Bridge Languages. In Proceedings of
the 6th Conference on Natural Language Learning
- Volume 20, COLING-02, pages 1–7, Taipei, Tai-
wan.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving Neural Machine Translation
Models with Monolingual Data. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 86–96, Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany.

Tianze Shi, Zhiyuan Liu, Yang Liu, and Maosong
Sun. 2015. Learning Cross-lingual Word Embed-
dings via Matrix Co-factorization. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 567–572, Beijing,
China.

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013. Zero-Shot Learn-
ing Through Cross-Modal Transfer. In Advances
in Neural Information Processing Systems 26, pages
935–943.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word em-
beddings: An empirical comparison. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1661–1670, Berlin, Germany.

Patrick Verga, David Belanger, Emma Strubell, Ben-
jamin Roth, and Andrew McCallum. 2016. Multi-
lingual relation extraction using compositional uni-
versal schema. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 886–896, San Diego,
California.
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Abstract

Machine translation is a natural candidate
problem for reinforcement learning from
human feedback: users provide quick,
dirty ratings on candidate translations to
guide a system to improve. Yet, current
neural machine translation training fo-
cuses on expensive human-generated ref-
erence translations. We describe a re-
inforcement learning algorithm that im-
proves neural machine translation sys-
tems from simulated human feedback.
Our algorithm combines the advantage
actor-critic algorithm (Mnih et al., 2016)
with the attention-based neural encoder-
decoder architecture (Luong et al., 2015).
This algorithm (a) is well-designed for
problems with a large action space and
delayed rewards, (b) effectively optimizes
traditional corpus-level machine transla-
tion metrics, and (c) is robust to skewed,
high-variance, granular feedback modeled
after actual human behaviors.

1 Introduction

Bandit structured prediction is the task of learning
to solve complex joint prediction problems (like
parsing or machine translation) under a very lim-
ited feedback model: a system must produce a sin-
gle structured output (e.g., translation) and then
the world reveals a score that measures how good
or bad that output is, but provides neither a “cor-
rect” output nor feedback on any other possible
output (Chang et al., 2015; Sokolov et al., 2015).
Because of the extreme sparsity of this feedback, a
common experimental setup is that one pre-trains
a good-but-not-great “reference” system based on
whatever labeled data is available, and then seeks
to improve it over time using this bandit feedback.

A common motivation for this problem setting is
cost. In the case of translation, bilingual “ex-
perts” can read a source sentence and a possible
translation, and can much more quickly provide
a rating of that translation than they can produce
a full translation on their own. Furthermore, one
can often collect even less expensive ratings from
“non-experts” who may or may not be bilingual
(Hu et al., 2014). Breaking this reliance on ex-
pensive data could unlock previously ignored lan-
guages and speed development of broad-coverage
machine translation systems.

All work on bandit structured prediction we
know makes an important simplifying assumption:
the score provided by the world is exactly the score
the system must optimize (§2). In the case of pars-
ing, the score is attachment score; in the case of
machine translation, the score is (sentence-level)
BLEU. While this simplifying assumption has
been incredibly useful in building algorithms, it is
highly unrealistic. Any time we want to optimize a
system by collecting user feedback, we must take
into account:

1. The metric we care about (e.g., expert
ratings) may not correlate perfectly with
the measure that the reference system was
trained on (e.g., BLEU or log likelihood);

2. Human judgments might be more granu-
lar than traditional continuous metrics (e.g.,
thumbs up vs. thumbs down);

3. Human feedback have high variance (e.g.,
different raters might give different responses
given the same system output);

4. Human feedback might be substantially
skewed (e.g., a rater may think all system out-
puts are poor).

Our first contribution is a strategy to simulate ex-
pert and non-expert ratings to evaluate the robust-
ness of bandit structured prediction algorithms in
general, in a more realistic environment (§4). We
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construct a family of perturbations to capture three
attributes: granularity, variance, and skew. We
apply these perturbations on automatically gener-
ated scores to simulate noisy human ratings. To
make our simulated ratings as realistic as possible,
we study recent human evaluation data (Graham
et al., 2017) and fit models to match the noise pro-
files in actual human ratings (§4.2).

Our second contribution is a reinforcement
learning solution to bandit structured prediction
and a study of its robustness to these simulated
human ratings (§ 3).1 We combine an encoder-
decoder architecture of machine translation (Lu-
ong et al., 2015) with the advantage actor-critic al-
gorithm (Mnih et al., 2016), yielding an approach
that is simple to implement but works on low-
resource bandit machine translation. Even with
substantially restricted granularity, with high vari-
ance feedback, or with skewed rewards, this com-
bination improves pre-trained models (§6). In par-
ticular, under realistic settings of our noise param-
eters, the algorithm’s online reward and final held-
out accuracies do not significantly degrade from a
noise-free setting.

2 Bandit Machine Translation

The bandit structured prediction problem (Chang
et al., 2015; Sokolov et al., 2015) is an extension
of the contextual bandits problem (Kakade et al.,
2008; Langford and Zhang, 2008) to structured
prediction. Bandit structured prediction operates
over time i = 1 . . .K as:

1. World reveals context x(i)

2. Algorithm predicts structured output ŷ(i)

3. World reveals reward R
(
ŷ(i),x(i)

)

We consider the problem of learning to trans-
late from human ratings in a bandit structured
prediction framework. In each round, a transla-
tion model receives a source sentence x(i), pro-
duces a translation ŷ(i), and receives a rating
R
(
ŷ(i),x(i)

)
from a human that reflects the qual-

ity of the translation. We seek an algorithm that
achieves high reward over K rounds (high cumu-
lative reward). The challenge is that even though
the model knows how good the translation is, it
knows neither where its mistakes are nor what
the “correct” translation looks like. It must bal-
ance exploration (finding new good predictions)

1Our code is at https://github.com/
khanhptnk/bandit-nmt (in PyTorch).

Figure 1: A translation rating interface provided
by Facebook. Users see a sentence followed by its
machined-generated translation and can give rat-
ings from one to five stars.

with exploitation (producing predictions it already
knows are good). This is especially difficult in a
task like machine translation, where, for a twenty
token sentence with a vocabulary size of 50k, there
are approximately 1094 possible outputs, of which
the algorithm gets to test exactly one.

Despite these challenges, learning from non-
expert ratings is desirable. In real-world scenar-
ios, non-expert ratings are easy to collect but other
stronger forms of feedback are prohibitively ex-
pensive. Platforms that offer translations can get
quick feedback “for free” from their users to im-
prove their systems (Figure 1). Even in a setting in
which annotators are paid, it is much less expen-
sive to ask a bilingual speaker to provide a rating
of a proposed translation than it is to pay a profes-
sional translator to produce one from scratch.

3 Effective Algorithm for Bandit MT

This section describes the neural machine trans-
lation architecture of our system (§3.1). We for-
mulate bandit neural machine translation as a re-
inforcement learning problem (§3.2) and discuss
why standard actor-critic algorithms struggle with
this problem (§3.3). Finally, we describe a more
effective training approach based on the advantage
actor-critic algorithm (§3.4).

3.1 Neural machine translation
Our neural machine translation (NMT) model is
a neural encoder-decoder that directly computes
the probability of translating a target sentence y =
(y1, · · · , ym) from source sentence x:

Pθ(y | x) =

m∏

t=1

Pθ(yt | y<t,x) (1)

where Pθ(yt | y<t,x) is the probability of out-
putting the next word yt at time step t given a
translation prefix y<t and a source sentence x.
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We use an encoder-decoder NMT architecture
with global attention (Luong et al., 2015), where
both the encoder and decoder are recurrent neu-
ral networks (RNN) (see Appendix A for a more
detailed description). These models are normally
trained by supervised learning, but as reference
translations are not available in our setting, we
use reinforcement learning methods, which only
require numerical feedback to function.

3.2 Bandit NMT as Reinforcement Learning
NMT generating process can be viewed as a
Markov decision process on a continuous state
space. The states are the hidden vectors hdect gen-
erated by the decoder. The action space is the tar-
get language’s vocabulary.

To generate a translation from a source sentence
x, an NMT model starts at an initial state hdec0 :
a representation of x computed by the encoder.
At time step t, the model decides the next ac-
tion to take by defining a stochastic policy Pθ(yt |
y<t,x), which is directly parametrized by the pa-
rameters θ of the model. This policy takes the cur-
rent state hdect−1 as input and produces a probabil-
ity distribution over all actions (target vocabulary
words). The next action ŷt is chosen by taking
arg max or sampling from this distribution. The
model computes the next state hdect by updating
the current state hdect−1 by the action taken ŷt.

The objective of bandit NMT is to find a policy
that maximizes the expected reward of translations
sampled from the model’s policy:

max
θ
Lpg(θ) = max

θ
E x∼Dtr
ŷ∼Pθ(·|x)

[
R(ŷ,x)

]
(2)

where Dtr is the training set and R is the reward
function (the rater).2 We optimize this objective
function with policy gradient methods. For a fixed
x, the gradient of the objective in Eq 2 is:

∇θLpg(θ) = Eŷ∼Pθ(·) [R(ŷ)∇θ logPθ(ŷ)] (3)

=
m∑

t=1

E ŷt∼
Pθ(·|ŷ<t)

[
Q(ŷ<t, ŷt)∇θ logPθ(ŷt | ŷ<t)

]

where Q(ŷ<t, ŷt) is the expected future reward of
ŷt given the current prefix ŷ<t, then continuing
sampling from Pθ to complete the translation:

Q(ŷ<t, ŷt) = Eŷ′∼Pθ(·|x)
[
R̃(ŷ′,x)

]
(4)

with R̃(ŷ′,x) ≡ R(ŷ′,x)1
{
ŷ′<t = ŷ<t, ŷ

′
t = ŷt

}

2Our raters are stochastic, but for simplicity we denote the
reward as a function; it should be expected reward.

1{·} is the indicator function, which returns 1 if
the logic inside the bracket is true and returns 0
otherwise.

The gradient in Eq 3 requires rating all possible
translations, which is not feasible in bandit NMT.
Naı̈ve Monte Carlo reinforcement learning meth-
ods such as REINFORCE (Williams, 1992) esti-
mates Q values by sample means but yields very
high variance when the action space is large, lead-
ing to training instability.

3.3 Why are actor-critic algorithms not
effective for bandit NMT?

Reinforcement learning methods that rely on func-
tion approximation are preferred when tackling
bandit structured prediction with a large action
space because they can capture similarities be-
tween structures and generalize to unseen regions
of the structure space. The actor-critic algo-
rithm (Konda and Tsitsiklis) uses function approx-
imation to directly model the Q function, called
the critic model. In our early attempts on ban-
dit NMT, we adapted the actor-critic algorithm
for NMT in Bahdanau et al. (2017), which em-
ploys the algorithm in a supervised learning set-
ting. Specifically, while an encoder-decoder critic
modelQω as a substitute for the trueQ function in
Eq 3 enables taking the full expectation (because
the critic model can be queried with any state-
action pair), we are unable to obtain reasonable
results with this approach.

Nevertheless, insights into why this approach
fails on our problem explains the effectiveness of
the approach discussed in the next section. There
are two properties in Bahdanau et al. (2017) that
our problem lacks but are key elements for a suc-
cessful actor-critic. The first is access to refer-
ence translations: while the critic model is able
to observe reference translations during training in
their setting, bandit NMT assumes those are never
available. The second is per-step rewards: while
the reward function in their setting is known and
can be exploited to compute immediate rewards
after taking each action, in bandit NMT, the actor-
critic algorithm struggles with credit assignment
because it only receives reward when a translation
is completed. Bahdanau et al. (2017) report that
the algorithm degrades if rewards are delayed un-
til the end, consistent with our observations.

With an enormous action space of bandit NMT,
approximating gradients with the Q critic model
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induces biases and potentially drives the model to
wrong optima. Values of rarely taken actions are
often overestimated without an explicit constraint
between Q values of actions (e.g., a sum-to-one
constraint). Bahdanau et al. (2017) add an ad-hoc
regularization term to the loss function to mitigate
this issue and further stablizes the algorithm with
a delay update scheme, but at the same time intro-
duces extra tuning hyper-parameters.

3.4 Advantage Actor-Critic for Bandit NMT
We follow the approach of advantage actor-
critic (Mnih et al., 2016, A2C) and combine it
with the neural encoder-decoder architecture. The
resulting algorithm—which we call NED-A2C—
approximates the gradient in Eq 3 by a single
sample ŷ ∼ P (· | x̂) and centers the reward
R(ŷ) using the state-specific expected future re-
ward V (ŷ<t) to reduce variance:

∇θLpg(θ) ≈
m∑

t=1

R̄t(ŷ)∇θ logPθ(ŷt | ŷ<t)

(5)

with R̄t(ŷ) ≡ R(ŷ)− V (ŷ<t)

V (ŷ<t) ≡ Eŷ′t∼P (·|ŷ<t)
[
Q(ŷ<t, ŷ

′
t)
]

We train a separate attention-based encoder-
decoder model Vω to estimate V values. This
model encodes a source sentence x and decodes a
sampled translation ŷ. At time step t, it computes
Vω(ŷ<t,x) = w>hcrtt , where hcrtt is the current
decoder’s hidden vector andw is a learned weight
vector. The critic model minimizes the MSE be-
tween its estimates and the true values:

Lcrt(ω) = E x∼Dtr
ŷ∼Pθ(·|x)

[
m∑

t=1

Lt(ŷ,x)

]
(6)

with Lt(ŷ,x) ≡ [Vω(ŷ<t,x)−R(ŷ,x)]2 .

We use a gradient approximation to update ω for
a fixed x and ŷ ∼ P (· | x̂):

∇ωLcrt(ω) ≈
m∑

t=1

[Vω(ŷ<t)−R(ŷ)]∇ωVω(ŷ<t)

(7)
NED-A2C is better suited for problems with a

large action space and has other advantages over
actor-critic. For large action spaces, approximat-
ing gradients using the V critic model induces
lower biases than using the Q critic model. As
implied by its definition, the V model is robust to

biases incurred by rarely taken actions since re-
wards of those actions are weighted by very small
probabilities in the expectation. In addition, the
V model has a much smaller number of param-
eters and thus is more sample-efficient and more
stable to train than the Q model. These attractive
properties were not studied in A2C’s original pa-
per (Mnih et al., 2016).

Algorithm 1 The NED-A2C algorithm for bandit
NMT.

1: for i = 1 · · ·K do
2: receive a source sentence x(i)

3: sample a translation: ŷ(i) ∼ Pθ(· | x(i))

4: receive reward R(ŷ(i),x(i))
5: update the NMT model using Eq 5.
6: update the critic model using Eq 7.
7: end for

Algorithm 1 summarizes NED-A2C for bandit
NMT. For each x, we draw a single sample ŷ from
the NMT model, which is used for both estimat-
ing gradients of the NMT model and the critic
model. We run this algorithm with mini-batches
of x and aggregate gradients over all x in a mini-
batch for each update. Although our focus is on
bandit NMT, this algorithm naturally works with
any bandit structured prediction problem.

4 Modeling Imperfect Ratings

Our goal is to establish the feasibility of using real
human feedback to optimize a machine translation
system, in a setting where one can collect expert
feedback as well as a setting in which one only
collects non-expert feedback. In all cases, we con-
sider the expert feedback to be the “gold standard”
that we wish to optimize. To establish the fea-
sibility of driving learning from human feedback
without doing a full, costly user study, we begin
with a simulation study. The key aspects (Fig-
ure 2) of human feedback we capture are: (a) mis-
match between training objective and feedback-
maximizing objective, (b) human ratings typically
are binned (§ 4.1), (c) individual human ratings
have high variance (§4.2), and (d) non-expert rat-
ings can be skewed with respect to expert ratings
(§4.3).

In our simulated study, we begin by model-
ing gold standard human ratings using add-one-
smoothed sentence-level BLEU (Chen and Cherry,
2014).3 Our evaluation criteria, therefore, is av-
erage sentence-BLEU over the run of our algo-

3“Smoothing 2” in Chen and Cherry (2014).
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Figure 2: Examples of how our perturbation func-
tions change the “true” feedback distribution (left)
to ones that better capture features found in human
feedback (right).

rithm. However, in any realistic scenario, human
feedback will vary from its average, and so the
reward that our algorithm receives will be a per-
turbed variant of sentence-BLEU. In particular, if
the sentence-BLEU score is s ∈ [0, 1], the algo-
rithm will only observe s′ ∼ pert(s), where pert
is a perturbation distribution. Because our ref-
erence machine translation system is pre-trained
using log-likelihood, there is already an (a) mis-
match between training objective and feedback, so
we focus on (b-d) below.

4.1 Humans Provide Granular Feedback
When collecting human feedback, it is often more
effective to collect discrete binned scores. A clas-
sic example is the Likert scale for human agree-
ment (Likert, 1932) or star ratings for product re-
views. Insisting that human judges provide con-
tinuous values (or feedback at too fine a granular-
ity) can demotivate raters without improving rat-
ing quality (Preston and Colman, 2000).

To model granular feedback, we use a simple
rounding procedure. Given an integer parameter g
for degree of granularity, we define:

pertgran(s; g) =
1

g
round(gs) (8)

This perturbation function divides the range of
possible outputs into g + 1 bins. For ex-
ample, for g = 5, we obtain bins [0, 0.1),

[0.1, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 0.9) and
[0.9, 1.0]. Since most sentence-BLEU scores are
much closer to zero than to one, many of the larger
bins are frequently vacant.

4.2 Experts Have High Variance
Human feedback has high variance around its ex-
pected value. A natural goal for a variance model
of human annotators is to simulate—as closely
as possible—how human raters actually perform.
We use human evaluation data recently collected
as part of the WMT shared task (Graham et al.,
2017). The data consist of 7200 sentences mul-
tiply annotated by giving non-expert annotators
on Amazon Mechanical Turk a reference sentence
and a single system translation, and asking the
raters to judge the adequacy of the translation.4

From these data, we treat the average human
rating as the ground truth and consider how in-
dividual human ratings vary around that mean.
To visualize these results with kernel density es-
timates (standard normal kernels) of the standard
deviation. Figure 3 shows the mean rating (x-axis)
and the deviation of the human ratings (y-axis) at
each mean.5As expected, the standard deviation is
small at the extremes and large in the middle (this
is a bounded interval), with a fairly large range in
the middle: a translation whose average score is
50 can get human evaluation scores anywhere be-
tween 20 and 80 with high probability. We use a
linear approximation to define our variance-based
perturbation function as a Gaussian distribution,
which is parameterized by a scale λ that grows or
shrinks the variances (when λ = 1 this exactly
matches the variance in the plot).

pertvar(s;λ) = Nor
(
s, λσ(s)2

)
(9)

σ(s) =

{
0.64s− 0.02 if s < 50

−0.67s+ 67.0 otherwise

4.3 Non-Experts are Skewed from Experts
The preceding two noise models assume that the
reward closely models the value we want to op-
timize (has the same mean). This may not be
the case with non-expert ratings. Non-expert

4Typical machine translation evaluations evaluate pairs
and ask annotators to choose which is better.

5A current limitation of this model is that the simu-
lated noise is i.i.d. conditioned on the rating (homoscedas-
tic noise). While this is a stronger and more realistic model
than assuming no noise, real noise is likely heteroscedastic:
dependent on the input.
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Figure 3: Average rating (x-axis) versus a kernel
density estimate of the variance of human ratings
around that mean, with linear fits. Human scores
vary more around middling judgments than ex-
treme judgments.

De-En Zh-En

Supervised training 186K 190K
Bandit training 167K 165K
Development 7.7K 7.9K
Test 9.1K 7.4K

Table 1: Sentence counts in data sets.

raters are skewed both for reinforcement learn-
ing (Thomaz et al., 2006; Thomaz and Breazeal,
2008; Loftin et al., 2014) and recommender sys-
tems (Herlocker et al., 2000; Adomavicius and
Zhang, 2012), but are typically bimodal: some are
harsh (typically provide very low scores, even for
“okay” outputs) and some are motivational (pro-
viding high scores for “okay” outputs).

We can model both harsh and motivations raters
with a simple deterministic skew perturbation
function, parametrized by a scalar ρ ∈ [0,∞):

pertskew(s; ρ) = sρ (10)

For ρ > 1, the rater is harsh; for ρ < 1, the rater is
motivational.

5 Experimental Setup

We choose two language pairs from differ-
ent language families with different typological
properties: German-to-English and (De-En) and
Chinese-to-English (Zh-En). We use parallel tran-
scriptions of TED talks for these pairs of lan-
guages from the machine translation track of the
IWSLT 2014 and 2015 (Cettolo et al., 2014, 2015,
2012). For each language pair, we split its data
into four sets for supervised training, bandit train-
ing, development and testing (Table 1). For En-
glish and German, we tokenize and clean sen-

tences using Moses (Koehn et al., 2007). For Chi-
nese, we use the Stanford Chinese word segmenter
(Chang et al., 2008) to segment sentences and tok-
enize. We remove all sentences with length greater
than 50, resulting in an average sentence length of
18. We use IWSLT 2015 data for supervised train-
ing and development, IWSLT 2014 data for ban-
dit training and previous years’ development and
evaluation data for testing.

5.1 Evaluation Framework
For each task, we first use the supervised train-
ing set to pre-train a reference NMT model us-
ing supervised learning. On the same training set,
we also pre-train the critic model with translations
sampled from the pre-trained NMT model. Next,
we enter a bandit learning mode where our mod-
els only observe the source sentences of the bandit
training set. Unless specified differently, we train
the NMT models with NED-A2C for one pass over
the bandit training set. If a perturbation function
is applied to Per-Sentence BLEU scores, it is only
applied in this stage, not in the pre-training stage.

We measure the improvement ∆S of an eval-
uation metric S due to bandit training: ∆S =
SA2C − Sref , where Sref is the metric computed
on the reference models and SA2C is the metric
computed on models trained with NED-A2C. Our
primary interest is Per-Sentence BLEU: average
sentence-level BLEU of translations that are sam-
pled and scored during the bandit learning pass.
This metric represents average expert ratings,
which we want to optimize for in real-world sce-
narios. We also measure Heldout BLEU: corpus-
level BLEU on an unseen test set, where transla-
tions are greedily decoded by the NMT models.
This shows how much our method improves trans-
lation quality, since corpus-level BLEU correlates
better with human judgments than sentence-level
BLEU.

Because of randomness due to both the random
sampling in the model for “exploration” as well as
the randomness in the reward function, we repeat
each experiment five times and report the mean re-
sults with 95% confidence intervals.

5.2 Model configuration
Both the NMT model and the critic model
are encoder-decoder models with global atten-
tion (Luong et al., 2015). The encoder and the
decoder are unidirectional single-layer LSTMs.
They have the same word embedding size and
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LSTM hidden size of 500. The source and tar-
get vocabulary sizes are both 50K. We do not use
dropout in our experiments. We train our mod-
els by the Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9, β2 = 0.999 and a batch size of 64.
For Adam’s α hyperparameter, we use 10−3 dur-
ing pre-training and 10−4 during bandit learning
(for both the NMT model and the critic model).
During pre-training, starting from the fifth pass,
we decay α by a factor of 0.5 when perplexity on
the development set increases. The NMT model
reaches its highest corpus-level BLEU on the de-
velopment set after ten passes through the super-
vised training data, while the critic model’s train-
ing error stabilizes after five passes. The train-
ing speed is 18s/batch for supervised pre-training
and 41s/batch for training with the NED-A2C al-
gorithm.

6 Results and Analysis

In this section, we describe the results of our ex-
periments, broken into the following questions:
how NED-A2C improves reference models (§6.1);
the effect the three perturbation functions have on
the algorithm (§ 6.2); and whether the algorithm
improves a corpus-level metric that corresponds
well with human judgments (§6.3).

6.1 Effectiveness of NED-A2C under
Un-perturbed Bandit Feedback

We evaluate our method in an ideal setting where
un-perturbed Per-Sentence BLEU simulates rat-
ings during both training and evaluation (Table 2).

Single round of feedback. In this setting, our
models only observe each source sentence once
and before producing its translation. On both De-
En and Zh-En, NED-A2C improves Per-Sentence
BLEU of reference models after only a single pass
(+2.82 and +1.08 respectively).

Poor initialization. Policy gradient algorithms
have difficulty improving from poor initializa-
tions, especially on problems with a large ac-
tion space, because they use model-based explo-
ration, which is ineffective when most actions
have equal probabilities (Bahdanau et al., 2017;
Ranzato et al., 2016). To see whether NED-A2C
has this problem, we repeat the experiment with
the same setup but with reference models pre-
trained for only a single pass. Surprisingly, NED-
A2C is highly effective at improving these poorly
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Figure 4: Learning curves of models trained with
NED-A2C for five epochs.

trained models (+7.07 on De-En and +3.60 on Zh-
En in Per-Sentence BLEU).

Comparisons with supervised learning. To
further demonstrate the effectiveness of NED-
A2C, we compare it with training the reference
models with supervised learning for a single pass
on the bandit training set. Surprisingly, observ-
ing ground-truth translations barely improves the
models in Per-Sentence BLEU when they are fully
trained (less than +0.4 on both tasks). A possi-
ble explanation is that the models have already
reached full capacity and do not benefit from more
examples.6 NED-A2C further enhances the mod-
els because it eliminates the mismatch between
the supervised training objective and the evalua-
tion objective. On weakly trained reference mod-
els, NED-A2C also significantly outperforms su-
pervised learning (∆Per-Sentence BLEU of NED-
A2C is over three times as large as those of super-
vised learning).

Multiple rounds of feedback. We examine if
NED-A2C can improve the models even further
with multiple rounds of feedback.7 With super-
vised learning, the models can memorize the ref-
erence translations but, in this case, the mod-
els have to be able to exploit and explore effec-
tively. We train the models with NED-A2C for five

6This result may vary if the domains of the supervised
learning set and the bandit training set are dissimilar. Our
training data are all TED talks.

7The ability to receive feedback on the same example
multiple times might not fit all use cases though.
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De-En Zh-En
Reference ∆sup ∆A2C Reference ∆sup ∆A2C

Fully pre-trained reference model

Per-Sentence BLEU 38.26 ± 0.02 0.07 ± 0.05 2.82 ± 0.03 32.79 ± 0.01 0.36 ± 0.05 1.08 ± 0.03
Heldout BLEU 24.94 ± 0.00 1.48 ± 0.00 1.82 ± 0.08 13.73 ± 0.00 1.18 ± 0.00 0.86 ± 0.11

Weakly pre-trained reference model

Per-Sentence BLEU 19.15 ± 0.01 2.94 ± 0.02 7.07 ± 0.06 14.77 ± 0.01 1.11 ± 0.02 3.60 ± 0.04
Heldout BLEU 19.63 ± 0.00 3.94 ± 0.00 1.61 ± 0.17 9.34 ± 0.00 2.31 ± 0.00 0.92 ± 0.13

Table 2: Translation scores and improvements based on a single round of un-perturbed bandit feedback.
Per-Sentence BLEU and Heldout BLEU are not comparable: the former is sentence-BLEU, the latter is
corpus-BLEU.

passes and observe a much more significant ∆Per-
Sentence BLEU than training for a single pass in
both pairs of language (+6.73 on De-En and +4.56
on Zh-En) (Figure 4).

6.2 Effect of Perturbed Bandit Feedback

We apply perturbation functions defined in § 4.1
to Per-Sentence BLEU scores and use the per-
turbed scores as rewards during bandit training
(Figure 5).

Granular Rewards. We discretize raw Per-
Sentence BLEU scores using pertgran(s; g) (§4.1).
We vary g from one to ten (number of bins varies
from two to eleven). Compared to continuous re-
wards, for both pairs of languages, ∆Per-Sentence
BLEU is not affected with g at least five (at
least six bins). As granularity decreases, ∆Per-
Sentence BLEU monotonically degrades. How-
ever, even when g = 1 (scores are either 0 or 1),
the models still improve by at least a point.

High-variance Rewards. We simulate
noisy rewards using the model of human
rating variance pertvar(s;λ) (§ 4.2) with
λ ∈ {0.1, 0.2, 0.5, 1, 2, 5}. Our models can
withstand an amount of about 20% the variance in
our human eval data without dropping in ∆Per-
Sentence BLEU. When the amount of variance
attains 100%, matching the amount of variance in
the human data, ∆Per-Sentence BLEU go down
by about 30% for both pairs of languages. As
more variance is injected, the models degrade
quickly but still improve from the pre-trained
models. Variance is the most detrimental type
of perturbation to NED-A2C among the three
aspects of human ratings we model.

Skewed Rewards. We model skewed
raters using pertskew(s; ρ) (§ 4.3) with
ρ ∈ {0.25, 0.5, 0.67, 1, 1.5, 2, 4}. NED-A2C
is robust to skewed scores. ∆Per-Sentence BLEU

is at least 90% of unskewed scores for most skew
values. Only when the scores are extremely harsh
(ρ = 4) does ∆Per-Sentence BLEU degrade sig-
nificantly (most dramatically by 35% on Zh-En).
At that degree of skew, a score of 0.3 is suppressed
to be less than 0.08, giving little signal for the
models to learn from. On the other spectrum, the
models are less sensitive to motivating scores as
Per-Sentence BLEU is unaffected on Zh-En and
only decreases by 7% on De-En.

6.3 Held-out Translation Quality
Our method also improves pre-trained models in
Heldout BLEU, a metric that correlates with trans-
lation quality better than Per-Sentence BLEU (Ta-
ble 2). When scores are perturbed by our rating
model, we observe similar patterns as with Per-
Sentence BLEU: the models are robust to most
perturbations except when scores are very coarse,
or very harsh, or have very high variance (Fig-
ure 5, second row). Supervised learning improves
Heldout BLEU better, possibly because maximiz-
ing log-likelihood of reference translations cor-
relates more strongly with maximizing Heldout
BLEU of predicted translations than maximizing
Per-Sentence BLEU of predicted translations.

7 Related Work and Discussion

Ratings provided by humans can be used as effec-
tive learning signals for machines. Reinforcement
learning has become the de facto standard for in-
corporating this feedback across diverse tasks such
as robot voice control (Tenorio-Gonzalez et al.,
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Figure 5: Performance gains of NMT models trained with NED-A2C in Per-Sentence BLEU (top row)
and in Heldout BLEU (bottom row) under various degrees of granularity, variance, and skew of scores.
Performance gains of models trained with un-perturbed scores are within the shaded regions.

2010), myoelectric control (Pilarski et al., 2011),
and virtual assistants (Isbell et al., 2001). Re-
cently, this learning framework has been com-
bined with recurrent neural networks to solve ma-
chine translation (Bahdanau et al., 2017), dialogue
generation (Li et al., 2016), neural architecture
search (Zoph and Le, 2017), and device place-
ment (Mirhoseini et al., 2017). Other approaches
to more general structured prediction under ban-
dit feedback (Chang et al., 2015; Sokolov et al.,
2016a,b) show the broader efficacy of this frame-
work. Ranzato et al. (2016) describe MIXER for
training neural encoder-decoder models, which is
a reinforcement learning approach closely related
to ours but requires a policy-mixing strategy and
only uses a linear critic model. Among work
on bandit MT, ours is closest to Kreutzer et al.
(2017), which also tackle this problem using neu-
ral encoder-decoder models, but we (a) take ad-
vantage of a state-of-the-art reinforcement learn-
ing method; (b) devise a strategy to simulate noisy
rewards; and (c) demonstrate the robustness of our
method on noisy simulated rewards.

Our results show that bandit feedback can be
an effective feedback mechanism for neural ma-
chine translation systems. This is despite that er-
rors in human annotations hurt machine learning
models in many NLP tasks (Snow et al., 2008). An
obvious question is whether we could extend our
framework to model individual annotator prefer-
ences (Passonneau and Carpenter, 2014) or learn
personalized models (Mirkin et al., 2015; Rabi-
novich et al., 2017), and handle heteroscedastic
noise (Park, 1966; Kersting et al., 2007; Antos

et al., 2010). Another direction is to apply active
learning techniques to reduce the sample complex-
ity required to improve the systems or to extend
to richer action spaces for problems like simulta-
neous translation, which requires prediction (Gris-
som II et al., 2014) and reordering (He et al., 2015)
among other strategies to both minimize delay and
effectively translate a sentence (He et al., 2016).
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2016. Interpretese vs. translationese: The unique-
ness of human strategies in simultaneous interpreta-
tion. In Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

He He, Alvin Grissom II, Jordan Boyd-Graber, and Hal
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Abstract

Neural Machine Translation (NMT) lays
intensive burden on computation and
memory cost. It is a challenge to de-
ploy NMT models on the devices with
limited computation and memory budgets.
This paper presents a four stage pipeline to
compress model and speed up the decod-
ing for NMT. Our method first introduces
a compact architecture based on convo-
lutional encoder and weight shared em-
beddings. Then weight pruning is ap-
plied to obtain a sparse model. Next, we
propose a fast sequence interpolation ap-
proach which enables the greedy decod-
ing to achieve performance on par with the
beam search. Hence, the time-consuming
beam search can be replaced by simple
greedy decoding. Finally, vocabulary se-
lection is used to reduce the computation
of softmax layer. Our final model achieves
10× speedup, 17× parameters reduction,
<35MB storage size and comparable per-
formance compared to the baseline model.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) has recently gained popu-
larity in solving the machine translation problem.
Although NMT has achieved state-of-the-art per-
formance for several language pairs (Jean et al.,
2015; Wu et al., 2016), like many other deep learn-
ing domains, it is both computationally intensive
and memory intensive. This leads to a challenge of
deploying NMT models on the devices with lim-
ited computation and memory budgets.

∗*Corresponding author

Numerous approaches have been proposed for
compression and inference speedup of neural net-
works, including but not limited to low-rank ap-
proximation (Denton et al., 2014), hash function
(Chen et al., 2015), knowledge distillation (Hin-
ton et al., 2015), quantization (Courbariaux et al.,
2015; Han et al., 2016; Zhou et al., 2017) and spar-
sification (Han et al., 2015; Wen et al., 2016).

Weight pruning and knowledge distillation have
been proved to be able to compress NMT mod-
els (See et al., 2016; Kim and Rush, 2016; Fre-
itag et al., 2017). The above methods reduce the
parameters from a global perspective. However,
embeddings dominate the parameters in a rela-
tively compact NMT model even if subword (Sen-
nrich et al., 2016) (typical about 30K) is used.
Character-aware methods (Ling et al., 2015; Lee
et al., 2016) have fewer embeddings while suffer
from slower decoding speed (Wu et al., 2016). Re-
cent work by Li et al. (2016) has shown that weight
sharing can be adopted to compress embeddings
in language model. We are interested in applying
embeddings weight sharing to NMT.

As for decoding speedup, Gehring et al. (2016);
Kalchbrenner et al. (2016) tried to improve the
parallelism in NMT by substituting CNNs for
RNNs . Kim and Rush (2016) proposed sequence-
level knowledge distillation which allows us to
replace beam search with greedy decoding. Gu
et al. (2017) exploited trainable greedy decoding
by the actor-critic algorithm (Konda and Tsitsiklis,
2002). Wu et al. (2016) evaluated the quantized in-
ference of NMT. Vocabulary selection (Jean et al.,
2015; Mi et al., 2016; L’Hostis et al., 2016) was
commonly used to speed up the softmax layer.
Search pruning was also applied to speed up beam
search (Hu et al., 2015; Wu et al., 2016; Freitag
and Al-Onaizan, 2017). Compared to search prun-
ing, the speedup of greedy decoding is more at-
tractive. Knowledge distillation improves the per-
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Figure 1: Our network architecture. The 2-component word representation contains class embeddings and location embed-
dings. Position embeddings are concatenated to convey the absolute positional information of each source word.

formance of greedy decoding while the method
needs to run beam search over the training set, and
therefore results in inefficiency for tens of millions
of corpus. The trainable greedy decoding using
a relatively sophisticated training procedure. We
prefer a simple and fast approach that allows us to
replace beam search with the greedy search.

In this work, a novel approach is proposed to
improve the performance of greedy decoding di-
rectly and the embeddings weight sharing is intro-
duced into NMT. We investigate the model com-
pression and decoding speedup for NMT from
the views of network architecture, sparsification,
computation and search strategy, and test the per-
formance of their combination. Specifically, we
present a four stage pipeline for model compres-
sion and decoding speedup. Firstly, we train a
compact NMT model based on convolutional en-
coder and weight sharing. The convolutional en-
coder works well with smaller model size and is
robust for pruning. Weight sharing further reduces
the number of embeddings by several folds. Then
weight pruning is applied to get a sparse model.
Next, we propose fast sequence interpolation to
improve the performance of greedy decoding di-
rectly. This approach uses batched greedy decod-
ing to obtain samples and therefore is more effi-
cient than Kim and Rush (2016). Finally, we use
vocabulary selection to reduce the computation of
the softmax layer. Our final model achieves 10×
speedup, 17× parameters reduction, <35MB stor-
age size and comparable performance compared to
the baseline model.

2 Method

2.1 Compact Network Architecture

Our network architecture is illustrated in Figure 1.
This architecture works well with fewer parame-
ters, which allows us to match the performance of
the baseline model at lower capacity. The convo-
lutional encoder is similar to Gehring et al. (2016),
which consists of two convolutional neural net-
works: CNN-a for attention score computation and
CNN-c for the conditional input to be fed to the de-
coder. The CNNs are constructed by blocks with
residual connections (He et al., 2015). We use
the relu61 non-linear activation function instead of
tanh in Gehring et al. (2016) and achieve better
training stability.

To compress the embeddings, the cluster
based 2-component word representation is intro-
duced: we cluster the words into C classes by
word2vector2 (Mikolov et al., 2013), and each
class contains up to L words. Then the con-
ventional embedding lookup table is replaced by
C + L unique vectors. For each word, we first
do a lookup from C class embeddings according
to which cluster the word belongs, next we do
another lookup from L location embeddings ac-
cording to the location of the word. We concate-
nate the results of the two embedding lookup as
the 2-component word representation. As a result,
the number of embeddings is reduced from about
C×L toC+L. Referring to Gehring et al. (2016),
position embeddings are concatenated to convey
the absolute positional information of each source
word within a sentence.

1Computes relu6: min(max(features, 0), 6).
2https://code.google.com/archive/p/word2vec
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Reference (Y):

Sample (S):

Interpolated Sample:

replace

the official said the grenade explosion did not cause any casualties or damage .

the official said the grenade blast did not cause any casualties or damage .

the official said the grenade blast did not cause any death or injury nor any damage .

Boundary words

Figure 2: Editing operation. We search for subsequences with the same boundary words between S and Y . The words within
the boundary words can be different. Then we replace the subsequence in S by the subsequence in Y .

2.2 Weight Pruning

Then the iterative pruning (Han et al., 2015) is ap-
plied to obtain a sparse network, which allows us
to use sparse matrix storage. In order to further re-
duce the storage size, most sparse matrix index of
our pruned model is stored using uint8 and uint16
depend on the matrix dimension.

2.3 Fast Sequence Interpolation

Let (X,Y ) be a source-target sequence pair.
Given X as input, S is the corresponding greedy
decoding result using a well trained model. Then
we make two assumptions:
(1) Let S̃ be a sequence close to S. If training
with (X, S̃), S̃ will replace S to become the result
of greedy decoding with a probability P (S̃, S).
(2) The following relationship holds:

{
P (S̃, S) ∝ sim(S̃, S)

sim(S̃, S) > sim(Y, S)

where sim is a function measuring closeness such
as edit-distance. If S̃ has higher evaluation metric3

(we write as E) than S, according to (2) we have:

{
P (S̃, S) > P (Y, S)

E(S̃, Y ) > E(S, Y )

We note that using S̃ as a label is more attractive
than Y for improving the performance of greedy
decoding. The reason is that S and Y are often
quite different (Kim and Rush, 2016), resulting in
a relatively low P (Y, S). We bridge the gap be-
tween S and Y by interpolating inner sequence
between them. Specifically, we edit S toward Y ,
which can be seen as interpolation. Editing is a
heuristic operation as illustrated in Figure 2. Con-
cretely, let Ss be a subsequence of S and let Ys be

3We use smoothed sentence-level BLEU (Chen and
Cherry, 2014).

Algorithm 1 Editing algorithm of fast sequence
interpolation.

Input: (X,Y, S, k): (X,Y ) is a sequence pair in
training data. S is the result of the greedy
decoding using source sequence X . k is the
maximum number of tokens in replaced sub-
sequence of S or Y .

Output: S̃: the edited sample.
1: for si in S, yj in Y do
2: if (si == yj) then
3: for 1 ≤ p ≤ k + 1, 1 ≤ q ≤ k + 1 do
4: if (si+p == yj+q) then
5: Ss = (si, ..., sp)
6: Y s = (yj , ..., yq)
7: Break
8: end if
9: end for

10: end if
11: Replace subsequence of S: Ss ← Ys
12: Break
13: end for
14: S̃ ← S

a subsequence of Y . Given that:




S = (s0, ..., sp, Ss, sq, ..., sn)
Y = (y0, ..., sp, Ys, sq, ..., ym)
length(Ss) 6 k
length(Ys) 6 k

where k is the length limit of Ss and Ys. The in-
terpolated sample S̃ has the following form:

S̃ = (s0, ..., sp, Ys, sq, ..., sn)

To obtain the target sequence Ỹ for training, we
substitute S̃ for Y according to the following rule:

Ỹ =

{
S̃ E(S̃, Y )− E(S, Y ) > ε
Y otherwise

where ε aims to ensure the quality of S̃. We define
substitution rate as the ratio of S̃ substituting Y
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over the training set. In summary, the following
procedure is done iteratively: (1) get a new batch
of (X,Y ), (2) run batched greedy decoding on X ,
(3) edit S to obtain S̃, (4) get Ỹ according to the
substitution rule, (5) train on the batched (X, Ỹ ).

2.4 Vocabulary Selection

We use word alignment4 (Dyer et al., 2013) to
build a candidate dictionary. For each source
word, we build a list of candidate target words.
When decoding, top n candidates of each word are
merged to form a short-list for softmax layer. We
do not apply vocabulary selection in training.

3 Experiments

3.1 Setup

Datasets and Evaluation Metrics: We eval-
uate these approaches on two pairs of lan-
guages: English-German and Chinese-English.
Our English-German data comes from WMT’145.
The training set consists of 4.5M sentence pairs
with 116M English words and 110M German
words. We choose newstest2013 as the develop-
ment set and newstest2014 as the test set. The
Chinese-English training data consists of 1.6M
pairs with 34M Chinese words and 38M English
words. We choose NIST 2002 as the development
set and NIST 2005 as the test set.

For the two translation task, top 50K and 30k
most frequent words are kept respectively. The
rest words are replaced with UNK. We only use
sentences of length up to 50 symbols. We do not
use any UNK handling methods for fair compar-
ison. The evaluation metric is case-insensitive
BLEU (Papineni et al., 2002) as calculated by the
multi-bleu.perl script.

Hyper-parameters: For the baseline model, we
use a 2-layer bidirectional GRU encoder (1 layer
in each direction) and a 1-layer GRU decoder. In
BaselineL, the embedding size is 512 and the hid-
den size is 1024. In BaselineS, the embedding size
is 256 and the hidden size is 512. Our baseline
models are similar to the architecture in DL4MT6.
For the convolutional encoder model, 512 hidden
units are used for the 6-layer CNN-a, and 256 hid-
den units are used for the 8-layer CNN-c. The em-
bedding size is 256. The hidden size of the de-

4https://github.com/clab/fast align
5http://statmt.org/wmt14
6https://github.com/nyu-dl/dl4mt-tutorial
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Figure 3: The performance and the substitution rate of FSI
on English-German (newstest2013) development set with
varying threshold ε and subsequence length limit k.

coder is 512. The kernel width in CNNs is 3. The
number of clusters for both source and target vo-
cabulary is 6. The editing rule for fast sequence
interpolation is detailed in Algorithm 1. We use
the top 50 candidates for each source word in vo-
cabulary selection. The initial dropout rate is 0.3,
and gradually decreases to 0 as the pruning rate
increases. We use AdaDelta optimizer and clip
the norm of the gradient to be no more than 1.
Our methods are implemented with TensorFlow7

(Abadi et al., 2015). We run one sentence decod-
ing for all models under the same computing envi-
ronment8.

3.2 Results and Discussions

Our experimental results are summarized in Ta-
ble 1. The convolutional encoder model matches
the performance of the GRU encoder model with
about 2× fewer parameters. Combining with
embeddings weight sharing results in a compact
model that has about 3.5× fewer parameters than
the baseline model. After pruning 80% of the
weights, we reduce the parameters by about 17×
with only a decrease of 0.2 BLEU. The storage
size of the final models is about 30MB, which is
easily fit into the memory of a mobile device. We
find that the pruning rate of embeddings is highest
even if weight sharing is used. Furthermore, the
pruning rate of CNN layers is higher than GRU
layers. This reveals that the CNNs are more robust
for pruning than RNNs. The pruning rate of each

7https://github.com/zxw866/CFNMT
8We also test batched greedy decoding with a batch size

128. We find that batched greedy decoding is nearly ten times
faster than one sentence greedy decoding. We conjecture that
our current one sentence decoding implementation does not
fully make use of available hardware optimized for parallel
computations. We can obtain a higher speedup with well op-
timized one sentence decoding implementation.
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English→German Chinese→English
Approach Params Storage BLEUk:10/1 Tdec Params Storage BLEUk:10/1 Tdec

BaselineL 110m 423MB 17.84/16.23 5145 80m 305MB 32.47/28.89 1914
BaselineS 47m 179MB 15.81/14.02 4056 31m 121MB 30.95/26.68 1412
Conv-Enc 50m 193MB 18.17/16.35 4159 35m 135MB 32.72/29.13 1437
+EWS 31m 119MB 17.85/15.89 4096 23m 90MB 32.44/28.62 1413
+Prune 80% 6m 33MB 17.63/16.02 4112 5m 25MB 32.78/28.95 1484
+FSI 6m 33MB 17.63/17.21 776 5m 25MB 32.69/31.74 297
+VS 6m 33MB 17.61/17.18 512 5m 25MB 32.63/31.67 198

Table 1: Results on English-German (newstest2014) and Chinese-English (nist05) test sets. EWS: embeddings weights shar-
ing. VS: vocabulary selection. FSI: fast sequence interpolation. k: beam size. Tdec: decoding time on the test set in seconds.
Pruned models are saved as compressed sparse row (CSR) format with low bit index. Decoding runs on CPU in a preliminary
implementation with TensorFlow, sparse matrix multiplication is unused for pruned models. After applying FSI, beam search
with a beam size 10 is replaced by greedy decoding when recording Tdec.

Prune % EN→DE CN→EN
0% 17.85 32.44

50% 17.83 32.47
60% 17.91 32.55
70% 17.81 32.65
75% 17.78 32.81
80% 17.63 32.78
85% 17.36 32.84

Table 2: BLEU on test sets with varying pruning rate.
Model config: Conv Encoder+EWS.

class number EN→DE CN→EN
225 15.85 30.44
10 17.83 32.78

6 18.85 34.44
4 18.96 34.60
2 19.11 34.71

Table 3: BLEU on development sets with varying class
number. Model config: Conv Encoder.

layer and the performance with increasing pruning
rate are detailed in Figure 4. The compact archi-
tecture reduces the decoding time by only 20%.
The reason is that the decoding time is dominated
by the softmax layer. After applying fast sequence
interpolation, we replace beam search with greedy
decoding, which results in a speedup of over 5×
with little loss in performance. We find that the
details of the editing rules have little effect on FSI.
Because we only accept S̃ that BLEU improved
by more than the threshold ε, otherwise we choose
the gold target sequence. Figure 3 shows that ap-
propriate substitution rate is important for fast se-
quence interpolation. We conjecture that edited
samples are still worse than gold target sequences,
and therefore relatively high substitution rate may
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Figure 4: Pruning rate of different layers.

lead to instability in training. The speedup of vo-
cabulary selection is only about 30%. It shows that
the softmax layer no longer dominates the decod-
ing time when using greedy search.

4 Conclusion and Future Work

We investigate the model compression and de-
coding speedup for NMT from the views of net-
work architecture, sparsification, computation and
search strategy, and verify the performance on
their combination. A novel approach is proposed
to improve the performance of greedy decoding
and the embeddings weight sharing is introduced
into NMT. In the future, we plan to integrate
weight quantization into our method.
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Abstract

Instance weighting has been widely
applied to phrase-based machine
translation domain adaptation. However,
it is challenging to be applied to
Neural Machine Translation (NMT)
directly, because NMT is not a linear
model. In this paper, two instance
weighting technologies, i.e., sentence
weighting and domain weighting with
a dynamic weight learning strategy, are
proposed for NMT domain adaptation.
Empirical results on the IWSLT English-
German/French tasks show that the
proposed methods can substantially
improve NMT performance by up to
2.7-6.7 BLEU points, outperforming the
existing baselines by up to 1.6-3.6 BLEU
points.

1 Introduction

In Statistical Machine Translation (SMT),
unrelated additional corpora, known as out-of-
domain corpora, have been shown not to benefit
some domains and tasks, such as TED-talks and
IWSLT tasks (Axelrod et al., 2011; Luong and
Manning, 2015). Several Phrase-based SMT
(PBSMT) domain adaptation methods have been
proposed to overcome this problem of the lack
of substantial data in some specific domains and
languages:

i) Data selection. The main idea is to score the
out-of-domain data using models trained from the
in-domain and out-of-domain data, respectively.
Then select training data by using these ranked
scores (Moore and Lewis, 2010; Axelrod et al.,
2011; Duh et al., 2013; Hoang and Sima’an,
2014a,b; Durrani et al., 2015; Chen et al., 2016).

ii) Model Linear Interpolation. Several PBSMT
models, such as language models, translation
models, and reordering models, individually
corresponding to each corpus, are trained. These
models are then combined to achieve the best
performance (Sennrich, 2012; Sennrich et al.,
2013; Durrani et al., 2015, 2016; Imamura and
Sumita, 2016).

iii) Instance Weighting. Instance Weighting has
been applied to several NLP domain adaptation
tasks (Jiang and Zhai, 2007), such as POS tagging,
entity type classification and especially PBSMT
(Matsoukas et al., 2009; Shah et al., 2010; Foster
et al., 2010; Rousseau et al., 2011; Zhou et al.,
2015; Wang et al., 2016; Imamura and Sumita,
2016). They firstly score each instance/domain
by using rules or statistical methods as a weight,
and then train PBSMT models by giving each
instance/domain the weight.

For Neural Machine Translation (NMT) domain
adaptation, the sentence selection can also be
used (Chen et al., 2016; Wang et al., 2017).
Meanwhile, the model linear interpolation is not
easily applied to NMT directly, because NMT
is not a linear model. There are two methods
for model combination of NMT: i) the in-domain
model and out-of-domain model can be ensembled
(Jean et al., 2015). ii) an NMT further training
(fine-tuning) method (Luong and Manning, 2015).
The training is performed in two steps: first, the
NMT system is trained using out-of-domain data,
and then further trained using in-domain data.
Recently, Chu et al. (2017) make an empirical
comparison of NMT further training (Luong and
Manning, 2015) and domain control (Kobus et al.,
2016), which applied word-level domain features
to word embedding layer. This approach provides
natural baselines for comparison.

To the best of our knowledge, there is no
existing work concerning instance weighting in
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NMT. The main challenge is that NMT is not
a liner model or combination of linear models,
where the instance weight can be integrated into
directly. To overcome this difficulty, we try to
integrate the instance weight into NMT objective
function. Two technologies, i.e., sentence
weighting and domain weighting, are proposed to
apply instance weighting to NMT. In addition, we
also propose a dynamic weight learning strategy
to tune the proposed domain weights.

2 NMT Background

An attention based NMT is a neural network that
directly models the conditional probability p(y|x)
of translating a source sentence, x = {x1, ..., xn},
to a target sentence, y = {y1, ..., ym} (Luong
et al., 2015):

p(y|x) =
m∏

j=1

softmax(g(yj |yj−1, sj , cj)), (1)

with g being the transformation function that
outputs a vocabulary-sized vector, sj being the
RNN hidden unit and cj being the weighted sum
of source annotations Hx. The NMT training
objective (maximize) is formulated as,

J =
∑

(x,y)∈D
log p(y|x), (2)

where D is the parallel training corpus.

3 Instance weighting for NMT

In this paper, we integrate the instance weight into
the NMT objective function. Our main hypothesis
is that the in-domain data should have a higher
weight in the NMT objective function than the out-
of-domain ones.

The training corpus D can be divided into in-
domain one Din and the out-of-domain one Dout.
So, the Eq. (2) can be rewritten as,

J = (
∑

〈x,y〉∈Din
log p(y|x) +

∑

〈x′,y′〉∈Dout
log p(y′|x′)), (3)

where 〈x, y〉 is a parallel sentence pair.

3.1 Sentence Weighting
A general method is to give each sentence a
weight. As Axelrod et al. (2011) mentioned, there
are some pseudo in-domain data in out-of-domain

data, which are close to in-domain data. We
can apply their bilingual cross-entropy method to
score each 〈xi, yi〉 as a weight λi, the higher the
better,1

λi = δ(Hout(xi)−Hin(xi)
+Hout(yi)−Hin(yi)).

(4)

Take Hin(xi) as example, it indicates the
cross-entropy between sentence xi and in-domain
language model (Axelrod et al., 2011). Min-max
normalization δ (Priddy and Keller, 2005) is used
to normalize each λi into range [0, 1],

δ(λi) =
λi − λmin
λmax − λmin

. (5)

The λ for in-domain data will set as one
directly. The updated objective function by
sentence weighting (Jsw) can be rewritten as,

Jsw =
∑

〈xi,yi〉∈D
λi log p(yi|xi). (6)

3.2 Domain Weighting
An alternative way is to modify the weight of each
domain in objective function. For we design a
weight parameter λin for in-domain data. The
updated objective function by domain weighting
(Jdw) can be estimated as,

Jdw = λin
∑

(x,y)∈Din
logp(y|x) +

∑

(x′,y′)∈Dout
logp(y′|x′). (7)

3.2.1 Batch weighting
A straightforward domain weighting
implementation is to modify the ratio between
in-domain and out-of-domain data in each NMT
mini-batch. That is, we can increase the in-domain
weight by increasing the number of in-domain
sentences included in a mini-batch. The updated
in-domain data ratioRin in each NMT mini-batch
can be calculated as,

Rin =
|D̂in|

|D̂′in|+ |D̂′out|
=

λin
λin + 1

, (8)

where |D̂in| and |D̂out| are the sentence number
from in and out-of-domain data in each mini-
batch, respectively.

1The original cross-entropy is the lower the better, and we
swap the in and out order.
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Take the IWSLT EN-DE corpus in Table 1
as example, the original ratio Rin between in-
domain data and all of the data is around 1:20.
That is, for a 80-sized mini-batch, it would include
around four sentence from in-domain data and
76 from out-of-domain data on average. For
batch weighting, we can set the ratio Rin as 1:2
manually. That is, we load 40 in-domain and 40
out-of-domain sentences into each mini-batch.

In practice, we create two data iterators, one
for in-domain and one for out-of-domain. Both
of the in and out-of-domain data will be randomly
shuffled and then loaded into corresponding data
iterators before each epoch. For each mini-
batch, the data from these two data iterators are
determined by the ratio Rin. Because the size
of out-of-domain data is much larger than the in-
domain one, the in-domain data will be loaded
and trained for several epochs, while the out-of-
domain data is only trained for one epoch at the
same time.

3.2.2 Dynamic Weight Tuning
For the batch weight tuning, one way is to fix
the weights for several systems and select the
best-performed system on the development data.
Besides this, we also tried to learn the batch
weighting dynamically. That is, the initial in-
domain data ration in mini-batch is set as 0%. We
increased 10% ratio of in-domain data in the mini-
batch if the training cost does not decrease for ten-
time evaluations (the training cost is evaluated on
development data set every 1K batches training).

4 Experiments

4.1 Data Sets

The proposed methods were evaluated by adapting
WMT corpora to IWSLT (mainly contains TED
talks) corpora.2 Statistics on data sets were shown
in Table 1.

• IWSLT 2015 English (EN) to German (DE)
training corpus (Cettolo et al., 2015) was
used as in-domain training data. Out-
of-domain corpora contained WMT 2014
English-German corpora. This adaptation
corpora settings were the same as those used
in (Luong and Manning, 2015).

2In practice, we also also evaluated on the Chinese-to-
English NIST task. Due to limited time and space, we only
showed the IWSLT task.

• IWSLT 2014 English (EN) to French (FR)
training corpus (Cettolo et al., 2014) was
used as in-domain training data. Out-
of-domain corpora contained WMT 2015
English-French corpora. This adaptation
corpora settings were nearly the same as
those used in (Wang et al., 2016).

IWSLT EN-DE Sentences Tokens
TED training (in-domain) 207.1K 3.2M
WMT training (out-of-domain) 4.5M 119.9M
TED tst2012 (development) 1.7K 29.2K
TED tst2013 (test) 0.9K 19.6K
TED tst2014 (test) 1.3K 23.8K
IWSLT EN-FR Sentences Tokens
TED training (in-domain) 178.1K 3.5M
WMT training (out-of-domain) 17.8M 450.0M
TED dev2010 (development) 0.9K 20.1K
TED tst2010 (test) 1.6K 31.9K
TED tst2011 (test) 0.8K 21.4K

Table 1: Statistics on data sets.

4.2 NMT Systems
We implemented the proposed method in
Nematus3 (Sennrich et al., 2017) and online
available4, which is one of the state-of-the-art
NMT frameworks. The default settings of
Nematus were applied to all NMT systems (both
baselines and the proposed methods): the word
embedding dimension was 620 and the size of
a hidden layer was 1000, the batch size was 80,
the maximum sequence length were 50, and the
beam size for decoding was 10. The 30K-sized
vocabulary, which was created by using both in
and out-of-domain data, were applied to all of the
systems. Default dropout was applied. Each NMT
model was trained for 500K batches by using
ADADELTA optimizer (Zeiler, 2012). Training
was conducted on a single Tesla P100 GPU,
taking 7-10 days. We observed that all of the
systems converged before 500K batches training.

For the coding cost of duplicating data, we
only add two data iterators as mentioned in 3.2.1.
For the training cost, using batch weighting can
a accelerate the model converge on development
data in our experiments, because the development
data are also in-domain data. Overall, the
overhead cost is not too much.

3https://github.com/EdinburghNLP/
nematus

4https://github.com/wangruinlp/nmt_
instance_weighting The batch weighting part was
partially motivated by Nematus.
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4.3 Results and Analysis

In Tables 2 and 3, SMT indicates standard PBSMT
(Koehn et al., 2007) models were trained by
corresponding corpora (in, out, and in+out). The
in, out and in + out indicate that the in-domain,
out-of-domain and their mixture were used as the
NMT training corpora.

For related NMT domain adaptation baselines,
“ensemble” indicates in and out models were
ensembled in decoding and “sampler” indicates
that we sampled duplicated in-domain data into
training data, to make the ratio between in/out be
1:1 manually. Actually, if the mini-batch size was
as large as the whole corpus, the sampling method,
and batch weighting method would be the same.
Batch weighting method makes the data more
balanced in each single mini-batch. However, the
mini-batch size is limited, so these two methods
are different.

We also compared Axelrod et al. (2011)’s
sentence selection and Kobus et al. (2016)’s
domain control method, which added a word
feature (in or out) to each word in the training
corpora. For all of the baselines, we tried our best
to re-implemented their methods. The translation
performance was measured by the case-insensitive
BLEU (Papineni et al., 2002), with the paired
bootstrap re-sampling test (Koehn, 2004)5.

IWSLT EN-DE tst2012 tst2013 tst2014
SMT (in) 20.70 21.01 18.50
SMT (out) 18.82 18.12 16.85
SMT (in + out) 20.04 20.23 17.08
in 23.07 25.40 21.45
out 18.87 21.23 17.07
in + out 21.31 23.54 19.41
ensemble (in + out) 24.34 25.83 22.50
sampler 23.37 25.22 21.91
Kobus et al. (2016) 23.23 25.70 22.03
Axelrod et al. (2011) 23.87 25.52 22.41
sentence weighting 23.46 26.26+ 22.51
domain weighting 23.55 25.47 21.45
batch weighting (bw) 25.33++ 27.45++ 23.68++
bw + dynamic tuning 26.03++ 28.58++ 24.12++

Table 2: IWSLT EN-DE results. The marks (the
same in Tables 3) indicate whether the proposed
methods were significantly better than the best
performed baselines in bold (“++”: better at
significance level α = 0.01, “+”: α = 0.05).

In Tables 2 and 3, we reached the following
observations:

5http://www.ark.cs.cmu.edu/MT

IWSLT EN-FR dev2010 tst2010 tst2011
SMT (in) 27.35 31.06 32.50
SMT (out) 26.26 30.04 29.29
SMT (in + out) 27.16 30.00 30.26
in 27.66 32.11 35.22
out 24.93 29.60 32.27
in + out 25.14 29.94 33.50
ensemble (in + out) 28.48 33.63 37.67
sampler 28.67 34.12 38.08
Kobus et al. (2016) 27.87 33.81 37.44
Axelrod et al. (2011) 27.85 34.03 38.30
sentence weighting 29.14+ 34.80+ 38.73
domain weighting 29.05 34.72+ 39.06+
batch weighting(bw) 29.81++ 35.54++ 39.48++
bw + dynamic tuning 30.40++ 36.50++ 41.90++

Table 3: IWSLT EN-FR results.

• Adding out-of-domain to in-domain data, or
directly using out-of-domain data, degraded
NMT performance.

• The proposed instance weighting methods
substantially improved NMT performance
(in) up to 2.7-6.7 BLEU points, and
outperformed the best existing baselines up
to 1.6-3.6 BLEU points.

• Among the proposed methods, batch
weighting performed the best, although
it was the simplest one. The reason may
be: a) the batch weighting method directly
balanced the in-domain data ratio in each
mini-batch, to overcome the in-domain data
sparse problem. b) The batch weight can be
tuned on development data, in comparison
with sentence weighting method, whose
weights were learned and fixed before NMT
training.

• The dynamic weight tuning strategy
outperformed the fixed weight tuning
strategy by 0.6-2.4 BLEU points.

5 Discussions

5.1 Weights Tuning

Figure 1 showed the batch weight tuning
experiments on development data of IWSLT EN-
DE, where the horizontal axis indicates the in-
domain ratio Rin in Eq. (8). “Fix” indicates
several systems were trained with fixed weights
and the best-performed system would be selected.
“Dynamic” indicates that only one system was
trained and the domain weight was learned
dynamically as mentioned in Section 3.2.2.
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Figure 1: Batch weight tuning on IWSLT EN-DE.

As shown in Figure 1, the fixed weight learning
reached the highest BLEU on dev at around 50%
and dynamic learning at around 60%. If we
keep training the dynamic learning after 100% in-
domain data were used, the performance would
trend to become similar to only using in-domain
data from the beginning.

5.2 Further Training
Further training (Luong and Manning, 2015) can
be viewed as a special case of the proposed
batch weighting method. That is, it trained NMT
model by using 0% in-domain data at first and
then using 100% in-domain data. In comparison,
our batch weighting kept some ratio of out-of-
domain data during the whole training process. In
addition, further training can work together with
batch weighting. That is, NMT was trained with
0% in-domain data at first and then with batch
weighing method for further training (Luong + bw
in Table 4). . Rin was tuned on development data.
As mentioned in Section 3.2.2, “bw + dynamic
tuning” indicates that this batch weighting was
learned dynamically.

IWSLT EN-DE tst2012 tst2013 tst2014
Luong 25.68 28.14 24.31
Luong + bw 25.87 28.54+ 24.53
bw + dynamic tuning 26.03 28.58+ 24.12
IWSLT EN-FR dev2010 tst2010 tst2011
Luong 29.33 35.36 40.62
Luong + bw 29.65 35.65 41.20+
bw + dynamic tuning 30.40++ 36.50++ 41.90++

Table 4: Further training (Luong and Manning,
2015) is the baseline for significance test.

Table 4 shows that batch weighting worked
synergistically with Luong’s further training
method, and slightly improved NMT performance.
The “bw + dynamic tuning” method outperformed
both of them. We observed that the original further
training overfitted quickly after around one epoch
training. Keeping some out-of-domain data would

prevent further training from overfitting.

6 Conclusion and Future Work

In this paper, we proposed two straightforward
instance weighting methods with a dynamic
weight learning strategy for NMT domain
adaptation. Empirical results on IWSLT EN-
DE/FR tasks showed that the proposed methods
can substantially improve NMT performances
and outperform state-of-the-art NMT adaptation
methods.

The current sentence weighting method is a
simple implementation of the existing PBSMT
adaptation methods. In the future, we will try
to study a specific sentence weighting method for
NMT domain adaptation.
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Bentivogli, and Marcello Federico. 2014. Report
on the 11th IWSLT evaluation campaign. In
Proceedings of the International Workshop on
Spoken Language Translation, pages 2–17, Lake
Tahoe, CA, USA.

Boxing Chen, Roland Kuhn, George Foster, Colin
Cherry, and Fei Huang. 2016. Bilingual methods
for adaptive training data selection for machine
translation. In The Twelfth Conference of
The Association for Machine Translation in the
Americas, pages 93–106, Austin, Texas.

1486



Chenhui Chu, Raj Dabre, and Sadao Kurohashi.
2017. An empirical comparison of simple domain
adaptation methods for neural machine translation.
arXiv preprint arXiv:1701.03214.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and
Hajime Tsukada. 2013. Adaptation data selection
using neural language models: Experiments in
machine translation. In Proceedings of the
51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 678–683, Sofia, Bulgaria.

Nadir Durrani, Hassan Sajjad, Shafiq Joty, and Ahmed
Abdelali. 2016. A deep fusion model for domain
adaptation in phrase-based MT. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers,
pages 3177–3187, Osaka, Japan.

Nadir Durrani, Hassan Sajjad, Shafiq Joty, Ahmed
Abdelali, and Stephan Vogel. 2015. Using joint
models for domain adaptation in statistical machine
translation. In Proceedings of MT Summit XV, pages
117–130, Miami, FL, USA.

George Foster, Cyril Goutte, and Roland Kuhn.
2010. Discriminative instance weighting for domain
adaptation in statistical machine translation. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
451–459, Cambridge, MA.

Cuong Hoang and Khalil Sima’an. 2014a. Latent
domain phrase-based models for adaptation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages
566–576, Doha, Qatar.

Cuong Hoang and Khalil Sima’an. 2014b. Latent
domain translation models in mix-of-domains
haystack. In Proceedings of the 25th International
Conference on Computational Linguistics:
Technical Papers, pages 1928–1939, Dublin,
Ireland.

Kenji Imamura and Eiichiro Sumita. 2016. Multi-
domain adaptation for statistical machine translation
based on feature augmentation. In Proceedings of
the 12th Conference of the Association for Machine
Translation in the Americas, Austin, Texas, USA.
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Abstract

We investigate techniques for super-
vised domain adaptation for neural ma-
chine translation where an existing model
trained on a large out-of-domain dataset is
adapted to a small in-domain dataset.

In this scenario, overfitting is a major
challenge. We investigate a number of
techniques to reduce overfitting and im-
prove transfer learning, including regular-
ization techniques such as dropout and L2-
regularization towards an out-of-domain
prior. In addition, we introduce tuneout,
a novel regularization technique inspired
by dropout. We apply these techniques,
alone and in combination, to neural ma-
chine translation, obtaining improvements
on IWSLT datasets for English→German
and English→Russian. We also inves-
tigate the amounts of in-domain train-
ing data needed for domain adaptation in
NMT, and find a logarithmic relationship
between the amount of training data and
gain in BLEU score.

1 Introduction

Neural machine translation (Bahdanau et al.,
2015; Sutskever et al., 2014) has established itself
as the new state of the art at recent shared transla-
tion tasks (Bojar et al., 2016; Cettolo et al., 2016).
In order to achieve good generalization accuracy,
neural machine translation, like most other large
machine learning systems, requires large amounts
of training examples sampled from a distribution
as close as possible to the distribution of the inputs
seen during execution. However, in many applica-
tions, only a small amount of parallel text is avail-
able for the specific application domain, and it is

therefore desirable to leverage larger out-domain
datasets.

Owing to the incremental nature of stochastic
gradient-based training algorithms, a simple yet
effective approach to transfer learning for neural
networks is fine-tuning (Hinton and Salakhutdi-
nov, 2006; Mesnil et al., 2012; Yosinski et al.,
2014): to continue training an existing model
which was trained on out-of-domain data with in-
domain training data. This strategy was also found
to be very effective for neural machine transla-
tion (Luong and Manning, 2015; Sennrich et al.,
2016b).

Since the amount of in-domain data is typically
small, overfitting is a concern. A common solution
is early stopping on a small held-out in-domain
validation dataset, but this reduces the amount of
in-domain data available for training.

In this paper, we show that we can make fine-
tuning strategies for neural machine translation
more robust by using several regularization tech-
niques. We consider fine-tuning with varying
amounts of in-domain training data, showing that
improvements are logarithmic in the amount of in-
domain data.

We investigate techniques where domain adap-
tation starts from a pre-trained out-domain model,
and only needs to process the in-domain cor-
pus. Since we do not need to process the
large out-domain corpus during adaptation, this
is suitable for scenarios where adaptation must
be performed quickly or where the original out-
domain corpus is not available. Other works
consider techniques that jointly train on the out-
domain and in-domain corpora, distinguishing
them using specific input features (Daume III,
2007; Finkel and Manning, 2009; Wuebker et al.,
2015). These techniques are largely orthogonal to
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ours1 and can be used in combination. In fact,
Chu et al. (2017) successfully apply fine-tuning in
combination with joint training.

2 Regularization Techniques for
Transfer Learning

Overfitting to the small amount of in-domain train-
ing data that may be available is a major challenge
in transfer learning for domain adaptation. We in-
vestigate the effect of different regularization tech-
niques to reduce overfitting, and improve the qual-
ity of transfer learning.

2.1 Dropout
The first variant that we consider is fine-tuning
with dropout. Dropout (Srivastava et al., 2014)
is a stochastic regularization technique for neural
networks. In particular, we consider "Bayesian"
dropout for recurrent neural networks (Gal and
Ghahramani, 2016).

In this technique, during training, the columns
of the weight matrices of the neural network are
randomly set to zero, independently for each ex-
ample and each epoch, but with the caveat that
when the same weight matrix appears multiple
times in the unrolled computational graph of a
given example, the same columns are zeroed.

For an arbitrary layer that takes an input vector
h and computes the pre-activation vector v (ignor-
ing the bias parameter),

vi,j = W ·MW,i,j · hi,j (1)

where MW,i,j = 1
pdiag(Bernoulli⊗n(p)) is the

dropout mask for matrix W and training exam-
ple i seen in epoch j. This mask is a diago-
nal matrix whose entries are drawn from inde-
pendent Bernoulli random variables with proba-
bility p and then scaled by 1/p. Gal and Ghahra-
mani (2016) have shown that this corresponds to
approximate variational Bayesian inference over
the weight matrices considered as model-wise ran-
dom variables, where the individual weights have
a Gaussian prior with zero mean and small diag-
onal covariance. During execution we simply set
the dropout masks to identity matrices, as in the
standard approximation scheme.

Since dropout is not a specific transfer learn-
ing technique per se, we can apply it during fine-
tuning, irrespective of whether or not the orig-
1 although in the special case of linear models, they are related

to MAP-L2 fine-tuning.

inal out-of-domain model was also trained with
dropout.

2.2 MAP-L2
L2-norm regularization is widely used for ma-
chine learning and statistical models. For lin-
ear models, it corresponds to imposing a diago-
nal Gaussian prior with zero mean on the weights.
Chelba and Acero (2006) extended this technique
to transfer learning by penalizing the weights of
the in-domain model by their L2-distance from the
weights of the previously trained out-of-domain
model.

For each parameter matrix W , the penalty term
is

LW = λ ·
∥∥∥W − Ŵ

∥∥∥
2

2
(2)

where W is the in-domain parameter matrix to be
learned and Ŵ is the corresponding fixed out-of-
domain parameter matrix. Bias parameters may
be regularized as well. For linear models, this cor-
responds to maximum a posteriori inference w.r.t.
a diagonal Gaussian prior with mean equal to the
out-of-domain parameters and 1/λ variance.

To our knowledge this method has not been ap-
plied to neural networks, except for a recent work
by Kirkpatrick et al. (2017) which investigates a
variant of it for continual learning (learning a new
task while preserving performance on previously
learned task) rather than domain adaptation. In
this work we investigate L2-distance from out-of-
domain penalization (MAP-L2) as a domain adap-
tation technique for neural machine translation.

2.3 Tuneout
We also propose a novel transfer learning tech-
nique which we call tuneout. Like Bayesian
dropout, we randomly drop columns of the weight
matrices during training, but instead of setting
them to zero, we set them to the corresponding
columns of the out-of-domain parameter matrices.

This can be alternatively seen as learning ma-
trices of parameter differences between in-domain
and out-of-domain models with standard dropout,
starting from a zero initialization at the beginning
of fine-tuning. Therefore, equation 2 becomes

vi,j = (Ŵ + ∆W ·M∆W,i,j) · hi,j (3)

where Ŵ is the fixed out-of-domain parameter
matrix and ∆W is the parameter difference matrix
to be learned and M∆W,i,j is a Bayesian dropout
mask.
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3 Evaluation

We evaluate transfer learning on test sets from
the IWSLT shared translation task (Cettolo et al.,
2012).

3.1 Data and Methods

Test sets consist of transcripts of TED talks and
their translations; small amounts of in-domain
training data are also provided. For English-to-
German we use IWSLT 2015 training data, while
for English-to-Russian we use IWSLT 2014 train-
ing data. For the out-of-domain systems, we use
training data from the WMT shared translation
task,2 which is considered permissible for IWSLT
tasks, including back-translations of monolingual
training data (Sennrich et al., 2016b), i.e., auto-
matic translations of data available only in target
language “back” into the source language.3.

We train out-of-domain systems following tools
and hyperparameters reported by Sennrich et al.
(2016a), using Nematus (Sennrich et al., 2017) as
the neural machine translation toolkit. We dif-
fer from their setup only in that we use Adam
(Kingma and Ba, 2015) for optimization. Our
baseline fine-tuning models use the same hyper-
parameters, except that the learning rate is 4 times
smaller and the validation frequency for early
stopping 4 times higher. Early stopping serves an
important function as the only form of regulariza-
tion in the baseline fine-tuning model. We also
use this configuration for the in-domain only base-
lines.

After some exploratory experiments for
English-to-German, we set dropout retention
probabilities to 0.9 for word-dropout and 0.8 for
all the other parameter matrices. Tuneout reten-
tion probabilities are set to 0.6 (word-dropout)
and 0.2 (other parameters). For MAP-L2 regu-
larization, we found that a penalty of 10−3 per
mini-batch performs best. For English-to-Russian,
retention probabilities of 0.95 (word-dropout)
0.89 (other parameters) for both dropout and
tuneout performed best.

The out-of-domain training data consists of
about 7.92M sentence pairs for English-to-
German and 4.06M sentence pairs for English-to-
Russian. In-domain training data is about 206k
sentence pairs for English-to-German and 181k
sentence pairs for English-to-Russian. Training
2 http://www.statmt.org/wmt16/
3 http://data.statmt.org/rsennrich/wmt16_backtranslations/
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Figure 1: English→German validation BLEU over
training mini-batches.

data is tokenized, truecased and segmented into
subword units using byte-pair encoding (BPE)
(Sennrich et al., 2016c).

For replicability and ease of adoption, we in-
clude our implementation of dropout and MAP-L2
in the master branch of Nematus. Tuneout regu-
larization is available in a separate code branch of
Nematus.4

3.2 Results

We report the translation quality in terms of NIST-
BLEU scores of our models in Table 1 for English-
to-German and Table 2 for English-to-Russian.
Statistical significance on the concatenated test
sets scores is determined via bootstrap resampling
(Koehn, 2004).

Dropout and MAP-L2 improve translation qual-
ity when fine-tuning both separately and in com-
bination. When the two methods are used in com-
bination, the improvements are significant at 5%
for both language pairs, while in isolation dropout
is non-significant and MAP-L2 is only significant
for English-to-Russian. Tuneout does not yield
improvements for English-to-German, in fact it
is significantly worse, but yields a small, non-
significant improvement for English-to-Russian.

In order to obtain a better picture of the train-
ing dynamics, we plot training curves5 for sev-
eral of our English-to-German models in Figure 1.

4 https://github.com/EdinburghNLP/nematus/tree/
tuneout-branch

5 These BLEU scores are computed using Moses
multi-bleu.perl which gives slightly different
results than NIST mteval-v13a.pl that is used for
Table 1.
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Table 1: English-to-German translation BLEU scores
valid test

System tst2010 tst2011 tst2012 tst2013 avg

Out-of-domain only 27.19 29.65 25.78 27.85 27.76
In-domain only 25.95 27.84 23.68 25.83 25.78
Fine-tuning 30.53 32.62 28.86 32.11 31.20
Fine-tuning + dropout 30.63 33.06 28.90 32.02 31.33
Fine-tuning + MAP-L2 30.81 32.87 28.99 31.88 31.25
Fine-tuning + tuneout 30.49 32.07 28.66 31.60 30.78†
Fine-tuning + dropout + MAP-L2 30.80 33.19 29.13 32.13 31.48†
†: different from the fine-tuning baseline at 5% significance.

Table 2: English-to-Russian translation BLEU scores
valid test

System dev2010 tst2011 tst2012 tst2013 avg

Out-of-domain only 15.74 17.48 15.15 17.81 16.81
Fine-tuning 17.47 19.67 17.17 19.18 18.67
Fine-tuning + dropout 17.68 19.96 17.11 19.32 18.80
Fine-tuning + MAP-L2 17.77 19.91 17.34 19.49 18.91†
Fine-tuning + tuneout 17.51 19.72 17.27 19.35 18.78
Fine-tuning + dropout + MAP-L2 17.74 19.68 17.83 19.78 19.10†
†: different from the fine-tuning baseline at 5% significance.

Baseline fine-tuning starts to noticeably overfit be-
tween the second and third epoch (1 epoch ≈ 104

mini-batches), while dropout, MAP-L2 and tune-
out seem to converge without displaying notice-
able overfitting.

In our experiments, all forms of regularization,
including early stopping, have shown to be suc-
cessful at mitigating the effect of overfitting. Still,
our results suggest that there is value in not relying
only on early stopping:

• our results suggest that multiple regularizers
outperform a single one.

• if the amount of in-domain data is very small,
we may want to use all of it for fine-tuning,
and not hold out any for early stopping.

To evaluate different fine-tuning streategies on
varying amounts of in-domain data, we tested fine-
tuning with random samples of in-domain data,
ranging from 10 sentence pairs to the full data
set of 206k sentence pairs. Fine-tuning with low
amounts of training data is of special interest for
online adaptation scenarios where a system is fed
back post-edited translation.6 Results are shown
6 We expect even bigger gains in that scenario because we

would not train on a random sample, but on translations that
are conceivably from the same document.
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Figure 2: English→German test BLEU with fine-
tuning on different in-domain data set size. Base-
line trained on WMT data.
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in Figure 2.
The results show an approximately logarithmic

relation between the size of the in-domain train-
ing set and BLEU. We consider three baseline ap-
proaches: fine-tuning for a fixed number of epochs
(1 or 5), or early stopping. All three baseline ap-
proaches have their disadvantages. Fine-tuning for
1 epoch shows underfitting on small amounts of
data (less than 1,000 sentence pairs); fine-tuning
for 5 epochs overfits on 500-200,000 sentence
pairs. Early stopping is generally a good strategy,
but it requires an in-domain held-out dataset.

On the same amount of data, regularization
(dropout+MAP-L2) leads to performance that is
better (or no worse) than the baseline with only
early stopping. Fine-tuning with regularization is
also more stable, and if we have no access to a
in-domain valdiation set for early stopping, can be
run for a fixed number of epochs with little or no
accuracy loss.

4 Conclusion

We investigated fine-tuning for domain adapta-
tion in neural machine translation with different
amounts of in-domain training data, and strategies
to avoid overfitting. We found that our baseline
that relies only on early stopping has a strong per-
formance, but fine-tuning with recurrent dropout
and with MAP-L2 regularization yield additional
small improvements of the order of 0.3 BLEU
points for both English-to-German and English-to-
Russian, while the improvements in terms of final
translation accuracy of tuneout appear to be less
consistent.

Furthermore, we found that regularization tech-
niques that we considered make training more ro-
bust to overfitting, which is particularly helpful in
scenarios where only small amounts of in-domain
data is available, making early-stopping impracti-
cal as it relies on a sufficiently large in-domain val-
idation set. Given the results of our experiments,
we recommend using both dropout and MAP-L2
regularization for fine-tuning tasks, since they are
easy to implement, efficient, and yield improve-
ments while stabilizing training. We also present
a learning curve that shows a logarithmic relation-
ship between the amount of in-domain training
data and the quality of the adapted system.

Our techniques are not specific to neural ma-
chine translation, and we propose that they could
be also tried for other neural network architectures

and other tasks.
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Abstract

This paper describes an empirical study of
the phrase-based decoding algorithm pro-
posed by Chang and Collins (2017). The
algorithm produces a translation by pro-
cessing the source-language sentence in
strictly left-to-right order, differing from
commonly used approaches that build the
target-language sentence in left-to-right
order. Our results show that the new al-
gorithm is competitive with Moses (Koehn
et al., 2007) in terms of both speed and
BLEU scores.

1 Introduction

Phrase-based models (Koehn et al., 2003; Och
and Ney, 2004) have until recently been a state-
of-the-art method for statistical machine transla-
tion, and Moses (Koehn et al., 2007) is one of
the most used phrase-based translation systems.
Moses uses a beam search decoder based on a dy-
namic programming algorithm that constructs the
target-language sentence from left to right (Koehn
et al., 2003). Neural machine translation systems
(Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014), which have given
impressive improvements over phrase-based sys-
tems, also typically use models and decoders that
construct the target-language string in strictly left-
to-right order.

Recently, Chang and Collins (2017) proposed
a phrase-based decoding algorithm that processes
the source-language string in strictly left-to-right
order. Reordering is implemented by maintaining
multiple sub-strings in the target-language, with
phrases being used to extend these sub-strings by
various operations (see Section 2 for a full descrip-
tion). With a fixed distortion limit on reordering,

∗On leave from Columbia University.

the time complexity of the algorithm is linear in
terms of sentence length, and is polynomial time
in other factors.

Chang and Collins (2017) present the algorithm
and give a proof of its time complexity, but do not
describe experiments, leaving an open question of
whether the algorithm is useful in practice. This
paper complements the original paper by studying
the algorithm empirically. In addition to an exact
dynamic programming implementation, we study
the use of beam search with the algorithm, and an-
other pruning method that restricts the maximum
number of target-language strings maintained at
any point. The experiments show that the algo-
rithm is competitive with Moses in terms of both
speed and translation quality (BLEU score).

The new decoding algorithm is of interest for
a few reasons. While the experiments in this pa-
per are with phrase-based translation systems, the
method could potentially be extended to neural
translation, for example with an attention-based
model that is in some sense monotonic (left-to-
right). The decoder may be relevant to work on si-
multaneous translation (He et al., 2016). The ideas
may be applicable to string-to-string transduction
problems other than machine translation.

2 A Sketch of the Decoding Algorithm of
Chang and Collins (2017)

This section gives a sketch of the decoding algo-
rithm of Chang and Collins (2017). We first define
the phrase-based decoding problem, and then de-
scribe the algorithm.

2.1 The Phrase-based Decoding Problem

Throughout this paper we will consider the follow-
ing decoding problem. Given a source sentence
x1 . . . xn for n ≥ 1, a phrase p = (s, t, e) speci-
fies a possible translation from xs . . . xt to a string
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Figure 1: Illustrations of how the new algorithm produces the output translation. We note each phrase
that is being added and the operation it takes to generate the next segments of phrase sequence.

of target-language words e = e1 . . . em. We use
s(p), t(p), and e(p) to refer to the three elements
of a phrase p. A derivation is a sequence of L
phrases, p1 . . . pL. The derivation gives a transla-
tion by concatenating the target-language strings
e(p1) . . . e(pL).

We will always assume that x1 = <s>,
the start-of-sentence symbol, and xn = </s>,
the end-of-sentence symbol. The only phrases
covering positions 1 and n are (1, 1,<s>) and
(n, n,</s>).

A derivation p1 . . . pL is valid if each word in
the source sentence is translated exactly once, and
if for i = 2 . . . Lwe have |t(pi−1)+1−s(pi)| ≤ d,
where d is the distortion limit.

The score for any derivation is

f(p1 . . . pL) = λ(e(p1) . . . e(pL)) +

L∑

i=1

κ(pi)

+
L∑

i=2

η × |t(pi−1) + 1− s(pi)|

where the parameter η is the distortion penalty,
λ(e) is a language model score for the word se-
quence e, and κ(p) is the score for phrase p un-
der the phrase-based model. For example under a
bigram language model, we have λ(e1 . . . em) =∑m

i=2 λ(ei|ei−1). where λ(v|u) is the score for bi-
gram (u, v).

The phrase-based decoding problem is to find

argmax
p1...pL∈P

f(p1 . . . pL)

where P is the set of all valid derivations for the
input sentence.

2.2 The Decoding Algorithm

At a high level, the decoding algorithm of Chang
and Collins (2017) differs from the commonly-
used approach of Koehn et al. (2003) in two im-
portant respects:

1. The decoding algorithm proceeds in strictly
left-to-right order in the source sentence.

2. Each sub-derivation (item) in the beam con-
sists of multiple sequences of phrases, instead
of a single sequence.

To be more precise, each sub-derivation in the
decoding algorithm consists of:

1. An integer j specifying the length of the
derivation (i.e., that words x1 . . . xj have
been translated).

2. A set of segments {π1, π2, . . . , πr} where
r ≥ 1. Each segment π is a sequence
of phrases. The segment π1 always has
(1, 1,<s>) as its first element. Each word
x1 . . . xj is translated exactly once in these
segments.

As one example, the sub-derivation
(1, {〈(1, 1,<s>)〉}) is always the initial sub-
derivation, with only the first word x1 be-
ing translated, and with a single segment
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π1 = 〈(1, 1,<s>)〉. A more complex sub-
derivation is

(7, {〈(1, 1,<s>)(2, 3,we must)(4, 4, also)〉,
〈(5, 6, these criticisms)(7, 7, seriously)〉}) (1)

which translates words x1 . . . x7, and has two seg-
ments,

π1 =〈(1, 1,<s>)(2, 3,we must)(4, 4, also)〉
π2 =〈(5, 6, these criticisms)(7, 7, seriously)〉

We now describe how sub-derivations can be
built as the source sentence is processed in left-
to-right order. A derivation (j, {π1 . . . πr}) can be
extended as follows:

1. First select some phrase p = (j + 1, t, e)
where the phrase-based lexicon specifies that
words xj+1 . . . xt can be translated as the En-
glish sequence e = e1 . . . em.

2. Second, extend the derivation using one of
the following operations (we use CONCAT to
denote an operation that concatenates two or
more phrase sequences):

(a) Replace πi for some i ∈ 1 . . . r by
CONCAT(πi, p).

(b) Replace πi for some i ∈ 2 . . . r by
CONCAT(p, πi).

(c) Replace πi, πi′ for integers i 6= i′ by
CONCAT(πi, p, πi′)

(d) Create a new segment πr+1 = 〈p〉.

Figure 1 shows the sequence of steps, and the
resulting sequence of sub-derivations, in the trans-
lation of a German sentence.

A few remarks:
Remark 1. The score for each of the operations

(a)-(d) described above is easily calculated using a
combination of phrase, language model, and dis-
tortion scores.

Remark 2. The distortion limit can be used to
rule out some of the operations (a)-(d) above, de-
pending on the phrase p and the start/end points of
each of the segments π1 . . . πr.

Remark 3. Dynamic programming can be used
with this algorithm. Under a bigram language
model, the dynamic programming state for a sub-
derivation (j, {π1 . . . πr}) records the words and
positions at the start and end of each segment
π1 . . . πr. For example under a bigram language

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8 1e8

Figure 2: The total number of dynamic program-
ming transitions and the sentence length.

model the sub-derivation (7, . . .) in Eq. 1 would
be mapped to the dynamic-programming state
(7, {(1,<s>, 4, also), (5, these, 7, seriously)}). See
Chang and Collins (2017) for more details.

Remark 4. It is simple to use beam search in
conjunction with the algorithm. Different deriva-
tions of the same length j are compared in the
beam. A heuristic—typically a lower-order lan-
guage model—can be used to score the first n− 1
words in each segment π1 · · ·πr: this can be used
as the “future score” for each item in the beam.
This is arguably simpler than the future scores
used in (Koehn et al., 2003), which have to take
into account the fact that different items in the
beam correspond to translations of different sub-
sets of words in the source sentence. In our ap-
proach different derivations of the same length j
have translated the same set of words x1 · · ·xj .
For example in the sub-derivation (7, . . .) given
above (Eq. 1), and given a trigram language
model, the initial bigram these criticisms in π2 is
scored as pu(these) × pb(criticisms|these) where
pu and pb are unigram and bigram language mod-
els.

3 Experiments

The original motivation for Chang and Collins
(2017) was to develop a dynamic-programming al-
gorithm for phrase-based decoding that for a fixed
distortion limit d was polynomial time in other
factors: the resulting dynamic programming algo-
rithm is O(nd!lhd+1) time, where d is the distor-
tion limit, l is a bound on the number of phrases
starting at any position, and h is related to the
maximum number of different target translations
for any source position. However an open ques-
tion is whether the algorithm is useful in practice
when used in conjunction with beam search. This
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d
SegmentD Segment2 Moses

BLEU time BLEU time BLEU time
cs-en 8 13.671 5m31s 17.42 2m49s 17.56 3m32s
de-en 12 25.89 9m02s 26.69 5m25s 26.69 7m37s
es-en 4 32.02 4m27s 32.01 3m58s 32.03 4m01s
fi-en 8 23.02 5m03s 23.66 3m09s 23.73 3m37s
fr-en 4 31.42 4m58s 31.43 4m23s 31.45 4m20s
it-en 4 28.44 4m26s 28.44 3m57s 28.41 3m36s
nl-en 8 24.96 7m53s 25.13 5m20s 25.16 5m56s
pt-en 4 31.06 4m28s 31.05 4m00s 31.05 3m31s
sv-en 4 31.33 3m58s 31.35 3m30s 31.34 3m02s
vi-en 8 20.482 3m39s 20.96 2m08s 20.95 2m40s

Figure 3: Comparison of beam search under the
new decoding algorithm and the Moses decoder.
We show the BLEU score and the decoding time
of three beam search based decoding methods.

section describes experiments comparing beam
search under the new algorithm to the method of
Koehn et al. (2003). Throughout this section we
refer to the algorithm of Chang and Collins (2017)
as the “new” decoding algorithm.

Data. We use the Europarl parallel corpus (Ver-
sion 7)3 (Koehn, 2005) for all language pairs ex-
cept for Vietnamese-English (vi-en). For Czech-
English (cs-en), we use the Newstest2015 as the
development set and Newstest2016 as the test set.
For European languages other than Czech, we
use the development and test set released for the
Shared Task of WPT 20054. For vi-en, we use the
IWSLT’15 data.

3.1 Search Space with a Bigram Model

We first analyze the properties of the algorithm by
running the exact decoding algorithm with a bi-
gram language model and a fixed distortion limit
of four, with no pruning. In Figure 2, we plot the
number of transitions computed versus sentence
length for translation of 2,000 German sentences
to English. The figure confirms that the search
space grows linearly with the number of words in
the source sentence.

3.2 Beam Search under the New Algorithm

Even though the exact algorithm is linear time in
the input sentence length, other factors (the depen-

1Unable to produce translations for 36 sentences.
2Unable to produce translations for one sentence.
3http://www.statmt.org/europarl/
4ACL 2005 Workshop on Building and Using Parallel

Texts.

# segments # sentences percentage
1 636 34.93%
2 1,136 62.38%
3 49 2.69%

(a) The distribution of the number of segments required for
the optimal solutions. Note that the distortion limit is four.

# segments # sentences percentage
1 119,428 15.97%
2 541,833 72.44%
3 82,869 11.08%
4 3,747 0.50%
5 128 0.02%
6 1 0.00%

(b) The distribution of the number of segments required for
reordering the parsed German sentence.

Figure 4: The number of segments required for
German-to-English translation.

dence on d, l, and h, as described above) make the
exact algorithm too costly to be useful in practice.
We experiment with beam search under the new
algorithm,5 both with and without further pruning
or restriction.

We experimented with a segment constraint on
the new algorithm: more specifically, we describe
experiments with a hard limit r ≤ 2 on the number
of segments π1 . . . πr used in any translation.

Figure 3 shows results using a trigram language
model for the new algorithm with beam search
(SegmentD), the new algorithm with beam search
and a hard limit r ≤ 2 on the number of segments
(Segment2), and Moses. A beam size of 100 is
used with all the algorithms. For each language
pair, we pick the distortion limit that maximizes
the BLEU score for Moses. Moses was used to
train all the translation models. It can be seen that
the Segment2 algorithm gives very similar perfor-
mance to Moses, while SegmentD has inferior per-
formance for languges which require a larger dis-
tortion limit.

3.3 Experiments on the Number of Segments
Required for German-to-English
Translation

Finally, we investigate empirically how many seg-
ments (the maximum value of r) are required for
translation from German to English. In a first ex-
periment, we use the system of Chang and Collins
(2011) to give exact search for German-to-English

5See Section 5.1 in Chang and Collins (2017)
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translation under a trigram language model with a
distortion limit d = 4, and then look at the maxi-
mum value for r for each optimal translation. Out
of 1,821 sentences, 34.9% have a maximum value
of r = 1, 62.4% have r = 2, and 2.69% have
r = 3 (Table 4a). No optimal translations require
a value of r greater than 3. It can be seen that very
few translations require more than 2 segments.

In a second experiment, we take the reordering
system of Collins et al. (2005) and test the maxi-
mum value for r on each sentence to capture the
reordering rules. Table 4b gives the results. It can
be seen that over 99% of sentences require a value
of r = 3 or less, again suggesting that for at least
this language pair, a choice of r = 3 or r = 4 is
large enough to capture the majority of reorderings
(assuming that the rules of Collins et al. (2005) are
comprehensive).

4 Conclusion

The goal of this paper was to understand the em-
pirical performance of a newly proposed decoding
algorithm that operates from left to right on the
source side. We compare our implementation of
the new algorithm with the Moses decoder. The
experimental results demonstrate that the new al-
gorithm combined with beam search and segment-
based pruning is competitive with the Moses de-
coder. Future work should consider integration of
the method with more recent models, in particular
neural translation models.
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Abstract

The performance of Neural Machine Trans-
lation (NMT) models relies heavily on the
availability of sufficient amounts of paral-
lel data, and an efficient and effective way
of leveraging the vastly available amounts
of monolingual data has yet to be found.
We propose to modify the decoder in a
neural sequence-to-sequence model to en-
able multi-task learning for two strongly
related tasks: target-side language model-
ing and translation. The decoder predicts
the next target word through two channels,
a target-side language model on the lowest
layer, and an attentional recurrent model
which is conditioned on the source repre-
sentation. This architecture allows joint
training on both large amounts of mono-
lingual and moderate amounts of bilingual
data to improve NMT performance. Initial
results in the news domain for three lan-
guage pairs show moderate but consistent
improvements over a baseline trained on
bilingual data only.

1 Introduction

In recent years, neural encoder-decoder models
(Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2014) have significantly
advanced the state of the art in NMT, and now con-
sistently outperform Statistical Machine Transla-
tion (SMT) (Bojar et al., 2016). However, their suc-
cess hinges on the availability of sufficient amounts
of parallel data, and contrary to the long line of
research in SMT, there has only been a limited
amount of work on how to effectively and effi-
ciently make use of monolingual data which is
typically amply available. We propose a modi-
fied neural sequence-to-sequence model with atten-

tion (Bahdanau et al., 2014; Luong et al., 2015b)
that uses multi-task learning on the decoder side to
jointly learn two strongly related tasks: target-side
language modeling and translation. Our approach
does not require any pre-translation or pre-training
to learn from monolingual data and thus provides
a principled way to integrate monolingual data re-
sources into NMT training.

2 Related Work

Gülçehre et al. (2015) investigate two ways of inte-
grating a pre-trained neural Language Model (LM)
into a pre-trained NMT system: shallow fusion,
where the LM is used at test time to rescore beam
search hypothesis, requiring no additional fine-
tuning and deep fusion, where hidden states of
NMT decoder and LM are concatenated before
making a prediction for the next word. Both com-
ponents are pre-trained separately and fine-tuned
together.

More recently, Sennrich et al. (2016) have shown
significant improvements by back-translating
target-side monolingual data and using such syn-
thetic data as additional parallel training data. One
downside of this approach is the significantly in-
creased training time, due to training of a model in
the reverse direction and translation of monolingual
data. In contrast, we propose to train NMT mod-
els from scratch on both bilingual and target-side
monolingual data in a multi-task setting.

Our approach aims to exploit the signals from
target-side monolingual data to learn a strong lan-
guage model that supports the decoder in making
translation decisions for the next word. Our ap-
proach further relates to Zhang and Zong (2016),
who investigate multi-task learning for sequence-
to-sequence models by strengthening the encoder
using source-side monolingual data. A shared en-
coder architecture is used to predict both, transla-
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tions of parallel source sentences and permutations
of monolingual source sentences. In this paper we
focus on target-side monolingual data and only up-
date encoder parameters based on existing parallel
data.

In a broader context, multi-task learning has
shown to be effective in the context of sequence-
to-sequence models (Luong et al., 2015a), where
different parts of the network can be shared across
multiple tasks.

3 Neural Machine Translation

We briefly recap the baseline NMT model (Bah-
danau et al., 2014; Luong et al., 2015b) and high-
light architectural differences of our implementa-
tion where necessary.

Given source sentence x = x1, ..., xn and target
sentence y = y1, ..., ym, NMT models p(y|x) as a
target language sequence model, conditioning the
probability of the target word yt on the target his-
tory y1:t−1 and source sentence x. Each xi and yt
are integer ids given by source and target vocabu-
lary mappings, Vsrc,Vtrg, built from the training
data tokens. The target sequence is factorized as:

p(y|x;θ) =
m∏

t=1

p(yt|y1:t−1,x;θ). (1)

The model, parameterized by θ, consists of an en-
coder and a decoder part (Sutskever et al., 2014).

For training set P consisting of parallel sentence
pairs (x,y), we minimize the cross-entropy loss
w.r.t θ:

Lθ =
∑

(x,y)∈P
− log p(y|x;θ). (2)

Encoder Given source sentence x = x1, ..., xn,
the encoder produces a sequence of hidden states
h1 . . .hn through an Recurrent Neural Network
(RNN), such that:

−→
h i = fenc(ESxi,

−→
h i−1), (3)

where h0 = 0, xi ∈ {0, 1}|Vsrc| is the one-hot
encoding of xi, ES ∈ Re×|Vsrc| is a source embed-
ding matrix with embedding size e, and fenc some
non-linear function, such as the Gated Rectified
Unit (GRU) (Cho et al., 2014) or a Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) network.

Attentional Decoder The decoder also consists
of an RNN to predict one target word at a time
through a state vector s:

st = fdec([ETyt−1; s̄t−1], st−1), (4)

where yt−1 ∈ {0, 1}|Vtrg | is the one-hot encod-
ing of the previous target word, ET ∈ Re×|Vtrg |

the target word embedding matrix, fdec an RNN,
st−1 the previous state vector, and s̄t−1 the source-
dependent attentional vector. The initial decoder
hidden state is a non-linear transformation of the
last encoder hidden state: s0 = tanh(Winithn +
binit). The attentional vector s̄t combines the de-
coder state with a context vector ct:

s̄t = tanh(Ws̄[st; ct]), (5)

where ct is a weighted sum of encoder hidden
states: ct =

∑n
i=1 αtihi and brackets denote vec-

tor concatenation.
The attention vector αt is computed by an atten-

tion network (Bahdanau et al., 2014; Luong et al.,
2015b):

αti = softmax(score(st,hi))

score(s,h) = v>a tanh(Wus + Wvh). (6)

The next target word yt is predicted through a soft-
max layer over the attentional vector s̄t:

p(yt|y1:t−1,x;θ) = softmax(Wos̄t + bo) (7)

where Wo maps s̄t to the dimension of the target
vocabulary. Figure 1a depicts this decoder archi-
tecture. Note that source information from c indi-
rectly influences the states s of the decoder RNN
as it takes s̄ as one of its inputs.

4 Incorporating Monolingual Data

4.1 Separate Decoder LM layer

The decoder RNN (Figure 1a) is essentially a target-
side language model, additionally conditioned on
source-side sequences. Such sequences are not
available for monolingual corpora and previous
work has tried to overcome this problem by either
using synthetically generated source sequences or
using a NULL token as the source sequence (Sen-
nrich et al., 2016). As previously shown empiri-
cally, the model tends to “forget” source-side infor-
mation if trained on much more monolingual than
parallel data.
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Figure 1: Illustration of the proposed decoder architecture. (a) Baseline model with a single-layer decoder
RNN and attention (b) Addition of a source-independent LM layer that feeds into the source-dependent
decoder (c) Multi-task setting next-word prediction from both layers; green softmax layers are shared.

In our approach we explicitly define a source-
independent network that only learns from target-
side sequences (a language model), and a source-
dependent network on top, that takes information
from the source sequence into account (a transla-
tion model) through the attentional vector s̄. For-
mally, we modify the decoder RNN of Equation 4
to operate on the outputs an LM layer, which is
independent of any source-side information:

st = fdec([rt; s̄t−1], st−1) (8)

rt = flm(ETyt−1, rt−1) (9)

Figure 1b illustrates this separation graphically.

4.2 Multi-task Learning

The separation from above allows us to train the
target embeddings ET and flm parameters from
monolingual data, concurrent to training the rest of
the network on bilingual data. Let us denote the
source-independent parameters by σ. We connect
a second loss to flm to predict the next target word
also conditioned only on target history informa-
tion (Figure 1c). Parameters for softmax layers are
shared such that predictions of the LM layer are
given by:

p(yt|y1:t−1,σ) = softmax(Wort + bo). (10)

Formally, for a heterogeneous data set Z = {P,M},
consisting of parallel and monolingual sentences

(x,y), (y), we optimize the following joint loss:

Lθ,σ =
1

|P|
∑

(x,y)∈P
− log p(y|x;θ)

+γ
1

|M|
∑

y∈M
− log p(y;σ), (11)

where the source-independent parameters σ ⊂ θ
are updated by gradients from both mono- and par-
allel data examples, and source-dependent param-
eters θ are updated only through gradients from
parallel data examples. γ ≥ 0 is a scalar to influ-
ence the importance of the monolingual loss. In
practice, we construct mini-batches of training ex-
amples, where 50% of the data is parallel, and 50%
of the data is monolingual and set γ = 1.

Since parts of the decoder are shared among both
tasks and we optimize both loss terms concurrently,
we view this approach as an instance of multi-task
learning rather than transfer learning, where opti-
mization is typically carried out sequentially.

5 Experiments

We conduct experiments for three different lan-
guage pairs in the news domain: FR→EN, EN→DE,
and CS→EN.

5.1 Data
For EN→DE and CS→EN we use news-
commentary-v11 as bilingual training data,
NewsCrawl 2015 as monolingual data,
and news development and test sets from
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System Data EN→DE FR→EN CS→EN
baseline 20.3 39.9 63.0 21.7 27.5 59.1 17.0 24.4 65.2
+ LML 20.4 39.8 63.1 21.3 27.2 59.8 16.9 24.4 65.4
+ LML + MTL + mono 21.4 40.8 61.4 22.3 27.7 58.3 17.2 24.7 64.3

Sennrich et al. (2016) + synthetic 24.4 43.4 56.4 27.4 31.5 52.1 21.2 27.5 59.4

ensemble baseline 22.2 41.6 60.6 23.9 29.1 56.4 18.3 25.5 63.0
+ LML 22.4 41.8 60.9 23.5 28.7 57.2 18.3 25.6 63.4
+ LML + MTL + mono 23.6 42.8 58.9 24.2 29.2 55.9 18.8 25.9 62.2

ensemble Sennrich et al. (2016) + synthetic 25.7 44.6 55.0 29.1 32.6 50.3 22.5 28.4 57.8

Table 1: BLEU/METEOR/TER scores on test sets for different language pairs. For BLEU and METEOR
higher is better. For TER lower is better.

WMT2016 (Bojar et al., 2016). For FR→EN
we use newscommentary-v9 as bilingual data,
NewsCrawl 2009-13 as monolingual data, and
news development and test sets from WMT
2014 (Bojar et al., 2014). The number of sentences
for these corpora is shown below:

Data Set bilingual monolingual

EN→DE 242,770 51,315,088
FR→EN 183,251 51,995,709
CS→EN 191,432 27,236,445

5.2 Experimental Setup
We tokenize all data and apply Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015) with 30k merge
operations learned on the joined bilingual data.
Models are evaluated in terms of BLEU (Papineni
et al., 2002), METEOR (Lavie and Denkowski,
2009) and TER (Snover et al., 2006) on tokenized,
cased test data. Decoding is performed using beam
search with a beam of size 5. We implement all
models using MXNet (Chen et al., 2015)1.

Baselines Our baseline model consists of a 1-
layer bi-directional LSTM encoder with an embed-
ding size of 512 and a hidden size of 1024. The
1-layer LSTM decoder with 1024 hidden units uses
an attention network with 256 hidden units. The
model is optimized using Adam (Kingma and Ba,
2014) with a learning rate of 0.0003, no weight
decay and gradient clipping if the norm exceeds
1.0. The batch size is set to 64 and the maximum
sequence length to 100. Dropout (Srivastava et al.,
2014) of 0.3 is applied to source word embed-
dings and outputs of RNN cells. We initialize all

1Baseline systems are equivalent to an earlier version of
Sockeye: https://github.com/awslabs/sockeye

RNN parameters with orthogonal matrices (Saxe
et al., 2013) and the remaining parameters with the
Xavier (Glorot and Bengio, 2010) method. We use
early stopping with respect to perplexity on the de-
velopment set. We train each model configuration
three times with different seeds and report average
metrics across the three runs.

Further, we train models with synthetic parallel
data generated through back-translation (Sennrich
et al., 2016). For this, we first train a baseline
model in the reverse direction and then translate a
random sample of 200k sentences from the mono-
lingual target data. On the combined parallel and
synthetic training data we train a new model with
the same training hyper-parameters as the baseline.

Language Model Layer The architecture with
an additional source-independent LM layer
(+LML) is trained with the same hyper-parameters
and data as the baseline model. The LM RNN
uses a hidden size of 1024. The multi-task sys-
tem (+LML + MTL) is trained on both parallel and
monolingual data. In practice, all +LML +MTL
models converge before seeing the entire mono-
lingual corpus and at about the same number of
updates as the baseline.

6 Results

Table 1 shows results on the held-out test sets.
We observe that a separate LM layer does not sig-
nificantly impact performance across all metrics.
Adding monolingual data in the described multi-
task setting improves translation performance by
a small but consistent margin across all metrics.
Interestingly, the improvements from monolingual
data are additive to the gains from ensembling of
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3 models with different random seeds. However,
the use of synthetic parallel data still outperforms
our approach both in single and ensemble systems.

While separating out a language model allowed
us to carry out multi-task training on mixed data
types, it constrains gradients from monolingual
data examples to a subset of source-independent
network parameters (σ). In contrast, synthetic data
always affects all network parameters (θ) and has
a positive effect despite source sequences being
noisy. We speculate that training from synthetic
source data may also act as a model regularizer.

7 Conclusion

We proposed a way to directly integrate target-side
monolingual data into NMT through multi-task
learning. Our approach avoids costly pre-training
processes and jointly trains on bilingual and mono-
lingual data from scratch. While initial results show
only moderate improvements over the baseline and
fall short against using synthetic parallel data, we
believe there is value in pursuing this line of re-
search further to simplify training procedures.
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Abstract
Semantic role labeling (SRL) is the task of
identifying the predicate-argument struc-
ture of a sentence. It is typically re-
garded as an important step in the stan-
dard NLP pipeline. As the semantic rep-
resentations are closely related to syntac-
tic ones, we exploit syntactic information
in our model. We propose a version of
graph convolutional networks (GCNs), a
recent class of neural networks operating
on graphs, suited to model syntactic de-
pendency graphs. GCNs over syntactic de-
pendency trees are used as sentence en-
coders, producing latent feature represen-
tations of words in a sentence. We ob-
serve that GCN layers are complementary
to LSTM ones: when we stack both GCN
and LSTM layers, we obtain a substantial
improvement over an already state-of-the-
art LSTM SRL model, resulting in the best
reported scores on the standard benchmark
(CoNLL-2009) both for Chinese and En-
glish.

1 Introduction

Semantic role labeling (SRL) (Gildea and Juraf-
sky, 2002) can be informally described as the task
of discovering who did what to whom. For ex-
ample, consider an SRL dependency graph shown
above the sentence in Figure 1. Formally, the task
includes (1) detection of predicates (e.g., makes);
(2) labeling the predicates with a sense from a
sense inventory (e.g., make.01); (3) identifying
and assigning arguments to semantic roles (e.g.,
Sequa is A0, i.e., an agent / ‘doer’ for the corre-
sponding predicate, and engines is A1, i.e., a pa-
tient / ‘an affected entity’). SRL is often regarded

Sequa          makes          and           repairs             jet          engines.

SBJ COORD

OBJ

CONJ NMOD

ROOT

A1

A1
A1

A0

A0

make.01 repair.01 engine.01

Figure 1: An example sentence annotated with se-
mantic (top) and syntactic dependencies (bottom).

as an important step in the standard NLP pipeline,
providing information to downstream tasks such
as information extraction and question answering.

The semantic representations are closely re-
lated to syntactic ones, even though the syntax-
semantics interface is far from trivial (Levin,
1993). For example, one can observe that many
arcs in the syntactic dependency graph (shown in
black below the sentence in Figure 1) are mir-
rored in the semantic dependency graph. Given
these similarities and also because of availability
of accurate syntactic parsers for many languages,
it seems natural to exploit syntactic information
when predicting semantics. Though historically
most SRL approaches did rely on syntax (Thomp-
son et al., 2003; Pradhan et al., 2005; Punyakanok
et al., 2008; Johansson and Nugues, 2008), the last
generation of SRL models put syntax aside in fa-
vor of neural sequence models, namely LSTMs
(Zhou and Xu, 2015; Marcheggiani et al., 2017),
and outperformed syntactically-driven methods on
standard benchmarks. We believe that one of the
reasons for this radical choice is the lack of sim-
ple and effective methods for incorporating syn-
tactic information into sequential neural networks
(namely, at the level of words). In this paper we
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propose one way how to address this limitation.
Specifically, we rely on graph convolutional

networks (GCNs) (Duvenaud et al., 2015; Kipf
and Welling, 2017; Kearnes et al., 2016), a recent
class of multilayer neural networks operating on
graphs. For every node in the graph (in our case
a word in a sentence), GCN encodes relevant in-
formation about its neighborhood as a real-valued
feature vector. GCNs have been studied largely in
the context of undirected unlabeled graphs. We in-
troduce a version of GCNs for modeling syntactic
dependency structures and generally applicable to
labeled directed graphs.

One layer GCN encodes only information about
immediate neighbors and K layers are needed
to encode K-order neighborhoods (i.e., informa-
tion about nodes at most K hops aways). This
contrasts with recurrent and recursive neural net-
works (Elman, 1990; Socher et al., 2013) which, at
least in theory, can capture statistical dependencies
across unbounded paths in a trees or in a sequence.
However, as we will further discuss in Section 3.3,
this is not a serious limitation when GCNs are used
in combination with encoders based on recurrent
networks (LSTMs). When we stack GCNs on top
of LSTM layers, we obtain a substantial improve-
ment over an already state-of-the-art LSTM SRL
model, resulting in the best reported scores on the
standard benchmark (CoNLL-2009), both for En-
glish and Chinese.1

Interestingly, again unlike recursive neural net-
works, GCNs do not constrain the graph to be
a tree. We believe that there are many applica-
tions in NLP, where GCN-based encoders of sen-
tences or even documents can be used to incor-
porate knowledge about linguistic structures (e.g.,
representations of syntax, semantics or discourse).
For example, GCNs can take as input combined
syntactic-semantic graphs (e.g., the entire graph
from Figure 1) and be used within downstream
tasks such as machine translation or question an-
swering. However, we leave this for future work
and here solely focus on SRL.

The contributions of this paper can be summa-
rized as follows:

• we are the first to show that GCNs are effec-
tive for NLP;

• we propose a generalization of GCNs suited

1The code is available at https://github.com/
diegma/neural-dep-srl.

to encoding syntactic information at word
level;

• we propose a GCN-based SRL model and
obtain state-of-the-art results on English and
Chinese portions of the CoNLL-2009 dataset;

• we show that bidirectional LSTMs and
syntax-based GCNs have complementary
modeling power.

2 Graph Convolutional Networks

In this section we describe GCNs of Kipf and
Welling (2017). Please refer to Gilmer et al.
(2017) for a comprehensive overview of GCN ver-
sions.

GCNs are neural networks operating on graphs
and inducing features of nodes (i.e., real-valued
vectors / embeddings) based on properties of their
neighborhoods. In Kipf and Welling (2017), they
were shown to be very effective for the node clas-
sification task: the classifier was estimated jointly
with a GCN, so that the induced node features
were informative for the node classification prob-
lem. Depending on how many layers of convolu-
tion are used, GCNs can capture information only
about immediate neighbors (with one layer of con-
volution) or any nodes at most K hops aways (if
K layers are stacked on top of each other).

More formally, consider an undirected graph
G = (V, E), where V (|V | = n) and E are
sets of nodes and edges, respectively. Kipf and
Welling (2017) assume that edges contain all the
self-loops, i.e., (v, v) 2 E for any v. We can de-
fine a matrix X 2 Rm⇥n with each its column
xv 2 Rm (v 2 V) encoding node features. The
vectors can either encode genuine features (e.g.,
this vector can encode the title of a paper if citation
graphs are considered) or be a one-hot vector. The
node representation, encoding information about
its immediate neighbors, is computed as

hv = ReLU

0
@ X

u2N (v)

(W xu + b)

1
A , (1)

where W 2 Rm⇥m and b 2 Rm are a weight ma-
trix and a bias, respectively; N (v) are neighbors
of v; ReLU is the rectifier linear unit activation
function.2 Note that v 2 N (v) (because of self-
loops), so the input feature representation of v (i.e.
xv) affects its induced representation hv.

2We dropped normalization factors used in Kipf and
Welling (2017), as they are not used in our syntactic GCNs.
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Figure 2: A simplified syntactic GCN (bias terms
and gates are omitted); the syntactic graph of the
sentence is shown with dashed lines at the bottom.
Parameter matrices are sub-indexed with syntactic
functions, and apostrophes (e.g., subj’) signify that
information flows in the direction opposite of the
dependency arcs (i.e., from dependents to heads).

As in standard convolutional networks (LeCun
et al., 2001), by stacking GCN layers one can in-
corporate higher degree neighborhoods:

h(k+1)
v = ReLU

0
@ X

u2N (v)

W (k)h(k)
u + b(k)

1
A

where k denotes the layer number and h
(1)
v = xv.

3 Syntactic GCNs

As syntactic dependency trees are directed and la-
beled (we refer to the dependency labels as syn-
tactic functions), we first need to modify the com-
putation in order to incorporate label information
(Section 3.1). In the subsequent section, we incor-
porate gates in GCNs, so that the model can decide
which edges are more relevant to the task in ques-
tion. Having gates is also important as we rely on
automatically predicted syntactic representations,
and the gates can detect and downweight poten-
tially erroneous edges.

3.1 Incorporating directions and labels
Now, we introduce a generalization of GCNs ap-
propriate for syntactic dependency trees, and in

general, for directed labeled graphs. First note
that there is no reason to assume that information
flows only along the syntactic dependency arcs
(e.g., from makes to Sequa), so we allow it to flow
in the opposite direction as well (i.e., from depen-
dents to heads). We use a graph G = (V, E), where
the edge set contains all pairs of nodes (i.e., words)
adjacent in the dependency tree. In our example,
both (Sequa, makes) and (makes, Sequa) belong
to the edge set. The graph is labeled, and the label
L(u, v) for (u, v) 2 E contains both information
about the syntactic function and indicates whether
the edge is in the same or opposite direction as
the syntactic dependency arc. For example, the la-
bel for (makes, Sequa) is subj, whereas the label
for (Sequa, makes) is subj0, with the apostrophe
indicating that the edge is in the direction oppo-
site to the corresponding syntactic arc. Similarly,
self-loops will have label self . Consequently, we
can simply assume that the GCN parameters are
label-specific, resulting in the following computa-
tion, also illustrated in Figure 2:

h(k+1)
v = ReLU

0
@ X

u2N (v)

W
(k)
L(u,v)h

(k)
u + b

(k)
L(u,v)

1
A .

This model is over-parameterized,3 especially
given that SRL datasets are moderately sized, by
deep learning standards. So instead of learning the
GCN parameters directly, we define them as

W
(k)
L(u,v) = V

(k)
dir(u,v), (2)

where dir(u, v) indicates whether the edge (u, v)
is directed (1) along, (2) in the opposite direction
to the syntactic dependency arc, or (3) is a self-
loop; V

(k)
dir(u,v) 2 Rm⇥m. Our simplification cap-

tures the intuition that information should be prop-
agated differently along edges depending whether
this is a head-to-dependent or dependent-to-head
edge (i.e., along or opposite the corresponding
syntactic arc) and whether it is a self-loop. So we
do not share any parameters between these three
very different edge types. Syntactic functions are
important, but perhaps less crucial, so they are en-
coded only in the feature vectors bL(u,v).

3.2 Edge-wise gating
Uniformly accepting information from all neigh-
boring nodes may not be appropriate for the SRL

3Chinese and English CoNLL-2009 datasets used 41 and
48 different syntactic functions, which would result in having
83 and 97 different matrices in every layer, respectively.
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setting. For example, we see in Figure 1 that many
semantic arcs just mirror their syntactic counter-
parts, so they may need to be up-weighted. More-
over, we rely on automatically predicted syntactic
structures, and, even for English, syntactic parsers
are far from being perfect, especially when used
out-of-domain. It is risky for a downstream ap-
plication to rely on a potentially wrong syntactic
edge, so the corresponding message in the neural
network may need to be down-weighted.

In order to address the above issues, inspired
by recent literature (van den Oord et al., 2016;
Dauphin et al., 2016), we calculate for each edge
node pair a scalar gate of the form

g(k)
u,v = �

⇣
h(k)

u · v̂
(k)
dir(u,v) + b̂

(k)
L(u,v)

⌘
, (3)

where � is the logistic sigmoid function,
v̂

(k)
dir(u,v) 2 Rm and b̂

(k)
L(u,v) 2 R are weights and

a bias for the gate. With this additional gating
mechanism, the final syntactic GCN computation
is formulated as

h(k+1)
v =ReLU(

X

u2N (v)

g(k)
v,u(V

(k)
dir(u,v)h

(k)
u + b

(k)
L(u,v))). (4)

3.3 Complementarity of GCNs and LSTMs
The inability of GCNs to capture dependencies
between nodes far away from each other in the
graph may seem like a serious problem, especially
in the context of SRL: paths between predicates
and arguments often include many dependency
arcs (Roth and Lapata, 2016). However, when
graph convolution is performed on top of LSTM
states (i.e., LSTM states serve as input xv = h

(1)
v

to GCN) rather than static word embeddings, GCN
may not need to capture more than a couple of
hops.

To elaborate on this, let us speculate what role
GCNs would play when used in combinations
with LSTMs, given that LSTMs have already been
shown very effective for SRL (Zhou and Xu, 2015;
Marcheggiani et al., 2017). Though LSTMs are
capable of capturing at least some degree of syn-
tax (Linzen et al., 2016) without explicit syntactic
supervision, SRL datasets are moderately sized,
so LSTM models may still struggle with harder
cases. Typically, harder cases for SRL involve ar-
guments far away from their predicates. In fact,
20% and 30% of arguments are more than 5 to-
kens away from their predicate, in our English and

A1
Classifier

J layers 
BiLSTM

Lane   disputed   those   estimates

�

dobj

nmodnsubj

K layers 
GCN

word
representation

Figure 3: Predicting an argument and its label
with an LSTM + GCN encoder.

Chinese collections, respectively. However, if we
imagine that we can ‘teleport’ even over a sin-
gle (longest) syntactic dependency edge, the ’dis-
tance’ would shrink: only 9% and 13% arguments
will now be more than 5 LSTM steps away (again
for English and Chinese, respectively). GCNs pro-
vide this ‘teleportation’ capability. These observa-
tions suggest that LSTMs and GCNs may be com-
plementary, and we will see that empirical results
support this intuition.

4 Syntax-Aware Neural SRL Encoder

In this work, we build our semantic role la-
beler on top of the syntax-agnostic LSTM-based
SRL model of Marcheggiani et al. (2017), which
already achieves state-of-the-art results on the
CoNLL-2009 English dataset. Following their ap-
proach we employ the same bidirectional (BiL-
STM) encoder and enrich it with a syntactic GCN.

The CoNLL-2009 benchmark assumes that
predicate positions are already marked in the test
set (e.g., we would know that makes, repairs and
engines in Figure 1 are predicates), so no predicate
identification is needed. Also, as we focus here
solely on identifying arguments and labeling them
with semantic roles, for predicate disambiguation
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(i.e., marking makes as make.01) we use of an off-
the-shelf disambiguation model (Roth and Lapata,
2016; Björkelund et al., 2009). As in Marcheg-
giani et al. (2017) and in most previous work, we
process individual predicates in isolation, so for
each predicate, our task reduces to a sequence la-
beling problem. That is, given a predicate (e.g.,
disputed in Figure 3) one needs to identify and la-
bel all its arguments (e.g., label estimates as A1
and label those as ‘NULL’, indicating that those is
not an argument of disputed).

The semantic role labeler we propose is com-
posed of four components (see Figure 3):

• look-ups of word embeddings;

• a BiLSTM encoder that takes as input the
word representation of each word in a sen-
tence;

• a syntax-based GCN encoder that re-encodes
the BiLSTM representation based on the au-
tomatically predicted syntactic structure of
the sentence;

• a role classifier that takes as input the GCN
representation of the candidate argument and
the representation of the predicate to predict
the role associated with the candidate word.

4.1 Word representations
For each word wi in the considered sentence, we
create a sentence-specific word representation xi.
We represent each word w as the concatenation
of four vectors:4 a randomly initialized word em-
bedding xre 2 Rdw , a pre-trained word embed-
ding xpe 2 Rdw estimated on an external text col-
lection, a randomly initialized part-of-speech tag
embedding xpos 2 Rdp and a randomly initial-
ized lemma embedding xle 2 Rdl (active only if
the word is a predicate). The randomly initialized
embeddings xre, xpos, and xle are fine-tuned dur-
ing training, while the pre-trained ones are kept
fixed. The final word representation is given by
x = xre � xpe � xpos � xle, where � represents the
concatenation operator.

4.2 Bidirectional LSTM layer
One of the most popular and effective ways to
represent sequences, such as sentences (Mikolov
et al., 2010), is to use recurrent neural networks

4We drop the index i from the notation for the sake of
brevity.

(RNN) (Elman, 1990). In particular their gated
versions, Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014),
have proven effective in modeling long sequences
(Chiu and Nichols, 2016; Sutskever et al., 2014).

Formally, an LSTM can be defined as a func-
tion LSTM✓(x1:i) that takes as input the sequence
x1:i and returns a hidden state hi 2 Rdh . This
state can be regarded as a representation of the
sentence from the start to the position i, or, in
other words, it encodes the word at position i
along with its left context. However, the right
context is also important, so Bidirectional LSTMs
(Graves, 2008) use two LSTMs: one for the for-
ward pass, and another for the backward pass,
LSTMF and LSTMB , respectively. By con-
catenating the states of both LSTMs, we cre-
ate a complete context-aware representation of
a word BiLSTM(x1:n, i) = LSTMF (x1:i) �
LSTMB(xn:i). We follow Marcheggiani et al.
(2017) and stack J layers of bidirectional LSTMs,
where each layer takes the lower layer as its input.

4.3 Graph convolutional layer

The representation calculated with the BiLSTM
encoder is fed as input to a GCN of the form de-
fined in Equation (4). The neighboring nodes of a
node v, namely N (v), and their relations to v are
predicted by an external syntactic parser.

4.4 Semantic role classifier

The classifier predicts semantic roles of words
given the predicate while relying on word repre-
sentations provided by GCN; we concatenate hid-
den states of the candidate argument word and the
predicate word and use them as input to a classi-
fier (Figure 3, top). The softmax classifier com-
putes the probability of the role (including special
‘NULL’ role):

p(r|ti, tp, l) / exp(Wl,r(ti � tp)), (5)

where ti and tp are representations produced by
the graph convolutional encoder, l is the lemma
of predicate p, and the symbol / signifies pro-
portionality.5 As FitzGerald et al. (2015) and
Marcheggiani et al. (2017), instead of using a fixed
matrix Wl,r or simply assuming that Wl,r = Wr,

5We abuse the notation and refer as p both to the predicate
word and to its position in the sentence.
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Figure 4: F1 as function of word distance. The
distance starts from zero, since nominal predicates
can be arguments of themselves.

we jointly embed the role r and predicate lemma l
using a non-linear transformation:

Wl,r = ReLU(U(ql � qr)), (6)

where U is a parameter matrix, whereas ql 2 Rd0l

and qr 2 Rdr are randomly initialized embed-
dings of predicate lemmas and roles. In this way
each role prediction is predicate-specific, and, at
the same time, we expect to learn a good represen-
tation for roles associated with infrequent predi-
cates. As our training objective we use the cate-
gorical cross-entropy.

5 Experiments

5.1 Datasets and parameters
We tested the proposed SRL model on the English
and Chinese CoNLL-2009 dataset with standard
splits into training, test and development sets. The
predicted POS tags for both languages were pro-
vided by the CoNLL-2009 shared-task organizers.
For the predicate disambiguator we used the ones
from Roth and Lapata (2016) for English and from
Björkelund et al. (2009) for Chinese. We parsed
English sentences with the BIST Parser (Kiper-
wasser and Goldberg, 2016), whereas for Chinese
we used automatically predicted parses provided
by the CoNLL-2009 shared-task organizers.

For English, we used external embeddings of
Dyer et al. (2015), learned using the structured
skip n-gram approach of Ling et al. (2015). For
Chinese we used external embeddings produced
with the neural language model of Bengio et al.
(2003). We used edge dropout in GCN: when

Figure 5: Performance with dependency arcs of
given type dropped, on Chinese development set.

System (English) P R F1

LSTMs 84.3 81.1 82.7
LSTMs + GCNs (K=1) 85.2 81.6 83.3
LSTMs + GCNs (K=2) 84.1 81.4 82.7
LSTMs + GCNs (K=1), no gates 84.7 81.4 83.0

GCNs (no LSTMs), K=1 79.9 70.4 74.9
GCNs (no LSTMs), K=2 83.4 74.6 78.7
GCNs (no LSTMs), K=3 83.6 75.8 79.5
GCNs (no LSTMs), K=4 82.7 76.0 79.2

Table 1: SRL results without predicate disam-
biguation on the English development set.

computing h
(k)
v , we ignore each node v 2 N (v)

with probability �. Adam (Kingma and Ba, 2015)
was used as an optimizer. The hyperparameter
tuning and all model selection were performed on
the English development set; the chosen values are
shown in Appendix.

5.2 Results and discussion

In order to show that GCN layers are effective, we
first compare our model against its version which
lacks GCN layers (i.e. essentially the model of
Marcheggiani et al. (2017)). Importantly, to mea-
sure the genuine contribution of GCNs, we first
tuned this syntax-agnostic model (e.g., the number
of LSTM layers) to get best possible performance
on the development set.6

We compare the syntax-agnostic model with 3
syntax-aware versions: one GCN layer over syn-
tax (K = 1), one layer GCN without gates and
two GCN layers (K = 2). As we rely on the same

6For example, if we would have used only one layer of
LSTMs, gains from using GCNs would be even larger.
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System (Chinese) P R F1

LSTMs 78.3 72.3 75.2
LSTMs + GCNs (K=1) 79.9 74.4 77.1
LSTMs + GCNs (K=2) 78.7 74.0 76.2
LSTMs + GCNs (K=1), no gates 78.2 74.8 76.5

GCNs (no LSTMs), K=1 78.7 58.5 67.1
GCNs (no LSTMs), K=2 79.7 62.7 70.1
GCNs (no LSTMs), K=3 76.8 66.8 71.4
GCNs (no LSTMs), K=4 79.1 63.5 70.4

Table 2: SRL results without predicate disam-
biguation on the Chinese development set.

System P R F1

Lei et al. (2015) (local) - - 86.6
FitzGerald et al. (2015) (local) - - 86.7
Roth and Lapata (2016) (local) 88.1 85.3 86.7
Marcheggiani et al. (2017) (local) 88.7 86.8 87.7
Ours (local) 89.1 86.8 88.0

Björkelund et al. (2010) (global) 88.6 85.2 86.9
FitzGerald et al. (2015) (global) - - 87.3
Foland and Martin (2015) (global) - - 86.0
Swayamdipta et al. (2016) (global) - - 85.0
Roth and Lapata (2016) (global) 90.0 85.5 87.7

FitzGerald et al. (2015) (ensemble) - - 87.7
Roth and Lapata (2016) (ensemble) 90.3 85.7 87.9
Ours (ensemble 3x) 90.5 87.7 89.1

Table 3: Results on the test set for English.

off-the-shelf disambiguator for all versions of the
model, in Table 1 and 2 we report SRL-only scores
(i.e., predicate disambiguation is not evaluated) on
the English and Chinese development sets. For
both datasets, the syntax-aware model with one
GCN layers (K = 1) performs the best, outper-
forming the LSTM version by 1.9% and 0.6% for
Chinese and English, respectively. The reasons
why the improvements on Chinese are much larger
are not entirely clear (e.g., both languages are rela-
tive fixed word order ones, and the syntactic parses
for Chinese are considerably less accurate), this
may be attributed to a higher proportion of long-
distance dependencies between predicates and ar-
guments in Chinese (see Section 3.3). Edge-wise
gating (Section 3.2) also appears important: re-
moving gates leads to a drop of 0.3% F1 for En-
glish and 0.6% F1 for Chinese.

Stacking two GCN layers does not give any ben-
efit. When BiLSTM layers are dropped altogether,
stacking two layers (K = 2) of GCNs greatly im-
proves the performance, resulting in a 3.8% jump
in F1 for English and a 3.0% jump in F1 for Chi-

System P R F1

Zhao et al. (2009) (global) 80.4 75.2 77.7
Björkelund et al. (2009) (global) 82.4 75.1 78.6
Roth and Lapata (2016) (global) 83.2 75.9 79.4
Ours (local) 84.6 80.4 82.5

Table 4: Results on the Chinese test set.

nese. Adding a 3rd layer of GCN (K = 3) further
improves the performance.7 This suggests that ex-
tra GCN layers are effective but largely redundant
with respect to what LSTMs already capture.

In Figure 4, we show the F1 scores results on
the English development set as a function of the
distance, in terms of tokens, between a candidate
argument and its predicate. As expected, GCNs
appear to be more beneficial for long distance de-
pendencies, as shorter ones are already accurately
captured by the LSTM encoder.

We looked closer in contribution of specific de-
pendency relations for Chinese. In order to assess
this without retraining the model multiple times,
we drop all dependencies of a given type at test
time (one type at a time, only for types appear-
ing over 300 times in the development set) and ob-
serve changes in performance. In Figure 5, we see
that the most informative dependency is COMP
(complement). Relative clauses in Chinese are
very frequent and typically marked with particle
Ñ (de). The relative clause will syntactically de-
pend on Ñ as COMP, so COMP encodes impor-
tant information about predicate-argument struc-
ture. These are often long-distance dependencies
and may not be accurately captured by LSTMs.
Although TMP (temporal) dependencies are not as
frequent (⇠2% of all dependencies), they are also
important: temporal information is mirrored in se-
mantic roles.

In order to compare to previous work, in Ta-
ble 3 we report test results on the English in-
domain (WSJ) evaluation data. Our model is lo-
cal, as all the argument detection and labeling de-
cisions are conditionally independent: their inter-
action is captured solely by the LSTM+GCN en-
coder. This makes our model fast and simple,
though, as shown in previous work, global mod-
eling of the structured output is beneficial.8 We
leave this extension for future work. Interestingly,

7Note that GCN layers are computationally cheaper than
LSTM ones, even in our non-optimized implementation.

8As seen in Table 3, labelers of FitzGerald et al. (2015)
and Roth and Lapata (2016) gained 0.6-1.0%.
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System P R F1

Lei et al. (2015) (local) - - 75.6
FitzGerald et al. (2015) (local) - - 75.2
Roth and Lapata (2016) (local) 76.9 73.8 75.3
Marcheggiani et al. (2017) (local) 79.4 76.2 77.7
Ours (local) 78.5 75.9 77.2

Björkelund et al. (2010) (global) 77.9 73.6 75.7
FitzGerald et al. (2015) (global) - - 75.2
Foland and Martin (2015) (global) - - 75.9
Roth and Lapata (2016) (global) 78.6 73.8 76.1

FitzGerald et al. (2015) (ensemble) - - 75.5
Roth and Lapata (2016) (ensemble) 79.7 73.6 76.5
Ours (ensemble 3x) 80.8 77.1 78.9

Table 5: Results on the out-of-domain test set.

we outperform even the best global model and
the best ensemble of global models, without using
global modeling or ensembles. When we create an
ensemble of 3 models with the product-of-expert
combination rule, we improve by 1.2% over the
best previous result, achieving 89.1% F1.9

For Chinese (Table 4), our best model outper-
forms the state-of-the-art model of Roth and Lap-
ata (2016) by even larger margin of 3.1%.

For English, in the CoNLL shared task, systems
are also evaluated on the out-of-domain dataset.
Statistical models are typically less accurate when
they are applied to out-of-domain data. Con-
sequently, the predicted syntax for the out-of-
domain test set is of lower quality, which neg-
atively affects the quality of GCN embeddings.
However, our model works surprisingly well on
out-of-domain data (Table 5), substantially out-
performing all the previous syntax-aware mod-
els. This suggests that our model is fairly robust
to mistakes in syntax. As expected though, our
model does not outperform the syntax-agnostic
model of Marcheggiani et al. (2017).

6 Related Work

Perhaps the earliest methods modeling syntax-
semantics interface with RNNs are due to (Hen-
derson et al., 2008; Titov et al., 2009; Gesmundo
et al., 2009), they used shift-reduce parsers for
joint SRL and syntactic parsing, and relied on
RNNs to model statistical dependencies across
syntactic and semantic parsing actions. A more

9To compare to previous work, we report combined scores
which also include predicate disambiguation. As we use dis-
ambiguators from previous work (see Section 5.1), actual
gains in argument identification and labeling are even larger.

modern (e.g., based on LSTMs) and effective rein-
carnation of this line of research has been pro-
posed in Swayamdipta et al. (2016). Other re-
cent work which considered incorporation of syn-
tactic information in neural SRL models include:
FitzGerald et al. (2015) who use standard syntac-
tic features within an MLP calculating potentials
of a CRF model; Roth and Lapata (2016) who en-
riched standard features for SRL with LSTM rep-
resentations of syntactic paths between arguments
and predicates; Lei et al. (2015) who relied on
low-rank tensor factorizations for modeling syn-
tax. Also Foland and Martin (2015) used (non-
graph) convolutional networks and provided syn-
tactic features as input. A very different line of
research, but with similar goals to ours (i.e. inte-
grating syntax with minimal feature engineering),
used tree kernels (Moschitti et al., 2008).

Beyond SRL, there have been many propos-
als on how to incorporate syntactic information
in RNN models, for example, in the context of
neural machine translation (Eriguchi et al., 2017;
Sennrich and Haddow, 2016). One of the most
popular and attractive approaches is to use tree-
structured recursive neural networks (Socher et al.,
2013; Le and Zuidema, 2014; Dyer et al., 2015),
including stacking them on top of a sequential
BiLSTM (Miwa and Bansal, 2016). An ap-
proach of Mou et al. (2015) to sentiment analysis
and question classification, introduced even before
GCNs became popular in the machine learning
community, is related to graph convolution. How-
ever, it is inherently single-layer and tree-specific,
uses bottom-up computations, does not share pa-
rameters across syntactic functions and does not
use gates. Gates have been previously used in
GCNs (Li et al., 2016) but between GCN layers
rather than for individual edges.

Previous approaches to integrating syntactic in-
formation in neural models are mainly designed
to induce representations of sentences or syntac-
tic constituents. In contrast, the approach we pre-
sented incorporates syntactic information at word
level. This may be attractive from the engineering
perspective, as it can be used, as we have shown,
instead or along with RNN models.

7 Conclusions and Future Work

We demonstrated how GCNs can be used to in-
corporate syntactic information in neural models
and specifically to construct a syntax-aware SRL
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model, resulting in state-of-the-art results for Chi-
nese and English. There are relatively straightfor-
ward steps which can further improve the SRL re-
sults. For example, we relied on labeling argu-
ments independently, whereas using a joint model
is likely to significantly improve the performance.
Also, in this paper we consider the dependency
version of the SRL task, however the model can
be generalized to the span-based version of the
task (i.e. labeling argument spans with roles rather
that syntactic heads of arguments) in a relatively
straightforward fashion.

More generally, given simplicity of GCNs and
their applicability to general graph structures (not
necessarily trees), we believe that there are many
NLP tasks where GCNs can be used to incorporate
linguistic structures (e.g., syntactic and semantic
representations of sentences and discourse parses
or co-reference graphs for documents).
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Abstract

We present a new semantic parsing model
for answering compositional questions on
semi-structured Wikipedia tables. Our
parser is an encoder-decoder neural net-
work with two key technical innovations:
(1) a grammar for the decoder that only
generates well-typed logical forms; and
(2) an entity embedding and linking mod-
ule that identifies entity mentions while
generalizing across tables. We also in-
troduce a novel method for training our
neural model with question-answer super-
vision. On the WIKITABLEQUESTIONS

data set, our parser achieves a state-of-the-
art accuracy of 43.3% for a single model
and 45.9% for a 5-model ensemble, im-
proving on the best prior score of 38.7%
set by a 15-model ensemble. These re-
sults suggest that type constraints and en-
tity linking are valuable components to in-
corporate in neural semantic parsers.

1 Introduction

Semantic parsing is the problem of translating hu-
man language into computer language, and there-
fore is at the heart of natural language understand-
ing. A typical semantic parsing task is question
answering against a database, which is accom-
plished by translating questions into executable
logical forms (i.e., programs) that output their an-
swers. Recent work has shown that recurrent neu-
ral networks can be used for semantic parsing by
encoding the question then predicting each token
of the logical form in sequence (Jia and Liang,
2016; Dong and Lapata, 2016). These approaches,
while effective, have two major limitations. First,
they treat the logical form as an unstructured se-
quence, thereby ignoring type constraints on well-

formed programs. Second, they do not address en-
tity linking, which is a critical subproblem of se-
mantic parsing (Yih et al., 2015).

This paper introduces a novel neural semantic
parsing model that addresses these limitations of
prior work. Our parser uses an encoder-decoder
architecture with two key innovations. First, the
decoder generates from a grammar that guarantees
that generated logical forms are well-typed. This
grammar is automatically induced from typed log-
ical forms, and does not require any manual engi-
neering to produce. Second, the encoder incorpo-
rates an entity linking and embedding module that
enables it to learn to identify which question spans
should be linked to entities. Finally, we also intro-
duce a new approach for training neural semantic
parsers from question-answer supervision.

We evaluate our parser on WIKITABLEQUES-
TIONS, a challenging data set for question answer-
ing against semi-structured Wikipedia tables (Pa-
supat and Liang, 2015). This data set has a broad
variety of entities and relations across different ta-
bles, along with complex questions that necessi-
tate long logical forms. On this data set, our parser
achieves a question answering accuracy of 43.3%
and an ensemble of 5 parsers achieves 45.9%, both
of which outperform the previous state-of-the-art
of 38.7% set by an ensemble of 15 models (Haug
et al., 2017). We further perform several ablation
studies that demonstrate the importance of both
type constraints and entity linking to achieving
high accuracy on this task.

2 Related Work

Semantic parsers vary along a few important di-
mensions:

Formalism Early work on semantic parsing
used lexicalized grammar formalisms such as
Combinatory Categorial Grammar (Zettlemoyer
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and Collins, 2005, 2007; Kwiatkowski et al., 2011,
2013; Krishnamurthy and Mitchell, 2012; Artzi
and Zettlemoyer, 2013) and others (Liang et al.,
2011; Berant et al., 2013; Zhao and Huang, 2015;
Wong and Mooney, 2006, 2007). These for-
malisms have the advantage of only generating
well-typed logical forms, but the disadvantage of
introducing latent syntactic variables that make
learning difficult. Another approach is to treat se-
mantic parsing as a machine translation problem,
where the logical form is linearized then predicted
as an unstructured sequence of tokens (Andreas
et al., 2013). This approach is taken by recent neu-
ral semantic parsers (Jia and Liang, 2016; Dong
and Lapata, 2016; Locascio et al., 2016; Ling
et al., 2016). This approach has the advantage
of predicting the logical form directly from the
question without latent variables, which simpli-
fies learning, but the disadvantage of ignoring type
constraints on logical forms. Our type-constrained
neural semantic parser inherits the advantages of
both approaches: it only generates well-typed log-
ical forms and has no syntactic latent variables as
every logical form has a unique derivation. Recent
work has explored similar ideas to ours in the con-
text of Python code generation (Yin and Neubig,
2017; Rabinovich et al., 2017).

Entity Linking Identifying the entities men-
tioned in a question is a critical subproblem of se-
mantic parsing in broad domains and proper entity
linking can lead to large accuracy improvements
(Yih et al., 2015). However, semantic parsers have
typically ignored this problem by assuming that
entity linking is done beforehand (as the neural
parsers above do) or using a simple parameteri-
zation for the entity linking portion (as the lexical-
ized parsers do). Our parser explicitly includes an
entity linking module that enables it to model the
highly ambiguous and implicit entity mentions in
WIKITABLEQUESTIONS.

Supervision Semantic parsers can be trained
from labeled logical forms (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005) or question-
answer pairs (Liang et al., 2011; Berant et al.,
2013). Question-answer pairs were considered
easier to obtain than labeled logical forms, though
recent work has demonstrated that logical forms
can be collected efficiently and are more effec-
tive (Yih et al., 2016). However, a key advantage
of question-answer pairs is that they are agnos-
tic to the domain representation and logical form

language (e.g., lambda calculus or λ-DCS). This
property is important for problems such as semi-
structured tables where the proper domain repre-
sentation is unclear.

Data Sets We use WIKITABLEQUESTIONS to
evaluate our parser as this data set exhibits both
a broad domain and complex questions. Early
data sets, such as GEOQUERY (Zelle and Mooney,
1996) and ATIS (Dahl et al., 1994), have small
domains with only a handful of different predi-
cates. More recent data sets for question answer-
ing against Freebase have a much broader domain,
but simple questions (Berant et al., 2013; Cai and
Yates, 2013).

3 Model

This section describes our semantic parsing model
and training procedure. For clarity, we describe
the model on WIKITABLEQUESTIONS, though it
is also applicable to other problems. The input
to our model is a natural language question and a
context in which it is to be answered, which in our
task is a table. The model predicts the answer to
the question by semantically parsing it to a logical
form then executing it against the table.

Our model follows an encoder-decoder archi-
tecture using recurrent neural networks with Long
Short Term Memory (LSTM) cells (Hochreiter
and Schmidhuber, 1997). The input question and
table entities are first encoded as vectors that are
then decoded into a logical form (Figure 1). We
make two significant additions to the encoder-
decoder architecture. First, the encoder includes a
special entity embedding and linking module that
produces a link embedding for each question token
that represents the table entities it links to (Section
3.2). Second, the action space of the decoder is de-
fined by a type-constrained grammar which guar-
antees that generated logical forms satisfy type
constraints (Section 3.3).

We train the parser using question-answer pairs
as supervision using an approximation of marginal
loglikelihood based on enumerating logical forms
via dynamic programming on denotations (Pasu-
pat and Liang, 2016) (Section 3.4). This approx-
imation makes it possible to train neural models
with question-answer supervision, which is other-
wise difficult for efficiency and gradient variance
reasons.
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Figure 1: Overview of our semantic parsing model. The encoder performs entity embedding and linking
before encoding the question with a bidirectional LSTM. The decoder predicts a sequence of grammar
rules that generate a well-typed logical form.

3.1 Preliminaries

We follow (Pasupat and Liang, 2015) in using
the same table structure representation and λ-DCS
language for expressing logical forms. In this
representation, tables are expressed as knowledge
graphs over 6 types of entities: cells, cell parts,
rows, columns, numbers and dates. Each entity
also has a name, which is typically a string value
in the table. Our parser uses both the entity names
and the knowledge graph structure to construct
embeddings for each entity.

The logical form language consists of a collec-
tion of named sets and entities, along with oper-
ators on them. The named sets are used to se-
lect table cells, e.g., united states is the set
of cells that contain the text “united states”. The
operators include functions from sets to sets, e.g.,
the next operator maps a row to the next row.
Columns are treated as functions from cells to
their rows, e.g., (country united states)
generates the rows whose country column con-
tains “united states”. Other operators include re-
versing relations (e.g., in order to map rows to
cells in a certain column), relations that interpret
cells as numbers and dates, and set and arithmetic
operations. The language also includes aggrega-
tion and quantification operations such as count
and argmax, along with λ abstractions that can
be used to join binary relations.

Our parser also assigns a type to every λ-DCS
expression, which is used to enforce type con-
straints on generated logical forms. The base
types are cells c, parts p, rows r, numbers i,
and dates d. Columns such as country have
the functional type 〈c, r〉, representing functions

from cells c to rows r. Other operations have
more complex functional types, e.g., reverse
has type 〈〈c, r〉, 〈r, c〉〉, which enables us to write
(reverse country).1 The parser assigns ev-
ery λ-DCS constant a type, then applies standard
programming language type inference algorithms
(Pierce, 2002) to automatically assign types to
larger expressions.

3.2 Encoder

The encoder is a bidirectional LSTM augmented
with an entity embedding and linking module.

Notation. Throughout this section, we denote
entities as e, and their corresponding types as τ(e).
The set of all entities is denoted as E, and the en-
tities with type τ as Eτ . E includes the cells, cell
parts, and columns from the table in addition to
numeric entities detected in the question by NER.
The question is denoted as a sequence of tokens
[q1, ..., qn]. We use vw to denote a learned vec-
tor representation (embedding) of wordw, e.g., vqi
denotes the vector representation of the ith ques-
tion token.

Entity Embedding. The encoder first constructs
an embedding for each entity in the knowledge
graph given its type and position in the graph. Let
W (e) denote the set of words in the name of en-

1Technically, reverse has the parametric polymorphic
type 〈〈α, β〉, 〈β, α〉〉, where α and β are type variables that
can be any type. This type allows reverse to reverse any
function. However, this is a detail that can largely be ig-
nored. We only use parametric polymorphism when typing
logical forms to generate the type-constrained grammar; the
grammar itself does not have type variables, but rather a fixed
number of concrete instances – such as 〈〈c, r〉, 〈r, c〉〉 – of
the above polymorphic type.
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tity e and N(e) the neighbors of entity e in the
knowledge graph. Specifically, the neighbors of a
column are the cells it contains, and the neighbors
of a cell are the columns it belongs to. Each en-
tity’s embedding re is a nonlinear projection of a
type vector vτ(e) and a neighbor vector vN(e):

vN(e) =
1

|N(e)|
∑

e′∈N(e)

1

|W (e′)|
∑

w∈W (e′)

vw

re = tanh
(
Pτvτ(e) + PNvN(e)

)

The type vector vτ(e) is a one-hot vector for τ(e),
with dimension equal to the number of entity types
in the grammar. The neighbor vector vN(e) is sim-
ply an average of the word vectors in the names of
e’s neighbors. Pτ and PN are learned parameter
matrices for combining these two vectors.

Entity Linking. This module generates a link
embedding li for each question token representing
the entities it links to. The first part of this module
generates an entity linking score s(e, i) for each
entity e and token index i:

s(e, i) = max
w∈W (e)

vᵀwvqi + ψᵀφ(e, i)

This score has two terms. The first represents
similarity in word embedding space between the
token and entity name, computed as function of
the embeddings of words in e’s name, W (e), and
the word embedding of the ith token, vqi . The
max-pooling architecture allows each question to-
ken to pick its best match in the entity’s name. The
second term represents a linear classifier with pa-
rameters ψ on features φ(e, i). The feature func-
tion φ includes only a few features: indicators for
exact token and lemma match, edit distance, an
NER tag indicator, and a bias feature. It also in-
cludes “related column” versions of the token and
lemma features that are active when e is a col-
umn and the original feature matches a cell entity
in column e. We found that features were an ef-
fective way to address sparsity in the entity name
tokens, many of which appear too infrequently to
learn embeddings for. We produce an independent
score for each entity and token index even though
we expect entities to link to multi-token spans in
order to avoid the quadratic computational com-
plexity of scoring each span.

Finally, the entity embeddings and linking
scores are combined to produce a link embedding
for each token. The scores s(e, i) are then fed into
a softmax layer over all entities e of the same type,

and the link embedding li is an average of entity
vectors re weighted by the resulting distribution,
then summed over all types. We include a null en-
tity, ∅, in each softmax layer to permit the model
to identify tokens that do not refer to an entity. The
null entity’s embedding is the all-zero vector and
its score s(∅, ·) = 0. Note that the null entity may
still be assigned high probability as the other entity
scores of may be negative. The link embedding `i
for the ith question token is computed as:

p(e|i, τ) =
exp s(e, i)∑

e′∈Eτ∪{∅} exp s(e′, i)

li =
∑

τ

∑

e∈Eτ
rep(e|i, τ)

For WIKITABLEQUESTIONS, we ran the entity
embedding and linking module over every entity.
However, this approach may be prohibitively ex-
pensive in applications with a very large number of
entities. In these cases, our method can be applied
by adding a preliminary filtering step to identify
a subset of entities that may be mentioned in the
question. This filter need not have high precision,
and therefore could rely on simple text overlap or
similarity heuristics. This reduced set of entities
can then be fed into the entity embedding and link-
ing module, which will learn to further prune this
set of candidates.

Bidirectional LSTM. We concatenate the link
embedding li and the word embedding vqi of each
token in the question, and feed them into a bidi-
rectional LSTM:

xi =

[
li
vqi

]

(ofi , fi) = LSTM(fi−1, xi)

(obi , bi) = LSTM(bi+1, xi)

oi =

[
ofi
obi

]

This process produces an encoded vector repre-
sentation of each token oi. The final LSTM hid-
den states fn+1 and b0 are concatenated and used
to initialize the decoder.

3.3 Decoder

The decoder is an LSTM with attention that selects
parsing actions from a grammar over well-typed
logical forms.

1519



Type-Constrained Grammar. The parser
maintains a state at each step of decoding that
consists of a logical form with nonterminals
standing for portions that are yet to be generated.
Each nonterminal is a tuple [τ,Γ] of a type τ and
a scope Γ that contains typed variable bindings,
(x : α) ∈ Γ, where x is a variable name and α is
a type. The scope is used to store and generate the
arguments of lambda expressions. The grammar
consists of a collection of four kinds of production
rules on nonterminals:

1. Application [τ,Γ]→([〈β, τ〉,Γ] [β,Γ])
rewrites a nonterminal of type τ by applying
a function from β to τ to an argument of type
β. We also permit applications with more
than one argument.

2. Constant [τ,Γ]→const where constant
const has type τ . This rule generates
both table-independent operations such as
argmax and table-specific entities such as
united states.

3. Lambda [〈α, τ〉,Γ]→ λx. [τ,Γ ∪ {(x : α)}]
generates a lambda expression where the ar-
gument has type α. x represents a fresh vari-
able name. The right hand side of this rule
extends the scope Γ with a binding for x then
generates an expression of type τ .

4. Variable [τ,Γ]→ x where (x : τ) ∈ Γ.
This rule generates a variable bound in a
previously-generated lambda expression that
is currently in scope.

We instantiate each of the four rules above by
replacing the type variables τ, α, β with concrete
types, producing, e.g., [c,Γ] → ([〈r, c〉,Γ] [r,Γ])
from the application rule. The set of instanti-
ated rules is automatically derived from a cor-
pus of logical forms, which we in turn produce
by running dynamic programming on denotations
(see Section 3.4). Every logical form can be de-
rived in exactly one way using the four kinds of
rules above; this derivation is combined with the
(automatically-assigned) type of each of the log-
ical form’s subexpressions to instantiate the type
variables in each rule. Finally, as a postprocessing
step, we filter out table-dependent rules, such as
those that generate table cells, to produce a table-
independent grammar. The table-dependent rules
are handled specially by the decoder in order to

guarantee that they are only generated when an-
swering questions against the appropriate table.
The table-independent grammar generates well-
typed expressions that include functions such as
next and quantifiers such as argmax; however,
it cannot generate cells, columns, or other table
entities.

The first action of the parser is to predict a
root type for the logical form, and then decoding
proceeds according to the production rules above.
Each time step of decoding fills the leftmost non-
terminal in the logical form, and decoding ter-
minates when no nonterminals remain. Figure 2
shows the sequence of decoder actions used to
generate an example logical form.

Network Architecture. The decoder is an
LSTM that outputs a distribution over grammar
actions using an attention mechanism over the en-
coded question tokens. The decoder also uses a
copy-like mechanism on the entity linking scores
to generate entities. Say that, during the jth time
step, the current nonterminal has type τ . The de-
coder generates a score for each grammar action
whose left-hand side is τ using the following equa-
tions:

(yj , hj) = LSTM(hj−1,
[
gj−1
oj−1

]
) (1)

aj = softmax(OW ayj) (2)

oj = (aj)
TO (3)

sj = W 2
τ relu(W 1

[
yj
oj

]
+ b1) + b2τ (4)

sj(ek) =
∑

i

s(ek, i)aji (5)

pj = softmax(




sj
sj(e1)
sj(e2)
...


) (6)

The input to the LSTM gj−1 is a grammar ac-
tion embedding for the action chosen in previ-
ous time step. g0 is a learned parameter vec-
tor, and h0 is the concatenated final hidden states
of the encoder LSTMs. The matrix O contains
the encoded token vectors o1, ..., , on from the en-
coder. The first three lines above perform a soft-
max attention over O using a learned parameter
matrix W a. The fourth line generates scores sj
for the table-independent grammar rules applica-
ble to type τ using a multilayer perceptron with
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Figure 2: The derivation of a logical form using
the type-constrained grammar. The nonterminals
in the left column have empty scope, and those in
the right column have scope Γ = {(x : r)}

weights W 1,b1,W 2
τ ,b2τ . The fifth line generates a

score for each entity e with type τ by averaging
the entity linking scores with the current attention
aj . Finally, the table-independent and -dependent
scores are concatenated and softmaxed to produce
a probability distribution pj over grammar actions.
If a table-independent action is chosen, gj is a
learned parameter vector for that action. Other-
wise gj = gτ , which is a learned parameter repre-
senting the selection of an entity with type τ .

3.4 DPD Training

Our parser is trained from question-answer pairs,
treating logical forms as a latent variable. We use
an approximate marginal loglikelihood objective
function that first automatically enumerates a set
of correct logical forms for each example, then
trains on these logical forms. This objective sim-
plifies the search problem during training and is
well-suited to training our neural model.

The training data consists of a collection of
n question-answer-table triples, {(qi, ai, T i)}ni=1.
We first run dynamic programming on denotations
(Pasupat and Liang, 2016) on each table T i and
answer ai to generate a set of logical forms ` ∈ Li
that execute to the correct answer. Dynamic pro-
gramming on denotations (DPD) is an automatic
procedure for enumerating logical forms that exe-
cute to produce a particular value; it leverages the
observation that there are fewer denotations than
logical forms to enumerate this set relatively effi-

ciently. However, many of these logical forms are
spurious, in the sense that they do not represent the
question’s meaning. Therefore, the objective must
marginalize over the many logical forms generated
in this fashion:

O(θ) =

n∑

i=1

log
∑

`∈Li
P (`|qi, T i; θ)

We optimize this objective function using
stochastic gradient descent. If |Li| is small, e.g.,
5-10, the gradient of the ith example can be com-
puted exactly by simply replicating the parser’s
network architecture |Li| times, once per logical
form. However, |Li| often contains many thou-
sands of logical forms, which makes the above
computation infeasible. We address this problem
by truncating Li to the m = 100 shortest logical
forms, then using a beam search with a beam of
k = 5 to approximate the sum. Section 4.5 con-
siders the effect of varying the number of logical
forms m in this objective function.

We briefly contrast this approach with two other
commonly-used approaches. The first is a sim-
ilar marginal loglikelihood objective commonly
used in prior semantic parsing work with loglin-
ear models (Liang et al., 2011; Pasupat and Liang,
2015). However, this approach does not precom-
pute correct logical forms. Therefore, computing
its gradient requires running a wide beam search,
generating, e.g., 300 logical forms, executing each
one to identify which are correct, then backprop-
agating through a term for each. The wide beam
is required to find correct logical forms; however,
such a wide beam is prohibitively expensive with
a neural model due to the cost of each backpropa-
gation pass. Another approach is to train the net-
work with REINFORCE (Williams, 1992), which
essentially samples a logical form instead of using
beam search. This approach is known to be diffi-
cult to apply when the space of outputs is large and
the reward signal is sparse, and recent work has
found that maximizing marginal loglikelihood is
more effective in these circumstances (Guu et al.,
2017). Our approach makes it tractable to maxi-
mize marginal loglikelihood with a neural model
by using DPD to enumerate correct logical forms
beforehand. This up-front enumeration, combined
with the local normalization of the neural model,
makes it possible to restrict the beam search to
correct logical forms in the gradient computation,
which enables training with a small beam size.
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4 Evaluation

We evaluate our parser on the WIKITABLEQUES-
TIONS data set by comparing it to prior work and
ablating several components to understand their
contributions.

4.1 Experimental Setup

We used the standard train/test splits of WIK-
ITABLEQUESTIONS. The training set consists of
14,152 examples and the test set consists of 4,344
examples. The training set comes divided into 5
cross-validation folds for development using an
80/20 split. All data sets are constructed so that
the development and test tables are not present
in the training set. We report question answer-
ing accuracy measured using the official evalua-
tion script, which performs some simple normal-
ization of numbers, dates, and strings before com-
paring predictions and answers. When generating
answers from a model’s predictions, we skip logi-
cal forms that do not execute (which may occur for
some baseline models) or answer with the empty
string (which is never correct). All reported ac-
curacy numbers are an average of 5 parsers, each
trained on one training fold, using the respective
development set to perform early stopping.

We trained our parser with 20 epochs of
stochastic gradient descent. We used 200-
dimensional word embeddings for the question
and entity tokens, mapping all tokens that oc-
curred < 3 times in the training questions to UNK.
(We tried using a larger vocabulary that included
frequent tokens in tables, but this caused the
parser to seriously overfit.) The hidden and out-
put dimensions of the forward/backward encoder
LSTMs were set to 100, such that the concatenated
representations were also 200-dimensional. The
decoder LSTM uses 100-dimensional action em-
beddings and has a 200-dimensional hidden state
and output. The action selection MLP has a hidden
layer dimension of 100. We used a dropout proba-
bility of 0.5 on the output of both the encoder and
decoder LSTMs, as well as on the hidden layer
of the action selection MLP. All parameters are
initialized using Glorot initialization (Glorot and
Bengio, 2010). The learning rate for SGD is ini-
tialized to 0.1 with a decay of 0.01. At test time,
we decode with a beam size of 10.

Our model is implemented as a probabilis-
tic neural program (Murray and Krishnamurthy,
2016). This Scala library combines ideas from dy-

namic neural network frameworks (Neubig et al.,
2017) and probabilistic programming (Goodman
and Stuhlmüller, 2014) to simplify the imple-
mentation of complex neural structured prediction
models. This library enables a user to specify the
structure of the model in terms of discrete nonde-
terministic choices – as in probabilistic program-
ming – where a neural network is used to score
each choice. We implement our parser by defining
P (`|q, T ; θ), from which the library automatically
implements both inference and training. In partic-
ular, the beam search and the corresponding back-
propagation bookkeeping to implement the objec-
tive in Section 3.4 are both automatically handled
by the library. Code and supplementary material
for this paper are available at:
http://allenai.org/paper-appendix/emnlp2017-wt/

4.2 Results
Table 1 compares the accuracy of our semantic
parser to prior work on WIKITABLEQUESTIONS.
We distinguish between single models and ensem-
bles, as we expect ensembling to improve accu-
racy, but not all prior work has used it. Prior
work on this data set includes a loglinear semantic
parser (Pasupat and Liang, 2015), that same parser
with a neural, paraphrase-based reranker (Haug
et al., 2017), and a neural programmer that an-
swers questions by predicting a sequence of table
operations (Neelakantan et al., 2017). We find that
our parser outperforms the best prior result on this
data set by 4.6%, despite that prior result using
a 15-model ensemble. An ensemble of 5 parsers
improves accuracy by an additional 2.6% for a
total improvement of 7.2%. This ensemble was
constructed by averaging the logical form proba-
bilities of parsers trained on each of the 5 cross-
validation folds. Note that this ensemble is trained
on the entire training set – the development data
from one fold is training data for the others – so
we therefore cannot report its development accu-
racy. We investigate the sources of this accuracy
improvement in the remainder of this section via
ablation experiments.

4.3 Type Constraints
Our second experiment measures the importance
of type constraints on the decoder by comparing it
to sequence-to-sequence (seq2seq) and sequence-
to-tree (seq2tree) models. The seq2seq model gen-
erates the logical form a token at a time, e.g.,
[(, (,reverse, ...], and has been used in several
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Ensemble
Model Size Dev. Test

Neelakantan et al. (2017) 1 34.1 34.2
Haug et al. (2017) 1 - 34.8
Pasupat and Liang (2015) 1 37.0 37.1
Neelakantan et al. (2017) 15 37.5 37.7
Haug et al. (2017) 15 - 38.7
Our Parser 1 42.7 43.3
Our Parser 5 - 45.9

Table 1: Development and test set accuracy of our
semantic parser compared to prior work on WIK-
ITABLEQUESTIONS.

recent neural semantic parsers (Jia and Liang,
2016; Dong and Lapata, 2016). The seq2tree
model improves on the seq2seq model by includ-
ing an action for generating matched parenthe-
ses, then recursively generating the subtree within
(Dong and Lapata, 2016). These baseline models
use the same network architecture (including en-
tity embedding and linking) and training regime
as our parser, but assign every constant the same
type and have a different grammar in the decoder.
These models were implemented by preprocessing
logical forms and applying a different type system.

Table 2 compares the accuracy of our parser to
both the seq2seq and seq2tree baselines. Both of
these models perform considerably worse than our
parser, demonstrating the importance of type con-
straints during decoding. Interestingly, we found
that both baselines typically generate well-formed
logical forms: only 7.4% of seq2seq and 6.6% of
seq2tree’s predicted logical forms failed to exe-
cute. Type constraints prevent these errors from
occurring in our parser, though the relatively small
number of such errors does not does not seem to
fully explain the 9% accuracy improvement. We
hypothesize that the additional improvement oc-
curs because type constraints also increase the ef-
fective capacity of the model, as both the seq2seq
and seq2tree models must use some of their capac-
ity to learn the type constraints on logical forms.

4.4 Entity Embedding and Linking

Our next experiment measures the contribution of
the entity embedding and linking module. We
trained several ablated versions of our parser, re-
moving both the embedding similarity and featur-
ized classifier from the entity linking module. Ta-
ble 3 shows the accuracy of the resulting models.

Model Dev. Accuracy

seq2seq 31.3
seq2tree 31.6
Our Parser 42.7

Table 2: Development accuracy of our seman-
tic parser compared to sequence-to-sequence and
sequence-to-tree models.

Model Dev. Accuracy

Full model 42.7
token features, no similarity 28.1
all features, no similarity 37.8
similarity only, no features 27.5

Table 3: Development accuracy of ablated parser
variants trained without parts of the entity linking
module.

The results demonstrate that the entity linking fea-
tures are important, particularly the more complex
features beyond simple token matching. In our ex-
perience, the “related column” features are espe-
cially important for this data set, as columns that
appear in the logical form are often not mentioned
in the text, but rather implied by a mention of a
cell from the column. Embedding similarity alone
is not very effective, but it does improve accuracy
when combined with the featurized classifier. We
found that word embeddings enabled the parser to
overfit, which may be due to the relatively small
size of the training set, or because we did not use
pretrained embeddings. Incorporating pretrained
embeddings is an area for future work.

We also examined the effect of the entity em-
beddings computed using each entity’s knowledge
graph context by replacing them with one-hot vec-
tors for the entity’s type. The accuracy of this
parser dropped from 42.7% to 41.8%, demonstrat-
ing that the knowledge graph embeddings help.

4.5 DPD Training

Our final experiment examines the impact on ac-
curacy of varying the number of logical forms m
used when training with dynamic programming on
denotations. Table 4 shows the development ac-
curacy of several parsers trained with varying m.
These results demonstrate that using more logical
forms generally leads to higher accuracy.
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# of logical forms 1 5 10 50 100
Dev. Accuracy 39.7 41.9 41.6 43.1 42.7

Table 4: Development accuracy of our semantic
parser when trained with varying numbers of log-
ical forms produced by dynamic programming on
denotations.

4.6 Error Analysis

To better understand the mistakes made by our
system, we analyzed a randomly selected set of
100 questions that were answered incorrectly. We
identified three major classes of error:

Parser errors (41%): These are examples
where a correct logical form is available, but the
parser does not select it. A large number of these
errors (15%) occur on questions that require se-
lecting an answer from a given list of options, as
in Who had more silvers, Colombia or The Ba-
hamas? In such cases, the type of the predicted
answer is often wrong. Another common subclass
is entity linking errors due to missing background
knowledge (13%), e.g., understanding that largest
implicitly refers to the Area column.

Representation failures (25%): The knowl-
edge graph representation makes certain assump-
tions about the table structure and cell values
which are sometimes wrong. One common prob-
lem is that the graph lacks some cell parts neces-
sary to answer the question (15%). For example,
answering a question asking for a state may re-
quire splitting cell values in the Location column
into city and state names. Another common prob-
lem is unusual table structures (10%), such as a
table listing the number of Olympic medals won
by each country that has a final row for the to-
tals. These structures often cause quantifiers such
as argmax to select the wrong row.

Unsupported operations (11%): These are ex-
amples where the logical form language lacks a
necessary function. Examples of missing func-
tions are finding consecutive sets of values, com-
puting percentages and performing string opera-
tions on cell values.

5 Conclusion

We present a new semantic parsing model for
answering compositional questions against semi-
structured Wikipedia tables. Our semantic parser

extends recent neural semantic parsers by enforc-
ing type constraints during logical form genera-
tion, and by including an explicit entity embed-
ding and linking module that enables it to iden-
tify entity mentions while generalizing across ta-
bles. An evaluation on WIKITABLEQUESTIONS

demonstrates that our parser achieves state-of-the-
art results, and furthermore that both type con-
straints and entity linking make significant contri-
butions to accuracy. Analyzing the errors made by
our parser suggests that improving entity linking
and using the table structure are two directions for
future work.
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Abstract

Natural language constitutes a predomi-
nant medium for much of human learn-
ing and pedagogy. We consider the prob-
lem of concept learning from natural lan-
guage explanations, and a small number
of labeled examples of the concept. For
example, in learning the concept of a phish-
ing email, one might say ‘this is a phishing
email because it asks for your bank account
number’. Solving this problem involves
both learning to interpret open-ended nat-
ural language statements, as well as learn-
ing the concept itself. We present a joint
model for (1) language interpretation (se-
mantic parsing) and (2) concept learning
(classification) that does not require label-
ing statements with logical forms. Instead,
the model prefers discriminative interpre-
tations of statements in context of observ-
able features of the data as a weak signal
for parsing. On a dataset of email-related
concepts, this approach yields across-the-
board improvements in classification per-
formance, with a 30% relative improve-
ment in F1 score over competitive classifi-
cation methods in the low data regime.

1 Introduction

The ability to automatically learn concepts1 from
examples is a core cognitive ability, with applica-
tions across diverse domains. Examples of such
concepts include the concept of a ‘negative review’
in product reviews, the concept of ‘check’ over
the domain of game states in chess, the concept of
‘fraud’ in credit history analysis, etc. Concept learn-
ing is generally approached using classification

1where a concept is any Boolean function on some domain
of instances.

Figure 1: Examples of concepts explained using
natural language statements.

methods that can automatically leverage regulari-
ties in large amounts of labeled training data. How-
ever, there are two shortcomings of this paradigm.
First, labeling large amounts of data is unnatural
compared to how a person might teach another per-
son (e.g., a human secretary) in a similar situation.
For example, for identifying emails about postdoc
positions, a university professor might say ‘These
inquiries usually seek a postdoc opportunity and
include a CV’, rather than label scores of examples
of such emails. Second, acquiring large quanti-
ties of labeled data may be infeasible because of
a long tail of concepts that are highly domain or
user specific. For our example of a busy profes-
sor, it might be relevant to teach concepts such as
‘postdoc seeking emails’, ‘course related questions
from students’, etc. to an email assistant in order
to better manage her/his inbox. However, these
concepts might be irrelevant to a general user.

On the other hand, humans can efficiently learn
about new concepts and phenomena through lan-
guage. In fact, verbal and written language form the
basis for much of human learning and pedagogy, as
reflected in text-books, lectures and student-teacher
dialogues. Natural language explanations can be
a potent mode of supervision, and can alleviate
issues of data sparsity by directly encoding rele-
vant knowledge about concepts. Figure 1 shows
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Figure 2: Schematic representation of approach

examples of concepts explained using natural lan-
guage. In general, natural language can subsume
several modes of supervision: instance labeling
(e.g., ‘This email is spam’), feature labeling (e.g.,
‘The word ‘Viagra’ indicates spam’), model ex-
pectations (‘Spam emails rarely come from edu
extensions’), etc. However, here we focus on the
ability of natural language to express rich and com-
positional features for characterizing concepts.

In this paper, we address the task of learning
concepts from natural language statements and a
small number of labeled examples of the concept.
Figure 2 summarizes the outline of our approach.
We map statements to logical interpretations, which
can be evaluated in context of new instances. In
doing this, each statement s effectively acts as a
binary feature function {z = fs(x) ∈ {0, 1}} that
fires when the interpretation of a statement s is true
for an instance x. The crux of our approach is that
correct interpretations of natural language explana-
tions are more likely to be useful in discriminating
concepts, and this observation can be used to guide
both semantic interpretation and concept learning2.

In Section 3, we describe our probabilistic latent
variable formulation that learns a semantic parser
and a concept classifier from labeled examples of
the concept. The latent variables correspond to
evaluations of natural language statements for dif-
ferent instances, and training proceeds via a gener-
alized EM procedure that iteratively (1) estimates
evaluations of explanations (marginalizing over all

2e.g., a parser may associate multiple incorrect
interpretations with the statement in Figure 2 (like
stringMatch(attachment stringVal (‘usually’))), which
are unlikely to help in discriminating instances of the concept.

interpretations), and (2) updates the classification
and semantic parsing models. The inputs to the
method consist of a small number of labeled ex-
amples and non-examples of a concept, natural
language statements explaining the concept, and
a domain specific lexicon. The method does not
require labeling sentences with logical forms.

For our empirical evaluation, we focus on per-
sonal emails, a practical example of a domain
where target concepts are often highly individu-
alized and labeled data is scarce. The contributions
of this work are:
• We introduce the problem of concept learning

from natural language. We also collect a corpus
of emails about common email concepts, along
with statements from human users explaining
these concepts.

• We provide a method for concept learning and
language understanding that can be trained from
a small number of labeled concept instances.
Thus, we extend supervised semantic parsing by
learning from a weaker form of supervision than
has previously been explored.

• We demonstrate that for small labeled data, using
natural language statements can achieve substan-
tial gains in classification accuracy.

2 Related work

Concept learning from labeled examples has been a
dominant focus of research in supervised learning
(Caruana et al., 2008). Notable approaches such
as Generalized Expectation (Mann and McCallum,
2010) and Posterior Regularization (Ganchev et al.,
2010) have explored integration of manually pro-
vided ‘side-information’ (feature and label con-
straints) to guide machine learning models. Ear-
lier work on Explanation-based learning (Mitchell
et al., 1986; DeJong and Mooney, 1986) leverages
structured knowledge to ‘explain’ why an exam-
ple belongs to a concept. Recent work by Lake
et al. (2015) explores visual concept learning from
few examples, and presents encouraging results
for one-shot learning by learning representations
over Bayesian programs. However, none of these
address the issue of learning from natural language.

Semantic interpretation of language has been
explored in diverse domains. While semantic
parsers have traditionally relied on labeled datasets
of statements paired with labeled logical forms
(Zettlemoyer and Collins, 2005), recent approaches
have focused on training semantic parsers from

1528



denotations of logical forms, rather than logical
forms themselves (Krishnamurthy and Mitchell,
2012; Berant et al., 2013). Our work extends this
paradigm by attempting to learn from still weaker
signal, where denotations (evaluations) of logical
forms too are not directly observed. Similar to
our work, previous approaches have used different
kinds of external-world signals to guide semantic
interpretation (Liang et al., 2009; Branavan et al.,
2009). Natural instructions have been studied in
game playing frameworks (Branavan et al., 2012;
Eisenstein et al., 2009). Our work is also closely
related to work by Goldwasser and Roth (2014);
Clarke et al. (2010), who also train semantic parsers
in weakly supervised contexts, where language in-
terpretation is integrated in real-world tasks. The
general idea of learning through human interactions
has previously been explored in settings such as be-
havioral programming (Harel et al., 2012), natural
language programming (Biermann, 1983), learning
by instruction (Azaria et al., 2016), etc. To the
best of our knowledge, this work is the first to use
semantic interpretation to guide concept learning.

3 Method

We consider concept learning problems in which
the goal is to approximate an unknown classi-
fication function f : X → Y where Y =
{0, 1}. The input to our learning algorithm con-
sists of a set of labeled training examples T :=
{(x1, y1), . . . , (xm, ym)}, along with a set of nat-
ural language statements S := {s1 . . . sn} about
the concept. Our aim is to leverage statements in
S to learn a better classifier for the concept. Our
training data does not contain any other form of
supervision (such as logical forms).

Figure 3: Our data consist of instances xi with
binary labels yi and statements s1 . . . sn about a
concept. zij denotes whether the statement sj ap-
plies to instance xi, and is not observed in the data.

We assume that each statement sj defines some
Boolean property over the instances X; that is,

statement sj should be interpreted as defining a
predicate lj : X → {0, 1}. We augment the repre-
sentation of each instance, xi, with a feature vec-
tor zi, that encodes the information contained in
S. The individual elements of this feature vec-
tor, zij ∈ {0, 1}, denote whether the statement sj
applies to instance xi (see Figure 3). In the gen-
eral case, the evaluation values zi’s are not directly
observed. These are obtained by parsing each state-
ment sj into a logical expression lj : X → {0, 1}
which can be evaluated for an instance xi to obtain
zij = JljKxi . Details of this evaluation are given in
Section 3.4.

In this paper, we jointly learn a classifier and
a semantic parser while treating z’s as latent vari-
ables. For training, we maximize the conditional
log likelihood of the observed data. Let us consider
the log likelihood for a single data instance (ignor-
ing the subscript i) for now. Since the evaluations z
of natural statements for any context are latent, we
marginalize over these. Using Jensen’s inequality,
any distribution q over the latent variables provides
a lower-bound on the data log-likelihood:

log p(y | x,S) = log
∑

z

p(y, z | x,S)

≥
∑

z

q(z) log
p(y, z | x,S)

q(z)

=
∑

z

q(z)
(
log pθc(y | z, x)︸ ︷︷ ︸

classification

+ log pθp(z | x,S)︸ ︷︷ ︸
parsing

)

+Hq
(1)

Here,Hq is the entropy term for the distribution q.

3.1 Coupling parsing and classification:

In Equation 1, we observe that the data likelihood
decouples into the log probability of observing the
concept labels pθc(yi | z, x) conditioned on the
statement evaluations and the log probability of the
latent statement evaluations pθp(z | x,S). In par-
ticular, the first term can be naturally parametrized
by a discriminative classifier such as a loglinear
model (with associated parameters θc). We provide
more details in Section 3.3.

On the other hand, the probability of the latent
statement evaluation values z can be parametrized
using a probabilistic semantic parsing model (with
associated parameters θp). The second term de-
couples over evaluations of individual statements
(log pθp(z | x,S) =

∑
j log pθp(zj | x, sj)). In
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turn, since we never observe the correct interpre-
tation l for any statement, but only model its eval-
uation zj , we marginalize over all interpretations
whose evaluations in a context x matches zj (simi-
lar to Liang et al. (2011)).

log pθp(zj | x, sj) = log
∑

l:JlKx=zj
pθp(l | sj) (2)

Following recent work in semantic parsing (Liang
and Potts, 2015; Krishnamurthy and Mitchell,
2012), we use a log-linear model over logical forms:

pθp(l | s) ∝ exp(θp
Tφ(s, l)) (3)

where φ(s, l) ∈ Rd is a feature vector over state-
ments s and logical interpretations l.

3.2 Learning:
In Equation 1, q(z) denotes a distribution over
evaluation values of statements; whereas θc and θp
denote the model parameters for the classifier and
semantic parser. The learning algorithm consists
of an iterative generalized EM procedure, which
can be interpreted as a block-coordinate ascent in
the estimates of statement evaluations q(z) and the
model parameters θc and θp.

E-step: In the E-step, we update our estimates of
evaluation variables (z). We make a mean-field ap-
proximation by assuming that the joint distribution
over evaluations decouples as q(z) =

∏
qj(zj).

Then maximizing the lower bound in Equation 1 in
terms of qj leads to the following update:

qj(zj) ∝ exp
(

E
j′ 6=j

[log pθc(z|x)]+log pθp(zj |x, sj)
)

(4)
The first term in the update prefers values of an
evaluation variable that are more discriminative
on average (when values of other statements are
marginalized out). The second term favours values
of the evaluation variable that conforms with the
most likely interpretations of the corresponding
statement (sj) by the semantic parser. Thus, in the
E-step, we upweight evaluations of statements that
are both discriminative, as well as supported by
interpretations from the semantic parser.

M-step: In the M-step, we update the model param-
eters to maximize the lower bound in Equation 1.
This corresponds to independently optimizing the
log likelihoods for the classification model and

the semantic parser, based on current estimates of
qj(zj)’s of the statement evaluations. The entropy
term Hq is constant from the perspective of model
parameters, and is not relevant for the optimiza-
tion. In particular, the semantic parser is updated
to agree with evaluations of natural language state-
ments that are discriminative. At the same time,
the classification model is updated to fit evalua-
tions that are supported by interpretations from the
semantic parser.

We now describe the M-step updates for the log-
linear semantic parser with parameters, θp. The
updates for the classifier parameters, θc, depend
on the form of the classification model, and are
described in Section 3.3. For clarity, we focus on
updates corresponding to a particular statement sj
from the training dataset. From Equations 1, 2 and
3, the objective for the semantic parser is given by:

`j(θp) =
∑

i

∑

z∈{0,1}
q(zij) log

∑
l:JlKxi

=z

exp(θp
Tφ(sj , l))

∑
l

exp(θp
Tφ(sj , l))

(5)

Semantic parsers are usually optimized using gra-
dient updates. Here, the gradient is:

∇`j(θp) =
∑

i,z,l

q(zij)pθp(l | s)
pθp(zij 6= z|xi, s)
pθp(zij = z|xi, s)

φ(sj , l)

(6)

3.3 Classification models
The model and learning procedure described in Sec-
tions 3.1 and 3.2 is agnostic to the choice of the
classification model (with parameters θc). For this
work, we experimented with a logistic classifier
(LR) and a Naive Bayes model (NB). We briefly
describe these here:
Logistic Regression (LR): The form of the logis-
tic function log p(y|z) = − log(1 + exp(-θTc z y))
means that the likelihood does not decouple for
individual components in z. Hence, in the E-step,
the expectation in Equation 4 cannot be computed
analytically. Instead, we estimate this by drawing
Bernoulli samples for individual zj’s using previ-
ous estimates of qj(zj). In the M-step, we update
classification parameters θc using stochastic gradi-
ent updates, while again sampling individual zj’s.
Naive Bayes (NB): The likelihood for this model
is p(y, z) =

∏
j θ

zj
cy(1− θcy)1−zj . In this case, the

individual components of z decouple in the log like-
lihood, leading to simple updates in both the E and
M steps. While this is not a conditional likelihood
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Predicate Description and evaluation
stringVal Returns string value corresponding to a text span in the statement
getPhraseMention Looks for matching tokens or phrases in a target text, and return true if an exact match is found. e.g.,

The subject contains the word postdoc→ getPhraseMention(subject,stringVal(’postdoc’))

getPhrasesLike Uses an alignment based Textual Entailment (RTE) model to find the closest semantic match
for a phrase in a text. Uses distributional semantics to identify semantically similar words.
Returns true if a match is found. e.g., The emails often want me to buy something →
getPhrasesLike(email,stringVal(‘buy something’))

getSemanticCategory Looks for occurrences of pre-specified semantic categories in a target text (identified with Stanford
CoreNLP’s expanded NER tagger), and returns true if a match is found. e.g., these emails often
have contain prices and quotes→ getSemanticCategory(body, MONEY)

stringMatch Returns true if one string value contains another. e.g., Spam emails are rarely
from a yahoo or gmail address → not( or(stringMatch(sender, stringVal(‘yahoo’)),

stringMatch(sender, stringVal(‘gmail’))))

stringEquals Returns true if two string values are equal
or/ and/ not Boolean predicates with usual interpretations
beginWith/endWith Return true if a target text contains a phrase, a similar phrase, or a semantic category at its

beginning/end. e.g., The emails often mention a phone number at the end → endWith(body,

NUMBER)

merge Combines multiple elements into a list. e.g., These emails often refer to problems like baldness and
aging. → getPhrasesLike(email, merge(stringVal(‘baldness’), stringVal(‘aging’)))

before Returns true if there is an instance of one type preceding an instance of another type in a text
length Lengths of lists or text fields (in number of words)
≥, equals Usual arithmetical comparators
unknown Return false by default. Used to deal with statements that cannot be reasonably expressed using

predicates in the language. e.g., These emails are from weird addresses. → unknown

Table 1: Predicates in logical language used by our semantic parser for learning of email based concepts.

(as expected in Section 3.1), in our experiments
we found that the NB objective to be empirically
effective with our approach.

3.4 Semantic Parsing details

Semantic parsing refers to mapping a sentence s
like ‘The subject contains the word postdoc’ to a
logical form l like getPhraseMention(subject,

stringVal(‘postdoc’)). Logical forms can
be evaluated in a context x (here, an email) to
yield some meaningful output JlKx (whether the
statement is true for an email). The predicates
(such as stringVal) and constants (such as
subject) come from a pre-specified logical
language. Since our focus in this work is concepts
about emails, we specify a logical language that
is expressive enough to be useful for concept
learning in this domain. Table 1 lists the predicates
in our logical language along with descriptions of
their evaluation, and some illustrative examples
showing how they can represent the meaning of
natural statements3. Note that this logical language
can express compositional meanings. e.g., ‘These
inquiries will usually seek a postdoc opportunity

3We include a special predicate (unknown) to label state-
ments whose meanings go beyond our logical language (last
row in Table 1), essentially ignoring them. Such statements
compose about 25% of our data. An agent should ideally be
able to ask a user about unfamiliar concepts such as ‘weird
email addresses’ that occur in explanations. See Section 6.

and include a CV’ can be expressed as and

(getPhrasesLike(email, stringVal(‘seek

postdoc opportunity’)), (stringMatch

attachment (stringVal‘CV’))). The evalua-
tions of some predicates uses NLP tools that go
beyond exact keyword matching. In Section 5, we
show that it is language understanding (semantic
parsing), rather than these resources, which
enables learning from natural explanations.

Semantic parsers involve grammars containing
mappings from words to symbols in the logical lan-
guage, as well as coarse syntactic rules. The gram-
mar specifies the possible set of logical interpreta-
tions that can be associated with a natural language
sentence. For this work, we use CCG based seman-
tic parsing, a popular semantic parsing approach
(Zettlemoyer and Collins, 2005; Artzi et al., 2015)
that couples syntax with semantics. For the CCG
grammar, we manually compile a domain lexicon
containing a list of trigger words mapped to their
syntactic categories and associated logical predi-
cates. e.g. {‘subject’, NP, subject}. We then
use the PAL lexicon induction algorithm (Krish-
namurthy, 2016) to expand the lexicon by adding
automatically generated entries. For training the
parser, we follow the feature set from (Zettlemoyer
and Collins, 2007), consisting of indicator features
for lexicon entries and rule applications that fire for
a given parse of a logical form. We also include
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string based features denoting the number of words
in a string span, and whether a string spans occur at
the beginning or end of the utterance. For retriev-
ing the best parses for a statement, we use beam
search with a beam size of 500.

While we have chosen a particular instantia-
tion of a semantic parsing formalism, our learning
approach is independent of the semantic parsing
framework in principle, and only assumes a log-
linear parametrization over logical interpretations
of sentences. Thus, while we present results for
a particular parsing framework and lexicon, the
method may conceptually extend to other parsing
formalisms such as DCS (Liang et al., 2011).

4 Data

We created a dataset of 1,030 emails paired with
235 natural language statements made by human
users in the process of teaching a set of seven con-
cepts. The dataset was collected using the Amazon
Mechanical Turk crowdsourcing platform. We de-
ployed two tasks: (i) a Generation task requiring
workers to create original emails, and (ii) a Teach-
ing task requiring workers to write statements that
characterize a concept. Below, we describe the data
and the two tasks in more detail.

We create an email corpus, rather than use an
existing corpus such as Enron, since we wanted
diverse examples representative of everyday con-
cepts that most people would be able to understand
as well as teach to a computer. Much of the En-
ron corpus is highly specific and contextualized,
making it difficult to teach for an outsider.

The Generation task consisted of a web-page
resembling a traditional email composition form
(with fields: recipient, subject, body, attachment),
requiring workers to compose emails in a grounded
setting. For this task, we recruited 146 workers
residing in the United States. The workers were
presented with each of the seven concepts in a se-
quence, where each concept was represented by
a short prompt encouraging workers to imagine a
scenario (e.g., a boss writing a request to an em-
ployee) and write a hypothetical email. See Table 2
for details of email concepts and corresponding
prompts. Workers were instructed to be realistic
(e.g., to include an attachment if an email is likely
to have an attachment in reality), but also creative
(to encourage diversity) in composing their emails.

The Teaching task was then deployed to col-
lect natural language statements that people would

Figure 4: The Teaching task used to collect natural
language statements characterizing a concept. Each
worker is given a concept prompt, together with a
set of emails. A turker can enter five statements
characterizing the concept.

These emails usually closes with a name or title
Some reminders will have a date and time in the subject
The body of the email may say funny, picture, or internet
Messages to friends sometimes have jpg attachments
Emails from a public domain are not office requests

Table 3: Examples of natural language statements
collected from the Teaching task

make to teach a particular concept to a machine.
Workers were presented with five randomly se-
lected concepts using the same prompts (Table 2)
used in the Generation task. For each concept, a
small sample of emails were shown in a style resem-
bling a traditional email inbox (Figure 4) to illus-
trate the concept. Half of the emails were from the
prompted concept (these emails were highlighted
and “starred”), and half were sampled randomly
from the other concepts. Workers were encouraged
to peruse through the emails while creating up to
five statements explaining the concept. A follow-
up quiz assessed an understanding of the task, and
contributions from workers with low scores were
filtered. The final data contains between 30 and 35
statements describing each category.

5 Evaluation

In this section, we evaluate the performance of our
approach from the perspectives of concept learn-
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Concept # of emails Prompt
CONTACT 167 “You are writing an email to yourself to personally keep note of a person contact”
EMPLOYEE 149 “You are a boss writing an email to your employee requesting something to be done”
EVENT 138 “You are writing an email to a friend asking to meet up at some event”
HUMOR 134 “You are writing an email to a friend that includes something humorous from the Internet”
MEETING 142 “You are writing an email to a colleague trying to request a meeting about something”
POLICY 146 “You are writing an office email regarding announcement of some new policy”
REMINDER 154 “You are writing an email to yourself as a reminder to do something”

Table 2: Email concepts used in our experiment, together with the prompts used to describe the concept to
workers. The same prompt was used in both the Generation and Teaching tasks.

CONTACT EMPLOYEE EVENT HUMOR MEETING POLICY REMINDER Average
BoW 0.510 0.354 0.381 0.484 0.455 0.588 0.415 0.455
BoW tf-Idf 0.431 0.379 0.402 0.513 0.392 0.576 0.399 0.441
Para2Vec 0.238 0.191 0.121 0.252 0.222 0.286 0.092 0.200
Bigrams 0.525 0.385 0.426 0.525 0.458 0.668 0.423 0.487
ESA 0.187 0.209 0.107 0.194 0.154 0.160 0.131 0.164
RTE 0.551 0.353 0.406 0.475 0.398 0.522 0.232 0.419
Keyword filtering 0.521 0.429 0.412 0.425 0.702 0.748 0.392 0.522
LNL-NB 0.628* 0.370 0.453* 0.590* 0.732* 0.878* 0.414 0.581*
LNL-LR 0.608* 0.351 0.568* 0.570* 0.757* 0.898* 0.437 0.598*
LNL-Gold 0.661 0.397 0.677 0.572 0.777 0.917 0.487 0.641
LNI-NB + BoW 0.644 0.409 0.520 0.709 0.723 0.878 0.543 0.632
LNI-LR + BoW 0.634 0.398 0.604 0.704 0.747 0.891 0.567 0.649
LNL-Gold+BoW 0.667 0.449 0.659 0.798 0.771 0.927 0.595 0.695

Table 4: Concept learning performance (F1 scores) using n = 10 labeled examples. Columns indicate
different concept learning tasks defined over emails. * for the rows corresponding to LNL-NB and
LNL-LR denotes statistical significance over the best performing non-LNL model

ing as well as semantic parsing. We first compare
our methods against traditional supervised learn-
ing methods on the task of learning email-based
concepts described in the previous section.

Our baselines include the following models:
Text-only models:
• BoW: A logistic regression (LR) classifier over

bag-of-words representation of emails
• BoW tf-idf: LR classifier over bag-of-words rep-

resentation, with tf-idf weighting
• Para2Vec: LR classifier over a distributed repre-

sentation of documents, using deep neural net-
work approach by Le and Mikolov (2014).

• Bigram: LR model also incorporating bigram
features, known to be competitive on several text
classification tasks (Wang and Manning, 2012).

• ESA: LR model over ESA (Explicit Semantic
Analysis) representations of emails (Gabrilovich
and Markovitch, 2007), which describe a text in
terms of its Wikipedia topics.

Models incorporating Statements:
• RTE: This uses a Textual Entailment model

(based on features from Sachan et al. (2015)) that
computes a score for aligning of each statement
to the text of each email. A logistic regression is

trained over this representation of the data.
• Keyword filtering: Filters based on keywords are

common in email systems. We add this as a base-
line by manually filtering statements referring
to occurrences of specific keywords. Such state-
ments compose nearly 30% of the data. We train
a logistic regression over this representation.

Table 4 shows classification performance of our
approaches for Learning from Natural Language
(LNL) against baselines described above for n = 10
labeled examples. The reported numbers are aver-
age F1 scores over 10 data draws. We observe that
Bigram and bag-of-word methods are the most com-
petitive among the baselines. On the other hand,
Para2Vec doesn’t perform well, probably due to
the relatively small scale of the available training
data, while ESA fails due to the lack of topical asso-
ciations in concepts. However, most significantly,
we observe that both LNL-NB (Naive Bayes) and
LNL-LR (Logistic Regression) dramatically outper-
form all baselines for most concepts (except EM-
PLOYEE), and show a 30% relative improvement in
average F1 over other methods (p < 0.05, Paired
Permutation test). Interestingly, we note that LNL-
NB and LNL-LR show similar performance for most
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concepts. For evaluating semantic parsing of natu-
ral language statements, we manually annotated the
statements in our dataset using the logical language
described in Section 3.4. In Table 4, LNL-Gold
denotes the classification performance with using
these annotated gold parses. This corresponds to
the hypothetical case where the classifier knows
the correct semantic interpretation of each natu-
ral language sentence from an oracle. While this
provides a further 10% relative improvement over
our proposed models, the results suggest that our
weakly supervised method is quite effective in in-
terpreting natural language statements for concept
learning, without explicit supervision. We also ob-
serve that LNL models perform significantly better
than Keyword filtering (p < 0.05), indicating that
the model leverages the expressiveness of our logi-
cal language.

Finally, the last three rows show performance
when the LNL methods also utilize BoW represen-
tations of the data. The further gains over the base
LNL models suggest that original feature represen-
tations and natural language explanations contain
complementary information for many concepts.

A significant motivation for this work is the
promise of natural language explanations in facili-
tating concept learning with a relatively small num-
ber of examples. Figure 5 shows the dependence
of concept learning performance of LNL(-LR) on
the number of labeled training examples (size of
training set). We observe that while our approach
consistently outperforms the bag-of-words model
(BoW), LNL also requires fewer examples to reach
near optimal performance, before it plateaus. In
particular, the generalization performance for LNL
is more robust than BoW for n < 10. The per-
formance trajectory for LNL(-NB) is similar, and
omitted in the figure for clarity.

Figure 5: Figure showing Avg F1 accuracy over all
concepts vs Number of labeled training examples

Accuracy
Fully Supervised (ZC07) 0.63
LNL-LR 0.30
LNL-NB 0.28
No training 0.01

Table 5: Semantic parsing performance (exact
match) for proposed weakly supervised methods vs
full supervision (completely labeled logical forms)

Parsing performance: We next evaluate the pars-
ing performance of our approach, which learns a
semantic parser from only concept labels of exam-
ples. Table 5 evaluates parsing performance against
the gold annotation logical forms for statements.
For this task, we check for exact match of logical
forms. In the table, full supervision refers to tradi-
tional training of a semantic parser using complete
annotations of statements with their logical forms
(Zettlemoyer and Collins, 2007). The results report
average accuracy over 10-fold CV, and demonstrate
that while not comparable to supervised parsing,
our weakly supervised approach is relatively effec-
tive in learning semantic parsers.

Further, exact match to gold annotated log-
ical forms is a restrictive measure. Qualita-
tive analysis revealed that even when the pre-
dicted and gold annotation logical forms don’t
match, predicted logical forms are often strongly
correlated in terms of evaluation to gold an-
notations. e.g., getPhraseMention( email,

stringVal(‘postdoc’)) vs getPhraseMention(
body, stringVal(‘postdoc’)). In about 5% of
cases, predicted and gold interpretations are dif-
ferent on the surface, but are semantically equiv-
alent (e.g., stringEquals( sender, recipient)

vs stringEquals( recipient, sender)).

Concept learning vs language interpretation:
To delineate the relationship between parsing per-
formance and concept learning more clearly, we
plot concept classification performance for differ-
ent levels of semantic parsing proficiency in Fig-
ure 6. For this, we choose the gold annotation
logical form for a statement with a probability cor-
responding to the semantic parsing accuracy, or
randomly select a candidate logical form with a
uniform probability otherwise for all the statements
in our data. The figure shows a (expectedly) strong
association between parsing performance and con-
cept learning, although gains from parsing taper
after a certain level of proficiency. This is partially
explained by the fact that natural statements in our
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Figure 6: Figure showing concept classification
performance vs parsing accuracy

data often contain overlapping information, and
that the set of statements in our data set may not be
sufficient to achieve perfect classification accuracy.

6 Conclusion and Future Work

We show that natural language explanations can
be utilized by supervised learning methods to sig-
nificantly improve generalization. This suggests a
broader class of possible machine learning inter-
faces that use language to not only expedite learn-
ing, but make machine learning accessible to every-
day users. Thus, we hope that the current work will
inspire further explorations in learning from natu-
ral language explanations. In terms of scalability,
learning from language would require specification
of a logical language and a lexicon of trigger words
for each new domain. However, this effort is one-
time, and can find re-use across the long tail of
concepts in a domain.

A consequence of the expressiveness of language
is that in describing a concept, humans often invoke
other concepts that may not correspond to existing
predicates in the logical language. A natural so-
lution could detect that a feature described in the
statement is novel4, and request the user to teach
the unknown concept. The same principle can be
applied recursively, resulting in a mixed-initiative
dialog, much like between a student and a teacher.
Future work can also incorporate other modes of
supervision from language. For example, this work
ignores modifiers such as ‘always’ and ‘usually’,
which often carry valuable information that could
be incorporated via model expectation constraints.
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Abstract

The ubiquity of metaphor in our every-
day communication makes it an impor-
tant problem for natural language under-
standing. Yet, the majority of metaphor
processing systems to date rely on hand-
engineered features and there is still no
consensus in the field as to which features
are optimal for this task. In this paper,
we present the first deep learning archi-
tecture designed to capture metaphorical
composition. Our results demonstrate that
it outperforms the existing approaches in
the metaphor identification task.

1 Introduction

Metaphor is pervasive in our everyday commu-
nication, enriching it with sophisticated imagery
and helping us to reconcile our experience in the
world with our conceptual system (Lakoff and
Johnson, 1980). In the most influential account
of metaphor to date, Lakoff and Johnson explain
the phenomenon through the presence of system-
atic metaphorical associations between two dis-
tinct concepts or domains. For instance, when
we talk about “curing juvenile delinquency” or
“corruption transmitting through the government
ranks”, we view the general concept of crime (the
target concept) in terms of the properties of a dis-
ease (the source concept). Such metaphorical as-
sociations are broad generalisations that allow us
to project knowledge and inferences across do-
mains; and our metaphorical use of language is a
reflection of this process.

Given its ubiquity, metaphorical language poses
an important problem for natural language un-
derstanding (Cameron, 2003; Shutova and Teufel,
2010). A number of approaches to metaphor pro-
cessing have thus been proposed, focusing pre-

dominantly on classifying linguistic expressions
as literal or metaphorical. They experimented with
a range of features, including lexical and syntac-
tic information (Hovy et al., 2013; Beigman Kle-
banov et al., 2016) and higher-level features such
as semantic roles (Gedigian et al., 2006), domain
types (Dunn, 2013), concreteness (Turney et al.,
2011), imageability (Strzalkowski et al., 2013)
and WordNet supersenses (Tsvetkov et al., 2014).
While reporting promising results, all of these ap-
proaches used hand-engineered features and re-
lied on manually-annotated resources to extract
them. In order to reduce the reliance on manual
annotation, other researchers experimented with
sparse distributional features (Shutova et al., 2010;
Shutova and Sun, 2013) and dense neural word
embeddings (Bracewell et al., 2014; Shutova et al.,
2016). Their experiments have demonstrated that
corpus-driven lexical representations already en-
code information about semantic domains needed
to learn the patterns of metaphor usage from lin-
guistic data.

We take this intuition a step further and present
the first deep learning architecture designed to
capture metaphorical composition. Deep learn-
ing methods have already been shown success-
ful in many other semantic tasks (e.g. Hermann
et al., 2015; Kumar et al., 2015; Zhao et al., 2015),
which suggests that designing a specialised neu-
ral network architecture for metaphor detection
will lead to improved performance. In this paper,
we present a novel architecture which (1) mod-
els the interaction between the source and tar-
get domains in the metaphor via a gating func-
tion; (2) specialises word representations for the
metaphor identification task via supervised train-
ing; (3) quantifies metaphoricity via a weighted
similarity function that automatically selects the
relevant dimensions of similarity. We experi-
mented with two types of word representations
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as inputs to the network: the standard skip-gram
word embeddings (Mikolov et al., 2013a) and the
cognitively-driven attribute-based vectors (Bulat
et al., 2017), as well as a combination thereof.

We evaluate our method in the metaphor iden-
tification task, focusing on adjective–noun, verb–
subject and verb–direct object constructions where
the verbs and adjectives can be used metaphori-
cally. Our results show that our architecture out-
performs both a metaphor agnostic deep learn-
ing baseline (a basic feed forward network) and
the previous corpus-based approaches to metaphor
identification. We also investigate the effects of
training data on this task, and demonstrate that
with a sufficiently large training set our method
also outperforms the best existing systems based
on hand-coded lexical knowledge.

2 Related Work

The majority of approaches to metaphor process-
ing cast the problem as classification of linguis-
tic expressions as metaphorical or literal. Gedi-
gian et al. (2006) classified verbs related to MO-
TION and CURE within the domain of financial
discourse. They used the maximum entropy clas-
sifier and the verbs’ nominal arguments and their
FrameNet roles (Fillmore et al., 2003) as features,
reporting encouraging results. Dunn (2013) used
a logistic regression classifier and high-level prop-
erties of concepts extracted from SUMO ontology,
including domain types (ABSTRACT, PHYSICAL,
SOCIAL, MENTAL) and event status (PROCESS,
STATE, OBJECT). Tsvetkov et al. (2014) used ran-
dom forest classifier and coarse semantic features,
such as concreteness, animateness, named entity
types and WordNet supersenses. They have shown
that the model learned with such coarse semantic
features is portable across languages. The work
of Hovy et al. (2013) is notable as they focused
on compositional rather than categorical features.
They trained an SVM with dependency-tree ker-
nels to capture compositional information, using
lexical, part-of-speech tag and WordNet super-
sense representations of sentence trees. Mohler
et al. (2013) aimed at modelling conceptual infor-
mation. They derived semantic signatures of texts
as sets of highly-related and interlinked WordNet
synsets. The semantic signatures served as fea-
tures to train a set of classifiers (maximum en-
tropy, decision trees, SVM, random forest) that
mapped new metaphors to the semantic signatures

of the known ones.

With the aim of reducing the dependence on
manually-annotated lexical resources, other re-
search focused on modelling metaphor using
corpus-driven information alone. Shutova et al.
(2010) pointed out that the metaphorical uses
of words constitute a large portion of the de-
pendency features extracted for abstract concepts
from corpora. For example, the feature vec-
tor for politics would contain GAME or MECHA-
NISM terms among the frequent features. As a
result, distributional clustering of abstract nouns
with such features identifies groups of diverse
concepts metaphorically associated with the same
source domain. Shutova et al. (2010) exploit this
property of co-occurrence vectors to identify new
metaphorical mappings starting from a set of ex-
amples. Shutova and Sun (2013) used hierar-
chical clustering to derive a network of concepts
in which metaphorical associations are learned in
an unsupervised way. Do Dinh and Gurevych
(2016) investigated metaphors through the task
of sequence labelling, detecting metaphor related
words in context. Gutiérrez et al. (2016) inves-
tigated metaphorical composition in the composi-
tional distributional semantics framework. Their
method learns metaphors as linear transformations
in a vector space and they demonstrated that it
produces superior phrase representations for both
metaphorical and literal language, as compared to
the traditional ”single-sense” compositional distri-
butional model. They then used these representa-
tions in the metaphor identification task, achieving
promising results.

The more recent approaches of Shutova et al.
(2016) and Bulat et al. (2017) used dense skip-
gram word embeddings (Mikolov et al., 2013a) in-
stead of the sparse distributional features. Shutova
et al. (2016) investigated a set of metaphor identi-
fication methods using linguistic and visual fea-
tures. They learned linguistic and visual repre-
sentations for both words and phrases, using skip-
gram and convolutional neural networks (Kiela
and Bottou, 2014) respectively. They then mea-
sured the difference between the phrase represen-
tation and those of its component words in terms
of their cosine similarity, which served as a predic-
tor of metaphoricity. They found basic cosine sim-
ilarity between the component words in the phrase
to be a powerful measure – the neural embeddings
of the words were compared with cosine similar-
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Figure 1: The network architecture for supervised metaphorical phrase classification. The � symbol is
used to indicate element-wise multiplication.

ity and a threshold was tuned on the development
set to distinguish between literal and metaphorical
phrases. This approach was their best performing
linguistic model, outperformed only by a multi-
modal system which included both linguistic and
visual features.

Bulat et al. (2017) presented a metaphor iden-
tification method that uses representations con-
structed from human property norms (McRae
et al., 2005). They first learn a mapping from
the skip-gram embedding vector space to the prop-
erty norm space using linear regression, which al-
lows them to generate property norm representa-
tions for unseen words. The authors then train
an SVM classifier to detect metaphors using these
representations as input. Bulat et al. (2017) have
shown that the cognitively-driven property norms
outperform standard skip-gram representations in
this task.

3 Supervised Similarity Network

Our method is inspired by the findings of Shutova
et al. (2016), who showed that the cosine similarity
between neural embeddings of the two words in a
phrase is indicative of its metaphoricity. For ex-
ample, the phrase ‘colourful personality’ receives
a score:

s = cos(xc, xp) (1)

where xc is the embedding for colourful and xp
is the embedding for personality. The combined
phrase is classified as being metaphorical based
on a threshold, which is optimised on a develop-
ment dataset. In this paper, we propose several ex-
tensions to this general idea, creating a supervised
version of the cosine similarity metric which can
be optimised on training data to be more suitable
for metaphor detection.

3.1 Word Representation Gating

Directly comparing the vector representations of
both words treats each of the embeddings as an
independent unit. In reality, however, word mean-
ings vary and adapt based on the context. In case
of metaphorical language (e.g. “cure crime”), the
source domain properties of the verb (e.g. cure)
are projected onto the target domain noun (e.g.
crime), resulting in the interaction of the two do-
mains in the interpretation of the metaphor.

In order to integrate this idea into the metaphor
detection method, we can construct a gating func-
tion that modulates the representation of one word
based on the other. Given embeddings x1 and
x2, the gating values are predicted as a non-linear
transformation of x1 and applied to x2 through
element-wise multiplication:

g = σ(Wgx1) (2)

x̃2 = x2 � g (3)

whereWg is a weight matrix that is optimised dur-
ing training, σ is the sigmoid activation function,
and � represents element-wise multiplication. In
an adjective-noun phrase, this architecture allows
the network to first look at the adjective, then use
its meaning to change the representation of the
noun. The sigmoid activation function makes it act
as a filter, choosing which information from the
original embedding gets through to the rest of the
network. While learning a more complex gating
function could be beneficial for very large training
resources, the filtering approach is more suitable
for the annotated metaphor datasets which are rel-
atively small in size.
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3.2 Vector Space Mapping
As the next step, we implement position-specific
mappings for the word embeddings. The original
method uses word embeddings that have been pre-
trained using the distributional skip-gram objec-
tive (Mikolov et al., 2013a). While this tunes the
vectors for predicting context words, there is no
reason to believe that the same space is also opti-
mal for the task of metaphor detection. In order to
address this shortcoming, we allow the model to
learn a mapping from the skip-gram vector space
to a new metaphor-specific vector space:

z1 = tanh(Wz1x1) (4)

z2 = tanh(Wz2 x̃2) (5)

where Wz1 and Wz2 are weight matrices, z1 and
z2 are the new position-specific word representa-
tions. While the original embeddings x1 and x2
are pre-trained on a large unannotated corpus, the
transformation process is optimised using anno-
tated metaphor examples, resulting in word rep-
resentations that are more suitable for this task.
Furthermore, the adjectives and nouns use sepa-
rate mapping weights, which allows the model to
better distinguish between the different function-
alities of these words. In contrast, the original co-
sine similarity is not position-specific and would
give the same result regardless of the word order.

3.3 Weighted Cosine
If the vectors x1 and x2 are normalised to unit
length, the cosine similarity between them is equal
to their dot product, which in turn is equal to
their elementwise multiplication followed by a
sum over all elements:

cos(x1, x2) ∝
∑

i

x1,ix2,i (6)

This calculation of cosine similarity can be for-
mulated as a small neural network where the two
unit-normalised input vectors are directly multi-
plied together. This is followed by a single out-
put neuron, with all the intermediate weights set
to value 1. Such a network would calculate the
same sum over the element-wise multiplication,
outputting the value of cosine similarity.

Since there is no reason to assume that all
the embedding dimensions are equally important
when detecting metaphors, we can explore other
strategies for weighting the similarity calculation.

Metaphorical Literal
absorb cost accommodate guest
attack problem attack village
attack cancer blur vision
breathe life breathe person
design excuse deflate mattress
deflate economy digest milk
leak news land airplane
swallow anger swim man

Table 1: Annotated verb-direct object and verb-
subject pairs from MOH.

Rei and Briscoe (2014) used a fixed formula to cal-
culate weights for different dimensions of cosine
similarity and showed that it helped in recovering
hyponym relations. We extend this even further
and allow the network to use multiple different
weighting strategies which are all optimised dur-
ing training. This is done by first creating a vector
m, which is an element-wise multiplication of the
two word representations:

mi = z1,iz2,i (7)

where mi is the i-th element of vector m and z1,i
is the i-th element of vector z1. After that, the
resulting vector is used as input for a hidden neural
layer:

d = γ(Wdm) (8)

whereWd is a weight matrix and γ is an activation
function. If the length of d is 1, all the weights in
Wd have value 1, and γ is a linear activation, then
this formula is equivalent to a regular cosine sim-
ilarity. However, we use a larger length for d to
capture more features, use tanh as the activation
function, and optimise the weights of Wd during
training, giving the framework more flexibility to
customise the model for the task of metaphor de-
tection.

3.4 Prediction and Optimisation
Based on vector d we can output a prediction for
the word pair, showing whether it is literal or
metaphorical:

y = σ(Wyd) (9)

where Wy is a weight matrix, σ is the logistic ac-
tivation function, and y is a real-valued prediction
with values between 0 and 1.
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We optimise the model based on an annotated
training dataset, while minimising the following
hinge loss function:

E =
∑

k

qk (10)

qk =

{
(ỹ − y)2 if |ỹ − y| > 0.4

0, otherwise
(11)

where y is the predicted value, ỹ is the true label,
and k iterates over all training examples. Equation
11 optimises the model to minimise the squared
error between the predicted and true labels. How-
ever, this is only done for training examples where
the predicted error is not already close enough to
the desired result. The condition |ỹ − y| > 0.4
only updates training examples where the differ-
ence from the true label is greater than 0.4. The
true labels ỹ can only take values 0 (literal) or 1
(metaphorical), and the threshold 0.4 is chosen so
that datapoints that are on the correct side of the
decision boundary by more than 0.1 would be ig-
nored, which helps reduce overfitting and allows
the model to focus on the misclassified examples.

The diagram of the complete network can be
seen in Figure 1.

4 Word Representations

Following Bulat et al. (2017) we experiment with
two types of semantic vectors: skip-gram word
embeddings and attribute-based representations.

The word embeddings are 100-dimensional and
were trained using the standard log-linear skip-
gram model with negative sampling of Mikolov
et al. (2013b) on Wikipedia for 3 epochs, using
a symmetric window of 5 and 10 negative samples
per word-context pair.

We use the 2526-dimensional attribute-based
vectors trained by Bulat et al. (2017), following
Fagarasan et al. (2015). These representations
were induced by using partial least squares regres-
sion to learn a cross-modal mapping function be-
tween the word embeddings described above and
the McRae et al. (2005) property-norm semantic
space.

5 Datasets

We evaluate our method using two datasets of
phrases manually annotated for metaphoricity.

Metaphorical Literal
bloody stupidity bloody nose
deep understanding cold weather
empty promise dry skin
green energy empty can
healthy balance frosty morning
hot topix hot chocolate
muddy thinking gold coin
ripe age soft leather
sour mood sour cherry
warm reception steep hill

Table 2: Annotated adjective–noun pairs from
TSV-TEST.

Since these datasets include examples for different
senses (both metaphorical and literal) of the same
verbs or adjectives, they allow us to test the ex-
tent to which our model is able to discriminate be-
tween different word senses, as opposed to merely
selecting the most frequent class for a given word.

Mohammad et al. dataset (MOH) Moham-
mad et al. (2016) used WordNet to find verbs
that had between three and ten senses and ex-
tracted the sentences exemplifying them in the cor-
responding glosses, yielding a total of 1639 verb
uses in sentences. Each of these was annotated
for metaphoricity by 10 annotators via the crowd-
sourcing platform CrowdFlower1. Mohammad et
al. selected the verbs that were tagged by at least
70% of the annotators as metaphorical or literal
to create their dataset. We extracted verb–direct
object and verb–subject relations of the annotated
verbs from this dataset, discarding the instances
with pronominal or clausal subject or object. This
resulted in a dataset of 647 verb–noun pairs (316
metaphorical and 331 literal). Some examples of
annotated verb phrases from MOH are presented in
Table 1.

Tsvetkov et al. dataset (TSV) Tsvetkov et al.
(2014) construct a dataset of adjective–noun pairs
annotated for metaphoricity. This is divided into
a training set consisting of 884 literal and 884
metaphorical pairs (TSV-TRAIN) and a test set
containing 100 literal and 100 metaphorical pairs
(TSV-TEST). Table 2 shows a portion of an-
notated adjective-noun phrases from TSV-TEST.
TSV-TRAIN was collected from publicly available
metaphor collections on the web and manually

1www.crowdflower.com
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curated by removing duplicates and metaphori-
cal phrases that depend on wider context for their
interpretation (e.g. drowning students). TSV-
TEST was constructed by extracting nouns that
co-occur with a list of 1000 frequent adjectives
in the TenTen Web Corpus2 using SketchEngine.
The selected adjective-noun pairs were annotated
for metaphoricity by 5 annotators with an inter-
annotator agreement of κ = 0.76. Since TSV-
TRAIN and TSV-TEST were constructed differ-
ently, we follow previous work (Tsvetkov et al.,
2014; Shutova et al., 2016; Bulat et al., 2017) and
report performance on TSV-TEST. We randomly
separated 200 (out of the 1536) examples from the
training set to use for development experiments.

6 Experiments and Results

The word representations in our model were ini-
tialised with either the 100-dimensional skip-gram
embeddings or the 2,526-dimensional attribute
vectors (Section 4). These were kept fixed and not
updated, which reduces overfitting on the available
training examples. For both word representations
we use the same embeddings as Bulat et al. (2017),
which makes the results directly comparable and
shows that the improvements are coming from the
novel architecture and are not due to a different
embedding initialisation.

The network was optimised using AdaDelta
(Zeiler, 2012) for controlling adaptive learning
rates. The models were evaluated after each
full pass over the training data and training was
stopped if the F-score on the development set had
not improved for 5 epochs. The transformed em-
beddings z1 and z2 were set to size 300, layer d
was set to size 50. The values for these hyperpa-
rameters were chosen experimentally using the de-
velopment dataset. In order to avoid drawing con-
clusions based on outlier results due to random ini-
tialisations, we ran each experiment 25 times with
random seeds and present the averaged results in
this paper. We implemented the framework using
Theano (Al-Rfou et al., 2016) and are making the
source code publicly available.3

Table 3 contains results of different system con-
figurations on the TSV dataset. The original F-
score by Tsvetkov et al. (2014) is still the high-
est, as they used a range of highly-engineered
features that require manual annotation, such as

2https://www.sketchengine.co.uk/ententen-corpus/
3http://www.marekrei.com/projects/ssn

Acc P R F1

Tsvetkov et al. (2014) - - - 85
Shutova et al. (2016)

linguistic - 73 80 76
multimodal - 67 96 79

Bulat et al. (2017) - 85 71 77

FFN skip-gram 77.6 86.6 65.4 74.4
FFN attribute 76.6 82.0 68.6 74.5
SSN skip-gram 82.2 91.1 71.6 80.1
SSN attribute 81.9 86.6 75.7 80.6
SSN fusion 82.9 90.3 73.8 81.1

Table 3: System performance on the Tsvetkov et
al. dataset (TSV) in terms of accuracy (Acc), pre-
cision (P), recall (R) and F-score (F1).

the lexical abstractness, imageability scores and
the relative number of supersenses for each word
in the dataset. Our setup is more similar to the
linguistic experiments by Shutova et al. (2016),
where metaphor detection is performed using pre-
trained word embeddings. They also proposed
combining the linguistic model with a system us-
ing visual word representations and achieved per-
formance improvements. Recently, Bulat et al.
(2017) compared different types of embeddings
and showed that attribute-based representations
can outperform regular skip-gram embeddings.

As an additional baseline, we report the perfor-
mance on metaphor detection using a basic feed-
forward network (FFN). In this configuration, the
word embeddings x1 and x2 are directly connected
to the hidden layer d, skipping all the intermedi-
ate network structure. The FFN achieves 74.4%
F-score on TSV-TEST, showing that even such a
simple model can perform relatively well in a su-
pervised setting. Using attribute vectors instead
of skip-gram embeddings gives a slight improve-
ment, especially on the recall metric, which is con-
sistent with the findings by Bulat et al. (2017).

The architecture described in Section 3, which
we refer to as a supervised similarity network
(SSN), outperforms the baseline and achieves
80.1% F-score using skip-gram embeddings and
80.6% with attribute-based representations. We
also created a fusion of these two models where
the predictions from both are combined as a
weighted average. In this setting, the two net-
works are trained in tandem and a real-valued
weight, which is also optimised during training, is
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Acc P R F1

Shutova et al. (2016)
linguistic - 67 76 71
multimodal - 65 87 75

FFN skip-gram 71.2 70.4 71.8 70.5
FFN attribute 68.5 66.7 71.0 68.3
SSN skip-gram 74.8 73.6 76.1 74.2
SSN attribute 69.7 68.8 69.7 68.8
SSN fusion 70.8 70.1 70.9 69.9

Table 4: System performance on the Mohammad
et al. dataset (MOH) in terms of accuracy (Acc),
precision (P), recall (R) and F-score (F1).

used to combine them together. This configuration
achieves 81.1% F-score, indicating that the the
skip-gram embeddings and attribute vectors cap-
ture somewhat complementary information. Ex-
cluding the system by Tsvetkov et al. (2014) which
requires hand-annotated features, the proposed
similarity network outperforms all the previous
systems, even improving over the multimodal sys-
tem by Shutova et al. (2016) without requiring any
visual information. The attribute-based SSN also
improves over Bulat et al. (2017) by 5.6% abso-
lute, using the same word representations as input.

Table 4 contains results of different system ar-
chitectures on the MOH dataset. Shutova et al.
(2016) reported 75% F-score on this dataset with
a multimodal system, after randomly separating
a subset for testing. Since this corpus contains
only 647 annotated examples, we instead evalu-
ated the systems using 10-fold cross-validation.
The feedforward baseline with skip-gram embed-
dings returns an F-score that is close to the lin-
guistic configuration of Shutova et al, whereas
the best results are achieved by the similarity net-
work with skip-gram embeddings. In this setting,
the attribute-based representations did not improve
performance – this is expected, as the attribute
norms by McRae et al. (2005) are designed for
nouns, whereas the MOH dataset is centered on
verbs.

Table 5 contains examples from the TSV de-
velopment set, together with gold annotations and
predicted scores. The system confidently detects
literal phrases such as sunny country and meaning-
less discussion, along with metaphorical phrases
such as unforgiving heights and blind hope. The
predicted output disagrees with the annotation on

Input phrase Gold Predicted Score

sunny country 0 0 0.152
sweet treat 0 0 0.358
lost wallet 0 0 0.439
meaningless discussion 0 0 0.150
gentle soldier 0 0 0.175
unforgiving heights 1 1 0.867
easy money 1 1 0.503
blind hope 1 1 0.813
rolling hills 1 1 0.677
educational gap 1 1 0.827
humane treatment 0 1 0.617
democratic candidate 0 1 0.510
rich programmer 0 1 0.514
fishy offer 1 0 0.290
backward area 1 0 0.161
sweet person 1 0 0.332

Table 5: Examples from the Tsvetkov develop-
ment set, together with the gold label, predicted
label, and the predicted score from the best model.

cases such as humane treatment and rich program-
mer – some of these examples could also be ar-
gued as being metaphorical, depending on the spe-
cific sense of the words. While the system was rel-
atively unsure about the false positives (the scores
were close to 0.5), it tended to assign more deci-
sive scores to the false negatives.

7 The Effects of Training Data

Results in Section 6 show that performance on the
TSV dataset is higher than the MOH dataset, likely
due to the former having more examples available
for training. Therefore, we ran an additional ex-
periment to investigate the effect of dataset size on
the performance of metaphor detection. Gutiérrez
et al. (2016) annotated a dataset of adjective-noun
phrases as being literal or metaphorical, and we
are able to use this as an additional training re-
source. While it contains only 23 unique adjec-
tives, the total number of phrases reaches 8,592.
We remove any phrases that occur in the develop-
ment or test data of TSV, then incrementally add
the remaining examples to the TSV training data
and evaluate on the TSV-TEST.

Figure 2 shows a graph of the system perfor-
mance, when increasing the training data at in-
tervals of 500. There is a very rapid increase in
performance until around 2,000 training points,
whereas the existing TSV-TRAIN is limited to
1,336 examples. Providing even more data to the
system gives an additional increase that is more
gradual. The final performance of the system us-
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Figure 2: Performance as a function of training
set size. The x-axis shows the number of training
examples, the y-axis shows F-score on TSV-TEST.

Training data Acc P R F

Tsvetkov 83.0 88.3 76.3 81.8
Tsvetkov+Gutierrez 88.7 91.6 85.4 88.3

Table 6: System performance on the Tsvetkov et
al. dataset (TSV), using additional training data.

ing both datasets is 88.3 F-score, which is the
highest result reported on the TSV dataset and
translates to 36% relative error reduction with re-
spect to the same system trained only on the orig-
inal dataset.

We report the exact values in Table 6 for the
different training sets. The value on the Tsvetkov
training data is different from the result in Table 3,
which is due to the original attribute embeddings
by Bulat et al. (2017) only containing representa-
tions for the vocabulary in the TSV dataset. In or-
der to include the data from Gutiérrez et al. (2016),
we recreated the attribute vectors for a larger vo-
cabulary, which results in a slightly different base-
line performance.

8 Qualitative analysis

The architecture in Section 3 also acts as a se-
mantic composition model, extracting the mean-
ing of the phrase by combining the meanings of
its component words. Therefore, we performed
a qualitative experiment to investigate: (1) how
well do traditional compositional methods cap-
ture metaphors, without any fine-tuning; and (2)
whether the supervised representations still retain
their domain-specific semantic information. For
this purpose, we construct three vector spaces and
visualise some examples from the TSV training set,

Figure 3: Comparison of metaphorical and lit-
eral phrases in different vector spaces. Blue cir-
cles indicate literal examples, red squares show
metaphorical pairs. Top: additive vector space.
Middle: multiplicative vector space. Bottom: vec-
tors from layer m in the similarity network.

using t-SNE (Van Der Maaten and Hinton, 2008).
Figure 3 contains examples for three different

composition methods: the additive method simply
sums the skip-gram embeddings for both words
(top); the multiplicative method multiplies the
skip-gram embeddings (middle); the final system
uses layer m from the SSN model to represent the
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phrases (bottom).
The visualisation shows that the additive and

multiplicative models are both comparable when
it comes to semantic clustering of the phrases,
but metaphorical examples are mixed together
with literal clusters. The SSN is optimised for
metaphor classification and therefore it produces
representations with a very clear boundary for
metaphoricity. Interestingly, the graph also reveals
a misannotated example in the dataset, since ‘fiery
temper’ should be labeled as a metaphor. At the
same time, this space also retains the general se-
mantic information, as similar phrases with the
same label are still positioned close together. Fu-
ture work could investigate models of multi-task
training where metaphor detection is trained to-
gether with an unsupervised objective, allowing
the system to take better advantage of unlabeled
data while still learning to separate metaphors.

9 Conclusion

In this paper, we introduced the first deep learn-
ing architecture designed to capture metaphorical
composition and evaluated it on a metaphor iden-
tification task.

Firstly, we demonstrated that the proposed
framework outperforms both a metaphor-agnostic
baseline (a feed-forward neural network) as well
as previous corpus-driven approaches to metaphor
identification. The results showed that it is bene-
ficial to construct a specialised network architec-
ture for metaphor detection, which includes a gat-
ing function for capturing the interaction between
the source and target domains, word embeddings
mapped to a metaphor-specific space, and optimi-
sation using a hinge loss function.

Secondly, our qualitative analysis indicates that
our supervised similarity network learns phrase
representations with a very clear boundary for
metaphoricity, in contrast to traditional composi-
tional methods.

Finally, we show that with a sufficiently large
training set our model can also outperform the
state-of-the art metaphor identification systems
based on hand-coded lexical knowledge.

Acknowledgments

Ekaterina Shutova’s research is supported by the
Leverhulme Trust Early Career Fellowship.

References
Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,

Christof Angermueller, Dzmitry Bahdanau, Nico-
las Ballas, Frédéric Bastien, Justin Bayer, Ana-
toly Belikov, Alexander Belopolsky, Yoshua Ben-
gio, Arnaud Bergeron, James Bergstra, Valentin
Bisson, Josh Bleecher Snyder, Nicolas Bouchard,
Nicolas Boulanger-Lewandowski, and Others. 2016.
Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints,
abs/1605.0:19.

Beata Beigman Klebanov, Chee Wee Leong, E. Dario
Gutierrez, Ekaterina Shutova, and Michael Flor.
2016. Semantic classifications for detection of verb
metaphors. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 101–106, Berlin,
Germany. Association for Computational Linguis-
tics.

David Bracewell, Marc Tomlinson, Michael Mohler,
and Bryan Rink. 2014. A tiered approach to the
recognition of metaphor. Computational Linguistics
and Intelligent Text Processing, 8403:403–414.

Luana Bulat, Stephen Clark, and Ekaterina Shutova.
2017. Modelling metaphor with attribute-based se-
mantics. Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL 2017).

Lynne Cameron. 2003. Metaphor in Educational Dis-
course. Continuum, London.

Erik-Lân Do Dinh and Iryna Gurevych. 2016. Token-
Level Metaphor Detection using Neural Networks.
Proceedings of the Fourth Workshop on Metaphor
in NLP.

Jonathan Dunn. 2013. Evaluating the premises and
results of four metaphor identification systems. In
Proceedings of CICLing’13, pages 471–486, Samos,
Greece.

Luana Fagarasan, Eva Maria Vecchi, and Stephen
Clark. 2015. From distributional semantics to fea-
ture norms: grounding semantic models in human
perceptual data. In Proceedings of the 11th Inter-
national Conference on Computational Semantics
(IWCS’15), pages 52–57, London, UK. Association
for Computational Linguistics.

Charles Fillmore, Christopher Johnson, and Miriam
Petruck. 2003. Background to FrameNet. Interna-
tional Journal of Lexicography, 16(3):235–250.

Matt Gedigian, John Bryant, Srini Narayanan, and Bra-
nimir Ciric. 2006. Catching metaphors. In In Pro-
ceedings of the 3rd Workshop on Scalable Natural
Language Understanding, pages 41–48, New York.

E. Darı́o Gutiérrez, Ekaterina Shutova, Tyler
Marghetis, and Benjamin K. Bergen. 2016.
Literal and Metaphorical Senses in Compositional

1545



Distributional Semantic Models. Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Dirk Hovy, Shashank Shrivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying
metaphorical word use with tree kernels. In Pro-
ceedings of the First Workshop on Metaphor in NLP,
pages 52–57, Atlanta, Georgia.
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Abstract

We propose a new, socially-impactful task
for natural language processing: from a
news corpus, extract names of persons
who have been killed by police. We
present a newly collected police fatality
corpus, which we release publicly, and
present a model to solve this problem that
uses EM-based distant supervision with
logistic regression and convolutional neu-
ral network classifiers. Our model out-
performs two off-the-shelf event extractor
systems, and it can suggest candidate vic-
tim names in some cases faster than one of
the major manually-collected police fatal-
ity databases.

Appendix, software, and data are avail-
able online at: http://slanglab.cs.umass.
edu/PoliceKillingsExtraction/

1 Introduction

The United States government does not keep sys-
tematic records of when police kill civilians, de-
spite a clear need for this information to serve the
public interest and support social scientific anal-
ysis. Federal records rely on incomplete cooper-
ation from local police departments, and human
rights statisticians assess that they fail to document
thousands of fatalities (Lum and Ball, 2015).

News articles have emerged as a valuable al-
ternative data source. Organizations including
The Guardian, The Washington Post, Mapping Po-
lice Violence, and Fatal Encounters have started
to build such databases of U.S. police killings
by manually reading millions of news articles1

1Fatal Encounters director D. Brian Burghart estimates he
and colleagues have read 2 million news headlines and ledes
to assemble its fatality records that date back to January, 2000
(pers. comm.); we find FE to be the most comprehensive pub-
licly available database.

Text Person killed
by police?

Alton Sterling was killed by police. True
Officers shot and killed Philando Castile. True
Officer Andrew Hanson was shot. False
Police report Megan Short was fatally shot
in apparent murder-suicide.

False

Table 1: Toy examples (with entities in bold) illus-
trating the problem of extracting from text names
of persons who have been killed by police.

and extracting victim names and event details.
This approach was recently validated by a Bu-
reau of Justice Statistics study (Banks et al.,
Dec. 2016) which augmented traditional police-
maintained records with media reports, finding
twice as many deaths compared to past govern-
ment analyses. This suggests textual news data has
enormous, real value, though manual news analy-
sis remains extremely laborious.

We propose to help automate this process by ex-
tracting the names of persons killed by police from
event descriptions in news articles (Table 1). This
can be formulated as either of two cross-document
entity-event extraction tasks:

1. Populating an entity-event database: From a
corpus of news articles D(test) over timespan
T , extract the names of persons killed by po-
lice during that same timespan (E(pred)).

2. Updating an entity-event database: In addi-
tion toD(test), assume access to both a histor-
ical database of killings E(train) and a histor-
ical news corpus D(train) for events that oc-
curred before T . This setting often occurs in
practice, and is the focus of this paper; it al-
lows for the use of distantly supervised learn-
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ing methods.2

The task itself has important social value, but the
NLP research community may be interested in a
scientific justification as well. We propose that
police fatalities are a useful test case for event
extraction research. Fatalities are a well defined
type of event with clear semantics for corefer-
ence, avoiding some of the more complex issues
in this area (Hovy et al., 2013). The task also
builds on a considerable information extraction lit-
erature on knowledge base population (e.g. Craven
et al. (1998)). Finally, we posit that the field of
natural language processing should, when possi-
ble, advance applications of important public in-
terest. Previous work established the value of
textual news for this problem, but computational
methods could alleviate the scale of manual labor
needed to use it.

To introduce this problem, we:

• Define the task of identifying persons killed
by police, which is an instance of cross-
document entity-event extraction (§3.1).

• Present a new dataset of web news articles
collected throughout 2016 that describe pos-
sible fatal encounters with police officers
(§3.2).

• Introduce, for the database update setting,
a distant supervision model (§4) that incor-
porates feature-based logistic regression and
convolutional neural network classifiers un-
der a latent disjunction model.

• Demonstrate the approach’s potential useful-
ness for practitioners: it outperforms two
off-the-shelf event extractors (§5) and finds
39 persons not included in the Guardian’s
“The Counted” database of police fatalities
as of January 1, 2017 (§6). This constitutes
a promising first step, though performance
needs to be improved for real-world usage.

2 Related Work

This task combines elements of information ex-
traction, including: event extraction (a.k.a. seman-
tic parsing), identifying descriptions of events and
their arguments from text, and cross-document
relation extraction, predicting semantic relations
over entities. A fatality event indicates the killing

2Konovalov et al. (2017) studies the database update task
where edits to Wikipedia infoboxes constitute events.

of a particular person; we wish to specifically
identify the names of fatality victims mentioned
in text. Thus our task could be viewed as unary
relation extraction: for a given person mentioned
in a corpus, were they killed by a police officer?

Prior work in NLP has produced a number
of event extraction systems, trained on text data
hand-labeled with a pre-specified ontology, in-
cluding ones that identify instances of killings (Li
and Ji, 2014; Das et al., 2014). Unfortunately, they
perform poorly on our task (§5), so we develop a
new method.

Since we do not have access to text specifically
annotated for police killing events, we instead turn
to distant supervision—inducing labels by align-
ing relation-entity entries from a gold standard
database to their mentions in a corpus (Craven and
Kumlien, 1999; Mintz et al., 2009; Bunescu and
Mooney, 2007; Riedel et al., 2010). Similar to this
work, Reschke et al. (2014) apply distant supervi-
sion to multi-slot, template-based event extraction
for airplane crashes; we focus on a simpler unary
extraction setting with joint learning of a proba-
bilistic model. Other related work in the cross-
document setting has examined joint inference for
relations, entities, and events (Yao et al., 2010; Lee
et al., 2012; Yang et al., 2015).

Finally, other natural language processing ef-
forts have sought to extract social behavioral
event databases from news, such as instances
of protests (Hanna, 2017), gun violence (Pavlick
et al., 2016), and international relations (Schrodt
and Gerner, 1994; Schrodt, 2012; Boschee et al.,
2013; O’Connor et al., 2013; Gerrish, 2013). They
can also be viewed as event database population
tasks, with differing levels of semantic specificity
in the definition of “event.”

3 Task and Data

3.1 Cross-document entity-event extraction
for police fatalties

From a corpus of documents D, the task is to ex-
tract a list of candidate person names, E , and for
each e ∈ E find

P (ye = 1 | xM(e)). (1)

Here y ∈ {0, 1} is the entity-level label where
ye = 1 means a person (entity) e was killed by
police; xM(e) are the sentences containing men-
tionsM(e) of that person. A mention i ∈ M(e)
is a token span in the corpus. Most entities have

1548



Knowledge base Historical Test

FE incident dates Jan 2000 –
Aug 2016

Sep 2016 –
Dec 2016

FE gold entities (G) 17,219 452

News dataset Train Test

doc. dates Jan 2016 –
Aug 2016

Sep 2016 –
Dec 2016

total docs. (D) 866,199 347,160
total ments. (M) 132,833 68,925
pos. ments. (M+) 11,274 6,132
total entities (E) 49,203 24,550
pos. entities (E+) 916 258

Table 2: Data statistics for Fatal Encounters (FE)
and scraped news documents. M and E re-
sult from NER processing, while E+ results from
matching textual named entities against the gold-
standard database (G).

multiple mentions; a single sentence can contain
multiple mentions of different entities.

3.2 News documents

We download a collection of web news articles
by continually querying Google News3 throughout
2016 with lists of police keywords (i.e police, of-
ficer, cop etc.) and fatality-related keywords (i.e.
kill, shot, murder etc.). The keyword lists were
constructed semi-automatically from cosine simi-
larity lookups from the word2vec pretrained word
embeddings4 in order to select a high-recall, broad
set of keywords. The search is restricted to what
Google News defines as a “regional edition” of
“United States (English)” which seems to roughly
restrict to U.S. news though we anecdotally ob-
served instances of news about events in the U.K.
and other countries. We apply a pipeline of text
extraction, cleaning, and sentence de-duplication
described in the appendix.

3.3 Entity and mention extraction

We process all documents with the open source
spaCy NLP package5 to segment sentences, and
extract entity mentions. Mentions are token spans
that (1) were identified as “persons” by spaCy’s
named entity recognizer, and (2) have a (firstname,
lastname) pair as analyzed by the HAPNIS rule-
based name parser,6 which extracts, for example,

3https://news.google.com/
4https://code.google.com/archive/p/word2vec/
5Version 0.101.0, https://spacy.io/
6http://www.umiacs.umd.edu/∼hal/HAPNIS/

x z y

“Hard” training observed fixed (distantly
labeled)

observed

“Soft” (EM) training observed latent observed
Testing observed latent latent

Table 3: Training and testing settings for mention
sentences x, mention labels z, and entity labels y.

(John, Doe) from the string Mr. John A. Doe Jr..7

To prepare sentence text for modeling, our pre-
processor collapses the candidate mention span to
a special TARGET symbol. To prevent overfitting,
other person names are mapped to a different PER-
SON symbol; e.g. “TARGET was killed in an en-
counter with police officer PERSON.”

There were initially 18,966,757 and 6,061,717
extracted mentions for the train and test periods
respectively. To improve precision and computa-
tional efficiency, we filtered to sentences that con-
tained at least one police keyword and one fatal-
ity keyword. This filter reduced positive entity re-
call a moderate amount (from 0.68 to 0.57), but re-
moved 99% of the mentions, resulting in the |M|
counts in Table 2.8

Other preprocessing steps included heuristics
for extraction and name cleanups and are detailed
in the appendix.

4 Models

Our goal is to classify entities as to whether they
have been killed by police (§4.1). Since we do
not have gold-standard labels to train our model,
we turn to distant supervision (Craven and Kum-
lien, 1999; Mintz et al., 2009), which heuristically
aligns facts in a knowledge base to text in a corpus
to impute positive mention-level labels for super-
vised learning. Previous work typically examines
distant supervision in the context of binary relation
extraction (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011), but we are
concerned with the unary predicate “person was
killed by police.” As our gold standard knowledge

7For both training and testing, we use a name matching as-
sumption that a (firstname, lastname) match indicates coref-
erence between mentions, and between a mention and a fatal-
ity database entity. This limitation does affect a small num-
ber of instances—the test set database contains the unique
names of 453 persons but only 451 unique (firstname, last-
name) tuples—but relaxing it raises complex issues for future
work, such as how to evaluate whether a system correctly pre-
dicted two different fatality victims with the same name.

8In preliminary experiments, training and testing an n-
gram classifier (§4.4) on the full mention dataset without key-
word filtering resulted in a worse AUPRC than after the filter.
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base (G), we use Fatal Encounters’ (FE) publicly
available dataset: around 18,000 entries of vic-
tim’s name, age, gender and race as well as loca-
tion, cause and date of death. (We use a version of
the FE database downloaded Feb. 27, 2017.) We
compare two different distant supervision training
paradigms (Table 3): “hard” label training (§4.2)
and “soft” EM-based training (§4.3). This section
also details mention-level models (§4.4,§4.5) and
evaluation (§4.6).

4.1 Approach: Latent disjunction model

Our discriminative model is built on mention-level
probabilistic classifiers. Recall a single entity will
have one or more mentions (i.e. the same name
occurs in multiple sentences in our corpus). For
a given mention i in sentence xi, our model pre-
dicts whether the person is described as having
been killed by police, zi = 1, with a binary lo-
gistic model,

P (zi = 1 | xi) = σ(βTfγ(xi)). (2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component, which use logistic regression weights
β and feature extractor parameters γ. Then we
must somehow aggregate mention-level decisions
to determine entity labels ye.9 If a human reader
were to observe at least one sentence that states a
person was killed by police, they would infer that
person was killed by police. Therefore we aggre-
gate an entity’s mention-level labels with a deter-
ministic disjunction:

P (ye = 1 | zM(e)) = 1
{
∨i∈M(e) zi

}
. (3)

At test time, zi is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1− P (ye = 0|xM(e)) (4)

= 1− P (zM(e) = ~0 | xM(e)) (5)

= 1−
∏

i∈M(e)

(1− P (zi = 1 | xi)). (6)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also

9An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

incorporate a large number of weaker signals as
positive evidence as well.10

In order to train these classifiers, we need
mention-level labels (zi) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 “Hard” distant label training

In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1 if ∃e ∈ G(train) : name(i) = name(e).
(7)

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10–38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

zi = 1 if ∃e ∈ G(train) :
name(i) = name(e) and location(e) ∈ xi.

(8)

We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training

At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that

10In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (

∑
i P (zi = 1 | xi)) had similar ranking perfor-

mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.
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do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.

The E-step requires calculating the marginal
posterior probability for each zi,

q(zi) := P (zi | xM(ei), yei). (9)

This corresponds to calculating the posterior prob-
ability of a disjunct, given knowledge of the out-
put of the disjunction, and prior probabilities of all
disjuncts (given by the mention-level classifier).

Since P (z | x, y) = P (z, y | x)/P (y | x),

q(zi = 1) =
P (zi = 1, yei = 1|xM(ei))

P (yei = 1|xM(ei))
. (10)

The numerator simplifies to the mention predic-
tion P (zi = 1 | xi) and the denominator is the
entity-level noisyor probability (Eq. 6). This has
the effect of taking the classifier’s predicted prob-
ability and increasing it slightly (since Eq. 10’s de-
nominator is no greater than 1); thus the disjunc-
tion constraint implies a soft positive labeling. In
the case of a negative entity with ye = 0, the dis-
junction constraint implies all zM(e) stay clamped
to 0 as in the “hard” label training method.

The q(zi) posterior weights are then used for the
M-step’s expected log-likelihood objective:

max
θ

∑

i

∑

z∈{0,1}
q(zi = z) logPθ(zi = z | xi).

(11)
This objective (plus regularization) is maximized
with gradient ascent as before.

This approach can be applied to any mention-
level probabilistic model; we explore two in the
next sections.
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Figure 1: For soft-LR (EM), area under precision
recall curve (AUPRC) results on the test set during
training, for different inverse regularization values
(C, the parameters’ prior variance).

Features

D1 length 3 dependency paths that include TARGET:
word, POS, dep. label

D2 length 3 dependency paths that include TARGET:
word and dep. label

D3 length 3 dependency paths that include TARGET:
word and POS

D4 all length 2 dependency paths with word, POS, dep.
labels

N1 n-grams length 1, 2, 3
N2 n-grams length 1, 2, 3 plus POS tags
N3 n-grams length 1, 2, 3 plus directionality and posi-

tion from TARGET
N4 concatenated POS tags of 5-word window centered

on TARGET
N5 word and POS tags for 5-word window centered on

TARGET

Table 4: Feature templates for logistic regression
grouped into syntactic dependencies (D) and N-
gram (N) features.

4.4 Feature-based logistic regression

We construct hand-crafted features for regular-
ized logistic regression (LR) (Table 4), designed
to be broadly similar to the n-gram and syntac-
tic dependency features used in previous work
on feature-based semantic parsing (e.g. Das et al.
(2014); Thomson et al. (2014)). We use random-
ized feature hashing (Weinberger et al., 2009) to
efficiently represent features in 450,000 dimen-
sions, which achieved similar performance as an
explicit feature representation. The logistic regres-
sion weights (β in Eq. 2) are learned with scikit-
learn (Pedregosa et al., 2011).11 For EM (soft-LR)
training, the test set’s area under the precision re-
call curve converges after 96 iterations (Fig. 1).

11With FeatureHasher, L2 regularization, ‘lbfgs’ solver,
and inverse strengthC = 0.1, tuned on a development dataset
in “hard” training; for EM training the same regularization
strength performs best.
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4.5 Convolutional neural network

We also train a convolutional neural network
(CNN) classifier, which uses word embeddings
and their nonlinear compositions to potentially
generalize better than sparse lexical and n-gram
features. CNNs have been shown useful for
sentence-level classification tasks (Kim, 2014;
Zhang and Wallace, 2015), relation classification
(Zeng et al., 2014) and, similar to this setting,
event detection (Nguyen and Grishman, 2015).
We use Kim (2014)’s open-source CNN imple-
mentation,12 where a logistic function makes the
final mention prediction based on max-pooled val-
ues from convolutional layers of three different
filter sizes, whose parameters are learned (γ in
Eq. 2). We use pretrained word embeddings for
initialization,13 and update them during training.
We also add two special vectors for the TARGET
and PERSON symbols, initialized randomly.14

For training, we perform stochastic gradient de-
scent for the negative expected log-likelihood (Eq.
11) by sampling with replacement fifty mention-
label pairs for each minibatch, choosing each
(i, k) ∈M×{0, 1} with probability proportional
to q(zi = k). This strategy attains the same ex-
pected gradient as the overall objective. We use
“epoch” to refer to training on 265,700 examples
(approx. twice the number of mentions). Unlike
EM for logistic regression, we do not run gradi-
ent descent to convergence, instead applying an E-
step every two epochs to update q; this approach
is related to incremental and online variants of EM
(Neal and Hinton, 1998; Liang and Klein, 2009),
and is justified since both SGD and E-steps im-
prove the evidence lower bound (ELBO). It is
also similar to Salakhutdinov et al. (2003)’s ex-
pectation gradient method; their analysis implies
the gradient calculated immediately after an E-
step is in fact the gradient for the marginal log-
likelihood. We are not aware of recent work
that uses EM to train latent-variable neural net-
work models, though this combination has been
explored (e.g. Jordan and Jacobs (1994))

4.6 Evaluation

On documents from the test period (Sept–Dec
2016), our models predict entity-level labels

12https://github.com/yoonkim/CNN sentence
13From the same word2vec embeddings used in §3.
14Training proceeds with ADADELTA (Zeiler, 2012). We

tested several different settings of dropout and L2 regulariza-
tion hyperparameters on a development set, but found mixed
results, so used their default values.

date of killing

date of news report

June 6,  
2014

Oct. 3,  
2016 

Dec. 1,  
2016

Nov. 22,  
2016

entity labels
e2 = 

“positive”

e1

e1

e2

e2

e1 = 

“historical”

knowledge base

test set

train/test 
split

Figure 2: At test time, there are matches between
the knowledge base and the news reports both for
persons killed during the test period (“positive”)
and persons killed before it (“historical”). Histori-
cal cases are excluded from evaluation.
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Figure 3: Test set AUPRC for three runs of soft-
CNN (EM) (blue, higher in graph), and hard-CNN
(red, lower in graph). Darker lines show perfor-
mance of averaged predictions.

P (ye = 1 | xM(e)) (Eq. 6), and we wish to eval-
uate whether retrieved entities are listed in Fatal
Encounters as being killed during Sept–Dec 2016.
We rank entities by predicted probabilities to con-
struct a precision-recall curve (Fig. 4, Table 5).
Area under the precision-recall curve (AUPRC) is
calculated with a trapezoidal rule; F1 scores are
shown for convenient comparison to non-ranking
approaches (§5).

Excluding historical fatalities: Our model
gives strong positive predictions for many people
who were killed by police before the test period
(i.e. before Sept 2016), when news articles con-
tain discussion of historical police killings. We
exclude these entities from evaluation, since we
want to simulate an update to a fatality database
(Fig 2). Our test dataset contains 1,148 such his-
torical entities.

Data upper bound: Of the 452 gold entities
in the FE database at test time, our news corpus
only contained 258 (Table 2), hence the data up-
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Figure 4: Precision-recall curves for the given
models.

Model AUPRC F1

hard-LR, dep. feats. 0.117 0.229
hard-LR, n-gram feats. 0.134 0.257
hard-LR, all feats. 0.142 0.266
hard-CNN 0.130 0.252

soft-CNN (EM) 0.164 0.267
soft-LR (EM) 0.193 0.316
Data upper bound (§4.6) 0.57 0.73

Table 5: Area under precision-recall curve
(AUPRC) and F1 (its maximum value from the PR
curve) for entity prediction on the test set.

per bound of 0.57 recall, which also gives an up-
per bound of 0.57 on AUPRC. This is mostly a
limitation of our news corpus; though we collect
hundreds of thousands of news articles, it turns
out Google News only accesses a subset of rele-
vant web news, as opposed to more comprehensive
data sources manually reviewed by Fatal Encoun-
ters’ human experts. We still believe our dataset is
large enough to be realistic for developing better
methods, and expect the same approaches could
be applied to a more comprehensive news corpus.

5 Off-the-shelf event extraction baselines

From a practitioner’s perspective, a natural first
approach to this task would be to run the corpus
of police fatality documents through pre-trained,
“off-the-shelf” event extractor systems that could
identify killing events. In modern NLP research,
a major paradigm for event extraction is to formu-
late a hand-crafted ontology of event classes, an-
notate a small corpus, and craft supervised learn-

Rule Prec. Recall F1

SEMAFOR R1 0.011 0.436 0.022
R2 0.031 0.162 0.051
R3 0.098 0.009 0.016

RPI-JIE R1 0.016 0.447 0.030
R2 0.044 0.327 0.078
R3 0.172 0.168 0.170

Data upper bound (§4.6) 1.0 0.57 0.73

Table 6: Precision, recall, and F1 scores for test
data using event extractors SEMAFOR and RPI-
JIE and rules R1-R3 described below.

ing systems to predict event parses of documents.
We evaluate two freely available, off-the-shelf

event extractors that were developed under this
paradigm: SEMAFOR (Das et al., 2014), and the
RPI Joint Information Extraction System (RPI-
JIE) (Li and Ji, 2014), which output semantic
structures following the FrameNet (Fillmore et al.,
2003) and ACE (Doddington et al., 2004) event
ontologies, respectively.15 Pavlick et al. (2016)
use RPI-JIE to identify instances of gun violence.

For each mention i ∈ M we use SEMAFOR
and RPI-JIE to extract event tuples of the form
ti = (event type, agent, patient) from the sentence
xi. We want the system to detect (1) killing events,
where (2) the killed person is the target mention i,
and (3) the person who killed them is a police of-
ficer. We implement a small progression of these
neo-Davidsonian (Parsons, 1990) conjuncts with
rules to classify zi = 1 if:16

• (R1) the event type is ‘kill.’

• (R2) R1 holds and the patient token span
contains ei.

15Many other annotated datasets encode similar event
structures in text, but with lighter ontologies where event
classes directly correspond with lexical items—including
PropBank, Prague Treebank, DELPHI-IN MRS, and Abstract
Meaning Representation (Kingsbury and Palmer, 2002; Hajic
et al., 2012; Oepen et al., 2014; Banarescu et al., 2013). We
assume such systems are too narrow for our purposes, since
we need an extraction system to handle different trigger con-
structions like “killed” versus “shot dead.”

16For SEMAFOR, we use the FrameNet ‘Killing’ frame
with frame elements ‘Victim’ and ‘Killer’. For RPI-JIE, we
use the ACE ‘life/die’ event type/subtype with roles ‘vic-
tim’ and ‘agent’. SEMAFOR defines a token span for ev-
ery argument; RPI-JIE/ACE defines two spans, both a head
word and entity extent; we use the entity extent. SEMAFOR
only predicts spans as event arguments, while RPI-JIE also
predicts entities as event arguments, where each entity has
a within-text coreference chain over one or more mentions;
since we only use single sentences, these chains tend to be
small, though they do sometimes resolve pronouns. For de-
termining R2 and R3, we allow a match on any of an entity’s
extents from any of its mentions.
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• (R3) R2 holds and the agent token span con-
tains a police keyword.

As in §4.1 (Eq. 3), we aggregate mention-level zi
predictions to obtain entity-level predictions with
a deterministic OR of zM(e).

RPI-JIE under the full R3 system performs best,
though all results are relatively poor (Table 6).
Part of this is due to inherent difficulty of the task,
though our task-specific model still outperforms
(Table 5). We suspect a major issue is that these
systems heavily rely on their annotated training
sets and may have significant performance loss on
new domains, or messy text extracted from web
news, suggesting domain transfer for future work.

6 Results and discussion

Significance testing: We would like to test robust-
ness of performance results to the finite datasets
with bootstrap testing (Berg-Kirkpatrick et al.,
2012), which can accomodate performence met-
rics like AUPRC. It is not clear what the appro-
priate unit of resampling should be—for example,
parsing and machine translation research in NLP
often resamples sentences, which is inappropriate
for our setting. We elect to resample documents
in the test set, simulating variability in the gener-
ation and retrieval of news articles. Standard er-
rors for one model’s AUPRC and F1 are in the
range 0.004–0.008 and 0.008–0.010 respectively;
we also note pairwise significance test results. See
appendix for details.

Overall performance: Our results indicate our
model is better than existing computational meth-
ods methods to extract names of people killed by
police, by comparing to F1 scores of off-the-shelf
extractors (Table 5 vs. Table 6; differences are sta-
tistically significant).

We also compare entities extracted from our test
dataset to the Guardian’s “The Counted” database
of U.S. police killings during the span of the test
period (Sept.–Dec., 2016),17 and found 39 persons
they did not include in the database, but who were
in fact killed by police. This implies our approach
could augment journalistic collection efforts. Ad-
ditionally, our model could help practitioners by
presenting them with sentence-level information
in the form of Table 7; we hope this could de-
crease the amount of time and emotional toll re-
quired to maintain real-time updates of police fa-
tality databases.

17https://www.theguardian.com/us-news/series/
counted-us-police-killings, downloaded Jan. 1, 2017.

CNN: Model predictions were relatively un-
stable during the training process. Despite the
fact that EM’s evidence lower bound objective
(H(Q) + EQ[logP (Z, Y |X)]) converged fairly
well on the training set, test set AUPRC substan-
tially fluctuated as much as 2% between epochs,
and also between three different random initial-
izations for training (Fig. 3). We conducted these
multiple runs initially to check for variability, then
used them to construct a basic ensemble: we aver-
aged the three models’ mention-level predictions
before applying noisyor aggregation. This outper-
formed the individual models—especially for EM
training—and showed less fluctuation in AUPRC,
which made it easier to detect convergence. Re-
ported performance numbers in Table 5 are with
the average of all three runs from the final epoch
of training.

LR vs. CNN: After feature ablation we found
that hard-CNN and hard-LR with n-gram features
(N1-N5) had comparable AUPRC values (Table
5). But adding dependency features (D1-D4)
caused the logistic regression models to outper-
form the neural networks (albeit with bare signif-
icance: p = 0.046). We hypothesize these de-
pendency features capture longer-distance seman-
tic relationships between the entity, fatality trigger
word, and police officer, which short n-grams can-
not. Moving to sequence or graph LSTMs may
better capture such dependencies.

Soft (EM) training: Using the EM algorithm
gives substantially better performance: for the
CNN, AUC improves from 0.130 to 0.164, and for
LR, from 0.142 to 0.193. (Both improvements are
statistically significant.) Logistic regression with
EM training is the most accurate model. Exam-
ining the precision-recall curves (Fig. 4), many of
the gains are in the higher confidence predictions
(left side of figure). In fact, the soft EM model
makes fewer strongly positive predictions: for ex-
ample, hard-LR predicts ye = 1 with more than
99% confidence for 170 out of 24,550 test set en-
tities, but soft-LR does so for only 24. This makes
sense given that the hard-LR model at training
time assumes that many more positive entity men-
tions are evidence of a killing than they are in re-
ality (§4.2).

Manual analysis: Manual analysis of false
positives indicates misspellings or mismatches of
names, police fatalities outside of the U.S., peo-
ple who were shot by police but not killed, and
names of police officers who were killed are com-
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entity (e) ment.(i)
prob.

ment. text (xi)

Keith Scott
(true pos)

0.98 Charlotte protests Charlotte’s Mayor Jennifer Roberts speaks to reporters the morning after
protests against the police shooting of Keith Scott, in Charlotte, North Carolina .

Terence
Crutcher
(true pos)

0.96 Tulsa Police Department released video footage Monday, Sept. 19, 2016, showing white Tulsa
police officer Betty Shelby fatally shooting Terence Crutcher, 40, a black man police later
determined was unarmed.

Mark Duggan
(false pos)

0.97 The fatal shooting of Mark Duggan by police led to some of the worst riots in England’s recent
history.

Logan Clarke
(false pos)

0.92 Logan Clarke was shot by a campus police officer after waving kitchen knives at fellow stu-
dents outside the cafeteria at Hug High School in Reno, Nevada, on December 7.

Table 7: Example of highly ranked entities, with selected mention predictions and text.

mon false positive errors (see detailed table in the
appendix). This suggests many prediction errors
are from ambiguous or challenging cases.18

Future work: While we have made progress
on this application, more work is necessary for ac-
curacy to be high enough to be useful for practi-
tioners. Our model allows for the use of mention-
level semantic parsing models; systems with ex-
plicit trigger/agent/patient representations, more
like traditional event extraction systems, may be
useful, as would more sophisticated neural net-
work models, or attention models as an alternative
to disjunction aggregation (Lin et al., 2016).

One goal is to use our model as part of a
semi-automatic system, where people manually
review a ranked list of entity suggestions. In this
case, it is more important to focus on improving
recall—specifically, improving precision at high-
recall points on the precision-recall curve. Our
best models, by contrast, tend to improve preci-
sion at lower-recall points on the curve. Higher
recall may be possible through cost-sensitive train-
ing (e.g. Gimpel and Smith (2010)) and using fea-
tures from beyond single sentences within the doc-
ument.

Furthermore, our dataset could be used to con-
tribute to communication studies, by exploring re-
search questions about the dynamics of media at-
tention (for example, the effect of race and ge-
ography on coverage of police killings), and dis-
cussions of historical killings in news—for ex-
ample, many articles in 2016 discussed Michael
Brown’s 2014 death in Ferguson, Missouri. Im-
proving NLP analysis of historical events would
also be useful for the event extraction task it-
self, by delineating between recent events that re-

18We attempted to correct non-U.S. false positive errors
by using CLAVIN, an open-source country identifier, but this
significantly hurt recall.

quire a database update, versus historical events
that appear as “noise” from the perspective of the
database update task. Finally, it may also be pos-
sible to adapt our model to extract other types of
social behavior events.
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Abstract

Questions play a prominent role in social
interactions, performing rhetorical func-
tions that go beyond that of simple infor-
mational exchange. The surface form of a
question can signal the intention and back-
ground of the person asking it, as well as
the nature of their relation with the inter-
locutor. While the informational nature of
questions has been extensively examined
in the context of question-answering appli-
cations, their rhetorical aspects have been
largely understudied.

In this work we introduce an unsupervised
methodology for extracting surface mo-
tifs that recur in questions, and for group-
ing them according to their latent rhetor-
ical role. By applying this framework to
the setting of question sessions in the UK
parliament, we show that the resulting ty-
pology encodes key aspects of the politi-
cal discourse—such as the bifurcation in
questioning behavior between government
and opposition parties—and reveals new
insights into the effects of a legislator’s
tenure and political career ambitions.

1 Introduction
“We’d now like to open the floor to shorter
speeches disguised as questions...”

– Steve Macone, New Yorker cartoon caption

Why do we ask questions? Perhaps we are seek-
ing factual information that others hold, or maybe
we are requesting a favor. Alternatively we could
be simply making a rhetorical point, perhaps at the
start of an academic paper.

Questions play a prominent role in social inter-
actions (Goffman, 1976), performing a multitude
of rhetorical functions that go beyond mere factual

information gathering (Kearsley, 1976). While the
informational component of questions has been
well-studied in the context of question-answering
applications, there is relatively little computational
work addressing the rhetorical and social role of
these basic dialogic units.

One domain where questions have a particularly
salient rhetorical role is politics. The ability to
question the actions and intentions of governments
is a crucial part of democracy (Pitkin, 1967), par-
ticularly in parliamentary systems. Consequently,
scholars have studied parliamentary questions in
detail, in terms of their origins (Chester and
Bowring, 1962), their institutionalization (Eggers
and Spirling, 2014) and their importance for over-
sight (Proksch and Slapin, 2011). In particular, the
United Kingdom’s House of Commons, renowned
for theatrical questions periods, has been stud-
ied in some depth. However, those accounts are
largely qualitative in nature (Bull and Wells, 2012;
Bates et al., 2014).
The present work: methodology. In order to
approach these problems computationally, we in-
troduce an unsupervised framework to structure
the space of questions according to their rhetori-
cal role. First, we identify common ways in which
questions are phrased. To this end, we automati-
cally extract these recurring surface forms, or mo-
tifs, based on the lexico-syntactic structure of the
questions posed (Section 4). To capture rhetorical
aspects we then group these motifs according to
their role, relying on the intuition that this role is
encoded in the type of answer a question receives.
To operationalize this intuition we construct a la-
tent question-answer space in which question mo-
tifs triggering similar answers are mapped to the
same region (Section 5).
The present work: application. We apply this
general framework to the political discourse that
occurs during parliamentary question sessions in
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the British House of Commons, a new dataset
which we make publicly available (Section 3).
Our framework extracts intuitive question types
ranging from narrow factual queries to pointed
criticisms disguised as questions (Section 5, Ta-
ble 1). We validate our framework by aligning
these types with prior understandings of parlia-
mentary proceedings from the political science lit-
erature (Section 6). In particular, previous work
(Bates et al., 2014) has categorized questions
asked in Parliament according to the intentions of
the asker (e.g., to help the answerer, or to adver-
sarially put them on the spot); we find a clear, pre-
dictive mapping between these expert-coded cate-
gories and the induced typology. We further show
that the types of questions specific legislators tend
to ask vary with whether they are part of the gov-
erning or opposition party, consistent with well-
established accounts of partisan differences (Cow-
ley, 2002; Spirling and McLean, 2007; Eggers and
Spirling, 2014). Concretely, government legisla-
tors exhibit a preference for overtly friendly ques-
tions, while the opposition slants towards more ag-
gressive question types.

We then apply our methodology to provide new
insights into how a legislator’s questioning be-
havior varies with their career trajectory. The
pressures faced by legislators at various stages in
their career are cross-cutting, and multiple possi-
ble hypotheses emerge. Younger, more enthusi-
astic legislators may be motivated to ask harder-
hitting questions, but risk being passed over for
future promotion if they are too combative (Cow-
ley, 2002). Older legislators, whose opportunities
for promotion are largely behind them and hence
have “less to lose”, may act more aggressively
(Benedetto and Hix, 2007); or simply seek a quiet
path to retirement. Viewing each group’s behav-
ior through the questions they ask brings evidence
for the latter hypothesis that more tenured legis-
lators are more aggressive, even when questioning
their own leaders. In this way, their presence in the
House of Commons, and their refusal to simply
‘keep their heads down’, facilitates a core compo-
nent of democracy.

2 Related Work

Question-answering. Computationally, questions
have received considerable attention in the con-
text of question-answering (QA) systems—for a
survey see Gupta and Gupta (2012)—with an em-

phasis on understanding their information need
(Harabagiu, 2008). Techniques have been devel-
oped to categorize questions based on the nature
of these information needs in the context of the
TREC QA challenge (Harabagiu et al., 2000), and
to identify questions asking for similar informa-
tion (Shtok et al., 2012; Zhang et al., 2017; Jeon
et al., 2005); questions have also been classified
by topic (Cao et al., 2010) and quality (Treude
et al., 2011; Ravi et al., 2014). In contrast, our
work is not concerned with the information need
central to QA applications, and instead focuses on
the rhetorical aspect of questions.

Question types. To facilitate retrieval of fre-
quently asked questions, Lytinen and Tomuro
(2002) manually developed a typology of surface
question forms (e.g., ‘what’- and ‘why’-questions)
starting from Lehnerts’ conceptual question cat-
egories (Lehnert, 1978). Question types were
also hand annotated for dialog-act labeling, dis-
tinguishing between yes-no, wh-, open-ended and
rhetorical questions (Dhillon et al., 2004). To
complement this line of work, this paper intro-
duces a completely unsupervised methodology to
automatically build a domain-tailored question ty-
pology, bypassing the need for human annotation.

Pragmatic dimensions. One important prag-
matic dimension of questions that has been pre-
viously studied computationally is their level of
politeness (Danescu-Niculescu-Mizil et al., 2013;
Aubakirova and Bansal, 2016); in the specific con-
text of making requests, politeness was shown
to correlate with the social status of the asker.
Sachdeva and Kumaraguru (2017) studied another
rhetorical aspect by examining linguistic attributes
distinguishing serviceable requests addressed to
police on social media from general conversa-
tion. Previous research has also been directed at
identifying rhetorical questions (Bhattasali et al.,
2015) and understanding the motivations of their
“askers” (Ranganath et al., 2016). Using the rela-
tionship between questions and answers, our work
examines the rhetorical and social aspect of ques-
tions without predefining a pragmatic dimension
and without relying on labeled data. We also com-
plement these efforts in analyzing a broader range
of situations in which questions may be posed
without an information-seeking intent.

Political discourse. Finally, our work contributes
to a rapidly growing area of NLP applications to
political domains (Monroe et al., 2008; Card et al.,
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2016; Gonzalez-Bailon et al., 2010; Niculae et al.,
2015; Grimmer and Stewart, 2013; Grimmer et al.,
2012; Iyyer et al., 2014b, inter alia). Particularly
relevant are applications to discourse in congres-
sional and parliamentary settings (Thomas et al.,
2006; Boydstun et al., 2014; Rheault et al., 2016).

3 Data: Parliamentary Question Periods

The bulk of our analysis focuses on the questions
asked, and responses given during parliamentary
question periods in the British House of Com-
mons. Below, we provide a brief overview of key
features of this political system in general, as well
as a description of the question period setting.
Parliamentary systems. Legislators in the House
of Commons (Members of Parliament, henceforth
MPs or members) belong to two main voting and
debating affiliations: a government party which
controls the executive and holds a majority of the
seats in the chamber, and a set of opposition par-
ties.1 The executive is headed by the Prime Min-
ister (PM) and run by a cabinet of ministers, high-
ranking government MPs responsible for various
departments such as finance and education.
Question periods. The House of Commons holds
weekly, moderated question periods, in which
MPs of all affiliations take turns to ask questions to
(and theoretically receive answers from) govern-
ment ministers for each department regarding their
specific domains. Such events are a primary way
in which legislators hold senior policy-makers re-
sponsible for their decisions. In practice, beyond
narrow requests for information about specific pol-
icy points, MPs use their questions to critique or
praise the government, or to self-promote; indeed,
certain sessions, such as Questions to the Prime
Minister, have gained renown for their partisan
clashes, often fueled by the (mis)handling of a cur-
rent crisis. The following question, asked to the
Prime Minister by an opposition MP about con-
tamination of the meat supply in 2013, encapsu-
lates this odd mix of purposes:

“The Prime Minister is rightly shocked by the
revelations that many food products contain 100%
horse. Does he share my concern that, if tested,
many of his answers may contain 100% bull?”2

1We use affiliation to refer broadly to the government and
opposition roles, independent of the identity of the current
government and opposition parties. In subsequent analysis
we only consider the largest, “official” opposition party as
the opposition.

2MPs almost always address each other in 3rd person.

The moderated, relatively rigid format of ques-
tions periods, along with the multifaceted array of
underlying incentives and interpersonal relation-
ships, yields a structurally controlled setting with
a rich variety of social interactions, taking place
in the realm of important policy discussions. This
complexity makes question periods a particularly
fruitful and consequential setting in which to study
questions as social signals, and expand our under-
standing of their role beyond factual queries.
Dataset description. Our dataset covers ques-
tion periods from May 1979 to December 2016,
encompassing six different Prime Ministers. For
each question period, we extract all question-
answer pairs, along with the identity of the asker
and answerer. Because our focus here is on how
questions are posed in a social setting, and not
on the subsequent dialogue, we ignore questions
which were tabled prior to the session, as well as
any followup back-and-forth dialogue between the
asker and answerer.

We augment this collection with metadata about
each asker and answerer, including their political
party, the time when they first took office, and
whether they were serving as a minister at a given
point in time. Such information is used to validate
our methodology and interpret our results in light
of the social context in which the questions were
asked, described further in Sections 6 and 7.

In total there are 216,894 question-answer pairs
in our data, occurring over 4,776 days and 6
prime-ministerships. The questions cover 1,975
different askers, 1,066 different answerers, and a
variety of government departments with respon-
sibilities ranging from defense to transport. We
make this dataset publicly available, along with
the code implementing our methodology, as part
of the Cornell Conversational Analysis Toolkit.3

4 Question Motifs

The first component of our framework identifies
lexico-syntactic phrasing patterns recurring in a
collection of questions, which we call motifs. Intu-
itively, motifs constitute wordings commonly used
to pose questions. To find motifs in a given col-
lection, we first extract relevant fragments from
each question. We then group sets of frequently
co-occurring fragments into motifs.

3
https://github.com/CornellNLP/

Cornell-Conversational-Analysis-Toolkit
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Question fragments. Our goal is to find motifs
which reflect functional characteristics of ques-
tions. Hence, we start by extracting the key
fragments within a question which encapsulate its
functional nature. Following the intuition that the
bulk of this functional information is contained in
the root of a question’s dependency parse along
with its outgoing arcs (Iyyer et al., 2014a), we
take the fragments of a question to be the root of
its parse tree, along with each (root, child) pair.
To capture cases when the operational word in
the question is not connected to its root (such as
“What...”), we also consider the initial unigram
and bigram of a question as fragments. The fol-
lowing question has 5 fragments: what, what is,
going→*, is←going and going→do.

(1) What is the minister going to do about ... ?

Because our goal is to capture topic-agnostic
patterns, we ignore all fragments which contain
a noun phrase (NP) or pronoun. NP subtrees are
identified based on their outgoing dependencies to
the root;4 in the event that an NP starts with a WH-
determiner (WDT), we consider (root, WDT) to be
a fragment and drop the remainder of the NP.5

Finally, we note that some questions consist of
multiple sub-questions (“What does the Minister
think [...], and why [...]?”). For such questions, we
recursively extract fragments from each child sub-
tree in the same manner, starting from their roots.
From fragments to motifs. We define motifs as
sets of question fragments that frequently co-occur
(in at least n questions). We find motifs by ap-
plying the apriori algorithm (Agrawal and Srikant,
1994) to find these common itemsets. This results
in a collection of motifs M which correspond to
different question phrasings.6 Examples of motifs
are shown in Table 1.

Motifs can identify phrasings to varying degrees
of specificity. For example, the singleton mo-
tif {what is} corresponds to all questions starting
with that bigram, while {what is, going→do} nar-

4We take as NPs subtrees connected to the root with the
following: nsubj, nsubjpass, dobj, iobj, pobj, attr.

5In the particular case of the Parliament dataset, removing
NPs also removes conventional, partisan address terms (e.g.
“my hon. Friend”).

6In some cases, a pair of motifs almost always co-occurs
in the same questions, making them redundant. We treat two
motifs m1 and m2 as equivalent if, for some probability p,
Pr(m1|m2) > p and Pr(m2|m1) > p; we keep the smaller
of the two as the representative motif, or pick one of them
arbitrarily if they are of equal sizes.

rows these down to questions also containing the
fragment going→do. To model the specificity re-
lation between motifs, we structure M as a di-
rected acyclic graph where an edge points from
a motif m1 to another motif m2 if the latter has
exactly one more fragment in addition to those in
m1, corresponding to a narrower set of phrasings.
Motif-representation of a question. Finally, a
question q contains a motif if it includes all of the
fragments comprising that motif. We can hence
capture the phrasing of a given question q using
the subset of motifs it contains, structured as the
subgraphMq ⊂ M induced by this subset. This
directed subgraph represents the question at mul-
tiple levels of specificity simultaneously; in par-
ticular, the set of sinks (i.e., nodes with outdegree
0; henceforth sink motifs) ofMq is the most fine-
grained way to specify the phrasing of q. For ex-
ample {what is, is←going, going→do} is the only
sink motif of the question in example (1); its entire
subgraph is shown in Figure 3 in the appendix.

5 Latent Question Types

The second component of our framework struc-
tures the space of questions according to their
functional roles, thus going beyond the lexico-
syntactic representation captured via motifs. The
main intuition is that the nature of the answer
that a question receives provides a good indication
of its intention. Therefore, if two questions are
phrased differently but answered in similar ways,
the parallels exhibited by their answers should re-
flect commonalities in the askers’ intentions.

To operationalize this intuition, we first con-
struct a latent space based on answers, and then
map question motifs (Section 4) to the same space.
Using the resultant latent representations, we can
then cluster questions with similar rhetorical func-
tions, even if their surface forms are different.
Constructing a space of answers. In line with
our focus on functional characterizations, we ex-
tract the fragments from each sentence of an an-
swer, defined in the same way as question frag-
ments. We then construct a term-document ma-
trix, where terms correspond to answer fragments,
and documents correspond to individual answers
in the corpus. We filter out infrequent fragments
occurring less than nA times, reweight the rows
of this matrix with tf-idf reweighting, and scale
to unit norm, producing a fragment-answer ma-
trix A. We perform singular value decomposi-
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tion on A and obtain a low-rank representation
A ≈ Â = UASV

T
A , for some rank d, where rows

of UA correspond to answer fragments and rows
of VA correspond to answers.7

Latent projection of question motifs. We can
draw a natural correspondence between a ques-
tion motif m and answer term t if m occurs in a
question whose answer contains t. This enables us
to compute representations of question motifs in
the same space as Â. Concretely, we construct a
motif-question matrix Q = (qij) where qij = 1
if motif i occurred in question j; we scale rows
of Q to unit norm. To represent Q in the latent
answer space, we solve for Q̂ in Q = Q̂SV T

A as
Q̂ = QVAS−1, again scaling rows to unit norm.
Row i of Q̂ then gives a d-dimensional represen-
tation of motif i, denoted q̂i.

Grouping similar questions. Finally, we iden-
tify question types—broad groups of similar mo-
tifs. Intuitively, if two motifsmi andmj have vec-
tors qi and qj which are close together, they elicit
answers that are close in the latent space, so are
functionally similar in this sense. We use the K-
Means algorithm (Pedregosa et al., 2011) to clus-
ter motif vectors into k clusters; these clusters then
constitute the desired set of question types.

To determine the type of a particular question
q∗, we transform it to a binary vector (q∗i ) where
q∗i = 1 if motif i is a sink motif of q∗; using only
sink motifs at this stage allows us to characterize a
question according to the most specific represen-
tation of its phrasing, thus avoiding spurious asso-
ciations resulting from more general motifs. We
scale q∗, project it to the latent space as before,
and assign the resultant projection q̂∗ to a cluster
t, hence determining its type.

Since question motifs and answer fragments
have both been mapped to the same latent space
(as rows of Q̂ and UA respectively), we can
also assign each answer fragment to a ques-
tion type. This further facilitates interpretabil-
ity through characterizing the answers commonly
triggered by a particular type of question.

7We experimented with grouping answer fragments into
motifs as well, but found that most of the motifs produced
were one fragment large. While future work could focus
more on understanding consistent phrasings of answers, we
note that at least in our chosen corpus, answers are longer and
encompass a much greater variation of possible phrasings.

6 Validation

We now apply our general framework to the par-
ticular setting of parliamentary question periods,
structuring the space of questions posed within
these sessions according to their rhetorical func-
tion. To validate the induced typology, we quanti-
tatively show that it recovers asker intentions in an
expert-coded dataset, and qualitatively aligns with
prior findings in the political science literature on
parliamentary dynamics.
Question types in Parliament. We apply our mo-
tif extraction and question type induction pipeline
to the questions in the parliamentary dataset.8

Over 90% of the questions in the dataset contain
at least one of the resulting 2,817 motifs; in sub-
sequent analyses we discard questions without a
matching motif. We apply our pipeline to the
questions in the parliamentary dataset, and induce
a typology of k = 8 question types to capture the
rich array of questions represented in this space
while preserving interpretability.

Table 1 displays extracted types, along with ex-
ample questions, answers, and motifs.9 The sec-
ond author, a political scientist with domain ex-
pertise in the UK parliamentary setting, manually
investigated each type and provided interpretable
labels. For example, in questions of type 4, the
asker is aware that his main premise is supported
by the minister, and thus will be met with a pos-
itive statement backing the thrust of the question;
we call this the agreement cluster. Types 6 and
7 are much more combative: in type 6 questions
the asker explicitly attempts to force the minister
to concede/accept a point that would undermine
some government stance, while type 7 contains
condemnatory questions that prompt the minis-
ter to justify a policy that is self-evidently bad in
the eyes of the asker. In contrast, type 2 consti-
tutes tamer narrow queries that require the min-
ister to simply report on non-partisan matters of
policy. (Extended interpretations in the appendix.)
Quantitative validation. We compare our out-
put to a dataset of 1,256 questions asked to vari-
ous Prime Ministers labeled by Bates et al. (2014)

8We consider questions to be sentences ending in question
marks. If an utterance consists of multiple questions, we ex-
tract fragments sets from each question separately, and take
the motifs of the utterance to be the union of motifs of each
component question. We set n = 100, p = 0.9, nA = 100
and d = 25. The choice of parameters was done via manual
inspection of the dataset.

9Each type contains a few hundred question motifs and
answer fragments.
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Type Question motifs Answer fragments Example question-answer pairs
0: Issue
update
(16,693)

{what,are←taking},
{will←update}

continue→work,
met→discuss

Q: What steps are the Department taking to create a system for
asylum-seekers?
A: We continue to work with the Department of Education to en-
sure an equitable [...]

1: Shared
concerns
(35,954)

{will←take},
{may←urge}

grateful←am,
shall←consider

Q: Will he take steps to support other MPs to employ apprentices?
A: I am grateful for that suggestion [...]

2: Narrow
factual
(16,467)

{what←made},
{what←happen,
will←happen}

is←considering,
have←discussed

Q: What representations has the Minister made on the future of
rural policing [in] Dyfed-Powys?
A:The Home Office is considering the matter [...]

3: Prompt
for
comment
(16,588)

{what←say,say→to},
{will←tell}

must←say,
said→was

Q: What has the Prime Minister to say to President Reagan for
sending troops to Honduras?
A: [...] I must say that we deplore the reported incursion by
Nicaraguan forces [...]

4: Agree-
ment
(32,835)

{does←agree,
agree→is},
{is→important}

agree→with,
agree→completely

Q: Does [he] agree that one of the best ways to improve the trade
balance is to continue the Government’s strong economic policies?
A: I agree with my hon. Friend [...]

5: Self
promotion
(26,351)

{is→aware},
{will←consider}

will←appreciate,
am→certain

Q: Is my Friend aware that members of my parish church are
pleased to have received a grant [...] ?
A: [My Friend] will appreciate the significant performance of
parishes up and down the country [...]

6: Concede,
accept
(31,653)

{will←accept},
{is→not, is→true}

not←accept,
not←believe

Q: Will [he] accept that [the UK exiting the EU] would undermine
our security [...]?
A: No, I do not accept that [...]

7: Con-
demnatory
(21,320)

{can←explain},
{how←justify,
can←justify}

knows→well,
is→wrong

Q: Can the Secretary explain why the Government are scrapping
child poverty targets?
A: The hon. Lady is wrong in what she says [...]

Table 1: Question types automatically extracted from the parliamentary question periods, along with
representative motifs and question-answer pairs. The number of questions in our dataset assigned to
each type is shown in parantheses. Interpretations and more examples in Tables 2 & 3 in the appendix.

(also included in our data distribution). Each ques-
tion in this data is hand-coded by a domain ex-
pert with one of three labels indicating the rhetor-
ical intention of the asker: compared to stan-
dard questions—denoting straightforward factual
queries, helpful questions serve as prompts for
the PM to talk favorably about their government,
while unanswerable questions are effectively ve-
hicles for delivering criticisms that the PM cannot
respond to. Questions which are unanswered by
the PM are also labeled. If our framework cap-
tures meaningful rhetorical dimensions, we expect
a given label to be over-represented in some of our
induced types, and under-represented in others.

Even though our clustering of questions is gen-
erated in an unsupervised fashion without any
guidance from the coded rhetorical roles, we see
that several of the types we discover closely align
with these annotations. In particular, helpful ques-
tions are highly associated with the agreement
type (constituting 28% of questions of that type
compared to 14% over the entire dataset; bino-
mial test p < 0.01), reinforcing our interpretation

that this type captures MPs cheerleading their own
government. Conversely, unanswerable questions
are frequently of the concede/accept type (20%
in-type vs. 11% overall), while condemnatory
questions are often unanswered (43% vs. 24%
overall), suggesting that questions of these types
have an increased tendency to be posed as aggres-
sive criticisms packaged as questions.

We also validate our framework in a prediction
setting using these labels, in three binary clas-
sification tasks: distinguishing helpful vs. stan-
dard, unanswerable vs. standard, and unanswered
vs. answered questions. (In each task, we bal-
ance the two classes.) To control for asker affil-
iation effects, we consider only questions asked
by government MPs for the helpful task, and op-
position questions in the unanswerable and unan-
swered tasks; we train on questions to Conserva-
tive PMs and evaluate on Labour PMs.10 For each
setting, we train logistic regression classifiers; as

10These choices are motivated by the number of questions
from each affiliation and party in the dataset (see appendix
for further details on this dataset).
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Figure 1: A: Log-odds ratios of questions of each type asked by government and opposition MPs, com-
pared to MPs not of the respective affiliation; 95% confidence intervals (sometimes imperceptible) are
depicted. B: Mean propensities for each question type, for MPs who switch from being in the opposition
to being in the government (top) and vice-versa (bottom) after an election. Stars indicate statistically
significant differences at the p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) levels (Wilcoxon test).

features we compare the latent representation of
each question to a unigram BOW baseline.11

In the unanswerable and unanswered tasks, we
find that the BOW features do not perform sig-
nificantly better than a random (50%) baseline.
However, the latent question features produced
by our framework bring additional predictive sig-
nal and outperform the baseline when combined
with BOW (binomial p < 0.05), achieving ac-
curacies of 66% and 62% respectively (compared
with 55% and 50% for BOW alone). This suggests
that our representation captures useful rhetorical
information that, given our train-test split, gen-
eralizes across parties. None of the models sig-
nificantly outperform the random baseline on the
helpful task, perhaps owing to the small data size.
Qualitative validation: question partisanship.
We additionally provide a qualitative validation
of our framework by comparing the question-
asking activity of government and opposition-
affiliated MPs—as viewed through the extracted
question types—to well-established characteriza-
tions of these affiliations in the political science lit-
erature. In particular, prior work has examined the
bifurcation in behavior between government and
opposition members, in their differing focus on
various issues (Louwerse, 2012), and in settings
such as roll call votes (Cowley, 2002; Spirling and
McLean, 2007; Eggers and Spirling, 2014). Since
government MPs are elected on the same party
ticket and manifesto, they primarily act to sup-

11We used tf-idf reweighting and excluded unigrams oc-
curring less than 5 times.

port the government’s various policies and bolster
the status of their cabinet, seldom airing disagree-
ments publicly. In contrast, opposition members
tend to offer trenchant partisan criticism of gov-
ernment policies, seeking to destabilize the gov-
ernment’s relationship with its MPs and create
negative press in the country at large. In character-
izing the question-asking activity of government
and opposition MPs, this friendly vs. adversarial
behavior should also be reflected in a rhetorical ty-
pology of questions.12

Concretely, to quantify the relationship between
a particular question type t and asker affiliation P ,
we compute the log-odds ratio of type t questions
asked by MPs in P , compared to MPs not in P .13

Figure 1A shows the resultant log-odds ratios of
each question type for government and opposition
members. Notably, we see that agreement-type
questions are significantly more likely to origi-
nate from government than from opposition MPs,
while the opposite holds for concede/accept and
condemnatory questions (binomial p < 10−4

for each, comparing within-type to overall propor-
tions of questions from an affiliation). No such

12While we induce the typology over our entire dataset,
we perform all subsequent analyses on a filtered subset of
50,152 questions. In particular, we omit utterances with mul-
tiple questions—i.e. multiple question marks—to ensure that
we don’t confound effects arising from different co-occurring
question types. Our filtering decisions are also determined by
the availability of information about the asker and answerers’
roles in Parliament. Further information about these filtering
choices can be found in the appendix.

13The log-odds values are not symmetric between govern-
ment and opposition, because they includes questions asked
by MPs not in the official opposition.
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Figure 2: A: Median asker tenures over each question type, for government and opposition askers. Over-
all median tenures are also shown for reference (solid blue line for government, dashed red line for
opposition). B: Mean propensities for newly elected MPs during the 1997 and 2010 elections, com-
pared to re-elected MPs in the subsequent parliamentary sitting. Stars indicate statistically significant
differences at the p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) levels (Mann Whitney U test).

slant is exhibited in the narrow factual type, fur-
ther reinforcing the role of such questions as infor-
mational queries about relatively non-partisan is-
sues. These results strongly cohere with the “text-
book” accounts of parliamentary activity in the lit-
erature, as well as our interpretation of these types
as bolstering or antagonistic.

Moreover, we find that the same MP shifts in
her propensity for different question types as her
affiliation changes. When a new political party
is elected into office, MPs who were previously
in the opposition now belong to the government
party, and vice versa. Such a switch occurs within
our data between the Major and Blair governments
(Conservative to Labour, 1997), and between
the Brown and Cameron governments (Labour to
Conservative, 2010). For both switches, we con-
sider all MPs who asked at least 5 questions both
before and after the switch, resulting in 88 mem-
bers who became government MPs and 102 who
became opposition MPs. For an MP M we com-
pute PM,t, their propensity for a question type
t, as the proportion of questions they ask which
are from t. Comparing PM,t before and after a
switch, we replicate the key differences observed
above—for instance, we find that former opposi-
tion MPs who become government MPs decrease
in their propensity for condemnatory questions,
while newly opposition MPs move in the other di-
rection (Wilcoxon p < 0.001, Figure 1B). This
suggests that the general trends we observed be-
fore are driven by the shift in affiliation, and hence
parliamentary role, of individual MPs.

7 Career Trajectory Effects

We now apply our framework to gain further in-
sights into the nature of political discourse in Par-
liament, focusing on how questioning behavior
varies with a member’s tenure in the institution.
As stated in the introduction, two alternative hy-
potheses arise: younger MPs may be more vig-
orously critical out of enthusiasm, but are poten-
tially tempered by their stake in future promo-
tion prospects compared to older members (Cow-
ley, 2002, 2012). Alternatively, older MPs who
have less at stake in terms of prospects of further
promotion may ask more antagonistic questions.
Throughout, young and old refer to tenure—i.e.,
how many years someone has served as an MP—
rather than biological age.

In order to understand the extent to which young
or old members contribute a specific type of ques-
tion, for each question type t we compute the
median tenure of askers of each question in t,
and compare the median tenures of different ques-
tion types, for each affiliation (Figure 2A).14 We
see that among both affiliations, more aggres-
sive questions tend to originate more from older
members, reflected in significantly higher median
tenures (for types 6 in both affiliations, and 7
in government MPs; Mann Whitney U test p <
0.001 comparing within-type median tenure with
outside-type median tenure); whereas standard is-
sue update questions tend to come from younger

14Median tenures for opposition members are generally
higher; winning an election tends to result in more newly-
elected and therefore younger MPs (Webb and Farrell, 1999).
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members (p < 0.001, both affiliations). Notably,
the disproportionate aggressiveness of older mem-
bers manifests even among government MPs who
direct these questions towards their own govern-
ment. This supports the “less to lose” intuition,
offering a rhetorical parallel to previous findings
about the increased tendency to vote contrary to
party lines from MPs with little chance of minis-
terial promotion (Benedetto and Hix, 2007).

Interestingly, we find that these differential
preferences across member tenure also manifest
at a finer granularity than simply less to more ag-
gressive. For instance, younger opposition mem-
bers tend to contribute more condemnatory ques-
tions compared to older members (Mann Whitney
U test p < 0.01), who disproportionately favor
concede/accept questions. While further work is
needed to fully explain these differences, we spec-
ulate that they are potentially reflective of strate-
gic attempts by younger MPs to signal traits that
could facilitate future promotion, such as partisan
loyalty (Kam, 2009).

To discount the possibility of these effects be-
ing solely driven by a few very prolific young or
old MPs, we also consider a setting where type
propensities are macroaveraged over MPs. For
each affiliation we compare the cohort of younger
MPs who are newly voted in at the 1997 and 2010
elections, with older MPs who have been in of-
fice prior to the election.15 We compute the type
propensities of these two cohorts over the ques-
tions they asked during the subsequent parliamen-
tary sitting, and replicate the tenure effects ob-
served previously (Figure 2B). This suggests that
these parliamentary career effects reflect behav-
ioral changes at the level of individual MPs, whose
incentives evolve over their tenure.

8 Conclusion and Future Work

In this work we introduced an unsupervised frame-
work for structuring the space of questions accord-
ing to their rhetorical role. We instantiated and
validated our approach in the domain of parlia-
mentary question periods, and revealed new inter-
actions between questioning behavior and career
trajectories.

We note that our methodology is not tied to a
particular domain. It would be interesting to ex-
plore its potential in a variety of less structured do-

15This totals 272 new and 184 old government MPs, and
84 new and 179 old opposition MPs.

mains where questions likewise play a crucial role.
For example, examining how interviewers in high-
profile media settings (e.g., Frost on Nixon) can
use their questions to elicit substantive responses
from influential people would aid us in the broader
normative goal of holding elites to account, by
gaining a better understanding of what and how
to ask, and what (not) to accept as an answer.

From a technical standpoint, future work could
also augment the representation of questions and
answers presently used in our framework, be-
yond our heuristic of using root arcs without noun
phrases. Richer linguistic representations, as well
as more judicious ways of weighting different
fragments and motifs, could enable us to capture
a wider range of possible surface and rhetorical
forms, especially in settings where phrasings are
potentially less structured by institutional conven-
tions. Additionally, as with most unsupervised
methods, our approach is limited by the need to
hand-select parameters such as the number of clus-
ters, and manually interpret the typology’s output.
Having annotations of these corpora could better
motivate the methodology and enable further eval-
uation and interpretation; we hope to encourage
such annotation efforts by releasing the dataset.

Inevitably, drawing causal lessons from obser-
vational data is difficult. Moving forward, experi-
mental tests of insights gathered through such ex-
plorations would enable us to establish causal ef-
fects of question-asking rhetoric, perhaps offering
prescriptive insights into questioning strategies for
objectives such as information-seeking (Dillman,
1978), request-making (Althoff et al., 2014; Mi-
tra and Gilbert, 2014) and persuasion (Tan et al.,
2016; Zhang et al., 2016; Wang et al., 2017).
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Appendix

A.1 Further examples of question types
Tables 2 and 3 provide further examples of rep-
resentative questios and motifs from each of the
eight question types we induce on our dataset of
parliamentary question periods. Additionally, we
include extended interpretations of each of these
types, provided by the second author, a political
scientist with domain expertise in the UK parlia-
mentary setting.

A.2 Details about data filtering decisions
Here we provide further details about how we se-
lected the subset of 50,152 questions which was
used in the analyses described in Sections 6 & 7.
First, we restrict our analysis to the questions
which consist of only one question, as opposed to
a series of questions (as delimited by multiple sen-
tences ending in question marks; constituting 52%
of the data). We omit these multi-question utter-
ances in order to ensure that we don’t confound ef-
fects arising from different co-occurring question
types. Next, we only include questions for which
information about the asker and answerers’ party
affiliations and ministership positions are available
(such data is provided consistently from the Blair
government onwards). Finally, we omit questions
asked by opposition members who are specifically
appointed by their party to shadow a government
minister, and are hence obliged by their appoint-
ment to ask more critical questions. Our choice
to omit such questions eliminates the possibility
that our observed differences in question prefer-
ence are driven by official appointment.

A.3 Details about the labeled PMQ dataset
Here we provide further details about the size
of the labeled Questions to the Prime Minister
(PMQ) dataset from Bates et al. (2014) used in
the quantitative validation of our typology (Sec-
tion 6). The dataset contains 931 standard, 186
helpful and 139 unanswerable questions. Addi-
tionally, 445 answers to questions are labeled as
answered, while 305 are labeled as not answered;
the rest are labeled as deferred answer, meaning
the Prime Minister did not have the knowledge or
capability to provide an answer.

We restrict all analysis done using the unan-
swered vs. answered labels to standard questions,
i.e., questions for which the PM has an opportu-
nity to provide a legitimate answer.

The helpful vs. standard classification task con-
tains 264 train and 108 test examples; the unan-
swerable vs. standard classification task contains
190 train and 86 test examples; the unanswered vs.
answered classification task contains 166 train and
84 test examples.

A.4 Example motif subgraph
Figure 3 illustrates a section of the motif DAGM
and highlights (in bold) the subgraph Mq corre-
sponding to the phrasing of the question in exam-
ple (1). Nodes that are higher in the graph serve
as general representations, and capture similarities
between broad sets of phrasings: e.g., {is←going
going→do, is←going, what is} groups together
example (1) with a question like “When is he go-
ing to get a grip on [the scandal]”. By projecting
such motifs into our latent question-answer space
(Section 5) we capture characteristics shared be-
tween these phrasings and allow for generalizabil-
ity. Nodes which are lower in the graph constitute
more specific representations, disambiguating be-
tween phrasings. In particular, sink motifs serve
as the most specific representation of a question,
delineating the region of the latent space (and thus
the question type) that best captures its phrasing.
For instance, this additional specificity allows us
to draw contrasts between “What is the minis-
ter going to do [about the policy]?” (sink motif:
{what is, is←going, going→do}) and the more
aggressive “When is he going to get a grip on [the
scandal]?” (sink motif: {when is, is←going}).
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Type Interpretation and examples

0:
Is

su
e

up
da

te

Requests for information or updates about a current event, issue, or policy. Typically the policy refers to a genuinely
‘national’ concern, rather than a partisan issue for which the major parties may have differing views.

Q: Will the Minister also update the House on whether any decisions have been made on the post-2014 UK
contribution to Afghanistan?

Q: What more can the Government do to ensure that each pupil has a single point of contact [for mental health
issues] throughout their education?

Q: What further steps can we take to resolve [the] terrible situation [in Syria]?

Question motifs: {what,are←taking}, {will←update}, {what←do, do→ensure}, {what←take, can←take}

1:
Sh

ar
ed

co
nc

er
ns

Straightforward factual question with no strong ideological underpinnings; answers are typically vague and in-
volve explaining that the government takes it seriously, will continue to do so and will consult with the relevant
stakeholders.

Q: May I urge the Minister to concentrate on tough penalties for people who get involved in alcohol-induced
antisocial behaviour?

Q: Will the Secretary of State look carefully at reports that houses built to house the soldiers will block off the
rising sun at the summer equinox [at] the Stonehenge?

Q: Will [my hon. Friend] raise [the matter of] product placement with people in the film industry [when he meets
them]?

Question motifs: {will, take→*}, {may←urge}, {will←look, look→at, look→carefully}, {raise→will,

raise→with}

2:
N

ar
ro

w
fa

ct
ua

l

Narrow queries about relatively minor policy issues which are either extremely local in nature (perhaps referring to
implications for a given constituency) or limited in scope (constituting a small issue within a much broader context
of policy). Questions are precise if not especially penetrating. Answers typically explain the ministry response in
narrow, non-ideological terms.

Q: What funding will be given to the new postgraduate institute at the Edinburgh College of Dentistry?

Q: Will the Minister make a statement on where we are with the website for the [National Health Service appraisals
toolkit for general practitioners]?

Q: What will happen to the French if they are found guilty of infringing the rules of the Commission?

Question motifs: {what←made}, {what←happen, will←happen}, {what←given, given→to}, {will←make,

make→on}

3:
Pr

om
pt

fo
r

co
m

m
en

t

Requests for comments, or information, especially on a meeting that has taken place between a minister and con-
stituents, colleagues, or opposite numbers, the contents of which would not normally be immediately accessible to
MPs. The asker seeks that the minister clarifies policy where none might presently exist.

Q: Will the Secretary of State tell us which Minister has been appointed to be responsible for green economic
growth?

Q: Can [the Secretary of State] confirm whether train platform capacity will be a part of the discussions between
the city council and Network Rail?

Q: What would the Prime Minister say to a borough council which is considering rejecting Government funding
and instead [taxing] my constituents more?

Question motifs: {what←say,say→to}, {will←tell}, {can←confirm, confirm→be}, {what←say, would←say}

Table 2: Interpretation for the first four types, with examples of representative questions and motifs.
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Type Interpretation and examples

4:
A

gr
ee

m
en

t

Airing a laudatory remark about a policy that the minister and MP clearly already agree on. Often these questions
effectively serve as attempts to curry favor with the minister and bolster their (mutual) party.

Q: Is it not important that the Department continues its excellent work [in] building flood defeneces?

Q: Does [the Secretary of State] agree with me that part of protecting Britain’s national interests is that Britain
should develop relationships with emerging economies?

Q: Does the Minister agree that UK taxpayers need to be considered at every single step of the way when it comes
to our aid spending?

Question motifs: {does←agree, agree→is}, {is→important}, {does←agree, agree→with}, {does←agree,

agree→need}

5:
Se

lf-
pr

om
ot

io
n

Here, “awareness” is entirely rhetorical: either the minister is aware and agrees or the minister is not aware and will
investigate. These questions allow the question asker to be seen to be bringing local concerns to broader attention,
but in a way that is more assertive than in type 2 (narrow factual).

Q: Has the right hon. Gentleman considered compulsory postal voting , and moving polling day from a Thursday
to the weekend?

Q: In considering the role of local tribunals , will my hon Friend take account of the recommendation in the Oglesby
report?

Q: Will the Minister reconsider his reply to my [colleague], [in light of] the situation [on] school leavers applying
for technical positions?

Question motifs: {is→aware}, {considered←has}, {will←take, take→in}, {will←reconsider}

6:
C

on
ce

de
,a

cc
ep

t

Aggressive demand for minister to concede to, or accept, a fault. The premise of such questions is that the minister
has been incompetent, or that the government has the wrong policy; these questions do not constitute a genuine
attempt to obtain information.

Q: Is it not now completely true that the Labour Government are out of touch with gut British instincts?

Q: Will [the Secretary] acknowledge the importance of not completely abandoning the research on sustainable
biofuels?

Q: Will [the Deputy Prime Minister] now concede to the House that the Royal Mail was sold off too cheaply?

Question motifs: {will←accept}, {is→not, is→true}, {will←acknowledge}, {will←concede}

7:
C

on
de

m
na

to
ry

Similar to type 6 (concede, accept) but more aggressive and hectoring in tone, asking the minister to explain
themselves and be contrite on the basis of very broad ideological premises that are difficult to answer without ‘self-
incrimination’. These questions often rely on rhetorical grandstanding and lacks any subtlety or policy detail on
which minister can comment precisely.

Q: When members of the armed forces are facing a pay freeze, how can the Secretary justify bonuses to senior
offices in the civil service?

Q: Why does the right hon Gentleman not have an industrial strategy to build that recovery?

Q: Will the Government now apologise for their complacent decision to scrap the future jobs fund, [given that]
long-term youth unemployment is rising?

Question motifs: {can←explain}, {how←justify, can←justify}, {why does}, {will←apologise}

Table 3: Interpretation for the last four types, with examples of representative questions and motifs.
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Figure 3: A section of the motif DAGM and the subgraphMq (in bold) representing the phrasing of
the question in example (1). For clarity, redundant and irrelevant nodes and edges are not shown.
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Abstract

We explore how to detect people’s per-
spectives that occupy a certain proposi-
tion. We propose a Bayesian modelling
approach where topics (or propositions)
and their associated perspectives (or view-
points) are modeled as latent variables.
Words associated with topics or perspec-
tives follow different generative routes.
Based on the extracted perspectives, we
can extract the top associated sentences
from text to generate a succinct summary
which allows a quick glimpse of the main
viewpoints in a document. The model is
evaluated on debates from the House of
Commons of the UK Parliament, reveal-
ing perspectives from the debates without
the use of labelled data and obtaining bet-
ter results than previous related solutions
under a variety of evaluations.

1 Introduction

Stance classification is binary classification to de-
tect whether people is supporting or against a
topic. Existing approaches largely rely on labelled
data collected under specific topics for learning su-
pervised classifiers for stance classification (Mo-
hammad et al., 2016a). At most time, apart from
detecting one’s stance, we are interested in find-
ing out the arguments behind the person’s posi-
tion. Perspectives, that state people’s ideas or the
facts known to one, can be contrastive, i.e. to be in
favour of or against something (e.g. Brexit vs Bre-
main), or non-contrastive, i.e. independent discus-
sions that share a common topic (e.g. unemploy-
ment and migration in the context of economy).

Recent years have seen increasing interests in
argumentation mining which involves the auto-
matic identification of argumentative structures,
e.g., the claims and premises, and detection

of argumentative relations between claims and
premises or evidences. However, learning mod-
els for argumentation mining often require text
labelled with components within argumentative
structures and detailed indication of argumentative
relations among them. Such labelled data is ex-
pensive to obtain in practice and it is also difficult
to port models trained on one domain to another.

We are particularly interested in detecting dif-
ferent perspectives in political debates. Essen-
tially, we would like to achieve somewhere in
between stance classification and argumentation
mining. Given a text document, we want to iden-
tify a speaker’s key arguments, without the use of
any labelled data. For example, in debates about
‘Education’, we want to automatically extract sen-
tences summarising the key perspectives and their
arguments, e.g. ‘our education system needs to
promote excellence in stem subjects’, ‘teenagers
need to be taught with sexual and health educa-
tion’ or ‘grammar schools promote inequality’.
Similarly, if ‘Brexit’ is being discussed in terms
of leaving or remaining, we want to cluster argu-
ments into those two viewpoints.

To do this, we introduce a Latent Argument
Model (LAM) which assumes that words can be
separated as topic words and argument words and
follow different generative routes. While topic
words only involve a sampling of topics, argument
words involve a joint sampling of both topics and
arguments. The model does not rely on labelled
data as opposed to most existing approaches to
stance classification or argument recognition. It is
also different from cross-perspective topic models
which assume the perspectives are observed (Fang
et al., 2012). Quantitative and qualitative evalua-
tions on debates from the House of Commons of
United Kingdom show the utility of the approach
and provide a comparison against related models.
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2 Related work

Our research is related to stance classification, ar-
gument recognition and topic modelling for senti-
ment/perspective detection.

2.1 Stance Classification

Stance detection aims to automatically detect from
text whether the author is in favour of, against, or
neutral towards a target. As previously reported in
(Mohammad et al., 2016b), a person may express
the same stance towards a target by using nega-
tive or positive language. Hence, stance detection
is different from sentiment classification and senti-
ment features alone are not sufficient for stance de-
tection. With the introduction of the shared task of
stance detection in tweets in SemEval 2016 (Mo-
hammad et al., 2016a), there have been increas-
ing interests of developing various approaches for
stance detection. But most of them focused on
building supervised classifiers from labelled data.
The best performing system (Zarrella and Marsh,
2016) made use of large unlabelled data by first
learning sentence representations via a hashtag
prediction auxiliary task and then fine tuning these
sentence representations for stance detection on
several hundred labelled examples. Nevertheless,
labelled data are expensive to obtain and there is
a lack of portability of classifiers trained on one
domain to move to another domain.

2.2 Argument Recognition

Closely related to stance detection is argument
recognition which can be considered as a more
fine-grained task that it aims to identify text
segments that contain premises that are against
or in support of a claim. Cabrio and Villata
(2012) combined textual entailment with argu-
mentation theory to automatically extract the argu-
ments from online debates. Boltuzic and Šnajder
(2014) trained supervised classifiers for argument
extraction from their manually annotated corpus
by collecting comments from online discussions
about two specific topics. Sardianos et al. (2015)
proposed a supervised approach based on Con-
ditional Random Fields for argument extraction
from Greek news. Nguyen and Litman (2015)
run an LDA model and post-processed the output,
computing argument and domain weights for each
of the topics, which were then used to extract ar-
gument and domain words. Their model outper-
formed traditional n-grams and lexical/syntactic
rules on a collection of persuasive essays. Lippi

and Torroni (2016a) hypothesized that vocal fea-
tures of speech can improve argument mining and
proposed to train supervised classifiers by combin-
ing features from both text and speech for claim
detection from annotated political debates. Apart
from claim/evidence detection, there has also been
work focusing on identification of argument dis-
course structures such as the prediction of rela-
tions among arguments or argument components
(Stab and Gurevych, 2014; Peldszus and Stede,
2015). A more recent survey of various machine
learning approaches used for argumentation min-
ing can be found in (Lippi and Torroni, 2016b).
All these approaches have been largely domain-
specific and rely on a small set of labelled data for
supervised model learning.

2.3 Topic Modeling for
Sentiment/Perspective Detection

Topic models can be modified to detect sentiments
or perspectives. Lin and He (2009) introduced a
joint sentiment topic (JST) model, which simulta-
neously extracts topics and topic-associated sen-
timents from text. Trabelsi and Zaıane (2014)
proposed a joint topic viewpoint (JTV) model for
the detection of latent viewpoints under a cer-
tain topic. This is essentially equivalent to the
reparameterized version of the JST model called
REVERSE-JST (Lin et al., 2012) in which senti-
ment label (or viewpoint) generation is dependent
on topics, as opposed to JST where topic genera-
tion is conditioned on sentiment labels.

Fang et al. (2012) proposed a Cross-Perspective
Topic Model (CPT) in which the generative pro-
cesses for topic words (nouns) and opinion words
(adjectives, adverbs and verbs) are different, as the
opinion words are sampled independently from
the topic. Also, CPT assumed perspectives are ob-
served, which implies texts need to be annotated
with the viewpoint they belong to. Awadallah
et al. (2012) detected politically controversial top-
ics by creating an opinion-base of opinion hold-
ers and their views. Das and Lavoie (2014) ob-
served the editions and interactions of a user in
Wikipedia pages to infer topics and points of view
at the same time. Qiu et al. (2015) proposed a
regression-based latent factor model which jointly
models user arguments, interactions, and attributes
for user stance prediction in online debates.
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3 Latent Argument Model (LAM)

We assume that in a political debate, the speaker
first decides on which topic she wants to comment
on (e.g. Education). She then takes a stance (e.g.
remark the importance about stem subjects) and
elaborates her stance with arguments. It is worth
noting that we do not consider the temporal di-
mension of documents here, i.e., our model is fed
with a collection of unlabeled documents without
temporal order.

We use a switch variable x to denote whether a
word is a background word (shared across mul-
tiple topics), a topic word (relating to a certain
topic) or an argument word (expressing arguments
under a specific topic). Depending on the type
of word, we follow a different generative process.
For each word in a document, if it is a background
word, we simply sample it from the background
word distribution φb; if it is a topic word, we first
sample a topic z from the document-specific topic
distribution θd and then sample the word from
the topic-word multinomial distribution ψz shared
across all documents; if it is an argument word,
we need to first jointly sample the topic-argument
pair, (z, a), where z comes from the existing top-
ics already sampled for the topic words in the doc-
ument and a is sampled from the topic-specific
argument distribution ωz , and finally the word is
sampled from the multinomial word distribution
for the topic-specific argument ψz,a. The argu-
ment indicator here is a latent categorical variable.
It can take a binary value to denote pro/con or pos-
itive/negative towards a certain topic. More gener-
ally, it could also take a value from multiple stance
or perspective categories. We thus propose a La-
tent Argument Model (LAM) shown in Figure 1.
Formally, the generative process is as follows:

• Draw a distribution over the word switch
variable, φ ∼ Dirichlet(γ), and background
word distribution, ψb ∼ Dirichlet(βb).

• For each topic z ∈ {1...T}, draw a
multinomial topic-word distribution ψz ∼
Dirichlet(βz).

– For each argument a ∈ {1...A} draw a
multinomial topic-argument distribution
ωz ∼ Dirichlet(δ) as well as a multino-
mial topic-argument-word distribution
ψvz,a ∼ Dirichlet(βa).

• For each document d ∈ {1...D} :

– Draw a multinomial topic distribution,
θd ∼ Dirichlet(α).

– For each word n ∈ {1, .., Nd} in d:

* Choose xd,n ∼ Multinomial(φ).
* If xd,n = 0, draw a background

word wd,n ∼ ψb;
* If xd,n = 1, draw a topic z ∼

Multinomial(θd) and a word wd,n ∼
Multinomial(ψz);

* If xd,n = 2, draw a topic z ∼
Multinomial(θd), an argument a ∼
Multinomial(ωz) and a wordwd,n ∼
Multinomial(ψaz,a).

Figure 1 shows its plate representation.

α

θ

wb

β
z

ψ

β
a

ψa

β
b

ψb

x a

wz

wa

z

δΩ

TxA

D
Nd

X

TxA

T

ϕ

z

Figure 1: The plate notation for the LAM model.
Shadowed elements represent the observed vari-
ables (words and prior distributions).

3.1 Inference and Parameter Estimation

We use Collapsed Gibbs Sampling (Casella and
George, 1992) to infer the model parameters and
the latent assignments of topics and arguments,
given the observed data. Gibbs sampling is a
Markov chain Monte Carlo method to iterative es-
timate latent parameters. In each iteration, a new
sample of the hidden parameters is made based on
the distribution of the previous epoch. Letting the
index t = (d, n) denote the nth word in document
d and the subscript −t denote a quantity that ex-
cludes data from the nth word position in docu-
ment d, Λ = {α, βb, βz, βa, γ, δ}, the conditional
posterior for xt is:

P (xt = r|x−t, z,a,w,Λ) ∝
{N r

d}−t + γ

{Nd}−t + 3γ
· {N r

wt}−t + βr∑
w′{N r

w′}−t +Wβr
, (1)

where r denotes different word types, either back-
ground word, topic word or argument word. N r

d
denotes the number of words in document d as-
signed to the word type r, Nd is the total number
of words in the document d, N r

wt is the number of
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times word wt is sampled from the distribution for
the word type r, W is the vocabulary size.

For topic words, the conditional posterior for zt
is:

P (zt = k|z−t,w,Λ) ∝
N−td,k + αk

N−td +
∑

k αk
·
N−tk,wt + βz

N−tk +Wβz
, (2)

where Nd,k is the number of times topic k was as-
signed to some word tokens in document d, Nd is
the total number of words in document d, Nk,wt is
the number of times word wt appeared in topic k.

For argument words, the conditional posterior
for zt and at is:

P (zt = k, at = j|z−t,a−t,w,Λ) ∝
N−td,k + αk

N−td +
∑

k αk
·
N−td,k,j + δk,j

N−td,k +
∑

j δk,j
·
N−tk,j,wt + βv

N−tk,j +Wβv
,

(3)

where Nd,k,j is the number of times a word from
document d has been associated with topic k and
argument j, Nk,j,wt is the number of times word
wt appeared in topic k and with argument j, and
Nk,j is the number of words assigned to topic k
and argument j.

Once the assignments for all the latent variables
are known, we can easily estimate the model pa-
rameters {θ,φ,ρ,ψb,ψz,ψa,ω}. We set the
symmetric prior γ = 0.3, ε = 0.01, βb =
βz = 0.01, δ = (0.05 × L)/A, where L is
the average document length, A the is total num-
ber of arguments, and the value of 0.05 on av-
erage allocates 5% of probability mass for mix-
ing. The asymmetric prior α is learned di-
rectly from data using maximum-likelihood esti-
mation (Minka, 2003) and updated every 40 iter-
ations during the Gibbs sampling procedure. In
this paper we only consider two possible stances,
hence, A = 2. But the model can be easily ex-
tended to accommodate more than two stances or
perspectives. We set the asymmetric prior βa for
the topic-argument-word distribution based on a
subjectivity lexicon in hoping that contrastive per-
spectives can be identified based on the use of pos-
itive and negative words. We run Gibbs sampler
for 1 000 iterations and stop the iteration once the
log-likelihood of the training data converges.

3.2 Separating Topic and Perspective Words
Using the word type switch variable x, we could
separate topic and argument words in LAM based

solely on the statistics gathered from data. We also
explore another two methods to separate topic and
argument words based on Part-of-Speech (POS)
tags and with the incorporation of a subjectiv-
ity lexicon. For the first variant, we adopt the
similary strategy as in (Fang et al., 2012) that
nouns (NOUN) are topic words; adjectives (ADJ),
adverbs (ADV) and verbs (VERB) are argument
words; words with other POS tags are background
words. Essentially, x is observed. We call this
model LAM POS.

For the second variant, instead of assuming x
is observed, we incorporate the POS tags as prior
information to modify the Dirichlet prior γ for the
word type switch variable at the initialization step.
In addition, we also consider a subjective lexicon1,
L, that if a word can be found in the lexicon, then
it is very likely the word is used to convey an
opinion or argument, although there is still a small
probability that word could be either background
or topic word. Assuming an asymmetric Dirichlet
prior for x is parametrized by γᵀ = [γb, γz, γa] for
background, topic and argument words, it is modi-
fied by a transformation matrix λ, γnew = λ×γᵀ,
where λ is defined by:

• If word w ∈ L ∧ POSTAG(w) 6= NOUN then
λᵀ = [0.05, 0.05, 0.9]

• else if POSTAG(w) = NOUN then λᵀ =
[0.05, 0.9, 0.05]

• else if POSTAG(w) ∈ {ADJ,ADV,VERB} then
λᵀ = [0.05, 0.05, 0.9]

• else λᵀ = [0.9, 0.05, 0.05]

The conditional probability for the switch variable
x is modified by simultaneously considering the
POS tag g for the word at position t:

P (xt = r, yt = g|x−t, z,a,w,Λ) ∝
{N r

d}−t + γ

{Nd}−t + 3γ
· {N r

wt}−t + βr∑
w′{N r

w′}−t +Wβr
·

{N r
g }+ εrg

{Ng}+
∑

g′ ε
r
g′
, (4)

where an additional term is added to the RHS
of Equation 1. Here, N r

g denotes the number of
words with POS tag g assigned to the word type
r, Ng is the total number of words assigned to the
POS tag g, εrg is the Dirichlet prior for the POS
tag-word type distribution.

1In this work, we use the subjectivity lexicon presented at
(Wiebe et al., 2005).
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We call the second variant LAM LEX. As both
the POS tag information and the subjectivity lexi-
con are only incorporated in the initialisation step,
LAM LEX sits in-between LAM and LAM POS that
it performs soft clustering of topic words and ar-
gument words. That is, during the initialisation,
nouns are more likely to be topic words, but there
is still a small probability that they could be either
argument or background words; and similarly for
words tagged as adjectives, adverts and verbs.

4 House of Common Debates (HCD)

Debates from the UK parliament are archived and
available for consulting.2 A custom web-crawler
was developed to obtain the records of every day
that The House of Commons was in session be-
tween 2009 and 2016. Due to inconsistencies in
the data format and volume of data, much of the
analysis focuses on the recordings for the parlia-
mentary year 2014-2015. The general structure of
a single day of recording is as follows: a ques-
tion will be put to the house (generally a Bill) and
Members of Parliament (MPs) will discuss various
aspects regarding the Bill or show stances about it.
Each speech made by an MP is considered to be a
single document. Multiple Bills will be discussed
each day. The current item being discussed is
clearly marked in the source data format, so link-
ing documents to the current bill and MP is trivial.
Each speech is labelled with a major (e.g. edu-
cation) and a minor topic (e.g. grammar schools)
and help us create a dataset with the desired needs.

The length that The House will be in session
varies and the number of bills discussed also
varies. In this paper, we considered debates oc-
curred during March of 20153 and contains 1 992
speeches belonging to diverse domains: justice,
education, energy and climate change, treasury,
transport, armed forces, foreign and common-
wealth office, environment, transport, royal assent,
work and pensions, northern Ireland. This House
of Commons Debates (HCD) dataset is made avail-
able for the research community.4

We followed a standard methodology to clean
the texts: stopwords were removed, lemmatization
was applied, and a naive negation treatment was
considered for the particle ‘not’, by creating bi-
grams for words occurs in the subjectivity lexicon

2https://hansard.parliament.uk
3Period of time what selected on a basis of existence of a

large number of major topics.
4https://github.com/aghie/lam/blob/

master/hcd.tsv

(e.g., ‘not good’ becomes ‘not good’). As topic
models suffer from lack of robustness if large out-
liers are present, we also removed very frequent
(above 99%) and rare words (below percentile
65%), assuming that word occurrences of the col-
lection follow a Zip’s law distribution.5 Similar
strategy was carried out for texts, in order to just
consider texts of similar length. The preprocessed
HCD contains a total of 1 598 speeches.

5 Experiments

This section evaluates LAM and its variants quali-
tatively and quantitatively (averaged over 5 runs).

The models for comparison are listed below:

• LDA. Latent Dirichlet Allocation (Blei et al.,
2003).

• CPT. The Cross-perspective Topic Model
(Fang et al., 2012) assumes perspectives are
observed. To be able to run this model on the
political speeches, we implemented a version
that can manage latent perspectives and sep-
arately sample topics and viewpoints.

• JTV. Joint Topic-Viewpoint Model (Trabelsi
and Zaıane, 2014) is essentially the repa-
rameterized version of the Joint Sentiment-
Topic (JST) model (Lin and He, 2009) called
REVERSE-JST (Lin et al., 2012) in which
sentiment label (or viewpoint) generation is
dependent on topics. We implemented JTV

as the reversed JST model.6

• LAM. Latent Argument Model from §3.
• LAM POS. LAM with topic, argument or

background words separated by POS tags.
• LAM LEX. Both POS tags and a subjec-

tive lexicon are used to initialise the Dirichlet
prior γ for the word type switch variable as
described in §3.2.

5.1 Experimental Results
Results are evaluated in terms of both topic coher-
ence and the quality of the extracted perspectives.

5.1.1 Topic Coherence
The CV metric7 is used to measure the coherence
of the topics generated by the models as it has been
shown to give the results closest to human evalu-
ation compared to other topic coherence metrics
(Röder et al., 2015). In brief, given a set of words,

5Percentiles were selected on an empirical basis.
6We were not able to find a publicly available code of the

JTV implementation.
7https://github.com/AKSW/Palmetto/
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it gives an intuition of how likely those words co-
occur compared to expected by chance.

Figure 2 plots the CV results8 versus the num-
ber of topics on HCD for various models. For each
topic z, we extract the top ten most representa-
tive words ranked by their respective normalised
discriminative score defined by DS(w, z) =
P (w|z)/[maxz′ 6=z P (w|z′)]. We chose this ap-
proach instead of simple P (w|z) as it was ob-
served to turn into higher quality topics. It is clear
that LAM LEX models outperform baselines and
that all variants are learning well the topics from
the data, showing that the three different mecha-
nisms for the switch variable are effective to gen-
erate coherent topics. Also, our models work ro-
bustly under different number of topics. More-
over, LAM LEX achieve better coherence scores
than the original LAM and LAM POS. This shows
that it is more effective to use POS tags and a sub-
jectivity lexicon to initialise the Dirichlet prior for
the word type switch variable rather than simply
relying on POS tags or subjectivity lexica to give
hard discrimination between topic and argument
words.

20 40 60 80 100
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0.40

0.42

0.44
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0.48
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Figure 2: CV coherence vs the number of topics
for different modeling approaches.

We also used the gold-standard major topic
label assigned by Hansard to each speech to
carry out an additional quantitative evaluation.
For each topic z, we extract the top ten most
representative sentences ranked by their respec-
tive normalised discriminative score defined by
DS(s, z) =

∑
w∈s DS(w, z)/Length(s).

If a particular model is clustering robustly, the
top sentences it extracts should belong to speeches

8The CV results were calculated based on the top 10 words
from each topic.

that discuss the same topic and share the same
major and/or minor topic labels in the HCD cor-
pus. Table 2 shows for the studied models the
percentage of sentences where x out of top 10
topic sentences belong to the same major topic.
The results reinforce the superior performance of
the LAM LEX approach in comparison with other
models.

It is worth remarking that in cases where
LAM LEX cluster together sentences labelled with
different major topics, some clustering results are
actually quite sensible. Table 1 illustrates it with
a representative case. These sentences were ex-
tracted from a cluster about farmers in which 9
out of 10 top topic sentences have “environment,
food and rural affairs” as the gold major topic.
The only discording sentence, belonging to trea-
sury (major topic) and infrastructure investment
(minor topic), is however closely related to farm-
ers too and it makes sense to put it into the same
cluster.

5.1.2 Perspectiven Summarisation
In this section we evaluate the quality of the rela-
tion of the arguments with respect to their topics.

In terms of a quantitative evaluation, we are in-
terested in knowing how strongly the perspectives
are related to their topic: it might be the case that
the separate CV coherence for the topic and view-
points is high, but there is no actual relation be-
tween them, which would be an undesirable be-
haviour. To determine whether this is happening
or not in the studied models, for each perspective
we compute a mixed topic-perspective CV value,
by extracting the top 5 perspective words, con-
catenating them with the top 5 words of the cor-
responding topic and running Palmetto as in the
previous section.9 We then average the computed
mixed topic-perspective CV values by T ×A. Fol-
lowing this methodology, a high average CV value
means that the perspective words are likely to oc-
cur when discussing about that particular topic,
and therefore a test of whether the model is learn-
ing perspectives that have to do with it. Figure 3
compares topic-perspective models evaluated fol-
lowing this methodology, showing that LAM LEX

gives the best overall coherence.
For a better understanding of what perspec-

tives LAM LEX is learning, we extract the top
perspective sentences for a given topic based
on normalised discriminative score of each sen-

9Palmetto does not accept more than 10 words.
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Sentence (extracted from a longer speech) Major topic Minor topic
I would add that HMRC can provide extra flexibility where there are particular impacts on particular farmers Treasury Infrastructure
or other businesses Investment
I think milk prices will improve, but the banks need to support farmers in the meantime Environment Topical questions

food and rural affairs

Table 1: Example sentences, belonging to speeches that were assigned in Hansard different major topics
labels, were clustered together by LAM (and it is sensible to do so as they are both about “farmers”).

Model #Topics ≥5 ≥6 ≥7 ≥8 ≥9 =10

LDA

10 0.720 0.600 0.459 0.320 0.160 0.120
20 0.810 0.700 0.570 0.430 0.310 0.180
30 0.779 0.653 0.580 0.479 0.347 0.233
40 0.620 0.550 0.475 0.360 0.290 0.145
50 0.732 0.612 0.496 0.388 0.304 0.204

100 0.654 0.486 0.374 0.306 0.216 0.139

CPT

10 0.580 0.440 0.320 0.260 0.220 0.140
20 0.530 0.470 0.410 0.340 0.250 0.160
30 0.473 0.394 0.313 0.273 0.193 0.147
40 0.420 0.385 0.330 0.250 0.200 0.145
50 0.464 0.340 0.292 0.220 0.156 0.104

100 0.435 0.342 0.258 0.190 0.148 0.082

JTV

10 0.620 0.440 0.320 0.199 0.120 0.080
20 0.634 0.486 0.377 0.303 0.229 0.110
30 0.753 0.559 0.453 0.319 0.227 0.087
40 0.705 0.580 0.460 0.370 0.250 0.145
50 0.628 0.468 0.368 0.290 0.220 0.152

100 0.636 0.508 0.364 0.274 0.184 0.126

LAM LEX

10 0.720 0.640 0.480 0.440 0.420 0.240
20 0.790 0.690 0.610 0.520 0.340 0.220
30 0.900 0.779 0.693 0.580 0.453 0.213
40 0.850 0.770 0.650 0.550 0.444 0.260
50 0.788 0.704 0.620 0.520 0.404 0.228

100 0.656 0.544 0.452 0.348 0.278 0.186

Table 2: Ratio of topics where x or more than x
out of top 10 topic sentences (≥ x) belong to the
same major topic.

tence10, similar to what have been done in se-
lecting the top topic sentences. In specific, we
first define the discriminative score of word w un-
der topic z and argument a by: DS(w, a, z) =

P (w|z,a)
maxz′ 6=z,a′ 6=a P (w|z′,a′) . Then the sentence-level
discriminative score is calculated based on the ag-
gregated discriminative scores over all the words
normalised by the sentence length: DS(s, z, a) =∑

w∈s DS(w, a, z)/Length(s). In order to have
better correspondence between topics and their
respective arguments, we perform two-stage se-
lection: first ranking sentences based on topic-
level discriminative scores DS(s,z), and then fur-
ther ranking sentences based on topic-argument-
level discriminative scores DS(s, z, a).

We can use these extracted top representative
sentences together with the gold major topics from
HCD to measure if perspectives are connected to
their topic. We define the label-based accuracy

10We can also rank sentences for an argument a under a
topic z based on the generative probability of sentences. But
this consistently produce worse results.
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Figure 3: Average mixed topic-perspective CV co-
herence, across different number of topics.

(LA) as follows: let pi be the gold major topics
associated to the top 10 perspective sentences of a
perspective i and let t be the gold major topics cor-
responding to the top 10 topic sentences; LA(t,pi)
= |t∩pi||t∪pi| measures how many gold major topic la-
bels are shared between topic and perspective sen-
tences. LA also penalises the major topics that are
not in common. Table 3 shows for different num-
ber of topics the averaged LA measure across all
perspectives for three models. It can be observed
that LAM LEX obtains the best performance, fol-
lowed by CPT.

Topics CPT JTV LAM LEX
10 0.254 0.308 0.427
20 0.369 0.366 0.517
30 0.401 0.389 0.573
40 0.426 0.394 0.604
50 0.431 0.408 0.564

Table 3: Averaged LA measure across all topic-
perspectives for different models.

To compare the quality of perspectives inferred
by LAM LEX and CPT (over 30 topics) we also
conducted human evaluation. To do this, top-
ics and perspectives were represented as bag-of-
words. Each perspective was also represented
with its three most representative sentences. The
outputs from the two models was first merged
and shuffled. Two external annotators were then
asked to answer (‘yes’ or ‘no’) for each topic
if they could differentiate two perspectives. Co-
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hen’s Kappa coefficient (Cohen, 1968) for inter-
annotator agreement was 0.421. Table 4 shows
the results of the evaluation and it is clear that
LAM LEX outperforms CPT.

Annotator LAM LEX CPT
1 0.63 0.10
2 0.67 0.34
1&2 0.53 0.10

Table 4: Accuracy on detecting perspectives ac-
cording to the human outputs. In 1&2 a ‘yes’ an-
swer is only valid if marked by both annotators.

Table 5 shows the three most representative
perspective sentences for some of the extracted
topics by LAM LEX and CPT, to illustrate how
LAM LEX obtains more coherent sentences.11 The
example involving the first topic shows a case
where LAM LEX learned non-contrastive perspec-
tives: both deal with Palestina, but focusing in
different aspects (illegal settlements vs. Israel ac-
tions). In contrast, CPT mixed perspectives about
Israel/Palestina and other viewpoints about GCSE
and mortgages. In the second topic, LAM LEX

ranks at the top sentences relating to Sinn Fein &
Northern Ireland, that show two different stances
(positive vs negative) meanwhile in CPT it is not
possible to infer any clear perspective despite sen-
tences contain semantically related terms.

Table 6 shows cases where LAM LEX obtained
a less-coherent output according to the annotators.
The first topic deals with Shaker Aamer and the
legality of its imprisonment in Guantanamo. Per-
spective 2 reflects this issue, but Perspective 1 in-
cludes other types of crimes. The second exam-
ple discusses issues relating to transports. While
Perspective 1 is all about the negotiation with the
train company, First Great Western, on its fran-
chise extension proposal, Perspective 2 contains
sentences relating to a number of different issues
under transports. To alleviate this problem, we hy-
pothesise that additional levels of information (in
addition to the topic and perspective levels), such
as a Bill or a speaker, might be needed to better
distinguish different topics and perspectives that
share a significant proportion of vocabulary.

5.1.3 Discussion
LAM LEX gave a glimpse of the perspectives that
occupy a topic. However, in many cases those
differ from the initial expectation given the priors

11The examples were identified as two perspectives by at
least one annotator. Its selection was made based on an exis-
tence of a similar topic both on LAM LEX and CPT outputs.

used in our model. Despite of the use of the sub-
jectivity lexicon to initialise the Dirichlet prior βa

for the topic-argument-word distribution, after a
few iterations the initial distribution changes rad-
ically and turns instead into contrastive and non-
contrastive perspectives, with the latter group be-
ing the most common one. We think this is due
to factors that involve: (1) lack of contrastive
speeches about very specific topics; and (2) jargon
from the House of Commons that makes the task
more challenging as stances are showed in subtle
and polite way. This is also in line with what has
been previously observed in (Mohammad et al.,
2016b) that a person may express the same stance
towards a target by using negative or positive lan-
guage. This shows that LAM LEX can infer per-
spectives from raw data, but we have little control
on guiding the model on what perspectives to ex-
tract.

6 Conclusion and Future Work

We have presented LAM, a model able to provide
a glimpse of what is going on in political debates,
without relying on any labelled data and assum-
ing the perspectives of a topic to be latent. It
is implemented through a hierarchical Bayesian
model considering that words can be separated
as topic, argument or background words and fol-
low different generative routes. Experiments show
that our model obtains more coherent topics than
related approaches and also extracts more inter-
pretable perspectives. The code is made available
at https://github.com/aghie/lam.

Although LAM can extract perspectives under a
certain topic, there is little control in what kind of
information to extract (e.g. we might want only
contrastive or non-contrastive arguments). In fu-
ture work, we plan to improve the model through
complex priors or semantic similarity strategies.
Also, adding a ‘Bill’ level could be beneficial as
speeches about the same Bill should share the
same high-level topic. But we need labels indi-
cating to which Bill the text belongs to. Including
a ‘speaker’ level to know which parliamentarians
discuss which topics is another interesting path to
follow.
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LAM LEX CPT
Topic 1 israel, iran, syria, settlement, relocation, counter-terrorism gaza, tpims,

airline, metropolitan
israel, iran, middle, settlement, palestinian, israeli, gaza, negotiation, vil-
lage, hamas

Perspective
1

a) It is contrary to international law in that sense, and any nation has
obligations when dealing with occupied territories and their occupants.

a) Does he agree that unless that happens it is difficult to envisage a unified
and prosperous Palestinian state existing alongside Israel?

b) Again, I reiterate the difference between the two issues: one concerns
the illegal settlements, and the other is a planning matter that we have
raised concerns about.

b) Will the Minister discuss that issue with the Israeli Government, urge
them to reconsider the upcoming evictions and demolitions due for next
month, and instead consider villages co-existing side by side in the spirit
of peace?

c) That is a slightly separate debate or concern if I can put it that way
to the illegal settlements that have been put forward, but nevertheless we
are concerned and are having a dialogue with Israel about that.

c) That is caused partly by the security situation in Sinai and the Egyp-
tian response to that, and partly by the situation between Israel and the
Palestinians in Gaza.

Perspective
2

a) More to the point, the continual encroachment by the Israeli Govern-
ment makes it impossible for East Jerusalem to become the capital of a
Palestinian state.

a) I share the hon. Ladys desire that every school should offer three sepa-
rate sciences at GCSE; that is very important.

b) We know that 163 Palestinian children are being held in Israeli mili-
tary detention, and that many are being held inside Israel in direct viola-
tion of the fourth Geneva

b) Everybody here will know, however, that a 1,000 monthly payment
sustains a mortgage of 200,000.

c) We want to see the establishment of a sovereign and independent
Palestinian state, living in peace and security alongside Israel.

c) As I clarified, that is a different matter to the debate about the occupied
Palestinian territories, but nevertheless we want a robust planning process
that adequately.

Topic 2 stormont, sinn, fein, setback, scene, flag, belfast, backwards, surprise,
feeling

northern, ireland, stormont, sinn, fein, fairly, poverty, corporation,
molyneaux, monday

Perspective
1

a) Would that it was as simple as getting behind the democratic authority
in Libyait is not clear that there is a democratic authority behind which
we can get.

a) Following our two major reform programmes, spend has fallen to 1.7
billion in 2013-14 and is expected to fall to about 1.5 billion once the
reforms have fully worked through the system.

b) It is very important for the Stormont House agreement to be imple-
mented fully and fairly, including all the sections on welfare and budgets.

b) Universal credit is a major reform that will transform the welfare state
in Britain for the better.

c) The Stormont House agreement was a big step forward, and it is vital
for all parties to work to ensure that it is implemented fully and fairly.

c) We have put in place a five-year reform programme that will bring our
courts into the 21st century.

Perspective
2

a) There is a clear disparity in political party funding in Northern Ire-
land, yet Sinn Fein Members continue to draw hundreds of thousands of
pounds in allowances from this House, despite not taking their seats.

a) Will the National Crime Agency specifically target the organised crim-
inal gangs that are engaging in subterfuge and in the organised criminal
activity of fuel laundering along the border areas of Northern Ireland?

b) In light of the reneging of Sinn Fein on the introduction of welfare
reform, what implications does the Minister see in the devolution of cor-
poration tax in Northern Ireland?

b) This will ensure that the people of Northern Ireland are afforded the
same protections from serious and organised crime as those in the rest of
the United Kingdom.

c) There is no doubt that the announcement by Sinn Fein on Monday
was a significant setback for the Stormont House agreement, but it is
inevitable that there will be bumps in the road with agreements of this
nature.

c) The Treasury has had meetings with the European Commission to dis-
cuss the reinstatement of the aggregate credit levy scheme for Northern
Ireland, which could serve as a further tool of investment in infrastruc-
ture.

Table 5: Output sample for representative perspective sentences in non-contrastive and contrastive
topics.

LAM LEX
Topic 1 aamer, shaker, bay, guantanamo, america, obama, american, timetable, embassy, harlington
Perspective 1 a) NSPCC research has shown that six in 10 teenagers have been asked for sexual images or videos online.

b) Does my right hon. Friend agree that the report released last week that suggested that the punishments for online and offline crime should
be equalised demonstrates that education is needed to show that the two sentences should be equal?
c) I can confirm that the Government have announced that we are entering into a negotiation on a contract for difference for the Swansea bay
lagoon to decide whether the project is affordable and represents value for money.

Perspective 2 a) This has been a helpful and constructive debate, and I join others in congratulating the hon. Member for Hayes and Harlington (John
McDonnell) on securing it through the Backbench Business Committee.
b) I thank the Backbench Business Committee for allocating time for this critical debate at an important time in the campaign to secure the
release of Shaker Aamer.
c) He has been one of the leading parliamentary campaigners for Mr Aamers release, and I acknowledge the presence of the hon. Member for
Battersea (Jane Ellison) , who is the constituency MP for Mr Aamer and his familyindeed, this debate provides an important opportunity to
follow up a Backbench Business Committee debate on the same subject that she initiated in April 2013.

Topic 2 passenger, franchise, fare, coast, connectivity, journey, gloucester, user, anglia, stagecoach
Perspective 1 a) Will my hon. Friend confirm when she expects the Departments negotiations with First Great Western on its franchise extension proposals,

which include the improvements at Gloucester, to be completed?
b) The hon. Gentleman will be pleased to learn that we expect to conclude negotiations with First Great Western and to finalise the second
directly awarded franchise contract during this month, and expect the provision of services to start in September.
c) My plans for the regeneration of the city of Gloucester include a new car park and entrance to Gloucester station, but they depend on a land
sale agreement between the Ministry of Justice and the city council and the lands onward leasing to First Great Western.

Perspective 2 a) I do not want any young people to feel frightened of attending school or of their journey to and from school, and, sadly, that applies
particularly to members of the Jewish community at present.
b) Why, instead of real localism, have this Government presided over a failed record, with bus fares up 25% and 2,000 routes cut, and a broken
bus market, which lets users down, but which Labour will fix in government?
c) Last week we introduced the new invitation to tender for the Northern Rail and TransPennine Express services, and transferred East Coast
back to the private sector.

Table 6: Output sample for non-representative perspective sentences in the LAM LEX model.
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Filip Boltuzic and Jan Šnajder. 2014. Back up your
stance: Recognizing arguments in online discus-
sions. In Proceedings of the First Workshop on Ar-
gumentation Mining, pages 49–58. Citeseer.

Elena Cabrio and Serena Villata. 2012. Combining tex-
tual entailment and argumentation theory for sup-
porting online debates interactions. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (ACL): Short Papers-
Volume 2, pages 208–212.

George Casella and Edward I George. 1992. Explain-
ing the gibbs sampler. The American Statistician,
46(3):167–174.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Sanmay Das and Allen Lavoie. 2014. Automated in-
ference of point of view from user interactions in
collective intelligence venues. In ICML, pages 82–
90.

Yi Fang, Luo Si, Naveen Somasundaram, and Zheng-
tao Yu. 2012. Mining contrastive opinions on po-
litical texts using cross-perspective topic model. In
Proceedings of the fifth ACM international confer-
ence on Web search and data mining, pages 63–72.
ACM.

Chenghua Lin and Yulan He. 2009. Joint senti-
ment/topic model for sentiment analysis. In Pro-
ceedings of the 18th ACM conference on Informa-
tion and knowledge management, pages 375–384.
ACM.

Chenghua Lin, Yulan He, Richard Everson, and Stefan
Ruger. 2012. Weakly supervised joint sentiment-
topic detection from text. IEEE Transactions
on Knowledge and Data engineering, 24(6):1134–
1145.

Marco Lippi and Paolo Torroni. 2016a. Argument min-
ing from speech: Detecting claims in political de-
bates. In Thirtieth AAAI Conference on Artificial In-
telligence (AAAI).

Marco Lippi and Paolo Torroni. 2016b. Argumenta-
tion mining: State of the art and emerging trends.
ACM Transactions on Internet Technology (TOIT),
16(2):10.

Thomas P Minka. 2003. A comparison of numeri-
cal optimizers for logistic regression. Unpublished
draft.

Saif M Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiaodan Zhu, and Colin Cherry. 2016a.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the International Workshop on Se-
mantic Evaluation (SemEval), volume 16.

Saif M Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2016b. Stance and sentiment in tweets.
arXiv preprint arXiv:1605.01655.

Huy Nguyen and Diane J Litman. 2015. Extracting ar-
gument and domain words for identifying argument
components in texts. In ArgMining@ HLT-NAACL,
pages 22–28.

Andreas Peldszus and Manfred Stede. 2015. Joint
prediction in mst-style discourse parsing for argu-
mentation mining. In Proc. of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 938–948.

Minghui Qiu, Yanchuan Sim, Noah A Smith, and Jing
Jiang. 2015. Modeling user arguments, interactions,
and attributes for stance prediction in online debate
forums. In Proceedings of the 2015 SIAM Interna-
tional Conference on Data Mining, pages 855–863.
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Abstract

Social media users often make explicit
predictions about upcoming events. Such
statements vary in the degree of certainty
the author expresses toward the outcome:
“Leonardo DiCaprio will win Best Actor”
vs. “Leonardo DiCaprio may win” or “No
way Leonardo wins!”. Can popular be-
liefs on social media predict who will win?
To answer this question, we build a cor-
pus of tweets annotated for veridicality on
which we train a log-linear classifier that
detects positive veridicality with high pre-
cision.1 We then forecast uncertain out-
comes using the wisdom of crowds, by ag-
gregating users’ explicit predictions. Our
method for forecasting winners is fully
automated, relying only on a set of con-
tenders as input. It requires no training
data of past outcomes and outperforms
sentiment and tweet volume baselines on
a broad range of contest prediction tasks.
We further demonstrate how our approach
can be used to measure the reliability of
individual accounts’ predictions and retro-
spectively identify surprise outcomes.

1 Introduction

In the digital era we live in, millions of peo-
ple broadcast their thoughts and opinions online.
These include predictions about upcoming events
of yet unknown outcomes, such as the Oscars or
election results. Such statements vary in the ex-
tent to which their authors intend to convey the
event will happen. For instance, (a) in Table 1
strongly asserts the win of Natalie Portman over
Meryl Streep, whereas (b) imbues the claim with

1The code and data can be found at https://github.
com/SandeshS/Twitter-Veridicality

(a) Natalie Portman is gonna beat out Meryl Streep
for best actress

(b) La La Land doesn’t have lead actress and actor
guaranteed. Natalie Portman will probably (and
should) get best actress

(c) Adored #LALALAND but it’s #NataliePortman
who deserves the best actress #oscar #OscarNoms
> superb acting

Table 1: Examples of tweets expressing vary-
ing degrees of veridicality toward Natalie Portman
winning an Oscar.

uncertainty. In contrast, (c) does not say anything
about the likelihood of Natalie Portman winning
(although it clearly indicates the author would like
her to win).

Prior work has made predictions about contests
such as NFL games (Sinha et al., 2013) and elec-
tions using tweet volumes (Tumasjan et al., 2010)
or sentiment analysis (O’Connor et al., 2010; Shi
et al., 2012). Many such indirect signals have been
shown useful for prediction, however their utility
varies across domains. In this paper we explore
whether the “wisdom of crowds” (Surowiecki,
2005), as measured by users’ explicit predictions,
can predict outcomes of future events. We show
how it is possible to accurately forecast winners,
by aggregating many individual predictions that
assert an outcome. Our approach requires no his-
torical data about outcomes for training and can
directly be adapted to a broad range of contests.

To extract users’ predictions from text, we
present TwiVer, a system that classifies veridi-
cality toward future contests with uncertain out-
comes. Given a list of contenders competing in
a contest (e.g., Academy Award for Best Actor),
we use TwiVer to count how many tweets explic-
itly assert the win of each contender. We find
that aggregating veridicality in this way provides
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an accurate signal for predicting outcomes of fu-
ture contests. Furthermore, TwiVer allows us to
perform a number of novel qualitative analyses
including retrospective detection of surprise out-
comes that were not expected according to popu-
lar belief (Section 4.5). We also show how TwiVer
can be used to measure the number of correct and
incorrect predictions made by individual accounts.
This provides an intuitive measurement of the re-
liability of an information source (Section 4.6).

2 Related Work

In this section we summarize related work on text-
driven forecasting and computational models of
veridicality.

Text-driven forecasting models (Smith, 2010)
predict future response variables using text written
in the present: e.g., forecasting films’ box-office
revenues using critics’ reviews (Joshi et al., 2010),
predicting citation counts of scientific articles (Yo-
gatama et al., 2011) and success of literary works
(Ashok et al., 2013), forecasting economic indi-
cators using query logs (Choi and Varian, 2012),
improving influenza forecasts using Twitter data
(Paul et al., 2014), predicting betrayal in online
strategy games (Niculae et al., 2015) and predict-
ing changes to a knowledge-graph based on events
mentioned in text (Konovalov et al., 2017). These
methods typically require historical data for fitting
model parameters, and may be sensitive to issues
such as concept drift (Fung, 2014). In contrast,
our approach does not rely on historical data for
training; instead we forecast outcomes of future
events by directly extracting users’ explicit predic-
tions from text.

Prior work has also demonstrated that user
sentiment online directly correlates with vari-
ous real-world time series, including polling data
(O’Connor et al., 2010) and movie revenues
(Mishne and Glance, 2006). In this paper, we em-
pirically demonstrate that veridicality can often be
more predictive than sentiment (Section 4.1).

Also related is prior work on detecting veridi-
cality (de Marneffe et al., 2012; Søgaard et al.,
2015) and sarcasm (González-Ibánez et al., 2011).
Soni et al. (2014) investigate how journalists frame
quoted content on Twitter using predicates such
as think, claim or admit. In contrast, our system
TwiVer, focuses on the author’s belief toward a
claim and direct predictions of future events as op-
posed to quoted content.

Our approach, which aggregates predictions ex-
tracted from user-generated text is related to prior
work that leverages explicit, positive veridicality,
statements to make inferences about users’ demo-
graphics. For example, Coppersmith et al. (2014;
2015) exploit users’ self-reported statements of di-
agnosis on Twitter.

3 Measuring the Veridicality of Users’
Predictions

The first step of our approach is to extract state-
ments that make explicit predictions about un-
known outcomes of future events. We focus
specifically on contests which we define as events
planned to occur on a specific date, where a num-
ber of contenders compete and a single winner
is chosen. For example, Table 2 shows the con-
tenders for Best Actor in 2016, highlighting the
winner.

Actor Movie

Leonardo DiCaprio The Revenant
Bryan Cranston Trumbo
Matt Damon The Martian
Michael Fassbender Steve Jobs
Eddie Redmayne The Danish Girl

Table 2: Oscar nominations for Best Actor 2016.

To explore the accuracy of user predictions in
social media, we gathered a corpus of tweets that
mention events belonging to one of the 10 types
listed in Table 4. Relevant messages were col-
lected by formulating queries to the Twitter search
interface that include the name of a contender for
a given contest in conjunction with the keyword
win. We restricted the time range of the queries
to retrieve only messages written before the time
of the contest to ensure that outcomes were un-
known when the tweets were written. We include
10 days of data before the event for the presiden-
tial primaries and the final presidential elections, 7
days for the Oscars, Ballon d’Or and Indian gen-
eral elections, and the period between the semi-
finals and the finals for the sporting events. Ta-
ble 3 shows several example queries to the Twitter
search interface which were used to gather data.
We automatically generated queries, using tem-
plates, for events scraped from various websites:
483 queries were generated for the presidential
primaries based on events scraped from ballotpe-
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Figure 1: Example of one item to be annotated, as displayed to the Turkers.

dia2 , 176 queries were generated for the Oscars,3

18 for Ballon d’Or,4 162 for the Eurovision con-
test,5 52 for Tennis Grand Slams,6 6 for the Rugby
World Cup,7 18 for the Cricket World Cup,8 12 for
the Football World Cup,9 76 for the 2016 US pres-
idential elections,10 and 68 queries for the 2014
Indian general elections.11

We added an event prefix (e.g., “Oscars” or
the state for presidential primaries), a keyword
(“win”), and the relevant date range for the event.
For example, “Oscars Leonardo DiCaprio win
since:2016-2-22 until:2016-2-28” would be the
query generated for the first entry in Table 2.

Minnesota Rubio win since:2016-2-18 until:2016-3-1

Vermont Sanders win since:2016-2-18 until:2016-3-1

Oscars Sandra Bullock win since:2010-3-1 until:2010-3-7

Oscars Spotlight win since:2016-2-22 until:2016-2-28

Table 3: Examples of queries to extract tweets.

2https://ballotpedia.org/Main_Page
3https://en.wikipedia.org/wiki/

Academy_Awards
4https://en.wikipedia.org/wiki/Ballon_

d%27Or
5https://en.wikipedia.org/wiki/

Eurovision_Song_Contest
6https://en.wikipedia.org/wiki/Grand_

Slam_(tennis)
7https://en.wikipedia.org/wiki/Rugby_

World_Cup
8https://en.wikipedia.org/wiki/

Cricket_World_Cup
9https://en.wikipedia.org/wiki/FIFA_

World_Cup
10https://en.wikipedia.org/wiki/United_

States_presidential_election,_2016
11https://en.wikipedia.org/wiki/Indian_

general_election,_2014

We restricted the data to English tweets only,
as tagged by langid.py (Lui and Baldwin, 2012).
Jaccard similarity was computed between mes-
sages to identify and remove duplicates.12 We re-
moved URLs and preserved only tweets that men-
tion contenders in the text. This automatic post-
processing left us with 57,711 tweets for all win-
ners and 55,558 tweets for losers (contenders who
did not win) across all events. Table 4 gives the
data distribution across event categories.

Event Number of tweets
Winners Losers

2016 US Presidential primaries 20,347 17,873
Oscars (2009 – 2016) 1,498 872
Tennis Grand Slams (2011 – 2016) 10,785 19,745
Ballon d’Or Award (2010 – 2016) 3,492 3,285
Eurovision (2010 – 2016) 261 1,421
2016 US Presidential elections 9,679 3,966
2014 Indian general elections 920 736
Rugby World Cup (2010 – 2016) 272 379
Football World Cup (2010 – 2016) 8,129 5,489
Cricket World Cup (2010 – 2016) 2,328 1,792

Table 4: Number of tweets for each event category.

3.1 Mechanical Turk Annotation

We obtained veridicality annotations on a sample
of the data using Amazon Mechanical Turk. For
each tweet, we asked Turkers to judge veridical-
ity toward a candidate winning as expressed in
the tweet as well as the author’s desire toward the
event. For veridicality, we asked Turkers to rate
whether the author believes the event will happen
on a 1-5 scale (“Definitely Yes”, “Probably Yes”,
“Uncertain about the outcome”, “Probably No”,

12A threshold of 0.7 was used.

1585



(a) Oscar winners (b) Oscar losers (c) All events winners (d) All events losers

Figure 2: Heatmaps showing annotation distributions for one of the events - the Oscars and all event
types, separating winners from losers. Vertical labels indicate veridicality (DY “Definitely Yes”, PY
“Probably Yes”, UC “Uncertain about the outcome”, PN “Probably No” and DN “Definitely No”). Hor-
izontal labels indicate desire (SW “Strongly wants the event to happen”, PW “Probably wants the event
to happen”, ND “No desire about the event outcome”, PD “Probably does not want the event to happen”,
SN “Strongly against the event happening”). More data in the upper left hand corner indicates there are
more tweets with positive veridicality and desire.

“Definitely No”). We also added a question about
the author’s desire toward the event to make clear
the difference between veridicality and desire. For
example, “I really want Leonardo to win at the Os-
cars!” asserts the author’s desire toward Leonardo
winning, but remains agnostic about the likelihood
of this outcome, whereas “Leonardo DiCaprio will
win the Oscars” is predicting with confidence that
the event will happen.

Figure 1 shows the annotation interface pre-
sented to Turkers. Each HIT contained 10 tweets
to be annotated. We gathered annotations for
1, 841 tweets for winners and 1, 702 tweets for
losers, giving us a total of 3, 543 tweets. We paid
$0.30 per HIT. The total cost for our dataset was
$1,000. Each tweet was annotated by 7 Turkers.
We used MACE (Hovy et al., 2013) to resolve dif-
ferences between annotators and produce a single
gold label for each tweet.

Figures 2a and 2c show heatmaps of the distri-
bution of annotations for the winners for the Os-
cars in addition to all categories. In both instances,
most of the data is annotated with “Definitely Yes”
and “Probably Yes” labels for veridicality. Fig-
ures 2b and 2d show that the distribution is more
diverse for the losers. Such distributions indicate
that the veridicality of crowds’ statements could
indeed be predictive of outcomes. We provide ad-
ditional evidence for this hypothesis using auto-
matic veridicality classification on larger datasets
in §4.

3.2 Veridicality Classifier

The goal of our system, TwiVer, is to automate
the annotation process by predicting how veridical

a tweet is toward a candidate winning a contest:
is the candidate deemed to be winning, or is the
author uncertain? For the purpose of our experi-
ments, we collapsed the five labels for veridicality
into three: positive veridicality (“Definitely Yes”
and “Probably Yes”), neutral (“Uncertain about
the outcome”) and negative veridicality (“Defi-
nitely No” and “Probably No”).

We model the conditional distribution over a
tweet’s veridicality toward a candidate c winning
a contest against a set of opponents, O, using a
log-linear model:

P (y = v|c, tweet) ∝ exp (θv · f(c,O, tweet))

where v is the veridicality (positive, negative or
neutral).

To extract features f(c,O, tweet), we first pre-
processed tweets retrieved for a specific event to
identify named entities, using (Ritter et al., 2011)’s
Twitter NER system. Candidate (c) and opponent
entities were identified in the tweet as follows:
- TARGET (t). A target is a named entity that
matches a contender name from our queries.
- OPPONENT (O). For every event, along with the
current TARGET entity, we also keep track of other
contenders for the same event. If a named entity
in the tweet matches with one of other contenders,
it is labeled as opponent.
- ENTITY (e): Any named entity which does not
match the list of contenders.

Figure 3 illustrates the named entity labeling for
a tweet obtained from the query “Oscars Leonardo
DiCaprio win since:2016-2-22 until:2016-2-28”.
Leonardo DiCaprio is the TARGET, while the
named entity tag for Bryan Cranston, one of the
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Figure 3: Illustration of the three named entity tags and distance features between entities and keyword
win for a tweet retrieved by the query “Oscars Leonardo DiCaprio win since:2016-2-22 until:2016-2-28”.

Figure 4: Precision/Recall curve showing TwiVer
performance in identifying positive veridicality
tweets in the test data.

P R F1

− Context 47.7 96.4 63.8
− Distance 57.5 82.5 67.7
− Punctuation 53.4 88.2 66.6
− Dependency path 56.9 85.4 68.2
− Negated keyword 56.7 86.4 68.4
All features 58.7 83.1 68.8

Table 5: Feature ablation of the positive veridical-
ity classifier by removing each group of features
from the full set. The point of maximum F1 score
is shown in each case.

losers for the Oscars, is re-tagged as OPPONENT.
These tags provide information about the position
of named entities relative to each other, which is
used in the features.

3.3 Features

We use five feature templates: context words, dis-
tance between entities, presence of punctuation,
dependency paths, and negated keyword.
Target and opponent contexts. For every TAR-
GET (t) and OPPONENT (o ∈ O) entities in the
tweet, we extract context words in a window of
one to four words to the left and right of the TAR-
GET (“Target context”) and OPPONENT (“Oppo-
nent context”), e.g., t will win, I’m going with t, o

will win.
Keyword context. For target and opponent enti-
ties, we also extract words between the entity and
our specified keyword (k) (win in our case): t pre-
dicted to k, o might k.
Pair context. For the election type of events, in
which two target entities are present (contender
and state. e.g., Clinton, Ohio), we extract words
between these two entities: e.g., t1 will win t2.
Distance to keyword. We also compute the dis-
tance of TARGET and OPPONENT entities to the
keyword.

Punctuation. We introduce two binary features
for the presence of exclamation marks and ques-
tion marks in the tweet. We also have features
which check whether a tweet ends with an excla-
mation mark, a question mark or a period. Punc-
tuation, especially question marks, could indicate
how certain authors are of their claims.

Dependency paths. We retrieve dependency
paths between the two TARGET entities and be-
tween the TARGET and keyword (win) using the
TweeboParser (Kong et al., 2014) after applying
rules to normalize paths in the tree (e.g., “doesn’t”
→ “does not”).

Negated keyword. We check whether the
keyword is negated (e.g., “not win”, “never win”),
using the normalized dependency paths.

We randomly divided the annotated tweets into
a training set of 2,480 tweets, a development set
of 354 tweets and a test set of 709 tweets. MAP
parameters were fit using LBFGS-B (Zhu et al.,
1997). Table 6 provides examples of high-weight
features for positive and negative veridicality.

3.4 Evaluation
We evaluated TwiVer’s precision and recall on our
held-out test set of 709 tweets. Figure 4 shows
the precision/recall curve for positive veridicality.
By setting a threshold on the probability score to
be greater than 0.64, we achieve a precision of
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Positive Veridicality Negative Veridicality
Feature Type Feature Weight Feature Type Feature Weight

Keyword context TARGET will KEYWORD 0.41 Negated keyword keyword is negated 0.47
Keyword dep. path TARGET→ to→ KEYWORD 0.38 Keyword context TARGET won’t KEYWORD 0.41
Keyword dep. path TARGET← is→ going→ to→ KEYWORD 0.29 Opponent context OPPONENT will win 0.37
Target context TARGET is favored to win 0.19 Keyword dep. path TARGET← will→ not→ KEYWORD 0.31
Keyword context TARGET are going to KEYWORD 0.15 Distance to keyword OPPONENT closer to KEYWORD 0.28
Target context TARGET predicted to win 0.13 Target context TARGET may not win 0.27
Pair context TARGET1 could win TARGET2 0.13 Keyword dep. path OPPONENT← will→ KEYWORD 0.23
Distance to keyword TARGET closer to KEYWORD 0.11 Target context TARGET can’t win 0.18

Table 6: Some high-weight features for positive and negative veridicality.

Tweet Gold Predicted

The heart wants Nadal to win to-
morrow but the mind points to a
Djokovic win over 4 sets. Djokovic
7-5 4-6 7-5 6-4 Nadal for me.

negative positive

Hopefully tomorrow Federer will
win and beat that Nadal guy lol

neutral negative

There is no doubt India have the
tools required to win their second
World Cup. Whether they do so
will depend on ...

positive neutral

Table 7: Some classification errors made by
TwiVer. Contenders queried for are highlighted.

80.1% and a recall of 44.3% in identifying tweets
expressing a positive veridicality toward a candi-
date winning a contest.

3.5 Performance on held-out event types

To assess the robustness of the veridicality classi-
fier when applied to new types of events, we com-
pared its performance when trained on all events
vs. holding out one category for testing. Ta-
ble 9 shows the comparison: the second and third
columns give F1 score when training on all events
vs. removing tweets related to the category we are
testing on. In most cases we see a relatively mod-
est drop in performance after holding out training
data from the target event category, with the ex-
ception of elections. This suggests our approach
can be applied to new event types without requir-
ing in-domain training data for the veridicality
classifier.

3.6 Error Analysis

Table 7 shows some examples which TwiVer in-
correctly classifies. These errors indicate that even
though shallow features and dependency paths do
a decent job at predicting veridicality, deeper text
understanding is needed for some cases. The op-
position between “the heart . . . the mind” in the
first example is not trivial to capture. Paying atten-

tion to matrix clauses might be important too (as
shown in the last tweet “There is no doubt . . . ”).

4 Forecasting Contest Outcomes

We now have access to a classifier that can au-
tomatically detect positive veridicality predictions
about a candidate winning a contest. This enables
us to evaluate the accuracy of the crowd’s wis-
dom by retrospectively comparing popular beliefs
(as extracted and aggregated by TwiVer) against
known outcomes of contests.

We will do this for each award category (Best
Actor, Best Actress, Best Film and Best Director)
in the Oscars from 2009 – 2016, for every state
for both Republican and Democratic parties in the
2016 US primaries, for both the candidates in ev-
ery state for the final 2016 US presidential elec-
tions, for every country in the finals of Eurovi-
sion song contest, for every contender for the Bal-
lon d’Or award, for every party in every state for
the 2014 Indian general elections, and for the con-
tenders in the finals for all sporting events.

4.1 Prediction

A simple voting mechanism is used to predict con-
test outcomes: we collect tweets about each con-
tender written before the date of the event,13 and
use TwiVer to measure the veridicality of users’
predictions toward the events. Then, for each con-
tender, we count the number of tweets that are la-
beled as positive with a confidence above 0.64, as
well as the number of tweets with positive veridi-
cality for all other contenders. Table 11 illustrates
these counts for one contest, the Oscars Best Ac-
tress in 2014.

We then compute a simple prediction score, as
follows:

score = (|Tc|+ 1)/(|Tc|+ |TO|+ 2) (1)

13These are a different set of tweets than those TwiVer was
trained on.
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Event Veridicality Sentiment Frequency #predictions
P R F1 P R F1 P R F1

Oscars 80.6 80.6 80.6 52.9 87.1 63.5 54.7 93.5 69.0 151
Ballon d’Or 100.0 100.0 100.0 85.7 100.0 92.2 85.7 100.0 92.2 18
Eurovision 83.3 71.4 76.8 38.5 71.4 50.0 50.0 57.1 53.3 87
Tennis Grand Slam 50.0 100.0 66.6 50.0 100.0 66.6 50.0 100.0 66.6 52
Rugby World Cup 100.0 100.0 100.0 50.0 100.0 66.6 50.0 100.0 66.6 4
Cricket World Cup 66.7 85.7 75.0 58.3 100.0 73.6 58.3 100.0 73.6 14
Football World Cup 71.4 100.0 83.3 62.5 100.0 76.9 71.4 100.0 83.3 10
Presidential primaries 66.0 88.0 75.4 58.9 82.5 68.7 63.4 78.7 70.2 211
2016 US presidential elections 60.9 100.0 75.6 63.3 73.8 68.1 69.0 69.0 69.0 84
2014 Indian general elections 95.8 100.0 97.8 65.6 91.3 76.3 56.1 100.0 71.8 52

Table 8: Performance of Veridicality, Sentiment baseline, and Frequency baseline on all event categories
(%).

Event Train on all Train without held-out event |Tt|
Oscars 69.5 63.8 64
Ballon d’Or 54.6 46.6 61
Eurovision 65.7 63.2 48
Tennis Grand Slams 52.1 45.5 44
Rugby World Cup 56.5 58.1 44
Cricket World Cup 61.9 66.8 49
Football World Cup 76.0 67.5 56
Presidential primaries 59.8 48.1 117
2016 US presidential elections 52.0 52.3 54
Indian elections 60.3 39.0 44

Table 9: F1 scores for each event when training on all events vs. holding out that event from training.
|Tt| is the number of tweets of that event category present in the test dataset.

where |Tc| is the set of tweets mentioning positive
veridicality predictions toward candidate c, and
|TO| is the set of all tweets predicting any oppo-
nent will win. For each contest, we simply predict
as winner the contender whose score is highest.

4.2 Sentiment Baseline
We compare the performance of our approach
against a state-of-the-art sentiment baseline (Mo-
hammad et al., 2013). Prior work on social media
analysis used sentiment to make predictions about
real-world outcomes. For instance, O’Connor
et al. (2010) correlated sentiment with public opin-
ion polls and Tumasjan et al. (2010) use political
sentiment to make predictions about outcomes in
German elections.

We use a re-implementation of (Mohammad
et al., 2013)’s system14 to estimate sentiment for
tweets in our corpus. We run the tweets obtained
for every contender through the sentiment analysis
system to obtain a count of positive labels. Senti-
ment scores are computed analogously to veridi-
cality using Equation (1). For each contest, the
contender with the highest sentiment prediction

14https://github.com/ntietz/tweetment

score is predicted as the winner.

4.3 Frequency Baseline

We also compare our approach against a simple
frequency (tweet volume) baseline. For every con-
tender, we compute the number of tweets that has
been retrieved. Frequency scores are computed in
the same way as for veridicality and sentiment us-
ing Equation (1). For every contest, the contender
with the highest frequency score is selected to be
the winner.

4.4 Results

Table 8 gives the precision, recall and max-F1
scores for veridicality, sentiment and volume-
based forecasts on all the contests. The
veridicality-based approach outperforms senti-
ment and volume-based approaches on 9 of the
10 events considered. For the Tennis Grand Slam,
the three approaches perform poorly. The differ-
ence in performance for the veridicality approach
is quite lower for the Tennis events than for the
other events. It is well known however that win-
ners of tennis tournaments are very hard to predict.
The performance of the players in the last minutes
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Veridicality Sentiment
Contender Score Contender Score

OSCARS Leonardo DiCaprio 0.97 Julianne Moore 0.85
Natalie Portman 0.92 Mickey Rourke 0.83
Julianne Moore 0.91 Leonardo DiCaprio (2016) 0.82
Daniel Day-Lewis 0.90 Kate Winslet 0.75
Slumdog Millionaire 0.75 Leonardo DiCaprio (2014) 0.69
Matthew McConaughey 0.74 Slumdog Millionaire 0.67

! The Revenant 0.73 Danny Boyle 0.67
Argo 0.71 Daniel Day-Lewis 0.66
Brie Larson 0.70 Brie Larson 0.65
The Artist 0.67 George Miller 0.63

PRIMARIES Trump South Carolina 0.96 Sanders West Virginia 0.96
Clinton Iowa 0.90 Clinton North Carolina 0.93
Trump Massachusetts 0.88 Trump North Carolina 0.91
Trump Tennessee 0.88 Sanders Wyoming 0.90
Sanders Maine 0.87 Sanders Oklahoma 0.89
Sanders Alaska 0.87 Sanders Hawaii 0.86

! Trump Maine 0.87 Sanders Arizona 0.86
Sanders Wyoming 0.86 Sanders Maine 0.85
Trump Louisiana 0.86 Trump Delaware 0.84

! Clinton Indiana 0.85 Trump West Virginia 0.83

Table 10: Top 10 predictions of winners for Oscars and primaries based on veridicality and sentiment
scores. Correct predictions are highlighted. “!” indicates a loss which wasn’t expected.

Contender |Tc| |TO|
Cate Blanchett 73 46
Amy Adams 6 113
Sandra Bullock 22 97
Judi Dench 2 117
Meryl Streep 16 103

Table 11: Positive veridicality tweet counts for the
Best Actress category in 2014: |Tc| is the count of
positive veridicality tweets for the contender un-
der consideration and |TO| is the count of positive
veridicality tweets for the other contenders.

of the match are decisive, and even professionals
have a difficult time predicting tennis winners.

Table 10 shows the 10 top predictions made
by the veridicality and sentiment-based systems
on two of the events we considered - the Oscars
and the presidential primaries, highlighting correct
predictions.

4.5 Surprise Outcomes

In addition to providing a general method for fore-
casting contest outcomes, our approach based on
veridicality allows us to perform several novel
analyses including retrospectively identifying sur-
prise outcomes that were unexpected according to
popular beliefs.

In Table 10, we see that the veridicality-based
approach incorrectly predicts The Revenant as

winning Best Film in 2016. This makes sense,
because the film was widely expected to win at
the time, according to popular belief. Numerous
sources in the press,15,16,17 qualify The Revenant
not winning an Oscar as a big surprise.

Similarly, for the primaries, the two incorrect
predictions made by the veridicality-based ap-
proach were surprise losses. News articles18,19,20

indeed reported the loss of Maine for Trump and
the loss of Indiana for Clinton as unexpected.

4.6 Assessing the Reliability of Accounts
Another nice feature of our approach based on
veridicality is that it immediately provides an in-
tuitive assessment on the reliability of individual
Twitter accounts’ predictions. For a given account,
we can collect tweets about past contests, and ex-
tract those which exhibit positive veridicality to-
ward the outcome, then simply count how often

15www.forbes.com/sites/zackomalleygreenburg/2016/02/29/
spotlight-best-picture-oscar-is-surprise-of-the-
night/#52f546c2721a

16www.vox.com/2016/2/26/11115788/revenant-best-
picture

17www.mirror.co.uk/tv/tv-news/spotlight-wins-best-
picture-2016-7460633

18http://patch.com/us/across-america/maine-republican-
caucus-live-results-trump-favored-win-0

19http://www.huffingtonpost.com/entry/ted-
cruz-upset-win-maine-republican-
caucus us 56db461ee4b0ffe6f8e9a865

20https://news.vice.com/article/bernie-sanders-wins-
indiana-primary-in-surprise-upset-over-hillary-clinton
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User account Accuracy(%) User account Accuracy(%)

User 1 100 (out of 6) twitreporting 100 (out of 3)
Cr7Prince4ever 100 (out of 6) User 3 100 (out of 3)
goal ghana 100 (out of 4) Naijawhatsup 100 (out of 3)
User 2 100 (out of 4) 1Mrfutball 90 (out of 10)
breakingnewsnig 100 (out of 4) User 4 77 (out of 13)

Table 12: List of users sorted by how accurate they
were in their Ballon d’Or predictions.

the accounts were correct in their predictions.
As proof of concept, we retrieved within our

dataset, the user names of accounts whose tweets
about Ballon d’Or contests were classified as hav-
ing positive veridicality. Table 12 gives accounts
that made the largest number of correct predictions
for Ballon d’Or awards between 2010 to 2016,
sorted by users’ prediction accuracy. Usernames
of non-public figures are anonymized (as user 1,
etc.) in the table. We did not extract more data
for these users: we only look at the data we had
already retrieved. Some users might not make pre-
dictions for all contests, which span 7 years.

Accounts like “goal ghana”, “breakingnews-
nig” and “1Mrfutball”, which are automatically
identified by our analysis, are known to post
tweets predominantly about soccer.

5 Conclusions

In this paper, we presented TwiVer, a veridicality
classifier for tweets which is able to ascertain the
degree of veridicality toward future contests. We
showed that veridical statements on Twitter pro-
vide a strong predictive signal for winners on dif-
ferent types of events, and that our veridicality-
based approach outperforms a sentiment and fre-
quency baseline for predicting winners. Further-
more, our approach is able to retrospectively iden-
tify surprise outcomes. We also showed how our
approach enables an intuitive yet novel method for
evaluating the reliability of information sources.
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Abstract

Emotion cause extraction aims to identify
the reasons behind a certain emotion ex-
pressed in text. It is a much more diffi-
cult task compared to emotion classifica-
tion. Inspired by recent advances in using
deep memory networks for question an-
swering (QA), we propose a new approach
which considers emotion cause identifica-
tion as a reading comprehension task in
QA. Inspired by convolutional neural net-
works, we propose a new mechanism to
store relevant context in different memory
slots to model context information. Our
proposed approach can extract both word
level sequence features and lexical fea-
tures. Performance evaluation shows that
our method achieves the state-of-the-art
performance on a recently released emo-
tion cause dataset, outperforming a num-
ber of competitive baselines by at least
3.01% in F-measure.

1 Introduction

With the rapid growth of social network platforms,
more and more people tend to share their expe-
riences and emotions online. Emotion analysis
of online text becomes a new challenge in Natu-
ral Language Processing (NLP). In recent years,
studies in emotion analysis largely focus on emo-
tion classification including detection of writers’
emotions (Gao et al., 2013) as well as readers’
emotions (Chang et al., 2015). There are also
some information extraction tasks defined in emo-
tion analysis (Chen et al., 2016; Balahur et al.,
2011), such as extracting the feeler of an emotion
(Das and Bandyopadhyay, 2010). These methods

†Corresponding Author: xuruifeng@hit.edu.cn

assume that emotion expressions are already ob-
served. Sometimes, however, we care more about
the stimuli, or the cause of an emotion. For in-
stance, Samsung wants to know why people love
or hate Note 7 rather than the distribution of dif-
ferent emotions.
Ex.1我的手机昨天丢了，我现在很难过。
Ex.1 Because I lost my phone yesterday, I feel sad
now.

In an example shown above, “sad” is an emotion
word, and the cause of “sad” is “I lost my phone”.
The emotion cause extraction task aims to iden-
tify the reason behind an emotion expression. It is
a more difficult task compared to emotion classi-
fication since it requires a deep understanding of
the text that conveys an emotions.

Existing approaches to emotion cause extrac-
tion mostly rely on methods typically used in
information extraction, such as rule based tem-
plate matching, sequence labeling and classifica-
tion based methods. Most of them use linguistic
rules or lexicon features, but do not consider the
semantic information and ignore the relation be-
tween the emotion word and emotion cause.

In this paper, we present a new method for
emotion cause extraction. We consider emotion
cause extraction as a question answering (QA)
task. Given a text containing the description of an
event which may or may not cause a certain emo-
tion, we take an emotion word in context, such as
“sad”, as a query. The question to the QA system
is: “Does the described event cause the emotion
of sadness?”. The expected answer is either “yes”
or “no”. (see Figure 1). We build our QA system
based on a deep memory network. The memory
network has two inputs: a piece of text, referred to
as a story in QA systems, and a query. The story is
represented using a sequence of word embeddings.

A recurrent structure is implemented to mine
the deep relation between a query and a text. It

1593



Figure 1: An example of emotion cause extraction
based on the QA framework.

measures the importance of each word in the text
by an attention mechanism. Based on the learned
attention result, the network maps the text into
a low dimensional vector space. This vector is
then used to generate an answer. Existing mem-
ory network based approaches to QA use weighted
sum of attentions to jointly consider short text seg-
ments stored in memory. However, they do not
explicitly model sequential information in the con-
text. In this paper, we propose a new deep memory
network architecture to model the context of each
word simultaneously by multiple memory slots
which capture sequential information using con-
volutional operations (Kim, 2014), and achieves
the state-of-the-art performance compared to ex-
isting methods which use manual rules, common
sense knowledge bases or other machine learning
models.

The rest of the paper is organized as follows.
Section 2 gives a review of related works on emo-
tion analysis. Section 3 presents our proposed
deep memory network based model for emotion
cause extraction. Section 4 discusses evaluation
results. Finally, Section 5 concludes the work and
outlines the future directions.

2 Related Work

Identifying emotion categories in text is one of the
key tasks in NLP (Liu, 2015). Going one step
further, emotion cause extraction can reveal im-
portant information about what causes a certain
emotion and why there is an emotion change. In
this section, we introduce related work on emotion
analysis including emotion cause extraction.

In emotion analysis, we first need to determine
the taxonomy of emotions. Researchers have pro-
posed a list of primary emotions (Plutchik, 1980;
Ekman, 1984; Turner, 2000). In this study, we

adopt Ekman’s emotion classification scheme (Ek-
man, 1984), which identifies six primary emo-
tions, namely happiness, sadness, fear, anger, dis-
gust and surprise, known as the “Big6” scheme in
the W3C Emotion Markup Language. This emo-
tion classification scheme is agreed upon by most
previous works in Chinese emotion analysis.

Existing work in emotion analysis mostly fo-
cuses on emotion classification (Li et al., 2013;
Zhou et al., 2016) and emotion information ex-
traction (Balahur et al., 2013). Xu et al. (2012)
used a coarse to fine method to classify emotions
in Chinese blogs. Gao et al. (2013) proposed a
joint model to co-train a polarity classifier and an
emotion classifier. Beck et al. (2014) proposed
a Multi-task Gaussian-process based method for
emotion classification. Chang et al. (2015) used
linguistic templates to predict reader’s emotions.
Das and Bandyopadhyay (2010) used an unsuper-
vised method to extract emotion feelers from Ben-
gali blogs. There are other studies which focused
on joint learning of sentiments (Luo et al., 2015;
Mohtarami et al., 2013) or emotions in tweets
or blogs (Quan and Ren, 2009; Liu et al., 2013;
Hasegawa et al., 2013; Qadir and Riloff, 2014;
Ou et al., 2014), and emotion lexicon construc-
tion (Mohammad and Turney, 2013; Yang et al.,
2014; Staiano and Guerini, 2014). However, the
aforementioned work all focused on analysis of
emotion expressions rather than emotion causes.

Lee et al. (2010) first proposed a task on emo-
tion cause extraction. They manually constructed
a corpus from the Academia Sinica Balanced Chi-
nese Corpus. Based on this corpus, Chen et al.
(2010) proposed a rule based method to detect
emotion causes based on manually define linguis-
tic rules. Some studies (Gui et al., 2014; Li and
Xu, 2014; Gao et al., 2015) extended the rule
based method to informal text in Weibo text (Chi-
nese tweets).

Other than rule based methods, Russo et al.
(2011) proposed a crowdsourcing method to con-
struct a common-sense knowledge base which is
related to emotion causes. But it is challenging
to extend the common-sense knowledge base au-
tomatically. Ghazi et al. (2015) used Conditional
Random Fields (CRFs) to extract emotion causes.
However, it requires emotion cause and emotion
keywords to be in the same sentence. More re-
cently, Gui et al. (2016) proposed a multi-kernel
based method to extract emotion causes through
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learning from a manually annotated emotion cause
dataset.

Most existing work does not consider the rela-
tion between an emotion word and the cause of
such an emotion, or they simply use the emotion
word as a feature in their model learning. Since
emotion cause extraction requires an understand-
ing of a given piece of text in order to correctly
identify the relation between the description of an
event which causes an emotion and the expression
of that emotion, it can essentially be considered as
a QA task. In our work, we choose the memory
network, which is designed to model the relation
between a story and a query for QA systems (We-
ston et al., 2014; Sukhbaatar et al., 2015). Apart
from its application in QA, memory network has
also achieved great successes in other NLP tasks,
such as machine translation (Luong et al., 2015),
sentiment analysis (Tang et al., 2016) or summa-
rization (M. Rush et al., 2015). To the best of our
knowledge, this is the first work which uses mem-
ory network for emotion cause extraction.

3 Our Approach

In this section, we will first define our task. Then,
a brief introduction of memory network will be
given, including its basic learning structure of
memory network and deep architecture. Last, our
modified deep memory network for emotion cause
extraction will be presented.

3.1 Task Definition

The formal definition of emotion cause extrac-
tion is given in (Gui et al., 2016). In this task,
a given document, which is a passage about an
emotion event, contains an emotion word E and
the cause of the event. The document is man-
ually segmented in the clause level. For each
clause c = {w1, w2, ...wk} consisting of k words,
the goal is to identify which clause contains the
emotion cause. For data representation, we can
map each word into a low dimensional embedding
space, a.k.a word vector (Mikolov et al., 2013).
All the word vectors are stacked in a word em-
bedding matrix L ∈ Rd×‖V ‖, where d is the di-
mension of word vector and V is the vocabulary
size.

For example, the sentence, “I lost my phone
yesterday, I feel so sad now.” shown in Figure 1,
consists of two clauses. The first clause contains
the emotion cause while the second clause ex-

presses the emotion of sadness. Current methods
to emotion cause extraction cannot handle com-
plex sentence structures where the expression of
an emotion and its cause are not adjacent. We en-
vision that the memory network can better model
the relation between a emotion word and its emo-
tion causes in such complex sentence structures.
In our approach, we only select the clause with
the highest probability to be the emotion cause in
each document.

3.2 Memory Network
We first present a basic memory network model
for emotion cause extraction (shown in Figure 2).
Given a clause c = {w1, w2, ..., wk}, and an emo-
tion word, we first obtain the emotion word’s rep-
resentation in an embedding space, denoted by E.
For the clause, let the embedding representations
of the words be denoted by e1, e2, ..., ek. Here,
both ei and E are defined in Rd. Then, we use the
inner product to evaluate the correlation between
each word i in a clause and the emotion word, de-
noted as mi:

mi = ei · E. (1)

We then normalize the value of mi to [0, 1] us-
ing a softmax function, denoted by αi as:

αi =
exp (mi)∑k
j=1 exp (mj)

, (2)

where k is the length of the clause. k also serves
as the size of the memory. Obviously, αi ∈ [0, 1]
and

∑k
i=1 αi = 1. αi can serve as an attention

weight to measure the importance of each word in
our model.

Figure 2: A single layer memory network.

Then, a sum over the word embedding ei,
weighted by the attention vector form the output
of the memory network for the prediction of o:

o =
k∑

i=1

ei · αi + E. (3)
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The final prediction is an output from a softmax
function, denoted as ô:

ô = softmax
(
W T o

)
. (4)

Usually, W is a d × d weight matrix and T is
the transposition. Since the answer in our task is
a simple “yes” or “no”, we use a d × 1 matrix for
W . As the distance between a clause and an emo-
tion words is a very important feature according
to (Gui et al., 2016), we simply add this distance
into the softmax function as an additional feature
in our work.

Figure 3: Deep memory network with three com-
putational layers (hops).

The basic model can be extended to deep archi-
tecture consisting of multiple layers to handle L
hop operations. The network is stacked as follows:

• For hop 1, the query is E and the prediction
vector is o1;

• For hop i, the query is the prediction vector
of the previous hop and the prediction vector
is oi;

• The output vector is at the top of the network.
It is a softmax function on the prediction vec-
tor from hop L: ô = softmax

(
W T oL

)
.

The illustration of a deep memory network
with three layers is shown in Figure 3. Since a
memory network models the emotion cause at a
fine-grained level, each word has a correspond-
ing weight to measure its importance in this task.
Comparing to previous approaches in emotion
cause extraction which are mostly based on man-
ually defined rules or linguistic features, a mem-
ory network is a more principled way to identify

the emotion cause from text. However, the basic
memory network model does not capture the se-
quential information in context which is important
in emotion cause extraction.

3.3 Convolutional Multiple-Slot Deep
Memory Network

It is often the case that the meaning of a word is de-
termined by its context, such as the previous word
and the following word. Also, negations and emo-
tion transitions are context sensitive. However, the
memory network described in Section 3.2 has only
one memory slot with size d × k to represent a
clause, where d is the dimension of a word em-
bedding and k is the length of a clause. It means
that when the memory network models a clause, it
only considers each word separately.

In order to capture context information for
clauses, we propose a new architecture which con-
tains more memory slot to model the context with
a convolutional operation. The basic architecture
of Convolutional Multiple-Slot Memory Network
(in short: ConvMS-Memnet) is shown in Figure 4.

Figure 4: A single layer ConvMS-Memnet.

Considering the text length is usually short in
the dataset used here for emotion cause extraction,
we set the size of the convolutional kernel to 3.
That is, the weight of word wi in the i-th position
considers both the previous wordwi−1 and the fol-
lowing word wi+1 by a convolutional operation:

m′i =
3∑

j=1

ei−2+j · E (5)

For the first and the last word in a clause, we
use zero padding, w0 = wk+1 = ~0, where k is the
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length of a clause. Then, the attention weight for
each word position in the clause is now defined as:

α′i =
exp (m′i)∑k
j=1 exp

(
m′j
) (6)

Note that we obtain the attention for each posi-
tion rather than each word. It means that the cor-
responding attention for the i-th word in the pre-
vious convolutional slot should be αi+1. Hence,
there are three prediction output vectors, namely,
oprevious, ocurrent, ofollowing:

oprevious =

k∑

i=1

ei−1 · α′i + E (7)

ocurrent =
k∑

i=1

ei · α′i + E (8)

ofollowing =
k∑

i=1

ei+1 · α′i + E (9)

At last, we concatenate the three vectors as
o = oprevious

⊕
ocurrent

⊕
ofollowing for the pre-

diction by a softmax function:

ô = softmax
(
W T
mo
)

(10)

Here, the size of Wm is (3 · d) × d. Since the
prediction vector is a concatenation of three out-
puts. We implement a concatenation operation
rather than averaging or other operations because
the parameters in different memory slots can be
updated by back propagation. The concatenation
of three output vectors forms a sequence-level fea-
ture which can be used in the training. Such a fea-
ture is important especially when the size of anno-
tated training data is small.

For deep architecture with multiple layer train-
ing, the network is more complex (shown in Figure
5).

• For the first layer, the query is an embedding
of the emotion word, E.

• In the next layer, there are three input queries
since the previous layer has three outputs:
o1previous, o

1
current, o

1
following. So, for the j-th

layer (j 6= 1), we need to re-define the weight
function (5) as:

m′i = ei−1·oj−1previous+ei·o
j−1
current+ei+1·oj−1following

(11)

Figure 5: ConvMS-Memnet with three computa-
tional layers (hops).

• In the last layer, the concatenation of the
three prediction vectors form the final predic-
tion vector to generate the answer.

For model training, we use stochastic gradient
descent and back propagation to optimize the loss
function. Word embeddings are learned using a
skip-gram model. The size of the word embedding
is 20 since the vocabulary size in our dataset is
small. The dropout is set to 0.4.

4 Experiments and Evaluation

We first presents the experimental settings and
then report the results in this section.

4.1 Experimental Setup and Dataset
We conduct experiments on a simplified Chinese
emotion cause corpus (Gui et al., 2016)∗, the only
publicly available dataset on this task to the best
of our knowledge. The corpus contains 2,105 doc-
uments from SINA city news†. Each document
has only one emotion word and one or more emo-
tion causes. The documents are segmented into
clauses manually. The main task is to identify
which clause contains the emotion cause.

Details of the corpus are shown in Table 1. The
metrics we used in evaluation follows Lee et al.
(2010). It is commonly accepted so that we can
compare our results with others. If a proposed
emotion cause clause covers the annotated answer,
the word sequence is considered correct. The pre-
cision, recall, and F-measure are defined by
∗Available at: http://hlt.hitsz.edu.cn/?page id=694
†http://news.sina.com.cn/society/
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Item Number
Documents 2,105
Clauses 11,799
Emotion Causes 2,167
Documents with 1 emotion 2,046
Documents with 2 emotions 56
Documents with 3 emotions 3

Table 1: Details of the dataset.

P =

∑
correct causes 1∑

proposed causes 1
,

R =

∑
correct causes 1∑

annotated causes 1
,

F =
2× P ×R
P +R

.

In the experiments, we randomly select 90%
of the dataset as training data and 10% as testing
data. In order to obtain statistically credible re-
sults, we evaluate our method and baseline meth-
ods 25 times with different train/test splits.

4.2 Evaluation and Comparison
We compare with the following baseline methods:

• RB (Rule based method): The rule based
method proposed in (Lee et al., 2010).

• CB (Common-sense based method): This
is the knowledge based method proposed
by (Russo et al., 2011). We use the Chi-
nese Emotion Cognition Lexicon (Xu et al.,
2013) as the common-sense knowledge base.
The lexicon contains more than 5,000 kinds
of emotion stimulation and their correspond-
ing reflection words.

• RB+CB+ML (Machine learning method
trained from rule-based features and facts
from a common-sense knowledge base): This
methods was previously proposed for emo-
tion cause classification in (Chen et al.,
2010). It takes rules and facts in a knowledge
base as features for classifier training. We
train a SVM using features extracted from the
rules defined in (Lee et al., 2010) and the Chi-
nese Emotion Cognition Lexicon (Xu et al.,
2013).

• SVM: This is a SVM classifier using the un-
igram, bigram and trigram features. It is a
baseline previously used in (Li and Xu, 2014;
Gui et al., 2016)

Method P R F
RB 0.6747 0.4287 0.5243
CB 0.2672 0.7130 0.3887
RB+CB 0.5435 0.5307 0.5370
RB+CB+ML 0.5921 0.5307 0.5597
SVM 0.4200 0.4375 0.4285
Word2vec 0.4301 0.4233 0.4136
CNN 0.6215 0.5944 0.6076
Multi-kernel 0.6588 0.6927 0.6752
Memnet 0.5922 0.6354 0.6131
ConvMS-Memnet 0.7076 0.6838 0.6955

Table 2: Comparison with existing methods.

• Word2vec: This is a SVM classifier
using word representations learned by
Word2vec (Mikolov et al., 2013) as features.

• Multi-kernel: This is the state-of-the-art
method using the multi-kernel method (Gui
et al., 2016) to identify the emotion cause.
We use the best performance reported in their
paper.

• CNN: The convolutional neural network for
sentence classification (Kim, 2014).

• Memnet: The deep memory network de-
scribed in Section 3.2. Word embeddings are
pre-trained by skip-grams. The number of
hops is set to 3.

• ConvMS-Memnet: The convolutional
multiple-slot deep memory network we
proposed in Section 3.3. Word embeddings
are pre-trained by skip-grams. The number
of hops is 3 in our experiments.

Table 2 shows the evaluation results. The rule
based RB gives fairly high precision but with low
recall. CB, the common-sense based method,
achieves the highest recall. Yet, its precision is the
worst. RB+CB, the combination of RB and CB
gives higher the F-measure But, the improvement
of 1.27% is only marginal compared to RB.

For machine learning methods, RB+CB+ML
uses both rules and common-sense knowledge
as features to train a machine learning classifier.
It achieves F-measure of 0.5597, outperforming
RB+CB. Both SVM and word2vec are word fea-
ture based methods and they have similar perfor-
mance. For word2vec, even though word repre-
sentations are obtained from the SINA news raw
corpus, it still performs worse than SVM trained
using n-gram features only. The multi-kernel
method (Gui et al., 2016) is the best performer
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Word Embedding P R F
Pre-trained 0.7076 0.6838 0.6955
Randomly initialized 0.6786 0.6608 0.6696

Table 3: Comparison of using pre-trained or ran-
domly initialized word embedding.

Method P R F
Hop 1 0.6597 0.6444 0.6520
Hop 2 0.6877 0.6718 0.6796
Hop 3 0.7076 0.6838 0.6955
Hop 4 0.6882 0.6722 0.6801
Hop 5 0.6763 0.6606 0.6683
Hop 6 0.6664 0.6509 0.6585
Hop 7 0.6483 0.6333 0.6407
Hop 8 0.6261 0.6116 0.6187
Hop 9 0.6161 0.6109 0.6089

Table 4: Performance with different number of
hops in ConvMS-Memnet.

among the baselines because it considers context
information in a structured way. It models text
by its syntactic tree and also considers an emo-
tion lexicon. Their work shows that the structure
information is important for the emotion cause ex-
traction task.

Naively applying the original deep memory net-
work or convolutional network for emotion cause
extraction outperforms all the baselines except the
convolutional multi-kernel method. However, us-
ing our proposed ConvMS-Memnet architecture,
we manage to boost the performance by 11.54%
in precision, 4.84% in recall and 8.24% in F-
measure respectively when compared to Memnet.
The improvement is very significant with p-value
less than 0.01 in t-test. The ConvMS-Memnet also
outperforms the previous best-performing method,
multi-kernel, by 3.01% in F-measure. It shows
that by effectively capturing context information,
ConvMS-Memnet is able to identify the emotion
cause better compared to other methods.

4.3 More Insights into the ConvMS-Memnet
To gain better insights into our proposed ConvMS-
Memnet, we conduct further experiments to un-
derstand the impact on performance by using: 1)
pre-trained or randomly initialized word embed-
ding; 2) multiple hops; 3) attention visualizations;
4) more training epochs.

4.3.1 Pre-trained Word Embeddings
In our ConvMS-Memnet, we use pre-trained word
embedding as the input. The embedding maps
each word into a lower dimensional real-value
vector as its representation. Words sharing simi-

lar meanings should have similar representations.
It enables our model to deal with synonyms more
effectively.

The question is, “can we train the network with-
out using pre-trained word embeddings?”. We
initialize word vectors randomly, and use an em-
bedding matrix to update the word vectors in the
training of the network simultaneously. Com-
parison results are shown in Table 3. It can be
observed that pre-trained word embedding gives
2.59% higher F-measure compared to random ini-
tialization. This is partly due to the limited size of
our training data. Hence using word embedding
trained from other much larger corpus gives better
results.

4.3.2 Multiple Hops
It is widely acknowledged that computational
models using deep architecture with multiple lay-
ers have better ability to learn data representations
with multiple levels of abstractions. In this sec-
tion, we evaluate the power of multiple hops in this
task. We set the number of hops from 1 to 9 with
1 standing for the simplest single layer network
shown in Figure 4. The more hops are stacked, the
more complicated the model is. Results are shown
in Table 4. The single layer network has achieved
a competitive performance. With the increasing
number of hops, the performance improves. How-
ever, when the number of hops is larger than 3, the
performance decreases due to overfitting. Since
the dataset for this task is small, more parameters
will lead to overfitting. As such, we choose 3 hops
in our final model since it gives the best perfor-
mance in our experiments.

4.3.3 Word-Level Attention Weights
Essentially, memory network aims to measure the
weight of each word in the clause with respect to
the emotion word. The question is, will the model
really focus on the words which describe the emo-
tion cause? We choose one example to show the
attention results in Table 5:
Ex.2 家人/family 的/’s 坚持/insistence 更/more
让/makes人/people感动/touched

In this example, the cause of the emotion
“touched” is “insistence”. We show in Table 5 the
distribution of word-level attention weights in dif-
ferent hops of memory network training. We can
observe that in the first two hops, the highest atten-
tion weights centered on the word “more”. How-
ever, from the third hop onwards, the highest atten-
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previous slot current slot following slot Hop 1 Hop 2 Hop 3 Hop 4 Hop 5
家人/family 的/’s 坚持/insisting 0.1298 0.3165 0.1781 0.2947 0.1472
的/’s 坚持/insistence 更/more 0.1706 0.2619 0.7346 0.6412 0.8373
坚持/insisting 更/more 让/makes 0.5090 0.3070 0.0720 0.0553 0.0145
更/more 让/makes 人/people 0.0327 0.0139 0.0001 0.0001 0.0000
让/makes 人/people 感动/touched 0.1579 0.0965 0.0145 0.0080 0.0008

Table 5: The distribution of attention in different hops.

Method P R F
Memnet 0.5688 0.5588 0.5635
ConvMS-Memnet 0.6250 0.6140 0.6195

Table 6: Comparison of word level emotion cause
extraction.

tion weight moves to the word sub-sequence cen-
tred on the word “insistence”. This shows that our
model is effective in identifying the most impor-
tant keyword relating to the emotion cause. Also,
better results are obtained using deep memory net-
work trained with at least 3 hops. This is consis-
tent with what we observed in Section 4.3.2.

In order to evaluate the quality of keywords
extracted by memory networks, we define a new
metric on the keyword level of emotion cause ex-
traction. The keyword is defined as the word
which obtains the highest attention weight in the
identified clause. If the keywords extracted by our
algorithm is located within the boundary of anno-
tation, it is treated as correct. Thus, we can obtain
the precision, recall, and F-measure by comparing
the proposed keywords with the correct keywords
by:

P =

∑
correct keywords 1∑

proposed keywords 1
,

R =

∑
correct keywords 1∑

annotated keywords 1
,

F =
2× P ×R
P +R

.

Since the reference methods do not focus on
the keywords level, we only compare the perfor-
mance of Memnet and ConvMS-Memnet in Ta-
ble 6. It can be observed that our proposed
ConvMS-Memnet outperforms Memnet by 5.6%
in F-measure. It shows that by capturing context
features, ConvMS-Memnet is able to identify the
word level emotion cause better compare to Mem-
net.

4.3.4 Training Epochs
In our model, the training epochs are set to 20. In
this section, we examine the testing error using a
case study. Due to the page length limit, we only
choose one example from the corpus. The text be-
low has four clauses:
Ex.3 45天，对于失去儿子的他们是多么的漫
长，宝贝回家了，这个春节是多么幸福。
Ex.3 45 days, it is long time for the parents who
lost their baby. If the baby comes back home, they
would become so happy in this Spring Festival.

In this example, the cause of emotion “happy”
is described in the third clause.

We show in Table 7 the probability of each
clause containing an emotion cause in different
training epochs. It is interesting to see that our
model is able to detect the correct clause with only
5 epochs. With the increasing number of training
epochs, the probability associated with the correct
clause increases further while the probabilities of
incorrect clauses decrease generally.

4.4 Limitations
We have shown in Section 4.3.4 a simple exam-
ple consisting of only four clauses from which our
model can identify the clause containing the emo-
tion cause correctly. We notice that for some com-
plex text passages which contain long distance de-
pendency relations, negations or emotion transi-
tions, our model may have a difficulty in detecting
the correct clause containing the emotion causes.
It is a challenging task to properly model the dis-
course relations among clauses. In the future, we
will explore different network architecture with
consideration of various discourse relations pos-
sibly through transfer learning of larger annotated
data available for other tasks.

Another shortcoming of our model is that, the
answer generated from our model is simply “yes”
or “no”. The main reason is that the size of the an-
notated corpus is too small to train a model which
can output natural language answers in full sen-
tences. Ideally, we would like to develop a model
which can directly give the cause of an emotion
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Clause 5 Epochs 10 Epochs 15 Epochs 20 Epochs
45 Days 0.0018 0.0002 0.0000 0.0000
it is ... baby 0.3546 0.6778 0.5457 0.3254
If the ... back home 0.7627 0.7946 0.8092 0.9626
they ... Spring Festival 0.2060 0.0217 0.0004 0.0006

Table 7: The probability of a clause containing the emotion cause in different iterations in the multiple-
slot memory network.

expressed in text. However, since the manual an-
notation of data is too expensive for this task,
we need to explore feasible ways to automatically
collect annotate data for emotion cause detection.
We also need to study effective evaluation mecha-
nisms for such QA systems.

5 Conclusions

In this work, we treat emotion cause extraction
as a QA task and propose a new model based on
deep memory networks for identifying the emo-
tion causes for an emotion expressed in text. The
key property of this approach is the use of con-
text information in the learning process which is
ignored in the original memory network. Our new
memory network architecture is able to store con-
text in different memory slots to capture context
information in proper sequence by convolutional
operation. Our model achieves the state-of-the-art
performance on a dataset for emotion cause detec-
tion when compared to a number of competitive
baselines. In the future, we will explore effective
ways to model discourse relations among clauses
and develop a QA system which can directly out-
put the cause of emotions as answers.

Acknowledgments

This work was supported by the Na-
tional Natural Science Foundation of
China 61370165, U1636103, 61632011,
61528302, National 863 Program of China
2015AA015405, Shenzhen Foundational Re-
search Funding JCYJ20150625142543470,
JCYJ20170307150024907 and Guangdong
Provincial Engineering Technology Research
Center for Data Science 2016KF09.

References

Alexandra Balahur, Jesús M. Hermida, Andrés Mon-
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Abstract

Automatic story comprehension is a fun-
damental challenge in Natural Language
Understanding, and can enable computers
to learn about social norms, human be-
havior and commonsense. In this paper,
we present a story comprehension model
that explores three distinct semantic as-
pects: (i) the sequence of events described
in the story, (ii) its emotional trajectory,
and (iii) its plot consistency. We judge the
model’s understanding of real-world sto-
ries by inquiring if, like humans, it can
develop an expectation of what will hap-
pen next in a given story. Specifically,
we use it to predict the correct ending of
a given short story from possible alterna-
tives. The model uses a hidden variable
to weigh the semantic aspects in the con-
text of the story. Our experiments demon-
strate the potential of our approach to char-
acterize these semantic aspects, and the
strength of the hidden variable based ap-
proach. The model outperforms the state-
of-the-art approaches and achieves best re-
sults on a publicly available dataset.

1 Introduction

Narratives are a fundamental part of human lan-
guage and culture. They serve as vehicles to
share experiences, information and goals. For
these reasons, automatically understanding stories
is an interesting but challenging task for Compu-
tational Linguists (Mani, 2012). Story compre-
hension involves not only an array of NLP ca-
pabilities, but also some common sense knowl-
edge and an understanding of normative social
behavior (Charniak, 1972). Past research has
focused on various aspects of story understand-

Context: One day Wesley’s auntie came over to
visit. He was happy to see her, because he liked to
play with her. When she started to give his little
sister attention, he got jealous. He got angry at his
auntie and bit her hand when she wasn’t looking.

Incorrect Ending: She gave him a cookie for
being so nice.
Correct Ending: He was scolded.

Figure 1: Example from the story-cloze task: pre-
dict the correct ending to a given short story out of
provided options.

ing such as identifying character personas (Bam-
man et al., 2014; Valls-Vargas et al., 2015), inter-
personal relationships (Chaturvedi, 2016), plot-
patterns (Jockers, 2013), narrative structures (Fin-
layson, 2012). There has also been an interest in
predicting what is expected to happen next in a
piece of text (Chambers and Jurafsky, 2008). Hu-
man readers are good at filling-in-the-gaps or in-
ferring information that is not explicitly stated in
the text. However, computers are not yet able to
match their performance on predicting what could
be the likely next step in a given sequence of
events described in a story.

Recently, Mostafazadeh et al. (2016) introduced
the story-cloze task for testing this ability, albeit
without the aspect of language generation. This
task requires choosing the correct ending to a
given four sentences long story (also referred to
as context) from two provided alternatives. Fig. 1
shows an example story consisting of a short con-
text, and two ending options.

In this work we address this story-cloze task.
While the short nature and third person narrative
style of these stories help us circumvent the prob-
lem of speaker identification and processing long
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dialogues, the crowdsourced dataset ensures that
they reflect real-world and commonsense stories.
Our approach emphasizes the joint contribution of
multiple aspects to story understanding, which fu-
ture research can build upon.

In this paper we explore three semantic aspects
of story understanding: (i) the sequence of events
described in the story, (ii) the evolution of senti-
ment and emotional trajectories, and (iii) topical
consistency. The first aspect is motivated from ap-
proaches in semantic script induction, and eval-
uates if events described in an ending-alternative
are likely to occur within the sequence of events
described in the preceding context. For example,
in the story in Fig. 1, Wesley gets angry and bites
his sister’s hand. So, a next likely step might sug-
gest that he would be scolded. However, there are
multiple semantic aspects to story understanding
beyond analyzing events and scripts. Stories of-
ten describe characters (e.g. Wesley) who need to
be viewed as social and emotional agents. They
not only describe events involving these charac-
ters, but also reflect their social lives and emo-
tional states. Our model captures this by evaluat-
ing if the sentiment described in an ending option
makes sense considering the context of the story.
For example, in the story in Fig. 1, the general
sentiment of being scolded is better aligned with
the sentiment of Wesley being angry and jealous,
compared to that of being nice. Also, stories gen-
erally revolve around coherent themes and topics.
Our model accounts for that by analyzing if the
topic of an ending option is consistent with the
preceding context. We present a log-linear model
that is used to weigh the various aspects of the
story using a hidden variable. It then uses this hid-
den variable to predict the correct ending for the
given story.

We demonstrate the strength of our approach
by comparing it with the existing state-of-the-art
methods for this task. We first validate the predic-
tive potential of the features that correspond to the
three semantic aspects through a simple classifier
trained using these features. We then demonstrate
the benefit of using our hidden variable approach
by showing that it significantly outperforms the
above mentioned classifier and other baselines,
and achieves an accuracy of 77.60% on the task.
Our key contributions are:

• We model story understanding as a joint
model over multiple semantic aspects, and

utilize the idea for predicting a story’s end.
• We design linguistic features that incorporate

world knowledge and narrative awareness.
• We present a hidden variable approach to

weigh these aspects in a story’s context.
• We empirically demonstrate that our ap-

proach significantly outperforms state-of-
the-art methods.

2 Predicting Story Ending

Given an L sentences long context, c =
〈c1, c2, c3 . . . cL〉, and two ending-options, o1 and
o2, we aim to predict which ending option forms
an inconsistent story. This is a binary classifica-
tion task. We assume that the inconsistency can
arise from one (or more) of certain semantic as-
pects. In this section, we first describe the intu-
ition behind using these aspects and the features
that we designed to capture them (Sec. 2.1). We
then describe our model which uses a latent vari-
able to weigh these aspects in light of the story,
and then predicts its ending (Sec. 2.2).

2.1 Measuring Consistency
Our approach analyzes the following aspects of
story understanding: Event-sequence, Sentiment-
trajectory, and Topical Consistency.

Event-sequence: For a story, or any piece of text,
to be coherent, it needs to describe a meaningful or
‘mutually entailing’ sequence of events (Chatman,
1980). For instance, in Figure 1 Wesley got an-
gry→ Wesley bit her hand→ Wesley was scolded
describes a more coherent sequence of events, as
compared to Wesley got angry → Wesley bit her
hand→ Wesley got a cookie

Prior work in script-learning attempts to model
such prototypical sequence of events (usually cap-
tured through verbs). For this task, we wanted to
model events at an abstraction level that would
be generalizable and yet semantically meaning-
ful. Peng and Roth (2016) recently proposed
a neural SemLM approach, to model such se-
quence of events using a language model of
FrameNet (Baker et al., 1998) frames that are
evoked in the given text. It represents an
event using the corresponding predicate frame
and its sense, obtained using a Sematic Role La-
beler (Punyakanok et al., 2004). It also extends
the frame definition to include explicit discourse
markers (such as but, and) since they model re-
lationships between frames. For example, in Fig-

1604



ure 1, the SemLM representation for the last sen-
tence of the context is ‘Get.01-and-bit.01’. Here,
‘01’ indicates specific predicate senses for verbs
‘get’ and ‘bit’ with ‘and’ being a discourse marker.
Also, it produces ‘scold.01’ and ‘give.01’ for the
correct and incorrect endings respectively. We
train this language model using a log bilinear lan-
guage model (Mnih and Hinton, 2007) on a col-
lection of unannotated short stories (see Sec. 3.1)
and also 20 years of New York Times data1.

Given a sequence of frames evoked in the con-
text, such a trained language model can then be
used to get the conditional probabilities of the
frame(s) evoked in each of the two ending-options.
The option with more probable frame(s) is likely
to be the appropriate ending. With this intuition
in mind, for each of the two ending-option, oi, we
design features whose values are probabilities of
frames evoked in that option (foi), given the se-
quence of frames, 〈f1, f2, . . . fD〉, evoked in the
context, c = 〈c1, c2, c3 . . . cL〉. We consider in-
creasingly longer frame-contexts for conditional
probability computation, i.e. for each option,
oi, we extract the following features: P (foi |fD),
P (foi |fDfD−1), . . . P (foi |fDfD−1 . . . f1). For
each of these features, we additionally also in-
clude a comparative binary feature whose value is
1 if the conditional probability of one of the op-
tions (o2) is greater than the corresponding con-
ditional probability of the other option (o1) (E.g.
P (o2|fD) > P (o1|fD)), and −1 otherwise. Our
preliminary experiments indicated that these fea-
tures were helpful for supervised classification.

Sentiment-trajectory: As mentioned before,
stories are different from objective texts such as
news articles, as they additionally describe senti-
ments or emotions. Some stories can be catego-
rized as happy stories while others as sad. How-
ever, most stories depict evolving sentiments in
their plots as they progress (Vonnegut, 1981).

With the goal of modeling such sentiment
trajectories, we assumed that a story can be
divided into the following narrative-segments:
a beginning, a body, a climax, and an ending.
While this narrative-segmentation process war-
rants deeper research, in this paper we adopt
a simple methodology. We treat the first sen-
tence of the L sentences long context as the

1Owing to the large size of the training data and the fact
that we abstract to the frame-semantic (and not verb) level,
we cover most instances (76%) in our dataset.

beginning, the next L − 2 sentences are treated
as the body, the last sentence of the context
forms the climax, and the two options form the
(possible) ending2. We then assigned a positive,
negative, or neutral sentiment to each segment,
represented as S(segment) = sign(number of
positive words - number of negative words) in
the segment. The sentiment polarity of a word
was determined by a look-up from pre-trained
sentiment lexica (Liu et al., 2005; Wilson et al.,
2005)3. Thus, the L length context can now be
viewed as a sequence of its segment’s sentiments.
Lastly, we learn sentiment trajectories in form of
N-gram language models from an unannotated
corpus of short stories (Sec. 3.1) that learn: (i)
P (S(ending)|S(climax),S(body), S(beginning));
(ii) P (S(ending)|S(climax),S(body)); and (iii)
P (S(ending)|S(climax)).

The process described above learns typical sen-
timent trajectories over narrative-segments. How-
ever, it does not model a story’s overall sentiment
(i.e. whether it is a happy or a sad story, in gen-
eral). To capture this notion, we train another lan-
guage model to learn P (S(ending)|S(context)),
where S(context) is the sentiment of the full con-
text (without segmentation).

Finally, for each ending option, we extract fea-
tures whose values are the four conditional prob-
abilities described above. As before we also con-
sider four comparative binary features.

Topical Consistency: This aspect is motivated by
the idea that stories are topically cohesive (Bam-
berg, 2012), and in a typical story, new topics
(concepts, entities or ideas) are not introduced
towards the end because it does not allow the
story-writer enough narrative space and time to
develop and describe them (Jovchelovitch and
Bauer, 2000). We capture the notion of topic of
a sentence using topic-words (the nouns and verbs
appearing in it (Lapata and Barzilay, 2005)). For
each option, we first align each of its topic-words
with the most similar topic-word in one of the
context-sentences, while defining the alignment
score as this similarity value. We measure sim-
ilarity between two words using the cosine simi-
larity of their vector space representations (using

2The reported segmentation process made sense from
qualitative analysis on a random sample, and also led to su-
perior performance compared to alternate strategies.

3Polarities of ‘negated’ word were reversed (determined
from neg dependency relation in the corresponding sentence).
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pretrained GloVe (Pennington et al., 2014) vec-
tors). We then quantify the topical-closeness of
an ending option with the context using averaged
alignment score of its topic-words4. For each end-
ing option, we extract one feature whose value is
this topical-closeness with the context. As before,
we also include a binary comparative feature.

2.2 Hidden Coherence Model
Sec. 2.1 described the three semantic consistency
aspects and the corresponding features. We now
describe our model which uses these features (rep-
resented as ~fco in the rest of this paper) to identify
the (in)coherent ending-option. The model is also
dependent on another feature set, ~φco, which will
be discussed later in this section.

Formally, our model addresses the following
binary classification problem: given the multi-
sentence context, c, and two ending-options, o1
and o2, predict the answer, a ∈ {0, 1}. The cor-
rect ending for the story is o1 when a = 0 and o2
otherwise. Our training data consists of instances
(context and ending options) labeled with corre-
sponding answers a. It does not contain any other
annotation (like semantic consistency aspects).

The model proceeds by assuming that there are
K different semantic consistency aspects and that
an ending-option can lead to an incoherent story
by violating any of these aspects (our implemen-
tation uses K = 3 corresponding to the three as-
pects described in Sec. 2.1). The model achieves
this by assuming that each instance belongs to a
latent category, z ∈ {1, 2, 3 . . .K}, which advises
the model on the importance of these aspects for
the given instance. Using these definitions and as-
sumptions, the probability of an answer given the
context and the ending-options can be modeled as:

P (a|c, o1, o2) =

K∑

z

P (z|c, o1, o2)P (a|z, c, o1, o2)

We parameterize P (z|c, o1, o2) as:

P (z|c, o1, o2) =
e
~−λz~φco

∑
k e

~−λk~φco

4An alternative would be to compute similarity between
averaged vector representations of the topic-words of the con-
text and the ending-option(s). However, that assumes that
a story is strictly about a single topic. Instead they reflect
interplay of multiple related and ‘narrow topics. E.g. a
story describing a teacher walking in rain is about topics like
‘teacher’, ‘walk’, ‘rain’, etc. The correct ending option de-
scribes a passer-by helping the teacher. ‘passer-by’ was far
from an average of all topics but close to the ‘walk’ topic.

where, ~φco is the feature vector used for assigning
a value to the hidden variable for an instance, and
~λz is the weight vector of the log-linear model for
the zth aspect. There are K weight vectors, one
corresponding to each of the K aspects.

For predicting the answer, a, we assume that
each aspect has a separate logistic-regression
based prediction model parameterized as:

P (a|z, c, o1, o2) =
(e−~wz ~f

z
co)1−a

1 + e−~wz ~fzco

where ~fzco is the feature vector constructed from
the context and ending-options for the zth aspect,
and ~wz are the corresponding weights.
Training: The model parameters, ~wz and ~λz ,
are learned during the training process by max-
imizing the log-likelihood of the data. We use
Expectation-Maximization (Dempster et al., 1977)
for training. During the E-step we compute the
expectations for latent variable assignments using
parameter values from the previous iteration as:

< zkn >∝
e−~λk~φco

∑K
k′ e
−~λk′ ~φco

P (an|zkn, cn, o1n, o2n)

where, a subscript of n represents the nth training
instance out of a total of N instances. zkn repre-
sents nth instance getting assigned to the kth as-
pect, and <> denotes expected values.

In the M-step, given the expected assignments,
we maximize the following expected log complete
likelihood with respect to the model parameters
using gradient ascent:

< L > =

N∑

n

K∑

k

< zkn >
(

log
e−~λk~φco

∑K
k′ e
−~λk′ ~φco

+ log
(e−~wk ~f

k
co)1−an

1 + e−~wk ~fkco

)

Features: Our model uses two types of features:
(i) for aspect-specific prediction model, ~fkco, and
(ii) for hidden aspect assignment, ~φco. The fea-
tures extracted for each of the K = 3 aspects,
~fkco, were described in Sec. 2.1. For the hidden as-
pect assignment, we needed features that could an-
alyze the two options in light of the given context,
and characterize the importance of various aspects
for the given instance. One way to measure an
aspect’s importance is by quantifying how differ-
ent the two options are with respect to that aspect.
The underlying assumption is that the option that
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leads to an inconsistent story, by compromising
on one of the aspects, would differ significantly
from the other option in that aspect. We quantify
an aspect’s importance using the normalized L1
distance between the corresponding features, ~fkco,
extracted for the two options in Sec. 2.1 (ignoring
the comparative binary features, and normalizing
by the number of features). Specifically, for an as-
pect k, lets represent the feature extracted for the
two options by ~fk1 and ~fk2 (each of length n) then
the corresponding ‘importance feature’ for this as-
pect = | ~fk1 − ~fk2 |/n. For example, for topical-
consistency, for each option, we extracted 1 fea-
ture measuring its topical-closeness to the context.
For ~φco computation we consider the absolute dif-
ference between this value for the two options. To
summarize, for each instance, we define ~φco as a
set of K + 1 features: K of these measure the im-
portance of each of the aspects, while the last one
is an additional always-one feature which captures
the context-insensitive bias in the data.

3 Empirical Evaluation

In this section we describe our experiments.

3.1 Dataset

For our experiments, we have used a publicly
available collection of commonsense short stories
released by Mostafazadeh et al. (2016). It con-
sists of about 100K unannotated five-sentences
long stories. For collecting these stories, Ama-
zon Mechanical Turk workers were asked to com-
pose novel five-sentence long stories on every-
day topics. They were prompted to write coher-
ent stories with a specific beginning and ending,
with something happening in between. This re-
sulted in a wide variety in topics with causal and
temporal links between the events described in
the story. Also, the workers were asked to limit
the length of individual sentences to 70 characters
which yielded short and succinct sentences, and to
not use informal language or quotations.

The dataset also contains an additional set of
3, 742 four-sentences long stories (context) with
two ending options, only one of which is correct.
Each instance is annotated with this correctness in-
formation. This set was collected by asking Ama-
zon Mechanical Turk workers to write a coherent
and an incoherent ending to a given short story.
The workers were asked to ensure that both the op-
tions shared at least one character from the story,

and that the options, in isolation, made sense. This
resulted in non-trivial alternative endings, and was
also validated by other human subjects for high
quality. This set was divided by Mostafazadeh
et al. (2016) into validation and test sets of 1871
instances each for the Story-Cloze Task, and were
used for training and evaluating our model.

3.2 Baselines
We use the following baselines in our experiments:
DSSM: (Mostafazadeh et al., 2016) It trains two
deep neural networks (Huang et al., 2013) to
project the context and the ending-options into the
same vector space. Based on these vector repre-
sentations, it predicts the ending-option with the
largest cosine similarity with the context.
Msap: The task addressed in this paper was
also a shared task for an EACL’17 workshop
and this baseline (Schwartz et al., 2017) repre-
sents the best performance reported on its leader-
board (Mostafazadeh et al., 2017). It trains a lo-
gistic regression based on stylistic and language-
model based features.
LR: Our next baseline is a simple logistic regres-
sion model which is agnostic to the fact that there
are multiple types of aspects. Given a context and
ending-options, it predicts the answer using the
same features (Sec. 2.1) as the Hidden Coherence
model but clubs them all into one feature-vector.
Majority Vote: This ensemble method uses the
features extracted for each of the K = 3 aspects,
to train K separate logistic regression models. It
then makes a prediction by taking a majority vote
of these K classifiers.
Soft Voting: This baseline also learns K differ-
ent aspect-specific classifiers. However, instead of
taking a majority vote, it computes a score for each
option, oi, as ΠK

k Pk(ending = oi|c, o1, o2). Here
Pk represents the probability obtained from the
kth logistic regression. The final prediction cor-
responds to the option with greater score.
Aspect-aware Ensemble: Like the voting meth-
ods, this baseline also trains K different aspect-
specific classifiers. However, it makes the final
prediction by training another logistic regression
over their predictions.

3.3 Quantitative Results
Table 1 shows accuracies of various models on the
held-out test set. An always-one classifier would
get 51.3% accuracy on the task and human per-
formance is reported to be 100% (Mostafazadeh

1607



Model Accuracy
DSSM (Mostafazadeh et al., 2016) 58.5%
Msap (Schwartz et al., 2017) 75.2%
Majority Voting 69.5% *
Aspect aware ensemble 71.5% *
LR 74.4% *
Soft Voting 75.1%
Hidden Coherence Model 77.6% *

Table 1: Test-set accuracies of various models.
Our Hidden Coherence Model outperforms com-
petitive baselines and state-of-the-art system.

et al., 2016). A * indicates that the model’s ac-
curacy was significantly better than the previous
best model in the table (using McNemar’s test with
α = 0.1). We can see that the logistic regres-
sion, LR, outperforms the DSSM model indicating
the strength of the features extracted for the vari-
ous story-consistency aspects. Also, the Soft Vot-
ing approach gives us slight benefit over the LR
model, possibly because of increased expressiv-
ity which includes better organization of features
into groups or aspects. Majority Vote, in spite of
sharing a similar classifier structure, does not per-
form as well. This might happen because it takes
a hard vote of individual classifiers, which might
be detrimental to model performance if one of the
classifiers is weak. Our analysis in Sec. 3.4 shows
that the topical-consistency features indeed result
in a relatively weak classifier. The Aspect aware
Ensemble performs better possibly because of its
ability to weight the aspects (though not in context
of the story).

Lastly, we can see that the proposed Hidden Co-
herence model, with an accuracy of 77.60%, out-
performs all other models. The superior perfor-
mance of our model indicates the benefit of the
context-sensitive weighing of individual consis-
tency aspects.

3.4 Ablation Study

We now investigate the predictive value of the
various aspect-specific features. Table 2 shows
the performance of a logistic regression model
trained using all the features (All) and then us-
ing individual feature-groups. We can see that
the features extracted from the aspect analyz-
ing the event-sequence have the strongest pre-
dictive power, followed by those characterizing
Sentiment-trajectory. The features measuring top-

Features Accuracy
All 74.4%
Event-sequence 71.6%
Sentiment 64.5%
Topic 55.2%

Table 2: Performance comparison of various as-
pect features. Our event-sequence based features
are most helpful followed by Sentiment-trajectory
and then Topical Consistency based features.

ical consistency result in lowest accuracy but they
still perform better than random on the task.

3.5 Qualitative Results

Table 3 shows example stories, and weights given
to the three aspects. An aspect’s weight is its
contribution towards the predicted output, and is
shown as a bar of vertically stacked blocks in the
last column. A block’s height is proportional to
its aspect’s weight. Light grey block represents
Event-sequence, and dark grey and black blocks
represent Sentiment-trajectory and Topical consis-
tency respectively.

The first row describes the story of a man hurt-
ing himself. A human reader can guess from com-
monsense knowledge that people usually recover
(correct ending) after being hurt and do not repeat
their mistake (incorrect ending). Accordingly, our
model also primarily used the aspect analyzing
events in this story, which is indicated by the long
light grey block in its weight bar. Also, we can see
that the topic of both the options is consistent with
the story, and the model gave a very small weight
to the Topical Consistency aspect indicated by the
almost indiscernible black block in its weight bar.
Similarly, the second row describes the story of
Pam being proud of her yard work. There is a
striking sentimental contrast between the two op-
tions (upset versus satisfied), and the model relies
primarily on sentiments (dark grey). The last row,
describes the story of Maria making candy apples.
The incorrect ending introduces a new entity/idea,
apple pie, resulting in topical incoherence of this
option with the rest of the story. The model relies
primarily on topic (black) and events (light grey).
Reliance on events makes sense because it is likely
for a person to enjoy what they fondly cook. The
model gave a weight of 40% to the topical aspect,
which is high as compared to its average weight
across the dataset.
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Context Incorrect
Ending

Correct
Ending Weights

He didn’t know how the television worked. He tried
to fix it, anyway. He climbed up on the roof and
fiddled with the antenna. His foot slipped on the
wet shingles and he went tumbling down.

He decided that
was fun and to
try tumbling
again.

Thankfully,
he recov-
ered.

Pam thought her front yard looked boring. So she
decided to buy several plants. And she placed them
in her front yard. She was proud of her work.

Pam was upset
at herself.

Pam was
satisfied.

Maria smelled the fresh Autumn air and decided
to celebrate. She wanted to make candy apples.
She picked up the ingredients at a local market and
headed home. She cooked the candy and prepared
the apples.

Maria’s ap-
ple pie was
delicious.

She enjoyed
the candy
apples.

Table 3: Examples of stories, ending-options, and aspect weights learned by our model. Aspect weights
are shown as bars of stacked blocks in the last column (light grey, dark grey and black represent Event-
sequence, Sentiment-trajectory and Topical Consistency respectively). A block’s height is proportional
to its component’s weight. Black blocks are sometimes not visible because there were too small.

3.6 Discussion

Error Analysis: Table 4 shows examples of sto-
ries for which our model could not predict the cor-
rect ending. We believe that many of these stories
require a deeper understanding of language and
commonsense. For example, in the story described
in the first row, the protagonist accepted an invita-
tion from his friends to go to a club but danced
terribly, and so he was asked to stay home the next
time. To make the correct prediction in this story,
the model not only needs to understand that if one
does not dance well at a club they are likely to be
not invited in the future, but also that staying home
is the same as not getting invited. Similarly, the
second row shows a story in which Johnny asks
Anita out, but she makes an excuse. He later sees
her with another guy and decides not to ask her
out again. This example requires identifying that
Anita’s excuse was a lie indicating her disinterest
in Johnny, which makes it unlikely for Johnny to
invite her again. It also needs an understanding of
inter-personal relationships, i.e. seeing a potential
lover with another person leads to estrangement.

Social Analysis: To further explore the signifi-
cance of social relations in stories, we consider
the special case of romantic stories. We use a
deterministic heuristic to identify romantic stories
using lexical matches with a handcrafted list con-
taining words like marry, proposal, girlfriend, ask
out, etc. We then applied the following two rules:

(i) if a story contains two characters, then out-
put the option whose sentiment matches that of
the context, (ii) if a story contains three charac-
ters, then output the option with negative senti-
ment. Most stories in our dataset contained few
characters. These rules are motivated by the intu-
ition that a romantic story between two people can
have a happy or sad ending depending on the con-
text. However, a romantic story with three people
is likely to describe a love triangle, and so not end
well. Expectedly, these rules had low coverage (of
about 60 stories), but a considerably high accuracy
(70%) when active. Furthermore, a closer analysis
revealed that most errors resulted from incorrect
coreference resolutions (leading to incorrect count
of characters). This indicates the utility of under-
standing semantics of social relationships for story
comprehension and it could potentially be another
aspect to consider while solving such tasks.

Sentiment Analysis: We now explore the in-
sights obtained by modeling sentiments in stories.
Mostafazadeh et al. (2016) presented two base-
lines for this task whose outputs were simply the
ending whose sentiment agreed with (i) the com-
plete story, or (ii) the climax (last sentence of the
story). While their performances were close to
random, our sentiment based features yield a much
higher accuracy of 64.5% (see Table 2). This
could possibly be attributed to our approach’s abil-
ity to learn such rules from the data itself, rather
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Context Incorrect Ending Correct Ending
My friends all love to go to the club to dance. They
think it’s a lot of fun and always invite. I finally
decided to tag along last Saturday. I danced terribly
and broke a friend’s toe.

The next weekend,
I was asked to
please stay home.

My friends decided
to keep inviting me
as I am so much
fun.

Johnny thought Anita was the girl for him, but he
was wrong. He invited her out but she said she didn’t
feel well. Johnny decided to go to a club, just to
drink and listen to music. At midnight, he looked
back and saw Anita dancing with another guy.

Johnny did not ask
Anita out again.

Johnny wanted to
ask Anita out again.

Table 4: Examples of stories incorrectly predicted by our model.

than making hard assumptions. For instance, our
language model of overall narrative sentiments in-
dicates that while happy stories mostly have happy
endings (with a conditional probability of 74%),
the reverse is not true. In particular, sad stories
(with overall negative sentiments) end with a neg-
ative sentiment in only 52% of the cases. We made
similar observations regarding sentimental confor-
mity between endings and climaxes.

Our features’ superior performance can also be
attributed to their deeper understanding of not just
overall sentiments but also their trajectories. Our
language models indicate that stories that exhibit
a positive sentiment in all three narrative seg-
ments (beginning, body, and climax) have very
high chance of happy endings (83%). Similarly,
stories with negative sentiments in the three seg-
ments also have a fair chance of having sad end-
ings (60%). This is different from stories with
an overall negative sentiment, in which case the
sentiment may be exhibited in only certain narra-
tive segments. The language models also identify
a pattern of hopeful stories, in which the senti-
ment begins as negative but moves towards pos-
itive in the body and climax, resulting in mostly
happy endings (∼ 70%). This was not true for
the reverse case: pessimistic stories with positive
beginning but negative body (and/or climax) were
equally likely to have positive or negative endings
(52%). Supplementary material contains sample
stories for each of the above observations.

4 Related Work

We now review previous work done in this field.
Our work touches upon several research areas.

4.1 Story understanding:

Our work is most closely related to the field of
narrative understanding. Apart from event-centric
understanding of narrative plots (Lehnert, 1981;
McIntyre and Lapata, 2010; Goyal et al., 2010;
Elsner, 2012; Finlayson, 2012), recent methods
have focused on understanding narratives from the
perspective of characters (Wilensky, 1978) men-
tioned in them. These methods study character
personas (Bamman et al., 2013, 2014) or Prop-
pian (Propp, 1968) roles (Valls-Vargas et al., 2014,
2015), inter-character relationships (Iyyer et al.,
2016; Chaturvedi et al., 2016, 2017), and social
networks of characters (Elson et al., 2010; Elson,
2012; Agarwal et al., 2013, 2014; Krishnan and
Eisenstein, 2015; Srivastava et al., 2016).

4.2 Events-centered learning:

Our Entity-sequence component is closely related
to semantic script learning. Script learning fo-
cuses on representing text using a prototypical se-
quences of events, their participants and causal re-
lationships between them, called scripts (Schank
and Abelson, 1977; Mooney and DeJong, 1985).
Several statistical methods have been proposed to
automatically learn scripts or scripts-like struc-
tures from unstructured text (Chambers and Ju-
rafsky, 2008, 2009; Jans et al., 2012; Orr et al.,
2014; Pichotta and Mooney, 2014). Such meth-
ods for script-learning also include Bayesian ap-
proaches (Bejan, 2008; Frermann et al., 2014),
sequence alignment algorithms (Regneri et al.,
2010) and neural networks (Modi and Titov,
2014; Granroth-Wilding and Clark, 2016; Pi-
chotta and Mooney, 2016). There has also been
work on representing events in a structured man-
ner using schemas, which are learned probabilis-
tically (Chambers, 2013; Cheung et al., 2013;
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Nguyen et al., 2015), using graphs (Balasubrama-
nian et al., 2013) or neural approaches (Titov and
Khoddam, 2015). Recently, Ferraro and Durme
(2016) presented a unified Bayesian model for
scripts and frames.

4.3 Textual Coherence:

Our work is also related to the study of coher-
ence in discourse. A significant amount of prior
work is primarily based on the Centering Theory
Framework (Grosz et al., 1995) and focus on en-
tities and their syntactic roles (Karamanis, 2003;
Karamanis et al., 2004; Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008; Elsner and Charniak,
2008). Other approaches measure coherence us-
ing topic drift within a domain (Barzilay and Lee,
2004; Fung and Ngai, 2006), co-occurrence of
words (Lapata, 2003; Soricut and Marcu, 2006),
syntactic patterns (Louis and Nenkova, 2012) and
discourse relations (Pitler and Nenkova, 2008; Lin
et al., 2011). The nature of the tasks addressed
by these works (such as determining the correct
arrangement order for a set of sentences) makes
them focus on learning sequential order of the var-
ious discourse components (entities, ideas, etc.).
Our goal, instead, is to choose between alterna-
tives of discourse components themselves (and not
just their order) to produce a consistent story.

5 Conclusion

Story comprehension is a complex Natural Lan-
guage Understanding task involving linguistic in-
telligence as well as a semantic and social knowl-
edge of the real world. This paper studies story
comprehension from the perspective of learning
what is likely to happen next in a story. We present
a model that given a short story, predicts its cor-
rect ending. It incorporates three aspects of story-
understanding, that are based on an analysis of
the events, sentiments and topics described in the
story. While this is the best-performing model till
date on this task, our analysis indicates a need for
even deeper analysis of human behavior and so-
cietal norms to further improve our understand-
ing. This work emphasizes that there are multi-
ple aspects to story understanding, which future
research can build upon.
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Abstract

NLP tasks are often limited by scarcity of
manually annotated data. In social me-
dia sentiment analysis and related tasks,
researchers have therefore used binarized
emoticons and specific hashtags as forms
of distant supervision. Our paper shows
that by extending the distant supervision
to a more diverse set of noisy labels, the
models can learn richer representations.
Through emoji prediction on a dataset of
1246 million tweets containing one of 64
common emojis we obtain state-of-the-
art performance on 8 benchmark datasets
within emotion, sentiment and sarcasm de-
tection using a single pretrained model.
Our analyses confirm that the diversity of
our emotional labels yield a performance
improvement over previous distant super-
vision approaches.

1 Introduction

A variety of NLP tasks are limited by scarcity of
manually annotated data. Therefore, co-occurring
emotional expressions have been used for dis-
tant supervision in social media sentiment anal-
ysis and related tasks to make the models learn
useful text representations before modeling these
tasks directly. For instance, the state-of-the-art ap-
proaches within sentiment analysis of social me-
dia data use positive/negative emoticons for train-
ing their models (Deriu et al., 2016; Tang et al.,
2014). Similarly, hashtags such as #anger, #joy,
#happytweet, #ugh, #yuck and #fml have in pre-
vious research been mapped into emotional cate-
gories for emotion analysis (Mohammad, 2012).

Distant supervision on noisy labels often en-
ables a model to obtain better performance on the
target task. In this paper, we show that extend-

ing the distant supervision to a more diverse set of
noisy labels enables the models to learn richer rep-
resentations of emotional content in text, thereby
obtaining better performance on benchmarks for
detecting sentiment, emotions and sarcasm. We
show that the learned representation of a single
pretrained model generalizes across 5 domains.

Table 1: Example sentences scored by our model.
For each text the top five most likely emojis are
shown with the model’s probability estimates.

I love mom's cooking
49.1% 8.8% 3.1% 3.0% 2.9%

I love how you never reply back..
14.0% 8.3% 6.3% 5.4% 5.1%

I love cruising with my homies
34.0% 6.6% 5.7% 4.1% 3.8%

I love messing with yo mind!!
17.2% 11.8% 8.0% 6.4% 5.3%

I love you and now you're just gone..
39.1% 11.0% 7.3% 5.3% 4.5%

This is shit
7.0% 6.4% 6.0% 6.0% 5.8%

This is the shit
10.9% 9.7% 6.5% 5.7% 4.8%

Emojis are not always a direct labeling of emo-
tional content. For instance, a positive emoji may
serve to disambiguate an ambiguous sentence or to
complement an otherwise relatively negative text.
Kunneman et al. (2014) discuss a similar duality
in the use of emotional hashtags such as #nice and
#lame. Nevertheless, our work shows that emo-
jis can be used to classify the emotional content
of texts accurately in many cases. For instance,
our DeepMoji model captures varied usages of the
word ‘love’ as well as slang such as ‘this is the
shit’ being a positive statement (see Table 1). We
provide an online demo at deepmoji.mit.edu to al-
low others to explore the predictions of our model.

Contributions We show how millions of read-
ily available emoji occurrences on Twitter can be
used to pretrain models to learn a richer emotional
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representation than traditionally obtained through
distant supervision. We transfer this knowledge to
the target tasks using a new layer-wise fine-tuning
method, obtaining improvements over the state-
of-the-art within a range of tasks: emotion, sar-
casm and sentiment detection. We present multi-
ple analyses on the effect of pretraining, including
results that show that the diversity of our emoji set
is important for the transfer learning potential of
our model. Our pretrained DeepMoji model is re-
leased with the hope that other researchers can use
it for various NLP tasks1.

2 Related work

Using emotional expressions as noisy labels in
text to counter scarcity of labels is not a new
idea (Read, 2005; Go et al., 2009). Originally, bi-
narized emoticons were used as noisy labels, but
later also hashtags and emojis have been used.
To our knowledge, previous research has always
manually specified which emotional category each
emotional expression belong to. Prior work has
used theories of emotion such as Ekman’s six
basic emotions and Plutchik’s eight basic emo-
tions (Mohammad, 2012; Suttles and Ide, 2013).

Such manual categorization requires an under-
standing of the emotional content of each expres-
sion, which is difficult and time-consuming for
sophisticated combinations of emotional content.
Moreover, any manual selection and categoriza-
tion is prone to misinterpretations and may omit
important details regarding usage. In contrast, our
approach requires no prior knowledge of the cor-
pus and can capture diverse usage of 64 types of
emojis (see Table 1 for examples and Figure 3 for
how the model implicitly groups emojis).

Another way of automatically interpreting the
emotional content of an emoji is to learn emoji
embeddings from the words describing the emoji-
semantics in official emoji tables (Eisner et al.,
2016). This approach, in our context, suffers from
two severe limitations: a) It requires emojis at test
time while there are many domains with limited
or no usage of emojis. b) The tables do not cap-
ture the dynamics of emoji usage, i.e., drift in an
emoji’s intended meaning over time.

Knowledge can be transferred from the emoji
dataset to the target task in many different ways.
In particular, multitask learning with simultaneous

1Available with preprocessing code, examples of usage,
benchmark datasets etc. at github.com/bfelbo/DeepMoji

Embedding

Text

BiLSTM

BiLSTM

Attention 1 x 2304

T x 1024

T x 1024

T x 256

Softmax 1 x C

Figure 1: Illustration of the DeepMoji model with
S being text length and C the number of classes.

training on multiple datasets has shown promis-
ing results (Collobert and Weston, 2008). How-
ever, multitask learning requires access to the
emoji dataset whenever the classifier needs to be
tuned for a new target task. Requiring access
to the dataset is problematic in terms of violat-
ing data access regulations. There are also is-
sues from a data storage perspective as the dataset
used for this research contains hundreds of mil-
lions of tweets (see Table 2). Instead we use trans-
fer learning (Bengio et al., 2012) as described in
§3.3, which does not require access to the original
dataset, but only the pretrained classifier.

3 Method

3.1 Pretraining

In many cases, emojis serve as a proxy for the
emotional contents of a text. Therefore, pretrain-
ing on the classification task of predicting which
emoji were initially part of a text can improve per-
formance on the target task (see §5.3 for an anal-
ysis of why our pretraining helps). Social media
contains large amounts of short texts with emojis
that can be utilized as noisy labels for pretraining.
Here, we use data from Twitter from January 1st
2013 to June 1st 2017, but any dataset with emoji
occurrences could be used.

Only English tweets without URL’s are used for
the pretraining dataset. Our hypothesis is that the
content obtained from the URL is likely to be im-
portant for understanding the emotional content of
the text in the tweet. Therefore, we expect emo-
jis associated with these tweets to be noiser labels
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than for tweets without URLs, and the tweets with
URLs are thus removed.

Proper tokenization is important for generaliza-
tion. All tweets are tokenized on a word-by-word
basis. Words with 2 or more repeated characters
are shortened to the same token (e.g. ‘loool’ and
‘looooool’ are tokenized such that they are treated
the same). Similarly, we use a special token for all
URLs (only relevant for benchmark datasets), user
mentions (e.g. ‘@acl2017’ and ‘@emnlp2017’ are
thus treated the same) and numbers. To be in-
cluded in the training set the tweet must contain
at least 1 token that is not a punctuation symbol,
emoji or special token2.

Many tweets contain multiple repetitions of the
same emoji or multiple different emojis. In the
training data, we address this in the following way.
For each unique emoji type, we save a separate
tweet for the pretraining with that emoji type as the
label. We only save a single tweet for the pretrain-
ing per unique emoji type regardless of the number
of emojis associated with the tweet. This data pre-
processing allows the pretraining task to capture
that multiple types of emotional content are asso-
ciated with the tweet while making our pretraining
task a single-label classification instead of a more
complicated multi-label classification.

To ensure that the pretraining encourages the
models to learn a rich understanding of emotional
content in text rather than only emotional content
associated with the most used emojis, we create
a balanced pretraining dataset. The pretraining
data is split into a training, validation and test set,
where the validation and test set is randomly sam-
pled in such a way that each emoji is equally repre-
sented. The remaining data is upsampled to create
a balanced training dataset.

3.2 Model

With the millions of emoji occurrences available,
we can train very expressive classifiers with lim-
ited risk of overfitting. We use a variant of the
Long Short-Term Memory (LSTM) model that has
been successful at many NLP tasks (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014).
Our DeepMoji model uses an embedding layer of
256 dimensions to project each word into a vector
space. A hyperbolic tangent activation function is
used to enforce a constraint of each embedding di-
mension being within [−1, 1]. To capture the con-

2Details available at github.com/bfelbo/deepmoji

text of each word we use two bidirectional LSTM
layers with 1024 hidden units in each (512 in each
direction). Finally, an attention layer that take all
of these layers as input using skip-connections is
used (see Figure 1 for an illustration).

The attention mechanism lets the model decide
the importance of each word for the prediction task
by weighing them when constructing the represen-
tation of the text. For instance, a word such as
‘amazing’ is likely to be very informative of the
emotional meaning of a text and it should thus be
treated accordingly. We use a simple approach
inspired by (Bahdanau et al., 2014; Yang et al.,
2016) with a single parameter pr. input channel:

et = htwa

at =
exp(et)∑T
i=1 exp(ei)

v =
T∑

i=1

aihi

Here ht is the representation of the word at time
step t and wa is the weight matrix for the atten-
tion layer. The attention importance scores for
each time step, at, are obtained by multiplying the
representations with the weight matrix and then
normalizing to construct a probability distribution
over the words. Lastly, the representation vector
for the text, v, is found by a weighted summation
over all the time steps using the attention impor-
tance scores as weights. This representation vec-
tor obtained from the attention layer is a high-level
encoding of the entire text, which is used as input
to the final Softmax layer for classification. We
find that adding the attention mechanism and skip-
connections improves the model’s capabilities for
transfer learning (see §5.2 for more details).

The only regularization used for the pretrain-
ing task is a L2 regularization of 1E−6 on the
embedding weights. For the finetuning additional
regularization is applied (see §4.2). Our model is
implemented using Theano (Theano Development
Team, 2016) and we make an easy-to-use version
available that uses Keras (Chollet et al., 2015).

3.3 Transfer learning

Our pretrained model can be fine-tuned to the tar-
get task in multiple ways with some approaches
‘freezing’ layers by disabling parameters updates
to prevent overfitting. One common approach is
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to use the network as a feature extractor (Don-
ahue et al., 2014), where all layers in the model are
frozen when fine-tuning on the target task except
the last layer (hereafter referred to as the ‘last’ ap-
proach). Alternatively, another common approach
is to use the pretrained model as an initializa-
tion (Erhan et al., 2010), where the full model is
unfrozen (hereafter referred to as ‘full’).

We propose a new simple transfer learning ap-
proach, ‘chain-thaw’, that sequentially unfreezes
and fine-tunes a single layer at a time. This ap-
proach increases accuracy on the target task at the
expense of extra computational power needed for
the fine-tuning. By training each layer separately
the model is able to adjust the individual patterns
across the network with a reduced risk of overfit-
ting. The sequential fine-tuning seems to have a
regularizing effect similar to what has been exam-
ined with layer-wise training in the context of un-
supervised learning (Erhan et al., 2010).

More specifically, the chain-thaw approach first
fine-tunes any new layers (often only a Softmax
layer) to the target task until convergence on a
validation set. Then the approach fine-tunes each
layer individually starting from the first layer in
the network. Lastly, the entire model is trained
with all layers. Each time the model converges
as measured on the validation set, the weights
are reloaded to the best setting, thereby prevent-
ing overfitting in a similar manner to early stop-
ping (Sjöberg and Ljung, 1995). This process is
illustrated in Figure 2. Note how only perform-
ing step a) in the figure is identical to the ‘last’
approach, where the existing network is used as
a feature extractor. Similarly, only doing step d)
is identical to the ‘full’ approach, where the pre-
trained weights are used as an initialization for a
fully trainable network. Although the chain-thaw
procedure may seem extensive it is easily imple-
mented with only a few lines of code. Similarly,
the additional time spent on fine-tuning is limited
when the target task uses GPUs on small datasets
of manually annotated data as is often the case.

A benefit of the chain-thaw approach is the abil-
ity to expand the vocabulary to new domains with
little risk of overfitting. For a given dataset up to
10000 new words from the training set are added
to the vocabulary. §5.3 contains analysis on the
added word coverage gained from this approach.

1st layer

Text

2nd layer

3rd layer

a) b) c)

1st layer

Text

2nd layer

3rd layer

1st layer

Text

2nd layer

3rd layer

1st layer

Text

2nd layer

3rd layer

d)

Figure 2: Illustration of the chain-thaw transfer
learning approach, where each layer is fine-tuned
separately. Layers covered with a blue rectangle
are frozen. Step a) tunes any new layers, b) then
tunes the 1st layer and c) the next layer until all
layers have been fine-tuned individually. Lastly,
in step d) all layers are fine-tuned together.

Table 2: The number of tweets in the pretraining
dataset associated with each emoji in millions.

233.7 82.2 79.5 78.1 60.8 54.7 54.6 51.7 50.5 44.0 39.5 39.1 34.8 34.4 32.1 28.1

24.8 23.4 21.6 21.0 20.5 20.3 19.9 19.6 18.9 17.5 17.0 16.9 16.1 15.3 15.2 15.0

14.9 14.3 14.2 14.2 12.9 12.4 12.0 12.0 11.7 11.7 11.3 11.2 11.1 11.0 11.0 10.8

10.2 9.6 9.5 9.3 9.2 8.9 8.7 8.6 8.1 6.3 6.0 5.7 5.6 5.5 5.4 5.1

4 Experiments

4.1 Emoji prediction

We use a raw dataset of 56.6 billion tweets, which
is then filtered to 1.2 billion relevant tweets (see
details in §3.1). In the pretraining dataset a copy
of a single tweet is stored once for each unique
emoji, resulting in a dataset consisting of 1.6 bil-
lion tweets. Table 2 shows the distribution of
tweets across different emoji types. To evaluate
performance on the pretraining task a validation
set and a test set both containing 640K tweets
(10K of each emoji type) are used. The remain-
ing tweets are used for the training set, which is
balanced using upsampling.

The performance of the DeepMoji model is
evaluated on the pretraining task with the results
shown in Table 3. Both top 1 and top 5 accuracy
is used for the evaluation as the emoji labels are
noisy with multiple emojis being potentially cor-
rect for any given sentence. For comparison we
also train a version of our DeepMoji model with
smaller LSTM layers and a bag-of-words classi-
fier, fastText, that has recently shown competitive
results (Joulin et al., 2016). We use 256 dimen-
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Table 3: Accuracy of classifiers on the emoji
prediction task. d refers to the dimensionality of
each LSTM layer. Parameters are in millions.

Params Top 1 Top 5

Random − 1.6% 7.8%
fasttext 12.8 12.8% 36.2%
DeepMoji (d = 512) 15.5 16.7% 43.3%
DeepMoji (d = 1024) 22.4 17.0% 43.8%

sions for this fastText classifier, thereby making it
almost identical to only using the embedding layer
from the DeepMoji model. The difference in top
5 accuracy between the fastText classifier (36.2%)
and the largest DeepMoji model (43.8%) under-
lines the difficulty of the emoji prediction task. As
the two classifiers only differ in that the DeepMoji
model has LSTM layers and an attention layer be-
tween the embedding and Softmax layer, this dif-
ference in accuracy demonstrates the importance
of capturing the context of each word.

4.2 Benchmarking

We benchmark our method on 3 different NLP
tasks using 8 datasets across 5 domains. To make
for a fair comparison, we compare DeepMoji
to other methods that also utilize external data
sources in addition to the benchmark dataset. An
averaged F1-measure across classes is used for
evaluation in emotion analysis and sarcasm detec-
tion as these consist of unbalanced datasets while
sentiment datasets are evaluated using accuracy.

An issue with many of the benchmark datasets
is data scarcity, which is particularly problem-
atic within emotion analysis. Many recent pa-
pers proposing new methods for emotion analysis
such as (Staiano and Guerini, 2014) only evaluate
performance on a single benchmark dataset, Se-
mEval 2007 Task 14, that contains 1250 observa-
tions. Recently, criticism has been raised concern-
ing the use of correlation with continuous ratings
as a measure (Buechel and Hahn, 2016), making
only the somewhat limited binary evaluation pos-
sible. We only evaluate the emotions {Fear, Joy,
Sadness} as the remaining emotions occur in less
than 5% of the observations.

To fully evaluate our method on emotion analy-
sis against the current methods we thus make use
of two other datasets: A dataset of emotions in
tweets related to the Olympic Games created by
Sintsova et al. that we convert to a single-label

classification task and a dataset of self-reported
emotional experiences created by a large group
of psychologists (Wallbott and Scherer, 1986).
See the supplementary material for details on the
datasets and the preprocessing. As these two
datasets do not have prior evaluations, we eval-
uate against a state-of-the-art approach, which
is based on a valence-arousal-dominance frame-
work (Buechel and Hahn, 2016). The scores ex-
tracted using this approach are mapped to the
classes in the datasets using a logistic regres-
sion with parameter optimization using cross-
validation. We release our preprocessing code and
hope that these 2 two datasets will be used for fu-
ture benchmarking within emotion analysis.

We evaluate sentiment analysis performance on
three benchmark datasets. These small datasets
are chosen to emphasize the importance of the
transfer learning ability of the evaluated models.
Two of the datasets are from SentiStrength (Thel-
wall et al., 2010), SS-Twitter and SS-Youtube,
and follow the relabeling described in (Saif et al.,
2013) to make the labels binary. The third dataset
is from SemEval 2016 Task4A (Nakov et al.,
2016). Due to tweets being deleted from Twitter,
the SemEval dataset suffers from data decay, mak-
ing it difficult to compare results across papers. At
the time of writing, roughly 15% of the training
dataset for SemEval 2016 Task 4A was impossible
to obtain. We choose not to use review datasets for
sentiment benchmarking as these datasets contain
so many words pr. observation that even bag-of-
words classifiers and unsupervised approaches can
obtain a high accuracy (Joulin et al., 2016; Rad-
ford et al., 2017).

The current state of the art for sentiment analy-
sis on social media (and winner of SemEval 2016
Task 4A) uses an ensemble of convolutional neu-
ral networks that are pretrained on a private dataset
of tweets with emoticons, making it difficult to
replicate (Deriu et al., 2016). Instead we pretrain
a model with the hyperparameters of the largest
model in their ensemble on the positive/negative
emoticon dataset from Go et al. (2009). Using
this pretraining as an initialization we finetune
the model on the target tasks using early stop-
ping on a validation set to determine the amount
of training. We also implemented the Sentiment-
Specific Word Embedding (SSWE) using the em-
beddings available on the authors’ website (Tang
et al., 2014), but found that it performed worse
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Table 4: Description of benchmark datasets. Datasets without pre-existing training/test splits are split by
us (with splits publicly available). Data used for hyperparameter tuning is taken from the training set.

Identifier Study Task Domain Classes Ntrain Ntest

SE0714 (Strapparava and Mihalcea, 2007) Emotion Headlines 3 250 1000
Olympic (Sintsova et al., 2013) Emotion Tweets 4 250 709
PsychExp (Wallbott and Scherer, 1986) Emotion Experiences 7 1000 6480

SS-Twitter (Thelwall et al., 2012) Sentiment Tweets 2 1000 1113
SS-Youtube (Thelwall et al., 2012) Sentiment Video Comments 2 1000 1142
SE1604 (Nakov et al., 2016) Sentiment Tweets 3 7155 31986

SCv1 (Walker et al., 2012) Sarcasm Debate Forums 2 1000 995
SCv2-GEN (Oraby et al., 2016) Sarcasm Debate Forums 2 1000 2260

Table 5: Comparison across benchmark datasets. Reported values are averages across five runs. Varia-
tions refer to transfer learning approaches in §3.3 with ‘new’ being a model trained without pretraining.

Dataset Measure State of the art DeepMoji
(new)

DeepMoji
(full)

DeepMoji
(last)

DeepMoji
(chain-thaw)

SE0714 F1 .34 [Buechel] .21 .31 .36 .37
Olympic F1 .50 [Buechel] .43 .50 .61 .61
PsychExp F1 .45 [Buechel] .32 .42 .56 .57

SS-Twitter Acc .82 [Deriu] .62 .85 .87 .88
SS-Youtube Acc .86 [Deriu] .75 .88 .92 .93
SE1604 Acc .51 [Deriu] .51 .54 .58 .58

SCv1 F1 .63 [Joshi] .67 .65 .68 .69
SCv2-GEN F1 .72 [Joshi] .71 .71 .74 .75

than the pretrained convolutional neural network.
These results are therefore excluded.

For sarcasm detection we use the sarcasm
dataset version 1 and 2 from the Internet Argu-
ment Corpus (Walker et al., 2012). Note that
results presented on these benchmarks in e.g.
Oraby et al. (2016) are not directly comparable
as only a subset of the data is available online.3

A state-of-the-art baseline is found by modeling
the embedding-based features from Joshi et al.
(2016) alongside unigrams, bigrams and trigrams
with an SVM. GoogleNews word2vec embed-
dings (Mikolov et al., 2013) are used for comput-
ing the embedding-based features. A hyperparam-
eter search for regularization parameters is carried
out using cross-validation. Note that the sarcasm
dataset version 2 contains both a quoted text and a
sarcastic response, but to keep the models identi-
cal across the datasets only the response is used.

For training we use the Adam opti-
mizer (Kingma and Ba, 2015) with gradient
clipping of the norm to 1. Learning rate is set to
1E−3 for training of all new layers and 1E−4

3We contacted the authors, but were unable to obtain the
full dataset for neither version 1 or version 2.

for finetuning any pretrained layers. To prevent
overfitting on the small datasets, 10% of the
channels across all words in the embedding layer
are dropped out during training. Unlike e.g. (Gal
and Ghahramani, 2016) we do not drop out entire
words in the input as some of our datasets contain
observations with so few words that it could
change the meaning of the text. In addition to
the embedding dropout, L2 regularization for the
embedding weights is used and 50% dropout is
applied to the penultimate layer.

Table 5 shows that the DeepMoji model out-
performs the state of the art across all benchmark
datasets and that our new ‘chain-thaw’ approach
consistently yields the highest performance for the
transfer learning, albeit often only slightly better
or equal to the ‘last’ approach. Results are aver-
aged across 5 runs to reduce the variance. We test
the statistical significance of our results by com-
paring the performance of DeepMoji (chain-thaw)
vs. the state of the art. Bootstrap testing with
10000 samples is used. On all datasets are our re-
sults statistically significantly better than the state
of the art with p < 0.001.

Our model is able to out-perform the state-of-
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the-art on datasets that originate from domains that
differ substantially from the tweets on which it
was pretrained. A key difference between the pre-
training dataset and the benchmark datasets is the
length of the observations. The average number of
tokens pr. tweet in the pretraining dataset is 11,
whereas e.g. the board posts from the Internet Ar-
gument Corpus version 1 (Oraby et al., 2016) has
an average of 66 tokens with some observations
being much longer.

5 Model Analysis

5.1 Importance of emoji diversity

One of the major differences between this work
compared to previous papers using distant super-
vision is the diversity of the noisy labels used (see
§2). For instance, both Deriu et al. (2016) and
Tang et al. (2014) only used positive and negative
emoticons as noisy labels. Other instances of pre-
vious work have used slightly more nuanced sets
of noisy labels (see §2), but to our knowledge our
set of noisy labels is the most diverse yet. To an-
alyze the effect of using a diverse emoji set we
create a subset of our pretraining data containing
tweets with one of 8 emojis that are similar to
the positive/negative emoticons used by Tang et al.
(2014) and Hu et al. (2013) (the set of emoticons
and corresponding emojis are available in the sup-
plemental material). As the dataset based on this
reduced set of emojis contains 433M tweets, any
difference in performance on benchmark datasets
is likely linked to the diversity of labels rather than
differences in dataset sizes.

We train our DeepMoji model to predict
whether the tweets contain a positive or negative
emoji and evaluate this pretrained model across
the benchmark datasets. We refer to the model
trained on the subset of emojis as DeepMoji-
PosNeg (as opposed to DeepMoji). To test the
emotional representations learned by the two pre-
trained models the ‘last’ transfer learning ap-
proach is used for the comparison, thereby only
allowing the models to map already learned fea-
tures to classes in the target dataset. Table 6 shows
that DeepMoji-PosNeg yields lower performance
compared to DeepMoji across all 8 benchmarks,
thereby showing that the diversity of our emoji
types encourage the model to learn a richer repre-
sentation of emotional content in text that is more
useful for transfer learning.

Many of the emojis carry similar emotional

Table 6: Benchmarks using a smaller emoji set
(Pos/Neg emojis) or a classic architecture (stan-
dard LSTM). Results for DeepMoji from Table 5
are added for convenience. Evaluation metrics are
as in Table 5. Reported values are the averages
across five runs.

Dataset Pos/Neg
emojis

Standard
LSTM DeepMoji

SE0714 .32 .35 .36
Olympic .55 .57 .61
PsychExp .40 .49 .56

SS-Twitter .86 .86 .87
SS-Youtube .90 .91 .92
SE1604 .56 .57 .58

SCv1 .66 .66 .68
SCv2-GEN .72 .73 .74

content, but have subtle differences in usage that
our model is able to capture. Through hierar-
chical clustering on the correlation matrix of the
DeepMoji model’s predictions on the test set we
can see that the model captures many similarities
that one would intuitively expect (see Figure 3).
For instance, the model groups emojis into overall
categories associated with e.g. negativity, positiv-
ity or love. Similarly, the model learns to differen-
tiate within these categories, mapping sad emojis
in one subcategory of negativity, annoyed in an-
other subcategory and angry in a third one.

5.2 Model architecture

Our DeepMoji model architecture as described
in §3.2 use an attention mechanism and skip-
connections to ease the transfer of the learned rep-
resentation to new domains and tasks. Here we
compare the DeepMoji model architecture to that
of a standard 2-layer LSTM, both compared using
the ‘last’ transfer learning approach. We use the
same regularization and training parameters.

As seen in Table 6 the DeepMoji model per-
forms better than a standard 2-layer LSTM across
all benchmark datasets. The two architectures per-
formed equally on the pretraining task, suggesting
that while the DeepMoji model architecture is in-
deed better for transfer learning, it may not neces-
sarily be better for single supervised classification
task with ample available data.

A reasonable conjecture is that the improved
transfer learning performance is due to two fac-
tors: a) the attention mechanism with skip-
connections provide easy access to learned low-
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Figure 3: Hierarchical clustering of the DeepMoji model’s predictions across categories on the test set.
The dendrogram shows how the model learns to group emojis into overall categories and subcategories
based on emotional content. The y-axis is the distance on the correlation matrix of the model’s predic-
tions measured using average linkage. More details are available in the supplementary material.

level features for any time step, making it easy to
use this information if needed for a new task b)
the improved gradient-flow from the output layer
to the early layers in the network due to skip-
connections (Graves, 2013) is important when ad-
justing parameters in early layers as part of trans-
fer learning to small datasets. Detailed analysis of
whether these factors actually explain why our ar-
chitecture outperform a standard 2-layer LSTM is
left for future work.

5.3 Analyzing the effect of pretraining

Performance on the target task benefits strongly
from pretraining as shown in Table 5 by compar-
ing DeepMoji (new) to DeepMoji (chain-thaw).
In this section we experimentally decompose the
benefit of pretraining into 2 effects: word coverage
and phrase coverage. These two effects help regu-
larize the model by preventing overfitting (see the
supplementary details for an visualization of the
effect of this regularization).

There are numerous ways to express a specific
sentiment, emotion or sarcastic comment. Conse-
quently, the test set may contain specific language
use not present in the training set. The pretraining
helps the target task models attend to low-support
evidence by having previously observed similar
usage in the pretraining dataset. We first exam-
ine this effect by measuring the improvement in
word coverage on the test set when using the pre-
training with word coverage being defined as the
% of words in the test dataset seen in the train-
ing/pretraining dataset (see Table 7). An impor-
tant reason why the ‘chain-thaw’ approach outper-
forms other transfer learning approaches is can be
used to tune the embedding layer with limited risk
of overfitting. Table 7 shows the increased word

coverage from adding new words to the vocabu-
lary as part of that tuning.

Note that word coverage can be a misleading
metric in this context as for many of these small
datasets a word will often occur only once in the
training set. In contrast, all of the words in the
pretraining vocabulary are present in thousands (if
not millions) of observations in the emoji pretrain-
ing dataset thus making it possible for the model
to learn a good representation of the emotional
and semantic meaning. The added benefit of pre-
training for learning word representations there-
fore likely extends beyond the differences seen in
Table 7.

Table 7: Word coverage on benchmark test sets
using only the vocabulary generated by finding
words in the training data (‘own’), the pretrain-
ing vocabulary (‘last’) or a combination of both
vocabularies (‘full / chain-thaw’).

Dataset Own Last Full /
Chain-thaw

SE0714 41.9% 93.6% 94.0%
Olympic 73.9% 90.3% 96.0%
PsychExp 85.4% 98.5% 98.8%

SS-Twitter 80.1% 97.1% 97.2%
SS-Youtube 79.6% 97.2% 97.3%
SE1604 86.1% 96.6% 97.0%

SCv1 88.7% 97.3% 98.0%
SCv2-GEN 86.5% 97.2% 98.0%

To examine the importance of capturing phrases
and the context of each word, we evaluate the ac-
curacy on the SS-Youtube dataset using a fastText
classifier pretrained on the same emoji dataset as
our DeepMoji model. This fastText classifier is al-
most identical to only using the embedding layer
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from the DeepMoji model. We evaluate the rep-
resentations learned by fine-tuning the models as
feature extractors (i.e. using the ‘last’ transfer
learning approach). The fastText model achieves
an accuracy of 63% as compared to 93% for our
DeepMoji model, thereby emphasizing the im-
portance of phrase coverage. One concept that
the LSTM layers likely learn is negation, which
is known to be important for sentiment analy-
sis (Wiegand et al., 2010).

5.4 Comparing with human-level agreement

To understand how well our DeepMoji classi-
fier performs compared to humans, we created a
new dataset of random tweets annotated for senti-
ment. Each tweet was annotated by a minimum of
10 English-speaking Amazon Mechanical Turkers
(MTurk’s) living in USA. Tweets were rated on a
scale from 1 to 9 with a ‘Do not know’ option, and
guidelines regarding how to rate the tweets were
provided to the human raters. The tweets were
selected to contain only English text, no men-
tions and no URL’s to make it possible to rate
them without any additional contextual informa-
tion. Tweets where more than half of the eval-
uators chose ‘Do not know’ were removed (98
tweets).

For each tweet, we select a MTurk rating ran-
dom to be the ‘human evaluation’, and average
over the remaining nine MTurk ratings are av-
eraged to form the ground truth. The ‘senti-
ment label’ for a given tweet is thus defined as
the overall consensus among raters (excluding the
randomly-selected ‘human evaluation’ rating). To
ensure that the label categories are clearly sep-
arated, we removed neutral tweets in the inter-
val [4.5, 5.5] (roughly 29% of the tweets). The
remaining dataset consists of 7 347 tweets. Of
these tweets, 5000 are used for training/validation
and the remaining are used as the test set. Our
DeepMoji model is trained using the chain-thaw
transfer learning approach.

Table 8 shows that the agreement of the random
MTurk rater is 76.1%, meaning that the randomly
selected rater will agree with the average of the
nine other MTurk-ratings of the tweet’s polarity
76.1% of the time. Our DeepMoji model achieves
82.4% agreement, which means it is better at cap-
turing the average human sentiment-rating than a
single MTurk rater.

Table 8: Comparison of agreement between clas-
sifiers and the aggregate opinion of Amazon
Mechanical Turkers on sentiment prediction of
tweets.

Agreement

Random 50.1%
fastText 71.0%
MTurk 76.1%
DeepMoji 82.4%

6 Conclusion

We have shown how the millions of texts on so-
cial media with emojis can be used for pretrain-
ing models, thereby allowing them to learn repre-
sentations of emotional content in texts. Through
comparison with an identical model pretrained on
a subset of emojis, we find that the diversity of
our emoji set is important for the performance of
our method. We release our pretrained DeepMoji
model with the hope that other researchers will
find good use of them for various emotion-related
NLP tasks4.
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Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. In 4th International Workshop on
Natural Language Processing for Social Media (So-
cialNLP).

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why does unsupervised pre-training
help deep learning? Journal of Machine Learning
Research (JMLR), 11:625–660.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In 30th Conference on Neural In-
formation Processing Systems (NIPS), pages 1019–
1027.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu.
2013. Unsupervised sentiment analysis with emo-
tional signals. In Proceedings of the 22nd interna-
tional conference on World Wide Web (WWW), pages
607–618. ACM.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? In Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations
(ICLR).

FA Kunneman, CC Liebrecht, and APJ van den Bosch.
2014. The (un)predictability of emotional hashtags
in twitter. In 52th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL). Associa-
tion for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In 27th Conference on Neural Information Pro-
cessing Systems (NIPS), pages 3111–3119.

Saif Mohammad. 2012. #emotional tweets. In The
First Joint Conference on Lexical and Computa-
tional Semantics (*SEM), pages 246–255. Associa-
tion for Computational Linguistics.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In
10th International Workshop on Semantic Evalua-
tion (SemEval), pages 1–18.

Shereen Oraby, Vrindavan Harrison, Lena Reed,
Ernesto Hernandez, Ellen Riloff, and Marilyn
Walker. 2016. Creating and characterizing a diverse
corpus of sarcasm in dialogue. In 17th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), page 31.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In ACL student research work-
shop, pages 43–48. Association for Computational
Linguistics.

Hassan Saif, Miriam Fernandez, Yulan He, and Harith
Alani. 2013. Evaluation datasets for twitter senti-
ment analysis: a survey and a new dataset, the sts-
gold. In Workshop: Emotion and Sentiment in So-
cial and Expressive Media: approaches and per-
spectives from AI (ESSEM) at AI*IA Conference.

Valentina Sintsova, Claudiu-Cristian Musat, and Pearl
Pu. 2013. Fine-grained emotion recognition in
olympic tweets based on human computation. In
4th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis
(WASSA).
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Abstract

We present opinion recommendation, a
novel task of jointly generating a review
with a rating score that a certain user
would give to a certain product which is
unreviewed by the user, given existing re-
views to the product by other users, and
the reviews that the user has given to oth-
er products. A characteristic of opinion
recommendation is the reliance of multi-
ple data sources for multi-task joint learn-
ing. We use a single neural network to
model users and products, generating cus-
tomised product representations using a
deep memory network, from which cus-
tomised ratings and reviews are construct-
ed jointly. Results show that our opinion
recommendation system gives ratings that
are closer to real user ratings on Yelp.com
data compared with Yelp’s own ratings.
our methods give better results compared
to several pipelines baselines.

1 Introduction

Offering a channel for customers to share opin-
ions and give scores to products and services, re-
view websites have become a highly influential in-
formation source that customers refer to for mak-
ing purchase decisions. Popular examples include
IMDB.com on the movie domain, Epinions.com
on the product domain, and Yelp.com on the ser-
vice domain. Figure 1 shows a screenshot of a
restaurant review page on Yelp.com, which offers
two main types of information. First, an overal-
l rating score is given under the restaurant name;
second, detailed user reviews are listed below the
rating.

∗This work has been done when the first author worked
at SUTD.

Figure 1: A restaurant review on Yelp.com.

Though offering useful overview and details
about a product or service, such information has
several limitations for a user who has not used the
product or service. First, the overall rating is gen-
eral and not necessarily agreeable to the taste of
an individual customer. Being a simple reflection
of all customer scores, it serves an average cus-
tomer well, but can be rather inaccurate for indi-
viduals. For example, the authors themselves of-
ten find highly rated movies being tedious. Sec-
ond, there can be hundreds of reviews for a prod-
uct or service, which makes it infeasible for ex-
haustive reading. It would be useful to have a brief
summary of all reviews, which ideally should be
customized to the reader.

To address the limitations above, we propose a
new task called opinion recommendation, which
is to generate a customized review score of the
product that the user is likely to give, as well as a
customized review that the user would have written
for the target product, if the user had reviewed the
product. The proposed opinion recommendation
task is closely related to several existing lines of
work in NLP. The first is sentiment analysis (Hu
and Liu, 2004; Pang and Lee, 2008) and opinion
summarization (Nishikawa et al., 2010; Wang and
Ling, 2016), which is to give a rating score or sum-
mary based on existing customer reviews. Our
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task is different in that we aim to generate user rat-
ing scores and review of a product unreviewed by
the user. The second is recommendation (Su and
Khoshgoftaar, 2009; Yang et al., 2014), which is to
give a ranking score to a certain product or service
based on the purchase history of the user and other
customers who have purchased the target product.
Our task is different in the source of input, which
is textual customer reviews and ratings rather than
numerical purchase history.

There are two types of inputs for our task,
namely existing reviews of the target product, and
the reviews of the user on other products, and t-
wo types of outputs, namely a customized rating
score and a customized review. The ideal solu-
tion should consider the interaction between all
given types of information, jointly predicting the
two types of outputs. This poses significant chal-
lenges to statistical models, which require man-
ually defined features to capture relevant pattern-
s from training data. Deep learning is a relative-
ly more feasible choice, offering viabilities of in-
formation fusion by fully connected hidden layer-
s (Collobert et al., 2011; Henderson et al., 2013;
Zhang and Weiss, 2016; Chen et al., 2016a). We
leverage this advantage in building our model.

In particular, we use a sub RNN to model the
semantic content of each review. A sub product
model is used to consolidate existing reviews for
the target product, and a user model is built by
consolidating the reviews of the given user into a
single vector form. To address potential sparsi-
ty of a user’s history reviews, neighbor users are
identified by collaborative filtering (Ding et al.,
2006), and a vector representation is learned by
using a neural neighborhood model. Finally, a
deep memory network is utilized to find the asso-
ciation between the user and target product, joint-
ly yielding the rating score and customised re-
view. Experiments on a Yelp dataset show that
the model outperforms several pipelined base-
lines. We make our source code publicly avail-
able under GPL at https://github.com/
wangzq870305/opinion_recommend.

2 Related Work

Sentiment Analysis. Our task is related to
document-level sentiment classification (Pang and
Lee, 2008) for various neural network model-
s have been used, including convolutional neu-
ral networks (Kim, 2014), recursive neural net-

work (Socher et al., 2013) and recurrent neural
network (Teng et al., 2016; Tai et al., 2015), Re-
view rating prediction aims to predict the numer-
ic rating of a given review. Pang and Lee (2005)
pioneered this task by regarding it as a classifica-
tion/regression problem. Most subsequent work
focuses on designing effective textural features of
reviews (Qu et al., 2010; Li et al., 2011; Wan,
2013).

User information has been widely investigated
in sentiment analysis. Gao et al. (2013) developed
user-specific features to capture user leniency, and
Li et al. (2014) incorporated textual topic and user-
word factors through topic modeling. For integrat-
ing user information into neural network models,
Tang et al. (2015) predicted the rating score giv-
en a review by using both lexical semantic infor-
mation and a user embedding model. Chen et al.
(2016b) proposed a neural network to incorporate
global user and product information for sentiment
classification via an attention mechanism.

Different from the above research, which focus-
es on predicting the opinion on existing reviews,
our task is to recommend the score that a user
would give to a new product without knowing his
review text. The difference originates from the ob-
jective. Previous research aims to predict opinions
on reviewed products, while our task is to recom-
mend opinion on new products, which the user has
not reviewed.

Opinion Summarization. Our work also over-
laps with to the area of opinion summarization,
which constructs natural language summaries for
multiple product reviews (Hu and Liu, 2004).
Most previous work extracts opinion words and
aspect terms. Typical approaches include asso-
ciation mining of frequent candidate aspects (Hu
and Liu, 2004; Qiu et al., 2011), sequence label-
ing based methods (Jakob and Gurevych, 2010;
Yang and Cardie, 2013), as well as topic mod-
eling techniques (Lin and He, 2009). Recently,
word embeddings and recurrent neural network-
s are also used to extract aspect terms (Irsoy and
Cardie, 2014; Liu et al., 2015). While all the meth-
ods above are extractive, Ganesan et al. (2010) p-
resented a graph-based summarization framework
to generate concise abstractive summaries of high-
ly redundant opinions, and Wang and Ling (2016)
used an attention-based neural network model to
absorb information from multiple text units and
generate summaries of movie reviews. We also
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perform abstractive summarization. However, dif-
ferent from the above research, which summarize
existing reviews, we generate customized reviews
for a unreviewed product.

Recommendation. has been solved on mainly
purchase history. There are two main approach-
es, which are content-based and collaborative-
filtering (CF) based (Adomavicius and Tuzhilin,
2005; Yang et al., 2014), respectively. Most exist-
ing social recommendation systems are CF-based,
and can be further grouped into model-based CF
and neighborhood-based CF (Kantor et al., 2011;
Su and Khoshgoftaar, 2009). Matrix Factoriza-
tion (MF) is one of the most popular models for
CF. In recent MF-based social recommendation
works, user-user social trust information is inte-
grated with user-item feedback history (e.g., rat-
ings, clicks, purchases) to improve the accuracy
of traditional recommendation systems, which on-
ly factorize user-item feedback data (Ding et al.,
2006; Koren, 2008; He et al., 2016).

There has been work integrating sentiment anal-
ysis and recommendation systems, which use rec-
ommendation strategies such as matrix factoriza-
tion to improve the performance of sentiment anal-
ysis (Leung et al., 2006; Singh et al., 2011). These
methods typically use ensemble learning (Singh
et al., 2011) or probabilistic graph models (Wu
and Ester, 2015). For example, Zhang et al.
(2014) proposed a factor graph model to recom-
mend opinion rating scores by using explicit prod-
uct features as hidden variables. Different from
the above research, we recommend user opinions.

Neural Network Models. Multi-task learn-
ing has been recognised as a strength of neu-
ral network models for natural language process-
ing (Collobert et al., 2011; Henderson et al., 2013;
Zhang and Weiss, 2016; Chen et al., 2016a), where
hidden feature layers are shared between different
tasks that have common basis. Our work can be
regarded as an instance of such multi-tasks learn-
ing via shared parameters, which has been widely
used in the research community recently.

Dynamic memory network models have been
applied for NLP tasks such as question answer-
ing (Sukhbaatar et al., 2015; Kumar et al., 2016),
language modeling (Tran et al., 2016) and ma-
chine translation (Wang et al., 2016). There are
typically used to find abstract semantic represen-
tations of texts towards certain tasks, which are
consistent with our main need, namely abstract-
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Figure 2: Overview of proposed model.

ing the representation of a product that is biased
towards the taste of a certain user. We use a vari-
ation of the memory network model for obtaining
user-specific review representation.

3 Model

Formally, the input to our model is a tuple
〈RT , RU , RN 〉, where RT = {rT1 , rT2 , ..., rTnt}
is the set of existing reviews of a target product,
RU = {rU1 , rU2 , ..., rUnu} is the set of user’s his-
tory reviews, and RN = {rN1 , rN2 , ..., rNnn} is
the set of the user’s neighborhood reviews. All the
reviews are sorted with temporal order. The output
is a pair 〈YS , YR〉, where YS is a real number be-
tween 0 and 5 representing the customized rating
score of the target product, and YR is a customised
review. A characteristic of our model is that YS
and YR are generated on a product that the user
has not reviewed.

For capturing both general and personalized in-
formation, we first build a product model, a user
model, and a neighborhood model, respectively,
and using a memory network model to integrate
these three types of information, constructing a
customized product model. Finally, we predict a
customized rating score and a review collectively
using neural stacking framework. The overall ar-
chitecture of the model is shown in Figure 2.

3.1 Review Model

A review is the foundation of our model, based
on which we derive representations of both a us-
er and a target product. In particular, a user pro-
file can be achieved by modeling all the reviews
RU of the user, and a target product profile can
be obtained by using all existing reviews RT of
the product. We use the average of word embed-
dings to model a review. Formally, given a review
r = {x1, x2, ..., xm}, where m is the length of
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the review, each word xk is represented with a K-
dimensional embedding ewk (Mikolov et al., 2013).
We use the

∑
k(e

w
k )/m for the representation of

the review ed(r).

3.2 User Model

A standard LSTM (Hochreiter and Schmidhu-
ber, 1997) is used to learn the hidden states
of an user’s reviews to build the user mod-
el. Denoting the recurrent function at step t as
LSTM(xt, ht−1), we obtain a sequence of hid-
den state vectors {hU1 , hU2 , ..., hUnu} recurrently
by feeding {ed(rU1), ed(rU2), ..., ed(rUnu )} as in-
puts, where hUi = LSTM(ed(rUi), hUi−1). The
initial state and all standard LSTM parameters are
randomly initialized and tuned during training.

Not all reviews contribute equally to the repre-
sentation of a user. We use the attention mech-
anism (Bahdanau et al., 2014; Yang et al., 2016)
to extract the reviews that are relatively more
important, aggregating the representation of re-
views to form a vector. Taking the hidden s-
tate {hU1 , ...hU2 , ..., hUnu} of user model as input,
the attention model outputs, a continuous vector
vU ∈ Rd×1, which is computed as a weighted sum
of each hidden state hUi , namely

vU =

nu∑

i

αihUi (1)

where nu is the hidden variable size, αi ∈ [0, 1] is
the weight of hUi , and

∑
i αi = 1.

For each piece of hidden state hUi , the scoring
function is calculated by

ui = tanh(WUhUi + bU ) (2)

αi =
exp(ui)∑
j exp(uj)

(3)

where WU and bU are model parameters. The at-
tention vector vU is used to represent the user for
the User Model.

3.3 Neighborhood Model

We use neighborhood reviews to improve the us-
er model, since a user may not have sufficient re-
views to construct a reliable model. Here a neigh-
bor refers to a user that has similar tastes to the
target user (Koren, 2008; Desrosiers and Karypis,
2011). The same as the user model, we construct

the neighborhood model vN using the neighbor-
hood reviews RN = {rN1 , rN2 , ..., rNnn} with an
attention recurrent network.

A key issue in building the neighborhood model
is how to find neighbors of a certain user. In this
study, we use matrix factorization (Koren, 2008)
to detect neighbors, which is a standard approach
for recommendation (Ding et al., 2006; Li et al.,
2009; He et al., 2016). In particular, users’ rat-
ing scores of products are used to build a product-
users matrix M ∈ Rnt×nu with nt products and
nu users. We approximate it using three factors,
specifying soft membership of products and user-
s (Ding et al., 2006) by finding:

min
F,S,T

||M − FST T ||

s.t.S ≥ 0, F ≥ 0, T ≥ 0
(4)

where F ∈ Rnt×K represents the posterior prob-
ability of K topic clusters for each product; S ∈
RK×K encodes the distribution of each topic k;
and T ∈ RK×nu indicates the posterior probabili-
ty of K topic clusters for each user.

As a result of matrix factorization, we directly
obtain the probability of each user on each topic
from the person-topic matrix T . To infer T , the
optimization problem in Eq.4 can be solved using
the following updating rule:

Tjk ← Tjk
(MTFS)jk

(TT TMTFS)jk
(5)

With the user-topic matrix T , we measure the im-
plicit connection between two users using:

sim(i, j) =

k∑

k=1

TikTjk (6)

where sim(i, j) measure the implicit connection
degree between users i and j. If sim(i, j) is high-
er than a threshold η, we consider user j as the
neighbor of user i.

3.4 Product Model
Given the representations of existing reviews
{ed(rT1), ed(rT2), ..., ed(rTnt )} of the produc-
t, we use LSTM to model their temporal or-
ders, obtaining a sequence of hidden vectors
hT = {hT1 , hT2 , ..., hTnt} by recurrently feeding
{ed(rT1), ed(rT2), ..., ed(rTnt} as inputs. The hid-
den state vectors hT are used to represent the prod-
uct.
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Customized Product Model. The produc-
t model represents salient information of existing
reviews in their temporal order, yet do not reflect
the taste of a particular user. We build the cus-
tomised product model to integrate user informa-
tion and product information (as reflected by the
product model), resulting in a single vector that
represents a customised product. From this vector
we are able to synthesis both a customised review
and a customised rating score. In particular, we
use the user representation vU and the neighbour
representation vN to transform the target produc-
t representation hT = {hT1 , hT2 , ..., hTnt} into a
customised product representation vC , which is
tailored to the taste of the user.

A naive model of yielding vC could utilise the
attention mechanism over ht, deriving a weight-
ed sum according to user information. On the
other hand, dynamic memory networks have been
shown highly useful for deriving abstract semantic
information compared with simple attention, and
hence we follow Sukhbaatar et al. (2015) and X-
iong et al. (2016), building a variation of DMN
to iteratively find increasingly abstract representa-
tions of ht, by injecting vU and vN information.

The memory model consists of multiple dynam-
ic computational layers (hops), each of which con-
tains an attention layer and a linear layer. In the
first computational layer (hop 1), we take the hid-
den variables hTi (0 ≤ i ≤ nt) of product model
as input, adaptively selecting important evidences
through one attention layer using vU and vN . The
output of the attention layer gives a linear inter-
polation of hT , and the result is considered as in-
put to the next layer (hop 2). In the same way,
we stack multiple hops and run the steps multiple
times, so that more abstract representations of the
target product can be derived.

The attention model outputs a continuous vector
vC ∈ Rd×1, which is computed as a weighted sum
of hTi (0 ≤ i ≤ nt), namely

vC =

nt∑

i

βihTi (7)

where nt is the hidden variable size, βi ∈ [0, 1] is
the weight of hTi , and

∑
i βi = 1. For each piece

of hidden state hTi , we use a feed forward neural
network to compute its semantic relatedness with
the abstract representation vC . The scoring func-

tion is calculated as follows at hop t:

uti = tanh(WThTi +WCv
t−1
C

+WUvU +WNvN + b)
(8)

βti =
exp(uti)∑
j exp(utj)

(9)

The vector vC is used to represent the customized
product model. At the first hop, we define V 0

C =∑
i hTi/nt.
The product model hTi (0 ≤ i ≤ nt) rep-

resents salient information of existing reviews in
their temporal order, they do not reflect the taste
of a particular user. We use the customised prod-
uct model to integrate user information and prod-
uct information (as reflected by the product mod-
el), resulting in a single vector that represents a
customised product. From this vector we are able
to synthesis both a customised review and a cus-
tomised rating score.

3.5 Customized Review Generation

The goal of customized review generation is to
generate a review YR from the customized prod-
uct representation vC , composed by a sequence of
words yR1 , ..., yRnr . We use a standard LSTM de-
coder (Rush et al., 2015) to decompose the predic-
tion of YR into a sequence of word-level predic-
tions:

logP (YR|vC) =
∑

j

P (yRj |yR1 , ..., yRj−1 , vC) (10)

where each word yRj is predicted conditional on
the previously generated yR1 , ..., yRj−1 and the
customized product vector vC . The probability is
estimated by using standard word softmax:

P (yRj |yR1 , ..., yRj−1 , vC) =

softmax(hRj )
(11)

where hRj is the hidden state variable at times-
tamp j, which is modeled as LSTM(uj−1, hRj).
Here a LSTM is used to generate a new state hRj
from the representation of the previous state hRj−1

and uj−1. uj−1 is the concatenation of previously
generated word yRj−1 and the input representation
of customized model vC .
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3.6 Customized Rating Prediction

A straightforward approach to predicting the rat-
ing score of a product is to take the average of ex-
isting review scores. However, the drawback is
that it cannot reflect the the variance in user tastes.
In order to integrate user preferences into the rat-
ing, we instead take a user-based weighted aver-
age of existing rating scores, so that the scores of
reviews that are closer to the user preference are
given higher weights. However, existing ratings
can be all different from a users personal rating, if
the existing reviews do not come from the user’s
neighbours. We thus use the customized product
vector vc as a bias of the weighted average of ex-
isting rating scores.

Formally, given the rating scores s1, s2, ..., sn
of existing reviews, and the the customized prod-
uct representation vC , we calculate:

YS =
n∑

i

βi · si + µ tanh(WSvC + bS) (12)

In the left term
∑n

i βi ·si, we use attention weights
βi in Eq.9 to measure the important of each rating
score si. The right term tanh(WSvC + bS) is a
review-based shift, weighted by µ.

Since the result of customized review genera-
tion can be helpful for rating score prediction, we
use neural stacking additionally feeding the last
hidden state hRn of review generation model as
input for YS prediction, resulting in

YS =

n∑

i

αi · si+

+ µ tanh(WS(vC ⊕ hRn) + bS)

(13)

where ⊕ denotes vector concatenation.

3.7 Training

For our task, there are two joint training objec-
tives, for review scoring and review summarisa-
tion, respectively. For review scoring, the loss
function is defined as:

L(Θ) =

N∑

i=1

(Y ∗Si − YSi)2 +
λ

2
||Θ||2 (14)

where Y ∗Si is the predicted rating score, YSi is the
rating score in the training data, Θ is the set of
model parameters and λ is a parameter for L2 reg-
ularization.

Amount
Business 15,584
Review 334,997
User 303,032

Table 1: Statistics of the dataset.

For customized review generation, loss is de-
fined by maximizing the log probability of E-
q.10 (Sutskever et al., 2014; Rush et al., 2015).
The two loss functions for score and review pre-
diction share the representation vectors under vC ,
hence forming multi-task learning.

Standard back propagation is performed to op-
timize parameters, where gradients also propagate
from the scoring objective to the review genera-
tion objective due to neural stacking (Eq.13). We
apply online training, where model parameters are
optimized by using AdaGrad (Duchi et al., 2011).
Word embeddings are trained using the Skip-gram
algorithm (Mikolov et al., 2013)1.

4 Experiments

4.1 Experimental Settings
Our data are collected from the yelp academic
dataset2, provided by Yelp.com, a popular restau-
rant review website. The data set contains three
types of objects: business, user, and review, where
business objects contain basic information about
local businesses (i.e. restaurants), review objects
contain review texts and star rating, and user ob-
jects contain aggregate information about a single
user across all of Yelp. Table 1 illustrates the gen-
eral statistics of the dataset.

For evaluating our model, we choose 4,755
user-product pairs from the dataset. The user-
product pairs are extracted by following criterions:
for each selected user-product pair, the user should
have written 10 reviews at least, and the product
should contain 100 reviews at least. In addition,
the gold-standard review that the user write for the
corresponding product should contain 10 helpful
hits at least. We did not try alternative data selec-
tion rules. We will give the detail in our draft.

For each pair, the existing reviews of the target
service (restaurant) are used for the product mod-
el. The rating score given by each user to the target
service is considered as the gold customized rating
score, and the review of the target service given by

1 https://code.google.com/p/word2vec/
2https://www.yelp.com/academic dataset
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each user is used as the gold-standard customized
review for the user. The remaining reviews of each
user are used for training the user model. We use
3,000 user-product pairs to train the model, 1,000
pairs as testing data, and remaining data for devel-
opment.

We use the ROUGE-1.5.5 (Lin, 2004) toolk-
it for evaluating the performance of customized
review generation, and report unigram overlap
(ROUGE-1) as a means of assessing informative-
ness. Mean Square Error (MSE) (Wan, 2013; Tang
et al., 2015) is used as the evaluation metric for
measuring the performance of customized rating
score prediction. MSE penalizes more severe er-
rors more heavily.

4.2 Hyper-parameters

There are several important hyper-parameters in
our models, and we tune their values using the
development dataset. We set the regularization
weight λ = 10−8 and the initial learning rate to
0.01. We set the size of word vectors to 128, the
size of hidden vectors in LSTM to 128. In order to
avoid over-fitting, dropout (Hinton et al., 2012) is
used for word embedding with a ratio of 0.2. The
neighbor similarity threshold η is set to 0.25.

4.3 Development Experiments

4.3.1 Ablation Test

Effects of various configurations of our model, are
shown on Table 2, where Joint is the full model of
this paper, -user ablates the user model, -neighbor
ablates the neighbor model, -rating is a single-task
model that generates a review without the rating
score, and -generation yields only the rating.

By comparing “Joint” and “-user,-neighbor”,
we can find that customized information have sig-
nificant influence on both the rating and review
generation results (p − value < 0.01 using t-
test). In addition, comparison between “-Joint”
and “-user”, and between “-user” and “-user, -
neighbor” shows that both the user information
and the neighbour user information of the user are
effective for improving the results. A users neigh-
bours can indeed alleviate scarcity of user reviews.

Finally, comparison between “Joint” and “-
generation”, and between “Joint” and “-rating”
shows that multi-task learning by parameter shar-
ing is highly useful.

Rating Generation
Joint 0.904 0.267
-user 1.254 0.220
-neighbor 1.162 0.245
-user,-neighbor 1.342 0.205
-rating - 0.254
-generation 1.042 -

Table 2: Feature ablation tests.
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Figure 3: Influence of hops.

4.3.2 Influence of Hops
We show the influence of hops of memory net-
work for customized review generation on Fig-
ure 3. When hop = 0, the model considers only
the general product reviews (−user,−neighbor).
When hop ≥ 1, customized product information
is leveraged. From the figure we can find that,
when hop = 3, the performance is the best. It
indicates that multiple hops can capture more ab-
stract evidences from external memory to improve
the performance. However, too many hops leads
to over-fitting, thereby harms the performance. As
a result, we choose 3 as the number of hops in our
final test.

4.3.3 Influence of µ
We show the influence of the bias weight parame-
ter µ for rating prediction in Figure 4. With µ be-
ing 0, the model uses the weighted sum of existing
reviews to score the product. When µ is very large,
the system tends to use only the customized prod-
uct representation vc to score the product, hence
ignoring existing review scores, which are a use-
ful source of information. Our results show that
when µ is 1, the performance is optimal, thus indi-
cating both existing review scores and review con-
tents are equally useful.

4.4 Final Results

We show the final results for opinion recommen-
dation, comparing our proposed model with the
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Figure 4: Influence of bias score.

following state-of-the-art baseline systems:

• RS-Average-Yelp is the widely-adopted base-
line (e.g., by Yelp.com), using the averaged
review scores as the final score.

• RS-Linear estimates the rating score that a
user would give by sui = sall + su + si (Ric-
ci et al., 2011), where su and si are the the
training deviations of rating score of the user
u and the product i, respectively.

• RS-Item applies kNN to estimate the rating
score (Sarwar et al., 2001). We choose the
cosine similarity between vc to measure the
distance between product.

• RS-MF is a state-of-the-art recommendation
model, which uses matrix factorisation to
predict rating score (Ding et al., 2006; Li
et al., 2009; He et al., 2016).

• Sum-Opinosis uses a graph-based framework
to generate abstractive summarisation given
redundant opinions (Ganesan et al., 2010).

• Sum-LSTM-Att is a state-of-the-art neural ab-
stractive summariser, which uses an atten-
tional neural model to consolidate informa-
tion from multiple text sources, generat-
ing summaries using LSTM decoding (Rush
et al., 2015; Wang and Ling, 2016).

Being non-opinion recommendation methods,
all the baselines are single-task models, with-
out considering rating and summarisation predic-
tion jointly. The results are shown in Table 3.
Our model (“ Joint”) significantly outperforms
both “RS-Average-Yelp” and “RS-Linear” (p −
value < 0.01 using t-test). Note that, our pro-
posed rating recommendation for the user are sig-
nificantly closer individual real user rating com-
pared with Yelp’s rating.

Rating Generation
RS-Average-Yelp 1.280 -
RS-Linear 1.234 -
RS-Item 1.364 -
RS-MF 1.143 -
Sum-Opinosis - 0.183
Sum-LSTM-Att - 0.196
Joint 1.023 0.250

Table 3: Final results.

Our proposed model also significantly outper-
forms state-of-the-art recommendation systems
(RS-Item and RS-MF) (p− value < 0.01 using t-
test), indicating that textual information are a use-
ful addition to the rating scores themselves for rec-
ommending a product.

Finally, comparison between our proposed
model and state-of-the-art summarisation tech-
niques (Sum-Opinosis and Sum-LSTM-Att)
shows the advantage of leveraging user informa-
tion to enhance customised review generation,
and also the strength of joint learning.

4.5 Example Output

Table 4 shows example outputs of rating scores
and reviews. Ref. is the rating score and re-
view written by user her/himself, and Base is the
baseline model, that generates the rating score by
RS-MF, and review by Sum-LSTM-Att. From
these examples, we can find that, both rating s-
core and review which generated by the proposed
Joint model is closer to the real user. In particular,
in the first example, the baseline system correctly
identifies the main both price and quality informa-
tion, which the target user wrote in the review, yet
the baseline model did not yield comments about
the price based on reviews of other users. Associ-
ating reviews and ratings closely, the joint model
gives a rating score that is much closer to the re-
al user score compared to the score given by the
recommendation model MF. In addition, we can
also find some habits of certain users from their
customized reviews, for example, Mexican food,
cheap and clean restaurant.

5 Conclusion

We proposed a novel task called opinion recom-
mendation, which is to generate the review and
rating score that a certain user would give to an
unreviewed product or service. In particular, a
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Rating Review

Ref. 5.0
Amazing beer selection, enough
food choices, and a much smaller
bill than I was expecting ...

Base 4.0
Boulders is JAM, favorite neigh-
borhood bar, have amazing food
...

Joint 4.6 Bar is cheap, food is good enough
...

Ref. 4.0
This is one of my favorite Mex-
ican fast food restaurants. It’s
clean and cool in the summer...

Base 5.0
The restaurant is great, This
Chipotle is a great location, Their
medium salsa good ...

Joint 4.2 Mexican food my favorite, place
is clean ...

Table 4: Example outputs.

deep memory network was utilized to find the as-
sociation between the user and the product, jointly
yielding the rating score and customised review.
Results show that our methods are better result-
s compared to several pipelines baselines using
state-of-the-art sentiment rating and summarisa-
tion systems. Review scores given by the opinion
recordation system are closer to real user review
scores compared to the review scores which Yelp
assigns to target products.
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Abstract

Unsupervised dependency parsing, which
tries to discover linguistic dependency
structures from unannotated data, is a very
challenging task. Almost all previous
work on this task focuses on learning gen-
erative models. In this paper, we de-
velop an unsupervised dependency pars-
ing model based on the CRF autoencoder.
The encoder part of our model is discrim-
inative and globally normalized which al-
lows us to use rich features as well as uni-
versal linguistic priors. We propose an
exact algorithm for parsing as well as a
tractable learning algorithm. We evaluated
the performance of our model on eight
multilingual treebanks and found that our
model achieved comparable performance
with state-of-the-art approaches.

1 Introduction

Unsupervised dependency parsing, which aims to
discover syntactic structures in sentences from un-
labeled data, is a very challenging task in natural
language processing. Most of the previous work
on unsupervised dependency parsing is based on
generative models such as the dependency model
with valence (DMV) introduced by Klein and
Manning (2004). Many approaches have been
proposed to enhance these generative models, for
example, by designing advanced Bayesian priors
(Cohen et al., 2008), representing dependencies
with features (Berg-Kirkpatrick et al., 2010), and
representing discrete tokens with continuous vec-
tors (Jiang et al., 2016).

Besides generative approaches, Grave and El-
hadad (2015) proposed an unsupervised discrim-

∗This work was supported by the National Natural Sci-
ence Foundation of China (61503248).

inative parser. They designed a convex quadratic
objective function under the discriminative clus-
tering framework. By utilizing global features
and linguistic priors, their approach achieves state-
of-the-art performance. However, their approach
uses an approximate parsing algorithm, which has
no theoretical guarantee. In addition, the perfor-
mance of the approach depends on a set of manu-
ally specified linguistic priors.

Conditional random field autoencoder (Ammar
et al., 2014) is a new framework for unsupervised
structured prediction. There are two components
of this model: an encoder and a decoder. The en-
coder is a globally normalized feature-rich CRF
model predicting the conditional distribution of
the latent structure given the observed structured
input. The decoder of the model is a generative
model generating a transformation of the struc-
tured input from the latent structure. Ammar et
al. (2014) applied the model to two sequential
structured prediction tasks, part-of-speech induc-
tion and word alignment and showed that by uti-
lizing context information the model can achieve
better performance than previous generative mod-
els and locally normalized models. However, to
the best of our knowledge, there is no previous
work applying the CRF autoencoder to tasks with
more complicated outputs such as tree structures.

In this paper, we propose an unsupervised dis-
criminative dependency parser based on the CRF
autoencoder framework and provide tractable al-
gorithms for learning and parsing. We performed
experiments in eight languages and show that our
approach achieves comparable results with previ-
ous state-of-the-art models.
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Figure 1: The CRF Autoencoder for the input sen-
tence “These stocks eventually reopened” and its
corresponding parse tree (shown at the top). x
and x̂ are the original and reconstructed sentence.
y is the dependency parse tree represented by a
sequence where yi contains the token and index
of the parent of token xi in the parse tree, e.g.,
y1 = 〈stocks, 2〉 and y2 = 〈reopened, 4〉. The
encoder is represented by a factor graph (with a
global factor specifying valid parse trees) and the
decoder is represented by a Bayesian net.

2 Method

2.1 Model

Figure 1 shows our model with an example in-
put sentence. Given an input sentence x =
(x1, x2, . . . , xn), we regard its parse tree as the
latent structure represented by a sequence y =
(y1, y2, . . . , yn) where yi is a pair 〈ti, hi〉, ti is the
head token of the dependency connecting to token
xi in the parse tree, and hi is the index of this head
token in the sentence. The model also contains a
reconstruction output, which is a token sequence
x̂ = (x̂1, x̂2, . . . , x̂n). Throughout this paper, we
set x̂ = x.

The encoder in our model is a log-linear model
represented by a first-order dependency parser.
The score of a dependency tree can be factorized
as the sum of scores of its dependencies. For each
dependency arc (x, i, j), where i and j are the in-
dices of the head and child of the dependency, a
feature vector f(x, i, j) is specified. The score of
a dependency is defined as the inner product of the
feature vector and a weight vector w,

φ(x, i, j) = wT f(x, i, j)

The score of a dependency tree y of sentence x is

φ(x,y) =
n∑

i=1

φ(x, hi, i)

We define the probability of parse tree y given sen-
tence x as

P (y|x) =
exp(φ(x,y))

Z(x)

Z(x) is the partition function,

Z(x) =
∑

y′∈Y(x)
exp(φ(x,y′))

where Y(x) is the set of all valid parse trees of x.
The partition function can be efficiently computed
in O(n3) time using a variant of the inside-outside
algorithm (Paskin, 2001) for projective tree struc-
tures, or using the Matrix-Tree Theorem for non-
projective tree structures (Koo et al., 2007).

The decoder of our model consists of a set of
categorical conditional distributions θx|t, which
represents the probability of generating token x
conditioned on token t. So the probability of the
reconstruction output x̂ given the parse tree y is

P (x̂|y) =
n∏

i=1

θx̂i|ti

The conditional distribution of x̂,y given x is

P (y, x̂|x) = P (y|x)P (x̂|y)

2.1.1 Features
Following McDonald et al. (2005) and Grave et
al. (2015), we define the feature vector of a de-
pendency based on the part-of-speech tags (POS)
of the head, child and context words, the direc-
tion, and the distance between the head and child
of the dependency. The feature template used in
our parser is shown in Table 1.

2.1.2 Parsing
Given parameters w and θ, we can parse a sen-
tence x by searching for a dependency tree y
which has the highest probability P (x̂,y|x).

y∗ = arg max
y∈Y(x)

logP (x̂,y|x)

= arg max
y∈Y(x)

n∑

i=1

(
φ(x, hi, i) + log θx̂i|ti

)
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POSi × dis× dir
POSj × dis× dir
POSi × POSj × dis× dir
POSi × POSi−1 × POSj × dis× dir
POSi × POSi+1 × POSj × dis× dir
POSi × POSj × POSj−1 × dis× dir
POSi × POSj × POSj+1 × dis× dir

Table 1: Feature template of a dependency, where
i is the index of the head, j is the index of the
child, dis = |i− j|, and dir is the direction of the
dependency.

For projective dependency parsing, we can use
Eisners algorithm (1996) to find the best parse
in O(n3) time. For non-projective dependency
parsing, we can use the Chu-Liu/Edmond algo-
rithm (Chu and Liu, 1965; Edmonds, 1967; Tarjan,
1977) to find the best parse in O(n2) time.

2.2 Parameter Learning

2.2.1 Objective Function
Spitkovsky et al. (2010) shows that Viterbi EM
can improve the performance of unsupervised de-
pendency parsing in comparison with EM. There-
fore, instead of using negative conditional log like-
lihood as our objective function, we choose to use
negative conditional Viterbi log likelihood,

−
N∑

i=1

log

(
max

y∈Y(xi)
P (x̂i,y|xi)

)
+ λΩ(w) (1)

where Ω(w) is a L1 regularization term of the
encoder parameter w and λ is a hyper-parameter
controlling the strength of regularization.

To encourage learning of dependency relations
that satisfy universal linguistic knowledge, we add
a soft constraint on the parse tree based on the
universal syntactic rules following Naseem et al.
(2010) and Grave et al. (2015). Hence our objec-
tive function becomes

−
N∑

i=1

log

(
max

y∈Y(xi)
P (x̂i,y|xi)Qα(xi,y)

)
+λΩ(w)

where Q(x,y) is a soft constraint factor over the
parse tree, and α is a hyper-parameter controlling
the strength of the constraint factor. The factor Q
is also decomposable by edges in the same way
as the encoder and the decoder, and therefore our
parsing algorithm can still be used with this factor

VERB→ VERB NOUN→ NOUN
VERB→ NOUN NOUN→ ADJ
VERB→ PRON NOUN→ DET
VERB→ ADV NOUN→ NUM
VERB→ ADP NOUN→ CONJ
ADJ→ ADV ADP→ NOUN

Table 2: Universal linguistic rules

taken into account.

Q(x,y) = exp

(∑

i

1[(ti → xi) ∈ R]

)

where 1[(ti → xi) ∈ R] is an indicator function
of whether dependency ti → xi satisfies one of
the universal linguistic rules in R. The universal
linguistic rules that we use are shown in Table 2
(Naseem et al., 2010).

2.2.2 Algorithm
We apply coordinate descent to minimize the ob-
jective function, which alternately updates w and
θ. In each optimization step of w, we run two
epochs of stochastic gradient descent, and in each
optimization step of θ, we run two iterations of the
Viterbi EM algorithm.

To update w using stochastic gradient de-
scent, for each sentence x, we first run the pars-
ing algorithm to find the best parse tree y∗ =
arg maxy∈Y(x)(P (x̂,y|x)Qα(x,y)); then we can
calculate the gradient of the objective function
based on the following derivation,

∂logP (x̂,y∗|x)

∂w

=
∂logP (y∗|x)

∂w
+
∂logP (x̂|y∗)

∂w

=
∂logP (y∗|x)

∂w

=
∂
(∑n

i=1w
T f(x, hi, i)− logZ(x)

)

∂w

=
∑

(i,j)∈D(x)

f(x, i, j)

(
1[y∗j = 〈i, xi〉]− µ(x, i, j)

)

where D(x) is the set of all possible dependency
arcs of sentence x, 1[·] is the indicator function,
and µ(x, i, j) is the expected count defined as fol-
lows,

µ(x, i, j) =
∑

y∈Y(x)

(
1[yj = 〈i, xi〉]P (y|x)

)
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Basque Czech Danish Dutch Portuguese Slovene Swedish Avg
Length: ≤ 10

DMV(EM) 41.1 31.3 50.8 47.1 36.7 36.7 43.5 41.0
DMV(Viterbi) 47.1 27.1 39.1 37.1 32.3 23.7 42.6 35.5
Neural DMV (EM) 46.5 33.1 55.6 49.0 30.4 42.2 44.3 43.0
Neural DMV (Viterbi) 48.1 28.6 39.8 37.2 36.5 39.9 47.9 39.7
Convex-MST (No Prior) 29.4 36.5 49.3 31.3 46.4 33.7 35.5 37.4
Convex-MST (With Prior) 30.0 46.1 51.6 35.3 55.4 63.7 50.9 47.5
CRFAE (No Prior) 49.0 33.9 28.8 39.3 47.6 34.7 51.3 40.6
CRFAE (With Prior) 49.9 48.1 53.4 43.9 68.0 52.5 64.7 54.3

Length: All
DMV(EM) 31.2 28.1 40.3 44.2 23.5 25.2 32.0 32.0
DMV(Viterbi) 40.9 20.4 32.6 33.0 26.9 16.5 36.2 29.5
Neural DMV (EM) 38.5 29.3 46.1 46.2 16.2 36.6 32.8 35.1
Neural DMV (Viterbi) 41.8 23.8 34.2 33.6 29.4 30.8 40.2 33.4
Convex-MST (No Prior) 30.5 33.4 44.2 29.3 38.3 32.2 28.3 33.7
Convex-MST (With Prior) 30.6 40.0 45.8 35.6 46.3 51.8 40.5 41.5
CRFAE (No Prior) 39.8 25.4 24.2 35.2 52.2 26.4 40.0 34.7
CRFAE (With Prior) 41.4 36.8 40.5 38.6 58.9 43.3 48.5 44.0

Table 4: Parsing accuracy on seven languages. Our model is compared with DMV (Klein and Manning,
2004), Neural DMV (Jiang et al., 2016), and Convex-MST (Grave and Elhadad, 2015)

Methods WSJ10 WSJ
Basic Setup

Feature DMV (Berg-Kirkpatrick et al., 2010) 63.0 -
UR-A E-DMV (Tu and Honavar, 2012) 71.4 57.0
Neural E-DMV (Jiang et al., 2016) 69.7 52.5
Neural E-DMV (Good Init) (Jiang et al., 2016) 72.5 57.6

Basic Setup + Universal Linguistic Prior
Convex-MST (Grave and Elhadad, 2015) 60.8 48.6
HDP-DEP (Naseem et al., 2010) 71.9 -
CRFAE 71.7 55.7

Systems Using Extra Info
LexTSG-DMV (Blunsom and Cohn, 2010) 67.7 55.7
CS (Spitkovsky et al., 2013) 72.0 64.4
MaxEnc (Le and Zuidema, 2015) 73.2 65.8

Table 3: Comparison of recent unsupervised de-
pendency parsing systems on English. Basic setup
is the same as our setup except that linguistic prior
is not used. Extra info includes lexicalization,
longer training sentences, etc.

The expected count can be efficiently computed
using the Matrix-Tree Theorem (Koo et al., 2007)
for non-projective tree structures or using a variant
of the inside-outside algorithm for projective tree
structures (Paskin, 2001).

To update θ using Viterbi EM, in the E-step we
again use the parsing algorithm to find the best
parse tree y∗ for each sentence x; then in the M-
step we update θ by maximum likelihood estima-
tion.

θc|t =

∑
x

∑
i 1[xi = c, y∗i = 〈·, t〉]∑

c′
∑

x

∑
i 1[xi = c′, y∗i = 〈·, t〉]

3 Experiments

3.1 Setup

We experimented with projective parsing and used
the informed initialization method proposed by
Klein and Manning (2004) to initialize our model
before learning. We tested our model both with
and without using the universal linguistic rules.
We used AdaGrad to optimize w. We used POS
tags of the input sentence as the tokens in our
model. We learned our model on training sen-
tences of length ≤ 10 and reported the directed
dependency accuracy on test sentences of length
≤ 10 and on all test sentences.

3.2 Results on English

We evaluated our model on the Wall Street Jour-
nal corpus. We trained our model on section 2-
21, tuned the hyperparameters on section 22, and
tested our model on section 23. Table 3 shows the
directed dependency accuracy of our model (CR-
FAE) compared with recently published results. It
can be seen that our method achieves a compara-
ble performance with state-of-the-art systems.

We also compared the performances of CRF au-
toencoder using an objective function with nega-
tive log likelihood vs. using our Viterbi version
of the objective function (Eq.1). We find that the
Viterbi version leads to much better performance
(55.7 vs. 41.8 in parsing accuracy of WSJ), which
echoes Spitkovsky et al. ’s findings on Viterbi EM
(2010).
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3.3 Multilingual Results
We evaluated our model on seven languages from
the PASCAL Challenge on Grammar Induction
(Gelling et al., 2012). We did not use the Arabic
corpus because the number of training sentences
with length ≤ 10 is less than 1000. The result is
shown in Table 4. The accuracies of DMV and
Neural DMV are from Jiang et.al (2016). Both
our model (CRFAE) and Convex-MST were tuned
on the validation set of each corpus. It can be seen
that our method achieves the best results on av-
erage. Besides, our method outperforms Convex-
MST both with and without linguistic prior. From
the results we can also see that utilizing universal
linguistic prior greatly improves the performance
of Convex-MST and our model.

4 Conclusion

In this paper, we propose a new discriminative
model for unsupervised dependency parsing based
on CRF autoencoder. Both learning and inference
of our model are tractable. We tested our method
on eight languages and show that our model is
competitive to the state-of-the-art systems.

The code is available at https://github.
com/caijiong/CRFAE-Dep-Parser
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Abstract

We present a new method for the joint
task of tagging and non-projective depen-
dency parsing. We demonstrate its use-
fulness with an application to discontinu-
ous phrase-structure parsing where decod-
ing lexicalized spines and syntactic deriva-
tions is performed jointly. The main con-
tributions of this paper are (1) a reduction
from joint tagging and non-projective de-
pendency parsing to the Generalized Max-
imum Spanning Arborescence problem,
and (2) a novel decoding algorithm for
this problem through Lagrangian relax-
ation. We evaluate this model and obtain
state-of-the-art results despite strong inde-
pendence assumptions.

1 Introduction

Discontinuous phrase-structure parsing relies ei-
ther on formal grammars such as LCFRS, which
suffer from a high complexity, or on reductions to
non-projective dependency parsing with complex
labels to encode phrase combinations. We pro-
pose an alternative approach based on a variant of
spinal TAGs, which allows parses with disconti-
nuity while grounding this work on a lexicalized
phrase-structure grammar. Contrarily to previous
approaches, (Hall and Nivre, 2008; Versley, 2014;
Fernández-González and Martins, 2015), we do
not model supertagging nor spine interactions with
a complex label scheme. We follow Carreras et al.
(2008) but drop projectivity.

We first show that our discontinuous variant
of spinal TAG reduces to the Generalized Max-
imum Spanning Arborescence (GMSA) problem
(Myung et al., 1995). In a graph where vertices
are partitioned into clusters, GMSA consists in
finding the arborescence of maximum weight in-

cident to exactly one vertex per cluster. This prob-
lem is NP-complete even for arc-factored models.
In order to bypass complexity, we resort to La-
grangian relaxation and propose an efficient res-
olution based on dual decomposition which com-
bines a simple non-projective dependency parser
on a contracted graph and a local search on each
cluster to find a global consensus.

We evaluated our model on the discontinuous
PTB (Evang and Kallmeyer, 2011) and the Tiger
(Brants et al., 2004) corpora. Moreover, we show
that our algorithm is able to quickly parse the
whole test sets.

Section 2 presents the parsing problem. Sec-
tion 3 introduces GMSA from which we derive an
effective resolution method in Section 4. In Sec-
tion 5 we define a parameterization of the parser
which uses neural networks to model local prob-
abilities and present experimental results in Sec-
tion 6. We discuss related work in Section 7.

2 Joint Supertagging and Spine Parsing

In this section we introduce our problem and set
notation. The goal of phrase-structure parsing
is to produce a derived tree by means of a se-
quence of operations called a derivation. For in-
stance in context-free grammars the derived tree
is built from a sequence of substitutions of a non-
terminal symbol with a string of symbols, whereas
in tree adjoining grammars (TAGs) a derivation is
a sequence of substitutions and adjunctions over
elementary trees. We are especially interested
in building discontinuous phrase-structure trees
which may contain constituents with gaps.1

We follow Shen (2006) and build derived trees
from adjunctions performed on spines. Spines are
lexicalized unary trees where each level represents

1Although we will borrow concepts from TAGs, we do not
require derivations to be TAG compatible (i.e. well-nested
dependencies with a bounded number of gaps).
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Figure 1: A derivation with spines and adjunc-
tions (dashed arrows). The induced dependency
tree is non-projective. Each color corresponds to a
spine. We omit punctuation to simplify figures.

a lexical projection of the anchor. Carreras et al.
(2008) showed how spine-based parsing could be
reduced to dependency parsing: since spines are
attached to words, equivalent derivations can be
represented as a dependency tree where arcs are la-
beled by spine operations, an adjunction together
with information about the adjunction site. How-
ever, we depart from previous approaches (Shen
and Joshi, 2008; Carreras et al., 2008) by relaxing
the projectivity constraint to represent all discon-
tinuous phrase-structure trees (see Figure 1).

We assume a finite set of spines S. A spine s
can be defined as a sequence of grammatical cat-
egories, beginning at root. For a sentence w =
(w0, w1, . . . , wn) where wk is the word at position
k and w0 is a dummy root symbol, a derivation
is a triplet (d, s, l) defined as follows. Adjunc-
tions are described by a dependency tree rooted at
0 written as a sequence of arcs d. If (h,m) ∈ d
with h ∈ {0, . . . , n} and m ∈ {1, . . . , n}, then
the derivation contains an adjunction of the root of
the spine at position m to a node from the spine
at position h. Supertagging, the assignment of a
spine to each word, is represented by a sequence
s = (s0, s1, . . . , sn) of n + 1 spines, each spine
sk being assigned to word wk. Finally, labeling
l = (l1, . . . , ln) is a sequence where lk is the label
of the kth arc (h,m) of d. The label consists of a
couple (op, i) where op is the type of adjunction,
here sister or regular2, and i is the index of the
adjunction node in sh.

Each derivation is assigned an arc-factored
score σ which is given by:

σ(d, s, l;w) =
∑

(h,m)∈d
Ω(h,m, sh, sm, lhm;w)

For instance, following score functions de-
2The distinction is not crucial for the exposition. We refer

readers to (Shen and Joshi, 2008; Carreras et al., 2008).

veloped in (Carreras et al., 2008), this func-
tion could read sh[i], sh[i + 1] and sm[0], where
s[i] denotes the i-th grammatical category of the
spine s. The score of the derivation in Fig-
ure 1 could then reflect that the spine WHNP-WP
associated with What is adjoined on the spine
SBARQ-SQ-VP-VB associated with do on a site
with the grammatical triple [VP WHNP VB].

We assume that Ω accounts for the contribution
of arcs, spines and labels to the score. The de-
tails of the contribution depend on the model. We
choose the following:

σ(d, s, l;w) =
∑

(h,m)∈d
(α(h,m;w)

+ν(sm;h,m,w)

+γ(lhm;h,m, sh,w))

where α is the score related to the dependency
tree, ν is the supertagging score and γ the label-
ing score. Note that functions α, ν and γ have
access to the entire input string w. Score func-
tion σ can be parameterized in many ways and
we discuss our implementation in Section 5. In
this setting, parsing a sentence w amounts to find-
ing the highest-scoring derivation (d∗, s∗, l∗) =
arg max(d,s,l) σ(d, s, l;w).

Recovering the derived tree from a derivation is
performed by recursively mapping each spine and
its dependencies to a possibly gappy constituent.
Given a spine sh and site index i, we look for
the leftmost sl and rightmost sr dependents at-
tached with regular adjunction. If any, we insert
a new node between sh[i] and sh[i + 1] with the
same grammatical category as the first one. This
new node fills the role of the foot node in TAGs.
Every dependent of sh[i] with anchor in interval
[l + 1, r − 1] is moved to the newly created node.
Remaining sister and regular adjunctions are sim-
ply attached to sh[i].

The complexity of the parsing problem depends
on the type of dependency trees. In the case of
projective trees, it has been shown (Eisner, 2000;
Carreras et al., 2008; Li et al., 2011) that this could
be performed in cubic worst-case time complex-
ity with dynamic programming, whether supertags
are fixed beforehand or not. However, the mod-
ification of the original Eisner algorithm requires
that chart cells must be indexed not only by spans,
or pairs of positions, but also by pairs of supertags.
In practice the problem is intractable unless heavy
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pruning is performed first in order to select a sub-
set of spines at each position.

In the case of non-projective dependency trees,
the problem has quadratic worst-case time com-
plexity when supertags are fixed, since the prob-
lem then amounts to non-projective parsing and
reduces to the Maximum Spanning Arborescence
problem (MSA) as in (McDonald et al., 2005).
Unfortunately, the efficient algorithm for MSA is
greedy and does not store potential substructure
candidates. Hence, when supertags are not fixed
beforehand, a new arborescence must be recom-
puted for each choice of supertags. This problem
can be seen as instance of the Generalized Max-
imum Spanning Arborescence problem, an NP-
complete problem, which we review in the next
section. Note that arc labels do not impact the
asymptotic complexity of an arc-factored model.
Indeed, only the labeled arc with maximum weight
between two vertices is considered when parsing.

3 The Generalized Maximum Spanning
Arborescence

In this section, we first define GMSA introduced
by Myung et al. (1995). We formulate this prob-
lem as an integer linear program. We then ex-
plain the reduction from the joint supertagging and
spine parsing task to this problem.3

3.1 Problem definition

Let D = (V,A) be a directed graph. Given a sub-
set T ⊆ A of arcs, V [T ] denotes the set of ver-
tices of V which are the tail or the head of at least
one arc of T . These vertices are said to be cov-
ered by T . A subset T ⊆ A of arcs is called an
arborescence if the graph (V [T ], T ) is connected,
acyclic and each vertex has at most one entering
arc. The vertex with no entering arc is called the
root of T . An arborescence covering all vertices is
called a spanning arborescence.

Let π = {V0, . . . , Vn}, n ∈ N be a partition
of V . Each element of π is called a cluster. An
arborescence T of D covering exactly one vertex
per cluster of π is called a generalized spanning
arborescence (GSA). Figure 2 gives an example
of a GSA. The partition of V is composed of a
cluster having one vertex and six clusters having
four vertices. Each cluster is depicted by a hatched
area. The GSA is depicted by the dashed arcs.

3A similar reduction can be obtained in the reverse direc-
tion, thus proving the NP-completeness of our problem.

Let W be a vertex subset of V . We denote
δ−(W ) (resp. δ+(W )) the set of arcs entering
(resp. leaving)W and δ(W ) = δ−(W )∪δ+(W ).4

Contracting W consists in replacing in D all ver-
tices in W by a new vertex w, replacing each
arc uv ∈ δ−(W ) by the arc uw and each arc
vu ∈ δ+(W ) by wu. Let Dπ be the graph ob-
tained by contracting each cluster of π in D. Note
that a GSA ofD and π induces a spanning arbores-
cence of Dπ.5 For instance, contracting each clus-
ter in the graph given by Figure 2 leads to a graph
Dπ having 7 vertices and the set of dashed arcs
corresponds to a spanning arborescence of Dπ.

Given arc weights φ ∈ RA, the weight of an ar-
borescence T is

∑
a∈T φa. Given (D,π, φ), the

Generalized Maximum Spanning Arborescence
problem (GMSA) consists in finding a GSA of D
and π of maximum weight whose root is in V0.

3.2 Integer linear program
Given a set S, z ∈ RS is a vector indexed by ele-
ments in S. For S′ ⊆ S, z(S′) =

∑
s∈S′ zs.

A GSA T ⊆ A is represented by variables x ∈
{0, 1}V and y ∈ {0, 1}A such that xv (resp. ya) is
equal to 1 iff v ∈ V [T ] (resp. a ∈ T ).

Since a GSA of D and π induces a spanning
arborescence of Dπ, the arc-incidence vector y ∈
{0, 1}A of a GSA with root in V0 satisfies the fol-
lowing, adapted from MSA (Schrijver, 2003):

y(δ−(V0)) = 0 (1)

y(δ−(Vk)) = 1 ∀1 ≤ k ≤ n, (2)

y(δ−( ∪
Vk∈π′

Vk)) ≥ 1 ∀π′ ⊆ π \ {V0}. (3)

Let Y denote all the arc-incidence vectors on D
corresponding to a spanning arborescence in Dπ

whose root is the contraction of V0. Then,

Y = {y ∈ {0, 1}A|y satisfies (1)-(3)}.
GMSA can be formulated with the following in-

teger linear program:

max
x,y

φ · y (4)

s.t. y ∈ Y (5)

xv ≥ ya ∀v ∈ V, a ∈ δ(v), (6)

xv(Vk) = 1 ∀0 ≤ k ≤ n, (7)

xv ∈ {0, 1} ∀v ∈ V. (8)
4By an abuse of notation, we identify any singleton {v}

with its element v.
5The converse does not hold: an arc subset of A corre-

sponding to a spanning arborescence of Dπ may not be a
GSA of D and π since it may not induce a connected graph.
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Let W and T be the vertex and arc sets given by
xv = 1 and ya = 1 respectively. Since T is a
spanning arborescence of Dπ by (5), (V [T ], T ) is
an acyclic directed graph with n arcs such that V0

has no entering arc and Vi, i ∈ {1, . . . , n}, has
one entering arc. By constraints (7), W contains
one vertex per cluster of π. Moreover, by inequal-
ities (6), V [T ] ⊆ W . Since |W | = n + 1 and
|T | = n, W = V [T ] and (V [T ], T ) is connected,
so it is a GSA. Because its root is in V0 by (5), it
is an optimal solution for GMSA by (4).

3.3 Reduction from joint parsing to GMSA
Given an instance of the joint parsing problem, we
construct an instance of GMSA as follows. With
every spine s of every word wk different from w0,
we associate a vertex v. For k = 1, . . . , n, we
denote by Vk the set of vertices associated with
the spines of wk. We associate with w0 a set V0

containing only one vertex and V0 will now refer
both the cluster and the vertex it contains depend-
ing on the context. Let π = {V0, . . . , Vn} and
V = ∪nk=0Vk. For every couple u, v of vertices
such that u ∈ Vh and v ∈ Vm, h 6= m and m 6= 0,
we associate an arc uv corresponding to the best
adjunction of the root of spine sm associated with
v of Vm to spine sh associated with vertex u of Vh.
The weight of this arc is given by

φuv = α(h,m;w) + ν(sm;h,m,w)

+ max
lhm

γ(lhm;h,m, sh,w)

which is the score of the best adjunction of sm to
sh. This ends the construction of (D,π, φ).

There is a 1-to-1 correspondence between the
solutions to GMSA and those to the joint supertag-
ging and spine parsing task in which each adjunc-
tion is performed with the label maximizing the
score of the adjunction. Indeed, the vertices cov-
ered by a GSA T with root V0 correspond to the
spines on which the derivation is performed. By
definition of GSAs, one spine per word is chosen.
Each arc of T corresponds to an adjunction. The
score of the arborescence is the sum of the scores
of the selected spines plus the sum of the scores of
the best adjunctions with respect to T . Hence, one
can solve GMSA to perform joint parsing.

As an illustration, the GSA depicted in Figure 2
represents the derivation tree of Figure 1: the ver-
tices of V \ V0 covered by the GSA are those as-
sociated with the spines of Figure 1 and the arcs
represent the different adjunctions. For instance

V0

(ROOT)

V1

(What)
V2

(I)
V3

(said)
V4

(should)
V5

(I)
V6

(do)

Figure 2: The generalized spanning arborescence
inducing the derivation tree in Figure 1.

the arc from V3 to V2 represents the adjunction of
spine NP-PRP to spine S-VP-VB at index 0.

4 Efficient Decoding

Lagrangian relaxation has been successfully ap-
plied to various NLP tasks (Koo et al., 2010;
Le Roux et al., 2013; Almeida and Martins, 2013;
Das et al., 2012; Corro et al., 2016). Intuitively,
given an integer linear program, it consists in re-
laxing some linear constraints which make the
program difficult to solve and penalizing their vi-
olation in the objective function.

We propose a new decoding method for GMSA
based on dual decomposition, a special flavor of
Lagrangian relaxation where the problem is de-
composed in several independent subproblems.

4.1 Dual decomposition

To perform the dual decomposition, we first refor-
mulate the integer linear program (4)-(8) before
relaxing linear constraints. For this purpose, we
replace the variables y by three copies {yi} =
{y0, y1, y2}, yi ∈ {0, 1}A. We also consider vari-
ables z ∈ RA. Let φ0, φ1 and φ2 be arc weight
vectors such that

∑
i φ

i = φ.6 GMSA can then be
reformulated as:

max
x,{yi},z

∑

i

φi · yi (9)

s.t. y0 ∈ Y (10)

xv ≥ y1
a ∀v ∈ V, a ∈ δ−(v), (11)

xv ≥ y2
a ∀v ∈ V, a ∈ δ+(v), (12)

xv(Vk) = 1 ∀0 ≤ k ≤ n, (13)

xv ∈ {0, 1} ∀v ∈ V, (14)

z = yi ∀i. (15)

6In our implementation, we choose φ0 = φ1 = φ2 = 1
3
φ.
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Note that variables z only appear in equa-
tions (15). Their goal is to ensure equality be-
tween copies y0, y1 and y2. Variables z are usually
called witness variables (Komodakis et al., 2007).
Equality between y0, y1 and y2 implies that (10)-
(12) are equivalent to (5) and (6).

We now relax constraints (15) and build the dual
objective (Lemaréchal, 2001) L∗({λi}):

max
x,{yi},z

∑

i

φi · yi +
∑

i∈{0,1,2}
λi · (z − yi)

s.t. (10)− (14)

where {λi} = {λ0, λ1, λ2}, λi ∈ RA for i =
0, 1, 2, is the set of Lagrangian multipliers. The
dual problem is then:

min
{λi}
L∗({λi})

Note that, as there is no constraint on z, if
∑

i λ
i 6=

0 then L∗({λi}) = +∞. Therefore, we can re-
strict the domain of {λi} in the dual problem to
the set Λ = {{λi}|∑i λ

i = 0}. This implies that
z may be removed in the dual objective. This latter
can be rewritten as:

L∗({λi}) = max
x,{yi}

∑

i

φ̄i · yi

s.t. (10)− (14)

where φ̄i = φi − λi for i = 0, 1, 2.

4.2 Computing the dual objective
Given {λi} ∈ Λ, computing the dual objective
L∗({λi}) can be done by solving the two follow-
ing distinct subproblems:

P1(φ̄0) = max
y0

φ̄0 · y0

s.t. y0 ∈ Y
P2(φ̄1, φ̄2) = max

x,y1,y2
φ̄1 · y1 + φ̄2 · y2

s.t. (11)− (14)

yia ∈ {0, 1} ∀a ∈ A, i = 1, 2.

Subproblem P1 can be solved by simply running
the MSA algorithm on the contracted graph Dπ.

Subproblem P2 can be solved in a combinato-
rial way. Indeed, observe that each value of y1

and y2 is only constrained by a single value of x.
The problem amounts to selecting for each cluster

a vertex as well as all the arcs with positive weight
covering it. More precisely, for each vertex v ∈ V ,
compute the local weight cv defined by:

∑

a∈δ−(v)

max{0, φ̄1}+
∑

a∈δ+(v)

max{0, φ̄2}.

Let V max be the set of vertices defined as fol-
lows. For k = 0, . . . , n, add in V max the ver-
tex v ∈ Vk with the maximum weight cv. Let A1

and A2 be the sets of arcs such that A1 (resp. A2)
contains all the arcs with positive weights entering
(resp. leaving) a vertex of V max. The vectors x, y1

and y2 corresponding respectively to the incidence
vectors of V max, A1 and A2 form an optimal so-
lution to P2.

Hence, both supbroblems can be be solved with
a O(|π|2) time complexity, that is quadratic w.r.t.
the length of the input sentence.7

4.3 Decoding algorithm
Our algorithm seeks for a solution to GMSA by
solving the dual problem since its solution is opti-
mal to GMSA whenever it is a GSA. If not, a so-
lution is constructed by returning the highest GSA
on the spines computed during the resolution of
the dual problem.

We solve the dual problem using a projected
subgradient descent which consists in iteratively
updating {λi} in order to reduce the distance to the
optimal assignment. Let {λi,t} denotes the value
of {λi} at iteration t. {λi,0} is initially set to 0. At
each iteration, the value of {λi,t+1} is computed
from the value of {λi,t} thanks to a subgradient of
the dual objective. More precisely, we have

{λi,t+1} = {λi,t} − ηt ×∇L∗({λi,t})}
where ∇L∗({λi,t}) is a subgradient of L∗({λi,t})
and ηt ∈ R is the stepsize at iteration t. We use
the projected subgradient from Komodakis et al.
(2007). Hence, at iteration t, we must solve repa-
rameterized subproblems P1 and P2 to obtain the
current solution (x̄t, ȳ0,t, ȳ1,t, ȳ2,t) of the dual ob-
jective. Then each multiplier is updated following

λi,t+1 = λi,t − ηt ×


ȳi,t −

2∑

j=0

ȳj,t

3


 .

Note that for any value of {λi}, L∗({λi}) gives
an upper bound for GMSA. So, whenever the

7In the general case, the time complexity is O(|V |2). But
in our problem, the number of vertices per cluster is bounded
by the grammar size: O(|V |2) = O(|Sπ|2) = O(|π|2).
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optimal solution x̄t, {ȳi,t} to the dual objective
L∗({λi,t}) at iteration t is a primal feasible solu-
tion, that is ȳ0,t = ȳ1,t = ȳ2,t, it is an optimal
solution to GMSA and the algorithm ends. Other-
wise, we construct a pipeline solution by perform-
ing a MSA on the vertices given by x̄t.

If after a fixed number of iterations we have not
found an optimal solution to GMSA, we return the
pipeline solution with maximum weight.

4.4 Lagrangian enhancement

The previsouly defined Lagrangian dual is valid
but may lead to slow convergence. Thus, we
propose three additional techniques which empir-
ically improve the decoding time and the conver-
gence rate: constraint tightening, arc reweighing
and problem reduction.

Constraint tightening: In subproblem P2, we
consider a vertex and all of its adjacent arcs of pos-
itive weight. However, we know that our optimal
solution must satisfy tree-shape constraints (5).
Thus, every cluster except the root must have ex-
actly one incoming arc and there is at most one arc
between two clusters. Both constraints are added
to P2 without hurting its time complexity.

Reweighing: By modifying weights such that
less incoming arcs have a positive weight, the so-
lution of P2 tends to be an arborescence. For each
cluster Vk ∈ π \ V0, let Âk be the set of incoming
arcs with the highest weight φ̂k. Then, let γk be
a value such that φa − γk is positive only for arcs
in Âk. Subtracting γk from the weight φa of each
arc of δ−(Vk) and adding γk to the objective score
does not modify the weight of the solution because
only one entering arc per cluster is selected.

Problem reduction: We use the pipeline solu-
tions computed at each iteration to set the value of
some variables. Let x̄, {ȳi} be the optimal solu-
tion of L∗({λi}) computed at any iteration of the
subgradient algorithm. For k = 1, . . . , n, let v̄
be the vertex of Vk such that x̄v̄ = 1. Using the
local weights (Section 4.2), for all v ∈ Vk \ {v̄},
L∗({λi})+cv−cv̄ is an upper bound on the weight
of any solution (x, y) to GMSA with xv = 1.
Hence, if it is lower than the weight of the best
pipeline solution found so far, we can guarantee
that xv = 0 in any optimal solution. We can check
the whole graph in linear time if we keep local
weights c in memory.

5 Neural Parameterization

We present a probabilistic model for our frame-
work. We implement our probability distributions
with neural networks, more specifically we build
a neural architecture on top of bidirectional recur-
rent networks that compute context sensitive rep-
resentations of words. At each step, the recurrent
architecture is given as input a concatenation of
word and part-of-speech embeddings. We refer the
reader to (Kiperwasser and Goldberg, 2016; Dozat
and Manning) for further explanations about bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997). In the rest of this section, bm denotes the
context sensitive representation of word wm.

We now describe the neural network models
used to learn and assign weight functions α, ν and
γ under a probabilistic model. Given a sentence
w of length n, we assume a derivation (d, s, l)
is generated by three distinct tasks. By chain
rule, P (d, s, l|w) = Pα(d|w) × Pν(s|d,w) ×
Pγ(l|d, s,w). We follow a common approach in
dependency parsing and assign labels l in a post-
processing step, although our model is able to in-
corporate label scores directly. Thus, we are left
with jointly decoding a dependency structure and
assigning a sequence of spines. We note si the ith

spine:8

Pα(d|w)× Pν(s|d,w)

=
∏

(h,m)∈d
Pα(h|m,w)× Pν(sm|m,d,w)

=
∏

(h,m)∈d
Pα(h|m,w)× Pν(sm|m,h,w)

We suppose that adjunctions are generated by an
arc-factored model, and that a spine prediction de-
pends on both current position and head position.

Then parsing amounts to finding the most prob-
able derivation and can be realized in the log
space, which gives following weight functions:

α(h,m;w) = logPα(h|m,w)

ν(sm;h,m,w) = logPν(sm|m,h,w)

where α represents the arc contribution and ν the
spine contribution (cf. Section 2).

Word embeddings bk are first passed through
specific feed-forward networks depending on the

8We assume that the spine for the root w0 is unique.

1649



distribution and role. The result of the feed-
forward transformation parameterized by set of
parameters ρ of a word embedding bs is a vector
denoted b(ρ)

s . We first define a biaffine attention
networks weighting dependency relations (Dozat
and Manning):

o
(α)
h,m = b(α1)>

m W (α)b
(α2)
h + V (α)b

(α2)
h

where W (α) and V (α) are trainable parameters.
Moreover, we define a biaffine attention classifier
networks for class c as:

o
(τ)
c,h,m = b(τ1)>

m W (τc)b
(τ2)
h

+ V (τc)
(
b(τ1)
m ⊕ b(τ2)

h

)

+ u(τc)

where ⊕ is the concatenation. W (τc), V (τc) and
u(τc) are trainable parameters. Then, we define the
weight of assigning spine s to word at position m
with head h as o(ν)

s,h,m.
Distributions Pα and Pν are parameterized by

these biaffine attention networks followed by a
softmax layer:

Pα(h|m,w) =
exp o

(α)
h,m∑

h′ exp o
(α)
h′,m

Pν(s|h,m,w) =
exp o

(ν)
s,h,m∑

s′ exp o
(ν)
s′,h,m

Now we move on to the post-processing step
predicting arc labels. For each adjunction of spine
s at position m to spine t at position h, instead
of predicting a site index i, we predict the non-
terminal nt at t[i] with a biaffine attention classi-
fier.9 The probability of the adjunction of spine s
at position m to a site labeled with nt on spine t at
position h with type a ∈ {regular, sister} is:

Pγ(nt, a|h,m) = Pγ′(nt|h,m,w)

× Pγ′′(a|h,mw)

Pγ and Pγ′′ are again defined as distributions
from the exponential family using biaffine atten-
tion classifiers:

Pγ′(nt|h,m, t) =
exp o

(γ′)
nt,h,m∑

nt′ exp o
(γ′)
nt,h,m

Pγ′′(a|h,m, t) =
exp o

(γ′′)
t,h,m∑

a′ exp o
(γ′′)
a′,h,m

9If a spine contains repeated non-terminal sequences, we
select the lowest match.

We use embeddings of size 100 for words and
size 50 for parts-of-speech tags. We stack two
bidirectional LSTMs with a hidden layer of size
300, resulting in a context sensitive embedding of
size 600. Embeddings are shared across distribu-
tions. All feed-forward networks have a unique
elu-activated hidden layer of size 100 (Clevert
et al., 2016). We regularize parameters with a
dropout ratio of 0.5 on LSTM input. We es-
timate parameters by maximizing the likelihood
of the training data through stochastic subgradi-
ent descent using Adam (Kingma and Ba, 2015).
Our implementation uses the Dynet library (Neu-
big et al., 2017) with default parameters.

6 Experiments

We ran a series of experiments on two corpora an-
notated with discontinuous constituents.

English We used an updated version of the Wall
Street Journal part of the Penn Treebank corpus
(Marcus et al., 1994) which introduces discontinu-
ity (Evang and Kallmeyer, 2011). Sections 2-21
are used for training, 22 for developpement and
23 for testing. We used gold and predicted POS
tags by the Stanford tagger,10 trained with 10-
jackknifing. Dependencies are extracted following
the head-percolation table of Collins (1997).

German We used the Tiger corpus (Brants
et al., 2004) with the split defined for the SPMRL
2014 shared task (Maier, 2015; Seddah et al.,
2013). Following Maier (2015) and Coavoux
and Crabbé (2017), we removed sentences num-
ber 46234 and 50224 as they contain anno-
tation errors. We only used the given gold
POS tags. Dependencies are extracted following
the head-percolation table distributed with Tulipa
(Kallmeyer et al., 2008).

We emphasize that long sentences are not fil-
tered out. Our derivation extraction algorithm
is similar to the one proposed in Carreras et al.
(2008). Regarding decoding, we use a beam
of size 10 for spines w.r.t. Pν(sm|m,w) =∑

h Pν(sm|h,m,w)× Pα(h|m,w) but allow ev-
ery possible adjunction. The maximum number of
iterations of the subgradient descent is set to 500
and the stepsize ηt is fixed following the rule of
Polyak (1987).

Parsing results and timing on short sentences
only (≤ 40 words) and full test set using the de-

10
http://nlp.stanford.edu/software/tagger.shtml
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fault discodop11 eval script are reported on Table 1
and Table 2.12 We report labeled recall (LR), pre-
cision (LP), F-measure (LF) and time measured
in minutes. We also report results published by
van Cranenburgh et al. (2016) for the discontin-
uous PTB and Coavoux and Crabbé (2017) for
Tiger. Moreover, dependency unlabeled attach-
ment scores (UAS) and tagging accuracies (Spine
acc.) are given on Table 3. We achieve signif-
icantly better results on the discontinuous PTB,
while being roughly 36 times faster together with a
low memory footprint.13 On the Tiger corpus, we
achieve on par results. Note however that Coavoux
and Crabbé (2017) rely on a greedy parser com-
bined with beam search.

Fast and efficient parsing of discontinuous con-
stituent is a challenging task. Our method can
quickly parse the whole test set, without any par-
allelization or GPU, obtaining an optimality cer-
tificate for more than 99% of the sentences in
less than 500 iterations of the subgradient descent.
When using a non exact decoding algorithm, such
as a greedy transition based method, we may not
be able to deduce the best opportunity for improv-
ing scores on benchmarks, such as the parameter-
ization method or the decoding algorithm. Here
the behavior may be easier to interpret and direc-
tions for future improvement easier to see. We
stress that our method is able to produce an op-
timality certificate on more than 99% of the test
examples thanks to the enhancement presented in
Section 4.4.

7 Related Work

Spine-based parsing has been investigated in
(Shen and Joshi, 2005) for Lexicalized TAGs with
a left-to-right shift-reduce parser which was sub-
sequently extended to a bidirectional version in
(Shen and Joshi, 2008). A graph-based algorithm
was proposed in (Carreras et al., 2008) for second-
order projective dependencies, and for a form of
non-projectivity occurring in machine translation
(i.e. projective parses of permutated input sen-
tences) in (Carreras and Collins, 2009).

Discontinuous phrase-structure parsing through
dependencies in contexts other that TAGs have

11
https://github.com/andreasvc/disco-dop/

12C2017 processing time is 137.338 seconds plus approxi-
matively 30 seconds for model and corpus loading (personnal
communication).

13Execution times are not directly comparable because we
report our experimental conditions and published results.

LR LP LF Time
Short sentences only

This work 90.63 91.01 90.82 ≈ 4

This work† 89.57 90.13 89.85 ≈ 4

VC2016† 87.00 ≈ 180

Full test set
This work 89.89 90.29 90.09 ≈ 6.5

This work† 88.90 89.45 89.17 ≈ 5.5

Table 1: Parsing results and processing time
on the english discontinuous PTB corpus. Re-
sults marked with † use predicted part-of-speech
tags. VC2016 indicates results of van Cranen-
burgh et al. (2016).

LR LP LF Time
Short sentences only

This work 82.69 84.68 83.67 ≈ 7.5

Full test set
This work 80.66 82.63 81.63 ≈ 11

C2017 81.60 ≈ 2.5

Table 2: Parsing results and processing time on
the german Tiger corpus. C2017 indicates results
of Coavoux and Crabbé (2017).

been explored in (Hall and Nivre, 2008; Versley,
2014; Fernández-González and Martins, 2015).
The first two encode spine information as arc la-
bels while the third one relaxes spine information
by keeping only the root and height of the adjunc-
tion, thus avoiding combinatorial explosion. La-
beling is performed as a post-processing step in
these approaches, since the number of labels can
be very high. Our model also performs labeling
after structure construction, but it could be per-
formed jointly without major issue. This is one
way our model could be improved.

GMSA has been studied mostly as a way to
solve the non directed version (i.e. with symet-
ric arc weights) (Myung et al., 1995), see (Pop,
2009; Feremans et al., 1999) for surveys on res-
olution methods. Myung et al. (1995) proposed
an exact decoding algorithm through branch-and-
bound using a dual ascent algorithm to compute
bounds. Pop (2002) also used Lagrangian relax-
ation – in the non directed case – where a single
subproblem is solved in polynomial time. How-
ever, the relaxed constraints are inequalities: if the
dual objective returns a valid primal solution, it is
not a sufficient condition in order to guarantee that
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UAS Spine acc.
English 93.70 97.32
English† 93.04 96.81
German 92.25 96.49

Table 3: Dependency parsing and tagging re-
sults. Results marked with † use predicted part-
of-speech tags.

it is the optimal solution (Beasley, 1993), and thus
the stopping criterion for the subgradient descent
is usually slow to obtain. To our knowledge, our
system is the first time that GMSA is used to solve
a NLP problem.

Dual decomposition has been used to derive ef-
ficient practical resolution methods in NLP, mostly
for machine translation and parsing, see (Rush
et al., 2010) for an overview and (Koo et al., 2010)
for an application to dependency parsing.

To accelerate the resolution, our method re-
lies heavily on problem reduction (Beasley, 1993),
which uses the primal/dual bounds to filter out
suboptimal assignments. Exact pruning based on
duality has already been studied in parsing, with
branch and bound (Corro et al., 2016) or column
generation (Riedel et al., 2012) and in machine
translation with beam search (Rush et al., 2013).

8 Conclusion

We presented a novel framework for the joint
task of supertagging and parsing by a reduction
to GMSA. Within this framework we developed a
model able to produce discontinuous constituents.
The scoring model can be decomposed into tag-
ging and dependency parsing and thus may rely
on advances in those active fields.

This work could benefit from several exten-
sions. Bigram scores on spines could be added
at the expense of a third subproblem in the dual
objective. High-order scores on arcs like grand-
parent or siblings can be handled in subproblem
P2 with the algorithms described in (Koo et al.,
2010). In this work, the parameters are learned as
separate models. Joint learning in the max-margin
framework (Komodakis, 2011; Komodakis et al.,
2015) may model interactions between vertex and
arc weights better and lead to improved accuracy.
Finally, we restricted our grammar to spinal trees
but it could be possible to allow full lexicalized
TAG-like trees, with substitution nodes and even
obligatory adjunction sites. Derivations compat-

ible with the TAG formalism (or more generally
LCFRS) could be recovered by the use of a con-
strained version of MSA (Corro et al., 2016).
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2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523–1533, Beijing,
China. Association for Computational Linguistics.

Johan Hall and Joakim Nivre. 2008. Parsing discon-
tinuous phrase structure with grammatical functions.
In Advances in Natural Language Processing: 6th
International Conference, GoTAL 2008 Gothenburg,
Sweden, August 25-27, 2008 Proceedings, pages
169–180, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Laura Kallmeyer, Timm Lichte, Wolfgang Maier,
Yannick Parmentier, Johannes Dellert, and Kilian
Evang. 2008. Tulipa: Towards a multi-formalism
parsing environment for grammar engineering. In
Coling 2008: Proceedings of the workshop on
Grammar Engineering Across Frameworks, pages
1–8, Manchester, England. Coling 2008 Organizing
Committee.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of The International Conference on Learning Repre-
sentations (ICLR).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Nikos Komodakis. 2011. Efficient training for pair-
wise or higher order crfs via dual decomposition. In
Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1841–1848. IEEE.

Nikos Komodakis, Nikos Paragios, and Georgios Tzir-
itas. 2007. MRF optimization via dual decompo-
sition: Message-passing revisited. In 2007 IEEE
11th International Conference on Computer Vision,
pages 1–8. IEEE.

Nikos Komodakis, Bo Xiang, and Nikos Paragios.
2015. A framework for efficient structured max-
margin learning of high-order mrf models. IEEE
transactions on pattern analysis and machine intel-
ligence, 37(7):1425–1441.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1288–1298, Cambridge, MA. Associa-
tion for Computational Linguistics.

Joseph Le Roux, Antoine Rozenknop, and Jennifer
Foster. 2013. Combining PCFG-LA models with
dual decomposition: A case study with function la-
bels and binarization. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1158–1169, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

1653



Claude Lemaréchal. 2001. Lagrangian relaxation. In
Computational combinatorial optimization, pages
112–156. Springer.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint mod-
els for chinese pos tagging and dependency parsing.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1180–1191, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

Wolfgang Maier. 2015. Discontinuous incremental
shift-reduce parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1202–1212. Association for
Computational Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The penn treebank: annotating
predicate argument structure. In HLT’94: Pro-
ceedings of the workshop on Human Language
Technology, pages 114–119, Morristown, NJ, USA.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523–530, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Young-Soo Myung, Chang-Ho Lee, and Dong-Wan
Tcha. 1995. On the generalized minimum spanning
tree problem. Networks, 26(4):231–241.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Boris T Polyak. 1987. Introduction to optimization.
Optimization Software.

Petrica Claudiu Pop. 2002. The generalized minimum
spanning tree problem. Twente University Press.

Petrica Claudiu Pop. 2009. A survey of different in-
teger programming formulations of the generalized
minimum spanning tree problem. Carpathian Jour-
nal of Mathematics, 25(1):104–118.

Sebastian Riedel, David Smith, and Andrew McCal-
lum. 2012. Parse, price and cut—delayed column
and row generation for graph based parsers. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 732–
743, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Alexander Rush, Yin-Wen Chang, and Michael
Collins. 2013. Optimal beam search for machine
translation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 210–221, Seattle, Washington, USA.
Association for Computational Linguistics.

Alexander M Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–11, Cambridge, MA. Associa-
tion for Computational Linguistics.

A. Schrijver. 2003. Combinatorial Optimization -
Polyhedra and Efficiency. Springer.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
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Abstract

Very recently, some studies on neural de-
pendency parsers have shown advantage
over the traditional ones on a wide va-
riety of languages. However, for graph-
based neural dependency parsing systems,
they either count on the long-term mem-
ory and attention mechanism to implicitly
capture the high-order features or give up
the global exhaustive inference algorithms
in order to harness the features over a rich
history of parsing decisions. The former
might miss out the important features for
specific headword predictions without the
help of the explicit structural information,
and the latter may suffer from the error
propagation as false early structural con-
straints are used to create features when
making future predictions. We explore the
feasibility of explicitly taking high-order
features into account while remaining the
main advantage of global inference and
learning for graph-based parsing. The pro-
posed parser first forms an initial parse tree
by head-modifier predictions based on the
first-order factorization. High-order fea-
tures (such as grandparent, sibling, and un-
cle) then can be defined over the initial
tree, and used to refine the parse tree in
an iterative fashion. Experimental result-
s showed that our model (called INDP)
archived competitive performance to ex-
isting benchmark parsers on both English
and Chinese datasets.

1 Introduction and Motivation

The rise of machine learning methods in natural
language processing (NLP) coupled with the avail-
ability of treebanks (Buchholz and Marsi, 2006)

for a wide variety of languages has led to a rapid
increase in research on data-driven dependency
parsing. Two predominant paradigms for the data-
driven dependency parsing are often called graph-
based and transition-based dependency parsing
(McDonald and Nivre, 2007, 2011). The first cat-
egory learns the parameters to score correct de-
pendency subgraphs over incorrect ones, typically
by factoring the graphs into their component di-
rected arcs, and performs parsing by searching the
highest-scoring graph for a given sentence. The
second category of parsing systems instead learns
to predict one transition from one parse state to the
next given a parse history, and performs parsing by
taking the predicted transitions at each parse state
until a complete dependency graph is derived.

Empirical studies show that the graph-based
and transition-based models exhibit no statistical-
ly significant difference in accuracy on a variety
of languages, although they are very different the-
oretically (McDonald and Nivre, 2011). Graph-
based models are usually trained by maximizing
the difference in score between the entire correct
dependency graph and all incorrect ones for ev-
ery training sentence. However, exhaustive infer-
ence is generally NP-hard when the score is fac-
tored over any extended scope of the dependency
subgraph beyond a single arc (McDonald and Sat-
ta, 2007), which is the primary shortcoming of the
graph-based systems. In transition-based parsing,
the feature representations are not restricted to a
small number of arcs in the graph but can be de-
rived from all the dependency subgraphs built so
far, while the main disadvantage of these models
is that the local greedy parsing strategy may lead
to the error propagation because false early predic-
tions can eliminate valid parse trees.

With a few exceptions (Zeman and Z̆abokrtskỳ,
2005; Zhang and Clark, 2008; Zhang et al., 2014),
the graph-based parsers usually require global
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learning and inference, but define features over a
limited scope of the dependency graph, while the
transition-based ones typically use local, greedy
training and inference, but introduce a rich feature
space based on the history of parsing decisions.

Many approaches have been proposed to over-
come the weaknesses of traditional graph-based or
transition-based models. There are at least three
ways for potential improvement: ensemble—
weighting the predictions of multiple parsing sys-
tems (Sagae and Lavie, 2006; Hall et al., 2007),
feature integration—combining the two models by
allowing the output of one model to define fea-
tures for the other (Martins et al., 2008; Nivre and
McDonald, 2008; McDonald and Nivre, 2011),
and novel approaches—changing the underlying
model structure directly by constructing globally
trained transition-based parsers (Zhang and Clark,
2008; Huang and Sagae, 2010) or graph-based
parsers with rich features (Riedel and Clarke,
2006; Nakagawa, 2007; Smith and Eisner, 2008;
Martins et al., 2009).

Very recently, some studies on the deep archi-
tectures have shown advantage over the shallow
ones on a wide variety of dependency parsing
benchmarks. Deep neural networks were used to
replace the classifiers for predicting optimal tran-
sitions in transition-based parers (Chen and Man-
ning, 2014) or the scoring functions for ranking
the subgraphs in graph-based rivals (Kiperwass-
er and Goldberg, 2016a,b). There are several re-
cent developments in neural dependency parsing
(Weiss et al., 2015; Zhou et al., 2015; Dyer et al.,
2015), which can be viewed as targeting the weak-
nesses of locally greedy algorithms in transition-
based models by using the beam search and con-
ditional random field loss objective, although us-
ing the beam search instead of strictly determin-
istic parsing can to some extent alleviate the error
propagation problem but does not eliminate it.

For graph-based neural dependency parsing
systems, they either count on the long-term mem-
ory and neural attention to implicitly capture the
high-order features (Kiperwasser and Goldberg,
2016b; Cheng et al., 2016; Dozat and Manning,
2017) or give up the global inference algorithm-
s in order to introduce features over a rich his-
tory of parsing decisions by a greedy, bottom-up
method (Kiperwasser and Goldberg, 2016a). The
former might miss out the important information
for specific headword predictions without the help

of the structural features derived from the entire
parse tree, while the latter may suffer from the er-
ror propagation as false structural constraints are
used to create features when making future pre-
dictions. In this study, we explore the feasibility of
explicitly taking advantage of high-order features
while remaining the strength of global exhaustive
inference and learning as a graph-based parser.

The proposed parser first encodes each word in
a sentence by distributed embeddings using a con-
volutional neural network and constructs an initial
parse graph by head-modifier predictions with a
maximum directed spanning tree algorithm based
on the first-order features (i.e. the score is fac-
tored over the arcs in a graph). Once an initial
parse graph is built, the high-order features (such
as grandparent, sibling, and uncle) can be defined,
and used to refine the structure of the parse tree in
an iterative way. Theoretically, the refinement will
continue until no change is made in the iteration.
But experimental results demonstrated that pretty
good performance can be achieved with no more
than twice updates because many dependencies
are determined by independent arc prediction and
a few head-modifier pairs need to be re-estimated
after one update (i.e. only a few changes above
and beyond the dominant first-order scores). We
call this proposed model an incremental neural de-
pendency parsing (INDP)1.

2 Incremental Neural Dependency
Parser

Given an input sentence x, we denote the set of
all valid dependency parse trees that can be con-
structed from x as Y(x). Assuming there exists a
graph scoring function s, the dependency parsing
problem can be formulated as finding the highest
scoring directed spanning tree for the sentence x.

y∗(x) = argmax
ŷ∈Y(x)

s(x, ŷ; θ) (1)

where y∗(x) is the parse tree with the highest s-
core, and θ is a set of the parameters used to com-
pute the scores. To make the search tractable, the
score of a graph is usually factorized into the sum
of its arc (head-modifier) scores (McDonald et al.,
2005a).

s(x, ŷ; θ) =
∑

(h,m)∈A(ŷ)

s(h,m; θ) (2)

1The source code is available at http://homepage.fudan.
edu.cn/zhengxq/deeplearning/
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where A(ŷ) represents a set of directed arcs in the
parse tree ŷ. The score of an arc (h,m) represents
the likelihood of creating a dependency from head
h to modifier (or dependent) m in a dependency
tree. If each arc score is estimated independent-
ly, we call it a first-order factorization. When the
scoring is based on two or more arcs, second- or
high-order factorizations are applied.

In traditional approaches, this score is common-
ly defined to be the product of a high dimension-
al feature representation of the arc and a learned
weighting parameter vector. The performance of
those systems is heavily dependent on the choice
of features. For that reason, much effort in design-
ing such systems goes into the feature engineer-
ing, which is important but labor-intensive, mainly
first based on human ingenuity and linguistic intu-
ition, and then confirmed or refined by empirical
analyses. In this study, a neural network is de-
signed instead to estimate the arc scores using the
high-order features. In the following, we first de-
scribe how the word representations are produced.
Then, the key components of the INDP, direction-
specific scoring with special normalization and in-
cremental refinement with high-order features, are
discussed in detail. Finally, we present the entire
parsing algorithm of the INDP.

2.1 Word Feature Representations
In graph-based neural dependency parsing work,
such as (Kiperwasser and Goldberg, 2016a,b;
Dozat and Manning, 2017), recurrent neural net-
work (RNN) is a popular statistical learner used
to produce the continuous vector representation-
s for each word in a sentence due to its ability to
bridge long time lags between relevant inputs. We
chose to use one-dimensional convolution instead
as a building block because it is good enough to
capture the interactions of word feature represen-
tations in a context window with less computa-
tional cost. Such a design makes the parameters
of our first-order parser to be optimized efficient-
ly, which will be augmented with the high-order
features (i.e. long distance dependencies) at incre-
mental refinement stages.

The words are fed into the network as indices
that are used by a lookup operation to transform
words into their feature vectors. We consider a
fixed-sized word dictionary D2. The vector repre-

2Unless otherwise specified, the word dictionary is ex-
tracted from the training set. Unknown words are mapped
to a special symbol that is not used elsewhere.

sentations are stored in a word embedding matrix
Eword ∈ Rd×|D|, where d is the dimensionality of
the vector space (a hyper-parameter to be chosen)
and |D| is the size of the dictionary. Like (Chen
and Manning, 2014; Dyer et al., 2015; Weiss et al.,
2015; Cheng et al., 2016), we also map part-of-
speech (POS) tags to another q-dimensional vector
space, and provide POS type features for words.
Formally, assume we are given a sentence x[1:n]
that is a sequence of n words xi, 1 ≤ i ≤ n. For
each word xi ∈ D that has an associated index ki
into the column of the matrixEword, and is labeled
as a POS tag of type li, its feature representation is
obtained by concatenating both word and POS tag
embeddings as:

E(xi) = Ewordeki ⊕ Eposeli (3)

where Epos ∈ Rq×|P| is a POS tag embedding
matrix and |P| is the size of POS tag set P (fine-
grained POS tags are used if available). Binary
eki and eli are one-hot encoding vectors for the ith
word in the sentence.

The lookup table layer extracts features for each
single word, but the meaning of a word is strong-
ly related to its surrounding words. Given a word,
we consider a fixed size windoww (another hyper-
parameter) of words around it. More precisely,
given an input sentence x[1:n], the feature window
produced by the first lookup table layer at position
xi can be written as:

fwinxi = (E(xi−w/2) · · ·E(xi) · · ·E(xi+w/2)) (4)

where the word feature window is a matrix fwin ∈
R(d+q)×w, and each column of the matrix is the
word feature vector in the context window. A one-
dimensional convolution is used to yield another
feature vector by taking the dot product of filter
vectors with the rows of the matrix fwin at the
same dimension. After each row of fwin is con-
volved with the corresponding column of a filter
matrix W 1, some non-linear function φ(·) will be
applied as:

fcon = φ(fwin �W 1) (5)

where the weights in the matrix W 1 ∈ Rw×(d+q)
are the parameters to be trained, and the output
f con ∈ R(d+q) is a vector. We choose a hyper-
bolic tangent as the non-linear function φ. The
word feature vectors from a window of text can
be computed efficiently thanks to the speed advan-
tage of the one-dimensional convolution (Kalch-
brenner et al., 2014).
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2.2 Direction-Specific Scoring
For the same head-modifier arc (h,m), the head
word h may occur on the left size of m (i.e. left-
arc) in some sentences while it also can appear
on the right size of m (i.e. right-arc) in other
ones. Considering two English sentences excerpt-
ed from the Penn Treebank (Buchholz and Marsi,
2006): “A group of workers exposed to it.”, and
“Mr. Vinken is chairman of Elsevier, the Dutch
publishing group.”, they have the same (group, of)
head-modifier arc, but those two words occur in
different orders. This would not be problem in
the traditional models, such as (McDonald et al.,
2005a; Nivre and McDonald, 2008), in which the
arc directions are directly used as features by their
structured learning algorithms. However, it is hard
to train a single neural network that gives a higher
score to the left-arc case than the right-arc one in
some situations while reverses in others because of
the symmetries in weight space (Note that we can-
not tell which case is correct in advance, and both
cases need to be scored). It would be more serious
when the first-order factorization is applied due to
the lack of context information.

Based on the above observations, we use a
multi-layer perceptron (MLP) to score the left-
arc cases, and another MLP to score the right-arc
ones. Those two MLPs share the word and POS
tag embeddings, and can update them when nec-
essary during the training process. Formally, if a
MLP with one hidden layer is used, the score of
each possible head-modifier arc is computed as:

s(h,m; θ) = W 3(φ(W 2(fconh ⊕ fconm ⊕ fdish,m) + b2)) (6)

where the convolutional outputs of the head and
dependent words are concatenated with a bucket-
ed distance between the head and modifier, denot-
ed by fdish,m, in buckets of 0 (root), 1, 2, 3-5, and 6+,
and feed into the MLP for scoring. The weights in
the hidden and output layers are denoted by W 2

and W 3 respectively, and the corresponding bias
by b2. Once every possible arc is scored, we ob-
tain a matrix like Figure 1, in which the element
at the row i and column j is the score for (xi, xj)
arc, denoted by s(i, j). An artificial word, x0, has
been inserted at the beginning of a sentence that
will always serve as the single root of the graph
and is primarily a means to simplify computation.
The scores at the lower (or upper) triangular are
computed by the left-arc (or right-arc) MLP, and
the shaded elements do not need to be calculated.

We can treat s(i, j) as a score of the corresponding
arc and then search for the highest scoring directed
spanning tree to form a dependency parse tree as
proposed in (McDonald et al., 2005b). This prob-
lem can be solved using the Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967),
which can be implemented in O(n2).

• • •x0 xnxi • • •

x0

• 
• 

•

xi

• 
• 

•

xn

The score of (xi−1, xi ) arc

Left-arc scores

Right-arc scores

s0, i si−1, i si+1, i sn, i

Figure 1: Scoring matrix for possible head and modifier
arcs, in which the element at the row i and column j is the
score for (xi, xj) arc, denoted by s(i, j). A dependency tree
can be formed by finding the highest scoring directed span-
ning tree over the scoring matrix.

The left-arc and right-arc MLPs should care-
fully collaborate with each other; otherwise, one
MLP would be overwhelmed by another (i.e. the
maximum score produced by one MLP is less than
the minimum by another). To overcome this bias
problem, we use the partition function by sum-
ming over the elements in each row of the scoring
matrix, namely the scores/probabilities are nor-
malized across the two MLPs. The conditional
probability of arc (xi, xj) given a sentence x[1:n]
is defined as:

p((xi, xj)|x[1:n]; θ) =
exp s(xi, xj ; θ)

Zi(x[1:n]; θ)

where Zi(x[1:n]; θ) = Σ
i∈{0...n},i 6=j

exp s(xi, xj ; θ)
(7)

Each Zi(x[1:n]; θ) is a normalization term used to
predict xi’s head word.

2.3 Incremental Refinement with High-order
Features

Given an input sentence, once the initial depen-
dency tree is built using the first-order factoriza-
tion, we can define the high-order features over
the resulting tree. For each head-modifier arc, the
modifier’s left sibling, right sibling, leftmost child,
and rightmost child vector representations are con-
catenated with the inputs of Equation (6), which
are then feed into two new left-arc and right-arc
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MLPs to update the scoring matrix. Like the head
and modifier, those additional feature representa-
tions are added as the results produced by the con-
volution layer. As shown in Figure 2, commonly-
used high-order features have been take into ac-
count, such as consecutive sibling (H, B, S), tri-
siblings (B, M, S), and grandparent (H, M, R).
The missing feature vectors are replaced by one of
four special vectors, namely “left-sibling”, “right-
sibling”, “leftmost-child”, and “rightmost-child”
according to their relations to the modifier word.

R

H

MB S

L

A

RE

D E

F

C

H

MB S

L R

Right sibling

Leftmost child Rightmost child

Head

MidifierLeft sibling

(a) (b)

Figure 2: High-order features. (a) An example dependency
parse tree. (b) The subgraph used to define high-order fea-
tures for the head-modifier arc (H, M).

Although high-order features are used, the high-
est scoring parse tree still can be founded efficient-
ly in O(n2) by the Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds, 1967). The main
rationale is that, even in the presence of high-order
features, the resulting scores remain based on s-
ingle head-modifier arcs. The higher-order fea-
tures are derived from the parse tree obtained with
first-order inference, and because that tree is al-
ready pretty good, these higher-order features end
up being a good approximation, and such approx-
imation can be further improved by incremental
refinements upon the parse tree. Thus, the high-
order features used by the scoring MLPs can offer
deliberate refinement above and beyond the first-
order results. Theoretically, the refinement can be
made until there is no update in the scoring matrix.
However, experimental results show that compa-
rable performance can be achieved with no more
than twice high-order refinements (see Section 3).

We add a softmax layer to the network (after re-
moving the last scoring layer) to predict syntactic
labels for each arc. Labeling is trained by mini-
mizing the cross-entropy error of the softmax layer
using backpropagation. The network performs the
structure prediction and labeling jointly. The two
tasks shared the several layers (from the input to
convolutional layers) of the network. When mini-

Inputs:
θ: neural network parameters.
x: an input sentence.
T : maximum number of iterations.

Output: optimal dependency tree y∗.
Algorithm:
1: form an initial tree using the first-order features;
2: t = 0;
3: repeat
4: update the scoring matrix using the high-order features;
5: find the highest scoring tree y by Chu-Liu-Edmonds

algorithm;
6: t = t+ 1;
7: until no change in this iteration or t ≥ T ;
8: predict syntactic labels based on the parse tree y;
9: return y∗ = y;

Figure 3: Incremental neural dependency parsing (INDP)
algorithm.

mizing the cross-entropy error of the softmax lay-
er, the error will also backpropagate and influence
both the network parameters and the embeddings.
We list our incremental neural dependency pars-
ing algorithm in Figure 3. Staring with an initial
tree formed using the first-order features, the al-
gorithm makes changes to the parse tree with the
high-order refinements in an attempt to climb the
objective function.

2.4 Training

Given a training example (x, y), we defined a
structured margin ∆(x, y, ŷ) loss for proposing a
parse ŷ for sentence x when y is the true parse.
This penalty is proportional to the number of un-
labeled arcs on which the two parse trees do not
agree. In general, ∆(x, y, ŷ) is equal to 0 if y = ŷ.
The loss function is defined as a penalization of
incorrect arcs:

∆(x, y, ŷ) =
∑

(h,m)∈A(ŷ)

κ1{(h,m) /∈ A(y)} (8)

where κ is a penalization term to each incorrect
arc, and A(y) is a set of arcs in the true parse y.

For a training set, we seek a function with small
expected loss on unseen sentences. The function
we consider take the following form as Equation
(1). The score of a tree ŷ is higher if the algorithm
is more confident that the structure of the tree is
correct. In the max-margin estimation framework,
we want to ensure that the highest scoring tree is
the true parse for all training instances (xi, yi), i =
1, · · · , h, and it’s score to be larger up to a margin
defined by the loss. For all i in the training data:

s(θ, xi, yi) ≥ s(θ, xi, ŷ) + ∆(xi, yi, ŷ) (9)

1659



These lead us to minimize the following regu-
larized objective for h training instances:

J(θ) =
1

h

h∑

i=1

Ei(θ) +
λ

2
||θ||2,where

Ei(θ) = max
ŷ∈Y(xi)

(0, (s(θ, xi, ŷ) + ∆(xi, yi, ŷ))

− s(θ, xi, yi))

(10)

where the coefficient λ governs the relative impor-
tance of the regularization term compared with the
error. The trees are penalized more by the loss
when they deviate from the correct one. Minimiz-
ing this objective maximizes the score of the cor-
rect tree, and minimizes that of the highest scoring
but incorrect parse tree. The objective is not differ-
entiable due to the hinge loss. We use the subgra-
dient method to compute a gradient-like direction
for minimizing the objective function.

3 Experiments

We conducted three sets of experiments. The first
one is to test several variants of the INDP on the
development set, to gain some understanding of
how the choice of hyper-parameters impacts up-
on the performance. The goal of the second one
is to see how well the incremental approach en-
hanced with the high-order features to improve the
first-order results by analysing parsing errors rela-
tive to sentence length. In the third set, we com-
pared the performance of the INDP with existing
state-of-the-art models on both English and Chi-
nese datasets. We report unlabeled attachment s-
cores (UAS) and labeled attachment scores (LAS)
with punctuations being omitted from evaluation.

3.1 Datasets

We show test results for the proposed model on
the English Penn Treebank (PTB), converted into
Stanford dependencies using version 3.3.0 of the
Stanford dependency converter, and the Chinese
Penn Treebank (CTB). We follow the standard s-
plits of PTB, using section 2-21 for training, sec-
tion 22 as development set and 23 as test set. We
use POS tags generated from the Stanford POS
tagger (Toutanova et al., 2003); for the Chinese
PTB dataset, we use gold word segmentation and
POS tags.

3.2 Training Strategy

Previous work demonstrated that the performance
can be improved by using word embeddings

learned from large-scale unlabeled data in many
NLP tasks both in English (Collobert et al., 2011;
Socher et al., 2011) and Chinese (Zheng et al.,
2013). Unsupervised pretraining guides the learn-
ing towards basins of attraction of minima that
support better generalization (Erhan et al., 2010).
We leveraged large unlabeled corpus to learn word
embeddings, and then used these improved em-
beddings to initialize the word embedding ma-
trices of the neural networks. English and Chi-
nese Wikipedia documents were used to train the
word embeddings by Word2Vec tool3 proposed in
(Mikolov et al., 2013).

Previous studies show that a joint solution (i.e.,
performing several tasks at the same time) usu-
ally leads to the improvement in accuracy over
pipelined systems because the error propagation
is avoided and the various information normally
used in the different steps of pipelined systems
can be integrated. The INDP networks are also
trained in a joint way, but adopting three-step strat-
egy. The parameters of the parsing neural network
using the first-order factorization are first learned,
and when its unlabeled parsing accuracy exceeds
a given threshold (e.g. 85%), we start to train the
high-order parsing network. The weights already
trained in the first step will remain unchanged for
the first several epochs, and they are in fact used to
generate the high-order features. After the parsing
accuracy reaches another threshold (e.g. 90%), all
the parameters for the first-order, and high-order
predictions as well as labeling are trained jointly.

3.3 Hyper-parameter Choices

Hyper-parameters was tuned with the PTB 3.3.0
development set by trying only a few different net-
works. Generally, the dimensionality of the em-
beddings, and the numbers of hidden units, pro-
vided they are large enough, have a limited impact
on the generalization performance. In the follow-
ing experiments, the window size was set to 5, the
learning rate to 0.02, and the number of hidden
layer to 300. The embedding size of words was set
to 50, and that of tags to 30, which achieved a good
trade-off between speed and performance. All ex-
periments were run on a computer equipped with
an Intel Xeon processor working at 2.2GHz, with
16GB RAM and a NVIDIA Titan GPU. The pars-
ing speed of the INDP is around 250-300 sents/sec
in average on the PTB dataset.

3Available at http://code.google.com/p/word2vec/
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3.4 Sentence Length Factors

It is well known that dependency parsers tend to
have lower accuracies for longer sentences be-
cause the increased presence of complex syntactic
structures. In order to get a better understanding of
how well the incremental strategy and high-order
features benefit the models, Figure 4 shows the ac-
curacy of our neural dependency parser using the
first-order features only (indicated with “NDP +
First-order”) and INDP with at most twice high-
order refinements (indicated with “INDP + High-
order + M2”) on the English PTB develop set. For
simplicity, the experiments report unlabeled pars-
ing accuracy, and identical experiments using la-
beled parsing accuracy did not reveal any addition-
al information.
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Figure 4: Accuracy relative to sentence length.

The INDP with the high-order refinements is
more precise than the parser using only the first-
order features. Due to the fact that longer de-
pendencies are typically harder to parse, there is
still a degradation in performance for our INDP.
However, the accuracy curve for INDP is slightly
flatter than its reduced version in which the high-
order features and incremental recipe are not ap-
plied when the sentence length is within 11-50.
This behavior can be explained by the reasons that
the feature representations are not restricted to a
limited number of graph arcs, but can take into ac-
count with the (almost) entire dependency graph
built so far at the refinement stages of the INDP,
and it do offer substantial refinements.

3.5 Results

We report the experimental results on the English
PTB and Chinese CTB datasets in Table 1 and 2
respectively, in which our networks are denoted
by “INDP”. The “M1” indicates that the results

are obtained by the INDP with just one refinemen-
t over the parse graphs built using the first-order
features, and similarly, the “M2” indicates the re-
sults are achieved by the INDP with at most twice
high-order refinements, while the “UNC” in the
last row indicates that the refinements will contin-
ue until no change is made in the structure pre-
dictions (see the algorithm listed in Figure 3). All
compared transition-based parsing systems are in-
dicated by a “‡”, and graph-based ones by “§”.

Table 1: Results on the English PTB dataset.

Model UAS LAS
Zhou et al (2015)‡ 93.28 92.35
Weiss et al (2015)‡ 94.26 92.41
Ballesteros et al (2016)‡ 93.56 91.42
Kiperwasser and Goldberg (2016b)‡ 93.90 91.90
Andor et al (2016)‡ 94.61 92.79
Kuncoro et al (2016)‡ 95.80 94.60
Kiperwasser and Goldberg (2016a)§ 93.00 90.90
Cheng et al (2016)§ 94.10 91.49
Hashimoto et al (2016)§ 94.67 92.90
Dozat and Manning (2017)§ 95.74 94.08
NDP + First-order 90.88 88.93
INDP + High-order + M1 93.31 91.51
INDP + High-order + M2 94.76 93.12
INDP + High-order + UNC 95.53 93.94

From these numbers, a handful of trends are
readily apparent. Firstly, we note that the “full-
fledged” INDP (indicated with “UNC”) is superi-
or to that without the high-order refinements by a
fairly significant margin (5.01% for English and
6.55% for Chinese in LAS). Another striking re-
sult of these experiments is that comparable per-
formance can be obtained by no more than twice
refinements with high-order features, and “INDP
+ High-order + M2” achieves a good trade-off be-
tween the performance and parsing complexity.

Table 2: Results on the Chinese CTB dataset.

Model UAS LAS
Ballesteros et al (2016)‡ 87.65 86.21
Kiperwasser and Goldberg (2016b)‡ 87.60 86.10
Kiperwasser and Goldberg (2016a)§ 87.10 85.50
Cheng et al (2016)§ 88.10 85.70
Dozat and Manning (2017)§ 89.30 88.23
NDP + First-order 82.97 81.39
INDP + High-order + M1 87.35 85.82
INDP + High-order + M2 88.78 87.28
INDP + High-order + UNC 89.42 87.94

Our INDP gets nearly the same performance on
the English PTB as the current models of (Kun-
coro et al., 2016) and (Dozat and Manning, 2017)
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in spite of its simpler architectures, and gets state-
of-the-art UAS accuracy on the Chinese CTB. The
INDP lags behind in LAS, indicating one of a few
possibilities. Firstly, we tried only a few differ-
ent network configurations, and there are many
ways (such as using deeper architectures, and re-
cruiting bi-directional recurrent neural networks
to produce word feature representations) that we
could improve it further. Secondly, the model of
(Kuncoro et al., 2016) is particularly designed to
capture phrase compositionality, and thus, another
possible improvement is to capture such composi-
tionality by optimizing the network architectures,
which may also lead to a better label score.

4 Related Work

Dependency-based syntactic representations of
sentences have been found to be useful for vari-
ous NLP tasks, especially for those involving nat-
ural language understanding in some way. We
briefly review prior work both on graph-based and
transition-based neural dependency parsers.

In transition-based parsing, we learn a model
for scoring transitions from one state to the next,
conditioned on the parse history, and parse a sen-
tence by taking the highest-scoring transition out
of every state until a complete dependency graph
has been derived. Chen and Manning (2014) made
the first successful attempt at introducing deep
learning into a transition-based dependency pars-
er. At each step, the feed-forward neural network
assigns a probability to every action the parse can
take from certain state (words on the stack and
buffer). Some researchers have attempted to ad-
dress the limitations of (Chen and Manning, 2014)
by augmenting it with additional complexity.

A beam search and a conditional random field
loss function were incorporated into the transition-
based neural network models (Weiss et al., 2015;
Zhou et al., 2015; Andor et al., 2016), which allow
the parsers to keep the top-k partial parse trees and
revoke previous actions once it finds evidence that
they may have been incorrect by locally greedy
choices. Dyer et al (2015) used three LSTMs to
represent the buffer, stack, and parsing history,
getting state-of-the-art results on Chinese and En-
glish dependency parsing tasks.

Graph-based parsers use machine learning for
scoring each possible edge for a given sentence,
typically by factoring the graphs into their compo-
nent arcs, and constructing the parse tree with the

highest score from these weighted edges. Kiper-
wasser and Goldberg (2016b) presented a neural
graph-based parser in which the bi-directional L-
STM’s recurrent output vector for each word is
concatenated with each possible head’s vector (al-
so produced by the same biLSTM), and the result
is used as input to a multi-layer perceptron (MLP)
for scoring this modifier-head pair. Given the s-
cores of the arcs, the highest scoring tree is con-
structed using Eisner’s decoding algorithm (Eis-
ner, 1996). Labels are predicted similarly, with
each word’s recurrent output vector and its head’s
vector being used in a multi-class MLP.

Kiperwasser and Goldberg (2016a) also pro-
posed a hierarchical tree LSTM to model the de-
pendency tree structures in which each word is
represented by the concatenation of its left and
right modifier (child) vectors, and the modifier
vectors are generated by two (leftward or right-
ward) recurrent neural networks. The tree repre-
sentations were produced in a bottom-up recursive
way with the (greedy) easy-first parsing algorithm
(Goldberg and Elhadad, 2010). Similarly, Cheng
et al (2016) proposed a graph-based neural depen-
dency parser that is able to predict the scores for
the next arc, conditioning on previous parsing de-
cisions. In addition to using one bi-directional re-
current network that produces a recurrent vector
for each word, they also have uni-directional re-
current neural networks (left-to-right and right-to-
left) that keep track of the probabilities of each
previous parsing actions.

In their many-task neural model, Hashimoto
et al (2016) included a graph-based dependency
parse in which the traditional MLP-based method
that Kiperwasser and Goldberg (2016b) used was
replaced with a bilinear one. Dozat and Manning
(2017) modified the neural graph-based approach
of (Kiperwasser and Goldberg, 2016b) in a few
ways to improve the performance. In addition to
building a network that is larger and uses more
regularization, they replace the traditional MLP-
based attention mechanism and affine label classi-
fier with biaffine ones.

This work is most closely related to the graph-
based parsing approaches with multiple high-order
refinements (Rush and Petrov, 2012; Zhang et al.,
2014), although the neural networks were not used
in their parsers. Rush and Petrov (2012) proposed
a multi-pass coarse-to-fine approach in which a
coarse model was used to prune the search space
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in order to make the inference with up to third-
order features practical. They start with a linear-
time vine pruning pass and build up to high-order
models. Zhang et al (2014) introduced a random-
ized greedy algorithm for dependency parsing in
which they begin with a tree drawn from the u-
niform distribution and use hill-climbing strategy
to find the optimal parse tree. Although they re-
ported that drawing the initial tree randomly re-
sults in the same performance as when initialized
from a trained first-order distribution, but multi-
ple random restarts are required to avoid getting
stuck in a locally optimal solution. Their greedy
algorithm breaks the parsing into a sequence of lo-
cal steps, which correspond to choosing the head
for each modifier word (one arc at a time) in the
bottom-up order relative to the current tree. In
contrast, we employed the global inference algo-
rithm to change the entire tree (all at a time) in
each refinement step, which makes the improve-
ment more efficient.

5 Conclusion

Graph-based parsers cannot easily condition on
any extended scope of the dependency parse tree
beyond a single arc, which is their primary short-
coming relative to transition-based competitors.
We have shown that a simple, generally applica-
ble incremental neural dependency parsing algo-
rithm can deliver close to state-of-the-art parsing
performance, which allows the high-order features
to be taken into account without hurting the advan-
tage of global exhaustive inference and learning
as a member of graph-based parsing systems. Fu-
ture work will involve exploring ways of augment-
ing the parser with a more innovative architecture
than the relatively simple one used in current neu-
ral graph-based parsers.
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Abstract

One of the most pressing issues in dis-
continuous constituency transition-based
parsing is that the relevant information for
parsing decisions could be located in any
part of the stack or the buffer. In this pa-
per, we propose a solution to this prob-
lem by replacing the structured percep-
tron model with a recursive neural model
that computes a global representation of
the configuration, therefore allowing even
the most remote parts of the configura-
tion to influence the parsing decisions. We
also provide a detailed analysis of how
this representation should be built out of
sub-representations of its core elements
(words, trees and stack). Additionally, we
investigate how different types of swap or-
acles influence the results. Our model is
the first neural discontinuous constituency
parser, and it outperforms all the previ-
ously published models on three out of
four datasets while on the fourth it obtains
second place by a tiny difference.

1 Introduction

Research on constituency parsing has been mostly
concentrated on projective trees, which can be
modeled with Context-Free Grammars (CFGs).
One of the main reasons for this is that modeling
non-projective trees often requires richer gram-
mar formalisms, which in practice implies slower
runtime. For instance, the parsing algorithms
for binary LCFRS—the most prominent grammar-
based approach to parsing non-projective con-
stituency trees—have computational complexity
O(n3k), where k is the fan-out of the grammar.
For this reason, researchers turned to faster ap-
proximate methods. Approximations can be done

in two ways: either on the types of structures that
are predicted or on the parsing algorithm.

The first approach approximates discontinu-
ous constituency structures with simpler structures
for which more efficient algorithms exist. This
method works as a pipeline: it converts the input to
a simpler formalism, parses with it, and then con-
verts it back. Relevant examples are the parsers
by Hall and Nivre (2008) and Fernández-González
and Martins (2015), who convert discontinuous
constituents to dependencies, and Versley (2016),
who also applied a conversion but in this case to
the projective constituency trees.

The second approach—approximation on the
parsing algorithm—consists of an approximate
search for the most probable parse. This is
analogous to the search done by transition-based
parsers, which greedily search through the space
of all possible parses, resulting in very fast mod-
els. The first transition-based discontinuous con-
stituency parser of this sort was presented in Vers-
ley (2014), and it consists of a shift-reduce parser
that handles discontinuities with swap transitions.
This parser was very similar to dependency parsers
with swap transitions (Nivre, 2009; Nivre et al.,
2009), but unlike its dependency equivalents, it did
not exhibit higher accuracy. Later work on discon-
tinuous transition-based parsing was largely fo-
cused on finding alternative transitioning systems
to handle discontinuity. Maier (2015) and Maier
and Lichte (2016) proposed new types of swap op-
erations (CompoundSwap and SkipShift) to make
the transition sequences shorter—and therefore
easier to learn. Coavoux and Crabbé (2017) went
even further by modifying not only the transitions
but the whole configuration structure by introduc-
ing an additional stack.

Over the years the transitioning system has seen
some progress, but the learning model has re-
mained the same : a sparse linear model trained
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with structured perceptron and early update strat-
egy (Collins, 2002; Collins and Roark, 2004;
Huang et al., 2012). This model requires heavy
feature engineering and has a limited capacity in
modeling interaction between the features.

Maier and Lichte (2016) argue that one of the
biggest problems of transition based systems is
precisely their greedy search, because they can-
not recover from the bad decisions made in ear-
lier parsing steps. Some researchers try to account
for this problem by increasing the beam size, but
there is a limit on how much the beam can be in-
creased while remaining efficient for practical use
(Coavoux and Crabbé, 2017).

The solution we propose is to use a probabilis-
tic model that exploits the information from the
whole configuration structure when making the
decision for the next action. This can be achieved
by using recurrent neural models that allow in-
formation to flow all the way from the individual
characters, up trough the words, POS tags, sub-
trees, stack and buffer until the final configura-
tion representation. Thanks to using a neural net-
work model, which removes the need for feature
engineering, we can concentrate on the question
of which representations are more relevant for the
model at each step of the flow. Thus, we reflect on
how alternative representations should impact the
task, and we report their relative contribution in an
ablation study.

In our work, we also reduce the number of swap
transitions by trying to postpone them as much
as possible, in a style similar to the lazy-swap
used in Nivre et al. (2009) —albeit with an even
lower number of swaps. This change influences
the model indirectly by introducing a helpful in-
ductive bias.

Our model gets state-of-the-art results on Ne-
gra, Negra-30 and TigerSPMRL datasets, and on
the TigerHN achieves the second best published
result. To the best of our knowledge this is the
first work that uses neural networks in the context
of discontinuous constituency parsing.

2 Transition System

We base our transitioning system on the shift-
promote-adjoin transitions proposed in Cross and
Huang (2016), because they remove the need
for explicit binarization. Transition-based parsers
consist of two components: a configuration that
represents a parsing state and a set of transitions

between configurations.
The configuration consists of two data struc-

tures: a stack S that contains all the constituents
built so far, and a buffer B of words that remain
to be processed. The initial configuration consists
of a buffer filled with words and an empty stack—
presented as the axiom in Figure 1. The objec-
tive is to find a sequence of transitions that lead
to a goal state in which the buffer is empty and
the stack contains only one constituent with the
ROOT label. The shift transition moves the first
element from the buffer to the top of the stack. The
pro(X) transition “promotes” the topmost element
of the stack: it replaces it with a tree that has non-
terminal X and the topmost element of the stack as
its only child, which also becomes its head con-
stituent. The adjx transition adjoins the second
topmost element of the stack as a leftmost child of
the topmost element of the stack. The adjy tran-
sition is a mirror transition of the adjx.

The transitions described so far are enough
to handle projective constituency structures, and
have been used with success for this task in Cross
and Huang (2016). To make the parser able to
process discontinuous constituents we need an ad-
ditional transition that allows for constituents that
are far apart on the stack to become close, so that
they can be adjoined into a new constituent. For
this we use the swap transition from Nivre (2009).
This transition takes the second topmost element
from the stack and puts it back to the buffer. To
prevent infinite loops of shift-swap transitions, we
put a constraint that swap can be applied only
to constituents that have not been swapped be-
fore. To do this we use the linear ordering of con-
stituents<ind based on the position of the leftmost
word in their yield (Maier and Lichte, 2016).

2.1 Oracle

In the case of non-projective parsing, the extrac-
tion of the oracle is not trivial because there can be
many possible oracles that would derive the same
tree. Therefore it is common practice to use some
heuristic to extract only one of the possible ora-
cles.

To construct the oracle, we start with the initial
configuration and apply the first transition whose
conditions are satisfied. We keep applying transi-
tions to the resulting configurations until the goal
is reached. The transitions are determined as fol-
lows: first, we apply adjx, adjy or pro(X) if
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axiom
〈
[], [w1, w2, ..., wn]

〉

shift

〈
S, x|B

〉
〈
S|x, B

〉

pro(X)

〈
S|t, B

〉
〈
S|X(t), B

〉

adjx
〈
S|t|X(t1 . . . tk), B

〉
〈
S|X(t, t1 . . . tk), B

〉

adjy
〈
S|X(t1 . . . tk)|t, B

〉
〈
S|X(t1 . . . tk, t), B

〉

swap

〈
S|t1|t2, B

〉
〈
S|t2, t1|B

〉 t1 <ind t2

goal
〈
ROOT, ε

〉

Figure 1: Transition System

one of those produces a constituent that is found
in the tree; in case of failure, we check the condi-
tion for applying swap, which varies depending on
the type of oracle, as we define next. If all these
checks fail then a shift transition is performed.

2.1.1 Eager Oracle
Nivre (2009) introduced swap transitions with a
very simple oracle. We can define the swapping
condition for the extraction of the Eager oracle
transition sequence as:

s1 <G s0 (1)

where s0 and s1 are the topmost and second top-
most elements of the stack respectively, and <G
is the projective ordering of the nodes in the tree.
That ordering can be computed by visiting the
nodes in the tree in the postorder traversal.

This is the technique that has been used in most
previous proposals on discontinuous constituency
parsing (Maier, 2015; Maier and Lichte, 2016).

2.1.2 Lazy Oracle
Eager swapping strategy produces a large number
of swap transitions which makes them difficult to
predict. For this reason, Nivre et al. (2009) intro-
duced a lazy-swap operation that postpones swap-
ping by having an additional condition during the
construction of an oracle. This technique was used
successfully in Versley (2014) to improve over the
eager swapping baseline. As an example, in Fig-
ure 2a word w1 should shift and swap many times

to get to word w5 in order to construct constituent
C. In contrast, a Lazy oracle would postpone
swapping until constituent B is built so that only
one swap operation over node B would be enough
for word w1 to get to word w5.

In order to define that condition in the context
of discontinuous constituency parsing, we need to
define a few other terms. First of all, we call a
projective constituent any constituent that yields
a continuous span of words (marked with blue
color in Figure 2). Note that a projective con-
stituent might contain non-projective constituents
as its descendants. A fully projective constituent
is a constituent that is projective and whose de-
scendants are all projective (marked with red in
Figure 2). Finally, a maximal fully projective con-
stituent is a fully projective constituent whose par-
ent is not a fully projective constituent (marked
green in Figure 2). Finally, we define a func-
tion MPC(x) that returns the closest maximally
projective constituent that is ascendant of a con-
stituent x if there is one; otherwise, it returns x.

The condition for the lazy swap can now be ex-
pressed as:

s1 <G s0 ∧ MPC(s0) 6=MPC(b0) (2)

where s0 and b0 are the topmost elements of the
stack and buffer, respectively. This means that
we do not allow swap to penetrate into maximally
projective constituents, so swapping can be de-
layed until the maximally projective constituent
has been built.

2.1.3 Lazier Oracle
The standard Lazy swap strategy helps in cases
where MPC constituents exist, like in Figure 2a.
But in cases like Figure 2b there are no MPC con-
stituents (except for words), so Lazy would not
show any improvement over Eager. Still, even
in this case it is visible that swapping w1 should
be postponed until B is built. We introduce an
oracle strategy called Lazier that implements the
heuristic of postponing swapping over projective
constituents.1

Let a function CPC(x) return the closest pro-
jective constituent ascendant of a constituent x.
The condition for swap operation can now be ex-
pressed with:

s1 <G s0 ∧ CPC(s0) = CPC(s1) (3)
1The same intuition is followed in the Barriers strategy of

Versley (2014).
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w1 w2 w3 w4 w5

A

B

C

D

(a) Tree with Maximal Fully Projective Node B

w1 w2 w3 w4 w5

A

B

C

D

(b) Tree without any Maximal Fully Projective Nodes (other
than words themselves)

Figure 2: Example tree structures

This constraint prevents swap from allowing con-
stituents to escape their closest projective ances-
tor. If we know that the swap operation can be
performed, i.e. if s1 <G s0, it is easy to show
that in that case CPC(s0) = CPC(s1) =⇒
MPC(s0) 6= MPC(b0) or in other words that
Lazy is a special case of Lazier. There are are
only two cases to consider about CPC(s0): case
a) s0 and CPC(s0) are separated by a non-empty
sequence of non-projective constituents and case
b) s0 is the immediate child of CPC(s0). In
case a) from definition of maximal projective con-
stituents follows that MPC(s0) = s0 and there-
fore MPC(s0) 6= MPC(b0) since s0 and b0 are
non-overlapping. In case b) we need to consider
two possible options: b1) CPC(s0) is fully pro-
jective and b2) CPC(s0) is not fully projective.
Case b1) is not possible because it leads to con-
tradiction with original condition s1 <G s0. Case
b2) leads again to MPC(s0) = s0 and by that
MPC(s0) 6=MPC(b0).

3 Model

As mentioned before, our goal is to have a model
that can have a global representation of the parsing
state. In order to define this global representation
of the configuration, we first need to analyze what
are the proper representations of its subparts.

3.1 How to Represent Terminal Nodes?

The representations induced by neural networks
are continuous vectors that encode the information
that is relevant for the loss function. The initial
nodes in the computation graph are often embed-

dings that represent the atomic inputs in the model.
In our model, the embedding of a terminal node is
computed by concatenating the following four em-
beddings and then applying the affine transforma-
tion to compress the result into a smaller vector:

• a trained word embedding

• a trained POS tag embedding

• a pre-trained word embedding

• a trained character embedding of the word

Trained embeddings (both word and POS tag
embedding) are automatically trained by our
model to better suit the task that we are solv-
ing. The usage of pre-trained embeddings has
become standard in neural parsing models: these
presentations are helpful because they bring addi-
tional contextual information from a bigger non-
annotated corpora. The embeddings that we use in
this work are the ones distributed with the Polyglot
package (Al-Rfou et al., 2013).

The character embedding representation of a
word is computed by composing the representa-
tions of each character in the word form. This can
be useful to recover some of the morphological
features present in the word, such as suffixes or
prefixes. We compose character embeddings by
running a bi-directional LSTM (Bi-LSTM) over
the characters (Ling et al., 2015; Ballesteros et al.,
2015).

The embeddings composed in this way express
the properties of a word, but they ignore the con-
text in which the word appears in the actual sen-
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tence. To address this we compute the final rep-
resentation of the word by running a separate Bi-
LSTM model over the initial vectors of the termi-
nals in the same way as done by Kiperwasser and
Goldberg (2016) and Cross and Huang (2016).

3.2 How to Represent Non-Terminal Nodes?
During the parsing process we need to produce
the representations of the full subtrees that are
going to be placed on the stack. In the depen-
dency parsing literature, many approaches for rep-
resenting dependency subtrees use the represen-
tation of the head word. If the representation of
the head word is computed using a model that
takes context into account, such as Bi-LSTM mod-
els, then this simple architecture can give good
results (Kiperwasser and Goldberg, 2016; Cross
and Huang, 2016). However, we believe that this
is not the right approach for discontinuous con-
stituency parsing. The reason is that, for the parser
to know to which constituents it should attach the
current constituent, it needs to know which argu-
ments have already been attached and which ones
are missing. In other words, even if the head of
two different constituents is the same, their rep-
resentation should be different because they have
different requirements.

To address this we use a “composition function”
approach where we recursively compute the rep-
resentation of the constituent. Recursive neural
networks (RecNN) (Goller and Küchler, 1996) are
one way of accomplishing this. Dyer et al. (2015)
use RecNN to compute the representation of the
subtrees in the dependency structure. We adapt
this model to our case in the following way. For bi-
nary constituents (i.e. outputs of adjx and adjy)
the composition function takes the representation
of the head constituent hhead, the representation
of the complement hcomp and one single bit that
represents the directionality of the ex in the ad-
joining operation (0 for adjx and 1 for adjy).
The resulting hnew representation is computed as
follows:

hnew = tanh(Wadj [hhead;hcomp; ex] + badj)

Here, semi-colon (;) represents vector concatena-
tion, and Wadj and badj are the weight matrix and
the bias vector that are trained together with the
rest of the model, to optimize the desired loss
function.

The transition pro(X) also creates new trees and
its composition function can be seen as a function

of a Simple RNN model:

hnew = tanh(Wpro[hhead; ent] + bpro)

Here ent is the embedding for the non-terminal to
which constituent gets promoted. Wpro and bpro
are again the weight matrix and the bias vector
whose values are estimated during training.

Simple RNN models have been shown to suffer
from vanishing gradient problem, and for that rea-
son they have been largely replaced with LSTM
models (Hochreiter and Schmidhuber, 1997). The
same holds for recursive neural network mod-
els. Le and Zuidema (2016) have shown that,
for deep and complex hierarchical structures, the
models that have a memory akin to the memory
in LSTM are much more robust towards the van-
ishing gradient problem. Thus, in our work we
use the Tree-LSTM neural architecture from Tai
et al. (2015), but the alternative recursive version
of LSTM by Le and Zuidema (2015) could be used
as well.

In the Tree-LSTM model each constituent is
represented by the hidden state h and the mem-
ory cell c. The composition function for the
binary constituents with representations hhead,
chead, hcomp and ccomp computes the new repre-
sentations hnew and cnew in the following way:

fhead = σ(W
(f)
11 hhead +W

(f)
12 hcomp + b(f)x )

fcomp = σ(W
(f)
21 hhead +W

(f)
22 hcomp + b(f)x )

i = σ(W
(i)
1 hhead +W

(i)
2 hcomp + b(i)x )

o = σ(W
(o)
1 hhead +W

(o)
2 hcomp + b(o)x )

u = tanh(W
(u)
1 hhead +W

(u)
2 hcomp + b(u)x )

cnew = i� u+ fhead � chead + fcomp � ccomp
hnew = o� tanh(cnew)

All the W matrices and the bias vectors b are
trained parameters of the composition function.
For each equation above there is an alternative
equation that instead of bias bx uses bias by.
Which equation/bias will be used depends on the
directionality of the adjoining operation.

For the promote transition, since it creates only
one unary node, we can use almost the same com-
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putation as in the standard LSTM:

f = σ(W (f)hhead +W
(f)
nt ent + b(f))

i = σ(W (i)hhead +W
(i)
nt ent + b(i))

o = σ(W (o)hhead +W
(o)
nt ent + b(o))

u = tanh(W (u)hhead +W
(u)
nt ent + b(u))

cnew = i� u+ f � chead
hnew = o� tanh(cnew)

The main difference from the standard LSTM is
that here we additionally use the information from
the non-terminal embedding ent to which the con-
stituent is promoted.

3.3 How to Represent a Configuration?

We have covered how to represent syntactic ob-
jects (terminal and non-terminal nodes) that are
stored in the stack and the buffer, but we still need
to decide how to combine these representations to
make a final decision about the next transition.

One possibility is to first find a suitable repre-
sentation for the stack and the buffer individually,
concatenate these representations and then apply a
multi-layer perceptron (MLP) to produce the prob-
abilities for the next action.

The stack and the buffer can be seen as the same
type of data structure: the buffer can be interpreted
as a stack that is filled by pushing the words in
a sentence from the last to the first. Therefore,
we can use same approach for modeling stack and
buffer.

The most common approach for representing a
stack structure in transition based parsers (both in
perceptron and neural models) is to take the rep-
resentations of the first few top constituents on
the top of the stack. Thus, this approach assumes
that only the top of the stack and buffer are rel-
evant for deciding the next action. Even though
this assumption seems reasonable in the context
of continuous constituency parsing, for discon-
tinuous parsing it can be very harmful because
the constituents that we want to merge might be
very far from each other in the stack, as argued in
(Maier and Lichte, 2016).

In our work, we explore an alternative model
that could address this problem; namely, the
Stack-LSTM model proposed in (Dyer et al.,
2015). This model consists of an LSTM that pro-
cesses the whole stack as a sequence, to obtain in
this way a representation of the stack that includes

all of its elements. This approach gave good re-
sults on continuous dependency parsing, but its
properties should be even more important for dis-
continuous parsing, since it allows to keep in the
stack a representation of all the constituents.

Given the stack hstack and buffer hbuffer repre-
sentations computed by Stack-LSTMs, we com-
pute the configuration representation hconf by
concatenating these vectors and then applying an
affine transformation followed by aReLU(·) non-
linearity:

hconf = ReLU(Wconf [hstack;hbuffer] + bconf )

This vector representation encodes the whole con-
figuration: the information flow passes trough ev-
ery character, every POS tag, every constituent in
the stack and in the buffer. From this vector rep-
resentation we can compute the probability of the
transition z from the set of possible transitions Z
by applying one final softmax layer:

p(z|hconf ) =
exp(wTz hconf + bzi)∑
zi∈Z exp(w

T
zihconf + bzi)

The probability of the whole sequence of transi-
tions is defined as the product of the probabilities
of its transitions:

p(z|w) =

|z|∏

i=1

p(zi|hconf i)

The parameters are optimized for maximum like-
lihood of the oracle sequence of transitions.

4 Experiments

We empirically test the performance of our parser
on two German constituency treebanks: Negra and
Tiger. The preprocessing applied to these tree-
banks follows the same methods used in other dis-
continuous constituency parsing literature, as de-
scribed in Maier (2015) and implemented in the
tree-tools software2.

We use two different versions of the Negra tree-
bank. The first version is filtered for the sen-
tences up to 30 words, in order to remain compa-
rable to previous grammar-based models; the sec-
ond version includes sentences of all lengths. As
for the Tiger treebank, we use two different splits:
TigerHN (Hall and Nivre, 2008) and TigerSPMRL

2https://github.com/wmaier/treetools
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name value
trained word embedding dim. 100
pretrained word embedding dim. 64
POS embedding dim. 20
character embedding dim. 100
character Bi-LSTM layers 1
word Bi-LSTM layers 2
(non-)terminal node repr. dim. 40
configuration repr. dim. 100
stack LSTM dim. 100
stack LSTM layers 2
buffer LSTM dim. 100
buffer LSTM layers 2
optimizer Adam
optimizer parameter b1 0.9
optimizer parameter b2 0.999
beam size 16

Table 1: Hyper-parameters of the model

#swaps jump size
Eager 43.17 ±49.21 1.00 ± 0.0
Lazy 10.96 ± 9.96 6.88 ±5.54
Lazier 5.40 ± 3.05 10.03 ±11.05

Table 2: Average number of swaps and jump sizes
per sentence

(Maier, 2015). We evaluated the model with the
evaluation module of discodop3 parser.

Our model is implemented with DyNet (Neu-
big et al., 2017) and the code is available at
https://github.com/stanojevic/
BadParser. The concrete hyper-parameters of
our model are shown in Table 1. We optimize the
parameters with Adam optimizer on the training
set, for 10 iterations with 100 random restarts, and
we do model selection on the validation set for
the F-score. During test time we use beam search
with beam of size 16.

We conducted the development of our model on
the TigerHN train and development sets. First we
will analyze the effect of different model design
decisions and then we show the results over the
test set. The development set scores on TigerHN
are shown in Table 3.

4.1 Which oracle is better?

The results in Table 3 show that the Eager ora-
cle works better than Lazy for discontinuous con-
stituents, but for continuous constituents (and over
all constituents on average) Lazy works better.
This can be explained by Lazy being very conser-
vative about swaps: since their number is signifi-

3https://github.com/andreasvc/
disco-dop
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(b) Mean size of the swap jumps per sentence length.

Figure 3: The effect of different swap strategies of
sentences with up to 80 words

cantly reduced, the transition becomes difficult to
predict, and thus the model gives up on predict-
ing swaps and concentrates on the statistics for
the projective operations. In other words, Lazy
predicts swaps only if the statistical evidence for
swaps is high. This can be seen by the contrast
between high precision but very low recall on dis-
continuous constituents.

Eager works in the opposite direction: since
it has observed many swaps it has a strong bias
to predict them, which leads to a high recall but
low precision. Lazier strikes a good balance be-
tween precision and recall on the discontinuous
constituents, and because of that it outperforms
both Eager and Lazy on F-score for both all con-
stituents and discontinuous constituents.

The good result of Lazier cannot be subscribed
only to the shorter transition sequences being eas-
ier to predict, because if it was up to the transition
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P R F E P R F E
Tree-LSTM 2 Lazier 84.85 83.81 84.33 46.64 55.67 46.54 50.70 37.48

Head 2 Lazier 61.86 53.91 57.61 13.87 16.43 6.63 9.45 3.49
RecNN 2 Lazier 83.57 82.84 83.21 43.55 57.30 38.17 45.82 32.94

Tree-LSTM 0 Lazier 81.31 80.30 80.80 39.85 48.17 33.67 39.64 27.37
Tree-LSTM 1 Lazier 83.86 83.67 83.77 44.46 58.12 42.57 49.15 35.08
Tree-LSTM 2 top3 Lazier 82.29 81.07 81.68 40.64 54.39 31.49 39.89 26.57
Tree-LSTM 2 Lazy 84.80 83.39 84.09 45.65 59.35 36.24 45.00 31.88
Tree-LSTM 2 Eager 83.74 83.04 83.39 43.81 50.15 43.68 46.69 33.49

Table 3: Precision (P), Recall (R), F-score (F) and Exact (E), for our best model and ablated versions.

Negra Negra-All TigerHN TigerSPMRL
All L≤40 All L≤40 All

co
nv

2d
ep Hall and Nivre (2008) - - - 79.93 - -

Fernández-González and
Martins (2015) 82.56 ? 81.08 80.52 85.53 84.22 80.62�

L
C

FR
S

van Cranenburgh (2012) - 72.33 71.08 - - -
van Cranenburgh and Bod
(2013) - 76.8 - - - -

Kallmeyer and Maier
(2013) 75.75 - - - - -

Tr
an

si
tio

n-
B

as
ed

Versley (2014) - - - 74.23 - -
Maier (2015) 76.95 - - 79.52 - 74.71
Maier and Lichte (2016) - - - 80.02 - 76.46
Coavoux and Crabbé
(2017) 82.46 82.76 82.16 85.11 84.01 81.60

This work 83.29 83.39 82.87 85.25 84.06 81.64

Table 4: Final results on test set, computed with discodop evaluation module. ?Trained on Negra-All.
�Evaluated with SPRML scripts.

sequences length alone then Lazy would work bet-
ter than Eager on the discontinuous constituents.
The more likely explanation is that Lazier intro-
duces an inductive bias in the model that is use-
ful for generalization, and that allows the model to
generalize better than Eager and Lazy.

We also quantified how many swaps are made
by Eager, Lazy and Lazier. Figure 3 shows the
statistics over the TigerHN training set for differ-
ent sentence lengths; the aggregated statistics over
all sentence lengths can be read in Table 2. We
can observe in Figure 3(a) that, in the case of short
sentences, all the swapping strategies give simi-
lar results, but as sentences get longer the number
of swaps in Eager gets much higher and more un-
stable than lazier alternatives. We found that for
some sentences Lazy and Lazier do with 2 swaps

what Eager does with 126 swaps. Compared to
Lazy, Lazier is much more stable in terms of the
number of swaps, which can be seen by the stan-
dard deviation in Table 2. In Figure 3(b) shows a
similar trend for the size of the jump of swap tran-
sitions. All the swaps of Eager make a jump of
size 1, while the jumps of Lazier can go up to 91
words.

4.2 What is the best word representation?
We have tested whether the representation of a
word based solely on its embeddings is enough
to get good results or, instead, this representation
should be refined by the bi-directional LSTM. Ta-
ble 3 shows that adding layers to the bi-directional
LSTM consistently improves the scores. The dif-
ference between not using a bi-directional LSTM
and using 2 layers of bi-directional LSTM is 3.63
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F-score, which is a big margin. Adding a third
layer did not improve scores significantly.

4.3 What is the best composition function?
We have tried three options for composition func-
tions: Head (use only the head word embedding
instead of a composition function), RecNN and
TreeLSTM – all presented in Section 3.2. As we
expected, the head representation alone did not
perform well, which shows that some type of com-
position function is needed. We find that using a
recursive model with a memory cell improves re-
sults by 1.12 F-score, and thus we settle for the
TreeLSTM composition function.

4.4 What is the best configuration
representation?

We tested two configuration representations: the
first one – top3 – takes the 3 topmost elements
from the stack and the buffer as the representa-
tives, while the second one – Stack-LSTM – mod-
els the whole content of the configuration via re-
current neural models. In line with our intuitions,
the Stack-LSTM, thanks to considering the whole
stack and buffer structure instead of only a few el-
ements, outperforms top3 by a margin of 2.65 F-
score points.

4.5 Comparison with other models
We took the version of our model that performed
the best on the TigerHN development set and com-
pared it on the four different datasets (two tree-
banks with two different splits) with other parsers.

In Table 4 we show the results compared to
the other works published on these datasets. Our
parser outperforms all the previously published
models on all datasets except TigerHN, where it
ends up second best after Fernández-González and
Martins (2015). As shown in our previous anal-
ysis, exploring alternative representations of the
different components has allowed us to construct a
better model. We must also notice that, when com-
paring to other models, one influential cause of
the good performance may be the capacity of our
model, provided by the neural architectures. Neu-
ral networks allow modeling relations from input
to output that are much more complex than those
captured by the approaches we compare to, most
of which use linear models based on perceptron or
simple PCFG type of generative models.

We have also tested our model on the predicted
POS tags from TigerSPMRL split, as provided in

TigerSPRML
F1 (spmrl.prm)
≤ 70 All

Versley (2014) 73.90 –
This work 77.25 76.96
F&M (2015) 77.72 77.32
Coavoux&Crabbé (2017) 79.44 79.26
Versley (2016) 79.84 79.50

Table 5: Results on SPMRL data with predicted
tags.

the shared task (Seddah et al., 2013). The results
are shown in Table 5. The biggest strength of our
model—its capacity— is in this case its biggest
weakness: it causes the model parameters to over-
fit the noisy predicted tags during training, be-
cause we have not used any form of regularization.
Model combinations like the one in Versley (2016)
do not suffer from this because they implicitly do
strong regularization. Our model could probably
achieve better results on this dataset with stronger
regularization, which we leave for future research.

5 Conclusion

We have presented the first neural model for
discontinuous constituency parsing that achieves
state-of-the-art results in three out of four standard
datasets for discontinuous parsing with gold POS
tags. Our findings suggest that i) bidirectional
LSTM should be used for refining the represen-
tations of terminals even in the cases when they
are going to be combined by a recursive model,
ii) the performance of the composition function
depends to a big extent on the availability of the
memory cells, to prevent the vanishing gradient,
iii) it is crucial to use all the elements in the stack
and buffer in the decision process instead of just
few elements on the top and iv) Lazier oracle gives
better and more stable results than Eager and Lazy
oracles on both continuous and discontinuous con-
stituents.
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Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
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Abstract

Although sequence-to-sequence (seq2seq)
network has achieved significant success
in many NLP tasks such as machine trans-
lation and text summarization, simply ap-
plying this approach to transition-based
dependency parsing cannot yield a compa-
rable performance gain as in other state-
of-the-art methods, such as stack-LSTM
and head selection. In this paper, we
propose a stack-based multi-layer atten-
tion model for seq2seq learning to bet-
ter leverage structural linguistics informa-
tion. In our method, two binary vectors
are used to track the decoding stack in
transition-based parsing, and multi-layer
attention is introduced to capture multiple
word dependencies in partial trees. We
conduct experiments on PTB and CTB
datasets, and the results show that our pro-
posed model achieves state-of-the-art ac-
curacy and significant improvement in la-
beled precision with respect to the baseline
seq2seq model.

1 Introduction

Deep learning models have been proven very ef-
fective in solving various NLP problems such as
language modeling, machine translation and syn-
tactic parsing. For dependency parsing, one line
of research aims to incrementally integrate dis-
tributed word representations into classic depen-
dency parsing (Chen and Manning, 2014; Weiss
et al., 2015; Andor et al., 2016; Cross and Huang,
2016; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2016). Another line of research at-
tempts to leverage end-to-end neural network to
perform dependency parsing, such as stack-LSTM
and sequence-to-sequence (seq2seq) model (Dyer

et al., 2015; Zhang et al., 2017; Wiseman and
Rush, 2016). Recently seq2seq model has made
significant success in many NLP tasks, such as
machine translation and text summarization (Cho
et al., 2014; Sutskever et al., 2014; Rush et al.,
2015). Unfortunately, to our best knowledge, sim-
ply applying seq2seq model to transition-based
dependency parsing cannot achieve comparable
results as in other state-of-the-art methods like
stack-LSTM and head selection (Dyer et al., 2015;
Zhang et al., 2017).

One issue with the simple seq2seq neural net-
work for dependency parsing is that structural lin-
guistic information, which plays a key role in clas-
sic transition-based or graph-based dependency
parsing models, cannot be explicitly employed.
For example, classic transition-based parsing al-
gorithm utilizes a stack to manage the heads of
partial sub-trees and leverages these evidents for
action selection, while such information is missing
from current seq2seq models. Another problem is
related to the limit of the conventional attention
network being used in seq2seq network, which is
unable to capture dependencies between words in
the input. As a matter of fact, various types of fea-
tures (word unigram, bigram, trigram, . . . ) tradi-
tionally adopted by transition-based parsing algo-
rithm are usually ignored by the current attention
mechanism, but they are very important to capture
word dependencies in generated partial trees.

In this paper, we propose a stack-based multi-
layer attention mechanism to solve the above
problems. To simulate the stack used in the
transition-based dependency parsing, we intro-
duce two binary vectors, one indicates whether a
word is pushed into the stack, and another indi-
cates whether a word is popped out from it. To
model the complex structural information, we pro-
pose a multi-layer attention based on the stack
information, previous action and input sentence.

1677



The multi-layer attention aims to capture multiple
word dependencies in partial trees for action pre-
diction.

We evaluate our model on English and Chinese
datasets. Experimental results show that our pro-
posed model can significantly outperform the ba-
sic seq2seq model with 1.87 UAS (English) and
1.61 UAS (Chinese), matching the state-of-the-art
parsing performance. With 4 models ensembled,
we obtain further improvements with accuracies of
94.16 UAS (English) and 87.97 UAS (Chinese).

2 Neural Model for
Sequence-to-Sequence Learning

In this work, we follow the encoder-decoder archi-
tecture proposed by Bahdanau et al. (2015). The
whole architecture can be divided into three com-
ponents: encoder, decoder and attention.

Encoder: The encoder reads in the source sen-
tence X = (x1, x2, ... , xT ) and transforms it into
a sequence of hidden states h = (h1, h2, ... , hT ),
using a bi-directional recurrent neural network
that is usually implemented as Gated Recurrent
Unit (GRU) (Cho et al., 2014) or Long Short-
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997).

Attention Mechanism: The context vec-
tor ci is a weighted sum of the hidden
states (h1, h2, ... , hT ) with the coefficients
αi,1, αi,2, ... , αi,T computed by

αi,t =
exp (ei,t)∑
k exp (ei,k)

(1)

ei,t = v>a tanh(Wazi−1 + Uaht) (2)

where va,Wa, Ua are the weight matrices.
Decoder: The decoder uses another recurrent

neural network to generate a corresponding target
sequence Y = (y1, y2, ... , yT ′) based on the en-
coded sequence of hidden state h. At each time i,
the conditional probability of target symbol yi is
computed by

zi = RNN([yi−1; ci], zi−1) (3)

p(yi|y<i, h) = softmax(g(yi−1, zi, ci)) (4)

where g is a non-linear function, zi is the ith hid-
den state of the decoder, and it is calculated condi-
tional on the previous hidden state zi−1, previous
target symbol yi−1 and source context vector ci.

ℎ1 ℎ2 ℎ𝑇

ℎ1 ℎ2 ℎ𝑇…

…

[w1, 𝑡1]

encoder

decoder

attention

start …𝑧1 𝑧𝑖−1 𝑧𝑖

𝑦1 𝑦𝑖−1 𝑦𝑖

[w2, 𝑡2] [w𝑇 , 𝑡𝑇]…

𝑟1 𝑟2 𝑟𝑇…
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…
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𝑐𝑖
𝑙

…

𝑆𝐻 𝐿𝑅(𝑑) 𝑅𝑅(𝑑)

John/NNP eat/VBP food/NN

stack

Figure 1: The architecture of sequence-to-
sequence parsing model. SH, LR(d), RR(d) de-
note the SHIFT, LEFT-ARC(d), RIGHT-ARC(d)
transitions in arc-standard algorithm and d is arc-
label.

3 Sequence-to-Sequence Parsing Model

Transition-based dependency parsing conceptual-
izes the process of transforming a sentence into a
dependency tree as a sequence of actions. It can
be formulated as a sequence-to-sequence problem,
and seq2seq framework can be applied. Compared
with other tasks, such as machine translation, de-
pendency parsing not only considers the previous
action and input sentence, but also requires many
structure information, such as the subtree structure
during the parsing. Such information plays an im-
portant role in transition-based dependency pars-
ing, so traditional methods adopt a stack to save
structure information and design different type of
features (word unigram, bigram, trigram, . . . ) to
model them. However, vanilla seq2seq models
have no explicit structure to model these neces-
sary structure information. To better leverage the
structure information, we extend the basic seq2seq
architecture with a simulated stack and multi-layer
attention, as illustrated in Figure 1. The main
structure (encoder, decoder and attention part in
Figure 1) of our parsing model is detailed below.

Encoder: As shown in the encoder part of Fig-
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ure 1, to utilize POS tag information, each word
wi is additionally represented by xi, the concate-
nation of two vectors corresponding towi’s lexical
and POS tag ti embedding: xi = [We∗e(wi);Wt∗
e(ti)], where e(wi) and e(ti) are one-hot vector
representations of token wi and its POS tag ti, We

and Wt are embedding matrices. The rest part
of the encoder is the same with the basic seq2seq
model.

Attention Mechanism: We improve the atten-
tion part in two aspects: introduction of stack in-
formation and multi-layer attention structure.

Stack information, which plays an essential role
in the conventional algorithm, is simulated with
two binary vectors s = (s1, . . . , sT ) and r =
(r1, . . . , rT ) to record the state of each word wi
and initialized to zero. When parser pushes word
wi into stack, si is assigned to 1, while ri is as-
signed to 1 only if word wi is removed from stack.
Intuitively, at each time step i in the decoding
phase, stack information serves as an additional
input to the attention model, which provides com-
plementary information of that the source words
is in the stack or not. We expect the stack infor-
mation would guide the attention model to focus
more on words in the stack. More formally, the
coefficients α1, α2, ... , αT used in attention mech-
anism can be rewritten as

αi,t =
exp (ei,t) ∗ (1− rt)∑
k exp (ei,k) ∗ (1− rk)

(5)

ei,t = v>a tanh(Wazi−1 + Uaht + Sast) (6)

where Sa is the weight matrix.
To extract complex structure information to

help action prediction, we apply a l-layers net-
work structure for attention mechanism as shown
in the attention part of Figure 1. To further en-
hance connection between adjacent layers, we re-
place the state zi−1 in Equation 6 by the concate-
nation of zi−1 and context vector cm−1i at each
layer m(m > 1). The Equation 6 can be rewritten
as:

emi,t = v>a tanh(Wm
a [zi−1; c

m−1
i ] + Uaht + Sast)

(7)

where Wm is the weight matrix. With this net-
work structure, we obtain different context vec-
tors (c1i , c

2
i , . . . , c

l
i), and the final context vector

ci, which is considered as complex context infor-
mation, is replaced by the concatenation of those
vectors: ci = [c1i ; c

2
i ; . . . ; c

l
i].

Decoder: Unlike machine translation and text
summarization in which seq2seq model is widely
applied, a sequence of action in dependency pars-
ing must satisfy some constraints so that they can
generate a dependency tree. Following the arc-
standard algorithm (Nivre, 2004), the precondition
can be categorized as 1) SHIFT(SH): There exists
at least one word that is not pushed into the stack;
2) LEFT-ARC(LR(d)) and RIGHT-ARC(RR(d)):
There are at least two words in the stack. These
two constraints can be defined as indicator func-
tions

I(yi) =





0 yi = SH,Wc ≤ 0
0 yi = LR(d) or RR(d), Sc < 2
1 otherwise

(8)

where Sc represents the number of words in the
stack and Wc is the number of source words that
are not pushed into the stack. To introduce these
constraints, the conditional probability of each tar-
get symbol yi can be rewritten as

p(yi|y<i, h) =
exp (gi) ∗ I(yi)∑
k exp (gk) ∗ I(yk)

(9)

where gi is the ith element of g(yi−1, zi, ci).

4 Experiments

In this section, we evaluate our parsing model on
the English and Chinese datasets. Following Dyer
et al. (2015), Stanford Dependencies (de Marn-
effe and Manning, 2008) conversion of the Penn
Treebank (PTB) (Marcus et al., 1993) and Chinese
Treebank 5.1 (CTB) are adopted. We leverage the
arc-standard algorithm for our dependency pars-
ing. In addition, we limit the vocabulary to con-
tain up to 20k most frequent words and convert
remaining words into the <unk> token.

4.1 Setup
For our model, 3-layers GRU is used for encoder
and decoder. The dimension of word embedding
is 300, the dimension of POS-tag/action embed-
ding is 32, and the size of hidden units in GRU
is 500. 3-layers attention structure is adopted in
our model. Following Chen and Manning (2014);
Dyer et al. (2015), we used 300-dimensional pre-
trained GloVe vectors (Pennington et al., 2014)
to initialize our word embedding matrix. Other
model parameters are initialized using a normal
distribution with a mean of 0 and a variance of
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Parser
PTB-SD CTB

Dev Test Dev Test
UAS LAS UAS LAS UAS LAS UAS LAS

Z&N11 - - 93.00 90.95 - - 86.00 84.40
C&M14 92.20 89.70 91.80 89.60 84.00 82.40 83.90 82.40
ConBSO - - 91.57 87.26 - - - -
Dyer15 93.20 90.90 93.10 90.90 87.20 85.90 87.20 85.70
Weiss15 - - 93.99 92.05 - - - -
K&G16 - - 93.99 91.90 - - 87.60 86.10
DENSE 94.30 91.95 94.10 91.90 87.35 85.85 87.84 86.15
seq2seq 92.02 89.10 91.84 88.84 86.21 83.80 85.80 83.53
Our model 93.65 91.52 93.71 91.60 87.28 85.30 87.41 85.40
Ensemble 94.24 92.01 94.16 92.13 88.06 86.30 87.97 86.18

Table 1: Results of various state-of-the-art parsing systems on English dataset (PTB with Stanford De-
pendencies) and Chinese dataset (CTB). The numbers reported from different systems are taken from:
Z&N11 (Zhang and Nivre, 2011); C&M14 (Chen and Manning, 2014); ConBSO (Wiseman and Rush,
2016); Dyer15 (Dyer et al., 2015); Weiss15 (Weiss et al., 2015); K&G16 (Kiperwasser and Goldberg,
2016); DENSE (Zhang et al., 2017).

√
6/(drow + dcol), where drow and dcol are the

number of rows and columns (Glorot and Ben-
gio, 2010). Our models are trained on a Tesla
K40m GPU and optimized with vanilla SGD algo-
rithm with mini-batch size 64 for English dataset
and 32 for Chinese dataset. The initial learning
rate is set to 2 and will be halved when unlabeled
attachment scores (UAS) on the development set
do not increase for 900 batches. To alleviate the
gradient exploding problem, we rescale the gradi-
ent when its norm exceeds 1. Dropout (Srivastava
et al., 2014) is applied to our model with the strat-
egy recommended in Zaremba et al. (2014) and the
dropout rate is 0.2. For testing, beam search is em-
ployed to find the best action sequence with beam
size 8. For evaluation, we report unlabeled (UAS)
and labeled attachment scores (LAS) on the devel-
opment and test sets. Following Chen and Man-
ning (2014), the punctuation is excluded from the
evaluation.

4.2 Main Results

Table 1 lists the accuracies of our parsing mod-
els, compared to other state-of-the-art parsers. For
the baseline, seq2seq model employs the same
encoder and decoder network structure with our
model. We can see that our proposed model
can significantly outperform the basic seq2seq
model with 1.87 UAS (English) and 1.61 UAS
(Chinese) improvements on the test set. This
demonstrates the effectiveness of our proposed

multi-layer attention mechanism. Besides, our
model achieves better UAS accuracy than Z&N11,
C&M14, ConBSO and Dyer15 on development
and test set, while slightly lower than Weiss15,
K&G16 and DENSE. Weiss15 adopts a structured
training procedure which can be easiely applied to
our model as well, and it will further improve the
performance of our model. K&G16 uses 11 bidi-
rectional LSTM vectors as features, which will be
fed to a transition-based parser. It suggests a new
direction that combines our model with feature en-
gineering of the traditional transition-based parser
to gain better performance. DENSE formalizes
dependency parsing as head selection and applies
MST algorithms to correct non-tree outputs, while
our model doesn’t require any post-processing at
test time. Dozat and Manning (2016) use deep bi-
affine attention instead of traditional attention in
the graph-based architectures of K&G16, achiev-
ing 95.74 UAS and 89.30 UAS on PTB-SD and
CTB datasets respectively. For ensemble, we train
4 models using the same network with different
random initialization. When we ensemble these
4 models, we simply average the output probabil-
ities from different models and obtain the better
result with accuracies of 94.16 UAS (English) and
87.97 UAS (Chinese) as shown in the Table 1.

4.3 Impact of l

The hyper-parameter l represents the number of
layers in our proposed multi-layer attention mech-
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Dev Test
UAS LAS UAS LAS

seq2seq 92.02 89.10 91.84 88.84
l = 1 92.85 90.44 92.70 90.40
l = 2 93.30 91.13 93.21 90.98
l = 3 93.65 91.52 93.71 91.60
l = 4 93.49 91.29 93.42 91.24

Table 2: Impact of l on English PTB dataset.

anism. Larger l would bring more capacity, but
lead to more computational complexity and aggra-
vate the risk of over-fitting.

We conduct a group of experiments to investi-
gate the impact of l. The results are shown in Ta-
ble 2. Seq2seq model can be viewed as a special
case of our model without any stack information.
With l = 1, we can see that the introduction of
stack information can strongly improve the pars-
ing performance, especially for LAS. When l is
small (l < 4), the general trend is that larger l
leads to better result. However, further increasing l
bring slightly damages to the parsing performance
due to the over-fitting problem.

Although larger l would bring more capacity,
multiple layers structure will double the training
time compared with the vanilla seq2seq. In our
implementation, our model costs about 500 sec-
onds for a round of training data on English PTB
dataset, while the vanilla costs about 260 seconds.

4.4 Additional Results

We perform some ablation experiments in order to
quantify the effect of the different components on
our models. As shown in Table 3, the POS-tag
information plays the most important role in our
model. We note that, different from Dyer et al.
(2015), we don’t utilize an external word embed-
ding to tackle OOV problem, and it may cause our
model to be more dependent on the POS-tag infor-
mation. For s and r vectors, same as discussion in
last section, we find that the introduction of stack
information can strongly improve the parsing per-
formance.

5 Conclusion

In order to leverage structure information for
seq2seq based dependency parsing, in this pa-
per, we propose a stack based multi-layer atten-
tion method, in which, stack is simulated with
two binary vectors, and multi-layer attention is in-

Dev Test
UAS LAS UAS LAS

Our model 93.65 91.52 93.71 91.60
–pretraining 93.19 90.92 93.22 91.11
–POS 92.73 89.86 92.57 90.05
–s vector 93.18 90.68 93.02 90.89
–r vector 93.16 90.90 93.27 91.02

Table 3: Impact of the different components on
English PTB dataset.

troduced to capture multiple word dependencies
in partial trees. Experimental results demonstrate
that our proposed model significantly outperforms
the basic seq2seq model, and achieves a state-of-
the-art parsing performance.

In the future, we plan to apply our approach in
more languages and other transition-based system,
such as arc-eager or arc-hybrid. Another direction
we are interested in is to train our model with com-
plex training approaches proposed in Weiss et al.
(2015) and Andor et al. (2016).
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Abstract

We study the impact of big models (in
terms of the degree of lexicalization) and
big data (in terms of the training cor-
pus size) on dependency grammar induc-
tion. We experimented with L-DMV, a
lexicalized version of Dependency Model
with Valence (Klein and Manning, 2004)
and L-NDMV, our lexicalized extension of
the Neural Dependency Model with Va-
lence (Jiang et al., 2016). We find that
L-DMV only benefits from very small de-
grees of lexicalization and moderate sizes
of training corpora. L-NDMV can bene-
fit from big training data and lexicaliza-
tion of greater degrees, especially when
enhanced with good model initialization,
and it achieves a result that is competitive
with the current state-of-the-art.

1 Introduction

Grammar induction is the task of learning a gram-
mar from a set of unannotated sentences. In the
most common setting, the grammar is unlexical-
ized with POS tags being the tokens, and the train-
ing data is the WSJ10 corpus (the Wall Street
Journal corpus with sentences no longer than 10
words) containing no more than 6,000 training
sentences (Cohen et al., 2008; Berg-Kirkpatrick
et al., 2010; Tu and Honavar, 2012).

Lexicalized grammar induction aims to incor-
porate lexical information into the learned gram-
mar to increase its representational power and im-
prove the learning accuracy. The most straight-
forward approach to encoding lexical informa-
tion is full lexicalization (Pate and Johnson, 2016;
Spitkovsky et al., 2013). A major problem with

∗This work was supported by the National Natural Sci-
ence Foundation of China (61503248).

full lexicalization is that the grammar becomes
much larger and thus learning is more data de-
manding. To mitigate this problem, Headden et al.
(2009) and Blunsom and Cohn (2010) used par-
tial lexicalization in which infrequent words are
replaced by special symbols or their POS tags.
Another straightforward way to mitigate the data
scarcity problem of lexicalization is to use training
corpora larger than the standard WSJ corpus. For
example, Pate and Johnson (2016) used two large
corpora containing more than 700k sentences;
Marecek and Straka (2013) utilized a very large
corpus based on Wikipedia in learning an unlexi-
calized dependency grammar. Finally, smoothing
techniques can be used to reduce the negative im-
pact of data scarcity. One example is Neural DMV
(NDMV) (Jiang et al., 2016) which incorporates
neural networks into DMV and can automatically
smooth correlated grammar rule probabilities.

Inspired by this background, we conduct a sys-
tematic study regarding the impact of the degree
of lexicalization and the training data size on the
accuracy of grammar induction approaches. We
experimented with a lexicalized version of Depen-
dency Model with Valence (L-DMV) (Klein and
Manning, 2004) and our lexicalized extension of
NDMV (L-NDMV). We find that L-DMV only
benefits from very small degrees of lexicalization
and moderate sizes of training corpora. In com-
parison, L-NDMV can benefit from big training
data and lexicalization of greater degrees, espe-
cially when it is enhanced with good model ini-
tialization. The performance of L-NDMV is com-
petitive with the current state-of-the-art.

2 Methods

2.1 Lexicalized DMV

We choose to lexicalize an extended version of
DMV (Gillenwater et al., 2010). We adopt a sim-
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Figure 1: The structure of the neural networks in
the L-NDMV model. It predicts the probabilities
of the CHILD rules and DECISION rules.

ilar approach to that of Spitkovsky et al. (2013)
and Blunsom and Cohn (2010) and represent each
token as a word/POS pair. If a pair appears in-
frequently in the corpus, we simply ignore the
word and represent it only with the POS tag. We
control the degree of lexicalization by replacing
words that appear less than a cutoff number in
the WSJ10 corpus with their POS tags. With a
very large cutoff number, the grammar is virtu-
ally unlexicalized; but when the cutoff number be-
comes smaller, the grammar becomes closer to be
fully lexicalized. Note that our method is different
from previous practice that simply replaces rare
words with a special “unknown” symbol (Head-
den III et al., 2009). Using POS tags instead of the
“unknown” symbol to represent rare words can be
helpful in the neural approach introduced below
in that the learned word vectors are more informa-
tive.

2.2 Lexicalized NDMV
With a larger degree of lexicalization, the gram-
mar contains more tokens and hence more param-
eters (i.e., grammar rule probabilities), which re-
quire more data for accurate learning. Smoothing
is a useful technique to reduce the demand for data
in this case. Here we employ a neural approach to
smoothing. Specifically, we propose a lexicalized
extension of neural DMV (Jiang et al., 2016) and
we call the resulting approach L-NDMV.

Extended Model: The model structure of L-
NDMV is similar to that of NDMV except for
the representations of the head and the child of
the CHILD and DECISION rules. The net-
work structure for predicting the probabilities of
CHILD rules [pc1 , pc2 , ..., pcm ] (m is the vocab-
ulary size; ci is the i-th token) and DECISION

rules [pstop, pcontinue] given the head word, head
POS tag, direction and valence is shown in Fig-
ure 1. We denote the input continuous represen-
tations of the head word, head POS tag and va-
lence by vword, vtag and vval respectively. By
concatenating these vectors we get the input repre-
sentation to the neural network: [vval; vword; vtag].
We map the input representation to the hidden
layer f using the direction-specific weight matrix
Wdir and the ReLU activation function. We rep-
resent all the child tokens with matrix Wchd =
[Wword,Wtag] which contains two parts: child
word matrix Wword ∈ Rm×k and child POS tag
matrix Wtag ∈ Rm×k′ , where k and k′ are the pre-
specified dimensions of output word vectors and
tag vectors respectively. The i-th rows of Wword

and Wtag represent the output continuous repre-
sentations of the i-th word and its POS tag respec-
tively. Note that for two words with the same POS
tag, the corresponding POS tag representations are
the same. We take the product of f and the child
matrix Wchd and apply a softmax function to ob-
tain the CHILD rule probabilities. For DECISION
rules, we replace Wchd with the decision weight
matrix Wdec and follow the same procedure.

Extended Learning Algorithm: The original
NDMV learning method is based on hard-EM and
is very time-consuming when applied to L-NDMV
with a large training corpus. We propose two im-
provements to achieve significant speedup. First,
at each EM iteration we collect grammar rule
counts from a different batch of sentences instead
of from the whole training corpus and train the
neural network using only these counts. Second,
we train the same neural network across EM it-
erations without resetting. More details can be
found in the supplementary material. Our algo-
rithm can be seen as an extension of online EM
(Liang and Klein, 2009) to accommodate neural
network training.

2.3 Model Initialization

It was previously shown that the heuristic KM ini-
tialization method by Klein and Manning (2004)
does not work well for lexicalized grammar in-
duction (Headden III et al., 2009; Pate and John-
son, 2016) and it is very helpful to initialize learn-
ing with a model learned by a different grammar
induction method (Le and Zuidema, 2015; Jiang
et al., 2016). We tested both KM initialization and
the following initialization method: we first learn
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an unlexicalized DMV using the grammar induc-
tion method of Naseem et al. (2010) and use it
to parse the training corpus; then, from the parse
trees we run maximum likelihood estimation to
produce the initial lexicalized model.

3 Experimental Setup

For English, we used the BLLIP corpus1 in ad-
dition to the regular WSJ corpus in our experi-
ments. Note that the BLLIP corpus is collected
from the same news article source as the WSJ
corpus, so it is in-domain and is ideal for train-
ing grammars to be evaluated on the WSJ test set.
In order to solve the compatibility issue as well
as improve the POS tagging accuracy, we used
the Stanford tagger (Toutanova et al., 2003) to re-
tag the BLLIP corpus and selected the sentences
for which the new tags are consistent with the
original tags, which resulted in 182244 sentences
with length less than or equal to 10 after remov-
ing punctuations. We used this subset of BLLIP
and section 2-21 of WSJ10 for training, section
22 of WSJ for validation and section 23 of WSJ
for testing. We used training sets of four differ-
ent sizes: WSJ10 only (5779 sentences) and 20k,
50k, and all sentences from the BLLIP subset. For
Chinese, we obtained 4762 sentences for training
from Chinese Treebank 6.0 (CTB) after convert-
ing data to dependency structures via Penn2Malt
(Nivre, 2006) and then stripping off punctuations.
We used the recommended validation and test data
split described in the documentation.

We trained the models with different degrees of
lexicalization. We control the degree of lexicaliza-
tion by replacing words that appear less than a cut-
off number in the WSJ10 or CTB corpus with their
POS tags. For each degree of lexicalization, we
tuned the dimension of the hidden layer of the neu-
ral network on the validation dataset. For English,
we tested nine word cutoff numbers: 100000, 500,
200, 100, 80, 70, 60, 50, and 40, which resulted in
vocabulary sizes of 35, 63, 98, 166, 203, 226, 267,
306, and 390 respectively; for Chinese, the word
cutoff numbers are 100000, 100, 70, 50, 40, 30,
20, 12, and 10. Ideally, with higher degrees of lex-
icalization, the hidden layer dimension should be
larger in order to accommodate the increased num-
ber of tokens. For the neural network of L-NDMV,
we initialized the word and tag vectors in the neu-

1Brown Laboratory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1

ral network by learning a CBOW model using the
Gensim package (Řehůřek and Sojka, 2010). We
set the dimension of input and output word vectors
to 100 and the dimension of input and output tag
vectors to 20. We trained the neural network with
learning rate 0.03, mini-batch size 200 and mo-
mentum 0.9. Because some of the neural network
weights are randomly initialized, the model con-
verges to a different local minimum in each run of
the learning algorithm. Therefore, for each setup
we ran our learning algorithm for three times and
reported the average accuracy. More detail of the
experimental setup can be found in the supplemen-
tary material.

4 Experimental Results

4.1 Results on English

Figure 2(a) shows the directed dependency accu-
racy (DDA) of the learned lexicalized DMV with
KM initialization. It can be seen that on the
smallest WSJ10 training corpus, lexicalization im-
proves learning only when the degree of lexical-
ization is small; with further lexicalization, the
learning accuracy significantly degrades. On the
three larger training corpora, the impact of lexi-
calization on the learning accuracy is still negative
but is less severe. Overall, lexicalization seems
to be very data demanding and even our largest
training corpora could not bring about the bene-
fit of lexicalization. Increasing the training cor-
pus size is helpful regardless of the degree of lex-
icalization, but the learning accuracies with the
50K dataset are almost identical to those with the
full dataset, suggesting diminishing return of more
data.

Figure 2(b) shows the results of L-NDMV with
KM initialization. The parsing accuracy is im-
proved under all the settings, showing the advan-
tage of NDMV. The range of lexicalization de-
grees that improve learning becomes larger, and
the degradation in accuracy with large degrees of
lexicalization becomes much less severe. Dimin-
ishing return of big data as seen in the first figure
can still be observed.

Figure 2(c) shows the results of L-NDMV with
the initialization method described in section 2.3.
It can be seen that lexicalization becomes less data
demanding and the learning accuracy does not de-
crease until the highest degrees of lexicalization.
Larger training corpora now lead to significantly
better learning accuracy and support lexicalization
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Figure 2: The impact of the training corpus size and the degree of lexicalization on L-DMV and L-
NDMV with different initialization methods on English and Chinese.

of greater degrees than smaller corpora. Dimin-
ishing return of big data is no longer observed,
which implies further increase in accuracy with
even more data.

Table 1 compares the result of L-NDMV (with
the largest corpus and the vocabulary size of 203
which was selected on the validation set) with pre-
vious approaches to dependency grammar induc-
tion. It can be seen that L-NDMV is competitive
with previous state-of-the-art approaches. We did
some further analysis of the learned word vectors
in L-NDMV in the supplementary material.

4.2 Results on Chinese

Figure 2(d) shows the results of the three ap-
proaches on the Chinese treebank. Because the
corpus is relatively small, we did not study the im-
pact of the corpus size. Similar to the case of En-
glish, the accuracy of lexicalized DMV degrades
with more lexicalization. However, the accuracy
with L-NDMV increases significantly with more
lexicalization even without good model initializa-
tion. Adding good initialization further boosts the
performance of L-NDMV, but the benefit of lexi-
calization is less significant (from 0.55 to 0.58).

Methods WSJ10 WSJ
Unlexicalized Approaches, with WSJ10

EVG (Headden III et al., 2009) 65.0 -
TSG-DMV (Blunsom and Cohn, 2010) 65.9 53.1
PR-S (Gillenwater et al., 2010) 64.3 53.3
HDP-DEP (Naseem et al., 2010) 73.8 -
UR-A E-DMV (Tu and Honavar, 2012) 71.4 57.0
Neural E-DMV(Jiang et al., 2016) 72.5 57.6

Systems Using Lexical Information and/or More Data
LexTSG-DMV (Blunsom and Cohn, 2010) 67.7 55.7
L-EVG (Headden III et al., 2009) 68.8 -
CS (Spitkovsky et al., 2013) 72.0 64.4
MaxEnc (Le and Zuidema, 2015) 73.2 65.8
L-NDMV + WSJ 75.1 59.5
L-NDMV + Large Corpus 77.2 63.2

Table 1: Comparison of recent grammar induction
systems.

5 Effect of Grammar Rule Probability
Initialization

We compare four initialization methods to L-
NDMV: uniform initialization, random initial-
ization, KM initialization (Klein and Manning,
2004), and good initialization as described in sec-
tion 2.3 in Figure 3. Here we trained the L-NDMV
model on the WSJ10 corpus with the same exper-
imental setup as in section 3.
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Figure 3: Comparison of four initialization meth-
ods to L-NDMV: uniform initialization, random
initialization, KM initialization and good initial-
ization.

Again, we find that good initialization leads
to better performance than KM initialization, and
both good initialization and KM initialization are
significantly better than random and uniform ini-
tialization. Note that our results are different from
those by Pate and Johnson (2016), who found that
uniform initialization leads to similar performance
to KM initialization. We speculate that it is be-
cause of the difference in the learning approaches
(we use neural networks which may be more sen-
sitive to initialization) and the training and test
corpora (we use news articles while they use tele-
phone scripts).

6 Conclusion and Future Work

We study the impact of the degree of lexicaliza-
tion and the training data size on the accuracy of
dependency grammar induction. We experimented
with lexicalized DMV (L-DMV) and our lexical-
ized extension of Neural DMV (L-NDMV). We
find that L-DMV only benefits from very small
degrees of lexicalization and moderate sizes of
training corpora. In contrast, L-NDMV can ben-
efit from big training data and lexicalization of
greater degrees, especially when enhanced with
good model initialization, and it achieves a result
that is competitive with the state-of-the-art.

In the future, we plan to study higher degrees of
lexicalization or full lexicalization, as well as even
larger training corpora (such as the Wikipedia cor-
pus). We would also like to experiment with other
grammar induction approaches with lexicalization
and big training data.
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Abstract

Unsupervised dependency parsing aims to
learn a dependency parser from unanno-
tated sentences. Existing work focus-
es on either learning generative model-
s using the expectation-maximization al-
gorithm and its variants, or learning dis-
criminative models using the discrimina-
tive clustering algorithm. In this paper, we
propose a new learning strategy that learn-
s a generative model and a discriminative
model jointly based on the dual decom-
position method. Our method is simple
and general, yet effective to capture the ad-
vantages of both models and improve their
learning results. We tested our method on
the UD treebank and achieved a state-of-
the-art performance on thirty languages.

1 Introduction

Dependency parsing is an important task in nat-
ural language processing. It identifies dependen-
cies between words in a sentence, which have been
shown to benefit other tasks such as semantic role
labeling (Lei et al., 2015) and sentence classifica-
tion (Ma et al., 2015). Supervised learning of a
dependency parser requires annotation of a train-
ing corpus by linguistic experts, which can be time
and resource consuming. Unsupervised dependen-
cy parsing eliminates the need for dependency an-
notation by directly learning from unparsed text.

Previous work on unsupervised dependency
parsing mainly focuses on learning generative
models, such as the dependency model with va-
lence (DMV) (Klein and Manning, 2004) and
combinatory categorial grammars (CCG) (Bisk
and Hockenmaier, 2012). Generative models have

∗This work was supported by the National Natural Sci-
ence Foundation of China (61503248).

many advantages. For example, the learning ob-
jective function can be defined as the marginal
likelihood of the training data, which is typical-
ly easy to compute in a generative model. In
addition, many types of inductive bias, such as
those favoring short dependency arcs (Smith and
Eisner, 2006), encouraging correlations between
POS tags (Cohen et al., 2008; Cohen and Smith,
2009; Berg-Kirkpatrick et al., 2010; Jiang et al.,
2016), and limiting center embedding (Noji et al.,
2016), can be incorporated into generative models
to achieve better parsing accuracy. However, due
to the strong independence assumption in most
generative models, it is difficult for these models
to utilize context information that has been shown
to benefit supervised parsing.

Recently, a feature-rich discriminative model
for unsupervised parsing is proposed that captures
the global context information of sentences (Grave
and Elhadad, 2015). Inspired by discriminative
clustering, learning of the model is formulated as
convex optimization of both the model parameters
and the parses of training sentences. By utilizing
language-independent rules between pairs of POS
tags to guide learning, the model achieves state-of-
the-art performance on the UD treebank dataset.

In this paper we propose to jointly train two
state-of-the-art models of unsupervised dependen-
cy parsing: a generative model called LC-DMV
(Noji et al., 2016) and a discriminative model
called Convex-MST (Grave and Elhadad, 2015).
We employ a learning algorithm based on the dual
decomposition (Dantzig and Wolfe, 1960) infer-
ence algorithm, which encourages the two models
to influence each other during training.

We evaluated our method on thirty languages
and found that the jointly trained models surpass
their separately trained counterparts in parsing ac-
curacy. Further analysis shows that the two models
positively influence each other during joint train-
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ing by implicitly sharing the inductive bias.

2 Preliminaries

2.1 DMV
The dependency model with valence (DMV) (K-
lein and Manning, 2004) is the first generative
model that outperforms the left-branching base-
line in unsupervised dependency parsing. In D-
MV, a sentence is generated by recursively apply-
ing three types of grammar rules to construct a
parse tree from the top down. The probability of
the generated sentence and parse tree is the prob-
ability product of all the rules used in the genera-
tion process. To learn the parameters (rule prob-
abilities) of DMV, the expectation maximization
algorithm is often used. Noji et al. (2016) ex-
ploited two universal syntactic biases in learning
DMV: restricting the center-embedding depth and
encouraging short dependencies. They achieved a
comparable performance with state-of-the-art ap-
proaches.

2.2 Convex-MST
Convex-MST (Grave and Elhadad, 2015) is a dis-
criminative model for unsupervised dependency
parsing based on the first-order maximum span-
ning tree dependency parser (McDonald et al.,
2005). Given a sentence, whether each possible
dependency exists or not is predicted based on a
set of handcrafted features and a valid parse tree
closest to the prediction is identified by the mini-
mum spanning tree algorithm.

For each sentence x, a first-order dependency
graph is built over the words of the sentence. The
weight of each edge is calculated by wT f(x, i, j),
where w is the parameters and f(x, i, j) is the
handcrafted feature vector of the dependency from
the i-th word to the j-th word in sentence x. For
sentence x of length n, we can represent it as ma-
trix X where each raw is a feature vector. The
parse tree y is a spanning tree of the graph and
can be represented as a binary vector with length
n×nwhere each element is 1 if the corresponding
arc is in the tree and 0 otherwise.

Learning is based on discriminative clustering
with the following objective function:

1

N

N∑

α=1

(
1

2nα
||yα −Xαw||22 − µvTyα

)
+
λ

2
||w||22

where Xα is a matrix where each row is a feature
representation f(xα, i, j) of an edge in the depen-

dency graph of sentence xα, v represents whether
each dependency arc in yα satisfies a set of pre-
specified linguistic rules, and λ and µ are hyper-
parameters. The Frank-Wolfe algorithm is em-
ployed to optimize the objective function.

2.3 Dual Decomposition

Dual decomposition (Dantzig and Wolfe, 1960), a
special case of Lagrangian relaxation, is an opti-
mization method that decomposes a hard problem
into several small sub-problems. It has been wide-
ly used in machine learning (Komodakis et al.,
2007) and natural language processing (Koo et al.,
2010; Rush and Collins, 2012).

Komodakis et al. (2007) proposed using dual
decomposition to do MAP inference for Markov
random fields. Koo et al. (2010) proposed a new
dependency parser based on dual decomposition
by combining a graph based dependency model
and a non-projective head automata. In the work
of Rush et al. (2010), they showed that dual de-
composition can effectively integrate two lexical-
ized parsing models or two correlated tasks.

2.4 Agreement based Learning

Liang et al. (2008) proposed agreement based
learning that trains several tractable generative
models jointly and encourages them to agree on
certain latent variables. To effectively train the
system, a product EM algorithm was used. They
showed that the joint model can perform better
than each independent model on the accuracy or
convergence speed. They also showed that the ob-
jective function of the work of Klein and Manning
(2004) is a special case of the product EM algo-
rithm for grammar induction. Our approach has a
similar motivation to agreement based learning but
has two important advantages. First, while their
approach only combines generative models, our
approach can make use of both generative and dis-
criminative models. Second, while their approach
requires the sub-models to share the same dynam-
ic programming structure when performing decod-
ing, our approach does not have such restriction.

3 Joint Training

We minimize the following objective function that
combines two different models of unsupervised
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dependency parsing:

J(MF,MG)

=
N∑

α=1

min
yα∈Yα

(F (xα,yα;MF) +G(xα,yα;MG))

where N is the size of training data, MF and MG

are the parameters of the first and second model
respectively, F and G are their respective learn-
ing objectives, and Yα is the set of valid depen-
dency parses of sentence xα. While in princi-
ple this objective can be used to combine many
different types of models, here we consider two
state-of-the-art models of unsupervised dependen-
cy parsing, a generative model LC-DMV (Noji
et al., 2016) and a discriminative model Convex-
MST (Grave and Elhadad, 2015). We denote the
parameters of LC-DMV by Θ and the parameters
of Convex-MST by w. Their respective objective
functions are,

F (xα,yα; Θ) = − log (PΘ(xα,yα)f(xα,yα))

G(xα,yα;w)

=
1

2nα
||yα −Xαw||22 +

λ

2N
||w||22 − µvTy

where PΘ(xα,yα) is the joint probability of sen-
tence xα and parse yα, f is a constraint factor, and
the notations in the second objective function are
explained in section 2.2.

3.1 Learning
We use coordinate descent to optimize the param-
eters of the two models. In each iteration, we first
fix the parameters and find the best dependency
parses of the training sentences (see section 3.2);
we then fix the parses and optimize the parameter-
s. The detailed algorithm is shown in Algorithm
1.

Pretraining of the two models is done by run-
ning their original learning algorithms separate-
ly. When the parses of the training sentences are
fixed, it is easy to show that the parameters of the
two models can be optimized separately. Updat-
ing the parameters Θ of LC-DMV can be done by
simply counting the number of times each rule is
used in the parse trees and then normalizing the
counts to get the maximum-likelihood probabili-
ties. The parameters w of Convex-MST can be
updated by stochastic gradient descent. After up-
dating Θ and w at each iteration, we additional-
ly train each model separately for three iterations,
which we find further improves learning.

Algorithm 1 Parameter Learning
Input: Training sentence x1,x2, ...,xN
Pre-train Θ and w
repeat

Fix Θ and w and solve the decoding problem
to get yα, α = 1, 2, . . . , N

Fix the parses and update Θ and w
until Convergence

Algorithm 2 Decoding via Dual Decomposition
Input: Sentence x, fixed parameters w and Θ
Initialize vector u of size n× n to 0
repeat
ŷ = arg miny∈Y F (x,y; Θ) + uTy
ẑ = arg minz∈Y G(x, z;w)− uT z
if ŷ = ẑ then

return ŷ
else
u = u− τ (ŷ − ẑ)

end if
until Convergence

3.2 Joint Decoding
Given a training sample x and parameters w,Θ,
the goal of decoding is to find the best parse tree:

ŷ = arg min
y∈Y

1

2n
||y−Xw||22−µvTy−logPΘ(x,y)

We employ the dual decomposition algorithm to
solve this problem (shown in Algorithm 2), where
τ represents the step size.

The most important part of the algorithm is
solving the two separate decoding problems:

ŷ = arg min
y∈Y
− log(PΘ(x,y)f(x,y)) + uTy

ẑ = arg min
z∈Y

1

2n
||z−Xw||22 − µvT z− uT z

The first decoding problem can be solved by a
modified CYK parsing algorithm that takes into
account the information in vector u. The second
decoding problem can be solved using the same al-
gorithm of Grave and Elhadad (2015) (we use the
projective version in our approach).

4 Experiments

4.1 Setup
We use UD Treebank 1.4 as our datasets. We sort-
ed the datasets in the treebank by the number of
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training sentences of length ≤ 15 and selected the
top thirty datasets, which is similar to the setup of
Noji et al. (2016). For each dataset, we trained our
method on the training data with length ≤ 15 and
tested our method on the testing data with length≤
40. We tuned the hyper-parameters of our method
on the dataset of the English language and re-
ported the results on the thirty datasets without
any further parameter tuning. We compared our
method with four baselines. The first two base-
lines are Convex-MST and LC-DMV that are in-
dependently trained. To construct the third base-
line, we used the independently trained Convex-
MST baseline to parse all the training sentences
and then used the parses to initialize the training
of LC-DMV. This can be seen as a simple method
to combine two different approaches. On the other
hand, we did not use the LC-DMV baseline to ini-
tialize Convex-MST training because the objective
function of Convex-MST is convex and therefore
the initialization does not matter.

4.2 Results
In Table 1, we compare our jointly trained models
with the four baselines. We can see that with joint
training and independent decoding, LC-DMV and
Convex-MST can achieve superior overall perfor-
mance than when they are separately trained with
or without mutual initialization. Joint decoding
with our jointly trained models performs worse
than independent decoding. We made the same
observation when applying joint decoding to the
separately trained models (not shown in the table).
We believe this is because unsupervised parsers
have relatively low accuracy and forcing them to
reconcile would not lead to better parses. On the
other hand, joint decoding during training helps
propagate useful inductive biases between models
and thus leads to better trained models.

4.3 Analysis of Parsing Results
We analyze the parsing results from the two mod-
els to see how they benefit each other with join-
t training. Note that LC-DMV limits the depth
of center embedding and encourages shorter de-
pendency length, while Convex-MST encourages
dependencies satisfying pre-specified linguistic
rules. Therefore, we would like to see whether
the jointly-trained LC-DMV produces more de-
pendencies satisfying the linguistic priors than it-
s separately-trained counterpart, and whether the
jointly-trained Convex-MST produces parse trees

Language M D D-I M-J D-J DD
A Greek 43.4 33.1 38.8 44.2 44.9 38.9
A Greek-P 50.4 43.0 44.7 50.8 52.9 44.9
Basque 50.0 45.4 54.2 52.1 55.7 50.2
Bulgarian 61.6 62.4 60.3 64.7 73.8 64.8
Czech 48.6 17.4 53.9 48.7 54.0 53.5
Czech-CAC 50.4 53.0 53.9 55.6 62.3 50.2
Dutch 45.3 34.1 56.7 48.2 43.5 40.7
Dutch-LS 42.4 27.0 16.4 43.2 41.2 36.3
English 54.0 56.0 49.8 57.3 60.1 53.4
Estonian 49.4 31.8 47.5 48.7 44.0 44.4
Finnish 44.7 26.9 39.0 44.2 43.5 31.2
Finnish-FTB 49.9 31.0 47.9 47.7 48.0 36.5
French 62.0 48.6 57.0 54.5 57.0 55.5
German 51.4 50.5 54.1 49.3 55.7 48.6
Gothic 52.7 49.9 47.3 59.6 56.4 58.0
Hindi 56.8 54.2 48.4 52.1 60.0 49.1
Italian 69.1 71.1 67.4 62.8 70.3 64.5
Japanese 44.8 43.8 43.8 42.8 45.8 41.0
Latin-ITTB 38.8 38.6 42.3 47.0 42.2 40.3
Latin-PROIEL 44.3 34.8 38.7 46.8 41.8 42.9
Norwegian 55.3 45.5 51.4 57.4 60.8 46.6
Old Church S 56.4 26.6 51.3 58.3 58.6 42.0
Polish 63.4 63.7 61.5 70.7 74.2 68.9
Portuguese 57.9 67.2 60.1 56.1 62.9 57.4
Portuguese-BR 59.3 63.1 62.0 65.5 68.8 58.3
Russian-STR 47.6 51.7 56.5 52.1 64.4 52.6
Slovak 57.4 59.3 51.9 61.7 65.9 58.7
Slovenian 54.0 49.5 56.3 65.5 69.6 56.1
Spanish 61.9 61.9 60.3 57.4 68.0 60.2
Spanish-AC 59.4 59.5 56.4 56.8 65.2 57.6
Average 52.7 47.2 50.3 54.2 56.5 49.6
Average ≤ 15 55.4 48.9 54.9 57.3 60.2 53.8

Table 1: Directed dependency accuracy on thirty datasets
with test sentences of length ≤ 40. The last row indicates
the average directed accuracy on sentences of length ≤ 15.
M (Convex-MST) and D (LC-DMV) are the independently
trained baselines. D-I is the third baseline in which the LC-
DMV training is initialized by the parses produced from the
trained Convex-MST model. With our jointly trained models,
M-J and D-J denote separate decoding and DD denotes joint
decoding.

with less center embedding and shorter dependen-
cies than its separately-trained counterpart.

Figure 1 shows the percentages of dependencies
satisfying linguistic rules when using the separate-
ly and jointly trained LC-DMV to parse the test
sentences in the English dataset. As we can see,
with joint training, LC-DMV is indeed influenced
by Convex-MST and produces more dependencies
satisfying linguistic rules.

Table 2 shows the average dependency length
when using the separately and jointly trained
Convex-MST to parse the English test dataset. The
dependency length can be seen to decrease with
joint training, showing the influence from LC-
DMV. As to center embedding depth, we find that
separately trained Convext-MST already produces
very few center embeddings of depth 2 or more,
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Figure 1: Percentages of dependencies satisfying linguistic
rules in the LC-DMV parses of the English test dataset. Noun
and Verb denote dependencies headed by nouns and verbs.

Methods Average Dependency Length
Separate Training 1.673

Joint Training 1.627

Table 2: Average dependency length in the Convex-MST
parses of the English test dataset.

so the influence from the center embedding con-
straint of LC-DMV during joint training is not ob-
vious. We note that the influence on Convex-MST
from LC-DMV during joint training is relatively
small, which may contribute to the much small-
er accuracy improvement (1.5%) of Convex-MST
with joint training in comparison with the 9.3%
improvement of LC-DMV. We conducted an ad-
ditional experiment that scaled down the Convex-
MST objective in joint training in order to in-
crease the influence of LC-DMV. The results show
that LC-DMV indeed influences Convex-MST to
a greater degree, but the parsing accuracies of the
two models decrease.

5 Conclusion

In this paper, we proposed a new learning strategy
for unsupervised dependency parsing that learns a
generative model and a discriminative model joint-
ly based on dual decomposition. We show that
with joint training, two state-of-the-art models can
positively influence each other and achieve better
performance than their separately trained counter-
parts.
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John DeNero, and Dan Klein. 2010. Painless un-
supervised learning with features. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association

for Computational Linguistics, pages 582–590. As-
sociation for Computational Linguistics.

Yonatan Bisk and Julia Hockenmaier. 2012. Simple ro-
bust grammar induction with combinatory categorial
grammars.

Shay B Cohen, Kevin Gimpel, and Noah A Smith.
2008. Logistic normal priors for unsupervised prob-
abilistic grammar induction. In Advances in Neural
Information Processing Systems, pages 321–328.

Shay B Cohen and Noah A Smith. 2009. Shared lo-
gistic normal distributions for soft parameter tying
in unsupervised grammar induction. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistic-
s, pages 74–82. Association for Computational Lin-
guistics.

George B Dantzig and Philip Wolfe. 1960. Decom-
position principle for linear programs. Operations
research, 8(1):101–111.

Edouard Grave and Noémie Elhadad. 2015. A con-
vex and feature-rich discriminative approach to de-
pendency grammar induction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1375–1384, Beijing,
China. Association for Computational Linguistics.

Yong Jiang, Wenjuan Han, and Kewei Tu. 2016. Un-
supervised neural dependency parsing. In Proceed-
ings of the 2016 Conference on Empirical Method-
s in Natural Language Processing, pages 763–771,
Austin, Texas. Association for Computational Lin-
guistics.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, page 478. Association for Com-
putational Linguistics.

Nikos Komodakis, Nikos Paragios, and Georgios Tzir-
itas. 2007. Mrf optimization via dual decomposi-
tion: Message-passing revisited. In Computer Vi-
sion, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE.

Terry Koo, Alexander M Rush, Michael Collins, Tom-
mi Jaakkola, and David Sontag. 2010. Dual de-
composition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1288–1298. Association for Compu-
tational Linguistics.

Tao Lei, Yuan Zhang, Lluı́s Màrquez, Alessandro
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Abstract

Generative neural models have recently
achieved state-of-the-art results for con-
stituency parsing. However, without a fea-
sible search procedure, their use has so far
been limited to reranking the output of ex-
ternal parsers in which decoding is more
tractable. We describe an alternative to
the conventional action-level beam search
used for discriminative neural models that
enables us to decode directly in these gen-
erative models. We then show that by im-
proving our basic candidate selection strat-
egy and using a coarse pruning function,
we can improve accuracy while explor-
ing significantly less of the search space.
Applied to the model of Choe and Char-
niak (2016), our inference procedure ob-
tains 92.56 F1 on section 23 of the Penn
Treebank, surpassing prior state-of-the-art
results for single-model systems.

1 Introduction

A recent line of work has demonstrated the success
of generative neural models for constituency pars-
ing (Dyer et al., 2016; Choe and Charniak, 2016).
As with discriminative neural parsers, these mod-
els lack a dynamic program for exact inference
due to their modeling of unbounded dependencies.
However, while discriminative neural parsers are
able to obtain strong results using greedy search
(Dyer et al., 2016) or beam search with a small
beam (Vinyals et al., 2015), we find that a simple
action-level approach fails outright in the genera-
tive setting. Perhaps because of this, the applica-
tion of generative neural models has so far been re-
stricted to reranking the output of external parsers.

Intuitively, because a generative parser defines
a joint distribution over sentences and parse trees,

probability mass will be allocated unevenly be-
tween a small number of common structural ac-
tions and a large vocabulary of lexical items.
This imbalance is a primary cause of failure for
search procedures in which these two types of ac-
tions compete directly. A notion of equal com-
petition among hypotheses is then desirable, an
idea that has previously been explored in gener-
ative models for constituency parsing (Henderson,
2003) and dependency parsing (Titov and Hen-
derson, 2010; Buys and Blunsom, 2015), among
other tasks. We describe a related state-augmented
beam search for neural generative constituency
parsers in which lexical actions compete only with
each other rather than with structural actions. Ap-
plying this inference procedure to the generative
model of Choe and Charniak (2016), we find that
it yields a self-contained generative parser that
achieves high performance.

Beyond this, we propose an enhanced candi-
date selection strategy that yields significant im-
provements for all beam sizes. Additionally, mo-
tivated by the look-ahead heuristic used in the
top-down parsers of Roark (2001) and Charniak
(2010), we also experiment with a simple coarse
pruning function that allows us to reduce the num-
ber of states expanded per candidate by several
times without compromising accuracy. Using our
final search procedure, we surpass prior state-of-
the-art results among single-model parsers on the
Penn Treebank, obtaining an F1 score of 92.56.

2 Common Framework

The generative neural parsers of Dyer et al. (2016)
and Choe and Charniak (2016) can be unified un-
der a common shift-reduce framework. Both sys-
tems build parse trees in left-to-right depth-first or-
der by executing a sequence of actions, as illus-
trated in Figure 1. These actions can be grouped
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Figure 1: A parse tree and the action sequence that
produced it, corresponding to the sentence “He
had an idea.” The tree is constructed in left-to-
right depth-first order. The tree contains only non-
terminals and words; part-of-speech tags are not
included. OPEN(X) and CLOSE(X) are rendered
as “(X” and “X)” for brevity.

into three major types: OPEN(X) and CLOSE(X),
which open and close a constituent with nontermi-
nal X ,1 respectively, and SHIFT(x), which adds
the word x to the current constituent. The proba-
bility of an action sequence (a1, . . . , aT ) is

P (a1, . . . , aT ) =
T∏

t=1

P (at | a1, . . . , at−1)

=
T∏

t=1

[softmax(Wut + b)]at ,

where ut is a continuous representation of the
parser’s state at time t, and [v]j denotes the jth
component of a vector v. We refer readers to the
respective authors’ papers for the parameterization
of ut in each model.

In both cases, the decoding process reduces to a
search for the most probable action sequence that
represents a valid tree over the input sentence. For
a given hypothesis, this requirement implies sev-
eral constraints on the successor set (Dyer et al.,
2016); e.g., SHIFT(x) can only be executed if the
next word in the sentence is x, and CLOSE(X)
cannot be executed directly after OPEN(X).

3 Model and Training Setup

We reimplemented the generative model described
in Choe and Charniak (2016) and trained it on
the Penn Treebank (Marcus et al., 1993) using

1The model described in Dyer et al. (2016) has only a
single CLOSE action, whereas the model described in Choe
and Charniak (2016) annotates CLOSE(X) actions with their
nonterminals. We present the more general version here.

(S (NP He NP) (VP had (NP an idea NP) VP) . S)
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Figure 2: A plot of the action log probabilities
logP (at | a1, . . . , at−1) for the example in Fig-
ure 1 under our main model. We observe that
OPEN and CLOSE actions have much higher prob-
ability than SHIFT actions. This imbalance is re-
sponsible for the failure of standard action-level
beam search.

their published hyperparameters and preprocess-
ing. However, rather than selecting the final model
based on reranking performance, we instead per-
form early stopping based on development set per-
plexity. We use sections 2-21 of the Penn Tree-
bank for training, section 22 for development,
and section 23 for testing. The model’s action
space consists of 26 matching pairs of OPEN and
CLOSE actions, one for each nonterminal, and
6,870 SHIFT actions, one for each preprocessed
word type. While we use this particular model for
our experiments, we note that our subsequent dis-
cussion of inference techniques is equally appli-
cable to any generative parser that adheres to the
framework described above in Section 2.

4 Action-Level Search

Given that ordinary action-level search has been
applied successfully to discriminative neural
parsers (Vinyals et al., 2015; Dyer et al., 2016),
it offers a sensible starting point for decoding in
generative models. However, even for large beam
sizes, the following pathological behavior is en-
countered for generative decoding, preventing rea-
sonable parses from being found. Regardless of
the sequence of actions taken so far, the generative
model tends to assign much higher probabilities to
structural OPEN and CLOSE actions than it does
lexical SHIFT actions, as shown in Figure 2. The
model therefore prefers to continually open new
constituents until a hard limit is reached, as the al-
ternative at each step is to take the low-probability
action of shifting the next word. The resulting
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Beam Size k 200 400 600 800 1000 2000
kw = k 87.47 89.86 90.98 91.62 91.97 92.74

kw = k/10 89.25 91.16 91.83 92.12 92.38 92.93

Table 1: Development F1 scores using word-level
search with various beam sizes k and two choices
of word beam size kw.

sequence typically has much lower overall prob-
ability than a plausible parse, but the model’s my-
opic comparison between structural and lexical ac-
tions prevents reasonable candidates from staying
on the beam. Action-level beam search with beam
size 1000 obtains an F1 score of just 52.97 on the
development set.

5 Word-Level Search

The imbalance between the probabilities of struc-
tural and lexical actions suggests that the two
kinds of actions should not compete against each
other within a beam. This leads us to consider
an augmented state space in which they are kept
separate by design, as was done by Fried et al.
(2017). In conventional action-level beam search,
hypotheses are grouped by the length of their ac-
tion history |A|. Letting Ai denote the set of ac-
tions taken since the ith shift action, we instead
group hypotheses by the pair (i, |Ai|), where i
ranges between 0 and the length of the sentence.

Let k denote the target beam size. The search
process begins with the empty hypothesis in the
(0, 0) bucket. Word-level steps are then taken
according to the following procedure for i =
0, 1, . . . , up to the length of the sentence (inclu-
sive). Beginning with the (i, 0) bucket, the suc-
cessors of each hypothesis are pooled together,
sorted by score, and filtered down to the top k.
Of those that remain, successors obtained by tak-
ing an OPEN or CLOSE action advance to the (i, 1)
bucket, whereas successors obtained from a SHIFT

action are placed in the (i+1, 0) bucket if i is less
than the sentence length, or the completed list if i
is equal to the sentence length. This process is re-
peated for the (i, 1) bucket, the (i, 2) bucket, and
so forth, until the (i+1, 0) bucket contains at least
k hypotheses. If desired, a separate word beam
size kw < k can be used at word boundaries, in
which case each word-level step terminates when
the (i + 1, 0) bucket has kw candidates instead of
k. This introduces a bottleneck that can help to
promote beam diversity.

Development set results for word-level search

had
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(NP

(PP
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(S

(NP
...

an

(NP

(S
...

an

(NP

(VP
...

an

(NP

(NX
...

an

an

(NP
...

(QP

an

an

an

(i, 0) (i, 1) (i, 2) (i+ 1, 0)

top-k fast-track

Figure 3: One step of word-level search with fast-
track candidate selection (Sections 5 and 6) for the
example in Figure 1. Grouping candidates by the
current word i ensures that low-probability lexi-
cal actions are kept separate from high-probability
structural actions at the beam level. Fast-track
selection mitigates competition between the two
types of actions within a single pool of successors.

with a variety of beam sizes and with kw = k or
kw = k/10 are given in Table 1. We observe that
performance in both cases increases steadily with
beam size. Word-level search with kw = k/10
consistently outperforms search without a bottle-
neck at all beam sizes, indicating the utility of this
simple diversity-inducing modification. The top
result of 92.93 F1 is already quite strong compared
to other single-model systems.

6 Fast-Track Candidate Selection

The word-level beam search described in Section 5
goes one step toward ameliorating the issue that
causes action-level beam search to fail, namely
the direct competition between common structural
actions with high probabilities and low-frequency
shift actions with low probabilities. However, the
issue is still present to some extent, in that succes-
sors of both types from a given bucket are pooled
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Beam Size k 200 400 600 800 1000 2000
kw = k 91.33 92.17 92.51 92.73 92.89 93.05

kw = k/10 91.41 92.34 92.70 92.94 93.09 93.18

Table 2: Development F1 scores using the settings
from Table 1, together with the fast-track selection
strategy from Section 6 with ks = k/100.

together and filtered down as a single collection
before being routed to their respective destina-
tions. We therefore propose a more direct solution
to the problem, in which a small number ks � k
of SHIFT successors are fast-tracked to the next
word-level bucket before any filtering takes place.
These fast-tracked candidates completely bypass
competition with potentially high-scoring OPEN

or CLOSE successors, allowing for higher-quality
results in practice with minimal overhead. See
Figure 3 for an illustration.

We repeat the experiments from Section 5 with
ks = k/100 and report the results in Table 2. Note
that the use of fast-tracked candidates offers sig-
nificant gains under all settings. The top result im-
proves from 92.93 to 93.18 with the use of fast-
tracked candidates, surpassing prior single-model
systems on the development set.

7 OPEN Action Pruning

At any point during the trajectory of a hypothesis,
either 0 or all 26 of the OPEN actions will be avail-
able, compared with at most 1 CLOSE action and
at most 1 SHIFT action. Hence, when available,
OPEN actions comprise most or all of a candidate’s
successor actions. To help cut down on this por-
tion of the search space, it is natural to consider
whether some of these actions could be ruled out
using a coarse model for pruning.

7.1 Coarse Model

We consider a class of simple pruning models that
condition on the c ≥ 0 most recent actions and the
next word in the sentence, and predict a probabil-
ity distribution over the next action. In the interest
of efficiency, we collapse all SHIFT actions into
a single unlexicalized SHIFT action, significantly
reducing the size of the output vocabulary.

The input vt to the pruning model at time t is
the concatenation of a vector embedding for each
action in the context (at−c, at−c+1, . . . , at−1) and
a vector embedding for the next word w:

vt = [eat−c ; eat−c+1 ; . . . ; eat−1 ; ew],

where each ej is a learned vector embedding. The
pruning model itself is implemented by feeding
the input vector through a one-layer feedforward
network with a ReLU non-linearity, then applying
a softmax layer on top:

P (at = a | a1, . . . , at−1, next-word = w)

= P (at = a | at−c, . . . , at−1, next-word = w)

= [softmax(W2max(W1vt + b1, 0) + b2)]a.

The pruning model is trained separately from the
main parsing model on gold action sequences de-
rived from the training corpus, with log-likelihood
as the objective function and a cross entropy loss.

7.2 Strategy and Empirical Lower Bound

Once equipped with a coarse model, we use it for
search reduction in the following manner. As men-
tioned above, when a hypothesis is eligible to open
a new constituent, most of its successors will be
obtained through OPEN actions. Accordingly, we
use the coarse model to restrict the set of OPEN

actions to be explored. When evaluating the pool
of successors for a given collection of hypothe-
ses during beam search, we run the coarse model
on each hypothesis to obtain a distribution over
its next possible actions, and gather together all
the coarse scores of the would-be OPEN succes-
sors. We then discard the OPEN successors whose
coarse scores lie below the top 1− p quantile for a
fixed 0 < p < 1, guaranteeing that no more than a
p-fraction of OPEN successors are considered for
evaluation. Taking p = 1 corresponds to the un-
pruned setting.

This strategy gives us a tunable hyperparameter
p that allows us to trade off between the amount
of search we perform and the quality of our re-
sults. Before testing our procedure, however, we
would first like to investigate whether there is a
principled bound on how low we can expect to set
p without a large drop in performance. A simple
estimate arises from noting that the pruning frac-
tion p should be set to a value for which most or
all of the outputs encountered in the training set
are retained. Otherwise, the pruning model would
prevent the main model from even recreating the
training data, let alone producing good parses for
new sentences.

To this end, we collect training corpus statis-
tics on the occurrences of inputs to the pruning
function and their corresponding outputs. We then
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c 1 2 3 4 5 6 7 8 9 10
0 20.0 58.4 82.4 91.0 94.9 96.8 97.9 98.6 98.9 99.2
1 54.9 80.5 91.1 95.9 97.7 98.8 99.5 99.8 99.9 100.0
2 61.2 85.0 93.8 97.4 98.6 99.5 99.8 99.9 100.0 100.0

Table 3: Cumulative distributions of the number
of unique OPEN outputs per input for an order-
c pruning function, computed over pruning inputs
with at least one OPEN output.

p 6/26 7/26 8/26 9/26 10/26 11/26 1
Dev F1 92.78 93.00 93.08 93.13 93.19 93.19 93.18

Table 4: Results when the best setting from Sec-
tion 6 is rerun with OPEN action pruning with con-
text size c = 2 and various pruning fractions p.
Lower values of p indicate more aggressive prun-
ing, while p = 1 means no pruning is performed.

compute the number of unique OPEN actions as-
sociated with inputs occurring at least 20 times,
and restrict our attention to inputs with at least
one OPEN output. The resulting cumulative dis-
tributions for context sizes c = 0, 1, 2 are given
in Table 3. If we require that our pruning frac-
tion p be large enough to recreate at least 99%
of the training data, then since there are 26 to-
tal nonterminals, approximate2 lower bounds for
p are 10/26 ≈ 0.385 for c = 0, 7/26 ≈ 0.269 for
c = 1, and 6/26 ≈ 0.231 for c = 2.

7.3 Pruning Results

We reran our best experiment from Section 6 with
an order-2 pruning function and pruning fractions
p = 6/26, . . . , 11/26. The results are given in
Table 4. We observe that performance is on par
with the unpruned setup (at most 0.1 absolute dif-
ference in F1 score) for p as low as 8/26 ≈ 0.308.
Setting p to 7/26 ≈ 0.269 results in a drop of
0.18, and setting p to 6/26 ≈ 0.231 results in a
drop of 0.40. Hence, degradation begins to occur
right around the empirically-motivated threshold
of 6/26 given above, but we can prune 1−8/26 ≈
69.2% of OPEN successors with minimal changes
in performance.

8 Final Results and Conclusion

We find that the best overall settings are a beam
size of k = 2000, a word beam size of kw = 200,
and ks = 20 fast-track candidates per step, as this

2These thresholds are not exact due to the fact that our
pruning procedure operates on collections of multiple hy-
potheses’ successors at inference time rather than the succes-
sors of an individual hypothesis.

Parser LR LP F1
Vinyals et al. (2015) – – 88.3
Shindo et al. (2012) – – 91.1
Cross and Huang (2016) 90.5 92.1 91.3
Dyer et al. (2016) – – 91.7
Liu and Zhang (2017) 91.3 92.1 91.7
Stern et al. (2017) 90.63 92.98 91.79
Our Best Result 92.57 92.56 92.56
Our Best Result (with pruning) 92.52 92.54 92.53
Vinyals et al. (2015) (ensemble) – – 90.5
Shindo et al. (2012) (ensemble) – – 92.4
Choe and Charniak (2016) (rerank) – – 92.6
Dyer et al. (2016) (rerank) – – 93.3
Fried et al. (2017) (ensemble, rerank) – – 94.25

Table 5: Comparison of F1 scores on section 23 of
the Penn Treebank. Here we only include models
trained without external silver training data. Re-
sults in the first two sections are for single-model
systems.

setup achieves both the highest probabilities un-
der the model and the highest development F1.
We report our test results on section 23 of the
Penn Treebank under these settings in Table 5 both
with and without pruning, as well as a number
of other recent results. We achieve F1 scores of
92.56 on the test set without pruning and 92.53
when 1 − 8/26 ≈ 69.2% of OPEN successors
are pruned, obtaining performance well above the
previous state-of-the-art scores for single-model
parsers. This demonstrates that the model of Choe
and Charniak (2016) works well as an accurate,
self-contained system. The fact that we match the
performance of their reranking parser using the
same generative model confirms the efficacy of
our approach. We believe that further refinements
of our search procedure can continue to push the
bar higher, such as the use of a learned heuristic
function for forward score estimation, or a more
sophisticated approximate decoding scheme mak-
ing use of specific properties of the model. We
look forward to exploring these directions in fu-
ture work.
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Abstract

In this paper we propose an end-to-
end neural CRF autoencoder (NCRF-AE)
model for semi-supervised learning of se-
quential structured prediction problems.
Our NCRF-AE consists of two parts: an
encoder which is a CRF model enhanced
by deep neural networks, and a decoder
which is a generative model trying to re-
construct the input. Our model has a uni-
fied structure with different loss functions
for labeled and unlabeled data with shared
parameters. We developed a variation of
the EM algorithm for optimizing both the
encoder and the decoder simultaneously
by decoupling their parameters. Our ex-
perimental results over the Part-of-Speech
(POS) tagging task on eight different lan-
guages, show that the NCRF-AE model
can outperform competitive systems in
both supervised and semi-supervised sce-
narios.

1 Introduction

The recent renaissance of deep learning has led
to significant strides forward in several AI fields.
In Natural Language Processing (NLP), charac-
terized by highly structured tasks, promising re-
sults were obtained by models that combine deep
learning methods with traditional structured learn-
ing algorithms (Chen and Manning, 2014; Dur-
rett and Klein, 2015; Andor et al., 2016; Wise-
man and Rush, 2016). These models combine the
strengths of neural models, that can score local
decisions using a rich non-linear representation,
with efficient inference procedures used to com-
bine the local decisions into a coherent global de-
cision. Among these models, neural variants of the
Conditional Random Fields (CRF) model (Laf-

ferty et al., 2001) are especially popular. By re-
placing the linear potentials with non-linear poten-
tial using neural networks these models were able
to improve performance in several structured pre-
diction tasks (Andor et al., 2016; Peng and Dredze,
2016; Lample et al., 2016; Ma and Hovy, 2016;
Durrett and Klein, 2015).

Despite their promise, wider adoption of these
algorithms for new structured prediction tasks can
be difficult. Neural networks are notoriously sus-
ceptible to over-fitting unless large amounts of
training data are available. This problem is exacer-
bated in the structured settings, as accounting for
the dependencies between decisions requires even
more data. Providing it through manual annotation
is often a difficult labor-intensive task.

In this paper we tackle this problem, and
propose an end-to-end neural CRF autoencoder
(NCRF-AE) model for semi-supervised learning
on sequence labeling problems.

An autoencoder is a special type of neural net,
modeling the conditional probability P (X̂|X),
where X is the original input to the model and
X̂ is the reconstructed input (Hinton and Zemel,
1994). Autoencoders consist of two parts, an en-
coder projecting the input to a hidden space, and a
decoder reconstructing the input from it.

Traditionally, autoencoders are used for gener-
ating a compressed representation of the input by
projecting it into a dense low dimensional space.
In our setting the hidden space consists of discrete
variables that comprise the output structure. These
generalized settings are described in Figure 1a. By
definition, it is easy to see that the encoder (lower
half in Figure 1a) can be modeled by a discrimina-
tive model describing P (Y |X) directly, while the
decoder (upper half in Figure 1a) naturally fits as
a generative model, describing P (X̂|Y ), where Y
is the label. In our model, illustrated in Figure 1b,
the encoder is a CRF model with neural networks
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as its potential extractors, while the decoder is a
generative model, trying to reconstruct the input.

Our model carries the merit of autoencoders,
which can exploit valuable information from unla-
beled data. Recent works (Ammar et al., 2014; Lin
et al., 2015) suggested using an autoencoder with
a CRF model as an encoder in an unsupervised set-
ting. We significantly expand on these works and
suggest the following contributions:

1. We propose a unified model seamlessly ac-
commodating both unlabeled and labeled data.
While past work focused on unsupervised struc-
tured prediction, neglecting the discriminative
power of such models, our model easily sup-
ports learning in both fully supervised and semi-
supervised settings. We developed a variation
of the Expectation-Maximization (EM) algorithm,
used for optimizing the encoder and the decoder
of our model simultaneously.

2. We increase the expressivity of the traditional
CRF autoencoder model using neural networks as
the potential extractors, thus avoiding the heavy
feature engineering necessary in previous works.

Interestingly, our model’s predictions, which
unify the discriminative neural CRF encoder and
the generative decoder, have led to an improved
performance over the highly optimized neural
CRF (NCRF) model alone, even when trained in
the supervised settings over the same data.

3. We demonstrate the advantages of our model
empirically, focusing on the well-known Part-
of-Speech (POS) tagging problem over 8 differ-
ent languages, including low resource languages.
In the supervised setting, our NCRF-AE outper-
formed the highly optimized NCRF. In the semi-
supervised setting, our model was able to suc-
cessfully utilize unlabeled data, improving on the
performance obtained when only using the la-
beled data, and outperforming competing semi-
supervised learning algorithms.

Furthermore, our newly proposed algorithm
is directly applicable to other sequential learn-
ing tasks in NLP, and can be easily adapted to
other structured tasks such as dependency parsing
or constituent parsing by replacing the forward-
backward algorithm with the inside-outside algo-
rithm. All of these tasks can benefit from semi-
supervised learning algorithms.1

1Our code and experimental set up will be available at
https://github.com/cosmozhang/NCRF-AE

2 Related Work

Neural networks were successfully applied to
many NLP tasks, including tagging (Ma and
Hovy, 2016; Mesnil et al., 2015; Lample et al.,
2016), parsing (Chen and Manning, 2014), text
generation (Sutskever et al., 2011), machine trans-
lation (Bahdanau et al., 2015), sentiment anal-
ysis (Kim, 2014) and question answering (An-
dreas et al., 2016). Most relevant to this work are
structured prediction models capturing dependen-
cies between decisions, either by modeling the de-
pendencies between the hidden representations of
connected decisions using RNN/LSTM (Vaswani
et al., 2016; Katiyar and Cardie, 2016), by explic-
itly modeling the structural dependencies between
output predictions (Durrett and Klein, 2015; Lam-
ple et al., 2016; Andor et al., 2016), or by combin-
ing the two approaches (Socher et al., 2013; Wise-
man and Rush, 2016).

In contrast to supervised latent variable models,
such as the Hidden Conditional Random Fields in
(Quattoni et al., 2007), which utilize additional la-
tent variables to infer for supervised structure pre-
diction, we do not presume any additional latent
variables in our NCRF-AE model in both super-
vised and semi-supervised setting.

The difficulty of providing sufficient super-
vision has motivated work on semi-supervised
and unsupervised learning for many of these
tasks (McClosky et al., 2006; Spitkovsky et al.,
2010; Subramanya et al., 2010; Stratos and
Collins, 2015; Marinho et al., 2016; Tran et al.,
2016), including several that also used autoen-
coders (Ammar et al., 2014; Lin et al., 2015; Miao
and Blunsom, 2016; Kociský et al., 2016; Cheng
et al., 2017). In this paper we expand on these
works, and suggest a neural CRF autoencoder, that
can leverage both labeled and unlabeled data.

3 Neural CRF Autoencoder

In semi-supervised learning the algorithm needs to
utilize both labeled and unlabeled data. Autoen-
coders offer a convenient way of dealing with both
types of data in a unified fashion.

A generalized autoencoder (Figure 1a) tries to
reconstruct the input X̂ given the original inputX ,
aiming to maximize the log probability P (X̂|X)
without knowing the latent variable Y explicitly.
Since we focus on sequential structured prediction
problems, the encoding and decoding processes
are no longer for a single data point (x, y) (x if
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unlabeled), but for the whole input instance and
output sequence (x,y) (x if unlabeled). Addition-
ally, as our main purpose in this study is to recon-
struct the input with precision, x̂ is just a copy of
x.

Encoder

Decoder

x̂t�1 x̂t+1x̂t

ytyt�1 yt+1

X

Y

X̂

x

(a) A generalized
autoencoder.

Encoder

Decoder

x̂t�1 x̂t+1x̂t

ytyt�1 yt+1

X

Y

X̂

x

(b) The neural CRF autoencoder
model in this work.

Figure 1: On the left is a generalized autoencoder,
of which the lower half is the encoder and the up-
per half is the decoder. On the right is an illus-
tration of the graphical model of our NCRF-AE
model. The yellow squares are interactive poten-
tials among labels, and the green squares represent
the unary potentials generated by the neural net-
works.

As shown in Figure 1b, our NCRF-AE model
consists of two parts: the encoder (the lower half)
is a discriminative CRF model enhanced by deep
neural networks as its potential extractors with en-
coding parameters Λ, describing the probability
of a predicted sequence of labels given the input;
the decoder (the upper half) is a generative model
with reconstruction parameters Θ, modeling the
probability of reconstructing the input given a se-
quence of labels. Accordingly, we present our
model mathematically as follows:

PΘ,Λ(x̂|x) =
∑

y

PΘ,Λ(x̂,y|x)

=
∑

y

PΘ(x̂|y)PΛ(y|x),

where PΛ(y|x) is the probability given by the
neural CRF encoder, and PΘ(x̂|y) is the proba-
bility produced by the generative decoder.

When making a prediction, the model tries to
find the most probable output sequence by per-
forming the following inference procedure using
the Viterbi algorithm:

y∗ = arg max
y

PΘ,Λ(x̂,y|x).

To clarify, as we focus on POS tagging prob-
lems in this study, in the unsupervised setting

where the true POS tags are unknown, the labels
used for reconstruction are actually the POS tags
being induced. The labels induced here are core-
spoding to the hidden nodes in a generalized au-
toencoder model.

3.1 Neural CRF Encoder

In a CRF model, the probability of predicted labels
y, given sequence x as input is modeled as

PΛ(y|x) =
eΦ(x,y)

Z
,

where Z =
∑
ỹ

eΦ(x,ỹ) is the partition function that

marginalize over all possible assignments to the
predicted labels of the sequence, and Φ(x,y) is
the scoring function, which is defined as:

Φ(x,y) =
∑

t

φ(x, yt) + ψ(yt−1, yt).

The partition function Z can be computed effi-
ciently via the forward-backward algorithm. The
term φ(x, yt) corresponds to the score of a par-
ticular tag yt at position t in the sequence, and
ψ(yt−1, yt) represents the score of transition from
the tag at position t − 1 to the tag at position t.
In our NCRF-AE model, φ(x, yt) is described by
deep neural networks while ψ(yt−1, yt) by a tran-
sition matrix. Such a structure allows for the use
of distributed representations of the input, for in-
stance, the word embeddings on a continuous vec-
tor space (Mikolov et al., 2013).

Typically in our work, φ(x, yt) is modeled
jointly by a multi-layer perceptron (MLP) that
utilizes the word-level information, and a bi-
directional long-short term memory (LSTM) neu-
ral network (Hochreiter and Urgen Schmidhuber,
1997) that captures the character level information
within each word. A bi-directional structure can
extract character level information from both di-
rections, with which we expect to catch the pre-
fix and suffix information of words in an end-
to-end system, rather than using hand-engineered
features. The bi-directional LSTM neural network
consumes character embeddings ec ∈ Rk1 as in-
put, where k1 is the dimensionality of the charac-
ter embeddings. A normal LSTM can be denoted

1703



as:

it = σ(Weiect +Whiht−1 + bi),

ft = σ(Wefect +Whfht−1 + bf ),

ot = σ(Weoect +Whoht−1 + bo),

gt = Relu(Wecect +Whcht−1 + bc),

ct = ft � ct−1 + it � gt,
ht = ot � tanh(ct),

where � denotes element-wise multiplication.
Then a bi-directional LSTM neural network ex-
tends it as follows, by denoting the procedure of
generating ht asH:
−→
h t = H(W

e
−→
h
ect +W−→

h
−→
h

−→
h t−1 + b−→

h
),

←−
h t = H(W

e
←−
h
ect +W←−

h
←−
h

←−
h t−1 + b←−

h
),

where ect here is the character embedding for
character c in position t in a word.

The inputs to the MLP are word embed-
dings ev ∈ Rk2 for each word v, where k2 is
the dimensionality of the vector, concatenated
with the final representation generated by the
bi-directional LSTM over the characters of that
word: u = [ev;

−→
h v;
←−
h v]. In order to leverage the

capacity of the CRF model, we use a word and its
context together to generate the unary potential.
More specifically, we adopt a concatenation vt =
[ut−(w−1)/2; · · · ;ut−1;ut;ut+1; · · · ;ut+(w−1)/2]
as the inputs to the MLP model, where t denotes
the position in a sequence, and w being an odd
number indicates the context size. Further, in
order to enhance the generality of our model, we
add a dropout layer on the input right before the
MLP layer as a regularizer. Notice that different
from a normal MLP, the activation function of
the last layer is no more a softmax function, but
a linear function generates the log-linear part
φt(x, yt) of the CRF model:

ht = Relu(Wvt + b)

φt = wᵀ
yht + by.

The transition score ψ(yt−1, yt) is a single
scalar representing the interactive potential. We
use a transition matrix Ψ to cover all the transi-
tions between different labels, and Ψ is part of the
encoder parameters Λ.

All the parameters in the neuralized encoder are
updated when the loss function is minimized via
error back-propagation through all the structures
of the neural networks and the transition matrix.

The detailed structure of the neural CRF en-
coder is demonstrated in Fig 2. Note that the
MLP layer is also interchangeable with a recur-
rent neural network (RNN) layer or LSTM layer.
But in our pilot experiments, we found a single
MLP structure yields better performance, which
we conjecture is due to over-fitting caused by the
high complexity of those alternatives.

T h a t i s a m o n e y m a k e r

l1

r1

e1

u1

PRON

l2

r2

e2

u2

VERB

l3

r3

e3

u3

DET

l4

r4

e4

u4

NOUN

l5

r5

e5

u5

NOUN

Figure 2: A demonstration of the neural CRF en-
coder. lt and rt are the output of the forward and
backward character-level LSTM of the word at po-
sition t in a sentence, and et is the word-level em-
bedding of that word. ut is the concatenation of
et, lt and rt, denoted by blue dashed arrows.

3.2 Generative Decoder

In our NCRF-AE, we assume the generative pro-
cess follows several multinomial distributions:
each label y has the probability θy→x to recon-
struct the corresponding word x, i.e., P (x|y) =
θy→x. This setting naturally leads to a constraint∑
x
θy→x = 1. The number of parameters of the

decoder is |Y| × |X |. For a whole sequence,
the reconstruction probability is PΘ(x̂|y) =∏
t
P (x̂t|yt).

4 A Unified Learning Framework

We first constructed two loss functions for labeled
and unlabeled data using the same model. Our
model is trained in an on-line fashion: given a
labeled or unlabeled sentence, our NCRF-AE op-
timizes the loss function by choosing the corre-
sponding one. In an analogy to coordinate de-
scent, we optimize the loss function of the NCRF-
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AE by alternatively updating the parameters Θ in
the decoder and the parameters Λ in the encoder.
The parameters Θ in the decoder are updated via
a variation of the Expectation-Maximization (EM)
algorithm, and the the parameters Λ in the encoder
are updated through a gradient-based method due
to the non-convexity of the neuralized CRF. In
contrast to the early autoencoder models (Ammar
et al., 2014; Lin et al., 2015), our model has two
distinctions: First, we have two loss functions to
model labeled example and unlabeled examples;
Second, we designed a variant of EM algorithm to
alternatively learn the parameters of the encoder
and the decoder at the same time.

4.1 Unified Loss Functions for Labeled and
unlabeled Data

For a sequential input with labels, the complete
data likelihood given by our NCRF-AE is

PΘ,Λ(x̂,y|x) = PΘ(x̂|y)PΛ(y|x)

=

[∏

t

P (x̂t|yt)
]
eΦ(x,y)

Z

=
e

∑
t
st(x,y)

Z
,

where

st(x,y) = logP (xt|yt) +φ(x, yt) +ψ(yt−1, yt).

If the input sequence is unlabeled, we can sim-
ply marginalize over all the possible assignment to
labels. The probability is formulated as

PΘ,Λ(x̂|x) =
∑

y

P (x̂,y|x)

=
U

Z
,

where U =
∑
y
e

∑
t
st(x,y)

.

Our formulation have two advantages. First,
term U is different from but in a similar form
as term Z, such that to calculate the probability
P (x̂|x) for an unlabeled sequence, the forward-
backward algorithm to compute the partition func-
tion Z can also be applied to compute U effi-
ciently. Second, our NCRF-AE highlights a uni-
fied structure of different loss functions for labeled
and unlabeled data with shared parameters. Thus
during training, our model can address both la-
beled and unlabeled data well by alternating the

loss functions. Using negative log-likelihood as
our loss function, if the data is labeled, the loss
function is:

lossl = − logPΘ,Λ(x̂,y|x)

= −(
∑

t

st(x,y)− logZ)

If the data is unlabeled, the loss function is:

lossu = − logPΘ,Λ(x̂|x)

= −(logU − logZ).

Thus, during training, based on whether the en-
countered data is labeled or unlabeled, our model
can select the appropriate loss function for learn-
ing parameters. In practice, we found for labeled
data, using a combination of lossl and lossu actu-
ally yields better performance.

5 Mixed Expectation-Maximization
Algorithm

The Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) was applied to a wide
range of problems. Generally, it establishes a
lower-bound of the objective function by using
Jensen’s Inequality. It first tries to find the pos-
terior distribution of the latent variables, and then
based on the posterior distribution of the latent
variables, it maximizes the lower-bound. By al-
ternating expectation (E) and maximization (M)
steps, the algorithm iteratively improves the lower-
bound of the objective function.

In this section we describe the mixed
Expectation-Maximization (EM) algorithm
used in our study. Parameterized by the encoding
parameters Λ and the reconstruction parameters
Θ, our NCRF-AE consists of the encoder and the
decoder, which together forms the log-likelihood
a highly non-convex function. However, a careful
observation shows that if we fix the encoder, the
lower bound derived in the E step, is convex with
respect to the reconstruction parameters Θ in the
M step. Hence, in the M step we can analytically
obtain the global optimum of Θ. In terms of
the reconstruction parameters Θ by fixing Λ,
we describe our EM algorithm in iteration t as
follows:

In the E-step, we let Q(yi) = P (yi|xi, x̂i), and
treat yi the latent variable as it is not observable in
unlabeled data. We derive the lower-bound of the
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log-likelihood using Q(yi):

∑

i

logP (x̂i|xi) =
∑

i

log
∑

yi

Q(yi)
P (x̂i,yi|xi)

Q(yi)

≥
∑

i

∑

yi

Q(yi) log
P (x̂i,yi|xi)

Q(yi)
,

where Q(yi) is computed using parameters
Θ(t−1) in the previous iteration t− 1.

In the M-step, we try to improve the aforemen-
tioned lower-bound using all examples:

arg max
Θ(t)

∑

i

∑

yi

Q(yi) log
PΘ(t)(x̂i|yi)PΛ(yi|xi)

Q(yi)

arg max
Θ(t)

∑

i

∑

yi

Q(yi) logPΘ(t)(x̂i|yi) + const

arg max
Θ(t)

∑

y→x
log θ(t)

y→x
∑

y

Q(y)C(y, x)

arg max
Θ(t)

∑

y→x
log θ(t)

y→xEy∼Q[C(y, x)]

s.t.
∑

x

θ(t)
y→x = 1.

In this formulation, const is a constant with re-
spect to the parameters we are updating. Q(y)
is the distribution of a label y at any position by
marginalizing labels at all other positions in a se-
quence. By denoting C(y, x) as the number of
times that (x, y) co-occurs, Ey∼Q

Θ(t−1)
[C(y, x)]

is the expected count of a particular reconstruc-
tion at any position, which can also be calculated
using Baum-Welch algorithm (Welch, 2003), and
can be summed over for all examples in the dataset
(In the labeled data, it is just a real count). The al-
gorithm we used to calculate the expected count
is described in Algorithm 1. Therefore, it can
be shown that the aforementioned global optimum
can be calculated by simply normalizing the ex-
pected counts. In terms of the encoder’s parame-
ters Λ, they are first updated via a gradient-based
optimization before each EM iteration. Based on
the above discussion, our Mixed EM Algorithm is
presented in Algorithm 2.

Algorithm 1 Obtain Expected Count (Te)

Require: the expected count table Te
1: for an unlabeled data example xi do
2: Compute the forward messages:
α(y, t) ∀y, t. . t is the position in a
sequence.

3: Compute the backward messages:
β(y, t) ∀y, t.

4: Calculate the expected count for each x in
xi: P (yt|xt) ∝ α(y, t)× β(y, t).

5: Te(xt, yt)← Te(xt, yt) + P (yt|xt) . Te
is the expected count table.

6: end for

Algorithm 2 Mixed Expectation-Maximization
1: Initialize expected count table Te using la-

beled data {x,y}li and use it as Θ(0) in the
decoder.

2: Initialize Λ(0) in the encoder randomly.
3: for t in epochs do
4: Train the encoder on labeled data {x,y}l

and unlabeled data {x}u to update Λ(t−1) to
Λ(t).

5: Re-initialize expected count table Te with
0s.

6: Use labeled data {x,y}l to calculate real
counts and update Te.

7: Use unlabeled data {x}u to compute the
expected counts with parameters Λ(t) and
Θ(t−1) and update Te.

8: Obtain Θ(t) globally and analytically
based on Te.

9: end for

This mixed EM algorithm is a combination of
the gradient-based approach to optimize the en-
coder by minimizing the negative log-likelihood
as the loss function, and the EM approach to up-
date the decoder’s parameters by improving the
lower-bound of the log-likelihood.

6 Experiments

6.1 Experimental Settings

Dataset We evaluated our model on the POS
tagging task, in both the supervised and semi-
supervised learning settings, over eight different
languages from the UD (Universal Dependencies)
1.4 dataset (Mcdonald et al., 2013). The task is
defined over 17 different POS tags, used across
the different languages. We followed the original
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English French German Italian Russian Spanish Indonesian Croatian
Tokens 254830 391107 293088 272913 99389 423346 121923 139023
Training 12543 14554 14118 12837 4029 14187 4477 5792
Development 2002 1596 799 489 502 1552 559 200
Testing 2077 298 977 489 499 274 297 297

Table 1: Statistics of different UD languages used in our experiments, including the number of tokens,
and the number of sentences in training, development and testing set respectively.

UD division for training, development and test-
ing in our experiments. The statistics of the data
used in our experiments are described in table 1.
The UD dataset includes several low-resource lan-
guages which are of particular interest to our semi-
supervised model.
Input Representation and Neural Architecture
Our model uses word embeddings as input. In our
pilot experiments, we compared the performance
on the English dataset of the pre-trained embed-
ding from Google News (Mikolov et al., 2013)
and the embeddings we trained directly on the UD
dataset using the skip-gram algorithm (Mikolov
et al., 2013). We found these two types of em-
beddings yield very similar performance on the
POS tagging task. So in our experiments, we used
embeddings of different languages directly trained
on the UD dataset as input to our model, whose
dimension is 200. For the MLP neural network
layer, the number of hidden nodes in the hidden
layer is 20, which is the same for the hidden layer
in the character-level LSTM. The dimension of the
character-level embeddings sent into the LSTM
layer is 15, which is randomly initialized. In or-
der to incorporate the global information of the in-
put sequence, we set the context window size to 3.
The dropout rate for the dropout layer is set to 0.5.

Learning We used ADADELTA (Zeiler, 2012)
to update parameters Λ in the encoder, as
ADADELTA dynamically adapts learning rate
over time using only first order information
and has minimal computational overhead beyond
vanilla stochastic gradient descent (SGD). The au-
thors of ADADELTA also argue this method ap-
pears robust to noisy gradient information, dif-
ferent model architecture choices, various data
modalities and selection of hyper-parameters. We
observed that ADADELTA indeed had faster con-
vergence than vanilla SGD optimization. In our
experiments, we include word embeddings and
character embeddings as parameters as well. We
used Theano to implement our algorithm, and all

the experiments were run on NVIDIA GPUs. To
prevent over-fitting, we used the “early-stop” strat-
egy to determine the appropriate number of epochs
during training. We did not take efforts to tune
those hyper-parameters and they remained the
same in both our supervised and semi-supervised
learning experiments.

6.2 Supervised Learning

In these settings our Neural CRF autoencoder
model had access to the full amount of annotated
training data in the UD dataset. As described in
Section 5, the decoder’s parameters Θ were esti-
mated using real counts from the labeled data.

We compared our model with existing sequence
labeling models including HMM, CRF, LSTM
and neural CRF (NCRF) on all the 8 languages.
Among these models, the NCRF can be most di-
rectly compared to our model, as it is used as the
base of our model, but without the decoder (and as
a result, can only be used for supervised learning).

The results, summarized in Table 2, show that
our NCRF-AE consistently outperformed all other
systems, on all the 8 languages, including Russian,
Indonesian and Croatian which had considerably
less data compared to other languages. Interest-
ingly, the NCRF consistently came second to our
model, which demonstrates the efficacy of the ex-
pressivity added to our model by the decoder, to-
gether with an appropriate optimization approach.

To better understand the performance difference
by different models, we performed error analy-
sis, using an illustrative example, described in Fig-
ure 3.

In this example, the LSTM incorrectly predicted
the POS tag of the word “search” as a verb, instead
of a noun (part of the NP “nice search engine”),
while predicting correctly the preceding word,
“nice”, as an adjective. We attribute the error to
LSTM lacking an explicit output transition scor-
ing function, which would penalize the ungram-
matical transition between “ADJ” and “VERB”.
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Models English French German Italian Russian Spanish Indonesian Croatian
HMM 86.28% 91.23% 85.59% 92.03% 79.82% 91.31% 89.40% 86.98%
CRF 89.96% 93.40% 86.83% 94.07% 83.38% 91.47% 88.63% 86.90%
LSTM 90.50% 94.16% 88.40% 94.96% 84.87% 93.17% 89.42% 88.95%
NCRF 91.52% 95.07% 90.27% 96.20% 93.37% 93.34% 92.32% 93.85%
NCRF-AE 92.50% 95.28% 90.50% 96.64% 93.60% 93.86% 93.96% 94.32%

Table 2: Supervised learning accuracy of POS tagging on 8 UD languages using different models

Models English French German Italian Russian Spanish Indonesian Croatian
NCRF (OL) 88.01% 93.38% 90.43% 91.75% 86.63% 91.22% 88.35% 86.11%
NCRF-AE
(OL)

88.41% 93.69% 90.75% 92.17% 87.82% 91.70% 89.06% 87.92%

HMM-EM 79.92% 88.15% 77.01% 84.57% 72.96% 86.77% 83.61% 77.20%
NCRF-AE
(HEM)

86.79% 92.83% 89.78% 90.68% 86.39% 91.30% 88.86% 86.55%

NCRF-AE 89.43% 93.89% 90.99% 92.85% 88.93% 92.17% 89.41% 89.14%

Table 3: Semi-supervised learning accuracy of POS tagging on 8 UD languages. HEM means hard-EM,
used as a self-training approach, and OL means only 20% of the labeled data is used and no unlabeled
data is used.

Text Google is a nice search engine .

Gold PROPN VERB DET ADJ NOUN NOUN PUNCT

NCRF-AE PROPN VERB DET ADJ NOUN NOUN PUNCT

NCRF NOUN VERB DET ADJ NOUN NOUN PUNCT

LSTM PROPN VERB DET ADJ VERB NOUN PUNCT

Figure 3: An example from the test set to compare
the predicted results of our NCRF-AE model, the
NCRF model and the LSTM model.

The NCRF, which does score such transitions,
correctly predicted that word. However, it incor-
rectly predicted “Google” as a noun rather than
a proper-noun. This is a subtle mistake, as the
two are grammatically and semantically similar.
This mistake appeared consistently in the NCRF
results, while NCRF-AE predictions were correct.

We attribute this success to the superior ex-
pressivity of our model: The prediction is done
jointly by the encoder and the decoder, as the re-
construction decision is defined over all output
sequences, picking the jointly optimal sequence.
From another perspective, our NCRF-AE model
is a combination of discriminative and generative
models, in that sense the decoder can be regarded
as a soft constraint that supplements the encoder.
Such that, the decoder performs as a regularizer to
check-balance the choices made by the encoder.

6.3 Semi-supervised Learning

In the semi-supervised settings we compared our
models with other semi-supervised structured pre-
diction models. In addition, we studied how vary-
ing the amount of unlabeled data would change the
performance of our model.

As described in Sec. 5, the decoder’s parame-
ters Θ are initialized by the labeled dataset using
real counts and updated in training.

6.3.1 Varying Unlabeled Data Proportion

We first experimented with varying the proportion
of unlabeled data, while fixing the amount of la-
beled data. We conducted these experiments over
two languages, English and low-resource language
Croatian. We fixed the proportion of labeled data
at 20%, and gradually added more unlabeled data
from 0% to 20% (from full supervision to semi-
supervision). The unlabeled data was sampled
from the same dataset (without overlapping with
the labeled data), with the labels removed. The
results are shown in Figure 4.

The left most point of both sub-figures is the
accuracy of fully supervised learning with 20% of
the whole data. As we can observe, the tagging
accuracy increased as the proportion of unlabeled
data increased.
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Figure 4: UD English and Croatian POS tag-
ging accuracy versus increasing proportion of un-
labeled sequences using 20% labeled data. The
green straight line is the performance of the neural
CRF, trained over the labeled data.

6.3.2 Semi-supervised POS Tagging on
Multiple Languages

We compared our NCRF-AE model with other
semi-supervised learning models, including the
HMM-EM algorithm and the hard-EM version of
our NCRF-AE. The hard EM version of our model
can be considered as a variant of self-training, as
it infers the missing labels using the current model
in the E-step, and uses the real counts of these la-
bels to update the model in the M-step. To contex-
tualize the results, we also provide the results of
the NCRF model and the supervised version our
NCRF-AE model trained on 20% of the data. We
set the proportion of labeled data to 20% for each
language and set the proportion of unlabeled data
to 50% of the dataset. There was no overlap be-
tween labeled and unlabeled data.

The results are summarized in Table 3. Simi-
lar to the supervised experiments, the supervised
version of our NCRF-AE, trained over 20% of the
labeled data, outperforms the NCRF model. Our
model was able to successfully use the unlabeled
data, leading to improved performance in all lan-
guages, over both the supervised version of our
model, as well as the HMM-EM and Hard-EM
models that were also trained over both the labeled
and unlabeled data.

6.3.3 Varying Sizes of Labeled Data on
English

As is known to all, semi-supervised approaches
tend to work well when given a small size of la-
beled training data. But with the increase of la-
beled training data size, we might get diminishing
effectiveness. To verify this conjecture, we con-
ducted additional experiments to show how vary-
ing sizes of labeled training data affect the effec-
tiveness of our NCRF-AE model. In these exper-
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10L+90U 20L+80U 30L+70U 40L+60U 50L+50U

NCRF-AE-Semi NCRF-AE-Sup

Figure 5: Performance of the NCRF-AE model on
different proportion of labeled and unlabeled data.
The green line shows the results on only labeled
data, and the red line on both labeled and unla-
beled data. The difference between the red line
and the green line are gradually vanishing.

iments, we gradually increased the proportion of
labeled data, and in accordance decreased the pro-
portion of unlabeled data.

The results of these experiments are demon-
strated in Figure 5. As we speculated, we ob-
served diminishing effectiveness when increasing
the proportion of labeled data in training.

7 Conclusion

We proposed an end-to-end neural CRF autoen-
coder (NCRF-AE) model for semi-supervised se-
quence labeling. Our NCRF-AE is an integration
of a discriminative model and generative model
which extends the generalized autoencoder by us-
ing a neural CRF model as its encoder and a gen-
erative decoder built on top of it. We suggest a
variant of the EM algorithm to learn the parame-
ters of our NCRF-AE model.

We evaluated our model in both supervised
and semi-supervised scenarios over multiple lan-
guages, and show it can outperform other super-
vised and semi-supervised methods. Additional
experiments suggest how varying sizes of labeled
training data affect the effectiveness of our model.

These results demonstrate the strength of our
model, as it was able to utilize the small amount
of labeled data and exploit the hidden information
from the large amount of unlabeled data, with-
out additional feature engineering which is of-
ten needed in order to get semi-supervised and
weakly-supervised systems to perform well. The
superior performance on the low resource lan-
guage also suggests its potential in practical use.
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Abstract

We present supertagging-based models for
Tree Adjoining Grammar parsing that use
neural network architectures and dense
vector representation of supertags (ele-
mentary trees) to achieve state-of-the-art
performance in unlabeled and labeled at-
tachment scores. The shift-reduce pars-
ing model eschews lexical information en-
tirely, and uses only the 1-best supertags to
parse a sentence, providing further support
for the claim that supertagging is “almost
parsing.” We demonstrate that the embed-
ding vector representations the parser in-
duces for supertags possess linguistically
interpretable structure, supporting analo-
gies between grammatical structures like
those familiar from recent work in distri-
butional semantics. This dense represen-
tation of supertags overcomes the draw-
backs for statistical models of TAG as
compared to CCG parsing, raising the pos-
sibility that TAG is a viable alternative for
NLP tasks that require the assignment of
richer structural descriptions to sentences.

1 Introduction

Recent work has applied Combinatory Categorial
Grammar (CCG, Steedman and Baldridge (2011))
to the problem of broad-coverage parsing in order
to derive grammatical representations that are suf-
ficiently rich to support tasks requiring deeper rep-
resentation of a sentence’s meaning (Lewis et al.,
2015; Reddy et al., 2016; Nadejde et al., 2017).
Yet CCG is only one of a number of mildly
context-sensitive grammar formalisms that can
provide such rich representations, and each has
distinct advantages. In this paper we explore the
applicability of another formalism, Tree Adjoin-

ing Grammar (TAG, Joshi and Schabes (1997)), to
the task of broad-coverage parsing.

TAG and CCG share the property of lexicaliza-
tion: words are associated with elementary units
of grammatical structure which are composed dur-
ing a derivation using one of a small set of oper-
ations to produce a parse tree. The task of pars-
ing involves the construction of a derivation tree
that encodes the application of this set of actions
to a set of elementary lexically-associated objects.
TAG differs from CCG in having an even richer set
of lexical units, so that the identification of these
units in a derivation could be even more informa-
tive for subsequent tasks involving semantic inter-
pretation, translation and the like, which have been
the focus of CCG-based work.

The elementary units of CCG and TAG (cate-
gories for CCG, and elementary trees for TAG)
determine a word’s combinatory potential, in a
way that is not the case for the usual part-of-
speech tags used in parsing. Indeed, the assign-
ment of elementary objects to the words in a sen-
tence almost determines the possible parse for a
sentence. The near uniqueness of a parse given a
sequence of lexical units motivated Bangalore and
Joshi (1999) to decompose the parsing problem
into two phases: supertagging, where elementary
objects, or supertags, are assigned to each word,
and stapling, where these supertags are combined
together. They claim that given a perfect supertag-
ger, a parse of a sentence follows from syntac-
tic features provided by the supertags, and there-
fore, supertagging is “almost parsing.” This claim
has been confirmed in subsequent work: it has
been shown that the task of parsing given a gold
sequence of supertags can achieve high accuracy
(TAG: (Bangalore et al., 2009; Chung et al., 2016),
CCG: (Lewis et al., 2016)). However, it has also
been revealed that the difficulty of supertagging,
because of the large set of possible supertags, re-
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sults in inaccuracies that prevent us from effec-
tively utilizing syntactic information provided by
the imperfect set of supertags that are assigned.
This problem is even more severe for TAG parsing.
TAG differs from CCG in having a smaller set of
combinatory operations, but a more varied set of
elementary objects: the TAG-annotated version of
the Penn Treebank that we use (Chen, 2001) in-
cludes 4727 distinct supertags (2165 occur once)
while the CCG-annotated version (Hockenmaier
and Steedman, 2007) includes 1286 distinct su-
pertags (439 occur once). As a result, building
a robust, broad-coverage TAG parser has proven
difficult.

In this work, we show that robust supertagging-
based parsing of TAG is indeed possible by us-
ing a dense representation of supertags that is in-
duced using neural networks. In the first half of
the paper, we present a neural network supertag-
ger based on a bi-directional LSTM (BLSTM) ar-
chitecture, inspired by the work of Xu (2015) and
Lewis et al. (2016) in CCG, and we make cru-
cial use of synchronized dropout (Gal and Ghahra-
mani, 2016). This supertagger achieves the state-
of-the-art accuracy on the WSJ Penn Treebank.
When combined with an existing TAG chart parser
(Bangalore et al., 2009), the LSTM-based su-
pertagger already yields state-of-the-art unlabeled
and labeled attachment scores.

In the second half of the work, we present
a shift-reduce parsing model based on a feed-
forward neural network that makes use of dense
supertag embeddings. Although this approach
has much in common with the approach to shift-
reduce CCG parsing taken by Zhang and Clark
(2011), it differs in its additive structures in su-
pertag embeddings. When a CCG operation com-
bines two supertags (categories), it yields a re-
sulting category that is typically distinct from the
two that are combined, and CCG shift-reduce
parsers (e.g. Xu (2015)) make use of this result
to guide subsequent actions. When the resulting
category is the same as some lexical category as-
signment (for example when function application
over (S\NP )/NP NP yields S\NP , the same
as an intransitive verb), the parser will benefit from
sharing statistics across these contexts. For TAG
however, substitution or adjoining of one elemen-
tary tree into another does not change the nature of
the elementary tree into which the operation has
taken place. Consequently, the results of partial

derivations are not identified with atomic lexical
entries, resulting in sparser data. We propose a so-
lution to this problem for TAG by introducing vec-
tor representations that are added to the supertag
embedding when an operation has been applied to
an elementary tree. Not only does this result in a
TAG-parser with the best known performance over
the WSJ Penn Treebank, but the resulting supertag
embeddings turn out to contain linguistically sen-
sible linear structure that we illustrate.

2 TAG Parsing and Dependency Parsing

TAG is a tree-rewriting system, and typically the
elementary structures of a TAG are phrase struc-
ture trees. Thus, TAG-derived structures are also
phrase structure trees. In addition, a TAG deriva-
tion also yields a record of the derivational op-
erations (substitutions, adjunctions) used to pro-
duce the derived tree. Since these operations are
context-free, this record also forms a tree, called
the derivation tree, whose nodes are the elemen-
tary objects and the edges are combinatory oper-
ations. If we assume the TAG is lexicalized (i.e.,
each elementary structure is anchored by at least
one terminal symbol), then we can label the nodes
of the derivation tree with the tree names and also
the anchors of the elementary trees, and we ob-
tain what is formally a dependency tree.1 Since
each node is also labeled with an elementary tree
from the grammar, we can associate rich linguistic
structure with that node, such as passive voice or
empty subject.

In addition, it has long been observed that the
derivation tree can also be interpreted linguisti-
cally as a dependency tree (Rambow and Joshi,
1997), if certain assumptions are made about the
shape of the elementary trees in the grammar
(Frank, 2001). The substitution operation corre-
sponds to the obligatory addition of an argument,
and adjunction is used to add adjuncts, as well
as function words to a lexical head. The one
exception is the treatment of long distance wh-
movement in TAG. Here, a matrix clause is rep-
resented by a predicative auxiliary tree which is
adjoined into the embedded clause, so that the wh-
element moved from the embedded clause can still
be substituted locally into the tree headed by its
verb. As a result, the dependency between the ma-
trix and embedded verbs is inverted relative to the

1For the difference between formal and linguistic depen-
dency, see Rambow (2010).
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Figure 1: TAG derivation tree (left) and closely related dependency tree (right) for The bill, which they failed to pass, would
regulate emissions. Substitution edges are labeled SUBJ or OBJ, predicative auxiliary edges are labeled PREDAUX, while all
other adjoining edges are labeled ADJ. We use the same edge labels in the dependency tree. The derivation tree also carries
the name of the elementary tree used during the derivation, which can be used to look up rich syntactic information about that
word in context.
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Figure 2: The elementary trees for t27 (left) and t722 (right).

normally assumed dependency. This can be seen
in Figure 1, where in the linguistically motivated
dependency tree (right) pass depends on failed
as the latter’s object, while in the TAG deriva-
tion tree (left), failed depends on pass, linked by
an arc marked PREDAUX for predicative auxil-
iary. These cases can be detected automatically
because of the trees used; as a result of this in-
version, there is almost no non-projectivity in En-
glish. In summary, TAG parsing into derivation
trees is very closely related to dependency pars-
ing. In this paper, we are interested in extracting
derivation trees, not the derived trees (which can
be recovered from the derivation trees).

The corpus we use is obtained by extracting
a TAG grammar from the WSJ part of the Penn
Treebank corpus, resulting in a grammar and
derivation trees labeled with the grammar Chen
(2001). For example, in Figure 1, t27 is the ba-
sic tree for a transitive verb (regulate), while t722
is the tree for a transitive verb which forms an ob-
ject relative clause with an overt relative pronoun
but an empty subject (Figure 2).2 The corpus and
grammar were iteratively refined to obtain linguis-
tically plausible derivation trees which could serve

2Our full grammar is shown at http://mica.lif.
univ-mrs.fr/d6.clean2-backup.pdf

as input for a generation task (Bangalore and Ram-
bow, 2000). As a result, the dependency struc-
ture is similar to Universal Dependency (Nivre
et al., 2016), apart from the different treatment of
long-distance wh-movement noted above: the pri-
mary dependencies are between the core meaning-
bearing lexical words, while function words (aux-
iliaries, determiners, complementizers) depend on
their lexical head and have no dependents.3 We
label verbal argument arcs with deep dependency
labels: Subject, Object, and Indirect Object nor-
malized for passive and dative shift. All other arcs
are labeled as Adjuncts. This means that our label
set is small, but determining the argument labels
requires detection of voice alternations and dative
shift.

3 TAG Supertagging

3.1 Long-Distance Dependencies and LSTMs
In CCG, a transitive verb is uniformly associated
with the category (S\NP )/NP , and variation in
the word order of a clause is addressed through
the use of different combinatory operations. This
results in greater parsing ambiguity given a se-
quence of categories. In TAG, the set of opera-
tions is more restricted. While this has the pos-
itive effect of reducing parsing ambiguity given a
sequence of elementary trees, it necessitates a pro-
liferation in the number of elementary trees. For
example, a TAG will associate different elemen-
tary trees for the same transitive verb in order to
derive canonical clauses, subject and object rela-
tives, and subject and object questions. Not only
does this lead to a larger number of supertags, it

3One difference should be noted: UD considers preposi-
tions always to be function words, while our TAG grammar
treats them as core words unless the Penn Treebank marks
them as closely related to the verb.
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also means that the determination of the correct
supertag requires sensitivity to long-distance de-
pendencies. For example, in the question Who
does Bill think Harry likes?, the category of the
verb like requires sensitivity to the first word of the
sentence. To address this problem, we make use of
a supertagging model that is based on a recurrent
network architecture, the Long Short-Term Mem-
ory (LSTM, Hochreiter and Schmidhuber (1997)),
which is constructed so that its update rule avoids
the vanishing/exploding gradient problem.

3.2 Supertagger Model

The model architecture we adopt is depicted
in Figure 3, a BLSTM. The input for each
word is represented via the concatenation of a
100-dimensional embedding of the word, a 5-
dimensional embedding of a predicted part of
speech tag, and a 10-dimensional embedding of
a suffix vector (which encodes the presence of 1
and 2 character suffixes of the word). We ini-
tialize the word embeddings to be the pre-trained
GloVe vectors (Pennington et al., 2014); for words
which do not have a corresponding GloVe vector,
we initialize their embedding to a zero vector. The
other embeddings are randomly initialized. Fea-
tures for each word are fed into the BLSTMs. To
produce an output for the network, we concatenate
the output vectors from the two LSTM directions
and apply an affine transformation before the soft-
max function to obtain a probability distribution
over the 4727 supertags. We train this network,
including the embeddings, by optimizing the neg-
ative log-likelihood of the observed sequences of
supertags in a mini-batch stochastic fashion with
the Adam optimization algorithm with l = 0.001
(Kingma and Ba, 2015).

Since neural networks have numerous param-
eters, regularization plays a key role in training.
This is typically accomplished by using dropout
(Srivastava et al., 2014). Although dropout train-
ing has been successful on feed-forward neural
networks, performing dropout on recurrent neural
networks has been problematic (Gal and Ghahra-
mani, 2016). Armed with a novel interpretation
of dropout based on variational inference on pa-
rameters, Gal and Ghahramani (2016) propose that
dropout noise should be shared across the time
steps. We apply this technique to the training of
our LSTM network, and achieve an improvement
of approximately 2% in accuracy.

Figure 3: BLSTM Supertagger Architecture.

4 Transition-based Parsing for TAG

As discussed in Section 2, TAG parsing into
derivation trees is closely related to dependency
parsing; it is natural to make use of techniques
from dependency parsing to reconstruct a TAG
derivation tree. We make use of this approach
here, eschewing complete chart-based parsing al-
gorithms in favor of greedy or beam-search-based
explorations of possible parses.

4.1 Shift-Reduce Parsing Algorithm
We employ the arc-eager system of shift-reduce
parsing, familiar from the MALT parser (Nivre
et al., 2006). In this system, an oracle is trained
to predict a sequence of transition operations from
an initial state to a terminal state for each sentence.
Each state is represented by c = (s, b, A) where s,
b, and A denote the stack, buffer and set of de-
pendency relations derived so far. Therefore, our
objective is to predict a transition operation given
the configuration set c. The initial configuration
is defined as s = [ROOT ], b = [w1, · · ·wn], and
A = ∅ where n is the number of tokens in the sen-
tence w1w2 · · ·wn. At a particular state, denote
the top ith element of the stack and the buffer by
si and bi respectively. The arc-eager system de-
fines four types of operations with corresponding
preconditions: LEFT-ARC, RIGHT-ARC, SHIFT
and REDUCE. For the present parser, the LEFT-
ARC and RIGHT-ARC operations are each further
divided into seven different types depending on
the derivational operation involved and the loca-
tion: Substitution 0-4, Adjoining, and Co-anchor
attachment. Substitution n represents an instance
of substitution into an argument slot of an elemen-
tary tree that is uniquely annotated with the num-
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ber n (we discuss the interpretation of such num-
bers below). Adjoining represents an application
of the adjoining operation. It is not further sub-
divided, as the current parser does not distinguish
among different loci of adjoining within an ele-
mentary tree. Co-anchor attachment represents the
substitution into a node that is construed as a co-
head of an elementary tree. An example of this is
the insertion of a particle into a verbally headed
tree associated with a verb-particle construction,
such as the insertion of up into the pick-headed
tree to generate I picked up the book. The transi-
tions terminate when the buffer is empty.

This system will fail to capture non-projective
TAG derivation structures. However, as noted in
Section 2, there is almost no non-projectivity in
TAG derivation structures of English. Concretely,
we find that WSJ Sections 01-22 contain only 26
non-projective sentences (0.065%), and those sen-
tences are discarded during training. WSJ Section
00 does not have any non-projective sentences.

On the other hand, WSJ Sections 01-22 con-
tain 0.6% of non-projective sentences in depen-
dency grammar (Chen and Manning, 2014), an or-
der of magnitude more than non-projectivity for
TAG. This suggests that the problem of TAG pars-
ing is more compatible with standard shift-reduce
parsing than dependency grammar parsing is.4

4.2 Parser Model

In this work, we use a non-lexicalized parser,
which does not have access to the identities of the
words of the sentence to be parsed.5 Instead, the
parser’s decisions will be guided by the supertags
of the top k elements from the stack and the first k
elements of the buffer. Using these features as in-
put, we build a two-layer feed-forward network to
predict the action for the parser to take. As noted
above, the identity of the supertag does not allow

4We recognize alternatives to shift-reduce parsing. For
instance, Dozat and Manning (2017) propose a graph-based
parser that accommodates non-projectivity. It remains open
whether such alternatives will work for TAG parsing, and
we leave this for the future. We emphasize, however, that
because of the nature of TAG derivations, the issue of non-
projectivity is much less severe than dependency parsing.

5We have tried adding word embeddings as inputs to the
parser with different choices of hyperparameters (e.g., the
number of embedding dimensions). Unfortunately, our ex-
periments yielded degraded performance. It should be noted,
however, that TAG supertags typically provide enough infor-
mation for deriving correct parses; the only cases that su-
pertags cannot disambiguate are ambiguous attachments to
identical nonterminals (e.g. The picture of my friend with
green eyes).

the parser to encode whether a particular node in
an elementary tree has already been targeted by
a substitution operation. In order to overcome this
deficiency, we augment the parser’s state with sub-
stitution memory, which encodes for each possi-
ble substitution site (from 0 to 4) in a supertag T
whether that substitution has already applied in T .

Each supertag is mapped to a d-dimensional
vector by an embedding matrix E ∈ Rd×(N+2)

whereN denotes the number of supertags; we also
have additional vectors representing the empty
state and ROOT . Substitution memory is simi-
larly transformed, with a substitution memory em-
bedding matrix M ∈ Rd×5, to a d-dimensional
vector that encodes in a distributed manner where
substitution has applied. Each column in M is
the vector corresponding to a specific substitution
type. Each element from the stack and buffer is
then represented by adding the supertag T embed-
ding to the embedding associated with each vec-
tor from M corresponding to the substitution op-
erations already performed on T , if any. Mathe-
matically, suppose that we are at the configuration
c = (s, b, A), and p(i) ∈ R5 denotes the substitu-
tion history of si. p(i) is an indicator vector that
p
(i)
j = 1 if and only if we have already performed

substitution j into si in the parser, and 0 otherwise.
Define p(k+1) in the same way for b1.6 Then, the
input vector to the network can be expressed as

[Es1 +Mp(1); · · · ;Esk +Mp(k);

Eb1 +Mp(k+1); · · · ;Ebk]

This model with the additive substitution memory
has several conceptual advantages. First, the ad-
ditive structure gives us an unbounded scope of
the past transition, avoiding making decisions that
lead to substitution collisions without a computa-
tionally expensive architecture such as an ensem-
ble of LSTMs (Xu, 2015). Moreover, as TAG su-
pertags encode rich syntactic features, the parsing
data for some supertags tend to become scarce.
The most common 300 supertags in the Penn Tree
Bank WSJ Sections 01-22 cover 96.8% of the
data. In a situation of such data sparsity, it be-
comes crucial to link, for example, the behaviors
of intransitive verbs with those of transitive verbs.
With substitution memory, the network can de-
velop representations under which addition of ap-
propriate substitution vectors serves to transform

6Notice that no substitution should have happened on
b2, b3, . . . by construction.
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Figure 4: Shift-Reduce Parser Neural Network Architecture.

one supertag into another, allowing the generaliza-
tion across these contexts. Indeed, as we will show
in a later section, the substitution memory embed-
dings and supertag embeddings turn out to yield
interpretable and linguistically sensible structures.

Finally, we concatenate the vectors associated
with the relevant elements from the stack and
buffer into a 2dk dimensional vector and feed it
to the network to obtain a probability distribution
over the possible transition actions. The architec-
ture is visualized in Figure 4. Following Chen and
Manning (2014), we use the cube activation func-
tion for the first layer, which could better capture
interactions. We, again, optimize the negative log-
likelihood in a mini-batch stochastic fashion with
the Adam optimization algorithm with l = 0.001
(Kingma and Ba, 2015). With regards to decoding,
we consider both greedy parsing as well as a beam
search algorithm, where we keep transition action
hypotheses at each time step, in the experiments
we report below.

4.3 Supertag Input to the Parser

We consider three types of supertag inputs to the
neural network parser: gold supertags, 1-best su-
pertags from the BLSTM supertagger, and 1-best
supertags from the MICA chart parser (Bangalore
et al., 2009). MICA searches through n-best su-
pertags with their corresponding probabilities and
produces a full parse forest that abides by the TAG
grammar. To generate the 1-best supertags from
MICA, we first feed 10-best supertags from the
BLSTM supertagger to the MICA chart parser,
and retain only the supertags of the best parse.
These supertags have the special property that
there exists a feasible parse in the TAG gram-
mar for every sentence, which does not necessarily
hold for the 1-best supertags from the BLSTM su-

pertagger.

5 Experiments

5.1 Experimental Setups

In order to ensure comparability with past work on
TAG parsing, we follow the protocol of Bangalore
et al. (2009) and Chung et al. (2016), and use the
grammar and the TAG-annotated WSJ Penn Tree
Bank described in Section 2. Following that work,
we use Sections 01-22 as the training set, Section
00 as the development set, and Section 23 as the
test set. The training, development, and test sets
comprise 39832, 1921, and 2415 sentences, re-
spectively. The development set contains 177 sen-
tences with at least one supertag that was absent
from the training set. We implement the networks
in TensorFlow (Abadi et al., 2015). During train-
ing, we shuffle the order of the sentences in the
training set to form mini-batches. Each mini-batch
consists of 100 sentences, except the last which
contains 32 sentences.

For supertagging, we first generate predicted
POS tags for both the training set and the develop-
ment set. The POS-tagger architecture is similar
to that of the supertagger shown in Figure 3, ex-
cept that, obviously, we do not feed it POS embed-
dings. The BLSTMs each contain 128 units, and
we do not apply dropout at this stage. To derive
predicted POS tags for the supertagger training
set, we perform 10-fold jackknife training over the
training set. For the supertagger, each direction of
LSTM computation involves two layers, and each
LSTM contains 512 units. The hidden units, layer-
to-layer, and input units dropout rates are 0.5, 0.5,
and 0.2 respectively. After each training epoch,
we test the parser on the development set. When
classification accuracy does not improve on two
consecutive epochs, we end the training.

For the parser, we initialize the supertag
embedding matrix E and the substitution
memory embedding matrix M according to
Uniform(− 1√

d
, 1√

d
). For all of the experiments

reported here, we fix the hyper-parameters as
follows: the embedding dimensions d for the
supertag and substitution memory embeddings
are 50, the number of units is 200 on both of the
two hidden layers, and the input dropout rate is
0.2 and the hidden dropout rate is 0.3. We choose
k = 3 or 5 for the stack/buffer scope. After
each training epoch, we test the parser on the
development set, and when the greedy accuracy
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fails to improving on two consecutive epochs, we
terminate the training.

5.2 Supertagging Results

We achieve on Section 00 supertagging accuracy
of 89.32%, 90.67% if we disregard the 177 sen-
tences that contain an unseen supertag. This
performance surpasses previous results on this
task: Bangalore et al. (2009) report 88.52% ac-
curacy using a maxent supertagger combined with
a chart parser (MICA), which is the best result
over a tag set of this complexity, though bet-
ter results are reported for considerably smaller
tag sets (on the order of 300 supertags). The
n-best and β pruning accuracy (Clark and Cur-
ran, 2007) are given in Figure 5. In the β prun-
ing scheme, we pick supertags whose probabil-
ities are greater than β times the probability of
the most likely supertag. We show the results for
β ∈ [0.075, 0.03, 0.01, 0.005, 0.001, 0.0001]. It
is noteworthy that with β = 0.005, the average
number of supertags picked for each token (ambi-
guity level) is about 2, but the accuracy surpasses
98%, suggesting that incorporating the β pruning
method in the stapling phase of TAG parsing will
enhance the parser. We also obtain comparable ac-
curacy of 89.44% on Section 23.

As discussed above, TAG supertags alone pro-
vide rich syntactic information. In order to under-
stand how much such information our supertag-
ger sucessfully captures, we analyze the 1-best su-
pertag results on the basis of the syntactic prop-
erties of the elementary trees defined in Chung
et al. (2016). Extending the notion of binary pre-
cision and recall, we define the macro-averaging
precision and recall as the simple average over
precision or recall corresponding to each class
(Sokolova and Lapalme, 2009). We also compute
accuracy, which is simply the ratio of correctly
classified examples to the entire number of exam-
ples. Table 1 shows the results along with those for
the maxent supertagger (Bangalore et al., 2009).
Recall tends to be lower than precision; we can
attribute this pattern to the nature of the macro-
averaging scheme that equally treats each class re-
gardless of the size; poor recall performance on a
small class, such as the class of dative shift verbs,
influences the overall recall as much as perfor-
mance on a large class. Observe, however, that
the BLSTM supertagger yields significantly bet-
ter performance on recall in general, and it outper-

Figure 5: Section 00 n-best accuracy (left), and β pruning
accuracy (right). Sentences with unseen supertags are disre-
garded.

MICA BLSTM
Property # Prec Rec Acc Pre. Rec Acc

root 42 88.8 68.3 95.4 80.4 72.9 95.9
coanc 4 89.7 64.0 99.2 65.3 64.7 99.2
modif 28 82.2 57.3 92.4 73.6 63.6 93.7

dir 3 95.9 95.9 96.0 96.7 96.6 96.7
predaux 2 80.0 67.6 100.0 83.3 85.3 100.0

pred 2 93.3 90.6 99.6 93.3 93.1 99.7
comp 3 92.9 61.4 99.7 95.9 63.3 99.8

particle 3 94.0 92.1 97.1 92.8 92.5 97.5
particleShift 3 89.3 77.7 99.9 77.5 77.0 99.9

voice 4 94.6 92.7 99.4 94.4 94.7 99.4
wh 4 93.0 79.6 97.1 94.5 84.7 97.6
rel 6 68.4 71.2 96.5 88.9 73.6 97.2

esubj 3 94.0 94.0 96.9 95.4 95.3 97.4
datshift 3 92.8 45.3 99.9 96.9 53.3 99.9

Table 1: 1-best Supertag Analysis on Section 00. # indi-
cates the number of possible classes in a property. The Prec
and Rec columns show macro-averaging precision and recall.
The Acc columns indicate simple accuracy. For a complete
description of the properties, see Chung et al. (2016).

forms the maxent supertagger by a large margin in
handling long dependencies of wh-movement and
relativization.

Lastly, we interpret our supertagging perfor-
mance in the context of prepositional phrase (PP)
attachment ambiguity. Normally, in dependency
parsing, PP attachment is resolved by the parser.
However, in our case, it can be resolved before
parsing, during the supertagging step. This is be-
cause the supertags for prepositions vary depend-
ing on the type of constituent modified by the PP
containing the preposition; for example, t4 is the
supertag for a preposition whose PP modifies an
NP, while t13 is the supertag for a preposition
whose PP modifies a VP.

To test how well our supertagger resolves PP at-
tachment ambiguity, we used the dataset from Rat-
naparkhi et al. (1994) (derived from the PTB WSJ)
to extract a test set of sentences with PPs that are
ambiguous between attaching to a VP or to an NP.7

7We were unable to use the full test set because, in or-
der to run the supertagger on the test set, we had to map the
test examples back to their full sentences, but some of those
original sentences are no longer available in PTB3.
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We then supertagged these sentences and checked
whether the supertag for the preposition in the am-
biguous PP is a VP modifier or an NP modifier. Of
our test set of 1951 sentences, 1616 had supertags
modifying the correct part of speech, to give an
accuracy of 0.826. Table 2 compares this result to
past work. The supertagger outperforms all other
models besides the Word Vector model. Since this
Word Vector model (like the MaxEnt model) is
specifically trained for this task, and given that our
supertagger is not trained for this particular task,
the accuracy is reasonably encouraging. This re-
sult suggests that TAG supertagging is a reason-
able intermediate level between only resolving PP
attachment and conducting full parsing.

System PP Attachment Accuracy
Malt (Nivre et al., 2006) 79.7*

MaxEnt (Ratnaparkhi et al., 1994) 81.6*
Word Vector (Belinkov et al., 2014) 88.7*

Parsey McParseface (Andor et al., 2016) 82.3
BLSTM Supertagger 82.6

Table 2: Various PP attachment results. * denotes the results
on a different dataset.

5.3 Parsing Results

Parsing results and comparison with prior models
are summarized in Tables 3, 4 (Section 00), and 5
(Section 23). From Table 4, we see that the com-
bination of the BLSTM supertagger, MICA chart
parser, and the neural network parser achieves
state-of-the-art performance, even compared to
parsers that make use of lexical information, POS
tags, and hand-engineered features. With gold su-
pertags, the neural network parser with beam size
16 performs slightly better than the chart parser.
As shown in Table 5, our supertag-based parser
outperforms SyntaxNet (Andor et al., 2016) with
the computationally expensive global normaliza-
tion. This suggests that, besides providing the
grammars and linguistic features that can be used
in downstream tasks in addition to derivation trees
(Semantic Role Labeling: (Chen and Rambow,
2003), Textual Entailments: (Xu et al., 2017)), su-
pertagging also improves parsing performance.

5.4 Learned Vector Representation

We motivated the use of embeddings in the parser
to encode properties of the supertags and the sub-
stitution operations performed on them. We can
examine their structure in a way similar to what
Mikolov et al. (2013) did for word embeddings by
performing analogy tests on the learned supertag

embeddings. Consider, for example, the anal-
ogy that an elementary tree representing a clause
headed by a transitive verb (t27) is to a clause
headed by an intransitive verb (t81) as a subject
relative clause headed by a transitive verb (t99)
is to a subject relative headed by an intransitive
verb (t109). Following Mikolov et al. (2013),
we can express this analogy with the equation
t27− t81 ≈ t99− t109, which can be rearranged
as t27 − t81 + t109 ≈ t99. By seeing if this ap-
proximate equality holds when the embeddings of
the relevant supertags have been added and sub-
tracted, we can test how well the embeddings cap-
ture syntactic properties of the supertags.

To create a set of such analogies, we extracted
all pairs (stag1, stag2) such that stag2 is the re-
sult of excising exactly one substitution node from
stag1. The idea here is that, once a substitution
node is filled within a supertag, the result behaves
like a supertag without that substitution node; for
example, a transitive verb with its object filled
behaves like an intransitive verb. We then cre-
ate analogies by choosing two such pairs, (stag1,
stag2) and (stag3, stag4), chosen so that stag1 and
stag2 are related in the same way that stag3 and
stag4 are related. From these two pairs we then
form an equation of the form stag1 − stag2 +
stag4 ≈ stag3.

We considered three different criteria for choos-
ing which pairs of pairs can form analogies: A-
1, where both pairs must have the same deep
syntactic role (Drole) for the excised substitution
node; A-2, where both pairs must have the same
Drole and POS for the excised substitution node;
and A-3, where both pairs must have the same
Drole and same POS for the excised substitution
node, and the heads of all supertags in the analogy
must have the same POS. For each analogy gen-
erated, we computed the left hand side by adding
and subtracting the relevant supertag embeddings
and used cosine similarity to determine the most
similar embeddings to the result and whether the
intended right hand side was among the closest
neighbors. We used four metrics for evaluation:
Acc, the proportion of analogies for which the
closest neighbor was the correct supertag; Acc-
300, the proportion of analogies for which the
closest neighbor amongst the 300 most common
supertags was the correct supertag; Avg Rank, the
average position of the correct choice in the ranked
list of the closest neighbors; and Avg Rank-300,
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Gold Stags BLSTM BLSTM+Chart
k B UAS LAS UAS LAS UAS LAS
3 1 96.74±0.06 96.47±0.06 89.54±0.03 88.06±0.04 90.03±0.02 88.56±0.02

3 16 97.62±0.06 97.42±0.07 90.31±0.04 88.85±0.04 90.85±0.02 89.38±0.02

5 1 96.96±0.19 96.67±0.20 89.63±0.03 88.12±0.04 90.07±0.06 88.60±0.06

5 16 97.68±0.06 97.46±0.05 90.38±0.05 88.92±0.04 90.88±0.06 89.39±0.06

Table 3: Parsing Results on Section 00. k is # of elements from stack and buffer used as input, B is the beam size. We show
mean and standard deviation over 5 trials with different initialization for each configuration. BLSTM+Chart shows results
obtained by feeding the 1-best supertag inputs from the MICA chart parser discussed in Section 4.3.

Gold Stags Predicted Stags
Parser Features UAS LAS Stag Acc UAS LAS
MALT-Stag Words, POS, Stags (1-best) 97.20* 96.90* 88.52 88.50* 86.80*

Maxent+Chart (MICA) Stags (10-best) 97.60 97.30 88.52 87.60 85.80
P3 Words, POS, Stags (1-best), Stag features 97.46* 96.51* 87.88 89.96* 87.86*

BLSTM+Chart Stags (10-best) 89.32 90.05 88.32
BLSTM+NN Stags (1-best) 97.68±0.06 97.46±0.05 89.32 90.38±0.05 88.92±0.04

BLSTM+Chart+NN Stags (1-best) – – 89.31 90.88±0.06 89.39±0.06

Table 4: Section 00 Performance Comparison with Prior Models. The P3 results are from Chung et al. (2016). P3 is based on
the model described in Nivre et al. (2004). * denotes the results with gold POS tags. For the NN parser, k=5 and B=16.

Model Stag Acc UAS LAS
SyntaxNet – 90.47±0.05 88.99±0.06

Maxent+Chart 86.85 86.66 84.90
BLSTM+Chart 89.44 90.20 88.66
BLSTM+NN 89.44 90.31±0.03 88.98±0.03

BLSTM+Chart+NN 89.71 90.97±0.03 89.68±0.03

Table 5: Supertagging and Parsing Results on Section 23. For
the NN parser, k=5 and B=16 throughout. We trained Syn-
taxnet (Andor et al., 2016) with global normalization beam
size 16 using the TensorFlow toolkit.

the average position of the correct choice in the
ranked list of the closest neighbors amongst the
300 most common supertags.

We expect that the embeddings for common su-
pertags would be better representations than em-
beddings for rare supertags. Thus, we restricted
our experiment to analogies between supertags
among the 300 most common ones in the train-
ing set. (Indeed, experiments that included rare
supertags in the analogies produced poor results.)

Table 6 provides the results for the 3 types of
analogies, which are very promising, particularly
type A-3. We can visualize these results by per-
forming PCA on the embedding vectors. Figure 6a
shows the first 2 PCA components of A-3 analo-
gies involving supertags containing transitive and
intransitive predicates across a variety of struc-
tures. We see that virtually all pairs differ from one
another by a similar vector, and in fact this differ-
ence is essentially the vector associated with sub-
stitution 1 in the substitution embedding memory
(shown in blue). Figure 6b shows the case of pairs
of canonical sentence elementary trees (read in I
read the book) and their subject relative analogs
(read in the guy who read the book). This again
shows a systematic mapping between grammati-

Type Acc Acc-300 Avg Rank Avg Rank-300
A-1 0.20 0.28 49.5 10.2
A-2 0.44 0.60 17.4 3.68
A-3 0.61 0.81 2.26 1.38

Table 6: Analogy Task Results.

cally related embeddings, suggesting that the em-
beddings encode relevant structural properties.

(a) Transitive/intransitive (b) Declarative/relative

Figure 6: Embedding vector alignments.

6 Conclusions and Future Work

We presented a state-of-the-art TAG supertagger
and parser, the former based on a BLSTM archi-
tecture, and the latter on a non-lexicalized shift-
reduce parser using a feed-forward network. The
parser makes crucial use of supertag embeddings
that provide linguistically interpretable vector rep-
resentations of the supertags. These positive re-
sults suggest that TAG can provide the foundation
of NLP systems for tasks requiring deeper anal-
ysis than current dependency parsers provide, and
we will apply our parser to such tasks in the future.
Nonetheless, a large discrepancy remains in parser
performance with gold supertags and predicted su-
pertags, indicating that supertagging is still a bot-
tleneck. We will explore ways to leverage our su-
pertagger’s high β-pruning accuracy in parsing.
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Abstract

We introduce globally normalized convo-
lutional neural networks for joint entity
classification and relation extraction. In
particular, we propose a way to utilize a
linear-chain conditional random field out-
put layer for predicting entity types and re-
lations between entities at the same time.
Our experiments show that global normal-
ization outperforms a locally normalized
softmax layer on a benchmark dataset.

1 Introduction

Named entity classification (EC) and relation ex-
traction (RE) are important topics in natural lan-
guage processing. They are relevant, e.g., for pop-
ulating knowledge bases or answering questions
from text, such as “Where does X live?”

Most approaches consider the two tasks inde-
pendent from each other or treat them as a se-
quential pipeline by first applying a named entity
recognition tool and then classifying relations be-
tween entity pairs. However, named entity types
and relations are often mutually dependent. If the
types of entities are known, the search space of
possible relations between them can be reduced
and vice versa. This can help, for example, to
resolve ambiguities, such as in the case of “Mer-
cedes”, which can be a person, organization and
location. However, knowing that in the given
context, it is the second argument for the rela-
tion “live in” helps concluding that it is a loca-
tion. Therefore, we propose a single neural net-
work (NN) for both tasks. In contrast to joint train-
ing and multitask learning, which calculate task-
wise costs, we propose to learn a joint classifi-
cation layer which is globally normalized on the
outputs of both tasks. In particular, we train the
NN parameters based on the loss of a linear-chain

Anderson , 41 , was the chief Middle East correspondent for The Associated Press

   
   PER     O O O O    O     O         LOC                O           O              ORG

work_for

live_in based_in

Model inputs (query entity pairs)⇒Model outputs:
(“Anderson”, “,”)⇒ PER - N - O
(“Anderson”, “41”)⇒ PER - N - O
...
(“Anderson”, “chief”)⇒ PER - N - O
(“Anderson”, “Middle East”)⇒ PER - live in - LOC
...
(“was”, “for”)⇒ O - N - O
...
(“for”, “The Associated Press”)⇒ O - N - ORG

Figure 1: Examples of our task

conditional random field (CRF) (Lafferty et al.,
2001). CRF layers for NNs have been introduced
for token-labeling tasks like named entity recog-
nition (NER) or part-of-speech tagging (Collobert
et al., 2011; Lample et al., 2016; Andor et al.,
2016). Instead of labeling each input token as in
previous work, we model the joint entity and rela-
tion classification problem as a sequence of length
three for the CRF layer. In particular, we identify
the types of two candidate entities (words or short
phrases) given a sentence (we call this entity clas-
sification to distinguish it from the token-labeling
task NER) as well as the relation between them.
To the best of our knowledge, this architecture for
combining entity and relation classification in a
single neural network is novel. Figure 1 shows an
example of how we model the task: For each sen-
tence, candidate entities are identified. Every pos-
sible combination of candidate entities (query en-
tity pair) then forms the input to our model which
predicts the classes for the two query entities as
well as for the relation between them.
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To sum up, our contributions are as follows: We
introduce globally normalized convolutional neu-
ral networks for a sentence classification task. In
particular, we present an architecture which al-
lows us to model joint entity and relation clas-
sification with a single neural network and clas-
sify entities and relations at the same time, nor-
malizing their scores globally. Our experiments
confirm that a CNN with a CRF output layer out-
performs a CNN with locally normalized softmax
layers. Our source code is available at http:
//cistern.cis.lmu.de.

2 Related Work

Some work on joint entity and relation classifica-
tion uses distant supervision for building their own
datasets, e.g., (Yao et al., 2010; Yaghoobzadeh
et al., 2016). Other studies, which are described in
more detail in the following, use the “entity and re-
lation recognition” (ERR) dataset from (Roth and
Yih, 2004, 2007) as we do in this paper. Roth and
Yih (2004) develop constraints and use linear pro-
gramming to globally normalize entity types and
relations. Giuliano et al. (2007) use entity type in-
formation for relation extraction but do not train
both tasks jointly. Kate and Mooney (2010) train
task-specific support vector machines and develop
a card-pyramid parsing algorithm to jointly model
both tasks. Miwa and Sasaki (2014) use the same
dataset but model the tasks as a table filling prob-
lem (see Section 4.2). Their model uses both a lo-
cal and a global scoring function. Recently, Gupta
et al. (2016) apply recurrent neural networks to fill
the table. They train them in a multitask fashion.
Previous work also uses a variety of linguistic fea-
tures, such as part-of-speech tags. In contrast, we
use convolutional neural networks and only word
embeddings as input. Furthermore, we are the first
to adopt global normalization of neural networks
for this task.

Several studies propose different variants of
non-neural CRF models for information extraction
tasks but model them as token-labeling problems
(Sutton and McCallum, 2006; Sarawagi et al.,
2004; Culotta et al., 2006; Zhu et al., 2005; Peng
and McCallum, 2006). In contrast, we propose
a simpler linear-chain CRF model which directly
connects entity and relation classes instead of as-
signing a label to each token of the input sequence.
This is more similar to the factor graph by Yao
et al. (2010) but computationally simpler. Xu and

Sarikaya (2013) also apply a CRF layer on top
of continuous representations obtained by a CNN.
However, they use it for a token labeling task (se-
mantic slot filling) while we apply the model to
a sentence classification task, motivated by the
fact that a CNN creates single representations for
whole phrases or sentences.

3 Model

3.1 Modeling Context and Entities
Figure 2 illustrates our model.

Input. Given an input sentence and two query
entities, our model identifies the types of the en-
tities and the relation between them; see Fig-
ure 1. The input tokens are represented by word
embeddings trained on Wikipedia with word2vec
(Mikolov et al., 2013). For identifying the class
of an entity ek, the model uses the context to its
left, the words constituting ek and the context to its
right. For classifying the relation between two en-
tities ei and ej , the sentence is split into six parts:
left of ei, ei, right of ei, left of ej , ej , right of
ej .1 For the example sentence in Figure 1 and the
entity pair (“Anderson”, “chief”), the context split
is: [] [Anderson] [, 41 , was the chief Middle ...]
[Anderson , 41 , was the] [chief] [Middle East cor-
respondent for ...]

Sentence Representation. For representing the
different parts of the input sentence, we use convo-
lutional neural networks (CNNs). CNNs are suit-
able for RE since a relation is usually expressed
by the semantics of a whole phrase or sentence.
Moreover, they have proven effective for RE in
previous work (Vu et al., 2016). We train one CNN
layer for convolving the entities and one for the
contexts. Using two CNN layers instead of one
gives our model more flexibility. Since entities
are usually shorter than contexts, the filter width
for entities can be smaller than for contexts. Fur-
thermore, this architecture simplifies changing the
entity representation from words to characters in
future work.

After convolution, we apply k-max pooling for
both the entities and the contexts and concatenate
the results. The concatenated vector cz ∈ RCz ,
z ∈ {EC,RE} is forwarded to a task-specific hid-
den layer of size Hz which learns patterns across
the different input parts:

hz = tanh(V T
z cz + bz) (1)

1The ERR dataset we use provides boundaries for entities
to concentrate on the classification task (Roth and Yih, 2004).
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Figure 2: Model overview; the colors/shades show which model parts share parameters

with weights Vz ∈ RCz×Hz and bias bz ∈ RHz .

3.2 Global Normalization Layer
For global normalization, we adopt the linear-
chain CRF layer by Lample et al. (2016).2 It
expects scores for the different classes as input.
Therefore, we apply a linear layer first which maps
the representations hz ∈ RHz to a vector vz of the
size of the output classes N = NEC +NRE :

vz =W T
z hz (2)

with Wz ∈ RHz×N . For a sentence classification
task, the input sequence for the CRF layer is not
inherentely clear. Therefore, we propose to model
the joint entity and relation classification problem
with the following sequence of scores (cf., Figure
2):

d = [vEC(e1), vRE(r12), vEC(e2)] (3)

with rij being the relation between ei und ej .
Thus, we approximate the joint probability of en-
tity types Te1 , Te2 and relations Re1e2 as follows:

P (Te1Re1e2Te2)

≈P (Te1) · P (Re1e2 |Te1) · P (Te2 |Re1e2)
(4)

Our intuition is that the dependence between re-
lation and entities is stronger than the dependence
between the two entities.

The CRF layer pads its input of length n = 3
with begin and end tags and computes the follow-
ing score for a sequence of predictions y:

s(y) =
n∑

i=0

Qyiyi+1 +
n∑

i=1

di,yi (5)

2https://github.com/glample/tagger

withQk,l being the transition score from class k to
class l and dp,q being the score of class q at posi-
tion p in the sequence. The scores are summed
because all the variables of the CRF layer live
in the log space. The matrix of transition scores
Q ∈ R(n+2)×(n+2) is learned during training.3

For training, the forward algorithm computes the
scores for all possible label sequences Y to get the
log-probability of the correct label sequence ŷ:

log(p(ŷ)) =
es(ŷ)∑
ỹ∈Y e

s(ỹ)
(6)

For testing, Viterbi is applied to obtain the label
sequence y∗ with the maximum score:

y∗ = argmax
ỹ∈Y

s(ỹ) (7)

4 Experiments and Analysis

4.1 Data and Evaluation Measure

We use the “entity and relation recognition”
(ERR) dataset from (Roth and Yih, 2004)4 with
the train-test split by Gupta et al. (2016). We tune
the parameters on a held-out part of train. The data
is labeled with entity types and relations (see Ta-
ble 1). For entity pairs without a relation, we use
the label N. Dataset statistics and model parame-
ters are provided in the appendix.

Following previous work, we compute F1 of the
individual classes for EC and RE, as well as a task-
wise macro F1 score. We also report the average
of scores across tasks (Avg EC+RE).

32 is added because of the padded begin and end tag
4http://cogcomp.cs.illinois.edu/page/resource view/43
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4.2 Experimental Setups

Setup 1: Entity Pair Relations. Roth and
Yih (2004, 2007); Kate and Mooney (2010) train
separate models for EC and RE on the ERR
dataset. For RE, they only identify relations be-
tween named entity pairs. In this setup, the query
entities for our model are only named entity pairs.
Note that this facilitates EC in our experiments.

Setup 2: Table Filling. Following Miwa and
Sasaki (2014); Gupta et al. (2016), we also model
the joint task of EC and RE as a table filling
task. For a sentence with length m, we create a
quadratic table. Cell (i, j) contains the relation
between word i and word j (or N for no relation).
A diagonal cell (k, k) contains the entity type of
word k. Following previous work, we only predict
classes for half of the table, i.e. for m(m + 1)/2
cells. Figure 3 shows the table for the example
sentence from Figure 1. In this setup, each cell
(i, j) with i 6= j is a separate input query to our
model. Our model outputs a prediction for cell
(i, j) (the relation between i and j) and predic-
tions for cells (i, i) and (j, j) (the types of i and
j). To fill the diagonal with entity classes, we ag-
gregate all predictions for the particular entity by
using majority vote. Section 4.4 shows that the in-
dividual predictions agree with the majority vote
in almost all cases.

Setup 3: Table Filling Without Entity
Boundaries. The table from setup 2 includes one
row/column per multi-token entity, utilizing the
given entity boundaries of the ERR dataset. In or-
der to investigate the impact of the entity bound-
aries on the classification results, we also con-
sider another table filling setup where we ignore
the boundaries and assign one row/column per to-
ken. Note that this setup is also used by prior work
on table filling (Miwa and Sasaki, 2014; Gupta
et al., 2016). For evaluation, we follow Gupta et al.
(2016) and score a multi-token entity as correct if
at least one of its comprising cells has been classi-
fied correctly.

Comparison. The most important difference
between setup 1 and setup 2 is the number of en-
tity pairs with no relation (test set: ≈3k for setup
1, ≈121k for setup 2). This makes setup 2 more
challenging. The same holds for setup 3 which
considers the same number of entity pairs with no
relation as setup 2. To cope with this, we randomly
subsample negative instances in the train set of
setup 2 and 3. Setup 3 considers the most query
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Figure 3: Entity-relation table

entity pairs in total since multi-token entities are
split into their comprising tokens. However, setup
3 represents a more realistic scenario than setup 1
or setup 2 because in most cases, entity boundaries
are not given. In order to apply setup 1 or 2 to an-
other dataset without entity boundaries, a prepro-
cessing step, such as entity boundary recognition
or chunking would be required.

4.3 Experimental Results
Table 1 shows the results of our globally normal-
ized model in comparison to the same model with
locally normalized softmax output layers (one for
EC and one for RE). For setup 1, the CRF layer
performs comparable or better than the softmax
layer. For setup 2 and 3, the improvements are
more apparent. We assume that the model can
benefit more from global normalization in the case
of table filling because it is the more challenging
setup. The comparison between setup 2 and setup
3 shows that the entity classification suffers from
not given entity boundaries (in setup 3). A reason
could be that the model cannot convolve the token
embeddings of the multi-token entities anymore
when computing the entity representation (context
B and D in Figure 2). Nevertheless, the relation
classification performance is comparable in setup
2 and setup 3. This shows that the model can in-
ternally account for potentially wrong entity clas-
sification results due to missing entity boundaries.

The overall results (Avg EC+RE) of the CRF
are better than the results of the softmax layer for
all three setups. To sum up, the improvements of
the linear-chain CRF show that (i) joint EC and
RE benefits from global normalization and (ii) our
way of creating the input sequence for the CRF for
joint EC and RE is effective.

Comparison to State of the Art. Table 2 shows
our results in the context of state-of-the-art results:
(Roth and Yih, 2007), (Kate and Mooney, 2010),

1726



Setup 1 Setup 2 Setup 3
softmax CRF softmax CRF softmax CRF

Peop 95.24 94.95 93.99 94.47 91.46 92.21
Org 88.94 87.56 78.95 79.37 67.29 67.91
Loc 93.25 93.63 90.69 90.80 85.99 86.20
Other 90.38 89.54 73.78 73.97 62.67 61.19
Avg EC 91.95 91.42 84.35 84.65 76.85 76.88
Located in 55.03 57.72 51.03 55.13 44.96 52.29
Work for 71.23 70.67 52.89 61.42 52.63 65.31
OrgBased in 53.25 59.38 56.96 59.12 46.15 57.65
Live in 59.57 58.94 64.29 60.12 64.09 61.45
Kill 74.70 79.55 69.14 74.73 82.93 75.86
Avg RE 62.76 65.25 58.86 62.10 58.15 62.51
Avg EC+RE 77.36 78.33 71.61 73.38 67.50 69.69

Table 1: F1 results for entity classification (EC) and relation extraction (RE) in the three setups

Model S Feats EC RE EC+RE
R & Y 2007 1 yes 85.8 58.1 72.0
K & M 2010 1 yes 91.7 62.2 77.0
Ours (NN CRF) 1 no 92.1 65.3 78.7
Ours (NN CRF) 2 no 88.2 62.1 75.2
M & S 2014 3 yes 92.3 71.0 81.7
G et al. 2016 (1) 3 yes 92.4 69.9 81.2
G et al. 2016 (2) 3 no 88.8 58.3 73.6
Ours (NN CRF) 3 no 82.1 62.5 72.3

Table 2: Comparison to state of the art (S: setup)

(Miwa and Sasaki, 2014), (Gupta et al., 2016).5

Note that the results are not comparable because of
the different setups and different train-test splits.6

Our results are best comparable with (Gupta
et al., 2016) since we use the same setup and train-
test splits. However, their model is more compli-
cated with a lot of hand-crafted features and var-
ious iterations of modeling dependencies among
entity and relation classes. In contrast, we only use
pre-trained word embeddings and train our model
end-to-end with only one iteration per entity pair.
When we compare with their model without ad-
ditional features (G et al. 2016 (2)), our model
performs worse for EC but better for RE and com-
parable for Avg EC+RE.

4.4 Analysis of Entity Type Aggregation

As described in Section 4.2, we aggregate the EC
results by majority vote. Now, we analyze their
disagreement. For our best model, there are only 9
entities (0.12%) with disagreement in the test data.
For those, the max, min and median disagreement
with the majority label is 36%, 2%, and 8%, resp.
Thus, the disagreement is negligibly small.

5We only show results of single models, no ensembles.
Following previous studies, we omit the entity class “Other”
when computing the EC score.

6Our results on EC in setup 1 are also not comparable

O
Other
Peop

Org
Loc

      N      Based_in  Live_in       Kill      Located_in Work_for

Figure 4: Most strongly correlated entity types and
relations according to CRF transition matrix

4.5 Analysis of CRF Transition Matrix

To analyze the CRF layer, we extract which tran-
sitions have scores above 0.5. Figure 4 shows that
the layer has learned correct correlations between
entity types and relations.

5 Conclusion and Future Work

In this paper, we presented the first study on global
normalization of neural networks for a sentence
classification task without transforming it into a
token-labeling problem. We trained a convolu-
tional neural network with a linear-chain condi-
tional random field output layer on joint entity and
relation classification and showed that it outper-
formed using a locally normalized softmax layer.

An interesting future direction is the extension
of the linear-chain CRF to jointly normalize all
predictions for table filling in a single model pass.
Furthermore, we plan to verify our results on other
datasets in future work.
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A Dataset Statistics

Table 3 provides statistics of the data composition
in our different setups which are described in the
paper. The N class of setup 2 and setup 3 has been
subsampled in the training and development set as
described in the paper.

train dev test
Peop 1146 224 321
Org 596 189 198
Loc 1204 335 427
Other 427 110 125
O 20338 5261 6313
Located in 243 66 94
Work for 243 82 76
OrgBased in 239 106 105
Live in 342 79 100
Kill 203 18 47
N (setup 1) 10742 2614 3344
N (setup 2/3) 123453 30757 120716

Table 3: Dataset statistics for our different experi-
mental setups

Note that the sum of numbers of relation labels
is slightly different to the numbers reported in
(Roth and Yih, 2004). According to their web-
site https://cogcomp.cs.illinois.
edu/page/resource_view/43, they have
updated the corpus.

B Hyperparameters

Setup Output layer nkC nkE hC hE
1 softmax 500 100 100 50
2 softmax 500 100 100 50
3 softmax 500 100 100 50
1 CRF 200 50 100 50
2 CRF 500 100 200 50
3 CRF 500 100 100 50

Table 4: Hyperparameter optimization results

Table 4 provides the hyperparameters we opti-
mized on dev (nkC : number of convolutional fil-
ters for the CNN convolving the contexts, nkE :
number of convolutional filters for the CNN con-
volving the entities; hC : number of hidden units
for creating the final context representation, hE :
number of hidden units for creating the final entity
representation).

For all models, we use a filter width of 3 for the
context CNN and a filter width of 2 for the entity

CNN (tuned in prior experiments and fixed for the
optimization of the parameters in Table 4).

For training, we apply gradient descent with a
batch size of 10 and an initial learning rate of
0.1. When the performance on dev decreases, we
halve the learning rate. The model is trained with
early stopping on dev, with a maximum number
of 20 epochs. We apply L2 regularization with
λ = 10−3.
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Abstract

Neural networks have shown promising
results for relation extraction. State-of-
the-art models cast the task as an end-to-
end problem, solved incrementally using
a local classifier. Yet previous work us-
ing statistical models have demonstrated
that global optimization can achieve better
performances compared to local classifica-
tion. We build a globally optimized neural
model for end-to-end relation extraction,
proposing novel LSTM features in order
to better learn context representations. In
addition, we present a novel method to in-
tegrate syntactic information to facilitate
global learning, yet requiring little back-
ground on syntactic grammars thus being
easy to extend. Experimental results show
that our proposed model is highly effec-
tive, achieving the best performances on
two standard benchmarks.

1 Introduction

Extracting entities (Florian et al., 2006, 2010) and
relations (Zhao and Grishman, 2005; Jiang and
Zhai, 2007; Sun et al., 2011; Plank and Mos-
chitti, 2013) from unstructured texts have been
two central tasks in information extraction (Grish-
man, 1997; Doddington et al., 2004). Traditional
approaches to relation extraction take entity recog-
nition as a predecessor step in a pipeline (Zelenko
et al., 2003; Chan and Roth, 2011), predicting re-
lations between given entities.

In recent years, there has been a surge of inter-
est in performing end-to-end relation extraction,
jointly recognizing entities and relations given free
text inputs (Li and Ji, 2014; Miwa and Sasaki,
2014; Miwa and Bansal, 2016; Gupta et al., 2016).
End-to-end learning prevents error propagation in

the pipeline approach, and allows cross-task de-
pendencies to be modeled explicitly for entity
recognition. As a result, it gives better relation ex-
traction accuracies compared to pipelines.

Miwa and Bansal (2016) were among the first to
use neural networks for end-to-end relation extrac-
tion, showing highly promising results. In partic-
ular, they used bidirectional LSTM (Graves et al.,
2013) to learn hidden word representations under
a sentential context, and further leveraged tree-
structured LSTM (Tai et al., 2015) to encode syn-
tactic information, given the output of a parser.
The resulting representations are then used for
making local decisions for entity and relation ex-
traction incrementally, leading to much improved
results compared with the best statistical model (Li
and Ji, 2014). This demonstrates the strength of
neural representation learning for end-to-end rela-
tion extraction.

On the other hand, Miwa and Bansal (2016)’s
model is trained locally, without considering struc-
tural correspondences between incremental deci-
sions. This is unlike existing statistical methods,
which utilize well-studied structured prediction
methods to address the problem (Li and Ji, 2014;
Miwa and Sasaki, 2014). As has been commonly
understood, learning local decisions for structured
prediction can lead to label bias (Lafferty et al.,
2001), which prevents globally optimal structures
from receiving optimal scores by the model. We
address this potential issue by building a struc-
tural neural model for end-to-end relation extrac-
tion, following a recent line of efforts on globally
optimized models for neural structured prediction
(Zhou et al., 2015; Watanabe and Sumita, 2015;
Andor et al., 2016; Wiseman and Rush, 2016).

In particular, we follow Miwa and Sasaki
(2014), casting the task as an end-to-end table-
filling problem. This is different from the action-
based method of Li and Ji (2014), yet has shown to
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be more flexible and accurate (Miwa and Sasaki,
2014). We take a different approach to representa-
tion learning, addressing two potential limitations
of Miwa and Bansal (2016).

First, Miwa and Bansal (2016) rely on exter-
nal syntactic parsers for obtaining syntactic in-
formation, which is crucial for relation extraction
(Culotta and Sorensen, 2004; Zhou et al., 2005;
Bunescu and Mooney, 2005; Qian et al., 2008).
However, parsing errors can lead to encoding in-
accuracies of tree-LSTMs, thereby hurting rela-
tion extraction potentially. We take an alternative
approach to integrating syntactic information, by
taking the hidden LSTM layers of a bi-affine at-
tention parser (Dozat and Manning, 2016) to aug-
ment input representations. Pretrained for parsing,
such hidden layers contain rich syntactic informa-
tion on each word, yet do not explicitly represent
parsing decisions, thereby avoiding potential is-
sues caused by incorrect parses.

Our method is also free from a particular syn-
tactic formalism, such as dependency grammar,
constituent grammar or combinatory categorial
grammar, requiring only hidden representations on
word that contain syntactic information. In con-
trast, the method of Miwa and Bansal (2016) must
consider tree LSTM formulations that are specific
to grammar formalisms, which can be structurally
different (Tai et al., 2015).

Second, Miwa and Bansal (2016) did not ex-
plicitly learn the representation of segments when
predicting entity boundaries or making relation
classification decisions, which can be intuitively
highly useful, and has been investigated in sev-
eral studies (Wang and Chang, 2016; Zhang et al.,
2016). We take the LSTM-Minus method of Wang
and Chang (2016), modelling a segment as the dif-
ference between its last and first LSTM hidden
vectors. This method is highly efficient, yet gives
as accurate results as compared to more complex
neural network structures to model a span of words
(Cross and Huang, 2016).

Evaluation on two benchmark datasets shows
that our method outperforms previous methods of
Miwa and Bansal (2016), Li and Ji (2014) and
Miwa and Sasaki (2014), giving the best reported
results on both benchmarks. Detailed analysis
shows that our integration of syntactic features is
as effective as traditional approaches based on dis-
crete parser outputs. We make our code publicly

Associated Press writer Patrick McDowell in Kuwait City
ORG PER PER GPE

ORG-AFF PHYS

Figure 1: Relation extraction. The example is
chosen from the ACE05 dataset, where ORG,
PER and GPE denote organization, person and
geo-political entities, respectively; ORG-AFF and
PHYS denote organization affiliation and physical
relations, respectively.

available under Apache License 2.0.1

2 Model

2.1 Task Definition
As shown in Figure 1, the goal of relation extrac-
tion is to mine relations from raw texts. It consists
of two sub-tasks, namely entity detection, which
recognizes valid entities, and relation classifica-
tion, which determines the relation categories over
entity pairs. We follow recent studies and recog-
nize entities and relations as one single task.

2.2 Method
We follow Miwa and Sasaki (2014) and Gupta
et al. (2016), treating relation extraction as a table-
filling problem, performing entity detection and
relation classification using a single incremental
model, which is similar in spirit to Miwa and
Bansal (2016) by performing the task end-to-end.

Formally, given a sentence w1w2 · · ·wn, we
maintain a table Tn×n, where T (i, j) denotes the
relation between wi and wj . When i = j, T (i, j)
denotes an entity boundary label. We map entity
words into labels under the BILOU (Begin, In-
side, Last, Outside, Unit) scheme, assuming that
there are no overlapping entities in one sentence
(Li and Ji, 2014; Miwa and Sasaki, 2014; Miwa
and Bansal, 2016). Only the upper triangular table
is necessary for indicating the relations.

We adopt the close-first left-to-right order
(Miwa and Sasaki, 2014) to map the two-
dimensional table into a sequence, in order to
fill the table incrementally. As shown in Fig-
ure 2, first {T (i, i)} are filled by growing i, and
then the sequence {T (i, i + 1)} is filled, and then
{T (i, i + 2)}, · · · , {T (i, i + n)} are filled incre-
mentally, until the table is fully annotated.

During the table-filling process, we take two la-
bel sets for entity detection (i = j) and relation

1https://github.com/zhangmeishan/NNRelationExtraction
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Associated Press writer Patrick McDowell in Kuwait City

Associated
Press
writer
Patrick

McDowell

in
Kuwait

City

1 B-ORG 9 ⊥ 16 ⊥ 22 ⊥ 27 ⊥ 31 ⊥ 34 ⊥ 36 ⊥
2 L-ORG 10

←−−−−−
ORG-AFF 17 ⊥ 23 ⊥ 28 ⊥ 32 ⊥ 35 ⊥

3 U-PER 11 ⊥ 18 ⊥ 24 ⊥ 29 ⊥ 33 ⊥
4 B-PER 12 ⊥ 19 ⊥ 25 ⊥ 30 ⊥

5 L-PER 13 ⊥ 20 ⊥ 26
−−−→
PHYS

6 O 14 ⊥ 21 ⊥
7 B-GPE 15 ⊥

8 L-GPE

Figure 2: Table-filling example, where numbers indicate the filling order.

classification (i < j), respectively. The labels for
entity detection include {B-*, I-*, L-*, O, U-* },
where * denotes the entity type, and the labels for
relation classification are {−→∗ ,←−∗ ,⊥}, where * de-
notes the relation category and⊥ denotes a NULL
relation.2

At each step, given a partially-filled table T , we
determine the most suitable label l for the next step
using a scoring function:

score(T, l) = WlhT , (1)

where Wl is a model parameter and hT is the vec-
tor representation of T . Based on the function,
we aim to find the best label sequence l1 · · · lm,
where m = n(n+1)

2 , and the resulting sequence of
partially-filled tables is T0T1 · · ·Tm, where Ti =
FILL(Ti−1, li), and T0 is an empty table. Differ-
ent from previous work, we investigate a structural
model that is optimized for the label sequence
l1 · · · lm globally, rather than for each li locally.

2.3 Representation Learning

At the ith step, we determine the label li of the
next table slot based on the current hypothesis
Ti−1. Following Miwa and Bansal (2016), we use
a neural network to learn the vector representation
of Ti−1, and then use Equation 1 to rank candidate
next labels. There are two types of input features,
including the word sequence w1w2 · · ·wn, and the
readily filled label sequence l1l2 · · · li−1. We build
a neural network to represent Ti−1.

2.3.1 Word Representation
Shown in Figure 3, we represent each word wi
by a vector hwi using its word form, POS tag and
characters. Two different forms of embeddings are
used based on the word form, one being obtained
by using a randomly initialized look-up table Ew,

2We remove the illegal table-filling labels during decod-
ing for training and testing. For example, T (i, j) must be ⊥
if T (i, i) or T (j, j) equals O.

hw

⊕
ewe′w et hchar

⊕ ⊕
CNN

character sequence

Figure 3: Word representations.

tuned during training and represented by ew, and
the other being a pre-trained external word embed-
ding from E′w, which is fixed and represented by
e′w.3 For a POS tag t, its embedding et is obtained
from a look-up table Et similar to Ew.

The above two components have also been used
by Miwa and Bansal (2016). We further enhance
the word representation by using its character se-
quence (Ballesteros et al., 2015; Lample et al.,
2016), taking a convolution neural network (CNN)
to derive a character-based word representation
hchar, which has been demonstrated effective for
several NLP tasks (dos Santos and Gatti, 2014).
We obtain the final hwi based on a non-linear feed-
forward layer on e′w ⊕ ew ⊕ et ⊕ hchar, where ⊕
denotes concatenation.

2.3.2 Label Representation
In addition to the word sequence, the history la-
bel sequence l1l2 · · · li−1, and especially the la-
bels representing detected entities, are also use-
ful disambiguation. For example, the previous en-
tity boundary label can be helpful to deciding the
boundary label of the current word. During re-
lation classification, the types of the entities in-
volved can indicate the relation category between
them. We exploit the diagonal label sequence of
partial table T , which denotes entity boundaries,
to enhance the representation learning. A word’s
entity boundary label embedding el is obtained by

3We use the set of pre-trained glove word embeddings
available at http://nlp.stanford.edu/data/glove.6B.zip as ex-
ternal word embeddings.
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hi−1...... hi
...... hj ......

hseg = hj − hi−1

Figure 4: Segment representation.

using a randomly initialized looking-up table El.

2.3.3 LSTM Features
We follow Miwa and Bansal (2016), learn-
ing global context representations using LSTMs.
Three basic LSTM structures are used: a left-
to-right word LSTM (

−−−−→
LSTMw), a right-to-left

word LSTM (
←−−−−
LSTMw) and a left-to-right entity

boundary label LSTM (
−−−−→
LSTMe). Each LSTM

derives a sequence of hidden vectors for inputs.
For example, for w1w2 · · ·wn,

−−−−→
LSTMw gives

hw,→1 hw,→2 · · ·hw,→n .
Different from Miwa and Bansal (2016), who

use the output hidden vectors {hi} of LSTMs to
represent words, we exploit segment representa-
tions as well. In particular, for a segment of
text [i, j], the representation is computed by using
LSTM-Minus (Wang and Chang, 2016), shown by
Figure 4, where hj − hi−1 in a left-to-right LSTM
and hi − hj+1 in a right-to-left LSTM are used
to represent the segment [i, j]. The segment rep-
resentations can reflect entities in a sentence, and
thus can be potentially useful for both entity de-
tection and relation extraction.

2.3.4 Feature Representation
We use separate feature representations for entity
detection and relation classification, both of which
are extracted from the above three LSTM struc-
tures. In particular, we first extract a set of base
neural features, and then concatenate them and
feed them into a non-linear neural layer for entity
detection and relation classification, respectively.
Figure 5 shows the overall representation.

[Entity Detection] Figure 5(a) shows the fea-
ture representation for the entity detection. First,
we extract six feature vectors from the three basic
LSTMs, three of which are word features, namely
hw,→i , hw,←i and he,→i−1 , and the remaining are seg-
ment features, namely hw,→[j,i−1], h

w,←
[j,i−1] and he,→[j,i−1],

where j denotes the start position of the previ-
ous entity.4 The segment features are computed
dynamically from the partial outputs of entity de-
tection, according to the boundaries of the lastly-

4The non-entity word is treated as a special unit entity to
extract segmental features.

...... ...... ......

...... ...... ......

...... ......

hT

−−−−→
LSTMw

←−−−−
LSTMw

−−−−→
LSTMe

...... j − 1 j ...... i− 1 i i+ 1 ......

concatenate

feed-forward

(a) entity detection

...... ...... ...... ...... ......

...... ...... ...... ...... ......

...... ...... ...... ...... ......

hT

−−−−→
LSTMw

←−−−−
LSTMw

−−−−→
LSTMe

left entityi middle entityj right

concatenate

feed-forward

(b) relation classification

Figure 5: Feature representation.

formed entity during the decoding. The six vectors
are concatenated and then fed into a non-linear
layer for entity detection.

[Relation Classification] Figure 5(b) shows the
feature representation for relation classification.
Similar to entity detection, we extract a set of fea-
tures from the basic LSTMs (

−−−−→
LSTMw,

←−−−−
LSTMw

and
−−−−→
LSTMe), and then concatenate them for a

non-linear classification layer. The differences be-
tween relation classification with entity detection
lie in the range of hidden layers from LSTMs. For
relation classification between i and j, we split
each LSTM into five segments according to the
two entities ended with i and j. Formally, let
[s(i), i] and [s(j), j] denote the two entities above,
where s(·) denotes the start position of an entity,
the resulted segments are [0, s(i)− 1] (i.e., left, in
Figure 5(b)), [s(i), i] (i.e., entityi), [i+1, s(j)−1]
(i.e., middle), [s(j), j] (i.e., entityj) and [j+ 1, n]
(i.e., right), respectively. For the word LSTMs,
we extract all five segment features, while the en-
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Models Encoder LAS
S-LSTM (2015) 1-Layer LSTM 90.9

K&G (2016) 2-Layer Bi-LSTM 91.9
D&M (2016) 4-Layer Bi-LSTM 93.8

Table 1: Encoder structures and performances of
three state-of-the-art dependency parsers, where
S-LSTM (2015) refers to Dyer et al. (2015), K&G
(2016) refers to the best parser of Kiperwasser and
Goldberg (2016), D&M (2016) refers to Dozat
and Manning (2016), and LAS (labeled attach-
ment score) is the major evaluation metric.

tity label LSTM, we only use the segment features
of entityi and entityj .

2.3.5 Syntactic Features

Previous work has shown that syntactic features
are useful for relation extraction (Zhou et al.,
2005). For example, the shortest dependency
path has been used by several relation extraction
models (Bunescu and Mooney, 2005; Miwa and
Bansal, 2016). Here we propose a novel method
to integrate syntax, without need for prior knowl-
edge on concrete syntactic structures.

In particular, we take state-of-the-art syntactic
parsers that use encoder-decoder neural models
(Buys and Blunsom, 2015; Kiperwasser and Gold-
berg, 2016), where the encoder represents the syn-
tactic features of the input sentences. For exam-
ple, LSTM hidden states over the input word/tag
sequences has been used frequently as syntac-
tic features (Kiperwasser and Goldberg, 2016).
Such features represent input words with syntac-
tic information. The parser decoder also leverages
partially-parsed results, such as features from par-
tial syntactic trees, although we do not use explicit
output features. Table 1 shows the encoder struc-
tures of three state-of-the-art dependency parsers.

Our method is to leverage trained syntactic
parsers, dumping the encoder feature represen-
tations given our inputs, using them directly as
part of input embeddings in our proposed model.
Denoting the dumped syntactic features on each
word as hsyn

1 h
syn
2 · · ·h

syn
n , we feed them into a non-

linear neural layer, and then generate two LSTMs
(bi-directional) based on the outputs, namely−−−−→
LSTMsyn and

←−−−−
LSTMsyn, respectively, augment-

ing the original three LSTMs into five LSTMs.
Features are extracted from the two new LSTMs
in the same way as from the basic bi-directional

word LSTMs.
In this paper, we exploit the parser of Dozat and

Manning (2016), since it achieves the current best
performance for dependency parsing. Our method
can be easily generalized to other parsers, which
are potentially useful for our task as well. For ex-
ample, we can use a constituent parser in the same
way by dumping the implicit encoder features.

Our exploration of syntactic features has two
main advantages over the method of Miwa and
Bansal (2016), where dependency path LSTMs are
used for relation classification. On the one hand,
incorrect dependency paths between entity pairs
can propagate to relation classification in Miwa
and Bansal (2016), because these paths rely on ex-
plicit discrete outputs from a syntactic parser. Our
method can avoid the problem since we do not
compute parser outputs. On the other hand, the
computation complexity is largely reduced by us-
ing our method since sequential LSTMs are based
on inputs only, while the dependency path LSTMs
should be computed based on the dynamic en-
tity detection outputs. When beam search is ex-
ploited during decoding, increasing number of de-
pendency paths can be used by a surge of entity
pairs from beam outputs.

Our method can be extended into neural stack-
ing Wang et al. (2017), by doing back-propagation
training of the parser parameters during model
training, which are leave for future work.

2.4 Training and Search
2.4.1 Local Optimization
Previous work (Miwa and Bansal, 2016; Gupta
et al., 2016) trains model parameters by model-
ing each step for labeling one input sentence sepa-
rately. Given a partial table T , its neural represen-
tation hT is first obtained, and then compute the
next label scores {l1, l2, · · · , ls} using Equation 1.
The output scores are regularized into a probabil-
ity distribution {pl1 , pl2 , · · · , pls} by using a soft-
max layer. The training objective is to minimize
the cross-entropy loss between this output distri-
bution with the gold-standard distribution:

loss(T, lgi ,Θ) = − log plgi , (2)

where lgi is the gold-standard next label for T , and
Θ is the set of all model parameters. We refer this
training method as local optimization, because it
maximizes the score of the gold-standard label at
each step locally.
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Algorithm 1 Beam-search.
agenda← { (empty table, score=0.0) }
for i in 1 · · ·max-step

next scored tables← { }
for scored table in agenda

labels← NEXTLABELS(scored table)
for next label in labels

new← FILL(scored table, next label)
ADDITEM(next scored tables, new)

agenda← TOP-B(next scored tables, B)

During the decoding phase, the greedy search
strategy is applied in consistence with the train-
ing. At each step, we find the highest-scored label
based on the current partial table, before going on
to the next step.

2.4.2 Global Optimization
We exploit the global optimization strategy of
Zhou et al. (2015) and Andor et al. (2016), max-
imizing the cumulative score of the gold-standard
label sequence for one sentence as a unit. Global
optimization has achieved success for several NLP
tasks under the neural setting (Zhou et al., 2015;
Watanabe and Sumita, 2015). For relation extrac-
tion, global learning gives the best performances
under the discrete setting (Li and Ji, 2014; Miwa
and Sasaki, 2014). We study such models here for
neural network models.

Given a label sequence of l1l2 · · · li, the score of
Ti is defined as follows:

score(Ti) =
i∑

j=0

score(Tj−1, lj)

= score(Ti−1) + score(Ti−1, li),

(3)

where score(T0) = 0 and score(Ti−1, li) is com-
puted by Equation 1. By this definition, we maxi-
mize the scores of all gold-standard partial tables.

Again cross-entropy loss is used to perform
model updates. At each step i, the objective func-
tion is defined by:

loss(x, T gi ,Θ) = − log pT gi

= − log
score(T gi )∑
T ′i

score(T ′i )
,

(4)

where x denotes the input sentence, T gi denotes
the gold-standard state at step i, and T ′i are all par-
tial tables that can be reached at step i.

The major challenge is to compute pT gi , be-
cause we cannot traverse all partial tables that are

valid at step i, since their count increases expo-
nentially by the step number. We follow Andor
et al. (2016), approximating the probability by us-
ing beam search and early-update.

Shown in Algorithm 1, we use standard
beam search, maintaining the B highest-scored
partially-filled tables in an agenda at each step.
When each action of table filling is taken, all hy-
potheses in the agenda are expanded by enumer-
ating the next labels, and the B highest-scored re-
sulting tables are used to replace the agenda for the
next step. Search begins with the agenda contain-
ing an empty table, and finishes when all cells of
the tables in the agenda have been filled. When the
beam size is 1, the algorithm is the same as greedy
decoding. When the beam size is larger than 1,
however, error propagation is alleviated. For train-
ing, the same beam search algorithm is applied to
training examples, and early-update (Collins and
Roark, 2004) is used to fix search errors.

3 Experiments

3.1 Data and Evaluation

We evaluate the proposed model on two datasets,
namely the ACE05 data and the corpus of Roth
and Yih (2004) (CONLL04), respectively. The
ACE05 dataset defines seven coarse-grained entity
types and six coarse-grained relation categories,
while the CONLL04 dataset defines four entity
types and five relation categories.

For the ACE05 dataset, we follow Li and Ji
(2014) and Miwa and Bansal (2016), splitting and
preprocessing the dataset into training, develop-
ment and test sets.5 For the CONLL04 dataset,
we follow Miwa and Sasaki (2014) to split the data
into training and test corpora, and then divide 10%
of the training corpus for development.

We use the micro F1-measure as the major met-
ric to evaluate model performances, treating an en-
tity as correct when its head region and type are
both correct,6 and regard a relation as correct when
the argument entities and the relation category are
all correct. We exploit pairwise t-test for measur-
ing significance values.

5https://github.com/tticoin/LSTM-ER/.
6For the ACE05 dataset, the head region is defined by the

corpus, and for the CONLL04 dataset, the head region covers
the entire scope of an entity.
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Network Structure Size
Word Embedding 200
Tag Embedding 50
Char Embedding 50

Entity Label Embedding 50
Input/Output of Word LSTMs 250

Input/Output of Entity Label LSTMs 100
Table Representation 300

Table 2: Dimension sizes.

Model Entity F1 Relation F1
baseline 81.5 50.9

-character 80.9 50.2
-segment 80.2 49.8(entity detection)

Table 3: Feature ablation tests.

3.2 Parameter Tuning
We update all model parameters by back propa-
gation using Adam (Kingma and Ba, 2014) with
a learning rate 10−3, using gradient clipping by
a max norm 10 and l2-regularization by a pa-
rameter 10−5. The dimension sizes of various
vectors in neural network structure are shown in
Table 2. All the hyper-parameters are tuned by
development experiments. All experiments are
conducted using gcc version 4.9.4 (Ubuntu 4.9.4-
2ubuntu1 14.04.1), on an Intel(R) Xeon(R) CPU
E5-2670 @ 2.60GHz.

Online training is used to learn parameters,
traversing over the entire training examples by 300
iterations. We select the best iteration number ac-
cording to the development results. In particu-
lar, we exploit pre-training techniques (Wiseman
and Rush, 2016) to learn better model parameters.
For the local model, we follow Miwa and Bansal
(2016), training parameters only for entity detec-
tion during the first 20 iterations. For the global
model, we pretrain our model using local opti-
mization for 40 iterations, before conducting beam
global optimization.

3.3 Development Experiments
We conduct several development experiments on
the ACE05 development dataset.

3.3.1 Feature Ablation Tests
We consider the baseline system with no syntac-
tic features using local training. Compared with
Miwa and Bansal (2016), we introduce character-
level features, and in addition exploit segmental

Model Beam Relation F1 Speed
Local 1 50.9 95.6

Local(+SS) 1 51.2 95.1

Global
1 51.4 95.3
3 51.8 52.0
5 52.6 36.9

Table 4: Comparisons between local and global
models, where SS denotes scheduled sampling,
and speed is measured by the number of sentences
per second.

features for entity detection. Feature ablation ex-
periments are conducted for the two types of fea-
tures. Table 3 shows the experimental results,
which demonstrate that the character-level fea-
tures and the segment features we use are both use-
ful for relation extraction.

3.3.2 Local v.s. Global Training
We study the influence of training strategies for re-
lation extraction without using syntactic features.
For the local model, we apply scheduled sampling
(Bengio et al., 2015), which has been shown to
improve the performance of relation extraction by
Miwa and Bansal (2016).

Table 4 shows the results. Scheduled sampling
achieves improved F-measure scores for the local
model. With the same greedy search strategy, the
globally normalized model gives slightly better re-
sults than the local model with scheduled sam-
pling. The performance of the global model in-
creases with a larger beam size. When beam size
5 is exploited, we obtain a further gain of 1.2%
on the relation F-measure, which is significantly
better than our baseline local model with sched-
uled sampling (p ≈ 10−4). However, the decoding
speed becomes intolerably slow when the beam
size increases beyond 5. Thus we exploit a beam
size of 5 for global training considering both per-
formance and efficiency.

3.3.3 Syntactic Features
We examine the effectiveness of the proposed im-
plicit syntactic features. Table 5 shows the devel-
opment results using both local and global opti-
mization. The proposed features improve the rela-
tion performances significantly under both settings
(p < 10−4), demonstrating that our use of syntac-
tic features is highly effective.

We also compare our feature integration method
with the traditional methods based on syntactic
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Model Features Entity F1 Relation F1

Local all 81.6 53.0
-syn 81.5 50.9

Global all 81.9 54.2
-syn 81.6 52.6

Table 5: The influence of syntactic features.

model ACE05 CONLL04
Entity Relation Entity Relation

Our Model 83.6 57.5 85.6 67.8
M&B (2016) 83.4 55.6 — —
L&J (2014) 80.8 49.5 — —
M&S (2014) — — 80.7 61.0

Table 6: Final results on the test datasets.

outputs which Miwa and Bansal (2016) and all
previous methods use. We use the same parser
of Dozat and Manning (2016), building features
on its dependency outputs. We exploit the bi-
directional tree LSTM of Teng and Zhang (2016)
to extract neural features, and then exploit a non-
linear feed-forward neural network to combine the
two features. Similarly, we extract segment fea-
tures but by using max pooling instead over the
sequential outputs of the feed-forward layer, since
the vector minus is nonsense here. The final rela-
tion results are 53.1% and 53.9% for the local and
global models, respectively, which have no signif-
icantly differences compared with our models. On
the other hand, our method is relatively more effi-
cient, and flexible to the grammar formalism.

3.4 Final Results
Table 6 shows the final results on the test datasets
of ACE05 and CONLL04. We show several top-
performing systems in the table as well, where
M&B (2016) refers to Miwa and Bansal (2016),
who exploit end-to-end LSTM neural networks
with local optimization, and L&J (2014) and M&S
(2014) refer to Li and Ji (2014) and Miwa and
Sasaki (2014), respectively, which are both glob-
ally optimized models using discrete features, giv-
ing the top F-scores among statistical models.7

Overall, neural models give better performances
7Gupta et al. (2016) proposed a locally optimized model

but used a different test dataset from CONLL04 and a differ-
ent evaluation method, reporting entity and relation F-scores
of 93.6% and 72.1%, respectively. Their results are not di-
rectly comparable to the results in Table 6. In particular, they
regard an entity as correct if at least one token is tagged cor-
rectly, which influences the results significantly since multi-
word entities accounts for over 50% of all entities.
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Figure 6: Sentence-level accuracies with respect
to sentence length.
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Figure 7: F-scores with respect to the distance be-
tween entity pairs.

than statistical models, and global optimization
can give improved performances as well. Our fi-
nal model achieves the best performances on both
datasets. Compared with the best reported re-
sults, our model gives improvements of 1.9% on
ACE05, and 6.8% on CONLL04.

3.5 Analysis
We conduct analysis on the ACE05 test dataset in
order to better understand our models, on its two
major contributions, first examining the influences
of global optimization, and then studying the gains
by using the proposed syntactic features.

Intuitively global optimization should give bet-
ter accuracies at the sentence level. We verify
this by examining the sentence-level accuracies,
where one sentence is regarded as correct when
all the labels in the resulted table are correct. Fig-
ure 6 shows the result, which is consistent with
our intuition. The sentence-level accuracies of the
globally normalized model are consistently better
than the local model. In addition, the accuracy de-
creases sharply as the sentence length increases,
with the local model suffering more severely from
larger sentences.

To understand the effectiveness of the proposed
syntactic features, we examine the relation F-
scores with respect to entity distances. Miwa
and Bansal (2016) exploit the shortest dependency
path, which can make the distance between two
entities closer compared with their sequential dis-
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tance, thus facilitating relation extraction. We ver-
ify whether the proposed syntactic features can
benefit our model similarly. As shown in Fig-
ure 7, the F-scores of entity-pairs with large dis-
tances see apparent improvements, demonstrating
that our use of syntactic features has a similar ef-
fect compared to the shortest dependency path.

4 Related Work

Entity recognition (Florian et al., 2004, 2006;
Ratinov and Roth, 2009; Florian et al., 2010; Kuru
et al., 2016) and relation extraction (Zhao and Gr-
ishman, 2005; Jiang and Zhai, 2007; Zhou et al.,
2007; Qian and Zhou, 2010; Chan and Roth, 2010;
Sun et al., 2011; Plank and Moschitti, 2013; Verga
et al., 2016) have received much attention in the
NLP community. The dominant methods treat the
two tasks separately, where relation extraction is
performed assuming that entity boundaries have
been given (Zelenko et al., 2003; Miwa et al.,
2009; Chan and Roth, 2011; Lin et al., 2016).

Several studies find that extracting entities and
relations jointly can benefit both tasks. Early work
conducts joint inference for separate models (Ji
and Grishman, 2005; Roth and Yih, 2004, 2007).
Recent work shows that joint learning and decod-
ing with a single model brings more benefits for
the two tasks (Li and Ji, 2014; Miwa and Sasaki,
2014; Miwa and Bansal, 2016; Gupta et al., 2016),
and we follow this line of work in the study.

LSTM features have been extensively exploited
for NLP tasks, including tagging (Huang et al.,
2015; Lample et al., 2016), parsing (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2016),
relation classification (Xu et al., 2015; Vu et al.,
2016; Miwa and Bansal, 2016) and sentiment
analysis (Li et al., 2015; Teng et al., 2016). Based
on the output of LSTM structures, Wang and
Chang (2016) introduce segment features, and ap-
ply it to dependency parsing. The same method is
applied to constituent parsing by Cross and Huang
(2016). We exploit this segmental representation
for relation extraction.

Global optimization and normalization has been
successfully applied on many NLP tasks that in-
volve structural prediction (Lafferty et al., 2001;
Collins, 2002; McDonald et al., 2010; Zhang and
Clark, 2011), using traditional discrete features.
For neural models, it has recently received increas-
ing interests (Zhou et al., 2015; Andor et al., 2016;
Xu, 2016; Wiseman and Rush, 2016), and im-

proved performances can be achieved with global
optimization accompanied by beam search. Our
work is in line with these efforts. To our knowl-
edge, we are the first to apply globally optimized
neural models for end-to-end relation extraction,
achieving the best results on standard benchmarks.

5 Conclusion

We investigated a globally normalized end-to-end
relation extraction model using neural network,
based on the table-filling framework proposed by
Miwa and Sasaki (2014). Feature representations
are learned from several LSTM structures over the
inputs, and a novel simple method is used to in-
tegrate syntactic information. Experiments show
the effectiveness of both global normalization and
syntactic features. Our final model achieved the
best performances on two benchmark datasets.
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Abstract

Automatic construction of large knowl-
edge graphs (KG) by mining web-scale
text datasets has received considerable at-
tention recently. Estimating accuracy of
such automatically constructed KGs is a
challenging problem due to their size and
diversity and has largely been ignored
in prior research. In this work, we try
to fill this gap by proposing KGEval.
KGEval uses coupling constraints to bind
facts and crowdsource those few that
can infer large parts of the graph. We
demonstrate that the objective optimized
by KGEval is submodular and NP-hard,
allowing guarantees for our approxima-
tion algorithm. Through experiments on
real-world datasets, we demonstrate that
KGEval best estimates KG accuracy com-
pared to other baselines, while requiring
significantly lesser number of human eval-
uations.

1 Introduction

Automatic construction of Knowledge Graphs
(KGs) from Web documents has received signif-
icant interest over the last few years, resulting
in the development of several large KGs consist-
ing of hundreds of predicates (e.g., isCity, sta-
diumLocatedInCity(Stadium, City)) and millions
of their instances called beliefs (e.g., (Joe Luis
Arena, stadiumLocatedInCity, Detroit)). Exam-
ples of such KGs include NELL (Mitchell et al.,
2015), Knowledge-Vault (Dong et al., 2014) etc.

Due to imperfections in the automatic KG con-
struction process, many incorrect beliefs are also
found in these KGs. Knowing accuracy for each
predicate in the KG can provide targeted feedback
for improvement and highlight its strengths from

weaknesses, whereas overall accuracy of a KG
can quantify the effectiveness of its construction-
process. Knowing accuracy at predicate-level
granularity is immensely helpful for Question-
Answering (QA) systems that integrate opinions
from multiple KGs (Samadi et al., 2015). For
such systems, being aware that a particular KG is
more accurate than others in a certain domain, say
sports, helps in restricting the search over relevant
and accurate subsets of KGs, thereby improving
QA-precision and response time. In comparison
to the large body of recent work focused on con-
struction of KGs, the important problem of accu-
racy estimation of such large KGs is unexplored –
we address this gap in this paper.

True accuracy of a predicate may be estimated
by aggregating human judgments on correctness
of each and every belief in the predicate1. Even
though crowdsourcing marketplaces such as Ama-
zon Mechanical Turk (AMT) provide a convenient
way to collect human judgments, accumulating
such judgments at the scale of larges KGs is pro-
hibitively expensive. We shall refer to the task
of manually classifying a single belief as true or
false as a Belief Evaluation Task (BET). Thus, the
crucial problem is: How can we select a subset
of beliefs to evaluate which will best estimate the
true (but unknown) accuracy of KG and its predi-
cates?

A naive and popular approach is to evalu-
ate randomly sampled subset of beliefs from the
KG. Since random sampling ignores relational-
couplings present among the beliefs, it usually re-
sults in oversampling and poor accuracy estimates.
Let us motivate this through an example.

1Note that belief evaluation can not be completely au-
tomated and will require human-judgment. If an algorithm
could accurately predict correctness of a belief, then it may
as well be used during KG construction rather than during
evaluation.
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Motivating example: We motivate efficient ac-
curacy estimation through the KG fragment shown
in Figure 1. Here, each belief is an edge-triple
in the graph, for example (RedWings, isA, Sport-
sTeam). There are six correct and two incorrect
beliefs (the two incident on Taj Mahal), result-
ing in an overall accuracy of 75%(= 6/8) which
we would like to estimate. Additionally, we
would also like to estimate accuracies of the predi-
cates: homeStadiumOf, homeCity, stadiumLocate-
dInCity, cityInState and isA.

We now demonstrate how evaluation labels of
beliefs are constrained by each other. Type con-
sistency is one such coupling constraint. For in-
stance, we know from KG ontology that the home-
StadiumOf predicate connects an entity from Sta-
dium category to another entity in Sports Team cat-
egory. Now, if (Joe Louis Arena, homeStadiumOf,
Red Wings) is evaluated to be correct, then from
these type constraints we can infer that (Joe Louis
Arena, isA, Stadium) and (Red Wings, isA, Sports
Team) are also correct. Similarly, by evaluating
(Taj Mahal, isA, State) as false, we can infer that
(Detroit, cityInState, TajMahal) is incorrect.

Additionally, we have Horn-clause coupling
constraints (Mitchell et al., 2015; Lao et al., 2011),
such as homeStadiumOf(x, y) ∧ homeCity(y, z)→
stadiumLocatedInCity(x, z). By evaluating (Red
Wings, homeCity, Detroit) and applying this horn-
clause to the already evaluated facts mentioned
above, we infer that (Joe Louis Arena, stadium-
LocatedInCity, Detroit) is also correct. We ex-
plore generalized forms of these constraints in
Section 3.1.

Thus, evaluating only three beliefs, and exploit-
ing constraints among them, we exactly estimate
the overall true accuracy as 75% and also cover all
predicates. In contrast, the empirical accuracy by
randomly evaluating three beliefs, averaged over 5
trials, is 66.7%.

Our contributions in this paper are the follow-
ing: (1). Systematic study into the important prob-
lem of evaluation of automatically constructed
Knowledge Graphs. (2). A novel crowdsourcing-
based system KGEval to estimate accuracy of
large knowledge graphs (KGs) by exploiting de-
pendencies among beliefs for more accurate and
faster KG accuracy estimation. (3). Extensive
experiments on real-world KGs to demonstrate
KGEval’s effectiveness and also evaluate its ro-
bustness and scalability.

Figure 1: Sample knowledge-graph (KG) fragment that is

consistent but has erroneous beliefs.

All the data and code used in the pa-
per are available at http://talukdar.net/
mall-lab/KGEval

2 Overview and Problem Statement

2.1 KGEval: Overview
We try to estimate correctness of as many be-
liefs as possible while evaluating only a subset of
them through crowdsourcing. KGEval achieves
this goal using an iterative algorithm which alter-
nates between the following two stages:

• Control Mechanism (Section 3.4): In this
step, KGEval selects the belief which is to be
evaluated next using crowdsourcing.

• Inference Mechanism (Section 3.3): Cou-
pling constraints are applied over evaluated
beliefs to automatically estimate correctness
of additional beliefs.

This iterative process is repeated until there are
no more beliefs to be evaluated. Single iteration
of KGEval over the KG fragment from Figure 1
is shown in Figure 2 where, belief (John Louis
Arena, homeStadiumOf, Red Wings) is selected
and evaluated by crowdsourcing. Subsequently,
the inference mechanism uses type coupling con-
straints to infer (JL Arena, isA, Stadium) and (R.
Wings, isA, Team) also as true. Next, we formalize
the notations used in this paper.

2.2 Notations and Problem Statement
We are given a KG with n beliefs. Evaluating a
single belief as true or false forms a Belief Evalua-
tion Task (BET). Coupling constraints are derived
by determining relationships among BETs, which
we further discuss in Section 3.1. Notations are
also summarized in Table 1.
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Figure 2: Demonstration of one iteration of KGEval. Control mechanism selects a belief whose correctness is evaluated from
crowd. In the above example, (J.L. Arena, homeStadiumOf, Red Wings) is crowd-evaluated to be true (indicated by tick with
dotted square). (Section 2.1 and Section 3).

Symbol Description
H = {h1, . . . , hn} Set of all n Belief Evaluation

Tasks (BETs)
c(h) ∈ R+ Cost of labeling h from crowd
C = {(Ci, θi)} Coupling constraints Ci with

weights θi ∈ R+

t(h) ∈ {0, 1} True label of h
l(h) ∈ {0, 1} Estimated label of h
Hi = Dom(Ci) Hi ⊆ H which participate in Ci
G = (H ∪ C, E) Evaluation Coupling Graph, e ∈

E between Hj and Cj denotes
Hj ∈ Dom(Cj) .

Q ⊆ H BETs evaluated using crowd
I
(
G,Q

)
⊆ H Inferable set for evidenceQ:

Φ(Q) =
1
|Q|
∑
h∈Q t(h)

True accuracy of evaluated
BETsQ

Table 1: Summary of notations used (Section 2.2).

Inference algorithm helps us work out evalua-
tion labels of other BETs using constraints C. For
a set of already evaluated BETsQ ⊆ H, we define
inferable set I

(
G,Q

)
⊆ H as BETs whose evalu-

ation labels can be deduced by the inference algo-
rithm. We calculate the average true accuracy of a
given set of evaluated BETs Q ⊆ I

(
G,Q

)
⊆ H

by Φ(Q) = 1
|Q|
∑

h∈Q t(h).
KGEval aims to sample and crowdsource a BET

set Q with the largest inferable set, and solves the
optimization problem:

arg max
Q⊆H

∣∣I
(
G,Q

)∣∣ (1)

3 KGEval: Method Details

In this section, we describe various components of
KGEval.

3.1 Coupling Constraints
The evaluation labels of beliefs are often depen-
dent on each other due to rich relational struc-

ture of KGs. In this work, we derive coupling
constraints C from the KG ontology and link-
prediction algorithms, such as PRA (Lao et al.,
2011) over NELL and AMIE (Galárraga et al.,
2013) over Yago. These rules are jointly learned
over entire KG with millions of facts and are as-
sumed true.

We use conjunction-form first-order-logic rules
and refer to them as Horn clauses. Examples of a
few such coupling constraints are shown below.

C2: (x, homeStadiumOf, y)→ (y, isA, sportsTeam)
C5: (x, homeStadiumOf, y) ∧ (y, homeCity, z)→

(x, stadiumLocatedInCity, z)

Each coupling constraint Ci operates over Hi ⊆
H to the left of its arrow and infers label of
the BET on the right of its arrow. C2 enforces
type consistency and C5 is an instance of PRA
path. These constraints have also been success-
fully employed earlier during knowledge extrac-
tion (Mitchell et al., 2015) and integration (Pujara
et al., 2013). Note that the constraints are direc-
tional and inference propagates in forward direc-
tion.

3.2 Evaluation Coupling Graph (ECG)

To combine all beliefs and constraints at a com-
mon place, for all H and C, we construct a graph
with two types of nodes: (1) a node for each BET
h ∈ H, and (2) a node for each constraint Ci ∈ C.
Each Ci node is connected to all h nodes that
participate in it. We call this graph the Evalua-
tion Coupling Graph (ECG), represented as G =
(H ∪ C, E) with set of edges E = {(Ci, h) | h ∈
Dom(Ci) ∀Ci ∈ C}. Note that ECG is a bipartite
factor graph (Kschischang et al., 2001) with h as
variable-nodes and Ci as factor-nodes.
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Figure 3: Evaluation Coupling Graph (ECG) constructed

for example in Figure 1. (Section 3.2)

Figure 3 shows ECG constructed out of the mo-
tivating example in Figure 1 with |C| = 8 and
separate nodes for each of the edges (beliefs or
BETs) in KG. We pose the KG evaluation prob-
lem as classification of BET nodes in the ECG by
allotting them a label of 1 or 0 to represent true or
false respectively.

3.3 Inference Mechanism

Inference mechanism helps propagate true/false
labels of evaluated beliefs to other non-evaluated
beliefs using available coupling constraints (Bragg
et al., 2013). We use Probabilistic Soft Logic
(PSL), (Broecheler et al., 2010) as our infer-
ence engine.Below we briefly describe the inter-
nal workings of our inference engine for accuracy
estimation problem.

Potential function ψj is defined for each Cj us-
ing Lukaseiwicz t-norm and it depicts how satis-
factorily constraint Cj is satisfied. For example, C5

mentioned earlier is transformed from first-order
logical form to a real valued number by

ψj(C5) =
(

max{0, hx + hy − 1− hw}
)2 (2)

where C5 = hx ∧ hy → hw, where hx denotes the
evaluation score∈ [0, 1] associated with the BETs.

The probability distribution over label assign-
ment is so structured such that labels which sat-
isfy more coupling constraints are more proba-
ble. Probability of any label assignment Ω

(
H
)
∈

{0, 1}|H| over BETs in G is given by

P
(
Ω
(
H
))

=
1

Z
exp

[
−
|C|∑

j=1

θjψj
(
Cj
)]

(3)

where Z is the normalizing constant and ψj cor-
responds to potential function acting over BETs
h ∈ Dom(Cj). Final assignment of Ω(H)PSL ∈
{1, 0}|H| labels is obtained by solving the maxi-
mum a-posteriori (MAP) optimization problem

Ω
(
H
)
PSL

= arg max
Ω(H)

P
(

Ω
(
H
))

We denote by MPSL(h, γ) ∈ [0, 1] the PSL-
estimated score for label γ ∈ {1, 0} on BET h in
the optimization above.
Inferable Set using PSL: We define estimated la-
bel for each BET h as shown below.

l(h) =





1 if MPSL(h, 1) ≥ τ
0 if MPSL(h, 0) ≥ τ
∅ otherwise

where threshold τ is system hyper-parameter. In-
ferable set is composed of BETs for which infer-
ence algorithm (PSL) confidently propagates la-
bels.

I(G,Q) = {h ∈ H | l(h) 6= ∅}
Note that two BET nodes from ECG can interact
with varying strengths through different constraint
nodes; this multi-relational structure requires soft
probabilistic propagation.

3.4 Control Mechanism
Control mechanism selects the BET to be crowd-
evaluated at every iteration. We first present the
following two theorems involving KGEval’s opti-
mization in Equation (1). Please refer Appendix
for proofs of both theorems.
Theorem 1. [Submodularity] The function op-
timized by KGEval (Equation (1)) using the
PSL-based inference mechanism is submodular
(Lovász, 1983).

The proof follows from the fact that all pairs of
BETs satisfy the regularity condition (Jegelka and
Bilmes, 2011; Kolmogorov and Zabih, 2004), fur-
ther used by a proven conjecture (Mossel and
Roch, 2007).
Theorem 2. [NP-Hardness] The problem of se-
lecting optimal solution in KGEval’s optimization
(Equation (1)) is NP-Hard.

Proof follows by reducing NP-complete Set-cover
Problem (SCP) to selecting Q which covers
I(G,Q).

Justification for Greedy Strategy: From The-
orem 1 and 2, we observe that the function op-
timized by KGEval is NP-hard and submodular.
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Algorithm 1 KGEval: Accuracy Estimation of
Knowledge Graphs

Require: H: BETs, C: coupling constraints, B:
assigned budget, S: seed set, c(h): BET cost

1: G = BUILDECG(H, C)
2: Br = B
3: Q0 = S, t = 1
4: repeat
5: h∗ = arg maxh∈H−Q |I(G,Qt−1 ∪ {h})|
6: CROWDEVALUATE(h∗)
7: RUNINFERENCE(Qt−1 ∪ h∗)
8: Qt = I(G,Qt−1 ∪ {h∗})
9: Br = Br − c(h∗)

10: Q = Q∪Qt
11: if Q ≡ H then
12: EXIT

13: end if
14: Acct = 1

|Q|
∑

h∈Q l(h)
15: t = t+ 1
16: until CONVERGENCE

17: return Acct

Results from (Nemhauser et al., 1978) prove that
greedy hill-climbing algorithms solve such maxi-
mization problem within an approximation factor
of (1−1/e) ≈ 63% of the optimal solution. Hence
we iteratively select the next BET which gives the
greatest increase in size of inferable set.

We acknowledge the importance of crowd-
sourcing aspects such as label-aggregation,
worker’s quality estimation etc. Appendix A.1
presents a mechanism to handle noisy crowd
workers under limited budget.

3.5 Bringing it All Together
Algorithm 1 presents KGEval. In Lines 1-3, we
build the Evaluation Coupling Graph G = (H ∪
C, E) and use the labels of seed set S to initial-
ize G. In lines 4-16, we repetitively run our in-
ference mechanism, until either the accuracy esti-
mates have converged, or all the BETs are covered.
In each iteration, the BET with the largest infer-
able set is identified and evaluated using crowd-
sourcing (Lines 5-6). The new inferable set Qt is
estimated. These automatically annotated nodes
are added to Q (Lines 7-10).
Convergence: In this paper, we define conver-
gence whenever the variance of sequence of accu-
racy estimates [ Acct−k, . . ., Acct−1, Acct] is less
than α. We set k = 9 and α = 0.002 for our
experiments.

4 Experiments

To assess the effectiveness of KGEval, we ask the
following questions: (1).How effective is KGEval
in estimating KG accuracy, both at predicate-level
and at overall KG-level? (Section 4.3). (2). What
is the importance of coupling constraints on its
performance? (Section 4.4). (3). And lastly, how
robust is KGEval to estimating accuracy of KGs
with varying quality? (Section 4.5).

4.1 Model Description

Evaluation set HN HY
#BETs 1860 1386

#Constraints |CN | = 130 |CY | = 28
#Predicates 18 16
Gold Acc. 91.34% 99.20%

Table 2: Details of BET subsets used for accuracy evalua-
tion. (Section 4.1.2).

4.1.1 Setup
Datasets: For experiments, we consider two
KGs: NELL and Yago2. From NELL (NELL),
we choose a sub-graph of sports related be-
liefs NELL-sports, mostly pertaining to ath-
letes, coaches, teams, leagues, stadiums etc.
We construct coupling constraints set CN us-
ing top-ranked PRA inference rules for available
predicate-relations (Lao et al., 2011). The confi-
dence score returned by PRA are used as weights
θi. We use NELL-ontology’s predicate-signatures
to get information for type constraints. Please
note that PSL is capable of handling weighted
constraints and also learn their weights (relative
importance). So, it is not critical to provide
absolutely correct constraints. We also select
YAGO2-sample (YAGO) , which unlike NELL-
sports, is not domain specific. We use AMIE horn
clauses (Galárraga et al., 2013) to construct multi-
relational coupling constraints CY. For each Ci,
the score returned by AMIE is used as rule weight
θi. Table 2 reports the statistics of datasets used,
their true accuracy and number of coupling con-
straints. Obtaining gold-labels for millions of facts
is non-trivial and expensive as crowdsourcing over
full KG incurs significant cost.

Size of evaluation set: NELL-sport consists of
23, 422 beliefs with 13, 290 unique entities and
53 unique predicates. Whereas YAGO-sample has
31, 720 beliefs, with unique 32, 103 entities and
17 predicates. In order to calculate accuracy, we
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require gold evaluation of all beliefs in the evalu-
ation set. Since obtaining gold evaluation of the
entire (or large subsets of) NELL and Yago2 KGs
will be prohibitively expensive, we take subset of
these KGs for evaluation. (KGEval) consists of
datasets used, their crowdsourced labels, coupling
constraints and code for inference/control.

Initialization: Algorithm 1 requires initial seed
set S which we generate by randomly evaluating
|S| = 50 beliefs from H. To maintain fairness,
all baselines start from S. For asserting true (or
false) value for beliefs, we set a high soft label
confidence threshold at τ = 0.8 (see Section 3.3).

4.1.2 Crowdsourcing of BETs
To compare KGEval predictions against human
evaluations, we evaluate all BETs {HN ∪ HY }
on AMT. For the ease of workers, we translate
each entity-relation-entity belief into human read-
able format before posting to crowd.

We published BETs on AMT under ‘classifi-
cation project’ category. We hired AMT recog-
nized master workers for high quality labels and
paid $0.01 per BET. To compare between ‘mas-
ter’ and ‘noisy’ workers, we correlated their la-
bels individually to expert labels on random subset
and observed that master workers were better cor-
related (93%) as compared to three non-masters
(89%). Consequently we consider votes of mas-
ter workers for {HN ∪HY } as gold labels, which
we would like our inference algorithm to be able
to predict. As the average turnaround time for
AMT tasks runs into a few minutes (Dupuis et al.,
2013), KGEval is effectively real-time within such
turnaround time range.

4.1.3 Performance Evaluation Metrics
Performance of various methods are evaluated us-
ing the following two metrics. To capture accuracy
at the predicate level, we define ∆predicate as the
average of difference between gold and estimated
accuracy of each of the R predicates in KG.

∆predicate =
1

|R|

( ∑

∀r∈R

∣∣∣Φ(Hr)− 1

|Hr|
∑

∀h∈Hr

l(h)
∣∣∣
)

We define ∆overall as the difference between
gold and estimated accuracy over the entire evalu-
ation set.

∆overall =

∣∣∣∣Φ(H)− 1

|H|
∑

∀h∈H
l(h)

∣∣∣∣

Above, Φ(H) is the overall gold accuracy,
Φ(Hr) is the gold accuracy of predicate r and
l(h) is the label assigned by the currently evalu-
ated method. ∆overall treats entire KG as a single
bag of BETs whereas ∆predicate segregates beliefs
based on their type of predicate-relation. For both
metrics, lower is better.

4.2 Baseline Methods
Since accuracy estimation of large multi-relational
KGs is a relatively unexplored problem, there are
no well established baselines for this task (apart
from random sampling). We present below the
baselines which we compared against KGEval.
Random: Randomly sample a BET h ∈ H with-
out replacement and crowdsource for its correct-
ness. Selection of every subsequent BET is inde-
pendent of previous selections.
Max-Degree: Sort the BETs in decreasing or-
der of their degrees in ECG and select them from
top for evaluation; this method favors selection of
more centrally connected BETs first.
Independent Cascade: This method is based on
contagion transmission model where nodes only
infect their immediate neighbors (Kempe et al.,
2003). At every time iteration t, we choose a BET
which is not evaluated yet, crowdsource for its la-
bel and let it propagate its evaluation label in ECG.
KGEval: Method proposed in Algorithm 1.

4.3 Effectiveness of KGEval
Experimental results of all methods comparing
∆overall and ∆predicate at convergence, are pre-
sented in Table 3. We observe that KGEval is able
to achieve the best estimate across both datasets
and metrics. Due to the significant positive bias
in HY (see Table 2), all methods do fairly well as
per ∆overall on this dataset, even though KGEval
still outperforms others. Also, KGEval is able to
estimate KG accuracy most closely while utiliz-
ing least number of crowd-evaluated queries. This
clearly demonstrates KGEval’s effectiveness.

Nodes in coupling graph with higher degrees
are those which participate in large number of con-
straints. In real KGs, such facts tend to be correct
as they interact with several other facts. Hence,
MaxDegree overestimates the accuracy by propa-
gating True label. In contrast, Random samples
True and False labels in unbiased fashion.
Predicate-level Analysis: Here, we consider the
top two baselines from Table 3, viz., Random and
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NELL sports dataset (HN )
Method ∆predicate ∆overall # Queries

(%) (%)
Random 4.9 1.3 623
Max-Deg 7.7 2.9 1370
Ind-Casc 9.8 0.8 232
KGEval 3.6 0.5 140

Yago dataset (HY )
Random 1.3 0.3 513
Max-Deg 1.7 0.5 550
Ind-Casc 1.1 0.7 649
KGEval 0.7 0.1 204

Table 3: ∆predicate(%) and ∆overall(%) estimates (lower
is better) of various methods with number of crowd-evaluated
queries (BET evaluations) to reach the ∆overall converged
estimate. (See Section 4.3)
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Figure 4: Comparing (1− [∆overall]predicate) of individ-
ual predicates (higher is better) in HN between KGEval and
Random, the two top performing systems in Table 3. (see
Section 4.3)

KGEval, and compare performance on the HN
dataset. We use (1 − [∆overall]predicate) as the
metric, which means ∆overall computed over indi-
vidual predicates. Here, we are interested in eval-
uating how well the two methods have estimated
per-predicate accuracy when KGEval’s ∆overall

has converged. Comparison of per-predicate per-
formances of the two methods is shown in Fig-
ure 4. Observe that KGEval significantly outper-
forms Random baseline. Its advantage lies in ex-
ploiting the coupling constraints among beliefs,
where evaluating a belief from certain predicate
helps infer beliefs from other predicates.

Constraint Set Iterations to ∆overall(%)
Convergence

C 140 0.5
C − Cb3 259 0.9
C − Cb3 − Cb2 335 1.1

Table 4: Performance of KGEval with ablated constraint
sets. Additional constraints help in better estimation with
lesser iterations.(see Section 4.4)

4.4 Importance of Coupling Constraints

This paper is largely motivated by the thesis – ex-
ploiting richer relational couplings among BETs
may result in faster and more accurate evalua-
tions. To evaluate this thesis, we successively ab-
lated Horn clause coupling constraints of body-
length 2 and 3 from CN .

We observe that with the full (non-ablated) con-
straint set CN , KGEval takes least number of
crowd evaluations of BETs to convergence, while
providing best accuracy estimate. Whereas with
ablated constraint sets, KGEval takes up to 2.4x
more crowd-evaluation queries for convergence;
thus validating our thesis.

4.5 Additional Experiments

Other Baselines along with Inference: In or-
der to evaluate how Random and Max-degree per-
form in conjunction with inference mechanism,
we replaced KGEval’s greedy control mechanism
in Line 5 of Algorithm 1 with these two con-
trol mechanisms. In our experiments, we ob-
served that both Random+inference and Max-
degree+inference are able to estimate accuracy
more accurately than their control-only variants.
Secondly, even though the accuracies estimated
by Random+inference and Max-degree+inference
were comparable to that of KGEval, they required
larger number of crowd-evaluation queries – 1.2x
and 1.35x more, respectively. This shows effec-
tiveness of greedy mechanism.

Rate of Coverage: In case of large KGs with
scarce budget, it is imperative to have a mecha-
nism which covers greater parts of KG with lesser
number of crowdsource queries. Figure 5 shows
the fraction of total beliefs whose evaluations were
automatically inferred by different methods as a
function of number of crowd-evaluated beliefs.
We observe that KGEval infers evaluation for the
largest number of BETs at each supervision level.

Robustness to Noise: In order to test ro-
bustness of the methods in estimating accuracies
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Figure 5: Fraction of total beliefs whose evaluation where
automatically inferred by different methods for varying num-
ber of crowd-evaluated queries (x-axis) inHN .

NELL sports + 5% noise (HN5)
Method ∆overall (%) # Queries
Random 1.8 563
Max-Degree 4.2 1249
Ind-Cascade 1.2 370
KGEval 0.8 106

NELL sports + 10% noise (HN10)
Random 1.8 728
Max-Degree 6.2 1501
Ind-Cascade 1.2 406
KGEval 0.2 115

Table 5: Accuracy estimate (higher is better) over entire
KG by various baselines in the presence of noise.

of KGs with different gold accuracies, we arti-
ficially added noise to HN by flipping a fixed
fraction of edges, otherwise following the same
evaluation procedure as in Section 3.5. We ana-
lyze ∆overall (and not ∆predicate) because flipping
edges in KG distorts predicate-relations dependen-
cies and present in Table 5. We evaluated all the
methods and observed that while performance of
other methods degraded significantly with dimin-
ishing KG quality (more noise), KGEval was sig-
nificantly robust to noise.

Scalability comparisons with MLN: Markov
Logic Networks (Richardson and Domingos,
2006) can serve as a candidate for Inference Mech-
anism. We compared the runtime performance of
KGEval with PSL and MLN as inference engines.
While PSL took 320 seconds to complete one iter-
ation, the MLN implementation (PyMLN) could
not finish grounding the rules even after 7 hours.
This justifies our choice of PSL as the inference
engine for KGEval.

5 Related Work

Even though Knowledge Graph (KG) construc-
tion is an active area of research, we are not
aware of any previous research which systemati-

cally studies the important problem of estimating
accuracy of such automatically constructed KGs.
Random sampling has traditionally been the most
preferred way for large-scale KG accuracy estima-
tion (Mitchell et al., 2015).

Traditional crowdsourcing research has typi-
cally considered atomic allocation of tasks where
the requester posts them independently. KGEval
operates in a rather novel crowdsourcing set-
ting as it exploits dependencies among its tasks
(BETs or belief evaluations). Our notion of inter-
dependence (coupling constraints) among tasks
is more general and different than related ideas
explored in the crowdsourcing literature before
(Kolobov et al., 2013; Bragg et al., 2013; Sun
et al., 2015). Even though coupling constraints
have been used for KG construction (Nakashole
et al., 2011; Galárraga et al., 2013; Mitchell et al.,
2015), they have so far not been exploited for KG
evaluation. We address this gap in this paper.

The task of knowledge corroboration (Kasneci
et al., 2010) proposes probabilistic model to uti-
lize a fixed set of basic first-order logic rules for
label propagation and is closely aligned with our
motivations. However, unlike KGEval, it does not
try to reduce the number of queries to crowdsource
or maximize coverage.

6 Conclusion

In this paper, we have initiated a systematic study
into the important problem of evaluation of auto-
matically constructed Knowledge Graphs. In or-
der to address this challenge, we have proposed
KGEval, an instance of a novel crowdsourcing
paradigm where dependencies among tasks pre-
sented to humans (BETs) are exploited. To the
best of our knowledge, this is the first method of
its kind. We demonstrated that the objective opti-
mized by KGEval is in fact NP-Hard and submod-
ular, and hence allows for the application of sim-
ple greedy algorithms with guarantees. Through
extensive experiments on real datasets, we demon-
strated effectiveness of KGEval. We hope to ex-
tend KGEval to incorporate varying evaluation
cost, and also explore more sophisticated evalu-
ation aggregation.
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A Appendix
Submodularity: A real valued function f , which acts
over subsets of any finite set H, is said to be submodular
if ∀R,S ⊂ H it fulfills

f(R) + f(S) ≥ f(R ∪ S) + f(R ∩ S).

We call potential functionψ as pairwise regular if for all pairs
of BETs {p, q} ∈ H it satisfies

Proof. (for Theorem 1) The additional utility, in terms of la-
bel inference, obtained by adding a BET to larger set is lesser
than adding it to any smaller subset. By construction, any two
BETs which share a common factor node Cj are encouraged
to have similar labels in G.

Potential functionsψj of Equation (3) satisfy pairwise reg-
ularity property i.e., for all BETs {p, q} ∈ H

ψ(0, 1) + ψ(1, 0) ≥ ψ(0, 0) + ψ(1, 1) (4)

where {1, 0} represent true/false. Equivalence of submodu-
lar and regular properties are established (Kolmogorov and
Zabih, 2004; Jegelka and Bilmes, 2011). Using non-negative
summation property (Lovász, 1983),

∑
j∈C θjψj is submod-

ular for positive weights θj ≥ 0.
We consider a BET h to be confidently inferred when the

soft score of its label assignment in I(G,Q) is greater than
threshold τh ∈ [0, 1]. From above we know that P(l(h)|Q) is
submodular with respect to fixed initial setQ. Although max
or min of submodular functions are not submodular in gen-
eral, but (Kempe et al., 2003) conjectured that global func-
tion of Equation (1) is submodular if local threshold function
P(h|Q) ≥ τh respected submodularity, which holds good in
our case of Equation (3). This conjecture was further proved
in (Mossel and Roch, 2007) and thus making our global opti-
mization function of Equation (1) submodular.

Proof. (for Theorem 2) We reduce KGEval to NP-complete
Set-cover Problem (SCP) so as to select Q which covers
I(G,Q). For the proof to remain consistent with earlier nota-
tions, we define SCP by collection of subsets I1, I2, . . . , Im
from set H = {h1, h2, . . . , hn} and we want to deter-
mine if there exist k subsets whose union equals H. We
define a bipartite graph with m + n nodes corresponding
to Ii’s and hj’s respectively and construct edge (Ii, hj) if
hj ∈ Ii. We need to find a set Q, with cardinality k, such
that |I(G,Q)| ≥ n+ k.

Choosing our BET-set Q from SCP solution and further
inferring evaluations of other remaining BETs using PSL will
solve the problem in hand.

A.1 Noisy Crowd Workers and Budget
Here, we provide a scheme to allot crowd workers so as to
remain within specified budget and upper bound total error
on accuracy estimate. We have not integrated this mechanism
with Algorithm 1 to maintain its simplicity.

We resort to majority voting in our analysis and assume
that crowd workers are not adversarial. So expectation over
responses rh(u) for a task h with respect to multiple workers
u is close to its true label t(h) (Tran-Thanh et al., 2013), i.e.,

∣∣∣∣Eu∼D(u,h)[rh(u)]− t(h)

∣∣∣∣ ≤
1

2
(5)

where D is joint probability distribution of workers u and
tasks h.

Our key idea is that we want to be more confident about
BETs h with larger inferable set (as they impact larger
parts of KG) and hence allocate them more budget to post

to more workers. We determine the number of workers
{wh1 , . . . , whn} for each task such that ht with larger in-
ference set have higher wht . For total budget B, we allocate

wht =
⌊B it (1−γ)

c imax

⌋

where it denotes the cardinality of inferable set I(G,Q∪ht),
c the cost of querying crowd worker, imax the size of largest
inferable set and γ ∈ [0, 1] constant.

This allocation mechanism easily integrates with Algo-
rithm 1; in (Line 8) we determine size of inferable set it =
|Qt| for task h and allocatewh crowd workers. Budget deple-
tion (Line 9) is modified to Br = Br −whc(h). The follow-
ing theorem bounds the error with such allocation scheme.

Theorem 3. [Error bounds] The allocation scheme of re-
dundantly posing ht to wht workers does not exceed the total
budget B and its expected estimation error is upper bounded
by e−O(it), keeping other parameters fixed. The expected es-
timation error over all tasks is upper bounded by e−O(B).

Proof. Let γ ∈ [0, 1] control the reduction in size of infer-
able set by it+1 = γ it. By allocating wht redundant work-
ers for task ht, ∀t ∈ {1 · · ·n} with size of inferable set it,
we incur total cost of

n∑

t=1

c wht =

n∑

t=1

B it (1− γ)

c imax
· c

=

(
n∑

t=1

it

)
·
(
B (1− γ)

imax

)

=

(
imax (1− γT )

(1− γ)

)
·
(
B (1− γ)

imax

)

≤ B

Note that the above geometric approximation helps in esti-
mating summation

∑n
t=1 it at iteration t ≤ n.

Error Bounds: Here we show that the expected error of
estimating of ht for any time t decreases exponentially in the
size of inferable set it. We use majority voting to aggregate
wht worker responses for ht, denoted by r̂ht ∈ {0, 1}

r̂ht =

⌊
1

wht

wht∑

k=1

rht(uk)− 1

2

⌋
+ 1 (6)

where rht(uk) is the response by kth worker for ht. The
error from aggregated response can be given by ∆(ht) =
|r̂ht− t(ht)|, where t(ht) is its true label. From Equation (5)
and Hoeffding-Azuma bounds over wht i.i.d responses and
error margin εt, we have

∆(ht) = P

{∣∣∣∣∣
1

wht

wht∑

k=1

rht(uk)− E(rh(u))

∣∣∣∣∣ ≥ εt
}

= 2 exp

(
−2

B it (1− γ)

c imax
ε2t

)

For fixed budget B and given error margin εt, we have
∆(ht) = e−O(it). Summing up over all tasks t, by union
bounds we get the total expected error from absolute truth as
∆(B) =

∑n
t=1 ∆(ht).

∆(B) ≤
n∑

t=1

2 exp

(
−2

B it (1− γ)

c imax
ε2t

)

≤ n · 2 exp

(
−2

B imin (1− γ)

c imax
ε2min

)

The accuracy estimation error will decay exponentially with
increase in total budget for fixed parameters.
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Abstract

Knowledge graph (KG) embedding
techniques use structured relation-
ships between entities to learn low-
dimensional representations of entities
and relations. One prominent goal
of these approaches is to improve the
quality of knowledge graphs by remov-
ing errors and adding missing facts.
Surprisingly, most embedding tech-
niques have been evaluated on bench-
mark datasets consisting of dense and
reliable subsets of human-curated KGs,
which tend to be fairly complete and
have few errors. In this paper, we
consider the problem of applying em-
bedding techniques to KGs extracted
from text, which are often incomplete
and contain errors. We compare the
sparsity and unreliability of different
KGs and perform empirical experi-
ments demonstrating how embedding
approaches degrade as sparsity and un-
reliability increase.

1 Introduction

Recently knowledge graphs (KGs), structured
representations of knowledge bases, have be-
come an essential component of systems that
perform question-answering (Berant et al.,
2013), provide decision support, and enable
exploration and discovery (Dong et al., 2014).
Initial efforts to create KGs focused on struc-
tured information sources or relied extensively
on manual curation. However, the diversity
of knowledge available on resources like the
World Wide Web have spurred many projects
that tackle the more difficult task of automat-
ically constructing KGs (Nickel et al., 2016a).

Unfortunately, information extraction ap-
proaches for KG construction must overcome
complex, unreliable, and incomplete data.
Many machine learning methods have been
proposed to address the challenge of cleaning
and completing KGs. One popular class of
methods learn embeddings that translate en-
tities and relationships into a latent subspace,
then use this latent representation to derive
additional, unobserved facts and score exist-
ing facts (Bordes et al., 2013; Wang et al.,
2014; Lin et al., 2015).

Embedding methods have shown state-of-
the-art results on several benchmark datasets.
However, by construction, these benchmark
datasets differ from data in real KGs. First,
benchmark datasets have largely been re-
stricted to the most frequently occurring en-
tities in the KG. However in most KGs, en-
tities are associated with a sparse set of ob-
servations. Second, benchmark datasets con-
sist only of highly reliable facts from cu-
rated knowledge bases. In contrast, many KG
construction projects extract knowledge from
noisy data such as text or images, which in-
troduces unreliable information.

In this paper, we evaluate popular KG em-
bedding approaches on KGs that have sparse
entities and unreliable candidate facts. We ap-
ply embedding methods to an extracted KG
and modify existing benchmarks by varying
the sparsity and reliability of training data
used to learn embedding models. Using this
suite of datasets, we characterize where em-
bedding approaches are successful and the con-
ditions that result in degrading results. Based
on our insights, we provide recommendations
for improving embedding models and identify
promising areas of future exploration.

1751



Dataset Triples ‖E‖ ‖R‖ EE RE ED RD prec

Freebase 1B 124M 15K 14 3.2 16 68K 1
WordNet 380K 116K 27 21 2.3 7 21K 1
NELL1000 92M 4.8M 435 21 4.9 19 210K 0.45

FB15K 592K 15K 1.3K 16 5.1 79 440 1
WN18 151K 40K 18 19 2.1 7 8.4K 1
NELL165 1M 820K 221 25 1.5 3 4.7K 0.35

Table 1: Statistics of knowledge graphs and extracted datasets. Triples are the number of individual facts in
the knowledge graph. ‖E‖ and ‖R‖ are unique entities and relations in the KG, respectively. EE and RE are
measures of entropy, ED and RD measures of density, and prec is the precision of triples.

2 Background and Related Work

Diverse strategies for knowledge base con-
struction include manually-crafted ontologies
for common-sense reasoning (Lenat, 1995),
community-driven collaborative efforts (Bol-
lacker et al., 2008), ontology-based extraction
from structured and textual sources (Mitchell
et al., 2015), and “open” approaches that rely
on textual information (Mausam et al., 2012).
In this paper, we contrast the properties of
two knowledge graphs that have clean, human-
vetted facts with two knowledge graphs that
are extracted from textual data.

Semantically meaningful embeddings of text
have been a longstanding topic of study in
NLP research (Turney and Pantel, 2010).
More recently, knowledge graphs, which cap-
ture structured relationships between entities,
has inspired methods such as matrix factor-
ization (Riedel et al., 2013), tensor factor-
ization (Nickel et al., 2011), and deep learn-
ing (Socher et al., 2013) that embed enti-
ties while preserving this relationship struc-
ture. We consider four state-of-the-art em-
bedding methods (Bordes et al., 2013; Wang
et al., 2014; Nickel et al., 2016b; Nguyen et al.,
2016) and assess their performance on knowl-
edge graphs with different properties.

3 Comparing Properties of KGs

In Table 1, we introduce three knowledge
graphs and a parallel set of benchmark
datasets derived from these KGs. Each KG
takes the form of triples that specify a rela-
tionship between a subject and an object. The
first two KGs, Freebase and WordNet, benefit
from human curation that results in precisely

defined entities and relationships and highly
reliable facts. The third KG, NELL, is ex-
tracted from a large Web text corpus using an
iterative co-training process and a pre-defined
set of relations and types. Due to the itera-
tive nature, NELL is a dynamic dataset and

the table reports statistics of the 1000th itera-
tion. FB15K and WN18, derived from Free-
base and WordNet, respectively, have been
used to train and evaluate many embedding
strategies. NELL165, based on an earlier iter-
ation of NELL, has been used as a benchmark
for probabilistic models. We compare the vital
statistics of these six datasets.

3.1 Size and Sampling

Despite the reliance on curation, Freebase is
the largest KG with more facts (‖T‖), unique
entities (‖E‖), and relationship types (‖R‖)
than others. NELL, is a tenth the size of Free-
base with substantially fewer entities and lim-
ited relations. WordNet, focused on NLP, is
the smallest and expresses only 27 relation-
ships between different words. The derived
benchmark datasets are substantially smaller
than the source KGs, with the largest, NELL,
containing 1M facts. FB15K is generated by
sampling a subset of the KG centered around
15K entities. WN18 is generated by restricting
to 18 relations. NELL165 performs no sam-
pling, but is limited by the comprehensiveness
of patterns learned during training.

3.2 Diversity

To understand the distribution of entities and
relationships in the KG, we introduce an
entropy-based measure using the probability
an entity or relation will occur in a randomly
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selected triple. For triples T of the form
(s, p, o), relations R, entities E, We define the
entity and relation probabilities as the proba-
bility that a randomly selected triple will con-
tain a particular relation or entity. More for-
mally, we define these probabilities:

P (r) =
|t.p = r|
‖T‖ ; P (e) =

|t.s = e|+ |t.o = e|
‖T‖

Using these definitions, we define:

RE =
∑

r∈R
−P (r) logP (r)

We compute entity entropy (EE) and rela-
tion entropy (RE) for each dataset. Higher
entropy values indicate more uniform distri-
butions of facts across entities and relations,
lower values signal biases in the facts. For
example, the low RE values for Freebase and
NELL165 are due to an abundance of facts
specifying entity types (such as person), rela-
tive to other relations between entities. While
Freebase has the most facts and entities, these
facts are less diverse compared to other KGs.
Through sampling, FB15K rebalances Free-
base, increasing the diversity of entities and
relations. In contrast, WordNet and WN18
have similar diversity statistics. Compared to
NELL1000, NELL165 has a more diverse set
of entities and a less diverse set of relations.
All KGs have much higher EE than RE, since
they use a manually defined set of relations
but include many diverse entities.

3.3 Sparsity

In addition to diversity, KGs have differing lev-
els of factual information for each entity or re-
lation. One sparsity metric is information den-
sity, defined as the average triples per entity
or relation. We formally define densities:

RD =
‖T‖
‖R‖ ; ED =

2‖T‖
‖E‖

We compare the datasets using entity den-
sity (ED) and relational density (RD). Most
datasets have a similar ED, but the benchmark
dataset FB15K has much higher entity density
while the benchmark dataset NELL165 has a
much lower entity density. NELL1000 has the
highest RD, since extractions are focused on
a small set of relations, while FB15K has a

particularly low RD value due to the entity-
centric approach to construction. We note
that FB15K has much higher ED and much
lower RD than parent Freebase, due to the
sampling choices made during its construction.

3.4 Reliability

Embedding approaches rely on using facts that
are reliable. Human-curated KGs generally
have high precision due to strong oversight.
In contrast, extracted KGs are far noisier, in-
cluding erroneous relationships between enti-
ties. Extracted KGs are often evaluated on
small, manually-labeled evaluation sets to esti-
mate precision. In recent evaluations (Mitchell
et al., 2015) using 11K annotations, NELL
facts had a precision of ranging from 0.75-0.85
for confident extractions and 0.35-0.45 across
the broader set of extractions.

4 Empirical Evaluation

To better understand embedding performance
with sparse and unreliable data, we select four
popular embedding approaches and perform
four empirical analyses. We evaluate embed-
ding techniques TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), HolE (Nickel
et al., 2016b), and STransE (Nguyen et al.,
2016), that use increasingly sophisticated
learning methods to represent entities and re-
lations. To learn embeddings, we used the
public implementations of Lin et al. (2015);
Nickel et al. (2016b); Nguyen et al. (2016).
We conduct four experiments to characterize
the performance of these embeddings meth-
ods. The first set of experiments evaluate the
performance of embeddings on the extracted
NELL165 KG. The second set of experiments
modify the existing FB15K benchmark to iso-
late the impact of sparsity on embedding qual-
ity. The third set of experiments decrease the
reliability of FB15K and determine how per-
formance degrades as a result. The final ex-
periments explore the tradeoff between spar-
sity and reliability by beginning with a sparse
trainng set and incrementally adding unreli-
able triples at differing noise levels.1

1Code for experiments is available at https://www.
github.com/linqs/pujara-emnlp17
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Method AUPRC F1

Baseline 0.873 0.828
NELL 0.765 0.673
TransH 0.701 0.783
HolE 0.710 0.783
TransE 0.726 0.783
STransE 0.784 0.783
PSL-KGI 0.891 0.848

Table 2: Embedding performance on the sparse and
noisy NELL165 benchmark is poor, failing to beat a
baseline that simply selects the top extractions, and
substantially underperforming probabilistic models.

4.1 Extracted Knowledge Graphs

In Section 3, we noted that the extracted
NELL165 dataset is sparse, with fewer (can-
didate) facts per relation or entity than the
FB15K benchmarks. Moreover, the preci-
sion of these candidates can be far lower than
benchmark datasets. To evaluate whether
embeddings can succeed under such challeng-
ing conditions, we applied four state-of-the-art
embedding techniques,

We evaluated all methods on 4.5K
manually-labeled facts (Jiang et al., 2012),
reporting the area under the precision-recall
curve (AUPRC) and the F1 score, computed
with parameters that maximize performance
on the labeled training set. We compare
against a baseline that simply applies a
threshold to NELL extractor confidences (but
cannot score novel facts), the NELL promo-
tion strategy, and a probabilistic approach
PSL-KGI (Pujara et al., 2015), that reasons
collectively about KG facts using ontological
constraints and supports open-world reason-
ing. The results, in Table 2, suggest that
embedding approaches cannot cope with the
sparse and low-quality extractions, perform-
ing more poorly than the baseline approaches
and substantially trailing the probabilistic
model. In the next two experiments, we
analyze whether this failure can be attributed
to sparsity or sensitivity to noise.

4.2 Sensitivity to Sparsity

One potential explanation for the lackluster
performance of embedding approaches on ex-
tracted KGs is the sparsity of these datasets.
To assess the impact of sparsity on the qual-

Figure 1: Triples are removed from FB15K to preserve
relational density (stable, solid) or to increase spar-
sity (sparse, dotted). Sparse training sets have a pro-
nounced impact on the learned embedding, as mea-
sured by HITS@10 on the test set.

ity of learned embeddings, we remove triples
from FB15K using two different techniques.
The first technique, sparse, removes triples
uniformly at random, with a constraint that
such removal does not eliminate any entity or
relation from the dataset. The second tech-
nique, stable, removes all triples for a par-
ticular relation, leaving other relations intact.
stable is calibrated so that the training set
size does not vary more than 2% between tech-
niques.

Fig. 1 shows the filtered hits@10 metric
(proportion of correct triples in top ten triples
excluding training data) for both sparse and
stable using the TransE, TransH, HolE, and
STransE embeddings. Performance univer-
sally decreases as the training set diminishes.
However, in the sparse treatment, perfor-
mance deteriorates much more rapidly than
in stable. Our experiments show that more
complex representations such as TransH and
HolE suffer more from sparsity, while TransE
and the more sophisticated STransE have
somewhat better performance. Ultimately,
when half the triples have been randomly re-
moved, corresponding to a (relatively high)
RD value of 220, the stable outperforms
sparse by as much as 60%. The contrast be-
tween a dense set of facts for each relation
(stable) and a sparse set of relational training
data is a vivid demonstration that embedding
quality relies on dense training data.
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Figure 2: Randomly corrupting triples (corrupt,
dashed) during training decreases embedding quality
relative to randomly removing triples (sparse, dotted).

4.3 Sensitivity to Unreliability

Beyond sparsity, candidate facts generated
by knowledge extraction approaches can also
be unreliable. To understand the sensitivity
of embedding techniques to noise, we modi-
fied the FB15K dataset to include unreliable
triples. Our approach to introducing noise,
corrupt involved “corrupting” triples, substi-
tuting a replacement entity or relation for the
true subject, predicate or object. The embed-
ding approach is then trained with a corrupted
version of the benchmark. Fig. 2 show how the
Hits@10 metric suffers as increasing numbers
of facts are either corrupted (corrupt) or re-
moved (sparse). We find that across all meth-
ods, removing training data is better than pro-
viding incorrect training data to the learning
algorithm, but surprisingly the deficit between
sparse and corrupt remains relatively stable
across all embeddings.

4.4 Trading off Sparsity and Noise

In many real-world scenarios, constructing a
KG requires navigating a tradeoff between
sparsity and noise. A sparse, high-quality
set of extractions may be insufficient to learn
meaningful embeddings. However, the bene-
fit of incorporating additional, unreliable facts
may also be questionable. We explore this
tradeoff by randomly removing 300K triples
from FB15K and incrementally adding unre-
liable triples at differing noise levels, where
noise measures the probability a newly-added

Figure 3: Starting with a sparse training set, adding
unreliable triples can help embedding performance re-
cover if the noise level is low.

training triple is corrupted. We generate train-
ing sets for each noise level and size, train
TransE, and compute the filtered Hits@10
metric on the test set. Fig. 2 shows all embed-
dings have an initial benefit from new training
data, but noise level dictates the improvement
as more data is introduced. For low noise
settings, performance climbs steadily, while
higher noise results in plateauing or diminish-
ing performance. Surprisingly, even with 90%
noise embeddings demonstrate a small net
improvement, suggesting that for embedding
methods a large, unreliable corpus may be bet-
ter than an extremely sparse, high-quality one.

5 Conclusion

In this paper, we analyze several knowledge
graphs and discuss key metrics for diversity,
sparsity, and unreliability in realistic KGs.
Our experimental evaluation concludes that
KG embeddings are sensitive to sparse and
unreliable data, and perform poorly on KGs
extracted from text. These findings suggest a
rich area of future research, determining new
strategies to extend embeddings to cope with
sparse and unreliable data. Three promising
approaches include revising the closed-world
assumption frequently used in training em-
beddings, combining embeddings and collec-
tive probabilistic models that perform well on
extracted KGs, and devising an optimization
approach for embeddings that exploits confi-
dence from knowledge extraction systems.
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Abstract

Detection of lexico-semantic relations is
one of the central tasks of computational
semantics. Although some fundamental re-
lations (e.g., hypernymy) are asymmetric,
most existing models account for asym-
metry only implicitly and use the same
concept representations to support detec-
tion of symmetric and asymmetric rela-
tions alike. In this work, we propose the
Dual Tensor model, a neural architecture
with which we explicitly model the asym-
metry and capture the translation between
unspecialized and specialized word embed-
dings via a pair of tensors. Although our
Dual Tensor model needs only unspecial-
ized embeddings as input, our experiments
on hypernymy and meronymy detection
suggest that it can outperform more com-
plex and resource-intensive models. We
further demonstrate that the model can ac-
count for polysemy and that it exhibits sta-
ble performance across languages.

1 Introduction

Detection of semantic relations that hold between
words is the central task of lexical semantics,
tightly coupled with obtaining representations that
capture meaning of words (Mikolov et al., 2013;
Wieting et al., 2015; Mrkšić et al., 2016, inter alia).
As such, robust detection of lexico-semantic rela-
tions may benefit virtually any natural language
processing application.

Because lexico-semantic knowledge bases (KBs)
like WordNet (Fellbaum, 1998) are general and of
limited coverage, numerous methods for detect-
ing lexico-semantic relations rely on distributional
word representations obtained from large corpora.
Although distributional models have evolved over

time, from count-based (Landauer et al., 1998) and
generative (Blei et al., 2003) to prediction-based
(Mikolov et al., 2013), the similarity between dis-
tributional vectors still indicates only the abstract
semantic association and not a precise semantic re-
lation (e.g., vectors of antonyms may be as similar
as vectors of synonyms).

Consequently, a number of approaches have
been proposed for specializing distributional spaces
for specific lexico-semantic relations, either by (1)
modifying the learning objective or regularization
of the original embedding model by incorporat-
ing linguistic constraints (Yu and Dredze, 2014;
Kiela et al., 2015) or (2) retroactively fitting the
pre-trained unspecialized embeddings to linguis-
tic constraints (Faruqui et al., 2015; Mrkšić et al.,
2016). However, these methods specialize distribu-
tional vector spaces primarily for detecting the sym-
metric relation of semantic similarity (i.e., graded
synonymy) and not for asymmetric lexico-semantic
relations such as hypernymy and meronymy. On the
other hand, models for embedding KBs (Bordes
et al., 2013; Socher et al., 2013; Yang et al., 2015)
uniformly model both symmetric and asymmetric
relations. They learn a single vector representation
(i.e., embedding) for each KB concept, assuming
implicitly that the same concept representation is
equally useful for predicting symmetric and asym-
metric relations alike.

Relation-specific learning-based models have,
to the largest extent, targeted hypernymy. Distri-
butional models predict the hypernymy relations
by combining raw distributional vectors of con-
cepts in a pair (Baroni et al., 2012; Roller et al.,
2014; Santus et al., 2014), whereas path-based mod-
els base predictions on lexico-syntactic paths from
co-occurrence contexts obtained from a large cor-
pus (Snow et al., 2004; Nakashole et al., 2012;
Shwartz et al., 2016). Shwartz et al. (2016) com-
bine the path-based and distributional models to
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reach state-of-the-art performance in hypernymy
detection. Both distributional and path-based meth-
ods, however, model asymmetry only implicitly
(e.g., via the order of embeddings in the concate-
nation). Besides, path-based models are language-
dependent since they require syntactically prepro-
cessed data as input.

In this work, we propose the Dual Tensor model,
a neural architecture that (1) models asymmetry
more explicitly than existing models and (2) ex-
plicitly captures the translation of unspecialized
distributional vectors into specialized embeddings
better suited to detect the asymmetric relation of
interest. The Dual Tensor model can be considered
distributional as it requires only distributional vec-
tors of words as input. Consequently, in contrast
to path-based methods, it is language-independent
and more widely applicable. Experimental results
on hypernymy and meronymy detection show that
the Dual Tensor model outperforms both distri-
butional and path-based models. We additionally
demonstrate that our approach exhibits stable per-
formance across languages and can, to some extent,
diminish the negative effects of polysemy.

2 Related Work

Specializing Word Embeddings. Unspecialized
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) capture general semantic proper-
ties of words, but are unable to differentiate be-
tween different types of semantic relations (e.g.,
vectors of car and driver might be as similar as
vectors of car and vehicle). However, we often
need embeddings to be similar only if an exact
lexico-semantic relation holds between the words.
Numerous methods for specializing word embed-
dings for particular relations have been proposed
(Yu and Dredze, 2014; Faruqui et al., 2015; Kiela
et al., 2015; Mrkšić et al., 2016, inter alia), pri-
marily aiming to differentiate synonymic similarity
from other types of semantic relatedness.

Some methods modify the objective or regu-
larization of general embedding algorithms like
CBOW or skip-gram (Mikolov et al., 2013) in or-
der to directly train relation-specific embeddings
from large corpora. Yu and Dredze (2014) extend
the CBOW objective with synonymy constraints
from WordNet and Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013). Similarly, Kiela et al.
(2015) add synonyms as additional contexts for the
skip-gram objective.

Other models update the whole unspecialized
embedding space by moving closer together vec-
tors of words standing in a particular relation. Start-
ing with unspecialized embeddings of concepts,
Faruqui et al. (2015) run a belief propagation algo-
rithm on a graph induced from WordNet or PPDB.
Wieting et al. (2015) couple an objective maximiz-
ing the similarity of PPDB pairs with the smart
selection of the negative examples. Mrkšić et al.
(2016) take this idea further by using antonym pairs
from WordNet as negative examples.

All aforementioned models either directly train
specialized embeddings or derive them by updat-
ing the unspecialized embeddings. In contrast, via
dual tensors, we explicitly capture the function that
transforms unspecialized embeddings to special-
ized embeddings that are better suited to detect the
asymmetric relation of interest.

Embedding Knowledge Graphs. Recently, vari-
ous models for embedding KB concepts and re-
lations have been proposed (Bordes et al., 2013;
Socher et al., 2013; Yang et al., 2015; Nickel et al.,
2016, inter alia). These models predict existence of
relations between entities by arithmetically combin-
ing concept vectors and relation matrices or tensors.
The scoring functions of KG embedding models
combine the concept embeddings via linear prod-
uct (i.e., relation tensor multiplies the concatena-
tion of concept vectors of the two entities) (Bordes
et al., 2011), bilinear product (i.e., relation tensor
first multiplies the left concept embedding and the
result multiplies the embedding of the second con-
cept) (Yang et al., 2015), or the combination of the
two (Socher et al., 2013). Both linear and bilinear
scoring functions implicitly model asymmetry as
they are not commutative with respect to concept
embeddings. In this work, we choose to leverage
the bilinear product in our model, following the
findings of Yang et al. (2015) who report bilinear
product outperforming other scoring combinations.

KG embedding models employ the same concept
embeddings for predicting all relations, symmetric
and asymmetric alike. By directly updating concept
embeddings in training, they cannot make relation
predictions for concepts outside of the training set.

Hypernymy and Meronymy Detection. Hyper-
nymy and meronymy are arguably the two most
prominent asymmetric lexico-semantic relations.
Methods for their detection can roughly be clas-
sified as either distributional or path-based. Path-
based methods consider lexico-syntactic paths con-
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necting pairs of words in their co-occurrence con-
texts in large corpus. Early approaches, e.g., Hearst
(1992) for hypernymy and Berland and Charniak
(1999) for meronymy, exploited a small set of man-
ually created lexico-syntactic patterns that imply a
relation of interest (e.g., a such as b). Subsequent
approaches looked at ways to eliminate the need
for manual compilation of extraction patterns. Pan-
tel and Pennacchiotti (2006) and Girju et al. (2006)
proposed bootstrapping approaches to meronymy
detection, starting from a seed set of part-whole
pairs. Snow et al. (2004) provided all dependency
paths connecting the concepts in corpus to a logis-
tic regression classifier for hypernymy detection.

Distributional methods detect asymmetric rela-
tions using only distributional vectors of words as
input. Distributional models come in both unsuper-
vised and supervised flavors. Unsupervised metrics
for hypernymy detection assume either that the hy-
ponym’s contexts are included in the hypernym’s
contexts (Weeds and Weir, 2003; Kotlerman et al.,
2010) or that the linguistics contexts of a hyponym
are more informative than the contexts of its hyper-
nyms (Rimell, 2014; Santus et al., 2014). Super-
vised hypernymy classifiers represent the pair of
words by combining their distributional vectors in
different ways – concatenating them (Baroni et al.,
2012) or subtracting them (Roller et al., 2014) –
and feeding the resulting vector to a supervised
classifier like logistic regression. Most recently,
Shwartz et al. (2016) coupled path-based and dis-
tributional information with a recurrent neural net-
work (RNN), yielding state-of-the-art hypernymy
detection performance. Although our Dual Tensor
model is purely distributional, we show that it may
outperform such a hybrid model which additionally
exploits syntactic information.

Distributional and path-based models have been
used to discriminate between multiple lexico-
semantic relations, including hypernymy and
meronymy, at once (Santus et al., 2016; Shwartz
and Dagan, 2016). However, as pointed out by
(Chersoni et al., 2016), distributional vectors and
scores based on their comparison fail to discrimi-
nate between multiple relation types at once. In this
work, we focus on binary classification for a single
relation (hypernymy and meronymy) at a time.

3 Dual Tensor Model

The following assumptions and desirable properties
guided the design of the Dual Tensor model for

detection of asymmetric lexico-semantic relations:

(1) Unspecialized distributional vectors are not
good signals for detecting specific lexico-semantic
relations. We thus need to derive specialized rep-
resentations that are better suited for detecting the
specific asymmetric relation of interest.

(2) The transformation from unspecialized distribu-
tional vectors of words to their relation-specialized
embeddings should be captured explicitly, via a
well-defined transformation function. Having an
explicit embedding specialization function allevi-
ates the need to specialize the entire unspecialized
embedding space at once, like existing models do
(Faruqui et al., 2015; Mrkšić et al., 2016).

(3) Each concept should have two different relation-
specialized embeddings – one for each end of an
asymmetric relation. For instance, for hypernymy,
the concept’s specialized embedding for pairs in
which it is considered to be a hyponym (e.g., dog
in dog–animal) should differ from its embedding
in pairs in which it is tested as a hypernym (e.g.,
dog in maltese–dog).

(4) An unspecialized distributional vector of the
word might – for each end of the asymmetric re-
lation – be transformed into several specialized
vectors instead of only one. This way the model
may implicitly account for polysemy – i.e., differ-
ent specialized vectors might capture asymmetric
properties of different senses of polysemous words.
E.g., the hyponym properties of bank in the pair
bank vs. building may be different from those in
the pair bank vs. company).

Figure 1 depicts the overall architecture of the
Dual Tensor model, incorporating all four of above-
mentioned design guidelines.

3.1 Dual Tensors

For a given pair of concepts (c1, c2), Dual Ten-
sor model computes the score s(c1, c2) indicating
the likelihood that an asymmetric lexico-semantic
relation holds between the concepts (e.g., for
meronymy, how likely it is that c1 is a part of
c2). The model takes as input the unspecialized
embeddings of the two concepts, e1 and e2. For
single-word concepts these are simply pre-trained
word embeddings, whereas for multi-word con-
cepts, similar to (Socher et al., 2013), we average
the pre-trained embeddings of constituent words.

The unspecialized input embeddings are next
translated into specialized embeddings, meant to
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Figure 1: The architecture of the Dual Tensor model.

better capture the existence of the asymmetric rela-
tion between the concepts, via specialization ten-
sors. By introducing dedicated tensors we – unlike
existing models, which directly propagate updates
to unspecialized embeddings (Faruqui et al., 2015;
Mrkšić et al., 2016) – explicitly learn the special-
ization function. With an explicit specialization
function, we do not have to specialize the whole
embedding space at once. Also, unlike KG com-
pletion models (Bordes et al., 2013; Socher et al.,
2013), we can make predictions for pairs involving
concepts unseen in the training data.

We explicitly model asymmetry by introducing
two specialization tensors (hence the model name)
that differently specialize the unspecialized input
embeddings of concepts. The left tensor, W

[1:k]
L

(with the corresponding set of bias vectors b
[1:k]
L ),

specializes the concept embedding if the concept
is the first element of the pair, whereas the right
tensor, W

[1:k]
R (with bias vectors b

[1:k]
R ), special-

izes the concept embedding when the concept is
the second element of the pair:

e
[1:k]
L = tanh

(
e1W

[1:k]
L + b

[1:k]
L

)

e
[1:k]
R = tanh

(
e2W

[1:k]
R + b

[1:k]
R

)

When predicting hypernymy, for example, dual ten-
sors ensure that the specialized representation for
concept cat in pairs like cat–animal differs from its
specialized representation in pairs like birman–cat.

Specialization tensors map an unspecialized em-
bedding into a set of k specialized embeddings –
each slice of the tensor, W i

L (W i
R), together with

the corresponding bias vector biL (biR), produces
one specialized vector eiL (eiR). By using special-

ization tensors with k slices instead of specializa-
tion matrices we make the model more general.
The tensor-based model trivially degrades to the
matrix-based model by setting k = 1. We obtain
the final specialized representation of a concept by
non-linearly transforming (hyperbolic tangent) the
product of an unspecialized input embedding and
the specialization tensor.1

3.2 Bilinear Product and Scoring
Using dual tensors, we transform unspecialized
embeddings into asymmetrically specialized repre-
sentations – sets of specialized vectors – which we
next use to predict whether the asymmetric relation
holds between the concepts. Our scoring function
is based on bilinear products between (1) special-
ized vectors e

[1:k]
L of the first concept, (2) relation

tensor W
[1:k]
B , and (3) specialized vectors e

[1:k]
R of

the second concept. For each pair of specialized
vectors eiL and eiR, i ∈ {1, . . . , k}, we compute
the bilinear product score, using the corresponding
slice W i

B of the relation tensor W
[1:k]
B :

bi = eiLW
i
B(e

i
R)

T .

The final relation score s(c1, c2) for a given pair
of concepts is computed by reducing the vector of
bilinear product scores b to the mean value (func-
tion g in Figure 1)2 and non-linearly bounding the
resulting score to the [−1, 1] range:

s(c1, c2) = tanh

(
1

k

k∑

i=1

bi

)
.

1Preliminary experiments without applying a non-linear
transformation yielded consistently poorer performance.

2We also experimented with min- and max-reduction, but
the reduction to the mean yielded best preliminary results.
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3.3 Optimization
Dual Tensor model is parametrized by the spe-
cialization tensors, their corresponding bias vec-
tors, and the relation tensor, namely, Ω =

{W[1:k]
L ,W

[1:k]
R ,b

[1:k]
L ,b

[1:k]
R ,W

[1:k]
B }. Let A be

the set of concept pairs in the training set, A =
{pi = (ci1, c

i
2)}Ni=1. We learn model’s parameters

by minimizing the margin-based objective:

J(Ω) = λ‖Ω‖2+
∑

pi∈A
max

(
0, 1− s(pi) · y(pi)

)

where s(pi) is model’s prediction for the pair
(ci1, c

i
2), y(p

i) ∈ {−1, 1} is the true label of that
pair, and λ is the regularization coefficient. In all
our experiments, we trained the model in mini-
batches, optimizing the parameters with the RM-
SProp algorithm (Tieleman and Hinton, 2012).

The model has three hyperparameters: the length
of the unspecialized input embeddings l, the num-
ber of tensor slices k, and the regularization fac-
tor λ. We optimize the hyperparameters (together
with the starting learning rate value) via grid-
search, by maximizing performance on the vali-
dation portion of each dataset. In all our experi-
ments, except the multilingual comparison (Sec-
tion 5.3), we evaluated variants of the Dual Tensor
model using pre-trained English GloVe word em-
beddings (Pennington et al., 2014) with varying
length, l ∈ {50, 100, 200, 300} and tensors with
k ∈ {1, . . . , 5} slices. In most experiments, the
optimal configuration was l = 300 and k = 3.

4 Evaluation

We evaluate the Dual Tensor model on several
datasets for detecting hypernymy and meronymy,
two arguably most prominent asymmetric lexico-
semantic relations. In all experiments, we compare
the model’s performance with state-of-the-art re-
sults on respective datasets. Additionally, aiming
to quantify the effects that different components of
the Dual Tensor model have on prediction perfor-
mance, we evaluate two reduced models variants.

4.1 Datasets
We evaluate the Dual Tensor model on the follow-
ing hypernymy and meronymy detection datasets:

HypeNet dataset. Arguing that existing datasets
were too small for training their recurrent network,
Shwartz et al. (2016) compiled this dataset for hy-
pernymy detection from several external KBs, tak-

ing only pairs of concepts in direct relation (i.e., no
transitive closure).

Other hypernymy detection datasets. We ad-
ditionally evaluate the Dual Tensor model on
four smaller datasets for hypernymy detection:
(1) BLESS dataset (Baroni and Lenci, 2011) and
EVALuation dataset (Santus et al., 2015) contain
instances of hypernymy and four other relations.
BLESS additionally contains random word pairs;
(2) Weeds dataset (Weeds et al., 2014) contains
hypernymy and co-hyponymy pairs; (3) Benotto
dataset (Benotto, 2015) couples hypernymy pairs
with synonymy and antonymy pairs. Because these
datasets contain at most several thousand pairs, we
only use them to evaluate the performance of mod-
els trained on larger datasets;

WN-Hy and WN-Me datasets. We create these
datasets by taking concept pairs from WordNet.
We take all instances from the transitive closure
of hypernymy (all parts of speech) and meronymy
(nouns) relations and couple them with all synonym
and antonym relations (all parts of speech), as well
as lexical entailment relations (verbs).

For the WN-Hy dataset we designate all hy-
pernymy relations (i.e., both direct and indirect)
as positive instances and their inverses (i.e., hy-
ponymy relations) together with all other rela-
tions as negative instances. Finally, we balance the
dataset by randomly sampling negative instances
to match the number of positive instances. Anal-
ogously, we create the WN-Me dataset by taking
meronymy relations as positive instances. We com-
pile three different WN-Hy datasets: WN-Hy-EN
using English WordNet (Fellbaum, 1998), WN-
Hy-ES using Spanish WordNet (Gonzalez-Agirre
et al., 2012), and WN-Hy-FR using French Word-
Net (Sagot and Fišer, 2008). To allow for fair com-
parison of model’s performance across languages,
we randomly sample two larger dataset (English
and French) to match in size the smallest (Spanish).

Lexical and Random Splits. Levy et al. (2015)
showed that supervised distributional models for
classifying lexico-semantic relations suffer from
overfitting in settings with significant lexical over-
lap between the training and test set. In such set-
tings models tend to learn properties of individual
words (e.g., that a word is a prototypical hypernym)
instead of relations between words. The reported
results on such datasets are thus overly optimistic
estimates of models’ true performance.
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Dataset Train Val. Test

HypeNet (rand) 49.5K (20%) 3.5K (19%) 17.7K (20%)
HypeNet (lex) 20.3K (20%) 1.4K (20%) 6.6K (20%)

BLESS – 2.7K (5%) 23.9K (5%)
EVALuation – 1.4K (24%) 12.3K (27%)
Weeds – 293 (50%) 2.6K (50%)
Benotto – 501 (41%) 4.5K (38%)

WN-Hy-EN 103K (50%) 15K (50%) 30K (50%)
WN-Hy-EN 103K (50%) 15K (50%) 30K (50%)
WN-Hy-FR 103K (50%) 15K (50%) 30K (50%)

WN-Me (rand) 13.9K (50%) 2K (50%) 4K (50%)
WN-Me (lex) 7.9K (50%) 208 (50%) 318 (50%)

Table 1: Datasets used in evaluation.

To eliminate the effect of lexical memorization,
Levy et al. (2015) propose dataset splits with no
lexical overlap between the train and test portions.
However, model’s performance in a lexically-split
setting is an overly pessimistic estimate of mod-
els’ true performance – in a realistic scenario, the
model will occasionally make predictions for pairs
involving some of the concepts from the training
set. Because the true model performance is likely
between the performance on a randomly-split and
performance on a lexically-split dataset, we report
models’ performance in both of these settings.

We show the sizes of all dataset variants used in
our experiments in Table 1. We additionally report
the proportion of positive instances (in brackets),
as this percentage directly affects some evaluation
metrics (precision, F1-score, average precision).

4.2 Baselines

In addition to specific models yielding best perfor-
mance on particular datasets, we compare the Dual
Tensor model (DUAL-T) with these baselines:

Supervised distributional baseline (CONCAT-
SVM). We train SVM model with RBF kernel
on concatenation of unspecialized concept embed-
dings (Baroni et al., 2012), following Levy et al.
(2015), who report this model outperforming other
types of embedding composition;

Bilinear product (BILIN-PROD). This model is
the simple bilinear product between the unspecial-
ized concept embeddings, parametrized only by the
relation matrixWB . That is, the prediction score for
a pair of concepts is given as s(c1, c2) = e1WBe

T
2 .

The bilinear model implicitly captures asymmetry
by learning a non-symmetric relation matrix WB .
By comparing the performances of BILIN-PROD

Lex. split Rand. split

Model P R F1 P R F1

HypeNet path-based 69.1 63.2 66.0 81.1 71.6 76.1
HypeNet hybrid 80.9 61.7 70.0 91.3 89.0 90.1

CONCAT-SVM 75.4 55.1 63.7 90.1 63.7 74.6
BILIN-PROD 53.1 53.3 53.2 74.0 79.4 76.6
SINGLE-T 68.4 70.0 69.2 84.8 86.7 85.7

DUAL-T 70.5 78.5 74.3 93.3 82.6 87.6

Table 2: Hypernymy classification performance.

and DUAL-T, we jointly quantify the effects of (1)
explicit modeling of asymmetry and (2) relation-
specific embedding specialization;

Single tensor model (SINGLE-T). This is the
reduction of the Dual Tensor model in which we
use only one specialization tensor, i.e., W

[1:k]
L =

W
[1:k]
R . In other words, SINGLE-T model always

specializes the unspecialized embedding of a con-
cept the same way, regardless of the concept’s po-
sition in a candidate pair. By comparing the perfor-
mance of the DUAL-T model with that of SINGLE-
T, we measure the effect of asymmetrically special-
izing unspecialized embeddings.

Same as for the DUAL-T model, we optimize the
hyperparameters of the baselines on the validation
portions of the datasets used for evaluation.

4.3 Classification Experiments

Binary classification is the most straightforward
evaluation setting for relation detection models. For
a pair of concepts, we make the binary asymmetric
relation prediction ra(c1, c2) simply by threshold-
ing the model’s prediction scores, i.e., ra(c1, c2) =
I{s(c1, c2) > 0}, where I is the indicator function.

Hypernymy classification. We first evaluate the
DUAL-T model and the baselines on the HypeNet
dataset (Shwartz et al., 2016). We show the perfor-
mance of the DUAL-T model in Table 2, together
with the path-based and hybrid (combination of
path-based and distributional signal) variants of the
the state-of-the-art RNN model of Shwartz et al.
(2016). On the more challenging, lexically-split
dataset DUAL-T model significantly3 outperforms
the more complex hybrid HypeNet model (Shwartz
et al., 2016), an RNN model coupling representa-
tions of syntactic paths from a large corpus with

3All performance differences were tested using the non-
parametric stratified shuffling test (Yeh, 2000) with α = 0.05.
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Lex. split Rand. split

Model P R F1 P R F1

CONCAT-SVM 78.6 44.6 56.9 79.9 75.9 77.9
BILIN-PROD 73.3 50.0 59.4 81.0 79.8 80.5
SINGLE-T 77.7 55.5 64.8 85.7 82.6 84.1

DUAL-T 76.5 61.1 67.9 87.7 85.3 86.5

Table 3: Meronymy classification performance.

unspecialized concept embeddings. In both settings
DUAL-T outperforms SINGLE-T which, in turn,
outperforms BILIN-PROD. This empirically justi-
fies both our explicit modeling of asymmetry and
relation-specific embedding specialization.

Meronymy classification. We next evaluate the
meronymy classification performance of the mod-
els on the WN-Me dataset. The results are shown
in Table 3. Same as in the case of hypernymy
classification, DUAL-T significantly outperforms
all three baselines, with SINGLE-T outperforming
BILIN-PROD. All distributional models we evalu-
ate achieve poorer performance on meronymy than
hypernymy detection, especially considering that
WN-Me is a balanced dataset, whereas HypeNet is
heavily skewed towards negative instances.

4.4 Ranking Experiments
Shwartz et al. (2017) propose ranking as an alter-
native evaluation setting for hypernymy detection.
The goal is to rank positive relation pairs higher
than negative ones. Our DUAL-T model (and as-
sociated baselines) rank the concept pairs in de-
creasing order of assigned relations scores s(c1, c2).
Following Shwartz et al. (2017), we report perfor-
mance in terms of overall average precision (AP)
and average precision at rank 100 (AP@100).

Hypernymy ranking. We evaluate the ranking
performance on four small hypernymy test sets:
BLESS, EVALuation, Benotto, and Weeds (cf. Ta-
ble 1). As these datasets are not big enough to train
neural models, we train all models on the HypeNet
dataset. For each test set we eliminate the lexical
overlap by removing from the HypeNet dataset
pairs containing any concept from that test set.

Table 4 displays ranking performance for DUAL-
T model, the supervised baselines, and the best-
performing unsupervised hypernymy detection
score (BEST-UNSUP, performance taken from
(Shwartz et al., 2017)). Hypernymy ranking results
depict the effectiveness of the DUAL-T model with

respect to supervised baselines even more clearly
than hypernymy classification results. All super-
vised models outperform the best unsupervised
model in terms of AP, but only DUAL-T is consis-
tently better when considering only 100 top-ranked
pairs (AP@100). This adds to the conclusion that
explicit modeling of asymmetry using dual tensors
yields crucial performance boost.

Meronymy ranking. We measure the ranking
performance for meronymy detection on the WN-
Me dataset, reporting the results for both randomly-
and lexically-split variants of the dataset in Table
5. Meronymy ranking results are in line with per-
formance figures for hypernymy ranking. Again,
DUAL-T consistently outperforms all three base-
lines. Absolute AP scores for meronymy are higher
than those we report for hypernymy, but this is
merely because WN-Me is a balanced dataset,
whereas the hypernymy ranking test sets (with the
exception of the Weeds dataset) are substantially
skewed in favor of negative concept pairs.

5 Analysis

We perform additional analyses, providing further
insights into DUAL-T model’s performance. We
analyze how model’s performance depends on con-
cept distance in WordNet and on number of concept
senses. We also examine the stability of DUAL-T
model’s performance across different languages.

5.1 WordNet Distance
Unlike the HypeNet dataset (Shwartz et al., 2016),
which contains only pairs of concepts that exist in
a direct relation in some external knowledge base,
our WN-Hy and WN-Me datasets (cf. Section 4.1)
contain pairs of concepts of varying distance in
WordNet, allowing for a more fine-grained analysis
of the Dual Tensor model’s performance.

We divide the test sets of WN-Hy-EN and WN-
Me into five buckets according to the shortest path
distance between concepts in WordNet.4 We show
hypernymy and meronymy prediction accuracies
for all buckets in Figure 2. For hypernymy, we
observe significantly lower accuracy for pairs of
concepts appearing close in WordNet hierarchy.
Close hyponym-hypernym pairs (e.g., car–vehicle)
tend to occur in similar contexts and consequently
have similar unspecialized embeddings. Such hy-
pernymy instances are difficult to discern from syn-

4For any concept with multiple senses, we considered the
WordNet synset of its dominant sense.
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Dataset BLESS EVALuation Benotto Weeds

Model AP AP@100 AP AP@100 AP AP@100 AP AP@100

BEST-UNSUP (Shwartz et al., 2017) .051 .540 .353 .661 .382 .617 .441 .911

CONCAT-SVM .097 .235 .321 .329 .523 .586 .644 .793
BILIN-PROD .277 .627 .355 .457 .477 .678 .712 .948
SINGLE-T .463 .777 .433 .668 .501 .605 .771 .958

DUAL-T .487 .823 .446 .866 .557 .847 .774 .985

Table 4: Hypernymy detection, ranking results.
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Figure 2: Hypernymy and meronymy performance with respect to WordNet shortest path distance.

Lex. split Rand. split

Model AP AP@100 AP AP@100

CONCAT-SVM .686 .775 .796 .865
BILIN-PROD .682 .832 .878 .947
SINGLE-T .772 .900 .909 .979

DUAL-T .840 .967 .936 1.00

Table 5: Meronymy detection, ranking results.

onymous pairs (e.g., car–automobile). The same
effect is, however, not observed for meronymy –
part-whole relations between close concepts are as
detectable as between more distant concepts. This
is probably because part concepts appear in differ-
ent contexts than whole concepts (e.g., wheel-car),
resulting in distinct unspecialized embeddings in
the first place. For both relations we observe a drop
in performance for pairs of very distant concepts.
Such pairs typically contain one very abstract con-
cept (e.g., object), but embeddings of abstract con-
cepts are not superpositions of embeddings of their
hyponyms (Rimell, 2014) nor their meronyms.

5.2 Effects of Polysemy

Given that our Dual Tensor model takes unspecial-
ized concept embeddings as input and that unspe-
cialized embeddings do not discern between differ-

ent senses of words, our Dual Tensor model treats
monosemous and polysemous concepts equally. In-
tuitively, predicting asymmetric relations for pairs
involving polysemous concepts should be more dif-
ficult than for pairs of monosemous concepts, be-
cause the models in such cases additionally need to
learn to discern between different concept senses.

While designing the Dual Tensor model, we hy-
pothesized that different tensor slices might be able
to accommodate for asymmetric relations involv-
ing different senses of polysemous words. In order
to closer examine the effects of polysemy on the
performance of the Dual Tensor model, we parti-
tioned the test portions of the WN-Hy and WN-
Me datasets according to number of senses of the
concept pair (we average the number of senses of
the two concepts in a candidate pair). We show the
Dual Tensor model’s performance (k = 3, l = 300)
on different number-of-senses buckets, both for hy-
pernymy and meronymy prediction, in Figure 3.

For hypernymy, the general trend is as expected:
the larger the average number of senses of concepts
in the candidate pair, the lower the prediction accu-
racy. The exception is the bucket (3, 5] for which
the performance is higher than for the previous
bucket (1, 3]. The drop in performance is not dras-
tic as long as the model is not dealing with highly
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Figure 3: Hypernymy and meronymy performance with respect to concept polysemy.

polysemous concepts (with more than five senses).
These performance figures suggest that, via the mul-
tiple tensor slices, the DUAL-T model can, to some
extent, alleviate the effects that polysemy has on
predicting asymmetric lexico-semantic relations.

Somewhat surprisingly, the polysemy seems not
to have a clear negative effect for meronymy. Pre-
diction accuracy on pairs of highly polysemous
concepts seems to be similar to that on monose-
mous concept pairs. An instance-level inspection
reveals that meronymy detection is more sensitive
to the number of senses of the part candidate con-
cept than of the whole concept. In other words, if
we partition the test set only according to the num-
ber of senses of the part concept, then the trends
are similar to those observed for hypernymy.

5.3 Multilingual Comparison

To examine how the Dual Tensor model performs
across languages, we evaluate its performance on
equally-sized hypernymy detection datasets in En-
glish, Spanish, and French (cf. Section 4.1 and
Table 1). To increase the comparability of results,
for each of the three languages we trained word
embeddings using the CBOW algorithm (Mikolov
et al., 2013) on the Wikipedia dump of respective
language. Also, for all three models we select the
hyperparameter configuration that turned out to
be optimal most often in previous experiments –
we set the length of unspecialized embeddings to
l = 300 and number of tensor slices to k = 3. Hy-
pernymy classification performance for different
languages is shown in Table 6. The results sug-
gest that Dual Tensor model exhibits stable perfor-
mance across languages. The small performance
differences between languages may be attributed to
different sizes of respective Wikipedia dumps (on
which we train unspecialized embeddings) as well
as to inherent differences in language complexity
(e.g., English being morpho-syntactically simpler).

Language Dataset P R F1

English WN-Hy-EN 89.9 86.1 87.9
Spanish WN-Hy-ES 88.7 82.1 85.3
French WN-Hy-FR 86.2 82.7 84.4

Table 6: Hypernymy classification performance for
different languages.

6 Conclusion

We have presented a neural model for detecting
asymmetric semantic relations. Unlike existing
models, which uniformly treat asymmetric and
symmetric relations, our Dual Tensor model cap-
tures asymmetry explicitly using a pair of special-
ization tensors that produce two different embed-
ding specializations, depending on the concept’s
role in the relation. Instead of just updating unspe-
cialized embeddings, with specialization tensors
we also explicitly capture the mapping function.

The results from a battery of hypernymy and
meronymy experiments show that via asymmetric
specialization of concept embeddings the Dual Ten-
sor model is able to outperform (1) the supervised
model directly using unspecialized embeddings as
well as (2) the more complex neural architecture
that additionally exploits syntactic information. We
have additionally shown that our model can dimin-
ish the negative effects of polysemy and that it
exhibits stable performance across languages.

As future work, we plan to develop similar
models based on explicit specialization tensors
for detecting symmetric relations (e.g., synonymy,
antonymy). We will also seek to exploit the Dual
Tensor model in different downstream tasks, e.g.,
hypernymy detection for taxonomy induction (Far-
alli et al., 2017) or recognizing textual entailment.

Downloads. We make the code of the models and
all datasets available at https://bitbucket.
org/gg42554/dual-tensors/.
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Abstract

Distantly supervised relation extraction
has been widely used to find novel rela-
tional facts from plain text. To predict
the relation between a pair of two target
entities, existing methods solely rely on
those direct sentences containing both en-
tities. In fact, there are also many sen-
tences containing only one of the target
entities, which also provide rich useful in-
formation but not yet employed by rela-
tion extraction. To address this issue, we
build inference chains between two target
entities via intermediate entities, and pro-
pose a path-based neural relation extrac-
tion model to encode the relational seman-
tics from both direct sentences and infer-
ence chains. Experimental results on real-
world datasets show that, our model can
make full use of those sentences contain-
ing only one target entity, and achieves
significant and consistent improvements
on relation extraction as compared with
strong baselines. The source code of this
paper can be obtained from https://
github.com/thunlp/PathNRE.

1 Introduction

Knowledge Bases (KBs) provide effective
structured information for real world facts and
have been used as crucial resources for several nat-
ural language processing (NLP) applications such
as Web search and question answering. Typical
KBs such as Freebase (Bollacker et al., 2008), DB-
pedia (Auer et al., 2007) and YAGO (Suchanek
et al., 2007) usually describe knowledge as multi-
relational data and represent them as triple facts.
As the real-world facts are infinite and increasing

∗∗Corresponding author: Z. Liu (liuzy@tsinghua.edu.cn).

every day, existing KBs are still far from com-
plete. Recently, petabytes of natural-language text
containing thousands of different structure types
are readily available, which is an important re-
source for automatically finding unknown rela-
tional facts. Hence, relation extraction (RE), de-
fined as the task of extracting structured informa-
tion from plain text, has attracted much interest.

Most existing supervised RE systems usually
suffer from the issue that lacks sufficient labelled
relation-specific training data. Manual annotation
is very time consuming and labor intensive. One
promising approach to address this limitation is
distant supervision. (Mintz et al., 2009) gener-
ates training data automatically by aligning a KB
with plain text. They assume that if two target
entities have a relation in KB, then all sentences
that contain these two entities will express this
relation and can be regarded as a positive train-
ing instance. Since neural models have been ver-
ified to be effective for classifying relations from
plain text (Socher et al., 2012; Zeng et al., 2014;
dos Santos et al., 2015), (Zeng et al., 2015; Lin
et al., 2016) incorporate neural networks method
with distant supervision relation extraction. Fur-
ther, (Ye et al., 2016) considers finer-grained in-
formation, and achieves the state-of-the-art perfor-
mance.

Although existing RE systems have achieved
promising results with the help of distant super-
vision and neural models, they still suffer from a
major drawback: the models only learn from those
sentences contain both two target entities. How-
ever, those sentences containing only one of the
entities could also provide useful information and
help build inference chains. For example, if we
know that “h is the father of e” and “e is the father
of t”, we can infer that h is the grandfather of t.

In this work, as illustrated in Fig. 1, we intro-
duce a path-based neural relation extraction model
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Jack loves Mary. Jack is the father of Alice. Alice is kissing her mother, Mary.
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Figure 1: The architecture of our neural relation extraction model with relation paths.

with relation paths. First, we employ convolu-
tional neural networks (CNN) to embed the se-
mantics of sentences. Afterward, we build a rela-
tion path encoder, which measures the probability
of relations given an inference chain in the text.
Finally, we combine information from direct sen-
tences and relation paths to predict the relation.

We evaluate our model on a real-world dataset
for relation extraction. The experimental results
show that our model achieves significant and con-
sistent improvements as compared with baselines.
Besides, with the help of those sentences contain-
ing one of the target entities, our model is more
robust and performs well even when the number
of noisy instances increases. To the best of our
knowledge, this is the first effort to consider the
information of relation path in plain text for neu-
ral relation extraction.

2 Related Work

2.1 Distant Supervision

Distant supervision for RE is originally pro-
posed in (Craven et al., 1999). They focus on
extracting binary relations between proteins us-
ing a protein KB as the source of distant supervi-
sion. Afterward, (Mintz et al., 2009) aligns plain
text with Freebase, by using distant supervision
. However, most of these methods heuristically
transform distant supervision to traditional super-
vised learning, by regarding it as a single-instance
single-label problem, while in reality, one instance
could correspond with multiple labels in differ-
ent scenarios and vice versa. To alleviate the is-

sue, (Riedel et al., 2010) regards each sentence as
a training instance and allows multiple instances
to share the same label but disallows more than
one label. Further, (Hoffmann et al., 2011; Sur-
deanu et al., 2012) adopt multi-instance multi-
label learning in relation extraction. The main
drawback of these methods is that they obtain most
features directly from NLP tools with inevitable
errors, and these errors will propagate to the rela-
tion extraction system and limit the performance.

2.2 Neural Relation Extraction

Recently, deep learning (Bengio, 2009) has
been successfully applied in various areas, includ-
ing computer vision, speech recognition and so on.
Meanwhile, its effectiveness has also been verified
in many NLP tasks such as sentiment analysis (dos
Santos and Gatti, 2014), parsing (Socher et al.,
2013), summarization (Rush et al., 2015) and ma-
chine translation (Sutskever et al., 2014). With
the advances of deep learning, there are grow-
ing works that design neural networks for rela-
tion extraction. (Socher et al., 2012) uses a recur-
sive neural network in relation extraction, and (Xu
et al., 2015; Miwa and Bansal, 2016) further use
LSTM. (Zeng et al., 2014; dos Santos et al., 2015)
adopt CNN in this task, and (Zeng et al., 2015;
Lin et al., 2016) combine attention-based multi-
instance learning which shows promising results.
However, these above models merely learn from
those sentences which directly contain both two
target entities. The important information of those
relation paths hidden in the text is ignored. In this
paper, we propose a novel path-based neural RE
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model to address this issue. Besides, although we
choose CNN to test the effectiveness of our model,
other neural models could also be easily adapted to
our architecture.

2.3 Relation Path Modeling

Relation paths have been taken into consider-
ation on large-scale KBs for relation inference.
Path Ranking algorithm (PRA) (Lao and Co-
hen, 2010) has been adopted for expert finding
(Lao and Cohen, 2010), information retrieval (Lao
et al., 2012), and further for relation classification
based on KB structure (Lao et al., 2011; Gardner
et al., 2013). (Neelakantan et al., 2015; Lin et al.,
2015; Das et al., 2016; Wu et al., 2016) use recur-
rent neural networks (RNN) to represent relation
paths based on all involved relations in KBs.(Guu
et al., 2015) proposes an embedding-based com-
positional training method to connect the triple
knowledge for KB completion. Different from the
above work of modeling relation paths in KBs, our
model aims to utilize relation paths in text corpus,
and help to extract knowledge directly from plain
text.

3 Our Method

Given a pair of target entities, a set of corre-
sponding direct sentences S = {s1, s2, · · · , sn}
which contains this entity pair, and a set of rela-
tion paths P = {p1, p2, · · · , pm}, our model aims
to measure the confidence of each relation for this
entity pair. In this section, we will introduce our
model in three parts: (1) Text Encoder. Given
the sentence with two corresponding target enti-
ties, we use a CNN to embed the sentence into
a semantic space, and measure the probability of
each relation given this sentence. (2) Relation
Path Encoder. Given a relation path between the
target entities, we measure the probability of each
relation r, conditioned on the relation path. (3)
Joint Model. We integrate the information from
both direct sentences and relation paths, then pre-
dict the confidence of each relation.

3.1 Text Encoder

As shown in Fig. 2, we use a CNN to extract in-
formation from text. Given a set of sentences of an
entity pair, we first transform each sentence s into
its distributed representation s, and then predict re-
lation using the most representative sentence via a
multi-instance learning mechanism.

Jack married Lily   ten   years   ago. 

Word Embeddings

Position Embeddings

Max Operation

Vector
Representation

Convolution
Layer

Max
Pooling

Non-linear
Activation Output Vector

Sentence:

Figure 2: The architecture of CNN used for text
encoder.

3.1.1 Input Vector
First, we transform the words {w1, w2, · · · , wl}

in sentence s into vectors of dimension d. For each
word wi, we use word embedding to encode its
syntactic and semantic meanings, and use position
embedding to encode its position information. We
then concatenate both word embedding and posi-
tion embedding to form the input vector of wi for
CNN. (See Figure 2.)

3.1.2 Convolution and Max-pooling Layers
When processing a sentence, it is a great chal-

lenge that important information could probably
appear in all parts of that sentence. In addition,
the length l of a sentence could also vary a lot.
Therefore, we apply CNN to encode all local fea-
tures regardless sentence length. We first apply a
convolution layer to extract all possible local fea-
tures, and then select the most important one via
max-pooling layer.

To extract local features, the convolution layer
first concatenates a sequence of word embeddings
within a sliding window to be vector qi of dimen-
sion k × d:

qi = w[i−k+1:i](1 ≤ i ≤ l + k − 1), (1)

where k is the size of the window, and we
also set all out-of-index words to be zero vec-
tors. It then multiplies qi by a convolution ma-
trix W ∈ Rdc×(k×d), where dc is the dimen-
sion of sentence embeddings. Hence, the out-
put of convolution layer could be expressed as
h = {h1,h2, · · · ,hl+k−1}:

hi = Wqi + b, (2)
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where b is a bias vector. Finally, the max-pooling
layer takes a max operation, followed by a hyper-
bolic tangent activation, over the sequence of hi to
select the most important information, namely,

[s]j = tanh(max
i

[hi]j). (3)

3.1.3 Multi-Instance Learning
Next, we apply a softmax classifier upon the

sentence representation s to predict the corre-
sponding relation. We define the condition proba-
bility of relation r as follows,

p(r|θ, s) = exp(er)∑nr
i=1 exp(ei)

, (4)

where ei, a component of e, measures how well
this sentence matches relation ri, and nr is the
number of relations. More specifically, e could be
calculated from:

e = Us+ v, (5)

where U ∈ Rnr×dc is the coefficient matrix of
relations and v ∈ Rnr is a bias vector.

We use multi-instance learning to alleviate the
wrong-labeling issue in distant supervision, by
choosing one sentence in the set of all direct sen-
tences S = {s1, s2, · · · , sm} which corresponds
to the entity pair (h, t). Similar to (Zeng et al.,
2015), we define the score function of this entity
pair and its corresponding relation r as a max-one
setting:

E(h, r, t|S) = max
i
p(r|θ, si). (6)

where E reflects the direct information we derive
from sentences. We can also set a random setting
as a baseline:

E(h, r, t|S) = p(r|θ, si), (7)

where si is randomly selected from S.

3.2 Relation Path Encoder
We use Relation Path Encoder to embed the in-

ference information of relation paths. Relation
Path Encoder measures the probability of each re-
lation r given a relation path in the text. This will
utilize the inference chain structure to help make
predictions. More specifically, we define a path
p1 between (h, t) as {(h, e), (e, t)}, and the corre-
sponding relations are rA, rB . Each of (h, e) and
(e, t) corresponds to at least one sentence in the

text. Our model calculates the probability of rela-
tion r conditioned on p1 as follows,

p(r|rA, rB) =
exp(or)∑nr
i=1 exp(oi)

, (8)

where oi measures how well relation r matches
with the relation path (rA, rB). Inspired by the
work on relation path representation learning (Lin
et al., 2015), our model first transforms relation
r to its distributed representation, i.e. vector r ∈
RdR , and builds the path embeddings by composi-
tion of relation embeddings. Then, the similarity
oi is calculated as follows:

oi = −‖ri − (rA + rB)‖L1 . (9)

Therefore, if ri gets more similar to (rA + rB),
the conditioned predicting probability of ri will
become larger. Here, we make an implicit assump-
tion that if ri is semantically similar to relation
path pi : h

rA−→ e
rB−→ t, the embedding ri will be

closer to the relation path embedding (rA + rB).
Finally, for this relation path pi : h

rA−→ e
rB−→ t,

we define an relation-path score function,

G(h, r, t|pi) = E(h, rA, e)E(e, rB, t)p(r|rA, rB),
(10)

where E(h, rA, e) and E(e, rB, t) measure the
probabilities of relational facts (h, rA, e) and
(e, rB, t) from text, and p(r|rA, rB) measures
the probability of relation r given relation path
(rA, rB).

In reality, there are usually multiple relation
paths between two entities. Hence, we define the
inferring correlation between relation r and sev-
eral sentence paths P as,

G(h, r, t|P ) = max
i
G(h, r, t|pi), (11)

where we use max operation to filter out those
noisy paths and select the most representative
path.

3.3 Joint Model
Given any entity pair (h, t), those sentences S

directly mentioning them and relation paths P be-
tween them, we define the global score function
with respect to a candidate relation r as,

L(h, r, t) = E(h, r, t|S) + αG(h, r, t|P ), (12)

whereE(h, r, t|S) models the correlation between
r and (h, t) calculated from direct sentences,
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G(h, r, t|P ) models the inferring correlation be-
tween relation r and several sentence paths P . α
equals to (1 − E(h, r, t|S)) times a constant β.
This term serves to depict the relative weight be-
tween direct sentences and relation paths, since we
don’t need to pay much attention on extra infor-
mation when CNN has already given a confident
prediction, namely E(h, r, t|S) is large.

One of the advantages of this joint model is to
alleviate the issue of error propagation. The un-
certainty of information from Text Encoder and
Relation Path encoder is characterized by its con-
fidence, and could be integrated and corrected in
this joint model step. Furthermore, since we treat
relation paths in a probabilistic way, our model
could fully utilize all relation paths, i.e. those al-
ways hold and those likely to hold.

3.4 Optimization and Implementation Details
The overall objective function is defined as:

J(θ) =
∑

(h,r,t)

log(L(h, r, t)), (13)

where the summing runs over the log loss of all
entity pairs in text and θ represents the model pa-
rameters. To solve this optimization problem, we
use mini-batch stochastic gradient descent (SGD)
to maximize our objective function. We initial-
ize WE with the results from Skip-gram model,
and initialize other parameters randomly. We also
adopt dropout (Srivastava et al., 2014) upon the
output layer of CNN.

We implement our model using C++. We train
our model on Intel(R) Xeon(R) CPU E5-2620, and
the training roughly takes half a day. The word
embedding and other parameters are updated via
back-propagation simultaneously, while the rela-
tion path structure is extracted before training and
stored afterward.

4 Dataset

We build a novel dataset for evaluating relation
extraction task. We first describe the most com-
monly used previous dataset and then explain the
reason and how we construct the new dataset.

4.1 Previous Datasets & Reasons for New
Dataset

A commonly used benchmark dataset for this
task was developed by (Riedel et al., 2010). This
dataset was built by aligning Freebase (Dec. 2009

Snapshot) with New York Times corpus (NYT).
There are 53 possible relationships between two
entities, including a special relation type NA,
meaning that there is no relation between head and
tail entities. For each relational fact in a filtered
Freebase dataset, a sentence from NYT would be
regarded as a mention of this relation if both the
head and tail entity appear in that sentence.

While this previous dataset has been frequently
used for evaluating relation extraction systems, we
observe some limitations of it. First, the relational
facts are extracted from a 2009 snapshot of Free-
base. Therefore, this dataset is too old to contain
many updated facts. This will underestimate the
performance of a relation extraction system, since
some real-world facts are missing from the dataset
and labeled as NA. Second, the relational facts in
this dataset are scattered, i.e. there are not suffi-
cient relation paths in this dataset, while relational
facts in real-world always have connections with
each other. Third, Freebase will no longer update
after 2016.These limitations mean that this dataset
is somewhat improper for evaluating RE systems.

Although other relation extraction datasets ex-
ist, e.g. ACE1 and (Hendrickx et al., 2009), they
are too small to train an effective neural relation
extraction model. Moreover, each relational fact
in (Hendrickx et al., 2009) only corresponds with
one sentence, which prevents it from evaluating
multi-instance relation extraction systems. Hence,
we constructed a novel relation extraction dataset
to address these issues, and will make it available
to the community.

4.2 Dataset Construction

Datasets Sets # sentences # entity pairs # facts

Riedel et.al.
Train 522,611 281,270 18,252
Valid - - -
Test 172,448 96,678 1,950

Ours
Train 647,827 266,118 50,031
Valid 234,350 121,160 5,609
Test 235,609 121,837 5,756

Table 1: Statistics of datasets.

Our dataset contains more updated facts and
richer structures of relations, e.g. more relations
/ relation paths, as compared to existing similar
datasets. The dataset is expected to be more simi-
lar to real-world cases, and thus be more appropri-
ate for evaluating RE systems’ performances.

We build the dataset by aligning Wikidata2 re-
1https://catalog.ldc.upenn.edu/

LDC2006T06
2https://www.wikidata.org/
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lations with the New York Times Corpus (NYT).
Wikidata is a large, growing knowledge base,
which contains more than 80 million triple facts
and 20 million entities. Different from Freebase,
Wikidata is still in maintenance and could be eas-
ily accessed by APIs. We first pick those en-
tities simultaneously appeared in both Wikidata
and Freebase, and relational facts associated with
them. Then, we filtered out a subset S, reserv-
ing those facts associating with the 99 highest fre-
quency relations. This results in 4, 574, 665 triples
with 1, 045, 385 entities and 99 relations.

Next, we align those facts with NYT corpus,
following the assumption of distant supervision.
For each pair of entities appearing in our S, we
traverse the corpus and pick those sentences where
both entities appear. These sentences will be re-
garded as mentions of this fact, and labeled by
this relation type. To simulate noise in the real
world, we also add sentences corresponding to
“No Relation” entity pairs into our dataset. To
get those “No Relation” instances, we first cre-
ate a fake knowledge base S− by randomly re-
placing the head or tail entities in triples, i.e.,
S− = {(h′, r, t)}∪{(h, r, t′)} and then align them
with NYT corpus. Finally, we randomly split all
those selected sentences into training, validation
and testing set, assuring that a relational fact could
be only mentioned by sentences in one set. The
statistics of our dataset and (Riedel et al., 2010)
are listed in Table 1.

5 Experiments

Following the previous work (Mintz et al.,
2009), we evaluate our model by extracting rela-
tional facts from the sentences in test set, and com-
pare them with those in Wikidata. We report Pre-
cision/Recall curves, Precision@N (P@N) and F1
scores for comparison in our experiments.

5.1 Initialization and Parameter Settings

In this paper, we use the word2vec tool 3

to pre-train word embeddings on NYT corpus.
We keep the words which appear more than 100
times in the corpus as vocabulary. We tune our
model on the validation set, using grid search
to determine the optimal parameters, which are
shown in boldface. We select learning rate for
SGD λ ∈ {0.1, 0.01, 0.001}, the sentence em-
bedding size dc ∈ {50, 60, · · · , 230, · · · , 300},

3https://code.google.com/p/word2vec/

the window size k ∈ {1, 2, 3, 4, 5}, and the
mini-batch size B ∈ {40, 160, 640}. Be-
sides, we select the relation embeddings size
dR ∈ {5, 10, · · · , 40, · · · , 60}, and the weight
for information from relation paths β ∈
{0.01, 0.1, 0.2, 0.5, 1, · · · , 5}. For other parame-
ters which have little effect on the system perfor-
mance, we follow the settings used in (Zeng et al.,
2015): word embedding size dw is 50, position
embedding size dp is 5 and dropout rate p is 0.5.
For training, the iteration number over all training
data is 25.

5.2 Effectiveness of Incorporating Relation
Paths

5.2.1 Precision-Recall Curve Comparison
To demonstrate the effect of our approach, we

empirically compare it with other neural relation
extraction methods via held-out evaluation. (1)
CNN+rand represents the CNN model reported
in (Zeng et al., 2014). (2) CNN+max represents
the CNN model with multi-instances learning used
in (Zeng et al., 2015). (3) Path+rand/max is
our model with those two multi-instance settings.
We implement (1), (2) by ourselves which achieve
comparable results as reported in those papers.

Recall
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Figure 3: Aggregate precision/recall curve for
CNN+rand, CNN+max, Path+rand, Path+max.

Fig. 3 shows the precision/recall curves of all
methods. From the figure, we can observe that: (1)
Our methods outperform their counterpart meth-
ods, achieving higher precision over almost en-
tire range of recall. They also enhance recall by
20% without decrease of precision. These results
prove the effectiveness of our approach. We no-
tice that the improvements of our methods over

1773



Test Settings (Noise) 75% 85% 95%
P@N (%) 10% 20% 50% F1 10% 20% 50% F1 10% 20% 50% F1
CNN+rand 86.7 67.0 38.9 57.5 84.6 66.4 37.5 55.0 79.9 61.8 35.2 51.4
CNN+max 86.0 68.5 38.3 57.2 85.4 67.6 37.7 56.5 84.4 66.0 36.6 54.8
Path+rand 89.4 71.7 39.9 59.3 88.2 70.2 39.0 58.1 86.0 67.2 37.0 55.6
Path+max 89.0 71.5 39.8 59.6 89.0 71.4 39.6 59.4 88.6 71.0 39.1 59.1

Table 2: P@N and F1 for relation extraction in texts containing different percentage of no-relation facts.

baselines are relatively small at small recall value,
which corresponds to high predicting confidence.
This phenomenon is intuitive since our joint model
could dynamically leverage the importance of di-
rect sentence and relation paths, and tends to trust
the Text Encoder when the confidence is high. (2)
As the recall increases, our models exhibit larger
improvements compared with CNN in terms of
percentage. This is due to the fact that sometimes
CNNs cannot extract reliable information from di-
rect sentences, while our methods could alleviate
this issue by considering more information from
inference chains, and thus still maintain high pre-
cision. (3) Both CNN+max and Path+rand are
variations of CNN+rand, aiming to alleviate the
problem of noisy data. We see that Path+rand out-
performs CNN+max over all range, which indi-
cates that considering path information is a better
way to solve this issue. Meanwhile, combining
paths information and max operation, Path+max,
gives the best performance. (4) Path+rand shows
a larger improvement over CNN+rand, compared
with those of Path+max and CNN+max. This fur-
thermore proves the effectiveness of considering
relation path information: CNN+rand has much
more severe problem suffering from noise, so us-
ing our method to incorporate paths information to
alleviate this issue could perform better.

5.2.2 Comparison on Long Tail Situation

Ns ≤ 1 Ns ≤ 2 Ns ≤ 5 All
CNN+rand 53.9 54.0 52.0 51.4
Path+rand 58.4 58.1 56.0 55.6
CNN+max 57.8 58.3 56.5 55.7
Path+max 63.6 (+5.8) 62.5 (+4.2) 60.2 (+3.7) 59.1 (+3.4)

Table 3: F1 score for long tail situation.

Real-world data follows long-tail distribution
(power law). In the testing set, we also observe
a fact that about 40% triple facts appear only in
single sentence, and thus a multi-instance rela-
tion extraction system, e.g. CNN+max, could only
rely on limited information and the multi-instance
mechanism will not work well. Our system, on the
contrary, can still utilize information from relation
paths in this case, and is expected to perform much

better in the long tail situation.
We evaluate the models on different parts of the

long-tail distribution. To get testing instances from
different parts of the distribution, we extract all the
triple facts appearing less than Ns sentences in the
testing set, and those sentences associating with
them. All text related to ’No Relation’ entity pair
are also reserved in order to simulate noise. We
then evaluate different models on those sampled
testing set, and report the results of F1 score in
Table 3.

From Table 3, we could observe that: (1) Incor-
porating relation paths is indeed effective in pre-
dicting relations, and our models have significant
improvements compared with the baselines. (2)
Path+max indeed has larger improvements over
CNN+max when Ns is small, which is consistent
with our previous expectation. Also notice that
the gap between Path+rand and CNN+rand is rel-
atively constant. This is due to the fact that both
these methods only use one random sentence, re-
gardless of how many sentences there are associ-
ating with an entity pair.

5.3 Model Robustness under Different
Percentages of Noise

In the task of relation extraction, there are lots
of noise in text which may hurt the model’s per-
formance. More specifically, “No Relation” entity
pair is a kind of noise, since “No Relation” could
actually contain many unknown relation types,
and thus might confuse the relation extraction sys-
tems. Therefore, it is important to verify the ro-
bustness of our model in the presence of massive
noise. Here, we evaluate those models in three set-
tings, with the same relational facts and different
percentages of “No Relation” sentences in the test-
ing sets. In each experiment, we extract top 20,000
predicting relational facts according to the model’s
predicting scores, and report the precision @top
10%, @top 20%, @top 50% and F1 score in Table
2.

From the table, we can see that: (1) In terms of
all evaluations, our models achieve the best perfor-
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Relation Text
Path #1 mother Rebecca gave birth to twin sons, Esau and Jacob, ...
Path #2 has child ...Isaac’s marriage to Rebecca, by whom he has two sons, Esau and jacob, ...

Test spouse ... Isaac and Rebecca and the female and male evil spirits ...
Path #1 shares border with ... in Somalia, ... soldiers and marines stationed in neighboring Djibouti ...
Path #2 shares border with ... Ethiopia have had the effect of making neighboring Djibouti ...

Test shares border with The next day, Ethiopia struck, its military pushing deep into Somalia ...

Table 4: Some representative examples of inference chians in NYT corpus. The bold is target entities.

mance as compared with other methods in all test
settings. It demonstrates the effectiveness of our
approach. (2) Even though the scores of all mod-
els drop as the increasing of noise, we find that
Path+rand/max’s scores decrease much less than
their counterparts. This result proves the effective-
ness of taking inference chains into consideration.
Since we utilize more information to make predic-
tions, our model is more robust to the presence of
mass noise.

5.4 Effectiveness of Learned Features in
Zero-Shot Scenario

It has been proved that CNN could automat-
ically extract useful features, encoding syntactic
and semantic meaning of sentences. These fea-
tures are sometimes fed to subsequent models to
solve other tasks. In this experiment, we demon-
strate the effectiveness of the extracted features
from our model. Since CNN-based models have
already succeeded in extracting relations from sin-
gle sentences, we set our experiment in a new
scenario: predicting the relation between entities
which have not appeared in the same sentence.

A natural approach is to build a relation path
between this zero-shot entity pair. We assume that
we can make a prediction about (h, t), once we
know the information of (h, e) and (e, t). There-
fore, we build the training set by extracting all
such relation paths and their sentences from train-
ing text, and similar for testing set. To test the
effectiveness of features, we encode sentences by
CNN+rand/max, Path+rand/max respectively, and
then feed the concatenation of sentence vectors to
a logistic classifier.

Feature Accuracy
CNN+rand 56.9
CNN+max 57.3
Path+rand 58.5
Path+max 60.4

Table 5: Accuracy of different models in zero-shot
situation.

From Table 5, we could observe that: (1) The

result using CNN+rand features is comparable to
the result using CNN+max features. It shows
that using max operation to train the features does
not greatly improve the features’ behavior in this
task, even though it performs well in previous
tasks. The reason is that, both CNN+rand and
CNN+max only encode the information from a
single sentence, and they are unable to capture the
correlations between relations. (2) Feature from
Path+rand/max shows its effectiveness over those
from other methods. It indicates that our method
is able to model the correlations between relations,
while also keeps the syntactic and semantic mean-
ing of a sentence. Therefore, the features extracted
from Path+rand/max are useful for a wider range
of applications, especially in those tasks which
need the information from relations.

5.5 Case study

Table 4 shows some representative inference
chains from the testing dataset. These examples
can not be predicted correctly by the original CNN
model, but are later corrected using our model. We
show the test instances and their correct relations,
as well as the inference chains the model uses. In
the first example, the test sentence does not di-
rectly express the relation spouse, the proof of
this relation appears in a further context in NYT.
However, using path#1 and path#2, we could eas-
ily infer that Rebecca and Issac are spouse. The
second example doesn’t show the relation either.
But with the help of intermediate entity, Dijibouti,
our model predicts that Somalia shares the bor-
der with Ethiopia. Note that this inference chain
doesn’t always hold, but our model could capture
this uncertainty well via a softmax operation. In
general, our model can utilize common sense from
inference chains. It helps make correct predictions
even if the inference is not explicit.

6 Conclusion and Future Work

In this paper, we propose a neural relation ex-
traction model which encodes the information of
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relation paths. As compared to existing neural re-
lation extraction models, our model is able to uti-
lize the sentences which contain both two target
entities and only one target entity and is more ro-
bust for noisy data. Experimental results on real-
world datasets show that our model achieves sig-
nificant and consistent improvements on relation
extraction as compared with baselines.

In the future, we will explore the following di-
rections: (1) We will explore the combination of
relation paths from both plain texts and KBs for
relation extraction. (2) We may take advantages
of probabilistic graphical model or recurrent neu-
ral network to encode more complicated correla-
tions between relation paths, e.g. multi-step rela-
tion paths, for relation extraction.
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Abstract

Adversarial training is a mean of regu-
larizing classification algorithms by gen-
erating adversarial noise to the training
data. We apply adversarial training in re-
lation extraction within the multi-instance
multi-label learning framework. We eval-
uate various neural network architectures
on two different datasets. Experimental re-
sults demonstrate that adversarial training
is generally effective for both CNN and
RNN models and significantly improves
the precision of predicted relations.

1 Introduction

Despite the recent successes of deep neural net-
works on various applications, neural network
models tend to be overconfident about the noise
in input signals. Adversarial examples (Szegedy
et al., 2013) are examples generated by adding
noise in the form of small perturbations to the
original data, which are often indistinguishable for
humans but drastically increase the loss incurred
in a deep model. Adversarial training (Goodfel-
low et al., 2014) is a technique for regularizing
deep models by encouraging the neural network to
correctly classify both unmodified examples and
perturbed ones, which in practice not only en-
hances the robustness of the neural network but
also improves its generalizability. Previous work
has largely applied adversarial training on straight-
forward classification tasks, including image clas-
sification (Goodfellow et al., 2014) and text clas-
sification (Miyato et al., 2016), where the goal is
simply predicting a single label for every exam-
ple and the training examples are able to provide
strong supervision. It remains unclear whether ad-
versarial training could be still effective for tasks
with much weaker supervision, e.g., distant super-

vision (Mintz et al., 2009), or a different evalu-
ation metric other than prediction accuracy (e.g.,
F1 score).

This paper focuses on the task of relation ex-
traction, where the goal is to predict the relation
that exists between a particular entity pair given
several text mentions. One popular way to han-
dle this problem is the multi-instance multi-label
learning framework (MIML) (Hoffmann et al.,
2011; Surdeanu et al., 2012) with distant super-
vision (Mintz et al., 2009), where the mentions
for an entity pair are aligned with the relations in
Freebase (Bollacker et al., 2008). In this setting,
relation extraction is much harder than the canon-
ical classification problem in two respects: (1)
although distant supervision can provide a large
amount of data, the training labels are very noisy,
and due to the multi-instance framework, the su-
pervision is much weaker; (2) the evaluation met-
ric of relation extraction is often the precision-
recall curve or F1 score, which cannot be repre-
sented (and thereby optimized) directly in the loss
function.

In order to evaluate the effectiveness of adver-
sarial training for relation extraction, we apply it to
two different architectures (a convoluational neu-
ral network and a recurrent neural network) on two
different datasets. Experimental results show that
even on this harder task with much weaker super-
vision, adversarial training can still improve the
performance on all of the cases we studied.

2 Related Work

Neural Relation Extraction: In recent years,
neural network models have shown superior per-
formance over approaches using hand-crafted fea-
tures in various tasks. Convolutional neural net-
works (CNN) are among the first deep mod-
els that have been applied to relation extrac-
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tion (Santos et al., 2015; Nguyen and Grishman,
2015). Variants of convolutional networks include
piecewise-CNN (PCNN) (Zeng et al., 2014), split
CNN (Adel et al., 2016), CNN with sentence-
wise pooling (Jiang et al., 2016) and attention
CNN (Wang et al., 2016). Recurrent neural net-
works (RNN) are another popular choice, and have
been used in recent work in the form of recurrent
CNNs (Cai et al., 2016) and attention RNNs (Zhou
et al., 2016). An instance-level selective attention
mechanism was introduced for MIML by Lin et al.
(2016), and has significantly improved the predic-
tion accuracy for several of these base deep mod-
els.

Adversarial Training: Adversarial training
(AT) (Goodfellow et al., 2014) was originally in-
troduced in the context of image classification
tasks where the input data is continuous. Miyato
et al. (2015, 2016) adapts AT to text classification
by adding perturbations on word embeddings and
also extends AT to a semi-supervised setting by
minimizing the entropy of the predicted label dis-
tributions on unlabeled data.

AT introduces an end-to-end and deterministic
way of data perturbation by utilizing the gradi-
ent information. There are also other works for
regularizing classifiers by adding random noise to
the data, such as dropout (Srivastava et al., 2014)
and its variant for NLP tasks, word dropout (Iyyer
et al., 2015). Xie et al. (2017) discusses vari-
ous data noising techniques for language models.
Søgaard (2013) and Li et al. (2017) focus on lin-
guistic adversaries.

3 Methodology

We first introduce MIML and then describe the
base neural network models we consider:1 piece-
wise CNN (Zeng et al., 2015) (PCNN) and bidi-
rectional GRU (Cho et al., 2014) (RNN). We also
utilize the selective attention mechanism in Lin
et al. (2016) for both PCNN and RNN models.
Adversarial training is presented at the end of this
section.

3.1 Preliminaries

In MIML, we consider the set of text sentences
X = {x1, x2, . . . , xn} for each entity pair. Sup-
posing we have R predefined relations (including
NA) to extract, we want to predict the probabil-

1We primarily focus on effectiveness of AT. Other tech-
niques in Sec. 2 are complementary to our focus.
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Figure 1: The computation graph of encoding a
sentence xi with adversarial training. ei denotes
the adversarial perturbation w.r.t. xi. Dropout is
placed on the output of the variables in the double-
lined rectangles.

ity of each of the R relations given the mentions.
Formally, for each relation r, we want to predict
P (r | x1, . . . , xn).

Note that since an entity pair may have no re-
lations, we introduce a special relation NA to the
label set. Hence, we simply assume there will be
at least one relation existing for every entity pair.
During evaluation, we ignore the probability pre-
dicted for the NA relation.

3.2 Neural Architectures

Input Representation: For each sentence xi, we
use pretrained word embeddings to project each
word token into dw-dimensional space. Note that
we also need to include the entity position infor-
mation in xi. Here we introduce an extra feature
vector p(w)i for each word w to encode the enti-
ties’ positions. One choice is the position embed-
ding (Zeng et al., 2014): for each wordw, we com-
pute the relative distances to the two entities and
embed the distances in two dp-dimensional vec-
tors, which are then concatenated as p(w)i . Position
embedding introduces extra variables in the model
and slows down the training time. We also inves-
tigate a simpler choice, indicator encoding: when
a word w is exactly an entity, we generate a dp-
dimensional ~1 vector and a ~0 vector otherwise. In
our experiments, position embedding is crucial for
PCNN due to the spatial invariance of CNN. For
RNN, position embedding helps little (likely be-
cause an RNN has the capacity of exploiting tem-
poral dependencies) so we adopt indicator encod-
ing instead.

Sentence Encoder: For a sentence xi, we want
to apply a non-linear transformation to the vector
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representation of xi to derive a feature vector si =
f(xi; θ) given a set of parameters θ. We consider
both PCNN and RNN as f(xi; θ).

For PCNN, inheriting the settings from (Zeng
et al., 2014), we adopt a convolution kernel with
window size 3 and ds output channels and then
apply piecewise pooling and ReLU (Nair and Hin-
ton, 2010) as an activation function to eventually
obtain a 3 · ds-dimensional feature vector si.

For RNN, we adopt bidirectional GRU with ds
hidden units and concatenate the hidden states of
the last timesteps from both the forward and the
backward RNN as a 2·ds-dimensional feature vec-
tor si.

Selective Attention: Following Lin et al.
(2016), for each relation r, we aim to softly se-
lect an attended sentence sr by taking a weighted
average of s1, s2, . . . , sn, namely sr =

∑
i α

r
i si.

Here αr denotes the attention weights w.r.t. re-
lation r. For computing the weights, we define
a query vector qr for each relation r and com-
pute αr = softmax(ur) where uri = tanh(si)>qr.
The query vector qr can be considered as the em-
bedding vector for the relation r, which is jointly
learned with other model parameters.

Loss Function: For an entity pair, we com-
pute the probability of relation r by P (r | X; θ) =
softmax(Asr+b), whereA is the projection matrix
and b is the bias. For the multi-label setting, sup-
pose K relations r1, . . . , rK exist for X . Simply
taking the summation over the log probabilities of
all those labels yields the final loss function

L(X; θ) = −
K∑

i=1

logP (ri | X; θ). (1)

Dropout: For regularizing the parameters, we
apply dropout (Srivastava et al., 2014) to both the
word embedding and the sentence feature vector
si. Note that we do not perform dropout on the
position embedding pi.

3.3 Adversarial Training
Adversarial training (AT) is a way of regulariz-
ing the classifier to improve robustness to small
worst-case perturbations by computing the gradi-
ent direction of a loss function w.r.t. the data. AT
generates continuous perturbations, so we add the
adversarial noise at the level of the word embed-
dings, similar to Miyato et al. (2016). Formally,
consider the input data X and suppose the word
embedding of all the words in X is V . AT adds a

Dataset #Rel #Ent-Pair #Mention Sent-Len
NYT-Train 58 290429 577434 145
UW-Train 5 132419 546731 120

Table 1: Dataset statistics (#Rel includes NA).

small adversarial perturbation eadv to V and opti-
mizes the following objective instead of Eq.(1).

Ladv(X; θ) = L(X + eadv; θ), where (2)

eadv = arg max
‖e‖≤ε

L(X + e; θ̂) (3)

Here θ̂ denotes a fixed copy of the current value
of θ. Since Eq.(3) is computationally intractable
for neural nets, Goodfellow et al. (2014) proposes
to approximate Eq.(3) by linearizing L(X; θ̂) near
X:

eadv = εg/‖g‖, where g = ∇V L(X; θ̂). (4)

Here V denotes the word embedding of all the
words in X . Accordingly, in Eq. 4, ‖g‖ denotes
the norm of gradients over all the words from all
the sentences in X . In addition, we do not perturb
the feature vector p for entity positions. A visual-
ization of the process is demonstrated in Fig. 1.

4 Experiments

To measure the effectiveness of adversarial train-
ing on relation extraction, we evaluate both the
CNN (PCNN) and RNN (bi-GRU) models on
two different datasets, the NYT dataset (NYT)
developed by Riedel et al. (2010) and the UW
dataset (UW) by Liu et al. (2016). All code
is implemented in Tensorflow (Abadi et al.,
2016) and available at https://github.
com/jxwuyi/AtNRE. We adopt Adam opti-
mizer (Kingma and Ba, 2014) with learning rate
0.001, batch size 50 and dropout rate 0.5. For
adversarial training, the only parameter is ε. In
each of the following experiments, we fixed all the
hyper-parameters of the base model, performed a
binary search solely on ε and showed the most ef-
fective value of ε.

4.1 Datasets
The statistics of the two datasets are summarized
in Table 1. We exclude sentences longer than Sent-
Len during training and randomly split data for
entity pairs with more than 500 mentions. Note
that the number of target relations in these two
datasets are significantly different, which helps
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Recall 0.1 0.2 0.3 0.4 AUC
PCNN 0.667 0.572 0.476 0.392 0.329

PCNN-Adv 0.717 0.589 0.511 0.407 0.356
RNN 0.668 0.586 0.524 0.442 0.351

RNN-Adv 0.728 0.646 0.553 0.481 0.382

Table 2: Precisions of various models for differ-
ent recalls on the NYT dataset, with best values in
bold.

Figure 2: PR curves for PCNN (left) and RNN
(right) on the NYT dataset with (blue) and without
(green) adversarial training.

demonstrate the applicability of adversarial train-
ing on various evaluation settings.

Since the test set of the UW dataset only con-
tains 200 sentences, we adopt a subset of the test
set from the NYT dataset: all the entity pairs with
the corresponding 4 relations in UW and another
1500 randomly selected NA pairs.

4.2 Practical Performances

The NYT dataset:
We utilize the word embeddings released by Lin
et al. (2016), which has dw = 50 dimensions. For
model parameters, we set de = 5 (dimension of
the entity position feature vector) and ds = 230
(dimension of sentence feature vector) for PCNN
and de = 3 and ds = 150 for RNN. For adver-
sarial training, we choose ε = 0.01 for PCNN
and ε = 0.02 for RNN. We empirically observed
that when adding dropout to the word embeddings,
PCNN performs significantly worse. Hence we
only apply dropout to si for PCNN. However, even
with a dropout rate of 0.5, RNN still performs
well. We conjecture that it is due to PCNN being
more sensitive to input signals and the dimension-
ality of the word embedding (dw = 50) being very
small.

The precision-recall curves for different mod-
els on the test set are shown in Fig. 2. Since
the precision drops significantly with large recalls
on the NYT dataset, we emphasize a part of the
curve with recall number smaller than 0.5 in the

Recall 0.1 0.2 0.3 0.4 AUC
PCNN 0.765 0.717 0.713 0.677 0.576

PCNN-Adv 0.844 0.750 0.738 0.707 0.619
RNN 0.823 0.822 0.791 0.752 0.631

RNN-Adv 0.929 0.878 0.850 0.779 0.671

Table 3: Precisions of various models for different
recalls on the UW dataset, with best values in bold.

Figure 3: PR curves for PCNN (left) and RNN
(right) on the UW dataset with (blue) and without
(green) adversarial training.

figure. Adversarial training significantly improves
the precision for both PCNN and RNN models.
We also show the precision numbers for some par-
ticular recalls as well as the AUC (for the whole
PR curve) in Table 2, where RNN generally leads
to better precision.

The UW dataset:
We train a word embedding of dw = 200 di-
mensions using Glove (Pennington et al., 2014)
on the New York Times Corpus in this experi-
ment. For model parameters, we set the entity fea-
ture dimension de = 5 and sentence feature di-
mension ds = 250 for PCNN and de = 3 and
ds = 200 for RNN. For adversarial training, we
choose ε = 0.05 for PCNN and ε = 0.5 for
RNN. Since here word embedding dimension dw
is larger than that used for the NYT dataset, which
implies that we now have word embeddings with
larger norms, accordingly the optimal value of ε
increases. The precision-recall curves on the test
data are shown in Fig. 3, where adversarial train-
ing again significantly improves the precision for
both models. The precision numbers for some par-
ticular recall values as well as the AUC numbers
are demonstrated in Table 3. Similarly RNN yields
superior performances on the UW dataset.

4.3 Discussion

CNN vs RNN: In the experiments, RNN gener-
ally produces more precise predictions than CNN
due to its rich model capacity and also has high
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robustness to input embeddings. The CNN, in
contrast, has far fewer parameters which leads to
much faster training and testing, which suggests a
practical trade-off.

Notably, although the improvement under AUC
by adversarial training are roughly the same for
both RNN and CNN, the optimal ε value for RNN
is always much larger than CNN. This implies that
empirically RNN is more robust under adversarial
attacks than CNN, which also helps RNN maintain
higher precision as recall increases.
Choice of ε: When ε = 0, the AT loss (Eq.(2)) de-
generates to the original loss (Eq.(1)); when ε be-
comes too large, the noise can change the seman-
tics of a sentence2 and make the model extremely
hard to correctly classify the adversarial examples.

Notably, the optimal value of ε is much smaller
than the norm of the word embedding, which im-
plies adversarial training works most effectively
when only producing tiny perturbations on word
features while keeping the semantics of sentences
unchanged3.
Connection to other approaches: Li et al.
(2017); Xie et al. (2017) proposes linguistic adver-
saries techniques to enhance the robustness of the
model by randomly changing the word tokens in
a sentence. This explicitly modifies the semantics
of a sentence. By contrast, adversarial training fo-
cuses on smaller and continuous perturbations in
the embedding space while preserving the seman-
tics of sentences. Hence, adversarial training is
complementary to linguistic adversaries.
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Abstract

We demonstrate that for sentence-level re-
lation extraction it is beneficial to consider
other relations in the sentential context
while predicting the target relation. Our
architecture uses an LSTM-based encoder
to jointly learn representations for all rela-
tions in a single sentence. We combine the
context representations with an attention
mechanism to make the final prediction.

We use the Wikidata knowledge base to
construct a dataset of multiple relations
per sentence and to evaluate our approach.
Compared to a baseline system, our method
results in an average error reduction of 24%
on a held-out set of relations.

The code and the dataset to replicate
the experiments are made available at
https://github.com/ukplab.

1 Introduction

The main goal of relation extraction is to determine
a type of relation between two target entities that
appear together in a text. In this paper, we consider
the sentential relation extraction task: to each oc-
currence of the target entity pair 〈e1,e2〉 in some
sentence s one has to assign a relation type r from
a given set R (Hoffmann et al., 2011). A triple
〈e1,r,e2〉 is called a relation instance and we refer
to the relation of the target entity pair as target re-
lation. Relation extraction is a fundamental task
that enables a wide range of semantic applications
from question answering (Xu et al., 2016) to fact
checking (Vlachos and Riedel, 2014).

For relation extraction, it is crucial to be able to
extract relevant features from the sentential context
(Riedel et al., 2010; Zeng et al., 2015). Modern ap-
proaches focus just on the relation between the tar-
get entities and disregard other relations that might

be present in the same sentence (Zeng et al., 2015;
Lin et al., 2016). For example, in order to correctly
identify the relation type between the movie e1 and
the director e2 in (1), it is important to separate out
the INSTANCE OF relation between the movie and
its type e3:

(1) [e1 Star Wars VII] is an American [e3
space opera epic film] directed by [e2 J.
J. Abrams].

We present a novel architecture that considers other
relations in the sentence as a context for predicting
the label of the target relation. We use the term
context relations to refer to them throughout the pa-
per. Our architecture uses an LSTM-based encoder
to jointly learn representations for all relations in
a single sentence. The representation of the target
relation and representations of the context relations
are combined to make the final prediction.

To facilitate the experiments we construct a
dataset that contains multiple positive and nega-
tive relation instances per sentence. We employ a
fast growing community managed knowledge base
(KB) Wikidata (Vrandečić and Krötzsch, 2014) to
build the dataset.

Our main contribution is the new neural net-
work architecture for extracting relations between
an entity pair that takes into account other relations
in the sentence.

2 Related Work

We employ a neural network to automatically en-
code the target relation and the sentential context
into a fixed-size feature vector. Mintz et al. (2009)
and Riedel et al. (2010) have used manually engi-
neered features based on part-of-speech tags and
dependency parses to represent the target relations.
Recently, Zeng et al. (2015) and Zhao et al. (2015)
have shown that one can successfully apply convo-
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lutional neural networks to extract sentence-level
features automatically.

Most of the methods (Riedel et al., 2010; Zeng
et al., 2015; Lin et al., 2016) focus on predicting
a single relation type based on the combined evi-
dence from all of the occurrences of an entity pair.
Hoffmann et al. (2011) and Surdeanu et al. (2012)
assign multiple relation types to each entity pair,
such that the predictions are tied to particular oc-
currences of the entity pair. We regard the relation
extraction task similarly and predict relation types
on the sentence level.

We use a distant supervision approach (Mintz
et al., 2009) to construct the dataset. Mintz et al.
(2009) and Riedel et al. (2010) have applied it to
create relation extraction datasets for a large-scale
KB. In contrast to our dataset, their data contains a
single relation instance per sentence. That makes it
incompatible with our method.

All of the aforementioned approaches consider
just the relation between the target entities and dis-
regard other relations that might be present in the
same sentence. Our method uses context relations
to predict the target relation. One can also use other
types of structured information from the nearby
context to improve relation extraction. Roth and
Yih (2004) have combined named entity recogni-
tion and relation extraction in a structured predic-
tion approach to improve both tasks. Later, Miwa
and Bansal (2016) have implemented an end-to-end
neural network to construct a context representa-
tion for joint entity and relation extraction. Finally,
Li et al. (2013) have designed global features and
constraints to extract multiple events and their ar-
guments from the same sentence.

We don’t implement global constraints in our
approach, since unlike events and arguments, there
are no restrictions as to what relations can appear
together. Instead we encode all relations in the
same context into fixed-size vectors and use an
attention mechanism to combine them.

3 Data generation with Wikidata

Wikidata is a collaboratively constructed KB that
encodes common world knowledge in a form
of binary relation instances (e.g. CAPITAL:P36
(Hawaii:Q782, Honolulu:Q18094))1. It contains
more than 28 million entities and 160 million re-

1Unique IDs in Wikidata have a Q-prefix for entities and a
P-prefix for relations.

Train Validation Held-out

# of relation triples 284,295 113,852 287,902
# of relation inst. 578,199 190,160 600,804

Table 1: Statistics of the generated dataset.

lation instances.2 A broad community oversight,
similar to Wikipedia, ensures a higher data quality
compared to other KBs (Färber et al., 2015).

We use the complete English Wikipedia corpus
to generate training and evaluation data. Wikipedia
and Wikidata are tightly integrated which enables
us to employ manual wiki annotations to extract
high quality data. From each sentence in a com-
plete article we extract link annotations and retrieve
Wikidata entity IDs corresponding to the linked arti-
cles. There is an unambiguous one-to-one mapping
between Wikidata entities and Wikipedia articles.
For example:

1: Input Born in [[Honolulu|Honolulu,

Hawaii]], Obama is a graduate of

[[Columbia University]].

2: Links to Wikidata Ids Honolulu 7→ Q18094

Columbia University 7→ Q49088

For further processing, we filter out sentences
that contain fewer than 3 annotated entities, since
we need to have multiple relations per sentence for
training (see Section 4).

We extract named entities and noun chunks from
the input sentences with the Stanford CoreNLP
toolkit (Manning et al., 2014) to identify entities
that are not covered by the Wikipedia annotations
(e.g. Obama in the sentence above). We retrieve
IDs for those entities by searching through entity
labels in Wikidata. We use HeidelTime (Strötgen
and Gertz, 2013) to extract dates.

For each pair of entities, we query Wikidata for
relation types that connect them. We discard an
occurrence of an entity pair if the relation is am-
biguous, i. e. multiple relation types were retrieved.
For comparison, Surdeanu et al. (2012) report that
only 7.5% of entity pairs have more than one corre-
sponding relation type in the distantly supervised
dataset of Riedel et al. (2010). The entity pairs that
have no relation in the knowledge base are stored
as negative instances.

The constructed dataset features 353 different re-
lation types (out of approximately 1700 non-meta
relation types in the Wikidata scheme). We split

2https://www.wikidata.org/wiki/Special:
Statistics
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Figure 1: The architecture of the relation encoder

it into train, validation and held-out sets, ensuring
that there is no overlap in either sentences or rela-
tion triples between the three sets. Table 1 summa-
rizes the statistics about the dataset. We assessed
the quality of the distant supervision set-up on 200
manually verified sentences from the training set:
79.5% of relations in those sentences were cor-
rectly labeled with distant supervision (86.9 if one
entity is linked, 74.7 if both are linked).

4 Model architecture

4.1 Relation encoder

The relation encoder produces a fixed-size vector
representation os of a relation between two entities
in a sentence (see Figure 1).

First, each token of the sentence x =
{x1,x2 . . .xn} is mapped to a k-dimensional embed-
ding vector using a matrix W ∈ R|V |×k, where |V |
is the size of the vocabulary. Throughout the exper-
iments in this paper, we use 50-dimensional GloVe
embeddings pre-trained on a 6 billion corpus (Pen-
nington et al., 2014).

Second, we mark each token in the sentence as
either belonging to the first entity e1, the second
entity e2 or to neither of those. A marker embed-
ding matrix P ∈ R3×d is randomly initialized (d
is the dimension of the position embedding and
there are three marker types). For each token, we
concatenate the marker embedding with the word
embedding: (Wn,Pn).

We apply a recurrent neural network (RNN)
on the token embeddings. The length n naturally
varies from sentence to sentence and an RNN pro-
vides a way to accommodate inputs of various

e1 e2 . . .

x1 x2 . . . xn

e1 . . . e2

x1 x2 . . . xn . . .

e1 . . . e2

x1 x2 . . . xn

. . .

os

. . .

o1

. . .

om

o

·a1 ·am

m∑

i=0
aioi

. . .

fi

p(r)

Entity
Markers

Tokens

Context
vector

Softmax
Layer

e

x

os oc

Relation
Encoder

Target Context

Figure 2: Incorporation of the context relations.
For the ContextSum model variant ai = 1.

sizes. It maps a sequence of n vectors to a fixed-
size output vector os ∈ Ro. We take the output
vector os as the representation of the relation be-
tween the target entities in the sentence. We use
the Long Short-Term Memory (LSTM) variant of
RNN (Hochreiter and Schmidhuber, 1997) that was
successfully applied to information extraction be-
fore (Miwa and Bansal, 2016).

4.2 Model variants
LSTM baseline As the first model variant, we feed
the output vector os of the relation encoder to a
softmax layer to predict the final relation type for
the target entity (see the upper part of Figure 1):

p(r|〈e1,e2〉,x;θ) =
exp( fr)

∑nr
i=1 exp( fi)

, (1)

fi = yi ·os +bi,

where yi is a weight vector and bi is a bias.
ContextSum We argue that for predicting a re-

lation type for a target entity pair other context
relations in the same sentence are relevant. Some
relation types may tend to co-occur, such as DI-
RECTED BY and PRODUCED BY, whereas others
may be restrictive (e. g. one can only have a single
PLACE OF BIRTH).

Therefore, in addition to the target entity pair, we
take other entities from the same sentence that were
extracted at the data generation step. We construct a
set of context relations by taking each possible pair
of entities.3 Example (2) shows a target entity pair
〈e1,e2〉 and context entities highlighted in bold.

3We limit the maximum number of relations in a sentence
to 7 for computational reasons.
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(2) [Swag It Out] is the official [debut sin-
gle] by [American singer] [e1Zendaya],
known for starring in the series [e2 Shake
It Up].

We apply the same relation encoder on the target
and context relations (see Figure 2). That ensures
that representation for target and context relations
are learned jointly. We sum the context relation
representations: oc = ∑m

i=0 oi, where each element
oi is a vector representation of a single context
relation. The resulting context representation oc ∈
Ro is concatenated with the vector representation
of the target relation: o = [os,oc]. We feed the
concatenated vector to the softmax layer in Eq. 1
to predict the final relation type for the target entity
pair (see the upper part of Figure 2).

ContextAtt In this variant, we use a weighted
sum of the context relation representation at the
penultimate step:

oc =
m

∑
i=0

aioi, ai =
exp(g(oi,os))

∑m
j=0 exp(g(o j,os))

, (2)

where gi computes an attention score for a con-
text relation with respect to the target relation:
g(oi,os) = oiAos, and A is a weight matrix that
is learned.

5 Experiments

5.1 Training the models

All models were trained using the Adam optimizer
(Kingma and Ba, 2014) with categorical cross-
entropy as the loss function. We use an early stop-
ping criterion on the validation data to determine
the number of training epochs. The learning rate
is fixed to 0.01 and the rest of the optimization pa-
rameters are set as recommended in Kingma and
Ba (2014): β1 = 0.9, β2 = 0.999, ε = 1e−08. The
training is performed in batches of 128 instances.

We apply Dropout (Srivastava et al., 2014) on
the penultimate layer as well as on the embeddings
layer with a probability of 0.5. We choose the size
of the layers (RNN layer size o = 256) and entity
marker embeddings (d = 3) with a random search
on the validation set.4
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Figure 3: Aggregated precision-recall curves for
the implemented models.
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Figure 4: Aggregated macro precision-recall curves
for the implemented models.

5.2 Held-out evaluation

As an additional baseline, we re-implement a
sentence-level model based on convolutional neu-
ral networks (CNNs) described in Lin et al. (2016).
This is a state-of-the-art model for fine-grained re-
lation extraction that was previously tested on the
single-relation dataset from Riedel et al. (2010).
In addition to CNNs, their architecture uses a dif-
ferent position encoding scheme: position markers
encode a relative position of each word with respect
to the target entities.5 We use the same GloVe word
embeddings for this model and perform a hyper-
parameter optimization on the validation set.

Our dataset lets us compare the baseline models
and the models that use context relations on the
same data. Following the previous work on rela-

4We test for the RNN layer size the values
{64,128,256,512}, for entity marker embeddings the
values {1,3,5,7} and for the Dropout rate the values in the
range 0.0–0.75.

5We have briefly experimented with such position markers
for our models, but found no improvements.
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LSTM-Baseline ContextAtt
Relation type P R P R

COUNTRY 0.8899 0.9344 0.9130 0.9382
LOCATED IN 0.8329 0.8832 0.8655 0.8994
SHARES BORDER 0.7579 0.7078 0.7962 0.8075
INSTANCE OF 0.7864 0.8568 0.8478 0.8401
SPORT 0.9753 0.9828 0.9822 0.9823
CITIZENSHIP 0.9001 0.9448 0.9041 0.9417
PART OF 0.5623 0.4854 0.6269 0.5113
SUBCLASS OF 0.5230 0.4390 0.5272 0.5908

Table 2: Precision (P) and recall (R) for the top
relations.

tion extraction, we report the aggregated precision-
recall curves for each model on the held-out data
(Figure 3).6 To compute the curves, we rank the
predictions of each model by their confidence and
traverse this list top to bottom measuring the preci-
sion and recall at each step.

The models that take the context into account
perform similar to the baselines at the smallest re-
call numbers, but start to positively deviate from
them at higher recall rates. In particular, the
ContextAtt model performs better than any other
system in our study over the entire recall range.
Compared to the competitive LSTM-baseline that
uses the same relation encoder, the ContextAtt
model achieves a 24% reduction of the average
error: from 0.2096±0.002 to 0.1590±0.002. The
difference between the models is statistically sig-
nificant (p = 0.009).7

We also compute macro precision-recall curves
that give equal weights to all relations in the dataset.
Figure 4 shows that the ContextAtt model performs
best over all relation types. One can also see that
the ContextSum doesn’t universally outperforms
the LSTM-baseline. It demonstrates again that us-
ing attention is crucial to extract relevant informa-
tion from the context relations.

On the relation-specific results (Table 2) we ob-
serve that the context-enabled model demonstrates
the most improvement on precision and seems to
be especially useful for taxonomy relations (see
SUBCLASS OF, PART OF).

6We do not compare against the approach of Surdeanu et al.
(2012) that also performs sentence-level relation extraction,
since the provided implementation does not feature the com-
plete pipeline and is only applicable on a particular Freebase
dataset.

7The average error and the standard deviation are estimated
on 5 training iterations for each model. The statistical signifi-
cance is computed using the Wilcoxon rank-sum test on the
error rates.

6 Conclusions

We have introduced a neural network architecture
for relation extraction on the sentence level that
takes into account other relations from the same
context. We have shown by comparison with com-
petitive baselines that these context relations are
beneficial for relation extraction with a large set of
relation types.

Our approach can be easily applied to other types
of relation extraction models as well. For instance,
Lin et al. (2016) extract sentence-level features
and then combine features from multiple sentences
with a selective attention mechanism. It would
be possible to replace their sentence-level feature
extractor with our model.
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Abstract

Distant-supervised relation extraction in-
evitably suffers from wrong labeling prob-
lems because it heuristically labels rela-
tional facts with knowledge bases. Pre-
vious sentence level denoise models don’t
achieve satisfying performances because
they use hard labels which are determined
by distant supervision and immutable dur-
ing training. To this end, we introduce an
entity-pair level denoise method which ex-
ploits semantic information from correctly
labeled entity pairs to correct wrong labels
dynamically during training. We propose
a joint score function which combines the
relational scores based on the entity-pair
representation and the confidence of the
hard label to obtain a new label, namely
a soft label, for certain entity pair. During
training, soft labels instead of hard labels
serve as gold labels. Experiments on the
benchmark dataset show that our method
dramatically reduces noisy instances and
outperforms the state-of-the-art systems.

1 Introduction

Relation Extraction (RE) aims to obtain relational
facts from plain text. Traditional supervised RE
systems suffer from lack of manually labeled data.
Mintz et al. (2009) proposes distant supervision,
which exploits relational facts in knowledge bases
(KBs). Distant supervision automatically gener-
ates training examples by aligning entity mentions
in plain text with those in KB and labeling entity
pairs with their relations in KB. If there’s no re-
lation link between certain entity pair in KB, it
will be labeled as negative instance (NA). How-
ever, the automatic labeling inevitably accompa-
nies with wrong labels because the relations of
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Figure 1: An example of soft-label correction on
Nationality relation. We intend to use syntactic/
semantic information of correctly labeled entity
pairs (blue) to correct the false positive and false
negative instances (orange) during training.

entity pairs might be missing from KBs or mis-
labeled.

Multi-instances learning (MIL) is proposed by
Riedel et al. (2010) to combat the noise. The
method divides the training set into multiple bags
of entity pairs (shown in Fig 1) and labels the bags
with the relations of entity pairs in the KB. Each
bag consists of sentences mentioning both head
and tail entities. Much effort has been made in
reducing the influence of noisy sentences within
the bag, including methods based on at-least-one
assumption (Hoffmann et al., 2011; Ritter et al.,
2013; Zeng et al., 2015) and attention mechanisms
over instances (Lin et al., 2016; Ji et al., 2017).

However, the sentence level denoise methods
can’t fully address the wrong labeling problem
largely because they use a hard-label method in
which the labels of entity pairs are immutable dur-
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ing training, no matter whether they are correct or
not. As shown in Fig 1, due to the absence of (Jan
Eliasson1 , Sweden) from Nationality relation in
the KB, the entity pair is mislabeled as NA. How-
ever, we find the sentences in the bag of (Jan Elias-
son, Sweden) share similar semantic pattern “X of
Y” with correctly labeled instances (blue). In the
false positive instance, Sebastian Roch is indeed
from France, but the syntactic pattern of the sen-
tence in the bag differs greatly from those of cor-
rectly labeled instances. Actually, the reliability of
a distant-supervised (DS) label can be determined
by the syntactic/semantic similarity between cer-
tain instance and the potential correctly labeled in-
stances. Soft-label method intends to utilize corre-
sponding similarities to correct wrong DS labels in
the training stage dynamically, which means the
same bag may have different soft labels in dif-
ferent epochs of training. The basis of soft-label
method is the dominance of correctly labeled in-
stances. Fortunately, Xu et al. (2013) proves that
correctly labeled instances account for 94.4% (in-
cluding true negatives) in the distant-supervised
New York Times corpus (benchmark dataset).

To this end, we introduce a soft-label method
to correct wrong labels at entity-pair level dur-
ing training by exploiting semantic/syntactic in-
formation from correctly labeled instances. In our
model, the representation of certain entity pair is a
weighted combination of related sentences which
are encoded by piecewise convolutional neural
network (PCNN) (Zeng et al., 2015). Besides, we
propose a joint score function to obtain soft labels
during training by taking both the confidence of
DS labels and the entity-pair representations into
consideration. Our contributions are three-fold:

• To the best of our knowledge, we first
propose an entity-pair level noise-tolerant
method while previous works only focused
on sentence level noise.

• We propose a simple but effective method
called soft-label method to dynamically cor-
rect wrong labels during training. Case study
shows our corrections are of high accuracy.

• We evaluate our model on the benchmark
dataset and achieve substantial improvement
compared with the state-of-the-art systems.

1Jan Eliasson is a Swedish diplomat.

2 Methodology

Multi-instances learning (MIL) framework splits
the training set M into multiple entity-pair
bags {〈h1, t1〉 , 〈h2, t2〉 , · · · , 〈hn, tn〉}. Each bag
〈hi, ti〉 contains sentences {x1, x2, · · · , xc} which
mention both head entity hi and tail entity
ti. The representation si of bag 〈hi, ti〉 is a
weighted combination of related sentence vectors
{x1,x2, · · · ,xc} which are encoded by CNN. Fi-
nally, we use soft-label score function to correct
wrong labels of bags of entity pairs while comput-
ing probabilities for each relation type.

2.1 Sentence Encoder
We get the representation of certain sentence xi =
{w1,w2, · · · ,wm} by concatenating word em-
beddings {w1, w2, · · · , wm} and position embed-
dings (Zeng et al., 2014) {p1, p2, · · · , pm}, where
wi ∈ Rd, wi ∈ Rdw , pi ∈ Rdp(d = dw + dp).

Convolution layer utilizes a sliding window of
size l. We define qi ∈ Rl×d as the concatenation
of words within the i-th window.

qi = wi−l+1:i(1 ≤ i ≤ m+ l − 1) (1)

The convolution matrix is denoted by Wc ∈
Rdc×(l×d), where dc is the sentence embedding
size. The i-th filter of the convolutional layer is
computed as:

fi = [Wcq+ b]i (2)

Afterwards, Piecewise max-pooling (Zeng et al.,
2015) is used to divide convolutional filter fi into
three parts

{
f1i , f

2
i , f

3
i

}
by head and tail enti-

ties. For example, the sentence “Barack Obama
was born in Honululu in 1961” are divided into
‘Barack Obama’, ‘was born in Honululu’ and ‘in
1961’. We perform max-pooling on these three
parts separately, and the i-th element of sentence
vector x ∈ Rdc is defined as the concatenation of
them:

xi = [max(f1i );max(f
2
i );max(f

3
i )] (3)

2.2 Sentence Level Weight distribution
The representation of entity pair 〈hi, ti〉 is defined
as a weighted combination of sentences in the bag.
At-least-one: At-least-one assumption is a down
sampling method which assumes at least one sen-
tence in the bag will express the relation between
two entities, and select the most likely sentence in
the bag for training and prediction. To be more
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specific, the weight of the selected sentence is 1
while those of other sentences in the bag are all 0.
Selective Attention: Lin et al. (2016) proposes se-
lective attention mechanism to reduce weights of
noisy instances within the entity-pair bag.

s =
∑

i

αixi;αi =
exp (xiAr)∑
k exp (xkAr)

(4)

where αi is the weight of sentence vector xi, A
and r are diagonal and relation query parameters.

2.3 Soft-label Adjustment

The key of our method is to derive a soft label
as the gold label for each bag dynamically during
training, which is not necessarily the same label as
the distant supervised (DS) label. We still use DS
labels while testing.

The soft label is determined dynamically, which
means the same bag may have different soft labels
in different training epochs. we propose follow-
ing joint function to determine the soft label ri for
entity pair 〈hi, ti〉:

ri = argmax(o+max(o)A� Li) (5)

where o,A, Li ∈ Rdr (dr is the number of pre-
defined relations). One-hot vector Li indicates
the DS label of 〈hi, ti〉. Relation Confidence
vector A represents the reliability of DS labels.
Each element in A is a decimal between 0 and
1, which indicates the confidence of correspond-
ing DS labeled relation type. � operation rep-
resents element-wise production. o is the vector
of relational scores based on the entity-pair repre-
sentation si of 〈hi, ti〉. max(o) is a scaling con-
stant which restricts the effect of the DS label.
The score of the t-th relation type ot is calculated
based on the trained relation matrice M and bias
b:

ot =
exp (Mst + b)∑
k exp (Msk + b)

(6)

We use entity-pair level cross-entropy loss func-
tion using soft labels as gold labels while training:

J(θ) =
n∑

i=1

log p(ri|si; θ) (7)

In the testing stage, we still use the DS label li
of certain entity pair 〈hi, ti〉 as the gold label:

G(θ) =
n∑

i=1

log p(li|si; θ) (8)

Figure 2: Precision/Recall curves of our model
and previous state-of-the-art systems. Mintz
(Mintz et al., 2009), MultiR (Hoffmann et al.,
2011) and MIMLRE (Surdeanu et al., 2012) are
feature-based models. ONE (Zeng et al., 2015)
and ATT (Lin et al., 2016) are neural network
models based on at-least-one assumption and se-
lective attention, respectively.

3 Experiments

In this section, we first introduce the dataset and
evaluation metrics in our experiments. Then, we
demonstrate the parameter settings in our experi-
ments. Besides, we compare the performance of
our method with state-of-the-art feature-based and
neural network baselines. Case study shows our
soft-label corrections are of high accuracy.

3.1 Dataset and Evaluation Metrics

We evaluate our model on the benchmark dataset
proposed by Mintz et al. (2009), which has also
been used by Riedel et al. (2010), Hoffmann et al.
(2011), Zeng et al. (2015) and Lin et al. (2016).
The dataset uses Freebase (Bollacker et al., 2008)
as distant-supervised knowledge base and New
York Times (NYT) corpus as text resource. Sen-
tences in NYT of the years 2005-2006 are used as
training set while sentences in NYT of 2007 are
used as testing set. There are 53 possible relations
including NA which indicates no relation. The
training data contains 522611 sentences, 281270
entity pairs and 18252 relational facts. The test-
ing data contains 172448 sentences, 96678 entity
pairs and 1950 relational facts.

Similar to the previous work, We report both
aggregate precision/recall curves and top-N preci-
sion (P@N).
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Window size Word dimension Position dimension Filter dimension Batch size Learning rate Dropout
l = 3 dw = 50 dp = 5 dc = 230 B = 160 λ = 0.001 p = 0.5

Table 1: Parameter settings of our experiments.

Settings One Two All
P@N(%) 100 200 300 Avg 100 200 300 Avg 100 200 300 Avg

ONE 73.3 64.8 56.8 65.0 70.3 67.2 63.1 66.9 72.3 69.7 64.1 68.7
+soft-label 77.0 72.5 67.7 72.4 80.0 74.5 69.7 74.7 84.0 81.0 74.0 79.7

ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2
+soft-label 84.0 75.5 68.3 75.9 86.0 77.0 73.3 78.8 87.0 84.5 77.0 82.8

Table 2: Top-N precision (P@N) for relation extraction in the entity pairs with different number of sen-
tences. Following (Lin et al., 2016), One, Two and All test settings random select one/two/all sentences
on the bags of entity pairs from the testing set which have more than one sentence to predict relation.

3.2 Comparison with previous work

Mintz (Mintz et al., 2009), MultiR (Hoffmann
et al., 2011) and MIMLRE (Surdeanu et al., 2012)
are feature-based models. PCNN-ONE (Zeng
et al., 2015) and PCNN-ATT (Lin et al., 2016) are
piecewise convolutional neural network (PCNN)
models based on at-least-one assumption and se-
lective attention, which are introduced in Section
2.2, respectively. All the results of compared mod-
els come from the data reported in their papers.

3.3 Experimental Settings

We use cross-validation to determine the parame-
ters in our model. Soft-label method uses PCNN-
ONE/PCNN-ATT to represent the bags of entity
pairs, and we don’t tune on the parameters of
PCNN-ONE/PCNN-ATT for fair comparsion. So
we use the same pre-trained word embeddings and
parameters of CNN encoder as those of Lin et al.
(2016). Detailed parameter settings are shown in
Table 1. Moreover, we use Adam optimizer. Be-
sides, to avoid negative effects of dominant NA
instances in the begining of training, soft-label
method is adopted after 3000 steps of parameter
updates. The confidence vector A is heuristically
set as [0.9, 0.7, · · · , 0.7] (the confidence of NA is
0.9 while confidence of other relations are all 0.7).

3.4 Precision Recall Curve

We have following observations from Figure 2: (1)
For both ATT and ONE configuration, soft-label
method achieves higher precision than baselines
when recall is greater than 0.05. After manual
evaluation, we find that most wrong instances with
less than 0.05 recall are wrong labeling entity pairs
in test set. (2) Even weaker baseline PCNN-ONE

False positive: Place lived→ Place of death
Fernand nault , one of canada ’s foremost
dance figures , died in montreal on tuesday .
False positive: Place lived→ NA
Alexandra pelosi, a daughter of representat-
ive nancy pelosi · · · , and paul pelosi of san
francisco, was married yesterday to · · ·.
False Negative: NA→ Nationality
By spring the renowned chef Gordon Ram-
say of England should be in hotels here.
False Negative: NA→Work in
· · ·, said Billy Ccox , a spokesman for the
United States Department of Agriculture.

Table 3: Some examples of soft-label corrections
while training

using soft labels gets a slightly better performance
than PCNN-ATT. (3) When recall is between 0.05
and 0.15, the curve of our model ATT+soft-label
is relatively stable, which demonstrates soft-label
can obtain relatively stable performance in extract-
ing relational facts.

3.5 Top N precision

Table 2 shows top-N precision (P@N) of the state-
of-the-art systems and our model. We can see that
(1) For both PCNN-ONE and PCNN-ATT model,
soft-label method improves the precisions by over
10% in all test settings, which demonstrates the
effects of our model. (2) Even a weaker baseline
(PCNN-ONE) with soft-label method achieves
higher precision than a strong model (PCNN-
ATT). It shows that entity-pair level denoise model
performs much better than the models which only
focus on sentence level noise.
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Case 1: Place of Birth→ Nationality
Marcus Samuelsson began · · · when he was
visiting his native Ethiopia.
Marcus Samuelsson chef born in Ethiopia
and raised in Sweden · · ·.
Case 2: Location Contains→ NA
· · ·, he is from neighboring towns in Georgia
(such as Blairsville and Young Harris)

Table 4: Two typical wrong corrections of soft-
label adjustment during training.

3.6 Case Study
Some examples of soft-label corrections during
training are shown in Table 3. We can see that
soft-label method can recognize both false posi-
tives and false negatives during training and cor-
rect wrong labels successfully. The two sentences
above are mislabeled as place lived because triple
facts (Fernand nault, place lived, Montreal) and
(Alexandra pelosi, place lived, San francisco) ex-
ist in Freebase. However, the two sentences fail
to express place lived relation. Our model can au-
tomatically correct them by soft-label adjustment.
The two sentences below show that our model can
also change false negative (NA) examples caused
by missing facts in Freebase to correct ones.

Besides, our model has strong ability to distin-
guish different relational patterns, even for similar
relations like Place lived, Place of born, Place of
Death.

4 Error Analysis

We randomly select 200 instances of soft-label
corrections during training for PCNN-ONE and
PCNN-ATT respectively and check them manu-
ally. The accuracy of soft-label corrections for
PCNN-ONE is 88.5% (177/200) while that for
PCNN-ATT is 92% (184/200). We notice that
the accuarcy of PCNN-ATT+soft-label is slightly
higher than that of PCNN-ONE+soft-label. The
condition is the same as our expectation. As ex-
plained in Sec 2.2, PCNN-ATT has better bag rep-
resentations than PCNN-ONE because it can re-
duce the effect of noisy instances within the bag.
The soft-label of certain bag is determined by its
bag representation and the confidence of corre-
sponding DS label. So the accuracy of soft-label
corrections for PCNN-ATT can benefit from better
bag representations.

Although most of soft-label corrections are of
high accuracy (90.25%), there are still several

wrong corrections. Table 4 lists two typical wrong
corrections during training. Wrong corrections
like Case 1 fail to distinguish similar relations
(both Nationality and place of birth are relations
between people and locations) between entities
because of their similar sentence patterns. How-
ever, wrong corrections like Case 1 are rare (5/39)
in our experiments. Soft-label method can still dis-
tinguish most similiar relations as shown in Sec
3.6. In Case 2, factual relation location contains
is mistaken as NA partially because the relational
pattern of this sentence is somewhat different from
the regular location contains pattern. Addition-
ally, soft-label method has a tendency to label am-
biguous facts as NA because negative instances
(NA) are dominated in the corpus. However, most
bags which are soft-labeled as NA are still well-
labeled in our experiments.

We argue that the minor wrong corrections of
relational facts during training don’t affect the
overall performance much because distant super-
vision doesn’t lack instances of relational facts due
to its strong ability to automatically label large
web text.

5 Conclusion and Future Work

This paper proposes a noise-tolerant method to
combat wrong labels in distant-supervised relation
extraction with soft labels. Our model focuses
on entity-pair level noise while previous models
only dealt with sentence level noise. Our model
achieves significant improvement over baselines
on the benchmark dataset. Case study shows that
soft-label corrections are of high accuracy.

In the future, we plan to develop a new measure-
ment for the reliability of certain distantly super-
vised label by evaluating the corresponding sim-
ilarity between certain instance and the potential
correctly labeled instances instead of using heuris-
tically set confidence vector. In addition, we tend
to find a more suitable sentence encoder rather
than piece-wise CNN for our soft-label method.
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Abstract

We present a sequential model for tem-
poral relation classification between intra-
sentence events. The key observation
is that the overall syntactic structure and
compositional meanings of the multi-word
context between events are important for
distinguishing among fine-grained tempo-
ral relations. Specifically, our approach
first extracts a sequence of context words
that indicates the temporal relation be-
tween two events, which well align with
the dependency path between two event
mentions. The context word sequence,
together with a parts-of-speech tag se-
quence and a dependency relation se-
quence that are generated corresponding
to the word sequence, are then provided
as input to bidirectional recurrent neural
network (LSTM) models. The neural nets
learn compositional syntactic and seman-
tic representations of contexts surrounding
the two events and predict the temporal
relation between them. Evaluation of the
proposed approach on TimeBank corpus
shows that sequential modeling is capa-
ble of accurately recognizing temporal re-
lations between events, which outperforms
a neural net model using various discrete
features as input that imitates previous fea-
ture based models.

1 Introduction

Identifying temporal relations between events is
crucial to constructing events timeline. It has di-
rect application in tasks such as question answer-
ing, event timeline generation and document sum-
marization.

Bush said he saw little reason to be optimistic
about a settlement of the dispute, which stems
from Iraq’s invasion of oil-wealthy Kuwait and
its subsequent military buildup on the border of
Saudi Arabia.
Relations: (dispute after rel1 invasion, invasion
ibefore rel2 buildup, dispute after rel3 buildup)

Figure 1: Example sentence to illustrate the tem-
poral context for event pairs.

Previous works studied this task as the classifi-
cation problem based on discrete features defined
over lexico-syntactic, semantic and discourse fea-
tures. However, these features are often derived
from local contexts of two events and are only ca-
pable of capturing direct evidences indicating the
temporal relation. Specifically, when two events
are distantly located or are separated by other
events in between, feature based approaches often
fail to utilize compositional evidences, which are
hard to encode using discrete features.

Consider the example sentence in Fig-
ure 1. Here, the first two temporal re-
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lations, dispute after rel1 invasion and
invation ibefore rel2 buildup, involve events
that are close by and discrete features, such
as dependency relations and bag-of-words
extracted from local contexts of two events,
might be sufficient to correctly detect their
relations. However, for the temporal relation
dispute after rel3 buildup, the context between
the two events is long, complex and involves
another event (invasion) as well, which makes it
challenging for any individual feature or feature
combinations to capture the temporal relation.

We propose that the overall syntactic structure
of in-between contexts including the linear order
of words as well as the compositional semantics
of multi-word contexts are critical for predicting
the temporal relation between two events. Further-
more, the most important syntactic and semantic
structures are derived along dependency paths be-
tween two event mentions1. This aligns well with
the observation that semantic composition relates
to grammatical dependency relations (Monroe and
Wang, 2014; Reddy et al., 2016).

Our approach defines rules on dependency parse
trees to extract temporal relation indicating con-
texts. First, we extract the dependency path be-
tween two event mentions. Then we apply two
heuristic rules to enrich extracted dependency
paths and deal with complex syntactic structures
such as punctuations. Empirically, we found that
parts-of-speech tags (POS) and dependency se-
quences generated following the dependency path
provide evidences to predict the temporal relation
as well.

We use neural net sequence models to cap-
ture structural and semantic compositionality in
describing temporal relations between events.
Specifically, we generate three sequences for each
dependency path, the word sequence, the POS tag
sequence and the dependency relation sequence.
Using the three types of sequences as input, we
train bi-directional LSTM models that consume
each of the three sequences and model compo-
sitional structural information, both syntactically
and semantically.

The evaluation shows that each type of se-
quences is useful to temporal relation classifica-
tion between events. Our complete neural net
model taking all the three types of sequences per-

1In this paper, we restrict ourselves to study temporal re-
lation classification between event mentions that are within
one sentence.

forms the best, which clearly outperforms feature
based models.

2 Related Works

Most of the previous works on temporal relation
classification are based on feature-based classi-
fiers. Mani et al. (2006) built MaxEnt classifier
on hand-tagged features in the corpus, including
tense, aspect, modality, polarity and event class for
classifying temporal relations. Later Chambers
et al. (2007) used a two-stage classifier which first
learned imperfect event attributes and then com-
bined them with other linguistic features in the
second stage to perform the classification.

The following works mostly expanded the fea-
ture sets (Cheng et al., 2007; Bethard and Mar-
tin, 2007; UzZaman et al., 2012; Bethard, 2013;
Kolomiyets et al., 2012; Chambers, 2013; Laokul-
rat et al., 2013). Specifically, Chambers (2013)
used direct dependency path between event pairs
to capture syntactic context. Laokulrat et al.
(2013) used 3-grams of paths between two event
mentions in a dependency tree as features instead
of full paths as those are too sparse. We found that
modeling the entire path as one sequence provides
greater compositional evidence on the temporal re-
lation. In addition, modifiers attached to the words
in a path with specific dependency relations like
nmod:tmod are also informative.

Ng (2013) proposed a hybrid system for tempo-
ral relation classification that combines the learned
classifier with 437 hand-coded rules. Their sys-
tem first applied high-accuracy rules and then used
the learned classifier, trained on rich features in-
cluding those high-accuracy rules as features, to
classify the cases that were not handled by the
rules. Ng et al. (2013) also showed the ef-
fectiveness of different discourse analysis frame-
works for this task. Later Mirza and Tonelli
(2014) showed that a simpler approach based on
lexico-syntactic features achieved results compa-
rable to Ng (2013). They also reported that de-
pendency order between events, either governor-
dependent or dependent-governor, was not useful
in their experiments. However, we show that de-
pendency relations, when modeled as a sequence,
contribute significantly to this task.

3 Temporal Link Labeling

In this section, we describe the task of temporal
relation classification, dataset, context words se-
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quence extraction model and the used recurrent
neural net based classifier.

3.1 Task description

Early works on temporal relation classification
Mani et al. (2006); Chambers et al. (2007) and
the first two versions of TempEval (Verhagen
et al., 2007, 2010) simplified the task by consid-
ering only six relation types. They combined the
pair of relation types that are the inverse of each
other and ignored the relations during and dur-
ing inv. Then TempEval-3 (Uzzaman et al., 2013)
extended the task to complete 14 class classifica-
tion problem and all later works have considered
all 14 relations. Our model performs 14-class clas-
sification following the recent works, as this is ar-
guably more challenging (Ng, 2013). Also, we
consider gold annotated event pairs, mainly be-
cause the corpus is small and distribution of re-
lations is very skewed. All previous works focus-
ing on the problem of classifying temporal relation
types assumed gold annotation.

3.2 Dataset

Relations Train Validate Test
After 419 60 120
Before 337 48 97
Simultaneous 288 41 83
Identity 147 21 43
Includes 141 20 41
IS included 93 13 27
Ended by 66 9 19
During inv 26 4 8
Begun by 25 3 7
Begins 22 3 7
IBefore 16 2 5
IAfter 12 2 4
During 11 1 3
Ends 9 2 3
Total 1612 229 467

Table 1: Distribution of temporal relations in
TimeBank v1.2.

We have used TimeBank corpus v1.2 for train-
ing and evaluating our model. The corpus con-
sists of 14 temporal relations between 2308 event
pairs, which are within the same sentence. These
relations (Saurı et al., 2006) are simultaneous,
before, after, ibefore, iafter, begins, begun by,
ends, ended by, includes, is included, during, dur-
ing inv, identity. Six pairs among them are inverse
of each other and other two types are commuta-
tive (e1Re2 ≡ e2Re1, R ∈ {identical, simultane-
ous}). Our sequential model requires that relation

should always be between e1 and e2, where e1 oc-
curs before e2 in the sentence. Therefore, before
extracting the sequence, we inverted the relation
types in cases where relation type was annotated
in opposite order. Final distribution of dataset is
given in Table 1.

3.3 Extracting Context Word Sequence
First, we extract words that are in the dependency
path between two event mentions. However, event
pairs can be very far in a sentence and are in-
volved in complex syntactic structures. Therefore,
we also apply two heuristic rules to deal with com-
plex syntactic structures, e.g., two event mentions
are in separate clauses and have a punctuation sign
in their context. We describe our specific rules be-
low. We used the Stanford parser (Chen and Man-
ning, 2014) for generating dependency relations
and parts-of-speech tags and all notations follow
enhanced universal dependencies (De Marneffe
and Manning, 2008).

Rule 1 (punctuation): Comma directly influ-
ences the meaning in text and omitting it may alter
the meaning of phrase. Therefore, include comma
if it precedes or follows e1, e2 or their modifiers.

Rule 2 (children): Modifiers like now, then, will,
yesterday, subsequent, when, was, etc. contains
information on the temporal order of events and
help in grounding events to the timeline. These
modifiers are often related to event mentions with
a specific class of dependency relations. Include
all such children of e1, e2 and other words in the
path between them, which are connected with de-
pendency relations nmod:tmod, mark, case, aux,
conj, expl, cc, cop, amod, advmod, punct, ref.

3.4 Sequences and Classifier
We form three sequences on the extracted con-
text words (with t words), which are based on (i)
parts-of-speech tags: PT = p1, p2, ..., pt (ii) de-
pendency relations: DT = d1, d2, ..., dn

2 and (iii)
word forms: WT = w1, w2, ..., wt.

We transform each pi and di to a one-hot vec-
tor and each wi to a pre-trained embedding vector
(Pennington et al., 2014). Then each sequence of
vectors are encoded using their corresponding for-
ward (LSTMf ) and backward (LSTMb) LSTM
layers.

Classifier: Figure 2 shows an overview of our
model. It consists of six LSTM (Hochreiter and

2we only consider dependency relations for words in path
connecting e1 and e2.
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Figure 2: Bi-directional LSTM based classifier
used for temporal relations classification.

Schmidhuber, 1997) layers, three of them encode
feature sequences in forward order and remain-
ing in reverse order. LSTM layers for POS tag
and dependency relation have 50 neurons and have
dropouts of 0.20. LSTM layers for word form
have 100 neurons and have dropout of 0.25. All
LSTM layers use ’tanh’ activation function. For-
ward and backward embeddings of all sequences
are concatenated and fed into another neural layer
with 14 neurons corresponding to 14 fine-grained
temporal relations. This neural layer uses soft-
max activation function. We train model for 100
iterations using rmsprop optimizer on batch size
of 100 and error defined by categorical cross-
entropy (Chollet, 2015) .

4 Evaluation

We evaluate our model using accuracy which has
been used in previous research works for tempo-
ral relation classification. We also compare model
performance using per-class F-score and macro F-
score. We briefly describe all the systems we have
used for evaluation.

Majority Class: assigns “after” relation to all
event pairs.

Unidirectional LSTMs: use single LSTM layer
to encode each sequence (POS tags, dependency
relation and word forms) individually for extracted
phrase in forward order.

Bidirectional LSTMs: use two LSTM layers
to encode each sequence individually, taken from
POS tags, dependency and word forms sequences.
The first layer encodes sequence in forward and
second in reverse order.

2 Sequences: bi-directional LSTM based mod-
els considering all combinations of two sequences
taken from POS tags, dependency and word forms
sequences.

Full model: our complete sequential model con-
sidering POS, dependency and word forms se-
quences.

Direct dependency path: the same as Full
model except that the two heuristic rules were not
applied in extracting sequences.

Baseline I: a neural network classifier us-
ing discrete features described in Mirza and
Tonelli (2014); Ng (2013). The features used
are: POS tag, dependency relation, token and
lemma of e1(e2); dependency relations between
e1(e2) and their children; binary features indicat-
ing if e1 and e2 are related with the ’happens-
before’ or the ’similar’ relation according to Ver-
bOcean (Chklovski and Pantel, 2004), if e1 and
e2 have the same POS tag, or if e1(e2) is the root
and e1 modifies (or governs) e2; the dependency
relation between e1 and e2 if they are directly con-
nected in the dependency parse tree; prepositions
that modify (or govern) e1(e2); signal words (Der-
czynski and Gaizauskas, 2012) and entity distance
between e1 and e2. These features are concate-
nated and fed into an output neural layer with 14
neurons.

Baseline II: a neural network classifier using
POS tags and word forms of words in the surface
path as input. The surface path consists of words
that lie in between two event mentions based on
the original sentence. The classifier uses four
LSTM layers to encode both POS tag and word
sequences in forward and backward order. The
output neural layer and parameters for all LSTM
layers are kept the same as the Full model.

Baseline III: a neural network classifier based
on event embeddings for both event mentions that
were learned using bidirectional LSTMs (Kiper-
wasser and Goldberg, 2016). The learning uses
two LSTM layers, each with 150 neurons and
dropout of 0.2, to embed the forward and back-
ward representations for each event mention. The
input to LSTM layers are sequences of concate-
nated word embeddings and POS tags; each se-
quence corresponding to 19 context words to the
left or to the right side of an event mention for the
forward or the backward LSTM layer respectively.
Event embeddings are then concatenated and fed
into an output neural layer with 14 neurons.
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All baselines are trained using rmsprop opti-
mizer on an objective function defined by cate-
gorical cross entropy and their output layer uses
softmax activation function.

4.1 Results and Discussion

Models Accuracy
Majority Class 25.69
Baseline I 41.97
Unidirectional LSTM: only POS 34.90

only Word 35.12
only Dependency 34.48

Bidirectional LSTMs: only POS 39.19
only Word 37.69
only Dependency 40.04

2 Sequences: POS + Word 44.54
Dependency + Word 45.18
Dependency + POS 47.75

Full Model 53.32
Direct dependency path 49.25
Baseline II 43.90
Baseline III 44.75

Table 2: Temporal relation classification result on
TimeBank corpus.

Relations OurSystem BaselineI
P R F P R F

After 0.62 0.68 0.65 0.56 0.48 0.45
Before 0.56 0.52 0.53 0.37 0.45 0.41
Simultan. 0.44 0.51 0.47 0.32 0.43 0.37
Identity 0.47 0.56 0.51 0.45 0.53 0.49
Includes 0.59 0.39 0.47 0.43 0.30 0.35
IS includ. 0.5 0.56 0.53 0.61 0.51 0.56
Ended by 0.48 0.63 0.55 0.41 0.47 0.44
During in. 0 0 0 0 0 0
Begun by 0.75 0.43 0.55 0 0 0
Begins 1.0 0.29 0.44 0 0 0
IBefore 0.4 0.4 0.4 0 0 0
IAfter 0.33 0.25 0.29 0 0 0
During 0 0 0 0 0 0
Ends 0 0 0 0 0 0
Macro Av. 0.44 0.37 0.40 0.23 0.22 0.22

Table 3: Per-class results of our best system and
the baseline I.

Table 2 reports accuracy scores for all the sys-
tems. We see that simple sequential models out-
perform the strong feature based system, Base-
line I, which used various discrete features. Note
that dependency relation and POS tag sequences
alone achieve reasonably high accuracies. This
implies that an important aspect of temporal rela-
tion is contained in the syntactic context of event
mentions. Moreover, Mirza and Tonelli (2014)
observed that discrete features based on depen-
dency parse tree did not contribute to improving
their classifier’s accuracy. On the contrary, using

the sequence of dependency relations yields a high
accuracy in our setting which signifies the advan-
tages of using sequential representations for this
task. Our Full Model achieves a performance gain
of 11.35% over Baseline I.

We developed two more baselines (Baseline II
and III) that do not require syntactic information
as well as the Direct dependency path model that
used no rules. The Full Model outperformed them
by 9.42%, 8.57% and 4.07% respectively. This af-
firms that the most useful syntactic and semantic
structures are derived along dependency paths and
additional context words, including prepositions,
signal words and punctuations that are indirectly
attached to event words, entail evidence on tem-
poral relations as well.

Table 3 compares precision, recall and F1

scores of our Full Model with Baseline I. Our
model performs reasonably well compared to the
baseline system for most of the classes. In ad-
dition, it is able to identify relations present in
small proportion like begun by, ibefore, iafter
etc., which the baseline system couldn’t iden-
tify. A similar observation was also reported by
Mirza and Tonelli (2014) that relation types be-
gins, ibefore, ends and during are difficult to iden-
tify using feature based systems, which often gen-
erate false positives for before and after relations.

5 Conclusion and Future work

In this paper, we have focused on modeling syn-
tactic structural information and compositional se-
mantics of contexts in predicting temporal rela-
tions between events in the same sentence. Our
approach extracts lexical and syntactic sequences
from contexts between two events and feed them
to recurrent neural nets. The evaluation shows
that our sequential models are promising in distin-
guishing among fine-grained temporal relations.

In the future, we will extend our sequential
models to predict temporal relations for event
pairs spanning across multiple sentences, for in-
stance by incorporating discourse relations be-
tween sentences in a sequence.
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Abstract

Deep residual learning (ResNet) (He et al.,
2016) is a new method for training very
deep neural networks using identity map-
ping for shortcut connections. ResNet has
won the ImageNet ILSVRC 2015 clas-
sification task, and achieved state-of-the-
art performances in many computer vi-
sion tasks. However, the effect of resid-
ual learning on noisy natural language pro-
cessing tasks is still not well understood.
In this paper, we design a novel convolu-
tional neural network (CNN) with resid-
ual learning, and investigate its impacts on
the task of distantly supervised noisy rela-
tion extraction. In contradictory to popu-
lar beliefs that ResNet only works well for
very deep networks, we found that even
with 9 layers of CNNs, using identity map-
ping could significantly improve the per-
formance for distantly-supervised relation
extraction.

1 Introduction

Relation extraction is the task of predicting at-
tributes and relations for entities in a sentence (Ze-
lenko et al., 2003; Bunescu and Mooney, 2005;
GuoDong et al., 2005). For example, given a
sentence “Barack Obama was born in Honolulu,
Hawaii.”, a relation classifier aims at predicting
the relation of “bornInCity”. Relation extraction
is the key component for building relation knowl-
edge graphs, and it is of crucial significance to
natural language processing applications such as
structured search, sentiment analysis, question an-
swering, and summarization.

A major issue for relation extraction is the lack
of labeled training data. In recent years, distant
supervision (Mintz et al., 2009; Hoffmann et al.,

2011; Surdeanu et al., 2012) emerges as the most
popular method for relation extraction— it uses
knowledge base facts to select a set of noisy in-
stances from unlabeled data. Among all the ma-
chine learning approaches for distant supervision,
the recently proposed Convolutional Neural Net-
works (CNNs) model (Zeng et al., 2014) achieved
the state-of-the-art performance. Following their
success, Zeng et al. (2015) proposed a piece-wise
max-pooling strategy to improve the CNNs. Var-
ious attention strategies (Lin et al., 2016; Shen
and Huang, 2016) for CNNs are also proposed,
obtaining impressive results. However, most of
these neural relation extraction models are rela-
tively shallow CNNs—typically only one convo-
lutional layer and one fully connected layer were
involved, and it was not clear whether deeper mod-
els could have benefits on distilling signals from
noisy inputs in this task.

In this paper, we investigate the effects of train-
ing deeper CNNs for distantly-supervised relation
extraction. More specifically, we designed a con-
volutional neural network based on residual learn-
ing (He et al., 2016)—we show how one can in-
corporate word embeddings and position embed-
dings into a deep residual network, while feed-
ing identity feedback to convolutional layers for
this noisy relation prediction task. Empirically,
we evaluate on the NYT-Freebase dataset (Riedel
et al., 2010), and demonstrate the state-of-the-art
performance using deep CNNs with identify map-
ping and shortcuts. In contrast to popular beliefs
in vision that deep residual network only works for
very deep CNNs, we show that even with a mod-
erately deep CNNs, there are substantial improve-
ments over vanilla CNNs for relation extraction.
Our contributions are three-fold:

• We are the first to consider deeper convolu-
tional neural networks for weakly-supervised
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relation extraction using residual learning;

• We show that our deep residual network
model outperforms CNNs by a large margin
empirically, obtaining state-of-the-art perfor-
mances;

• Our identity mapping with shortcut feedback
approach can be easily applicable to any vari-
ants of CNNs for relation extraction.

2 Deep Residual Networks for Relation
Extraction

In this section, we describe a novel deep residual
learning architecture for distantly supervised rela-
tion extraction. Figure 1 describes the architecture
of our model.

2.1 Vector Representation
Let xi be the i-th word in the sentence and e1, e2 be
the two corresponding entities. Each word will ac-
cess two embedding look-up tables to get the word
embedding WFi and the position embedding PFi.
Then, we concatenate the two embeddings and de-
note each word as a vector of vi = [WFi,PFi].

2.1.1 Word Embeddings
Each representation vi corresponding to xi is a
real-valued vector. All of the vectors are encoded
in an embeddings matrix Vw ∈ Rdw×|V | where V
is a fixed-sized vocabulary.

2.1.2 Position Embeddings
In relation classification, we focus on finding a
relation for entity pairs. Following (Zeng et al.,
2014), a PF is the combination of the relative dis-
tances of the current word to the first entity e1 and
the second entity e2. For instance, in the sentence
”Steve Jobs is the founder of Apple.”, the relative
distances from founder to e1 (Steve Job) and e2 are
3 and -2, respectively. We then transform the rel-
ative distances into real valued vectors by looking
up one randomly initialized position embedding
matrices Vp ∈ Rdp×‖P‖ where P is fixed-sized dis-
tance set. It should be noted that if a word is too
far from entities, it may be not related to the rela-
tion. Therefore, we choose maximum value emax
and minimum value emin for the relative distance.

In the example shown in Figure 1, it is assumed
that dw is 4 and dp is 1. There are two position
embeddings: one for e1, the other for e2. Finally,
we concatenate the word embeddings and position

embeddings of all words and denote a sentence of
length n (padded where necessary) as a vector

v = v1 ⊕ v2 ⊕ ...⊕ vn

where⊕ is the concatenation operator and vi ∈ Rd
(d = dw + dp × 2).

2.2 Convolution

Let vi:i+j refer to the concatenation of words
vi, vi+1, ..., vi+j . A convolution operation in-
volves a filter w ∈ Rhd, which is applied to a
window of h words to produce a new feature. A
feature ci is generated from a window of word
vi:i+h−1 by

ci = f(w · xi:i+h−1 + b)

Here b ∈ R is a bias term and f is a non-linear
function. This filter is applied to each possible
window of words from v1 to vn to produce fea-
ture c = [c1, c2, ..., cn−h+1] with c ∈ Rs(s =
n− h+ 1).

2.3 Residual Convolution Block

Residual learning connects low-level to high-level
representations directly, and tackles the vanishing
gradient problem in deep networks. In our model,
we design the residual convolution block by ap-
plying shortcut connections. Each residual con-
volutional block is a sequence of two convolu-
tional layers, each one followed by an ReLU ac-
tivation. The kernel size of all convolutions is h,
with padding such that the new feature will have
the same size as the original one. Here are two
convolutional filter w1, w2 ∈ Rh×1. For the first
convolutional layer:

c̃i = f(w1 · ci:i+h−1 + b1)

For the second convolutional layer:

ći = f(w2 · c̃i:i+h−1 + b2)

Here b1, b2 are bias terms. For the residual learn-
ing operation:

c = c + ć
Conveniently, the notation of c on the left is
changed to define as the output vectors of the
block. This operation is performed by a shortcut
connection and element-wise addition. This block
will be multiply concatenated in our architecture.

2.4 Max Pooling, Softmax Output

We then apply a max-pooling operation over the
feature and take the maximum value ĉ = max{c}.
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Figure 1: The architecture of ResCNN used for relation extraction.

We have described the process by which one fea-
ture is extracted from one filter. Take all fea-
tures into one high level extracted feature z =
[ĉ1, ĉ2, ..., ĉm](note that here we have m filters).
Then, these features are passed to a fully con-
nected softmax layer whose output is the proba-
bility distribution over relations. Instead of using
y = w · z + b for output unit y in forward prop-
agation, dropout uses y = w · (z ◦ r) + b where
◦ is the element-wise multiplication operation and
r ∈ Rm is a ’masking’ vector of Bernoulli random
variables with probability p of being 1. In the test
procedure, the learned weight vectors are scaled
by p such that ŵ = pw and used (without dropout)
to score unseen instances.

3 Experiments

3.1 Experimental Settings
In this paper, we use the word embeddings re-
leased by (Lin et al., 2016) which are trained on
the NYT-Freebase corpus (Riedel et al., 2010). We
fine tune our model using validation on the train-
ing data. The word embedding is of size 50. The
input text is padded to a fixed size of 100. Training
is performed with tensorflow adam optimizer, us-
ing a mini-batch of size 64, an initial learning rate
of 0.001. We initialize our convolutional layers
following (Glorot and Bengio, 2010). The imple-
mentation is done using Tensorflow 0.11. All ex-
periments are performed on a single NVidia Titan
X (Pascal) GPU. In Table 1 we show all parame-
ters used in the experiments.
We experiment with several state-of-the-art base-
lines and variants of our model.

• CNN-B: Our implementation of the CNN
baseline (Zeng et al., 2014) which contains
one convolutional layer, and one fully con-
nected layer.

Window size h 3
Word dimension dw 50

Position dimension dp 5
Position maximum distance emax 30
Position minimum distance emin -30

Number of filters m 128
Batch size B 64

Learning rate λ 0.001
Dropout probability p 0.5

Table 1: Parameter settings

• CNN+ATT: CNN-B with attention over in-
stance learning (Lin et al., 2016).

• PCNN+ATT: Piecewise CNN-B with atten-
tion over instance learning (Lin et al., 2016).

• CNN: Our CNN model which includes one
convolutional layer and three fully connected
layers.

• CNN-x: Deeper CNN model which has x
convolutional layers. For example, CNN-9 is
a model constructed with 9 convolutional lay-
ers (1 + 4 residual cnn block without identity
shortcut) and three fully connected layers.

• ResCNN-x: Our proposed CNN-x model
with residual identity shortcuts.

We evaluate our models on the widely used NYT
freebase larger dataset (Riedel et al., 2010). Note
that ImageNet dataset used by the original ResNet
paper (He et al., 2016) has 1.28 million training
instances. NYT freebase dataset includes 522K
training sentences, which is the largest dataset
in relation extraction, and it is the only suitable
dataset to train deeper CNNs.

3.2 NYT-Freebase Dataset Performance
The advantage of this dataset is that there are
522,611 sentences in training data and 172,448
sentences in testing data and this size can support
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Figure 2: Comparing ResCNN to different CNNs.

Figure 3: Varying the depths of our models.

us to train a deep network. Similar to previous
work (Zeng et al., 2015; Lin et al., 2016), we eval-
uate our model using the held-out evaluation. We
report both the aggregate curves precision/recall
curves and Precision@N (P@N).

In Figure 2, we compare the proposed ResCNN
model with various CNNs. First, CNNs with mul-
tiple fully-connected layers obtained very good re-
sults, which is a novel finding. Second, the re-
sults also suggest that deeper CNNs with resid-
ual learning help extracting signals from noisy dis-
tant supervision data. We observe that overfitting
happened when we try to add more layers and
the performance of CNN-9 is much worse than
CNN. We find that ResNet can solve this prob-
lem and ResCNN-9 obtains better performance as
compared to CNN-B and CNN and dominates the
precision/recall curve overall.

We show the effect of depth in residual net-
works in Figure 3. We observe that ResCNN-5
is worse than CNN-5 because the ResNet does not
work well for shallow CNNs, and this is consis-

P@N(%) 100 200 300 Mean
CNN+ATT 76.2 68.6 59.8 68.2
PCNN+ATT 76.2 73.1 67.4 72.2
CNN-B 41.0 40.0 41.0 40.7
CNN 64.0 61.0 55.3 60.1
CNN-5 64.0 58.5 54.3 58.9
ResCNN-5 57.0 57.0 54.3 56.1
CNN-9 56.0 54.0 49.7 53.2
ResCNN-9 79.0 69.0 61.0 69.7
ResCNN-13 76.0 65.0 60.3 67.1

Table 2: P@N for relation extraction with different models.
Top: models that select training data. Bottom: models with-
out selective attention.

tent with the original ResNet paper. As we in-
crease the network depth, we see that CNN-9 does
overfit to the training data. With residual learning,
both ResCNN-9 and ResCNN-13 provide signif-
icant improvements over CNN-5 and ResCNN-5
models. In contradictory to popular beliefs that
ResNet only works well for very deep networks,
we found that even with 9 layers of CNNs, using
identity mapping could significantly improve the
performance learning in a noisy input setting.

The intuition of ResNet help this task in two as-
pect. First, if the lower, middle, and higher lev-
els learn hidden lexical, syntactic, and semantic
representations respectively, sometimes it helps to
bypass the syntax to connect lexical and semantic
space directly. Second, ResNet tackles the van-
ishing gradient problem which will decrease the
effect of noise in distant supervision data.

In Table 2, we compare the performance of our
models to state-of-the-art baselines. We show that
our ResCNN-9 outperforms all models that do not
select training instances. And even without piece-
wise max-pooling and instance-based attention,
our model is on par with the PCNN+ATT model.

For the more practical evaluation, we compare
the results for precision@N where N is small
(1, 5, 10, 20, 50) in Table 3. We observe that
our ResCNN-9 model dominates the performance
when we predict the relation in the range of higher
probability. ResNet helps CNNs to focus on the
highly possible candidate and mitigate the noise
effect of distant supervision. We believe that resid-
ual connections actually can be seen as a form
of renormalizing the gradients, which prevents the
model from overfitting to the noisy distant super-
vision data.

In our distant-supervised relation extraction ex-
perience, we have two important observations:
(1) We get significant improvements with CNNs
adding multiple fully-connected layers. (2) Resid-
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P@N(%) 1 5 10 20 50
PCNN+ATT 1 0.8 0.9 0.75 0.7
ResCNN-9 1 1 0.9 0.9 0.88

Table 3: P@N for relation extraction with different models
where N is small. We get the result of PCNN+ATT using
their public source code.

ual learning could significantly improve the per-
formance for deeper CNNs.

4 Conclusion

In this paper, we introduce a deep residual learning
method for distantly-supervised relation extrac-
tion. We show that deeper convolutional models
help distill signals from noisy inputs. With short-
cut connections and identify mapping, the perfor-
mances are significantly improved. These results
aligned with a recent study (Conneau et al., 2017),
suggesting that deeper CNNs do have positive ef-
fects on noisy NLP problems.
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Abstract

For the task of relation extraction, dis-
tant supervision is an efficient approach to
generate labeled data by aligning knowl-
edge base with free texts. The essence of
it is a challenging incomplete multi-label
classification problem with sparse and
noisy features. To address the challenge,
this work presents a novel nonparametric
Bayesian formulation for the task. Ex-
periment results show substantially higher
top-precision improvements over the tradi-
tional state-of-the-art approaches.

1 Introduction

To efficiently generate structured relation informa-
tion from free texts, the research on distantly su-
pervised Relation Extraction (RE) (Mintz et al.,
2009; Riedel et al., 2013; Hoffmann et al., 2011)
has been attracting much attention, because it can
greatly reduce the manual annotation for training.
It essentially based on the assumption that the re-
lation between two entities in a Knowledge Base
(KB), is also likely hold within a sentence that
mentions the two entities in free texts. This as-
sumption plays a crucial role in distant supervi-
sion, which is quite effective in real applications.

However, the assumption of distant alignment
can also lead to the noisy training corpus prob-
lem (Fan et al., 2014), which is challenging for
the task as follows: i) Noisy features. Not all
relations existed in a KB keep the same mean-
ing of that relation for the corresponding entities
in a free text. For example, the second relation
mention in Figure 1 does not explicitly describe
any relation instance, so features extracted from
this sentence can be noisy. Such analogous cases
commonly exist in feature extraction. ii) Incom-
plete labels. Similar to noisy features, the gener-

Figure 1: Aligned Example (Fan et al., 2014):
the relation instances related to the entity pair
〈BarackObama,U.S.〉 in the KB, and its men-
tions in the free text.

ated label can be incomplete due to the incomplete
knowledge base (Ritter et al., 2013). For exam-
ple, the fourth relation mention in Figure 1 should
be labeled by the relation Senate-of. However, the
corresponding relation instance (Senate-of(Barack
Obama, U.S.)) is missing in the knowledge base.
Such analogous cases are also common in real ap-
plications. iii) Sparse features. Sophisticated
features extracted from the mentions can result in
a large number of sparse features (Riedel et al.,
2013). The generalization ability of feature based
prediction models will be badly hurt, when the fea-
tures do not match between testing and training.

To tackle the problem, we develop a novel dis-
tant supervision approach from a nonparametric
Bayesian perspective (Blei et al., 2016), along
with the previously most effective research line
(Petroni et al., 2015) of using matrix completion
(Fan et al., 2014) for relation extraction. Our goal
is to design a noise-tolerant relation extraction
model for distantly supervised corpus with noise
and sparsity problems. Different from (Fan et al.,
2014) as one state-of-the-art method in this line,
we model noisy data corpus using adaptive vari-
ance modeling approach (Chen et al., 2015), based
on Dirichlet Process (Blei and Jordan, 2004) in-
stead of a fixed way of controlling complex noise
weighting. To the best of our knowledge, we are
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the first to apply this technique on relation extrac-
tion with distant supervision.

2 Approach

The essence of the task is a multi-label classifica-
tion problem (Cabral et al., 2011) with noisy pat-
terns (Han and Sun, 2014). One simple way, to
solve the problem, is to learn separate classifiers
for each of relation labels, using n samples with d
features, by optimizing b ∈ R1×1 and w ∈ Rd×1,

argminb,w l(ytrain, [1 Xtrain]

[
b
w

]
), (1)

where 1 is the all-one column vector; Xtrain ∈
Rn×d and ytrain ∈ Rn×1 are the correspond-
ing feature matrix and label vector respectively.
However, label correlations are not considered in
the above formulation. To jointly consider feature
correlations and label correlations, (Cabral et al.,
2011) formulated the multi-label classification as a
matrix completion problem. As a powerful frame-
work, it has been successfully applied to relation
extraction task with distant supervision.

2.1 Previous Formulation
The work in (Fan et al., 2014) first adopted the
mentioned framework, as a general joint learning
and inference framework (Cabral et al., 2011), to
learn noise-tolerant distant supervision for rela-
tion extraction. It achieves the state-of-the-art per-
formance. Suppose we have a training corpus, in-
cluding n instances (entity pairs) including both
training and test data, with d-dimensional features
and t relation labels, which is built according to
the basic alignment assumption. The task can be
modeled with a sparse matrix Z ∈ Rn×(d+t), de-
fined as

Z =

[
Xtrain Ytrain
Xtest Ytest

]
, (2)

where each row in Z represents entity pair, and
each column represents noisy textual feature in X
or incomplete relation label in Y . In such a way,
relation extraction is transformed into a problem
of completing the unknown labels in Ytest for the
test data Xtest in Z. The rational of this model-
ing is that noisy features and incomplete labels are
semantically correlated, which can be explained
in an underlying low-rank structure (Riedel et al.,
2013). Taking noise into consideration, Z is fur-
ther defined as

Z = Z∗ + E, (3)

where Z∗ is the underlying low-rank matrix

Z∗ =
[
X∗train Y ∗train
X∗test Y ∗test

]
, (4)

and E is the error (noise) matrix

E =

[
EXtrain EYtrain
EXtest 0

]
. (5)

This error (noise) modeling approach has been
successfully applied to distantly supervised rela-
tion extraction. However, it still has clear lim-
itations. The noise model is limited to a single
source without considering the intrinsic clustering
structures of data. In addition, the true rank is usu-
ally hard to determine, for adaptively modeling the
correlations among features and labels.

2.2 Nonparametric Bayesian Modeling

The use of nonparametric Bayesian modeling has
been widely adopted in Natural Language Pro-
cessing (NLP) (Chen et al., 2014). Instead of im-
posing assumptions that might be wrong, it “lets
the data speak for itself”, without requiring opti-
mizing parameters blindly by hands (Blei and Jor-
dan, 2004). To take advantage of these merits, we
here adopt it for the task, with the following moti-
vations:

Motivation 1: Adaptive Noise-Clustered At-
tention. The goal is to find an adaptive cluster
specific noise parameterization for the complex
noisy corpus, without making overly strong as-
sumptions about the noise distribution in real ap-
plications.

Motivation 2: Adaptive Latent Feature
Space Selection. The goal is to automatically find
better dense representations of latent entity-pair,
feature and label without pre-specifying the rank
values by laboriously retraining models.

2.2.1 Nonparametric Bayesian Formulation
We develop a novel formulation for distantly su-
pervised relation extraction, using a nonparamet-
ric Bayesian approach, based on the Dirichlet Pro-
cess, which can been seen as an infinite Dirich-
let distribution, with clustering effect for modeling
categorical variables adaptively.

Noise component modeling. Instead of using a
single fixed noise model, we redefine E = [εi,j ] ∈
Rn×(d+t) in Eq.(5). εi,j is modeled by a summa-
tion of infinite noise models (Chen et al., 2015),
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p(εi,j) =
∞∑

k=1

θkN(εi,j |0, σk), (6)

where θk is the mixing proportion for the k-th
gaussian component N(εi,j |0, σk) with mean zero
and variance σk. The θ is obtained from the stick-
breaking process (Blei and Jordan, 2004), with∑∞

k=1 θk = 1,

θk = βk

k−1∏

l=1

(1− βl), (7)

where βk are independent draws from the beta dis-
tribution β(1, α). As a result, the noise entries
will cluster themselves into K groups without re-
quiring a complicated model selection procedure.
Since a mixture of Gaussians can approximate any
continuous probability distribution (Zhao et al.,
2014), this structural noise formulation can adapt
much wider range of real noises than previous for-
mulation (Fan et al., 2014) for relation extraction.

Low-rank component modeling. Different
from (Fan et al., 2014), instead of directly min-
imizing the rank of Z∗ in Eq.(3), we decom-
pose Z∗ into two low-rank matrices U and V ,
from probabilistic perspective (Salakhutdinov and
Mnih, 2007). This modeling approach can lead to
a more flexible way of estimating the optimal rank
values for latent feature spaces. To determine the
appropriate rank automatically, we adopt the Au-
tomatic Relevance Determination (ARD) method
(Babacan et al., 2012) by imposing a prior on each
dimmension (column) of U and V . Specifically,
we impose the Gaussian priors with variance λr
on the r-th columns of U and V , i.e., u.r and v.r:

p(U|λ) =
R∏

r=1

N(u.r|0, λrIU),

p(V|λ) =
R∏

r=1

N(v.r|0, λrIV),

λr ∼ IG(a1, b1),

(8)

where IG is an Inverse Gamma distribution for
modeling the variance λr. Considering a column
as latent factor in U or V with a zero mean in
the prior, a very small variance indicates that this
column will shrink to zero. Thus, the irrelevant
columns hurting the performance will be elimi-
nated adaptively, without pre-specifying the rank
values by retraining models laboriously as in the
previous modeling (Fan et al., 2014) for the task.

Prediction component modeling. We can
leverage the above presented low-rank component
for U, V and noise component for εi,j , to build
Eq.(9) for prediction. Different from the state-
of-the-art multi-label classification framework as
adopted in (Fan et al., 2014), for simplicity, we
design noise model for features and labels jointly,

p(yi,j) = N(yi,j |
ui.v

T
j.︸ ︷︷ ︸

low−rank component

, εi,j︸︷︷︸
noise component

), (9)

where ui. and vj. are defined in Eq.(8) as rows of
U and V respectively.

For each interaction between entity-pair and
feature (or relation), εi,j as defined in Eq.(6) can
be injected into Eq.(9) (Chen et al., 2015) by

εi,j = σzij ,

σzij ∼ IG(a0, b0),
zij = k ∼Mult(θk),

(10)

where θk is modeled in Eq.(7); Mult is a Multino-
mial distribution.

The mechanism of the introduced clustered
noise component for relation extraction can be
easily understood through considering its role in
the Gaussian distribution. As shown in Eq.(9),
εi,j is used to control the variance. Large vari-
ance value means low confidence, and the small
value means high confidence, for fitting yi,j with
ui.v

T
j. . The variance parameter εi,j , generated by

noise component Eq.(7,10), serves as a confidence
parameter for training instance. In the algebra
view of likelihood, variance parameter is just the
weight of training instance (i.e., the interaction be-
tween ”entity pair and feature” or ”entity pair and
label”), measuring the importance for its contribu-
tion to the total likelihood. We can treat this mech-
anism as an importance weighting mechanism, for
selecting noisy interactions yij with different clus-
tering structures adaptively.

In this mechanism, for each yi,j in noisy corpus,
it allows 1→ 0 (noisy feature) for features, and al-
low 1 → 0 (label with no supportive features) or
0 → 1 (incomplete label) for labels. In addition,
for the task, we expect that our method can auto-
matically adjust the importance weight for reduc-
ing the effect of common features, to differentiate
two instances with different labels. To achieve the
goal, in matrix Z, we fit both ”1” (observed) and
”0” for training labels as discriminative supervi-
sion, while we only fit ”1” (observed) for features.
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Dataset #training #testing %more than one label #features #relation labels
NYT’10 4,700 1,950 7.5% 244,903 51
NYT’13 8,077 3,716 0% 1,957 51

Table 1: Statistics about the two widely used datasets.

(a) NYT’10 dataset (b) NYT’13 dataset

Figure 2: Precision-Recall curve on NYT’10 and NYT’13 datasets. DRMC-b(1) (Fan et al., 2014).

Models P R F1
Mintz 63.59% 61.20% 62.37%
Hoffmann 67.18% 36.41% 47.23%
Surdeanu 76.23% 53.18% 62.65%
DRMC-b 61.03% 66.82% 63.79%
DRMC-1 64.17% 71.74% 67.75%
Our 87.94% 46.00% 63.44%

Table 2: Results at the highest F1 point in the
Precision-Recall (P-R) curve on NYT’10 dataset.
Mintz (Mintz et al., 2009); Hoffmann (Hoffmann
et al., 2011); Surdeanu (Surdeanu et al., 2012);
DRMC-b(1) (Fan et al., 2014);

Learning. To combine Eqs. (7)-(10), we can
construct the full Bayesian model. The goal turns
to infer the posterior of all involved variables:

p(U,V, λ, σ, z, β|Xobserved,Yobserved), (11)

where Xobserved,Yobserved are the observed bi-
nary features (fitting 1) and labels (fitting both 1
and 0). Variational inference is adopted as shown
in (Chen et al., 2015).

Prediction. After learning1, we use the expec-
tation E(P (yi,j)) in Eq.(9) to complete the entries
in Ytest. Finally, we can acquire Top-N predicted
relations via ranking the values E(P (yi,j)), given
entity pair i, for different relations j.

1We implement the system for relation extraction, based
on the code at http://peixianc.me/amf codes.zip.

3 Experiments

We evaluate our method on two widely used
datasets as shown in Table 1 with the same setting
in (Fan et al., 2014).

Dataset. NYT’10, was developed by (Riedel
et al., 2010). NYT’13, was also released by (Riedel
et al., 2013), in which they only regarded the
lexicalized dependency path between two entities
as features. Both are automatically generated by
aligning Freebase to New York Times corpus.

Parameter setting. For all the conducted ex-
periments, the model hyperparameters are fixed
without further tuning: a0 = b0 = 10−4, a1 =
b1 = 0.1 and α = 1.

Model comparison. Since (Fan et al., 2014)
achieves the state-of-the-art performance on the
two datasets, we mainly compare our method with
that in the same setting, to verify the effective-
ness. NYT’10 dataset: Table 2 indicates that our
model achieves the highest precision performance
among all of the competitors. Although the re-
call performance is not competitive, the F1 score
is also comparable to DRMC-b. Figure 2(a) fur-
ther shows the strong precision performance when
the recall is not large. NYT’13 dataset: Figure
2(b) illustrates that our approach outperforms the
state-of-the-art methods, which shows that our ap-
proach can maintain a fairly high precision even
when recall is larger. In addition, in practical ap-
plications, we also concern about the precision on
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Top-N NFE-
13

DRMC-
b

DRMC-
1

Our

Top-100 62.9% 82.0% 80.0% 92.0%
Top-200 57.1% 77.0% 80.0% 88.2%
Top-500 37.2% 70.2% 77.0% 86.3%
Average 52.4% 76.4% 79.0% 88.8%

Table 3: Precision of Top-N predicted instances
on NYT’13 dataset. NFE-13 (Riedel et al., 2013);
DRMC-b(1) (Fan et al., 2014).

Models P R F1
DRMC-b 47.70% 49.58% 48.62%
DRMC-1 67.99% 50.42% 57.90%
Our 66.46% 53.30% 59.16%

Table 4: Results at the highest F1 point in the
Precision-Recall (P-R) curve on NYT’13 dataset.
DRMC-b(1) (Fan et al., 2014).

Top-N predicted instances. Table 3 shows that our
model achieves much significant improvements on
that. Moreover, Table 4 shows that our method can
achieve the best F1, compared with the baselines.

NYT’10 and NYT’13 have different perfor-
mance records, which could be explained as fol-
lows. From the dataset perspective, NYT’10 is a
dataset with multi-label instances, which is more
complex than NYT’13 only having single label in-
stances. This is one reason of why the trends are
quite different between them. More essentially,
we further discuss the differences from the model
mechanism perspective, to explain the reasons. In
(Fan et al., 2014)’s work, it has no explicit noise
modeling mechanism. The noise is modeled im-
plicitly as the error of cost functions. From the
probabilistic view, that error is sampled from sin-
gle Gaussian with zero mean and fixed variance.
In contrast, our method uses infinite Gaussian with
automatically learnt variance. It may cause over-
fitting for complex dataset with sparse features. In
addition, we guess the reason is that in (Fan et al.,
2014)’s work, they use two separate cost func-
tions for features and labels, while in our work we
use one unified noise component for both of them,
which shows the promising precision performance
in NYT’10 when recall is less than 0.4.

In addition, in our experiments, we found that
early stopping is crucial for achieving good re-
sults while model learning. This also verifies that
the potential overfitting problem should be further
considered while using the more flexible nonpara-

metric method for NLP task.

4 Related Work

Our work is closest to (Fan et al., 2014), since
we focus on the same noisy corpus problem. Al-
though from different perspectives, we study it
along with the same line of using matrix factoriza-
tion (Petroni et al., 2015) for relation extraction. In
this line, (Riedel et al., 2013) initially considered
the task as a matrix factorization problem. Their
method consists of several models, such as PCA
(Collins et al., 2001) and collaborative filtering
(Koren, 2008). However, the data noise brought by
the assumption of distant supervision (Mintz et al.,
2009), is not considered in the work. Another line
addressing the problem uses deep neural networks
(Zeng et al., 2015; Wang et al., 2015). The differ-
ence is that it is a supervised learning approach,
while our focused one is a joint learning approach
with transductive style, in which both training and
test data are exploited simultaneously. In addi-
tion, (Han and Sun, 2016) explored Markov logic
technique to enrich supervision knowledge, which
can incorporate indirect supervision globally. Our
method could be further augmented by that idea,
using additional logical constraint to reduce the
uncertainty for the clustered noise modeling.

5 Conclusion

In this paper, building on recent advances from the
nonparametric Bayesian literature, we reformulate
the task of relation extraction with distant super-
vision, based on the adaptive variance learning
with intrinsic clustering structures. For the task,
it can solve the sparsity problem via the learnt
low-rank dense representations and can allow fit-
ting noisy corpus through adaptive variance ad-
justment. Meanwhile, it can avoid turning a large
number of parameters. Experiments suggest sub-
stantially higher top-precision than the competi-
tors. In the future work, we plan to develop more
sophisticated noise models for features and labels
separately, and try to explore logical information,
particularly in this context of nonparametric noise
modeling, for further benefiting this task.
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Abstract

Word embeddings are used with success for
a variety of tasks involving lexical semantic
similarities between individual words. Us-
ing unsupervised methods and just cosine
similarity, encouraging results were ob-
tained for analogical similarities. In this pa-
per, we explore the potential of pre-trained
word embeddings to identify generic types
of semantic relations in an unsupervised
experiment. We propose a new relational
similarity measure based on the combina-
tion of word2vec’s CBOW input and output
vectors which outperforms alternative vec-
tor representations, when used for unsuper-
vised clustering on SemEval 2010 Relation
Classification data.

1 Introduction

Vector space word representations or word embed-
dings, both ’count’ models (Turney and Pantel,
2010) and learned vectors (Mikolov et al., 2013a;
Pennington et al., 2014), were proven useful for a
variety of semantic tasks (Mikolov et al., 2013b;
Baroni et al., 2014). Word vectors are used with
success because they capture a notion of seman-
tics directly extracted from corpora. Distributional
representations allow to compute a functional or
topical semantic similarity between two words or,
more recently, bigger text units (Le and Mikolov,
2014). The more similar two entities are semanti-
cally, the closer they are in the vector space (quan-
tified usually, but not necessarily in terms of cosine
similarity). Semantic similarity can be exploited
for lexical substitution, synonym detection, sub-
categorization learning etc. Recent studies sug-
gest that neural word embeddings show higher per-
formance than count models (Baroni et al., 2014;
Krebs and Paperno, 2016) for most semantic tasks,

although Levy et al. (2015a) argue that this is
only due to some specific hyperparameters that can
be adapted to count vectors. In what follows, we
will concentrate on exploring whether and how pre-
trained, general-purpose word embeddings encode
relational similarities.

1.1 Relational analogies as vector offsets

Relation extraction and classification deal with
identifying the semantic relation linking two en-
tities or concepts based on different kinds of in-
formation, such as their respective contexts, their
co-occurrences in a corpus and their position in
an ontology or other kind of semantic hierarchy.
Whether the vector spaces of pre-trained word em-
beddings are appropriate for discovering or iden-
tifying relational similarities remains to be seen.
Mikolov et al. (2013b) claimed that the embed-
dings created by a recursive neural network indeed
encode a specific kind of relational similarities, i.e.
analogies between pairs of words. He found that by
using simple vector arithmetic, analogy questions
in the form of "a1 is to a2 as b1 is to b2" (man ~king
:: woman ~queen) could be solved. Relationships
are assumed to be present as vector offsets, so that
in the embedding space, all pairs of words sharing a
particular relation are related by the same constant
offset. Vector arithmetics give us the vector which
fills the analogy, and we can search for the word b2
whose embedding vector has the greatest similarity
to it:

argmaxb2 = sim(b2, (b1 − a1 + a2)) (1)

Levy et al. (2015a) suggested that instead of a
vector offset method, this calculation can also be
considered as a combination of similarities. Using
cosine similarity for sim, equation 1 can be written
as a combination of similarities (Levy et al., 2015a)
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as

argmaxb2 = sim(b2, b1)− sim(b2, a1)+

+ sim(b2, a2) (2)

Analogy pairs, however, are a special case of
relational similarity because not only a1 (man) re-
lates to a2 (king) the same way that b1 (woman)
relates to b2 (queen); the relation between a1 (man)
and b1 (woman) is also parallel to the relation be-
tween a2 (king) and b2 (queen.) This is not always
the case: when it comes to different types of se-
mantic relations, their instances may or may not be
analogical.

1.2 Criticism of the vector offset method
As precise as neural word embeddings combined
with cosine similarity may be for calculating se-
mantic proximity between individual words, recent
results seem to suggest that their value in identi-
fying relational analogies using vector arithmetics
is limited. In fact, a big part of their merits is
likely to come from the precise calculation of indi-
vidual similarities instead of relational similarities.
Hence, they can be approximated using relation-
independent baselines. Linzen (2016) remarks that
currently used analogy tasks evaluate not only the
consistency of the offsets a1 − a2 and b1 − b2, but
also the neighborhood structure of the words in
the vector space. Concretely, "if a1 and a2 are very
similar to each other (...) the nearest word to b2 may
simply be the nearest neighbor of b1 (...) regardless
of offset consistency" (Linzen, 2016). Moreover,
some of the success obtained by the vector offset
method on analogies can also be obtained by base-
lines that ignore a2, or even both a1 and a2.
Levy et al. (2015b) point out similar limitations:
word embedding combinations in supervised learn-
ing of taxonomical relations do not seem to learn
the relations themselves, but individual properties
of words. They tested previously suggested vec-
tor compositions for supervised learning of infer-
ence relations: concatenation, difference, compar-
ing only the first or only the second element of the
pairs. The study concludes that the classifiers only
learn individual properties (e.g. a "category" type
word is a good hypernym candidate), but not se-
mantic relations between words. Altogether, these
studies suggest that the semantic information ob-
tained from word embeddings is correct for iden-
tifying similar or related units, but is already self-

contained and difficult to enrich in order to retrieve
more specific semantic contents such as relational
similarities or specific relations.

In this paper, we aim to challenge this conclusion
within a large scale semantic relation classification
experiment, and show that it is possible to achieve
improvements compared to baselines and current
methods. We apply known vector composition me-
thods, and propose a new one, to unsupervised
large-scale clustering of entity pairs categorized
according to their semantic relation. While large
scale semantic relation classification is a very diffi-
cult task and the state of the art does not perform
yet at human level, we expect that the experiment
provides information to compare the potential of
different vector/similarity combinations in a setting
(i.e. clustering) that is more reliant on the global
structure of the data instead of the close neighbor-
hood structure of selected items.

2 Semantic Relations in Vector Spaces

2.1 Related work

Relation classification includes the task of finding
the instances of the semantic relations, i.e. the
entity tuples, and categorizing their relation ac-
cording to an existing typology. In an unsupervised
framework, relation types are inferred directly from
the data. Supervised systems rely on a list of pre-
defined relations and categorized examples, as de-
scribed in the shared tasks of MUC, ACE or Sem-
Eval campaigns (Hobbs and Riloff, 2010; Jurgens
et al., 2012; Hendrickx et al., 2010). Competing
systems extract different kinds of features eventu-
ally combined with external knowledge sources,
and build classifiers to categorize new relationship
mentions (Zhou et al., 2005). A commonly used
method, initiated by Turney (2005; 2006), is to rep-
resent entity pairs by a pair-pattern matrix and cal-
culate similarities over the distribution of the pairs.
Another way of constructing a distributional vector
space to represent quantifiable context features for
relation extraction is to combine the vectors of the
two entities. Different combinations were proposed
to represent compositional meaning (Mitchell and
Lapata, 2010; Baroni and Zamparelli, 2010; Baroni
et al., 2012). Popular methods include addition
(Mitchell and Lapata, 2010), concatenating the two
vectors (Baroni et al., 2012) or taking their differ-
ence (Weeds et al., 2014; Roller et al., 2014). As
of now, these vector combinations had two types
of applications in semantic relation classification.
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The first one aims to find specific types of semantic
or functional analogies (Herdaǧdelen and Baroni,
2009; Makrai et al., 2013; Levy et al., 2015a). The
second one tries to infer taxonomical relations, i.e.
hypernymy, or lexical entailment, in supervised
experiments (Weeds et al., 2014; Turney and Mo-
hammad, 2014). For the hypernymy detection task,
relation directionality can be captured by the inclu-
sion of the hyponym’s context in the broader term
(Kotlerman et al., 2010), as well as by measuring
the informativeness of their contexts (Santus et al.,
2014).

A few experiments have been specifically tar-
geted at combining different kinds of linguistic
information for calculating relational similarities.
Turney (2012) suggested a dual distributional fea-
ture space, composed of a domain space and a syn-
tactic function space, for supervised classification.
Herdaǧdelen and Baroni (2009) combine individual
entity vectors with co-occurrence contexts in their
vector space. These works either aim to identify
very specific relation types (typically taxonomical
relations) with a mixture of features and a super-
vised classifier, or target analogy pairs: a task in
which, as we have seen, relation-unaware baselines
approximate relation-aware representations. How-
ever, more recently, Shwartz et al. (2016) achieved
promising results on the hypernymy detection task
by combining dependency path-based context rep-
resentations with distributional vectors; this finding
can be relevant for a broader range of semantic re-
lations as well.

2.2 Task definition
Whether we use the vector offset method or any
pairwise similarity combination, finding the miss-
ing word in an analogy depends on two factors:

1. Vector quality (do semantically close elements
have a higher cosine similarity?);

2. Density and structure of the vector space.

If we adapt 1) above to the more generic relational
similarity task, the question can be formulated as
follows:

3. How much information about the semantic
relation is actually in the text and how fit is
the vector combination method to encode this
information?

In accordance with Linzen (2016) and Levy et
al. (2015b), we also think that analogy test sets

are not optimal to answer this question. It was al-
ready confirmed that word embeddings are precise
in identifying closely related items, while it is an
open question whether they are useful for inferring
a global structure from potentially noisy data in a
large scale experiment. We propose to study re-
lational similarity using a more generic and large
scale relation classification task (Hendrickx et al.,
2010), and clustering pairs according to semantic
relations, instead of finding the one missing word
in an analogy. This way, we rely less on the neigh-
borhood structure and more on actual "linguistic
regularities".

We evaluate different vector combination me-
thods, and propose a new one, for calculating re-
lational similarities. The evaluation concentrates
on the aspects above. We test whether cosine si-
milarity over these vector spaces is adapted for
discovering groups and classifying individual in-
stances. We report clustering results and compare
the vector combinations by their performance.

2.3 Motivation

The semantic relation classification task, super-
vised or not, is a difficult one with a strong upper
bound: relations vary considerably with respect to
the way they are defined and expressed in the text.
Some relation types are more lexical by nature: re-
lations such as dog is an animal; a teacher works
at a school; a car is kept at a parking lot, can be
identified out of context. On the other hand, many
relations are contextual; they are time-anchored or
tied to extra-linguistic, situational context. Con-
textual relations (e.g. "the accident was caused by
the woman") tend to be expressed explicitly, but
rarely, in a corpus. A similar distinction underlies
the notion of classical vs non-classical lexical se-
mantic relations coined by Morris and Hirst (2004);
however, their distinction is made on the level of
relation types, while different instances of the same
relation type can also be different with respect to
their lexical or contextual nature. Other types of
relations are defined exclusively through examples
or analogies (e.g. badge is to policeman as crown
is to king).

Semantic relations can also be viewed as binary
predicates, and such predicates have semantic con-
straints on their arguments, similarly to verb sub-
categorization. Indeed, the relations are often ex-
pressed by verbs, and we expect specific arguments
of relations to belong to a specific semantic type,
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e.g. Message (chapters in this book investigate
issues), Instrument (telescope assists the eye), Col-
lection (essays collected in this volume), Container
(image is hidden in a carafe). We expect vector
space models (VSMs) to capture such semantic
groups through pairwise similarity combinations.

Semantic relation types and instances differ with
respect to the degree of semantic constraint on their
arguments, the analogical nature of the relation,
and the lexical/contextual aspect. We expect distri-
butional VSMs to contribute to capture analogical
similarities, as well as the semantic types of the
arguments and lexical or prototypical relation in-
stances. Since their ability to capture contextual
relations is limited, they need to be complemented
with e.g. pattern-based or dependency-based ap-
proaches when it comes to less typical examples.

In the scope of the current experiment, our pri-
mary goal is to argue that vector combinations may
encode lexical relational similarities in themselves.
If a representation is more capable than others to
group together word pairs according to relational
similarities, this potential can further be exploited
in unsupervised as well as in supervised experi-
ments.

The current task requires a change of perspective
compared to the analogical task: when we look for
missing elements in an analogy, we know the word
exists and we presume to know where it will be in
the vector space. In unsupervised clustering, our
aim is to infer a global structure from the data.

2.4 Semantic relation data

The SemEval 2010 Task 8 data we used (Hendrickx
et al., 2010) contains examples of relation instances
for 9 relations with sufficiently broad coverage to
be of general and practical interest (Table 1).
There is no overlap between classes, but there are
two groups of strongly related relations to assess
models’ ability to make fine-grained distinctions
(CONTENT-CONTAINER, COMPONENT-
WHOLE, MEMBER-COLLECTION and
ENTITY-ORIGIN, ENTITY-DESTINATION).
Human agreement rates, when annotated in
context, range from 58.2% to 98.5% depending on
the relation type (Hendrickx et al., 2010). This
data set is very challenging, not only because of
the fine semantic distinctions, but also because
semantic relations were annotated in context and
contain many less typical relation instances. In the
current experiment, the goal we set for ourselves is

to explore models’ abilities to capture the structure
of the data, rather then in achieving a classification
precision close to that of humans.
We used 6637 pairs of single word instances from
the training data. Contexts in the training data were
discarded. Class bias is present: the most frequent
relation has 979 instances, the least frequent has
486.

3 Vector combination methods

If a1, a2, b1, b2 are entities (nouns or nominal
compositions) from a corpus, each of them
assigned a pre-trained word embedding, we
would like to classify entity pairs a = (a1, a2)
and b = (b1, b2) according to their semantic
relation. This means that we are looking for an
efficient combination of a1, a2 and b1, b2 vectors
that encode their relational attributes. We aim to
find effective methods to calculate a relational
similarity sim(a, b) by combining entity vectors
a1, a2 and b1, b2.

Pairwise similarities build on the idea that if a1
is semantically similar to b1 and a2 is similar to
b2, the relation between a1 and a2 is similar to the
relation between b1 and b2. The recall of this ap-
proach is expected to be limited: the same relation
can hold between different types of entities.
Analogical similarities presume that b1−b2 shares
the direction with a1 − a2, ignoring the pairwise
similarities. We adapt this measure, while aware
that analogy pairs are a specific case of relational
similarity in that analogies work both ways (man
~king :: woman ~queen and also man ~woman ::
king ~queen).
IN-OUT similarities: a new combination that
builds on the integration of second order similari-
ties.
Only a1 : In this baseline solution, the similarity
between two pairs is calculated as the similarity
between the first entity of each pair, the other pair
being ignored.

sim(a, b) = sim(a1, b1) (3)

3.1 Pairwise similarities

Different combinations proposed in the literature
were compared.

• concatenative : one vector for each entity
pair is defined as the concatenation of the vec-
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Relation Instances in Typical examples Atypical examples
training data

Cause-Effect 979 suicide− death, injury − discomfort women− accident
Component-Whole 978 claw − owl, walls− hospital image− photos
Entity-Destination 789 solvent− flask, hay − barn chair − corporation
Product-Producer 775 industry −models, artist− design officer − oath
Entity-Origin 762 relics− culture, plane− runway error − definition
Member-Collection 729 stable− hounds, ensemble− ladies mission−monkeys
Message-Topic 622 pages− scene, speech−measures exhibition− glamour
Instrument-Agency 517 user − console, eye− telescope companies− governments
Content-Container 486 document− folder, pictures− box message− paper

Table 1: Semantic Relation Classification data

tors of the two entities.

sim(a, b) = sim((a1 ⊕ a2), (b1 ⊕ b2)) (4)

• pairwise addition Pairwise similarities be-
tween respective entities are added up. If we
use cosine similarity, this is only slightly dif-
ferent from the concatenative method. Vec-
tor addition proved to work well as a compo-
sitional representation (Mitchell and Lapata,
2010), despite the fact that word order is ig-
nored.

sim(a, b) = sim(a1, b1) + sim(a2, b2) (5)

A potential problem with this addition objective
is that different properties of words are expressed
on a different scale and, as a consequence, terms
sharing these properties have a higher cosine simi-
larity than terms that are similar with respect to a
flatter property. It can be overcome by using multi-
plication instead of addition (Levy and Goldberg,
2014):

• pairwise multiplication

sim(a, b) = sim(a1, b1)× sim(a2, b2) (6)

3.2 Analogies
This is an adaptation of the measure proposed for
queen = king - man + woman (Mikolov et al.,
2013b). Vector arithmetics give us the vector which
fills the analogy, and we can search for the word b2
whose embedding vector has the greatest similarity
to it:

argmaxb2 = sim(b2, (b1 − a1 + a2)) (7)

which, using cosine similarity for sim, can be writ-
ten as a combination of similarities (Levy et al.,

2015a), as

argmaxb2 = sim(b2, b1)− sim(b2, a1)

+ sim(b2, a2) (8)

Mikolov (2013b) notes that this measure is qualita-
tively similar to the relational similarity model in
(Turney, 2012), which predicts similarity between
members of the word pairs (xb, xd), (xc, xd) and
dissimilarity for (xa, xd).
In the current context, we do not look for the miss-
ing b2 which maximizes the equation. Instead, we
have different pairs a and b, and we aim to calcu-
late sim(a, b) to quantify how much the analogy
queen - woman = king - man holds.

• difference Focuses on the similarity of b1, b2
and a1, a2, but does not take into account
the pairwise distances between the individual
entity vectors.

sim(a, b) = sim((a1 − a2), (b1 − b2)) (9)

Levy et al. (2015a) propose a multiplicative ver-
sion of the analogy formula. We tried to adapt
it; however, this measure is not symmetrical (con-
ceived to find b2 which maximizes the form) and
the adaptation produced bad results.

3.3 IN-OUT similarities
This metric is a combination of first order and se-
cond order similarities between the two entity pairs,
adapted to relational similarity: a and b are similar
if a1 is similar to b1 and also similar to the contexts
of b2, the opposite entity in b.
In the current experiment, second order similarities
are estimated using both input and output vectors
generated by word2vec’s CBOW model. In this
model, the IN vectors of words get closer to the
OUT vectors of other words that they co-occur with.
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Words with a high input-output similarity tend to
appear in the context of each other. This similarity
combination was recently included for a few, dif-
ferent tasks. It was shown to improve information
retrieval (Nalisnick et al., 2016). Pennington et
al. (2014) propose to use second-order similarity
to improve similarity calculation between words.
Their proposed formula combines first and second
order similarity, normalized by the reflective se-
cond order similarity of the words with themselves.
Finally, Melamud et al. (2015) used a combination
of input-output similarities for lexical substitution.

In these contexts, the use of second-order simi-
larities1 is based on the observation that words are
similar if they tend to appear in similar contexts,
or if they tend to appear in the contexts of each
other. In our experiment, second order similarities
are used in a different way and with a different
purpose. Second-order similarities are calculated
between opposite elements of the entity pairs. We
combine those similarities by taking the in-in simi-
larity between a1 and b1, and the in-out similarities
between a1 and b2, and between a2 and b1. Our mo-
tivation is to add relational information in a form
which also preserves pairwise similarity informa-
tion, as both are relevant for calculating relational
similarities. We do it by using a co-occurrence
component which gives higher score between more
prototypical example pairs. A pairwise similarity
can be high even if the entities are similar, but their
relation is not: an obvious example is ambiguity
(when they are similar with respect to a meaning,
but co-occur with their pair in an other meaning).
If an entity is similar to one argument of a relation
and is also likely to appear in the context of the
other argument, it indicates a higher likelihood of
being an instance of the same relation.

• additive in-out

sim(a, b) = sim(a1, b1) + sim(a2, b2)

+ sim2(a1, b2) + sim2(a2, b1) (10)

where sim2 designates the second order similarity
and is calculated as follows:

sim2(x1, y2) = sim(xin1 , y
out
2 ) + sim(xout1 , yin2 )

(11)

1Note that we use the term "second order similarity" in the
sense of word-to-context similarity, unlike Pennington et al.
(2014).

• multiplicative in-out: The same as above,
but addition is replaced by multiplication in
sim and sim2.

sim(a, b) = sim(a1, b1) ∗ sim(a2, b2)

∗ sim2(a1, b2) ∗ sim2(a2, b1)

(12)

where

sim2(x1, y2) = sim(xin1 , y
out
2 ) ∗ sim(xout1 , yin2 )

(13)

4 Clustering Experiments

For supervised classification tasks, it is desirable
to adapt word2vec’s hyperparameters to the task
and the data at hand (Levy et al., 2015a). The
interaction between hyperparameters is also to be
considered (Krebs and Paperno, 2016). However,
our experiment is a clustering scenario aimed at
exploratory analysis on a vector space created by
pre-trained word embeddings; therefore, we set the
parameters once and in advance.
We trained a word2vec CBOW model (Mikolov
et al., 2013a) with negative sampling and a window
size of 10 words on the ukWaC corpus (Baroni
et al., 2009), and extracted both input and output
vectors of size = 400 to build the vector combina-
tions above. This size corresponds to the best per-
forming model in the comparative paper by Baroni
et al. (2012). An adjacency matrix was constructed
for each vector/similarity combination using cosine
similarity.
Clustering was implemented with Cluto’s (Zhao
et al., 2005) clustering function which takes the
adjacency matrix as input. We used a hierarchi-
cal agglomerative clustering with the unweighted
average distance (UPGMA) criterion function2.

4.1 Evaluation as classification

At first, we ran the clustering with 9 clusters (the
number of classes in the standard) and tried to make
one-to-one correspondences between the standard
and the output. Every cluster is mapped to the stan-
dard class that shares the more elements with. We

2We observed that these settings are sensitive to the chain-
ing effect and there is probably room for improvement by
experimenting with different task-specific clustering parame-
ters.
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then calculate precision and recall for each stan-
dard class (zero if the class doesn’t show up as a
majority class in any cluster). Average class-based
precision and recall is reported, as well as the num-
ber of classes in the standard that could be assigned.
These scores were published for the SemEval task
participants, but ours are not comparable because
we only consider one cluster for each class, and
because we did the clustering on the training data.

INPUT classes P R F
found

a1(base) 5 0.1700 0.2086 0.1873

add 6 0.1918 0.1973 0.1945
conc 6 0.2031 0.2115 0.2072
in-out.add 8 0.2635 0.2192 0.2393
mult 7 0.1824 0.1493 0.1642
in-out.mult 5 0.1102 0.1232 0.1163
diff 5 0.3762 0.0918 0.1476

Table 2: Class-based results for 9 clusters

4.2 Evaluation as clustering

While the scores above can be indicative of the
potential of different representations, they do not
provide information on other aspects as cluster sta-
bility, purity, the amount of post-processing needed.
Above all, in a completely unsupervised setting, the
number of classes in the standard is not known and
cluster quality (precision) plays an important role
with respect to interpretability: it is easier to unify
two homogeneous clusters than to separate a noisy
one. We ran complementary experiments with dif-
ferent numbers of clusters. Table 3 indicates results
for 20 and 30 clusters. The input-output combina-
tion method still has an advantage, and concatena-
tion and multiplication also perform well. However,
the advantages over the baseline are less significant
than when the number of clusters was identical to
the standard.
In the next runs, we measure how stable the differ-
ent clustering solutions are with settings that are
structurally very different from the standard, i.e.
have significantly more clusters. Class-based pre-
cision and recall are less relevant measures in this
setting, since they take the average over the nine
standard classes and not over the produced clusters.
We therefore decided to use modified purity (Korho-
nen et al., 2008), adapted for structurally different
clustering solution. Modified purity gives the pro-
portion of word pairs belonging to the majority

INPUT #clust P R F

a1(base) 20 0.3429 0.1642 0.2221

add 20 0.2434 0.1843 0.2098
conc 20 0.2718 0.2116 0.2380
in-out.add 20 0.2947 0.2076 0.2436
mult 20 0.3405 0.1886 0.2428
in-out.mult 20 0.2711 0.1432 0.1874
diff 20 0.2997 0.1161 0.1674

a1(base) 30 0.3855 0.1712 0.2371

add 30 0.2714 0.1726 0.2110
conc 30 0.3331 0.1862 0.2389
in-out.add 30 0.3548 0.1947 0.2514
mult 30 0.3037 0.1995 0.2408
in-out.mult 30 0.3916 0.1304 0.1957
diff 30 0.3770 0.1318 0.1953

Table 3: Class-based results for 20 and 30 clusters

class c in their cluster k:

PUR =

∑|K|
i=1maxj |w in ki ∩ w in cj |∑|K|

i=1w in ki
(14)

Modified purity is indicative of the quality and
interpretability of the clusters. It favorizes small
clusters, but singleton clusters were discarded. This
measure corresponds to prediction accuracy in clas-
sification if we assign the majority label to clusters.
Two series of runs were evaluated: for 10, 20... up
to 50, and for 60, 70... up to 100 clusters. Aver-
age results are reported. These scores indicate the
average purity of clusters over different runs.

INPUT PUR

a1(baseline) 0.2940

add 0.3059
conc 0.3107
in-out.add 0.3235
mult 0.2575
in-out.mult 0.2119
diff 0.2297

Table 4: Cluster-based results, 10-50 clusters

INPUT PUR

a1(baseline) 0.3291

add 0.3578
conc 0.3737
in-out.add 0.3674
mult 0.3235
in-out.mult 0.2587
diff 0.3058

Table 5: Cluster-based results, 60-100 clusters
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5 Discussion

We note that the baseline and the simple pairwise
combinations have a high performance because
they already capture arguments’ semantic types
successfully. This also lies behind previous suc-
cess on the analogy dataset. Moreover, the nature
of semantic spaces and of semantic datasets is such
that they typically contain close or quasi-identical
variants for the same phenomenon, that the base-
lines identify easily.

The additive input-output combination shows
promising results, especially when it comes to cap-
turing the structure: in the clustering setting with
9 clusters, it identifies 8 classes out of 9 in the
standard. This indicates a good potential in differ-
entiating between relation types, especially because
the standard is conceived in a way that it contains
strongly related classes. It outperforms every other
measure until the number of clusters grows signifi-
cantly above those in the standard (Table 5), when
the concatenative measure catches up. The base-
line performs well, but additive methods all beat
it, while difference is especially weak. Pairwise
multiplication is good at recognizing the structure
(7 classes out of 9), but not good at assigning ele-
ments.

Multiplicative methods show a fluctuating perfor-
mance, especially the multiplicative input-output
combination. This is due to the higher variance in
similarities obtained by multiplication (in the case
of input-output combination, 6 operands are multi-
plied), combined with the agglomerative clustering,
which is sensitive to chaining.

The very high precision of the baseline method
with a large number of clusters (Table 3) is note-
worthy but not unexpected. Individual similarities
have a strong precision for the easily identifiable
clusters, while additional relational information is
mostly expected to improve recall.

6 Conclusion and Future Work

We presented an experiment to identify relational
similarities in word embedding compositions at a
large scale, using an unsupervised approach. On
the one hand, our results confirm the recent find-
ing that many of the success attributed to vector
arithmetics for analogies come from similarities
between individual elements. On the other hand,
taking second order similarity into account, we can
improve relational similarities and take a step to-
ward a meaningful representation for entity couples

in a semantic relation.
The baseline performs well and is difficult

to enrich with relation-aware information. The
results indicate that the vector offset method for
analogies, which replaces the pairwise similarity,
is the least efficient in capturing generic semantic
relations at a large scale. The vector difference
representation does not conserve pairwise similar-
ities and the offsets do not prove to be constant
enough for unsupervised clustering. Multiplicative
methods do not scale up either, although to a
lesser extent: they capture some of the relational
information, but this happens at the expense
of losing precision from individual similarities.
Pairwise similarities can be better exploited in
an additive or concatenative setting. Moreover,
they can be meaningfully complemented by
including second order similarities without losing
too much information for precise classification.
The input-output combination measure coherently
outperformed the other combinations in almost
every setting, indicating a better potential for
unsupervised experiments.

Unsupervised relation classification is a very
challenging task for several reasons. Some relation
instances are lexical by nature and, therefore, can
be expected to show up in the same cluster based
on distributional cues. On the other hand, contex-
tual relation instances tend to have relation-specific
indicators when they co-occur, but their individual
vectors will not reveal this information (unless they
co-occur very often). Moreover, semantic relations
differ with respect to the semantic constraints they
put on their arguments. For instance, the second
argument of the Content-Container relation tend
to belong to a specific semantic class in the stan-
dard (bag, box, trunk, case, drawer...), while both
arguments of the Cause-Effect relation are much
freer (gas, prices, pain, acts, species and pyrol-
ysis, collapse, contraction, society, noise). Any
future development towards an automated unsu-
pervised classification needs to take these aspects
into account and work towards a hybrid solution by
separating relations with semantically constrained
arguments from free ones, as well as adapting the
clustering method to handle outliers.
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Amaç Herdaǧdelen and Marco Baroni. 2009. Bag-
pack: A general framework to represent semantic
relations. In Proceedings of the Workshop on Ge-
ometrical Models of Natural Language Semantics,
GEMS ’09.

Jerry Hobbs and Ellen Riloff. 2010. Information ex-
traction. In Handbook of Natural Language Process-
ing, Second Edition.

David Jurgens, Peter Turney, Saif M. Mohammad, and
Keith Holyoak. 2012. Semeval-2012 task 2: Measur-
ing degrees of relational similarity. In Proceedings
of the Workshop on Semantic Evaluations.

Anna Korhonen, Yuval Krymolowski, and Nigel Col-
lier. 2008. The choice of features for classification
of verbs in biomedical texts. In COLING’08.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering, 21:5.

Alicia Krebs and Denis Paperno. 2016. When hyperpa-
rameters help: Beneficial parameter combinations in
distributional semantic models. In Joint Conference
on Lexical and Computational Semantics (*SEM).

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In
ICML’14.

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
In CONLL’14.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015a. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL, 3.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015b. Do supervised distributional me-
thods really learn lexical inference relations? In
ACL ’15.

Tal Linzen. 2016. Issues in evaluating semantic
spaces using word analogies. In RepEval Workshop,
ACL’16.

Márton Makrai, Dávid Nemeskey, and András Kornai.
2013. Applicative structure in vector space models.
In Workshop on Continuous Vector Space Models
and their Compositionality.

Oren Melamud, Omer Levy, and Ido Dagan. 2015. A
simple word embedding model for lexical substitu-
tion. In Proceedings of the Vector Space Modeling
for NLP Workshop, NAACL.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeff
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at ICLR.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In NAACL’13.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence, 34:8.

Jane Morris and Graeme Hirst. 2004. Non-classical
lexical semantic relations. In Workshop on Compu-
tational Lexical Semantics, HLT-NAACL’04.

Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and
Rich Caruana. 2016. Improving document ranking
with dual word embeddings. In Proceedings of the
WWW Conference.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP’14.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In COLING’14.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte Im Walde. 2014. Chasing hypernyms in vec-
tor spaces with entropy. In EACL’14.

1822



Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In ACL’16.

Peter Turney. 2005. Measuring semantic similarity by
latent relational analysis. In IJCAI’05.

Peter Turney. 2006. Similarity of semantic relations.
CoRR, abs/cs/0608100.

Peter Turney. 2012. Domain and function: A dual-
space model of semantic relations and compositions.
Journal of Artificial Intelligence Research, 44.

Peter Turney and Saif M. Mohammad. 2014. Experi-
ments with three approaches to recognizing lexical
entailment. Natural Language Engineering, 21:3.

Peter Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. CoRR, abs/1003.1141.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In COLING ’14.

Ying Zhao, George Karypis, and Usama Fayyad. 2005.
Hierarchical clustering algorithms for document
datasets. Data Mining for Knowledge Discovery,
10.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation ex-
traction. In ACL’05.

1823



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1824–1829
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Temporal dynamics of semantic relations in word embeddings:
an application to predicting armed conflict participants

Andrey Kutuzov
Department of Informatics

University of Oslo
andreku@ifi.uio.no

Erik Velldal
Department of Informatics

University of Oslo
erikve@ifi.uio.no

Lilja Øvrelid
Department of Informatics

University of Oslo
liljao@ifi.uio.no

Abstract

This paper deals with using word embed-
ding models to trace the temporal dynam-
ics of semantic relations between pairs
of words. The set-up is similar to the
well-known analogies task, but expanded
with a time dimension. To this end, we
apply incremental updating of the mod-
els with new training texts, including in-
cremental vocabulary expansion, coupled
with learned transformation matrices that
let us map between members of the re-
lation. The proposed approach is evalu-
ated on the task of predicting insurgent
armed groups based on geographical lo-
cations. The gold standard data for the
time span 1994–2010 is extracted from the
UCDP Armed Conflicts dataset. The re-
sults show that the method is feasible and
outperforms the baselines, but also that
important work still remains to be done.

1 Introduction and related work

In this research, we make an attempt to model the
dynamics of worldwide armed conflicts on the ba-
sis of English news texts. To this end, we employ
the well-known framework of Continuous Bag-of-
Words modeling (Mikolov et al., 2013c) for train-
ing word embeddings on the English Gigaword
news text corpus (Parker et al., 2011). We learn
linear projections from the embeddings of geo-
graphical locations where violent armed groups
were active to the embeddings of these groups.
These projections are then applied to the embed-
dings and gold standard data from the subsequent
year, thus predicting what entities act as violent
groups in the next time slice. To evaluate our
approach, we adapt the UCDP Armed Conflict
Dataset (Gleditsch et al., 2002; Allansson et al.,

2017) (see Section 2 for details).

Here is a simplified example of the task: given
that in 2003, the Kashmir Liberation Front and
ULFA were involved in armed conflicts in India,
and Lord’s Resistance Army in Uganda, predict en-
tities playing the same role in 2004 in Iraq (the cor-
rect answers are Ansar al-Islam, al-Mahdi Army
and Islamic State). The nature of the task is con-
ceptually similar to that of analogical reasoning,
but with the added complexity of temporal change.

Attempts to detect semantic change using un-
supervised methods have a long history. Signif-
icant results have already been achieved in em-
ploying word embeddings to study diachronic lan-
guage change. Among others, Eger and Mehler
(2016) show that the embedding of a given word
for a given time period to a large extent is a lin-
ear combination of its embeddings for the pre-
vious time periods. Hamilton et al. (2016) pro-
posed an important distinction between cultural
shifts and linguistic drifts. They proved that global
embedding-based measures (comparing the sim-
ilarities of words to all other words in the lexi-
con) are sensitive to regular processes of linguis-
tic drift, while local measures (comparing nearest
neighbors’ lists) are a better fit for more irregular
cultural shifts in word meaning.

Our focus here is on cultural shifts: it is not
the dictionary meanings of the names denoting lo-
cations and armed groups that change, but rather
their ‘image’ in the analyzed texts. Our measure-
ment approach can also be defined as ‘local’ to
some extent: the linear projections that we learn
are mostly based and evaluated on the nearest
neighborhood data. However, this method is dif-
ferent in that its scope is not single words but pairs
of typed entities (‘location’ and ‘armed group’ in
our case) and the semantic relations between them.
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1.1 Contributions
The main contributions of this paper are:

1. We show that distributional semantic models,
in particular word embeddings, can be used
not only to trace diachronic semantic shifts
in words, but also the temporal dynamics of
semantic relations between pairs of words.

2. The necessary prerequisites for achieving de-
cent performance in this task are incremental
updating of the models with new textual data
(instead of training from scratch each time
new data is added) and some way of expand-
ing the vocabulary of the models.

2 Gold standard data on armed conflicts

The UCDP/PRIO Armed Conflict Dataset main-
tained by the Uppsala Conflict Data Program and
the Peace Research Institute Oslo is a manually
annotated geographical and temporal dataset with
information on armed conflicts, in the time period
from 1946 to the present (Gleditsch et al., 2002;
Allansson et al., 2017). It encodes conflicts, where
at least one party is the government of a state. The
Armed Conflict Dataset is widely used in statis-
tical and macro-level conflict research; however,
it was adapted and introduced to the NLP field
only recently, starting with (Kutuzov et al., 2017).
Whereas that work was focused on detecting the
onset/endpoint of armed conflicts, the current pa-
per further extends on this by using the dataset to
evaluate the detection of changes in the seman-
tic relation holding between participants of armed
conflicts and their locations.

Two essential notions in the UCDP data are
those of event and armed conflict. Events can
evolve into full-scale armed conflicts, defined as
contested incompatibilities that concern govern-
ment and/or territory where the use of armed force
between two parties, of which at least one is the
government of a state, results in at least 25 battle-
related deaths (Sundberg and Melander, 2013).

The subset of the data that we employ is
the UCDP Conflict Termination dataset (Kreutz,
2010). It contains entries on starting and ending
dates of about 2000 conflicts. We limit ourselves
to the conflicts taking place between 1994 and
2010 (the Gigaword time span). Almost always,
the first actor of the conflict (sideA) is the govern-
ment of the corresponding location, and the sec-
ond actor (sideB) is some insurgent armed group

we are interested in. We omitted the conflicts
where both sides were governments (about 2% of
the entries) or where one of the sides was men-
tioned in the Gigaword less than 100 times (about
1% of the entries). In cases when the UCDP de-
scribed the conflict as featuring several groups on
the sideB, we created a separate entry for each.

This resulted in a test set of 673 conflicts, with
137 unique Location–Insurgent pairs throughout
the whole time span (many pairs appear sev-
eral times in different years). In total, it men-
tions 52 locations (with India being the most
frequent) and 128 armed insurgent groups (with
ULFA or United Liberation Front of Assam be-
ing the most frequent). This test set is available
for subsequent reuse (http://ltr.uio.no/
~andreku/armedconflicts/).

3 Predicting armed conflict participants

In this section, we provide a detailed description
of our approach, starting with a synchronic exam-
ple in 3.1 and then moving on to a toy diachronic
example on one pair of years in 3.2. In the next
section 4, we conduct evaluation on the full test
set.

3.1 Synchronic modeling

We first conducted preliminary experiments to as-
sess the hypothesis that the embeddings contain
semantic relationships of the type ‘insurgent par-
ticipant of an armed conflict in the location’. To
this end, we trained a CBOW model on the full
English Gigaword corpus (about 4.8 billion tokens
in total), with a symmetric context window of 5
words, vector size 300, 10 negative samples and
5 iterations. Words with a frequency less than
100 were ignored during training. We used Gen-
sim (Řehůřek and Sojka, 2010) for training, and
in terms of corpus pre-processing we performed
lemmatization, PoS-tagging and NER using Stan-
ford CoreNLP (Manning et al., 2014). Named en-
tities were concatenated to one token (for example,
United States became United::States_PROPN).

Then, we used the 137 Location–Insurgent pairs
derived in Section 2 to learn a projection matrix
from the embeddings for locations to the embed-
dings for insurgents. The idea and the theory be-
hind this approach are extensively described in
(Mikolov et al., 2013b) and (Kutuzov et al., 2016),
but essentially it involves training a linear regres-
sion which minimizes the error in transforming
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loc→group group→loc

λ @1 @5 @10 @1 @5 @10

0.0 0.0 14.6 31.4 8.8 46.7 70.8
0.5 0.7 19.0 35.0 7.3 49.6 70.1
1.0 2.2 19.7 32.8 6.6 47.4 66.4

Table 1: Accuracies for synchronic projections
from locations to armed groups, and vice versa

one set of vectors into another. Finding the op-
timal transformation matrix amounts to solving i
normal equations (where i is the vector size in the
embedding model being used), as shown in Equa-
tion 1:

βi = (Xᵀ ∗ X + λ ∗ L)−1 ∗ Xᵀ ∗ yi (1)

where X is the matrix of 137 location word vectors
(input), yi is the array of the ith components of
137 corresponding insurgent word vectors (correct
predictions), L is the identity matrix of the size i,
with 0 at the top left cell, and λ is a real number
used to tune the influence of regularization term
(if λ = 0, there is no regularization). βi is the
array of i optimal coefficients which transform an
arbitrary location vector into the ith component of
the corresponding insurgent vector. After learning
such an array for each vector component, we have
a linear projection matrix which can ‘predict’ an
insurgent embedding from a location embedding.

To evaluate the resulting projections, we em-
ployed leave-one-out cross-validation, i.e., mea-
suring the average accuracy of predictions on each
pair from the test set, after training the matrix on
all the pairs except the one used for the testing.
The transformation matrix was dot-multiplied by
the location vector from the test pair. Then, we
found n nearest neighbors in the word embedding
model for this predicted vector. If the real insur-
gent in the test pair was present in these n neigh-
bors, the accuracy for this pair was 1, otherwise 0.
In Table 1, the average accuracies with different
values of λ and n are reported.

The relations of this kind are not symmetric: it
is much easier to predict the location based on the
insurgent than vice versa (see the right part of Ta-
ble 1). Moreover, we find that the achieved re-
sults are roughly consistent with the performance
of the same approach on the Google Analogies
test set (Mikolov et al., 2013a). We converted the
semantic sections in the Analogies test set con-
taining only nouns (capitals–common, capitals–
world, cities in states, currency and family) to

sets of unique pairs. Then, linear projections with
λ = 1.0 were learned and evaluated for each of
them. The average accuracies over these sections
were 13.0@1, 48.77@5 and 62.96@10.

The results on predicting armed groups are still
worse than on the Google Analogies, because of 3
factors: 1) one-to-many relationships in the UCDP
dataset (multiple armed groups can be active in the
same location) make learning the transformation
matrix more difficult; 2) the frequency of words
denoting armed groups is lower than any of the
words in the Google Analogies data set, thus, em-
beddings for them are of lower quality; 3) training
the matrix on the whole Gigaword model is sub-
optimal, as the majority of armed groups were not
active throughout all its time span.

All our experiments were also conducted us-
ing the very similar Continuous Skipgram mod-
els. However, as CBOW proved to consistently
outperform Skipgram for our tasks, we only report
results for CBOW, due to limited space.1

To sum up this section, many-to-one semantic
relations between locations and insurgents do exist
in the word embedding models. They are less ex-
pressed than one-to-one relations like those in the
Google Analogies test set, but still can be found
using linear projections. In the next section, we
trace the dynamics of these relations as the mod-
els are updated with new data.

3.2 Diachronic modeling

Our approach to using learned transformation ma-
trices to trace armed conflict dynamics through
time consists of the following. We first train a
CBOW model on the subsection of Gigaword texts
belonging to the year 1994. Then, we incremen-
tally update (train) this same model with new texts,
saving a new model after each subsequent year.
The size of the yearly subcorpora is about 250–
320 million content words each. Importantly, we
also use vocabulary expansion: new words are
added to the vocabulary of the model if their fre-
quency in the new yearly data satisfy our minimal
threshold of 15.2 Each yearly training session is
performed in 5 iterations, with linearly decreas-
ing learning rate. Note that we do not use any
model alignment method (Procrustes, etc): our

1It seems CBOW is often better than Skipgram with linear
projections; cf. the same claim in (Kutuzov et al., 2016).

2We did not experiment with different thresholds. It was
initially set to the value which produced a reasonable vocab-
ulary size of several hundred thousand words.
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Pairs (size) @1 @5 @10

All (38) 44.7 73.7 84.2
New (7) 14.3 28.6 42.9

Table 2: Projection accuracy for the isolated ex-
ample experiment mapping from 2000→ 2001.

models are simply trained further with the new
texts. A possible alternative to this can be incre-
mental training of hierarchical softmax functions
proposed in (Peng et al., 2017) or incremental neg-
ative sampling proposed in (Kaji and Kobayashi,
2017); we leave it for future work.

The experiment involves applying a learned
transformation matrix across pairs of models.
While in Section 4 we evaluate the approach
across the entire Gigaword time period, this sec-
tion reports a preliminary example experiment for
the transition from 2000 to 2001 alone. This
means we will have one model saved after sequen-
tial training for the years up to 2000, and one saved
after year 2001. Our aim is to find out whether
the Location–Insurgent projection learned on the
first model is able to reveal conflicts that appear in
2001. Thus, we extract from the UCDP dataset all
the pairs related to the conflicts which took place
between 1994 and 2000 (91 pairs total). The pro-
jection is trained on their embeddings from the
first model (actually, on 79 pairs, as 12 armed
group names were not present in the 2000 model
and subsequently skipped). Then, this projection
is applied to the second model embeddings of the
47 locations, which are subject to armed conflicts
in the year 2001 (38 after skipping pairs with out-
of-vocabulary elements). Table 2 demonstrates
the resulting performance (reflecting how close the
predicted vectors are to the actual armed groups
active in this or that location).

Note that out of 38 pairs from 2001, 31 were
already present in the previous data set (ongoing
conflicts). This explains why the evaluation on all
the pairs gives high results. However, even for the
new conflicts, the projection performance is en-
couraging. Among others, it managed to precisely
spot the 2001 insurgency of the members of the
Kosovo Liberation Army in Macedonia, notwith-
standing the fact that the initial set of training pairs
did not mention Macedonia at all. Thus, it seems
that the models at least partially ‘align’ new data
along the existing semantic axis trained before.

In the next section, we systematically evaluate

our approach on the whole set of UCDP conflicts
in the Gigaword years (1994–2010).

4 Evaluation of diachronic models

To evaluate our approach on all the UCDP data,
we again tested how good it is in predicting the
future conflicts based on the projection matrices
learned from the previous years. We did this for
all the years between 1994 and 2010. The evalu-
ation metrics are the same as in the Section 3: we
calculated the ratio of correctly predicted armed
groups names from the conflict pairs, for which
the UCDP datasets stated that these conflicts were
active in this particular year. As before, the mod-
els employed in the experiment were incremen-
tally trained on each successive year with vocabu-
lary expansion. Words present in the gold standard
but absent from the models under analysis were
skipped. At the worst case, 25% of pairs were
skipped from the test set; on average, 13% were
skipped each year (but see the note below about
the incr. static baseline). At test time, all the enti-
ties were lowercased.

We employ 3 baselines: 1) yearly models
trained separately from scratch on the corpora con-
taining texts from each year only (referred to as
separate hereafter); 2) yearly models trained from
scratch on all the texts from the particular year
and the previous years (cumulative hereafter); 3)
incrementally trained models without vocabulary
expansion (incr. static hereafter).

Initially, the linear projections for all models
were trained on all the conflict pairs from the past
and present years, similar to Section 3.2 (dubbed
up-to-now hereafter). However, the information
about conflicts having ended several years before
might not be strongly expressed in the model after
it was incrementally updated with the data from
all the subsequent years. For example, the 2005
model hardly contains much knowledge about the
conflict relations between Mexico and the Popu-
lar Revolutionary Army (EPR) which stopped its
activities after 1996. Thus, we additionally con-
ducted a similar experiment, but this time the pro-
jections were learned only on the salient pairs
(dubbed previous): that is, the pairs active in the
last year up to which the model was trained.

Table 3 presents the results for these experi-
ments, as well as baselines (averaged across 15
years). For the proposed incr. dynamic approach,
the performance of the previous projections is
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Only in-vocabulary pairs All pairs, including OOV

up-to-now previous up-to-now previous

@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

Separate 0.0 0.7 2.1 0.5 1.1 2.4 0.0 0.5 1.6 0.4 0.8 1.8
Cumulative 1.7 8.3 13.8 2.9 9.6 15.2 1.5 7.4 12.2 2.5 8.5 13.4
Incr. static 54.9 82.8 90.1 60.4 79.6 84.8 20.8 31.5 34.2 23.0 30.3 32.2
Incr. dynamic 32.5 64.5 72.2 42.6 64.8 71.5 28.1 56.1 62.9 37.3 56.7 62.6

Table 3: Average accuracies of predicting next-year insurgents on the basis of locations, using projections
trained on the conflicts from all the preceding years (up-to-now) or the preceding year only (previous).
Results for 3 baselines are shown along with the proposed incremental dynamic approach.

comparable to that of the up-to-now projections
on the accuracies @5 and @10, and is even higher
on the accuracy @1 (statistically significant with
t-test, p < 0.01). Thus, the single-year projections
are somewhat more ‘focused’, while taking much
less time to learn, because of less training pairs.

The fact that our models were incrementally up-
dated, not trained from scratch, is crucial. The re-
sults of the separate baseline look more like ran-
dom jitter. The cumulative baseline results are
slightly better, probably simply because they are
trained on more data. However, they still perform
much worse than the models trained using incre-
mental updates. This is because the former mod-
els are not connected to each other, and thus are
initialized with a different layout of words in the
vector space. This gives rise to formally differ-
ent directions of semantic relations in each yearly
model (the relations themselves are still there, but
they are rotated and scaled differently).

The results for the incr. static baseline, when
tested only on the words present in the test model
vocabulary (the left part of the table), seem bet-
ter than those of the proposed incr. dynamic ap-
proach. This stems from the fact that incremen-
tal updating with static vocabulary means that we
never add new words to the models; thus, they
contain only the vocabulary learned from the 1994
texts. The result is that at test time we skip many
more pairs than with the other approaches (about
62% in average). Subsequently, the projections are
tested only on a minor part of the test sets.

Of course, skipping large parts of the data
would be a major drawback for any realistic ap-
plication, so the incr. static baseline is not really
plausible. For comparison, the right part of Table 3
provides the accuracies for the setup in which all
the pairs are evaluated (for pairs with OOV words
the accuracy is always 0). Other tested approaches
are not much affected by this change, but for incr.

static the performance drops drastically. As a re-
sult, for the all pairs scenario, incremental updat-
ing with vocabulary expansion outperforms all the
baselines (the differences are statistically signifi-
cant with t-test, p < 0.01).

5 Conclusion

We have here shown how incrementally updated
word embedding models with vocabulary expan-
sion and linear projection matrices are able to trace
the dynamics of subtle semantic relations over
time. We applied this approach to the task of
predicting armed groups active in particular geo-
graphical locations and showed that it significantly
outperforms the baselines. However, it can be used
for any kind of semantic relations. We believe that
studying temporal shifts of such projections can
lead to interesting findings far beyond the usual
example of ‘king is to queen as man is to woman’.

To our best knowledge, the behavior of seman-
tic relations in updated word embedding models
was not explored before. Our experiments show
that the models do preserve these ‘directions’ and
that the learned projections not only hold for the
word pairs known to the initial model, but can also
be used to predict relations for the new words.

In terms of future work, we plan to trace how
quickly incremental updates to the model ‘dilute’
the projections, rendering them useless with time.
We observed this performance drop in our exper-
iments, and it would be interesting to know more
about the regularities governing this deterioration.
Also, for the particular task of analyzing armed
conflicts, we plan to research ways of improv-
ing accuracy in predicting completely new armed
groups not present in the training data, and the
methods of filtering out locations not involved in
armed conflicts.
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Abstract

Understanding a long document requires
tracking how entities are introduced and
evolve over time. We present a new type of
language model, ENTITYNLM, that can
explicitly model entities, dynamically up-
date their representations, and contextu-
ally generate their mentions. Our model is
generative and flexible; it can model an ar-
bitrary number of entities in context while
generating each entity mention at an arbi-
trary length. In addition, it can be used
for several different tasks such as language
modeling, coreference resolution, and en-
tity prediction. Experimental results with
all these tasks demonstrate that our model
consistently outperforms strong baselines
and prior work.

1 Introduction

Understanding a narrative requires keeping track
of its participants over a long-term context. As a
story unfolds, the information a reader associates
with each character in a story increases, and ex-
pectations about what will happen next change ac-
cordingly. At present, models of natural language
do not explicitly track entities; indeed, in today’s
language models, entities are no more than the
words used to mention them.

In this paper, we endow a generative language
model with the ability to build up a dynamic rep-
resentation of each entity mentioned in the text.
Our language model defines a probability distribu-
tion over the whole text, with a distinct generative
story for entity mentions. It explicitly groups those
mentions that corefer and associates with each en-
tity a continuous representation that is updated by
every contextualized mention of the entity, and
that in turn affects the text that follows.

[John]1 wanted to go to [the coffee shop]2 in
[downtown Copenhagen]3. [He]1 was told that
[it]2 sold [the best beans]4.

Figure 1: ENTITYNLM explicitly tracks entities
in a text, including coreferring relationships be-
tween entities like [John]1 and [He]1. As a lan-
guage model, it is designed to predict that a coref-
erent of [the coffee shop]2 is likely to follow “told
that,” that the referring expression will be “it”, and
that “sold the best beans” is likely to come next, by
using entity information encoded in the dynamic
distributed representation.

Our method builds on recent advances in repre-
sentation learning, creating local probability dis-
tributions from neural networks. It can be un-
derstood as a recurrent neural network language
model, augmented with random variables for en-
tity mentions that capture coreference, and with
dynamic representations of entities. We estimate
the model’s parameters from data that is annotated
with entity mentions and coreference.

Because our model is generative, it can be
queried in different ways. Marginalizing every-
thing except the words, it can play the role of a lan-
guage model. In §5.1, we find that it outperforms
both a strong n-gram language model and a strong
recurrent neural network language model on the
English test set of the CoNLL 2012 shared task
on coreference evaluation (Pradhan et al., 2012).
The model can also identify entity mentions and
coreference relationships among them. In §5.2,
we show that it can easily be used to add a per-
formance boost to a strong coreference resolution
system, by reranking a list of k-best candidate out-
puts. On the CoNLL 2012 shared task test set, the
reranked outputs are significantly better than the
original top choices from the same system. Fi-
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nally, the model can perform entity cloze tasks.
As presented in §5.3, it achieves state-of-the-art
performance on the InScript corpus (Modi et al.,
2017).

2 Model

A language model defines a distribution over se-
quences of word tokens; let Xt denote the random
variable for the tth word in the sequence, xt de-
note the value of Xt and xt the distributed repre-
sentation (embedding) of this word. Our starting
point for language modeling is a recurrent neural
network (Mikolov et al., 2010), which defines

p(Xt | history) = softmax (Whht−1 + b) (1)

ht−1 = LSTM(ht−2,xt−1) (2)

where Wh and b are parameters of the model
(along with word embeddings xt), LSTM is the
widely used recurrent function known as “long
short-term memory” (Hochreiter and Schmidhu-
ber, 1997), and ht is a LSTM hidden state encoding
the history of the sequence up to the tth word.

Great success has been reported for this model
(Zaremba et al., 2015), which posits nothing ex-
plicitly about the words appearing in the text se-
quence. Its generative story is simple: the value
of each Xt is randomly chosen conditioned on the
vector ht−1 encoding its history.

2.1 Additional random variables and
representations for entities

To introduce our model, we associate with each
word an additional set of random variables. At po-
sition t,

• Rt is a binary random variable that indi-
cates whether xt belongs to an entity men-
tion (Rt = 1) or not (Rt = 0). Though not
explored here, this is easily generalized to a
categorial variable for the type of the entity
(e.g., person, organization, etc.).

• Lt ∈ {1, . . . , `max} is a categorical random
variable if Rt = 1, which indicates the num-
ber of remaining words in this mention, in-
cluding the current word (i.e., Lt = 1 for
the last word in any mention). `max is a
predefined maximum length fixed to be 25,
which is an empirical value derived from the
training corpora used in the experiments. If
Rt = 0, then Lt = 1. We denote the value of
Lt by `t.

• Et ∈ Et is the index of the entity referred to,
if Rt = 1. The set Et consists of {1, . . . , 1 +
maxt′<t et′}, i.e., the indices of all previously
mentioned entities plus an additional value
for a new entity. Thus Et starts as {1} and
grows monotonically with t, allowing for an
arbitrary number of entities to be mentioned.
We denote the value of Et by et. If Rt = 0,
then Et is fixed to a special value ø.

The values of these random variables for our run-
ning example are shown in Figure 2.

In addition to using symbolic variables to en-
code mentions and coreference relationships, we
maintain a vector representation of each entity that
evolves over time. For the ith entity, let ei,t be
its representation at time t. These vectors are
different from word vectors (xt), in that they are
not parameters of the model. They are similar to
history representations (ht), in that they are de-
rived through parameterized functions of the ran-
dom variables’ values, which we will describe in
the next subsections.

2.2 Generative story
The generative story for the word (and other
variables) at timestep t is as follows; forward-
referenced equations are in the detailed discussion
that follows.

1. If `t−1 = 1 (i.e., xt is not continuing an
already-started entity mention):

• Choose rt (Equation 3).
• If rt = 0, set `t = 1 and et = ø; then go

to step 3. Otherwise:
– If there is no embedding for the

new candidate entity with index
1 + maxt′<t et′ , create one follow-
ing §2.4.

– Select the entity et from {1, . . . , 1 +
maxt′<t et′} (Equation 4).

– Set ecurrent = eet,t−1, which is
the entity embedding of et before
timestep t.

– Select the length of the mention, `t
(Equation 5).

2. Otherwise,

• Set `t = `t−1 − 1, rt = rt−1, et = et−1.

3. Sample xt from the word distribution given
the LSTM hidden state ht−1 and the current
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X1:12: John wanted to go to the coffee shop in downtown Copenhagen .
R1:12: 1 0 0 0 0 1 1 1 0 1 1 0
E1:12: 1 ø ø ø ø 2 2 2 ø 3 3 ø
L1:12: 1 1 1 1 1 3 2 1 1 2 1 1

X13:22: He was told that it sold the best beans .
R13:22: 1 0 0 0 1 0 1 1 1 .
E13:22: 1 ø ø ø 2 ø 4 4 4 ø
L13:22: 1 1 1 1 1 1 3 2 1 0

Figure 2: The random variable values in ENTITYNLM for the running example in Figure 1.

(or most recent) entity embedding ecurrent
(Equation 6). (If rt = 0, then ecurrent still
represents the most recently mentioned en-
tity.)

4. Advance the RNN, i.e., feed it the word vec-
tor xt to compute ht (Equation 2).

5. If rt = 1, update eet,t using eet,t−1 and ht,
then set ecurrent = eet,t. Details of the entity
updating are given in §2.4.

6. For every entity eι ∈ Et \ {et}, set eι,t =
eι,t−1 (i.e., no changes to other entities’ rep-
resentations).

Note that at any given time step t, ecurrent will al-
ways contain the most recent vector representation
of the most recently mentioned entity.

A generative model with a similar hierarchi-
cal structure was used by Haghighi and Klein
(2010) for coreference resolution. Our approach
differs in two important ways. First, our model
defines a joint distribution over all of the text, not
just the entity mentions. Second, we use repre-
sentation learning rather than Bayesian nonpara-
metrics, allowing natural integration with the lan-
guage model.

2.3 Probability distributions

The generative story above referenced several
parametric distributions defined based on vector
representations of histories and entities. These are
defined as follows.

For r ∈ {0, 1},

p(Rt = r | ht−1) ∝ exp(h>t−1Wrr), (3)

where r is the parameterized embedding associ-
ated with r, which paves the way for exploring en-
tity type representations in future work; Wr is a
parameter matrix for the bilinear score for ht−1
and r.

To give the possibility of predicting a new en-
tity, we need an entity embedding beforehand with
index (1 + maxt′<t et′), which is randomly sam-
pled from Equation 7. Then, for every e ∈
{1, . . . , 1 + maxt′<t et′}:
p(Et = e | Rt = 1,ht−1)

∝ exp(h>t−1Wentityee,t−1 + w>dist f(e)),
(4)

where ee,t−1 is the embedding of entity e at time
step t−1 and Wentity is the weight matrix for pre-
dicting entities using their continuous representa-
tions. The score above is normalized over values
{1, . . . , 1 + maxt′<t et′}. f(e) represents a vec-
tor of distance features associated with e and the
mentions of the existing entities. Hence two in-
formation sources are used to predict the next en-
tity: (i) contextual information ht−1, and (ii) dis-
tance features f(e) from the current mention to the
closest mention from each previously mentioned
entity. f(e) = 0 if e is a new entity. This term
can also be extended to include other surface-form
features for coreference resolution (Martschat and
Strube, 2015; Clark and Manning, 2016b).

For the chosen entity et from Equation 4, the
distribution over its mention length is drawn ac-
cording to

p(Lt = ` | ht−1, eet,t−1)
∝ exp(W>

length,`[ht−1; eet,t−1]),
(5)

where eet,t−1 is the most recent embedding of the
entity et, not updated with ht. The intuition is that
eet,t−1 will help contextual information ht−1 to
select the residual length of entity et. Wlength

is the weight matrix for length prediction, with
`max = 25 rows.

Finally, the probability of a word x as the next
token is jointly modeled by ht−1 and the vector
representation of the most recently mentioned en-
tity ecurrent :

p(Xt = x | ht−1, ecurrent)
∝ CFSM(ht−1 + Weecurrent),

(6)
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where We is a transformation matrix to adjust the
dimensionality of ecurrent . CFSM is a class factor-
ized softmax function (Goodman, 2001; Baltescu
and Blunsom, 2015). It uses a two-step prediction
with predefined word classes instead of direct pre-
diction on the whole vocabulary, and reduces the
time complexity to the log of vocabulary size.

2.4 Dynamic entity representations
Before predicting the entity at step t, we need an
embedding for the new candidate entity with index
e′ = 1 + maxt′<t et′ if it does not exist. The new
embedding is generated randomly, according to a
normal distribution, then projected onto the unit
ball:

u ∼ N (r1, σ
2I);

ee′,t−1 =
u

‖u‖2
,

(7)

where σ = 0.01. The time step t − 1 in ee′,t−1
means the current embedding contains no infor-
mation from step t, although it will be updated
once we have ht and if Et = e′. r1 is the pa-
rameterized embedding for Rt = 1, which will be
jointly optimized with other parameters and is ex-
pected to encode some generic information about
entities. All the initial entity embeddings are cen-
tered on the mean r1, which is used in Equation 3
to determine whether the next token belongs to an
entity mention. Another choice would be to ini-
tialize with a zero vector, although our preliminary
experiments showed this did not work as well as
random initialization in Equation 7.

Assume Rt = 1 and Et = et, which means xt
is part of a mention of entity et. Then, we need
to update eet,t−1 based on the new information we
have from ht. The new embedding eet,t is a con-
vex combination of the old embedding (eet,t−1)
and current LSTM hidden state (ht) with the in-
terpolation (δt) determined dynamically based on
a bilinear function:

δt = σ(h>t Wδeet,t−1);

u = δteet,t−1 + (1− δt)ht;
eet,t =

u

‖u‖2
, (8)

This updating scheme will be used to update et in
each of all the following `t steps. The projection
in the last step keeps the magnitude of the entity
embedding fixed, avoiding numeric overflow. A
similar updating scheme has been used by Henaff

et al. (2016) for the “memory blocks” in their re-
current entity network models. The difference is
that their model updates all memory blocks in each
time step. Instead, our updating scheme in Equa-
tion 8 only applies to the selected entity et at time
step t.

2.5 Training objective
The model is trained to maximize the log of the
joint probability of R,E,L, and X:

`(θ) = logP (R,E,L,X;θ)

=
∑

t

logP (Rt, Et, Lt, Xt;θ), (9)

where θ is the collection of all the parameters
in this model. Based on the formulation in §2.3,
Equation 9 can be decomposed as the sum of con-
ditional log-probabilities of each random variable
at each time step.

This objective requires the training data anno-
tated as in Figure 2. We do not assume that these
variables are observed at test time.

3 Implementation Details

Our model is implemented with DyNet (Neu-
big et al., 2017) and available at https://
github.com/jiyfeng/entitynlm. We
use AdaGrad (Duchi et al., 2011) with learning
rate λ = 0.1 and ADAM (Kingma and Ba, 2014)
with default learning rate λ = 0.001 as the candi-
date optimizers of our model. For all the parame-
ters, we use the initialization tricks recommended
by Glorot and Bengio (2010). To avoid overfitting,
we also employ dropout (Srivastava et al., 2014)
with the candidate rates as {0.2, 0.5}.

In addition, there are two tunable hyperpa-
rameters of ENTITYNLM: the size of word em-
beddings and the dimension of LSTM hidden
states. For both of them, we consider the values
{32, 48, 64, 128, 256}. We also experiment with
the option to either use the pretrained GloVe word
embeddings (Pennington et al., 2014) or randomly
initialized word embeddings (then updated during
training). For all experiments, the best configura-
tion of hyperparameters and optimizers is selected
based on the objective value on the development
data.

4 Evaluation Tasks and Datasets

We evaluate our model in diverse use scenarios:
(i) language modeling, (ii) coreference resolution,
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and (iii) entity prediction. The evaluation on lan-
guage modeling shows how the internal entity rep-
resentation, when marginalized out, can improve
the perplexity of language models. The evaluation
on coreference resolution experiment shows how
our new language model can improve a compet-
itive coreference resolution system. Finally, we
employ an entity cloze task to demonstrate the
generative performance of our model in predicting
the next entity given the previous context.

We use two datasets for the three evaluation
tasks. For language modeling and coreference
resolution, we use the English benchmark data
from the CoNLL 2012 shared task on corefer-
ence resolution (Pradhan et al., 2012). We employ
the standard training/development/test split, which
includes 2,802/343/348 documents with roughly
1M/150K/150K tokens, respectively. We follow
the coreference annotation in the CoNLL dataset
to extract entities and ignore the singleton men-
tions in texts.

For entity prediction, we employ the InScript
corpus created by Modi et al. (2017). It consists of
10 scenarios, including grocery shopping, taking
a flight, etc. It includes 910 crowdsourced simple
narrative texts in total and 18 stories were ignored
due to labeling problems (Modi et al., 2017). On
average, each story has 12.4 sentences, 24.9 en-
tities and 217.2 tokens. Each entity mention is
labeled with its entity index. We use the same
training/development/test split as in (Modi et al.,
2017), which includes 619, 91, 182 texts, respec-
tively.

Data preprocessing

For the CoNLL dataset, we lowercase all tokens
and remove any token that only contains a punctu-
ation symbol unless it is in an entity mention. We
also replace numbers in the documents with the
special token NUM and low-frequency word types
with UNK. The vocabulary size of the CoNLL data
after preprocessing is 10K. For entity mention ex-
traction, in the CoNLL dataset, one entity men-
tion could be embedded in another. For embed-
ded mentions, only the enclosing entity mention
is kept. We use the same preprocessed data for
both language modeling and coreference resolu-
tion evaluation.

For the InScript corpus, we apply similar data
preprocessing to lowercase all tokens, and we re-
place low-frequency word types with UNK. The

vocabulary size after preprocessing is 1K.

5 Experiments

In this section, we present the experimental results
on the three evaluation tasks.

5.1 Language modeling
Task description. The goal of language model-
ing is to compute the marginal probability:

P (X) =
∑

R,E,L

P (X,R,E,L). (10)

However, due to the long-range dependency in
recurrent neural networks, the search space of
R,E,L during inference grows exponentially.
We thus use importance sampling to approxi-
mate the marginal distribution of X. Specifi-
cally, with the samples from a proposal distri-
bution Q(R,E,L|X), the approximated marginal
probability is defined as

P (X) =
∑

R,E,L

P (X,R,E,L)

=
∑

R,E,L

Q(R,E,L | X)
P (X,R,E,L)

Q(R,E,L | X)

≈ 1

N

∑

{r(i),e(i),`(i)}∼Q

P (r(i), e(i), `(i),x)

Q(r(i), e(i), `(i) | x)

(11)

A similar idea of using importance sampling for
language modeling evaluation has been used by
Dyer et al. (2016).

For language modeling evaluation, we train our
model on the training set from the CoNLL 2012
dataset with coreference annotation. On the test
data, we treat coreference structure as latent vari-
ables and use importance sampling to approximate
the marginal distribution of X. For each docu-
ment, the model randomly draws N = 100 sam-
ples from the proposal distribution, discussed next.

Proposal distribution. For implementation of
Q, we use a discriminative variant of ENTI-
TYNLM by taking the current word xt for predict-
ing the entity-related variables in the same time
step. Specifically, in the generative story described
in §2.2, we delete step 3 (words are not gener-
ated, but rather conditioned upon), move step 4
before step 1, and replace ht−1 with ht in the
steps for predicting entity type Rt, entity Et and
mention length Lt. This model variant provides a
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Model Perplexity

1. 5-gram LM 138.37
2. RNNLM 134.79
3. ENTITYNLM 131.64

Table 1: Language modeling evaluation on the test
sets of the English section in the CoNLL 2012
shared task. As mentioned in §4, the vocabulary
size is 10K. ENTITYNLM does not require any
coreference annotation on the test data.

conditional probability Q(Rt, Et, Lt | Xt) at each
timestep.

Baselines. We compare the language modeling
performance with two competitive baselines: 5-
gram language model implemented in KenLM
(Heafield et al., 2013) and RNNLM with LSTM
units implemented in DyNet (Neubig et al., 2017).
For RNNLM, we use the same hyperparameters
described in §3 and grid search on the develop-
ment data to find the best configuration.

Results. The results of ENTITYNLM and the
baselines on both development and test data are
reported in Table 1. For ENTITYNLM, we use the
value of 2−

1
T

∑T
t=1 logP (Xt,Rt,Et,Lt) on the devel-

opment set with coreference annotation to select
the best model configuration and report the best
number. On the test data, we are able to calcu-
late perplexity by marginalizing all other random
variables using Equation 11. To compute the per-
plexity numbers on the test data, our model only
takes account of log probabilities on word predic-
tion. The difference is that coreference informa-
tion is only used for training ENTITYNLM and
not for test. All three models reported in Table 1
share the same vocabulary, therefore the numbers
on the test data are directly comparable. As shown
in Table 1, ENTITYNLM outperforms both the 5-
gram language model and the RNNLM on the test
data. Better performance of ENTITYNLM on lan-
guage modeling can be expected, if we also use the
marginalization method defined in Equation 11 on
the development data to select the best configura-
tion. However, we plan to use the same experi-
mental setup for all experiments, instead of cus-
tomizing our model for each individual task.

5.2 Coreference reranking
Task description. We show how ENTITYLM,
which allows an efficient computation of the

probability P (R,E,L,X), can be used as a
coreference reranker to improve a competitive
coreference resolution system due to Martschat
and Strube (2015). This task is analogous to
the reranking approach used in machine transla-
tion (Shen et al., 2004). The specific formulation
is as follows:

arg max
{r(i),e(i),l(i)}∈K

P (r(i), e(i), l(i),x) (12)

where K is the k-best list for a given document.
In our experiments, k = 100. To the best of our
knowledge, the problem of obtaining k-best out-
puts of a coreference resolution system has not
been studied before.

Approximate k-best decoding. We rerank the
output of a system that predicts an antecedent for
each mention by relying on pairwise scores for
mention pairs. This is the dominant approach
for coreference resolution (Martschat and Strube,
2015; Clark and Manning, 2016a). The predic-
tions induce an antecedent tree, which represents
antecedent decisions for all mentions in the doc-
ument. Coreference chains are obtained by tran-
sitive closure over the antecedent decisions en-
coded in the tree. A mention also can have an
empty mention as antecedent, which denotes that
the mention is non-anaphoric.

For extending Martschat and Strube’s greedy
decoding approach to k-best inference, we can-
not simply take the k highest scoring trees ac-
cording to the sum of edge scores, because dif-
ferent trees may represent the same coreference
chain. Instead, we use an heuristic that creates
an approximate k-best list on candidate antecedent
trees. The idea is to generate trees from the orig-
inal system output by considering suboptimal an-
tecedent choices that lead to different coreference
chains. For each mention pair (mj ,mi), we com-
pute the difference of its score to the score of the
optimal antecedent choice for mj . We then sort
pairs in ascending order according to this differ-
ence and iterate through the list of pairs. For each
pair (mj ,mi), we create a tree tj,i by replacing
the antecedent of mj in the original system output
with mi. If this yields a tree that encodes differ-
ent coreference chains from all chains encoded by
trees in the k-best list, we add ti,j to the k-best list.
In the case that we cannot generate a given num-
ber of trees (particularly for a short document with
a large k), we pad the list with the last item added
to the list.

1835



Evaluation measures. For coreference resolu-
tion evaluation, we employ the CoNLL scorer
(Pradhan et al., 2014). It computes three com-
monly used evaluation measures MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFe (Luo, 2005). We report the F1 score of
each evaluation measure and their average as the
CoNLL score.

Competing systems. We employed CORT1

(Martschat and Strube, 2015) as our baseline
coreference resolution system. Here, we com-
pare with the original (one best) outputs of
CORT’s latent ranking model, which is the best-
performing model implemented in CORT. We
consider two rerankers based on ENTITYNLM.
The first reranking method only uses the log
probability for ENTITYNLM to sort the candidate
list (Equation 12). The second method uses a
linear combination of both log probabilities from
ENTITYNLM and the scores from CORT, where
the coefficients were found via grid search with
the CoNLL score on the development set.

Results. The reranked results on the CoNLL
2012 test set are reported in Table 2. The numbers
of the baseline are higher than the results reported
in Martschat and Strube (2015) since the feature
set of CORT was subsequently extended. Lines 2
and 3 in Table 2 present the reranked best results.
As shown in this table, both reranked results give
more than 1% of CoNLL score improvement on
the test set over CORT, which are significant based
on an approximate randomization test2.

Additional experiments also found that increas-
ing k from 100 to 500 had a minor effect. That is
because the diversity of each k-best list is limited
by (i) the number of entity mentions in the docu-
ment, (ii) the performance of the baseline corefer-
ence resolution system, and possibly (iii) the ap-
proximate nature of our k-best inference proce-
dure. We suspect that a stronger baseline system
(such as that of Clark and Manning, 2016a) could
give greater improvements, if it can be adapted to
provide k-best lists. Future work might incorpo-
rate the techniques embedded in such systems into
ENTITYNLM.

[I]1 was about to ride [my]1 [bicycle]2 to the
[park]3 one day when [I]1 noticed that the front
[tire]4 was flat . [I]1 realized that [I]1 would
have to repair [it]4 . [I]1 went into [my]1
[garage]5 to get some [tools]5 . The first thing
[I]1 did was remove the xxxx

Figure 3: A short story on bicycles from the
InScript corpus (Modi et al., 2017). The entity
prediction task requires predicting xxxx given
the preceding text either by choosing a previously
mentioned entity or deciding that this is a “new en-
tity”. In this example, the ground-truth prediction
is [tire]4. For training, ENTITYNLM attempts to
predict every entity. While, for testing, it predicts
a maximum of 30 entities after the first three sen-
tences, which is consistent with the experimental
setup suggested by Modi et al. (2017).

5.3 Entity prediction

Task description. Based on Modi et al. (2017),
we introduce a novel entity prediction task that
tries to predict the next entity given the preced-
ing text. For a given text as in Figure 3, this task
makes a forward prediction based on only the left
context. This is different from coreference reso-
lution, where both left and right contexts from a
given entity mention are used in decoding. It is
also different from language modeling, since this
task only requires predicting entities. Since EN-
TITYNLM is generative, it can be directly applied
to this task. To predict entities in test data, Rt is
always given and ENTITYNLM only needs to pre-
dict Et when Rt = 1.

Baselines and human prediction. We intro-
duce two baselines in this task: (i) the always-new
baseline that always predicts “new entity”; (ii) a
linear classification model using shallow features
from Modi et al. (2017), including the recency of
an entity’s last mention and the frequency. We also
compare with the model proposed by Modi et al.
(2017). Their work assumes that the model has
prior knowledge of all the participant types, which
are specific to each scenario and fine-grained, e.g.,
rider in the bicycle narrative, and predicts partic-
ipant types for new entities. This assumption is
unrealistic for pure generative models like ours.

1https://github.com/smartschat/cort, we
used version 0.2.4.5.

2https://github.com/smartschat/art
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MUC B3 CEAFe
Model CoNLL P R F1 P R F1 P R F1

1. Baseline: CORT’s one best 62.93 77.15 68.67 72.66 66.00 54.92 59.95 60.07 52.76 56.18
2. Rerank: ENTITYNLM 64.00 77.90 69.45 73.44 66.84 56.12 61.01 61.73 53.90 57.55
3. Rerank: ENTITYNLM + CORT 64.04 77.93 69.49 73.47 67.08 55.99 61.04 61.76 53.98 57.61

Table 2: Coreference resolution scores on the CoNLL 2012 test set. CORT is the best-performing model
of Martschat and Strube (2015) with greedy decoding.

Accuracy (%)

1. Baseline: always-new 31.08
2. Baseline: shallow features 45.34
3. Modi et al. (2017) 62.65
4. ENTITYNLM 74.23
5. Human prediction 77.35

Table 3: Entity prediction accuracy on the test set
of the InScript corpus.

Therefore, we remove this assumption and adapt
their prediction results to our formulation by map-
ping all the predicted entities that have not been
mentioned to “new entity”. We also compare to
the adapted human prediction used in the In-
Script corpus. For each entity slot, Modi et al.
(2017) acquired 20 human predictions, and the
majority vote was selected. More details about
human predictions are discussed in (Modi et al.,
2017).

Results. Table 3 shows the prediction accura-
cies. ENTITYNLM (line 4) significantly outper-
forms both baselines (line 1 and 2) and prior work
(line 3) (p � 0.01, paired t-test). The compari-
son between line 4 and 5 shows our model is even
close to the human prediction performance.

6 Related Work

Rich-context language models. The originally
proposed recurrent neural network language mod-
els only capture information within sentences.
To extend the capacity of RNNLMs, various re-
searchers have incorporated information beyond
sentence boundaries. Previous work focuses
on contextual information from previous sen-
tences (Ji et al., 2016a) or discourse relations be-
tween adjacent sentences (Ji et al., 2016b), show-
ing improvements to language modeling and re-
lated tasks like coherence evaluation and discourse
relation prediction. In this work, ENTITYNLM
adds explicit entity information to the language
model, which is another way of adding a memory

network for language modeling. Unlike the work
by Tran et al. (2016), where memory blocks are
used to store general contextual information for
language modeling, ENTITYNLM assigns each
memory block specifically to only one entity.

Entity-related models. Two recent approaches
to modeling entities in text are closely related to
our model. The first is the “reference-aware” lan-
guage models proposed by Yang et al. (2016),
where the referred entities are from either a pre-
defined item list, an external database, or the con-
text from the same document. Yang et al. (2016)
present three models, one for each case. For mod-
eling a document with entities, they use corefer-
ence links to recover entity clusters, though they
only model entity mentions as containing a single
word (an inappropriate assumption, in our view).
Their entity updating method takes the latest hid-
den state (similar to ht whenRt = 1 in our model)
as the new representation of the current entity; no
long-term history of the entity is maintained, just
the current local context. In addition, their lan-
guage model evaluation assumes that entity infor-
mation is provided at test time (Yang, personal
communication), which makes a direct compari-
son with our model impossible. Our entity updat-
ing scheme is similar to the “dynamic memory”
method used by Henaff et al. (2016). Our entity
representations are dynamically allocated and up-
dated only when an entity appears up, while the
EntNet from Henaff et al. (2016) does not model
entities and their relationships explicitly. In their
model, entity memory blocks are pre-allocated
and updated simultaneously in each timestep. So
there is no dedicated memory block for every en-
tity and no distinction between entity mentions
and non-mention words. As a consequence, it is
not clear how to use their model for coreference
reranking and entity prediction.

Coreference resolution. The hierarchical struc-
ture of our entity generation model is inspired by
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Haghighi and Klein (2010). They implemented
this idea as a probabillistic graphical model with
the distance-dependent Chinese Restaurant Pro-
cess (Pitman, 1995) for entity assignment, while
our model is built on a recurrent neural network
architecture. The reranking method considered in
our coreference resolution evaluation could also
be extended with samples from additional coref-
erence resolution systems, to produce more va-
riety (Ng, 2005). The benefit of such a system
comes, we believe, from the explicit tracking of
each entity throughout the text, providing entity-
specific representations. In previous work, such
information has been added as features (Luo et al.,
2004; Björkelund and Kuhn, 2014) or by com-
puting distributed entity representations (Wiseman
et al., 2016; Clark and Manning, 2016b). Our ap-
proach complements these previous methods.

Entity prediction. The entity prediction task
discussed in §5.3 is based on work by Modi et al.
(2017). The main difference is that we do not as-
sume that all entities belong to a previously known
set of entity types specified for each narrative sce-
nario. This task is also closely related to the
“narrative cloze” task of Chambers and Jurafsky
(2008) and the “story cloze test” of Mostafazadeh
et al. (2016). Those studies aim to understand re-
lationships between events, while our task focuses
on predicting upcoming entity mentions.

7 Conclusion

We have presented a neural language model, EN-
TITYNLM, that defines a distribution over texts
and the mentioned entities. It provides vector rep-
resentations for the entities and updates them dy-
namically in context. The dynamic representations
are further used to help generate specific entity
mentions and the following text. This model out-
performs strong baselines and prior work on three
tasks: language modeling, coreference resolution,
and entity prediction.
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Abstract

This paper presents a new approach
for building Language Models using the
Quantum Probability Theory, a Quantum
Language Model (QLM). It mainly shows
that relying on this probability calculus it
is possible to build stochastic models able
to benefit from quantum correlations due
to interference and entanglement. We ex-
tensively tested our approach showing its
superior performances, both in terms of
model perplexity and inserting it into an
automatic speech recognition evaluation
setting, when compared with state-of-the-
art language modelling techniques.

1 Introduction

Quantum Mechanics Theory (QMT) is one of the
most successful theories in modern science. De-
spite its effectiveness in the physics realm, the at-
tempts to apply it in other domains remain quite
limited, excluding, of course, the large quantity of
studies regarding Quantum Information Process-
ing on quantum computers.

Only in recent years some scholars tried to em-
body principles derived from QMT into their spe-
cific fields, for example, by the Information Re-
trieval community (Zuccon et al., 2009; Melucci
and van Rijsbergen, 2011; González and Caicedo,
2011; Melucci, 2015) and in the domain of cog-
nitive sciences and decision making (Khrennikov,
2010; Busemeyer and Bruza, 2012; Aerts et al.,
2013). In the machine learning field (Arjovsky
et al., 2016; Wisdom et al., 2016; Jing et al., 2017)
have used unitary evolution matrices for building
deep neural networks obtaining interesting results,
but we have to observe that their works do not ad-
here to QMT and use unitary evolution operators
in a way not allowed by QMT. In recent years, also

the Natural Language Processing (NLP) commu-
nity started to look at QMT with interest and some
studies using it have already been presented (Bla-
coe et al., 2013; Liu et al., 2013; Tamburini, 2014;
Kartsaklis et al., 2016).

Language models (LM) are basic tools in NLP
used in various applications, such as Automatic
Speech Recognition (ASR), machine translation,
part-of-speech tagging, etc., and were traditionally
modeled by using N-grams and various smoothing
techniques. Among the dozen of tools for comput-
ing N-gram LM, we will refer to CMU-SLM (with
Good-Turing smoothing) (Clarkson and Rosen-
feld, 1997) and IRSTLM (with Linear Witten-Bell
smoothing) (Federico et al., 2008); the latter is the
tool used in Kaldi (Povey et al., 2011b), one of the
most powerful and used open-source ASR pack-
age that we will use for some of the experiments
presented in the following sections.

In recent years new techniques from the Neural
Networks (NN) domain have been introduced in
order to enhance the performances of such models.
Elman recurrent NN, as used in the RNNLM tool
(Mikolov et al., 2010, 2011), or Long Short-Term
Memory NN, as in the tool LSTMLM (Soutner
and Müller, 2015), produce state-of-the-art perfor-
mances for current language models.

This paper presents a different approach for
building LM based on quantum probability the-
ory. Actually, we present a QLM applicable only
to problems defined on a small set of different to-
kens. This is a “proof-of-concept” study and our
main aim is to show the potentialities of such ap-
proach rather than building a complete application
for solving this problem for any setting.

The paper is organized as follows: we provide
background on Quantum Probability Theory in
Section 2 followed by the description of our pro-
posed Quantum Language Model in Section 3. We
then discuss some numerical issues mainly related
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to the optimisation procedure in Section 4, and in
Section 5 we present the experiments we did to
validate our approach. In Section 6 we discuss our
results and draw some provisional conclusions.

2 Quantum Probability Theory

In QMT the state of a system is usually described,
in the most general case, by using density matrices
over an Hilbert spaceH. More specifically, a den-
sity matrix ρ is a positive semidefinite Hermitian
matrix of unit trace, namely ρ† = ρ, Tr(ρ) = 1,
and it is able to encode all the information about
the state of a quantum system1.

The measurable quantities, or observables, of
the quantum system are associated to Hermitian
matrices O defined on H. The axioms of QMT
specify how one can make predictions about the
outcome of a measurement using a density matrix:

• the possible outcomes of a projective mea-
surement of an observable O are its eigenval-
ues {λj};

• the probability that the outcome of the mea-
surement is λj is P (λj) = Tr(ρΠλj ) =
Tr(Πλjρ), where Πλj is the projector on the
eigenspace of O associated to λj . Note that
in the following we will use some proper-
ties of these kind of measurements, namely
Π†λj = Πλj and Π2

λj
= Πλj ;

• after the measurement the system state col-
lapses in the following fashion: if the out-
come of the measurement was λj , the col-
lapse is

ρ′ =
ΠλjρΠλj

Tr(ΠλjρΠλj )

where the denominator is needed for trace
normalization;

• time evolution of states using a fixed time
step is described by a unitary matrix U over
H, i.e. U †U = I, where I is the identity ma-
trix. Given a state ρt, at a specific time t,
the system evolution without measurements
modifies the state as:

ρt+1 = UρtU
†.

See for example (Nielsen and Chuang, 2010)
or (Vedral, 2007) for a complete introduction on
QPT.

1† marks the conjugate transpose of a vector/matrix and
Tr(·) is the trace of a matrix.

3 Quantum Language Models

In this section we describe our approach to build
QLM that can compute probabilities for the oc-
currence of a sequence w = (w1, w2, ..., wn) of
length n, composed using N different symbols,
the vocabulary containing all the words in the
model, i.e. for every symbol w in the sequence
w ∈ {0, ..., N − 1}. We define a set of orthogonal
N -dimensional vectors {ew : w ∈ {0, ..., N−1}},
spanning the complex spaceH = CN ; to measure
the probability of a symbol w, collapsing the state
over the space spanned by ew, we use the projec-
tor Πw = ewe

†
w. Note that all the words in the

vocabulary have been encoded as numbers corre-
sponding to the N dimensions of the vector space
H.

Our method is sequential, from QMT point of
view, in the sense that we use a quantum system
that produces a single symbol upon measurement.

The basic idea is that the probabilistic informa-
tion for a given sequence w = (w1, w2, ..., wn) is
encoded in the density matrix that results from the
following process:

• Inititalisation

Cond.Prob.: P (w1; ρ0, U) = Tr(ρ0Πw1)

Projection: ρ′1 =
Πw1ρ0Πw1

Tr(Πw1ρ0Πw1 )

Evolution: ρ1 = Uρ′1U
†

• Recurrence (i = 2, .., n)

Cond.Prob.: P (wi|w1, ..., wi−1; ρ0, U) =
Tr(ρi−1Πwi)

Projection: ρ′i =
Πwiρi−1Πwi

Tr(Πwiρi−1Πwi )

Evolution: ρi = Uρ′iU
†

• Termination

P (w|ρ0, U) = P (w1; ρ0, U) ·
n∏

i=2

P (wi|w1, ..., wi−1; ρ0, U)

The total probability P (w|ρ0, U) for the given
sequence is thus obtained, in the termination
step, by multiplying the conditional probability
P (wi|w1, ..., wi−1; ρ0, U) for each word in the se-
quence.

We then use the initial density matrix ρ0 and the
time evolution unitary matrix U as parameters to
optimise the perplexity Γ, evaluated on a training
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corpus of sequences S,

Γ(ρ0, U) = exp
(
− 1

C

∑

w∈S
logP (w|ρ0, U)

)

which quantifies the uncertainty of the model. C
is the number of tokens in the corpus.

Minimising Γ is equivalent of learning a model
by fixing all the model parameters, a typical pro-
cedure in the machine learning domain.

3.1 Ancillary system
The problem with this setup is that the ‘quan-
tum effects’ are completely washed out by the
measurements on the system by using projec-
tors. The resulting expression for the probability
P (w|ρ0, U) for a sequence w is identical to that
obtained using a classical Markov model.

To solve this issue, our approach is to avoid the
complete collapse of the state after each symbol
measurement using a common technique in QMT:
we introduce an ancillary system described by a
fictitiousD-dimensional Hilbert space,Hancilla =
CD, and we couple the original system to the an-
cillary system. The resulting DN -dimensional
Hilbert space is

H2 ≡ Hancilla ⊗H = CDN

where ⊗ denotes the Kronecker product for matri-
ces and D can be seen as a free hyper-parameter
of the model. On this new space the projectors are
now given by Π

(2)
w = ID ⊗ Πw, where ID is the

D-dimensional identity matrix.
The advantage of using this method is that the

time evolution for the coupled system creates non-
trivial correlations between the two entangled sys-
tems such that measuring and collapsing the sym-
bol state keeps some information about the whole
sequence stored in the ancillary part of the state.
This information is then reshuffled into the symbol
state via time evolution, resulting in a ‘memory ef-
fect’ that takes the whole sequence of symbols into
account, thereby extending the idea behind the N-
grams approach. Larger D values will results in
more memory of this system and, of course, in a
larger number of parameters to learn.

3.2 System evolution
We need to specify the system evolution for our
coupled system. The simplest approach is to use a
unitary DN × DN matrix U that acts on the en-
tangled Hilbert space as shown before; it can be

specified by (DN)2 real parameters with a suit-
able parametrization (Spengler et al., 2010) that
ensures the unitarity of U . However, in our pre-
liminary experiments this approach resulted in an
insufficient ‘memory’ capability for the QLM and
in a very complex and slow minimisation proce-
dure.

A different approach could be introduced by us-
ing a specific unitary matrix for each word, but this
would lead to an enormous amount of parameters
to learn with the optimization procedure.

There are a lot of techniques in NLP to repre-
sent single words with dense vectors (see for ex-
ample (Mikolov et al., 2013) for the so called word
embeddings). Following this idea, we can repre-
sent every symbol in our system with a specific p-
dimensional vector trained using one of the avail-
able techniques w 7→ (α1(w), ..., αp(w)) or fixed
randomly.

We then work with a set of p DN×DN unitary
matrices U = (U1, ..., Up), one for each compo-
nent of the word vector, that are used to dynami-
cally build a different system evolution matrix for
each word in this way:

V (w) ≡
p∏

i=1

U
αi(w)
i

This results in p(DN)2 complex or 2p(DN)2 real
parameters to be learned.

Essentially, we treat the words in our problem
in different ways: the evolution operator for each
word V (w) is build by using a combination of the
operators U defined for each word-vector compo-
nent, while, considering the system projection, we
treat each word as one basis vector for the space
H.

Note that the choice to use a set {V (w)} of
operators, one for each word w, does not violate
the linearity of quantum mechanics: let K be the
quantum operation

K(ρ) =
∑

w

V (w)Π(2)
w ρ Π(2)

w V †(w)

defined using projectors and evolution matrices.
Then K is a valid (i.e. a Completely Positive
Trace-preserving) evolution map that exactly re-
produces our results in the sequence of evolutions
and collapses.

The number of evolutionary operators is a trade-
off: as we said before, defining only one op-
erator U resulted in a poor performance of the
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proposed method in all the relevant experiments,
while defining an operator for each word would
produce too many parameters to be learned. The
trade-off that we chose is to use one operator for
each word-vector component, and build the set
{V (w)} from them as described above while pre-
serving unitarity.

With regard to the initial density matrix ρ0, we
have to define it combining the initial density ma-
trix of our system, ρs0, and the initial density ma-
trix of the ancilla, ρa0. We defined ρs0 as a diagonal
N ×N matrix containing the classical Maximum
Likelihood probability Estimation to have a spe-
cific symbol at the first sequence position:

ρs0 =
1

|S|
∑

w∈S
Πw1

where S is again the set of all sequences in the
training set and w1 is the first word in each se-
quence w. With regard to the ancilla system we
do not know anything about it and thus we have to
define ρa0 as the D ×D diagonal matrix

ρa0 =
ID

Tr(ID)
.

Consequently we can define ρ0 as

ρ0 = ρa0 ⊗ ρs0 .

3.3 The final model
Putting all the ingredients together, we can fi-
nally write down the formula for the probability
P (w|ρ0,U) for a sequence w in the QLM speci-
fied by ρ0 and U. The product of conditional prob-
abilities simplifies because of the normalising de-
nominators added at each collapse and time evolu-
tion step. The result is:

P (w|ρ0,U) = Tr(Π(2)
wn ...V

†(w2)Π(2)
w2
V †(w1)

Π(2)
w1
ρΠ(2)

w1
V (w1)Π(2)

w2
V (w2)...Π(2)

wn)

(1)

Using the fact that projectors have many zero en-
tries one can also re-express this trace of the prod-
uct of DN ×DN matrices in terms of the trace of
the product of D × D matrices. The formula for
P (w|ρ0,U) then simplifies to our final result

P (w|ρ0,U) = Tr(T †RT ) (2)

where the matricesR and T are defined as follows:

• in terms of entries Ri,j with indices i, j =
0, ..., D − 1, the matrix R is given by

Ri,j = [ρ0]Ni+w1,Nj+w1 .

Note that only the value of first symbol in the
sequence, w1, enters in the expression. This
is to be expected sinceR derives from the ini-
tial density matrix ρ0;

• analogously, the matrix T that encodes
the chain of combined collapses and time
evolutions is given by the product T =
T (2)T (3)...T (n), where the matrices T (k) are
given in entries, with indices i, j = 0, ..., D−
1, by

T
(k)
i,j = [V (wk−1)]Ni+wk−1,Nj+wk .

These matrices can be pre-calculated for ev-
ery pair of the involved symbols, so that
the calculation of P (w|ρ0,U) for all the se-
quences will be very fast.

The detailed calculation for obtaining the equation
(2) can be found in the supplementary material.

4 Optimisation and Numerical Issues

In order to optimise the parameters U we numer-
ically minimise the perplexity Γ computed on a
given training corpus of sequences S. This re-
quires that the matrices U remain strictly unitary
at every step of the minimisation procedure and it
can be accomplished in various ways.

The most straightforward way is to employ
an explicit parametrization for unitary matrices,
as was done in (Spengler et al., 2010). Due
to the transcendental functions employed in this
parametrisation, this approach resulted in a func-
tional form for Γ that has proven to be very chal-
lenging to minimise efficiently in our experiments.

A more elegant and efficient approach is to con-
sider the entries of U as parameters (thereby en-
suring a polynomial functional form for Γ) and
to employ techniques of differential geometry to
keep the parameters from leaving the unitary sub-
space at each minimisation step. This can be done
using a modification of the approach outlined in
(Tagare, 2011) that considers the unitary matri-
ces subspace as a manifold, the Stiefel manifold
U(DN). It is then possible to project the gradient
∇f of a generic function f(M) of the matrix vari-
able M on the tangent space of the Stiefel mani-
fold and build a line search algorithm that sweeps
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out curves on this manifold so that at each point
the parameters are guaranteed to form a unitary
matrix.

In our case we have multiple unitary matrices
U = (U1, ..., Up). This simply results having
curves defined on U(DN)p, parametrised by a p-
dimensional vector ofDN×DN unitary matrices.

4.1 Formula for the gradient
To implement the curvilinear search method de-
scribed in (Tagare, 2011) one needs an expression
for the gradient G = (G1, ..., Gp) of the proba-
bility function. This gradient is organised in a p-
dimensional vector of DN × DN matrices, such
that the component Gj is obtained by computing
the matrix derivative of P (w|ρ0,U) with respect
to Uj either analytically or by applying some nu-
merical estimate of the gradients, for example by
using finite differences. The latter method, when
working with thousands or millions of variables
can be very time consuming and, usually, an ex-
plicit analytic formula for the gradient accelerates
considerably all the required processing.

A lengthy analytic computation results in an ex-
plicit result. Firstly, we introduce the following
objects:

• The spectral decomposition of Uj , given by
Uj = SjDjS

†
j , guaranteed to exist by the

spectral theorem. Sj is unitary and the di-
agonal matrix Dj contains the eigenvalues
(uj1, ..., ujDN ) of Uj , j = 1, ..., p.

• The DN × DN matrices Cj(α) defined, in
entries, by

[Cj(α)]ab =
uja

α − ujbα
uja − ujb

if uja 6= ujb

[Cj(α)]ab = αuja
α−1 if uja = ujb

where u is the complex conjugate of u.

• TheD×DN matricesQk given in entries by

(Qk)jA = δNj+wk,A

where j = 0, ..., D− 1, A = 0, ..., DN − 1.

• The lesser and greater products associated to
the construction of system evolution matrices

V <j(w) =

j−1∏

i=1

U
αi(w)
i

V >j(w) =
n∏

i=j+1

U
αi(w)
i .

With these ingredients, the resulting formula for
the components Gj of the gradient is

Gj = 2Sj

n∑

k=2

{[
S†j
(
V <j(wk−1)†QTk−1

( k−1∏

l=2

T (l)
)†
RT
( n∏

l=k+1

T (l)
)†

QkV
>j(wk−1)†

)
Sj

]
· Cj(αj(wk−1))

}
S†j
(3)

where · denotes the element-wise matrix product.
Again, all the detailed calculations for obtaining
the analytic expression (3) for the gradient Gj can
be found in the supplementary material.

Using Tagare’s method we can project the gra-
dient onto the Stiefel manifold and build a curvi-
linear search algorithm for the minimisation.

To achieve this aim, Tagare proposed an
Armijo-Wolfe line search inserted into a simple
gradient descent procedure. We developed an ex-
tension of this algorithm combining the minimiza-
tion over the Steifel manifold technique with a
Moré-Thuente (1994) line search and a Conju-
gate Gradient minimisation algorithm that uses the
Polak-Ribière method for the combination of gra-
dients and search directions (Nocedal and Wright,
2006). All the experiments presented in the next
section were performed using these methods.

The minimisation uses random mini-batches
that increase their size during the training: they
start with approximately one tenth of the training
set dimension and increase to include all the in-
stances using a parametrised logistic function. As
stopping criterion we used the minimum of the
perplexity function over the validation set as sug-
gested in (Bengio, 2012; Prechelt, 2012) for other
machine learning techniques.

5 Experiments and Results

5.1 Data

The TIMIT corpus is a read speech corpus
designed to provide speech data for acoustic-
phonetic studies and for the development and eval-
uation of automatic speech recognition systems
(Garofolo et al., 1990). It contains broadband
recordings of 630 speakers of eight major dialects

1844



of American English and includes time-aligned or-
thographic, phonetic and word transcriptions as
well as a 16-bit, 16 kHz speech waveform file for
each utterance.

In the speech community, the TIMIT corpus
is the base for a standard phone-recognition task
with specific evaluation procedures described in
detail in (Lopes and Perdigao, 2011). We stick
completely to this evaluation to test the effective-
ness of our proposed model adopting, among the
other procedures, the same splitting between the
different data sets: the training set contains 3696
utterances (140225 phones), the validation set 400
utterances (15057 phones) and the test set 192 ut-
terances (7215 phones).

5.2 Evaluation Results

We tested the proposed model by setting up two
different evaluations: the first is an intrinsic evalu-
ation of LM performances in terms of global per-
plexity on the TIMIT testset; the second is an
extrinsic evaluation in which we replace the LM
tools provided with the Kaldi ASR toolkit (Povey
et al., 2011b) with our model in order to check the
final system performances in a phone-recognition
task and comparing them with the other state-of-
the-art LM techniques briefly introduced in Sec-
tion 1.

5.2.1 Intrinsic evaluation
The first experiment consisted in an evaluation of
models perplexity (PPL) on the TIMIT testset. We
compared the QLM model with two N-gram im-
plementations, namely CMU-SLM (Clarkson and
Rosenfeld, 1997) and IRSTLM (Federico et al.,
2008), and two recurrent NN models able to
produce state-of-the-art results in language mod-
elling, the RNNLM (Mikolov et al., 2010, 2011)
and the LSTMLM (Soutner and Müller, 2015)
packages.

Table 1 shows the results of the intrinsic evalu-
ation. With regard to RNNLM and LSTMLM re-
sults, only the best hyper-parameters combination
after a lot of experiments, optimizing them on the
validation set, has been inserted into the Table.

With regard to QLM, all the presented ex-
periments are based on artificial word vectors
produced randomly using values from the set
{−1, 0, 1} instead of real word embeddings. Ev-
ery word vector is different from the others and we
decided not to use real embeddings in order to test
the core QMT method without adding the contex-

Model Parameters PPL
CMU-SLM 2-gram 15.49
(Good-Turing 3-gram 14.28
smoothing) 4-gram 15.62

5-gram 17.33
IRSTLM 2-gram 15.47
(linear Witten- 3-gram 14.07
Bell smoothing) 4-gram 15.55

5-gram 17.53
RNNLM 280 neurons 13.32
LSTMLM 25 neurons, 1 layer 13.17
QLM N=48, p=4, D=10 13.44

N=48, p=4, D=20 13.15
N=48, p=4, D=30 13.10
N=48, p=4, D=40 12.99

Table 1: Perplexity (PPL) of the tested language-
modelling techniques on the TIMIT testset. All
the QLM results in bold face are better than the
other systems we tested.

tual information, contained in word embeddings,
that could have helped our approach to obtain bet-
ter performances, at least in principle.

5.2.2 Extrinsic evaluation
The “TIMIT recipe” contained in the Kaldi dis-
tribution2 reproduces exactly the same evalua-
tion settings described in (Lopes and Perdigao,
2011) for a phone recognition task based on this
corpus. Moreover, Kaldi provides some n-best
rescoring scripts that apply RNNLM hypothesis
rescoring and interpolate the results with the stan-
dard N-gram model results used in the evaluation.
We slightly modified these scripts to work with
LSTMLM and QLM in order to test different mod-
els using the same setting. This allowed us to re-
place the LM used in Kaldi and experiment with
all the systems evaluated in the previous section.

Table 2 outlines the results we obtained replac-
ing the LM technique into Kaldi ASR package
w.r.t. the different ASR systems that the TIMIT
recipe implements. These systems are built on top
of MFCC, LDA, MLLT, fMLLR with CMN3 fea-
tures (see (Povey et al., 2011b; Rath et al., 2013)
for all acronyms references and a complete feature

2https://github.com/kaldi-asr/kaldi
3MFCC: Mel-Frequency Cepstral Coefficients; LDA:

Linear Discriminant Analysis; MLTT: Maximum Likelihood
Linear Transform; fMLLR: feature space Maximum Likeli-
hood Linear Regression; SAT: Speaker Adapted Training, i.e.
train on fMLLR-adapted features; CMN: Cepstral Mean Nor-
malization.
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or recipe descriptions).
For this extrinsic evaluation we used the best

models we obtained in the previous experiments
interpolating their log-probability results for each
utterance with the original bigram (or trigram)
log-probability using a linear model with a ratio
0.25/0.75 between the original N-gram LM and
the tested one as suggested in the standard Kaldi
rescoring script. For this test we rescored the
10,000-best hypothesis.

We have to say that in this experiment we were
not trying to build the best possible phone recog-
niser, but simply to compare the relative perfor-
mances of the analysed LM techniques showing
the effectiveness of QLM when used in a real ap-
plication. Thus absolute Phone Error Rate is not
so important here and it can be certainly possible
to devise recognisers with better performances by
applying more sophisticated techniques. For ex-
ample (Peddinti et al., 2015) presented a method
for lattice rescoring in Kaldi that exhibits better
performances than the n-best rescoring we used to
interpolate between n-grams and the tested mod-
els, but modifying it in order to test LSTMLM
and QLM presented a lot of problems and thus
we decided to use the simpler n-best approach.
For completeness, the last column of Table 2 out-
lines the results obtained using this lattice rescor-
ing method with RNNLM as described in (Ped-
dinti et al., 2015).

6 Discussion and conclusions

We presented a new technique for building LM
based on QMT, and its probability calculus, test-
ing it extensively both with intrinsic and extrinsic
evaluation methods.

The PPL results for the intrinsic evaluation,
outlined in Table 1, show a clear superiority
of the proposed method when compared with
state-of-the-art techniques such as RNNLM and
LSTMLM. It is interesting to note that even using
D = 20, that means a system containing a quar-
ter of parameters, therefore much less ‘memory’,
w.r.t. the system with D = 40, we obtain a PPL
performance better than the other methods.

With regard to the second experiment we made,
an extrinsic evaluation where we replaced the LM
of an ASR system with the LM produced by all the
tested methods (see Table 2), QLM consistently
exhibits the best performances for all the tested
ASR systems from the Kaldi “TIMIT recipe”. De-

spite using a n-best technique in this evaluation
for hypothesis rescoring, that is known to perform
worse than the lattice rescoring method proposed
in (Peddinti et al., 2015), the QLM performances
are even better than this method.

The approach we have presented in this paper
is not without problems: the number of different
word types in the considered language has to be
small in order to keep the model computationally
tractable. Even if the code we used in the evalu-
ations is analytically highly optimised, the train-
ing of this model is rather slow and requires rele-
vant computational resources even for small prob-
lems. On the contrary, inference is very quick,
faster than the RNNLM and LSTMLM packages
we tested.

The main research question that drove this work
was to verify if the distinguishing properties of
quantum probability theory, namely interference
and system entaglement that could allow the an-
cilla to have a “potentially infinite” memory, were
enough to build stochastic systems more power-
ful than those built using classical probabilities
or those built using recurrent NN. Our main aim
was not to build a complete model to handle all
possible LM scenarios, but to present a “proof-of-
concept” study to test the potentialities of this ap-
proach. For this reason we tried to keep the model
as simple as possible using orthogonal projectors:
for measuring probabilities, projecting the system
state, each word is mapped onto a single basis vec-
tor and the dimension of the system Hilbert space,
N , is equal to the number of different words.
Given the matrix dimensions that we have to man-
age when we add the ancilla, DN ×DN , this set-
ting does not scale to real LM problems (e.g. the
Brown corpus), even though the calculations are
performed using D ×D submatrices, but allowed
us to successfully verify the research question. For
the same reason out-of-vocabulary words cannot
be handled in this model because there are no ba-
sis vectors assigned to them.

In order to overcome these limitations, this
work can be extended by using generalized quan-
tum measurements projectors (POVM) and by us-
ing a different structure for the system Hilbert
space: instead of mapping each word onto a sin-
gle basis vector we can span this space using as
basis the same p-basis vectors used to define the
V matrices. In this way we will project the system
state on a generic word vector built as a superposi-
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Kaldi IRSTLM N-Best rescoring Lattice
ASR 2-gram IRSTLM 2-gram LM interp. with: rescoring
System RNNLM LSTMLM QLM RNNLM
tri1 26.32 25.74 25.09 24.59 25.70
tri2 24.14 23.34 23.23 23.05 23.17
tri3 21.55 21.07 21.22 20.35 20.85
SGMM2 19.15 18.99 18.52 18.23 18.75
Dan NN 22.27 22.20 22.26 21.80 22.05
Kaldi IRSTLM N-Best rescoring Lattice
ASR 3-gram IRSTLM 3-gram LM interp. with: rescoring
System RNNLM LSTMLM QLM RNNLM
tri1 25.64 25.39 24.86 24.59 25.42
tri2 23.16 23.13 22.90 22.65 22.97
tri3 20.80 20.57 20.68 20.04 20.68
SGMM2 18.64 18.41 18.48 18.23 18.27
Dan NN 21.72 21.90 21.95 21.34 21.48

Table 2: Phone-recognition performances, in terms of Phone Error Rate, for the TIMIT dataset and
the different Kaldi ASR models, rescoring the 10,000-best solutions with the tested LM techniques in-
terpolated with the IRSTLM bigrams and trigrams LM (the standard LM used in Kaldi). In boldface
the best performing system and in italics the second best. Kaldi ASR systems descriptions: tri1 = a
triphone model using 13 dim. MFCC+∆+∆∆; tri2 = tri1+LDA+MLLT; tri3 = tri2+SAT; SGMM2 =
Semi-supervised Gaussian Mixture Model (Huang and Hasegawa-Johnson, 2010; Povey et al., 2011a);
Dan NN = DNN model by (Zhang et al., 2014; Povey et al., 2015).

tion on the p-basis. Such improvement would re-
duce dramatically the dimensions of the matrices
to Dp × Dp potentially mitigating the computa-
tional issue. Moreover, this would solve also the
problem of out-of-vocabulary words allowing for
a proper management of the large set of different
words typical of real applications.

We are still working on these improvements and
we will hope to get a complete model soon.

With this contribution we would like to raise
also some interest in the community to analyse
and develop more effective techniques, both on
the modelling and minimisation/learning sides, to
allow to build real world application based on
this framework. QMT and its probability calculus
seem to be promising methodologies to enhance
the performances of our systems in NLP and cer-
tainly deserve further investigations.
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Grégoire Montavon, Geneviève B. Orr, and Klaus-
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Abstract

We propose a general class of language
models that treat reference as discrete
stochastic latent variables. This decision
allows for the creation of entity mentions
by accessing external databases of refer-
ents (required by, e.g., dialogue genera-
tion) or past internal state (required to ex-
plicitly model coreferentiality). Beyond
simple copying, our coreference model
can additionally refer to a referent using
varied mention forms (e.g., a reference to
“Jane” can be realized as “she”), a charac-
teristic feature of reference in natural lan-
guages. Experiments on three representa-
tive applications show our model variants
outperform models based on deterministic
attention and standard language modeling
baselines.

1 Introduction

Referring expressions (REs) in natural language
are noun phrases (proper nouns, common nouns,
and pronouns) that identify objects, entities, and
events in an environment. REs occur frequently
and they play a key role in communicating infor-
mation efficiently. While REs are common in nat-
ural language, most previous work does not model
them explicitly, either treating REs as ordinary
words in the model or replacing them with special
tokens that are filled in with a post processing step
(Wen et al., 2015; Luong et al., 2015). Here we
propose a language modeling framework that ex-
plicitly incorporates reference decisions. In part,
this is based on the principle of pointer networks
in which copies are made from another source
(Gülçehre et al., 2016; Gu et al., 2016; Ling et al.,

∗Work completed at DeepMind.

dialogue

recipe

coref

M: the nirala is a 
nice restuarant

1) soy milk
2) leaves
3) banana

Blend soy milk and …

[I]1 think…Go ahead [Linda]2 … thanks goes to [you]1 …

a) reference to a list

b) reference to a table

c) reference to document context

the nirala moderate lebanese

ali baba moderate indian

name price food

Figure 1: Reference-aware language models.

2016; Vinyals et al., 2015; Ahn et al., 2016; Mer-
ity et al., 2016). However, in the full version of our
model, we go beyond simple copying and enable
coreferent mentions to have different forms, a key
characteristic of natural language reference.

Figure 1 depicts examples of REs in the con-
text of the three tasks that we consider in this
work. First, many models need to refer to a list
of items (Kiddon et al., 2016; Wen et al., 2015).
In the task of recipe generation from a list of
ingredients (Kiddon et al., 2016), the generation
of the recipe will frequently refer to these items.
As shown in Figure 1, in the recipe “Blend soy
milk and . . . ”, soy milk refers to the ingredi-
ent summaries. Second, reference to a database is
crucial in many applications. One example is in
task oriented dialogue where access to a database
is necessary to answer a user’s query (Young et al.,
2013; Li et al., 2016; Vinyals and Le, 2015; Wen
et al., 2015; Sordoni et al., 2015; Serban et al.,
2016; Bordes and Weston, 2016; Williams and
Zweig, 2016; Shang et al., 2015; Wen et al., 2016).
Here we consider the domain of restaurant rec-
ommendation where a system refers to restau-
rants (name) and their attributes (address, phone
number etc) in its responses. When the system
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says “the nirala is a nice restaurant”, it refers
to the restaurant name the nirala from the
database. Finally, we address references within
a document (Mikolov et al., 2010; Ji et al., 2015;
Wang and Cho, 2015), as the generation of words
will often refer to previously generated words. For
instance the same entity will often be referred to
throughout a document. In Figure 1, the entity
you refers to I in a previous utterance. In this
case, copying is insufficient– although the referent
is the same, the form of the mention is different.

In this work we develop a language model that
has a specific module for generating REs. A se-
ries of decisions (should I generate a RE? If yes,
which entity in the context should I refer to? How
should the RE be rendered?) augment a traditional
recurrent neural network language model and the
two components are combined as a mixture model.
Selecting an entity in context is similar to famil-
iar models of attention (Bahdanau et al., 2014),
but rather than being a soft decision that reweights
representations of elements in the context, it is
treated as a hard decision over contextual elements
which are stochastically selected and then copied
or, if the task warrants it, transformed (e.g., a pro-
noun rather than a proper name is produced as out-
put). In cases when the stochastic decision is not
available in training, we treat it as a latent vari-
able and marginalize it out. For each of the three
tasks, we pick one representative application and
demonstrate our reference aware model’s efficacy
in evaluations against models that do not explicitly
include a reference operation.

Our contributions are as follows:

• We propose a general framework to model
reference in language. We consider refer-
ence to entries in lists, tables, and document
context. We instantiate these tasks into three
specific applications: recipe generation, dia-
logue modeling, and coreference based lan-
guage models.

• We develop the first neural model of refer-
ence that goes being copying and can model
(conditional on context) how to form the
mention.

• We perform comprehensive evaluation of our
models on the three data sets and verify our
proposed models perform better than strong
baselines.

2 Reference-aware language models

Here we propose a general framework for
reference-aware language models.

We denote each document as a series of to-
kens x1, . . . , xL, where L is the number of tokens.
Our goal is to maximize p(xi | ci), the proba-
bility of each word xi given its previous context
ci = x1, . . . , xi−1. In contrast to traditional neu-
ral language models, we introduce a variable zi
at each position, which controls the decision on
which source xi is generated from. Then the con-
ditional probability is given by:

p(xi, zi | ci) = p(xi | zi, ci)p(zi | ci), (1)

where zi has different meanings in different con-
texts. If xi is from a reference list or a database,
then zi is one dimensional and zi = 1 denotes xi is
generated as a reference. zi can also model more
complex decisions. In coreference based language
model, zi denotes a series of sequential decisions,
such as whether xi is an entity, if yes, which entity
xi refers to. When zi is not observed, we will train
our model to maximize the marginal probability
over zi, i.e., p(xi|ci) =

∑
zi
p(xi|zi, ci)p(zi|ci).

2.1 Reference to lists
We begin to instantiate the framework by consid-
ering reference to a list of items. Referring to a
list of items has broad applications, such as gen-
erating documents based on summaries etc. Here
we specifically consider the application of recipe
generation conditioning on the ingredient lists. Ta-
ble. 1 illustrates the ingredient list and recipe for
Spinach and Banana Power Smoothie. We can
see that the ingredients soy milk, spinach
leaves, and banana occur in the recipe.

soy

decoder

�

list z
Yes No

encoder

Blend

soy

BOS

Blend

1)

2)

3)

Figure 2: Recipe pointer

Let the ingredients of a recipe be X = {xi}Ti=1

and each ingredient contains L tokens xi =
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Ingredients Recipe
1 cup plain soy milk Blend soy milk and spinach leaves

together in a blender until smooth. Add
banana and pulse until thoroughly blended.

3/4 cup packed fresh spinach leaves
1 large banana, sliced

Table 1: Ingredients and recipe for Spinach and Banana Power Smoothie.

{xij}Lj=1. The corresponding recipe is y =

{yv}Kv=1. We would like to model p(y|X) =
Πvp(yv|X, y<v).

We first use a LSTM (Hochreiter and Schmid-
huber, 1997) to encode each ingredient: hi,j =
LSTME(WExij , hi,j−1) ∀i. Then, we sum the
resulting final state of each ingredient to obtain the
starting LSTM state of the decoder. We use an at-
tention based decoder:

sv = LSTMD([WEyv−1, dv−1], sv−1),

pcopy
v = ATTN({{hi,j}Ti=1}Lj=1, sv),

dv =
∑

ij

pv,i,jhi,j ,

p(zv|sv) = sigmoid(W [sv, dv]),

pvocab
v = softmax(W [sv, dv]),

where ATTN(h, q) is the attention function that
returns the probability distribution over the set
of vectors h, conditioned on any input represen-
tation q. A full description of this operation is
described in (Bahdanau et al., 2014). The deci-
sion to copy from the ingredient list or generate
a new word from the softmax is performed us-
ing a switch, denoted as p(zv|sv). We can ob-
tain a probability distribution of copying each of
the words in the ingredients by computing pcopy

v =
ATTN({{hi,j}Ti=1}Lj=1, sv) in the attention mech-
anism.
Objective: We can obtain the value of zv through
a string match of tokens in recipes with tokens
in ingredients. If a token appears in the ingre-
dients, we set zv = 1 and zv = 0 otherwise.
We can train the model in a fully supervised fash-
ion, i.e., we can obtain the probability of yv as
p(yv, zv|sv) = p

copy
v (yv)p(1|sv) if zv = 1 and

pvocab
v (yv)(1− p(1|si,v)) otherwise.
However, it may be not be accurate. In many

cases, the tokens that appear in the ingredients do
not specifically refer to ingredients tokens. For ex-
amples, the recipe may start with “Prepare a cup
of water”. The token “cup” does not refer to the
“cup” in the ingredient list “1 cup plain soy milk”.

To solve this problem, we treat zi as a latent vari-
able, we wish to maximize the marginal probabil-
ity of yv over all possible values of zv. In this way,
the model can automatically learn when to refer to
tokens in the ingredients. Thus, the probability of
generating token yv is defined as:

p(yv|sv) = pvocab
v (yv)p(0|sv) + pcopy

v (yv)p(1|sv)
= pvocab

v (yv)(1− p(1|sv)) + pcopy
v (yv)p(1|sv).

If no string match is found for yv, we simply set
p

copy
v (yv) = 0 in the above objective.

2.2 Reference to databases
We then consider the more complicated task of ref-
erence to database entries. Referring to databases
is quite common in question answering and di-
alogue systems, in which databases are external
knowledge and they are resorted to reply users’
query. In our paper, we consider the application
of task-oriented dialogue systems in the domain
of restaurant recommendations. Different from
lists that are one dimensional, databases are two-
dimensional and referring to table entries requires
sophisticated model design.

To better understand the model, we first make
a brief introduction of the data set. We use dia-
logues from the second Dialogue State Tracking
Challenge (DSTC2) (Henderson et al., 2014). Ta-
ble. 3 is one example dialogue from this dataset.

We can observe from this example, users get
recommendations of restaurants based on queries
that specify the area, price and food type of the
restaurant. We can support the system’s deci-
sions by incorporating a mechanism that allows
the model to query the database to find restau-
rants that satisfy the users’ queries. A sample of
our database (refer to data preparation part on how
we construct the database) is shown in Table 2.
We can observe that each restaurant contains 6 at-
tributes that are generally referred in the dialogue
dataset. As such, if the user requests a restau-
rant that serves “indian” food, we wish to train
a model that can search for entries whose “food”
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NAME PRICE RANGE FOOD AREA ADDRESS POST CODE PHONE
ali baba moderate lebanese centre 59 Hills Road City Centre CB 2, 1 NT 01462 432565
the nirala moderate indian north 7 Milton Road Chesterton CB 4, 1 UY 01223 360966

Table 2: Fragment of database for dialogue system.

M: Hello, welcome to the Cambridge
restaurant system? You can ask for
restaurants by area, price range
or food type . How may I help you?

U: i want a moderately priced
restaurant in the north town

M: the nirala is a nice restaurant in
the north of town in the moderate price
range

U: what is the address
M: Sure , the nirala is on 7 Milton

Road Chesterton

Table 3: Example dialogue, M stands for Machine
and U stands for User

M U M U

sentence encoder

turn encoder

decoder

�
attn

Figure 3: Hierarchical RNN Seq2Seq model. The
red box denotes attention mechanism over the ut-
terances in the previous turn.

column contains “indian”. Now, we describe how
we deploy a model that fulfills these requirements.
We first introduce the basic dialogue framework in
which we incorporates the table reference module.
Basic Dialogue Framework: We build a basic
dialogue model based on the hierarchical RNN
model described in (Serban et al., 2016), as in di-
alogues, the generation of the response is not only
dependent on the previous sentence, but on all sen-
tences leading to the response. We assume that
a dialogue is alternated between a machine and a
user. An illustration of the model is shown in Fig-
ure 3.

Consider a dialogue with T turns, the utter-
ances from a user and a machines are denoted
as X = {xi}Ti=1 and Y = {yi}Ti=1 respectively,
where i is the i-th utterance. We define xi =
{xij}|xi|j=1, yi = {yiv}|yi|v=1, where xij (yiv) denotes
the j-th (v-th) token in the i-th utterance from
the user (the machines). The dialogue sequence

starts with a machine utterance and is given by
{y1, x1, y2, x2, . . . , yT , xT }. We would like to
model the utterances from the machine

p(y1, y2, . . . , yT |x1, x2, . . . , xT ) =
∏

i

p(yi|y<i, x<i) =
∏

i,v

p(yi,v|yi,<v, y<i, x<i).

We encode y<i and x<i into continuous space
in a hierarchical way with LSTM: Sentence En-
coder: For a given utterance xi, We encode it as
hxi,j = LSTME(WExi,j , h

x
i,j−1). The representa-

tion of xi is given by the hxi = hxi,|xi|. The same
process is applied to obtain the machine utterance
representation hyi = hyi,|yi|. Turn Encoder: We
further encode the sequence {hy1, hx1 , ..., hyi , hxi }
with another LSTM encoder. We shall refer the
last hidden state as ui, which can be seen as the
hierarchical encoding of the previous i utterances.
Decoder: We use ui−1 as the initial state of de-
coder LSTM and decode each token in yi. We can
express the decoder as:

syi,v = LSTMD(WEyi,v−1, si,v−1),

pyi,v = softmax(Wsyi,v).

We can also incoroprate the attetionn mecha-
nism in the decoder. As shown in Figure. 3, we
use the attention mechanism over the utterance in
the previous turn. Due to space limit, we don’t
present the attention based decoder mathmatically
and readers can refer to (Bahdanau et al., 2014) for
details.

2.2.1 Incorporating Table Reference
We now extend the decoder in order to allow the
model to condition the generation on a database.
Pointer Switch: We use zi,v ∈ {0, 1} to denote
the decision of whether to copy one cell from the
table. We compute this probability as follows:

p(zi,v|si,v) = sigmoid(Wsi,v).

Thus, if zi,v = 1, the next token yi,v is generated
from the database, whereas if zi,v = 0, then the
following token is generated from a softmax. We
now describe how we generate tokens from the
database.

1853



qq

attributes

table

z
Yes No

U

decoder Table Pointer

Step 1: attribute attn

Step 3: row attn

Step 5: column
 attn
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Figure 4: Decoder with table pointer.

We denote a table with R rows and C columns
as {tr,c}, r ∈ [1, R], c ∈ [1, C], where tr,c is the
cell in row r and column c. The attribute of each
column is denoted as sc, where c is the c-th at-
tribute. tr,c and sc are one-hot vector.

Table Encoding: To encode the table, we first
build an attribute vector and then an encoding vec-
tor for each cell. The attribute vector is simply an
embedding lookup gc = WEsc. For the encod-
ing of each cell, we first concatenate embedding
lookup of the cell with the corresponding attribute
vector gc and then feed it through a one-layer MLP
as follows: then er,c = tanh(W [WEtr,c, gc]).

Table Pointer: The detailed process of calculating
the probability distribution over the table is shown
in Figure 4. The attention over cells in the table
is conditioned on a given vector q, similarly to the
attention model for sequences. However, rather
than a sequence of vectors, we now operate over a
table.
Step 1: Attention over the attributes to find
out the attributes that a user asks about, pa =
ATTN({gc}, q). Suppose a user says cheap, then
we should focus on the price attribute.
Step 2: Conditional row representation calcula-
tion, er =

∑
c p

a
cer,c ∀r. So that er contains the

price information of the restaurant in row r.
Step 3: Attention over er to find out the
restaurants that satisfy users’ query, pr =
ATTN({er}, q). Restaurants with cheap price
will be picked.
Step 4: Using the probabilities pr, we compute
the weighted average over the all rows ec =∑

r p
r
rer,c. {er} contains the information of

cheap restaurant.
Step 5: Attention over columns {er} to compute
the probabilities of copying each column pc =
ATTN({ec}, q).

Step 6: To get the probability matrix of copying
each cell, we simply compute the outer product
pcopy = pr ⊗ pc.
The overall process is as follows:

pa = ATTN({gc}, q),
er =

∑

c

pacer,c ∀r,

pr = ATTN({er}, q),
ec =

∑

r

prrer,c ∀c,

pc = ATTN({ec}, q),
pcopy = pr ⊗ pc.

If zi,v = 1, we embed the above attention pro-
cess in the decoder by replacing the conditioned
state q with the current decoder state syi,v.
Objective: As in previous task, we can train the
model in a fully supervised fashion, or we can
treat the decision as a latent variable. We can get
p(yi,v|si,v) in a similar way.

2.3 Reference to document context
Finally, we address the references that happen in a
document itself and build a language model that
uses coreference links to point to previous enti-
ties. Before generating a word, we first make the
decision on whether it is an entity mention. If
so, we decide which entity this mention belongs
to, then we generate the word based on that en-
tity. Denote the document as X = {xi}Li=1, and
the entities are E = {ei}Ni=1, each entity has Mi

mentions, ei = {mij}Mi
j=1, such that {xmij}Mi

j=1

refer to the same entity. We use a LSTM to
model the document, the hidden state of each to-
ken is hi = LSTM(WExi, hi−1). We use a set
he = {he0, he1, ..., heM} to keep track of the entity
states, where hej is the state of entity j.
Word generation: At each time step before gen-
erating the next word, we predict whether the word
is an entity mention:

pcoref(vi|hi−1, he) = ATTN(he, hi−1),

di =
∑

vi

p(vi)h
e
vi ,

p(zi|hi−1) = sigmoid(W [hi−1, di]),

where zi denotes whether the next word is
an entity and if yes vi denotes which entity
the next word corefers to. If the next word is
an entity mention, then p(xi|vi, hi−1, he) =
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um and [I]1 think that is whats - Go ahead [Linda]2. Well and thanks goes to
[you]1 and to [the media]3 to help [us]4...So [our]4 hat is off to all of [you]5...
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Figure 5: Coreference based language model, example taken from Wiseman et al. (2016).

softmax(W1 tanh(W2[hi−1, hevi ])) else
p(xi|hi−1) = softmax(W1hi−1). Hence,

p(xi|x<i) =




p(xi|hi−1)p(zi|hi−1, he) if zi = 0.

p(xi|vi, hi−1, he)×
pcoref(vi|hi−1, he)p(zi|hi−1, he) if zi = 1.

Entity state update: Since there are multiple
mentions for each entity and the mentions appear
dynamically, we need to keep track of the entity
state in order to use coreference information in en-
tity mention prediction. We update the entity state
he at each time step. In the beginning, he = {he0},
he0 denotes the state of an virtual empty entity and
is a learnable variable. If zi = 1 and vi = 0,
then it indicates the next word is a new entity men-
tion, then in the next step, we append hi to he, i.e.,
he = {he, hi}, if zi = 1 and vi > 0, then we
update the corresponding entity state with the new
hidden state, he[vi] = hi. Another way to update
the entity state is to use one LSTM to encode the
mention states and get the new entity state. Here
we use the latest entity mention state as the new
entity state for simplicity. The detailed update pro-
cess is shown in Figure 5.

Note that the stochastic decisions in this task are
more complicated than previous two tasks. We
need to make two sequential decisions: whether
the next word is an entity mention, and if yes,
which entity the mention corefers to. It is in-
tractable to marginalize these decisions, so we
train this model in a supervised fashion (refer to
data preparation part on how we get coreference
annotations).

3 Experiments

3.1 Data sets and preprocessing
Recipes: We crawled all recipes from www.
allrecipes.com. There are about 31, 000

recipes in total, and every recipe has an ingredi-
ent list and a corresponding recipe. We exclude
the recipes that have less than 10 tokens or more
than 500 tokens, those recipes take about 0.1% of
all data set. On average each recipe has 118 to-
kens and 9 ingredients. We random shuffle the
whole data set and take 80% as training and 10%
for validation and test. We use a vocabulary size
of 10,000 in the model.
Dialogue: We use the DSTC2 data set. We only
use the dialogue transcripts from the data set.
There are about 3,200 dialogues in total. The ta-
ble is not available from DSTC2. To reconstruct
the table, we crawled TripAdvisor for restaurants
in the Cambridge area, where the dialog dataset
was collected. Then, we remove restaurants that
do not appear in the data set and create a database
with 109 restaurants and their attributes (e.g. food
type). Since this is a small data set, we use 5-
fold cross validation and report the average re-
sult over the 5 partitions. There may be multi-
ple tokens in each table cell, for example in Ta-
ble. 2, the name, address, post code and phone
number have multiple tokens, we replace them
with one special token. For the name, address,
post code and phone number of the j-th row, we
replace the tokens in each cell with NAME j,
ADDR j, POSTCODE j, PHONE j. If a table

cell is empty, we replace it with an empty token
EMPTY. We do a string match in the transcript

and replace the corresponding tokens in transcripts
from the table with the special tokens. Each dia-
logue on average has 8 turns (16 sentences). We
use a vocabulary size of 900, including about 400
table tokens and 500 words.
Coref LM: We use the Xinhua News data set from
Gigaword Fifth Edition and sample 100,000 docu-
ments that has length in range from 100 to 500.
Each document has on average 234 tokens, so
there are 23 million tokens in total. We process
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the documents to get coreference annotations and
use the annotations, i.e., zi, vi, in training. We take
80% as training and 10% as validation and test re-
spectively. We ignore the entities that have only
one mention and for the mentions that have multi-
ple tokens, we take the token that is most frequent
in the all the mentions for this entity. After prepro-
cessing, tokens that are entity mentions take about
10% of all tokens. We use a vocabulary size of
50,000 in the model.

3.2 Baselines, model training and evaluation
We compare our model with baselines that do not
model reference explicitly. For recipe generation
and dialogue modeling, we compare our model
with basic seq2seq and attention model. We also
apply attention mechanism over the table for di-
alogue modeling as a baseline. For coreference
based language model, we compare our model
with simple RNN language model.

We train all models with simple stochastic gra-
dient descent with gradient clipping. We use a
one-layer LSTM for all RNN components. Hyper-
parameters are selected using grid search based on
the validation set.

Evaluation of our model is challenging since it
involves three rather different applications. We fo-
cus on evaluating the accuracy of predicting the
reference tokens, which is the goal of our model.
Specifically, we report the perplexity of all words,
words that can be generated from reference and
non-reference words. The perplexity is calcu-
lated by multiplying the probability of decision at
each step all together. Note that for non-reference
words, they also appear in the vocabulary. So it is a
fair comparison to models that do not model refer-
ence explicitly. For the recipe task, we also gener-
ate the recipes using beam size of 10 and evaluate
the generated recipes with BLEU. We didn’t use
BLEU for dialogue generation since the database
entries take only a very small part of all tokens in
utterances.

3.3 Results and analysis
The results for recipe generation, dialogue and
coref based language model are shown in Table 4,
5, and 6 respectively. The recipe results in Ta-
ble 4 verifies that modeling reference explicitly
improves performance. Latent and Pointer per-
form better than Seq2Seq and Attn model. The La-
tent model performs better than the Pointer model
since tokens in ingredients that match with recipes

do not necessarily come from the ingredients. Im-
posing a supervised signal gives wrong informa-
tion to the model and hence makes the result
worse. With latent decision, the model learns to
when to copy and when to generate it from the vo-
cabulary.

The findings for dialogue basically follow that
of recipe generation, as shown in Table 5. Con-
ditioning table performs better in predicting table
tokens in general. Table Pointer has the lowest
perplexity for tokens in the table. Since the table
tokens appear rarely in the dialogue transcripts,
the overall perplexity does not differ much and the
non-table token perplexity are similar. With atten-
tion mechanism over the table, the perplexity of
table token improves over basic Seq2Seq model,
but still not as good as directly pointing to cells
in the table, which shows the advantage of mod-
eling reference explicitly. As expected, using sen-
tence attention improves significantly over mod-
els without sentence attention. Surprisingly, Table
Latent performs much worse than Table Pointer.
We also measure the perplexity of table tokens that
appear only in test set. For models other than Ta-
ble Pointer, because the tokens never appear in the
training set, the perplexity is quite high, while Ta-
ble Pointer can predict these tokens much more
accurately. This verifies our conjecture that our
model can learn reasoning over databases.

The coref based LM results are shown in Ta-
ble 6. We find that coref based LM performs much
better on the entity perplexity, but is a little bit
worse for non-entity words. We found it was an
optimization problem and the model was stuck in a
local optimum. So we initialize the Pointer model
with the weights learned from LM, the Pointer
model performs better than LM both for entity per-
plexity and non-entity words perplexity.

In Appendix A, we also visualize the heat map
of table reference and list items reference. The
visualization shows that our model can correctly
predict when to refer to which entries according to
context.

4 Related Work

In terms of methodology, our work is closely re-
lated to previous works that incorporate copying
mechanism with neural models (Gülçehre et al.,
2016; Gu et al., 2016; Ling et al., 2016; Vinyals
et al., 2015). Our models are similar to models
proposed in (Ahn et al., 2016; Merity et al., 2016),
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Model
val test

PPL BLEU PPL BLEUAll Ing Word All Ing Word
Seq2Seq 5.60 11.26 5.00 14.07 5.52 11.26 4.91 14.39
Attn 5.25 6.86 5.03 14.84 5.19 6.92 4.95 15.15
Pointer 5.15 5.86 5.04 15.06 5.11 6.04 4.98 15.29
Latent 5.02 5.10 5.01 14.87 4.97 5.19 4.94 15.41

Table 4: Recipe results, evaluated in perplexity and BLEU score. All means all tokens, Ing denotes
tokens from recipes that appear in ingredients. Word means non-table tokens. Pointer and Latent differs
in that for Pointer, we provide supervised signal on when to generate a reference token, while in Latent
it is a latent decision.

Model All Table Table OOV Word

Seq2Seq 1.35±0.01 4.98±0.38 1.99E7±7.75E6 1.23±0.01
Table Attn 1.37±0.01 5.09±0.64 7.91E7±1.39E8 1.24±0.01
Table Pointer 1.33±0.01 3.99±0.36 1360 ± 2600 1.23±0.01
Table Latent 1.36±0.01 4.99±0.20 3.78E7±6.08E7 1.24±0.01

+ Sentence Attn
Seq2Seq 1.28±0.01 3.31±0.21 2.83E9 ± 4.69E9 1.19±0.01
Table Attn 1.28±0.01 3.17±0.21 1.67E7±9.5E6 1.20±0.01
Table Pointer 1.27±0.01 2.99±0.19 82.86±110 1.20±0.01
Table Latent 1.28±0.01 3.26±0.25 1.27E7±1.41E7 1.20±0.01

Table 5: Dialogue perplexity results. Table means tokens from table, Table OOV denotes table tokens
that do not appear in the training set. Sentence Attn denotes we use attention mechanism over tokens in
utterances from the previous turn.

Model val test
All Entity Word All Entity Word

LM 33.08 44.52 32.04 33.08 43.86 32.10
Pointer 32.57 32.07 32.62 32.62 32.07 32.69
Pointer
+ init

30.43 28.56 30.63 30.42 28.56 30.66

Table 6: Coreference based LM. Pointer + init
means we initialize the model with the LM
weights.

where the generation of each word can be condi-
tioned on a particular entry in knowledge lists and
previous words. In our work, we describe a model
with broader applications, allowing us to condi-
tion, on databases, lists and dynamic lists.

In terms of applications, our work is related to
chit-chat dialogue (Li et al., 2016; Vinyals and
Le, 2015; Sordoni et al., 2015; Serban et al.,
2016; Shang et al., 2015) and task oriented dia-
logue (Wen et al., 2015; Bordes and Weston, 2016;
Williams and Zweig, 2016; Wen et al., 2016).
Most of previous works on task oriented dialogues
embed the seq2seq model in traditional dialogue
systems, in which the table query part is not dif-
ferentiable, while our model queries the database
directly. Recipe generation was proposed in (Kid-
don et al., 2016). They use attention mechanism
over the checklists, whereas our work models ex-

plicit references to them. Context dependent lan-
guage models (Mikolov et al., 2010; Jozefowicz
et al., 2016; Mikolov et al., 2010; Ji et al., 2015;
Wang and Cho, 2015) are proposed to capture
long term dependency of text. There are also lots
of works on coreference resolution (Haghighi and
Klein, 2010; Wiseman et al., 2016). We are the
first to combine coreference with language model-
ing, to the best of our knowledge.

5 Conclusion

We introduce reference-aware language models
which explicitly model the decision of from where
to generate the token at each step. Our model
can also learns the decision by treating it as a la-
tent variable. We demonstrate on three applica-
tions, table based dialogue modeling, recipe gen-
eration and coref based LM, that our model per-
forms better than attention based model, which
does not incorporate this decision explicitly. There
are several directions to explore further based on
our framework. The current evaluation method is
based on perplexity and BLEU. In task oriented di-
alogues, we can also try human evaluation to see
if the model can reply users’ query accurately. It
is also interesting to use reinforcement learning to
learn the actions in each step in coref based LM.
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Abstract

In this study, we introduce a new approach
for learning language models by training
them to estimate word-context pointwise
mutual information (PMI), and then de-
riving the desired conditional probabili-
ties from PMI at test time. Specifically,
we show that with minor modifications to
word2vec’s algorithm, we get principled
language models that are closely related to
the well-established Noise Contrastive Es-
timation (NCE) based language models. A
compelling aspect of our approach is that
our models are trained with the same sim-
ple negative sampling objective function
that is commonly used in word2vec to learn
word embeddings.

1 Introduction

Language models (LMs) learn to estimate the prob-
ability of a word given a context of preceding
words. Recurrent Neural Network (RNN) language
models recently outperformed traditional n-gram
LMs across a range of tasks (Jozefowicz et al.,
2016). However, an important practical issue asso-
ciated with such neural-network LMs is the high
computational cost incurred. The key factor that
limits the scalability of traditional neural LMs is
the computation of the normalization term in the
softmax output layer, whose cost is linearly propor-
tional to the size of the word vocabulary.

Several methods have been proposed to cope
with this scaling issue by replacing the softmax
with a more computationally efficient component
at train time.1 These include importance sam-

1An alternative recent approach for coping with large word
vocabularies is to represent words as compositions of sub-
word units, such as individual characters. This approach has
notable merits (Jozefowicz et al., 2016; Sennrich et al., 2016),
but is out of the scope of this paper.

pling (Bengio and et al, 2003), hierarchical softmax
(Minh and Hinton, 2008), BlackOut (Ji et al., 2016)
and Noise Contrastive Estimation (NCE) (Gutmann
and Hyvarinen, 2012). NCE has been applied to
train neural LMs with large vocabularies (Mnih
and Teh, 2012) and more recently was also suc-
cessfully used to train LSTM-RNN LMs (Vaswani
et al., 2013; Chen et al., 2015; Zoph et al., 2016).
NCE-based language models achieved near state-
of-the-art performance on language modeling tasks
(Jozefowicz et al., 2016; Chen et al., 2016), and
as we later show, are closely related to the method
presented in this paper.

Continuous word embeddings were initially in-
troduced as a ‘by-product’ of learning neural lan-
guage models (Bengio and et al, 2003). However,
they were later adopted in many other NLP tasks,
and the most popular recent word embedding learn-
ing models are no longer proper language models.
In particular, the skip-gram with negative sampling
(NEG) embedding algorithm (Mikolov et al., 2013)
as implemented in the word2vec toolkit, has be-
come one of the most popular such models today.
This is largely attributed to its scalability to huge
volumes of data, which is critical for learning high-
quality embeddings. Recently, Levy and Goldberg
(2014) offered a motivation for the NEG objective
function, showing that by maximizing this function,
the skip-gram algorithm implicitly attempts to fac-
torize a word-context pointwise mutual information
(PMI) matrix. Melamud and Goldberger (2017)
rederived this result by offering an information-
theory interpretation of NEG.

The NEG objective function is considered a sim-
plification of the NCE’s objective, unsuitable for
learning language models (Dyer, 2014). However,
in this study, we show that despite its simplicity,
it can be used in a principled way to effectively
train a language model, based on PMI matrix fac-
torization. More specifically, we use NEG to train
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a model for estimating the PMI between words
and their preceding contexts, and then derive con-
ditional probabilities from PMI at test time. The
obtained PMI-LM can be viewed as a simple vari-
ant of word2vec’s algorithm, where the context of a
predicted word is the preceding sequence of words,
rather than a single word within a context window
(skip-gram), or a bag-of-context-words (CBOW).

Our analysis shows that the proposed PMI-LM
is very closely related to NCE language models
(NCE-LMs). Similar to NCE-LMs, PMI-LM avoids
the dependency of train run-time on the size of
the word vocabulary by sampling from a negative
(noise) distribution. Furthermore, conveniently, it
also has a notably more simplified objective func-
tion formulation inherited from word2vec, which
allows it to avoid the heuristic components and
initialization procedures used in various implemen-
tations of NCE language models (Vaswani et al.,
2013; Chen et al., 2015; Zoph et al., 2016).

Finally, we report on a perplexity evaluation
of PMI and NCE language models on two stan-
dard language modeling datasets. The evaluation
yielded comparable results, supporting our theoret-
ical analysis.

2 NCE-based Language Modeling

Noise Contrastive Estimation (NCE) has recently
been used to learn language models efficiently.
NCE transforms the parameter learning problem
into a binary classifier training problem. Let p(w|c)
be the probability of a word w given a context c
that represents its entire preceding context, and let
p(w) be a ‘noise’ word distribution (e.g. a uni-
gram distribution). The NCE approach assumes
that the word w is sampled from a mixture distri-
bution 1

k+1(p(w|c) + kp(w)) such that the noise
samples are k times more frequent than samples
from the ‘true’ distribution p(w|c). Let y be a bi-
nary random variable such that y = 0 and y = 1
correspond to a noise sample and a true sample,
respectively, i.e. p(w|c, y = 0) = p(w) and
p(w|c, y = 1) = p(w|c). Assume the distribution
p(w|c) has the following parametric form:

pnce(w|c) =
1

Zc
exp(~w · ~c+ bw) (1)

such that ~w and ~c are vector representations of the
word w and its context c. Applying Bayes rule, it

can be easily verified that:

pnce(y = 1|w, c) = (2)

σ(~w · ~c+ bw − logZc − log(p(w)k))

where σ() is the sigmoid function.
NCE uses Eq. (2) and the following objective

function to train a binary classifier that decides
which distribution was used to sample w:

Snce =
∑

w,c∈D

[
log p(1|w, c) +

k∑

i=1

log p(0|ui, c)
]

(3)
such that w, c go over all the word-context co-
occurrences in the learning corpusD and u1, ..., uk
are ‘noise’ samples drawn from the word unigram
distribution.

Note that the normalization factorZc is not a free
parameter and to obtain its value, one needs to com-
pute Zc =

∑
w∈V exp(~w ·~c+ bw) for each context

c, where V is the word vocabulary. This computa-
tion is typically not feasible due to the large vocab-
ulary size and the exponentially large number of
possible contexts and therefore it was heuristically
circumvented by prior work. Mnih and Teh (2012)
found empirically that setting Zc = 1 didn’t hurt
the performance (see also discussion in (Andreas
and Klein, 2015)). Chen et al. (2015) reported that
setting log(Zc) = 9 gave them the best results. Re-
cent works (Vaswani et al., 2013; Zoph et al., 2016)
used Zc = 1 and also initialized NCE’s bias term
from Eq. (2) to bw = − log |V |. They reported that
without these heuristics the training procedure did
not converge to a meaningful model.

In the following section, we describe our pro-
posed language model, which is derived from
word2vec’s interpretation as a low-rank PMI matrix
approximation. Interestingly, this model turns out
to be a close variant of NCE language models, but
with a simplified objective function that avoids the
need for the normalization factor Zc and the bias
terms.

3 PMI-based Language Modeling

The skip-gram negative sampling word embedding
algorithm represents each word w and each context
word c as d-dimensional vectors, with the purpose
that words that are “similar” to each other will
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have similar vector representations. The algorithm
optimizes the following NEG objective function
(Mikolov et al., 2013):

Sneg =
∑

w,c∈D

[
log σ(~w · ~c) +

k∑

i=1

log σ(−~ui · ~c)
]

(4)
such that w, c go over all the word-context co-
occurrences in the learning corpus D, u1, ..., uk
are words independently sampled from the word
unigram distribution, ~x is the embedding of x and
σ() is the sigmoid function. The objective function
Sneg can be viewed as a log-likelihood function of
a binary logistic regression classifier that treats a
sample from a joint word-context distribution as
a positive instance, and two independent samples
from the word and context unigram distributions
as a negative instance, while k is the proportion
between negative and positive instances. Levy and
Goldberg (2014) showed that this objective func-
tion achieves its maximal value when for every
word-context pair w, c:

~w · ~c = pmik(w, c) = log
p(w|c)
kp(w)

(5)

where pmik(w, c) is the word-context PMI matrix.
Actually achieving this maximal value is typically
infeasible, since the embedding dimensionality is
intentionally limited. Therefore, learning word
and context embeddings that optimize skip-gram’s
NEG objective function (4) can be viewed as find-
ing a low-rank approximation of the word-context
PMI matrix. An explicit expression of the approxi-
mation criterion optimized by the skip-gram algo-
rithm can be found in (Melamud and Goldberger,
2017).

Our study is based on two simple observations
regarding this finding of Levy and Goldberg (2014).
First, Equation (5) can be reformulated as follows
to derive an estimate of the conditional distribution
p(w|c):

p̂(w|c) ∝ exp(~w · ~c)p(w) (6)

where the constant k is dropped since p(w|c) is a
distribution. Second, while the above analysis had
been originally applied to the case of word-context
joint distributions p(w, c), it is easy to see that the
PMI matrix approximation analysis also holds for
every Euclidean embedding of a joint distribution
p(x, y) of any two given random variables X and

Y . In particular, we note that it holds for word-
context joint distributions p(w, c), where w is a
single word, but c represents its entire preceding
context, rather than just a single context word, and
~c is a vector representation of this entire context.
Altogether, this allows us to use word2vec’s NEG
objective function (4) to approximate the language
modeling conditional probability p̂(w|c) (6), with c
being the entire preceding context of the predicted
word w.

We next describe the design details of the pro-
posed PMI-based language modeling. We use a
simple lookup table for the word representation ~w,
and an LSTM recurrent neural network to obtain a
low dimensional representation of the entire preced-
ing context ~c. These representations are trained to
maximize the NEG objective in Eq. (4), where this
time w goes over every word token in the corpus,
and c is its preceding context. We showed above
that optimizing this objective seeks to obtain the
best low-dimensional approximation of the PMI
matrix associated with the joint distribution of the
word and its preceding context (Eq. (5)). Hence,
based on Eq. (6), for a reasonable embedding di-
mensionality and a good model for representing the
preceding context, we expect p̂(w|c) to be a good
estimate of the language modeling conditional dis-
tribution.

At test time, to obtain a proper distribution, we
perform a normalization operation as done by all
other comparable models. The train and test steps
of the proposed language modeling algorithm are
shown in algorithm box 1.

Note that while the NCE approach (1) learns to
explicitly estimate normalized conditional distri-
butions, our model learns to approximate the PMI
matrix. Hence, we have no real motivation to in-
clude additional learned normalization parameters,
as considered in comparable NCE language models
(Mnih and Teh, 2012; Zoph et al., 2016).

The NEG and NCE objective functions share a
similar form:

S =
∑

w,c

[
log s(w, c)+

k∑

i=1

log(1−s(ui, c))
]

(7)

with the differences summarized in Table 1. The
comparison shows that PMI-LM’s NEG objective
function is much simpler. Furthermore, due to the
component log(p(w)k)) in NCE’s objective func-
tion, its input to the sigmoid function is sensitive to
the variable values in the unigram distribution, and
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Training objective function Test probability estimate
NCE-LM s(w, c) = σ(~w · ~c+ bw−logZc−log(kp(w))) p̂(w|c) ∝ exp(~w · ~c+ bw)
PMI-LM s(w, c) = σ(~w · ~c) p̂(w|c) ∝ exp(~w · ~c)p(w)

Table 1: Comparison of the training objective functions (see Eq. (7)) and the respective test-time
conditional word probability functions for NCE-LM and PMI-LM algorithms.

Algorithm 1 PMI Language Modeling

Training phase:
- Use a simple lookup table for the word repre-
sentation and an LSTM recurrent neural network
to obtain the preceding context representation.
- Train the word and preceding context embed-
dings to maximize the objective:

Sneg =
∑

w,c∈D

[
log σ(~w·~c)+

k∑

i=1

log σ(−~ui ·~c)
]

such that w and c go over every word and it pre-
ceding context in the corpus D, and u1, ..., uk
are words independently sampled from the uni-
gram distribution p(w).

Test phase:
The conditional probability estimate for a
word w given a preceding context c is:

p̂(w|c) = exp(~w · ~c)p(w)∑
v∈V exp(~v · ~c)p(v)

where V is the word vocabulary.

therefore potentially more difficult to concentrate
around zero with low variance to facilitate effec-
tive back-propagation. This may explain heuristics
used by prior work for initializing the values of bw
(Vaswani et al., 2013; Zoph et al., 2016).

4 Experiments

The goal of the evaluation described in this sec-
tion is to empirically establish PMI-LM as a sound
language model. We do so by comparing its perfor-
mance with the well-established NCE-LM, using
the popular perplexity measure on two standard
datasets, under the same terms. We describe our
hyperparameter choices below and stress that for a
fair comparison, we followed prior best practices
and avoided hyperparameter optimization in favor
of PMI-LM. All of the models described hereafter
were implemented using the Chainer toolkit (Tokui
et al., 2015).

For our NCE baseline, we used the heuristics that
worked well in (Vaswani et al., 2013; Zoph et al.,
2016), initializing NCE’s bias term from Eq. (2) to
bw = − log |V |, where V is the word vocabulary,
and using Zc = 1.

The first dataset we used is a version of the
Penn Tree Bank (PTB), commonly used to evalu-
ate language models.2 It consists of 929K training
words, 73K validation words and 82K test words
with a 10K word vocabulary. To build and train
the compared models in this setting, we followed
the work of Zaremba et al. (2014), who achieved
excellent results on this dataset. Specifically, we
used a 2-layer 300-hidden-units LSTM with a 50%
dropout ratio to represent the preceding (left-side)
context of a predicted word.3 We represented end-
of-sentence as a special<eos> token and predicted
this token like any other word. During training,
we performed truncated back-propagation-through-
time, unrolling the LSTM for 20 steps at a time
without ever resetting the LSTM state. We trained
our model for 39 epochs using Stochastic Gradient
Descent (SGD) with a learning rate of 1, which
is decreased by a factor of 1.2 after every epoch
starting after epoch 6. We clipped the norms of the
gradient to 5 and used a mini-batch size of 20. We
set the negative sampling parameter to k = 100
following Zoph et al. (2016), who showed highly
competitive performance with NCE LMs trained
with this number of samples.

As the second dataset, we used the much larger
WMT 1B-word benchmark introduced by Chelba et
al. (2013). This dataset comprises about 0.8B train-
ing words and has a held-out set partitioned into 50
subsets. The test set is the first subset in the held-
out, comprising 159K words, including the <eos>
tokens. We used the second subset as the validation
set with 165K words. The original vocabulary size
of this dataset is 0.8M words after converting all

2Available from Tomas Mikolov at: http:
//www.fit.vutbr.cz/˜imikolov/rnnlm/
simple-examples.tgz

3Zaremba et al. (2014) used larger models with more units
and also applied dropout to the output of the top LSTM layer,
which we did not.
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PMI-LM NCE-LM
PTB 98.35 104.33
WMT 65.84 69.28

Table 2: Perplexity results on test sets.

words that occur less than 3 times in the corpus to
an <unk> token. However, we followed previous
works (Williams et al., 2015; Ji et al., 2016) and
trimmed the vocabulary further down to the top
64K most frequent words in order to successfully
fit a neural model to this data using reasonably
modest compute resources. To build and train our
models, we used a similar method to the one used
with PTB, with the following differences. We used
a single-layer 512-hidden-unit LSTM to represent
the preceding context. We followed Jozefowicz et
al. (2016), who found a 10% dropout rate to be suf-
ficient for relatively small models fitted to this large
training corpus. We trained our model for only one
epoch using the Adam optimizer (Kingma and Ba,
2014) with default parameters, which we found to
converge more quickly and effectively than SGD.
We used a mini-batch size of 1000.

The perplexity results achieved by the compared
models appear in Table 2. As can be seen, the per-
formance of our PMI-LM is competitive, slightly
outperforming the NCE-LM on both test sets. To
put these numbers in a broader context, we note
that state-of-the-art results on these datasets are no-
tably better. For example, on the small PTB test set,
Zaremba et al. (2014) achieved 78.4 perplexity with
a larger LSTM model and using the more costly
softmax component. On the larger WMT dataset,
Jozefowicz et al. (2016) achieved 46.1 and 43.7 per-
plexity numbers using NCE and importance sam-
pling respectively, and with much larger LSTM
models trained over the full vocabulary, rather than
our trimmed one. They also achieved 23.7 with an
ensemble method, which is the best result on this
dataset to date. Yet, as intended, we argue that our
experimental results affirm the claim that PMI-LM
is a sound language model on par with NCE-LM.

5 Conclusions

In this work, we have shown that word2vec’s nega-
tive sampling objective function, popularized in the
context of learning word representations, can also
be used to effectively learn parametric language
models. These language models are closely re-
lated to NCE language models, but utilize a simpler,

potentially more robust objective function. More
generally, our theoretical analysis shows that any
word2vec model trained with negative sampling
can be used in a principled way to estimate the
conditional distribution p(w|c), by following our
proposed procedure at test time.
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Abstract

Syllabification does not seem to im-
prove word-level RNN language model-
ing quality when compared to character-
based segmentation. However, our best
syllable-aware language model, achieving
performance comparable to the competi-
tive character-aware model, has 18%–33%
fewer parameters and is trained 1.2–2.2
times faster.

1 Introduction

Recent advances in neural language modeling
(NLM) are connected with character-aware mod-
els (Kim et al., 2016; Ling et al., 2015b; Verwimp
et al., 2017). This is a promising approach, and
we propose the following direction related to it:
We would like to make sure that in the pursuit of
the most fine-grained representations one has not
missed possible intermediate ways of segmenta-
tion, e.g., by syllables. Syllables, in our opinion,
are better supported as linguistic units of language
than single characters. In most languages, words
can be naturally split into syllables:

ES: el par-la-men-to a-po-yó la en-mien-da
RU: пар-ла-мент под-дер-жал по-прав-ку
(EN: the parliament supported the amendment)

Based on this observation, we attempted to de-
termine whether syllable-aware NLM has any ad-
vantages over character-aware NLM. We exper-
imented with a variety of models but could not
find any evidence to support this hypothesis: split-
ting words into syllables does not seem to improve
the language modeling quality when compared to
splitting into characters. However, there are some
positive findings: while our best syllable-aware
languagemodel achieves performance comparable
to the competitive character-aware model, it has

18%–33% fewer parameters and is 1.2–2.2 times
faster to train.

2 Related Work

Much research has been done on subword-level
and subword-aware1 neural language modeling
when subwords are characters (Ling et al., 2015b;
Kim et al., 2016; Verwimp et al., 2017) or mor-
phemes (Botha and Blunsom, 2014; Qiu et al.,
2014; Cotterell and Schütze, 2015). However,
not much work has been done on syllable-level or
syllable-aware NLM. Mikolov et al. (2012) show
that subword-level language models outperform
character-level ones.2 They keep themost frequent
words untouched and split all other words into
syllable-like units. Our approach differs mainly in
the following aspects: we make predictions at the
word level, use a more linguistically sound syllab-
ification algorithm, and consider a variety of more
advanced neural architectures.
We have recently come across a concurrent

paper (Vania and Lopez, 2017) where the au-
thors systematically compare different subword
units (characters, character trigrams, BPE (Sen-
nrich et al., 2016), morphemes) and different rep-
resentation models (CNN, Bi-LSTM, summation)
on languages with various morphological typol-
ogy. However, they do not consider syllables, and
they experiment with relatively small models on
small data sets (0.6M–1.4M tokens).

3 Syllable-aware word embeddings

Let W and S be finite vocabularies of words and
syllables respectively. We assume that both words

1Subword-level LMs rely on subword-level inputs and
make predictions at the level of subwords; subword-aware
LMs also rely on subword-level inputs but make predictions
at the level of words.

2Not to be confused with character-aware ones, see the
previous footnote.
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Figure 1: Syllable-aware language model.

and syllables have already been converted into in-
dices. Let ES ∈ R|S|×dS be an embedding ma-
trix for syllables — i.e., it is a matrix in which the
sth row (denoted as s) corresponds to an embed-
ding of the syllable s ∈ S. Any word w ∈ W
is a sequence of its syllables (s1, s2, . . . , snw), and
hence can be represented as a sequence of the cor-
responding syllable vectors:

[s1, s2, . . . , snw ]. (1)

The question is: How shall we pack the sequence
(1) into a single vector x ∈ RdW to produce a
better embedding of the word w?3 In our case
“better” means “better than a character-aware em-
bedding of w via the Char-CNN model of Kim
et al. (2016)”. Below we present several viable ap-
proaches.

3.1 Recurrent sequential model (Syl-LSTM)
Since the syllables are coming in a sequence it is
natural to try a recurrent sequential model:

ht = f(st,ht−1), h0 = 0, (2)

which converts the sequence of syllable vectors (1)
into a sequence of state vectors h1:nw . The last state
vector hnw is assumed to contain the information
on the whole sequence (1), and is therefore used
as a word embedding for w. There is a big variety

3The same question applies to any model that segments
words into a sequence of characters or other subword units.

of transformations fromwhich one can choose f in
(2); however, a recent thorough evaluation (Joze-
fowicz et al., 2015) shows that the LSTM (Hochre-
iter and Schmidhuber, 1997) with its forget bias
initialized to 1 outperforms other popular architec-
tures on almost all tasks, and we decided to use it
for our experiments. We will refer to this model as
Syl-LSTM.

3.2 Convolutional model (Syl-CNN)
Inspired by recent work on character-aware neural
language models (Kim et al., 2016) we decided to
try this approach (Char-CNN) on syllables. Our
case differs mainly in the following two aspects:
1. The set of syllables S is usually bigger than

the set of characters C,4 and also the dimen-
sionality dS of syllable vectors is expected to
be greater than the dimensionality dC of char-
acter vectors. Both of these factors result in
allocating more parameters on syllable em-
beddings compared to character embeddings.

2. On average a word contains fewer syllables
than characters, and therefore we need nar-
rower convolutional filters for syllables. This
results in spending fewer parameters per con-
volution.

This means that by varying dS and the maximum
width of convolutional filters L we can still fit the
parameter budget of Kim et al. (2016) to allow fair
comparison of the models.
Like in Char-CNN, our syllable-aware model,

which is referred to as Syl-CNN-[L], utilizes max-
pooling and highway layers (Srivastava et al.,
2015) to model interactions between the syllables.
The dimensionality of a highway layer is denoted
by dHW.

3.3 Linear combinations
We also considered using linear combinations of
syllable-vectors to represent the word embedding:

x =
∑nw

t=1 αt(st) · st. (3)

The choice for αt is motivated mainly by the ex-
isting approaches (discussed below) which proved
to be successful for other tasks.
Syl-Sum: Summing up syllable vectors to get a
word vector can be obtained by setting αt(st) = 1.
This approach was used by Botha and Blunsom
(2014) to combine a word and its morpheme em-
beddings into a single word vector.

4In languages with alphabetic writing systems.
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Syl-Avg: A simple average of syllable vectors can
be obtained by setting αt(st) = 1/nw. This can
be also called a “continuous bag of syllables” in an
analogy to a CBOWmodel (Mikolov et al., 2013),
where vectors of neighboring words are averaged
to get a word embedding of the current word.
Syl-Avg-A: We let the weights αt in (3) be a
function of parameters (a1, . . . , an) of the model,
which are jointly trained together with other pa-
rameters. Here n = maxw{nw} is a maxi-
mum word length in syllables. In order to have
a weighted average in (3) we apply a softmax nor-
malization:

αt = softmax(a)t =
exp(at)∑n

τ=1 exp(aτ )
(4)

Syl-Avg-B:We can let αt depend on syllables and
their positions:

αt = αt(st) = softmax(ast + b)t

where A ∈ RdS×n (with elements as,t) is a set of
parameters that determine the importance of each
syllable type in each (relative) position, b ∈ Rn

is a bias, which is conditioned only on the rela-
tive position. This approach is motivated by re-
cent work on using an attention mechanism in the
CBOW model (Ling et al., 2015a).
We feed the resulting x from (3) into a stack of

highway layers to allow interactions between the
syllables.

3.4 Concatenation (Syl-Concat)
In this model we simply concatenate syllable vec-
tors (1) into a single word vector:

x = [s1; s2; . . . ; snw ; 0; 0; . . . ; 0︸ ︷︷ ︸
n−nw

]

We zero-pad x so that all word vectors have the
same length n · dS to allow batch processing, and
then we feed x into a stack of highway layers.

4 Word-level language model

Once we have word embeddings x1:k for a se-
quence of words w1:k we can use a word-level
RNN language model to produce a sequence of
states h1:k and then predict the next word accord-
ing to the probability distribution

Pr(wk+1|w1:k) = softmax(hkW + b),

where W ∈ RdLM×|W|, b ∈ R|W|, and dLM is the
hidden layer size of the RNN. Training the model

involves minimizing the negative log-likelihood
over the corpus w1:K :

− ∑K
k=1 log Pr(wk|w1:k−1) −→ min (5)

As was mentioned in Section 3.1 there is a huge
variety of RNN architectures to choose from. The
most advanced recurrent neural architectures, at
the time of this writing, are recurrent highway net-
works (Zilly et al., 2017) and a novel model which
was obtained through a neural architecture search
with reinforcement learning (Zoph and Le, 2017).
These models can be spiced up with the most re-
cent regularization techniques for RNNs (Gal and
Ghahramani, 2016) to reach state-of-the-art. How-
ever, to make our results directly comparable to
those of Kim et al. (2016) we select a two-layer
LSTMand regularize it as in Zaremba et al. (2014).

5 Experimental Setup

We search for the best model in two steps: first,
we block the word-level LSTM’s architecture and
pre-select the three best models under a small pa-
rameter budget (5M), and then we tune these three
best models’ hyperparameters under a larger bud-
get (20M).
Pre-selection: We fix dLM (hidden layer size of
the word-level LSTM) at 300 units per layer and
run each syllable-aware word embedding method
from Section 3 on the English PTB data set (Mar-
cus et al., 1993), keeping the total parameter bud-
get at 5M. The architectural choices are specified
in Appendix A.
Hyperparameter tuning: The hyperparameters
of the three best-performing models from the pre-
selection step are then thoroughly tuned on the
same English PTB data through a random search
according to the marginal distributions:

• dS ∼ U(20, 650),5
• log(dHW) ∼ U(log(160), log(2000)),
• log(dLM) ∼ U(log(300), log(2000)),

with the restriction dS < dLM. The total parameter
budget is kept at 20M to allow for easy comparison
to the results of Kim et al. (2016). Then these three
best models (with their hyperparameters tuned on
PTB) are trained and evaluated on small- (DATA-
S) and medium-sized (DATA-L) data sets in six
languages.
Optimizaton is performed in almost the same way
as in the work of Zaremba et al. (2014). See Ap-
pendix B for details.

5U(a, b) stands for a uniform distribution over (a, b).
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Model PPL Model PPL
LSTM-Word 88.0 Char-CNN 92.3
Syl-LSTM 88.7 Syl-Avg 88.5
Syl-CNN-2 86.6 Syl-Avg-A 91.4
Syl-CNN-3 84.6 Syl-Avg-B 88.5
Syl-CNN-4 86.8 Syl-Concat 83.7
Syl-Sum 84.6

Table 1: Pre-selection results. PPL stands for test
set perplexity, all models have ≈ 5M parameters.

Model dS dHW dLM Size PPL
Syl-CNN 242 1170 380 15M 80.5
Syl-Sum 438 1256 435 18M 80.3
Syl-Concat 228 781 439 13M 79.4

Table 2: Hyperparameters tuning. In Syl-CNN,
dHW is a function of the primary hyperparameter
c = 195 (see Appendix A).

Syllabification: The true syllabification of a word
requires its grapheme-to-phoneme conversion and
then splitting it into syllables based on some rules.
Since these are not always available for less-
resourced languages, we decided to utilize Liang’s
widely-used hyphenation algorithm (Liang, 1983).

6 Results

The results of the pre-selection are reported in
Table 1. All syllable-aware models comfortably
outperform the Char-CNN when the budget is
limited to 5M parameters. Surprisingly, a pure
word-level model,6 LSTM-Word, also beats the
character-aware one under such budget. The three
best configurations are Syl-Concat, Syl-Sum, and
Syl-CNN-3 (hereinafter referred to as Syl-CNN),
and tuning their hyperparameters under 20M pa-
rameter budget gives the architectures in Table
2. The results of evaluating these three models
on small (1M tokens) and medium-sized (17M–
57M tokens) data sets against Char-CNN for dif-
ferent languages are provided in Table 3. The
models demonstrate similar performance on small
data, but Char-CNN scales significantly better on
medium-sized data. From the three syllable-aware
models, Syl-Concat looks the most advantageous
as it demonstrates stable results and has the least
number of parameters. Therefore in what follows
we will make a more detailed comparison of Syl-
Concat with Char-CNN.

6When words are directly embedded intoRdW through an
embedding matrix EW ∈ R|W|×dW .

7Syl-CNN results on DATA-L are not reported since com-
putational resources were insufficient to run these configura-
tions.

Model EN FR ES DE CS RU
Char-CNN 78.9 184 165 239 371 261

D
AT

A
-SSyl-CNN 80.5 191 172 239 374 269

Syl-Sum 80.3 193 170 243 389 273
Syl-Concat 79.4 188 168 244 383 265
Char-CNN 160 124 118 198 392 190

D
AT

A
-LSyl-CNN7 – – – – – –

Syl-Sum 170 141 129 212 451 233
Syl-Concat 176 139 129 225 449 225

Table 3: Evaluation of the syllable-aware mod-
els against Char-CNN. In each case the smallest
model, Syl-Concat, has 18%–33% less parameters
than Char-CNN and is trained 1.2–2.2 times faster
(Appendix C).

Shared errors: It is interesting to see whether
Char-CNN and Syl-Concat are making similar er-
rors. We say that a model gives an error if it as-
signs a probability less than p∗ to a correct word
from the test set. Figure 2 shows the percentage of
errors which are shared by Syl-Concat and Char-
CNN depending on the value of p∗. We see that
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Figure 2: Percentage of errors shared by both
Syl-Concat and Char-CNN on DATA-S (left) and
DATA-L (right).

the vast majority of errors are shared by both mod-
els even when p∗ is small (0.01).
PPL breakdown by token frequency: To find
out how Char-CNN outperforms Syl-Concat, we
partition the test sets on token frequency, as com-
puted on the training data. We can observe in
Figure 3 that, on average, the more frequent the
word is, the bigger the advantage of Char-CNN
over Syl-Concat. Themore Char-CNN sees aword
in different contexts, the more it can learn about
this word (due to its powerful CNN filters). Syl-
Concat, on the other hand, has limitations – it can-
not see below syllables, which prevents it from ex-
tracting the same amount of knowledge about the
word.
PCA of word embeddings: The intrinsic advan-
tage of Char-CNN over Syl-Concat is also sup-
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Figure 3: PPL reduction by token frequency, Char-
CNN relative to Syl-Concat on DATA-L.

Model 80% 90% 95% 99%
Char-CNN 568 762 893 1038
Syl-Concat 515 729 875 1035

Table 4: Number of principle components when
PCA is applied to word embeddings produced by
each model, depending on % of variance to retain.

ported by the following experiment: We took word
embeddings produced by both models on the En-
glish PTB, and applied PCA to them.8 Regard-
less of the threshold percentage of variance to re-
tain, the embeddings from Char-CNN always have
more principal components than the embeddings
from Syl-Concat (see Table 4). This means that
Char-CNN embeds words into higher dimensional
space than Syl-Concat, and thus can better distin-
guish them in different contexts.
LSTM limitations: During the hyperparameters
tuning we noticed that increasing dS , dHW and dLM
from the optimal values (in Table 2) did not result
in better performance for Syl-Concat. Could it be
due to the limitations of the word-level LSTM (the
topmost layer in Fig. 1)? To find out whether this
was the case we replaced the LSTM by a Varia-
tional RHN (Zilly et al., 2017), and that resulted in
a significant reduction of perplexities on PTB for
both Char-CNN and Syl-Concat (Table 5). More-
over, increasing dLM from 439 to 650 did result in
better performance for Syl-Concat. Optimization
details are given in Appendix B.
Comparing syllable and morpheme embed-
dings: It is interesting to compare morphemes and
syllables. We trained Morfessor 2.0 (Creutz and
Lagus, 2007) in its default configuration on the
PTB training data and used it instead of the syl-

8We equalized highway layer sizes dHW in both models to
have same dimensions for embeddings. In both cases, word
vectors were standardized using the z-score transformation.

Model depth dLM Size PPL
RHN-Char-CNN 8 650 20M 67.6
RHN-Syl-Concat 8 439 13M 72.0
RHN-Syl-Concat 8 650 20M 69.4

Table 5: Replacing LSTM with Variational RHN.

labifier in our models. Interestingly, we got ≈3K
unique morphemes, whereas the number of unique
syllables was≈6K. We then trained all our models
on PTB under 5M parameter budget, keeping the
state size of the word-level LSTM at 300 (as in our
pre-selection step for syllable-aware models). The
reduction in number of subword types allowed us
to give them higher dimensionality dM = 100 (cf.
dS = 50).9

Convolutional (Morph-CNN-3) and additive
(Morph-Sum) models performed better than oth-
ers with test set PPLs 83.0 and 83.9 respectively.
Due to limited amount of time, we did not per-
form a thorough hyperparameter search under 20M
budget. Instead, we ran two configurations for
Morph-CNN-3 and two configurations for Morph-
Sum with hyperparameters close to those, which
were optimal for Syl-CNN-3 and Syl-Sum corre-
spondingly. All told, our best morpheme-aware
model is Morph-Sum with dM = 550, dHW =
1100, dLM = 550, and test set PPL 79.5, which
is practically the same as the result of our best
syllable-aware model Syl-Concat (79.4). This
makes Morph-Sum a notable alternative to Char-
CNN and Syl-Concat, and we defer its thorough
study to future work.
Source code: The source code for the models
discussed in this paper is available at https://
github.com/zh3nis/lstm-syl.

7 Conclusion

It seems that syllable-aware language models fail
to outperform competitive character-aware ones.
However, usage of syllabification can reduce the
total number of parameters and increase the train-
ing speed, albeit at the expense of language-
dependent preprocessing. Morphological segmen-
tation is a noteworthy alternative to syllabifica-
tion: a simple morpheme-aware model which
sumsmorpheme embeddings looks promising, and
its study is deferred to future work.

9M stands for morphemes.
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A Pre-selection

In all models with highway layers there are two of
them and the non-linear activation of any highway
layer is a ReLU.
LSTM-Word: dW = 108, dLM = 300.
Syl-LSTM: dS = 50, dLM = 300.
Syl-CNN-[L]: dS = 50, convolutional filter
widths are [1, . . . , L], the corresponding convolu-
tional filter depths are [c·l]Ll=1, dHW = c·(1+. . .+
L). We experimented with L = 2, 3, 4. The corre-
sponding values of c are chosen to be 120, 60, 35
to fit the total parameter budget. CNN activation
is tanh.
Linear combinations: Wegive higher dimension-
ality to syllable vectors here (compared to other
models) since the resulting word vector will have
the same size as syllable vectors (see (3)). dS =
175, dHW = 175 in all models except the Syl-Avg-
B, where we have dS = 160, dHW = 160.
Syl-Concat: dS = 50, dHW = 300.

B Optimization

LSTM-based models: We perform the training
(5) by truncated BPTT (Werbos, 1990; Graves,
2013). We backpropagate for 70 time steps on
DATA-S and for 35 time steps on DATA-L using
stochastic gradient descent where the learning rate
is initially set to 1.0 and halved if the perplex-
ity does not decrease on the validation set after
an epoch. We use batch sizes of 20 for DATA-S
and 100 for DATA-L. We train for 50 epochs on
DATA-S and for 25 epochs on DATA-L, picking
the best-performing model on the validation set.
Parameters of the models are randomly initialized
uniformly in [−0.05, 0.05], except the forget bias
of the word-level LSTM, which is initialized to
1. For regularization we use dropout (Srivastava
et al., 2014) with probability 0.5 between word-
level LSTM layers and on the hidden-to-output
softmax layer. We clip the norm of the gradi-
ents (normalized by minibatch size) at 5. These
choices were guided by previous work on word-
level language modeling with LSTMs (Zaremba
et al., 2014).
To speed up training on DATA-L we use a sam-

pled softmax (Jean et al., 2015) with the number
of samples equal to 20% of the vocabulary size
(Chen et al., 2016). Although Kim et al. (2016)
used a hierarchical softmax (Morin and Bengio,
2005) for the same purpose, a recent study (Grave

et al., 2016) shows that it is outperformed by sam-
pled softmax on the Europarl corpus, from which
DATA-L was derived (Botha and Blunsom, 2014).
RHN-basedmodels are optimized as in Zilly et al.
(2017), except that we unrolled the networks for
70 time steps in truncated BPTT, and dropout rates
were chosen to be as follows: 0.2 for the embed-
ding layer, 0.7 for the input to the gates, 0.7 for the
hidden units and 0.2 for the output activations.

C Sizes and speeds

On DATA-S, Syl-Concat has 28%–33% fewer pa-
rameters than Char-CNN, and on DATA-L the re-
duction is 18%–27% (see Fig. 4).
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Figure 4: Model sizes on DATA-S (left) and
DATA-L, in millions of trainable variables.

Training speeds are provided in the Table 6. Mod-
els were implemented in TensorFlow, and were run
on NVIDIA Titan X (Pascal).

Model EN FR ES DE CS RU
Char-CNN 9 8 8 7 6 6 SSyl-Concat 14 12 12 11 10 9
Char-CNN 10 8 7 5 7 4 LSyl-Concat 22 13 13 6 10 5

Table 6: Training speeds, in thousands of tokens
per second.
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Abstract

Automatically understanding the plot of
novels is important both for informing lit-
erary scholarship and applications such as
summarization or recommendation. Vari-
ous models have addressed this task, but
their evaluation has remained largely in-
trinsic and qualitative. Here, we pro-
pose a principled and scalable framework
leveraging expert-provided semantic tags
(e.g., mystery, pirates) to evaluate plot rep-
resentations in an extrinsic fashion, assess-
ing their ability to produce locally coher-
ent groupings of novels (micro-clusters) in
model space. We present a deep recur-
rent autoencoder model that learns richly
structured multi-view plot representations,
and show that they i) yield better micro-
clusters than less structured representa-
tions; and ii) are interpretable, and thus
useful for further literary analysis or la-
belling of the emerging micro-clusters.

1 Introduction

For the literature aficionado, the quest for the next
novel to read can be daunting: the sheer number of
novels of different styles, topics and genres is dif-
ficult to navigate. It is intuitively clear that readers
select novels based on specific but potentially di-
verse and structured preferences (e.g., they might
prefer novels of a particular theme (small-town ro-
mance), mood (dark) or based on character types
(grumpy boss), character relations (love, enmity)
and their development). These preferences also
manifest in the organization of online book stores
or recommendation platforms.1 For example, the

∗ Work done while the first author was an intern at Ama-
zon (ADC Germany GmbH, Berlin).

1E.g., www.amazon.com or www.goodreads.com

Amazon book catalog contains semantic tags pro-
vided by experts (publishers), including labels of
character types (pirates) or theme (secret baby ro-
mance) to aid focused search for novels of interest.

Although these tags are already fairly granular,
many cover large sets of novels (e.g., the tag secret
baby romance covers almost 4, 000 novels), limit-
ing their utility for exhaustive exploration and call
for even finer grained micro-groupings. Can we
instead automatically induce fine-grained novel
clusters in an unsupervised, data-driven way?

We propose a framework to learn structured, in-
terpretable book representations that capture dif-
ferent aspects of the plot, and verify that such
representations are rich enough to support down-
stream tasks like generating interpretable book
groupings. A real-world application of this work
is content-based book recommendation based on
diverse and interpretable book characteristics.
Content-based recommendation has been criti-
cized by the limited complexity of typically em-
ployed features (limited content analysis; Lops
et al. (2011); Adomavicius and Tuzhilin (2005)).
This work addresses this problem by inducing
complex, structured and interpretable representa-
tions. Our contributions are two-fold.

First, assuming that richly structured book tags
call for rich content representations (which expert
taggers arguably possess), we describe a deep un-
supervised model for learning multi-view repre-
sentations of novel plots. We use the term view
to refer to specific types of plot characteristics
(e.g., pertaining to events, characters or mood),
and multi-view to refer to combinations of these
views. We use multi-view book representations to
construct meaningful and locally coherent neigh-
bourhoods in model space, which we will refer to
as micro-clusters. To this end, we extend a recent
autoencoder model (Iyyer et al., 2016) to learn
multi-view representations of books. Our model
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encodes properties of characters (view v1), rela-
tions between characters (view v2), and their re-
spective trajectories over the plot.2 View-specific
encodings are learnt in an unsupervised way from
raw text as separate sets of word clusters which
are jointly optimized to encode relevant and
distinct information. These properties are
crucial for applications such as book recommen-
dation, because they allow to i) explain why par-
ticular books are similar based on the inferred la-
tent structure and ii) find similarities based on im-
portant and distinct aspects of a novel (character
types or interactions). Our framework of unsu-
pervised multi-view learning is very flexible and
can straightforwardly be applied to learn arbitrary
kinds and numbers of views from raw text.

Secondly, we propose an empirical evaluation
framework. Before we can use models to extend
existing categories as discussed above, it must be
shown that the representations capture existing as-
sociations. To this end, we investigate whether
micro-clusters derived from induced representa-
tions resemble reference clusters defined as groups
of novels sharing tags in the Amazon catalog.
While automatic induction of plot representations
has attracted considerable attention (see Jockers
(2013)), evaluation has remained largely qualita-
tive and intrinsic. To the best of our knowledge,
we are the first to investigate the utility of auto-
matically induced plot representations on an ex-
trinsic task at scale. We evaluate micro-clusters as
local neighbourhoods in model space containing
10, 000 novels under 50 reference tags.

We show that rich multi-view representations
produce better micro-clusters compared to com-
petitive but simpler models, and that interpretabil-
ity of the learnt representations is not compro-
mised despite the more complex objective. We
also qualitatively demonstrate that high-quality
micro-clusters emerge from a smaller, more ho-
mogeneous data set of Gutenberg3 novels.

2 Related Work

Automatically learning representations of book
plots, as structured summaries of their content,
has attracted much attention (cf, Jockers (2013)
for a review). Unsupervised models have been

2We argue that both characters, and their relations evolve
throughout the plot: Heroes pick up new attitudes or skills,
and utilize those to different extents; relations change and de-
velop over time (hate to love, friendship to enmity and back).

3https://www.gutenberg.org/

proposed which, given raw text, extract prototyp-
ical event structure (McIntyre and Lapata, 2010;
Chambers and Jurafsky, 2009), prototypical char-
acters (Bamman et al., 2013, 2014; Elsner, 2012)
and their social networks (Elson et al., 2010).

Other work focused on the dynamics of a plot,
learning trajectories of relations between two char-
acters (Iyyer et al., 2016; Chaturvedi et al., 2017).
Iyyer et al. (2016) combine dictionary learn-
ing (Olshausen and Field, 1997) with deep recur-
rent autoencoders to learn interpretable character
relationship descriptors. They show that their deep
model learns better representations than concep-
tually similar topic models (Gruber et al., 2007;
Chang et al., 2009). Here, we extend the model
of Iyyer et al. (2016) to simultaneously induce
multiple views on the plot.

Methodologically, our work falls into the class
of multi-view learning, and we propose a novel
formulation of the model objective which encour-
ages encoding of distinct information in the views.
Our objective function is inspired by prior work
in multi-task learning and deep domain adaptation
for classification (Ganin and Lempitsky, 2015;
Ganin et al., 2016). They train neural networks
to simultaneously learn classifiers which are ac-
curate on their target task and are agnostic about
feature fluctuation pertaining to domain shift. We
adapt this idea to unsupervised models with a re-
construction objective and learn multi-view repre-
sentations which efficiently encode the input data
and, at the same time, learn to only encode infor-
mation relevant for the particular view.

Evaluating induced plot representations is no-
toriously difficult. Most evaluation has resorted
to manual inspection, or crowd-sourced human
judgments of the coherence and interpretability of
the representations (Iyyer et al., 2016; Chaturvedi
et al., 2017). While such evaluations demonstrated
that the induced representations are qualitatively
valuable, it is not clear whether they are rich and
general enough to be used for downstream tasks
and applications. Others have used automatically
created gold-standards of re-occurring character
names across scripts (‘gang member’) (Bamman
et al., 2013), prototypical plot templates (tropes,
e.g., ‘corrupt corporate executive’) or manually
created gold-standards of character types (Vala
et al., 2016) or their relations (Massey et al., 2015;
Chaturvedi et al., 2017) to automatically measure
the intrinsic value of learnt representations. Here,
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we investigate how these results extend to extrin-
sic tasks, and use structured plot representations
for the task of inducing micro-clusters of novels.

Elsner (2012) depart from the above pattern,
suggesting an extrinsic, albeit artificial, evaluation
paradigm. Approaching plot understanding from
the angle of its utility for summarization, they use
kernel methods to learn character-centric plot rep-
resentations. They evaluate their trained models
on their ability to differentiate between real and ar-
tificially distorted novels (e.g., with shuffled chap-
ters). While this evaluation is extrinsic and quanti-
tative, it leverages artificial data and it is not clear
how the results extend to real-world summaries.

Language features were previously used in
content-based book recommendation e.g., as bags-
of-words (Mooney and Roy, 1999) or semantic
frames (Clercq et al., 2014). Both works use struc-
tured databases and plot summaries rather than
the raw book text. Other work used topic mod-
els to augment a recommender system of scien-
tific articles (Wang and Blei, 2011). Similar to
our work, these works emphasize the added value
of interpretable representations and recommenda-
tions, however, they do not leverage the raw con-
tent of entire novels and the richness of informa-
tion encoded in those.

3 Multi-View Novel Representations

We first provide an intuitive description of Rela-
tionship Modeling Networks (RMN; Iyyer et al.
2016), and our extension (henceforth MVPlot),
which jointly induces temporally aware multi-view
representations of novel plots. Afterwards we de-
scribe the MVPlot model in technical detail.

3.1 Intuition

Iyyer et al. (2016) introduce the RMN, an un-
supervised model which learns interpretable plot
representations in terms of types of relations be-
tween pairs of book characters, and their devel-
opment over time. Given a book and a charac-
ter pair, the model learns relation types as word
clusters (not unlike topics in a topic model (Blei
et al., 2003)) from local contexts mentioning both
characters. In addition the RMN learns for each
character pair how these relations vary over time
as a trajectory of relations. Methodologically, the
RMN combines a deep recurrent autoencoder with
dictionary learning, where terms in the dictionary
are relationship descriptors. The RMN learns to

View Descriptor

v1
laugh scream laughing yell joke cringe disgrace
embarrassment hate cursing

v1
snug fleece warm comfortable wet blanket flan-
nel cozy comfort roomy

v1
excellency mademoiselle monsieur majesty
duchess empress madame countess madam

v2
love loving lovely dear sweetest dearest thank
darling congratulation hello

v2
associate assistant senior chairman executive
leadership vice director liaison vice-president

Table 1: Example property (v1) and relation (v2)
descriptors induced by MVPlot on the Gutenberg
corpus, as their nearest neighbours in GloVe space.

efficiently encode local text spans as a linear com-
bination of these relation descriptors.

We extend RMNs to induce temporally aware
multi-view representations of novel plots. Multi-
ple interpretable views are induced jointly within
one process in an unsupervised way. The core of
our model closely corresponds to the structure of
the RMN (as technically described in Section 3.2).
However, we provide the model with distinct types
of informative input for each view, and, reformu-
late the objective in a way that jointly optimizes
parameterizations of all views to encode distinct
information (cf., Section 3.3).

Our MVPlot model learns two views: prop-
erties associated with individual characters (v1),
relations between character pairs (v2, as in the
RMN) and their respective development over the
course of the plot (examples of descriptors learnt
by MVPlot for both views are shown in Table 1).
Our modeling framework, however, is very gen-
eral in the sense that any number and type of views
can be learnt jointly as long as input with relevant
signals can be provided for each view. For exam-
ple, we could naturally extend the model described
here with a ‘plot’ view to capture properties of the
story which are not related to any character.

3.2 The MVPlot Model

We now formally describe the MVPlot model for
learning multi-view plot representations encoding
individual character properties (v1), character pair
relationships (v2), and their respective trajectories.
The full model is shown in Figure 1.

Input to our model are two corpora of text
spans, one for each view, Sv1 and Sv2. The cor-
pora consist of different sets of relevant view-
specific local contexts as described in Section 5.
Given a book b and a character c, Sc,bv1 contains
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Figure 1: Visualization of the MVPlot model.

linearly ordered4 sequences of text spans st at time
t={1...T} in which character c is mentioned, but
no other character,

Sc,bv1={s1, s2, ..., sT } s.th. ∀t : c ∈ st

Similarly, Sc1,c2,bv2 , given a book b and a pair of
characters c1 and c2, contains linearly ordered text
spans which mention both c1 and c2, but no other
character,

Sc1,c2,b2 ={s1, s2, ..., sT } s.th. ∀t : c1 ∈ st, c2 ∈ st.

The rest of the input preparation follows Iyyer
et al. (2016) as follows. We map text spans into
word embedding space, by mapping each word w
to its 300-dimensional GloVe embedding ew (Pen-
nington et al., 2014) pre-trained on Common-
Crawl, and averaging the word embeddings,

et =
1

|st|
∑

w∈st
ew. (1)

We provide MVPlot with a trainable matrix B
of dimensions b × n, where b is the num-
ber of books in our data set, and each row eb

is an n-dimensional book embedding, encoding
background information (e.g, about its general set-
ting or style) which is relevant to neither view
of MVPlot.5 Finally the span embedding and the
corresponding book embedding are concatenated,

4with respect to their occurrence in the novel
5The RMN learns background encodings for characters in

addition to the book embeddings. We omit this for MVPlot
as this information is explicitly learned in the views.

and passed through a ReLu non-linearity (cf., Fig-
ure 1, bottom),

ht = ReLu(Wh[e
t; eb

t

]). (2)

Model architecture MVPlot uses the architec-
ture of the RMN autoencoder, but replicates it for
each input view, v1 and v2 (cf., Figure 1, center).
Each part will induce an encoding of view-specific
information. The feed-forward pass, described be-
low, is identical for both parts, however, the loss
and backpropagation will differ (cf., Section 3.3).

We describe the feed-forward pass for v2, not-
ing that it works analogously for v1. The latent
input representation ht (eqn (2)) is passed through
a softmax layer which returns a weight vector over
descriptors, dtv2 = softmax(Wd

v2[h
t]). Descrip-

tors are rows in the k × d-dimensional descrip-
tor matrix Rv2, with each row k corresponding
to one d-dimensional descriptor (similar to a topic
in a topic model). The input et is reconstructed
through the dot product of dtv2 and the descriptor
matrix Rv2,

rt = dtv2Rv2. (3)

Like in the original RMN, we want to capture
the temporal development of character relations or
properties. Intuitively, we assume that the rela-
tions between (or properties of) characters at time
t depend on their relations (or properties) at time
t − 1. As in the RMN, we factor the descriptor
weights of the previous time step dt−1 into the rep-
resentation at time t, such that

dtv2 = α softmax
(
Wd

v2[ht;d
t−1
v2 ]

)
+(1− α)dt−1

v2 (4)

Output First, the model induces property de-
scriptors (rows in Rv1) and the relationship de-
scriptors (rows in Rv2). Both sets of descriptors
are optimized to reconstruct model input in GloVe
embedding space (cf., Section 3.3 for details).
They consequently themselves live in GloVe word
embedding space, and can be visualized through
their nearest neighbours in this space. In addi-
tion, for each book b, character cb and character
pair {c1, c2}, sequences of weight vectors over re-
lations

T c1,c2,bv2 = d1
v2...d

T
v2,

and over properties

T c,bv1 = d1
v1...d

T
v1

are induced, which encode their trajectory of re-
lations and properties, respectively. We will uti-
lize these trajectories for inducing micro-clusters
of novels (Section 6.1).
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3.3 The Multi-View Loss

We formulate our loss as a Hinge loss within the
contrastive max-margin framework. Our objective
is to learn parameters for each view ∈ {v1, v2}
which efficiently encode view-specific input in a
low-dimensional space from which the original in-
put can be re-constructed with high accuracy. In
addition, we want to learn view-specific parame-
ters which encode distinct information such that
when utilized together, they provide an improved
embedding of the data. Intuitively, we achieve this
by discouraging parameters of view v1 from ac-
curately reconstructing input spans from view v2,
and vice versa.

Our loss combines these two objectives as fol-
lows. The first part of the loss corresponds
to the loss of the RMN. We use negative sam-
pling to induce parameters for each view which
reconstruct their respective view-specific input
well. Formally, assuming model input from
view v1, etv1, we construct a set of 10 ‘negative
inputs’{en1

v1 , ...e
nI
v1} which are sampled at random

from the v1 input corpus. We want to learn pa-
rameters encoding view v1 to reconstruct the input
such that the inner product between the true in-
put etv1 and its reconstruction rtv1 is higher than
the inner product between rtv1 and any of the neg-
ative samples eniv1 by a margin of at least 1,

J(θ) =
∑

t

∑

i

max(0, 1− rtv1e
t
v1 + rtv1e

ni
v1), (5)

where θ refers to the set of all model parameters.
We add an orthogonality-encouraging regulariz-
ing term to this objective in order to obtain view-
specific descriptors which are distant from each
other (Hyvärinen and Oja, 2000),

J(θ) =
∑

t

∑

i

max(0, 1− rtv1e
t
v1 + rtv1e

ni
v1)

+ λ||Rv1R
T
v1 − I||.

(6)

The loss is defined analogously for input of
view v2. Note that so far, the loss is defined in
an entirely view-specific way, independent of the
v2 parameters (e.g., the v1 loss in equation (6) is
independent of the v2 parameters).

We break this independence by adding a sec-
ond term to our loss function, which ensures that
view-specific parameters encode only relevant in-
formation. That is, we want v2-specific parameters
to only encode v2-specific information, and vice
versa. Assuming model input from view v1, etv1 ,

Genre Example Tags

Mystery British Detectives; FBI Agents; Female Pro-
tagonists; Private Investigators

Romance Cowboys; Criminals & Outlaws; Doctors;
Royalty & Aristocrats; Spies; Wealthy

SciFi AIs; Aliens; Clones; Corporations; Mutants;
Pirates; Psychics; Robots & Androids

Table 2: Example tags from the Amazon book cat-
alog for the refinement character type.

we learn parameters for to view v2 that reconstruct
the input poorly. Again, we use the max-margin
framework, maximizing the margin between the
(high) quality reconstruction of etv1 from v1 pa-
rameters, rtv1, and the (poor) quality of the recon-
struction from v2 parameters, rtv2,

K(θ) = max(0, 1− etv1r
t
v1 + etv1r

t
v2). (7)

The update is defined analogously, swapping v1
and v2 subscripts, when the true input stems from
v2. The full loss is defined as a weighted linear
combination of its terms (eqns (6) and (7)),

L(θ) =βJ(θ) + (1− β)K(θ). (8)

4 Semantic Micro-Cluster Evaluation

MVPlot induces structured representations of a
novel b as relation trajectories between charac-
ters pairs in b, and property trajectories of indi-
vidual characters in b. Are those representations
rich and informative enough to produce mean-
ingful and interpretable micro-clusters of novels?
In Section 6.1 we evaluate the quality of such
micro-clusters, i.e., local novel neighbourhoods in
model space. We propose an objective and empir-
ical evaluation employing expert-provided seman-
tic novel tags in the Amazon catalog.

Novels listed in the Amazon catalog are tagged
with respect to their genre (e.g., mystery, ro-
mance). They are further labelled with re-
finements pertaining to diverse information like
character types or mood, which take dif-
ferent sets of values, depending on the genre, and
are as such predestined as an objective reference
for evaluating the diverse information captured by
our model. Table 2 lists example tags for the re-
finement character type.

All tags are provided by publishers and can con-
sequently be taken as a reliable source of infor-
mation. In our evaluation we assume that novels
which share a tag are related to each other. We
use this tag-overlap metric to evaluate local neigh-
bourhoods of book representations in model space.
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# novels # v1 sequences # v2 sequences
Gutenberg 3,500 45,182 60,493
Amazon 10,000 91,511 70,156

Table 3: The number of novels and property (v1)
relation (v2) input sequences for the Gutenberg
and the Amazon corpus.

We selected a set of 50 representative tags from
the Amazon catalog and did not tune this set for
our evaluation. The full tag set is included in the
supplementary material.

Note that while this scheme provides an em-
pirical way of evaluating plot representations, it
may not capture their full potential: our models
are not explicitly tuned towards producing micro-
clusters which are coherent with respect to our
gold-standard tags, and may encode additional
structure which is not probed in this evaluation.
That said, we consider this evaluation as a good
procedure to evaluate the relative quality of differ-
ent models in the sense that a better model should
produce micro-clusters that better correspond to
reference clusters derived from gold-standard tags.

5 Data

We evaluate our model on two data sets. First,
we create a diverse data set by sampling 10,000
digital novels under our 50 gold-standard tags
(cf., Section 4) of the Amazon catalog (Ama-
zon). Our second data set consists of 3,500 nov-
els from Project Gutenberg, a large digital collec-
tion of freely available novels consisting primar-
ily of classic literature (Gutenberg). The Ama-
zon novels are already labelled with genre and re-
finement tags, such that evaluation using our gold-
standard is straightforward. While Gutenberg nov-
els come with the advantage of being freely avail-
able, they are unlabelled, and not fully covered by
our 50 gold-standard tags. We therefore restrict
our quantitative analysis to the Amazon data set.
However, we also report qualitative results on the
Gutenberg corpus, demonstrating that our model
induces meaningful novel representations for cor-
pora of varying size and diversity.

Both data sets were pre-processed with the
BookNLP pipeline (Bamman et al., 2014) for
coreference resolution of character mentions. We
filtered stop-words and low-frequency words by
discarding the 500 most frequent words and those
which occur in less than 100 novels, and discarded
novels less than 100 sentences long or containing

fewer than 5 characters from our data set.
We created view-specific input corpora as fol-

lows: (1) a relation corpus of chronologically or-
dered sequences of text spans of 20 words for char-
acter pairs {c1, c2} in a book b, Sc1,c2,bv2 , which
mention only c1 and c2 with a margin of 10 words
for the Amazon corpus (1 word for the smaller
Gutenberg corpus) but no other character; and
(2) a property corpus of chronologically ordered
sequences of 20 word text spans for individual
characters c in book b, Sc1,c2,bv2 , which mention
only c, using the same margins as above.

We keep only sequences of length n time steps
s.th., 5 ≤ n ≤ 250. We only keep pair sequences
if we also obtain sequences for each individual
character confirming to the above criteria. Table 3
summarizes statistics on our input corpora.

6 Evaluation

Section 6.1 quantitatively evaluates the quality
of local neighbourhoods in model space induced
from the Amazon corpus against our proposed
gold-standard. Section 6.2 evaluates the quality
of the induced descriptors from both the Amazon
and Gutenberg corpus both through crowd sourc-
ing and illustrative examples.

Models We set the MVPlot performance into
perspective comparing it against the RMN.6 MV-
Plot induces both character properties and rela-
tions, and is trained on both the relation-view and
property-view input, while the RMN only induces
pair relationships and can only utilize relation-
view input. In addition, we report a frequency
baseline, which is trained on both property and
relation-view input. We concatenate all input
spans of a given view for a particular novel; con-
struct its term frequency vector and use cosine
similarity to compute the nearest neighbours to
each novel.

Parameter settings Across all experiments and
corpus-specific models, we set β=0.99 for MV-
Plot, and for both MVPlot and RMN we
set α=0.5, λ=10−5, k=50.7 We train both
RMN and MVPlot for 15 epochs using SGD and
ADAM (Kingma and Ba, 2014).8

6We do not compare against topic model baselines be-
cause they were outperformed by RMN (Iyyer et al., 2016).

7Parameters were tuned on a small subset of books used
in the nearest neighbourhood evaluation (Section 6.1).

8Our implementation builds on the available RMN code
https://github.com/miyyer/rmn.
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6.1 Nearest Neighbours Evaluation
We evaluate local neighbourhoods in model space
using the 500 most popular novels by their num-
ber of Amazon reviews as reference novels from
the Amazon corpus. For each reference novel we
compute the 10 nearest neighbours as described
below. We measure neighbourhood quality us-
ing the gold-standard tags from Section 4, regard-
ing neighbours as relevant if at least one tag is
shared with the reference novel. We report pre-
cision at rank 10 (P@10) and mean average preci-
sion (MAP ).

Method MVPlot represents a book b in terms
of trajectories of weight vectors over relation de-
scriptors T bv2 and property descriptors T bv1. RMN
only learns relation descriptors and their tra-
jectories. For both models, we map each in-
duced trajectory for book b to a fixed-sized k-
dimensional vector representation by averaging
the time-specific weight vectors, for example for
a v2 trajectory,

T c1,c2,bv2 =
1∣∣T c1,c2,bv2

∣∣
∑

t∈
∣∣T c1,c2,b

v2

∣∣
dtv2, (9)

and equivalently for v1 trajectories, T c,bv1 .
We compute the similarity between two

books {br, bc} as follows. We align the v2 tra-
jectory for each character pair {c1, c2} in br,
T c1,c2,br , to its closest neighbouring character pair
vector in bc, T c′1,c′2,bc , by Euclidean distance, and
compute the overall book similarity in terms of
character relations between br and bc as the av-
erage over all distances.

simbr,bc
v2 =

1

|T brv2 |
∑

T ∈T br
v2

argmin
T ′∈T bc

v2

dist(T , T ′). (10)

We obtain simbr,bc
v1 in an analogous process. For

cosine and MVPlot we obtain a final, multi-view
similarity by averaging similarity scores obtained
in each view’s space,

simbr,bc
both =

1

2

(
simbr,bc

v1 + simbr,bc
v2

)
. (11)

For RMN we compute similarity only in character
relation space.

Results Table 4 presents micro-cluster quality
in terms of precision@10 and MAP . The full
MVPlot model statistically significantly outper-
foms all other models.9 The same pattern emerges

9Also, intra-view comparisons except for MVPlot v1 and
cosine v1 are statistically significant.

Model View P@10 MAP

cosine
v1 0.516 ‡ 0.392 †
v2 0.468 ‡ 0.339 ‡
both 0.512 ‡ 0.390 ‡

RMN v2 0.479 ‡ 0.347 ‡

MVPlot
v1 0.529 † 0.401 †
v2 0.496 ‡ 0.367 ‡
both 0.546 0.421

Table 4: Micro-cluster quality results (Amazon
corpus). Differences of cosine and RMN com-
pared to the best MVPlot result are significant with
p < 0.05 (†) or p < 0.01 (‡) (paired t-test).

when comparing models with the same underly-
ing views: MVPlot v2 outperforms both cosine
v2 and RMN v2 (similarly for MVPlot v1 and
cosine v1), indicating that the MVPlot character
relation representations are most informative for
micro-cluster induction.

In order to shed light on the contribution of in-
dividual model components, we compare the full
MVPlot model (both) to model versions with ac-
cess to only v1 or v2 (Table 4 bottom). Combining
information from both views boosts performance
compared to the single-view versions. This con-
firms that MVPlot indeed encodes distinct and rel-
evant information in the respective views.

While cosine is a strong baseline, its representa-
tions are not structured or interpretable. It conse-
quently does not provide sufficient information for
applications like book tagging or recommendation
with respect to specific aspects or criteria. Simi-
larly, RMN cannot learn representations of multi-
ple, distinct views of the plot.

Advancing our understanding of the informa-
tion encoded in the individual views of MVPlot,
we took a closer look at the refinement tags for
which the single view MVPlot model (v1) has
the clearest advantage over the pair view MVPlot
model (v2), and vice-versa. We computed tag-
wise F1-scores for the two MVPlot variants. Ta-
ble 5 lists the book tags for which the scores of the
two views diverge the most.

In terms of types of refinements, view v2 suffers
most for predicting book categories, or topical tags
(‘sports’, ‘second changes’), while view v1 is par-
ticularly deficient for predicting character types.
While this seems counterintuitive we hypothesize
that character types are to a large extent defined by
their interactions with, or relations to, other char-
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F1 v2 >> F1 v1 F1 v1 >> F1 v2
Tag RefType Tag RefType

Robots & Androids Character Hard SciFi Category
Corporations Character Sports Category
International Theme Horror Theme

Aliens Character Second Chances Theme
Cowboys Character Crime Category

Table 5: The tags (Tag) and their refinement types
(RefType) for which MVPlot v1 most clearly out-
performs MVPlot v2 (left) and vice versa (right)
in terms of tag-specific F1-measure.

acters. Topical information, however, is encoded
robustly in the properties of individual characters.

6.2 Evaluating Induced Descriptors

This evaluation investigates whether induced re-
lation descriptors indeed capture relational infor-
mation. We evaluate the interpretability of the in-
duced descriptors, comparing the v2 (relation) de-
scriptors induced by RMN and MVPlot. We apply
both models to both the Amazon and the Guten-
berg corpus, and report results on both data sets.

Method We collect crowdsourced judgments on
Amazon Mechanical Turkto qualitatively evaluate
the learnt descriptors, following Chaturvedi et al.
(2017). In each task a worker is shown one in-
duced descriptor as a set of its 10 closest words
in GloVe space (like in Table 1), and is asked to
indicate whether ”the words in the group describe
a relation, event or interaction between people”.
We compare the proportion of positive answers,
i.e., the number of descriptors considered relevant,
for RMN descriptors and MVPlot pair descriptors.
We collect 30 judgments for each of k=50 de-
scriptors induced by the respective models.

Results Figure 2 displays our results. We ob-
serve a similar pattern of ratings across models and
corpora, e.g., around 50% of the descriptors are
labelled as relevant by at least 50% of the annota-
tors. None of the differences are statistically sig-
nificant which lets us conclude that interpretability
of induced descriptors is comparable for the RMN
and MVPlot. This is encouraging because we con-
firm that representation interpretability is not com-
promised by MVPlot’s more complex objective.

Table 1 displays examples of property and re-
lation descriptors induced by MVPlot from the
Gutenberg corpus. We can see that the different
views indeed capture differing information (e.g., a
v1 descriptor refers to individuals’ titles, while a
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Figure 2: Results of descriptor interpretability.
(% of descriptors marked as ‘relevant descriptors
of relations’ by various proportions of annotators).

v2 descriptor refers to a love relation). Despite
its smaller size and more homogeneous nature, we
show that MVPlot learns meaningful representa-
tions from the Gutenberg corpus, demonstrating
the flexibility of our model.

Figure 3 further illustrates this, displaying ex-
ample local neighbourhoods of four reference nov-
els (left) with their eight nearest neighbours or-
dered by proximity (left to right). The neighbour-
hoods are intuitively meaningful, and particularly
impressive bearing in mind that the full model
space contains 3, 500 novels. While most neigh-
bourhoods are dominated by novels of the same
author, some exceptions emerge. Row two, for
example, contains novels by Thomas Hardy and
Charles Dickens who both are known for bio-
graphical 17th century novels focusing on class
and social changes.

7 Conclusions

Content-based micro-clustering of novels is a
complex but interesting task. In order to even-
tually augment the diverse associations humans
have, models must be able to pick up rich and
structured signals from raw text. This paper pre-
sented a deep recurrent autoencoder which learns
multi-view representations of plots, and intro-
duced a principled evaluation framework using
clusters based on expert-provided book tags.

Our evaluation showed that rich multi-view rep-
resentations are better suited to recover such refer-
ence clusters compared to each individual view, as
well as compared to simpler, but competitive mod-
els which induce less structured representations.
Our view-specific representations are interpretable
which allows to analyse and explain the emerging
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Figure 3: Nearest neighbours for four classic stories from the Gutenberg Corpus. Target novels on the
left (with red border), and NNs are presented in the same row, ordered by their distance to the target
novel.

micro-clusters, and might reveal previously unno-
ticed parallels between novels and may be useful
for literary analysis or content-based recommen-
dation. This is an exciting avenue for future work.

Our method is general and scalable both in
terms of its input, utilizing raw text with only au-
tomatic pre-processing, and in terms of the num-
ber of distinct views it can learn. We described an
objective function which triggers views to encode
distinct information. In future work we plan to ex-
plore joint learning of more and different views.

Our approach relies strongly on the assumption
that text spans mentioning two characters contain
information about character relations, and that text
spans mentioning one character contain informa-
tion about the character’s properties. While our re-
sults suggest that these assumptions are valid, they
are arguably crude. In the future we plan to define
more targeted input, e.g., by using semantic and
syntactic information from dependency parses.

In this work we induced dual-view representa-
tions of book content, however, we emphasize that
the proposed method is very general. The number
and kinds of views, as well as underlying data are
in no way constrained, as long as relevant view-
specific input can be defined. In the context of
novel representation it would be interesting to in-

duce additional views, for example one that cap-
tures the mood of a novel. Another interesting av-
enue for future work would be to apply the frame-
work to questions arising in the digital humanities,
e.g., to extract different views from news articles.

The presented model and evaluation are de-
signed with the objective to detect a different kinds
of similarity between novels, with the ultimate
goal to enrich human-provided genres and tags.
We described a first step in this direction, verifying
that the learnt information is meaningful and can
reproduce human-created semantic book tags. Ex-
pert book tags exist for a wide variety of informa-
tion (mood, theme, characters), and provide a rich
evaluation environment for learnt representations.
We invite the community to join us in exploring
the full space of opportunities and evaluating in-
duced representations holistically in the future.
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Abstract

Convolutional Neural Networks (CNNs)
are widely used in NLP tasks. This pa-
per presents a novel weight initialization
method to improve the CNNs for text clas-
sification. Instead of randomly initializ-
ing the convolutional filters, we encode se-
mantic features into them, which helps the
model focus on learning useful features at
the beginning of the training. Experiments
demonstrate the effectiveness of the ini-
tialization technique on seven text classifi-
cation tasks, including sentiment analysis
and topic classification.

1 Introduction

Recently, neural networks (NNs) dominate the
state-of-the-art results on a wide range of natu-
ral language processing (NLP) tasks. The com-
monly used neural networks in NLP include Re-
current NNs, Convolutional NNs, Recursive NNs
and their combinations. NNs are known for their
strong abilities to learn features automatically.
However, the lack of data or inappropriate param-
eter settings might greatly limit the generalization
abilities of the models (Bengio et al., 2009; Le-
Cun et al., 2015; Krizhevsky et al., 2012; Srivas-
tava et al., 2014). To enhance the performance, a
lot of improved methods have been proposed, e.g.
developing advanced structures (Zhao et al., 2015;
Zhang et al., 2016a), introducing prior knowledge
(Hu et al., 2016) and utilizing external resources
(Xie et al., 2016; Qian et al., 2016).

It is also noteworthy that the neural networks’
performance is sensitive to weight initialization

† Corresponding author.

because their objectives are non-convex (Glorot
and Bengio, 2010; Saxe et al., 2013; Mishkin and
Matas, 2015). In fact, initialization techniques
even play a role of catalyst for the revival of neu-
ral networks (Hinton et al., 2006; LeCun et al.,
2015). Most improvements on initializing weights
are based on mathematical methods, e.g. xavier
initialization (Glorot and Bengio, 2010) and or-
thogonal initialization (Saxe et al., 2013). For
NLP tasks, an influential technique is to use pre-
trained word vectors to initialize embedding layers
(Kim, 2014; Chen and Manning, 2014). Consider
the embedding layers could be initialized by pre-
trained word vectors, how about weights in other
layers that are still randomly initialized?

Inspired by this question, we propose a sim-
ple yet effective method to improve CNNs by ini-
tializing convolutional layers (filters). Unlike the
previous weight initialization based on mathemati-
cal methods, we encode semantic features into the
filters instead of initializing them randomly. As
CNNs exploit 1-D convolutional filters to extract
n-gram features, our method aims at helping the
filters focus on learning useful n-grams, e.g. “not
bad” which is more useful than “watch a movie”
for determining reviews’ polarities. Specifically,
we select n-grams from training data via a novel
Naive Bayes (NB) weighting technique, and then
cluster the n-gram embeddings with K-means al-
gorithm. After that, we use the centroid vectors of
the clusters to initialize the filters.

With this initialization method, CNN filters tend
to extract important n-gram features at the begin-
ning of the training process. By integrating our
method into a classic CNN model for text classi-
fication (Kim, 2014), we observe significant im-
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provements in sentiment analysis and topic classi-
fication tasks. The advantages of our approach are
as follows:

• Features are directly extracted from train-
ing data without involving any external re-
sources;

• The computation brought by our method is
relatively small, resulting in small additional
training costs;

• The filter initialization is task independent. It
could be easily applied to other NLP tasks.

Also, we further analyze the filters, shedding
some light on the mechanism how our method
influences the training process. The source
code is released at https://github.com/
shenshen-hungry/Semantic-CNN.

2 Related Work

Most recently, CNNs are becoming increasingly
popular in a variety of NLP tasks. An influential
one is the work of (Kim, 2014), where a simple
CNN with a single layer of convolution is used for
feature extraction. Despite its simple structure, the
model achieves strong baselines on many sentence
classification datasets. Following this work, sev-
eral improved models are proposed. Zhang and
Wallace (2015) improve the model by optimiz-
ing hyper-parameters and provide a detailed anal-
ysis of the CNN (Kim, 2014). Yin and Schütze
(2016) and Zhang et al. (2016b) exploit different
pre-trained word embeddings (e.g. word2vec and
GloVe) to enhance the model.

In addition to initializing embedding layers with
pre-trained word vectors, other pre-designed fea-
tures also prove to be very effective in assisting
the training of neural models. For example, in (Hu
et al., 2016), neural models are harnessed by logic
rules. Li et al. (2016) propose to use pre-calculated
words’ weights to guide Paragraph Vector model.
Dai and Le (2015) combine the hidden layers of
RNNs with linearly increasing weights. Xie et al.
(2016) use entity descriptions from knowledge
bases (e.g. Freebase) to learn knowledge repre-
sentations for entity classification and knowledge
graph completion. Qian et al. (2016) propose lin-
guistically regularized LSTMs for sentiment anal-
ysis with sentiment lexicons, negation words, and
intensity words. In this work, we encode seman-
tic features into convolutional layers by initializ-
ing them with important n-grams. Being aware of
which n-grams are important, CNN is able to ex-

Figure 1: The framework of CNN with one layer
of convolution and pooling.

tract more discriminative features for text classifi-
cation.

3 Our Method

The intuition behind our method is simple: Since
CNNs essentially capture semantic features of n-
grams, we can use important n-grams to initial-
ize the filters. As a result, the filters are able to
focus on extracting those important n-gram fea-
tures at the beginning of the training. As shown in
Figure 1, we use embeddings of “not” and “bad”
to initialize the filter. A larger score will be ob-
tained when the “not bad” filter matches the bi-
gram “not bad” in the text, otherwise a relatively
smaller score will be returned.

3.1 N-gram Selection
Firstly, we extract important n-grams from the
training data. Intuitively, n-gram “not bad” is
much more important than “watch a movie” for
determining reviews’ polarities. Naive Bayes
(NB) weighting is an effective technique for de-
termining the words’ importance (Martineau and
Finin, 2009; Wang and Manning, 2012). NB
weight r of a n-gram w in class c is calculated as
follows:

r =
(pwc + α)/||pc||1
(pwc̃ + α)/||pc̃||1

where pwc is the number of texts that contain
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Figure 2: Uni-gram cluster examples.

Figure 3: Filter initialization.

n-gram w in class c, pwc̃ is the number of texts
that contain n-gramw in other classes, ||pc||1is the
number of texts in class c, ||pc̃||1 is the number
of texts in other classes, α is a smoothing param-
eter. For positive class in movie review dataset,
the ratios of n-grams like “amazing” and “not bad”
should be large since they appear much more fre-
quently in positive texts than in negative texts. For
neutral n-grams like “of the” and “movie”, their
ratios should be around 1. For each class, we se-
lect the n-grams whose ratios are much higher than
1 for filter initialization. We give examples of n-
grams selected by our method in Appendix.

3.2 Filter Initialization
We concatenate word embeddings to construct n-
gram embeddings. For example, a tri-gram em-
bedding has 3*100 dimensions when word embed-
ding has 100 dimensions. This concatenation fol-
lows the mechanism of convolutional filters,where
a filter with n*d dimensions is able to capture n-
gram features (d is the dimension of word embed-
ding). Because the number of filters in CNNs is
much smaller than the number of n-grams, a fil-
ter tends to extract the features of a class of n-
grams rather than an individual n-gram. Based
on this observation, we don’t use n-gram embed-
dings to initialize the filters directly. Instead, we
firstly use K-means to cluster features of the se-
lected n-grams, and then use the clusters’ centroid
vectors to initialize the filters. In this work, we
consider clustering uni-gram (word), bi-gram and
tri-gram features. Figure 2 shows two uni-gram
cluster examples extracted from the location ques-
tions in TREC dataset (Li and Roth, 2002).

After obtaining the n-gram clusters, we feed

their centroid vectors into the center of the filters.
The remaining positions are still initialized ran-
domly. Taking filters with size 3, 4, 5 as examples,
Figure 3 shows how we fill uni, bi, and tri-gram
features into the filters. By doing this, we encode
semantic features into the filters. For example, in
the TREC question classification task, the initial-
ization will result in six types of filters which are
sensitive to abbreviation, entity, description, hu-
man, location and number questions respectively.

4 Experiments

4.1 Datasets and Hyper-parameter Settings

CNN-non-static1 (short for CNN) proposed by
Kim (2014) is used as our baseline, which con-
sists of one embedding layer, one convolutional
layer, one max pooling layer, and one fully con-
nected layer. The model proposed by Kim (2014)
is a strong baseline in sentence classification. For
details of the model, one can see (Kim, 2014;
Zhang and Wallace, 2015). Pre-trained word em-
beddings on Google News via word2vec toolkit2

are used for initializing the convolutional filters,
besides initializing the embedding layer of CNN
as in (Kim, 2014). For a fair comparison, we use
the same seven datasets 3 and hyper-parameter set-
ting with Kim (2014)’s work for training and test-
ing. Uni, bi, and tri-gram features are used to ini-
tialize the filters. For a K-way classification prob-
lem, we select top 10% n-grams in each class ac-
cording to NB weighting. Since 300 filters are
used in Kim (2014)’s work, we follow this set-
ting and aggregate n-grams into 300/K clusters for
each class. Centroid vectors are used for filling the
filters. Taking binary classification dataset MR as
an example, 150 “positive” filters and 150 “nega-
tive” filters are obtained after initialization.

4.2 Effectiveness of Filter Initialization

In this section, we demonstrate the effectiveness
of our initialization technique. We respectively
use uni, bi and tri-gram centroid vectors to fill
the filters. Table 1 lists the results. The CNN
has provided very strong baselines. Our method

1The embedding layer in CNN-non-static is initialized
with pre-trained vectors from word2vec toolkit and fine-tuned
for each task.

2https://code.google.com/p/word2vec/
3(MR (Pang and Lee, 2005), SST-1/2 (Socher et al.,

2013), Subj (Pang and Lee, 2004), TREC (Li and Roth,
2002), CR (Hu and Liu, 2004), and MPQA (Wiebe et al.,
2005))
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Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
+UNI 82.1 50.8 89.0 93.7 94.4 86.0 89.3
+BI 82.2 50.7 88.3 93.7 94.6 85.8 89.5
+TRI 82.1 49.8 88.2 93.8 94.2 85.9 89.2

Table 1: Effectiveness of filter initialization.

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-non-static (Kim, 2014) 81.5 48.0 87.2 93.4 93.6 84.3 89.5
MV-CNN (Yin and Schütze, 2016) - 49.6 89.4 93.9 - - -
MGNC-CNN (Zhang et al., 2016b) - 48.7 88.3 94.1 95.5 - -
CNN-Rule (Hu et al., 2016) 81.7 - 89.3 - - 85.3 -
Our Model (CNN-non-static+UNI) 82.1 50.8 89.0 93.7 94.4 86.0 89.3
combine-skip (Kiros et al., 2015) 76.5 - - 93.6 92.2 80.1 87.1
Adasent (Zhao et al., 2015) 83.1 - - 95.5 92.4 86.3 93.3
DSCNN (Zhang et al., 2016a) 82.2 50.6 88.7 93.9 95.6 - -
PV (Le and Mikolov, 2014) 74.8 48.7 87.8 90.5 91.8 78.1 74.2
NBSVM (Wang and Manning, 2012) 79.4 - - 93.2 - 81.8 86.3
Tree LSTM (Tai et al., 2015) - 51.0 88.0 - - - -

Table 2: Comparisons of state-of-the-arts.

further improves the accuracies significantly on
all datasets except MPQA. The results are con-
sistent with (Wang and Manning, 2012), where
NB weighting produces little improvement over
MPQA. We can also observe that the performance
of uni, bi and tri-grams are comparable. None of
them outperforms the others on all datasets.

4.3 Comparisons with State-of-the-arts

Table 2 lists the results of our model and other
state-of-the-arts. Models in the first group are
improved CNNs based on (Kim, 2014). Among
them, MV-CNN and MGNC-CNN utilize multi-
ple pre-trained embeddings as inputs, and CNN-
Rule integrates logic rules. Our model achieves
the best performance on three tasks without requir-
ing any extra training costs and resources. With
this simple initialization method, our model also
gives competitive results against more sophisti-
cated deep learning models in the second group,
e.g. Adasent (Zhao et al., 2015) and DSCNN
(Zhang et al., 2016a) that have complex structures
or use the combinations of NNs.

Experiments show that our n-gram features
make great contribution to both two-class and
multi-class classification. Essentially, our method
enables CNNs to obtain better generalization abil-
ities. Furthermore, as the initialization does not
rely on any external prior knowledge or resources,
it could be easily applied to other NLP tasks or
other languages.

positive filters negative filters
+ - + -

UNI 29.5 20.5 21.3 28.7
BI 31.3 18.7 18.1 31.9
TRI 31.4 18.6 17.2 32.8

Table 3: “+” and “-” are used to denote the num-
ber of positive and negative weights respectively.
The data in the table are obtained from MR by the
average of 10 times training. Every time we select
100 filters. 50 of them are initialized with positive
n-grams and the rest are with negative n-grams.

4.4 Further Analysis of Filters

We further analyze the filter initialization with
an example of binary sentiment classification.
Through the initialization we have determined
which filters are positive or negative in advance.
The corresponding neurons of positive filters upon
max-pooling layer are supposed to be activated
by positive samples. Since positive (negative)
samples have labels of 1 (0), the corresponding
weights (in logistic regression) of those “positive”
neurons tend to be positive. For the same reason,
the negative filters tend to have negative weights.
The results shown in Table 3 confirm our hypoth-
esis: Positive/negative filters respectively tend to
have positive(+)/negative(-) weights. The differ-
ence between positive and negative filters are more
obvious in bi-gram and tri-gram cases. It is be-
cause bi and tri-gram centroid vectors could ini-
tialize more parameters of filters than uni-gram.

In Table 1, experiments show that different

1887



choices of uni, bi, and tri-grams have little influ-
ence on the results. The following is our assump-
tion: Compared to uni-grams (words), bi and tri-
grams can cover more spaces of filters and intro-
duce more NB information to filters. Filters ini-
tialized by them thus pay more attention to NB
information than filters initialized by uni-grams
according to Table 3. However, bi and tri-grams
are also sparser in data than uni-grams. Their NB
weights are not as accurate as those of uni-grams,
even applied smoothing. As NB weight of a n-
gram denotes its contribution to the classification,
model initialized with tri-grams does not always
perform the best.

5 Conclusion

This paper proposes a novel weight initialization
technique for CNNs. We discover that convolu-
tional filters that encode semantic features at the
beginning of the training tend to produce better
results than being randomly initialized. This has
a similar effect with embedding layer initializa-
tion via pre-trained word vectors. Experimental
results demonstrate the effectiveness of the ini-
tialization technique on multiple text classification
tasks. In addition, our method requires few ex-
ternal resources and relatively small calculation,
making it attractive for scenarios where training
costs may be an issue.

In textual data, the features extracted by CNNs
are n-grams. However, in fields like computer vi-
sion, features extracted by filters are more difficult
to interpret. It still requires further exploration to
apply our method to fields beyond NLP.
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École Polytechnique and AUEB
pmeladianos@aueb.gr

François Rousseau
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École Polytechnique and AUEB

mvazirg@aueb.gr

Yannis Stavrakas
IMIS / RC ATHENA

yannis@imis.athena-innovation.gr

Abstract

In this paper, we present a novel docu-
ment similarity measure based on the def-
inition of a graph kernel between pairs of
documents. The proposed measure takes
into account both the terms contained in
the documents and the relationships be-
tween them. By representing each doc-
ument as a graph-of-words, we are able
to model these relationships and then de-
termine how similar two documents are
by using a modified shortest-path graph
kernel. We evaluate our approach on
two tasks and compare it against several
baseline approaches using various perfor-
mance metrics such as DET curves and
macro-average F1-score. Experimental re-
sults on a range of datasets showed that
our proposed approach outperforms tradi-
tional techniques and is capable of mea-
suring more accurately the similarity be-
tween two documents.

1 Introduction

In recent years, we have witnessed a tremendous
growth in the volume of textual documents avail-
able on the Web. With this rapid increase in the
number of available content, new opportunities for
knowledge extraction have arisen. Many text min-
ing tasks such as information retrieval, text catego-
rization and document clustering involve the direct
comparison of two documents. It is thus crucial to
be able to determine accurately how similar two
documents are by defining a document similarity
measure.

Generally speaking, a similarity measure is a
real-valued function that quantifies the common

information shared by two objects (in our case
documents). Determining the similarity between
two documents is not a trivial task. Whether two
documents are similar or different is not always
clear and may vary from application to applica-
tion.

Similarity measures that make use of the vector-
space model (Salton et al., 1975) treat words in a
document as if they were independent of one an-
other, which is not realistic. In fact, words relate
to one another to form meaningful phrases and to
develop ideas. It is known that the human brain
utilizes these relations between words to facilitate
understanding (Altmann and Steedman, 1988). In
general, we assume that two terms are related if
they co-occur together in a small context, typi-
cally a phrase or a window of specific size, which
resulted in n-gram features in many text mining
tasks (an n-gram is a sequence of n terms in this
paper). But n-grams correspond to sequences of
words and thus fail to capture word inversion and
subset matching (e. g., “article about news” vs.
“news article”). To take into account these statis-
tical relations, we propose to represent each doc-
ument as a graph-of-words instead. And then, in
order to measure the similarity between two doc-
uments, we capitalize on recent advances in graph
kernels. Kernels can be thought of as measures of
similarity between pairs of objects (Schölkopf and
Smola, 2002). A graph kernel is a kernel func-
tion that measures the similarity between pairs of
graphs.

Our aim in this paper is neither to define a sim-
ilarity measure for only a certain category of doc-
uments based on background knowledge and fea-
tures specific to that field nor to improve similar-
ity estimation by using external knowledge. In-
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stead, we propose to define a similarity measure
that does not incorporate any background or ex-
ternal knowledge. Hence it is, without changes,
applicable to all types of textual documents even
if they come from different areas. The method
takes as input a pair of documents and automati-
cally computes how similar they are to each other
based solely on their content.

The rest of this paper is organized as follows.
Section 2 provides an overview of the related work
and elaborates our contribution. Section 3 pro-
vides a detailed description of our proposed graph-
of-words kernel. Section 4 evaluates the proposed
approach on a wide range of tasks. Finally, Sec-
tion 5 summarizes the work and presents potential
future work.

2 Related Work

In this section, we review the related work
published in the areas of document similarity,
graph kernels, kernel-based text categorization
and graph-based text categorization.

2.1 Document Similarity
There has been a variety of similarity measures de-
fined to assess how close two objects are to each
other, including documents. Let < d1, d2 > be a
pair of documents and D1 (resp. D2) the set of
terms in d1 (resp. d2). Common similarity mea-
sures discussed by Manning (1999) are defined as
follows:

Matching(d1, d2) = |D1 ∩D2|

Dice(d1, d2) = 2
|D1 ∩D2|
|D1|+ |D2|

Jaccard(d1, d2) =
|D1 ∩D2|
|D1 ∪D2|

Overlap(d1, d2) =
|D1 ∩D2|

min(|D1|, |D2|)

Cosine(d1, d2) =
|D1 ∩D2|√
|D1| × |D2|

The terms might be processed unigrams as well
as processed n-grams present in the text. The set
of operations described above are equivalent to
vector operations when representing d1 and d2 as
binary vectors.

2.2 Graph Kernels
Graph kernels are instances of the R-convolution
kernels introduced by Haussler (1999). Convo-

lution kernels have been proposed as a princi-
pled way of designing kernels on structured ob-
jects, such as sequences, trees and graphs. Graph
kernels compute the similarity between pairs of
graphs, based on common substructures they
share. A wide variety of substructures has been
proposed, such as random walks (Gärtner et al.,
2003; Vishwanathan et al., 2010), shortest paths
(Borgwardt and Kriegel, 2005), subtrees (Ramon
and Gärtner, 2003), cycles (Horváth et al., 2004),
and graphlets (Shervashidze et al., 2009).

2.3 Kernel-based Text Categorization

In recent years, there has been a great deal of
work in using kernel methods, such as SVMs for
text classification (Joachims, 1998; Dumais et al.,
1998). Such work concentrates on building spe-
cialized kernels aimed at measuring similarity be-
tween documents. We outline some of these ap-
proaches below.

The works closest to ours are the ones reported
by Lodhi et al. (2002) and by Cancedda et al.
(2003). Lodhi et al. propose the use of string ker-
nels as an alternative to the vector-space model.
The feature space is generated by any ordered sub-
sequence of characters found in the text not neces-
sarily contiguously. Each subsequence consists of
a specific number of characters and is weighted by
an exponentially decaying factor of its full length
in the text. Due to the enormous amount of com-
putation needed to compute this feature vector,
the authors present a dynamic programming tech-
nique, which allows the efficient calculation of
the kernel values. Our work differs from theirs
in that we use graph kernels instead of sequence
kernels, and we concentrate on the word level in-
stead of the character level. Cancedda et al. mod-
ified their string kernel to work with sequences of
words rather than characters. Two sequences of
words are considered similar if they have many
common words in a given order. The similarity
between two documents is assessed by the num-
ber of matching word sequences. Non-contiguous
occurrences are penalized according to the number
of gaps they contain. The proposed kernel is more
appealing as it is more computationally efficient
and it takes advantage of the standard linguistic
preprocessing techniques. This approach differs
in fundamental respects from our work since we
represented documents as graphs-of-words in or-
der to model word co-occurrence rather than se-
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quences of words and we used a graph kernel in-
stead of a sequence kernel to measure the similar-
ity between pairs of documents. Other text cate-
gorization works use kernels that measure the se-
mantic similarity between concepts extracted from
the text (Bleik et al., 2013; Wang and Domeniconi,
2008).

2.4 Graph-based Text Categorization

Our work is also related to methods that repre-
sent documents as graphs and perform graph min-
ing tasks to achieve improved classification per-
formance. These methods either extract frequent
subgraphs which are then used to produce fea-
ture vectors for the documents (Jiang et al., 2010;
Rousseau et al., 2015) or they determine term
weights to be used in the vector-space model based
on centrality criteria or random walks (Hassan
et al., 2007; Malliaros and Skianis, 2015).

3 A Graph Kernel for Document
Similarity

In this section, we first discuss the essential def-
initions from graph theory. We then present
our graph-of-words model for representing tex-
tual documents. And finally, we define our cus-
tom Shortest-Path Graph Kernel (SPGK) capable
of measuring the similarity between pairs of doc-
uments.

3.1 Graph Concepts

Let G = (V, E) be an undirected and unweighted
graph consisting of a set V of vertices and a set
E of edges between them. In this paper, we will
denote by n the number of vertices and by m the
number of edges.

A labeled graph is a graph with labels on ver-
tices and/or edges. Given a set of labels L, ` :
V → L is a function that assigns labels to the
and/or edges of the graph. In our case, we deal
with fully-labeled graphs as labels are assigned
both to vertices and to edges.

A graph G can be represented by its adjacency
matrix A. The (i, j)th entry of A is 1 if the edge
(vi, vj) between vertices vi and vj exists, and 0
otherwise.

A walk in a graph G is a sequence of vertices
v1, v2, . . . , vk+1 where vi ∈ V and (vi, vi+1) ∈ E
for 1 ≤ i ≤ k. The length of the walk is equal to
the number of edges in the sequence, i. e. k in the
above case. A walk in which vi 6= vj ⇔ i 6= j

is called a path. In other words, a path is a walk
without repetition of nodes.

3.2 Graph-of-words
We chose to represent each textual document as
a statistical graph-of-words, following earlier ap-
proaches in keyword extraction (Ohsawa et al.,
1998; Mihalcea and Tarau, 2004) and more re-
cent ones in ad hoc IR (Blanco and Lioma, 2012;
Rousseau and Vazirgiannis, 2013) and in summa-
rization (Meladianos et al., 2015).

The construction of each graph is preceded by a
preprocessing phase where standard text process-
ing tasks such as tokenization, stopword, punctua-
tion and special character removal, and stemming
are performed. The processed document is then
transformed into an unweighted, undirected graph
whose vertices represent unique terms and whose
edges represent co-occurrences between the con-
nected terms within a fixed-size window (hence
the statistical denomination). The graph-of-words
representation of text provides enhanced model-
ing capabilities compared to the bag-of-words rep-
resentation. Besides the terms (vertices), it also
models the relationships between them (edges).
All the words present in a document have some
relationships with one another, modulo a window
size outside of which the relationship is not taken
into consideration, and graphs are able to capture
these dependencies. The extended modeling capa-
bilities, however, come with an increase in com-
plexity.

An example of a document represented as an
unweighted undirected graph is given in Figure 1.
The source text comes from Shakespeare’s play
“Hamlet”: “to be or not to be: that is the ques-
tion”. For illustration purposes, only the colon
is removed and no other text processing tasks are
performed. The size of the window is set to 2,
i. e. it captures bigram relationships. Hence, each
word (vertex) is connected with an edge with its
previous and its next word, if any.

3.3 Shortest-Path Graph-of-words Kernel
(SPGK)

Our proposed approach measures the similar-
ity between two textual documents by represent-
ing them as graphs-of-words, transforming these
graphs into other graphs, and using graph ker-
nels to calculate the similarity of the new graphs.
Specifically, we capitalize on the shortest-path
graph kernel (Borgwardt and Kriegel, 2005) and
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or not

that

is

thequestion

Figure 1: Example of the graph representation of
a textual document.

we modify it to compare the graph representations
of pairs of documents.

The first step of our proposed approach is to
transform the graph-of-words representation of
each document G into another graph C whose ver-
tices are connected with an edge only if the short-
est distance between them is not greater than a
variable d. The emerging graph contains the same
set of vertices as the graph-of-words from which
it was generated. However, there exist edges only
between vertices that are connected by a path of
length at most d. Every node in C is labeled by the
term that it represents, while every edge between
two vertices is labeled by the shortest distance be-
tween these vertices given that it is no greater than
d. Specifically, the label of an edge e that links
two vertices whose shortest path is p is set equal to
label(e) = 1/p. For d = 1, the emerging network
is equivalent in a structural sense to its correspond-
ing graph-of-words. For greater values of d, it is
very likely that the number of edges of the graph
will have increased compared to its predecessor.

The commonly-used unigram bag-of-words
representation assumes that words in a document
are independent of one another. Although sim-
ilarity measures based on this assumption have
shown to work well in practice in many fields, it is
not rational to completely ignore word order and
word dependence. Hence, the distance between
two terms in a document determines their rela-
tionship. This led us to explore alternative doc-

ument similarity metrics that take into account the
co-occurrence of words in the documents. More
specifically, we assume that two terms are re-
lated given that they appear together inside a win-
dow. The underlying assumption is that each word
present in a document has some relationship with
the other words that are close to it. We set the size
of the window over the processed text equal to 2.
Therefore, in our graph-of-words representation of
a document, each term is linked with its preceding
and its following term with an edge. In our trans-
formed graphs, terms are not only connected with
terms that are next to them, but also with terms that
are close to their neighbors (d = 2), with lower
label values, and close to neighbors of their neigh-
bors (d = 3), with even lower label values. Param-
eter d determines how far from the initial terms we
allow the paths to go. Our intuition is that given
an initial term, terms that are close to terms that
are close to the initial term or beyond, may have
also some relation with the initial term, and the
strength of this relation decreases as the shortest
path length increases. Therefore, although the pro-
posed kernel does not incorporate any knowledge
of the language being used, it does capture some
statistical information and is thus capable of out-
performing metrics based on the unigram and even
n-gram vector-space model.

To determine the edge labels in the new graph
C, we can perform depth-first search (DFS) or
breadth-first search (BFS) traversals from each
vertex in the graph, limiting the depth to d. The
complexity for calculating paths of length up to
d from a source vertex to all other vertices using
either DFS or BFS is at most O(bd), where b is
the average branching factor. The branching fac-
tor depends on the average degree of the vertices
of the graphs-of-words G which, in its turn, de-
pends on the selected size of the sliding window.
For W = 2, the average degree of the vertices will
be typically only slightly above 2 and the branch-
ing factor will be only slightly above 1. Calcu-
lating paths of length up to d for all vertices takes
thusO(nbd) time. This still yields reasonable time
complexity estimates for small values of d.

After our original graphs have been transformed
into the graphs described above, we can measure
their similarity using the following kernel:

Definition 1 (Custom shortest-path graph kernel).
Let G1, G2 denote two graph-of-words represen-
tations of two textual documents d1, d2 that are
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transformed into graphs C1, C2 through the pro-
cess described above. The proposed Shortest-
Path Graph Kernel (SPGK) on C1 = (V1, E1) and
C2 = (V2, E2) is defined as follows:

k(d1, d2) =

(∑
v1∈V1,v2∈V2 knode(v1, v2)

+
∑

e1∈E1,e2∈E2 k
(1)
walk(e1, e2)

)

norm
(1)

where knode is a positive definite kernel for com-
paring two vertices, k(1)walk a positive definite ker-
nel for comparing two edge walks of length 1 in
C (i. e. up to d in G) and norm a normalization
factor described next.

The similarity value generated by our custom
shortest-path graph kernel is equal to the sum over
the kernel values of all pairs of vertices on the
transformed graphs plus the sum over the kernel
values of all pairs of edge walks of length 1 over a
positive normalization factor. The knode kernel is
a function for comparing two vertices. In practice,
we use a delta kernel defined as:

knode(v1, v2) =

{
1 if `(v1) = `(v2),
0 otherwise

(2)

but other works have considered distances in word
embeddings for instance to account for word sim-
ilarity at the cost of having to compare every node
of a graph to every other nodes of the other graph
(Srivastava et al., 2013).

The normalization factor is introduced because
the nominator of the proposed kernel depends on
the length of the compared documents. Specifi-
cally, given the adjacency matrices of the trans-
formed graph representations of two documents
A1,A2 where the value of each entry in the adja-
cency matrix is set equal to the label of the corre-
sponding edge, and the diagonal matrices D1,D2

with diagonal entries set to 1 if the correspond-
ing term exists in the corresponding document, we
first compute the matrices M1,M2 as shown be-
low:

M1 = A1 +D1

M2 = A2 +D2

and we then compute the normalization factor us-
ing the following formula:

norm = ‖M1‖F × ‖M2‖F

where ‖ · ‖F is the Frobenius norm for matrices.

The k(1)walk kernel can be expressed as the prod-
uct of kernels on vertices and edges along the
walk. Only walks of length 1 in C are consid-
ered, therefore, k(1)walk can be calculated in terms
of the original vertex, the destination vertex, and
the edge connecting them.

Definition 2 (Custom edge walk kernel). Let
u1, v1 be two vertices of graph C1 (u1, v1 ∈ V1)
and e1 the edge connecting them. Let also u2, v2
be two vertices of graph C2 (u2, v2 ∈ V2) and e2
the edge connecting them. The edge walk kernel is
defined as follows:

k
(1)
walk(e1, e2) = knode(u1, u2)× kedge(e1, e2)

×knode(v1, v2)
(3)

where knode is the kernel function defined above
and kedge is a kernel function for comparing two
edges defined as follows:

kedge(e1, e2) =





`(e1)× `(e2) if e1 ∈ E1∧
e2 ∈ E2,

0 otherwise
(4)

The measure of similarity between two graphs
depends on the kernel values corresponding to the
vertices and edges that compose each walk, while
the matching between two vertices or two edges
is determined by comparing their labels. The val-
ues of our kernel function lie in the interval [0, 1].
It takes a value equal to 0 for documents with no
common terms and a value equal to 1 for identical
documents.

Lemma 1. SPGK is a valid kernel.

Proof. Based on the proofs presented in (Borg-
wardt and Kriegel, 2005) and (Borgwardt et al.,
2005), we show that our custom shortest-path
graph kernel is positive definite. The knode kernel
is a delta kernel, which is known to be positive def-
inite (Schölkopf and Smola, 2002) and therefore a
valid kernel. The kedge kernel is also a delta ker-
nel multiplied by a positive real number. Since the
multiplication of a kernel by a positive constant
preserves positive definiteness, this kernel is also
valid. Regarding the k(1)walk kernel, it is positive
definite as the point-wise multiplication of posi-
tive definite kernels (knode, kedge) preserves posi-
tive definiteness. The

∑
v1∈V1,v2∈V2 knode(v1, v2)

function is the sum of valid kernel functions,
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hence, it is also positive definite. Regarding the∑
e1∈E1,e2∈E2 k

(1)
walk(e1, e2) function, it is a walk

kernel that takes into account only walks of length
1 on the transformed graphs and is zero-extended
to the whole set of pairs of walks that do not sat-
isfy the above constraint. Therefore, kernel values
for walks with length greater than 1 are set to zero.
This zero-extension is known to preserve positive
definiteness (Haussler, 1999). This function is a
convolution kernel, which is proven to be positive
definite (Haussler, 1999). Finally, the kernel is di-
vided by a positive constant and its positive defi-
niteness is preserved.

3.4 Run Time Complexity

We now determine the time complexity of our pro-
posed kernel for measuring the similarity between
two documents. Let us assume that the graph-of-
words representations of the two documents con-
sist of n vertices each. To determine the shortest
paths of length at most d from a root vertex to all
other vertices, we need O(bd) time when using a
graph traversal algorithm (depth-first or breadth-
first search). There are also n vertices in the trans-
formed graph, hence, the transformation will re-
quire O(nbd) time for each graph. In order to de-
termine the kernel value, it is necessary to com-
pute the value of k(1)walk for all pairs of edges be-
tween the two transformed graphs. The number
of edges in the transformed graph can be at most
n2 in the case all the shortest paths in the origi-
nal graph are no longer than d. Thus, there are
at most n2 · n2 = n4 pairs of edges. However,
due to the label enrichment that has been applied
to the vertices of the transformed graphs, the num-
ber of matching nodes in the two graphs has been
radically reduced and the number of pairs of edges
that have to be considered is also reduced. Specifi-
cally, we have to consider n2 pairs of edges as only
paths between vertices whose label is the same in
the two graphs are considered. The kernel value
can thus be computed in O(n2 + nbd) time.

3.5 Alternative Computation Method for
d = 1

In the case we consider only the common paths
of length 1, there is a more efficient algorithm to
compute the kernel values. The common paths
of length 1 correspond to common edges between
the graph representations of the documents. The
emerging kernel takes into account the number of

common vertices (terms) between the two graphs
and the number of common edges (terms co-
occurring in the same window) as well. More
specifically, given two documents d1 and d2, the
adjacency matrices of their graph representations
A1,A2 where each entry in the adjacency matrix
is set to 1 if the corresponding edge exists in the
graph and the diagonal matrices D1,D2 with di-
agonal entries set to 1 if the corresponding term
exists in the document, we first compute the ma-
trices M1,M2 as described previously and then
we compute the kernel value using the following
formula:

k(d1, d2) =

∑
M1 ◦M2

‖M1‖F × ‖M2‖F
(5)

where (·◦·) is the Hadamard or element-wise prod-
uct between matrices.

If n is the number of unique node labels, i. e.
the length of the vocabulary, and m the number
of edges, the computation of the kernel values re-
quires O(n +m) time in the worst case scenario.
For the baseline similarity measures, with unigram
features, the computational cost is O(n) time but
it goes up as we consider higher order n-grams.

4 Experiments and Evaluation

In this section, we present the experiments we con-
ducted to evaluate and validate our proposed ker-
nel between documents.

4.1 Evaluation Metrics

To assess the effectiveness of the different ap-
proaches, we employed a set of well-known eval-
uation metrics inherited from Information Re-
trieval: accuracy, macro-average F1-score and for
the story link detection task DET curves (Martin
et al., 1997).

The DET curve is a variant of the ROC
curve that plots the missed detection probability
(Pmiss = fn/(tp+fn)) versus the false alarm prob-
ability (Pfa = fp/(tn+fp)) for various system op-
erating points, which allows someone to get a
greater insight into the effectiveness of the eval-
uated approaches. A method is considered to per-
form best at thresholds that correspond to points
that are close to the lower-left of the graph (i. e.
lower error probabilities) and the area under the
curve should be minimal.

For the story link detection experiments, we
also computed the normalized CDet costs, the
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Dataset # training # test # classes vocabulary avg. terms avg.
examples examples size per document degree

WebKB 2, 803 1, 396 4 7, 772 77.93 2.54

News 32, 604 CV 7 34, 131 25.57 2.08

Subjectivity 10, 000 CV 2 21, 335 20.74 2.08

Amazon 6, 400 1, 600 4 39, 133 86.96 2.67

Polarity 10, 662 CV 2 18, 777 18.44 2.00

Table 1: Summary of the 5 datasets that were used in our text categorization experiments.

standard performance measure of TDT as de-
scribed in (Fiscus and Wheatley, 2004).

4.2 Datasets

We evaluate the SPGK and the baselines on 5 stan-
dard datasets for text categorization: (1) WebKB:
Web pages collected from Computer Science de-
partments of various Universities manually classi-
fied into 7 categories (we removed Web pages that
belong to the classes “staff”, “department” and
“other”) (Craven et al., 1998). (2) News: News
extracted from RSS feeds of popular newspaper
websites classified into 7 categories based on the
taxonomies of their publishing websites (Vitale
et al., 2012). (3) Subjectivity: Subjective
and objective sentences corresponding to movie
reviews from Rotten Tomatoes and to plot sum-
maries gathered from the Internet Movie Database
respectively (Pang and Lee, 2004). (4) Amazon:
Product reviews over four different sub-collections
(Blitzer et al., 2007). (5) Polarity: Positive
and negative snippets acquired from Rotten Toma-
toes (Pang and Lee, 2005). Table 1 shows statistics
of the datasets that were used for the evaluation.
For the Story Link Detection task, we employed
the TDT-5 corpus that contains stories from var-
ious newswire sources (Glenn et al., 2006; Graff
and Kong, 2006). We only used the English part
of the dataset for our experiments consisting of
221, 306 documents.

4.3 Baselines

The similarity measure presented in this paper is
best suited for settings where the concept of a pre-
defined corpus does not exist. For example, it
could find applications in plagiarism detection and
in cases where independent pairs of documents
must be compared to each other. In such settings,
due to the absense of a corpus, we cannot learn
mappings of terms to a vector space (i. e. word em-
beddings) or use methods that take advantage of
the corpus to increase their performance. Hence,

our set of baselines includes methods that take as
input two documents and output their similarity.

More specifically, the performance of our pro-
posed kernel was compared to the performances
of three baseline kernels based on similarity mea-
sures between pairs of documents < d1, d2 > in
the n-gram feature space (up to 4-grams):

1. The linear kernel, which uses the dot product as
similarity measure: kdp( ~d1, ~d2) = ~d1 · ~d2 where
~d is the n-gram feature vector associated with
the document d;

2. Cosine, which measures the cosine of the an-
gle between the two vectors: kc( ~d1, ~d2) =

~d1· ~d2
‖ ~d1‖×‖ ~d2‖

where ‖ · ‖ is the L2−norm.

3. Tanimoto coefficient (also known as Jaccard co-
efficient), which measures the intersection of
features divided by their union: ktc( ~d1, ~d2) =

~d1· ~d2
‖ ~d1‖2+‖ ~d2‖2− ~d1· ~d2

In the task of text categorization, we also com-
pared the proposed kernel against the so-called
Dynamic Convolutional Neural Network (DCNN)
which is capable of generating representations for
larger pieces of text such as sentences and docu-
ments (Kalchbrenner et al., 2014) and a convolu-
tional neural network (CNN) architecture that has
recently showed state-of-the-art results on many
NLP sentence classification tasks (Kim, 2014).
We used two variants of the CNN: (1) a model
where all words are initialized to random vec-
tors and are kept static during training (CNN
static,rand), and (2) a model where again all
words are initialized to random vectors, but are
modified during training (CNN non-static,rand).
The second model as well as DCNN have access to
the whole corpus to generate word/document em-
beddings. Hence, it is not fair in a sense to com-
pare the proposed kernel against these methods.
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Method
Dataset WebKB News Subjectivity Amazon Polarity

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Dot product

n = 1 0.9026 0.8923 0.8110 0.7764 0.8992 0.8992 0.9188 0.9188 0.7627 0.7626
n = 2 0.9047 0.8950 0.8091 0.7732 0.9101 0.9101 0.9200 0.9202 0.7746 0.7745
n = 3 0.9026 0.8917 0.8072 0.7710 0.9090 0.9090 0.9181 0.9185 0.7741 0.7740
n = 4 0.8940 0.8813 0.8031 0.7651 0.9039 0.9039 0.9131 0.9133 0.7719 0.7718

Cosine

n = 1 0.9248 0.9188 0.8117 0.7766 0.9003 0.9002 0.9400 0.9400 0.7670 0.7669
n = 2 0.9305 0.9275 0.8149 0.7797 0.9094 0.9094 0.9413 0.9413 0.7756 0.7756
n = 3 0.9298 0.9259 0.8097 0.7738 0.9099 0.9099 0.9419 0.9418 0.7765 0.7765
n = 4 0.9248 0.9208 0.8076 0.7709 0.9076 0.9075 0.9413 0.9413 0.7753 0.7753

Tanimoto

n = 1 0.9062 0.8983 0.8155 0.7815 0.9094 0.9093 0.9225 0.9226 0.7749 0.7748
n = 2 0.9040 0.8945 0.8075 0.7700 0.9061 0.9060 0.9181 0.9185 0.7735 0.7735
n = 3 0.9241 0.9180 0.7980 0.7575 0.9021 0.9020 0.9344 0.9347 0.7648 0.7648
n = 4 0.9176 0.9084 0.7899 0.7483 0.8953 0.8952 0.9300 0.9300 0.7586 0.7586

DCNN 0.8918 0.8799 0.7991 0.7615 0.9026 0.9026 0.9181 0.9181 0.7326 0.7326

CNN
static,rand > 1 day 0.7757 0.7337 0.8716 0.8715 0.8881 0.8882 0.7150 0.7150

non-static,rand > 1 day 0.8113 0.7749 0.8961 0.8960 0.9356 0.9356 0.7654 0.7653

SPGK

d = 1 0.9327 0.9278 0.8104 0.7749 0.9148* 0.9148 0.9400 0.9401 0.7776 0.7775
d = 2 0.9370* 0.9336 0.8089 0.7729 0.9146* 0.9146 0.9413 0.9413 0.7789* 0.7788
d = 3 0.9291 0.9233 0.8078 0.7703 0.9137* 0.9137 0.9444 0.9444 0.7761 0.7760
d = 4 0.9291 0.9223 0.8097 0.7730 0.9118 0.9118 0.9463 0.9463 0.7780 0.7780

Table 2: Performance of the 6 approaches in text categorization. * indicates statistical significance in
accuracy improvement at p < 0.05 using the micro sign test against the Cosine (n = 2) baseline of the
same column. > 1 day indicates that the computation did not finish after 1 day.

4.4 Text Categorization

To perform text categorization, for all methods ex-
cept the DCNN and the two CNNs, we employed
a Support Vector Machine (SVM) classifier (Boser
et al., 1992). It is interesting to note that all we
need to train an SVM classifier is the kernel ma-
trix of the training examples. We optimized the
parameter C of the SVM by performing 10-fold
cross-validation on the training set. We then made
predictions on the test set using the optimal value
of C. For DCNN the dimensionality of the gen-
erated embeddings was set to 100, while for the
two CNNs it was set to 300. For DCNN and the
two CNNs, the number of training epochs was
set to 25. All similarity measures were coded in
Python1.

For each value of the parameter d, we obtain a
new kernel and in turn the resultant kernel matrix
contains different values. To study the effect of
parameter d on the classification performance, we
performed tests for values of d ranging from 1 to
4. We did not further increase the value of d since
in most cases, for values greater than 4, the perfor-
mance of the classifier stayed the same.

Table 2 shows the performance of the baseline
methods and the proposed shortest-path graph ker-
nel (SPGK), on the five datasets. Bold font marks
the best performance in a column, while ∗ indi-

1Code available at: http://www.db-net.aueb.
gr/nikolentzos/code/spgk.zip

cates statistical significance in accuracy improve-
ment at p < 0.05 using the micro sign test (Yang
and Liu, 1999) against the Cosine (n = 2) baseline
of the same column. We chose to test for signifi-
cance against that measure, as it corresponds to the
best-performing baseline. On all datasets except
one (News), SPGK outperforms the other three
similarity measures and the neural network archi-
tectures. In addition, the results show a statisti-
cally significant improvement of at least one of our
kernels over the Cosine (n = 2) approach on all
datasets except two (News, Amazon). In general,
our kernel is followed in performance by Cosine,
Tanimoto, Dot Product in that order. The three
neural network architectures fail to outperform the
proposed kernel even on a single dataset. Further-
more, the approaches that make use of the whole
corpus to generate embeddings (DCNN and CNN
non-static,rand) do not seem to gain any advantage
from having access to the whole dataset. This may
be due to the fact that the size of the datasets is not
large enough for learning high-quality representa-
tions.

4.5 Story Link Detection

Story link detection, as defined by the Topic De-
tection and Tracking (TDT) research program (Al-
lan, 2002), is the task of determining whether two
stories, such as news articles and radio broadcasts,
are “linked” by the same event. According to TDT,
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Figure 2: DET curves for all similarity measures
on story link detection track.

Similarity measure (Cdet)norm

Dot product 0.3908
Cosine 0.0953
Tanimoto coefficient 0.1453

SPGK

d = 1 0.0883
d = 2 0.0884
d = 3 0.0888
d = 4 0.0888

Table 3: Performance of all similarity measures in
story link detection.

an event is something that happens at some spe-
cific time and place and two stories are “linked” if
they discuss the same event.

In Figure 2, we plot the DET curves compar-
ing the proposed approaches. For clarity, we only
plot one curve for our SPGK approach (d = 1)
since the plots overlapped, and the best perform-
ing curve for each of the baseline approaches. It
is clear that our approach outperforms the base-
lines over the whole set of operating points. We
also searched for the threshold values for which
each approach maximizes its performance. Our
next step was to compare the four systems in terms
of detection effectiveness at that optimal thresh-
old. Table 3 illustrates the normalized Cdet of the
proposed methods and the baselines. We can see
that the proposed methods are better than baseline
methods in terms of the normalized Cdet metric.

5 Conclusion

In this paper, we presented a graph kernel for mea-
suring the similarity between pairs of documents.
The graph-of-words representation of textual doc-
uments allows us to model relationships between

terms in documents and, hence, to go beyond the
limits of the vector-space model. At the same
time, it allows us to measure the similarity be-
tween two documents by comparing their graph
representations using kernel functions. The effec-
tiveness of the proposed kernel was empirically
tested on two different tasks, namely text catego-
rization and story link detection. The proposed
measure showed improved performance on both
tasks compared to the baselines.
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Abstract

Models work best when they are opti-
mized taking into account the evaluation
criteria that people care about. For topic
models, people often care about inter-
pretability, which can be approximated us-
ing measures of lexical association. We in-
tegrate lexical association into topic opti-
mization using tree priors, which provide
a flexible framework that can take advan-
tage of both first order word associations
and the higher-order associations captured
by word embeddings. Tree priors improve
topic interpretability without hurting ex-
trinsic performance.

1 Introduction

Goodman (1996) introduces a key insight for ma-
chine learning models in natural language process-
ing: if you know how performance on a problem is
evaluated, it makes more sense to optimize using
that evaluation metric, rather than others. Good-
man applies his insight to parsing algorithms, but
this insight has had an even larger impact in ma-
chine translation, where the introduction of the
fully automatic BLEU metric makes it possible to
tune systems using a score correlated with hu-
man rankings of MT system performance (Pap-
ineni et al., 2002).

Chang et al. (2009) provide a similar insight
for topic models (Blei et al., 2003, LDA): if what
you care about is the interpretability of topics,
the standard objective function for parameter in-
ference (likelihood) is not only poorly correlated
with a human-centered measurement of topic co-
herence, but inversely correlated. Nonetheless,
most topic models are still trained using meth-
ods that optimize likelihood (McAuliffe and Blei,
2008; Nguyen et al., 2013).

We take the logical next step suggested when
you bring together the insights of Goodman (1996)
and Chang et al. (2009), namely incorporating
an approximation of human topic interpretabil-
ity into the topic model optimization process in
a way that is effective and more straightforward
than previous methods (Newman et al., 2011). We
take advantage of the human-centered evaluation
of Chang et al. (2009), which can be reasonably
approximated using an automatic metric based on
word associations derived from a large, more gen-
eral corpus (Lau et al., 2014). We exploit LDA and
its Bayesian formulation by bringing word associ-
ations into the picture using a prior—specifically,
we use external lexical association to create a
tree structure and then use tree LDA (Boyd-Graber
et al., 2007, tLDA), which derives topics using a
given tree prior.

We construct tree priors with combinations of
two types of word association scores (skip-gram
probability (Mikolov et al., 2013) and G2 likeli-
hood ratio (Dunning, 1993)) and three construc-
tion algorithms (two-level, hierarchical clustering
with and without leaf duplication). Then tLDA

identifies topics with these tree priors in Amazon
reviews and the 20NewsGroups datasets. tLDA

topics are more coherent compared with “vanilla”
LDA topics, while retaining and often slightly im-
proving topics’ extrinsic performance as features
for supervised classification. Our approach can be
viewed as a form of adaptation, and the flexibility
of the tree prior approach—amenable to any kind
of association score—suggests that there are many
directions to pursue beyond the two flavors of as-
sociation explored here.
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0.953

0.047
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0.038

0.427 0.573

0.252 0.340 0.028 0.0180.338 0.023

Figure 1: An example of a tree prior (the tree
structure) and gold posterior edge and word prob-
abilities learned by tLDA. Numbers beside the
edges denote the probability of moving from the
parent node to the child node. A word’s probabil-
ity, i.e., the number below the word, is the product
of probabilities moving from the root to the leaf.

2 Tree LDA: LDA with Tree Priors

Tree priors organize the vocabulary of a dataset in
a tree structure, contrasting with introducing topic
correlations (Blei and Lafferty, 2007; He et al.,
2017). Words are located at the leaf level and share
ancestor internal nodes. In our use of tree pri-
ors, if two words have a lower association score,
their common ancestor node will be closer to the
root node, e.g., contrast (orbit, satellite) with (or-
bit, launch) in Figure 1.

Tree LDA (Boyd-Graber et al., 2007, tLDA) is
an LDA extension that creates topics from a tree
prior. A topic in tLDA is a multinomial distribu-
tion over the paths from the root to leaves. An in-
ternal node, i.e., the circles in Figure 1, is a multi-
nomial distribution over its child nodes. The prob-
ability of a path is the product of probabilities of
picking the nodes in the path, e.g., Pr(satellite) =
0.614 × 0.962 × 0.427 ≈ 0.252. Thus two paths
with shared nodes have correlated weights in a
topic. The generative process of tLDA is:

1. For topics k ∈ {1, . . . ,K} and internal nodes ni
(a) Draw child distribution1 πk,i ∼ Dir(β)

2. For each document d ∈ {1, . . . , D}
(a) Draw topic distribution θd ∼ Dir(α)
(b) For each token td,n in document d

i. Draw topic assignment zd,n ∼ Mult(θd)
ii. Draw path yd,n to word wd,n with probability∏

(i,j)∈yd,n πzd,n,i,j

tLDA can perform different tasks using differ-
ent tree priors. If we encode synonyms in the
tree prior, tLDA disambiguates word senses (Boyd-
Graber et al., 2007). With word translation priors,
it is a multilingual topic model (Hu et al., 2014).

1Unlike other tree-based topic models such as Andrzejew-
ski et al. (2009), all Dirichlet hyperparameters are the same
for all internal nodes. Regardless of cardinality, all Dirichlet
parameters are the same scalar β.

sport hockey sports match matches tournament

matchsport

Figure 2: A two-level tree example with N = 2.
The words in the internal nodes denote concepts
and have no effect in tLDA.

3 Tree Prior Construction from Word
Association Scores

A two-level tree is the most straightforward con-
struction.2 Each internal node, ni, is a concept as-
sociated with a word vi in the vocabulary. Then we
sort all other words in descending order of their as-
sociation scores with vi and select the topN words
(we use N = 10) as ni’s child leaf nodes. ni has
an additional child node which represents vi, to
ensure that every word appears at the leaf level at
least once (Figure 2).3 Thus, if the vocabulary size
is V , there will be a total of (N + 1)V leaf nodes.

3.1 Hierarchical Clustering (HAC)
While a two-level tree is bushy (high branching
factor) and flat, hierarchical agglomerative cluster-
ing (Lukasová, 1979, HAC) reduces the number of
leaf nodes and encodes levels of word association
information in its hierarchy (Figure 1).

The HAC process starts from V clusters repre-
senting the V words in the vocabulary. It then
repeatedly merges the two clusters with the high-
est association score until there is only one cluster
left. If at least one of the two clusters, ci and cj ,
has multiple words, their association score is the
average association score of the pairwise words
from the two clusters:

S(ci, cj) =
1

|ci||cj |
∑

wi′∈ci

∑

wj′∈cj
S(wi′ , wj′). (1)

3.2 HAC with Leaf Duplication (HAC-LD)
HAC might merge words with multiple senses. For
example, the word “spring” could mean either a
season (similar to “summer”) or a place with water
(similar to “lake”). Assigning “spring” to either
side will cause information loss on the other side.

To alleviate this problem, we first pair every
word with its most similar word and create a clus-
ter with the pair. Thus “spring” is paired with
“summer” and “lake” simultaneously (Figure 3).

2The root node is not considered a level.
3All tree prior examples are real sub-trees of the priors

built on Gigaword.
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spring lake lake spring summer summerriver winter

Figure 3: An example of HAC-LD for the words
“spring”, “summer”, and “lake”, whose paired
words are shaded in gray. HAC-LD alleviates the
problem in HAC that a word with multiple senses
can only be assigned to a single cluster close to
one of its senses.

Corpus #Vocabulary #Docs #Tokens #Classes
20NG 9,194 18,769 1.75M 20
Amazon 9,410 39,392 1.51M 2

Table 1: Corpus Statistics

4 Experiments

We compute two versions of word association
scores from Gigaword, using word2vec (Mikolov
et al., 2013) and G2 likelihood ratio (Dunning,
1993).4 Given the word vectors vi and vj , which
represent words wi and wj , their word2vec asso-
ciation score is

S(wi, wj) =
exp (vi · vj)∑
k exp (vi · vk)

. (2)

Then we apply the three tree construction algo-
rithms to construct six tree priors. In the two-level
trees, the value of N , i.e., the number of child
nodes per internal node, is ten.

We use Amazon reviews (Jindal and Liu, 2008)
and 20NewsGroups (Lang, 1995, 20NG). We ap-
ply the same tokenization and stopword removal
methods. We then sort the words by their docu-
ment frequencies and return the top words, while
also removing words that appear in more than 30%
of the documents (Table 1).

Both corpora are split into five folds. For classi-
fication tasks, each fold is further equally split into
a development set and a test set. All the results are
averaged across five-fold cross-validation using 20
topics with hyper-parameters α = β = 0.01. For
20NewsGroups classification, a post’s newsgroup
is its label. For Amazon reviews, 4–5 star reviews
have positive labels, 1–2 stars negative, and re-
views with 3 stars are discarded.

Model Tree 20NG Amazon
LDA – 2158.74 999.98
tLDA G2-2LV 2214.99 1018.72

G2-HAC 2234.34 1017.17
G2-HAC-LD 2251.65 1015.06

tLDA W2V-2LV 2204.94 1016.31
W2V-HAC 2222.53 1013.07
W2V-HAC-LD 2234.08 1017.77

Table 2: The average perplexity results on the test
sets by various models. LDA gives the lowest per-
plexity, because tLDA models have constraint from
the tree priors and sacrifice the perplexity.

4.1 Perplexity

Before evaluating topic quality, we conduct a san-
ity check of the models’ average perplexity on the
test sets (Table 2).

LDA achieves the lowest perplexity among all
models on both corpora while tLDA models yield
suboptimal perplexity results owing to the con-
straints given by tree priors. As shown in the fol-
lowing sections, the sacrifice in perplexity brings
improvement in topic coherence, while not hurting
or slightly improving extrinsic performance using
topics as features in supervised classification.

Tree priors built from word2vec generally out-
perform the ones built using the G2 likelihood ra-
tio. Among the three tree prior construction algo-
rithms, the two-level is the best on the 20News-
Groups corpus. However, there is no such consis-
tent pattern on Amazon reviews.

4.2 Topic Coherence

Instead of manually evaluating topic quality us-
ing word intrusion (Chang et al., 2009), we use
an automatic alternative to compute topic coher-
ence (Lau et al., 2014). For every topic, we extract
its top ten words and compute average pairwise
PMI on a reference corpus (Wikipedia as of Octo-
ber 8, 2014).

We include LDA and the latent concept topic
model (Hu and Tsujii, 2016, LCTM) as baselines.
LCTM also incorporates prior knowledge from
word embeddings. It assumes that latent concepts
exist in the embedding space and are Gaussian dis-
tributions over word embeddings, and a topic is a
multinomial distribution over these concepts. We
marginalize over concepts and obtain the probabil-
ity mass of every word in every topic and compare
against LDA and tLDA topics.

4https://catalog.ldc.upenn.edu/
ldc2011t07.
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Topic KLD Model Words

Christian 0.709 LDA god, jesus, church, christ, christian, bible, man, christians, lord, sin
tLDA god, jesus, bible, christian, christ, church, christians, faith, people, lord

Security 0.720 LDA key, encryption, chip, clipper, keys, government, public, security, system, law
tLDA key, encryption, chip, clipper, government, keys, privacy, security, system, public

Middle
East 0.765 LDA israel, jews, war, israeli, jewish, arab, people, world, peace, muslims

tLDA israel, jews, israeli, war, jewish, arab, muslims, people, peace, world

Sports 1.212 LDA hockey, team, game, play, la, nhl, ca, period, pit, cup
tLDA game, team, year, games, play, players, hockey, season, win, baseball

University
Research 1.647 LDA university, information, national, april, states, year, research, number, united, american

tLDA university, research, information, april, national, center, science, year, number, institute

Health 1.914 LDA medical, people, disease, health, cancer, food, sex, cramer, men, drug
tLDA health, medical, disease, drug, cancer, patients, insurance, drugs, aids, treatment

Images 1.995 LDA image, ftp, software, graphics, mail, data, version, file, pub, images
tLDA file, image, jpeg, graphics, images, files, format, bit, color, program

Hardware 2.127 LDA drive, card, mb, scsi, disk, mac, system, pc, apple, bit
tLDA drive, scsi, disk, mb, hard, drives, dos, controller, ide, system

People 2.512 LDA armenian, people, turkish, armenians, armenia, turkey, turks, didn, soviet, time
tLDA armenian, turkish, armenians, armenia, turkey, turks, soviet, people, russian, genocide

Table 3: We sort topics into thirds by Kullback-Leibler divergence (KLD): low, medium, and high diver-
gence between vanilla LDA and tLDA. Unique coherent words are in black and bold. Unique incoherent
words are in red and italic. tLDA brings in more topic-relevant words.

Most tLDA models yield more coherent topics
(Figure 4). Among all tLDA models, the two-level
tree built on word2vec improves the most. LCTM

performs poorly: after marginalizing out the con-
cepts on 20NewsGroups, all its topics consist of
words like “don”, “dodgers”, “au”, “alot”, “peo-
ple”, “alicea”, “uw”, “arabia”, “sps”, and “entry”
with slight differences in ordering.

To show how subjective topic quality improves
over LDA, we extract the topics given by LDA

and tLDA (with two-level tree built on word2vec
scores) on 20NewsGroups, pair them, and sort the
pairs based on KL divergence (KLD). In Table 3,
we select and present three topics from each of the
top, middle, and bottom third of the sorted topics.

Topics with low KLD (Christian, Security, and
Middle East) do not differ significantly. Although
the topics of Sports have medium KLD and quite
different words, they are generally coherent. As
the KLD increases, tLDA topics have more coher-
ent words. In University Research topics, tLDA

includes more research-related words, e.g., “cen-
ter”, “science”, and “institute”. In Health top-
ics, the tLDA topic has more coherent words
like “patients”, “insurance”, “aids”, and “treat-
ment”, while LDA includes less relevant words,
e.g., “food”, “sex”, and “cramer”.

In the topics with large KLD, tLDA topics are
also more coherent. For instance, in the Images
topics, the LDA topic contains less relevant words
like “mail” and “data”, while the tLDA topic
mostly consists of words related to images, and

even includes words like “jpeg”, “color”, and “bit”
that are not among the top words in the LDA

topic. In the topics for Hardware, there are more
words closer to the hardware level for tLDA, e.g.,
“drives”, “dos”, “controller”, and “ide”, in con-
trast to LDA, e.g., “mac”, “pc”, and “apple”. tLDA

also ranks hardware-related words higher. For in-
stance, “scsi” and “disk” come before “mb”. The
words in the topics for People are generally coher-
ent, except “didn” and “time” in the LDA topic.

4.3 Extrinsic Classification

To extrinsically evaluate topic quality, we use bi-
nary and multi-class classification on Amazon re-
views and 20NewsGroups corpora using SVM-
light (Joachims, 1998) and SVM-multiclass.5 We
tune the parameter C, the trade-off between train-
ing error and margin, on the development set and
apply the trained model with the best performance
on the development set to the test set. The classi-
fication accuracies are given in Table 4.

We compare the accuracies of features of bag-
of-words (BOW) and LDA/LCTM/tLDA topics. For
the tLDA models with two-level and HAC-LD tree
priors, the path assignment is an additional fea-
ture.6 We also include the features of BOW

and the average word vector for the document
(BOW+VEC).

5SVM-light: http://svmlight.joachims.org/.
SVM-multiclass: https://www.cs.cornell.edu/
people/tj/svm_light/svm_multiclass.html.

6tLDA models with HAC prior do not have this feature,
because the paths have a 1-to-1 mapping with the vocabulary.
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Figure 4: Average PMI of top 10 words in topics
given by models on 20NewsGroups (upper) and
Amazon (lower). Most tLDA topics are more co-
herent than LDA topics. The PMI of LCTM are
too low to be included: 8.862±0.657 on 20News-
Groups and 6.340±1.208 on Amazon reviews.

Features based on most tLDA topics perform at
least as well as LDA-based topic features; with
no statistically significant differences, our tree pri-
ors do not sacrifice extrinsic performance for im-
proving topic coherence. In addition, the path
assignment feature improves topical classification
but not sentiment classification. Although the
word2vec feature (BOW+VEC) performs the best
on Amazon reviews, it lacks the interpretability of
topic models.

4.4 Learned Trees

Tree-based topics distinguish polysemous words.
In Figure 5, the upper sub-tree comes from the
Politics topic (“president”, “people”, “clinton”,
“myers”, “money”, etc.) where “pounds” is more
likely to be reached in the sense of British cur-
rency. In the Health topic (Table 3), “pounds” is
more associated with weights (lower tree).

5 Conclusions and Future Work

Combining topic models and vector space models
is an emerging area. We introduce a method that is
simpler and more flexible than previous work (Hu
and Tsujii, 2016), and although we extract prior
knowledge from word vectors, our model is not
restricted to this and can use any word association

Model Tree Path 20NG Amazon
BOW – – 86.64 86.73
BOW+VEC – – 86.59 87.30
LDA – – 86.67 86.99
LCTM – – 86.52 86.83

tLDA
N 86.75 87.07

W2V-2LV Y 86.73 87.13
W2V-HAC – 86.79 87.19

N 86.73 87.02
W2V-HAC-LD Y 86.94 86.88

tLDA
N 86.82 87.15

G2-2LV Y 86.96 87.05
G2-HAC – 86.63 87.11

N 86.73 87.07
G2-HAC-LD Y 86.91 86.94

Table 4: Accuracies of topical classification on
20NewsGroups and sentiment analysis on Ama-
zon reviews. Although not significantly improving
the performance, tLDA topics at least do not hurt.

dollar pounds revenue lbs

tonworth million

pounds pounds pounds

pounds

1.32E-3 2.06E-7 1.89E-5 1.87E-7 1.87E-8 1.87E-8 1.87E-8

dollar pounds revenue lbs

tonworth million

pounds pounds pounds

pounds

2.00E-8 2.00E-8 2.19E-7 2.19E-7 2.20E-5 1.74E-4 2.00E-8

Figure 5: Sub-trees for “pounds” in two topics,
from 20NewsGroups corpus using two-level tree
prior from word2vec. “Pounds” is more associated
with British currency in Politics (upper), while
closer to weight in Health (lower). High probabil-
ity paths are shaded; high probability edges have
thicker lines.

scores. Our model yields more coherent topics and
maintains extrinsic performance, and in addition it
is less computationally costly.7

We plan to merge tree prior construction and
the topic modeling into a unified framework (Teh
et al., 2007; Görür and Teh, 2009; Hu et al., 2013).
This will allow tree priors to change along with the
topics they produce instead of using a static one
constructed a priori.

7tLDA Java implementation converges in twelve hours;
LCTM needs sixty hours (2.8GHz Intel Xeon and 110G
RAM).
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Abstract

Crowdsourcing offers a convenient means
of obtaining labeled data quickly and inex-
pensively. However, crowdsourced labels
are often noisier than expert-annotated
data, making it difficult to aggregate them
meaningfully. We present an aggregation
approach that learns a regression model
from crowdsourced annotations to predict
aggregated labels for instances that have
no expert adjudications. The predicted la-
bels achieve a correlation of 0.594 with
expert labels on our data, outperforming
the best alternative aggregation method by
11.9%. Our approach also outperforms the
alternatives on third-party datasets.

1 Introduction

Publicly-available labeled datasets are scarce for
many NLP tasks, and crowdsourcing services such
as Amazon Mechanical Turk1 (AMT) offer re-
searchers a quick, inexpensive means of labeling
their data. However, workers employed by these
services are typically unfamiliar with the anno-
tation tasks, and they may have little motivation
to perform high-quality work due to factors such
as low pay and anonymity. To further complicate
matters, some workers may produce spam or ma-
licious responses. Thus, it is not uncommon for
workers to correlate poorly with one another.

Researchers using crowdsourcing services com-
monly aggregate the labels they receive via sim-
ple strategies such as using the majority or av-
erage label. These methods are best suited for
simple, straightforward tasks; with noisier data
such as that which may be obtained for more dif-
ficult or subjective tasks, these strategies may pro-
duce skewed labels that misrepresent the instance.

1www.mturk.com

Thus, it is desirable to devise more effective aggre-
gation strategies that consider factors such as label
distribution and worker quality, while still avoid-
ing manual adjudication of all instances.

In this work, our contributions are as follows:
(1) we develop a regression-based method for au-
tomatically aggregating crowdsourced annotations
of varying quality, with poor agreement and mini-
mal expert-adjudicated data, that addresses multi-
ple potential flaws or biases in non-expert human
annotation. To do so, we (2) crowdsource anno-
tations for a difficult NLP task, metaphor novelty
scoring, and (3) describe a process by which we
automatically detect untrustworthy workers. We
then (4) introduce a feature set that captures label
distribution and trustworthiness, and extract the
features from our crowdsourced annotations. Fi-
nally, (5) we train a regression model that predicts
aggregated labels for unseen instances and com-
pare the predictions to expert annotations, finding
that our method outperforms the best alternative
approach. We evaluate our approach both on our
data and on existing crowdsourcing datasets. All
datasets and source code are available for the re-
search community to improve on our results.2

2 Related Work

Several methods have been proposed to identify
low-quality workers in crowdsourced data. Jaga-
bathula et al. (2016) filtered adversarial workers in
binary labeling tasks by identifying those with out-
lier labeling patterns, and Lin et al. (2014) identi-
fied when additional labels for binary tasks should
be crowdsourced to optimize classifier accuracy.
Unlike these approaches, our filtering algorithm is
suitable for multi-class annotation tasks.

2Our data can be downloaded at http://hilt.cse.
unt.edu/resources.html, and our source code is
available at https://github.com/natalieparde/
label-aggregation.
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Various methods have also been explored as in-
telligent modes of label aggregation. Most (Snow
et al., 2008; Raykar et al., 2010; Karger et al.,
2011; Liu et al., 2012; Hovy et al., 2013; Felt
et al., 2014; Huang et al., 2015) have built upon
the probabilistic item-response model first pro-
posed by Dawid and Skene (1979), which simul-
taneously estimates annotator quality and aggre-
gated labels using an expectation-maximization
algorithm. MACE (Hovy et al., 2013) is a popular
implementation inspired by this that aggregates la-
bels as a function of the annotation and a learned
binary variable indicating whether the annotator is
a spammer. We posit that although annotator qual-
ity is an important factor in predicting accurate ag-
gregations, the interplay between it and other fac-
tors is more nuanced. Thus, rather than adapting
the item-response method, our learning approach
incorporates features that address multiple poten-
tial flaws or biases in crowdsourced annotations.

Some researchers have also used data-aware ap-
proaches to predict aggregations (Raykar et al.,
2010; Felt et al., 2014, 2015, 2016). We do not
use the data itself in this work, to avoid skewing
labels in a way that makes it trivial to learn clas-
sifiers based on the same data. To the best of our
knowledge, our work is the first to frame label ag-
gregation as a regression task, with features based
solely on workers and their labels, that learns en-
tirely from a small amount of expert-adjudicated
crowdsourced annotations.

3 Methods

3.1 Data Collection

We evaluated our approach on our new metaphor
novelty dataset, as well as on third-party datasets.
To build our dataset, we crowdsourced annota-
tions for 3112 potentially metaphoric word pairs,
and randomly divided the instances into training
(1036), validation (1038), and test (1038) subsets.
We developed features and selected our regression
algorithm using the training and validation sets
only; the test set was withheld until the evaluation.

3.1.1 Annotation Task
Instances were comprised of pairs of words from
1840 sentences in the VU Amsterdam Metaphor
Corpus (VUAMC) (Steen et al., 2010). The
VUAMC consists of documents for which individ-
ual words are labeled as metaphors. The novelty
of those metaphors varies widely, from highly con-

Example Score
Alice looked up, and there stood the
Queen in front of them, with her arms
folded, frowning like a thunderstorm.

Novel
Metaphor (3)

‘Once,’ said the Mock Turtle at last, with
a deep sigh, ‘I was a real Turtle.’

Conventional
Metaphor (1)

A large rose-tree stood near the entrance
of the garden: the roses growing on it
were white, but there were three garden-
ers at it, busily painting them red.

Non-
Metaphor
(0)

Table 1: Sample word pairs provided to Turkers.

ventional to quite novel. Each sentence for which
we collected annotations contained a content word
(noun, verb, adjective, or adverb) labeled as being
metaphoric, and one or more other content words
or personal pronouns that were syntactically re-
lated to the metaphoric word. Word pairs contain-
ing a metaphoric word and a syntactically-related
content word or personal pronoun were considered
instances. AMT workers (“Turkers”) were asked
to score each instance on a discrete scale from
non-metaphoric (0) to highly novel metaphor (3).
Some examples are shown in Table 1.3

Instances were grouped into Human Intelli-
gence Tasks (HITs) containing all instances asso-
ciated with 10 sentences each. Five worker assign-
ments were requested per HIT, and Turkers were
paid $0.20 per HIT. Overall, 237 Turkers anno-
tated 942 assignments, with an average correlation
of 0.269 per HIT (the poor agreement suggests this
is a very difficult annotation task). An expert adju-
dicated all 3112 instances; those labels were con-
sidered the gold standard.

3.1.2 Data Filtering
Spam and malicious workers were identified dur-
ing data collection using a filtering algorithm that
compared annotations with those completed by
“potentially good annotators” (PGA). Alg. 1 de-
scribes this process. Letting Hi be a set of HITs
collected, Ai be the set of annotators who anno-
tated Hi, and A=∪(A1, . . . , Aj) be the set of all
annotators, the algorithm computes three sets of
annotators: good annotators (GA), spammers or
malicious annotators (Bad Robots, or BR), and
annotators of currently unknown quality UQA.

R(aj , ak) computes the correlation coefficient
between two annotators aj and ak, where ak is
a potentially good annotator whose annotations
overlap with aj’s, and AVG R(aj) computes the
average correlation between aj and all ak. HITs

3Sentences are from Lewis Carroll’s Alice in Wonderland.
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Algorithm 1 Worker Filtering for Annotation Set i

PGA← A \BR
repeat

for aj in A do
Aj ← {a ∈ PGA} who annotated ≥ 1 unfiltered

HIT in common with aj
for ak in Aj do

rj,k ← R(aj , ak)

rj ← AVG R(aj)

B− ← {aj ∈ A|rj < 0.0}
B0 ← {aj ∈ A|rj == 0.0 or rj ==∞}4

B+ ← {aj ∈ A}, of size |B−|, with the lowest rj >
0.0

B<.1 ← {aj ∈ A|rj < 0.1}
PGA = A− (B− +B0 +B+ +B<.1)

until convergence or iterations = max
GA← {aj ∈ A|rj > 0.35}
BR← B− +B0 + BOTTOM(ROUND( 2

3
|B−|), B+)

completed under a minimum time threshold were
also filtered. Following algorithm completion, fil-
tered HITs and unpaid HITs from members ofBR
were rejected, and annotators inBR were disqual-
ified from accepting future HITs. 116 total as-
signments were rejected by the filtering algorithm.
Annotators in UQA (UQA=A−GA−BR) who
had completed≥ 2 HITs and had an rj < 0.1 were
also disqualified. All other HITs were accepted.

3.2 Features

We designed features to capture the distribution
and trustworthiness of crowdsourced labels for
each instance. The features are described in Ta-
ble 2. ANNOTATIONS are designed to provide the
regression algorithm with label distributions based
on label value and worker trustworthiness. AVG.
R features are intended to further clarify worker
quality, and AVG. R (GOOD) is meant to provide
a more selective view of the same characteristic.
AVG., WEIGHTED AVG., and WEIGHTED AVG.
(GOOD) allow the regressor to consider three dif-
ferent versions of a popular aggregation strategy,
and finally, HIT R supplies the algorithm with an
estimate of agreement on the current instance to
consider when making its prediction.

3.3 Regression Algorithm

The approach utilizes a random subspace regres-
sor, which was selected based on its performance
on the training and validation data relative to a

4Turkers who assigned the same label to every instance, or
whose assignments had already been filtered for some other
reason (e.g., violating the minimum time threshold).

5We also include a second copy of these features ordered
by the annotators’ average r values.

Feature Description
ANNOTA-
TIONS

From highest to lowest label, the five an-
notations for the instance.5

AVG. R
For each annotator, in order of label value,
his/her avg. correlation with other workers
across all instances he/she annotated.5

AVG. R
(GOOD)

AVG. R in which each annotator is com-
pared only to annotators with rj>0.35. If
the annotator has no overlapping annota-
tions with those, AVG. R is repeated.

AVG. Average of the five ANNOTATIONS.

WEIGHTED
AVG.

Let li be the ith ANNOTATION, and
ri be its annotator’s AVG. R. Then,

WEIGHTED AVG. =
∑5

i=1
(li×ri)∑5

i=1
ri

.

WEIGHTED
AVG.
(GOOD)

Similar to WEIGHTED AVG., with
weights (ri) taken from AVG. R. (GOOD)
instead of AVG. R.

HIT R

The average weighted correlation among
annotators for the HIT containing the in-
stance. Letting wi,j be the weight for a
pair of annotators equal to ri+rj

2
, where ri

and rj are the AVG. R associated with an-
notators ai and aj , ri,j be the correlation
between annotators ai and aj for the HIT,
and P contain all annotator pairs (ai, aj)

for the HIT, HIT R =

∑
p∈P

ri,j×wi,j∑
p∈P

wi,j

Table 2: Features used.

Affect
(Emo.)

Affect
(Val.) WebRel Ours

Instances 600 100 2439 3112
Annotators 38 38 722 237
Annotators /
Instance 10 10 5 5

Label Range 0-100 -100-100 0-2 0-3

Table 3: Dataset Details

large variety of other regression algorithms. Ran-
dom subspace is similar in nature to bagging and
random forests, using multiple decision trees con-
structed from subsets of features selected ran-
domly without replacement to make its predictions
(Ho, 1998). We used the implementation from
the Weka library (Frank et al., 2016), with Weka’s
REPTree classifier as the base decision tree model.

4 Evaluation

4.1 Other Datasets

In addition to evaluating our approach on our data,
we evaluate it on three existing crowdsourcing
datasets that differ in terms of their size, noise
level, and number of annotators. Details about
each dataset are shown in Table 3, with additional
information below. Each third-party dataset was
randomly divided into 66% training and 34% test.
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Affect (Emotion and Valence). Affect (Emo-
tion) and Affect (Valence) were created for Snow
et al.’s (2008) work, and contain emotion (anger,
fear, disgust, joy, sadness, and surprise) and va-
lence ratings for 100 headlines from the SemEval
affective text annotation task (Strapparava and Mi-
halcea, 2007) test set. Annotations indicate the de-
gree of emotion in an emotion-headline pair (Af-
fect (Emotion)) and the overall positive or negative
valence of a headline (Affect (Valence)). Snow et
al. report an average correlation among annotators
of 0.669 (emotion) and 0.844 (valence).

WebRel. WebRel was originally created for the
TREC 2010 Relevance Feedback Track (Buckley
et al., 2010), and its annotations indicate the rele-
vance of web documents retrieved for queries. The
full dataset contains crowdsourced annotations for
20,232 topic-document pairs; 3277 of those pairs
additionally have gold-standard labels. The num-
ber of annotations collected per instance varied.
We used the subset of instances with gold stan-
dard labels and at least five annotations, and recon-
structed their HIT groupings based on the workers
that annotated each instance (we assumed all in-
stances annotated by the exact same set of work-
ers were originally from the same HIT). Average
correlation per HIT was 0.102 (quite noisy).

4.2 Experimental Setup

We compare our approach to a number of alter-
native methods, detailed with justifications in Ta-
ble 4. The alternatives are popular aggregation
techniques that address different potential flaws
in non-expert annotation. We train our approach
on the training (and validation, for our dataset)
data, and test on the test set. Since MACE (used
for Item-Response) learns from and outputs pre-
dictions for the same data, we provide it with
the entire dataset (training, validation if available,
and test), but report its results for the test in-
stances only. We provide input to MACE in an n-
dimensional sparse matrix (1 row per instance and
1 column per each of n distinct annotators in the
dataset, with filled values only for the annotators
who provided annotations for that instance), since
the approach requires knowledge of which annota-
tor provided each annotation to function properly.6

6Note: Item-response approaches are better-suited to sce-
narios in which fewer workers annotate more instances each,
but our results would also improve under such circumstances
where a worker’s trustworthiness, as measured by average r
value, is more reliable.

Approach Description

Majority
Vote

The most frequent label given by annotators
for the instance. Ties were broken by taking
the highest of the tied labels—assumes the
most popular opinion should be trusted.

Highest The highest label for the instance—assumes
those who see a metaphor should be trusted.

Item-
Response

The prediction expected from an item-
response model. We use MACE (Hovy
et al., 2013) to generate predictions since
it is a well-documented item-response ap-
proach that is publicly available online.

Mode
Average

The real-valued average of the mode(s) of
the instance’s labels (if only one mode,
this feature is that mode)—assumes popu-
lar opinions should be trusted, and equally
popular opinions are equally trustworthy.

Average The average of all five labels—assumes
each annotator’s opinion is equally valid.

Rule-
Based

Assigns a value of 0 if 4+ annotators labeled
the instance as such; otherwise, takes the
avg. non-zero label—assumes annotators
frequently miss tricky or subtle instances.

Table 4: Alternative Approaches.

We also evaluate the performance of different
feature subsets on our data. All−Averages con-
tains all features except for AVG., WEIGHTED

AVG., and WEIGHTED AVG. (GOOD). Each other
subset contains all features except for the respec-
tive feature type noted from Table 2. The corre-
lation coefficient (r) and root mean squared er-
ror (RMSE) were recorded for each test condition
since our estimator produced continuous-valued
scores. Since Mode Average, Average, and Rule-
Based result in continuous values and Majority
Vote, Highest, and Item-Response result in discrete
values, we present two versions of our results; in
one, predictions were rounded to the nearest inte-
ger (forcing a 0, 1, 2, or 3) and in the other, they
were left as-is. For the discrete approaches on our
data, we also report accuracy.

4.3 Results

The results are presented in Tables 5, 6, and 7.
Table 5 compares our method with each alter-
native approach on our data, and Table 6 com-
pares our method with the alternatives on each
third-party dataset. Table 7 shows the results
of the feature ablation. On our dataset, our ap-
proach outperformed all other approaches, with r
= 0.594 with the gold standard and RMSE (0-3)
= 0.605. This represented correlation improve-
ments of 18.6%, 11.9%, and 69.2% relative to
the continuous alternative approaches (Mode Aver-
age, Average, and Rule-Based, respectively). The
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Method r RMSE Acc.
Majority Vote 0.443 1.011 0.536
Highest 0.295 1.701 0.183
Item-Response 0.362 1.083 0.483
Ours (Rounded) 0.490 0.690 0.600
Mode Average 0.501 0.836 —
Average 0.531 0.743 —
Rule-Based 0.351 1.126 —
Ours (Continuous) 0.594 0.605 —

Table 5: Comparison with alternative methods.

Method r RMSE

Affect (Emotion)

Majority Vote 0.510 23.2
Highest 0.416 52.4
Item-Response 0.526 21.8
Ours (R) 0.578 16.6
Mode Average 0.506 21.9
Average 0.613 16.7
Rule-Based 0.462 26.5
Ours (C) 0.578 16.6

Affect (Valence)

Majority Vote 0.423 50.1
Highest 0.573 75.3
Item-Response 0.483 46.0
Ours (R) 0.938 18.4
Mode Average 0.644 37.4
Average 0.926 22.4
Rule-Based 0.913 19.7
Ours (C) 0.938 18.4

WebRel

Majority Vote 0.325 1.0
Highest 0.219 1.2
Item-Response 0.385 0.9
Ours (R) 0.412 0.8
Mode Average 0.350 0.9
Average 0.372 0.8
Rule-Based 0.282 0.9
Ours (C) 0.523 0.7

Table 6: Comparison on third-party datasets.

rounded predictions also outperformed all discrete
alternatives (Majority Vote, Highest and Item-
Response) with relative correlation improvements
of 10.6%, 66.1%, and 35.4%, respectively. All ap-
proaches had strong positive statistically signifi-
cant (p<<0.0001) correlations and the improve-
ment of our results over the alternatives was sta-
tistically significant (p<<0.0001).

On WebRel and Affect (Valence), our approach
outperformed all other approaches for both the dis-
crete and continuous conditions. On Affect (Emo-
tion), our approach outperformed all alternatives
for the discrete condition and had a lower RMSE
than all other approaches for the continuous condi-
tion (relative reductions in error to RULE-BASED,
AVERAGE, and MODE AVERAGE were 37.4%,
0.6%, and 24.2%, respectively), but the predic-
tions from AVERAGE correlated better with the
gold standard than did those of our approach.

Rounded Continuous
Feature Set r RMSE r RMSE
All 0.490 0.690 0.594 0.605
All−Annotations 0.440 0.716 0.557 0.627
All−Avg. R 0.480 0.701 0.581 0.611
All−Avg. R (G.) 0.494 0.692 0.582 0.611
All−Averages 0.465 0.703 0.594 0.607
All−HIT R 0.486 0.693 0.587 0.608

Table 7: Feature subset performance comparison.

Interestingly, Table 7 shows that the discrete
version of our approach performed slightly better
when the features indicating annotators’ correla-
tions with good annotators were removed; this was
not the case for the continuous-labeled version.
The raw annotations themselves were the most
valuable features for both cases. Their removal led
to a correlation reduction of 10.2% (rounded) and
6.2% (continuous) relative to using all features.

The results suggest that our approach is a suit-
able means of automatically aggregating noisy
crowdsourced labels, and that reasonable results
can be obtained even when training on only a small
amount of expert-adjudicated instances. Further,
the performance of the alternative approaches sug-
gests that typical aggregation techniques may be
less suitable for tasks with many workers who
completed relatively few annotations.

5 Conclusion

In this work, we present a regression-based ag-
gregation method that addresses multiple poten-
tial flaws or biases in non-expert human annota-
tion. We show that the predictions from our ap-
proach correlate at r=0.594 with expert adjudica-
tions for a noisy, difficult task, outperforming the
best alternative approach by 11.9% on our data
and by up to 63.7% on third-party crowdsourcing
datasets. This improvement shows that a learn-
ing approach can overcome some of the challenges
faced by simple label aggregation techniques for
these types of tasks. Our data and source code is
publicly available for further research by others.
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Abstract

Crowdsourcing has proven to be an effec-
tive method for generating labeled data for
a range of NLP tasks. However, multiple
recent attempts of using crowdsourcing to
generate gold-labeled training data for se-
mantic role labeling (SRL) reported only
modest results, indicating that SRL is per-
haps too difficult a task to be effectively
crowdsourced. In this paper, we postu-
late that while producing SRL annotation
does require expert involvement in gen-
eral, a large subset of SRL labeling tasks
is in fact appropriate for the crowd. We
present a novel workflow in which we em-
ploy a classifier to identify difficult an-
notation tasks and route each task either
to experts or crowd workers according to
their difficulties. Our experimental eval-
uation shows that the proposed approach
reduces the workload for experts by over
two-thirds, and thus significantly reduces
the cost of producing SRL annotation at
little loss in quality.

1 Introduction

Semantic role labeling (SRL) is the task of label-
ing the predicate-argument structures of sentences
with semantic frames and their roles (Baker et al.,
1998; Palmer et al., 2005). It has been found
useful for a wide variety of NLP tasks such as
question-answering (Shen and Lapata, 2007), in-
formation extraction (Fader et al., 2011) and ma-
chine translation (Lo et al., 2013). A major bot-
tleneck impeding the wide adoption of SRL is the
need for large amounts of labeled training data to

∗The work was done while the author was at IBM Re-
search - Almaden.

capture broad-coverage semantics. Such data re-
quires trained experts and is highly costly to pro-
duce (Hovy et al., 2006).
Crowdsourcing SRL Crowdsourcing has shown
its effectiveness to generate labeled data for a
range of NLP tasks (Snow et al., 2008; Hong and
Baker, 2011; Franklin et al., 2011). A core ad-
vantage of crowdsourcing is that it allows the an-
notation workload to be scaled out among large
numbers of inexpensive crowd workers. Not sur-
prisingly, a number of recent SRL works have
also attempted to leverage crowdsourcing to gen-
erate labeled training data for SRL and investi-
gated a variety of ways of formulating crowd-
sourcing tasks (Fossati et al., 2013; Pavlick et al.,
2015; Akbik et al., 2016). All have found that
crowd feedback generally suffers from low inter-
annotator agreement scores and often produces in-
correct labels. These results seem to indicate that,
regardless of the design of the task, SRL is simply
too difficult to be effectively crowdsourced.
Proposed Approach We observe that there are
significant differences in difficulties among SRL
annotation tasks, depending on factors such as the
complexity of a specific sentence or the difficulty
of a specific semantic role. We therefore postulate
that a subset of annotation tasks is in fact suitable
for crowd workers, while others require expert in-
volvement. We also postulate that it is possible to
use a classifier to predict whether a specific task is
easy enough for crowd workers.

Based on these intuitions, we propose CROWD-
IN-THE-LOOP, a hybrid annotation approach that
involves both crowd workers and experts: All an-
notation tasks are passed through a decision func-
tion (referred to as TASKROUTER) that classi-
fies them as either crowd-appropriate or expert-
required, and sent to crowd or expert annotators
accordingly. Refer to Figure 1 for an illustration
of this workflow.
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Figure 1: Overview of proposed CROWD-IN-THE-LOOP approach for curating SRL annotations.

We conduct an experimental evaluation that
shows (1) that we are able to design a classifier
that can distinguish between crowd-appropriate
and expert-required tasks at very high accuracy
(96%), and (2) that our proposed workflow allows
us to pass over two-thirds of the annotation work-
load to crowd workers, thereby significantly re-
ducing the need for costly expert involvement.
Contributions In detail, our contributions are:

• We propose CROWD-IN-THE-LOOP, a novel
approach for creating annotated SRL data
with both crowd workers and experts. It re-
duces overall labeling costs by leveraging the
crowd whenever possible, and maintains an-
notation quality by involving experts when-
ever necessary.

• We propose TASKROUTER, an annotation
task decision function (or classifier), that
classifies each annotation task into one of
two categories: expert-required or crowd-
appropriate. We carefully define the classifi-
cation task, discuss features and evaluate dif-
ferent classification models.

• We conduct a detailed experimental evalua-
tion of the proposed workflow against several
baselines including standard crowdsourcing
and other hybrid annotation approaches. We
analyze the strengths and weaknesses of each
approach and illustrate how expert involve-
ment is required to address errors made by
crowd workers.

Outline This paper is organized as follows: We
first conduct a baseline study of crowdsourcing
SRL annotation, and analyze the difficulties of re-
lying solely on crowd workers (Section 2). Based
on this analysis, we define the classification prob-
lem for CROWD-IN-THE-LOOP, discuss the design
of our classifier, and evaluate its accuracy (Sec-
tion 3). We then employ this classifier in the pro-

posed CROWD-IN-THE-LOOP approach and com-
paratively evaluate it against a number of crowd-
sourcing and hybrid workflows (Section 4). We
discuss related work (Section 5) and conclude the
study in Section 6.

2 Crowdsourcing SRL

We first conduct a baseline study of crowdsourcing
SRL. We illustrate how we design and create an-
notation tasks, how we gather and interpret crowd
feedback, and analyze the results of the study to
determine the applicability of crowdsourcing for
producing SRL annotation.
SRL formalism. In this study, and throughout
the paper, we use the PROPBANK formalism of
SRL (Palmer et al., 2005), which defines verb-
specific frames (BUY.01, BUY.02), frame-specific
core roles (A0 to A5), and frame-independent non-
core roles (for temporal, location and other con-
texts).

2.1 Annotation Task Design

To design the annotation task, we replicate a setup
proposed in previous work (Akbik et al., 2016) in
which crowd workers are employed to curate the
output of a statistical SRL system. This setup gen-
erates annotation tasks as following:

Sentence
And	many	fund	managers	have	built	up	cash	levels	and	say	
they	will	be	buying stock this	week.

Question
What	is	being	bought in this sentence?	Is	it:	“stock”?

buy.01

Answer Options
Yes
No, what	is	being	bought	is notmentioned
No,	what	is	being	bought	is mentioned here: copy and paste text

Figure 2: Example annotation task, consisting of a sentence
with predicted role labels, a human readable question regard-
ing to one label, and a set of answer options. By answering,
crowd workers curate a prediction made by the SRL.
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Step 1. We use a statistical SRL system to predict
SRL labels for a set of sentences (see Figure 1).
While state-of-the-art SRL will predict many cor-
rect labels, some predicted labels will be incorrect,
and some labels will be missing. Annotation tasks
are therefore designed to detect and correct preci-
sion and recall errors.
Step 2. We generate two types of annotation tasks
for the study, namely CONFIRMPREDICTION and
ADDMISSING tasks: (1) The first, CONFIRMPRE-
DICTION tasks, ask users to confirm, reject or cor-
rect each predicted frame or role. This type of
task addresses precision issues in the SRL. We
present to workers a human-readable question-
answer pair (He et al., 2015) for each predicted la-
bel, an example of which is illustrated in Figure 2.
(2) The second, ADDMISSING tasks, address po-
tentially missing annotation, i.e. recall issues in
the SRL. We generate a question without a sug-
gested answer and ask workers to either confirm
that this role does not appear in the sentence, or
supply the correct span. We identify potentially
missing annotation using PropBank frame defini-
tions; any unseen core role in a sentence is consid-
ered potentially missing.

We use a manually created mapping of frame-
roles to questions to generate these tasks. See Ta-
ble 1 for a mapping of the roles of the BUY.01
frame to questions.
Step 3. Each question is presented to crowd work-
ers together with the sentence and a set of answer
options. Example annotation tasks are illustrated
in Figures 2 and 3. A task thus is defined as fol-
lows:

Definition 1 Annotation Task: A task consists of
a sentence, a human readable question regarding
a predicted label, and a set of answer options.

We collect worker responses to these tasks. If the
majority of crowd workers agrees on a correction,
we remove or correct incorrectly predicted labels

Frame: BUY.01 (purchase)

Role Description Question

A0 buyer Who is buying something?
A1 thing bought What is being bought?
A2 seller From whom is something bought?
A3 price paid What is the price paid?
A4 benefactive For whom is something bought?

Table 1: Examples of mapping between semantic labels and
question phrases of frame BUY.01. The description column
lists the textual role descriptions from PropBank frame files.

Agreement #Tasks #Correct #Incorrect Precision

all 5 agree on answer 1,801 1,679 122 0.93
4 out of 5 agree 436 376 60 0.86
3 out of 5 agree 278 187 91 0.67

no majority answer 34 0 34 0.0

total 2,549 2,242 307 0.88

Table 2: Tasks in our crowdsourcing study by ratio of how
many workers agreed on an answer. If all five workers agree,
the majority answer is correct in 93% of cases. If fewer work-
ers agree, the precision of the majority answer decreases.

for CONFIRMPREDICTION tasks and add new la-
bels for ADDMISSING tasks.

2.2 Crowdsourcing Study

We conduct a crowdsourcing study consisting of
2,549 annotation tasks, generated by running a
state-of-the-art SRL system (Akbik and Li, 2016)
over 250 randomly selected gold-labeled sen-
tences from the English training dataset in the
CoNLL-2009 shared task (Hajič et al., 2009). We
generated tasks using our question mappings from
the predicted labels. This setup allows us to com-
pare crowd feedback to gold labels and determine
how often the crowd provides incorrect answers.
Human Annotators For crowd annotators, we
employ five native speakers of English from UP-
WORK1, selected using the following procedure:
We required workers to complete a short tutorial2,
followed by 20 annotation tasks, which we eval-
uated against the gold data. We used the results
to select the best-scoring 5 of 7 applicants. We
then asked them to complete the remaining label-
ing tasks. The study was conducted in a span of
three weeks. Crowd workers were paid a fixed
sum for the completion of the study, which re-
sulted in a cost of 2 cents per worker per task. In
total, workers estimated an average of 9 hours to
complete the full task.

2.3 Analysis

We gather crowd feedback and compare the major-
ity answer for each task with the gold label. Refer
to Table 2 for an overview of results. We make
several observations:
The more workers agree, the better the an-
swer. Generally, we note that majority answers
tend to be more often correct if more workers
agree. Specifically, as Table 2 shows, all 5 annota-

1https://www.upwork.com/
2The tutorial is available upon request.
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Type Frame A0 A1 A2 A3 A4 LOC TMP

CONFIRM- Expert-required 134 (38%) 280 (32%) 382 (32%) 73 (33%) 6 (43%) 8 (50%) 36 (35%) 120 (36%)
PREDICTION Crowd-appropriate 222 (62%) 608 (68%) 797 (68%) 146 (67%) 8 (57%) 8 (50%) 67 (65%) 211 (64%)

ADD- Expert-required 0 82 (31%) 54 (33%) 240 (37%) 99 (34%) 72 (38%) 0 0
MISSING Crowd-appropriate 0 186 (69%) 111 (67%) 405 (63%) 190 (66%) 120 (62%) 0 0

Table 3: Breakdown of annotation tasks by question types and semantic labels, and proportion of expert-required tasks
(formally defined in Section 3). Percentages in each cell add up to 100%. On average, 34% of tasks are expert required. Task
types that lie above this average are highlighted bold. For instance, 38% of all frame confirmation questions are expert-required,
indicating that this question type is of above-average difficulty.

tors agreed in 1,801 out of all 2,549 tasks (71%).
Of these tasks, the majority answer was correct in
1,679 cases, and incorrect in 122, yielding a pre-
cision of 93% for tasks in full agreement. If only
4 out of 5 agree (i.e. one annotator provided a dif-
ferent answer), the precision drops to 86%. If only
three annotators agree on an answer, the precision
is even lower, at 67%. Furthermore, we note 34
cases in which there was no majority answer (no
agreement by at least 3 workers). We therefore see
a direct correlation between agreement scores and
the validity of majority answers.

Even if all workers agree, errors are made.
We also note that all 5 crowd workers sometimes
unanimously agree an incorrect annotation, in a
total of 122 cases. To illustrate such a case, con-
sider the example in Figure 3: In our study, all 5
workers incorrectly selected yes as answer. How-
ever, (perhaps somewhat counterintuitively to non-
experts) under the PropBank paradigm it is the
“phone representative” that provide explicit help
in this sentence, not “Vanguard.”

Characteristics of difficult annotation tasks. As
illustrated in Table 3, we break down annotation
tasks by question types and semantic labels to gain
a better understanding of which tasks are difficult
for the crowd. The first row in the table lists results
for CONFIRMPREDICTION tasks. We note that

Sentence
And	Vanguard,	among	other	groups,	said	it	was	adding	more	
phone	representatives	today	to	help investors	get	through.

Question
Who	is	helping	in	this	sentence?	Is	it:	“Vanguard”?

help.01

Answer Options
Yes
No, who is helping is notmentioned
No, who is helping is mentioned here: copy and paste text

Figure 3: Example of an annotation task where crowd
workers unanimously provided an incorrect answer in our
study (see 2.3). This task is classified as expert-required.

some tasks of this type require above-average ex-
pert involvement, such as confirmation questions
that pertain to the frame label or higher numbered
roles (A3 and A4). The second row lists results
for ADDMISSING tasks. Here, we note that again
higher order roles tend to be above average expert-
required3. However, while the breakdown in Ta-
ble 3 indicates some general trends for the diffi-
culty of annotation tasks, the question type itself
does not suffice to determine whether an individ-
ual instance requires expert involvement or not.
Summary. Our crowdsourcing study supports the
initial hypothesis that a portion of SRL tasks is in
fact appropriate for crowd workers, but also shows
that identifying such tasks is not straightforward
since neither crowd agreement scores nor the an-
notation task type is sufficient indicators of diffi-
cult tasks. We investigate this problem further in
the next section.

3 TASKROUTER: Annotation Task
Classification

Our study shows that some annotation tasks are
appropriate for crowd workers, while others are
not. In this section, we define a classification prob-
lem in which we wish to classify each task into one
of the two following classes:

Definition 2 Crowd-appropriate: A task for
which: (1) All crowd workers agree on the answer.
(2) The agreed-upon answer is correct.

Definition 3 Expert-required: A task that is not
crowd-appropriate.

According to these definitions, our crowdsourcing
study found that the task in Figure 2 is crowd-
appropriate, i.e. easy enough for the crowd to pro-
vide correct and consistent answers, while the task
in Figure 3 is considered expert-required.

3Note that there are no ADDMISSING questions for
frames since our SRL predicts a label for each verb in a sen-
tence. Also there are no missing optional arguments since we
ask missing argument questions only for core roles.
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3.1 Features
To solve the task classification problem, we note
two groups of distinct features (see Table 4):
Task-level features Xg capture the general dif-
ficulty of a labeling task, as defined by a frame
or role type. The intuition here is that cer-
tain frames/roles are inherently difficult for non-
experts, and that annotation tasks related to such
frames/roles should be handled by experts. In the
BUY.01 frame for instance, buyer (A0) is a simple
crowd-appropriate semantic concept, while bene-
factive (A4) generally produces lower agreement
scores. Task-level features therefore include the
frame and role labels themselves, as well as the
complexity of each question, measured in features
such as the question word (what, how, when etc.),
its length measured in number of tokens, and all
tokens, lemmas and POS-tags in the question.
Sentence-level features Xl capture complexity
associated with the specific task instance. The in-
tuition is that some sentences are more complex
and more difficult to understand than others. In
such sentences, even roles with generally crowd-
appropriate definitions might be incorrectly an-
swered by non-experts. We capture the complexity
of a sentence with features such as its length (num-
ber of tokens in sentence), the numbers of frames,
roles, verbs, and nouns in the sentence, as well as
all tokens, lemmas and POS-tags.

3.2 Classification Model
In addition to task- and sentence-level features, we
present a classifier that also models the interplay
between multiple annotation tasks generated from
the same sentence. The intuition here is that there
is an interdependence between labeling decisions
in the same sentence. For instance, the presence
of a difficult role may alter the interpretation of a
sentence and make other labeling decisions more

Type Features

Task-level
features

Frame label; role label; question type; length of
question in # tokens; Wh-word; tokens, lemmas,
POS tags of all words in question.

Sentence-
level
features

# of questions for sentence, # of question types
for sentence; # of verbs, # of nouns, # of frames,
# of roles in sentence; length of sentence in
# tokens; tokens, lemmas and POS tags of all
words in sentence; head word and dependency
relation to head word.

Table 4: Features for annotation task classification.

complicated. We thus propose a fuzzy classifica-
tion model with two layers (Ishibuchi et al., 1995)
of SVM classifiers (Wang et al., 2016), which in-
troduces the context of the task using fuzzy indica-
tors to model the interplay between the two groups
of features.

Specifically, we train a local-layer SVM classi-
fier Ll using the sentence-level features Xl (com-
puted from sentences). We also train a global-
layer SVM classifier Lg using the task-level fea-
tures Xg (computed from tasks). We refer to the
predictions of the local and global classifiers as
fuzzy indicators and we incorporate them as addi-
tional features to the fuzzy two-layer SVM clas-
sifier Lf as follows. Given task ai among all
tasks a1 to an for a sentence s, the first layer
of the fuzzy classifier, consists of applying the
local-layer classifier using the sentence-level fea-
tures of s. The second layer of the fuzzy classifier
consists in applying the global-layer classifier n
times, each time using task-level features for task
aj , 1 ≤ j ≤ n, resulting in n + 1 values: one
local-layer indicator, and n global-layer indica-
tors. Our final fuzzy classifier model uses the n+1
local and global indicators as features, in addition
to the sentence- and task-level features of ai.

Note that the classification of task ai considers
features from other tasks aj from the same sen-
tence, but more efficiently than placing all task-
level features of all tasks into a single feature vec-
tor. Formally, the objective function of the fuzzy
two-layer SVM classification model Lf is:

max
α

1Tα− 1

2
αTYK(Xf TXf )Yα (1)

s.t. yTα = 0, 0 ≤ α ≤ C1.

where K(Xf TXf ) is the fuzzy two-
layer RBF kernel function, Xf =

[XgT ,XlT ,Y1
gT , · · · ,Yj

gT , · · · ,Yn
gT ,YlT ]

is the fuzzy two-layer feature matrix, n is the
number of annotation tasks generated from a
sentence, Yj

g represents the j-th fuzzy indicator
generated by the j-th global classifier Lgj , Yl

is the fuzzy indicator generated by the local
classifier Ll, Y is the label matrix, 1 is a vector of
all ones and C is a positive trade-off parameter.

3.3 Evaluation
To evaluate the accuracy of TASKROUTER we use
the standard measure of accuracy for binary clas-
sifiers. As Table 5 shows, we evaluate four setups
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Approach Accuracy

SVMtask: Task features only 0.91
SVMsentence: Sentence features only 0.87
SVMtask+sentence: All features 0.94
TASKROUTER: Fuzzy two-layer 0.96∗

Table 5: Performance of classifiers trained with five-

fold cross validation on training set. The improvements of

TASKROUTER over other classifiers are significant at the ∗

0.05 level, paired t-test.

in which we train an SVM with (1) task-level fea-
tures, (2) sentence-level features, (3) all features,
and (4) our proposed fuzzy two-layer classifier.
Data. We use the dataset created in our crowd-
sourcing study (see Section 2.2), which consists
of 2,549 annotation tasks labeled as either expert-
required or crowd-appropriate according to our
definitions and the results of the study. We lever-
age five-fold cross validation to train the classifiers
over a training split (80%).
Results. The cross validation results are listed
in Table 5. Our proposed classifier outperforms
all baselines and reaches a classification accuracy
of 0.96. Interestingly, we also note that task-
level features are significantly more important
than sentence-level features, as the setup SVMtask

outperforms SVMsentence by 6 accuracy points.
Furthermore, our proposed approach outperforms
SVMtask+sentence, indicating a positive impact of
modeling the global interplay of annotation tasks.

These experiments confirm our initial postula-
tion that it is possible to train a high quality classi-
fier to detect expert-required tasks. We refer to the
best performing setup as TASKROUTER.

4 CROWD-IN-THE-LOOP Study

Having created TASKROUTER, we now execute
our proposed CROWD-IN-THE-LOOP workflow
and comparatively evaluate it against a number of
crowdsourcing and hybrid approaches. We wish
to determine (1) to what degree does having the
crowd in the loop reduce the workload of experts?
(2) How does the quality of the produced anno-
tated data compare to purely crowdsourced or ex-
pert annotations?

4.1 Approaches
We evaluate the following approaches:
1. Baseline without curation The first is a simple
baseline in which we use the output of SRL as-is,
i.e. with no additional curation either by the crowd

or experts. We list this method to show the quality
of the starting point for the curation workload.
2. CROWD (Crowdsourcing) The second base-
line is a standard crowdsourcing approach as de-
scribed in Section 2, i.e. without experts. We
send all annotation tasks (100%) to the crowd and
gather crowd feedback to correct labels in three
different settings. We correct all labels based on
majority vote, i.e., if at least 3 (CROWDmin3), 4
(CROWDmin4) or all 5 (CROWDall5) out of 5 an-
notators agree on an answer.
3. HYBRID (Crowdsourcing + Expert cura-
tion) In this setting, we replicate the approach pro-
posed by (Akbik et al., 2016): After first executing
crowdsourcing (i.e. sending 100% of the tasks to
the crowd), we identify all tasks in which crowd
workers provided conflicting answers. These tasks
are sent to experts for additional curation (ex-
pert answers are used for curation instead of the
crowd response). We use three definitions of what
constitutes a conflicting answer: (1) We consider
all answers in which at least a majority (3 out
of 5) agreed as crowd-appropriate and send the
rest (2.2%) to experts. We refer to this setup as
HYBRIDmin3. (2) Only tasks where 4 out of 5
agreed are crowd-appropriate, the remaining 9.9%
go to experts (HYBRIDmin4). (3) Any task in
which there is no unanimous agreement (27.3%)
is deemed expert-required (HYBRIDall5).
4. CROWD-IN-THE-LOOP This setup is the pro-
posed approach in which we use TASKROUTER

trained over a holdout training set to split annota-
tion tasks into crowd and expert groups. In our
experiments, TASKROUTER determines the fol-
lowing partitions: 66.4% of tasks to the crowd,
the remaining 33.6% to experts. To give an indi-
cation of the lower bound of the approach given
these partitions, we list results for two settings:
(1) CROWD-IN-THE-LOOPRandom, a lower bound
setting in which we randomly split into these par-
titions. (2) CROWD-IN-THE-LOOPTaskRouter, the
proposed setting in which we use TASKROUTER

to perform this split.
Refer to Table 6 for an overview of these exper-

iments. The WORKLOAD columns indicate what
percentage of tasks is sent to crowd and experts.

4.2 Experimental Setup

Data We use the dataset created in the crowd-
sourcing study in Section 2, consisting of 2,549
annotation tasks labeled either as expert-required

1918



Approach ANNOTATION QUALITY WORKLOAD CORRECTNESS
P R F1 crowd expert crowd-only hybrid

Baseline without curation 0.86 0.83 0.85 0% 0% - -

CROWDmin3 0.92 0.88 0.90 100.0% 0% 0.84 0.84
CROWDmin4 0.89 0.85 0.87 100.0% 0% 0.84 0.84
CROWDall5 0.87 0.84 0.85 100.0% 0% 0.84 0.84

HYBRIDmin3 0.90 0.86 0.88 100.0% 2.2% 0.84 0.84
HYBRIDmin4 0.91 0.87 0.89 100.0% 9.9% 0.84 0.86
HYBRIDall5 0.93 0.89 0.91 100.0% 27.3% 0.84 0.88

CROWD-IN-THE-LOOPRandom 0.92 0.88 0.90 66.4% 33.6% 0.83 0.89
CROWD-IN-THE-LOOPTaskRouter 0.96∗ 0.92∗ 0.94∗ 66.4% 33.6% 0.92∗ 0.95∗

Table 6: Comparative evaluation of different approaches for generating gold-standard SRL annotation. The improvements of
CROWD-IN-THE-LOOPTaskRouter over other approaches are significant at the ∗ 0.05 level, paired t-test.

or crowd-appropriate 4. As shown in Section 3.3,
we use 80% of the dataset to train TASKROUTER

under cross validation, and conduct the compara-
tive evaluation using the remaining 20%.
Human annotators & curation We simulate an
expert annotator using the CoNLL-2009 gold
SRL labels and reuse the crowd answers from the
study for crowd annotators. For each setting, we
gather crowd and expert answers to the annotation
tasks, and interpret the answers to curate the SRL
labels that were produced by the statistical SRL
system. After curation, we evaluate the resulting
labeled sentences against gold-labeled data to de-
termine the annotation quality in terms of preci-
sion, recall and F1-score.
Evaluation Metrics Next to the quality of result-
ing annotations, we are interested to evaluate how
effectively we integrate the crowd. We measure
this in two metrics. (1) One is the percentage of
tasks that go to the crowd and to experts respec-
tively. Note that in the HYBRID setup, some tasks
go to both crowd workers and experts, so that the
percentages can add up to over a hundred percent.
This information is illustrated in column WORK-
LOAD in Table 6. (2) The second is the over-
all validity of crowd feedback, referred to as cor-
rectness, measured as the ratio of correct answers
among all answers retrieved from the crowd. We
provide two values for correctness in Table 6, un-
der column CORRECTNESS: The first is the cor-
rectness only over crowd feedback. Note that this
value is the same for all CROWD and HYBRID se-
tups since in these approaches 100% of annotation
tasks are passed to the crowd. The second named
hybrid is the overall correctness of the resolved an-
swers with both expert and crowd feedback.

4We will release the dataset soon.

4.3 Experimental Results

The results of our experiments are summarized in
Table 6. We make the following observations:

CROWD-IN-THE-LOOP significantly increases
annotation quality. Our evaluation shows that
CROWD-IN-THE-LOOP produces SRL annotation
with significantly higher quality compared to
crowdsourcing or hybrid scenarios. With a result-
ing F1-score of 0.94, it outperforms the best per-
forming crowdsourcing setup (0.90) by 4 points.
More importantly, our proposed approach also
outperforms other hybrid approaches that partially
leverage experts. It outperforms the best hy-
brid approach (0.91) by 3 points, indicating that
TASKROUTER is better to select expert-required
tasks than a method with only crowd agreement.

Significantly less expert involvement required.
In our experiments, more than two-thirds of all
tasks were determined to be crowd-appropriate
by TASKROUTER. This considerably reduces the
need for expert involvement compared to expert
labeling, while still maintaining relatively high an-
notation quality. In particular, our approach com-
pares favorably to other hybrid setups in which a
similar partition of tasks is completed by experts.
Since TASKROUTER is more capable to choose
expert-required tasks than previous approaches,
we achieve higher overall quality at similar levels
of expert involvement.

Crowd workers more effective. As the correct-
ness column in Table 6 shows, the selection of
tasks by TASKROUTER is more appropriate for
the crowd in general. Their average correctness
increases to 0.92, compared to 0.84 if the crowd
completes 100% of the tasks.
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4.4 Discussion and Outlook

The proposed approach far outperforms crowd-
sourcing and hybrid approaches in terms of an-
notation quality. In particular, even at similar
levels of expert involvement, it outperforms the
HYBRIDall5 approach. However, we also note that
with an F1-score of 0.94, our approach does not
yet reach the quality of gold annotated data.

Insights for further improving quality. To fur-
ther improve the quality of generated SRL training
data, future work may (1) investigate additional
features (Wang et al., 2015) and classification
models to improve the TASKROUTER to better dis-
tinguish between crowd-appropriate and expert-
required tasks, and (2) experiment with other SRL
crowdsourcing designs to make more tasks crowd-
appropriate. Nevertheless, we suspect that a small
decrease in quality cannot be fully avoided if large
amounts of non-experts are involved in a labeling
task such as SRL. Given such involvement of non-
experts, we believe that our proposed approach is
a compelling way for increasing crowdsourcing
quality while keeping expert costs relatively low.

Flexible trade-off of costs vs quality. Another
avenue for research is to experiment with classi-
fier parameters that allow us to more flexibly con-
trol the trade-off between how many experts we
wish to involve and what annotation quality we
desire (e.g., active learning (Wang et al., 2017)).
This may be helpful to scenarios in which costs
are fixed, or where one aims to compute the costs
for generating annotated data of specific quality.

Use for SRL domain adaptation. One intended
avenue for study is to apply our approach to gen-
erate training data for a specific textual domain for
which little or no SRL training data currently ex-
ists. We believe that due to its relatively lower
costs, our approach may be an ideal candidate for
practical domain adaptation of SRL.

Applicability to other NLP crowdsourcing
tasks. Finally, while in this paper we focused
on the task of generating labeled training data for
SRL, we believe that our proposed approach may
be applicable to other NLP tasks that have only
reported moderate results to-date. To study this
applicability, one would first need to conduct a
similar study as in Section 2 to identify crowd-
appropriate and expert-required tasks and attempt
the training of a classifier.

5 Related Work

Crowdsourcing SRL Annotation Different ap-
proaches have been adapted to formulate SRL
tasks for non-expert crowd workers (Hong and
Baker, 2011). Typical tasks include selecting an-
swers from a set of candidates (Fossati et al.,
2013), marking text passages that contain spe-
cific semantic roles (Feizabadi and Padó, 2014),
and constructing question-answer pairs (He et al.,
2015, 2016). However, a particular challenge is
that SRL annotation tasks are often complex and
crowdsourcing inevitably leads to low-quality an-
notations (Pavlick et al., 2015).

Instead of attempting to design a better anno-
tation task, our proposed approach addresses this
problem by accepting that a certain portion of an-
notation tasks is too difficult for the crowd. We
create a classifier to identify such tasks and involve
experts whenever necessary.
Routing Tasks Recent approaches have been de-
veloped to address the task routing problem in
crowdsourcing (Bragg et al., 2014; Bozzon et al.,
2013; Hassan and Curry, 2013). As workers vary
in skill and tasks vary in difficulty, prior rec-
ommended approaches often consider the match
between the task content and workers’ profiles.
However, these approaches are difficult to apply
to the particular context of SRL annotation since
we only distinguish between either experts famil-
iar with PropBank, or non-expert crowd workers.

Rather than routing tasks to the most appro-
priate workers, our proposed approach determines
which SRL tasks are appropriate for crowdsourc-
ing, and sends the remaining ones to experts.
Human-in-the-loop Methods Our method is sim-
ilar in the spirit of human-in-the-loop learn-
ing (Fung et al., 1992; Li et al., 2016). Human-
in-the-loop learning generally aims to leverage hu-
mans to complete easy commonsense tasks, such
as the recognition of objects in images (Patterson
et al., 2013). Recent work also proposed human-
in-the-loop parsing (He et al., 2016) to include hu-
man feedback into parsing. However, unlike these
approaches, we aim to combine both experts and
non-experts to address the difficulty of some SRL
annotation tasks, while leveraging the crowd for
the majority of tasks.

6 Conclusion

In this paper, we proposed CROWD-IN-THE-LOOP

an approach for creating high-quality annotated
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data for SRL that leverages both crowd and ex-
pert workers. We conducted a crowdsourcing
study and analyzed its results to design a classi-
fier to distinguish between crowd-appropriate and
expert-required tasks. Our experimental evalua-
tion showed that our proposed approach signif-
icantly outperforms baseline crowdsourcing and
hybrid approaches, and successfully limits the
need for expert involvement while achieving high
annotation quality.
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Abstract

Transfer and multi-task learning have
traditionally focused on either a single
source-target pair or very few, similar
tasks. Ideally, the linguistic levels of mor-
phology, syntax and semantics would ben-
efit each other by being trained in a sin-
gle model. We introduce a joint many-task
model together with a strategy for succes-
sively growing its depth to solve increas-
ingly complex tasks. Higher layers in-
clude shortcut connections to lower-level
task predictions to reflect linguistic hierar-
chies. We use a simple regularization term
to allow for optimizing all model weights
to improve one task’s loss without exhibit-
ing catastrophic interference of the other
tasks. Our single end-to-end model ob-
tains state-of-the-art or competitive results
on five different tasks from tagging, pars-
ing, relatedness, and entailment tasks.

1 Introduction

The potential for leveraging multiple levels of
representation has been demonstrated in various
ways in the field of Natural Language Processing
(NLP). For example, Part-Of-Speech (POS) tags
are used for syntactic parsers. The parsers are used
to improve higher-level tasks, such as natural lan-
guage inference (Chen et al., 2016) and machine
translation (Eriguchi et al., 2016). These systems
are often pipelines and not trained end-to-end.

Deep NLP models have yet shown benefits from
predicting many increasingly complex tasks each
at a successively deeper layer. Existing models
often ignore linguistic hierarchies by predicting

∗Work was done while the first author was an intern at
Salesforce Research.

†Corresponding author.
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Figure 1: Overview of the joint many-task model
predicting different linguistic outputs at succes-
sively deeper layers.

different tasks either entirely separately or at the
same depth (Collobert et al., 2011).

We introduce a Joint Many-Task (JMT) model,
outlined in Figure 1, which predicts increasingly
complex NLP tasks at successively deeper lay-
ers. Unlike traditional pipeline systems, our sin-
gle JMT model can be trained end-to-end for POS
tagging, chunking, dependency parsing, semantic
relatedness, and textual entailment, by consider-
ing linguistic hierarchies. We propose an adaptive
training and regularization strategy to grow this
model in its depth. With the help of this strat-
egy we avoid catastrophic interference between
the tasks. Our model is motivated by Søgaard and
Goldberg (2016) who showed that predicting two
different tasks is more accurate when performed in
different layers than in the same layer (Collobert
et al., 2011). Experimental results show that our
single model achieves competitive results for all
of the five different tasks, demonstrating that us-
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ing linguistic hierarchies is more important than
handling different tasks in the same layer.

2 The Joint Many-Task Model

This section describes the inference procedure of
our model, beginning at the lowest level and work-
ing our way to higher layers and more complex
tasks; our model handles the five different tasks in
the order of POS tagging, chunking, dependency
parsing, semantic relatedness, and textual entail-
ment, by considering linguistic hierarchies. The
POS tags are used for chunking, and the chunking
tags are used for dependency parsing (Attardi and
DellOrletta, 2008). Tai et al. (2015) have shown
that dependencies improve the relatedness task.
The relatedness and entailment tasks are closely
related to each other. If the semantic relatedness
between two sentences is very low, they are un-
likely to entail each other. Based on this obser-
vation, we make use of the information from the
relatedness task for improving the entailment task.

2.1 Word Representations

For each word wt in the input sentence s of length
L, we use two types of embeddings.
Word embeddings: We use Skip-gram (Mikolov
et al., 2013) to train word embeddings.
Character embeddings: Character n-gram em-
beddings are trained by the same Skip-gram ob-
jective. We construct the character n-gram vocab-
ulary in the training data and assign an embed-
ding for each entry. The final character embed-
ding is the average of the unique character n-gram
embeddings of wt. For example, the character n-
grams (n = 1, 2, 3) of the word “Cat” are {C, a,
t, #B#C, Ca, at, t#E#, #B#Ca, Cat, at#E#}, where
“#B#” and “#E#” represent the beginning and the
end of each word, respectively. Using the char-
acter embeddings efficiently provides morpholog-
ical features. Each word is subsequently repre-
sented as xt, the concatenation of its correspond-
ing word and character embeddings shared across
the tasks.1

2.2 Word-Level Task: POS Tagging

The first layer of the model is a bi-directional
LSTM (Graves and Schmidhuber, 2005; Hochre-
iter and Schmidhuber, 1997) whose hidden states

1Bojanowski et al. (2017) previously proposed to train the
character n-gram embeddings by the Skip-gram objective.

are used to predict POS tags. We use the follow-
ing Long Short-Term Memory (LSTM) units for
the forward direction:

it = σ (Wigt + bi) , ft = σ (Wfgt + bf ) ,

ut = tanh (Wugt + bu) ,

ct = it � ut + ft � ct−1, (1)

ot = σ (Wogt + bo) , ht = ot � tanh (ct) ,

where we define the input gt as gt = [
−→
h t−1;xt],

i.e. the concatenation of the previous hidden state
and the word representation of wt. The backward
pass is expanded in the same way, but a different
set of weights are used.

For predicting the POS tag of wt, we use the
concatenation of the forward and backward states
in a one-layer bi-LSTM layer corresponding to the
t-th word: ht = [

−→
h t;
←−
h t]. Then each ht (1 ≤ t ≤

L) is fed into a standard softmax classifier with a
single ReLU layer which outputs the probability
vector y(1) for each of the POS tags.

2.3 Word-Level Task: Chunking
Chunking is also a word-level classification task
which assigns a chunking tag (B-NP, I-VP, etc.)
for each word. The tag specifies the region of ma-
jor phrases (e.g., noun phrases) in the sentence.

Chunking is performed in the second bi-LSTM
layer on top of the POS layer. When stacking
the bi-LSTM layers, we use Eq. (1) with input
g
(2)
t = [h

(2)
t−1;h

(1)
t ;xt; y

(pos)
t ], where h(1)t is the

hidden state of the first (POS) layer. We define
the weighted label embedding y(pos)t as follows:

y
(pos)
t =

C∑

j=1

p(y
(1)
t = j|h(1)t )`(j), (2)

where C is the number of the POS tags, p(y(1)t =

j|h(1)t ) is the probability value that the j-th POS
tag is assigned to wt, and `(j) is the correspond-
ing label embedding. The probability values are
predicted by the POS layer, and thus no gold POS
tags are needed. This output embedding is simi-
lar to the K-best POS tag feature which has been
shown to be effective in syntactic tasks (Andor
et al., 2016; Alberti et al., 2015). For predict-
ing the chunking tags, we employ the same strat-
egy as POS tagging by using the concatenated bi-
directional hidden states h(2)t = [

−→
h

(2)
t ;
←−
h

(2)
t ] in

the chunking layer. We also use a single ReLU
hidden layer before the softmax classifier.
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2.4 Syntactic Task: Dependency Parsing
Dependency parsing identifies syntactic relations
(such as an adjective modifying a noun) between
word pairs in a sentence. We use the third bi-
LSTM layer to classify relations between all pairs
of words. The input vector for the LSTM in-
cludes hidden states, word representations, and
the label embeddings for the two previous tasks:
g
(3)
t = [h

(3)
t−1;h

(2)
t ;xt; (y

(pos)
t +y

(chk)
t )], where we

computed the chunking vector in a similar fashion
as the POS vector in Eq. (2).

We predict the parent node (head) for each
word. Then a dependency label is predicted for
each child-parent pair. This approach is related
to Dozat and Manning (2017) and Zhang et al.
(2017), where the main difference is that our
model works on a multi-task framework. To pre-
dict the parent node of wt, we define a matching
function between wt and the candidates of the par-
ent node as m (t, j) = h

(3)
t · (Wdh

(3)
j ), where Wd

is a parameter matrix. For the root, we define
h
(3)
L+1 = r as a parameterized vector. To com-

pute the probability that wj (or the root node) is
the parent of wt, the scores are normalized:

p(j|h(3)t ) =
exp (m (t, j))

∑L+1
k=1,k 6=t exp (m (t, k))

. (3)

The dependency labels are predicted using
[h

(3)
t ;h

(3)
j ] as input to a softmax classifier with

a single ReLU layer. We greedily select the par-
ent node and the dependency label for each word.
When the parsing result is not a well-formed tree,
we apply the first-order Eisner’s algorithm (Eisner,
1996) to obtain a well-formed tree from it.

2.5 Semantic Task: Semantic relatedness
The next two tasks model the semantic relation-
ships between two input sentences. The first task
measures the semantic relatedness between two
sentences. The output is a real-valued relatedness
score for the input sentence pair. The second task
is textual entailment, which requires one to deter-
mine whether a premise sentence entails a hypoth-
esis sentence. There are typically three classes:
entailment, contradiction, and neutral. We use the
fourth and fifth bi-LSTM layer for the relatedness
and entailment task, respectively.

Now it is required to obtain the sentence-level
representation rather than the word-level represen-
tation h(4)t used in the first three tasks. We com-
pute the sentence-level representation h(4)s as the

element-wise maximum values across all of the
word-level representations in the fourth layer:

h
(4)
s = max

(
h
(4)
1 , h

(4)
2 , . . . , h

(4)
L

)
. (4)

This max-pooling technique has proven effective
in text classification tasks (Lai et al., 2015).

To model the semantic relatedness between s
and s′, we follow Tai et al. (2015). The feature
vector for representing the semantic relatedness is
computed as follows:

d1(s, s
′) =

[∣∣∣h(4)s − h(4)s′

∣∣∣ ;h(4)s � h(4)s′

]
, (5)

where
∣∣∣h(4)s − h(4)s′

∣∣∣ is the absolute values of the

element-wise subtraction, and h
(4)
s � h

(4)
s′ is the

element-wise multiplication. Then d1(s, s′) is fed
into a softmax classifier with a single Maxout
hidden layer (Goodfellow et al., 2013) to output
a relatedness score (from 1 to 5 in our case).

2.6 Semantic Task: Textual entailment

For entailment classification, we also use the max-
pooling technique as in the semantic relatedness
task. To classify the premise-hypothesis pair
(s, s′) into one of the three classes, we com-
pute the feature vector d2(s, s′) as in Eq. (5) ex-
cept that we do not use the absolute values of
the element-wise subtraction, because we need
to identify which is the premise (or hypothesis).
Then d2(s, s′) is fed into a softmax classifier.

To use the output from the relatedness layer di-
rectly, we use the label embeddings for the related-
ness task. More concretely, we compute the class
label embeddings for the semantic relatedness task
similar to Eq. (2). The final feature vectors that are
concatenated and fed into the entailment classifier
are the weighted relatedness label embedding and
the feature vector d2(s, s′). We use three Maxout
hidden layers before the classifier.

3 Training the JMT Model

The model is trained jointly over all datasets. Dur-
ing each epoch, the optimization iterates over each
full training dataset in the same order as the corre-
sponding tasks described in the modeling section.

3.1 Pre-Training Word Representations

We pre-train word embeddings using the Skip-
gram model with negative sampling (Mikolov
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et al., 2013). We also pre-train the character n-
gram embeddings using Skip-gram.2 The only dif-
ference is that each input word embedding is re-
placed with its corresponding average character n-
gram embedding described in Section 2.1. These
embeddings are fine-tuned during the model train-
ing. We denote the embedding parameters as θe.

3.2 Training the POS Layer

Let θPOS = (WPOS, bPOS, θe) denote the set of
model parameters associated with the POS layer,
where WPOS is the set of the weight matrices in
the first bi-LSTM and the classifier, and bPOS is
the set of the bias vectors. The objective function
to optimize θPOS is defined as follows:

J1(θPOS) =−
∑

s

∑

t

log p(y
(1)
t = α|h(1)t )

+ λ‖WPOS‖2 + δ‖θe − θ′e‖2,
(6)

where p(y(1)t = αwt |h(1)t ) is the probability value
that the correct label α is assigned towt in the sen-
tence s, λ‖WPOS‖2 is the L2-norm regularization
term, and λ is a hyperparameter.

We call the second regularization term δ‖θe −
θ′e‖2 a successive regularization term. The suc-
cessive regularization is based on the idea that we
do not want the model to forget the information
learned for the other tasks. In the case of POS
tagging, the regularization is applied to θe, and θ′e
is the embedding parameter after training the final
task in the top-most layer at the previous training
epoch. δ is a hyperparameter.

3.3 Training the Chunking Layer

The objective function is defined as follows:

J2(θchk) = −
∑

s

∑

t

log p(y
(2)
t = α|h(2)t )

+ λ‖Wchk‖2 + δ‖θPOS − θ′POS‖2,
(7)

which is similar to that of POS tagging, and θchk is
(Wchk, bchk, EPOS, θe), where Wchk and bchk are
the weight and bias parameters including those in
θPOS, and EPOS is the set of the POS label em-
beddings. θ′POS is the one after training the POS
layer at the current training epoch.

2The training code and the pre-trained embeddings
are available at https://github.com/hassyGo/
charNgram2vec.

3.4 Training the Dependency Layer
The objective function is defined as follows:

J3(θdep) = −
∑

s

∑

t

log p(α|h(3)t )p(β|h(3)t , h(3)α )

+ λ(‖Wdep‖2 + ‖Wd‖2) + δ‖θchk − θ′chk‖2,
(8)

where p(α|h(3)t ) is the probability value as-
signed to the correct parent node α for wt,
and p(β|h(3)t , h

(3)
α ) is the probability value as-

signed to the correct dependency label β for
the child-parent pair (wt, α). θdep is defined as
(Wdep, bdep,Wd, r, EPOS, Echk, θe), where Wdep

and bdep are the weight and bias parameters in-
cluding those in θchk, and Echk is the set of the
chunking label embeddings.

3.5 Training the Relatedness Layer
Following Tai et al. (2015), the objective function
is defined as follows:

J4(θrel) =
∑

(s,s′)

KL
(
p̂(s, s′)

∥∥∥p(h(4)s , h
(4)
s′ )
)

+ λ‖Wrel‖2 + δ‖θdep − θ′dep‖2,
(9)

where p̂(s, s′) is the gold distribution over the de-
fined relatedness scores, p(h(4)s , h

(4)
s′ ) is the pre-

dicted distribution given the the sentence repre-
sentations, and KL

(
p̂(s, s′)

∥∥∥p(h(4)s , h
(4)
s′ )
)

is the
KL-divergence between the two distributions. θrel
is defined as (Wrel, brel, EPOS, Echk, θe).

3.6 Training the Entailment Layer
The objective function is defined as follows:

J5(θent) =−
∑

(s,s′)

log p(y
(5)
(s,s′) = α|h(5)s , h

(5)
s′ )

+ λ‖Went‖2 + δ‖θrel − θ′rel‖2,
(10)

where p(y
(5)
(s,s′) = α|h(5)s , h

(5)
s′ ) is the probabil-

ity value that the correct label α is assigned to
the premise-hypothesis pair (s, s′). θent is defined
as (Went, bent, EPOS, Echk, Erel, θe), whereErel is
the set of the relatedness label embeddings.

4 Related Work

Many deep learning approaches have proven to be
effective in a variety of NLP tasks and are becom-
ing more and more complex. They are typically
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designed to handle single tasks, or some of them
are designed as general-purpose models (Kumar
et al., 2016; Sutskever et al., 2014) but applied to
different tasks independently.

For handling multiple NLP tasks, multi-task
learning models with deep neural networks have
been proposed (Collobert et al., 2011; Luong et al.,
2016), and more recently Søgaard and Goldberg
(2016) have suggested that using different layers
for different tasks is more effective than using the
same layer in jointly learning closely-related tasks,
such as POS tagging and chunking. However, the
number of tasks was limited or they have very sim-
ilar task settings like word-level tagging, and it
was not clear how lower-level tasks could be also
improved by combining higher-level tasks.

More related to our work, Godwin et al. (2016)
also followed Søgaard and Goldberg (2016) to
jointly learn POS tagging, chunking, and lan-
guage modeling, and Zhang and Weiss (2016)
have shown that it is effective to jointly learn POS
tagging and dependency parsing by sharing inter-
nal representations. In the field of relation extrac-
tion, Miwa and Bansal (2016) proposed a joint
learning model for entity detection and relation ex-
traction. All of them suggest the importance of
multi-task learning, and we investigate the poten-
tial of handling different types of NLP tasks rather
than closely-related ones in a single hierarchical
deep model.

In the field of computer vision, some trans-
fer and multi-task learning approaches have also
been proposed (Li and Hoiem, 2016; Misra et al.,
2016). For example, Misra et al. (2016) proposed
a multi-task learning model to handle different
tasks. However, they assume that each data sam-
ple has annotations for the different tasks, and do
not explicitly consider task hierarchies.

Recently, Rusu et al. (2016) have proposed a
progressive neural network model to handle mul-
tiple reinforcement learning tasks, such as Atari
games. Like our JMT model, their model is also
successively trained according to different tasks
using different layers called columns in their pa-
per. In their model, once the first task is com-
pleted, the model parameters for the first task are
fixed, and then the second task is handled with new
model parameters. Therefore, accuracy of the pre-
viously trained tasks is never improved. In NLP
tasks, multi-task learning has the potential to im-
prove not only higher-level tasks, but also lower-

level tasks. Rather than fixing the pre-trained
model parameters, our successive regularization
allows our model to continuously train the lower-
level tasks without significant accuracy drops.

5 Experimental Settings

5.1 Datasets

POS tagging: To train the POS tagging layer, we
used the Wall Street Journal (WSJ) portion of Penn
Treebank, and followed the standard split for the
training (Section 0-18), development (Section 19-
21), and test (Section 22-24) sets. The evaluation
metric is the word-level accuracy.
Chunking: For chunking, we also used the WSJ
corpus, and followed the standard split for the
training (Section 15-18) and test (Section 20) sets
as in the CoNLL 2000 shared task. We used Sec-
tion 19 as the development set and employed the
IOBES tagging scheme. The evaluation metric is
the F1 score defined in the shared task.
Dependency parsing: We also used the WSJ cor-
pus for dependency parsing, and followed the stan-
dard split for the training (Section 2-21), devel-
opment (Section 22), and test (Section 23) sets.
We obtained Stanford style dependencies using the
version 3.3.0 of the Stanford converter. The evalu-
ation metrics are the Unlabeled Attachment Score
(UAS) and the Labeled Attachment Score (LAS),
and punctuations are excluded for the evaluation.
Semantic relatedness: For the semantic related-
ness task, we used the SICK dataset (Marelli et al.,
2014), and followed the standard split for the train-
ing, development, and test sets. The evaluation
metric is the Mean Squared Error (MSE) between
the gold and predicted scores.
Textual entailment: For textual entailment, we
also used the SICK dataset and exactly the same
data split as the semantic relatedness dataset. The
evaluation metric is the accuracy.

5.2 Training Details

We set the dimensionality of the embeddings and
the hidden states in the bi-LSTMs to 100. At each
training epoch, we trained our model in the or-
der of POS tagging, chunking, dependency pars-
ing, semantic relatedness, and textual entailment.
We used mini-batch stochastic gradient decent and
empirically found it effective to use a gradient
clipping method with growing clipping values for
the different tasks; concretely, we employed the
simple function: min(3.0, depth), where depth is
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the number of bi-LSTM layers involved in each
task, and 3.0 is the maximum value. We applied
our successive regularization to our model, along
with L2-norm regularization and dropout (Srivas-
tava et al., 2014). More details are summarized in
the supplemental material.

6 Results and Discussion

Table 1 shows our results on the test sets of the
five tasks.3 The column “Single” shows the re-
sults of handling each task separately using single-
layer bi-LSTMs, and the column “JMTall” shows
the results of our JMT model. The single task set-
tings only use the annotations of their own tasks.
For example, when handling dependency parsing
as a single task, the POS and chunking tags are not
used. We can see that all results of the five tasks
are improved in our JMT model, which shows that
our JMT model can handle the five different tasks
in a single model. Our JMT model allows us to
access arbitrary information learned from the dif-
ferent tasks. If we want to use the model just as a
POS tagger, we can use only first bi-LSTM layer.

Table 1 also shows the results of five subsets
of the different tasks. For example, in the case
of “JMTABC”, only the first three layers of the
bi-LSTMs are used to handle the three tasks. In
the case of “JMTDE”, only the top two layers are
used as a two-layer bi-LSTM by omitting all in-
formation from the first three layers. The results
of the closely-related tasks (“AB”, “ABC”, and
“DE”) show that our JMT model improves both
of the high-level and low-level tasks. The results
of “JMTCD” and “JMTCE” show that the parsing
task can be improved by the semantic tasks.

It should be noted that in our analysis on the
greedy parsing results of the “JMTABC” setting,
we have found that more than 95% are well-
formed dependency trees on the development set.
In the 1,700 sentences of the development data, 11
results have multiple root notes, 11 results have
no root nodes, and 61 results have cycles. These
83 parsing results are converted into well-formed
trees by Eisner’s algorithm, and the accuracy does
not significantly change (UAS: 94.52%→94.53%,
LAS: 92.61%→92.62%).

3In chunking evaluation, we only show the results of “Sin-
gle” and “JMTAB” because the sentences for chunking eval-
uation overlap the training data for dependency parsing.

6.1 Comparison with Published Results

POS tagging Table 2 shows the results of POS
tagging, and our JMT model achieves the score
close to the state-of-the-art results. The best result
to date has been achieved by Ling et al. (2015),
which uses character-based LSTMs. Incorporat-
ing the character-based encoders into our JMT
model would be an interesting direction, but we
have shown that the simple pre-trained character
n-gram embeddings lead to the promising result.

Chunking Table 3 shows the results of chunk-
ing, and our JMT model achieves the state-of-the-
art result. Søgaard and Goldberg (2016) proposed
to jointly learn POS tagging and chunking in dif-
ferent layers, but they only showed improvement
for chunking. By contrast, our results show that
the low-level tasks are also improved.

Dependency parsing Table 4 shows the results
of dependency parsing by using only the WSJ cor-
pus in terms of the dependency annotations.4 It is
notable that our simple greedy dependency parser
outperforms the model in Andor et al. (2016)
which is based on beam search with global infor-
mation. The result suggests that the bi-LSTMs ef-
ficiently capture global information necessary for
dependency parsing. Moreover, our single task
result already achieves high accuracy without the
POS and chunking information. The best result to
date has been achieved by the model propsoed in
Dozat and Manning (2017), which uses higher di-
mensional representations than ours and proposes
a more sophisticated attention mechanism called
biaffine attention. It should be promising to incor-
porate their attention mechanism into our parsing
component.

Semantic relatedness Table 5 shows the results
of the semantic relatedness task, and our JMT
model achieves the state-of-the-art result. The re-
sult of “JMTDE” is already better than the previous
state-of-the-art results. Both of Zhou et al. (2016)
and Tai et al. (2015) explicitly used syntactic trees,
and Zhou et al. (2016) relied on attention mecha-
nisms. However, our method uses the simple max-
pooling strategy, which suggests that it is worth

4Choe and Charniak (2016) employed a tri-training
method to expand the training data with 400,000 trees in ad-
dition to the WSJ data, and they reported 95.9 UAS and 94.1
LAS by converting their constituency trees into dependency
trees. Kuncoro et al. (2017) also reported high accuracy (95.8
UAS and 94.6 LAS) by using a converter.
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Single JMTall JMTAB JMTABC JMTDE JMTCD JMTCE

A ↑ POS 97.45 97.55 97.52 97.54 n/a n/a n/a
B ↑ Chunking 95.02 n/a 95.77 n/a n/a n/a n/a

C ↑ Dependency UAS 93.35 94.67 n/a 94.71 n/a 93.53 93.57
Dependency LAS 91.42 92.90 n/a 92.92 n/a 91.62 91.69

D ↓ Relatedness 0.247 0.233 n/a n/a 0.238 0.251 n/a
E ↑ Entailment 81.8 86.2 n/a n/a 86.8 n/a 82.4

Table 1: Test set results for the five tasks. In the relatedness task, the lower scores are better.

Method Acc. ↑
JMTall 97.55
Ling et al. (2015) 97.78
Kumar et al. (2016) 97.56
Ma and Hovy (2016) 97.55
Søgaard (2011) 97.50
Collobert et al. (2011) 97.29
Tsuruoka et al. (2011) 97.28
Toutanova et al. (2003) 97.27

Table 2: POS tagging results.

Method F1 ↑
JMTAB 95.77
Single 95.02
Søgaard and Goldberg (2016) 95.56
Suzuki and Isozaki (2008) 95.15
Collobert et al. (2011) 94.32
Kudo and Matsumoto (2001) 93.91
Tsuruoka et al. (2011) 93.81

Table 3: Chunking results.

Method UAS ↑ LAS ↑
JMTall 94.67 92.90
Single 93.35 91.42
Dozat and Manning (2017) 95.74 94.08
Andor et al. (2016) 94.61 92.79
Alberti et al. (2015) 94.23 92.36
Zhang et al. (2017) 94.10 91.90
Weiss et al. (2015) 93.99 92.05
Dyer et al. (2015) 93.10 90.90
Bohnet (2010) 92.88 90.71

Table 4: Dependency results.

Method MSE ↓
JMTall 0.233
JMTDE 0.238
Zhou et al. (2016) 0.243
Tai et al. (2015) 0.253

Table 5: Semantic relatedness results.

Method Acc. ↑
JMTall 86.2
JMTDE 86.8
Yin et al. (2016) 86.2
Lai and Hockenmaier (2014) 84.6

Table 6: Textual entailment results.

JMTall w/o SC w/o LE w/o SC&LE
POS 97.88 97.79 97.85 97.87
Chunking 97.59 97.08 97.40 97.33
Dependency UAS 94.51 94.52 94.09 94.04
Dependency LAS 92.60 92.62 92.14 92.03
Relatedness 0.236 0.698 0.261 0.765
Entailment 84.6 75.0 81.6 71.2

Table 7: Effectiveness of the Shortcut Connections
(SC) and the Label Embeddings (LE).

investigating such simple methods before develop-
ing complex methods for simple tasks. Currently,
our JMT model does not explicitly use the learned
dependency structures, and thus the explicit use of
the output from the dependency layer should be an
interesting direction of future work.

Textual entailment Table 6 shows the results of
textual entailment, and our JMT model achieves
the state-of-the-art result. The previous state-of-
the-art result in Yin et al. (2016) relied on at-
tention mechanisms and dataset-specific data pre-
processing and features. Again, our simple max-
pooling strategy achieves the state-of-the-art result
boosted by the joint training. These results show
the importance of jointly handling related tasks.

6.2 Analysis on the Model Architectures

We investigate the effectiveness of our model in
detail. All of the results shown in this section are
the development set results.

JMTABC w/o SC&LE All-3
POS 97.90 97.87 97.62
Chunking 97.80 97.41 96.52
Dependency UAS 94.52 94.13 93.59
Dependency LAS 92.61 92.16 91.47

Table 8: Effectiveness of using different layers for
different tasks.

Shortcut connections Our JMT model feeds the
word representations into all of the bi-LSTM lay-
ers, which is called the shortcut connection. Ta-
ble 7 shows the results of “JMTall” with and with-
out the shortcut connections. The results with-
out the shortcut connections are shown in the col-
umn of “w/o SC”. These results clearly show that
the importance of the shortcut connections, and in
particular, the semantic tasks in the higher layers
strongly rely on the shortcut connections. That is,
simply stacking the LSTM layers is not sufficient
to handle a variety of NLP tasks in a single model.
In the supplementary material, it is qualitatively
shown how the shortcut connections work in our
model.

Output label embeddings Table 7 also shows
the results without using the output labels of the
POS, chunking, and relatedness layers, in the col-
umn of “w/o LE”. These results show that the ex-
plicit use of the output information from the clas-
sifiers of the lower layers is important in our JMT
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JMTall w/o SR w/o VC
POS 97.88 97.85 97.82
Chunking 97.59 97.13 97.45
Dependency UAS 94.51 94.46 94.38
Dependency LAS 92.60 92.57 92.48
Relatedness 0.236 0.239 0.241
Entailment 84.6 84.2 84.8

Table 9: Effectiveness of the Successive Regular-
ization (SR) and the Vertical Connections (VC).

JMTall Random
POS 97.88 97.83
Chunking 97.59 97.71
Dependency UAS 94.51 94.66
Dependency LAS 92.60 92.80
Relatedness 0.236 0.298
Entailment 84.6 83.2

Table 10: Effects of the order of training.

model. The results in the column of “w/o SC&LE”
are the ones without both of the shortcut connec-
tions and the label embeddings.

Different layers for different tasks Table 8
shows the results of our “JMTABC” setting and
that of not using the shortcut connections and the
label embeddings (“w/o SC&LE”) as in Table 7.
In addition, in the column of “All-3”, we show the
results of using the highest (i.e., the third) layer for
all of the three tasks without any shortcut connec-
tions and label embeddings, and thus the two set-
tings “w/o SC&LE” and “All-3” require exactly
the same number of the model parameters. The
“All-3” setting is similar to the multi-task model
of Collobert et al. (2011) in that task-specific out-
put layers are used but most of the model param-
eters are shared. The results show that using the
same layers for the three different tasks hampers
the effectiveness of our JMT model, and the de-
sign of the model is much more important than the
number of the model parameters.

Successive regularization In Table 9, the col-
umn of “w/o SR” shows the results of omitting the
successive regularization terms described in Sec-
tion 3. We can see that the accuracy of chunking is
improved by the successive regularization, while
other results are not affected so much. The chunk-
ing dataset used here is relatively small compared
with other low-level tasks, POS tagging and de-
pendency parsing. Thus, these results suggest
that the successive regularization is effective when
dataset sizes are imbalanced.

Vertical connections We investigated our JMT
results without using the vertical connections in

Single Single+
POS 97.52
Chunking 95.65 96.08
Dependency UAS 93.38 93.88
Dependency LAS 91.37 91.83
Relatedness 0.239 0.665
Entailment 83.8 66.4

Table 11: Effects of depth for the single tasks.

Single W&C Only W
POS 97.52 96.26
Chunking 95.65 94.92
Dependency UAS 93.38 92.90
Dependency LAS 91.37 90.44

Table 12: Effects of the character embeddings.

the five-layer bi-LSTMs. More concretely, when
constructing the input vectors gt, we do not use
the bi-LSTM hidden states of the previous lay-
ers. Table 9 also shows the JMTall results with
and without the vertical connections. As shown in
the column of “w/o VC”, we observed the compet-
itive results. Therefore, in the target tasks used in
our model, sharing the word representations and
the output label embeddings is more effective than
just stacking the bi-LSTM layers.

Order of training Our JMT model iterates the
training process in the order described in Sec-
tion 3. Our hypothesis is that it is important to start
from the lower-level tasks and gradually move to
the higher-level tasks. Table 10 shows the results
of training our model by randomly shuffling the
order of the tasks for each epoch in the column of
“Random”. We see that the scores of the semantic
tasks drop by the random strategy. In our prelimi-
nary experiments, we have found that constructing
the mini-batch samples from different tasks also
hampers the effectiveness of our model, which
also supports our hypothesis.

Depth The single task settings shown in Table 1
are obtained by using single layer bi-LSTMs, but
in our JMT model, the higher-level tasks use suc-
cessively deeper layers. To investigate the gap be-
tween the different number of the layers for each
task, we also show the results of using multi-layer
bi-LSTMs for the single task settings, in the col-
umn of “Single+” in Table 11. More concretely,
we use the same number of the layers with our
JMT model; for example, three layers are used
for dependency parsing, and five layers are used
for textual entailment. As shown in these results,
deeper layers do not always lead to better results,
and the joint learning is more important than mak-
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ing the models complex only for single tasks.

Character n-gram embeddings Finally, Ta-
ble 12 shows the results for the three single tasks
with and without the pre-trained character n-gram
embeddings. The column of “W&C” corresponds
to using both of the word and character n-gram
embeddings, and that of “Only W” corresponds
to using only the word embeddings. These re-
sults clearly show that jointly using the pre-trained
word and character n-gram embeddings is helpful
in improving the results. The pre-training of the
character n-gram embeddings is also effective; for
example, without the pre-training, the POS accu-
racy drops from 97.52% to 97.38% and the chunk-
ing accuracy drops from 95.65% to 95.14%.

6.3 Discussion
Training strategies In our JMT model, it is not
obvious when to stop the training while trying to
maximize the scores of all the five tasks. We fo-
cused on maximizing the accuracy of dependency
parsing on the development data in our experi-
ments. However, the sizes of the training data
are different across the different tasks; for exam-
ple, the semantic tasks include only 4,500 sen-
tence pairs, and the dependency parsing dataset
includes 39,832 sentences with word-level anno-
tations. Thus, in general, dependency parsing
requires more training epochs than the semantic
tasks, but currently, our model trains all of the
tasks for the same training epochs. The same strat-
egy for decreasing the learning rate is also shared
across all the different tasks, although our growing
gradient clipping method described in Section 5.2
helps improve the results. Indeed, we observed
that better scores of the semantic tasks can be
achieved before the accuracy of dependency pars-
ing reaches the best score. Developing a method
for achieving the best scores for all of the tasks at
the same time is important future work.

More tasks Our JMT model has the potential
of handling more tasks than the five tasks used
in our experiments; examples include entity de-
tection and relation extraction as in Miwa and
Bansal (2016) as well as language modeling (God-
win et al., 2016). It is also a promising direction
to train each task for multiple domains by focus-
ing on domain adaptation (Søgaard and Goldberg,
2016). In particular, incorporating language mod-
eling tasks provides an opportunity to use large
text data. Such large text data was used in our

experiments to pre-train the word and character n-
gram embeddings. However, it would be prefer-
able to efficiently use it for improving the entire
model.

Task-oriented learning of low-level tasks Each
task in our JMT model is supervised by its cor-
responding dataset. However, it would be possi-
ble to learn low-level tasks by optimizing high-
level tasks, because the model parameters of the
low-level tasks can be directly modified by learn-
ing the high-level tasks. One example has al-
ready been presented in Hashimoto and Tsuruoka
(2017), where our JMT model is extended to learn-
ing task-oriented latent graph structures of sen-
tences by training our dependency parsing com-
ponent according to a neural machine translation
objective.

7 Conclusion

We presented a joint many-task model to handle
multiple NLP tasks with growing depth in a sin-
gle end-to-end model. Our model is successively
trained by considering linguistic hierarchies, di-
rectly feeding word representations into all lay-
ers, explicitly using low-level predictions, and ap-
plying successive regularization. In experiments
on five NLP tasks, our single model achieves the
state-of-the-art or competitive results on chunk-
ing, dependency parsing, semantic relatedness,
and textual entailment.
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Abstract

Cross-lingual natural language processing
hinges on the premise that there exists in-
variance across languages. At the word
level, researchers have identified such in-
variance in the word embedding seman-
tic spaces of different languages. How-
ever, in order to connect the separate
spaces, cross-lingual supervision encoded
in parallel data is typically required. In
this paper, we attempt to establish the
cross-lingual connection without relying
on any cross-lingual supervision. By
viewing word embedding spaces as dis-
tributions, we propose to minimize their
earth mover’s distance, a measure of diver-
gence between distributions. We demon-
strate the success on the unsupervised
bilingual lexicon induction task. In addi-
tion, we reveal an interesting finding that
the earth mover’s distance shows potential
as a measure of language difference.

1 Introduction

Despite tremendous variation and diversity, lan-
guages are believed to share something in com-
mon. Indeed, this belief forms the underlying ba-
sis of computational approaches to cross-lingual
transfer (Täckström et al., 2013, inter alia), other-
wise it would be inconceivable for the transfer to
successfully generalize.

Linguistic universals manifest themselves at
various levels of linguistic units. At the word
level, there is evidence that different languages
represent concepts with similar structure (Youn
et al., 2016). Interestingly, as computational mod-
els of word semantics, monolingual word embed-
dings also exhibit isomorphism across languages
(Mikolov et al., 2013a). This finding opens up the

possibility to use a simple transformation, e.g. a
linear map, to connect separately trained word em-
beddings cross-lingually. Learning such a trans-
formation typically calls for cross-lingual supervi-
sion from parallel data (Faruqui and Dyer, 2014;
Lu et al., 2015; Dinu et al., 2015; Lazaridou et al.,
2015; Smith et al., 2017).

In this paper, we ask the question: Can we un-
cover the transformation without any cross-lingual
supervision? At first sight, this task appears
formidable, as it would imply that a bilingual se-
mantic space can be constructed by using mono-
lingual corpora only. On the other hand, the ex-
istence of structural isomorphism across mono-
lingual embedding spaces points to the feasibility
of this task: The transformation exists right there
only to be discovered by the right tool.

We propose such a tool to answer the above
question in the affirmative. The key insight is to
view embedding spaces as distributions, and the
desired transformation should make the two dis-
tributions close. This naturally calls for a measure
of distribution closeness, for which we introduce
the earth mover’s distance. Therefore, our task
can be formulated as the minimization of the earth
mover’s distance between the transformed source
embedding distribution and the target one with re-
spect to the transformation. Importantly, the mini-
mization is performed at the distribution level, and
hence no word-level supervision is required.

We demonstrate that the earth mover’s distance
minimization successfully uncovers the transfor-
mation for cross-lingual connection, as evidenced
by experiments on the bilingual lexicon induction
task. In fact, as an unsupervised approach, its per-
formance turns out to be highly competitive with
supervised methods. Moreover, as an interesting
byproduct, the earth mover’s distance provides a
distance measure that may quantify a facet of lan-
guage difference.
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Figure 1: An illustration of our earth mover’s distance minimization formulation. The subplots on the
left schematically visualize Chinese and English embeddings. Due to isomorphism, there exists a simple
transformationG that aligns the two embedding spaces well, as shown on the right. We expect to find the
transformationG by minimizing the earth mover’s distance without the need for cross-lingual word-level
supervision, because the earth mover’s distance holistically measures the closeness between two sets of
weighted points. It computes the minimal cost of transporting one set of points to the other, whose
weights are indicated by the sizes of squares and dots. We show the transport scheme in the right subplot
with arrows, which can be interpreted as word translations.

2 Background

2.1 Aligning Isomorphic Embeddings

As discovered by previous work (Mikolov et al.,
2013a), monolingual word embeddings exhibit
isomorphism across languages, i.e., they appear
similar in structure. However, as they are trained
independently, the specific “orientation” of each
embedding space is arbitrary, as illustrated in the
left part of Figure 1. In order to connect the sep-
arate embedding spaces, we can try to transform
the source embeddings so that they align well with
target ones. Naturally, we need a measure for the
quality of the alignment to guide our search for the
transformation.

As we aim to eliminate the need for cross-
lingual supervision from word translation pairs,
the measure cannot be defined at the word level as
in previous work (Mikolov et al., 2013a). Rather,
it should quantify the difference between the entire
distributions of embeddings. With this in mind,
we find the earth mover’s distance to be a suit-
able choice (Zhang et al., 2016b). Its workings
are illustrated in the right part of Figure 1. We
can think of target embeddings as piles of earth,
and transformed source embeddings as holes to be
filled. Then the earth mover’s distance computes

the minimal cost of moving the earth to fill the
holes. Clearly, if the two sets of embeddings align
well, the earth mover’s distance will be small.
Therefore, we can try to find the transformation
that minimizes the earth mover’s distance.

Another desirable feature of the earth mover’s
distance is that the computed transport scheme can
be readily interpreted as translations. Moreover,
this interpretation naturally handles multiple al-
ternative translations. For example, the Chinese
word “mao” can be translated to “cat” or “kitten”,
as shown in Figure 1.

2.2 The Form of the Transformation

The approximate isomorphism across embedding
spaces inspires researchers to use a simple form
of transformation. For example, Mikolov et al.
(2013a) chose to use a linear transformation, i.e.
the transformation G parametrized by a matrix.
Later, proposals for using an orthogonal trans-
formation are supported empirically (Xing et al.,
2015; Zhang et al., 2016c; Artetxe et al., 2016)
and theoretically (Smith et al., 2017). Indeed,
an orthogonal transformation has desirable prop-
erties in this setting. If G is an orthogonal matrix
that transforms the source embeddings into the tar-
get space, then its transpose (also its inverse) G>
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performs transformation in the reverse direction.
In that case, any word embedding a can be re-
covered by transforming back and forth because
G>Ga = a. Moreover, computing the cosine sim-
ilarity between a source embedding a and a target
embedding b will be independent of the semantic
space in which the similarity is measured, because
b>Ga/ ‖Ga‖ ‖b‖ = a>G>b/ ‖a‖

∥∥G>b
∥∥. There-

fore we are inclined to use an orthogonal transfor-
mation for our task.

2.3 The Earth Mover’s Distance

The earth mover’s distance (EMD) is a powerful
tool widely used in computer vision and natural
language processing (Rubner et al., 1998; Kus-
ner et al., 2015; Huang et al., 2016; Zhang et al.,
2016b,a). Mathematically speaking, the EMD de-
fines a distance between probability distributions.
In the discrete case, a probability distribution can
be represented by a sum of Dirac delta functions.
For a pair of discrete distributions P1 =

∑
i uiδxi

and P2 =
∑

j vjδyj , the EMD is defined as

EMD (P1,P2) = min
T∈U(u,v)

∑

i

∑

j

Tijc (xi, yj) ,

(1)
where c (xi, yj) gives the ground distance between
xi and yj , and U (u, v) is known as the transport
polytope, defined as


T |Tij ≥ 0,

∑

j

Tij = ui,
∑

i

Tij = vj ,∀i, j



 .

(2)
After solving the minimization program (1), the
transport matrix T stores information of the trans-
port scheme: A non-zero Tij indicates the amount
of probability mass transported from yj to xi. For
our task, this can be interpreted as evidence for
word translation (Zhang et al., 2016b), as indi-
cated by arrows in the right part of Figure 1.

The EMD is closely related to the Wasserstein
distance in mathematics, defined as

W (P1,P2) = inf
γ∈Γ(P1,P2)

E(x,y)∼γ [c (x, y)] , (3)

where Γ (P1,P2) denotes the set of all joint distri-
butions γ (x, y) with marginals P1 and P2 on the
first and second factors respectively. As we can
see, the Wasserstein distance generalizes the EMD
to allow continuous distributions. In our context,
we will use both terms interchangeably.

D
Wasserstein

estimate

G

Figure 2: The Wasserstein GAN for unsuper-
vised bilingual lexicon induction. The generator
G transforms the source word embeddings into the
target space. The critic D takes both sets of em-
beddings and tries to estimate their Wasserstein
distance, and this information will be passed to
the generator G during training to guide it towards
minimizing the Wasserstein estimate.

3 Approaches

In our task, we are interested in a pair of distri-
butions of word embeddings, one for the source
language and the other for the target language.
A source word embedding wS

s is a d-dimensional
column vector that represents the s-th source word
in the V S-sized source language vocabulary. Its
distribution is characterized by a positive vector
of frequencies fS satisfying

∑V S

s=1 f
S
s = 1, i.e.

P
(
wS
s

)
= fS

s . Notations are similar for the target
side. We assume the embeddings are normalized
to have unit L2 norm, which makes no difference
to the result as we use cosine to measure semantic
similarity.

Under this setting, we develop two approaches
to our EMD minimization idea, called WGAN
(Section 3.1) and EMDOT (Section 3.2) respec-
tively.

3.1 Wasserstein GAN (WGAN)

Generative adversarial nets (GANs) are originally
proposed to generate natural images (Goodfellow
et al., 2014). They can generate sharp images if
trained well, but they are notoriously difficult to
train. Therefore, a lot of research efforts have been
dedicated to the investigation into stabler train-
ing (Radford et al., 2015; Salimans et al., 2016;
Nowozin et al., 2016; Metz et al., 2016; Poole
et al., 2016; Arjovsky and Bottou, 2017), and
the recently proposed Wasserstein GAN (Arjovsky
et al., 2017) is a promising technique along this
line of research.

While the original GAN is formulated as an ad-
versarial game (hence its name), the Wasserstein
GAN can be directly understood as minimizing
the Wasserstein distance (3). Figure 2 illustrates
the concept in the context of our unsupervised
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bilingual lexicon induction task. The generator
G takes source word embeddings and transforms
them, with the goal that the transformed source
distribution PG(S) and the target distribution PT

should be close as measured by the Wasserstein
distance. The critic D takes both transformed
source word embeddings and target word embed-
dings and attempts to accurately estimate their
Wasserstein distance, which will guide the gener-
ator during training. The overall objective is

min
G∈Rd×d

W
(
PG(S),PT

)
, (4)

where PG(S) =
∑V S

s=1 f
S
s δGwS

s
and PT =

∑V T

t=1 f
T
t δwT

t
are the distributions of transformed

source word embeddings and target word embed-
dings. Here we do not impose the orthogonal con-
straint onG to facilitate the use of a gradient-based
optimizer. With the ground distance c being Eu-
clidean distance L2, the Kantorovich-Rubinstein
duality (Villani, 2009) gives

W
(
PG(S),PT

)

=
1

K
sup
‖f‖L≤K

Ey∼PT [f (y)]− Ey∼PG(S) [f (y)] ,

(5)
where the supremum is over all K-Lipschitz func-
tions f . As neural networks are universal function
approximators (Hornik, 1991), we can attempt to
approximate f with a neural network, called the
critic D, with weight clipping to ensure the func-
tion family is K-Lipschitz. Therefore the objec-
tive of the critic is

max
D

Ey∼PT [fD (y)]− Ex∼PS [fD (Gx)] . (6)

Conceptually, the critic D assigns scores fD to
real target embeddings and fake ones generated by
the generator G. When the objective (6) is trained
until optimality, the difference of the scores will
approximate the Wasserstein distance up to a mul-
tiplicative constant. The generator G then aims to
minimize the approximate distance, which leads to

min
G∈Rd×d

−Ex∼PS [fD (Gx)] . (7)

3.2 EMD Minimization Under Orthogonal
Transformation (EMDOT)

Alternative to minimizing the Wasserstein dis-
tance by duality, the primal program with the or-
thogonal constraint can be formalized as

min
G∈O(d)

EMD
(
PG(S),PT

)
, (8)

where O (d) is the orthogonal group in dimen-
sion d. The exact solution to this minimization
program is NP-hard (Ding and Xu, 2016). For-
tunately, an alternating minimization procedure is
guaranteed to converge to a local minimum (Co-
hen and Guibas, 1999). Starting from an initial
matrix G(0), we alternate between the following
subprograms repeatedly:

T (k) = arg min
T∈U(fS,fT)

V S∑

s=1

V T∑

t=1

Tstc
(
G(k)wS

s , w
T
t

)
,

(9)

G(k+1) = arg min
G∈O(d)

V S∑

s=1

V T∑

t=1

T
(k)
st c

(
GwS

s , w
T
t

)
.

(10)
The minimization in (9) is the EMD program

(1), with existing solvers available. For better scal-
ability, we choose an approximate solver (Cuturi,
2013).

The minimization in (10) aims to find the trans-
formation G(k+1) with cross-lingual connection
provided in T (k). This is exactly the supervised
scenario, and previous works typically resort to
gradient-based solvers (Mikolov et al., 2013a).
But they can be cumbersome especially as we
impose the orthogonal constraint on G. Fortu-
nately, if we choose the ground distance c to be the
squared Euclidean distance L2

2, the program (10)
is an extension of the orthogonal Procrustes prob-
lem (Schönemann, 1966), which admits a closed-
form solution:

G(k+1) = UV >, (11)

where U and V are obtained from a singular value
decomposition (SVD):

V S∑

s=1

V T∑

t=1

T
(k)
st w

T
t w

S>
s = USV >. (12)

Note that the SVD is efficient because it is per-
formed on a d× d matrix, which is typically low-
dimensional. Choosing c = L2

2 is also motivated
by its equivalence to the cosine dissimilarity, as
proved in Appendix A.

3.3 Discussion

Starting from the idea of earth mover’s distance
minimization, we have developed two approaches
towards the goal. They employ different optimiza-
tion techniques, which in turn lead to different
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practical choices. For example, we choose c = L2
2

for the EMDOT approach to obtain a closed-form
solution to the subprogram (10), otherwise we
would have to use gradient-based solvers. In con-
trast, the WGAN approach calls for c = L2 be-
cause the Kantorovich-Rubinstein duality takes a
simple form only in this case.

The EMDOT approach is attractive for sev-
eral reasons: It is consistent for training and test-
ing (the equivalence between the ground distance
c = L2

2 and cosine dissimilarity), compatible with
the orthogonal constraint, mathematically sound
(without much assumption and approximation),
guaranteed to converge, almost hyperparameter
free, and fast in speed (the alternating subpro-
grams have either effective approximate solvers or
closed-form solutions). However, it suffers from
a serious limitation: The alternating minimization
procedure only converges to local minima, and
they often turn out to be rather poor in practice.

Although the WGAN approach employs a
stochastic-gradient-based optimizer (RMSProp)
and does not guarantee global optima either, it
works reasonably well in practice. It seems better
at exploring the parameter space and finally land-
ing in a neighborhood of a good optimum. Like
other success stories of using stochastic-gradient-
based optimizers to train neural networks, theoret-
ical understanding of the behavior remains elusive.

We can enjoy the best of both worlds by incor-
porating the merits of both approaches: First the
WGAN approach locates a good neighborhood of
the parameter space, and then, starting from a rea-
sonable initialization, the EMDOT approach effi-
ciently explores the neighborhood to achieve en-
hanced performance.

4 Experiments

We first investigate the learning behavior of our
WGAN approach, and then present experiments
on the bilingual lexicon induction task, followed
by a showcase of the earth mover’s distance as a
language distance measure. Details of the data sets
and hyperparameters are described in Appendices
B and C.

4.1 Learning Behavior of WGAN

We analyze the learning behavior of WGAN by
looking at a typical training trajectory on Chinese-
English. During training, we save 100 mod-
els, translate based on the nearest neighbor, and
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Figure 3: A typical training trajectory of WGAN.
The three curves all correlate well. The Wasser-
stein estimate is rescaled because its magnitude is
irrelevant.

record their accuracy as the bilingual lexicon in-
duction performance indicator at these training
checkpoints. In theory, the critic objective (6) pro-
vides an estimate of the Wasserstein distance up
to a multiplicative constant, and a smaller Wasser-
stein distance should mean the transformed source
embedding space and the target embedding space
align better, which should in turn result in a better
bilingual lexicon. This is validated in Figure 3 by
the correlation between Wasserstein estimate and
accuracy. Therefore, the Wasserstein estimate can
serve as an indicator for the bilingual lexicon in-
duction performance, and we can save the model
with the lowest value during training as the final
model.

In Figure 3, we also plot the value of∥∥G>G− I
∥∥
F

, which indicates the degree of or-
thogonality of the transformation matrix G. Inter-
estingly, this also correlates nicely with the other
curves, even though our WGAN formulation does
not encourage G towards orthogonality. This find-
ing confirms that a good transformation matrix is
indeed close to orthogonality, and empirically jus-
tifies the orthogonal constraint for the EMDOT
formulation.

Finally, we observe that the curves in Fig-
ure 3 are not very smooth. This means that al-
though WGAN does well in exploring the param-
eter space and locating a reasonable transforma-
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method # seeds zh-en es-en it-en ja-zh tr-en

TM

50 1.71 1.80 1.31 1.40 0.41
100 17.27 24.93 23.22 22.91 15.02
200 24.87 30.19 30.09 31.30 25.50
500 28.24 32.11 31.69 35.79 32.63

IA

50 14.02 20.48 16.88 17.71 9.06
100 22.14 28.73 25.99 28.24 18.37
200 25.63 30.59 30.24 32.66 25.15
500 27.21 31.94 31.54 35.33 31.50

WGAN 0 21.36 29.91 27.23 27.14 9.76
EMDOT 0 27.78 32.26 31.37 34.83 21.95

Table 1: F1 scores for bilingual lexicon induction on Chinese-English, Spanish-English, Italian-English,
Japanese-Chinese, and Turkish-English. The supervised methods TM and IA require seeds to train, and
are listed for reference. Our EMDOT approach is initialized with the transformation found by WGAN,
and consistently improves on it, reaching competitive performance with supervised methods.

tion matrix, it cannot stably refine the transforma-
tion. Fortunately, this is where EMDOT thrives,
and hence combining them enjoys the benefits of
both approaches.

4.2 Bilingual Lexicon Induction Performance

We test the quality of the cross-lingual transfor-
mation by evaluating on the bilingual lexicon
induction task for five language pairs: Chinese-
English, Spanish-English, Italian-English,
Japanese-Chinese, and Turkish-English.

As the EMD automatically handles multiple al-
ternative translations, we follow (Zhang et al.,
2016b,a) to use F1 score as the preferred evalu-
ation metric.

Baselines
Our formulation is based on the isomorphism
found across monolingual word embeddings. This
idea has led to previous supervised methods:

• Translation matrix (TM) (Mikolov et al.,
2013a): the pioneer of this type of methods,
using linear transformation. We use a pub-
licly available implementation.1

• Isometric alignment (IA) (Zhang et al.,
2016c): an extension of TM by augmenting
its learning objective with the isometric (or-
thogonal) constraint. Although Zhang et al.
(2016c) had subsequent steps for their POS
tagging task, it could be used for bilingual
lexicon induction as well.

1http://clic.cimec.unitn.it/˜georgiana.dinu/down

Although they need seed word translation pairs to
train and thus not directly comparable to our sys-
tem, we nonetheless report their results using {50,
100, 200, 500} seeds for a ballpark range of ex-
pected performance on this task, and skip the set
of 500 seeds when testing all systems. We en-
sure the same input embeddings for these meth-
ods and ours. Their seeds are obtained through
Google Translate (details in Appendix B.2). We
apply the EMD as a postprocessing step (Zhang
et al., 2016b) to allow them to handle multiple al-
ternative translations. This is also done for our
WGAN approach, as it does not produce the trans-
port scheme to interpret as translation due to its
duality formulation.

Results

Table 1 shows the F1 scores on the five language
pairs. As we can see, WGAN successfully finds
a transformation that produces reasonable word
translations. On top of that, EMDOT consider-
ably improves the performance, which indicates
that EMDOT refines the transformation found by
WGAN.

Similar behavior across language pairs proves
the generality of our approaches, as they build
on embeddings learned from monolingual corpora
without language-specific engineering. The qual-
ity of the embeddings, thus, will have an impor-
tant effect on the performance, which may explain
the lower scores on Turkish-English, as this low-
resource setting may lack sufficient data to pro-
duce reliable embeddings. Higher noise levels in
the preprocessing and ground truth for this lan-
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zh-en es-en it-en ja-zh tr-en
EMD 0.650 0.445 0.559 0.599 0.788

typology dissimilarity 0.467 0.342 0.259 0.433 0.541
geographical distance (km) 8161 1246 1464 2095 2854

Table 2: The earth mover’s distance (EMD), typology dissimilarity, and geographical distance for
Chinese-English, Spanish-English, Italian-English, Japanese-Chinese, and Turkish-English. The EMD
shows correlation with both factors of linguistic difference.

guage pair (cf. the supplemental material), as well
as the morphological richness of Turkish, may also
be contributing factors to the relatively low scores.

Concerning the supervised methods TM and IA,
they attain better performance with more supervi-
sion from seeds, as expected. For TM in particu-
lar, hundreds of seeds are needed for generaliza-
tion, in line with the finding in (Vulić and Korho-
nen, 2016). Below that threshold, its performance
drops dramatically, and this is when IA fares bet-
ter with the orthogonal constraint. This indicates
the importance of orthogonality when the seeds
are few, or even zero as faced by our system. As
the number of seeds increases, the performance of
the supervised methods converges to a level com-
parable to our system.

4.3 The EMD as Language Distance

As our system minimizes the earth mover’s dis-
tance between embeddings of two languages, we
show here the final EMD can indicate the degree of
difference between languages, serving as a proxy
for language distance. Table 2 lists the EMD for
the five language pairs considered in this paper, as
well as their typology dissimilarity and geograph-
ical distance. The typology dissimilarity is com-
puted from features in the WALS database (Dryer
and Haspelmath, 2013). It is defined as one minus
relative Hamming similarity, which is in turn de-
fined as the number of agreeing features divided
by the number of total features available for the
language pair (Albu, 2006; Cysouw, 2013b). As
a rough approximation, the geographical distance
is measured by the distance between the capital
cities of the countries where the considered lan-
guages are spoken (Eger et al., 2016).

The typology dissimilarity reflects genealogical
influence on the divergence between languages,
while the geographical distance indicates the ef-
fect of language contact. Both play important
roles in shaping the languages we perceive today,
and they also correlate with each other (Cysouw,

2013a). As we analyze Table 2, we find the
EMD may be explained by both factors. Spanish-
English and Italian-English are close both ge-
nealogically and geographically, and their EMD
values are the lowest. English, Chinese, and
Japanese belong to different language families, but
the geographical proximity of the latter two en-
ables intensive language contact, especially for the
vocabularies, causing relatively smaller EMD. Fi-
nally, Turkish and English are distant in both as-
pects, and the EMD between them is large. Note
that, however, the large EMD may also be caused
by the relatively poor quality of monolingual em-
beddings due to low resource, and this should be
a caveat of using the EMD to measure language
distance.

5 Related Work

5.1 Bilingual Lexicon Induction
Bilingual lexicon induction is a long-standing re-
search task in cross-lingual natural language pro-
cessing. Traditional methods build statistical mod-
els for monolingual word co-occurrence, and com-
bine cross-lingual supervision to solve the task. As
word alignment for parallel sentences can produce
fairly good bilingual lexica (Och and Ney, 2003),
these methods focus on non-parallel data with a
seed lexicon as cross-lingual supervision (Rapp,
1999; Gaussier et al., 2004).

An exception that does not rely on cross-lingual
supervision is the decipherment approach (Dou
and Knight, 2012, 2013; Dou et al., 2015). It views
the source language as a cipher for the target lan-
guage, and solves a statistical model that attempts
to decipher the source language.

Following the popularity of monolingual word
embeddings, cross-lingual word representation
learning has also attracted significant attention in
recent years. Building bilingual lexica from the
learned cross-lingual embeddings is often consid-
ered an evaluative tool. Most methods rely on su-
pervision encoded in parallel data, at the document
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level (Vulić and Moens, 2015), the sentence level
(Zou et al., 2013; Chandar A P et al., 2014; Her-
mann and Blunsom, 2014; Kočiský et al., 2014;
Gouws et al., 2015; Luong et al., 2015; Coul-
mance et al., 2015; Oshikiri et al., 2016), or the
word level (i.e. in the form of seed lexicon)
(Gouws and Søgaard, 2015; Wick et al., 2016;
Duong et al., 2016; Shi et al., 2015; Mikolov et al.,
2013a; Faruqui and Dyer, 2014; Lu et al., 2015;
Dinu et al., 2015; Lazaridou et al., 2015; Ammar
et al., 2016; Zhang et al., 2016a, 2017; Smith et al.,
2017).

There is a recent work that aims to remove
the need for cross-lingual supervision (Cao et al.,
2016). Similar to ours, the underlying idea is to
match cross-lingually at the level of distribution
rather than word. However, the distributions con-
sidered in that work are the hidden states of neu-
ral embedding models during the course of train-
ing. They are assumed to be Gaussian, so that
the matching of distributions reduces to matching
their means and variances, but this assumption is
hard to justify and interpret. In contrast, our pro-
posal does not make any assumption on the dis-
tributions, and directly matches the transformed
source embedding distribution with the target dis-
tribution by minimizing their earth mover’s dis-
tance.

Another attempt to learn cross-lingual em-
bedding transformation without supervision is
(Barone, 2016). Architectures of generative
adversarial nets and adversarial autoencoders
(Makhzani et al., 2015) are experimented, but
the reported results are not positive. We tried
the publicly available code on our data and ob-
tained negative results as well. This outcome is
likely caused by the training difficulty pointed out
by (Arjovsky and Bottou, 2017), as traditional
GAN training minimizes Jensen-Shannon diver-
gence between distributions, which can provide
pathological gradient to the generator and ham-
per its learning. The use of Wasserstein GAN ad-
dresses this problem and allows our simple archi-
tecture to be trained successfully.

5.2 Language Distance

Quantifying language difference is an open ques-
tion with on-going efforts that put forward better
measures based on manually compiled data (Albu,
2006; Hammarström and O’Connor, 2013). Re-
searchers in computational linguistics also try to

contribute corpus-based approaches to this ques-
tion. Parallel data is typically exploited, and ideas
range from information-theoretic (Juola, 1998),
statistical (Mayer and Cysouw, 2012), to graph-
based (Eger et al., 2016; Asgari and Mofrad,
2016). To our knowledge, the earth mover’s dis-
tance is proposed for language distance for the first
time, with the distinctive feature of relying on non-
parallel data only.

5.3 The Earth Mover’s Distance

First introduced into computer vision (Rubner
et al., 1998), the earth mover’s distance also
finds application in natural language processing
(Kusner et al., 2015; Huang et al., 2016), in-
cluding bilingual lexicon induction (Zhang et al.,
2016b,a). Zhang et al. (2016b) build upon bilin-
gual word embeddings and apply the EMD pro-
gram as a postprocessing step to automatically
produce multiple alternative translations. Later,
Zhang et al. (2016a) introduce the EMD into the
training objective of bilingual word embeddings as
a regularizer. These previous works rely on cross-
lingual supervision, and do not approach the task
from the view of embedding transformation, while
our work formulates the task as EMD minimiza-
tion to allow zero supervision.

Apart from the usage as a regularizer (Zhang
et al., 2016a), the EMD can also play other roles in
optimization programs designed for various appli-
cations (Cuturi and Doucet, 2014; Frogner et al.,
2015; Montavon et al., 2016).

6 Conclusion and Future Work

In this work, we attack the problem of find-
ing cross-lingual transformation between mono-
lingual word embeddings in a purely unsuper-
vised setting. We introduce earth mover’s dis-
tance minimization to tackle this task by exploit-
ing its distribution-level matching to sidestep the
requirement for word-level cross-lingual supervi-
sion. Even though zero supervision poses a clear
challenge, our system attains competitive perfor-
mance with supervised methods for bilingual lex-
icon induction. In addition, the earth mover’s dis-
tance provides a natural measure that may prove
helpful for quantifying language difference.

We have implemented the earth mover’s dis-
tance minimization framework from two paths,
and their combination has worked well, but both
can be potentially improved by recent advances
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in optimization techniques (Gulrajani et al., 2017;
Ding and Xu, 2016). Future work should also eval-
uate the earth mover’s distance between more lan-
guages to assess its quality as language distance.

A Proof

The following proof shows that using squared Eu-
clidean distance as the ground distance (c = L2

2) is
equivalent to using cosine dissimilarity when min-
imizing Equation (10).
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(13)

B Data Preparation

B.1 Non-Parallel Corpora for Training
Embeddings

The data for training monolingual word embed-
dings comes from Wikipedia comparable cor-
pora.2 Following (Vulić and Moens, 2013), we
retain only nouns with at least 1,000 occurrences
except for Turkish-English, whose frequency cut-
off threshold is 100, as the amount of data is rela-
tively small in this low-resource setting. For the
Chinese side, we first use OpenCC3 to normal-
ize characters to be simplified, and then perform
Chinese word segmentation and POS tagging with
THULAC.4 The preprocessing of the English side
involves tokenization, POS tagging, lemmatiza-
tion, and lowercasing, which we carry out with the
NLTK toolkit5 for the Chinese-English pair. For
Spanish-English and Italian-English, we choose to
use TreeTagger6 for preprocessing, as in (Vulić

2http://linguatools.org/tools/corpora/wikipedia-
comparable-corpora

3https://github.com/BYVoid/OpenCC
4http://thulac.thunlp.org
5http://www.nltk.org
6http://www.cis.uni-muenchen.de/˜schmid/tools/

TreeTagger

# tokens vocabulary size

zh-en
zh 21m 3,349
en 53m 5,154

es-en
es 61m 4,774
en 95m 6,637

it-en
it 73m 8,490
en 93m 6,597

ja-zh
ja 38m 6,043
zh 16m 2,814

tr-en
tr 6m 7,482
en 28m 13,220

Table 3: Statistics of the non-parallel corpora
for training monolingual word embeddings. Lan-
guage codes: zh = Chinese, en = English, es =
Spanish, it = Italian, ja = Japanese, tr = Turkish.

and Moens, 2013). For the Japanese corpus, we
use MeCab7 for word segmentation and POS tag-
ging. For Turkish, we utilize the preprocessing
tools (tokenization and POS tagging) provided in
LORELEI Language Packs (Strassel and Tracey,
2016), and its English side is preprocessed by
NLTK. The statistics of the preprocessed corpora
is given in Table 3.

B.2 Seed Word Translation Pairs

The seed word translation pairs for the transla-
tion matrix (TM) and isometric alignment (IA)
approaches are obtained as follows. First, we
ask Google Translate8 to translate the source lan-
guage vocabulary. Then the target translations are
queried again and translated back to the source
language, and those that do not match the original
source words are discarded. This helps to ensure
the translation quality. Finally, the translations are
discarded if they fall out of our target language vo-
cabulary.

B.3 Ground Truth

As the ground truth bilingual lexicon for evalu-
ation, we use Chinese-English Translation Lexi-
con Version 3.0 (LDC2002L27) for the Chinese-
English pair. For Spanish-English and Italian-
English, we access Open Multilingual WordNet9

through NLTK. For Japanese-Chinese, we use an
in-house lexicon. For Turkish-English, we build
a set of ground truth translation pairs in the same

7http://taku910.github.io/mecab
8https://translate.google.com
9http://compling.hss.ntu.edu.sg/omw
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way as how we obtain seed word translation pairs
from Google Translate, described above.

C Hyperparameters

C.1 WGAN
We parametrize the criticD as a feed-forward neu-
ral network with one hidden layer of 500 neurons.
The generator G is initialized with a random or-
thogonal matrix. The expectations in critic and
generator objectives (6)(7) are approximated by
minibatches of 1024 samples. We train for 107

minibatches. Most other hyperparameters follow
from (Arjovsky et al., 2017) except the learning
rates, for which larger values of 0.05 and 0.0005
are used for the generator and the critic respec-
tively for faster convergence.

C.2 EMDOT
The approximate EMD solver (Cuturi, 2013) gives
fairly accurate approximation with orders of mag-
nitude speedup. However, it makes the transport
matrix T no longer sparse. This is problematic, as
we rely on interpreting a non-zero Tst as evidence
to translate the s-th source word to the t-th target
word (Zhang et al., 2016b). We therefore retain
the largest pV S elements of T , where p encodes
our belief of the expected number of translations a
source word can have. We set p = 1.3.

The alternating minimization procedure con-
verges very fast. We run 10 iterations.

C.3 Monolingual Word Embeddings
As input monolingual word embeddings to the
tested systems, we train the CBOW model
(Mikolov et al., 2013b) with default hyperparam-
eters in word2vec10. The embedding dimension
d is 50.
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Abstract

Ensembling is a well-known technique in
neural machine translation (NMT) to im-
prove system performance. Instead of a
single neural net, multiple neural nets with
the same topology are trained separately,
and the decoder generates predictions by
averaging over the individual models. En-
sembling often improves the quality of the
generated translations drastically. How-
ever, it is not suitable for production sys-
tems because it is cumbersome and slow.
This work aims to reduce the runtime to be
on par with a single system without com-
promising the translation quality. First, we
show that the ensemble can be unfolded
into a single large neural network which
imitates the output of the ensemble sys-
tem. We show that unfolding can already
improve the runtime in practice since more
work can be done on the GPU. We pro-
ceed by describing a set of techniques to
shrink the unfolded network by reducing
the dimensionality of layers. On Japanese-
English we report that the resulting net-
work has the size and decoding speed of a
single NMT network but performs on the
level of a 3-ensemble system.

1 Introduction

The top systems in recent machine translation
evaluation campaigns on various language pairs
use ensembles of a number of NMT systems (Bo-
jar et al., 2016; Sennrich et al., 2016a; Chung
et al., 2016; Neubig, 2016; Wu et al., 2016;
Cromieres et al., 2016; Durrani et al., 2017). En-
sembling (Dietterich, 2000; Hansen and Salamon,
1990) of neural networks is a simple yet very ef-
fective technique to improve the accuracy of NMT.

The decoder makes use of K NMT networks
which are either trained independently (Sutskever
et al., 2014; Chung et al., 2016; Neubig, 2016; Wu
et al., 2016) or share some amount of training iter-
ations (Sennrich et al., 2016b,a; Cromieres et al.,
2016; Durrani et al., 2017). The ensemble decoder
computes predictions from each of the individual
models which are then combined using the arith-
metic average (Sutskever et al., 2014) or the geo-
metric average (Cromieres et al., 2016).

Ensembling consistently outperforms single
NMT by a large margin. However, the decod-
ing speed is significantly worse since the decoder
needs to apply K NMT models rather than only
one. Therefore, a recent line of research transfers
the idea of knowledge distillation (Bucilu et al.,
2006; Hinton et al., 2014) to NMT and trains a
smaller network (the student) by minimizing the
cross-entropy to the output of the ensemble system
(the teacher) (Kim and Rush, 2016; Freitag et al.,
2017). This paper presents an alternative to knowl-
edge distillation as we aim to speed up decoding
to be comparable to single NMT while retaining
the boost in translation accuracy from the ensem-
ble. In a first step, we describe how to construct
a single large neural network which imitates the
output of an ensemble of multiple networks with
the same topology. We will refer to this process as
unfolding. GPU-based decoding with the unfolded
network is often much faster than ensemble decod-
ing since more work can be done on the GPU. In a
second step, we explore methods to reduce the size
of the unfolded network. This idea is justified by
the fact that ensembled neural networks are often
over-parameterized and have a large degree of re-
dundancy (LeCun et al., 1989; Hassibi et al., 1993;
Srinivas and Babu, 2015). Shrinking the unfolded
network leads to a smaller model which consumes
less space on the disk and in the memory; a crucial
factor on mobile devices. More importantly, the
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(a) Single network 1. (b) Single network 2. (c) Unfolded network.

Figure 1: Unfolding mimics the output of the ensemble of two single layer feedforward networks.

decoding speed on all platforms benefits greatly
from the reduced number of neurons. We find that
the dimensionality of linear embedding layers in
the NMT network can be reduced heavily by low-
rank matrix approximation based on singular value
decomposition (SVD). This suggest that high di-
mensional embedding layers may be needed for
training, but do not play an important role for de-
coding. The NMT network, however, also consists
of complex layers like gated recurrent units (Cho
et al., 2014, GRUs) and attention (Bahdanau et al.,
2015). Therefore, we introduce a novel algorithm
based on linear combinations of neurons which
can be applied either during training (data-bound)
or directly on the weight matrices without using
training data (data-free). We report that with a
mix of the presented shrinking methods we are
able to reduce the size of the unfolded network to
the size of the single NMT network while keep-
ing the boost in BLEU score from the ensemble.
Depending on the aggressiveness of shrinking, we
report either a gain of 2.2 BLEU at the same de-
coding speed, or a 3.4× CPU decoding speed up
with only a minor drop in BLEU compared to the
original single NMT system. Furthermore, it is
often much easier to stage a single NMT system
than an ensemble in a commercial MT workflow,
and it is crucial to be able to optimize quality at
specific speed and memory constraints. Unfolding
and shrinking address these problems directly.

2 Unfolding K Networks into a Single
Large Neural Network

The first concept of our approach is called unfold-
ing. Unfolding is an alternative to ensembling of
multiple neural networks with the same topology.
Rather than averaging their predictions, unfolding
constructs a single large neural net out of the indi-

vidual models which has the same number of in-
put and output neurons but larger inner layers. Our
main motivation for unfolding is to obtain a single
network with ensemble level performance which
can be shrunk with the techniques in Sec. 3.

Suppose we ensemble two single layer feed-
forward neural nets as shown in Fig. 1. Nor-
mally, ensembling is implemented by performing
an isolated forward pass through the first network
(Fig. 1(a)), another isolated forward pass through
the second network (Fig. 1(b)), and averaging the
activities in the output layers of both networks.
This can be simulated by merging both networks
into a single large network as shown in Fig. 1(c).
The first neurons in the hidden layer of the com-
bined network correspond to the hidden layer in
the first single network, and the others to the hid-
den layer of the second network. A single pass
through the combined network yields the same
output as the ensemble if the output layer is lin-
ear (up to a factor 2). The weight matrices in the
unfolded network can be constructed by stacking
the corresponding weight matrices (either horizon-
tally or vertically) in network 1 and 2. This kind
of aggregation of multiple networks with the same
topology is not only possible for single-layer feed-
forward architectures but also for complex net-
works consisting of multiple GRU layers and at-
tention.

For a formal description of unfolding we ad-
dress layers with indices d = 0, 1, . . . , D. The
special layer 0 has a single neuron for modelling
bias vectors. Layer 1 holds the input neurons and
layer D is the output layer. We denote the size
of a layer in the individual models as s(d). When
combining K networks, the layer size s′(d) in the
unfolded network is increased by factor K if d is
an inner layer, and equal to s(d) if d is the in-
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W ′(d1, d2) =








W1(d1, d2) 0 · · · 0

0 W2(d1, d2)
...

...
... · · ·

. . . 0

0 · · · WK(d1, d2)




if d1 ∈ InnerLayers and d2 ∈ InnerLayers

1
K




W1(d1, d2)
...

WK(d1, d2)


 if d1 ∈ InnerLayers and d2 /∈ InnerLayers

(
W1(d1, d2) · · · WK(d1, d2)

)
if d1 /∈ InnerLayers and d2 ∈ InnerLayers

Figure 2: General formula for unfolding weight matrices. The set InnerLayers := [2, D− 1] includes all
layers except the input, output, and bias layer.

put or output layer. We denote the weight ma-
trix between two layers d1, d2 ∈ [0, D] in the k-th
individual model (k ∈ [1,K]) as Wk(d1, d2) ∈
Rs(d1)×s(d2), and the corresponding weight ma-
trix in the unfolded network as W ′(d1, d2) ∈
Rs′(d1)×s′(d2). We explicitly allow d1 and d2 to be
non-consecutive or reversed to be able to model
recurrent networks. We use the zero-matrix if lay-
ers d1 and d2 are not connected. The construc-
tion of the unfolded weight matrix W ′(d1, d2)
from the individual matrices Wk(d1, d2) depends
on whether the connected layers are inner layers
or not. The complete formula is listed in Fig. 2.

Unfolded NMT networks approximate but do
not exactly match the output of the ensemble due
to two reasons. First, the unfolded network syn-
chronizes the attentions of the individual models.
Each decoding step in the unfolded network com-
putes a single attention weight vector. In contrast,
ensemble decoding would compute one attention
weight vector for each of the K input models.
A second difference is that the ensemble decoder
first applies the softmax at the output layer, and
then averages the prediction probabilities. The un-
folded network averages the neuron activities (i.e.
the logits) first, and then applies the softmax func-
tion. Interestingly, as shown in Sec. 4, these differ-
ences do not have any impact on the BLEU score
but yield potential speed advantages of unfolding
since the computationally expensive softmax layer
is only applied once.

3 Shrinking the Unfolded Network

After constructing the weight matrices of the un-
folded network we reduce the size of it by iter-
atively shrinking layer sizes. In this section we
denote the incoming weight matrix of the layer to

shrink as U ∈ Rmin×m and the outgoing weight
matrix as V ∈ Rm×mout . Our procedure is in-
spired by the method of Srinivas and Babu (2015).
They propose a criterion for removing neurons in
inner layers of the network based on two intu-
itions. First, similarly to Hebb’s learning rule,
they detect redundancy by the principle neurons
which fire together, wire together. If the incom-
ing weight vectors U:,i and U:,j are exactly the
same for two neurons i and j, we can remove the
neuron j and add its outgoing connections to neu-
ron i (Vi,: ← Vi,: + Vj,:) without changing the
output.1 This holds since the activity in neuron
j will always be equal to the activity in neuron
i. In practice, Srinivas and Babu use a distance
measure based on the difference of the incoming
weight vectors to search for similar neurons as ex-
act matches are very rare.

The second intuition of the criterion used by
Srinivas and Babu (2015) is that neurons with
small outgoing weights contribute very little over-
all. Therefore, they search for a pair of neurons
i, j ∈ [1,m] according the following term and re-
move the j-th neuron.2

argmin
i,j∈[1,m]

||U:,i − U:,j ||22||Vj,:||22 (1)

Neuron j is selected for removal if (1) there is
another neuron i which has a very similar set of
incoming weights and if (2) j has a small outgoing
weight vector. Their criterion is data-free since

1We denote the i-th row vector of a matrix A with Ai,:
and the i-th column vector as A:,i.

2Note that the criterion in Eq. 1 generalizes the criterion of
Srinivas and Babu (2015) to multiple outgoing weights. Also
note that Srinivas and Babu (2015) propose some heuristic
improvements to this criterion. However, these heuristics did
not work well in our NMT experiments.
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it does not require any training data. For further
details we refer to Srinivas and Babu (2015).

3.1 Data-Free Neuron Removal

Srinivas and Babu (2015) propose to add the out-
going weights of j to the weights of a similar neu-
ron i to compensate for the removal of j. However,
we have found that this approach does not work
well on NMT networks. We propose instead to
compensate for the removal of a neuron by a lin-
ear combination of the remaining neurons in the
layer. Data-free shrinking assumes for the sake of
deriving the update rule that the neuron activation
function is linear. We now ask the following ques-
tion: How can we compensate as well as possible
for the loss of neuron j such that the impact on the
output of the whole network is minimized? Data-
free shrinking represents the incoming weight vec-
tor of neuron j (U:,j) as linear combination of the
incoming weight vectors of the other neurons. The
linear factors can be found by satisfying the fol-
lowing linear system:

U:,¬jλ = U:,j (2)

where U:,¬j is matrix U without the j-th col-
umn. In practice, we use the method of ordi-
nary least squares to find λ because the system
may be overdetermined. The idea is that if we
mix the outputs of all neurons in the layer by the
λ-weights, we get the output of the j-th neuron.
The row vector Vj,: contains the contributions of
the j-th neuron to each of the neurons in the next
layer. Rather than using these connections, we
approximate their effect by adding some weight
to the outgoing connections of the other neurons.
How much weight depends on λ and the outgoing
weights Vj,:. The factor Dk,l which we need to
add to the outgoing connection of the k-th neuron
to compensate for the loss of the j-th neuron on
the l-th neuron in the next layer is:

Dk,l = λkVj,l (3)

Therefore, the update rule for V is:

V ← V +D (4)

In the remainder we will refer to this method
as data-free shrinking. Note that we recover the
update rule of Srinivas and Babu (2015) by setting
λ to the i-th unit vector. Also note that the error
introduced by our shrinking method is due to the

fact that we ignore the non-linearity, and that the
solution for λ may not be exact. The method is
error-free on linear layers as long as the residuals
of the least-squares analysis in Eq. 2 are zero.

GRU layers The terminology of neurons needs
some further elaboration for GRU layers which
rather consist of update and reset gates and
states (Cho et al., 2014). On GRU layers, we treat
the states as neurons, i.e. the j-th neuron refers to
the j-th entry in the GRU state vector. Input con-
nections to the gates are included in the incoming
weight matrix U for estimating λ in Eq. 2. Re-
moving neuron j in a GRU layer means deleting
the j-th entry in the states and both gate vectors.

3.2 Data-Bound Neuron Removal
Although we find our data-free approach to be
a substantial improvement over the methods of
Srinivas and Babu (2015) on NMT networks, it
still leads to a non-negligible decline in BLEU
score when applied to recurrent GRU layers. Our
data-free method uses the incoming weights to
identify similar neurons, i.e. neurons expected to
have similar activities. This works well enough
for simple layers, but the interdependencies be-
tween the states and the gates inside gated layers
like GRUs or LSTMs are complex enough that re-
dundancies cannot be found simply by looking for
similar weights. In the spirit of Babaeizadeh et
al. (2016), our data-bound version records neuron
activities during training to estimate λ. We com-
pensate for the removal of the j-th neuron by us-
ing a linear combination of the output of remain-
ing neurons with similar activity patterns. In each
layer, we prune 40 neurons each 450 training it-
erations until the target layer size is reached. Let
A be the matrix which holds the records of neu-
ron activities in the layer since the last removal.
For example, for the decoder GRU layer, a batch
size of 80, and target sentence lengths of 20,A has
20 · 80 · 450 = 720K rows and m (the number of
neurons in the layer) columns.3 Similarly to Eq. 2
we find interpolation weights λ using the method
of least squares on the following linear system.

A:,¬jλ = A:,j (5)

The update rule for the outgoing weight matrix
is the same as for our data-free method (Eq. 4).

3In practice, we use a random sample of 50K rows rather
than the full matrix to keep the complexity of the least-
squares analysis under control.
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The key difference between data-free and data-
bound shrinking is the way λ is estimated. Data-
free shrinking uses the similarities between in-
coming weights, and data-bound shrinking uses
neuron activities recorded during training. Once
we select a neuron to remove, we estimate λ,
compensate for the removal, and proceed with the
shrunk network. Both methods are prior to any de-
coding and result in shrunk parameter files which
are then loaded to the decoder. Both methods re-
move neurons rather than single weights.

The data-bound algorithm runs gradient-based
optimization on the unfolded network. We use the
AdaGrad (Duchi et al., 2011) step rule, a small
learning rate of 0.0001, and aggressive step clip-
ping at 0.05 to avoid destroying useful weights
which were learned in the individual networks
prior to the construction of the unfolded network.

Our data-bound algorithm uses a data-bound
version of the neuron selection criterion in Eq. 1
which operates on the activity matrix A. We
search for the pair i, j ∈ [1,m] according the fol-
lowing term and remove neuron j.

argmin
i,j∈[1,m]

||A:,i −A:,j ||22||A:,j ||22 (6)

3.3 Shrinking Embedding Layers with SVD
The standard attention-based NMT network archi-
tecture (Bahdanau et al., 2015) includes three lin-
ear layers: the embedding layer in the encoder, and
the output and feedback embedding layers in the
decoder. We have found that linear layers are par-
ticularly easy to shrink using low-rank matrix ap-
proximation. As before we denote the incoming
weight matrix as U ∈ Rmin×m and the outgoing
weight matrix as V ∈ Rm×mout . Since the layer
is linear, we could directly connect the previous
layer with the next layer using the product of both
weight matrices X = U · V . However, X may
be very large. Therefore, we approximate X as a
product of two low rank matrices Y ∈ Rmin×m′

and Z ∈ Rm′×mout (X ≈ Y Z) where m′ � m
is the desired layer size. A very common way to
find such a matrix factorization is using truncated
singular value decomposition (SVD). The layer is
eventually shrunk by replacing U with Y and V
with Z.

4 Results

The individual NMT systems we use as source for
constructing the unfolded networks are trained us-

ing AdaDelta (Zeiler, 2012) on the Blocks/Theano
implementation (van Merriënboer et al., 2015;
Bastien et al., 2012) of the standard attention-
based NMT model (Bahdanau et al., 2015) with:
1000 dimensional GRU layers (Cho et al., 2014)
in both the decoder and bidrectional encoder; a
single maxout output layer (Goodfellow et al.,
2013); and 620 dimensional embedding layers.
We follow Sennrich et al. (2016b) and use sub-
word units based on byte pair encoding rather
than words as modelling units. Our SGNMT de-
coder (Stahlberg et al., 2017)4 with a beam size of
12 is used in all experiments. Our primary cor-
pus is the Japanese-English (Ja-En) ASPEC data
set (Nakazawa et al., 2016). We select a sub-
set of 500K sentence pairs to train our models
as suggested by Neubig et al. (2015). We re-
port cased BLEU scores calculated with Moses’
multi-bleu.pl to be strictly comparable to
the evaluation done in the Workshop of Asian
Translation (WAT). We also apply our method to
the WMT data set for English-German (En-De),
using the news-test2014 as a development set, and
keeping news-test2015 and news-test2016 as test
sets. En-De BLEU scores are computed using
mteval-v13a.pl as in the WMT evaluation.
We set the vocabulary sizes to 30K for Ja-En and
50K for En-De. We also report the size factor for
each model which is the total number of model
parameters (sum of all weight matrix sizes) di-
vided by the number of parameters in the original
NMT network (86M for Ja-En and 120M for En-
De). We choose a widely used, simple ensembling
method (prediction averaging) as our baseline. We
feel that the prevalence of this method makes it a
reasonable baseline for our experiments.

Shrinking the Unfolded Network First, we in-
vestigate which shrinking methods are effective
for which layers. Tab. 1 summarizes our results
on a 2-unfold network for Ja-En, i.e. two separate
NMT networks are combined in a single large net-
work as described in Sec. 2. The layers in the com-
bined network are shrunk to the size of the original
networks using the methods discussed in Sec. 3.

Shrinking the linear embedding layers with
SVD (Sec. 3.3) is very effective. The unfolded
model with shrunk embedding layers performs at
the same level as the ensemble (compare rows
(b) and (c)). In our initial experiments, we ap-
plied the method of Srinivas and Babu (2015) to

4‘vanilla’ decoding strategy
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Shrinking Methods
Base Encoder Attention Decoder Size BLEU

Embed. GRUs Match GRU Maxout Embeds. Factor dev test
(a) Single - - - - - - 1.00 20.8 23.5
(b) 2-Ens. - - - - - - 2×1.00 22.7 25.2
(c) 2-Unfold SVD - - - - SVD 1.85 22.7 25.1
(d) 2-Unfold SVD - Data-Free - - SVD 1.77 22.7 25.1
(e) 2-Unfold SVD Data-Free Data-Free Data-Free - SVD 1.05 21.6 24.2
(f) 2-Unfold SVD Data-Bound Data-Free Data-Bound - SVD 1.05 22.4 25.3
(g) 2-Unfold SVD Data-Bound Data-Free Data-Bound Data-Free SVD 1.00 16.9 19.3
(h) 2-Unfold SVD Data-Bound Data-Free Data-Bound Data-Bound SVD 1.00 21.9 24.6

Table 1: Shrinking layers of the unfolded network on Ja-En to their original size.

shrink the other layers, but their approach per-
formed very poorly on this kind of network: the
BLEU score dropped down to 15.5 on the devel-
opment set when shrinking all layers except the
decoder maxout and embedding layers, and to 9.9
BLEU when applying their method only to em-
bedding layers.5 Row (e) in Tab. 1 shows that our
data-free algorithm from Sec. 3.1 is better suited
for shrinking the GRU and attention layers, lead-
ing to a drop of only 1 BLEU point compared to
the ensemble (b) (i.e. 0.8 BLEU better than the
single system (a)). However, using the data-bound
version of our shrinking algorithm (Sec. 3.2) for
the GRU layers performs best.6 The shrunk model
yields about the same BLEU score as the ensemble
on the test set (25.2 in (b) and 25.3 in (f)). Shrink-
ing the maxout layer remains more of a challenge
(rows (g) and (h)), but the number of parameters in
this layer is small. Therefore, shrinking all layers
except the maxout layer leads to almost the same
number of parameters (factor 1.05 in row (f)) as
the original NMT network (a), and thus to a sim-
ilar storage size, memory consumption, and de-
coding speed, but with a 1.8 BLEU gain. Based
on these results we fix the shrinking method used
for each layer for all remaining experiments as fol-
lows: We shrink linear embedding layers with our
SVD-based method, GRU layers with our data-
bound method, the attention layer with our data-
free method, and do not shrink the maxout layer.

Our data-bound algorithm from Sec. 3.2 has two
mechanisms to compensate for the removal of a
neuron. First, we use a linear combination of the
remaining neurons to update the outgoing weight
matrix by imitating its activations (Eq. 4). Second,
stochastic gradient descent (SGD) fine-tunes all

5Results with the original method of Srinivas and
Babu (2015) are not included in Tab. 1.

6If we apply different methods to different layers of the
same network, we first apply SVD-based shrinking, then the
data-free method, and finally the data-bound method.

Compensation Method BLEU
Linear Combination SGD dev test

(a) 16.3 18.0
(b) X 22.1 24.3
(c) X 21.7 24.4
(d) X X 22.4 25.3

Table 2: Compensating for neuron removal in
the data-bound algorithm. Row (d) corresponds
to row (f) in Tab. 1.

weights during this process. Tab. 2 demonstrates
that both mechanisms are crucial for minimizing
the effect of shrinking on the BLEU score.

Decoding Speed Our testing environment is an
Ubuntu 16.04 with Linux 4.4.0 kernel, 32 GB
RAM, an Intel R© Core i7-6700 CPU at 3.40 GHz
and an Nvidia GeForce GTX Titan X GPU. CPU
decoding uses a single thread. We used the first
500 sentences of the Ja-En WAT development set
for the time measurements.

Our results in Tab. 3 show that decoding with
ensembles (rows (b) and (e)) is slow: combin-
ing the predictions of the individual models on
the CPU is computationally expensive, and en-
semble decoding requires K passes through the
softmax layer which is also computationally ex-
pensive. Unfolding the ensemble into a single net-
work and shrinking the embedding and attention
layers improves the runtimes on the GPU signifi-
cantly without noticeable impact on BLEU (rows
(c) and (f)). This can be attributed to the fact that
unfolding can reduce the communication overhead
between CPU and GPU. Comparing rows (d) and
(g) with row (a) reveals that shrinking the un-
folded networks even further speeds up CPU and
GPU decoding almost to the level of single sys-
tem decoding. However, more aggressive shrink-
ing yields a BLEU score of 25.3 when combining
three systems (row (g)) – 1.8 BLEU better than
the single system, but 0.6 BLEU worse than the 3-
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System Words/Min. Size BLEU
CPU GPU Factor dev test

(a) Single 323.4 2993.6 1.00 20.8 23.5
(b) 2-Ensemble 163.7 1641.1 2 × 1.00 22.7 25.2
(c) 2-Unfold, shrunk embed.& attention 157.2 2592.2 1.77 22.7 25.1
(d) 2-Unfold, shrunk all except maxout 308.3 2961.4 1.05 22.4 25.3
(e) 3-Ensemble 110.9 1158.2 3 × 1.00 23.4 25.9
(f) 3-Unfold, shrunk embed.& attention 95.4 2182.1 2.99 23.2 25.9
(g) 3-Unfold, shrunk all except maxout 301.6 3024.4 1.09 22.2 25.3

Table 3: Time measurements on Ja-En. Layers are shrunk to their size in the original NMT model.
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Figure 3: Impact of shrinking on the BLEU score.

Single 3-Unfold
Normal Small Tiny

Enc. Embed. 620 410 310 170
Enc. GRUs 1000 1300 580 580
Attention 1000 100 100 100
Dec. GRU 1000 1350 590 590
Dec. Maxout 500 1500 1500 1500
Dec. Embeds. 620 430 320 170
Size Factor 1.00 1.00 0.50 0.33

Table 4: Layer sizes of our setups for Ja-En.

ensemble. Therefore, we will investigate the im-
pact of shrinking on the different layers in the next
sections more thoroughly.

Degrees of Redundancy in Different Layers
We applied our shrinking methods to isolated lay-
ers in the 2-Unfold network of Tab. 1 (f). Fig. 3
plots the BLEU score when isolated layers are
shrunk even below their size in the original NMT
network. The attention layer is very robust against
shrinking and can be reduced to 100 neurons (10%
of the original size) without impacting the BLEU
score. The embedding layers can be reduced to
60% but are sensitive to more aggressive pruning.
Shrinking the GRU layers affects the BLEU score
the most but still outperforms the single system
when the GRU layers are shrunk to 30%.

Adjusting the Target Sizes of Layers Based on
our previous experiments we revise our approach
to shrink the 3-Unfold system in Tab. 3. Instead

System Words/Min. BLEU
CPU GPU dev test

(a) Single 323.4 2993.6 20.8 23.5
(b) 3-Ensemble 110.9 1158.2 23.4 25.9
(c) 3-Unfold-Normal 445.2 3071.1 22.9 25.7
(d) 3-Unfold-Small 946.1 3572.0 21.7 23.9
(e) 3-Unfold-Tiny 1102.5 3483.7 20.6 23.2

Table 5: Our best models on Ja-En.

of shrinking all layers except the maxout layer to
the same degree, we adjust the aggressiveness of
shrinking for each layer. We suggest three dif-
ferent setups (Normal, Small, and Tiny) with the
layer sizes specified in Tab. 4. 3-Unfold-Normal
has the same number of parameters as the orig-
inal NMT networks (size factor: 1.0), 3-Unfold-
Small is only half their size (size factor: 0.5), and
3-Unfold-Tiny reduces the size by two thirds (size
factor: 0.33). When comparing rows (a) and (c) in
Tab. 5 we observe that 3-Unfold-Normal yields a
gain of 2.2 BLEU with respect to the original sin-
gle system and a slight improvement in decoding
speed at the same time.7 Networks with the size
factor 1.0 like 3-Unfold-Normal are very likely to
yield about the same decoding speed as the Sin-
gle network regardless of the decoder implementa-
tion, machine learning framework, and hardware.
Therefore, we think that similar results are possi-
ble on other platforms as well.

CPU decoding speed directly benefits even
more from smaller setups – 3-Unfold-Tiny is only
0.3 BLEU worse than Single but decoding on a
single CPU is 3.4 times faster (row (a) vs. row (e)
in Tab. 5). This is of great practical use: batch de-
coding with only two CPU threads surpasses pro-
duction speed which is often set to 2000 words per
minute (Beck et al., 2016). Our initial experiments
in Tab. 6 suggest that the Normal setup is appli-
cable to En-De as well, with substantial improve-

7To validate that the gains come from ensembling and un-
folding and not from the layer sizes in 3-Unfold-Normal we
trained a network from scratch with the same dimensions.
This network performed similarly to our Single system.
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System Wrds/Min. BLEU on news-test*
(GPU) 2014 2015 2016

Single 2128.7 19.6 21.9 24.6
2-Ensemble 1135.3 20.5 22.9 26.1
2-Unfold-Norm. 2099.1 20.7 23.1 25.8

Table 6: Our best models on En-De.

ments in BLEU compared to Single with about the
same decoding speed.

5 Related Work

The idea of pruning neural networks to improve
the compactness of the models dates back more
than 25 years (LeCun et al., 1989). The literature
is therefore vast (Augasta and Kathirvalavakumar,
2013). One line of research aims to remove unim-
portant network connections. The connections
can be selected for deletion based on the second-
derivative of the training error with respect to the
weight (LeCun et al., 1989; Hassibi et al., 1993),
or by a threshold criterion on its magnitude (Han
et al., 2015). See et al. (2016) confirmed a high
degree of weight redundancy in NMT networks.

In this work we are interested in removing neu-
rons rather than single connections since we strive
to shrink the unfolded network such that it resem-
bles the layout of an individual model. We ar-
gued in Sec. 4 that removing neurons rather than
connections does not only improve the model size
but also the memory footprint and decoding speed.
As explained in Sec. 3.1, our data-free method
is an extension of the approach by Srinivas and
Babu (2015); our extension performs significantly
better on NMT networks. Our data-bound method
(Sec. 3.2) is inspired by Babaeizadeh et al. (2016)
as we combine neurons with similar activities dur-
ing training, but we use linear combinations of
multiple neurons to compensate for the loss of a
neuron rather than merging pairs of neurons.

Using low rank matrices for neural net-
work compression, particularly approximations
via SVD, has been studied widely in the litera-
ture (Denil et al., 2013; Denton et al., 2014; Xue
et al., 2013; Prabhavalkar et al., 2016; Lu et al.,
2016). These approaches often use low rank matri-
ces to approximate a full rank weight matrix in the
original network. In contrast, we shrink an entire
linear layer by applying SVD on the product of the
incoming and outgoing weight matrices (Sec. 3.3).

In this paper we mimicked the output of the high
performing but cumbersome ensemble by con-
structing a large unfolded network, and shrank this

network afterwards. Another approach, known as
knowledge distillation, uses the large model (the
teacher) to generate soft training labels for the
smaller student network (Bucilu et al., 2006; Hin-
ton et al., 2014). The student network is trained by
minimizing the cross-entropy to the teacher. This
idea has been applied to sequence modelling tasks
such as machine translation and speech recogni-
tion (Wong and Gales, 2016; Kim and Rush, 2016;
Freitag et al., 2017). Our approach can be compu-
tationally more efficient as the training set does not
have to be decoded by the large teacher network.

Junczys-Dowmunt et al. (2016a; 2016b) re-
ported gains from averaging the weight matrices
of multiple checkpoints of the same training run.
However, our attempts to replicate their approach
were not successful. Averaging might work well
when the behaviour of corresponding units is sim-
ilar across networks, but that cannot be guaranteed
when networks are trained independently.

6 Conclusion

We have described a generic method for improv-
ing the decoding speed and BLEU score of single
system NMT. Our approach involves unfolding an
ensemble of multiple systems into a single large
neural network and shrinking this network by re-
moving redundant neurons. Our best results on
Japanese-English either yield a gain of 2.2 BLEU
compared to the original single NMT network at
about the same decoding speed, or a 3.4×CPU de-
coding speed up with only a minor drop in BLEU.

The current formulation of unfolding works for
networks of the same topology as the concatena-
tion of layers is only possible for analogous layers
in different networks. Unfolding and shrinking di-
verse networks could be possible, for example by
applying the technique only to the input and out-
put layers or by some other scheme of finding as-
sociations between units in different models, but
we leave this investigation to future work as mod-
els in NMT ensembles in current research usually
have the same topology (Bojar et al., 2016; Sen-
nrich et al., 2016a; Chung et al., 2016; Neubig,
2016; Wu et al., 2016; Durrani et al., 2017).
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Appendix: Probabilistic Interpretation of
Data-Free and Data-Bound Shrinking

Data-free and data-bound shrinking can be inter-
preted as setting the expected difference between
network outputs before and after a removal opera-
tion to zero under different assumptions.

For simplicity, we focus our probabilistic treat-
ment of shrinking on single layer feedforward net-
works. Such a network maps an input x ∈ Rmin
to an output y ∈ Rmout . The l-th output yl is com-
puted according the following equation

yl =
∑

k∈[1,m]

σ(xuTk )Vk,l (7)

where uk ∈ Rmin is the incoming weight vec-
tor of the k-th hidden neuron (denoted as U:,k in
the main paper) and V ∈ Rm×mout the outgoing
weight matrix of the m-dimensional hidden layer.
We now remove the j-th neuron in the hidden layer
and modify the outgoing weights to compensate
for the removal:

y′l =
∑

k∈[1,m]\{j}
σ(xuTk )V

′
k,l (8)

where y′l is the output after the removal operation
and V ′ ∈ Rm×mout are the modified outgoing
weights. Our goal is to choose V ′ such that the
expected error introduced by removing neuron j
is zero:

Ex(yl − y′l) = 0 (9)

Data-free shrinking Data-free shrinking makes
two assumptions to satisfy Eq. 9. First, we assume
that the incoming weight vector uj can be repre-
sented as linear combination of the other weight
vectors.

uj =
∑

k∈[1,m]\{j}
λkuk (10)

Second, it assumes that the neuron activation
function σ(·) is linear. Starting with Eqs. 7 and 8
we can write Ex(yl − y′l) as

Ex

(
σ(xuTj )Vj,l +

∑

k∈[1,m]\{j}
σ(xuTk )(Vk,l − V ′k,l)

︸ ︷︷ ︸
:=R

)

Eq. 10
= Ex

(
σ(x(

∑

k∈[1,m]\{j}
λkuk)

T )Vj,l +R
)

σ(·) lin.
= Ex

( ∑

k∈[1,m]\{j}
σ(xuTk )λkVj,l +R

)

=
∑

k∈[1,m]\{j}
Ex

(
σ(xuTk )

)
(Vk,l − V ′k,l + λkVj,l)

We set this term to zero (and thus satisfy Eq. 9)
by setting each component of the sum to zero.

∀k ∈ [1,m] \ {j} : V ′k,l = Vk,l + λkVj,l (11)

This condition is directly implemented by the up-
date rule in our shrinking algorithm (Eq. 3 and 4).

Data-bound shrinking Data-bound shrinking
does not require linearity in σ(·). It rather assumes
that the expected value of the neuron activity j is
a linear combination of the expected values of the
other activities:

Ex(σ(xu
T
j )) =

∑

k∈[1,m]\{j}
λkEx(σ(xu

T
k )) (12)

Ex(·) is estimated using importance sampling:

Êx(σ(xu
T
k );X ) =

1

|X |
∑

x′∈X
σ(x′uTk ) (13)

In practice, the samples inX are collected in the
activity matrix A from Sec. 3.2. We can satisfy
Eq. 9 by using the λ-values from Eq. 12, so that
Ex(yl − y′l) becomes

Eqs. 7,8
= Ex

(
σ(xuTj )Vj,l

+
∑

k∈[1,m]\{j}
σ(xuTk )(Vk,l − V ′k,l)

)

= Ex(σ(xu
T
j )Vj,l)

+
∑

k∈[1,m]\{j}
Ex(σ(xu

T
k ))(Vk,l − V ′k,l)

Eq. 12
=

∑

k∈[1,m]\{j}
Ex(σ(xu

T
k ))(Vk,l − V ′k,l + λkVj,l)

Again, we set this to zero using Eq. 11.
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Abstract

We present a simple and effective ap-
proach to incorporating syntactic struc-
ture into neural attention-based encoder-
decoder models for machine translation.
We rely on graph-convolutional networks
(GCNs), a recent class of neural networks
developed for modeling graph-structured
data. Our GCNs use predicted syntactic
dependency trees of source sentences to
produce representations of words (i.e. hid-
den states of the encoder) that are sensitive
to their syntactic neighborhoods. GCNs
take word representations as input and
produce word representations as output, so
they can easily be incorporated as layers
into standard encoders (e.g., on top of bidi-
rectional RNNs or convolutional neural
networks). We evaluate their effectiveness
with English-German and English-Czech
translation experiments for different types
of encoders and observe substantial im-
provements over their syntax-agnostic ver-
sions in all the considered setups.

1 Introduction

Neural machine translation (NMT) is one of suc-
cess stories of deep learning in natural language
processing, with recent NMT systems outperform-
ing traditional phrase-based approaches on many
language pairs (Sennrich et al., 2016a). State-of-
the-art NMT systems rely on sequential encoder-
decoders (Sutskever et al., 2014; Bahdanau et al.,
2015) and lack any explicit modeling of syntax or
any hierarchical structure of language. One poten-
tial reason for why we have not seen much benefit
from using syntactic information in NMT is the
lack of simple and effective methods for incorpo-
rating structured information in neural encoders,

including RNNs. Despite some successes, tech-
niques explored so far either incorporate syntactic
information in NMT models in a relatively indi-
rect way (e.g., multi-task learning (Luong et al.,
2015a; Nadejde et al., 2017; Eriguchi et al., 2017;
Hashimoto and Tsuruoka, 2017)) or may be too
restrictive in modeling the interface between syn-
tax and the translation task (e.g., learning repre-
sentations of linguistic phrases (Eriguchi et al.,
2016)). Our goal is to provide the encoder with
access to rich syntactic information but let it de-
cide which aspects of syntax are beneficial for
MT, without placing rigid constraints on the in-
teraction between syntax and the translation task.
This goal is in line with claims that rigid syntac-
tic constraints typically hurt MT (Zollmann and
Venugopal, 2006; Smith and Eisner, 2006; Chiang,
2010), and, though these claims have been made in
the context of traditional MT systems, we believe
they are no less valid for NMT.

Attention-based NMT systems (Bahdanau et al.,
2015; Luong et al., 2015b) represent source sen-
tence words as latent-feature vectors in the en-
coder and use these vectors when generating a
translation. Our goal is to automatically incorpo-
rate information about syntactic neighborhoods of
source words into these feature vectors, and, thus,
potentially improve quality of the translation out-
put. Since vectors correspond to words, it is natu-
ral for us to use dependency syntax. Dependency
trees (see Figure 1) represent syntactic relations
between words: for example, monkey is a subject
of the predicate eats, and banana is its object.

In order to produce syntax-aware feature
representations of words, we exploit graph-
convolutional networks (GCNs) (Duvenaud et al.,
2015; Defferrard et al., 2016; Kearnes et al., 2016;
Kipf and Welling, 2016). GCNs can be regarded
as computing a latent-feature representation of a
node (i.e. a real-valued vector) based on its k-
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The monkey eats a banana

det nsubj
dobj

det

Figure 1: A dependency tree for the example sen-
tence: “The monkey eats a banana.”

th order neighborhood (i.e. nodes at most k hops
aways from the node) (Gilmer et al., 2017). They
are generally simple and computationally inexpen-
sive. We use Syntactic GCNs, a version of GCN
operating on top of syntactic dependency trees, re-
cently shown effective in the context of semantic
role labeling (Marcheggiani and Titov, 2017).

Since syntactic GCNs produce representations
at word level, it is straightforward to use them
as encoders within the attention-based encoder-
decoder framework. As NMT systems are trained
end-to-end, GCNs end up capturing syntactic
properties specifically relevant to the translation
task. Though GCNs can take word embeddings
as input, we will see that they are more effec-
tive when used as layers on top of recurrent neu-
ral network (RNN) or convolutional neural net-
work (CNN) encoders (Gehring et al., 2016), en-
riching their states with syntactic information.
A comparison to RNNs is the most challenging
test for GCNs, as it has been shown that RNNs
(e.g., LSTMs) are able to capture certain syntac-
tic phenomena (e.g., subject-verb agreement) rea-
sonably well on their own, without explicit tree-
bank supervision (Linzen et al., 2016; Shi et al.,
2016). Nevertheless, GCNs appear beneficial even
in this challenging set-up: we obtain +1.2 and +0.7
BLEU point improvements from using syntactic
GCNs on top of bidirectional RNNs for English-
German and English-Czech, respectively.

In principle, GCNs are flexible enough to incor-
porate any linguistic structure as long as they can
be represented as graphs (e.g., dependency-based
semantic-role labeling representations (Surdeanu
et al., 2008), AMR semantic graphs (Banarescu
et al., 2012) and co-reference chains). For ex-
ample, unlike recursive neural networks (Socher
et al., 2013), GCNs do not require the graphs to be
trees. However, in this work we solely focus on
dependency syntax and leave more general inves-
tigation for future work.

Our main contributions can be summarized as
follows:

• we introduce a method for incorporating
structure into NMT using syntactic GCNs;

• we show that GCNs can be used along with
RNN and CNN encoders;

• we show that incorporating structure is ben-
eficial for machine translation on English-
Czech and English-German.

2 Background

Notation. We use x for vectors, x1:t for a se-
quence of t vectors, and X for matrices. The i-th
value of vector x is denoted by xi. We use ◦ for
vector concatenation.

2.1 Neural Machine Translation
In NMT (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b), given
example translation pairs from a parallel corpus, a
neural network is trained to directly estimate the
conditional distribution p(y1:Ty |x1:Tx) of translat-
ing a source sentence x1:Tx (a sequence of Tx
words) into a target sentence y1:Ty . NMT mod-
els typically consist of an encoder, a decoder and
some method for conditioning the decoder on the
encoder, for example, an attention mechanism. We
will now briefly describe the components that we
use in this paper.

2.1.1 Encoders
An encoder is a function that takes as input the
source sentence and produces a representation en-
coding its semantic content. We describe recur-
rent, convolutional and bag-of-words encoders.

Recurrent. Recurrent neural networks (RNNs)
(Elman, 1990) model sequential data. They re-
ceive one input vector at each time step and up-
date their hidden state to summarize all inputs up
to that point. Given an input sequence x1:Tx =
x1,x2, . . . ,xTx of word embeddings an RNN is
defined recursively as follows:

RNN(x1:t) = f(xt,RNN(x1:t−1))

where f is a nonlinear function such as an LSTM
(Hochreiter and Schmidhuber, 1997) or a GRU
(Cho et al., 2014b). We will use the function RNN
as an abstract mapping from an input sequence
x1:T to final hidden state RNN(x1:Tx), regardless
of the used nonlinearity. To not only summarize
the past of a word, but also its future, a bidirec-
tional RNN (Schuster and Paliwal, 1997; Irsoy and

1958



Cardie, 2014) is often used. A bidirectional RNN
reads the input sentence in two directions and then
concatenates the states for each time step:

BIRNN(x1:Tx , t) = RNNF (x1:t)◦RNNB(xTx:t)

where RNNF and RNNB are the forward and
backward RNNs, respectively. For further details
we refer to the encoder of Bahdanau et al. (2015).

Convolutional. Convolutional Neural Networks
(CNNs) apply a fixed-size window over the input
sequence to capture the local context of each word
(Gehring et al., 2016). One advantage of this ap-
proach over RNNs is that it allows for fast parallel
computation, while sacrificing non-local context.
To remedy the loss of context, multiple CNN lay-
ers can be stacked. Formally, given an input se-
quence x1:Tx , we define a CNN as follows:

CNN(x1:Tx , t) = f(xt−bw/2c, ..,xt, ..,xt+bw/2c)

where f is a nonlinear function, typically a lin-
ear transformation followed by ReLU, andw is the
size of the window.

Bag-of-Words. In a bag-of-words (BoW) en-
coder every word is simply represented by its word
embedding. To give the decoder some sense of
word position, position embeddings (PE) may be
added. There are different strategies for defining
position embeddings, and in this paper we choose
to learn a vector for each absolute word position
up to a certain maximum length. We then repre-
sent the t-th word in a sequence as follows:

BOW(x1:Tx , t) = xt + pt

where xt is the word embedding and pt is the t-th
position embedding.

2.1.2 Decoder
A decoder produces the target sentence condi-
tioned on the representation of the source sentence
induced by the encoder. In Bahdanau et al. (2015)
the decoder is implemented as an RNN condi-
tioned on an additional input ci, the context vector,
which is dynamically computed at each time step
using an attention mechanism.

The probability of a target word yi is now a
function of the decoder RNN state, the previous
target word embedding, and the context vector.
The model is trained end-to-end for maximum log
likelihood of the next target word given its context.

2.2 Graph Convolutional Networks

We will now describe the Graph Convolutional
Networks (GCNs) of Kipf and Welling (2016).
For a comprehensive overview of alternative GCN
architectures see Gilmer et al. (2017).

A GCN is a multilayer neural network that
operates directly on a graph, encoding informa-
tion about the neighborhood of a node as a real-
valued vector. In each GCN layer, information
flows along edges of the graph; in other words,
each node receives messages from all its imme-
diate neighbors. When multiple GCN layers are
stacked, information about larger neighborhoods
gets integrated. For example, in the second layer,
a node will receive information from its immediate
neighbors, but this information already includes
information from their respective neighbors. By
choosing the number of GCN layers, we regulate
the distance the information travels: with k lay-
ers a node receives information from neighbors at
most k hops away.

Formally, consider an undirected graph G =
(V, E), where V is a set of n nodes, and E is a
set of edges. Every node is assumed to be con-
nected to itself, i.e. ∀v ∈ V : (v, v) ∈ E . Now,
let X ∈ Rd×n be a matrix containing all n nodes
with their features, where d is the dimensionality
of the feature vectors. In our case, X will contain
word embeddings, but in general it can contain any
kind of features. For a 1-layer GCN, the new node
representations are computed as follows:

hv = ρ

( ∑

u∈N (v)

Wxu + b

)

where W ∈ Rd×d is a weight matrix and b ∈ Rd
a bias vector.1 ρ is an activation function, e.g. a
ReLU.N (v) is the set of neighbors of v, which we
assume here to always include v itself. As stated
before, to allow information to flow over multiple
hops, we need to stack GCN layers. The recursive
computation is as follows:

h(j+1)
v = ρ

( ∑

u∈N (v)

W (j)h(j)
u + b(j)

)

where j indexes the layer, and h
(0)
v = xv.

1We dropped the normalization factor used by Kipf
and Welling (2016), as it is not used in syntactic GCNs
of Marcheggiani and Titov (2017).
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Figure 2: A 2-layer syntactic GCN on top of a convolutional encoder. Loop connections are depicted
with dashed edges, syntactic ones with solid (dependents to heads) and dotted (heads to dependents)
edges. Gates and some labels are omitted for clarity.

2.3 Syntactic GCNs
Marcheggiani and Titov (2017) generalize GCNs
to operate on directed and labeled graphs.2 This
makes it possible to use linguistic structures such
as dependency trees, where directionality and edge
labels play an important role. They also integrate
edge-wise gates which let the model regulate con-
tributions of individual dependency edges. We
will briefly describe these modifications.

Directionality. In order to deal with direction-
ality of edges, separate weight matrices are used
for incoming and outgoing edges. We follow the
convention that in dependency trees heads point
to their dependents, and thus outgoing edges are
used for head-to-dependent connections, and in-
coming edges are used for dependent-to-head con-
nections. Modifying the recursive computation for
directionality, we arrive at:

h(j+1)
v = ρ

( ∑

u∈N (v)

W
(j)
dir(u,v) h

(j)
u + b

(j)
dir(u,v)

)

where dir(u, v) selects the weight matrix associ-
ated with the directionality of the edge connecting
u and v (i.e. WIN for u-to-v, WOUT for v-to-u,
and WLOOP for v-to-v). Note that self loops are
modeled separately,

so there are now three times as many parameters
as in a non-directional GCN.

2For an alternative approach to integrating labels and di-
rections, see applications of GCNs to statistical relation learn-
ing (Schlichtkrull et al., 2017).

Labels. Making the GCN sensitive to labels is
straightforward given the above modifications for
directionality. Instead of using separate matrices
for each direction, separate matrices are now de-
fined for each direction and label combination:

h(j+1)
v = ρ

( ∑

u∈N (v)

W
(j)
lab(u,v) h

(j)
u + b

(j)
lab(u,v)

)

where we incorporate the directionality of an edge
directly in its label.

Importantly, to prevent over-parametrization,
only bias terms are made label-specific, in other
words: Wlab(u,v) = Wdir(u,v). The resulting syn-
tactic GCN is illustrated in Figure 2 (shown on top
of a CNN, as we will explain in the subsequent
section).

Edge-wise gating. Syntactic GCNs also include
gates, which can down-weight the contribution of
individual edges. They also allow the model to
deal with noisy predicted structure, i.e. to ignore
potentially erroneous syntactic edges. For each
edge, a scalar gate is calculated as follows:

g(j)u,v = σ
(
h(j)
u · ŵ(j)

dir(u,v) + b̂
(j)
lab(u,v)

)

where σ is the logistic sigmoid function, and
ŵ

(j)
dir(u,v) ∈ Rd and b̂(j)lab(u,v) ∈ R are learned pa-

rameters for the gate. The computation becomes:

h(j+1)
v =ρ

(∑

u∈N (v)

g(j)u,v
(
W

(j)
dir(u,v) h

(j)
u + b

(j)
lab(u,v)

))
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3 Graph Convolutional Encoders

In this work we focus on exploiting structural in-
formation on the source side, i.e. in the encoder.
We hypothesize that using an encoder that incor-
porates syntax will lead to more informative rep-
resentations of words, and that these representa-
tions, when used as context vectors by the decoder,
will lead to an improvement in translation qual-
ity. Consequently, in all our models, we use the
decoder of Bahdanau et al. (2015) and keep this
part of the model constant. As is now common
practice, we do not use a maxout layer in the de-
coder, but apart from this we do not deviate from
the original definition. In all models we make use
of GRUs (Cho et al., 2014b) as our RNN units.

Our models vary in the encoder part, where we
exploit the power of GCNs to induce syntactically-
aware representations. We now define a series of
encoders of increasing complexity.

BoW + GCN. In our first and simplest model,
we propose a bag-of-words encoder (with position
embeddings, see §2.1.1), with a GCN on top. In
other words, inputs h(0) are a sum of embeddings
of a word and its position in a sentence. Since the
original BoW encoder captures the linear order-
ing information only in a very crude way (through
the position embeddings), the structural informa-
tion provided by GCN should be highly beneficial.

Convolutional + GCN. In our second model,
we use convolutional neural networks to learn
word representations. CNNs are fast, but by def-
inition only use a limited window of context. In-
stead of the approach used by Gehring et al. (2016)
(i.e. stacking mulitple CNN layers on top of each
other), we use a GCN to enrich the one-layer CNN
representations. Figure 2 shows this model. Note
that, while the figure shows a CNN with a window
size of 3, we will use a larger window size of 5 in
our experiments. We expect this model to perform
better than BoW + GCN, because of the additional
local context captured by the CNN.

BiRNN + GCN. In our third and most powerful
model, we employ bidirectional recurrent neural
networks. In this model, we start by encoding the
source sentence using a BiRNN (i.e. BiGRU), and
use the resulting hidden states as input to a GCN.
Instead of relying on linear order only, the GCN
will allow the encoder to ‘teleport’ over parts of
the input sentence, along dependency edges, con-

necting words that otherwise might be far apart.
The model might not only benefit from this tele-
porting capability however; also the nature of the
relations between words (i.e. dependency relation
types) may be useful, and the GCN exploits this
information (see §2.3 for details).

This is the most challenging setup for GCNs,
as RNNs have been shown capable of capturing at
least some degree of syntactic information with-
out explicit supervision (Linzen et al., 2016), and
hence they should be hard to improve on by incor-
porating treebank syntax.

Marcheggiani and Titov (2017) did not observe
improvements from using multiple GCN layers in
semantic role labeling. However, we do expect
that propagating information from further in the
tree should be beneficial in principle. We hypoth-
esize that the first layer is the most influential one,
capturing most of the syntactic context, and that
additional layers only modestly modify the repre-
sentations. To ease optimization, we add a resid-
ual connection (He et al., 2016) between the GCN
layers, when using more than one layer.

4 Experiments

Experiments are performed using the Neural Mon-
key toolkit3 (Helcl and Libovický, 2017), which
implements the model of Bahdanau et al. (2015)
in TensorFlow. We use the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.001 (0.0002 for CNN models).4 The batch size
is set to 80. Between layers we apply dropout
with a probability of 0.2, and in experiments with
GCNs5 we use the same value for edge dropout.
We train for 45 epochs, evaluating the BLEU per-
formance of the model every epoch on the vali-
dation set. For testing, we select the model with
the highest validation BLEU. L2 regularization is
used with a value of 10−8. All the model selection
(incl. hyperparameter selections) was performed
on the validation set. In all experiments we obtain
translations using a greedy decoder, i.e. we se-
lect the output token with the highest probability
at each time step.

We will describe an artificial experiment in §4.1
and MT experiments in §4.2.

3https://github.com/ufal/neuralmonkey
4Like Gehring et al. (2016) we note that Adam is too ag-

gressive for CNN models, hence we use a lower learning rate.
5GCN code at https://github.com/bastings/neuralmonkey
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4.1 Reordering artificial sequences
Our goal here is to provide an intuition for the ca-
pabilities of GCNs. We define a reordering task
where randomly permuted sequences need to be
put back into the original order. We encode the
original order using edges, and test if GCNs can
successfully exploit them. Note that this task is not
meant to provide a fair comparison to RNNs. The
input (besides the edges) simply does not carry any
information about the original ordering, so RNNs
cannot possibly solve this task.

Data. From a vocabulary of 26 types, we gen-
erate random sequences of 3-10 tokens. We then
randomly permute them, pointing every token to
its original predecessor with a label sampled from
a set of 5 labels. Additionally, we point every to-
ken to an arbitrary position in the sequence with a
label from a distinct set of 5 ‘fake’ labels. We sam-
ple 25000 training and 1000 validation sequences.

Model. We use the BiRNN + GCN model, i.e. a
bidirectional GRU with a 1-layer GCN on top. We
use 32, 64 and 128 units for embeddings, GRU
units and GCN layers, respectively.

Results. After 6 epochs of training, the model
learns to put permuted sequences back into or-
der, reaching a validation BLEU of 99.2. Fig-
ure 3 shows that the mean values of the bias
terms of gates (i.e. b̂) for real and fake edges are
far apart, suggesting that the GCN learns to dis-
tinguish them. Interestingly, this illustrates why
edge-wise gating is beneficial. A gate-less model
would not understand which of the two outgoing
arcs is fake and which is genuine, because only
biases b would then be label-dependent. Conse-
quently, it would only do a mediocre job in re-
ordering. Although using label-specific matrices
W would also help, this would not scale to the real
scenario (see §2.3).

4.2 Machine Translation
Data. For our experiments we use the En-De
and En-Cs News Commentary v11 data from the
WMT16 translation task.6 For En-De we also
train on the full WMT16 data set. As our valida-
tion set and test set we use newstest2015 and
newstest2016, respectively.

Pre-processing. The English sides of the cor-
pora are tokenized and parsed into dependency

6http://www.statmt.org/wmt16/translation-task.html
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Figure 3: Mean values of gate bias terms for real
(useful) labels and for fake (non useful) labels sug-
gest the GCN learns to distinguish them.

trees by SyntaxNet,7 using the pre-trained Parsey
McParseface model.8 The Czech and German
sides are tokenized using the Moses tokenizer.9

Sentence pairs where either side is longer than 50
words are filtered out after tokenization.

Vocabularies. For the English sides, we con-
struct vocabularies from all words except those
with a training set frequency smaller than three.
For Czech and German, to deal with rare words
and phenomena such as inflection and compound-
ing, we learn byte-pair encodings (BPE) as de-
scribed by Sennrich et al. (2016b). Given the size
of our data set, and following Wu et al. (2016), we
use 8000 BPE merges to obtain robust frequencies
for our subword units (16000 merges for full data
experiment). Data set statistics are summarized in
Table 1 and vocabulary sizes in Table 2.

Train Val. Test

English-German 226822 2169 2999
English-German (full) 4500966 2169 2999
English-Czech 181112 2656 2999

Table 1: The number of sentences in our data sets.

Hyperparameters. We use 256 units for word
embeddings, 512 units for GRUs (800 for En-De
full data set experiment), and 512 units for con-
volutional layers (or equivalently, 512 ‘channels’).
The dimensionality of the GCN layers is equiva-

7https://github.com/tensorflow/models/tree/master/syntaxnet
8The used dependency parses can be reproduced by using

the syntaxnet/demo.sh shell script.
9https://github.com/moses-smt/mosesdecoder
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Source Target

English-German 37824 8099 (BPE)
English-German (full) 50000 16000 (BPE)
English-Czech 33786 8116 (BPE)

Table 2: Vocabulary sizes.

lent to the dimensionality of their input. We report
results for 2-layer GCNs, as we find them most ef-
fective (see ablation studies below).

Baselines. We provide three baselines, each
with a different encoder: a bag-of-words encoder,
a convolutional encoder with window size w = 5,
and a BiRNN. See §2.1.1 for details.

Evaluation. We report (cased) BLEU results
(Papineni et al., 2002) using multi-bleu, as
well as Kendall τ reordering scores.10

4.2.1 Results
English-German. Table 3 shows test results
on English-German. Unsurprisingly, the bag-of-
words baseline performs the worst. We expected
the BoW+GCN model to make easy gains over
this baseline, which is indeed what happens. The
CNN baseline reaches a higher BLEU4 score than
the BoW models, but interestingly its BLEU1

score is lower than the BoW+GCN model. The
CNN+GCN model improves over the CNN base-
line by +1.9 and +1.1 for BLEU1 and BLEU4, re-
spectively. The BiRNN, the strongest baseline,
reaches a BLEU4 of 14.9. Interestingly, GCNs
still manage to improve the result by +2.3 BLEU1

and +1.2 BLEU4 points. Finally, we observe a big
jump in BLEU4 by using the full data set and beam
search (beam 12). The BiRNN now reaches 23.3,
while adding a GCN achieves a score of 23.9.

English-Czech. Table 4 shows test results on
English-Czech. While it is difficult to obtain high
absolute BLEU scores on this dataset, we can still
see similar relative improvements. Again the BoW
baseline scores worst, with the BoW+GCN eas-
ily beating that result. The CNN baseline scores
BLEU4 of 8.1, but the CNN+GCN improves on
that, this time by +1.0 and +0.6 for BLEU1 and
BLEU4, respectively. Interestingly, BLEU1 scores
for the BoW+GCN and CNN+GCN models are

10See Stanojević and Simaan (2015). TER (Snover et al.,
2006) and BEER (Stanojević and Sima’an, 2014) metrics,
even though omitted due to space considerations, are con-
sistent with the reported results.

Kendall BLEU1 BLEU4

BoW 0.3352 40.6 9.5
+ GCN 0.3520 44.9 12.2

CNN 0.3601 42.8 12.6
+ GCN 0.3777 44.7 13.7

BiRNN 0.3984 45.2 14.9
+ GCN 0.4089 47.5 16.1

BiRNN (full) 0.5440 53.0 23.3
+ GCN 0.5555 54.6 23.9

Table 3: Test results for English-German.

higher than both baselines so far. Finally, the
BiRNN baseline scores a BLEU4 of 8.9, but it
is again beaten by the BiRNN+GCN model with
+1.9 BLEU1 and +0.7 BLEU4.

Kendall BLEU1 BLEU4

BoW 0.2498 32.9 6.0
+ GCN 0.2561 35.4 7.5

CNN 0.2756 35.1 8.1
+ GCN 0.2850 36.1 8.7

BiRNN 0.2961 36.9 8.9
+ GCN 0.3046 38.8 9.6

Table 4: Test results for English-Czech.

Effect of GCN layers. How many GCN layers
do we need? Every layer gives us an extra hop
in the graph and expands the syntactic neighbor-
hood of a word. Table 5 shows validation BLEU
performance as a function of the number of GCN
layers. For English-German, using a 1-layer GCN
improves BLEU-1, but surprisingly has little effect
on BLEU4. Adding an additional layer gives im-
provements on both BLEU1 and BLEU4 of +1.3
and +0.73, respectively. For English-Czech, per-
formance increases with each added GCN layer.

En-De En-Cs
BLEU1 BLEU4 BLEU1 BLEU4

BiRNN 44.2 14.1 37.8 8.9
+ GCN (1L) 45.0 14.1 38.3 9.6
+ GCN (2L) 46.3 14.8 39.6 9.9

Table 5: Validation BLEU for English-German
and English-Czech for 1- and 2-layer GCNs.
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Effect of sentence length. We hypothesize that
GCNs should be more beneficial for longer sen-
tences: these are likely to contain long-distance
syntactic dependencies which may not be ade-
quately captured by RNNs but directly encoded
in GCNs. To test this, we partition the validation
data into five buckets and calculate BLEU for each
of them. Figure 4 shows that GCN-based models
outperform their respective baselines rather uni-
formly across all buckets. This is a surprising re-
sult. One explanation may be that syntactic parses
are noisier for longer sentences, and this prevents
us from obtaining extra improvements with GCNs.
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Figure 4: Validation BLEU per sentence length.

Discussion. Results suggest that the syntax-
aware representations provided by GCNs consis-
tently lead to improved translation performance
as measured by BLEU4 (as well as TER and
BEER). Consistent gains in terms of Kendall tau
and BLEU1 indicate that improvements correlate
with better word order and lexical/BPE selection,
two phenomena that depend crucially on syntax.

5 Related Work

We review various accounts to syntax in NMT as
well as other convolutional encoders.

Syntactic features and/or constraints. Sen-
nrich and Haddow (2016) embed features such as
POS-tags, lemmas and dependency labels and feed
these into the network along with word embed-
dings. Eriguchi et al. (2016) parse English sen-
tences with an HPSG parser and use a Tree-LSTM
to encode the internal nodes of the tree. In the
decoder, word and node representations compete
under the same attention mechanism. Stahlberg
et al. (2016) use a pruned lattice from a hierarchi-
cal phrase-based model (hiero) to constrain NMT.

Hiero trees are not syntactically-aware, but instead
constrained by symmetrized word alignments.
Aharoni and Goldberg (2017) propose neural
string-to-tree by predicting linearized parse trees.

Multi-task Learning. Sharing NMT parameters
with a syntactic parser is a popular approach to
obtaining syntactically-aware representations. Lu-
ong et al. (2015a) predict linearized constituency
parses as an additional task. Eriguchi et al. (2017)
multi-task with a target-side RNNG parser (Dyer
et al., 2016) and improve on various language
pairs with English on the target side. Nadejde et al.
(2017) multi-task with CCG tagging, and also in-
tegrate syntax on the target side by predicting a se-
quence of words interleaved with CCG supertags.

Latent structure. Hashimoto and Tsuruoka
(2017) add a syntax-inspired encoder on top of
a BiLSTM layer. They encode source words as
a learned average of potential parents emulating
a relaxed dependency tree. While their model is
trained purely on translation data, they also ex-
periment with pre-training the encoder using tree-
bank annotation and report modest improvements
on English-Japanese. Yogatama et al. (2016) in-
troduce a model for language understanding and
generation that composes words into sentences by
inducing unlabeled binary bracketing trees.

Convolutional encoders. Gehring et al. (2016)
show that CNNs can be competitive to BiRNNs
when used as encoders. To increase the receptive
field of a word’s context they stack multiple CNN
layers. Kalchbrenner et al. (2016) use convolution
in both the encoder and the decoder; they make use
of dilation to increase the receptive field. In con-
trast to both approaches, we use a GCN informed
by dependency structure to increase it. Finally,
Cho et al. (2014a) propose a recursive convolu-
tional neural network which builds a tree out of
the word leaf nodes, but which ends up compress-
ing the source sentence in a single vector.

6 Conclusions

We have presented a simple and effective approach
to integrating syntax into neural machine trans-
lation models and have shown consistent BLEU4

improvements for two challenging language pairs:
English-German and English-Czech. Since GCNs
are capable of encoding any kind of graph-based
structure, in future work we would like to go be-
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yond syntax, by using semantic annotations such
as SRL and AMR, and co-reference chains.
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Abstract

Recent research in neural machine trans-
lation has largely focused on two aspects;
neural network architectures and end-to-
end learning algorithms. The problem of
decoding, however, has received relatively
little attention from the research commu-
nity. In this paper, we solely focus on the
problem of decoding given a trained neu-
ral machine translation model. Instead of
trying to build a new decoding algorithm
for any specific decoding objective, we pro-
pose the idea of trainable decoding algo-
rithm in which we train a decoding algo-
rithm to find a translation that maximizes
an arbitrary decoding objective. More
specifically, we design an actor that ob-
serves and manipulates the hidden state
of the neural machine translation decoder
and propose to train it using a variant of
deterministic policy gradient. We exten-
sively evaluate the proposed algorithm us-
ing four language pairs and two decoding
objectives, and show that we can indeed
train a trainable greedy decoder that gener-
ates a better translation (in terms of a target
decoding objective) with minimal compu-
tational overhead.

1 Introduction

Neural machine translation has recently become a
method of choice in machine translation research.
Besides its success in traditional settings of ma-
chine translation, that is one-to-one translation be-
tween two languages, (Sennrich et al., 2016; Chung
et al., 2016), neural machine translation has ven-
tured into more sophisticated settings of machine
translation. For instance, neural machine transla-
tion has successfully proven itself to be capable of

handling subword-level representation of sentences
(Lee et al., 2016; Luong and Manning, 2016; Sen-
nrich et al., 2015; Costa-Jussa and Fonollosa, 2016;
Ling et al., 2015). Furthermore, several research
groups have shown its potential in seamlessly han-
dling multiple languages (Dong et al., 2015; Luong
et al., 2015a; Firat et al., 2016a,b; Lee et al., 2016;
Ha et al., 2016; Viégas et al., 2016).

A typical scenario of neural machine transla-
tion starts with training a model to maximize its
log-likelihood. That is, we often train a model to
maximize the conditional probability of a reference
translation given a source sentence over a large par-
allel corpus. Once the model is trained in this way,
it defines the conditional distribution over all pos-
sible translations given a source sentence, and the
task of translation becomes equivalent to finding a
translation to which the model assigns the highest
conditional probability. Since it is computationally
intractable to do so exactly, it is a usual practice to
resort to approximate search/decoding algorithms
such as greedy decoding or beam search. In this
scenario, we have identified two points where im-
provements could be made. They are (1) training
(including the selection of a model architecture)
and (2) decoding.

Much of the research on neural machine trans-
lation has focused solely on the former, that is,
on improving the model architecture. Neural ma-
chine translation started with with a simple encoder-
decoder architecture in which a source sentence is
encoded into a single, fixed-size vector (Cho et al.,
2014; Sutskever et al., 2014; Kalchbrenner and
Blunsom, 2013). It soon evolved with the attention
mechanism (Bahdanau et al., 2014). A few variants
of the attention mechanism, or its regularization,
have been proposed recently to improve both the
translation quality as well as the computational ef-
ficiency (Luong et al., 2015b; Cohn et al., 2016;
Tu et al., 2016b). More recently, convolutional net-
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works have been adopted either as a replacement of
or a complement to a recurrent network in order to
efficiently utilize parallel computing (Kalchbrenner
et al., 2016; Lee et al., 2016; Gehring et al., 2016).

On the aspect of decoding, only a few research
groups have tackled this problem by incorporating
a target decoding algorithm into training. Wiseman
and Rush (2016) and Shen et al. (2015) proposed a
learning algorithm tailored for beam search. Ran-
zato et al. (2015) and (Bahdanau et al., 2016) sug-
gested to use a reinforcement learning algorithm
by viewing a neural machine translation model as
a policy function. Investigation on decoding alone
has, however, been limited. Cho (2016) showed the
limitation of greedy decoding by simply injecting
unstructured noise into the hidden state of the neu-
ral machine translation system. Tu et al. (2016a)
similarly showed that the exactness of beam search
does not correlate well with actual translation qual-
ity, and proposed to augment the learning cost func-
tion with reconstruction to alleviate this problem.
Li et al. (2016) proposed a modification to the ex-
isting beam search algorithm to improve its explo-
ration of the translation space.

In this paper, we tackle the problem of decod-
ing in neural machine translation by introducing
a concept of trainable greedy decoding. Instead
of manually designing a new decoding algorithm
suitable for neural machine translation, we propose
to learn a decoding algorithm with an arbitrary de-
coding objective. More specifically, we introduce
a neural-network-based decoding algorithm that
works on an already-trained neural machine trans-
lation system by observing and manipulating its
hidden state. We treat such a neural network as an
agent with a deterministic, continuous action and
train it with a variant of the deterministic policy
gradient algorithm (Silver et al., 2014).

We extensively evaluate the proposed trainable
greedy decoding on four language pairs (En-Cs,
En-De, En-Ru and En-Fi; in both directions) with
two different decoding objectives; sentence-level
BLEU and negative perplexity. By training such
trainable greedy decoding using deterministic pol-
icy gradient with the proposed critic-aware actor
learning, we observe that we can improve decod-
ing performance with minimal computational over-
head. Furthermore, the trained actors are found
to improve beam search as well, suggesting a fu-
ture research direction in extending the proposed
idea of trainable decoding for more sophisticated

underlying decoding algorithms.

2 Background

2.1 Neural Machine Translation

Neural machine translation is a special case of
conditional recurrent language modeling, where
the source and target are natural language sen-
tences. Let us use X = {x1, . . . , xTs} and Y =
{y1, . . . , yT } to denote source and target sentences,
respectively. Neural machine translation then mod-
els the target sentence given the source sentence
as: p(Y |X) =

∏T
t=1 p(yt|y<t, X). Each term on

the r.h.s. of the equation above is modelled as a
composite of two parametric functions:

p(yt|y<t, X) ∝ exp (g (yt, zt; θg)) ,

where zt = f(zt−1, yt−1, et(X; θe); θf ). g is a
read-out function that transforms the hidden state
zt into the distribution over all possible symbols,
and f is a recurrent function that compresses all the
previous target words y<t and the time-dependent
representation et(X; θe) of the source sentence X .
This time-dependent representation et is often im-
plemented as a recurrent network encoder of the
source sentence coupled with an attention mecha-
nism (Bahdanau et al., 2014).

Maximum Likelihood Learning We train a
neural machine translation model, or equivalently
estimate the parameters θg, θf and θe, by maximiz-
ing the log-probability of a reference translation
Ŷ = {ŷ1, ..., ŷT } given a source sentence. That is,
we maximize the log-likelihood function:

JML(θg, θf , θe) =
1

N

N∑

n=1

Tn∑

t=1

log pθ(ŷ
n
t |ŷn<t, Xn),

given a training set consisting of N source-target
sentence pairs. It is important to note that this maxi-
mum likelihood learning does not take into account
how a trained model would be used. Rather, it is
only concerned with learning a distribution over all
possible translations.

2.2 Decoding

Once the model is trained, either by maximum like-
lihood learning or by any other recently proposed
algorithms (Wiseman and Rush, 2016; Shen et al.,
2015; Bahdanau et al., 2016; Ranzato et al., 2015),
we can let the model translate a given sentence by
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finding a translation that maximizes

Ŷ = argmax
Y

log pθ(Y |X),

where θ = (θg, θf , θe). This is, however, compu-
tationally intractable, and it is a usual practice to
resort to approximate decoding algorithms.

Greedy Decoding One such approximate decod-
ing algorithm is greedy decoding. In greedy de-
coding, we follow the conditional dependency path
and pick the symbol with the highest conditional
probability so far at each node. This is equiv-
alent to picking the best symbol one at a time
from left to right in conditional language mod-
elling. A decoded translation of greedy decoding
is Ŷ = (ŷ1, . . . , ŷT ), where

ŷt = argmax
y∈V

log pθ(y|ŷ<t, X). (1)

Despite its preferable computational complexity
O(|V | × T ), greedy decoding has been over time
found to be undesirably sub-optimal.

Beam Search Beam search keeps K > 1 hy-
potheses, unlike greedy decoding which keeps only
a single hypothesis during decoding. At each time
step t, beam search picks K hypotheses with the
highest scores (

∏t
t′=1 p(yt|y<t, X)). When all the

hypotheses terminate (outputting the end-of-the-
sentence symbol), it returns the hypothesis with the
highest log-probability. Despite its superior perfor-
mance compared to greedy decoding, the computa-
tional complexity grows linearly w.r.t. the size of
beam K, which makes it less preferable especially
in the production environment.

3 Trainable Greedy Decoding

3.1 Many Decoding Objectives
Although we have described decoding in neural
machine translation as a maximum-a-posteriori es-
timation in log p(Y |X), this is not necessarily the
only nor the desirable decoding objective.

First, each potential scenario in which neural
machine translation is used calls for a unique
decoding objective. In simultaneous transla-
tion/interpretation, which has recently been studied
in the context of neural machine translation (Gu
et al., 2016), the decoding objective is formulated
as a trade-off between the translation quality and
delay. On the other hand, when a machine transla-
tion system is used as a part of a larger information

extraction system, it is more important to correctly
translate named entities and events than to translate
syntactic function words. The decoding objective
in this case must account for how the translation is
used in subsequent modules in a larger system.

Second, the conditional probability assigned by
a trained neural machine translation model does
not necessarily reflect our perception of translation
quality. Although Cho (2016) provided empiri-
cal evidence of high correlation between the log-
probability and BLEU, a de facto standard metric
in machine translation, there have also been reports
on large mismatch between the log-probability and
BLEU. For instance, Tu et al. (2016a) showed
that beam search with a very large beam, which
is supposed to find translations with better log-
probabilities, suffers from pathological translations
of very short length, resulting in low translation
quality. This calls for a way to design or learn a
decoding algorithm with an objective that is more
directly correlated to translation quality.

In short, there is a significant need for designing
multiple decoding algorithms for neural machine
translation, regardless of how it was trained. It is
however non-trivial to manually design a new de-
coding algorithm with an arbitrary objective. This
is especially true with neural machine translation,
as the underlying structure of the decoding/search
process – the high-dimensional hidden state of a re-
current network – is accessible but not interpretable.
Instead, in the remainder of this section, we pro-
pose our approach of trainable greedy decoding.

3.2 Trainable Greedy Decoding

We start from the noisy, parallel approximate de-
coding (NPAD) algorithm proposed in (Cho, 2016).
The main idea behind NPAD algorithm is that a
better translation with a higher log-probability may
be found by injecting unstructured noise in the tran-
sition function of a recurrent network. That is,

zt = f(zt−1 + εt, yt−1, et(X; θe); θf ),

where εt ∼ N (0, (σ0/t)
2). NPAD avoids potential

degradation of translation quality by running such
a noisy greedy decoding process multiple times
in parallel. An important lesson of NPAD algo-
rithm is that there exists a decoding strategy with
the asymptotically same computational complexity
that results in a better translation quality, and that
such a better translation can be found by manipu-
lating the hidden state of the recurrent network.
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ŷT

yT 0

Figure 1: Graphical illustrations of the trainable greedy decoding. The left panel shows a single step
of the actor interacting with the underlying neural translation model, and The right panel the interaction
among the underlying neural translation system (dashed-border boxes), actor (red-border boxes), and
critic (blue-border boxes). The solid arrows indicate the forward pass, and the dashed yellow arrows the
actor’s backward pass. The dotted-border box shows the use of a reference translation.

In this work, we propose to significantly extend
NPAD by replacing the unstructured noise εt with
a parametric function approximator, or an agent,
πφ. This agent takes as input the previous hidden
state zt−1, previously decoded word ŷt−1 and the
time-dependent context vector et(X; θe) and out-
puts a real-valued vectorial action at ∈ Rdim(zt).
Such an agent is trained such that greedy decoding
with the agent finds a translation that maximizes
any predefined, arbitrary decoding objective, while
the underlying neural machine translation model
is pretrained and fixed. Once the agent is trained,
we generate a translation given a source sentence
by greedy decoding however augmented with this
agent. We call this decoding strategy trainable
greedy decoding.

Related Work: Soothsayer prediction function
Independently from and concurrently with our
work here, Li et al. (2017) proposed, just two weeks
earlier, to train a neural network that predicts an ar-
bitrary decoding objective given a source sentence
and a partial hypothesis, or a prefix of translation,
and to use it as an auxiliary score in beam search.
For training such a network, referred to as a Q net-
work in their paper, they generate each training
example by either running beam search or using
a ground-truth translation (when appropriate) for
each source sentence. This approach allows one to
use an arbitrary decoding objective, but it still re-

lies heavily on the log-probability of the underlying
neural translation system in actual decoding. We
expect a combination of these and our approaches
may further improve decoding for neural machine
translation in the future.

3.3 Learning and Challenges

While all the parameters—θg, θf and θe— of the
underlying neural translation model are fixed, we
only update the parameters φ of the agent π. This
ensures the generality of the pretrained translation
model, and allows us to train multiple trainable
greedy decoding agents with different decoding ob-
jectives, maximizing the utility of a single trained
translation model.

Let us denote by R our arbitrary decoding objec-
tive as a function that scores a translation generated
from trainable greedy decoding. Then, our learning
objective for trainable greedy decoding is

JA(φ) = EŶ=Gπ(X)
X∼D

[
R(Ŷ )

]
,

where we used Gπ(X) as a shorthand for trainable
greedy decoding with an agent π.

There are two major challenges in learning an
agent with such an objective. First, the decoding
objective R may not be differentiable with respect
to the agent. Especially because our goal is to ac-
commodate an arbitrary decoding objective, this be-
comes a problem. For instance, BLEU, a standard
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quality metric in machine translation, is a piece-
wise linear function with zero derivatives almost
everywhere. Second, the agent here is a real-valued,
deterministic policy with a very high-dimensional
action space (1000s of dimensions), which is well
known to be difficult. In order to alleviate these
difficulties, we propose to use a variant of the de-
terministic policy gradient algorithm (Silver et al.,
2014; Lillicrap et al., 2015).

4 Deterministic Policy Gradient
with Critic-Aware Actor Learning

4.1 Deterministic Policy Gradient
for Trainable Greedy Decoding
It is highly unlikely for us to have access to the
gradient of an arbitrary decoding objective R with
respect to the agent π, or its parameters φ. Fur-
thermore, we cannot estimate it stochastically be-
cause our policy π is defined to be deterministic
without a predefined nor learned distribution over
the action. Instead, following (Silver et al., 2014;
Lillicrap et al., 2015), we use a parametric, differ-
entiable approximator, called a critic Rc, for the
non-differentiable objective R. We train the critic
by minimizing

JC(ψ) = EŶ=Gπ(X)
X∼D

[
Rcψ(z1:T )−R(Ŷ )

]2
.

The critic observes the state-action sequence of the
agent π via the modified hidden states (z1, . . . , zT )
of the recurrent network, and predicts the associ-
ated decoding objective. By minimizing the mean
squared error above, we effectively encourage the
critic to approximate the non-differentiable objec-
tive as closely as possible in the vicinity of the
state-action sequence visited by the agent.

We implement the critic Rc as a recurrent net-
work, similarly to the underlying neural machine
translation system. This implies that we can com-
pute the derivative of the predicted decoding objec-
tive with respect to the input, that is, the state-action
sequence z1:T , which allows us to update the actor
π, or equivalently its parameters φ, to maximize
the predicted decoding objective. Effectively we
avoid the issue of non-differentiability of the origi-
nal decoding objective by working with its proxy.

With the critic, the learning objective of the ac-
tor is now to maximize not the original decoding
objective R but its proxy RC such that

ĴA(φ) = EŶ=Gπ(X)
X∼D

[
RC(Ŷ )

]
.

Algorithm 1 Trainable Greedy Decoding
Require: NMT θ, actor φ, critic ψ, Nc, Na, Sc, Sa, τ

1: Train θ using MLE on training set D;
2: Initialize φ and ψ;
3: Shuffle D twice into Dφ and Dψ
4: while stopping criterion is not met do
5: for t = 1 : Nc do
6: Draw a translation pair: (X,Y ) ∼ Dψ;
7: r, rc = DECODE(Sc, X, Y, 1)

8: Update ψ using∇ψ
∑
k (r

c
k − rk)2/(Sc + 1)

9: for t = 1 : Na do
10: Draw a translation pair: (X,Y ) ∼ Dφ;
11: r, rc = DECODE(Sa, X, Y, 0)

12: Compute wk = exp
(
− (rck − rk)2 /τ

)
13: Compute w̃k = wk/

∑
k wk

14: Update φ using −∑k (w̃k · ∇φrck)

Function: DECODE(S,X, Y, c)
1: Ys = {}, Zs = {}, r = {}, rc = {};
2: for k = 1 : S do
3: Sample noise ε ∼ N (0, σ2) for each action;
4: Greedy decoding Ŷ k = Gθ,φ(X) with ε;
5: Collect hidden states zk1:T given X , Ŷ , θ, φ
6: Ys ← Ys ∪ {Y k}
7: Zs ← Zs ∪ {zk1:T }
8: if c = 1 then
9: Collect hidden states z1:T given X , Y , θ

10: Ys ← Ys ∪ {Y }
11: Zs ← Zs ∪ {z1:T }
12: for Ŷ , Z ∈ Ys, Zs do
13: Compute the critic output rc ← Rcψ(Z, Ŷ )

14: Compute true reward r ← R(Y, Ŷ )

15: return r, rc

Unlike the original objective, this objective func-
tion is fully differentiable with respect to the agent
π. We thus use a usual stochastic gradient descent
algorithm to train the agent, while simultaneously
training the critic. We do so by alternating between
training the actor and critic. Note that we maximize
the return of a full episode rather than the Q value,
unlike usual approaches in reinforcement learning.

4.2 Critic-Aware Actor Learning

Challenges The most apparent challenge for
training such a deterministic actor with a large ac-
tion space is that most of action configurations will
lead to zero return. It is also not trivial to devise
an efficient exploration strategy with a determinis-
tic actor with real-valued actions. This issue has
however turned out to be less of a problem than
in a usual reinforcement learning setting, as the
state and action spaces are well structured thanks
to pretraining by maximum likelihood learning. As
observed by Cho (2016), any reasonable perturba-
tion to the hidden state of the recurrent network
generates a reasonable translation which would re-
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(b) Beam Search + Trainable Greedy Decoding

Figure 2: The plots draw the improvements by the trainable greedy decoding on the test set. The x-axes
correspond to the objectives used to train trainable greedy decoding, and the y-axes to the changes in
the achieved objectives (BLEU for the figures on the left, and negative perplexity on the right.) The top
row (a) shows the cases when the trainable greedy decoder is used on its own, and the bottom row (b)
when it is used together with beam search. When training and evaluation are both done with BLEU, we
test the statistical significance (Koehn, 2004), and we mark significant cases with red stars (p < 0.05.)
The underlying neural machine translation models achieved the BLEU scores of 14.49/16.20 for En-Cs,
18.90/21.20 for Cs-En, 18.97/21.33 for En-De, 21.63/24.46 for De-En, 16.97/19.68 for En-Ru, 21.06/23.34
for Ru-En, 7.53/8.82 for En-Fi and 9.79/11.03 for Fi-En (greedy/beam).

ceive again a reasonable return.

Although this property of dense reward makes
the problem of trainable greedy decoding more
manageable, we have observed other issues during
our preliminary experiment with the vanilla deter-
ministic policy gradient. In order to avoid these
issues that caused instability, we propose the fol-
lowing modifications to the vanilla algorithm.

Critic-Aware Actor Learning A major goal of
the critic is not to estimate the return of a given
episode, but to estimate the gradient of the return
evaluated given an episode. In order to do so, the
critic must be trained, or presented, with state-
action sequences z1:T ′ similar though not identi-
cal to the state-action sequence generated by the
current actor π. This is achieved, in our case, by
injecting unstructured noise to the action at each

time step, similar to (Heess et al., 2015):

ãt = φ(zt, at−1) + σ · ε, (2)

where ε is a zero-mean, unit-variance normal vari-
able. This noise injection procedure is mainly used
when training the critic.

We have however observed that the quality of
the reward and its gradient estimate of the critic is
very noisy even when the critic was trained with
this kind of noisy actor. This imperfection of the
critic often led to the instability in training the actor
in our preliminary experiments. In order to avoid
this, we describe here a technique which we refer
to as critic-aware actor gradient estimation.

Instead of using the point estimate ∂Rc

∂φ of the
gradient of the predicted objective with respect to
the actor’s parameters φ, we propose to use the
expected gradient of the predicted objective with
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respect to the critic-aware distribution Q. That is,

EQ
[
∂Rcψ
∂φ

]
, (3)

where we define the critic-aware distribution Q as

Q(ε) ∝ exp(−(Rcψ −R)2/τ︸ ︷︷ ︸
Critic-awareness

) exp(− ε2

2σ2︸ ︷︷ ︸
Locality

). (4)

This expectation allows us to incorporate the noisy,
non-uniform nature of the critic’s approximation
of the objective by up-weighting the gradient com-
puted at a point with a higher critic quality and
down-weighting the gradient computed at a point
with a lower critic quality. The first term in Q
reflects this, while the second term ensures that
our estimation is based on a small region around
the state-action sequence generated by the current,
noise-free actor π.

Since it is intractable to compute Eq. (3) exactly,
we resort to importance sampling with the proposed
distribution equal to the second term in Eq. (4).
Then, our gradient estimate for the actor becomes
the sum of the gradients from multiple realizations
of the noisy actor in Eq. (2), where each gradient is
weighted by the quality of the critic exp(−(Rcφ −
R)2/τ). τ is a hyperparameter that controls the
smoothness of the weights. We observed in our
preliminary experiment that the use of this critic-
aware actor learning significantly stabilizes general
learning of both the actor and critic.

Reference Translations for Training the Critic
In our setting of neural machine translation, we
have access to a reference translation for each
source sentence X , unlike in a usual setting of
reinforcement learning. By force-feeding the ref-
erence translation into the underlying neural ma-
chine translation system (rather than feeding the
decoded symbols), we can generate the reference
state-action sequence. This sequence is much less
correlated with those sequences generated by the
actor, and facilitates computing a better estimate of
the gradient w.r.t. the critic.

In Alg. 1, we present the complete algorithm.
To make the description less cluttered, we only
show the version of minibatch size = 1 which can
be naturally extended. We also illustrate the pro-
posed trainable greedy decoding and the proposed
learning strategy in Fig. 1.
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Figure 3: Comparison of greedy BLEU scores
whether using the critic-aware exploration or not
on Ru-En Dataset. The green line means the BLEU
score achieved by greedy decoding from the under-
lying NMT model.

5 Experimental Settings

We empirically evaluate the proposed trainable
greedy decoding on four language pairs – En-
De, En-Ru, En-Cs and En-Fi – using a standard
attention-based neural machine translation system
(Bahdanau et al., 2014). We train underlying neu-
ral translation systems using the parallel corpora
made available from WMT’15.1 The same set of
corpora are used for trainable greedy decoding as
well. All the corpora are tokenized and segmented
into subword symbols using byte-pair encoding
(BPE) (Sennrich et al., 2015). We use sentences of
length up to 50 subword symbols for MLE train-
ing and 200 symbols for trainable decoding. For
validation and testing, we use newstest-2013 and
newstest-2015, respectively.

5.1 Model Architectures and Learning

Underlying NMT Model For each language
pair, we implement an attention-based neural ma-
chine translation model whose encoder and decoder
recurrent networks have 1,028 gated recurrent units
(GRU, Cho et al., 2014) each. Source and target
symbols are projected into 512-dimensional embed-
ding vectors. We trained each model for approxi-
mately 1.5 weeks using Adadelta (Zeiler, 2012).

Actor π We use a feedforward network with a
single hidden layer as the actor. The input is a
2,056-dimensional vector which is the concate-
nation of the decoder hidden state and the time-
dependent context vector from the attention mech-

1http://www.statmt.org/wmt15/
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(a) S:  Главное зеркало инфракрасного космического телескопа имеет диаметр 6,5 метров 
    T:  The primary mirror of the infrared space telescope has a diameter of 6.5 metres .
    G:  The main mirror of the infrared spaceboard has a diameter 6.5 m .
    A:  The main mirror of the infrared space-type telescope has a diameter of 6.5 meters .

(b) S:  Еще один пункт - это дать им понять , что они должны вести себя онлайн так же , как делают это оффлайн .
    T:  Another point is to make them see that they must behave online as they do offline .
    G:  Another option is to give them a chance to behave online as well as do this offline .
    A:  Another option is to give them to know that they must behave online as well as offline .

(c) S:  Возможен ли долговременный мир между арабами и израильтянами на Ближнем Востоке ?
    T:  Can there ever be a lasting peace between Arabs and Jews in the Middle East ?
    G:  Can the Long-term Peace be Out of the Middle East ?
    A:  Can the Long-term Peace be between Arabs and Israelis in the Middle East ?

Figure 4: Three Ru-En examples in which the difference between the trainable greedy decoding (A)
and the conventional greedy decoding (G) is large. Each step is marked with magenta, when the actor
significantly influenced the output distribution.

anism, and it outputs a 1,028-dimensional action
vector for the decoder. We use 32 units for the
hidden layer with tanh activations.

Critic Rc The critic is implemented as a variant
of an attention-based neural machine translation
model that takes a reference translation as a source
sentence and a state-action sequence from the actor
as a target sentence. Both the size of GRU units
and embedding vectors are the same with the under-
lying model. Unlike a usual neural machine transla-
tion system, the critic does not language-model the
target sentence but simply outputs a scalar value to
predict the true return. When we predict a bounded
return, such as sentence BLEU, we use a sigmoid
activation at the output. For other unbounded return
like perplexity, we use a linear activation.

Learning We train the actor and critic simultane-
ously by alternating between updating the actor and
critic. As the quality of the critic’s approximation
of the decoding objective has direct influence on the
actor’s learning, we make ten updates to the critic
before each time we update the actor once. We
use RMSProp (Tieleman and Hinton, 2012) with
the initial learning rates of 2× 10−6 and 2× 10−4,
respectively, for the actor and critic.

We monitor the progress of learning by measur-
ing the decoding objective on the validation set.
After training, we pick the actor that results in the
best decoding objective on the validation set, and
test it on the test set.

Decoding Objectives For each neural machine
translation model, pretrained using maximum like-
lihood criterion, we train two trainable greedy de-
coding actors. One actor is trained to maximize
BLEU (or its smoothed version for sentence-level

scoring (Lin and Och, 2004)) as its decoding ob-
jective, and the other to minimize perplexity (or
equivalently the negative log-probability normal-
ized by the length.)

We have chosen the first two decoding objectives
for two purposes. First, we demonstrate that it is
possible to build multiple trainable decoders with
a single underlying model trained using maximum
likelihood learning. Second, the comparison be-
tween these two objectives provides a glimpse into
the relationship between BLEU (the most widely
used automatic metric for evaluating translation
systems) and log-likelihood (the most widely used
learning criterion for neural machine translation).

Evaluation We test the trainable greedy decoder
with both greedy decoding and beam search. Al-
though our decoder is always trained with greedy
decoding, beam search in practice can be used to-
gether with the actor of the trainable greedy de-
coder. Beam search is expected to work better es-
pecially when our training of the trainable greedy
decoder is unlikely to be optimal. In both cases, we
report both the perplexity and BLEU.

5.2 Results and Analysis

We present the improvements of BLEU and per-
plexity (or its negation) in Fig. 2 for all the lan-
guage pair-directions. It is clear from these plots
that the best result is achieved when the trainable
greedy decoder was trained to maximize the target
decoding objective. When the decoder was trained
to maximize sentence-level BLEU, we see the im-
provement in BLEU but often the degradation in
the perplexity (see the left plots in Fig. 2.) On the
other hand, when the actor was trained to minimize
the perplexity, we only see the improvement in per-
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plexity (see the right plots in Fig. 2.) This confirms
our earlier claim that it is necessary and desirable
to tune for the target decoding objective regard-
less of what the underlying translation system was
trained for, and strongly supports the proposed idea
of trainable decoding.

The improvement from using the proposed train-
able greedy decoding is smaller when used together
with beam search, as seen in Fig. 2 (b). However,
we still observe statistically significant improve-
ment in terms of BLEU (marked with red stars.)
This suggests a future direction in which we extend
the proposed trainable greedy decoding to directly
incorporate beam search into its training procedure
to further improve the translation quality.

It is worthwhile to note that we achieved all of
these improvements with negligible computational
overhead. This is due to the fact that our actor is
a very small, shallow neural network, and that the
more complicated critic is thrown away after train-
ing. We suspect the effectiveness of such a small ac-
tor is due to the well-structured hidden state space
of the underlying neural machine translation model
which was trained with a large amount of parallel
corpus. We believe this favourable computational
complexity makes the proposed method suitable for
production-grade neural machine translation (Wu
et al., 2016; Crego et al., 2016).

Importance of Critic-Aware Actor Learning
In Fig. 3, we show sample learning curves with and
without the proposed critic-aware actor learning.
Both curves were from the models trained under
the same condition. Despite a slower start in the
early stage of learning, we see that the critic-aware
actor learning has greatly stabilized the learning
progress. We emphasize that we would not have
been able to train all these 16 actors without the
proposed critic-aware actor learning.

Examples In Fig. 4, we present three examples
from Ru-En. We defined the influence as the KL
divergence between the conditional distributions
without the trainable greedy decoding and with the
trainable greedy decoding, assuming the fixed pre-
vious hidden state and target symbol. We colored
a target word with magenta, when the influence of
the trainable greedy decoding is large (> 0.001).
Manual inspection of these examples as well as
others has revealed that the trainable greedy de-
coder focuses on fixing prepositions and removing
any unnecessary symbol generation. More in-depth

analysis is however left as future work.

6 Conclusion

We proposed trainable greedy decoding as a way
to learn a decoding algorithm for neural machine
translation with an arbitrary decoding objective.
The proposed trainable greedy decoder observes
and manipulates the hidden state of a trained neural
translation system, and is trained by a novel variant
of deterministic policy gradient, called critic-aware
actor learning. Our extensive experiments on eight
language pair-directions and two objectives con-
firmed its validity and usefulness. The proposed
trainable greedy decoding is a generic idea that can
be applied to any recurrent language modeling, and
we anticipate future research both on the funda-
mentals of the trainable decoding as well as on the
applications to more diverse tasks such as image
caption generating and dialogue modeling.
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Abstract

Satirical news is considered to be enter-
tainment, but it is potentially deceptive
and harmful. Despite the embedded genre
in the article, not everyone can recognize
the satirical cues and therefore believe the
news as true news. We observe that satiri-
cal cues are often reflected in certain para-
graphs rather than the whole document.
Existing works only consider document-
level features to detect the satire, which
could be limited. We consider paragraph-
level linguistic features to unveil the satire
by incorporating neural network and atten-
tion mechanism. We investigate the differ-
ence between paragraph-level features and
document-level features, and analyze them
on a large satirical news dataset. The eval-
uation shows that the proposed model de-
tects satirical news effectively and reveals
what features are important at which level.

1 Introduction

“When information is cheap, attention
becomes expensive.” — James Gleick

Satirical news is considered to be entertainment.
However, it is not easy to recognize the satire if the
satirical cues are too subtle to be unmasked and the
reader lacks the contextual or cultural background.
The example illustrated in Table 1 is a piece of
satirical news with subtle satirical cues.

Assuming readers interpret satirical news as
true news, there is not much difference between
satirical news and fake news in terms of the con-
sequence, which may hurt the credibility of the
media and the trust in the society. In fact, it is
reported in the Guardian that people may believe
satirical news and spread them to the public re-

...
“Kids these days are done with stories where things
happen,” said CBC consultant and world's oldest child
psychologist Obadiah Sugarman. “We'll finally be giv-
ing them the stiff Victorian morality that I assume is in
vogue. Not to mention, doing a period piece is a great
way to make sure white people are adequately repre-
sented on television.”
...

Table 1: A paragraph of satirical news

gardless of the ridiculous content1. It is also con-
cluded that fake news is similar to satirical news
via a thorough comparison among true news, fake
news, and satirical news (Horne and Adali, 2017).
This paper focuses on satirical news detection to
ensure the trustworthiness of online news and pre-
vent the spreading of potential misleading infor-
mation.

Some works tackling fake news and mislead-
ing information favor to discover the truth (Xiao
et al., 2016; Wan et al., 2016) through knowledge
base (Dong et al., 2015) and truthfulness estima-
tion (Ge et al., 2013). These approaches may
not be feasible for satirical news because there
is no ground-truth in the stories. Another track
of works analyze social network activities (Zhao
et al., 2015) to evaluate the spreading informa-
tion (Gupta et al., 2012; Castillo et al., 2011). This
could be ineffective for both fake news and satiri-
cal news because once they are distributed on the
social network, the damage has been done. Fi-
nally, works evaluating culture difference (Pérez-
Rosas and Mihalcea, 2014), psycholinguistic fea-
tures (Ott et al., 2011), and writing styles (Feng
et al., 2012) for deception detection are suitable
for satirical news detection. These works consider
features at document level, while we observe that
satirical cues are usually located in certain para-

1https://www.theguardian.com/media/2016/nov/17/facebook-
fake-news-satire

1979



graphs rather than the whole document. This in-
dicates that many document level features may be
superfluous and less effective.

To understand how paragraph-level features and
document-level features are varied towards detec-
tion decision when only document level labels are
available, we propose a 4-level neural network
in a character-word-paragraph-document hierar-
chy and utilize attention mechanism (Bahdanau
et al., 2014) to reveal their relative difference. We
apply psycholinguistic features, writing stylistic
features, structural features, and readability fea-
tures to understand satire. The paragraph-level
features are embedded into attention mechanism
for selecting highly attended paragraphs, and the
document-level features are incorporated for the
final classification. This is the first work that un-
veils satirical cues between paragraph-level and
document-level through neural networks to our
knowledge.

We make the following contributions in our pa-
per:

• We propose a 4-level hierarchical network for
satirical news detection. The model detects
satirical news effectively and incorporates at-
tention mechanism to reveal paragraph-level
satirical cues.

• We show that paragraph-level features are
more important than document-level features
in terms of the psycholinguistic feature, writ-
ing stylistic feature, and structural feature,
while the readability feature is more impor-
tant at the document level.

• We collect satirical news (16,000+) and true
news (160,000+) from various sources and
conduct extensive experiments on this cor-
pus2.

2 Related Work

We categorize related works into four categories:
content-based detection for news genre, truth veri-
fication and truthfulness evaluation, deception de-
tection, and identification of highly attended com-
ponent using attention mechanism.

Content-based detection for news
genre.Content-based methods are consider-
ably effective to prevent satirical news from being
recognized as true news and spreading through

2Please contact the first author to obtain the data

social media. Burfoot and Baldwin (2009) intro-
duce headline features, profanity, and slang to
embody satirical news. They consider absurdity
as the major device in satirical news and model
this feature by comparing entity combination in a
given document with Google query results. Rubin
et al. (2016) also consider absurdity but model
it through unexpected new name entities. They
introduce additional features including humor,
grammar, negative affect, and punctuation to em-
power the detection. Besides satirical news, Chen
et al. (2015) aim to detect click-baits, whose
content exaggerates fact. Potthast et al. (2017)
report a writing style analysis of hyperpartisan
news. Barbieri et al. (2015) focus on multilingual
tweets that advertise satirical news.

It is noteworthy that satirical news used for
evaluation in above works are of limited quantity
(around 200 articles). Diverse examples of satire
may not be included as discussed by Rubin et al.
(2016). This issue inspires us to collect more than
16,000 satirical news for our experiment.

Truth discovery and truthfulness evalua-
tion. Although truth extraction from inconsistent
sources (Ge et al., 2013; Wan et al., 2016; Li et al.,
2016) and from conflicting sources (Yin et al.,
2008; Li et al., 2014b), truth inference through
knowledge base (Dong et al., 2015), and discov-
ering evolving truth (Li et al., 2015) could help
identify fact and detect fake news, they cannot fa-
vor much for satirical news as the story is entirely
made up and the ground-truth is hardly found.
Analyzing user activities (Farajtabar et al., 2017)
and interactions (Castillo et al., 2011; Mukher-
jee and Weikum, 2015) to evaluate the credibility
may not be appropriate for satirical news as it can-
not prevent the spreading. Therefore, we utilize
content-based features, including psycholinguistic
features, writing stylistic features, structural fea-
tures, and readability features, to address satirical
news detection.

Deception detection. We believe satirical
news and opinion spam share similar character-
istics of writing fictitious and deceptive content,
which can be identified via a psycholinguistic con-
sideration (Mihalcea and Strapparava, 2009; Ott
et al., 2011). Beyond that, both syntactic sty-
lometry (Feng et al., 2012) and behavioral fea-
tures (Mukherjee et al., 2013b) are effective for de-
tecting deceptive reviews, while stylistic features
are practical to deal with obfuscating and imitat-
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ing writings (Afroz et al., 2012). However, decep-
tive content varies among paragraphs in the same
document, and so does satire. We focus on de-
vising and evaluating paragraph-level features to
reveal the satire in this work. We compare them
with features at the document level, so we are able
to tell what features are important at which level.

Identification of highly attended component
using attention mechanism. Attention mech-
anism is widely applied in machine transla-
tion (Bahdanau et al., 2014), language infer-
ence (Rocktäschel et al., 2015), and question an-
swering (Chen et al., 2016a). In addition, Yang
et al. (2016b) propose hierarchical attention net-
work to understand both attended words and sen-
tences for sentiment classification. Chen et al.
(2016b) enhance the attention with the support of
user preference and product information to com-
prehend how user and product affect sentiment rat-
ings. Due to the capability of attention mecha-
nism, we employ the same strategy to show at-
tended component for satirical news. Different
from above works, we further evaluate linguis-
tic features of highly attended paragraphs to an-
alyze characteristics of satirical news, which has
not been explored to our knowledge.

3 The Proposed Model

We first present our 4-level hierarchical neural
network and explain how linguistic features can
be embedded in the network to reveal the differ-
ence between paragraph level and document level.
Then we describe the linguistic features.

3.1 The 4-Level Hierarchical Model

We build the model in a hierarchy of character-
word-paragraph-document. The general overview
of the model can be viewed in Figure 1 and the
notations are listed in Table 2.

Meaning

Superscript Lowercase for notation purpose;
> means matrix transpose.

Subscript For index purpose.

Parameter W,U,wc,va: learnable weights;
b: learnable bias.

Representation

c: character; x: word; p: paragraph;
d: document; ỹ: prediction
l: linguistic vector; y: label;
r: reset gate; z: update gate;
h: hidden state for GRU;
u: hidden state for attention.

Table 2: Notations and meanings

Figure 1: The overview of the proposed model.
The document has 3 paragraphs and each para-
graph contains 4 words. We omit character-level
convolution neural network but leave xc to sym-
bolize the representation learned from it.

3.1.1 Character-Level Encoder

We use convolutional neural networks (CNN) to
encode word representation from characters. CNN
is effective in extracting morphological informa-
tion and name entities (Ma and Hovy, 2016), both
of which are common in news. Each word is pre-
sented as a sequence of n characters and each char-
acter is embedded into a low-dimension vector.
The sequence of characters c is brought to the net-
work. A convolution operation with a filter wc

is applied and moved along the sequence. Max
pooling is performed to select the most important
feature generated by the previous operation. The
word representation xc ∈ Rf is generated with f
filters.

3.1.2 Word-Level Encoder

Assume a sequence of words of paragraph i arrives
at time t. The current word representation xi,t
concatenates xci,t from character level with pre-
trained word embedding xei,t, as xi,t = [xci,t;x

e
i,t].

Examples are given in Figure 1. We implement
Gated Recurrent Unit (GRU) (Cho et al., 2014)
rather than LSTM (Hochreiter and Schmidhuber,
1997) to encode the sequence because GRU has
fewer parameters. The GRU adopts reset gate
ri,t and update gate zi,t to control the informa-
tion flow between the input xi,t and the candidate
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state h̃i,t. The output hidden state hi,t is computed
by manipulating previous state hi,t−1 and the can-
didate state h̃i,t regarding to zi,t as in Equation 4,
where � denotes element-wise multiplication.

zi,t = σ(Wzxi,t +Uzhi,t−1 + bz) (1)

ri,t = σ(Wrxi,t +Urhi,t−1 + br) (2)

h̃i,t = tanh(Whxi,t + ri,t � (Uhhi,t−1 + bh))

(3)

hi,t = (1− zi,t)� hi,t−1 + zi,t � h̃i,t (4)

To learn a better representation from the past
and the future, we use bidirectional-GRU (Bi-
GRU) to read the sequence of words with for-
ward

−−→
GRU from xi,1 to xi,t, and backward

←−−
GRU

from xi,t to xi,1. The final output of Bi-GRU
concatenates the last state of

−−→
GRU and

←−−
GRU,

as [
−→
h i,t;

←−
h i,1], to represent the ith paragraph.

3.1.3 Paragraph-Level Attention
We observe that not all paragraphs have satire and
some of them are functional to make the article
complete, so we incorporate attention mechanism
to reveal which paragraphs contribute to decision
making. Assuming a sequence of paragraph repre-
sentations have been constructed from lower lev-
els, another Bi-GRU is used to encode these rep-
resentations to a series of new states p1:t, so the
sequential orders are considered.

To decide how paragraphs should be attended,
we calculate satirical degree αi of paragraph i. We
first convey pi into hidden states ui as in Equa-
tion 5. Then we product ui with a learnable satire-
aware vector va and feed the result into softmax
function as in Equation 6. The final document rep-
resentation d is computed as a weighted sum of αi
and pi.

ui = tanh(Wapi + ba) (5)

αi =
exp(u>i v

a)∑t
j=0 exp(u>j va))

(6)

d =
t∑

i=0

αipi (7)

Linguistic features are leveraged to support at-
tending satire paragraph. Besides pi, we represent
paragraph i based on our linguistic feature set and
transform it into a high-level feature vector lpi via

multilayer perceptron (MLP). So ui in Equation 5
is updated to:

ui = tanh(Wapi +Ualpi + ba) (8)

3.1.4 Document-Level Classification
Similar to the paragraph level, we represent doc-
ument j based on our linguistic feature set and
transform it into a high-level feature vector ldj via
MLP. We concatenate dj and ldj together for clas-
sification. Suppose yj ∈ (0, 1) is the label of the
document j, the prediction ỹj and the loss func-
tion L over N documents are:

ỹj = sigmoid(Wddj +Udldj + bd) (9)

L = − 1

N

N∑

j

yj log ỹj + (1− yj) log(1− ỹj)

(10)

3.2 Linguistic Features
Linguistic features have been successfully applied
to expose differences between deceptive and gen-
uine content, so we subsume most of the features
in previous works. The idea of explaining ficti-
tious content is extended here to reveal how satir-
ical news differs from true news. We divide our
linguistic features into four families and compute
them separately for paragraph and document.

Psycholinguistic Features: Psychological dif-
ferences are useful for our problem, because pro-
fessional journalists tend to express opinion con-
servatively to avoid unnecessary arguments. On
the contrary, satirical news includes aggressive
language for the entertainment purpose. We ad-
ditionally observe true news favors clarity and ac-
curacy while satirical news is related to emotional
cognition. To capture the above observations,
we employ Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2007) as our psy-
cholinguistic dictionary. Each category of LIWC
is one independent feature and valued by its fre-
quency3.

Writing Stylistic Features: The relative distri-
bution of part-of-speech (POS) tags reflects infor-
mative vs. imaginative writing, which contributes
to detecting deceptions (Li et al., 2014a; Mukher-
jee et al., 2013a). We argue that the stories cov-
ered by satirical news are based on imagination.
In addition, POS tags are hints of the underlying

3Total counts divided by total words.
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#Train #Validation #Test #Para #Sent #Words # Capitals #Punc #Digits
True 101,268 33,756 33,756 20±7.8 32±24 734±301 118±58 28±26 93±49
Satire 9,538 3,103 3,608 12±4.4 25±12 587±246 87±44 11±13 86±43

Table 3: The split and the description (mean and standard deviation) of the dataset. Para denotes para-
graphs, sent denotes sentences, and punc denotes punctuations.

humor (Reyes et al., 2012), which is common in
satirical news. So we utilize POS tags (Toutanova
et al., 2003) to apprehend satire. Each tag is re-
garded as one independent feature and valued by
its frequency.

Readability Features: We consider readabil-
ity of genuine news would differ from satirical
news because the former is written by professional
journalists and tend to be clearer and more accu-
rate, while satirical news packs numerous clauses
to enrich the made-up story as introduced by Ru-
bin et al. (2016). Different from their work, we
use readability metrics, including Flesch Read-
ing Ease (Kincaid et al., 1975), Gunning Fog In-
dex (Gunning, 1952), Automated Readability In-
dex (Senter and Smith, 1967), ColemanLiau In-
dex (Coleman and Liau, 1975), and syllable count
per word, as features.

Structural Features: To further reflect the
structure of news articles, we examine the follow-
ing features: word count, log word count, number
of punctuations, number of digits, number of cap-
ital letters, and number of sentences.

4 Experiment and Evaluation

We report satirical news detection results and
show high weighted word features. Then, we pro-
vide a thorough analysis between paragraph-level
and document-level features. Finally, we visualize
an example of satirical news article to demonstrate
the effectiveness of our work.

4.1 Dataset
The satirical news is collected from 14 websites
that explicitly declare they are offering satire, so
the correct label can be guaranteed. We also no-
tice websites that mix true news, fake news, and
satirical news. We exclude these websites in this
work because it requires experts to annotate the
news articles.

We maintain each satire source in only one of
the train/validation/test sets4 as the cross-domain

4Train: Onion, the Spoof. Test: SatireWorld, Beaver-
ton, Ossurworld. Validation: DailyCurrent, DailyReport,
EnduringVision, Gomerblog, NationalReport, SatireTribune,
SatireWire, Syruptrap, and UnconfirmedSource.

setting in (Li et al., 2014a). Otherwise, the prob-
lem may become writing pattern recognition or
news site classification. We also combined dif-
ferent sources together5 as a similar setting of
leveraging multiple domains (Yang et al., 2016a).
The true news is collected from major news out-
lets6 and Google News using FLORIN (Liu et al.,
2015). The satirical news in the corpus is signif-
icantly less than true news, reflecting an impres-
sionistic view of the reality. We omit headline,
creation time, and author information so this work
concentrates on the satire in the article body. We
realize the corpus may contain different degree of
satire. Without the annotation, we only consider
binary classification in this work and leave the de-
gree estimation for the future. The split and the
description of the dataset can be found in Table 3.

4.2 Implementation Detail

For SVM, we use the sklearn implementation7.
We find that using linear kernel and setting
“class weight” to “balanced” mostly boost the re-
sult. We search soft-margin penalty “C” and find
high results occur in range [10−1, 10−4]. We use
the validation set to tune the model so select-
ing hyper-parameters is consistent with neural net-
work based model.

For neural network based models, we use the
Theano package (Bastien et al., 2012) for imple-
mentation. The lengths of words, paragraphs,
and documents are fixed at 24, 128, and 16 with
necessary padding or truncating. Stochastic Gra-
dient Descent is used with initial learning rate
of 0.3 and decay rate of 0.9. The training is
early stopped if the F1 drops 5 times continu-
ously. Word embeddings are initialized with 100-
dimension Glove embeddings (Pennington et al.,
2014). Character embeddings are randomly ini-
tialized with 30 dimensions. Specifically for the
proposed model, the following hyper-parameters
are estimated based on the validation set and used

5The combination is chosen to ensure enough training ex-
amples and balanced validation/test sets.

6CNN, DailyMail, WashingtonPost, NYTimes, The-
Guardian, and Fox.

7sklearn.svm.SVC
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Model Validation Test
Acc Pre Rec F1 Acc Pre Rec F1

SVM word n-grams 97.69 87.45 84.66 86.03 97.46 89.59 83.45 86.41
SVM word n-grams + LF 97.73 86.06 87.14 86.60 97.52 88.44 85.48 86.93
SVM word + char n-grams 97.43 87.10 81.57 84.24 97.64 90.76 84.12 87.31
SVM word + char n-grams + LF 97.76 90.13 82.44 86.11 97.93 92.71 85.31 88.86
SVM Rubin et al. (2016) 97.73 90.21 81.92 85.86 97.79 93.47 82.95 87.90
SVM Rubin et al. (2016) + char tf-idf + LF 97.93 90.99 83.69 87.19 98.09 92.98 86.72 89.75
Bi-GRU 97.67 89.17 82.28 85.58 97.58 93.11 80.96 86.61
SVM Doc2Vec Le and Mikolov (2014) 92.48 58.48 71.66 64.40 90.48 50.52 67.88 57.92
HAN Yang et al. (2016b) 97.91 92.06 82.24 86.88 97.83 90.85 86.17 88.45
4LHN 98.44 92.82 88.33 90.52 98.36 94.61 88.00 91.18
4LHNP 98.46 93.54 87.75 90.56 98.39 94.63 88.33 91.37
4LHND 98.36 94.73 85.24 89.74 98.18 95.35 85.31 90.05
4LHNPD 98.54 93.31 89.01 91.11 98.39 93.51 89.50 91.46

Table 4: Satirical news detection results.

in the final test set. The dropout is applied with
probability of 0.5. The size of the hidden states is
set at 60. We use 30 filters with window size of 3
for convolution.

4.3 Performance of Satirical News Detection

We report accuracy, precision, recall, and F1 on
the validation set and the test set. All metrics
take satirical news as the positive class. Both
paragraph-level and document-level linguistic fea-
tures are scaled to have zero mean and unit vari-
ance, respectively. The compared methods in-
clude:

SVM word n-grams: Unigram and bigrams of
the words as the baseline. We report 1,2-grams
because it performs better than other n-grams.

SVM word n-grams + LF: 1,2-word grams
plus linguistic features. We omit comparison with
similar work (Ott et al., 2011) as their features are
subsumed in ours.

SVM word + char n-grams: 1,2-word grams
plus bigrams and trigrams of the characters.

SVM word + char n-grams + LF: All the pro-
posed features are considered.

SVM Rubin et al. (2016): Unigram and bi-
grams tf-idf with satirical features as proposed
in (Rubin et al., 2016). We compare with (Ru-
bin et al., 2016) rather than (Burfoot and Baldwin,
2009) as the former claims a better result.

SVM Rubin et al. (2016) + char tf-idf + LF:
Include all possible features.

Bi-GRU: Bi-GRU for document classification.
The document representation is the average of the
hidden state at every time-step.

SVM Doc2Vec: Unsupervised method learning
distributed representation for documents (Le and
Mikolov, 2014). The implementation is based on

Gensim (Řehůřek and Sojka, 2010).
HAN: Hierarchical Attention Network (Yang

et al., 2016b) for document classification with both
word-level and sentence-level attention.

4LHN: 4-Level Hierarchical Network without
any linguistic features.

4LHNP: 4-Level Hierarchical Network with
Paragraph-level linguistic features.

4LHND: 4-Level Hierarchical Network with
Document-level linguistic features.

4LHNPD: 4-Level Hierarchical Network with
both Paragraph-level and Document-level linguis-
tic features.

In Table 4, the performances on the test set
are generally better than on the validation set due
to the cross-domain setting. We also explored
word-level attention (Yang et al., 2016b), but it
performed 2% worse than 4LHN. The result of
Doc2Vec is limited. We suspect the reason could
be the high imbalanced dataset, as an unsuper-
vised learning method for document representa-
tion heavily relies on the distribution of the doc-
ument.

4.4 Word Level Analysis

True Satire
: day '' stated
video said the sources press
but the twitter continued reporter
in statement told the added resident
com pictured washington dc said that

Table 5: High weighted word-level features

We report high weighted word-grams in Ta-
ble 5 based on the SVM model as incorporating
word-level attention in our neural hierarchy model
reduces the detection performance. According
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Psycholinguistic Feature Writing Stylistic Feature Readability Feature
Name S.m S.std T.m T.std Name S.m S.std T.m T.std Name S.m S.std T.m T.std

Human.P .011 .021 .009 .023 JJ.P .061 .045 .058 .046 FRE.D 58.4 12.2 56.0 10.1
Past.P .034 .035 .040 .042 PRP.P .054 .047 .044 .047 CLI.D 9.08 1.66 9.48 1.61
Self.P .017 .032 .010 .027 RB.P .051 .048 .045 .054 FOG.D 13.71 3.25 14.00 2.89

Funct.D .453 .045 .437 .049 VBN.P .021 .026 .024 .031 Structural Feature
Social.P .097 .067 .091 .073 NN.D .273 .038 .300 .043 Punc.P 7.69 5.35 4.69 3.83

Leisure.P .017 .027 .018 .032 VBZ.P .019 .026 .021 .029 Cap.P 7.44 6.08 5.75 4.8
Hear.P .011 .019 .012 .021 CC.P .023 .024 .024 .026 Digit.P 0.97 2.40 1.39 3.00
Bio.P .026 .035 .023 .036 CD.P .013 .027 .024 .043 LogWc.P 3.69 0.71 3.39 0.53

Table 6: Comparing feature values within each category. P stands for paragraph level. D stands for document
level. S stands for satirical news. T stands for true news. m stands for mean and std stands for standard deviation.
FRE: Flesch Reading Ease, the lower the harder. CLI: ColemanLiau Index. FOG: Gunning Fog Index. Punc:
punctuation. Cap: Capital letters. LogWc: Log Word count

to Table 5, we conclude satirical news mimics
true news by using news related words, such as
“stated” and “reporter”. However, these words
may be over used so they can be detected. True
news may use other evidence to support the cred-
ibility, which explains “twitter”, “com”, “video”,
and “pictured”. High weight of “ : ” indicates
that true news uses colon to list items for clarity.
High weight of “ '' ” indicates that satirical news
involves more conversation, which is consistent
with our observation. The final interesting note is
satirical news favors “washington dc”. We suspect
that satirical news mostly covers politic topics, or
satire writers do not spend efforts on changing lo-
cations.

4.5 Analysis of Weighted Linguistic Features

We use 4LHNPD to compare paragraph-level and
document-level features, as 4LHNPD leverages
the two-level features into the same framework
and yields the best result.

Because all linguistic features are leveraged into
MLP with non-linear functions, it is hard to check
which feature indicates satire. Alternatively, we
define the importance of linguistic features by
summing the absolute value of the weights if di-
rectly connected to the feature. For example,
the importance I of feature k is given by Ik =
1
M

∑M
m=0 |wk,m|, where w ∈ RK×M is the di-

rectly connected weight, K is the number of fea-
tures, and M is the dimension of the output. This
metric gives a general idea about how much does
a feature contribute to the decision making.

We first report the scaled importance of the four
linguistic feature sets by averaging the importance
of individual linguistic features. Then we report
individual important features within each set.

Figure 2: Comparing the importance of the four
feature sets at paragraph level and document level.

4.5.1 Comparing the Four Feature Sets
According to Figure 2, the importance of
paragraph-level features is greater than document-
level features except for the readability feature
set. It is reasonable to use readability at the doc-
ument level because readability features evaluate
the understandability of a given text, which de-
pends on the content and the presentation. The
structural feature set is highly weighted for select-
ing attended paragraph, which inspires us to focus
on individual features inside the structural feature
set.

4.5.2 Comparing Individual Features
Within each set, we rank features based on the im-
portance score and report their mean and standard
deviation before being scaled in Table 6. At para-
graph level, we use top three attended paragraphs
for calculating. The respective p-values of all fea-
tures in the table are less than 0.01 based on the
t-test, indicating satirical news is statistically sig-
nificantly different from true news.

Comparing Table 6 and Table 3, we find that
the word count, capital letters, and punctuations
in true news are larger than in satirical news at
the document level, while at paragraph level these
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Figure 3: An example of attended paragraphs.

features in true news are less than in satirical
news. This indicates satire paragraph could be
more complex locally. It also could be referred
as “sentence complexity”, that “satirical articles
tend to pack a great number of clauses into a
sentence for comedic effect” (Rubin et al., 2016).
Accordingly, we hypothesize top complex para-
graphs could represent the entire satire document
for classification, which we leave for future exam-
ination.

In Table 6, psycholinguistic feature “Humans”
is more related to emotional writing than con-
trol writing (Pennebaker et al., 2007), which in-
dicates satirical news is emotional and unprofes-
sional compared to true news. The same reason
also applies to “Social” and “Leisure”, where the
former implies emotional and the latter implies
control writing. The “Past” and “VBN” both have
higher frequencies in true news, which can be ex-
plained by the fact that true news covers what hap-
pened. A similar reason that true news reports
what happened to others explains a low “Self” and
a high “VBZ” in true news.

For writing stylistic features, it is suggested that
informative writing has more nouns, adjectives,
prepositions and coordinating conjunctions, while
imaginative writing has more verbs, adverbs, pro-
nouns, and pre-determiners (Rayson et al., 2001).
This explains higher frequencies of “RB” and
“PRP” in satirical news, and higher frequency of
“NN” and “CC” in true news. One exception is
“JJ”, adjectives, which receives the highest weight
in this feature set and indicates a higher frequency

in satirical news. We suspect adjective could also
be related to emotional writing, but more experi-
ments are required.

Readability suggests satirical news is easier to
be understood. Considering satirical news is also
deceptive (as the story is not true), this is consis-
tent with works (Frank et al., 2008; Afroz et al.,
2012) showing deceptive writings are more easily
comprehended than genuine writings. Finally, true
news has more digits and a higher “CD”(Cardinal
number) frequency, even at the paragraph level,
because they tend to be clear and accurate.

4.6 Visualization of Attended Paragraph

To explore the attention, we sample one example
in the validation set and present it in Figure 3. The
value at the right represents the scaled attention
score. The high attended paragraphs are longer
and have more capital letters as they are referring
different entities. They have more double quotes,
as multiple conversations are involved.

Moreover, we subjectively feel the attended
paragraph with score 0.98 has a sense of humor
while the paragraph with score 0.86 has a sense of
sarcasm, which are common in satire. The para-
graph with score 1.0 presents controversial topics,
which could be misleading if the reader cannot un-
derstand the satire. This is what we expect from
the attention mechanism. Based on the visualiza-
tion, we also feel this work could be generalized
to detect figurative languages.
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5 Conclusion

In this paper, we proposed a 4-level hierarchical
network and utilized attention mechanism to un-
derstand satire at both paragraph level and doc-
ument level. The evaluation suggests readability
features support the final classification while psy-
cholinguistic features, writing stylistic features,
and structural features are beneficial at the para-
graph level. In addition, although satirical news is
shorter than true news at the document level, we
find satirical news generally contain paragraphs
which are more complex than true news at the
paragraph level. The analysis of individual fea-
tures reveals that the writing of satirical news tends
to be emotional and imaginative.

We will investigate efforts to model satire at the
paragraph level following our conclusion and the-
oretical backgrounds, such as (Ermida, 2012). We
plan to go beyond the binary classification and ex-
plore satire degree estimation. We will generalize
our approach to reveal characteristics of figurative
language (Joshi et al., 2016), where different para-
graphs or sentences may reflect different degrees
of sarcasm, irony, and humor.
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Abstract

Verifiability is one of the core editing prin-
ciples in Wikipedia, editors being encour-
aged to provide citations for the added
content. For a Wikipedia article, determin-
ing the citation span of a citation, i.e. what
content is covered by a citation, is impor-
tant as it helps decide for which content
citations are still missing.

We are the first to address the problem of
determining the citation span in Wikipedia
articles. We approach this problem by
classifying which textual fragments in an
article are covered by a citation. We pro-
pose a sequence classification approach
where for a paragraph and a citation,
we determine the citation span at a fine-
grained level.

We provide a thorough experimental eval-
uation and compare our approach against
baselines adopted from the scientific do-
main, where we show improvement for all
evaluation metrics.

1 Introduction

Citations uphold the crucial policy of verifiability
in Wikipedia. This policy requires Wikipedia con-
tributors to support their additions with citations
from authoritative external sources (web, news,
journal etc.). In particular, it states that “arti-
cles should be based on reliable, third-party, pub-
lished sources with a reputation for fact-checking
and accuracy”1. Not only are citations essential
in maintaining reliability, neutrality and authori-
tative assessment of content in such a collabora-
tively edited platform; but lack of citations are

1https://en.wikipedia.org/wiki/
Wikipedia:Identifying_reliable_sources

At the summit of the climb, carpet tacks[1] were thrown onto the road 
causing as many as thirty riders to puncture,[2][3] including Gilbert's team-
mates Cadel Evans and Steve Cummings,[39] while race leader Bradley 
Wiggins […] precaution.[42] As a result, […] and eventually soloed his 
way to a fourth career stage victory at the Tour.[47]  Sagan led home a 
group of four riders almost a minute behind, […] behind Sánchez.[39]

Figure 1: Sub-sentence level span for citation [1]

in a citing paragraph in a Wikipedia article.

essential signals for core editors for unreliability
checks.
However, there are two problems when it comes to
citing facts in Wikipedia. First, there is a long tail
of Wikipedia pages where citations are missing
and hence facts might be unverified. Second, cita-
tions might have different span granularities, i.e.,
the text encoding the fact(s), for which a citation is
intended, might span less than a sentence (see Fig-
ure 1) to multiple sentences. We denote the differ-
ent pieces of text which contain a citation marker
as fact statements or simply statements. For exam-
ple, Table 1 shows different statements for several
citations. The aim of this work is to automatically
and accurately determine citation spans in order
to improve coverage (Fetahu et al., 2015b, 2016)
and to assist editors in verifying citation quality at
a fine-grained level.

Earlier work on span determination is mostly
concerned with scientific texts (O’Connor, 1982;
Kaplan et al., 2016), operates at sentence level and
exploits explicit authoring cues specific to scien-
tific text. Although Wikipedia has well formed
text, it does not follow explicit scientific guide-
lines for placing citations. Moreover, most state-
ments can only be inferred from the citation text.

In this work, we operate at a sub-sentence level,
loosely referred to as text fragments, and take a
sequence prediction approach using a linear chain
CRF (Lafferty et al., 2001). We limit our work
to citations referring to web and news sources, as
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they are accessible online and present the most
prominent sources in Wikipedia (Fetahu et al.,
2015a). By using recent work on moving window
language models (Taneva and Weikum, 2013) and
the structure of the paragraph that includes a ci-
tation, we classify sequences of text fragments as
text that belong to a given citation. We are able to
tackle all citation span cases as shown in Table 1.

sub
sentence

Obama was born on August 4, 1961[c1], at
Kapi’olani Maternity · · · Honolulu[c2]; he
is the first · · · been born in Hawaii.[c3].

sentence He was reelected to the Illinois Senate in
1998, · · · in 2002.[c1]

multi
sentence

On May 25, 2011, Obama · · · to address · · ·
UK Parliament in Westminster Hall, Lon-
don. This was · · · Charles de Gaulle · · · and
Pope Benedict XVI.[c1]

Table 1: Varying degrees of citation span granu-
larity in Wikipedia text.

2 Problem Definition and Terminology

In this section, we describe the terminology and
define the problem of determining the citation
span in text in Wikipedia articles.

Terminology. We consider Wikipedia articles
W = {e1, . . . , en} from a Wikipedia snapshot.
We distinguish citations to external references in
text and denote them with ⟨pk, ci⟩, where ci repre-
sents a citation which occurs in paragraph pk with
positional index k in an entity e ∈ W . We will re-
fer to pk as the citing paragraph. Furthermore,
with citing sentence we refer to the sentence in
s ∈ pk, which contains ci. Note that pk can have
more than one citation as shown in Table 1.

Problem Definition. The task of determining
the citation span for a citation c and a paragraph
p, respectively ⟨p, c⟩ (or simply pc), is subject to
the citing paragraph and the citation content. In
particular, we refer with citation span to the tex-
tual fragments from p which are covered by c.
The fragments correspond to the sequence of sub-
sentences S(p) = ⟨δ1

1, δ
2
1 , . . . , δ

k
1 , . . . , δm

n ⟩. We
obtain the sequence of sub-sentences from p by
splitting the sentences into sub-sentences or text
fragments based on the following punctuation de-
limiters ({, !; :?}). These delimitors do not al-
ways provide a perfect semantic segmentation of
sentences into facts. A more involved approach
could be taken akin to work in text summarization,

such as Zhou and Hovy (Zhou and Hovy, 2006)
or (Nenkova et al., 2007) who consider summary
units for a similar purpose.

Formally, we define the citation span in Equa-
tion 4 as the function of finding the subset S ′ ⊆ S
where the fragments in S ′ are covered by c.

φ(p, c) → S ′ ⊆ S, s.t. δ ∈ S ′ ∧ c ⊢ δ (1)

where c ⊢ δ states that δ is covered in c.

3 Related Work

Scientific Text. One of the first attempts to deter-
mine the citation span in text (O’Connor, 1982)
was carried out in the context of document re-
trieval. The citing statements from a document
were used as an index to retrieve the cited docu-
ment. The citing statements are extracted based on
heuristics starting from the citing sentence and are
expanded with sentences in a window of +/-2 sen-
tences, depending on them containing cue words
like ‘this’, ‘these’,. . . ‘above-mentioned’. We con-
sider the approach in (O’Connor, 1982) as a base-
line.

Kaplan et al. (2016) proposed the task of de-
termining the citation block based on a set of tex-
tual coherence features (e.g. grammatical or lex-
ical coherence). The citation block starts from
the citing sentence, with succeeding sentences
classified (through SVMs or CRFs) according to
whether they belong to the block. Abu-Jbara and
Radev (2012) determine the citation block by first
segmenting the sentences and then classifying in-
dividual words as being inside/outside the citation.
Finally, the segment is classified depending on the
word labels (majority of words being inside, at
least one, or all of them). This approach is not
applicable in our case due to the fact that words
in Wikipedia text are not domain or genre-specific
as one expects in scientific text, and as such their
classification does not work.

Citations in IR. The importance of determin-
ing the citation span has been acknowledged in the
field of Information Retrieval (IR). The focus is on
building citation indexes (Garfield, 1955) and im-
proving the retrieval of scientific articles (Ritchie
et al., 2008, 2006). Citing sentences on a fixed
window size are used to index documents and aid
the retrieval process.

Summarization. Citations have been success-
fully employed to generate summaries of scientific
articles (Qazvinian and Radev, 2008; Elkiss et al.,
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2008). In all cases, citing statements are either ex-
tracted manually or via heuristics such as extract-
ing only citing sentences. Similarly (Nanba and
Okumura, 1999) expand the summaries in addi-
tion to the citing sentence based on cue words (e.g.
‘In this’, ‘However’ etc.). The work in (Qazvinian
and Radev, 2010) goes one step beyond and con-
siders sentences which do not explicitly cite an-
other article. The task is to assign a binary label
to a sentence, indicating whether it contains con-
text for a cited paper. We use this approach as one
of our competitors. Again, the premise is that ci-
tations are marked explicitly and additional citing
sentences are found dependent on them.

Comparison to our work. The language style
and the composition of citations in Wikipedia and
in scientific text differ significantly. Citations are
explicit in scientific text (e.g. author names) and
are usually the first word in a sentence (Abu-
Jbara and Radev, 2012). In Wikipedia, citations
are implicit (see Table 1) and there are no cue
words in text which link to the provided citations.
Therefore, the proposed methodologies and fea-
tures from the scientific domain do not perform
optimally in our case.

Both (Qazvinian and Radev, 2010) and
(O’Connor, 1982) work at the sentence level. As,
in Wikipedia, citation span detection needs to be
performed at the sub-sentence level (see Table 1),
their method introduces erroneous spans as we
will show in our evaluation.

Related to our problem is the work on address-
ing quotation attribution. Pareti et al. (2013) pro-
pose an approach for direct and indirect quotation
attribution. The task is mostly based on lexical
cues and specific reporting verbs that are the sig-
nal for the majority of direct quotations. However,
in the case of quotation attribution the task is to
find the source, cue, and content of the quotation,
whereas in our case, for a given citing paragraph
and reference we simply assess which text frag-
ment is covered by the reference. We also do nor-
mally not have access to specific lexical links be-
tween the citation and its citation span.

4 Citation Span Approach

We approach the problem of citation span de-
tection in Wikipedia as a sequence classification
problem. For a citation c and a citing paragraph p,
we chunk the paragraph into textual fragments at
the sub-sentence granularity, shown in Equation 4.

Figure 2 shows an overview of the sequence
classification of textual fragments. We use a lin-
ear chain CRF (Lafferty et al., 2001), where for
any fragment δ we predict the label corresponding
to a random variable y which is either ‘covered’ or
‘not-covered’. We opt for CRFs since we can en-
code global dependencies between the text frag-
ments and the actual citation, thus, ensuring the
coherence and accuracy of the predicted labels.

Figure 2: Linear chain CRF representing the se-
quence of text fragments in a paragraph. In the
factors we encode the fitness to the given citation.

We now describe the features we compute for
the factors Ψ(yi, yi−1, δi) for a fragment δi w.r.t
the citation c. We determine the fitness of δi hold-
ing true or being covered by c. We denote with
fk the features for the factors Ψi(yi, yi−1, δi) for
sequence δi for the linear-chain CRF in Figure 2.

4.1 Structural Features
An important aspect to consider for citation span
detection is the structure of the citing paragraph,
and correspondingly its sentences. For a textual
fragment δ, we extract the following structural fea-
tures shown in Table 2.

factor description

fc′
i presence of other citations in δi where

c′ ̸= c
f#s the number of sentences in p

f
|δi|
i the length in terms of characters of the

sub-sequence
fs

i check if δi is in the same sentence as the
citation c

fs ̸=s′
i check if δi is in the same sentence as

δi−1

fc
i the distance of fragment δi to the frag-

ment which contains citation c

Table 2: Structural features for a fragment δi.

From the features in Table 2, we highlight f c
i

which specifies the distance of δ to the fragment
that cites c. The closer a fragment is to the cita-
tion the higher the likelihood of it being covered

1992



in c. In Wikipedia, depending on the citation and
the paragraph length, the validity of a citation is
densely concentrated in its nearby sub-sentences
(preceding and succeeding).

Furthermore, the features f#s and fs
i (the num-

ber of sentences in p together with the feature con-
sidering if δ is in the same sentence as c) are strong
indicators for accurate prediction of the label of δ.
That is, it is more likely for a fragment δ to be cov-
ered by the citation if it appears in the same sen-
tence or sentences nearby to the citation marker.

However, as shown in Table 1 there are three
main citation span groups, and as such relying
only on the structure of the citing paragraph does
not yield optimal results. Hence, in the next group
we consider features that tie the individual frag-
ments in the citing paragraph with the citation as
shown in Figure 2.

4.2 Citation Features
A core indicator as to whether a fragment δ is cov-
ered by c is based on the lexical similarity between
δ and the content in c. We gather such evidence
by computing two similarity measures. We com-
pute the features fLM

i and fJ
i between δ and para-

graphs in the citation content c.
The first measure, fLM

i , corresponds to a
moving language window proposed in (Taneva
and Weikum, 2013). In this case, for each
word in either a paragraph in the citation c
or the sequence δ, we associate a language
model Mwi based on its context ϕ(wi) =
{wi−3, wi−2, wi−1, wi, wi+1, wi+2, wi+3} with a
window of +/- 3 words. The parameters for the
model Mwi are estimated as in Equation 2 for all
the words in the context ϕ(wi) and their frequen-
cies denoted with tf . With Mδ and Mp we denote
the overall models as estimated in Equation 2 for
the words in the respective fragments.

P (w|Mwi) =
tfw,ϕ(wi)∑

w′∈ϕ(wi)
tfw′,ϕ(wi)

(2)

Finally, we compute the similarity of each word in
w ∈ δ against the language model of paragraph
p ∈ c in Equation 3, which corresponds to the
Kullback-Leibler divergence score.

fLM
i = min

p∈c

[
−

∑

w∈δ

P (w|Mδ) log
P (w|Mδ)

P (w|Mp)

]
(3)

The intuition behind fLM
i is that for the frag-

ments δ we take into account the word similarity

and the similarity in the context they appear in w.r.t
a paragraph in a citation. In this way, we ensure
that the similarity is not by chance but is supported
by the context in which the word appears. Finally,
another advantage of this model is that we localize
the paragraphs in c which provide evidence for δ.

As an additional feature we compute fJ
i which

corresponds to the maximal jaccard similarity be-
tween δi and paragraphs p ∈ c.

Finally, as we will show in our experimental
evaluation in Section 5, there is a high correlation
between the citation span length and the length of
citation content in terms of sentences. Hence, we
add as an additional feature f c the number of sen-
tences in c.

4.3 Discourse Features

Sentences and fragments within a sentence can
be tied together by discourse relations. We an-
notate sentences with explicit discourse relations
based on an approach proposed in (Pitler and
Nenkova, 2009), using discourse connectives as
cues. The explicit discourse relations belong to
one of the following: temporal, contingency, ex-
pansion, comparison.

After extracting a discourse connective in a sen-
tence, we determine by its position to which frag-
ment it belongs and mark the fragment accord-
ingly. We denote with fdisc

i the discourse feature
for the fragment δi.2

4.4 Temporal Features

An important aspect that we consider here is the
temporal difference between two consecutive frag-
ments δi and δi−1. If there exists a temporal date
expression in δi and δi−1 and they point to differ-
ent time-points, this presents an indicator on the
transitioning between the states yi and yi−1. That
is, there is a higher likelihood of changing the state
in the sequence S for the labels yi and yi−1.

We compute the temporal feature
f

λ(i,i−1)
i ,indicating the difference in days be-

tween any two temporal expression extracted
from δi and δi−1. We extract the temporal
expression through a set of hand-crafted regular
expressions. We use the following expressions:
(1) DD Month YYYY, (2) DD MM YYYY, (3)

2Note that, although discourse relations hold between at
least two fragments or sentences, we only mark the individual
fragment in which the connective occurs with the discourse
relation type.
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type avg. |s| avg. |δ| avg ‘covered’

news 7.76 22.55 0.28
web 8.67 23.07 0.30

Table 3: Dataset statistics for citing paragraphs,
distinguishing between web and news references,
showing the average number of sentences, frag-
ments, and covered fragments.

MM DD YY(YY), (4) YYYY, with delimiters
(whitespace, ‘-’, ‘.’).

5 Experimental Setup

We now outline the experimental setup for evalu-
ating the citation span approach and the competi-
tors for this task. The data and the proposed ap-
proaches are made available at the paper URL3.

5.1 Dataset
We evaluate the citation span approaches on a ran-
dom sample of Wikipedia entities (snapshot of
20/11/2016). For the sampling process, we first
group entities based on the number of web or news
citations.4). We then sample from the specific
groups. This is due to the inherent differences
in citation spans for entities with different num-
bers of citations. For instance, entities with a high
number of citations tend to have shorter spans per
citation. Figure 3 shows the distribution of entities
from the different groups. From each sampled en-
tity, we extract all citing paragraphs that contain
either a web or news citation. Our sample consists
of 509 citing paragraphs from 134 entities.

Furthermore, since a paragraph may have more
than one citation, in our sampled citing para-
graphs, we have an average of 4.4 citations per
paragraph, which finally resulted in 408 unique
paragraphs. Table 3 shows the stats of the dataset.

5.2 Ground Truth
Setup. For the ground truth, the citation span of
c in paragraph p was manually determined by la-
beling each fragment in p with the binary label
covered or not-covered.

We set strict guidelines that help us generate re-
liable ground-truth annotations. We follow two
main guidelines: (i) requirement to read and com-
prehend the content in c, and (ii) matching of the

3http://l3s.de/˜fetahu/emnlp17/
4Wikipedia has an internal categorization of citations

based on the reference they point to.
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Figure 3: Entity distribution based on the number
of news citations.

textual fragments from p as either being supported
explicitly or implicitly in c.5

The entire dataset was carefully annotated by
the first author. Later, a second annotator anno-
tated a 10% sample of the dataset with an inter-
rater agreement of κ = .84. We chose not to use
crowd-sourcing as the task is very complex and
hard to divide into small independent tasks. Since
the task requires reading and comprehending the
entire content in c and p, it takes on average up to
2.4 minutes to perform the evaluation for a single
item. In future, it would be worthwhile to conduct
more large-scale annotation exercises.

Citation Span Stats. Following the definition
in Equation 4, we determine the citation span at
the sub-sentence granularity level. Table 4 shows
the distribution of citations falling into the specific
spans for the citing paragraphs. We note that the
majority of citations have a span between half a
sentence and up to a sentence, yet, the remainder
of more than 20% of citation span across multiple
sentences in such paragraphs.

We define the citation span as the ratio of sub-
sentences which are covered by a given citation
over the total number of sub-sentences in the
sentence, consequentially in the citing paragraph.
That is, a citation is considered to have a span of
one sentence if it covers all its sub-sentences.

span(c, p) =
∑

s∈p

#δs ∈ S ′

#δs
(4)

where δs represents a sequence in sentence s ∈ p,
which are part of the the ground-truth.

In Figure 4, we analyze a possible factor in the
variance of the citation span. It is evident that for
longer cited documents the span increases. This is

5We excluded cases where the citation is not appropriate
for the paragraph at all. This is, for example, the case when
the language of c is not English.
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total ≤ .5 (.5, 1] (1, 2] (2, 5] > 5

news 318 35 201 54 22 6
web 191 13 121 27 25 6

Table 4: Citation span distribution based on the
number of sub-sentences in the citing paragraph.

intuitive since such documents carry more infor-
mation and consequentially their span in the cit-
ing paragraphs can be larger. An example is the
Wikipedia article 2008 US Open (tennis)
which has a citing paragraph with a citation span
of 7 sentences for an article of 30k characters
long6. We encoded this in the citation features f c.
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Figure 4: Average document length for the differ-
ent span buckets for citation types web and news.

Additionally, within the different citation spans
we analyze how many of them contain skips for
two cases: (i) skip a fragment within a sentence,
and (ii) skip sentences in p. The results for both
cases are presented in Table 5.

span news web
skip δ skip s skip δ skip s

≤ 0.5 6% - - -
(0.5, 1] - - - 1%

(1, 2] - 8% - 19%
(2, 5] 5% 18% - 21%
> 5 - 20% - 67%

Table 5: The percentage of citations in a span with
fragment skips and sentence skips.

From the results in Table 4 and 5 we see that
simple heuristics on selecting complete sentences
or selecting consecutive sequences do not account
for the different citation span cases and skips at the
sentence and paragraph level. This leads to subop-
timal results and introduces erroneous spans. Fur-
thermore, we find that in 3.7% of the cases in our

6http://news.bbc.co.uk/sport1/hi/
tennis/7601195.stm

ground-truth, the citation spans include fragments
after the citation marker.

5.3 Baselines
We consider the following baselines as competi-
tors for our citation span approach.

Inter-Citation Text – IC. The span consists of
sentences which start either at the beginning of the
paragraph or at the end of a previous citation. The
granularity is at the sentence level.

Citation-Sentence-Window – CSW. The span
consists of sentences in a window of +/- 2 sen-
tences from the citing sentence (O’Connor, 1982).
The other sentences are included if they contain
specific cue words in fixed positions.

Citing Sentence – CS. The span consists of
only the citing sentence.

Markov Random Fields - MRF.
MRFs (Qazvinian and Radev, 2010) model
two functions. First, compatibility, which mea-
sures the similarity of sentences in p, and as such
allows to extract non-citing sentences. Second,
the potential, which measures the similarity
between sentences in c with sentences in p. We
use the provided implementation by the authors.

Citation Span Plain – CSPC. A plain clas-
sification setup using the features in Section 4,
where the sequences are classified in isolation. We
use Random Forests (Breiman, 2001) and evaluate
them with 5-fold cross validation.

5.4 Citation Span Approach Setup – CSPS
For our approach CSPS as mentioned in Sec-
tion 4, we opt for linear-chain CRFs and use the
implementation in (Okazaki, 2007). We evaluate
our models using 5-fold cross validation, and learn
the optimal parameters for the CRF model through
the L-BFGS approach (Liu and Nocedal, 1989).

5.5 Evaluation Metrics
We measure the performance of the citation span
approaches through the following metrics. We
will denote with W ′ the sampled entities, with
p = {pc, . . .} (pc refers to ⟨p, c⟩) the set of sam-
pled paragraphs from e, and with |p| the total
items from e.

Mean Average Precision – MAP . First, we
define precision for pc as the ratio P (pc) =
|S ′ ∩ St|/|S ′| of fragments present in S ′ ∩St over
S ′. We measure MAP as in Equation 5.

MAP =
1

|W ′|
∑

e∈W ′

∑
pc∈p P (pc)

|p| (5)
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Recall – R. We measure the recall for pc as the
ratio S ′ ∩ St over all fragments in St, R(pc) =
|S ′ ∩ St|/|St|. We average the individual recall
scores for e ∈ W ′ for the corresponding p.

R =
1

|W ′|
∑

e∈W ′

∑
pc∈p R(pc)

|p| (6)

Erroneous Span – ∆. We measure the num-
ber of extra words or extra sub-sentences (denoted
with ∆w and ∆δ) added by text fragments that are
not part of the ground-truth St. The ratio is rel-
ative to the number of words or sub-sentences in
the ground-truth for pc. We compute ∆w and ∆δ

in Equation 7 and 8, respectively.

∆w =
1

|W ′|
∑

e∈W ′

1

|p|
∑

pc∈p

∑
δ∈S′\St words(δ)

∑
δ∈St words(δ)

(7)

∆δ =
1

|W ′|
∑

e∈W ′

1

|p|
∑

pc∈p

|S ′ \ St|
|St| (8)

6 Results and Discussion

6.1 Citation Span Robustness
Table 6 shows the results for the different ap-
proaches on determining the citation span for all
span cases shown in Table 4.

Accuracy. Not surprisingly, the baseline ap-
proaches perform reasonably well. CS which se-
lects only the citing sentence achieves a reasonable
MAP = 0.86 and similar recall. A slightly dif-
ferent baseline CSW achieves comparable scores
with MAP = 0.85. This is due to the inherent
span structure in Wikipedia, where a large portion
of citations span up to a sentence (see Table 4).
Therefore, in approximately 64% of the cases the
baselines will select the correct span. For the cases
where the span is more than a sentence, the draw-
back of these baselines is in coverage. We show in
the next section a detailed decomposition of the re-
sults and highlight why even in the simpler cases,
a sentence level granularity has its shortcomings
due to sequence skips as shown in Table 5.

Overall, when comparing CS as the best per-
forming baseline against our approach CSPS,
we achieve an overall score of MAP = 0.83
(a slight decrease of 3.6%), whereas in term of
F1 score, we have a decrease of 9%. The plain-
classification approach CSPC achieves similar
score with MAP = 0.86, whereas in terms of
F1 score, we have a decrease of 8%. As de-
scribed above and as we will see later on in Ta-
ble 7, the overall good performance of the baseline

approaches can be attributed to the citation span
distribution in our ground-truth.

On the other hand, an interesting observation is
that sophisticated approaches, geared towards sci-
entific domains like MRF perform poorly. We
attribute this to language style, i.e., in Wikipedia
there are no explicit citation hooks that are present
in scientific articles. Comparing to CSPS, we
outperform MRF by a large margin with an in-
crease in MAP by 84%.

When comparing the sequence classifier CSPS
to the plain classifier CSPC, we see a marginal
difference of 1.3% for F1. However, it will be-
come more evident later that classifying jointly the
text fragments for the different span buckets, out-
performs the plain classification model.

MAP R F1 ∆w ∆δ

MRF 0.45 0.78 0.56 308% 278%
IC 0.72 0.94 0.77 113% 115%

CSW 0.85 0.84 0.82 38% 31%
CS 0.86 0.84 0.82 35% 27%

CSPC 0.86 0.68 0.76 26% 23%
CSPS 0.83 0.69 0.75 32% 24%

Table 6: Evaluation results for the different cita-
tion span approaches.

Erroneous Span. One of the major drawbacks
of competing approaches is the granularity at
which the span is determined. This leads to er-
roneous spans. From Table 4 we see that approx-
imately in ∼10% of the cases the span is at sub-
sentence level, and in 28% the span is more than a
sentence.

The best performing baseline CS has an erro-
neous span of ∆w = 35% and ∆δ = 27%, in
terms of extra words and sub-sentences, respec-
tively. That is, nearly half of the determined span
is erroneous, or in other words it is not covered
in the provided citation. The MRF approach due
to its poor MAP score provides the largest erro-
neous spans with ∆w = 308% and ∆δ = 278%.
The amount of erroneous span is unevenly dis-
tributed, that is, in cases where the span is not at
the sentence level granularity the amount of erro-
neous span increases. A detailed analysis is pro-
vided in the next section.

Contrary to the baselines, for CSPS and simi-
larly for CSPC, we achieve the lowest erroneous
spans with ∆w = 32% and ∆δ = 26%, and
∆w = 24% and ∆w = 23%, respectively.

Compared to the remaining baselines, we
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achieve an overall relative decrease of 9% for
∆w(CSPS), and 34% for ∆w(CSPC), when
compared to the best performing baseline CS.

From the skips in sequences in Table 5 and the
unsuitability of sentence granularity for citation
spans, we analyze the locality of erroneous spans
w.r.t to the sequence that contains c, specifically
the distribution of erroneous spans preceding and
succeeding it. For the CS baseline, 71% of the
total erroneous spans are added by sequences pre-
ceding the citing sequence, contrary to 35% which
succeed it. In the case of CSPS, we have only 9%
of erroneous spans (for ∆δ) preceding the citation.

6.2 Citation Span and Feature Analysis

We now analyze how the approaches perform for
the different citation spans in Table 47. Addition-
ally, we analyze how our approach CSPS per-
forms when determining the span without access
to the content of c.

Citation Span. Table 7 shows the results for the
approaches under comparison for all the citation
span cases. In the case where the citation spans
up to a sentence, that is (0.5, 1], which presents
the simplest citation span case, the baselines per-
form reasonably well. This is due to the heuris-
tics they apply to determine the span, which in all
cases includes the citing sentence. In terms of F1
score, the baseline CS achieves a highly compet-
itive score of F1 = 0.97. Our approach CSPS
in this case has slight increase of 1% for F1 and
an increase of 3% for MAP . CSPC achieves a
similar performance in this case.

However, for the cases where the span is at the
sub-sentence level or across multiple sentences,
the performance of baselines drops drastically. In
the first bucket (≤ 0.5) which accounts for 9%
of ground-truth data, we achieve the highest score
with MAP = 0.87, though with lower recall than
the competitors with R = 0.56. The reason for
this is that the baselines take complete sentences,
thus, having perfect recall at the cost of accuracy.
In terms of F1 score we achieve 21% better results
than the best performing baseline CS.

For the span of (1, 2] we maintain an overall
high accuracy and recall, and have the highest F1
score. The improvement is 8% in terms of F1
score. Finally, for the last case where the span is
more than 2 sentences, we achieve MAP = 0.74,

7The models were retrained and tested for the different
buckets with 5-fold cross validation.

a marginal increase of 3%, however with lower re-
call, which results in an overall decrease of 4% for
F1. The statistical significance tests are indicated
with ** and * in Table 7.
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Figure 5: Erroneous spans for the different citation
span buckets. The y-axis presents the ∆w whereas
in the x-axis are shown the different approaches.

Erroneous Span. Figure 5 shows the erroneous
spans in terms of words for the metric ∆w for
all citation span cases. It is noteworthy that the
amount of error can be well beyond 100% due to
the ratio of the suggested span and the actual span
in our ground-truth, which can be higher.

In the first bucket (span of ≤ 0.5) with granu-
larity less than a sentence, all the competing ap-
proaches introduce large erroneous spans. For
CSPS we have a MAP = 0.87, and conse-
quentially we have the lowest ∆w = 9%, while
for CSPC we have only ∆w = 11%. In con-
trast, the non-ML competitors introduce a mini-
mum of ∆w(CS) = 182%, with MRFs having
the highest error. We also perform well in the
bucket (0.5, 1]. For larger spans, for instance, for
(1, 2], we are still slightly better, with roughly 3%
less erroneous span when comparing CSPC and
CS. However, only in the case of spans with > 2,
we perform below the CS baseline. Despite, the
smaller erroneous span, the CS baseline never in-
cludes more than one sentence, and as such it does
not include many erroneous spans for the larger
buckets. However, it is by definition unable to rec-
ognize any longer spans.

Feature Analysis. It is worthwhile to investigate
the performance gains in determining the citation
span without analyzing the content of the citation.
The reason for this is that there are several cita-
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≤ 0.5 (0.5, 1] (1, 2] > 2

MAP R F1 MAP R F1 MAP R F1 MAP R F1

MRF 0.15 0.88 0.27 0.44 0.80 0.61 0.59 0.74 0.57 0.59 0.63 0.55
IC 0.32 1.00 0.45 0.77 0.99 0.83 0.73 0.84 0.74 0.72 0.81 0.73
CSW 0.38 1.00 0.54 0.93 0.98 0.96 0.88 0.54 0.65 0.79 0.34 0.43
CS 0.40 1.00 0.56 0.94 0.98 0.97 0.90 0.53 0.65 0.80 0.32 0.42

CSPC 0.85 0.53 0.65 0.96 0.97 0.97 0.96 0.68 0.79 0.71 0.65 0.68
CSPS 0.87** 0.56 0.68** 0.96 0.98 0.98 0.88 0.73 0.80* 0.74 0.72 0.70

∆F1 CSPS ▲21% 0% ▲8% ▼4%

Table 7: Evaluation results for the citation span approaches for the different span cases. For the results
of CSPS we compute the relative increase/decrease of F1 score compared to the best result (based
on F1) from the competitors. We mark in bold the best results for the evaluation metrics, and indicate
with ** and * the results which are highly significant (p < 0.001) and significant (p < 0.05) based on
t-test statistics when compared to the best performing baselines (CS, IC, CSW, MRF) based on F1 score,
respectively.

tion categories for which access to the source can-
not be easily automated. Models which can deter-
mine the span accurately without the actual con-
tent have the advantage of generalizing to other
citation sources (e.g. books) for which the evalua-
tion is more challenging.8

Here, we disregard the citation features from
Section 4.2. In terms of MAP , we have a slight
decrease with MAP = 0.82 when compared to
the model with the citation features. For recall we
have a drop of 3%, resulting in R = 0.67.

This shows that by solely relying on the struc-
ture of the citing paragraph and other structural
and discourse features we can perform the task
with reasonable accuracy.

7 Conclusion

In this work, we tackled the problem of determin-
ing the fine-grained citation span of references in
Wikipedia. We started from the citing paragraph
and decomposed it into sequences consisting of
sub-sentences. To accurately determine the span
we proposed features that leverage the structure
of the paragraph, discourse and temporal features,
and finally analyzed the similarity between the cit-
ing paragraph and the citation content.

We introduce both a standard classifier as well
as a sequence classifier using a linear-chain CRF
model. For evaluation we manually annotated a
ground-truth dataset of 509 citing paragraphs. We
reported standard evaluation metrics and also in-

8At worst, one needs to read and comprehend the entire
book to determine if a fragment is covered by the citation.

troduced metrics that measure the amount of erro-
neous span.

We achieved a MAP = 0.86, in the case of
the plain classification model CSPC, and with
a marginal difference for CSPS with MAP =
0.83, across all cases with an erroneous span of
∆w = 26% or ∆w = 32%, depending on the
model. Thus, we provide accurate means on de-
termining the span and at the same time decrease
the erroneous span by 34% compared to the best
performing baselines. Moreover, we excel at de-
termining citation spans at the sub-sentence level.

In conclusion, this presents an initial attempt
on solving the citation span for references in
Wikipedia. As future work we foresee a larger
ground-truth and more robust approaches which
take into account factors such as a reference being
irrelevant to a citing paragraph and cases where
the evidence for a paragraph is implied rather than
explicitly stated in the reference.
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Abstract

Most studies on human editing focus
merely on syntactic revision operations,
failing to capture the intentions behind
revision changes, which are essential for
facilitating the single and collaborative
writing process. In this work, we develop
in collaboration with Wikipedia editors a
13-category taxonomy of the semantic in-
tention behind edits in Wikipedia articles.
Using labeled article edits, we build a
computational classifier of intentions that
achieved a micro-averaged F1 score of
0.621. We use this model to investigate
edit intention effectiveness: how differ-
ent types of edits predict the retention of
newcomers and changes in the quality of
articles, two key concerns for Wikipedia
today. Our analysis shows that the types
of edits that users make in their first ses-
sion predict their subsequent survival as
Wikipedia editors, and articles in different
stages need different types of edits.

1 Introduction

Many online text production communities, in-
cluding Wikipedia, maintain a history of revi-
sions made by millions of participants. As
Wikipedia statistics as of January 2017 show,
English Wikipedia has 5.3 million articles with
an average of 162.89 revisions per article, with
revisions growing at a rate of about 2 revisions
per second. This provides an amazing corpus for
studying the types and effectiveness of revisions.
Specifically, differences between revisions contain
valuable information for modeling document qual-
ity or extracting users’ expertise, and can addition-
ally support various natural language processing
(NLP) tasks such as sentence compression (Ya-

mangil and Nelken, 2008), lexical simplification
(Yatskar et al., 2010), information retrieval (Aji
et al., 2010), textual entailment recognition (Zan-
zotto and Pennacchiotti, 2010), language bias de-
tection (Recasens et al., 2013), spelling errors and
paraphrases (Zesch, 2012; Max and Wisniewski,
2010).

To avoid building different approaches to ex-
tract the information needed by different NLP
tasks (Ferschke et al., 2013), a unified framework
to recognize edits from revisions is needed. Prior
research on revision editing primarily develop
syntactic edit action categories, from which they
try to understand the effects of edits on meaning
(Faigley and Witte, 1981; Yang et al., 2016).
For instance, Daxenberger and Gurevych (2012)
categorized edits based on whether edits affect the
text meaning, resulting in syntactic edit categories
such as file deletion, reference modification, etc.
However, simply understanding the syntactic re-
vision operation types does not provide the in-
formation we seek: why do editors do what they
do? how effective are their actions? For exam-
ple, syntactic edit type taxonomies cannot tell the
difference between simplifying a paragraph and
maliciously damaging that paragraph, since both
involve deleting a sentence.

In this work, we focus explicitly on revision
intention. We introduce a fine-grained taxonomy
of the reasons why an author in Wikipedia made
an edit. Example edit intentions include copy
editing, elaboration, verification, and simplifica-
tion. Compared to taxonomies that either focus
on low-level syntactic operations (Faigley and
Witte, 1981) or that mix syntactic and seman-
tic classes (Daxenberger and Gurevych, 2013), a
clean higher-level semantic categorization enables
us to easily identify textual meaning changes,
and to connect revisions to “what happens in the
mind of the revising author during the revision”
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(Fitzgerald, 1987; Daxenberger, 2016). In order
to capture the meaning behind edits, we worked
with 13 Wikipedians to build a taxonomy that
captured the meaning of an revision, which we
term edit intention, and hand-labeled a corpus of
7,177 revisions with their edit intentions. We then
developed an automated method to identify these
edit intentions from differences between revisions
of Wikipedia articles. To explore the utility of
this taxonomy, we applied this model to better un-
derstand two important issues for Wikipedia: new
editor retention and article quality. Specifically,
we examined whether edit intentions in newcom-
ers’ first editing sessions predict their retention,
and examined how edits with different intentions
lead to changes in article quality. These analyses
showed that specific types of editing work were
positively correlated with newcomer survival and
articles in different stages of development bene-
fited differently from different types of edits.

2 Related Work

Wikipedia revision histories have been used for a
wide range of NLP tasks (Yamangil and Nelken,
2008; Aji et al., 2010; Zanzotto and Pennacchiotti,
2010; Ganter and Strube, 2009; Nelken and Ya-
mangil, 2008). For instance, Yatskar et al. (2010)
used Wikipedia comments associated with revi-
sions to collect relevant edits for sentence simpli-
fication. Max and Wisniewski (2010) constructed
a corpus of rewritings that can be used for spelling
errors and paraphrases (Zesch, 2012). Similarly,
Zanzotto and Pennacchiotti (2010) used edits as
training data for textual entailment recognition,
and Recasens et al. (2013) analyzed real instances
of human edits designed to remove bias from
Wikipedia articles. Most of these work employed
manually defined rules or filters to collect relevant
edits to the NLP task at hand.

Towards analyzing revisions and developing
unified revision taxonomies (Bronner and Monz,
2012; Liu and Ram, 2011), Fong and Biuk-Aghai
(2010) built machine learning models to distin-
guish between factual and fluency edits in revi-
sion histories. Faigley and Witte (1981) made
a distinction between changes that affect mean-
ing, called text-base changes and changes which
do not affect meaning, called surface changes.
The two categories are further divided into for-
mal changes, meaning-preserving changes, micro-
structure changes and macro-structure changes.

This taxonomy was later extended by Jones (2008)
to take into account edit categories such as signif-
icant deletion, style, image insertion, revert, etc.
Pfeil et al. (2006) proposed a 13-category tax-
onomy based on the data and performed manual
annotation to compare cultural differences in the
writing process in different versions of Wikipedia.
Daxenberger and Gurevych (2013) introduced
a finer-grained edit taxonomy, and performed
multi-label classification to extract edit categories
based on unparsed source text (Daxenberger and
Gurevych, 2012). However, most taxonomies of
edit categories contain only syntactic actions or a
mixture of syntactic and semantic actions, failing
to capturing the intention of revisions.

In terms of revision intentions, Zhang and
Litman (2016) incorporated both argumentative
writing features and surface changes from Faigley
and Witte (1981) and constructed eight categories
of revision purposes, such as claims/ideas, war-
rant/reasoning/backing, rebuttal/reservation, orga-
nization, clarify, etc. Tan and Lee (2014) used
revisions to understand statement strength in aca-
demic writings. There are multiple works on the
detection of specific subsets of revision intentions
in Wikipedia, such as vandalism detection where
the goal is to classify revisions as vandalized
or non-vandalized (Harpalani et al., 2011; Adler
et al., 2011) and language bias/neutral point of
view detection (Recasens et al., 2013). Instead
of recognizing a specific type of revision intention
each time, our work aims at designing a systematic
and comprehensive edit intention taxonomy to
capture intentions behind textual changes.

Prior work also used edit types and intentions
to better understand the process of collaborative
writing, such as article quality improvement (Kit-
tur and Kraut, 2008). For example, Liu and Ram
(2011) found that Wikipedia article quality corre-
lates with different types of contributors; similarly
Yang et al. (2016) pointed out articles in differ-
ent quality stages need different types of editors.
However, there are few studies examining the
specific types of edits that are predictive of article
quality. Recent research shows that the number of
active contributors in Wikipedia has been steadily
declining since 2007, and Halfaker et al. (2012)
suggested that the semi-automated rejection of
new editors’ contributions is a key cause, but they
did not explore whether or not specific types of
newcomers’ work got rejected at different rates
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Label Description α Before After

Clarification
Specify or explain an existing fact or meaning by
example or discussion without adding new information

0.394 0.7% 4.1%

Copy Editing
Rephrase; improve grammar, spelling, tone, or
punctuation

0.800 11.8% 14.8%

Counter
Vandalism

Revert or otherwise; remove vandalism 0.879 1.9% 1.5%

Disambiguation Relink from a disambiguation page to a specific page 0.401 0.3% 1.8%

Elaboration
Extend/add substantive new content; insert a fact or
new meaningful assertion

0.733 12.0% 12.0%

Fact Update
Update numbers, dates, scores, episodes, status, etc.
based on newly available information

0.744 5.5% 5.2%

Point of View
Rewrite using encyclopedic, neutral tone; remove bias;
apply due weight

0.629 0.3% 2.2%

Process
Start/continue a wiki process workflow such as tagging
an article with cleanup, merge or deletion notices

0.786 4.4% 5.8%

Refactoring
Restructure the article; move and rewrite content,
without changing the meaning of it

0.737 1.9% 2.9%

Simplification
Reduce the complexity or breadth of discussion;
may remove information

0.528 1.6% 4.6%

Vandalism Deliberately attempt to damage the article 0.894 2.5% 2.0%
Verification Add/modify references/citations; remove unverified text 0.797 5.4% 9.8%

Wikification
Format text to meet style guidelines, e.g. add links or
remove them where necessary

0.664 33.1% 33.6%

Other None of the above. 0.952 1.2% -
Corpus Size 4,977 4,977 7,177

Table 1: A taxonomy of edit intentions in Wikipedia revisions, Cronbach’s α agreement and the
distributions of edit intention before and after corpus expansion. The percentage in each row represents
what percentage of revisions are labeled with this edit intention. The percentages do not sum up to 100%
because one revision could belong to multiple categories. The After corpus is used for all our analyses.

and how that affects retention. In this paper, we
take advantage of this new taxonomy to explore
correlations between edit intentions, newcomers’
retention, and article quality.

3 Semantic Taxonomy of Edit Intentions

A revision is created whenever an editor saves
changes to a Wikipedia page. As one revi-
sion could contain multiple local changes, each
revision can be labeled with one or more edit
intentions, representing the purposes of why an
editor made that change. Different from prior
research (Daxenberger, 2016; Yang et al., 2016),
we do not distinguish between revisions and edits.
Although an edit is a coherent local change and
might belong to any edit categories, it cannot be
used to represent the intentions of editors during
the revision. For example, it might be difficult

to recognize Refactoring if only one single edit is
present. Since relocation or reorganization might
involve several changes in the article, looking at
one might lose the whole picture and lead to infor-
mation loss. Moreover, edit types simply extracted
from an edit is inadequate in outlining the correct
intentions, for instance, adding a sentence could
be Clarification, Elaboration, or Vandalism.

3.1 Taxonomy of Edit Intentions

Our semantic taxonomy of edit intentions builds
on prior literature on collaborative writing
(Faigley and Witte, 1981; Fitzgerald, 1987), re-
search on document revision analyses (Bronner
and Monz, 2012), studies on edit categories (Dax-
enberger and Gurevych, 2012; Fong and Biuk-
Aghai, 2010), and work on purpose/intention clas-
sification (Zhang and Litman, 2016). In order to

2002



ensure that our taxonomy captured the intentions
that Wikipedians would find meaningful, we set up
discussions with a group of 12 interested editors
on a Wikipedia project talk page, and iteratively
refined our taxonomy based on their feedback.
Our discussion with Wikipedia editors is in this
page1. We also analyzed which intentions get
more confused with which and used that to guide
the refinement.

We define a top level layer for the revision
intention taxonomy: intentions that are common
in general revisions: General Revision Inten-
tions, and intentions that are specific in Wikipedia:
Wikipedia Specific Intentions. This categoriza-
tion leads to 13 distinct semantic intentions, and
Table 1 provides detailed descriptions. Specifi-
cally, general revision intentions include: Clar-
ification, Copy Editing, Elaboration, Fact Up-
date, Point of View, Refactoring, Simplification
and verification, and can be applicable to other
contexts. Counter Vandalism, Disambiguation,
Process, Vandalism, and Wikification are edit in-
tentions related to Wikipeida. We also propose an
Other category, intended for edits that cannot be
labeled using the above taxonomy.

As the first work to model intentions of revi-
sions, our taxonomy distills and extends existing
edit type taxonomies. For instance, our intentions
of “elaboration” and “verification” are extensions
of “evidence” type proposed by (Zhang and Lit-
man, 2016), and a syntactic category of “infor-
mation deletion” in (Daxenberger and Gurevych,
2013) could be an instance of our “vandalism” or
“simplification” depending on the context.

3.2 Corpus Construction
To construct a reliable, hand-coded dataset to
serve as ground truth for automatic recognition of
edit intentions, we employed four undergraduate
students who had basic Wikipedia editing experi-
ence to label edits using our intention taxonomy,
based on written annotation guidelines2 vetted by
Wikipedia editors and provided examples3. More-
over, to expose annotators to more working knowl-
edge of Wikipedia, we provided three one-hour
training sessions where annotators were asked to

1https://en.wikipedia.org/wiki/
Wikipedia_talk:Labels/Edit_types/
Taxonomy

2http://www.cs.cmu.edu/˜diyiy/data/
edit_intention_annotation_doc.pdf

3https://en.wikipedia.org/wiki/
Wikipedia:Labels/Edit_types/Examples

label a small set of revisions (around 50 each time)
and to discuss their disagreements until consensus.

We randomly sampled 5,000 revisions from Jan,
2016 to June 2016 from the recent changes table4

in the Wikipedia database. For each revision,
we displayed the content difference5 before and
after the change to annotators, via a labeling
interface that we developed. Because an editor
could make several different types of edits within
a single revision, we asked four RAs to label each
revision with one or more of the possible semantic
intentions. We collected four valid annotations for
4,977 revisions. We used Cronbach’s α , a mea-
sure of internal consistency, to evaluate agreement
among the annotators. The overall agreement α
score was 0.782, indicating substantial agreement
between different annotators; The rule of thumb
1993 suggests that Cronbachs alpha scores larger
than 0.7 are considered as acceptable. The inter-
annotator agreement per semantic intention is de-
scribed in column α in Table 1.
3.3 Corpus Expansion

As shown in column Before in Table 1, some types
of edit intentions, such as disambiguation and
clarification, were very rare in the random-sample
corpus. To address this under-representation prob-
lem, we used the text of editors’ comments to
expand the corpus by retrieving 200 more revi-
sions for each edit intention except Vandalism and
Counter-Vandalism, resulting in 2,200 revisions6.
More precisely, as a common practice (Zanzotto
and Pennacchiotti, 2010; Recasens et al., 2013),
we utilized regular expressions to match the text
from the comments, which editors often wrote
when saving their revisions, to the edit intentions.
For example, editors might be signalling that they
were intending to fix problems of Point of View
when their comments contained keywords such
as “npov” or “neutral”. Even though the com-
ments sometimes signal the editors’ intents, they
are not infallible, editors may fail to complete
the comment field, may only label one of the
multiple edit intentions for a single revision, or
write comments that are inaccurate, irrelevant, or
incomplete. Thus the first author annotated the
2,200 revisions from the expanded corpus and

4https://www.mediawiki.org/wiki/
Manual:Recentchanges_table

5en.wikipedia.org/wiki/?diff=712140761
6We used a practical and economic way to expand the

corpus, and this made the intention distribution skewed away.
We acknowledge this expansion as a limitation.
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merged it with the randomly sampled corpus. The
frequency of the edit intentions before and after
the expansion is in Table 1. We used the majority
voting to resolve the disagreement. That is, if at
least 3 out of 4 annotators picked an intention for
a revision, it will be selected as the ground-truth.
The final corpus contains 5,777 revisions, and can
be downloaded from here7.

4 Identification of Edit Intentions

We frame automated identification of edit inten-
tions as a multi-label classification task. We
designed four sets of features for identifying edit
intentions from revisions. Set I comprised two
features associated with the Editor: user registra-
tion indicating whether the editor of a particular
revision was registered or anonymous and tenure,
which refers to the elapsed months between the
current revision and editors’ registration date. Set
II comprised 16 features associated with the Com-
ment written by the editor to describe the revision,
including comment length and a set of regular
expressions to match intentions such as *pov*,
*clarify*, *simplif*, *add link*, etc.
Set III comprised 198 features associated with
the Revision Diff, based on content differences
between current revision and the previous one.
They are similar to textual features defined in Dax-
enberger and Gurevych (2013), but we considered
a wider range of objects being modified. In par-
ticular, we computed the difference in the number
of characters, uppercase words, numeric chars,
white-spaces, markups, Chinese/Japanese/Korean
characters, HTML entity characters, URLs, punc-
tuations, break characters, etc. We also considered
languages features, such as the use of stop words,
obscene words and informal words. Set IV com-
prises two features associated with Vandalism and
Revert. We utilized the Wikipedia API to extract
whether a revision was likely to be vandalism8 or
reverting revisions9.

4.1 Identification Result

We extracted the input features with the help of
Revision Scoring package10 and framed this task

7http://www.cs.cmu.edu/˜diyiy/data/
edit_intention_dataset.csv

8https://ores.wmflabs.org/v2/scores/
enwiki/goodfaith/71076450

9http://pythonhosted.org/mwreverts/
api.html

10http://pythonhosted.org/revscoring/

a multi-label classification problem. For multi-
label classification, we considered solving them
by using single-label classification algorithms and
by transforming it into one or more single-label
classification tasks. We used the multi-label clas-
sifiers implemented in Mulan (Tsoumakas et al.,
2011), with 10-fold cross validation. We utilized
Binary Relevance (BR) to convert our multi-label
classification into 13 binary single-label problems.
Similar to Daxenberger and Gurevych (2013);
Yang et al. (2016), we used Random k-labelsets
RAKEL method that randomly chooses l small
subset with k categories from the overall set
of categories. We set l as 26, twice the size
of the categories, and set k as 3. MLKNN
method that classifies edit intentions based on K
(K=10) nearest neighbor method. We used C4.5
decision tree classifiers in BR and RAKEL, as
recommended by prior work (Daxenberger and
Gurevych, 2013; Potthast et al., 2013). Prior
research shows that sophisticated neural network
models for text-classification largely rely on fac-
tors such as dataset size (Zhang et al., 2015; Joulin
et al., 2016). Due to the size of our corpus and the
complexity of this task, we did not use them.

To evaluate the relative accuracy of the multi-
label classifier, we compared it to several base-
lines. The random baseline, denoted as Random
in Table 2, assigns labels randomly. The majority
category baseline, denoted as Majority, assigns
all edits the most frequent intention, elaboration.
Since revision comments may be especially as
informative in reflecting edit intentions, the com-
ment baseline, denoted as CMT, is a Binary Rele-
vance classifier that includes only the comments
features from Set II. We also created a Binary
Relevance classifier, denoted as BR-, which ex-
cludes comment features and only used features
from Sets I, III and IV.

Table 2 shows the evaluation metrics for the
baselines and our multi-label classifiers. The
metrics include the Exact Match subset accuracy,
which evaluates whether the predicted labels are
the same as the actual labels. These classifiers
are available upon request. Table 2 also shows
example-based measures of Accuracy, Precision,
Recall and F1 Score, weighting each edit equally.
It also shows label-based measures of accuracy –
the micro- and macro-averaged F1 scores– which
weight each edit intention category equally. As a
ranking based measure, we measured One Error,
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Metric Random Majority CMT BR- BR MLKNN RAKEL

Example

Exact Match 0.052 0.284 0.352 0.391 0.426 0.452 0.292
Accuracy 0.052 0.283 0.428 0.498 0.540 0.542 0.338
Precision 0.084 0.417 0.479 0.626 0.586 0.599 0.381
Recall 0.052 0.285 0.458 0.562 0.611 0.578 0.344
F1 Score 0.052 0.285 0.455 0.536 0.580 0.574 0.354

Label Macro F1 0.060 0.042 0.310 0.487 0.597 0.576 0.385
Micro F1 0.074 0.370 0.528 0.583 0.621 0.613 0.441

Ranking One Error 0.920 0.583 0.415 0.400 0.358 0.320 0.434

Table 2: Performance comparison for predicting edit intentions from revisions. Best results are bold.

Figure 1: The relative frequency of each edit intention, and its F1 score provided by the BR model.

which evaluates how many times the top ranked
predicted intention is not in the set of true labels
of the instance.

Results show that the Binary Relevance (BR)
and MLKNN classifiers, which used all our
constructed features, outperformed Random and
Majority baselines. Moreover, the BR and
MLKNN methods show relatively similar best
performances. Although multiple studies have
utilized revisions’ comments as “groundtruth” to
collect desired edits, the CMT method, which
includes only comment features, is less accurate
than either the BR or MLKNN models. Note
that predicting 14-category semantic intentions is
more challenging compared to classifying low-
level syntactic actions, such as inserting an image
(Daxenberger and Gurevych, 2013).

5 Intentions, Survival and Quality

The automated measurement of edit intentions
provides a general framework to analyze revi-
sions and can facilitate a wide range of applica-
tions, such as collecting specific types of revisions
(Yatskar et al., 2010; Recasens et al., 2013; Zan-
zotto and Pennacchiotti, 2010) and outlining the

evolution of author roles (Arazy et al., 2015; Yang
et al., 2016). In this section, we demonstrate two
examples of how this intention taxonomy can be
applied to better understand the success of online
collaboration communities (Kraut et al., 2010),
specifically the process of these sites to retain new
contributors and create innovative products. To
this end, we first investigate what newcomers are
intended for in their first sessions and whether
their edit intentions can account for their survival
in Wikipedia. We then examine how edits carry-
ing on different intentions at distinct times in an
article’s history influence changes in its quality.

5.1 How Edit Intentions Affect Survival

To explore newcomers’ intentions during their first
experience editing articles, we focus on users’ first
edit sessions in Wikipedia. Here, Edit Session
is defined as a sequence of edits performed by a
registered user with less than one hour’s time gap
between two adjacent edits (Halfaker et al., 2012).
We then compare edit intentions of newcomers
who survive - Survivors, and newcomers who
do not - Non-survivors. Here, newcomers are
defined as surviving if they performed an edit at
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Edit Intention Intention Dist Revert Ratio
NS SS NS SS

clarification 0.2% 0.4% 0.1% 0.1%

copy editing 12.1% 14.4% 6.9% 3.8%
counter

vandalism
0.1% 0.0% 0.1% 0.0%

disambiguation 0.0% 0.0% 0.0% 0.0%

elaboration 27.7% 26.5% 16.5% 6.9%
fact update 4.2% 3.8% 3.4% 1.7%

point of view 0.1% 0.2% 0.0% 0.1%

process 2.0% 2.3% 1.9% 0.7%
refactoring 1.1% 1.3% 0.9% 0.5%

simplification 3.7% 3.1% 3.1% 1.4%
vandalism 13.8% 6.1% 16.0% 4.7%

verification 7.0% 7.4% 3.8% 2.7%
wikification 25.8% 32.3% 14.0% 6.9%

Table 3: The edit intention distribution in the
first sessions (Intention Dist) and the revert ratio
comparison (Revert Ratio), among non-survivors
(NS) and survivors (SS). The numbers are bolded
if 1-way ANOVA tests for difference between two
groups are significant, with p<0.05.

least two months after their first edit session.

5.1.1 Intention Comparison
Among 100,000 randomly sampled Wikipedia
users, 21,096 made revisions in the Main/Article
namespace during their first editing session.
Among these 4,407 were survivors (i.e., made
an edit two months after registering) and 16,689
were non-survivors. We applied our edit intention
model to 53,248 revisions in users’ first sessions,
and compared the percentages of different types
of edit intentions between survivors and non-
survivors, as shown in Intention Dist column
in Table 3. We also performed 1-way ANOVA
to test whether survivors and non-survivors have
the same mean for each edit intention. We ob-
served that, survivors tend to do more copy-editing
(∆+=2.3%) and more wikification (∆+=6.5%),
while non-survivors seem to perform more sim-
plification and vandalism, which might provide
signals for detecting vandals.

5.1.2 Revert Analysis
To explore the relationship between rejection of
contributions and newcomer retention, we also
visualized the revert ratios of different types of edit
intentions for survivors and non-survivors in their

Edit Intention Survival Quality Changes

clarification 0.029 0.001
copy editing 0.033 0.011†

counter vandalism 0.004 −0.020†

disambiguation −0.003 −0.006†

elaboration −0.024 0.061†

fact update −0.001 0.002
point of view 0.041 −0.003

process 0.051† −0.024†

refactoring −0.013 0.011†

simplification −0.002 −0.008†

vandalism −0.211† −0.005†

verification 0.047 0.068†

wikification 0.099† −0.010†

Table 4: Regression coefficients of different edit
intentions for predicting Newcomer Survival and
Article Quality Changes. † means the coefficient
is statistically significant (p<0.05)

first session. Here, Revert refers to whether an
edit from the author was reverted or completely
removed by another user, and we detect reverts
using MediaWiki Reverts library11. We then mea-
sured the revert ratio for each edit intention by
calculating the percentage of revisions belonging
to a specific edit intention, among all reverted
revisions in users’ first sessions. As shown in the
Revert Ratio column in Table 3, in general, non-
survivors get reverted more compared to survivors,
across all edit intentions. Interestingly, non-
survivors compared to survivors get reverted more
when performing Wikification, verification and
Refactoring, suggesting that sophisticated types of
work might not be suitable for beginners.

5.1.3 Newcomer Survival

As a further exploration of the relationship be-
tween edit intentions and newcomer survival, we
performed a logistic regression using edits in sur-
vivors’ and non-survivors’ first sessions. To han-
dle this imbalanced data (i.e., many more negative
examples than positive examples in training), we
performed majority-class under-sampling to make
this dataset balanced. Similar to Halfaker et al.
(2012), we controlled the number of revisions
completed during the first session (a proxy for
an editor’s initial investment), and the number
of revisions reverted in their first sessions. We

11http://pythonhosted.org/mwreverts/
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described the regression coefficients of statisti-
cally significant edit intentions in the Survival
column of Table 4. This logistic model achieves an
Accuracy of 60.98%, Recall of 58.30%, Precision
of 78.08% and F1-score of 66.76%. Editing
articles for the purposes of Process, Verification
and Wikification significantly predict the survival
of newcomers, while performing vandalism is a
strong negative predictor for survival.

5.2 How Intentions Affect Article Quality

Although there are over 5.5 million articles in
the English Wikipedia, fewer than 0.2% have
been evaluated by Wikipedians as good articles
and around 92% have been evaluated as start or
stub class articles, Wikipedia’s two lowest quality
categories. In this section, we examine how edits
with different intentions at distinct times in an
article’s history influence changes in its quality.

This task is framed as a prediction task, i.e. us-
ing edits’ intentions and a set of control variables
to predict changes in article quality. We borrowed
a Article Quality Prediction Dataset released in
Yang et al. (2016), which consists of the quality
ratings collected in January and June, 2015 of
151,452 articles. We collected 1,623,446 revisions
made to these articles between January and June
2015, by randomly sampling 10% revisions that
were made to these articles during that time pe-
riods. Specifically, the outcome article quality
change is calculated by subtracting the previous
quality score from the end quality score. The con-
trol variables include the previous article quality
score, the total number of edits, the total number
of editors, the changed bytes to an article, and
the total number of edits to the article talk page
during the six months. To construct edit-intention
predictors, we summed the number of edits for
each edit intention during the six months divided
by the total number of revisions in this article.

Results of the linear regression model, shown
in Quality Changes column of Table 4, show that
our constructed regression model is significantly
predictive of article quality changes (R2 = 0.225).
The results show that, keeping all control variables
fixed, more Copy Editing, Elaboration, Refac-
toring and Verification are positively associated
with improvements in article quality; in contrast,
Vandalism, Counter Vandalism, Disambiguation,
Process and Simplification predict declines in arti-
cle quality. The first four of these edits types often

Figure 2: Interaction effect of different levels of
edit intentions and different levels of previous
article quality (prev) on article quality changes.
All variables are standardized. The Y-axis mea-
sures the predictive margins and X-axis refers to
different standardized levels of edit intention.

occur with reducing the article content, removing
or redirecting pages. Improper use of them might
be detrimental to article quality.

To determine if the effect of edit intentions on
quality changes depends upon the initial quality of
the article, we added the interaction terms between
the previous quality score and edit percentages of
different intentions (e.g., clarification x previous
quality), and visualized interaction effects in Fig-
ure 2. When examining the interaction terms in
more detail: the negative slope of copy editing
(when prev=2) suggests that, as articles increase
in quality, copy editing is needed less. We found
similar trends for interactions between previous
quality and elaboration and verification, which
are essential for articles in the starting stages.
In contrast, the positive slopes for simplification,
wikification and process suggest that, as articles
increase in quality, simplifying articles’ content,
adding proper links or reorganizing their structure
becomes more important. Overall, these results
reveal that different types of edit intentions are
needed at different quality stages of articles.

6 Discussion and Conclusion

In this work, we proposed 13 semantic inten-
tions that motivate editors’ revisions in English
Wikipedia. Example edit intentions include copy
editing, elaboration, simplification, etc. Based
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in a labeled corpus of revisions, we developed
machine-learning models to automatically identify
these edit intentions. We then examine the rela-
tions between edit intentions, newcomers survival,
and article quality improvement. We found that
(1) survivors tend to do more copy editing and
wikification; non-survivors seem to perform more
vandalism and other sophisticated types of work,
and the latter often gets reverted more; (2) Differ-
ent types of contributions are needed by articles
in different quality stages, with elaboration and
verification are needed more for articles in the
starting stages, and simplification and process be-
come more important as article quality increases.

Our proposed edit intention taxonomy and the
constructed corpus can facilitate a set of down-
stream NLP applications. First, classifiers based
on this intention taxonomy can help retrieve large
scale and high quality revisions around simpli-
fication, neutral point of view or copy editing,
which provides amazing corpora for studying lex-
ical simplification, language bias detection and
paraphrases. Second, as we showed in Section
5.2, determining how different edit types influence
changes in articles is of great use to better the
causes of quality variance in collaborative writing,
such as detecting quality flaws (Anderka et al.,
2012) and providing insights on which specific
aspects of an article needs improvement and what
type of work should be performed. The ability to
identify the need for editing, and specifically the
types of editing work required, can greatly assist
not only collaborative writing but also individual
improvement of text. Moreover, even though our
edit taxonomy is for English Wikipedia, it can be
applied to other language versions of Wikipedia.
We are now deploying the same edit intention
taxonomy for Italian Wikipedia, and plan to apply
it to other low resourced languages in Wikipedia.
Finally, beyond the context of Wikipedia, similar
taxonomies can be designed for analyzing the
collaboration and interaction happened in other
online contexts such as academic writing (e.g.,
Google Docs or ShareLatex, etc).
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Abstract

We introduce a hierarchical architecture
for machine reading capable of extract-
ing precise information from long doc-
uments. The model divides the docu-
ment into small, overlapping windows and
encodes all windows in parallel with an
RNN. It then attends over these window
encodings, reducing them to a single en-
coding, which is decoded into an answer
using a sequence decoder. This hierarchi-
cal approach allows the model to scale to
longer documents without increasing the
number of sequential steps. In a super-
vised setting, our model achieves state of
the art accuracy of 76.8 on the WikiRead-
ing dataset. We also evaluate the model
in a semi-supervised setting by downsam-
pling the WikiReading training set to cre-
ate increasingly smaller amounts of su-
pervision, while leaving the full unlabeled
document corpus to train a sequence au-
toencoder on document windows. We
evaluate models that can reuse autoen-
coder states and outputs without fine-
tuning their weights, allowing for more ef-
ficient training and inference.

1 Introduction

Recently, deep neural networks (DNNs) have pro-
vided promising results for a variety of reading
comprehension and question answering tasks (We-
ston et al., 2014; Hermann et al., 2015; Rajpurkar
et al., 2016), which require extracting precise in-
formation from documents conditioned on a query.
While a basic sequence to sequence (seq2seq)
model (Sutskever et al., 2014) can perform these

∗Work completed while interning at Google Research.
†Work completed while at Google Research.

tasks by encoding a question and document se-
quence and decoding an answer sequence (Hewlett
et al., 2016), it has some disadvantages. The an-
swer may be encountered early in the text and
need to be stored across all the further recurrent
steps, leading to forgetting or corruption; Atten-
tion can be added to the decoder to solve this
problem (Hermann et al., 2015). Even with at-
tention, approaches based on Recurrent Neural
Networks (RNNs) require a number of sequential
steps proportional to the document length to en-
code each document position. Hierarchical read-
ing models address this problem by breaking the
document into sentences (Choi et al., 2017). In
this paper, we introduce a simpler hierarchical
model that achieves state-of-the-art performance
on our benchmark task without this linguistic
structure, and use it as framework to explore semi-
supervised learning for reading comprehension.

We first develop a hierarchical reader called
Sliding-Window Encoder Attentive Reader
(SWEAR) that circumvents the aforementioned
bottlenecks of existing readers. SWEAR, illus-
trated in Figure 1, first encodes each question into
a vector space representation. It then chunks each
document into overlapping, fixed-length windows
and, conditioned on the question representation,
encodes each window in parallel. Inspired by
recent attention mechanisms such as Hermann
et al. (2015), SWEAR attends over the window
representations and reduces them into a single
vector for each document. Finally, the answer is
decoded from this document vector. Our results
show that SWEAR outperforms the previous
state-of-the-art on the supervised WikiReading
task (Hewlett et al., 2016), improving Mean F1 to
76.8 from the previous 75.6 (Choi et al., 2017).

While WikiReading is a large dataset with mil-
lions of labeled examples, many applications of
machine reading have a much smaller number
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of labeled examples among a large set of unla-
beled documents. To model this situation, we con-
structed a semi-supervised version of WikiRead-
ing by downsampling the labeled corpus into a
variety of smaller subsets, while preserving the
full unlabeled corpus (i.e., Wikipedia). To take
advantage of the unlabeled data, we evaluated
multiple methods of reusing unsupervised recur-
rent autoencoders in semi-supervised versions of
SWEAR. Importantly, in these models we are able
to reuse all the autoencoder parameters without
fine-tuning, meaning the supervised phase only
has to learn to condition the answer on the doc-
ument and query. This allows for more efficient
training and online operation: Documents can be
encoded in a single pass offline and these en-
codings reused by all models, both during train-
ing and when answering queries. Our semi-
supervised learning models achieve significantly
better performance than supervised SWEAR on
several subsets with different characteristics. The
best-performing model reaches 66.5 with 1% of
the WikiReading dataset, compared to the 2016
state of the art of 71.8 (with 100% of the dataset).

2 Problem Description

Following the recent progress on end-to-end su-
pervised question answering (Hermann et al.,
2015; Rajpurkar et al., 2016), we consider the gen-
eral problem of predicting an answer A given a
query-document pair (Q,D). We do not make the
assumption that the answer should be present ver-
batim in the document.

2.1 Supervised Version

Given a document D = {d1, d2, · · · , dND} and
a query Q = {q1, q2, · · · , qNQ} as sequences of
words, our task is to generate a new sequence
of words that matches the correct answer A =
{a1, a2, · · · , aNA}. Because we do not assume
that A is a subsequence of D, the answer may
require blending information from multiple parts
of the document, or may be precisely copied from
a single location. Our proposed architecture sup-
ports both of these use cases.

The WikiReading dataset (Hewlett et al.,
2016), which includes a mix of categorization
and extraction tasks, is the largest dataset match-
ing this problem description. In WikiReading,
documents are Wikipedia articles, while queries
and answers are Wikidata properties and values,

respectively. Example Wikidata property-value
pairs are (place of birth, Paris),
(genre, Science Fiction). The dataset
contains 18.58M instances divided into training,
validation, and test with an 85/10/5 split. The
answer is present verbatim in the document only
47.1% of the time, severely limiting models that
label document spans, such as those developed
for the popular SQUAD dataset (Rajpurkar et al.,
2016).

2.2 Semi-Supervised Version

We also consider a semi-supervised version of the
task, where an additional corpus of documents
without labeled (Q,A) pairs is available. Tak-
ing advantage of the large size of the WikiReading
dataset, we created a series of increasingly chal-
lenging semi-supervised problems with the fol-
lowing structure:

• Unsupervised: The entire document corpus
(about 4M Wikipedia articles), with queries
and answers removed.

• Supervised: Five smaller training sets cre-
ated by sampling a random (1%, 0.5%, 0.1%)
of the WikiReading training set, and taking
(200, 100) random samples from each prop-
erty in the original training set.

3 Supervised Model Architecture

We now present our model, called Sliding-
Window Encoder Attentive Reader (SWEAR),
shown in Figure 1, and describe its operation in
a fully supervised setting. Given a (Q,D) pair,
the model encodes Q into a vector space represen-
tation with a Recurrent Neural Network (RNN).
The first layer of the model chunks the document
D into overlapping, fixed-length windows and en-
codes all windows in parallel with an RNN condi-
tioned on the question representation. The second
layer attends over the window representations, re-
ducing them into a single vector representing the
latent answer. Finally, the answer sequence A is
decoded from this vector using an RNN sequence
decoder.

3.1 Preliminaries and Notation

Each word w comes from a vocabulary V and is
associated with a vector ew which constitutes the
rows of an embedding matrixE. We denote by eD,
eQ, and eA the vector sequences corresponding to
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Figure 1: SWEAR model: Boxes are RNN cells, colors indicate parameter sharing.

the document, question, and answer sequences, re-
spectively. More specifically, we aim at obtaining
vector representations for documents and ques-
tions, then generating the words of the answer se-
quence.

Our model makes extensive use of RNN en-
coders to transform sequences into fixed length
vectors. For our purposes, an RNN encoder con-
sists of GRU units (Cho et al., 2014) defined as

ht = f(xt;ht−1; θ) (1)

where ht is hidden state at time t. f is a nonlinear
function operating on input vector xt and previ-
ous state, ht−1 with θ being its parameter vector.
Given an input sequence, the encoder runs over the
sequence of words producing the hidden vectors at
each step. We refer to the last hidden state of an
RNN encoder as the encoding of a sequence.

3.2 Sliding Window Recurrent Encoder

The core of the model is a sequence encoder that
operates over sliding windows in a manner analo-
gous to a traditional convolution. Before encod-
ing the document, we slide a window of length
l with a step size s over the document and pro-
duce n = bND−ls c document windows. This yields
a sequence of sub-documents (D1, D2, · · · , Dn),
where each Di contains a subsequence of l words
from the original document D. Intuitively, a pre-
cise answer may be present verbatim in one or

more windows, or many windows may contain ev-
idence suggestive of a more categorical answer.

Next, the model encodes each window condi-
tioned on a question encoding. We first encode the
question sequence once using a RNN (Enc) as

hq = Enc(eQ; θQ) (2)

where hq is the last hidden state and θQ represents
the parameters of the question encoder. Initialized
with this question encoding, we employ another
RNN to encode each document window as

hwi,0 = hq

hwi = Enc(eDi ; θW ) (3)

where hwi,0 is the initial hidden state, hwi is the last
hidden state, and θW represents the parameters of
the window encoder. θW is shared for every win-
dow and is decoupled from θQ. As the windows
are significantly smaller than the documents, en-
codings of windows will reflect the effect of ques-
tion encodings better, mitigating any long-distance
dependency problems.

3.3 Combining Window Encodings
SWEAR attends over the window encoder states
using the question encoding to produce a single
vector hd for the document, given by

pi ∝ exp(uTR tanh(WR[hwi , h
q])) (4)

hd =
∑

i

pih
w
i (5)
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Model Mean F1
Placeholder seq2seq (HE16) 71.8

SoftAttend (CH17) 71.6
Reinforce (CH17) 74.5

Placeholder seq2seq (CH17) 75.6
SWEAR (w/ zeros) 76.4

SWEAR 76.8

Table 1: Results for SWEAR compared to top published re-
sults on the WikiReading test set.

HE16 Best SWEAR
Categorical 88.6 88.6

Relational 56.5 63.4
Date 73.8 82.5

Table 2: Mean F1 for SWEAR on each type of property com-
pared with the best results for each type reported in Hewlett
et al. (2016), which come from different models. Other pub-
lications did not report these sub-scores.

where [.] is vector concatenation, and pi is the
probability window i is relevant to answering the
question. WR and uR are parameters of the atten-
tion model.

3.4 Answer Decoding
Given the document encoding hd, an RNN de-
coder (Dec) generates the answer word sequence:

ha0 = hd

hat = Dec(hat−1;ωA) (6)

P (a∗t = wj) ∝ exp(eTj (WAh
a
t + bA)) (7)

a∗t = argmaxj(P (a∗t = wj)) (8)

where ha0 is the initial hidden state and hat is the
hidden vector at time t. A∗ = {a∗1, a∗2, · · · , a∗NA}
is the sequence of answer words generated. WA,
bA, and ωA are the parameters of the answer
decoder. The training objective is to minimize the
average cross-entropy error between the candidate
sequence A∗ and the correct answer sequence A.

3.5 Supervised Results
Before exploring unsupervised pre-training, we
present summary results for SWEAR in a fully su-
pervised setting, for comparison to previous work
on the WikiReading task, namely that of Hewlett
et al. (2016) and Choi et al. (2017), which we re-
fer to as HE16 and CH17 in tables. For further ex-
periments, results, and discussion see Section 5.2.
Table 1 shows that SWEAR outperforms the best

Doc length pct seq2seq SWEAR imp
[0, 200) 44.6 79.7 80.7 1.2

[200, 400) 19.5 76.7 77.8 1.5
[400, 600) 11.0 74.5 76.3 2.3
[600, 800) 6.6 72.8 74.3 2.1

[800, 1000) 4.3 71.5 72.8 1.8
[1000,max) 14.0 64.8 65.9 1.7

Table 3: Comparison of Mean F1 for SWEAR and a baseline
seq2seq model on the WikiReading test set across different
document length ranges. pct indicates the percentage of the
dataset falling in the given document length range. imp is the
percentage improvement of SWEAR over baseline.

results for various models reported in both pub-
lications, including the hierarchical models Sof-
tAttend and Reinforce presented by Choi et al.
(2017).1 Interestingly, SoftAttend computes an
attention over sentence encodings, analogous to
SWEAR’s attention over overlapping window en-
codings, but it does so on the basis of less powerful
encoders (BoW or convolution vs RNN), suggest-
ing that the extra computation spent by the RNN
provides a meaningful boost to performance.

To quantify the effect of initializing the window
encoder with the question state, we report results
for two variants of SWEAR: In SWEAR the win-
dow encoder is initialized with the question en-
coding, while in SWEAR w/ zeros, the window en-
coder is initialized with zeros. In both cases the
question encoding is used for attention over the
window encodings. For SWEAR w/ zeros it is ad-
ditionally concatenated with the document encod-
ing and passed through a 2-layer fully connected
neural network before the decoding step. Condi-
tioning on the question increases Mean F1 by 0.4.

Hewlett et al. (2016) grouped properties by an-
swer distribution: Categorical properties have a
small list of possible answers, such as countries,
Relational properties have an open set of answers,
such as spouses or places of birth, and Date prop-
erties (a subset of relational properties) have date
answers, such as date of birth. We reproduce this
grouping in Table 2 to show that SWEAR im-
proves performance for Relational and Date prop-
erties, demonstrating that it is better able to extract
precise information from documents.

Finally, we observe that SWEAR outperforms a
baseline seq2seq model on longer documents, as

1Document lengths differ between publications: We trun-
cate documents to the first 600 words, while Choi et al. trun-
cate to 1000 words or 35 sentences and Hewlett et al. truncate
to 300 words.
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shown in Table 3. The baseline model is roughly
equivalent to the best previously-published result,
Placeholder seq2seq (CH17) in Table 1, reach-
ing a Mean F1 of 75.5 on the WikiReading test-
set. SWEAR improves over the baseline in every
length category, but the differences are larger for
longer documents.

4 Semi-Supervised Model Architecture

We now describe semi-supervised versions of the
SWEAR model, to address the semi-supervised
problem setting described in Section 2.2. A wide
variety of approaches have been developed for
semi-supervised learning with Neural Networks,
with a typical scheme consisting of training an
unsupervised model first, and then reusing the
weights of that network as part of a supervised
model. We consider each of these problems in
turn, describing two types of unsupervised autoen-
coder models for sequences in Section 4.1 before
turning to a series of strategies for incorporating
the autoencoder weights into a final supervised
model in Section 4.3. All of these models reuse the
autoencoder weights without modification, mean-
ing a document can be encoded once by an of-
fline process, and the resulting encodings can be
used both during training and to answer multiple
queries online in a more efficient manner.

4.1 Recurrent Autoencoders for
Unsupervised Pre-training

Autoencoders are models that reconstruct their in-
put, typically by encoding it into a latent space and
then decoding it back again. Autoencoders have
recently proved useful for semi-supervised learn-
ing (Dai and Le, 2015; Fabius and van Amersfoort,
2014). We now describe two autoencoder mod-
els from the recent literature that we use for un-
supervised learning. The Recurrent Autoencoder
(RAE) is the natural application of the seq2seq
framework (Sutskever et al., 2014) to autoencod-
ing documents (Dai and Le, 2015): In seq2seq, an
encoder RNN already produces a latent represen-
tation hN , which is used to initialize a decoder
RNN. In RAE, the output sequence is replaced
with the input sequence, so learning minimizes the
cross-entropy between the reconstructed input se-
quence and the original input sequence. Encoder
and decoder cells share parameters θU .

4.1.1 Variational Recurrent Autoencoder
The Variational Recurrent Autoencoder (VRAE),
introduced by Fabius et al. (2014), is a RAE with
a variational Bayesian inference step where an un-
observed latent random variable generates the se-
quential data. The encoder and decoder are exactly
the same as RAE, but the latent state hN is not di-
rectly passed to the decoder. Instead, it is used to
estimate the parameters of a Gaussian distribution
with a diagonal covariance matrix: The mean is
given by µx = WµhN + bµ and the covariance by
Σx = WΣhN + bΣ, where Wµ, WΣ, bµ, and bΣ
are new variational step parameters. The decoder
is initialized with a single vector sampled from
this distribution, zx ∼ N (z|µx,Σx). For VRAE,
the Kullback-Leibler divergence between trained
Normal distribution and standard normal distribu-
tion, i.e., KL(N (µx,Σx)|N (0, I)), is added to
the loss.

4.1.2 Window Autoencoders
We take advantage of the SWEAR architecture
by training autoencoders for text windows, as
opposed to the standard document autoencoders.
These autoencoders operate on the same sliding
window subsequences as the supervised SWEAR
model, autoencoding all subsequences indepen-
dently and in parallel. This makes them easier
to train as they only have to compress short se-
quences of text into a fixed-length representation.
As the task of autoencoding is independent from
our supervised problem, we refer to the generated
encodings as global encodings.

4.2 Baseline: Initialization with Autoencoder
Embeddings

Our baseline approach to reusing an unsupervised
autoencoder in SWEAR is to initialize all em-
beddings with the pre-trained parameters and fix
them. We call this model SWEAR-SS (for semi-
supervised). The embedding matrix is fixed to the
autoencoder embeddings. All other parameters are
initialized randomly and trained as in the fully su-
pervised version. We found that initializing the
encoders and decoder with autoencoder weights
hurts performance.

4.3 Reviewer Models
Unfortunately, this baseline approach to semi-
supervised learning has significant disadvantages
in our problem setting. Pre-trained RNN param-
eters are not fully exploited since we observed
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Figure 2: Multi-layer reviewer model (SWEAR-MLR),
shown operating over a single window: Black boxes are RNN
cells with fixed weights copied from the autoencoder, dia-
monds indicate vector concatenation with adapter and FC lay-
ers. For simplicity, only the cells in dashed boxes are fully
illustrated (detailed in Figure 3), but the same structure is re-
peated for each cell.

catastrophic forgetting when initializing and fine-
tuning SWEAR with pre-trained weights. This
includes fixing window encoder parameters with
autoencoders and only fine-tuning question en-
coders. Second, conditioning the window en-
coders on the question eliminates the possibility
to train window representations offline and uti-
lize them later which causes a significant overhead
during testing.

Inspired by recent trends in deep learning mod-
els such as Progressive Neural Networks (Rusu
et al., 2016) and Reviewer Models (Yang et al.,
2016), we propose multiple solutions to these
problems. All of the proposed models process text
input first through a fixed autoencoder layer: fixed
pre-trained embeddings and fixed RNN encoder
parameters, both initialized from the autoencoder
weights. Above this autoencoder layer, we build
layers of abstraction that learn to adapt the pre-
trained models to the QA task.

4.3.1 Multi-Layer Reviewer (SWEAR-MLR)

The most straightforward extension to the baseline
model is to fix the pretrained autoencoder RNN
as the first layer and introduce a second, train-
able reviewer layer. To make this approach more
suitable for question answering, reviewer layers
utilize corresponding global encodings as well as
hidden states of the pre-trained autoencoders as
input (Figure 2). The aim is to review both pre-
trained question and window encodings to com-
pose a single vector representing the window con-
ditioned on the question.

Figure 3: Detailed illustration of the dashed box in SWEAR-
MLR question encoder. Black boxes are fixed parameters and
encodings. The window encoder is similar, except that the
output of the question reviewer layer is also added to the con-
catenated input (dashed line).

Encoding questions: The question is first
encoded by the autoencoder layer, h̃q =
Enc(eQ; θU ) where both word embeddings (E
and eQ) and encoder (θU ) are fixed and initialized
with pretrained parameters. A second, learnable
RNN layer then takes the output of the autoen-
coder layer and corresponding input embeddings
as input and produces the final question encoding,
hq = Enc(FC([eQ, h̃q, h̃t]); θQ) where FC is a
fully connected layer with ReLU activation func-
tion, and h̃t is the output of the autoencoder layer
at time step t. Figure 3 illustrates a single time-
step of the question encoder.

Encoding windows: Similarly, windows are
encoded first by the fixed autoencoder layer and
then by a reviewer layer, h̃wi = Enc(eDi ; θU ) and
hwi = Enc(FC([eDi , h̃wi , h̃

w
t , h

q]); θW ) where
h̃wt is the output of the autoencoder layer at time
step t. Unlike supervised SWEAR, in SWEAR-
MLR the window encoder is not initialized with
the question encoder state. Instead, the question
encoder state is an additional input to each unit in
the reviewer layer (illustrated as the dashed line
in Figure 3). Intuitively, the reviewer layer should
reuse the global window and question information
and encode only information relevant to the cur-
rent question.

4.3.2 Progressive Reviewer (SWEAR-PR)
Although the reviewer layer in SWEAR-MLR has
global window and question encodings as input, it
requires a number of sequential steps equal to the
window size, plus any additional reviewer steps.
The reviewer layer also has to re-encode windows
for each question, which is not ideal for online use.
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Figure 4: Progressive reviewer model (SWEAR-PR), shown
operating over a single window: Black boxes are RNN cells
with fixed weights copied from the autoencoder, diamonds
indicate vector concatenation with adapter and FC layers.
Dashed boxes contain reviewer layers. Cells within reviewer
layers are decoupled as indicated by different colors.

Figure 5: Illustration of attention cell: GRU state is used
to attend over attendable states, then final state is computed
by concatenating GRU state with context vector and passing
through a fully connected neural network.

To address these issues, we now present a Progres-
sive Reviewer model (SWEAR-PR) that reviews
the outputs of the encoders using a separate RNN
that is decoupled from the window size (Figure 4).

Encoding questions and windows: Similar
to SWEAR-MLR, SWEAR-PR first encodes the
questions and windows independently using au-
toencoder layers, h̃q = Enc(eQ; θU ) and h̃wi =
Enc(eDi ; θU ). To decouple the question and win-
dow encoders, however, SWEAR-PR does not
have a second layer as a reviewer.

Reviewing questions and windows: SWEAR-
PR employs two other RNNs to review the
question and window encodings and to compose
a single window representation conditioned on
the question. Question reviewer takes the same
pre-trained question encoding at each time step
and attends over the hidden states and input
embeddings of the pre-trained question encoder,
hq = AttnEnc(FC(h̃q);FC([h̃qt , e

Q]); θQ)
where AttnEnc is an RNN with an attention cell

which is illustrated in Figure 5. Outputs of the
fixed autoencoder layer and fixed word embed-
dings, [h̃qt , e

Q], are the attendable states. Window
reviewer on the other hand takes the pre-trained
window encoding and reviewed question encod-
ing at each time step and attends over the hidden
states of pre-trained window encoder, hwi =
AttnEnc(FC([h̃wi , h

q]);FC([h̃wt , e
Di ]); θW )

where outputs of the fixed autoencoder layer
and fixed word embeddings, [h̃wt , e

Di ], are the
attendable states. As length of the windows is
smaller than length of the reviewers, SWEAR-PR
has significantly smaller overhead compared to
other supervised and semi-supervised SWEAR
variants.

4.3.3 Shared Components
Reducing window encodings and decoding:

As in the supervised case described in 4, both re-
viewer models attend over the window encodings
using the question encoding and reduce them into
a single document encoding. Identical to answer
decoding described in 6, the answer is decoded
using another RNN taking the document state as
the initial state. The parameters of this answer de-
coder are initialized randomly.

Adapter layer: As the distribution and scale
of parameters may differ significantly between the
autoencoder layer and the reviewer layer, we use
an adapter layer similar to the adapters in Pro-
gressive Neural Networks (Rusu et al., 2016) to
normalize the pre-trained parameters:

Wout = a ∗ tanh(b ∗Win) (9)

where a and b are scalar variables to be learnt
and Win is a pre-trained input parameter. We put
adapter layers after every pre-trained parameter
connecting to a finetuned parameter such as on
the connections from pre-trained embeddings to
reviewer layer. We use dropout (Srivastava et al.,
2014) regularization on both inputs and outputs of
the reviewer cells.

5 Experimental Evaluation

As described in Section 2, we evaluate our mod-
els on the WikiReading task. In Section 3.5
we presented results for the supervised SWEAR
on the full WikiReading dataset, establishing it
as the highest-scoring method so far developed
for WikiReading. We now compare our semi-
supervised models SWEAR-MLR and SWEAR-
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Model 1% 0.5% 0.1%
SWEAR 63.5 57.6 39.5
SWEAR-SS (RAE) 64.7 62.8 55.3
SWEAR-SS (VRAE) 65.7 64.0 60.7

Table 4: Mean F1 results for SWEAR (fully supervised)
and SWEAR-SS (semi-supervised) trained on 1%, 0.5%, and
0.1% subsets, respectively. Variants of SWEAR-SS indicate
different sources of fixed encoder weights. 2

PR over various subsets of the WikiReading
dataset, using SWEAR as a baseline.

5.1 Experimental Setup

Following Hewlett et al. (2016), we use the Mean
F1 metric for WikiReading, which assigns partial
credit when there are multiple valid answers. We
ran hyperparameter tuning for all models and re-
port the result for the configuration with the high-
est Mean F1 on the validation set.

The supervised SWEAR model was trained on
both the full training (results reported in Sec-
tion 3.5) and on each subset of training data (re-
sults reported below). Unsupervised autoencoders
were trained on all documents in the WikiRead-
ing training set. We selected the autoencoder
with the lowest reconstruction error for use in
semi-supervised experiments. After initialization
with weights from the best autoencoder, learnable
parameters in the semi-supervised models were
trained exactly as in the supervised model.

Training Details
We implemented all models in a shared frame-

work in TensorFlow (Abadi et al., 2016). We used
the Adam optimizer (Kingma and Ba, 2014) for all
training, periodically halving the learning rate ac-
cording to a hyperparameter. Models were trained
for a maximum of 4 epochs.

Table 7 shows which hyperparameters were
tuned for each type of model, and the range of
values for each hyperparameter. The parameters
in the second group of the table are tuned for su-
pervised SWEAR and the best setting (shown in
bold) was used for other models where applicable.
We fixed the batch size to 8 for autoencoders and
64 for semi-supervised models. We used a trun-
cated normal distribution with a standard deviation
of 0.01 for VRAE.

5.2 Results and Discussion

2Initialization with Word2Vec (Mikolov et al., 2013) em-
beddings on 1% subset gives 64.0 Mean F1 score.

Model 100 200
SWEAR 25.0 33.0
SWEAR-SS (VRAE) 39.0 45.0

Table 5: Results for SWEAR and the best SWEAR-SS initial-
ization (VRAE) trained on 100- and 200- per-property sub-
sets, respectively.

Model Mean F1
SWEAR-PR 66.5

dropout on input only 65.4
no dropout 64.6
shared reviewer cells 63.8

SWEAR-MLR 63.0
w/o skip connections 60.0

Table 6: Results for semi-supervised reviewer models trained
on the 1% subset of WikiReading.

Table 4 and 5 show the results of SWEAR and
semi-supervised models with pretrained and fixed
embeddings. Results show that SWEAR-SS al-
ways improves over SWEAR at small data sizes,
with the difference become dramatic as the dataset
becomes very small. VRAE pretraining yields
the best performance. As training and test-
ing datasets have different distributions in per-
property subsets, Mean F1 for supervised and
semi-supervised models drops compared to uni-
form sampling. However, initialization with pre-
trained VRAE model leads to a substantial im-
provement on both subsamples. We further exper-
imented by initializing the decoder (vs. only the
encoder) with pretrained autoencoder weights but
this resulted in a lower Mean F1.

Table 6 shows the results of semi-supervised
reviewer models. When trained on 1% of the
training data, SWEAR-MLR and the supervised
SWEAR model perform similarly. Without us-
ing skip connections between embedding and hid-
den layers, the performance drops. The SWEAR-
PR model further improves Mean F1 and outper-
forms the strongest SWEAR-SS model, even with-
out fine-tuning the weights initialized from the au-
toencoder.

The success of SWEAR-PR rests on multiple
design elements working together, as shown by
the reduced performance caused by altering or
disabling them. Using dropout only on the in-
puts, or not using any dropout on reviewer cells,
causes a substantial decrease in Mean F1 score
(by 1.1 and 1.9, respectively). Configuring the
model with many more review steps (15) but with
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Parameter Space
All Models
Learning Rate [0.0001; 0.005]
Learning Rate Decay Steps {25k, 50k}
Gradient Clip [0.01; 1.0]
Supervised & Semi-Supervised
Embedding Size {128, 256, 512}
RNN State Size {256, 512}
Window Size {10, 20, 30}
Batch Size {64, 128}
Dropout {0.3, 0.5, 0.8}
Autoencoders Only
Embedding Sharing {Input, All}
KL-weight [0.0001;0.01]
Semi-Supervised Only
Finetune Pretrained Parameters {YES, NO}
Dropout {0.7, 0.8, 0.9}
Reviewer State Size {256, 512}
Question Reviewer Steps {0, 2, 3}
Window Reviewer Steps {2, 3, 5, 8}

Table 7: Hyperparameter search spaces for each model type.
We use {. . .} to denote a set of discrete values and [. . . ] to
denote a continuous range. Following Hewlett et al. (2016),
we ran a random search over the possible configurations.

a smaller hidden vector size (128) reduced Mean
F1 to 62.5. Increasing the number of review steps
for the question to 5 caused a decrease in Mean F1
of 2.1.

6 Related Work

Our model architecture is one of many hierarchi-
cal models for documents proposed in the litera-
ture. The most similar is proposed by Choi et al.
(2017), which uses a coarse-to-fine approach of
first encoding each sentence with a cheap BoW or
Conv model, then selecting the top k sentences to
form a mini-document which is then processed by
a standard seq2seq model. While they also evalu-
ate their approach on WikiReading, their emphasis
is on efficiency rather than model accuracy, with
the resulting model performing slightly worse than
the full seq2seq model but taking much less time
to execute. SWEAR also requires fewer sequential
steps than the document length but still computes
at least as many recurrent steps in parallel.

Our model can also be viewed as containing
a Memory Network (MemNet) built from a doc-
ument (Weston et al., 2014; Sukhbaatar et al.,
2015), where the memories are the window encod-
ings. The core MemNet operation consists of at-
tention over a set of vectors (memories) based on a
query encoding, and then reduction of a second set
of vectors by weighted sum based on the attention
weights. In particular, Miller et al. (2016) intro-

duce the Key-Value MemNet where the two sets
of memories are computed from the keys and val-
ues of a map, respectively: In their QA task, each
memory entry consists of a potential answer (the
value) and its context bag of words (the key).

Our reviewer approach is inspired by “Encode,
Review, Decode” approach introduced by Yang et
al. (2016), which showed the value of introducing
additional computation steps between the encoder
and decoder in a seq2seq model.

The basic recurrent autoencoder was first intro-
duced by Dai et al. (2015), a standard seq2seq
model with the same input and output. Fabius et
al. (2014) expanded this model into the Varia-
tional Recurrent Autoencoder (VRAE), which we
describe in Section 4.1.1. VRAE is an applica-
tion of the general idea of variational autoencod-
ing, which applies variational approximation to
the posterior to reconstruct the input (Kingma and
Welling, 2013). While we train window autoen-
coders, an alternative approach is hierarchical doc-
ument autoencoders (Li et al., 2015).

The semi-supervised approach of initializing
the weights of an RNN encoder with those of a
recurrent autoencoder was first studied by Dai et
al. (2015) in the context of document classifica-
tion and further studied by Ramachandran et al.
(2016) for traditional sequence-to-sequence tasks
such as machine translation. Our baseline semi-
supervised model can be viewed as an extension of
these approaches to a reading comprehension set-
ting. Dai et al. (2015) also explore initialization
from a language model, but find that the recurrent
autoencoder is superior, which is why we do not
consider language models in this work.

7 Conclusions

We have demonstrated the efficacy of the SWEAR
architecture, reaching state of the art performance
on supervised WikiReading. The model improves
the extraction of precise information from long
documents over the baseline seq2seq model. In
a semi-supervised setting, our method of reusing
(V)RAE encodings in a reading comprehension
framework is effective, with SWEAR-PR reaching
an accuracy of 66.5 on 1% of the dataset against
last year’s state of the art of 71.8 using the full
dataset. However, these methods require careful
configuration and tuning to succeed, and making
them more robust presents an excellent opportu-
nity for future work.
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Abstract

Standard accuracy metrics indicate that
reading comprehension systems are mak-
ing rapid progress, but the extent to which
these systems truly understand language
remains unclear. To reward systems
with real language understanding abili-
ties, we propose an adversarial evalua-
tion scheme for the Stanford Question An-
swering Dataset (SQuAD). Our method
tests whether systems can answer ques-
tions about paragraphs that contain adver-
sarially inserted sentences, which are au-
tomatically generated to distract computer
systems without changing the correct an-
swer or misleading humans. In this ad-
versarial setting, the accuracy of sixteen
published models drops from an average
of 75% F1 score to 36%; when the ad-
versary is allowed to add ungrammatical
sequences of words, average accuracy on
four models decreases further to 7%. We
hope our insights will motivate the de-
velopment of new models that understand
language more precisely.

1 Introduction

Quantifying the extent to which a computer sys-
tem exhibits intelligent behavior is a longstanding
problem in AI (Levesque, 2013). Today, the stan-
dard paradigm is to measure average error across
a held-out test set. However, models can succeed
in this paradigm by recognizing patterns that hap-
pen to be predictive on most of the test examples,
while ignoring deeper, more difficult phenomena
(Rimell et al., 2009; Paperno et al., 2016).

In this work, we propose adversarial evaluation
for NLP, in which systems are instead evaluated
on adversarially-chosen inputs. We focus on the

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1: An example from the SQuAD dataset.
The BiDAF Ensemble model originally gets the
answer correct, but is fooled by the addition of an
adversarial distracting sentence (in blue).

SQuAD reading comprehension task (Rajpurkar
et al., 2016), in which systems answer questions
about paragraphs from Wikipedia. Reading com-
prehension is an appealing testbed for adversarial
evaluation, as existing models appear successful
by standard average-case evaluation metrics: the
current state-of-the-art system achieves 84.7% F1
score, while human performance is just 91.2%.1

Nonetheless, it seems unlikely that existing sys-
tems possess true language understanding and rea-
soning capabilities.

Carrying out adversarial evaluation on SQuAD
requires new methods that adversarially alter read-
ing comprehension examples. Prior work in com-
puter vision adds imperceptible adversarial pertur-
bations to input images, relying on the fact that
such small perturbations cannot change an image’s
true label (Szegedy et al., 2014; Goodfellow et al.,
2015). In contrast, changing even one word of a

1https://rajpurkar.github.io/
SQuAD-explorer/
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paragraph can drastically alter its meaning. In-
stead of relying on semantics-preserving perturba-
tions, we create adversarial examples by adding
distracting sentences to the input paragraph, as
shown in Figure 1. We automatically generate
these sentences so that they confuse models, but
do not contradict the correct answer or confuse
humans. For our main results, we use a simple
set of rules to generate a raw distractor sentence
that does not answer the question but looks related;
we then fix grammatical errors via crowdsourc-
ing. While adversarially perturbed images punish
model oversensitivity to imperceptible noise, our
adversarial examples target model overstability—
the inability of a model to distinguish a sentence
that actually answers the question from one that
merely has words in common with it.

Our experiments demonstrate that no published
open-source model is robust to the addition of ad-
versarial sentences. Across sixteen such models,
adding grammatical adversarial sentences reduces
F1 score from an average of 75% to 36%. On
a smaller set of four models, we run additional
experiments in which the adversary adds non-
grammatical sequences of English words, causing
average F1 score to drop further to 7%. To encour-
age the development of new models that under-
stand language more precisely, we have released
all of our code and data publicly.

2 The SQuAD Task and Models

2.1 Task

The SQuAD dataset (Rajpurkar et al., 2016) con-
tains 107,785 human-generated reading compre-
hension questions about Wikipedia articles. Each
question refers to one paragraph of an article, and
the corresponding answer is guaranteed to be a
span in that paragraph.

2.2 Models

When developing and testing our methods, we
focused on two published model architectures:
BiDAF (Seo et al., 2016) and Match-LSTM (Wang
and Jiang, 2016). Both are deep learning architec-
tures that predict a probability distribution over the
correct answer. Each model has a single and an
ensemble version, yielding four systems in total.

We also validate our major findings on twelve
other published models with publicly available
test-time code: ReasoNet Single and Ensem-
ble versions (Shen et al., 2017), Mnemonic

Reader Single and Ensemble versions (Hu et al.,
2017), Structural Embedding of Dependency
Trees (SEDT) Single and Ensemble versions (Liu
et al., 2017), jNet (Zhang et al., 2017), Rumi-
nating Reader (Gong and Bowman, 2017), Multi-
Perspective Context Matching (MPCM) Single
version (Wang et al., 2016), RaSOR (Lee et al.,
2017), Dynamic Chunk Reader (DCR) (Yu et al.,
2016), and the Logistic Regression Baseline (Ra-
jpurkar et al., 2016). We did not run these models
during development, so they serve as a held-out set
that validates the generality of our approach.

2.3 Standard Evaluation
Given a model f that takes in paragraph-question
pairs (p, q) and outputs an answer â, the standard
accuracy over a test set Dtest is simply

Acc(f) def
=

1

|Dtest|
∑

(p,q,a)∈Dtest

v((p, q, a), f),

where v is the F1 score between the true answer
a and the predicted answer f(p, q) (see Rajpurkar
et al. (2016) for details).

3 Adversarial Evaluation

3.1 General Framework
A model that relies on superficial cues without
understanding language can do well according
to average F1 score, if these cues happen to be
predictive most of the time. Weissenborn et al.
(2017) argue that many SQuAD questions can
be answered with heuristics based on type and
keyword-matching. To determine whether exist-
ing models have learned much beyond such simple
patterns, we introduce adversaries that confuse de-
ficient models by altering test examples. Consider
the example in Figure 1: the BiDAF Ensemble
model originally gives the right answer, but gets
confused when an adversarial distracting sentence
is added to the paragraph.

We define an adversary A to be a function that
takes in an example (p, q, a), optionally with a
model f , and returns a new example (p′, q′, a′).
The adversarial accuracy with respect to A is

Adv(f) def
=

1

|Dtest|
∑

(p,q,a)∈Dtest

v(A(p, q, a, f), f)).

While standard test error measures the fraction of
the test distribution over which the model gets the
correct answer, the adversarial accuracy measures
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Image Reading
Classification Comprehension

Possible
Input

Tesla moved
to the city of
Chicago in 1880.

Similar
Input

Tadakatsu moved
to the city of
Chicago in 1881.

Semantics Same Different
Model’s Considers the two Considers the two
Mistake to be different to be the same
Model Overly Overly
Weakness sensitive stable

Table 1: Adversarial examples in computer vi-
sion exploit model oversensitivity to small per-
turbations. In contrast, our adversarial examples
work because models do not realize that a small
perturbation can completely change the meaning
of a sentence. Images from Szegedy et al. (2014).

the fraction over which the model is robustly cor-
rect, even in the face of adversarially-chosen alter-
ations. For this quantity to be meaningful, the ad-
versary must satisfy two basic requirements: first,
it should always generate (p′, q′, a′) tuples that are
valid—a human would judge a′ as the correct an-
swer to q′ given p′. Second, (p′, q′, a′) should be
somehow “close” to the original example (p, q, a).

3.2 Semantics-preserving Adversaries

In image classification, adversarial examples are
commonly generated by adding an imperceptible
amount of noise to the input (Szegedy et al., 2014;
Goodfellow et al., 2015). These perturbations do
not change the semantics of the image, but they
can change the predictions of models that are over-
sensitive to semantics-preserving changes. For
language, the direct analogue would be to para-
phrase the input (Madnani and Dorr, 2010). How-
ever, high-precision paraphrase generation is chal-
lenging, as most edits to a sentence do actually
change its meaning.

3.3 Concatenative Adversaries

Instead of relying on paraphrasing, we use pertur-
bations that do alter semantics to build concatena-
tive adversaries, which generate examples of the
form (p + s, q, a) for some sentence s. In other
words, concatenative adversaries add a new sen-
tence to the end of the paragraph, and leave the
question and answer unchanged. Valid adversarial
examples are precisely those for which s does not
contradict the correct answer; we refer to such sen-
tences as being compatible with (p, q, a). We use

semantics-altering perturbations to that ensure that
s is compatible, even though it may have many
words in common with the question q. Existing
models are bad at distinguishing these sentences
from sentences that do in fact address the question,
indicating that they suffer not from oversensitivity
but from overstability to semantics-altering edits.
Table 1 summarizes this important distinction.

The decision to always append s to the end of
p is somewhat arbitrary; we could also prepend
it to the beginning, though this would violate the
expectation of the first sentence being a topic sen-
tence. Both are more likely to preserve the validity
of the example than inserting s in the middle of p,
which runs the risk of breaking coreference links.

Now, we describe two concrete concatenative
adversaries, as well as two variants. ADDSENT,
our main adversary, adds grammatical sentences
that look similar to the question. In contrast,
ADDANY adds arbitrary sequences of English
words, giving it more power to confuse models.
Figure 2 illustrates these two main adversaries.

3.3.1 ADDSENT

ADDSENT uses a four-step procedure to generate
sentences that look similar to the question, but do
not actually contradict the correct answer. Refer
to Figure 2 for an illustration of these steps.

In Step 1, we apply semantics-altering perturba-
tions to the question, in order to guarantee that the
resulting adversarial sentence is compatible. We
replace nouns and adjectives with antonyms from
WordNet (Fellbaum, 1998), and change named en-
tities and numbers to the nearest word in GloVe
word vector space2 (Pennington et al., 2014) with
the same part of speech.3 If no words are changed
during this step, the adversary gives up and im-
mediately returns the original example. For exam-
ple, given the question “What ABC division han-
dles domestic television distribution?”, we would
change “ABC” to “NBC” (a nearby word in vec-
tor space) and “domestic” to “foreign” (a WordNet
antonym), resulting in the question, “What NBC
division handles foreign television distribution?”

In Step 2, we create a fake answer that has the
same “type” as the original answer. We define a set

2 We use 100-dimensional GloVe vectors trained on
Wikipedia and Euclidean distance to define nearby words.

3 We choose the nearest word whose most common gold
POS tag in the Penn Treebank (Marcus et al., 1999) matches
the predicted POS tag of the original word, according to
CoreNLP. If none of the nearest 100 words satisfy this, we
just return the single closest word.
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Article: Nikola Tesla
Paragraph: "In January 1880, two of Tesla's uncles 
put together enough money to help him leave 
Gospić for Prague where he was to study. 
Unfortunately, he arrived too late to enroll at 
Charles-Ferdinand University; he never studied 
Greek, a required subject; and he was illiterate in 
Czech, another required subject. Tesla did, however, 
attend lectures at the university, although, as an 
auditor, he did not receive grades for the courses."
Question: "What city did Tesla move to in 1880?"
Answer: Prague
Model Predicts: Prague

Tadakatsu moved the city of 
Chicago to in 1881.

Chicago

What city did Tesla move to 
in 1880?

What city did Tadakatsu move to 
in 1881?

Prague

Adversary Adds: Tadakatsu moved to the city 
of Chicago in 1881.
Model Predicts: Chicago

(Step 1)
Mutate

question

(Step 3)
Convert into 
statement

(Step 4)
Fix errors with
crowdworkers, 
verify resulting
sentences with
other crowdworkers

AddSent

spring attention income getting reached

spring attention income other reached

Adversary Adds: tesla move move other george
Model Predicts: george

Repeat many times

Randomly initialize d words:

AddAny

Greedily change one word

(Step 2) 
Generate 

fake answer

Figure 2: An illustration of the ADDSENT and ADDANY adversaries.

of 26 types, corresponding to NER and POS tags
from Stanford CoreNLP (Manning et al., 2014),
plus a few custom categories (e.g., abbreviations),
and manually associate a fake answer with each
type. Given the original answer to a question, we
compute its type and return the corresponding fake
answer. In our running example, the correct an-
swer was not tagged as a named entity, and has
the POS tag NNP, which corresponds to the fake
answer “Central Park.”

In Step 3, we combine the altered question and
fake answer into declarative form, using a set of
roughly 50 manually-defined rules over CoreNLP
constituency parses. For example, “What ABC di-
vision handles domestic television distribution?”
triggers a rule that converts questions of the
form “what/which NP1 VP1 ?” to “The NP1 of
[Answer] VP1”. After incorporating the alter-
ations and fake answer from the previous steps, we
generate the sentence, “The NBC division of Cen-
tral Park handles foreign television distribution.”

The raw sentences generated by Step 3 can be
ungrammatical or otherwise unnatural due to the
incompleteness of our rules and errors in con-
stituency parsing. Therefore, in Step 4, we fix er-
rors in these sentences via crowdsourcing. Each
sentence is edited independently by five workers
on Amazon Mechanical Turk, resulting in up to

five sentences for each raw sentence. Three addi-
tional crowdworkers then filter out sentences that
are ungrammatical or incompatible, resulting in a
smaller (possibly empty) set of human-approved
sentences. The full ADDSENT adversary runs the
model f as a black box on every human-approved
sentence, and picks the one that makes the model
give the worst answer. If there are no human-
approved sentences, the adversary simply returns
the original example.

A model-independent adversary. ADDSENT

requires a small number of queries to the model
under evaluation. To explore the possibility of an
adversary that is completely model-independent,
we also introduce ADDONESENT, which adds
a random human-approved sentence to the para-
graph. In contrast with prior work in computer
vision (Papernot et al., 2017; Narodytska and
Kasiviswanathan, 2016; Moosavi-Dezfooli et al.,
2017), ADDONESENT does not require any access
to the model or to any training data: it generates
adversarial examples based solely on the intuition
that existing models are overly stable.

3.3.2 ADDANY

For ADDANY, the goal is to choose any sequence
of d words, regardless of grammaticality. We use
local search to adversarially choose a distracting
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sentence s = w1w2 . . . wd. Figure 2 shows an
example of ADDANY with d = 5 words; in our
experiments, we use d = 10.

We first initialize words w1, . . . , wd randomly
from a list of common English words.4 Then, we
run 6 epochs of local search, each of which iterates
over the indices i ∈ {1, . . . , d} in a random order.
For each i, we randomly generate a set of candi-
date words W as the union of 20 randomly sam-
pled common words and all words in q. For each
x ∈W , we generate the sentence with x in the i-th
position and wj in the j-th position for each j 6= i.
We try adding each sentence to the paragraph and
query the model for its predicted probability distri-
bution over answers. We update wi to be the x that
minimizes the expected value of the F1 score over
the model’s output distribution. We return imme-
diately if the model’s argmax prediction has 0 F1
score. If we do not stop after 3 epochs, we ran-
domly initialize 4 additional word sequences, and
search over all of these random initializations in
parallel.

ADDANY requires significantly more model ac-
cess than ADDSENT: not only does it query the
model many times during the search process, but
it also assumes that the model returns a probabil-
ity distribution over answers, instead of just a sin-
gle prediction. Without this assumption, we would
have to rely on something like the F1 score of the
argmax prediction, which is piecewise constant
and therefore harder to optimize. “Probabilistic”
query access is still weaker than access to gradi-
ents, as is common in computer vision (Szegedy
et al., 2014; Goodfellow et al., 2015).

We do not do anything to ensure that the sen-
tences generated by this search procedure do not
contradict the original answer. In practice, the
generated “sentences” are gibberish that use many
question words but have no semantic content (see
Figure 2 for an example).

Finally, we note that both ADDSENT and
ADDANY try to incorporate words from the ques-
tion into their adversarial sentences. While this is
an obvious way to draw the model’s attention, we
were curious if we could also distract the model
without such a straightforward approach. To this
end, we introduce a variant of ADDANY called
ADDCOMMON, which is exactly like ADDANY

except it only adds common words.

4 We define common words as the 1000 most frequent
words in the Brown corpus (Francis and Kucera, 1979).

Match Match BiDAF BiDAF
Single Ens. Single Ens.

Original 71.4 75.4 75.5 80.0
ADDSENT 27.3 29.4 34.3 34.2
ADDONESENT 39.0 41.8 45.7 46.9
ADDANY 7.6 11.7 4.8 2.7
ADDCOMMON 38.9 51.0 41.7 52.6

Table 2: Adversarial evaluation on the Match-
LSTM and BiDAF systems. All four systems can
be fooled by adversarial examples.

Model Original ADDSENT ADDONESENT
ReasoNet-E 81.1 39.4 49.8
SEDT-E 80.1 35.0 46.5
BiDAF-E 80.0 34.2 46.9
Mnemonic-E 79.1 46.2 55.3
Ruminating 78.8 37.4 47.7
jNet 78.6 37.9 47.0
Mnemonic-S 78.5 46.6 56.0
ReasoNet-S 78.2 39.4 50.3
MPCM-S 77.0 40.3 50.0
SEDT-S 76.9 33.9 44.8
RaSOR 76.2 39.5 49.5
BiDAF-S 75.5 34.3 45.7
Match-E 75.4 29.4 41.8
Match-S 71.4 27.3 39.0
DCR 69.3 37.8 45.1
Logistic 50.4 23.2 30.4

Table 3: ADDSENT and ADDONESENT on all six-
teen models, sorted by F1 score the original exam-
ples. S = single, E = ensemble.

4 Experiments

4.1 Setup

For all experiments, we measure adversarial F1
score (Rajpurkar et al., 2016) across 1000 ran-
domly sampled examples from the SQuAD devel-
opment set (the test set is not publicly available).
Downsampling was helpful because ADDANY

and ADDCOMMON can issue thousands of model
queries per example, making them very slow. As
the effect sizes we measure are large, this down-
sampling does not hurt statistical significance.

4.2 Main Experiments

Table 2 shows the performance of the Match-
LSTM and BiDAF models against all four adver-
saries. Each model incurred a significant accu-
racy drop under every form of adversarial evalua-
tion. ADDSENT made average F1 score across the
four models fall from 75.7% to 31.3%. ADDANY

was even more effective, making average F1 score
fall to 6.7%. ADDONESENT retained much of the
effectiveness of ADDSENT, despite being model-
independent. Finally, ADDCOMMON caused aver-
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Human
Original 92.6
ADDSENT 79.5
ADDONESENT 89.2

Table 4: Human evaulation on adversarial exam-
ples. Human accuracy drops on ADDSENT mostly
due to unrelated errors; the ADDONESENT num-
bers show that humans are robust to adversarial
sentences.

age F1 score to fall to 46.1%, despite only adding
common words.

We also verified that our adversaries were gen-
eral enough to fool models that we did not use dur-
ing development. We ran ADDSENT on twelve
published models for which we found publicly
available test-time code; we did not run ADDANY

on these models, as not all models exposed out-
put distributions. As seen in Table 3, no model
was robust to adversarial evaluation; across the
sixteen total models tested, average F1 score fell
from 75.4% to 36.4% under ADDSENT.

It is noteworthy that the Mnemonic Reader
models (Hu et al., 2017) outperform the other
models by about 6 F1 points. We hypothesize that
Mnemonic Reader’s self-alignment layer, which
helps model long-distance relationships between
parts of the paragraph, makes it better at locating
all pieces of evidence that support the correct an-
swer. Therefore, it can be more confident in the
correct answer, compared to the fake answer in-
serted by the adversary.

4.3 Human Evaluation
To ensure our results are valid, we verified that
humans are not also fooled by our adversarial ex-
amples. As ADDANY requires too many model
queries to run against humans, we focused on
ADDSENT. We presented each original and ad-
versarial paragraph-question pair to three crowd-
workers, and asked them to select the correct an-
swer by copy-and-pasting from the paragraph. We
then took a majority vote over the three responses
(if all three responses were different, we picked
one at random). These results are shown in Ta-
ble 4. On original examples, our humans are
actually slightly better than the reported number
of 91.2 F1 on the entire development set. On
ADDSENT, human accuracy drops by 13.1 F1
points, much less than the computer systems.

Moreover, much of this decrease can be ex-
plained by mistakes unrelated to our adversarial

sentences. Recall that ADDSENT picks the worst
case over up to five different paragraph-question
pairs. Even if we showed the same original exam-
ple to five sets of three crowdworkers, chances are
that at least one of the five groups would make a
mistake, just because humans naturally err. There-
fore, it is more meaningful to evaluate humans on
ADDONESENT, on which their accuracy drops by
only 3.4 F1 points.

4.4 Analysis

Next, we sought to better understand the behavior
of our four main models under adversarial evalua-
tion. To highlight errors caused by the adversary,
we focused on examples where the model origi-
nally predicted the (exact) correct answer. We di-
vided this set into “model successes”—examples
where the model continued being correct during
adversarial evaluation—and “model failures”—
examples where the model gave a wrong answer
during adversarial evaluation.

4.4.1 Manual verification
First, we verified that the sentences added by
ADDSENT are actually grammatical and compat-
ible. We manually checked 100 randomly cho-
sen BiDAF Ensemble failures. We found only
one where the sentence could be interpreted as an-
swering the question: in this case, ADDSENT re-
placed the word “Muslim” with the related word
“Islamic”, so the resulting adversarial sentence
still contradicted the correct answer. Addition-
ally, we found 7 minor grammar errors, such
as subject-verb disagreement (e.g., “The Alaskan
Archipelago are made up almost entirely of ham-
sters.”) and misuse of function words (e.g., “The
gas of nitrogen makes up 21.8 % of the Mars’s at-
mosphere.”), but no errors that materially impeded
understanding of the sentence.

We also verified compatibility for ADDANY.
We found no violations out of 100 randomly cho-
sen BiDAF Ensemble failures.

4.4.2 Error analysis
Next, we wanted to understand what types of er-
rors the models made on the ADDSENT examples.
In 96.6% of model failures, the model predicted
a span in the adversarial sentence. The lengths of
the predicted answers were mostly similar to those
of correct answers, but the BiDAF models occa-
sionally predicted very long spans. The BiDAF
Single model predicted an answer of more than
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29 words—the length of the longest answer in the
SQuAD development set—on 5.0% of model fail-
ures; for BiDAF Ensemble, this number was 1.6%.
Since the BiDAF models independently predict
the start and end positions of the answer, they can
predict very long spans when the end pointer is in-
fluenced by the adversarial sentence, but the start
pointer is not. Match-LSTM has a similar struc-
ture, but also has a hard-coded rule that stops it
from predicting very long answers.

We also analyzed human failures—examples
where the humans were correct originally, but
wrong during adversarial evaluation. Humans
predicted from the adversarial sentence on only
27.3% of these error cases, which confirms that
many errors are normal mistakes unrelated to ad-
versarial sentences.

4.4.3 Categorizing ADDSENT sentences
We then manually examined sentences generated
by ADDSENT. In 100 BiDAF Ensemble fail-
ures, we found 75 cases where an entity name
was changed in the adversarial sentence, 17 cases
where numbers or dates were changed, and 33
cases where an antonym of a question word was
used.5 Additionally, 7 sentences had other mis-
cellaneous perturbations made by crowdworkers
during Step 4 of ADDSENT. For example, on a
question about the “Kalven Report”, the adver-
sarial sentence discussed “The statement Kalven
cited” instead; in another case, the question, “How
does Kenya curb corruption?” was met by the
unhelpful sentence, “Tanzania is curbing corrup-
tion” (the model simply answered, “corruption”).

4.4.4 Reasons for model successes
Finally, we sought to understand the factors that
influence whether the model will be robust to ad-
versarial perturbations on a particular example.
First, we found that models do well when the ques-
tion has an exact n-gram match with the original
paragraph. Figure 3 plots the fraction of exam-
ples for which an n-gram in the question appears
verbatim in the original passage; this is much
higher for model successes. For example, 41.5%
of BiDAF Ensemble successes had a 4-gram in
common with the original paragraph, compared to
only 21.0% of model failures.

We also found that models succeeded more of-
ten on short questions. Figure 4 shows the dis-

5 These numbers add up to more than 100 because more
than one word can be altered per example.
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Figure 3: Fraction of model successes and fail-
ures on ADDSENT for which the question has an
exact n-gram match with the original paragraph.
For each model and each value of n, successes are
more likely to have an n-gram match than failures.

Model under Evaluation

Targeted Model ML ML BiDAF BiDAF
Single Ens. Single Ens.

ADDSENT
ML Single 27.3 33.4 40.3 39.1
ML Ens. 31.6 29.4 40.2 38.7
BiDAF Single 32.7 34.8 34.3 37.4
BiDAF Ens. 32.7 34.2 38.3 34.2
ADDANY
ML Single 7.6 54.1 57.1 60.9
ML Ens. 44.9 11.7 50.4 54.8
BiDAF Single 58.4 60.5 4.8 46.4
BiDAF Ens. 48.8 51.1 25.0 2.7

Table 5: Transferability of adversarial examples
across models. Each row measures performance
on adversarial examples generated to target one
particular model; each column evaluates one (pos-
sibly different) model on these examples.

tribution of question length on model successes
and failures; successes tend to involve shorter
questions. For example, 32.7% of the questions
in BiDAF Ensemble successes were 8 words or
shorter, compared to only 11.8% for model fail-
ures. This effect arises because ADDSENT always
changes at least one word in the question. For
long questions, changing one word leaves many
others unchanged, so the adversarial sentence still
has many words in common with the question. For
short questions, changing one content word may
be enough to make the adversarial sentence com-
pletely irrelevant.
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Figure 4: For model successes and failures on
ADDSENT, the cumulative distribution function of
the number of words in the question (for each k,
what fraction of questions have ≤ k words). Suc-
cesses are more likely to involve short questions.

4.5 Transferability across Models

In computer vision, adversarial examples that fool
one model also tend to fool other models (Szegedy
et al., 2014; Moosavi-Dezfooli et al., 2017); we
investigate whether the same pattern holds for us.
Examples from ADDONESENT clearly do transfer
across models, since ADDONESENT always adds
the same adversarial sentence regardless of model.

Table 5 shows the results of evaluating the
four main models on adversarial examples gen-
erated by running either ADDSENT or ADDANY

against each model. ADDSENT adversarial ex-
amples transfer between models quite effectively;
in particular, they are harder than ADDONESENT

examples, which implies that examples that fool
one model are more likely to fool other mod-
els. The ADDANY adversarial examples exhibited
more limited transferability between models. For
both ADDSENT and ADDANY, examples trans-
ferred slightly better between single and ensemble
versions of the same model.

4.6 Training on Adversarial Examples

Finally, we tried training on adversarial examples,
to see if existing models can learn to become more
robust. Due to the prohibitive cost of running
ADDSENT or ADDANY on the entire training set,
we instead ran only Steps 1-3 of ADDSENT (ev-
erything except crowdsourcing) to generate a raw
adversarial sentence for each training example.
We then trained the BiDAF model from scratch on

Training data
Test data Original Augmented
Original 75.8 75.1
ADDSENT 34.8 70.4
ADDSENTMOD 34.3 39.2

Table 6: Effect of training the BiDAF Single
model on the original training data alone (first
column) versus augmenting the data with raw
ADDSENT examples (second column).

the union of these examples and the original train-
ing data. As a control, we also trained a second
BiDAF model on the original training data alone.6

The results of evaluating these models are
shown in Table 6. At first glance, training on ad-
versarial data seems effective, as it largely protects
against ADDSENT. However, further investigation
shows that training on these examples has only
limited utility. To demonstrate this, we created
a variant of ADDSENT called ADDSENTMOD,
which differs from ADDSENT in two ways: it
uses a different set of fake answers (e.g., PERSON
named entities map to “Charles Babbage” instead
of “Jeff Dean”), and it prepends the adversarial
sentence to the beginning of the paragraph in-
stead of appending it to the end. The retrained
model does almost as badly as the original one on
ADDSENTMOD, suggesting that it has just learned
to ignore the last sentence and reject the fake an-
swers that ADDSENT usually proposed. In order
for training on adversarial examples to actually
improve the model, more care must be taken to
ensure that the model cannot overfit the adversary.

5 Discussion and Related Work

Despite appearing successful by standard evalu-
ation metrics, existing machine learning systems
for reading comprehension perform poorly un-
der adversarial evaluation. Standard evaluation is
overly lenient on models that rely on superficial
cues. In contrast, adversarial evaluation reveals
that existing models are overly stable to perturba-
tions that alter semantics.

To optimize adversarial evaluation metrics, we
may need new strategies for training models. For
certain classes of models and adversaries, efficient
training strategies exist: for example, Globerson
and Roweis (2006) train classifiers that are opti-
mally robust to adversarial feature deletion. Ad-

6 All previous experiments used parameters released by
Seo et al. (2016)
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versarial training (Goodfellow et al., 2015) can be
used for any model trained with stochastic gra-
dient descent, but it requires generating new ad-
versarial examples at every iteration; this is fea-
sible for images, where fast gradient-based adver-
saries exist, but is infeasible for domains where
only slower adversaries are available.

We contrast adversarial evaluation, as studied
in this work, with generative adversarial models.
While related in name, the two have very different
goals. Generative adversarial models pit a gen-
erative model, whose goal is to generate realis-
tic outputs, against a discriminative model, whose
goal is to distinguish the generator’s outputs from
real data (Smith, 2012; Goodfellow et al., 2014).
Bowman et al. (2016) and Li et al. (2017) used
such a setup for sentence and dialogue generation,
respectively. Our setup also involves a genera-
tor and a discriminator in an adversarial relation-
ship; however, our discriminative system is tasked
with finding the right answer, not distinguishing
the generated examples from real ones, and our
goal is to evaluate the discriminative system, not
to train the generative one.

While we use adversaries as a way to evalu-
ate language understanding, robustness to adver-
sarial attacks may also be its own goal for tasks
such as spam detection. Dalvi et al. (2004) formu-
lated such tasks as a game between a classifier and
an adversary, and analyzed optimal strategies for
each player. Lowd and Meek (2005) described an
efficient attack by which an adversary can reverse-
engineer the weights of a linear classifier, in or-
der to then generate adversarial inputs. In contrast
with these methods, we do not make strong struc-
tural assumptions about our classifiers.

Other work has proposed harder test datasets
for various tasks. Levesque (2013) proposed the
Winograd Schema challenge, in which comput-
ers must resolve coreference resolution problems
that were handcrafted to require extensive world
knowledge. Paperno et al. (2016) constructed the
LAMBADA dataset, which tests the ability of lan-
guage models to handle long-range dependencies.
Their method relies on the availability of a large
initial dataset, from which they distill a difficult
subset; such initial data may be unavailable for
many tasks. Rimell et al. (2009) showed that de-
pendency parsers that seem very accurate by stan-
dard metrics perform poorly on a subset of the
test data that has unbounded dependency construc-

tions. Such evaluation schemes can only test mod-
els on phenomena that are moderately frequent in
the test distribution; by perturbing test examples,
we can introduce out-of-distribution phenomena
while still leveraging prior data collection efforts.

While concatenative adversaries are well-suited
to reading comprehension, other adversarial meth-
ods may prove more effective on other tasks. As
discussed previously, paraphrase generation sys-
tems (Madnani and Dorr, 2010) could be used for
adversarial evaluation on a wide range of language
tasks. Building on our intuition that existing mod-
els are overly stable, we could apply meaning-
altering perturbations to inputs on tasks like ma-
chine translation, and adversarially choose ones
for which the model’s output does not change. We
could also adversarially generate new examples
by combining multiple existing ones, in the spirit
of Data Recombination (Jia and Liang, 2016).
The Build It, Break It shared task (Bender et al.,
2017) encourages researchers to adversarially de-
sign minimal pairs to fool sentiment analysis and
semantic role labeling systems.

Progress on building systems that truly under-
stand language is only possible if our evaluation
metrics can distinguish real intelligent behavior
from shallow pattern matching. To this end, we
have released scripts to run ADDSENT on any
SQuAD system, as well as code for ADDANY. We
hope that our work will motivate the development
of more sophisticated models that understand lan-
guage at a deeper level.
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Abstract

Reasoning with commonsense knowl-
edge is critical for natural language un-
derstanding. Traditional methods for
commonsense machine comprehension
mostly only focus on one specific kind
of knowledge, neglecting the fact that
commonsense reasoning requires simul-
taneously considering different kinds of
commonsense knowledge. In this paper,
we propose a multi-knowledge reasoning
method, which can exploit heterogeneous
knowledge for commonsense machine
comprehension. Specifically, we first mine
different kinds of knowledge (including
event narrative knowledge, entity semantic
knowledge and sentiment coherent knowl-
edge) and encode them as inference rules
with costs. Then we propose a multi-
knowledge reasoning model, which select-
s inference rules for a specific reasoning
context using attention mechanism, and
reasons by summarizing all valid infer-
ence rules. Experiments on RocStories
show that our method outperforms tradi-
tional models significantly.

1 Introduction

Commonsense knowledge is fundamental in ar-
tificial intelligence, and has long been a key
component in natural language understanding and
human-like reasoning. For example, to understand
the relation between sentences “Mary walked to
a restaurant” and “She ordered some foods”, we
need commonsense knowledge such as “Mary is
a girl”, “restaurant sells food”, etc. The task
of understanding natural language with common-
sense knowledge is usually referred as common-
sense machine comprehension, which has been a

hot topic in recent years (Richardson et al., 2013;
Weston et al., 2015; Zhang et al., 2016).

Recently, RocStories (Mostafazadeh et al.,
2016a), a commonsense machine comprehension
task, has attached many researchers’ attention
due to its significant difference from previous
machine comprehension tasks. RocStories focuses
on reasoning with implicit commonsense knowl-
edge, rather than matching with explicit infor-
mation in given contexts. In this task, a sys-
tem requires choosing a sentence, namely hy-
pothesis, to complete a given commonsense sto-
ry, called as premise document. Table 1 shows
two examples. RocStories proposes a challeng-
ing benchmark task for evaluating commonsense-
based language understanding. As investigated
by Mostafazadeh et al.(2016a), this dataset does
not have any boundary cases and thus results in
100% human performance.

Commonsense machine comprehension, how-
ever, is an natural ability for human but could
be very challenging for computers. In gener-
al, any world knowledge whatsoever in the read-
er’s mind can affect the choice of an interpreta-
tion (Dahlgren et al., 1989). That is, a person can
learn any heterogeneous commonsense knowledge
and make inference of given information based on
all knowledge in his mind. For example, to choose
the right hypothesis for the first premise document
in Table 1, we needs the event narrative knowl-
edge that “X does a thorough job” will lead to “c-
ommends X”, rather than “fire X”. Besides, peo-
ple can further confirm their judgement based on
the sentimental coherence between “finish super
early” and “job well done”. Furthermore, in the
second example, even both hypothesises are con-
sistent with the premise document in both event
and sentimental facets, we can still infer the right
answer easily using the commonsense knowledge
that “puppy” is a dog, meanwhile “kitten” is a cat.
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Premise Document Right Hypothesis Wrong Hypothesis
Ron started his new job as a landscaper today.
He loves the outdoors and has always enjoyed working in it.
His boss tells him to re-sod the front yard of the mayor’s home.
Ron is ecstatic, but does a thorough job and finishes super early.

His boss commends him
for a job well done.

Ron is immediately fired
for insubordination.

One day, my sister came over to the house to show us her puppy.
She told us that she had just gotten the puppy across the street.
My sons begged me to get them one.
I told them that if they would care for it, they could have it.

My son said they would,
so we got a dog.

We then grabbed a small
kitten.

Table 1: Examples of RocStories Dataset.

In recent years, many methods have been pro-
posed for commonsense machine comprehension.
However, these methods mostly either focus on
matching explicit information in given texts (We-
ston et al., 2014; Wang and Jiang, 2016a,b; Wang
et al., 2016b; Zhao et al., 2017), or paid atten-
tion to one specific kind of commonsense knowl-
edge, such as event temporal relation (Chamber-
s and Jurafsky, 2008; Modi and Titov, 2014; Pi-
chotta and Mooney, 2016b; Hu et al., 2017) and
event causality (Do et al., 2011; Radinsky et al.,
2012; Hashimoto et al., 2015; Gui et al., 2016). As
discussed above, it is obvious that commonsense
machine comprehension problem is far from set-
tled by considering only explicit or a single kind
of commonsense knowledge. To achieve human-
like comprehension and reasoning, there exist two
main challenges:

1) How to mine and represent different
kinds of implicit knowledge that commonsense
machine comprehension needs. For example, to
complete the first example in Table 1, we need a
system equipped with the event narrative knowl-
edge that “commends X” can be inferred from “X
does a thorough job”, as well as the sentiment
coherent knowledge that “insubordination” and
“finish super early” are sentimental incoherent.

2) How to reason with various kinds of
commonsense knowledge. As shown above,
knowledge that reasoning process needs varies
for different contexts. For human-like common-
sense machine comprehension, a system should
take various kinds of knowledge into considera-
tion, decide what knowledge will be utilized in a
specific reasoning contexts, and make the final de-
cision by taking all utilized knowledge into con-
sideration.

To address the above problems, this paper pro-
poses a new commonsense reasoning approach,
which can mine and exploit heterogeneous knowl-
edge for commonsense machine comprehension.
Specifically, we first mine different kinds of
knowledge from raw text and relevant knowl-

edge base, including event narrative knowledge,
entity semantic knowledge and sentiment coherent
knowledge. These heterogeneous knowledge are
encoded into a uniform representation – inference
rules between elements under different kinds of re-
lations, with an inference cost for each rule. Then
we design a rule selection model using attention
mechanism, modeling which inference rules will
be applied in a specific reasoning context. Final-
ly, we propose a multi-knowledge reasoning mod-
el, which measures the reasoning distance from a
premise document to a hypothesis as the expect-
ed cost sum of all inference rules applied in the
reasoning process.

By modeling and exploiting heterogeneous
knowledge during commonsense reasoning, our
method can achieve more accurate and more ro-
bust performance than traditional methods. Fur-
thermore, our method is a general framework,
which can be extended to incorporate new knowl-
edge easily. Experiments show that our method
achieves a 13.7% accuracy improvement on the s-
tandard RocStories dataset, a significant improve-
ment over previous work.

2 Commonsense Knowledge Acquisition
for Machine Comprehension

As described above, various knowledge can be ex-
ploited for machine comprehension. In this sec-
tion, we describe how to mine different knowl-
edge from different sources. Specifically, we
mine three types of commonly used commonsense
knowledge, including: 1)Event narrative knowl-
edge, which captures temporal and causal relation-
s between events; 2)Entity semantic knowledge,
which captures semantic relations between enti-
ties; 3)Sentiment coherent knowledge, which cap-
tures sentimental coherence between elements.

In this paper, we represent commonsense
knowledge as a set of inference rules given in the

form of X
f−→ Y : s, which means that element

Y can be inferred from element X under relation
f , with an inference cost s. An element can stand
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Antecedent Consequent Relation Cost
1© Mary she coreference 0.0
2© restaurant order narrative 0.1
3© restaurant food associative 0.1
4© restaurant food narrative 0.3
5© Mary order narrative 0.5
6© walk sleep narrative 0.8
7© walk food narrative 0.9

Table 2: Examples of Inference Rules.

for either event, entity or sentiment, and this pa-
per represents elements using lemmatized nouns,
verbs and adjectives. The lexical element repre-
sentation can also be easily extended to structural
representation, like the one in (Chambers and Ju-
rafsky, 2008), if needed. However, in auxiliary ex-
periments we found that using structural elements
results in severe sparseness and noises which in
turn will hurt the reasoning performance. There-
fore, we think an individual work is needed to
solve it. Table 2 demonstrates several examples
of inference rules. In following, we describe how
to mine different types of inference rules.

2.1 Mining Event Narrative Knowledge

Event narrative knowledge captures structured
temporal and casual knowledge about stereotyp-
ical event sequences, which is fundamental for
commonsense machine comprehension. For ex-
ample, we can infer “X ordered some foods” from
“X walked to a restaurant” using event narrative
knowledge. Previous work (Chambers and Juraf-
sky, 2008; Rudinger et al., 2015) proves that event
narrative knowledge can be mined from raw texts
unsupervisedly. So we propose two models to en-
code this knowledge using inference rules.

The first one is based on ordered PMI, which
is also proposed by Rudinger et al. (2015). Given
two element e1 and e2, this model calculates the
cost of inference rule e1

narrative−−−−−−→ e2 as:

cost(e1 −→ e2) = −log C(e1, e2)

C(e1, ∗), C(∗, e2)
(1)

HereC(e1, e2) is the order sensitive count that ele-
ment e1 occurs before element e2 in different sen-
tences of the same document.

The second model is a variant of the skip-gram
model (Mikolov et al., 2013). The goal of this
model is to find element representations which
can accurately predict relevant elements in sen-
tences afterwards. Formally, given n asymmetric
pairs of elements (e11, e

1
2), (e

2
1, e

2
2), ...., (e

n
1 , e

n
2 ) i-

dentified from training data, the objective of our
model is to maximize the average log proba-

bility 1
n

∑n
i=1 logP (e

i
2|ei1). And the probability

P (e2|e1) is defined using the softmax function:

P (e2|e1) ∝ exp(v′e2
T
ve1) (2)

where ve and v′e are “antecedent” and “conse-
quent” vector representation of element e, re-
spectively. We use the negative inner prod-
uct −v′e2

Tve1 as the cost of inference rule

e1
skip−gram−−−−−−−→ e2.

2.2 Mining Entity Semantic Knowledge

Entities, often serving as event participants or en-
vironment variables, are important components of
commonsense stories. Intuitively, an entity in hy-
pothesis is reasonable if we can identify seman-
tic relations between it and some parts of premise
document. For example, if a premise document
contains “Starbucks”, then “coffeehouse” and “lat-
te” will be reasonable entities in hypothesis since
“Starbucks” is a possible coreference of “coffee-
house” and it is semantically related to “latte”.

Specifically, we identify mainly two kinds of
semantic relations between entities for common-
sense machine comprehension:

1) Coreference relation, which indicates that
two elements refer to the same entity in environ-
ment. In stories, besides to pronouns, an entity is
often referred using its hypernyms, e.g, the second
example in Table 1 uses “dog” to refer to “puppy”.
Motivated by this observation, we mine corefer-
ence knowledge between elements using Word-

net (Kilgarriff and Fellbaum, 2000): X
coref−−−→ Y

is an inference rule with cost 0 if X and Y are
lemmas in the same Wordnet synset, or with hy-
ponymy relation in Wordnet. Otherwise, the cost
of inference rules between this element-pair under
this relation will be 1.

2) Associative relation, which captures the se-
mantic relatedness between two entities, i.e., “s-
tarbucks” → “latte”, “restaurant” → “food”, etc.
This paper mines associative relations between en-
tities from Wikipedia1, using the method proposed
by Milne and Witten(2008). Specifically, given
two entities e1 and e2, we compute the semantic
distance dist(e1, e2) between them as:

dist(e1, e2) =
log(max(|E1|, |E2|)− log(|E1

⋂
E2|))

log(|W |)− log(min(|E1|, |E2|))
(3)

where E1 and E2 are the sets of all entities that
link to these two entities in Wikipedia respectively,

1https://www.wikipedia.org/
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and W is the entire Wikipedia. We set the cost of
inference rule e1

associative−−−−−−−→ e2 as dist(e1, e2).

2.3 Mining Sentiment Coherent Knowledge
Sentiment is one of the central and pervasive as-
pects of human experience (Ortony et al., 1990).
It plays an important role in commonsense stories,
i.e., a reasonable hypothesis should be sentimen-
tal coherent with its premise document. In this pa-
per, we mine sentiment coherence rules using Sen-
tiWordnet (Baccianella et al., 2010), in which each
synset of Wordnet is assigned with three sentiment
scores: positivity, negativity and objectivity.

Concretely, to identify sentimental coherence
rule between two element e1 and e2, we first com-
pute the positivity, negativity and objectivity s-
cores of every element by averaging the scores of
all synsets it’s in, then we identify an element to
be subjective if its objectivity score is smaller than
a threshold, and the distance between its positiv-
ity and negativity score is greater than a thresh-
old. Finally, for an inference rule e1

senti−−−→ e2,
we set its cost to 1 if e1 and e2 are both sub-
jective and have opposite sentimental polarity, to
-1 if they are both subjective and their sentimen-
tal polarity are the same, and to 0 for other cas-
es. For example, we will mine inference rules
“good senti−−−→ happy : −1”, “perfect senti−−−→ sad : 1”
and “young senti−−−→ happy : 0”.

2.4 Metric Learning to Calibrate Cost
Measurement

So far, we have extracted many inference rules
under different relations. However, because we
extract them from different sources and estimate
their costs using different measurements, the cost
metrics of these rules may not be consistent with
each other. To exploit different types of infer-
ence rules in a unified framework, we here propose
a metric learning based method to calibrate their
costs.

Given an input distance function, a metric learn-
ing method constructs a new distance function
which is “better” than the original one with super-
vision regarding an ideal distance (Kulis, 2012).
To calibrate inference rule cost, we add a non-
linear layer to the original cost sr of inference rule
r under relation f :

cr = sigmoid(wfsr + bf ) (4)

Here cr is the metric-unified inference cost of in-
ference rule r, wf and bf are calibration parame-

ters for inference rules of relation f . We use sig-
moid function in order to normalize costs into 0
to 1. Calibration parameters will be trained along
with other parameters in our model. See Section
3.4 for detail.

2.5 Dealing with Negation

One important linguistic phenomenon needs to
specifically consider is negation. Here we discuss
how to solve negation in our model.

We use ¬X to represent an element X mod-
ified by a negation word (the existence of nega-
tion is detected using dependency relations). Un-
der event narrative relation and sentiment coherent
relation, the existence of negation will reverse the
conclusion. So we add three additional negation

related inference rules for rule X
f−→ Y : s un-

der these relations, including ¬X f−→ Y : 1 − s,
X

f−→ ¬Y : 1 − s and ¬X f−→ ¬Y : s. Here s
is the calibrated cost of the original inference rule.
For entity semantic relations, we just ignore the
negation since it will not affect the inference un-
der these relations.

3 Machine Comprehension via
Commonsense Reasoning

This section describes how to leverage acquired
knowledge for commonsense machine compre-
hension. We first define how to infer from a
premise document to a hypothesis using inference
rules. Then we model how to choose inference
rules for a specific reasoning context. Finally, we
describe how to measure the reasoning distance
from a premise document to a hypothesis by sum-
marizing the costs of all possible inferences.

3.1 Inference from Premise Document to
Hypothesis

Given a premise document D = {d1, d2, ..., dm}
containing m elements, a hypothesis H =
{h1, h2, ..., hn} containing n elements, a valid in-
ference R from D to H is a set of inference rules
that all elements in H can be inferred from one el-
ement inD using one and only one rule inR. This
definition means that all elements in H should be
covered by consequents of inference rules in R,
as well as all antecedents of inference rules in R
should come from D. Figure 1 shows some in-
ference examples, where (a), (b) and (d) are valid
inferences, but (c) is not a valid inference because
its rules can not cover all elements in hypothesis.
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(a)

1 2 4
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(b)
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ordered foods
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a restaurant

narrative
associative

coreference

0.0 0.1 0.1 0.0

0.00.0

0.90.5

0.80.1

Figure 1: Examples of inferences. Numbers in cir-
cle indicates the proposed inference rules in Ta-
ble 2, and values in rectangle are their costs.

By the definition, the size of R and the size of
H are equal. So we use ri to denote the inference
rule in R that applied to derive element hi in H ,
i.e., R = {r1, r2, ..., rn}.

Based on the above definition, we can naturally
define the cost of an inference R as the cost sum
of all inference rules in R. In Figure 1, the cost
for inference (a) is 0.0 + 0.1 + 0.1 = 0.2, and for
inference (d) is 0.0 + 0.8 = 0.8.

3.2 Modeling Inference Probability using
Attention Mechanism

Obviously, there exist multiple valid inferences for
a premise document and a hypothesis. For exam-
ple, in Figure 1, both (a) and (b) are valid infer-
ences for the same premise document and hypoth-
esis. To identify whether a hypothesis is reason-
able, we need to consider all possible inferences.
However, in human reasoning process, not all in-
ference rules have the same possibility to be ap-
plied, because the more reasonable inference will
be proposed more likely. In Figure 1, inference
(a) should have a higher probability than inference
(b) because it is more reasonable to infer “food-
s” from “a restaurant” with associative relation,
rather than from “walked to” with narrative rela-
tion. Besides, the possibility of proposing an infer-
ence should not depend on its cost, e.g., inference
(d) should have high possibility to be proposed de-
spite its high cost, because we often infer event
“sleep” from another event using inference rules
under narrative relation. As examples mentioned
above, the “cost” measures the “correctness” of an
inference rule. A rule with low cost is more like-
ly to be “reasonable”, and a rule with high cost is
more likely to be a contradiction with common-
sense. On the other hand, the “possibility” should
measure how likely a rule will be applied in a giv-
en context, which does not depend on the “cost”

but on the nature of the rule and the given con-
text. Motivated by above observations, we endow
each inference a probability P (R|D,H), indicat-
ing the possibility thatR is chosen to infer hypoth-
esis H from premise document D. For simplicity,
we assume that each element in hypothesis is inde-
pendently inferred using individual inference rule,
then P (R|D,H) can be written as:

P (R|D,H) =

n∏

i=1

P (ri|D,H) (5)

=

n∏

i=1

P (ri|D,hi) (6)

=

n∏

i=1

m∑

j=1

P (ri, dj |D,hi) (7)

Equation (7) clearly shows how an inference rule
is selected given the premise document D and the
element hi in hypothesis. It depends on which ele-
ment dj inD will be selected and which relation f
will be used to infer hi from dj . We then refactor
the probability P (ri, dj |D,hi) to be:

P (ri, dj |D,hi) =
{
0 , antecedent(ri) 6= dj

g(hi, dj , f(ri);D) , otherwise
(8)

Here f(r) is the relation type of inference rule r,
and g(h, d, f ;D) is defined as:

g(h, d, f ;D) =
s(h, d)a(h, f)a(d, f)∑

f∈F
∑
d∈D s(h, d)a(h, f)a(d, f)

(9)

Here F denotes all relation types of inference
rules, s(e1, e2) is a matching function between
two elements e1 and e2, measuring by cosine sim-
ilarity based on GoogleNews word2vec (Mikolov
et al., 2013). And a(e, f) is an attention func-
tion measuring how likely an element e will be
involved with rules under relation f :

a(e, f) = vf
T tanh(Wfe+ bf ) (10)

where vf ∈ RK , Wf ∈ RK×F and bf ∈ RK are
attention parameters of relation f , and e ∈ RF is
the feature vector of element e. Here K is the size
of attention hidden layer and F is the dimension of
feature vector. We consider three types of features,
as shown in Table 3. Using attention mechanism,
our method models the possibility that an infer-
ence rule is applied during the inference from a
premise document to a hypothesis by considering
the relatedness between elements and knowledge
category, as well as the relatedness between two
elements, which make it able to select the most
reasonable inference rules to derive each part of
the hypothesis.
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Feature Description
Syntax Features

is verb whether this element is a verb
is noun whether this element is a noun
is adj whether this element is an adjective

Lexical Features
is event whether this element belongs to

hyponymy of event sysnset in Wordnet
is entity whether this element belongs to

hyponymy of physical entity sysnset
is attr whether this element belongs to

hyponymy of attribute sysnset
named entity the named entity type of this element

Semantic Features
word

embeddings
300 dimension embeddings of
GoogleNews word2vec model

Table 3: Features for element-relation attention.

3.3 Reasoning Distance Between Premise
Document and Hypothesis

Given a premise document, this section shows how
to measure whether a hypothesis is coherent using
above inference model. Given all valid inferences
from D to H and the probability P (R|D,H) of
selecting inference R to infer H from D, we mea-
sure the reasoning distance L(D → H) as the ex-
pected cost sum of all valid inferences:

L(D → H) = EP (R|D,H)[cost(R)] (11)

= EP (R|D,H)[

n∑

i=1

cost(ri)] (12)

Then using Equation (6) and Equation (7), we can
further rewrite the equation into:

L(D → H) =
∑

R

[

n∏

i=1

P (ri|D,hi)] · [
n∑

i=1

cost(ri)] (13)

=

n∑

i=1

P (ri|D,hi) · cost(ri) (14)

=

n∑

i=1

m∑

j=1

P (ri, dj |D,hi) · cost(ri) (15)

Equation (15) shows that in our framework, the
final cost of inferring the element hi in the hy-
pothesis is the expected cost of all valid inference
rules which can derive hi from one element in the
premise document.

3.4 Model Learning

Following Huang et al. (2013), our model mea-
sures the posterior probability of choosing hypoth-
esis H as the answer of premise document D
through a softmax function:

P (H|D) =
exp(−γL(D → H))∑

H′∈HD
exp(−γL(D → H ′)

(16)

Here HD is all candidate hypothesises for D, and
γ is a positive smoothing factor. We train our mod-
el by maximizing the likelihood of choosing right

hypothesis H+ for D:

L(θ) = −log
∏

(D,H+)

P (H+|D) (17)

where θ is the parameter set of our model, includ-
ing calibration parameters in Section 2.4 and at-
tention parameters in Section 3.2. L(θ) is differ-
entiable so we can estimate θ using any gradient-
based optimization algorithm.

4 Experiments

4.1 Experimental Settings

Data Preparation. We evaluated our approach on
the Test Set Spring 2016 of RocStories, which con-
sists of 1871 commonsense stories, with each sto-
ry has two candidate story endings. Because sto-
ries in the training set of RocStories do not contain
wrong hypothesis, and our model has a compact
size of parameters, we estimated the parameters
of our model using the Validation Set Spring 2016
of RocStories with 1871 commonsense stories.

We mined event narrative knowledge from the
Training Set Spring 2016 of RocStories, which
consists of 45502 commonsense stories. We per-
formed lemmatisation, part of speech annotation,
named entity tagging, and dependency parsing us-
ing Stanford CoreNLP toolkits (Manning et al.,
2014). We used the Jan. 30, 2010 English ver-
sion of Wikipedia and processed it according to
the method described by Hu et al. (2008).

Model Training. We used normalized initial-
ization (Glorot and Bengio, 2010) to initialize at-
tention parameters in our model. For calibration
parameters, we initialized all wf to 1 and bf to
0. The model parameters were trained using mini-
batch stochastic gradient descent algorithm. As
for hyper-parameters, we set the batch size as 32,
the learning rate as 1, the dimension of attention
hidden layer K as 32, and the smoothing factor γ
as 0.5.

Baselines. We compared our approach with fol-
lowing three baselines:

1) Narrative Event Chain (Chambers and Ju-
rafsky, 2008), which scores hypothesis using PMI
scores between events. We used a simplified ver-
sion of the original model by using only verbs as
event, ignoring the dependency relation between
verbs and their participants. We found such a sim-
plified version achieved better performance than
its original one whose performance was reported
in (Mostafazadeh et al., 2016a).

2) Deep Structured Semantic Model (DSS-
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M) (Huang et al., 2013), which achieved the
best performance on RocStories as reported
by Mostafazadeh et al.(2016a). This model mea-
sures the reasoning score between a premise doc-
ument D and a hypothesis H by calculating the
cosine similarity between the overall vector repre-
sentations of D and H , and do not consider any
other task-relevant knowledge.

3) Recurrent Neural Network(RNN) Model
proposed by Pichotta and Mooney(2015), which
transforms all events and their arguments into a
sequence and predict next events and arguments
using a Long Short-Term Memory network. We
used the average generating probability of all el-
ements in H as the reasoning score, and choose
the hypothesis with largest reasoning score as the
system answer.

4.2 Overall Performance

System Accuracy
Narrative Event Chain 57.62%
DSSM 58.52%
RNN Model 58.93%
Our Model 67.02%

Table 4: Comparison of accuracy for our mod-
el and three baselines on RocStories Spring 2016
Test Set. The result of DSSM is adapted from
(Mostafazadeh et al., 2016a).

Table 4 shows the results. From this table, we
can see that:

1) Our model outperforms all baselines signif-
icantly. Compared with baselines, the accuracy
improvement on test set is at least 13.7%. This
demonstrates the effectiveness of our model by
mining and exploiting heteregenous knowledge.

2) The event narrative knowledge only is insuf-
ficient for commonsense machine comprehension.
Compared with Narrative Event Chain Model, our
model achieves a 16.3% accuracy improvemen-
t by considering richer commonsense knowledge,
rather than only narrative event knowledge.

3) It is necessary to distinguish different kinds
of commonsense relations for machine compre-
hension and commonsense reasoning. Compared
with DSSM and RNN, which model all relation-
s between two elements using a single semantic
similarity score, our model achieves significant ac-
curacy improvements by modeling, distinguishing
and selecting different types of commonsense re-
lations between different kinds of elements.

4.3 Effects of Different Knowledge

To investigate the effect of different kinds of
knowledge in our model, we conducted two group-
s of experiments.

The first group of experiments was conducted
using only one kind of knowledge at a time in our
model. Table 5 shows the results. We can see that
using a single kind of knowledge is insufficien-
t for commonsense machine comprehension: all
single-knowledge settings cannot achieve compet-
itive performance to the all-knowledge setting.

System Accuray
Event Narrative Knowledge 60.98%
Entity Semantics Knowledge 57.14%
Sentiment Coherent Knowledge 61.30%
Our Model(All Knowledge) 67.02%

Table 5: Comparison of the performance using s-
ingle type of knowledge.

The second group of experiments was conduct-
ed to investigate whether different knowledge can
complement each other. We conducted experi-
ments by removing one kind of knowledge from
our final model at a time, and investigate the
change of accuracy.

System Accuracy
Our Model(All Knowledge) 67.02%
-w/o Event Narrative Knowledge 63.65%
-w/o Entity Semantic Knowledge 64.89%
-w/o Sentiment Coherent Knowledge 62.85%

Table 6: Comparison of the performance by re-
moving one single type of knowledge.

Table 6 shows the results. We can find that
removing any kind of knowledge will reduce the
accuracy. This verified that all kinds of knowl-
edge containing unique complementary informa-
tion, which cannot be covered by other types of
knowledge.

4.4 Effect of Inference Probability

This section investigates the effect of inference
rule selection probability, and whether our atten-
tion mechanism can effectively model the possi-
bility of inference rule selection. We compared
our method with following two heuristic settings:

1) Minimum Cost Mechanism, which mea-
sures the reasoning distance by only selecting the
inference rule with minimum cost for each hypoth-
esis element.
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2) Average Cost Mechanism, which measures
the reasoning distance by setting equal probabili-
ties to all inference rules that can infer a hypothe-
sis element from a premise document element.

System Accuracy
Minimum Cost Mechanism 54.84%
Average Cost Mechanism 63.01%
Our Model(Attention Mechanism) 67.02%

Table 7: Comparison of the performance using
different inference rule selection mechanism.

Table 7 show the results. We can see that: 1) the
minimum cost mechanism cannot achieve compet-
itive performance, we believe this is because the
selection of rules should not depend on the cost
of them, and considering all valid inferences is
critical for reasoning; 2) our attention mechanism
can effectively model the inference rule selec-
tion possibility. Compared with the average cost
mechanism, our method achieved a 6.36% accura-
cy improvement. This also verified the necessity
of an effective inference rule probability model.

4.5 Effect of Negation Rules

This section investigates the effect of special han-
dling of negation mentioned in Section 2.5. To in-
vestigate the necessity of negation rules proposed
in our model, we conducted experiments by re-
moving all negation rules from original system,
and investigate the change of accuracy.

System Accuracy
Our Model 67.02%
-w/o Negation Rules 63.12%

Table 8: Comparison of the performance by re-
moving negation rules.

Table 8 show the results. We can see that re-
moving negation rules will significantly drop the
system performance, which confirm the effective-
ness of our proposed negation rules.

5 Related Work
Endowing computers with the ability of under-
standing commonsense story has long a goal of
natural language processing. There exist two
big challenges: 1)Matching explicit information
in the given context; 2)Incorporating implicit
commonsense knowledge into human-like reason-
ing process. Previous machine comprehension
tasks (Richardson et al., 2013; Weston et al.,
2015; Hermann et al., 2015; Rajpurkar et al.,

2016) mainly focus on the first challenge, lead-
ing their solutions focusing on semantic match-
ing between texts (Weston et al., 2014; Kumar
et al., 2015; Narasimhan and Barzilay, 2015;
Smith et al., 2015; Sukhbaatar et al., 2015; Hill
et al., 2015; Wang et al., 2015, 2016a; Cui et al.,
2016; Trischler et al., 2016a,b; Kadlec et al., 2016;
Kobayashi et al., 2016; Wang and Jiang, 2016b),
but ignore the second issues. One notable task is
SNLI (Bowman et al., 2015), which considers en-
tailment between two sentences. This task, how-
ever, only provides shallow context and thus need-
s a few kinds of implicit knowledge (Rocktäschel
et al., 2015; Wang and Jiang, 2016a; Angeli et al.,
2016; Wang et al., 2016b; Parikh et al., 2016; Hen-
derson and Popa, 2016; Zhao et al., 2017).

Realizing that story understanding needs
commonsense knowledge, many researches
have been proposed to learn structural event
knowledge. Chambers and Jurafsky (2008) first
proposed an unsupervised approach to learn
partially ordered sets of events from raw text.
Many expansions have been introduced later,
including unsupervisedly learning narrative
schemas and scripts (Chambers and Jurafsky,
2009; Regneri et al., 2011), event schemas and
frames (Chambers and Jurafsky, 2011; Balasubra-
manian et al., 2013; Sha et al., 2016; Huang et al.,
2016; Mostafazadeh et al., 2016b), and some
generative models to learn latent structures of
event knowledge (Cheung et al., 2013; Chambers,
2013; Bamman et al., 2014; Nguyen et al., 2015).
Another direction for learning event-centred
knowledge is causality identification (Do et al.,
2011; Radinsky et al., 2012; Berant et al., 2014;
Hashimoto et al., 2015; Gui et al., 2016), which
tried to identify the causality relation in text.

For reasoning over these knowledge, Jans et al.
(2012) extend introduced skip-grams for collect-
ing statistics. Further improvements include incor-
porating more information and more complicated
models (Radinsky and Horvitz, 2013; Modi and
Titov, 2014; Ahrendt and Demberg, 2016). Recen-
t researches tried to solve event prediction prob-
lem by transforming it into an language model-
ing paradigm (Pichotta and Mooney, 2014, 2015,
2016a,b; Rudinger et al., 2015; Hu et al., 2017).

The principal difference between previous work
and our method is that we not only take vari-
ous kinds of implicit commonsense knowledge
into consideration, but also provide a highly
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extensible framework to exploit these kinds of
knowledge for commonsense machine compre-
hension. We also notice the recent progress in
RocStories (Mostafazadeh et al., 2017). Rather
than inferring a possible ending generated from
document, recent systems solve this task by dis-
criminatively comparing two candidates. This en-
ables very strong stylistic features being added ex-
plicitly (Schwartz et al., 2017; Bugert et al., 2017)
or implicitly (Schenk and Chiarcos, 2017), which
can select hypothesis without any consideration of
given document. Also, some augmentation strate-
gies are introduced to produce more training da-
ta (Roemmele and Gordon, 2017; Mihaylov and
Frank, 2017; Bugert et al., 2017). These methods
are dataset-sensitive and are not the main concen-
tration of our paper.

6 Conclusions and Future Work
This paper proposes a commonsense machine
comprehension method, which performs effec-
tive commonsense reasoning by taking heteroge-
nous knowledge into consideration. Specifically,
we mine commonsense knowledge from heteroge-
neous knowledge sources and simultaneously ex-
ploit them by proposing a highly extensible multi-
knowledge reasoning framework. Experiment re-
sults shown that our method surpasses baselines
by a large margin.

Currently, there are little labeled training in-
stances for commonsense machine comprehen-
sion, for future work we want to address this is-
sue by developing semi-supervised or unsuper-
vised approaches.
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Tim Rocktäschel, Edward Grefenstette, Karl Moritz
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Abstract

Document-level multi-aspect sentiment
classification is an important task for cus-
tomer relation management. In this paper,
we model the task as a machine compre-
hension problem where pseudo question-
answer pairs are constructed by a small
number of aspect-related keywords and as-
pect ratings. A hierarchical iterative atten-
tion model is introduced to build aspect-
specific representations by frequent and
repeated interactions between documents
and aspect questions. We adopt a hi-
erarchical architecture to represent both
word level and sentence level informa-
tion, and use the attention operations for
aspect questions and documents alterna-
tively with the multiple hop mechanism.
Experimental results on the TripAdvisor
and BeerAdvocate datasets show that our
model outperforms classical baselines.

1 Introduction

Document-level sentiment classification is one of
the pragmatical sentiment analysis tasks (Pang and
Lee, 2007; Liu, 2010). There are many Web sites
having platforms for users to input reviews over
products or services, such as TripAdvisor, Yelp,
Amazon, etc. Most of reviews are very compre-
hensive and thus long documents. Analyzing these
documents to predict ratings of products or ser-
vices is an important complementary way for bet-
ter customer relationship management. Recently,
neural network based approaches have been de-
veloped and become state-of-the-arts for long-
document sentiment classification (Tang et al.,
2015a,b; Yang et al., 2016). However, predict-
ing an overall score for each long document is not
enough, because the document can mention dif-

“The situation is good, it's very clean, but there is nothing 
special. Breakfast at downstairs is directly from grocery store. 
Water pressure is good! A decent choice for sleeping. New 
York is expensive place!”

Cleanliness:5 Room:: 4 Value:: 2

Review

Rating

Figure 1: Example: hotel review with aspects.

ferent aspects of the corresponding product or ser-
vice. For example, in Figure 1, there could be dif-
ferent aspects for a review of hotel. These aspects
help customer service better understand what are
the major pros and cons of the product or ser-
vice. Compared to the overall rating, users are less
motivated to give aspect ratings. Therefore, it is
more practically useful to perform document-level
multi-aspect sentiment classification task, predict-
ing different ratings for each aspect rather than an
overall rating.

One straightforward approach for document-
level multi-aspect sentiment classification is
multi-task learning (Caruana, 1997). For neural
networks, we can simply treat each aspect (e.g.,
rating from one to five) as a classification task, and
let different tasks use softmax classifier to extract
task-specific representations at the top layer while
share the input and hidden layers to mutually en-
hance the prediction results (Collobert et al., 2011;
Luong et al., 2016). However, such approach ig-
nores the fact that the aspects themselves have
semantic meanings. For example, as human be-
ings, if we were asked to evaluate the aspect rat-
ing of a document, we simply read the review, and
find aspect-related keywords, and see around com-
ments. Then, we aggregate all the related snippets
to make a decision.

In this paper, we propose a novel approach to
treat document-level multi-aspect sentiment clas-
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Figure 2: The architecture of our model. Left: multi-task learning. Right: hierarchical attention module
which includes input encoders and iterative attention modules.

sification as a machine comprehension (Kumar
et al., 2016; Sordoni et al., 2016) problem. To
mimic human’s evaluation of aspect classification,
we create a list of keywords for each aspect. For
example, when we work on the Room aspect, we
generate some keywords such as “room,” “bed,”
“view,” etc. Then we can ask pseudo questions:
“How is the room?” “How is the bed?” “How
is the view?” and provide an answer “Rating 5.”
In this case, we can train a machine comprehen-
sion model to automatically attend corresponding
text snippets in the review document to predict the
aspect rating. Specifically, we introduce a hier-
archical and iterative attention model to construct
aspect-specific representations. We use a hierar-
chical architecture to build up different representa-
tions at both word and sentence levels interacting
with aspect questions. At each level, the model
consists of input encoders and iterative attention
modules. The input encoder learns memories1

of documents and questions with Bi-directional
LSTM (Bi-LSTM) model and non-linear mapping
respectively. The iterative attention module takes
into memories as input and attends them sequen-
tially with a multiple hop mechanism, performing
effective interactions between documents and as-
pect questions.

To evaluate the effectiveness of the proposed
model, we conduct extensive experiments on the
TripAdvisor and BeerAdvocate datasets and the
results show that our model outperforms typical
baselines. We also analyze the effects of num-

1Following the work (Weston et al., 2015; Sukhbaatar
et al., 2015), we refer the memory to a set vectors which are
stacked together and could be attended.

bers of the hop and aspect words on performances.
Moreover, a case study for attention results is per-
formed at both word and sentence levels.

The contributions of this paper are two-fold.
First, we study the document-level multi-aspect
sentiment classification as a machine comprehen-
sion problem and introduce a hierarchical itera-
tive attention model for it. Second, we demon-
strate the effectiveness of proposed model on
two datasets, showing that our model outperforms
classical baselines. The code and data for this
paper are available at https://github.com/
HKUST-KnowComp/DMSCMC.

2 Method

In this section, we introduce our proposed method.

2.1 Problem Definition and Hierarchical
Framework

We first briefly introduce the problem we work on.
Given a piece of review, our task is to predict the
ratings of different aspects. For example, in Fig-
ure 1, we predict the ratings of Cleanliness, Room,
and Value. To achieve this, we assume that there
are existing reviews with aspect ratings for ma-
chines to learn. Formally, we denote the review
document as d containing a set of Td sentences
{s1, s2, . . . sTd}. For the t-th sentence st, we use a
set of words

{
w1, w2, . . . w|st|

}
to represent it, and

use wi, ww
i and wp

i as the one-hot encoding, word
embedding, and phrase embedding for wi respec-
tively. The phrase embedding encodes the seman-
tics of phrases where the current word wi is the
center (e.g., hidden vectors learned by Bi-LSTM
shown in Section 2.2). For each qk of K aspects
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{q1, q2, . . . , qK}, we use Nk aspect-related key-
words,

{
qk1 , qk2 . . . qkNk

}
, to represent it. Simi-

larly, we use qki , qwki as the one-hot encoding and
word embedding for qki respectively.

There are several sophisticated methods for
choosing aspect keywords (e.g., topic model).
Here, we consider a simple way where five seeds
were first manually selected for each aspect and
then more words were obtained based on their co-
sine similarities with seeds2

As shown in Figure 2 (left), our framework fol-
lows the idea of multi-task learning, which learns
different aspects simultaneously. In this case, all
these tasks share the representations of words and
architecture of semantic model for the final clas-
sifiers. Different from straightforward neural net-
work based multi-task learning (Collobert et al.,
2011), for each document d and an aspect qk, our
model uses both the content of d and all the related
keywords

{
qk1 , qk2 . . . qkNk

}
as input. Since the

keywords can cover most of the semantic mean-
ings of the aspect, and we do not know which
document mentions which semantic meaning, we
build an attention model to automatically decide
it (introduced in Section 2.3). Assuming that the
keywords have been decided, we use a hierarchi-
cal attention model to select useful information
from the review documents. As shown in Figure 2
(right), the hierarchical attention of keywords is
applied to both sentence level (to select meaning-
ful words) and document level (to select mean-
ingful sentence). Thus, our model builds aspect-
specific representations in a bottom-up manner.

Specifically, we obtain sentence representa-
tions

{
sk1, sk2, . . . skT

}
using the input encoder (Sec-

tion 2.2) and iterative attention module (Sec-
tion 2.3) at the word level. Then we take sen-
tence representations and k-th aspect as input and
apply the sentence-level input encoder and atten-
tion model to generate the document representa-
tion dk for final classification. As shown in Fig-
ure 2 (right), the attention model is applied twice
at different levels of the representation.

2.2 Input Encoder

The input module builds memory vectors for the
iterative attention module and is performed both at
word and sentence levels. For a document, it con-

2For example, the words “value,” “price,” “worth,” “cost,”
and “$” are selected as seeds for aspect Price. The informa-
tion for seeds can be found in our released resource.

verts word sequence into word level memory Md
w

and sentence sequence into sentence level mem-
ory Md

s respectively. For an aspect question qk, it
takes a set of aspect-specific words {qki}1≤i≤Nk
as input and derives word level memory Mq

w and
sentence level memory Mq

s.
To construct Md

w, we obtain word embeddings{
ww
1 ,ww

2 , . . .ww
|st|

}
from an embedding matrix

EA applied to all words shown in the corpus.
Then, LSTM (Hochreiter and Schmidhuber, 1997)
model is used as the encoder to produce hidden
vectors of words based on the word embeddings.
At each step, LSTM takes input ww

t and derives
a new hidden vector by ht = LSTM(ww

t ,ht−1).
To preserve the subsequent context information
for words, another LSTM is ran over word se-
quence in a reverse order simultaneously. Then the
forward hidden vector

−→
h t and backward hidden

vector
←−
h t are concatenated as phrase embedding

wp
t . We stack these phrase embeddings together

as word level memory Md
w. Similarly, we feed

sentence representations into another Bi-LSTM to
derive the sentence level memory Md

s . Note that,
the sentence representations are obtained using the
iterative attention module which is described as
Eq. (5) in Section 2.3.

Since we have question keywords as input, to
allow the interactions between questions and doc-
uments, we also build question memory in follow-
ing way. We obtain Qk =

{
qwki
}
1≤i≤Nk

by look-

ing up an embedding matrix 3 EB applied to all
question keywords. Then a non-linear mapping
is applied to obtain the question memory at word
level:

Mqk
w = tanh(QkWq

w), (1)

where Wq
w is the parameter matrix to adapt qk at

word level. Similarly, we use another mapping to
obtain the sentence level memory:

Mqk
s = tanh(QkWq

s), (2)

where Wq
s is the parameter matrix to adapt qk at

sentence level.

2.3 Iterative Attention Module
The iterative attention module (IAM) attends and
reads memories of questions and documents al-
ternatively with a multi-hop mechanism, deriving

3EA and EB are initialized by the same pre-trained em-
beddings but are different embedding matrices with different
updates.
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Figure 3: The iterative attention module.

aspect-specific sentence and document represen-
tations. As we discussed in the introduction, the
set of selected question keywords may not best
characterize the aspect for different documents.
Thus, the IAM module introduces a backward at-
tention to use document information (word or sen-
tence) to select useful keywords of each aspect as
the document-specific question to build attention
model.

The illustration of IAM is shown in Figure 3. To
obtain sentence representations, it takes Md

w and
Mq
w as the input and performs m iterations (hops).

For each iteration, IAM conducts four operations:
(1) attends the question memory by the selective
vector p and summarizes question memory vec-
tors into a single vector q̂; (2) updates the selec-
tive vector by the previous one and q̂; (3) attends
document (content) memory based on the updated
selective vector and summarizes memory vectors
in to a single vector ĉ; (4) updates the selective
vector by the previous one and ĉ.

We unify operations (1) and (3) by an attention
function x̂ = A(p,M), where M could be Md

w

or Mq
w which corresponds x̂ = ĉ or x̂ = q̂. The

attention function A is decomposed as:

H = tanh(MWa � (1p))

a = softmax(HvTa )

x̂ =
∑

aiMi,

(3)

where 1 is a vector with all elements are 1, which
copies the selective vector to meet the dimension
requirement. The Wa and va are parameters, a
is attention weights for memory vectors, and Mi

means i-th row in M.
Operations (2) and (4) are formulated as an up-

date function p2i−{l} = U(x̂,p2i−{l}−1), where i
is the hop index, l can be 0 or 1 which corresponds
to x̂ = ĉ or x̂ = q̂ respectively. We initialize p0

by a zero vector. The update function U can be
a recurrent neural network (Xiong et al., 2017) or
other heuristic weighting functions. In this paper,
we introduce a simple strategy:

p2i−{l} = x̂, (4)

which ignores the previous selective vector but
succeeds to obtain comparable results with other
more complicated function in the initial experi-
ments.

Multi-hop mechanism attends different mem-
ory locations in different hops (Sukhbaatar et al.,
2015), capturing different interactions between
documents and questions. In order to preserve the
information of various kinds of interactions, we
concatenate all ĉ’s in each hop as the final repre-
sentations of sentences:

s = [ĉ1; ĉ2; · · · ĉm]. (5)

After obtaining sentence representations, we
feed them into the sentence-level input encoder,
deriving the memories Md

s and Mq
s. Then, the

aspect-specific document representation dk is ob-
tained by the sentence-level IAM in a similar way.

2.4 Objective Function
For each aspect, we obtain aspect-specific docu-
ment representations {dk}1≤k≤K . All these repre-
sentations are fed into classifiers, each of which in-
cludes a softmax layer. The softmax layer outputs
the probability distribution over |Y| categories for
the distributed representation, which is defined as:

p′(d, k) = softmax(Wclass
k dk), (6)

where Wclass
k is the parameter matrix.

We define the cross-entropy objective function
between gold sentiment distribution p(d, k) and
predicted sentiment distribution p′(d, k) as the
classification loss function:

−
∑

d∈D

K∑

k=1

|Y|∑

i=1

p(d, k)log(p′(d, k)), (7)

where p(d, k) is a one-hot vector, which has the
same dimension as the number of classes, and only
the dimension associated with the ground truth la-
bel is one, with others being zeros.
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Dataset #docs #words/doc #words/sent
TripAdvisor 29,391 251.7 18.0
BeerAdvocate 51,020 144.5 12.1

Table 1: Statistics of the datasets. The rating scale
of TripAdvisor dataset is 1-5. The rating scale of
BeerAdvocate dataset is 1-10.

3 Experiment

In this section, we show experimental results to
demonstrate our proposed algorithm.

3.1 Datasets

We conduct our experiments on TripAdvi-
sor (Wang et al., 2010) and BeerAdvocate
(McAuley et al., 2012; Lei et al., 2016) datasets,
which contain seven aspects (value, room, lo-
cation, cleanliness, check in/front desk, service,
and business service) and four aspects (feel, look,
smell, and taste) respectively. We follow the pro-
cessing step (Lei et al., 2016) by choosing the re-
views with different aspect ratings and the new
datasets are described in Table 1. We tokenize the
datasets by Stanford corenlp4 and randomly split
them into training, development, and testing sets
with 80/10/10%.

3.2 Baseline Methods

To demonstrate the effectiveness of the proposed
method, we compare our model with following
baselines:

Majority uses the majority sentiment label in
development sets as the predicted label.

SVM uses unigram and bigram as text features
and uses Liblinear (Fan et al., 2008) for learning.

SLDA refers to supervised latent Dirichlet allo-
cation (Blei and Mcauliffe, 2010) which is a sta-
tistical model of labeled documents.

NBoW is a neural bag-of-words model averag-
ing embeddings of all words in a document and
feeds the resulted embeddings into SVM classifier.

DAN is a deep averaging network model which
consists of several fully connected layers with av-
eraged word embeddings as input. One novel
word dropout strategy is employed to boost model
performances (Iyyer et al., 2015).

CNN continuously performs a convolution op-
eration over a sentence to extract words neighbor-
ing features, then gets a fixed-sized representation
by a pooling layer (Kim, 2014).

4http://nlp.stanford.edu/software/corenlp.shtml

LSTM is one variant of recurrent neural net-
work and has been proved to be one of state-of-
the-art models for document-level sentiment clas-
sification (Tang et al., 2015a). We use LSTM to
refer Bi-LSTM which captures both forward and
backward semantic information.

HAN means the hierarchical attention network
which is proposed in (Yang et al., 2016) for doc-
ument classification. Note that, the original HAN
depends GRU as the encoder. In our experiments,
LSTM-based HAN obtains slightly better results.
Thus, we report the results of HAN with LSTM as
the encoder.

We extend DAN, CNN, LSTM with the hierar-
chical architecture and multi-task framework, the
corresponding models are MHDAN, MHCNN and
MHLSTM respectively. Besides, MHAN is also
evaluated as one baseline, which is HAN with the
multi-task learning.

3.3 Implementation Details
We implement all neural models using
Theano (Theano Development Team, 2016).
The model parameters are tuned based on the de-
velopment sets. We learn 200-dimensional word
embeddings with Skip-gram model (Mikolov
et al., 2013) on in-domain corpus, which fol-
lows (Tang et al., 2015a). The pre-trained word
embeddings are used to initialize the embedding
matrices EA and EB . The dimensions of all
hidden vectors are set to 200. For TripAdvisor
dataset, the hop numbers of word-level and
sentence-level iterative attention modules are
set to 4 and 2 respectively. For BeerAdvocate
dataset, the hop numbers are set to 6 and 2.
The number of selected keywords Nk = N is
set to 20. To avoid model over-fitting, we use
dropout and regularization as follows: (1) the
regularization parameter is set to 1e-5; (2) the
dropout rate is set to 0.3, which is applied to both
sentence and document vectors. All parameters
are trained by ADADELTA (Zeiler, 2012) without
needing to set the initial learning rate. To ensure
fair comparisons, we make baselines have same
settings as the proposed model, such as word
embeddings, dimensions of hidden vectors and
optimization details and so on.

3.4 Results and Analyses
We use accuracy and mean squared error (MSE)
as the evaluation metrics and the results are shown
in Table 2.
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Model
TripAdvisor BeerAdvocate

Dev Test Dev Test
Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE

Majority 24.47 2.533 23.89 2.549 24.48 4.706 24.41 4.545
SVM 34.30 1.982 35.26 1.963 25.70 3.286 25.79 3.270
SLDA 31.58 2.131 32.81 2.110 25.39 3.372 25.73 3.391
NBoW 38.43 1.866 39.09 1.808 28.99 2.883 28.85 2.919
DAN 40.30 1.569 40.93 1.531 31.25 2.569 32.44 2.279
CNN 43.25 1.474 43.35 1.456 34.17 2.173 33.37 2.217
LSTM 43.85 1.525 44.02 1.470 35.23 2.112 34.78 2.097
HAN 44.47 1.312 44.68 1.301 36.57 1.903 36.03 1.920
MHDAN 42.22 1.554 42.47 1.549 32.76 2.358 32.54 2.376
MHCNN 44.19 1.329 43.79 1.398 36.10 1.966 35.33 1.976
MHLSTM 44.53 1.308 44.72 1.272 38.14 1.785 37.04 1.809
MHAN 44.72 1.294 44.94 1.210 37.98 1.783 36.82 1.813
Our 46.21 1.091 46.56 1.083 39.43 1.696 38.06 1.755

Table 2: Comparison of our model and other baseline methods.

Model TripAdvisor BeerAdvocate
Accuracy MSE Accuracy MSE

MHLSTM 44.75 (0.24) 1.256 (0.05) 37.28 (0.43) 1.802 (0.17)
MHAN 45.02 (0.33) 1.221 (0.12) 37.02 (0.22) 1.810 (0.15)
Our 46.65†(0.29) 1.084∗(0.06) 38.25†(0.35) 1.749∗(0.18)

Table 3: The results of average accuracy/MSE and standard deviation of models on test sets. We choose
MHAN and MHLSTM as comparison baselines for TripAdvisor and BeerAdvocate respectively. In t-
tests, the marker ∗ refers to p-value < 0.05 and the marker † refers to p-value < 0.01.

Compared to SVM and SLDA, NBoW achieves
higher accuracy by 3% in both datasets, which
shows that embedding features are more effec-
tive than traditional ngram features on these two
datasets. All neural network models outperform
NBoW. It shows the advantages of neural net-
works in the document sentiment classification.

From the results of neural networks, we can
observe that DAN performs worse than LSTM
and CNN, and LSTM achieves slightly higher re-
sults than CNN. It can be explained that the sim-
ple composition method averaging embeddings of
words in a document but ignoring word order,
may not be as effective as other flexible compo-
sition models, such as LSTM and CNN, on as-
pect classification. Additionally, we observe that
the multi-task learning and hierarchical architec-
ture are beneficial for neural networks. Among all
baselines, MHAN and MHLSTM achieve compa-
rable results and outperform others.

Compared with MHAN and MHLSTM, our
method achieves improvements of 1.5% (3% rel-
ative improvement) and 1.0% (2.5% relative im-
provement) on TripAdvisor and BeerAdvocate re-

spectively, which shows that the incorporation of
iterative attention mechanism helps the deep neu-
ral network based model build up more discrim-
inative aspect-aware representation. Note that
BeerAdvocate is relatively more difficult since the
predicted ratings are from 1 to 10 while TripAd-
visor is 1 to 5. Moreover, t-test is conducted by
randomly splitting datasets into train/dev/test sets
and random initialization. The results on test sets
are described in Table 3 which show performance
of our model is stable.

3.5 Case Study for Attention Results

In this section, we sample two sentences from
TripAdvisor to show the visualization of atten-
tion results for case study. Both word-level and
sentence-level attention visualizations are shown
in Figure 4. We normalize the word weight by the
sentence weight to make sure that only important
words in a document are highlighted.

From the top figures in (a) and (b), we observe
that our model assigns different attention weights
for each aspect. For example, in the first sentence,
the words comfortable and bed are assigned higher
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Figure 4: The attention visualization of words and sentences. Darker color means higher weight. (a) and
(b) are the visualization of word weights; (c) and (d) are the visualization of sentence weights. The top
figures in (a) and (b) show the word weights of fourth hop for each aspect. The bottom figures in (a) and
(b) visualize the word weights of different hops for the aspects Room and Business respectively.

weights in the aspect Room, and the word clean
are highlighted by the aspect Cleaniness. In the
second sentence, the word internet is assigned a
high attention value for Business. Moreover, the
bottom figures in (a) and (b) show that (1) word
weights of different hops are various; (2) attention
values in higher hop are more reasonable. Specif-
ically, in the first sentence, the weight of word
clean is higher than the word comfortable in first
hop, while comfortable surpasses clean in higher
hops. In the second sentence, we observe that the
value of word internet increases with the number
of hop. Thus, we can see that the more sensible
weights are obtained for words through the pro-
posed iterative attention mechanism. Similarly,
the figures (c) and (d) show that the conclusion
from words is also suitable for sentences. For the
first sentence, the sentence weight regarding the
aspect Room is lower than Cleanliness in the first
hop, but surpasses Cleanliness in the second hop.
For the second sentence, the weight for Business
becomes higher in the second hop.

3.6 Effects of Hop and Aspect Keywords

In this experiment, we investigate the effects of
hop number m and size of aspect keywords N on
performances. All the experiments are conducted

on the development set. Due to lack of space, we
only present the results of TripAdvisor and the re-
sults of BeerAdvocate have a similar behavior as
TripAdvisor.

For the hop number, we vary m from 1 to 7 and
the results are shown in Figure 5 (left). We can
see that: (1) at the word level, the performance in-
creases when m ≤ 4, but shows no improvement
after m > 4; (2) at the sentence level, model per-
forms best when m = 2. Moreover, we can see
that the hop number of word level leads to larger
variation than the hop number of sentence level.

For the size of aspect keywords, we vary N
from 0 to 35, incremented by 5. Note that, we
set a learnable vector to represent question mem-
ory when N = 0. The results are shown in Fig-
ure 5 (right). We observe that the performance in-
creases when N ≤ 20, and has no improvement
after N > 20. This indicates that a small number
of keywords can help the proposed model achieve
competitive results.

4 Related Work

Multi-Aspect Sentiment Classification. Multi-
aspect sentiment classification has been studied
extensively in literature. Lu et al. (2011) used
support vector regression model based on hand-
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Figure 5: Results of different hops and different sizes of question keywords. Left: different the hop
numbers; Right: different sizes of keywords.

crafted features to predict aspect ratings. To han-
dle the correlation between aspects, McAuley
et al. (2012) added a dependency term in final
multi-class SVM objective. There were also some
heuristic based methods and sophisticated topic
models where multi-aspect sentiment classifica-
tion is solved as a subproblem (Titov and Mc-
Donald, 2008; Wang et al., 2010; Diao et al.,
2014; Pappas and Popescu-Belis, 2014). How-
ever, these approaches often rely on strict assump-
tions about words and sentences, for example, us-
ing the word syntax to determine if a word is
an aspect or a sentiment word, or relating a sen-
tence with an specific aspect. Another related
problem is called aspect-based sentiment classi-
fication (Pontiki et al., 2014, 2016; Poria et al.,
2016), which first extracts aspect expressions from
sentences (Poria et al., 2014; Balahur and Mon-
toyo, 2008; Chen et al., 2014, 2013), and then
determines their sentiments. With the develop-
ments of neural networks and word embeddings
in NLP, neural network based models have shown
the state-of-the-art results with less feature engi-
neering work. Tang et al. (2016) employed a deep
memory network for aspect-based sentiment clas-
sification given the aspect location and Lakkaraju
et al. (2014) employed recurrent neural networks
and its variants for the task of extraction of aspect-
sentiment pair. However, these tasks are sentence-
level. Another related research field is document-
level sentiment classification because we can treat
single aspect sentiment classification as an indi-
vidual document classification task. This line of
research includes (Tang et al., 2015b; Chen et al.,
2016; Tang et al., 2016; Yang et al., 2016) which
are based on neural networks in a hierarchical
structure. However, they did not work on multi-
ple aspects.

Machine Comprehension. Recently, neural
network based machine comprehension (or read-
ing) has been studied extensively in NLP, with the
releases of large-scale evaluation datasets (Her-
mann et al., 2015; Hill et al., 2016; Rajpurkar
et al., 2016). Most of the related studies focus
on attention mechanism (Bahdanau et al., 2014)
which is firstly proposed in machine translating
and aims to solve the long-distance dependency
between words. Hermann et al. (2015) used Bi-
LSTM to encode document and query, and pro-
posed Attentive Reader and Impatient Reader. The
first one attends document based on the query rep-
resentation, and the second one attends document
by the representation of each token in query with
an incremental manner. Memory Networks (We-
ston et al., 2015; Sukhbaatar et al., 2015) attend
and reason document representation in a multi-
hop fashion, enriching interactions between doc-
uments and questions. Dynamic Memory Net-
work (Kumar et al., 2016) updates memories of
documents by re-running GRU models based on
derived attention weights. Meanwhile, the query
representation is refined by another GRU model.
Gated-Attention Reader (Dhingra et al., 2016)
proposes a novel attention mechanism, which is
based on multiplicative interactions between the
query embeddings and the intermediate states of
a recurrent neural network document reader. Bi-
Directional Attention Model (Xiong et al., 2017;
Seo et al., 2017) fuses co-dependent representa-
tions of queries and documents in order to fo-
cus on relevant parts of both. Iterative Atten-
tion model (Sordoni et al., 2016) attends question
and document sequentially, which is related to our
model. Different from Iterative Attention model,
our model focuses on the document-level multi-
aspect sentiment classification, which is proposed
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in a hierarchical architecture and has different pro-
cedures in the iterative attention module. Another
related research problem is visual question an-
swering which uses an image as question context
rather than a set of keywords as question. Neu-
ral network based visual question answering (Lu
et al., 2016; Xiong et al., 2016) is similar as the
proposed models in text comprehension.

5 Conclusion

In this paper, we model the document-level multi-
aspect sentiment classification as a text compre-
hension problem and propose a novel hierarchical
iterative attention model in which documents and
pseudo aspect-questions are interleaved at both
word and sentence-level to learn aspect-aware
document representation in a unified model. Ex-
tensive experiments show that our model outper-
forms the other neural models with multi-task
framework and hierarchical architecture.
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Abstract

Argument mining has become a popular
research area in NLP. It typically includes
the identification of argumentative compo-
nents, e.g. claims, as the central compo-
nent of an argument. We perform a quali-
tative analysis across six different datasets
and show that these appear to conceptu-
alize claims quite differently. To learn
about the consequences of such differ-
ent conceptualizations of claim for prac-
tical applications, we carried out extensive
experiments using state-of-the-art feature-
rich and deep learning systems, to identify
claims in a cross-domain fashion. While
the divergent conceptualization of claims
in different datasets is indeed harmful to
cross-domain classification, we show that
there are shared properties on the lexical
level as well as system configurations that
can help to overcome these gaps.

1 Introduction

The key component of an argument is the claim.
This simple observation has not changed much
since the early works on argumentation by Aristo-
tle more than two thousand years ago, although ar-
gumentation scholars provide us with a plethora of
often clashing theories and models (van Eemeren
et al., 2014). Despite the lack of a precise defi-
nition in the contemporary argumentation theory,
Toulmin’s influential work on argumentation in
the 1950’s introduced a claim as an ‘assertion that
deserves our attention’ (Toulmin, 2003, p. 11); re-
cent works describe a claim as ‘a statement that is
in dispute and that we are trying to support with
reasons’ (Govier, 2010).

Argument mining, a computational counterpart
of manual argumentation analysis, is a recent

growing sub-field of NLP (Peldszus and Stede,
2013a). ‘Mining’ arguments usually involves sev-
eral steps like separating argumentative from non-
argumentative text units, parsing argument struc-
tures, and recognizing argument components such
as claims—the main focus of this article. Claim
identification itself is an important prerequisite for
applications such as fake checking (Vlachos and
Riedel, 2014), politics and legal affairs (Surdeanu
et al., 2010), and science (Park and Blake, 2012).

Although claims can be identified with a
promising level of accuracy in typical argumenta-
tive discourse such as persuasive essays (Stab and
Gurevych, 2014; Eger et al., 2017), less homo-
geneous resources, for instance online discourse,
pose challenges to current systems (Habernal and
Gurevych, 2017). Furthermore, existing argument
mining approaches are often limited to a single,
specific domain like legal documents (Mochales-
Palau and Moens, 2009), microtexts (Peldszus and
Stede, 2015), Wikipedia articles (Levy et al., 2014;
Rinott et al., 2015) or student essays (Stab and
Gurevych, 2017). The problem of generalizing
systems or features and their robustness across
heterogeneous datasets thus remains fairly unex-
plored.

This situation motivated us to perform a detailed
analysis of the concept of claims (as a key com-
ponent of an argument) in existing argument min-
ing datasets from different domains.1 We first re-
view and qualitatively analyze six existing pub-
licly available datasets for argument mining (§3),
showing that the conceptualizations of claims in
these datasets differ largely. In a next step, we an-
alyze the influence of these differences for cross-
domain claim identification. We propose sev-
eral computational models for claim identification,

1We take the machine learning perspective in which dif-
ferent domains mean data drawn from different distributions
(Murphy, 2012, p. 297).
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including systems using linguistically motivated
features (§4.1) and recent deep neural networks
(§4.2), and rigorously evaluate them on and across
all datasets (§5). Finally, in order to better under-
stand the factors influencing the performance in a
cross-domain scenario, we perform an extensive
quantitative analysis on the results (§6).

Our analysis reveals that despite obvious dif-
ferences in conceptualizations of claims across
datasets, there are some shared properties on the
lexical level which can be useful for claim iden-
tification in heterogeneous or unknown domains.
Furthermore, we found that the choice of the
source (training) domain is crucial when the target
domain is unknown. We release our experimen-
tal framework to help other researchers build upon
our findings.2

2 Related Work

Existing approaches to argument mining can be
roughly categorized into (a) multi-document ap-
proaches which recognize claims and evidence
across several documents and (b) discourse level
approaches addressing the argumentative structure
within a single document. Multi-document ap-
proaches have been proposed e.g. by Levy et al.
(2014) and Rinott et al. (2015) for mining claims
and corresponding evidence for a predefined topic
over multiple Wikipedia articles. Nevertheless,
to date most approaches and datasets deal with
single-document argumentative discourse. This
paper takes the discourse level perspective, as we
aim to assess multiple datasets from different au-
thors and compare their notion of ‘claims’.

Mochales-Palau and Moens (2009) experiment
at the discourse level using feature-rich SVM
and a hand-crafted context-free grammar in or-
der to recognize claims and premises in legal de-
cisions. Their best results for claims achieve
74.1% F1 using domain-dependent key phrases,
token counts, location features, information about
verbs, and the tense of the sentence. Peldszus
and Stede (2015) present an approach based on
a minimum spanning tree algorithm and model
the global structure of arguments considering ar-
gumentative relations, the stance and the function
of argument components. Their approach yields
86.9% F1 for recognizing claims in English ‘mi-
crotexts’. Habernal and Gurevych (2017) cast ar-

2https://github.com/UKPLab/emnlp2017-c
laim-identification

gument component identification as BIO sequence
labeling and jointly model separation of argumen-
tative from non-argumentative text units and iden-
tification of argument component boundaries to-
gether with their types. They achieved 25.1%
Macro-F1 with a combination of topic, sentiment,
semantic, discourse and embedding features using
structural SVM. Stab and Gurevych (2014) identi-
fied claims and other argument components in stu-
dent essays. They experiment with several classi-
fiers and achieved the best performance of 53.8%
F1 score using SVM with structural, lexical, syn-
tactic, indicator and contextual features. Although
the above-mentioned approaches achieve promis-
ing results in particular domains, their ability to
generalize over heterogeneous text types and do-
mains remains unanswered.

Rosenthal and McKeown (2012) set out to ex-
plore this direction by conducting cross-domain
experiments for detecting claims in blog arti-
cles from LiveJournal and discussions taken from
Wikipedia. However, they focused on relatively
similar datasets that both stem from the social me-
dia domain and in addition annotated the datasets
themselves, leading to an identical conceptual-
ization of the notion of claim. Although Al-
Khatib et al. (2016) also deal with cross-domain
experiments, they address a different task; namely
identification of argumentative sentences. Fur-
ther, their goals are different: they want to im-
prove argumentation mining via distant supervi-
sion rather than detecting differences in the no-
tions of a claim.

Domain adaptation techniques (Daume III,
2007) try to address the frequently observed drop
in classifier performances entailed by a dissimilar-
ity of training and test data distributions. Since
techniques such as learning generalized cross-
domain representations in an unsupervised manner
(Blitzer et al., 2006; Pan et al., 2010; Glorot et al.,
2011; Yang and Eisenstein, 2015) have been crit-
icized for targeting specific source and target do-
mains, it has alternatively been proposed to learn
universal representations from general domains in
order to render a learner robust across all possible
domain shifts (Müller and Schütze, 2015; Schn-
abel and Schütze, 2013). Our approach is in a
similar vein. However, rather than trying to im-
prove classifier performances for a specific source-
target domain pair, we want to detect differences
between these pairs. Furthermore, we are looking
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Corpus Reference Genre #Docs #Tokens #Sentences #Claims

VG Reed et al. (2008) various genres 507 60,383 2,842 563 (19.81%)
WD Habernal and Gurevych (2015) web discourse 340 84,817 3,899 211 (5.41%)
PE Stab and Gurevych (2017) persuasive essays 402 147,271 7,116 2,108 (29.62%)
OC Biran and Rambow (2011a) online comments 2,805 125,677 8,946 703 (7.86%)

WTP Biran and Rambow (2011b) wiki talk pages 1,985 189,140 9,140 1,138 (12.45%)
MT Peldszus and Stede (2015) micro texts 112 8,865 449 112 (24.94%)

Table 1: Overview of the employed corpora.

for universal feature sets or classifiers that perform
generally well for claim identification across vary-
ing source and target domains.

3 Claim Identification in Computational
Argumentation

We briefly describe six English datasets used in
our empirical study; they all capture claims on the
discourse level. Table 1 summarizes the dataset
statistics relevant to claim identification.

3.1 Datasets

The AraucariaDB corpus (Reed et al., 2008) in-
cludes various genres (VG) such as newspaper ed-
itorials, parliamentary records, or judicial sum-
maries. The annotation scheme structures argu-
ments as trees and distinguishes between claims
and premises at the clause level. Although the re-
liability of the annotations is unknown, the cor-
pus has been extensively used in argument mining
(Moens et al., 2007; Feng and Hirst, 2011; Rooney
et al., 2012).

The corpus from Habernal and Gurevych (2017)
includes user-generated web discourse (WD) such
as blog posts, or user comments annotated with
claims and premises as well as backings, rebuttals
and refutations (αU 0.48) inspired by Toulmin’s
model of argument (Toulmin, 2003).

The persuasive essay (PE) corpus (Stab and
Gurevych, 2017) includes 402 student essays.
The scheme comprises major claims, claims and
premises at the clause level (αU 0.77). The corpus
has been extensively used in the argument mining
community (Persing and Ng, 2015; Lippi and Tor-
roni, 2015; Nguyen and Litman, 2016).

Biran and Rambow (2011a) annotated claims
and premises in online comments (OC) from blog
threads of LiveJournal (κ 0.69). In a subsequent
work, Biran and Rambow (2011b) applied their
annotation scheme to documents from Wikipedia
talk pages (WTP) and annotated 118 threads. For
our experiments, we consider each user comment

in both corpora as a document, which yields 2,805
documents in the OC corpus and 1,985 documents
in the WTP corpus.

Peldszus and Stede (2016) created a corpus of
German microtexts (MT) of controlled linguistic
and rhetoric complexity. Each document includes
a single argument and does not exceed five argu-
ment components. The scheme models the argu-
ment structure and distinguishes between premises
and claims, among other properties (such as pro-
ponent/opponent or normal/example). In the first
annotation study, 26 untrained annotators anno-
tated 23 microtexts in a classroom experiment
(κ 0.38) (Peldszus and Stede, 2013b). In a sub-
sequent work, the corpus was largely extended by
expert annotators (κ 0.83). Recently, they trans-
lated the corpus to English, resulting in the first
parallel corpus in computational argumentation;
our experiments rely on the English version.

3.2 Qualitative Analysis of Claims

In order to investigate how claim annotations are
tackled in the chosen corpora, one co-author of
this paper manually analyzed 50 randomly sam-
pled claims from each corpus. The characteris-
tics taken into account are drawn from argumen-
tation theory (Schiappa and Nordin, 2013) and in-
clude among other things the claim type, signaling
words and discourse markers.

Biran and Rambow (2011b) do not back-up
their claim annotations by any common argumen-
tation theory but rather state that claims are ut-
terances which convey subjective information and
anticipate the question ‘why are you telling me
that?’ and need to be supported by justifications.
Using this rather loose definition, a claim might be
any subjective statement that is justified by the au-
thor. Detailed examination of the LiveJournal cor-
pus (OC) revealed that sentences with claims are
extremely noisy. Their content ranges from a sin-
gle word, (“Bastard.”), to emotional expressions
of personal regret, (“::hugs:: i am so sorry hon ..”)
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to general Web-chat nonsense (“W-wow... that’s
a wicked awesome picture... looks like some-
thing from Pirates of the Caribbean...gone Victo-
rian ...lolz.”) or posts without any clear argumen-
tative purpose (“what i did with it was make this
recipe for a sort of casserole/stratta (i made this
up, here is the recipe) [...] butter, 4 eggs, salt,
pepper, sauted onions and cabbage..add as much
as you want bake for 1 hour at 350 it was seri-
ously delicious!”). The Wikipedia Talk Page cor-
pus (WTP) contains claims typical to Wikipedia
quality discussions (“That is why this article has
NPOV issues.”) and policy claims (Schiappa and
Nordin, 2013) are present as well (“I think the
gallery should be got rid of altogether.”). How-
ever, a small number of nonsensical claims re-
mains (“A dot.”).

Analysis of the MT dataset revealed that about
half of claim sentences contain the modal verb
‘should’, clearly indicating policy claims (“The
death penalty should be abandoned everywhere.”).
Such statements also very explicitly express the
stance on the controversial topic of interest. In a
similar vein, claims in persuasive students’ essays
(PE) heavily rely on phrases signaling beliefs (“In
my opinion, although using machines have many
benefits, we cannot ignore its negative effects.”)
or argumentative discourse connectors whose us-
age is recommended in textbooks on essay writing
(“Thus, it is not need for young people to possess
this ability.”). Most claims are value/policy claims
written in the present tense.

The mixture of genres in the AraucariaDB cor-
pus (VG) is reflected in the variety of claims.
While some are simple statements starting with a
discourse marker (“Therefore, 10% of the students
in my logic class are left-handed.”), there are many
legal-specific claims requiring expert knowledge
(“In considering the intention of Parliament when
passing the 1985 Act, or perhaps more properly
the intention of the draftsman in settling its terms,
there are [...]”), reported and direct speech claims
(“Eight-month-old Kyle Mutch’s tragic death was
not an accident and he suffered injuries consis-
tent with a punch or a kick, a court heard yester-
day.”), and several nonsensical claims (“RE: Does
the Priest Scandal Reveal the Beast?”) which un-
dercut the consistency of this dataset.

The web-discourse (WD) claims take a clear
stance to the relevant controversy (“I regard single
sex education as bad.”), yet sometimes anaphoric

(“My view on the subject is no.”). The usage
of discourse markers is seldom. Habernal and
Gurevych (2017) investigated hedging in claims
and found out that it varies with respect to the
topic being discussed (10% up to 35% of claims
are hedged). Sarcasm or rhetorical question are
also common (“In 2013, is single-sex education
really the way to go?”).

These observations make clear that annotat-
ing claims—the central part of all arguments,
as suggested by the majority of argumenta-
tion scholars—can be approached very differently
when it comes to actual empirical, data-driven op-
erationalization. While some traits are shared,
such as that claims usually need some support to
make up a ‘full’ argument (e.g., premises, evi-
dence, or justifications), the exact definition of a
claim can be arbitrary—depending on the domain,
register, or task.

4 Methodology

Given the results from the qualitative analysis, we
want to investigate whether the different concep-
tualizations of claims can be assessed empirically
and if so, how they could be dealt with in practice.
Put simply, the task we are trying to solve in the
following is: given a sentence, classify whether or
not it contains a claim. We opted to model the
claim identification task on sentence level, as this
is the only way to make all datasets compatible to
each other. Different datasets model claim bound-
aries differently, e.g. MT includes discourse mark-
ers within the same sentence, whereas they are ex-
cluded in PE.

All six datasets described in the previous sec-
tion have been preprocessed by first segment-
ing documents into sentences using Stanford
CoreNLP (Manning et al., 2014) and then annotat-
ing every sentence as claim, if one or more tokens
within the sentence were labeled as claim (or ma-
jor claim in PE). Analogously, each sentence is an-
notated as non-claim, if none of its tokens were la-
beled as claim (or major claim). Although our ba-
sic units of interest are sentences, we keep the con-
tent of the entire document to be able to retrieve
information about the context of (non-)claims.3

We are not interested in optimizing the prop-
erties of a certain learner for this task, but rather

3This is true only for the feature-based learners. The neu-
ral networks do not have access to information beyond indi-
vidual sentences.
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want to compare the influence of different types
of lexical, syntactical, and other kinds of infor-
mation across datasets.4 Thus, we used a lim-
ited set of learners for our task: a) a standard
L2-regularized logistic regression approach with
manually defined feature sets5, which is a sim-
ple yet robust and established technique for many
text classification problems (Plank et al., 2014;
He et al., 2015; Zhang et al., 2016a; Ferreira and
Vlachos, 2016); and b) several deep learning ap-
proaches, using state-of-the-art neural network ar-
chitectures.

The in-domain experiments were carried out
in a 10-fold cross-validation setup with fixed splits
into training and test data. As for the cross-
domain experiments, we train on the entire data
of the source domain and test on the entire data
of the target domain. In the domain adaptation
terminology, this corresponds to an unsupervised
setting.

To address class-imbalance in our datasets (see
Table 1), we downsample the negative class (non-
claim) both in-domain and cross-domain, so that
positive and negative class occur approximately in
an 1:1 ratio in the training data. Since this means
that we discard a lot of useful information (many
negative instances), we repeat this procedure 20
times, in each case randomly discarding instances
of the negative class such that the required ratio is
obtained. At test time, we use the majority predic-
tion of this ensemble of 20 trained models. With
the exception of very few cases, this led to consis-
tent performance improvements across all experi-
ments. The systems are described in more detail in
the following subsections. Additionally, we report
the results of two baselines. The majority base-
line labels all sentences as non-claims (predomi-
nant class in all datasets), the random baseline la-
bels sentences as claims with 0.5 probability.

4.1 Linguistically Motivated Features
For the logistic regression-based experiments
(LR) we employed the following feature groups.
Structure Features capture the position, the length
and the punctuation of a sentence. Lexical Fea-
tures are lowercased unigrams. Syntax Features
account for grammatical information at the sen-
tence level. We include information about the
part-of-speech and parse tree for each sentence.

4For the same reason, we do not optimize any hyperpa-
rameters for individual learners, unless explicitly stated.

5Using the liblinear library (Fan et al., 2008).

Discourse Features encode information extracted
with help of the Penn Discourse Treebank (PDTB)
styled end-to-end discourse parser as presented
by Lin et al. (2014). Embedding Features rep-
resent each sentence as a summation of its word
embeddings (Guo et al., 2014). We further ex-
perimented with sentiment features (Habernal and
Gurevych, 2015; Anand et al., 2011) and dictio-
nary features (Misra et al., 2015; Rosenthal and
McKeown, 2015) but these delivered very poor re-
sults and are not reported in this article. The full
set of features and their parameters are described
in the supplementary material to this article. We
experiment with the full feature set, individual fea-
ture groups, and feature ablation (all features ex-
cept for one group).

4.2 Deep Learning Approaches

As alternatives to our feature-based systems, we
consider three deep learning approaches. The first
is the Convolutional Neural Net of Kim (Kim,
2014) which has shown to perform excellently
on many diverse classification tasks such as sen-
timent analysis and question classification and is
still a strong competitor among neural techniques
focusing on sentence classification (Komninos and
Manandhar, 2016; Zhang et al., 2016b,c). We con-
sider two variants of Kim’s CNN, one in which
words’ vectors are initialized with pre-trained
GoogleNews word embeddings (CNN:w2vec) and
one in which the vectors are randomly initialized
and updated during training (CNN:rand). Our sec-
ond model is an LSTM (long short-term mem-
ory) neural net for sentence classification (LSTM)
and our third model is a bidirectional LSTM (BiL-
STM).

For all neural network classifiers, we use default
hyperparameters concerning hidden dimensionali-
ties (for the two LSTM models), number of filters
(for the convolutional neural net), and others. We
train each of the three neural networks for 15 iter-
ations and choose in each case the learned model
that performs best on a held-out development set
of roughly 10% of the training data as the model
to apply to unseen test data. This corresponds to
an early stopping regularization scheme.

5 Results

In the following, we summarize the results of the
various learners described above. Obtaining all re-
sults required heavy computation, e.g. the cross-
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Target→
System ↓

MT OC PE VG WD WTP Average

neural network models
BiLSTM 68.8 41.8 58.0 22.4 73.0 62.0 60.9 37.7 60.0 24.5 57.9 28.5 63.1 36.1
CNN:rand 78.6 67.3 60.5 25.6 73.6 61.1 65.9 45.0 61.1 25.8 58.6 28.9 66.4 42.3
CNN:w2vec 73.7 60.9 58.2 23.7 74.0 61.7 63.8 33.5 62.6 28.9 57.3 24.3 64.9 38.8
LSTM 65.2 48.3 58.5 22.3 71.8 60.7 61.3 40.1 61.6 25.9 58.0 28.4 62.7 37.6

LR feature ablation and combination
-Discourse 73.0 60.8 59.9 22.9 70.6 60.6 62.5 42.6 63.7 23.2 59.7 30.2 64.9 40.0
-Embeddings 74.6 62.9 59.6 22.6 70.4 60.4 62.9 43.1 63.9 23.5 59.4 29.9 65.1 40.4
-Lexical 72.1 59.5 59.6 22.5 65.9 55.1 60.8 40.5 60.1 18.5 57.7 27.8 62.7 37.3
-Structure 74.4 62.6 60.0 23.0 70.4 60.4 62.0 41.8 64.2 23.4 59.5 30.0 65.1 40.2
-Syntax 79.8 70.3 59.8 22.9 72.1 62.5 63.4 43.8 65.1 25.5 60.1 30.5 66.7 42.6
All Features 74.4 62.7 59.9 22.9 70.6 60.6 62.5 42.6 63.8 23.3 59.7 30.2 65.1 40.4

LR single feature groups
+Discourse 70.0 56.7 49.4 13.8 50.1 41.7 49.6 30.6 57.6 14.9 49.5 18.4 54.4 29.3
+Embeddings 72.4 59.8 58.8 20.8 68.2 57.7 59.7 39.3 64.2 23.8 59.0 28.9 63.7 38.4
+Lexical 75.9 64.7 59.5 21.4 71.8 62.1 61.1 40.5 64.0 22.2 59.0 27.7 65.2 39.8
+Structure 57.1 42.0 56.5 20.0 54.2 39.5 55.4 33.3 48.4 9.0 55.4 25.2 54.5 28.2
+Syntax 66.7 52.5 58.1 21.0 64.1 52.9 60.7 40.4 57.6 15.5 57.0 27.0 60.7 34.9

baselines
Majority bsl 42.9 0.0 48.0 0.0 41.3 0.0 44.5 0.0 48.6 0.0 46.7 0.0 45.3 0.0
Random bsl 50.7 33.2 49.9 13.5 50.8 38.0 50.4 28.8 51.6 10.8 48.9 18.8 50.4 23.9

Table 2: In-domain experiments, best values per column are highlighted. For each dataset (column head)
we show two scores: Macro-F1 score (left-hand column) and F1 score for claims (right-hand column).

validation experiments for feature-based systems
took 56 days of computing. We intentionally
do not list the results of previous work on those
datasets. The scores are not comparable since
we strictly work on sentence level (rather than
e.g. clause level) and applied downsampling to
the training data. All reported significance tests
were conduced using two-tailed Wilcoxon Signed-
Rank Test for matched pairs, i.e. paired scores of
F1 scores from two compared systems (Japkowicz
and Shah, 2014).

5.1 In-Domain Experiments

The performance of the learners is quite diver-
gent across datasets, with Macro-F1 scores6 rang-
ing from 60% (WTP) to 80% (MT), average 67%
(see Table 2). On all datasets, our best systems
clearly outperform both baselines. In isolation,
lexical, embedding, and syntax features are most
helpful, whereas structural features did not help
in most cases. Discourse features only contribute
significantly on MT. When looking at the perfor-
mance of the feature-based approaches, the most
striking finding is the importance of lexical (in our
setup, unigram) information.

The average performances of LR−syntax and
CNN:rand are virtually identical, both for Macro-

6Described as FscoreM in Sokolova and Lapalme (2009).

F1 and Claim-F1, with a slight advantage for the
feature-based approach, but their difference is not
statistically significant (p ≤ 0.05). Altogether,
these two systems exhibit significantly better aver-
age performances than all other models surveyed
here, both those relying on and those not relying
on hand-crafted features (p ≤ 0.05). The absence
or the different nature of inter-annotator agree-
ment measures for all datasets prevent us from
searching for correlations between agreement and
performance. But we observed that the systems
yield better results on PE and MT, both datasets
with good inter-annotator agreement (αu = 0.77
for PE and κ = 0.83 for MT).

5.2 Cross-Domain Experiments

For all six datasets, training on different sources
resulted in a performance drop. Table 3 lists the
results of the best feature-based (LR All features)
and deep learning (CNN:rand) systems, as well as
single feature groups (averages over all source do-
mains, results for individual source domains can
be found in the supplementary material to this ar-
ticle). We note the biggest performance drops
on the datasets which performed best in the in-
domain setting (MT and PE). For the lowest scor-
ing datasets, OC and WTP, the differences are only
marginal when trained on a suitable dataset (VG
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Target→
Source/Sys. ↓

MT OC PE VG WD WTP Average

CNN:rand
MT 78.6 67.3 51.0 7.4 56.9 22.1 57.2 15.7 52.4 9.4 49.4 10.9 53.4 13.1
OC 57.1 39.7 60.5 25.6 56.4 42.8 58.9 37.3 54.6 13.2 58.4 28.9 57.1 32.4
PE 59.8 18.0 54.2 9.5 73.6 61.1 57.5 18.7 55.5 15.9 54.7 16.0 56.3 15.6
VG 68.7 51.5 55.8 19.2 57.0 32.0 65.9 45.0 51.7 10.5 54.7 22.0 57.6 27.0
WD 64.4 3.5 51.3 1.3 41.3 0.0 44.5 0.0 61.1 25.8 46.7 0.0 49.6 1.0
WTP 58.5 26.6 56.8 15.4 56.0 18.5 55.3 19.4 52.9 11.6 58.6 28.9 55.9 18.3
Average 61.7 27.9 53.8 10.6 53.5 23.1 54.7 18.2 53.4 12.1 52.8 15.6 55.0 17.9

LR All features
MT 74.4 62.7 53.9 17.0 51.9 29.5 56.1 34.2 55.1 14.5 52.5 21.2 53.9 23.3
OC 60.0 45.1 59.9 22.9 56.7 47.0 58.6 38.0 54.1 12.2 57.7 27.5 57.4 34.0
PE 58.1 36.3 54.6 17.3 70.6 60.6 54.1 21.4 54.0 13.5 54.4 20.4 55.0 21.8
VG 65.8 51.4 57.3 21.7 57.0 45.1 62.5 42.6 54.5 13.1 55.1 24.8 57.9 31.2
WD 62.6 38.5 55.4 19.0 56.0 30.1 55.1 23.3 63.8 23.3 53.6 20.9 56.5 26.3
WTP 58.0 41.7 56.1 20.3 56.8 42.6 59.1 38.0 52.2 11.2 59.7 30.2 56.5 30.8
Average 60.9 42.6 55.5 19.1 55.7 38.9 56.6 31.0 54.0 12.9 54.7 23.0 56.2 27.9

LR single feature groups (averages across all source domains)
+Discourse 40.2 15.0 31.7 5.8 30.3 27.4 27.7 19.9 40.9 4.5 25.3 13.3 32.7 14.3
+Embeddings 56.6 35.2 51.4 12.8 53.6 30.7 53.3 24.3 54.2 13.2 52.9 19.0 53.7 22.5
+Lexical 61.0 42.2 55.2 18.3 56.2 38.6 54.7 29.1 53.1 11.9 54.9 23.4 55.9 27.2
+Structure 44.2 22.9 53.6 18.5 52.5 38.4 53.6 32.1 49.1 9.0 53.4 23.3 51.1 24.0
+Syntax 54.8 37.0 54.2 17.5 54.3 40.6 55.7 32.0 53.0 11.8 53.8 22.5 54.3 26.9

baselines
Majority bsl 42.9 0.0 48.0 0.0 41.3 0.0 44.5 0.0 48.6 0.0 46.7 0.0 45.3 0.0
Random bsl 47.5 30.6 50.5 14.0 51.0 38.4 51.0 29.3 49.3 9.3 50.3 20.2 49.9 23.6

Table 3: Cross-domain experiments, best values per column are highlighted, in-domain results (for com-
parison) in italics; results only for selected systems. For each source/target combination we show two
scores: Macro-F1 score (left-hand column) and F1 score for claims (right-hand column).

and OC, respectively). The best feature-based
approach outperforms the best deep learning ap-
proach in most scenarios. In particular, as opposed
to the in-domain experiments, the difference of the
Claim-F1 measure between the feature-based ap-
proaches and the deep learning approaches is strik-
ing. In the feature-based approaches, on average,
a combination of all features yields the best results
for both Macro-F1 and Claim-F1. When compar-
ing single features, lexical ones do the best job.

Looking at the best overall system (LR with
all features), the average test results when train-
ing on different source datasets are between 54%
Macro-F1 resp. 23% Claim-F1 (both MT) and 58%
(VG) resp. 34% (OC). Depending on the goal that
should be achieved, training on VG (highest aver-
age Macro-F1) or OC (highest average Claim-F1)
seems to be the best choice when the domain of
test data is unknown (we analyze this finding in
more depth in §6). MT clearly gives the best re-
sults as target domain, followed by PE and VG.

We also performed experiments with mixed
sources, the results are shown in Table 4. We did
this in a leave-one-domain-out fashion, in partic-

ular we trained on all but one datasets and tested
on the remaining one. In this scenario, the neu-
ral network systems seem to benefit from the in-
creased amount of training data and thus gave the
best results. Overall, the mixed sources approach
works better than many of the single-source cross-
domain systems – yet, the differences were not
found to be significant, but as good as training on
suitable single sources (see above).

6 Further Analysis and Discussion

To better understand which factors influence
cross-domain performance of the systems we
tested, we considered the following variables as
potential determinants of outcome: similarity be-
tween source and target domain, the source do-
main itself, training data size, and the ratio be-
tween claims and non-claims.

We calculated the Spearman correlation of the
top-500 lemmas between the datasets in each di-
rection, see results in Table 5. The most similar
domains are OC (source s) and WTP (target t),
coming from the same authors. OC (s) and WD
(t) as well OC (s) and VG (t) are also highly cor-
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Target→
System ↓

MT OC PE VG WD WTP Avg

CNN:rand 62.8 41.4 57.8 22.4 59.7 36.2 58.6 28.1 54.2 14.1 56.8 25.6 58.3 28.0

All features 64.7 49.5 56.4 20.6 57.8 45.8 58.2 36.4 52.3 11.3 56.0 26.0 57.6 31.6

Majority bsl 42.9 0.0 48.0 0.0 41.3 0.0 44.5 0.0 48.6 0.0 46.7 0.0 45.3 0.0
Random bsl 47.5 30.6 50.5 14.0 51.0 38.4 51.0 29.3 49.3 9.3 50.3 20.2 49.9 23.6

Table 4: Leave-one-domain-out experiments, best values per column are highlighted. For each test
dataset (column head) we show two scores: Macro-F1 score (left-hand column) and F1 score for claims
(right-hand column).

MT OC PE VG WD WTP
MT 100 47 51 52 49 48
OC 56 100 55 68 71 71
PE 59 58 100 66 67 57
VG 51 58 52 100 59 62
WD 54 61 61 62 100 55
WTP 49 59 49 57 57 100

Table 5: Heatmap of Spearman correlations in
% based on most frequent 500 lemmas for each
dataset. Source domain: rows, target domain:
columns.

related. For a statistical test of potential correla-
tions between cross-domain performances and the
introduced variables, we regress the cross-domain
results (Table 3) on Table 5 (T4 in the follow-
ing equation), on the number of claims #C (di-
rectly related to training data size in our experi-
ments, effect of downsampling), and on the ratio
of claims to non-claims R.7 More precisely, given
source/training data and target data pairs (s, t) in
Table 3, we estimate the linear regression model

yst = α ·T4st +β · log(#Cs)+ γ ·Rt + εst , (1)

where yst denotes the Macro-F1 score when train-
ing on s and testing on t. In the regression, we
also include binary dummy variables 1σ = 1s,σ
for each domain σ whose value is 1 if s= σ (and 0
otherwise). These help us identify “good” source
domains.

The coefficient α for Table 5 is not statisti-
cally significantly different from zero in any case.
Ultimately, this means that it is difficult to pre-
dict cross-domain performance from lexical sim-
ilarity of the datasets. This is in contrast to e.g.,
POS tagging, where lexical similarity has been re-
ported to predict cross-domain performance very

7Overall, we had 15 different systems, see upper 15 rows
in Table 2. Therefore, we had 15 different regression models.

well (Van Asch and Daelemans, 2010). The coef-
ficient for training data size β is statistically sig-
nificantly different from zero in three out of 15
cases. In particular, it is significantly positive in
two (CNN:rand, CNN:w2vec) out of four cases for
the neural networks. This indicates that the neural
networks would have particularly benefited from
more training data, which is confirmed by the im-
proved performance of the neural networks in the
mixed sources experiments (cf. §5.2). The ratio of
claims to non-claims in t is among the best predic-
tors for the variables considered here (coefficient
γ is significant in three out of 15 cases, but consis-
tently positive). This is probably due to our deci-
sion to balance training data (downsampling non-
claims) to keep the assessment of claim identifica-
tion realistic for real-world applications, where the
class ratio of t is unknown. Our systems are thus
inherently biased towards a higher claim ratio.

Finally, the dummy variables for OC and VG
are three times significantly positive, but consis-
tently positive overall. Their average coefficient
is 2.31 and 1.90, respectively, while the average
coefficients for all other source datasets is nega-
tive, and not significant in most cases. Thus, even
when controlling for all other factors such as train-
ing data size and the different claim ratios of target
domains, OC and VG are the best source domains
for cross-domain claim classification in our exper-
iments. OC and VG are particularly good training
sources for the detection of claims (as opposed to
non-claims)—the minority class in all datasets—
as indicated by the average Claim-F1 scores in Ta-
ble 3.

One finding that was confirmed both in-domain
as well as cross-domain was the importance of lex-
ical features as compared to other feature groups.
As mere lexical similarity between domains does
not explain performance (cf. coefficient α above),
this finding indicated that the learners relied on
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a few, but important lexical clues. To go more
into depth, we carried out error analysis on the
CNN:rand cross-domain results. We used OC, VG
and PE as source domains, and MT and WTP as
target domains. By examining examples in which
a model trained on OC and VG made correct pre-
dictions as opposed to a model trained on PE,
we quickly noticed that lexical indicators indeed
played a crucial role. In particular, the occur-
rence of the word “should” (and to a lower degree:
“would”, “article”, “one”) are helpful for the de-
tection of claims across various datasets. In MT, a
simple baseline labeling every sentence containing
“should” as claim achieves 76.1 Macro-F1 (just
slightly below the best in-domain system on this
dataset). In the other datasets, this phenomenon is
far less dominant, but still observable. We con-
clude that a few rather simple rules (learned by
models trained on OC and VG, but not by poten-
tially more complex models trained on PE) make
a big difference in the cross-domain setting.

7 Conclusion

In a rigorous empirical assessment of different
machine learning systems, we compared how six
datasets model claims as the fundamental compo-
nent of an argument. The varying performance of
the tested in-domain systems reflects different no-
tions of claims also observed in a qualitative study
of claims across the domains. Our results reveal
that the best in-domain system is not necessarily
the best system in environments where the target
domain is unknown. Particularly, we found that
mixing source domains and training on two rather
noisy datasets (OC and VG) gave the best results
in the cross-domain setup. The reason for this
seem to be a few important lexical indicators (like
the word “should”) which are learned easier under
these circumstances. In summary, as for the six
datasets we analyzed here, our analysis shows that
the essence of a claim is not much more than a few
lexical clues.

From this, we conclude that future work should
address the problem of vague conceptualization of
claims as central components of arguments. A
more consistent notion of claims, which also holds
across domains, would potentially not just benefit
cross-domain claim identification, but also higher-
level applications relying on argumentation min-
ing (Wachsmuth et al., 2017). To further over-
come the problem of domain dependence, multi-

task learning is a framework that could be ex-
plored (Søgaard and Goldberg, 2016) for different
conceptualizations of claims.
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Abstract

A first step in the task of automatically
generating questions for testing reading
comprehension is to identify question-
worthy sentences, i.e. sentences in a text
passage that humans find it worthwhile to
ask questions about. We propose a hierar-
chical neural sentence-level sequence tag-
ging model for this task, which existing
approaches to question generation have ig-
nored. The approach is fully data-driven
— with no sophisticated NLP pipelines
or any hand-crafted rules/features — and
compares favorably to a number of base-
lines when evaluated on the SQuAD data
set. When incorporated into an existing
neural question generation system, the re-
sulting end-to-end system achieves state-
of-the-art performance for paragraph-level
question generation for reading compre-
hension.

1 Introduction and Related Work

Automatically generating questions for test-
ing reading comprehension is a challenging
task (Mannem et al., 2010; Rus et al., 2010). First
and foremost, the question generation system must
determine which concepts in the associated text
passage are important, i.e. are worth asking a ques-
tion about.

The little previous work that exists in this area
currently circumvents this critical step in passage-
level question generation by assuming that such
sentences have already been identified. In par-
ticular, prior work focuses almost exclusively
on sentence-level question generation: given a
text passage, assume that all sentences contain a
question-worthy concept and generate one or more

questions for each (Heilman and Smith, 2010; Du
et al., 2017; Zhou et al., 2017).

In contrast, we study the task of passage-level
question generation (QG). Inspired by the large
body of research in text summarization on iden-
tifying sentences that contain “summary-worthy”
content (e.g. Mihalcea (2005), Berg-Kirkpatrick
et al. (2011), Yang et al. (2017)), we develop
a method to identify the question-worthy sen-
tences in each paragraph of a reading compre-
hension passage. Inspired further by the success
of neural sequence models for many natural lan-
guage processing tasks (e.g. named entity recog-
nition (Collobert et al., 2011), sentiment classi-
fication (Socher et al., 2013), machine transla-
tion (Sutskever et al., 2014), dependency pars-
ing (Chen and Manning, 2014)), including very re-
cently document-level text summarization (Cheng
and Lapata, 2016), we propose a hierarchical
neural sentence-level sequence tagging model for
question-worthy sentence identification.

We employ the SQuAD reading comprehen-
sion data set (Rajpurkar et al., 2016) for evalua-
tion and show that our sentence selection approach
compares favorably to a number of baselines in-
cluding the feature-rich sentence selection model
of Cheng and Lapata (2016) proposed in the con-
text of extract-based summarization, and the con-
volutional neural network model of Kim (2014)
that achieves state-of-the-art results on a variety
of sentence classification tasks.

We also incorporate our sentence selection com-
ponent into the neural question generation sys-
tem of Du et al. (2017) and show, again us-
ing SQuAD, that our resulting end-to-end system
achieves state-of-the-art performance for the chal-
lenging task of paragraph-level question genera-
tion for reading comprehension.
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2 Problem Formulation

In this section, we define the tasks of impor-
tant (i.e. question-worthy) sentence selection and
sentence-level question generation (QG). Our full
paragraph-level QG system includes both of these
components. For the sentence selection task, given
a paragraph D consisting of a sequence of sen-
tences {s1, ..., sm}, we aim to select a subset of
k question-worthy sentences (k < m). The goal
is defined as finding y = {y1, ..., ym}, such that,

y = argmax
y

logP1 (y|D)

= argmax
y

|y|∑

t=1

logP1 (yt|D)
(1)

where log P (y|D) is the conditional log-
likelihood of the label sequence y; and yi = 1
means sentence i is question-worthy (contains at
least one answer), otherwise yi = 0.

For sentence-level QG, the goal is to find the
best word sequence z (a question of arbitrary
length) that maximizes the conditional likelihood
given the input sentence x and satisfies:

z = argmax
z

logP2 (z|x)

= argmax
z

|z|∑

t=1

logP2 (zt|x, z<t)
(2)

where P2(z|x) is modeled with a global attention
mechanism (Section 3).

3 Model

Important Sentence Selection Our general idea
for the hierarchical neural network architecture
is illustrated in Figure 1. First, we perform
the encoding using sum operation or convolu-
tion+maximum pooling operation (Kim, 2014; dos
Santos and Zadrozny, 2014) over the word vectors
comprising each sentence in the input paragraph.
For simplicity and consistency, we denote the sen-
tence encoding process as ENC. Given the tth sen-
tence x = {x1, ..., xn} in the paragraph, we have
its encoding:

st = ENC([x1, ..., xn]) (3)

Then we use a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to encode the paragraph,

…

…

…

…

…

𝑆" 𝑆# 𝑆$ 𝑆% 𝑆&

𝑦$ 𝑦% 𝑦&𝑦#𝑦"

Sentence	 Encoder

Figure 1: Hierarchical neural network architecture
for sentence-level sequence labeling. The input
is a paragraph consisting of sentences, whose en-
coded representation is fed into each hidden unit.

−→
ht =

−−−−→
LSTM

(
st,
−−→
ht−1

)

←−
ht =

←−−−−
LSTM

(
st,
←−−
ht+1

)

We use the concatenation of the two, namely,
[
−→
ht;
←−
ht], as the hidden state ht at time stamp t, and

feed it to the upper layers to get the probability
distribution of yt (∈ {0, 1}),

P1 (yt|D; θ) = softmax
(

MLP
(

tanh
(
[
−→
ht;
←−
ht]
)))

where MLP is multi-layer neural network and tanh
is the activation function.

Question Generation Similar to Du et al. (2017),
we implement the sentence-level question genera-
tor with an attention-based sequence-to-sequence
learning framework (Sutskever et al., 2014; Bah-
danau et al., 2015), to map a sentence in the read-
ing comprehension article to natural questions. It
consists of an LSTM encoder and decoder. The
encoder is a bi-directional LSTM network; it en-
codes the input sentence x into a sequence of hid-
den states q1,q2, ...,q|x|.
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Model Precision Recall F-measure Acc. Paragraph-level Acc.

RANDOM 63.45 50.29 56.11 50.27 11.69
Majority Baseline 63.21 100.00 77.46 63.21 32.30
CNN (Kim, 2014) 68.35 90.13 77.74 67.38 24.73
LREG(w/ BOW) 68.52 86.55 76.49 66.37 31.36
LREG(w/ para.-level)
(Cheng and Lapata, 2016)

70.49 89.08 78.70 69.52 33.95

OursSUM (no pre-trained) 73.02 89.23 80.32 72.36 36.46
OursSUM (w/ pre-trained) 73.85 87.65 80.16 72.58 36.30
OursCNN (no pre-trained) 73.15 89.29 80.42* 72.52 35.93
OursCNN (w/ pre-trained) 74.35 86.11 79.80 72.44 36.87

Table 1: Automatic evaluation results for important sentence selection. The best performing system in
each column is highlighted in boldface. Paragraph-level accuracies are calculated as the proportion of
paragraphs in which all of the sentences are predicted correctly. We show two-tailed t-test results on
F-measure for our best performing method compared to the other baselines. (Statistical significance is
indicated with ∗(p < 0.005).)

The decoder is another LSTM that uses global
attention over the encoder hidden states. The en-
tire encoder-decoder structure learns the probabil-
ity of generating a question given a sentence, as
indicated by equation 2. To be more specific,

P2 (zt|x, z<t) = softmax (Wstanh (Wt[ht; ct]))

where Ws, Wt are parameter matrices; ht is the
hidden state of the decoder LSTM; and ct is the
context vector created dynamically by the encoder
LSTM — the weighted sum of the hidden states
computed for the source sentence:

ct =
∑

i=1,..,|x|
ai,tqi

The attention weights ai,t are calculated via a
bilinear scoring function and softmax normaliza-
tion:

ai,t =
exp(hTt Wbqi)∑
j exp(h

T
t Wbqj)

Apart from the bilinear score, alternative options
for computing the attention can also be used
(e.g. dot product). Readers can refer to Luong
et al. (2015) for more details.

During inference, beam search is used to predict
the question. The decoded UNK token at time step
t, is replaced with the token in the input sentence
with the highest attention score, the index of which
is argmaxi ai,t.

Henceforth, we will refer to our sentence-level
Neural Question Generation system as NQG.

Note that generating answer-specific questions
would be easy for this architecture — we can ap-
pend answer location features to the vectors of to-
kens in the sentence. To better mimic the real life
case (where questions are generated with no prior
knowledge of the desired answers), we do not use
such location features in our experiments.

4 Experimental Setup and Results
4.1 Dataset and Implementation Details

We use the SQuAD dataset (Rajpurkar et al.,
2016) for training and evaluation for both impor-
tant sentence selection and sentence-level NQG.
The dataset contains 536 curated Wikipedia arti-
cles with over 100k questions posed about the ar-
ticles. The authors employ Amazon Mechanical
Turk crowd-workers to generate questions based
on the article paragraphs and to annotate the corre-
sponding answer spans in the text. Later, to make
the evaluation of the dataset more robust, other
crowd-workers are employed to provide additional
answers to the questions.

We split the public portion of the dataset into
training (∼80%), validation (∼10%) and test
(∼10%) sets at the paragraph level. For the sen-
tence selection task, we treat sentences that con-
tain at least one answer span (question-worthy
sentences) as positive examples (y = 1); all re-
maining sentences are considered negative (y =
0). Not surprisingly, the training set is unbalanced:
52332 (∼60%) sentences contain answers, while
29693 sentences do not. Because of the variabil-
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Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR

Conservative LREG(C&L) + NQG 38.30 23.15 15.64 10.97 15.09
Ours + NQG 40.08 24.26 16.39 11.50 15.67

Liberal LREG(C&L) + NQG 51.55 40.17 34.35 30.59 24.17
Ours + NQG 52.89 41.16 35.15 31.25 24.76

Table 2: Results for the full QG systems using BLEU 1–4, METEOR. The first stage of the two pipeline
systems are the feature-rich linear model (LREG) and our best performing selection model respectively.

ity of human choice in generating questions, it is
the case that many sentences labeled as negative
examples might actually contain concepts worth
asking a question about. For the related impor-
tant sentence detection task in text summarization,
Yang et al. (2017) therefore propose a two-stage
approach (Lee and Liu, 2003; Elkan and Noto,
2008) to augment the set of known summary-
worthy sentences. In contrast, we adopt a con-
servative approach rather than predict too many
sentences as being question-worthy: we pair up
source sentences with their corresponding ques-
tions, and use just these sentence-question pairs to
training the encoder-decoder model.

We use the glove.840B.300d pre-trained
embeddings (Pennington et al., 2014) for ini-
tialization of the embedding layer for our sen-
tence selection model and the full NQG model.
glove.6B.100d embeddings are used for cal-
culating sentence similarity feature of the baseline
linear model (LREG). Tokens outside the vocabu-
lary list are replaced by the UNK symbol. Hyper-
parameters for all models are tuned on the valida-
tion set and results are reported on the test set.

4.2 Sentence Selection Results

We compare to a number of baselines. The Ran-
dom baseline assigns a random label to each
sentence. The Majority baseline assumes that
all sentences are question-worthy. The convolu-
tional neural networks (CNN) sentence classifi-
cation model (Kim, 2014) has similar structure
to our CNN sentence encoder, but the classifica-
tion is done only at the sentence-level rather than
jointly at paragraph-level. LREGw/ BOW is the
logistic regression model with bag-of-words fea-
tures. LREGw/ para.-level is the feature-rich LREG
model designed by Cheng and Lapata (2016); the
features include: sentence length, position of sen-
tence, number of named entities in the sentence,
number of sentences in the paragraph, sentence-to-
sentence cohesion, and sentence-to-paragraph rel-
evance. Sentence-to-sentence cohesion is obtained

conservative eval. liberal eval.
aaaaaaaaaa

System Output

Gold Data
w/ Q w/o Q w/ Q w/o Q

w/ Q matching zero matching full
w/o Q zero - zero -

Table 3: For a source sentence in SQuAD, given
the prediction from the sentence selection system
and the corresponding NQG output, we provide
conservative and liberal evaluations.

by calculating the embedding space similarity be-
tween it and every other sentence in the paragraph
(similar for sentence-to-paragraph relevance). In
document summarization, graph-based extractive
summarization models (e.g. TGRAPH Parveen
et al. (2015) and URANK Wan (2010)) focus on
global optimization and extract sentences con-
tributing to topical coherent summaries. Because
this does not really fit our task — a summary-
worthy sentence might not necessarily contain
enough information for generating a good ques-
tion — we do not include these as comparisons.

Results are displayed in Table 1. Our models
with sum or CNN as the sentence encoder signif-
icantly outperform the feature-rich LREG as well
as the other baselines in terms of F-measure.

4.3 Evaluation of the full QG system
To evaluate the full systems for paragraph-level
QG, we introduce in Table 3 the “conservative”
and “liberal” evaluation strategies. Given an input
source sentence, there will be in total four possi-
bilities: if both the gold standard data and predic-
tion include the sentence, then we use its n-gram
matching score (by BLEU (Papineni et al., 2002)
and METEOR (Denkowski and Lavie, 2014)); if
neither the gold data nor prediction include the
sentence, then the sentence is discarded from the
evaluation; if the gold data includes the sentence
while the prediction does not, we assign a score of
0 for it; and if gold data does not include the sen-
tence while prediction does, the generated ques-
tion gets a 0 for conservative, while it gets full
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Wikipedia paragraph: arnold schwarzenegger has been involved with the special olympics for
many years after they were founded by his ex-mother-in-law , eunice kennedy shriver .after they were founded by his ex-mother-in-law , eunice kennedy shriver . in 2007 ,

schwarzenegger was the official spokesperson for the special olympics which were held in shanghai , china .::::::::::::
schwarzenegger

:::
was

::
the

::::::
official

::::::::::
spokesperson

:::
for

::
the

::::::
special

:::::::
olympics

:::::
which

::::
were

:::
held

::
in

:::::::
shanghai,

:::::
china

:
.

schwarzenegger believes that quality school opportunities should be made available to children who might not normally
be able to access them. in 1995 , he founded the inner city games foundation -lrb- icg -rrb- which provides cultural ,:

in
::::
1995

:
,
::
he
:::::::

founded
::
the

:::::
inner

:::
city

:::::
games

::::::::
foundation

::::
-lrb-

::
icg

::::
-rrb-

:::::
which

:::::::
provides

::::::
cultural ,

::::::::
educational

:::
and

:::::::::
community

:::::::::
enrichment

::::::::::
programming

::
to

::::
youth

:
.

icg is active in 15 cities around the country and serves over 250,000 children in over 400 schools countrywide .::
icg

::
is

:::::
active

:
in
:::
15

::::
cities

:::::
around

:::
the

::::::
country

:::
and

:::::
serves

:::
over

:::::::
250,000

::::::
children

::
in

::::
over

:::
400

::::::
schools

:::::::::
countrywide

:
. he has

also been involved with after-school all-stars , and founded the los angeles branch in 2002 . asas is an after school
program provider , educating youth about health , fitness and nutrition .

Our questions: Q1: who founded the special olympics ? Q2: who was the official adviser for the special olympics ?
Q3: when was the inner city games foundation founded ? Q4: how many schools does icg have ?
Gold questions: Q1: schwarzenegger was the spokesperson for the special olympic games held in what city in china ?
Q2: what nonprofit did schwarzenegger found in 1995 ? Q3: about how many schools across the country is icg active in ?

Figure 2: Sample output from our full NQG system, the four questions correspond to the four highlighted
sentences in the paragraph in the same order. Darkness indicates sentence importance, the score for
deciding the darkness is obtained from the softmax results. Wave-lined sentences bear label y = 1, and
0 otherwise. The three gold questions also correspond to the wave-lined sentences in the same order.
Please refer to the appendix for sample output on more Wikipedia articles.

score for liberal evaluation. Table 2 shows that the
QG system incorporating our best performing sen-
tence extractor outperforms its LREG counterpart
across metrics. Note that to calculate the score for
the matching case, similar to our earlier work (Du
et al., 2017), we adapt the image captioning eval-
uation scripts of Chen et al. (2015) since there can
be several gold standard questions for a single in-
put sentence.

In Figure 2, we provide questions generated by
the full NQG system (Q1–4) and according to the
gold standard (Q1–3) for the selected Wikipedia
paragraph. The sentences they were drawn from
are shown with wavy lines (gold standard) and via
highlighting (our system). Darkness of the high-
lighting is proportional to the softmax score pro-
vided by the sentence extractor.

5 Conclusion

In this work we introduced the task of identify-
ing important sentences — good sentences to ask
a question about — in the reading comprehen-
sion setting. We proposed a hierarchical neural
sentence labeling model and investigated encod-
ing sentences with sum and convolution opera-
tions. The question generation system that uses
our sentence selection model consistently outper-
forms previous approaches and achieves state-of-
the-art paragraph-level question generation perfor-
mance on the SQUAD data set.

In future work, we would like to investigate
approaches to identify question-worth concepts
rather than question-worthy sentences. It would
also be interesting to see if the generated questions
can be used to help improve question answering
systems.
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Abstract

Comprehending lyrics, as found in songs
and poems, can pose a challenge to hu-
man and machine readers alike. This moti-
vates the need for systems that can under-
stand the ambiguity and jargon found in
such creative texts, and provide commen-
tary to aid readers in reaching the correct
interpretation.

We introduce the task of automated lyric
annotation (ALA). Like text simplifica-
tion, a goal of ALA is to rephrase the
original text in a more easily understand-
able manner. However, in ALA the sys-
tem must often include additional infor-
mation to clarify niche terminology and
abstract concepts. To stimulate research
on this task, we release a large collec-
tion of crowdsourced annotations for song
lyrics. We analyze the performance of
translation and retrieval models on this
task, measuring performance with both au-
tomated and human evaluation. We find
that each model captures a unique type of
information important to the task.

1 Introduction

Song lyrics and poetry often make use of ambi-
guity, symbolism, irony, and other stylistic ele-
ments to evoke emotive responses. These charac-
teristics sometimes make it challenging to inter-
pret obscure lyrics, especially for readers or lis-
teners who are unfamiliar with the genre. To ad-
dress this problem, several online lyric databases
have been created where users can explain, con-
textualize, or discuss lyrics. Examples include
MetroLyrics1 and Genius.com2. We refer to such

1http://www.metrolyrics.com
2http://genius.com

How does it feel?
To be without a home

Like a complete unknown,

Like a rolling stone

The proverb “A rolling stone gathers no
moss” refers to people who are always on

the move, never putting down roots or
accumulating responsibilities and cares.

Figure 1: A lyric annotation for “Like A Rolling
Stone” by Bob Dylan.

commentary as a lyric annotation (Figure 1).
In this work we introduce the task of auto-

mated lyric annotation (ALA). Compared to many
traditional NLP systems, which are trained on
newswire or similar text, an automated system ca-
pable of explaining abstract language, or finding
alternative text expressions for slang (and other
unknown terms) would exhibit a deeper under-
standing of the nuances of language. As a result,
research in this area may open the door to a va-
riety of interesting use cases. In addition to pro-
viding lyric annotations, such systems can lead to
improved NLP analysis of informal text (blogs, so-
cial media, novels and other literary works of fic-
tion), better handling of genres with heavy use of
jargon (scientific texts, product manuals), and in-
creased robustness to textual variety in more tradi-
tional NLP tasks and genres.

Our contributions are as follows:
1. To aid in the study of ALA we present a cor-

pus of 803,720 crowdsourced lyric annota-
tion pairs suitable for training models for this
task.3

2. We present baseline systems using statisti-
cal machine translation (SMT), neural trans-

3To obtain the data collection please contact the first au-
thor of this paper.
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# Lyric Annotation pairs 803,720
� Tokens per Lyric 15
� Tokens per Annotation 43
|Vlyrics| 124,022
|Vannot| 260,427

Table 1: Properties of gathered dataset (Vlyrics and
Vannot denote the vocabulary for lyrics and annota-
tions, � denotes the average amount).

lation (Seq2Seq), and information retrieval.
3. We establish an evaluation procedure which

adopts measures from machine translation,
paraphrase generation, and text simplifica-
tion. Evaluation is conducted using both hu-
man and automated means, which we per-
form and report across all baselines.

2 The Genius ALA Dataset

We collect a dataset of crowdsourced annotations,
generated by users of the Genius online lyric
database. For a given song, users can navigate to a
particular stanza or line, view existing annotations
for the target lyric, or provide their own annota-
tion. Discussion between users acts to improve an-
notation quality, as it does with other collaborative
online databases like Wikipedia. This process is
gamified: users earn IQ points for producing high
quality annotations.

We collect 736,423 lyrics having a total
1,404,107 lyric annotation pairs from all subsec-
tions (rap, poetry, news, etc.) of Genius. We
limit the initial release of the annotation data to
be English-only, and filter out non-English anno-
tations using a pre-trained language identifier. We
also remove annotations which are solely links
to external resources, and do not provide useful
textual annotations. This reduces the dataset to
803,720 lyric annotation pairs. We list several
properties of the collected dataset in Table 1.

2.1 Context Independent Annotation
Mining annotations from a collaborative human-
curated website presents additional challenges
worth noting. For instance, while we are able to
generate large quantities of parallel text from Ge-
nius, users operate without a single, predefined
and shared global goal other than to maximize
their own IQ points. As such, there is no moti-
vation to provide annotations for a song in its en-
tirety, or independent of previous annotations.

For this reason we distinguish between two
types of annotations: context independent (CI)
annotations are independent of their surrounding
context and can be interpreted without it, e.g., ex-
plain specific metaphors or imagery or provide
narrative while normalizing slang language. Con-
trastively, context sensitive (CS) annotations pro-
vide broader context beyond the song lyric ex-
cerpt, e.g., background information on the artist.

To estimate contribution from both types to the
dataset, we sample 2,000 lyric annotation pairs
and label them as either CI or CS. Based on this
sample, an estimated 34.8% of all annotations is
independent of context. Table 2 shows examples
of both types.

While the goal of ALA is to generate annota-
tions of all types, it is evident from our analysis
that CS annotations can not be generated by mod-
els trained solely on parallel text. That is, these an-
notations cannot be generated without background
knowledge or added context. Therefore, in this
preliminary work we focus on predicting CI lyric
annotations.

3 Baselines

We experiment with three baseline models used
for text simplification and paraphrase generation.

• Statistical Machine Translation (SMT):
One approach is to treat the task as one
of translation, and to use established sta-
tistical machine translation (SMT) methods
(Quirk et al., 2004) to produce them. We
train a standard phrase-based SMT model
to translate lyrics to annotations, using
GIZA++ (Josef Och and Ney, 2003) for word
alignment and Moses (Koehn et al., 2007) for
phrasal alignment, training, and decoding.

• Seq2Seq: Sequence-to-sequence mod-
els (Sutskever et al., 2014) offer an alterna-
tive to SMT systems, and have been applied
successfully to a variety of tasks including
machine translation. In Seq2Seq, a recurrent
neural network (RNN) encodes the source
sequence to a single vector representation.
A separate decoder RNN generates the
translation conditioned on this representation
of the source sequence’s semantics. We
utilize Seq2Seq with attention (Bahdanau
et al., 2014), which allows the model to
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Type % of Examplesannotations

CI 34.8% [L] Gotta patch a lil kid tryna get at this cabbage
(Context [A] He’s trying to ignore the people trying to get at his money.
independent) [L] You know it’s beef when a smart brother gets stupid

[A] You know an argument is serious when an otherwise rational man loses rational.

CS 65.2% [L] Cause we ain’t break up, more like broke down
(Context [A] The song details Joe’s break up with former girlfriend Esther.
sensitive) [L] If I quit this season, I still be the greatest, funk

[A] Kendrick has dropped two classic albums and pushed the artistic envelope fur-
ther.

Table 2: Examples of context independent and dependent pairs of lyrics [L] and annotations [A].

additionally condition on tokens from the
input sequence during decoding.

• Retrieval: In practice, similar lyrics may
reappear in different contexts with exchange-
able annotations. We treat the training cor-
pus as a database of lyrics’ excerpts with cor-
responding annotations, and at test time se-
lect the annotation assigned to the most sim-
ilar lyric. This baseline is referred to as the
retrieval model. We use standard TF-IDF
weighted cosine distance as similarity mea-
sure between lyrics’ excerpts.

4 Evaluation

4.1 Data

We evaluate automatic annotators on a selection
of 354 CI annotations and partition the rest of the
annotations into 2,000 instances for development
and the full remainder for training. It is important
to note that the annotations used for training and
development include CI as well as CS annotations.

Annotations often include multiple sentences or
even paragraphs for a single lyrics excerpt (which
does not include end marks), while machine trans-
lation models need aligned corpora at sentence
level to perform well (Xu et al., 2016). We there-
fore transform training data by including each sen-
tence from the annotation as a single training in-
stance with the same lyric, resulting in a total of
1,813,350 sentence pairs.

We use this collection of sentence pairs (de-
noted as sent. in results) to train the SMT model.
Seq2Seq models are trained using sentence pairs
as well as full annotations. Interestingly, tech-
niques encouraging alignment by matching length
and thresholding cosine distance between lyric

and annotation did not improve performance dur-
ing development.

4.2 Measures
For automated evaluation, we use measures
commonly used to evaluate translation sys-
tems (BLEU, METEOR), paraphrase generation
(iBLEU) and text simplification (SARI).

BLEU (Papineni et al., 2002) uses a modi-
fied form of precision to compare generated an-
notations against references from Genius. ME-
TEOR (Denkowski and Lavie, 2011) is based on
the harmonic mean of precision and recall and,
along with exact word matching, includes stem-
ming and synonymy matching. iBLEU (Sun and
Zhou, 2012) is an extension of the BLEU metric
to measure diversity as well as adequacy of the
annotation, iBLEU = 0.9 × BLEU(Annotation,
Reference) − 0.1 × BLEU(Annotation, Lyric).
SARI (Xu et al., 2016) measures precision and re-
call of words that are added, kept, or deleted sepa-
rately and averages their arithmetic means.

We also measure quality by crowdsourcing rat-
ings via the online platform CrowdFlower.4 We
present collaborators with a song lyric excerpt an-
notated with output from the annotation genera-
tors as well as a reference annotation from Genius.
Collaborators assign a 5-point rating for Fluency
which rates the quality of the generated language,
and Information which measures the added clarifi-
cation by the annotation, a key aspect of this task.
For each lyric annotation pair, we gather ratings
from three different collaborators and take the av-
erage.

4.3 Hyperparameters and Optimization
Here we describe implementation and some of the
optimizations used when training the models.

4https://www.crowdflower.com/
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Lyric: and when I slept, I dream g’s, son I need some
Human: he dreams about large amounts of money because he is in need of it .
SMT: and when he slept, and he’s dream, g’s son, he needs some
Seq2Seq: when he sleeps , he dreams of getting money.
Retrieval: g’s refer to the ghetto gangsters in london that the kid has become involved with

Lyric: Mossberg pump I’m ridin’ shotgun literally
Human: riding shotgun means to ride up front in the passenger seat
SMT: Mossberg pump - action shotgun, he’s saying he’s ridin’ shotgun literally.
Seq2Seq: Mossberg is a firearms manufacturer. He is riding shotgun with his shotgun.
Retrieval: he fully respects the people mentioned earlier and is riding for them.

Lyric: and my eyes red cause of all that haze
Human: his eyes turn red due to lack of hydration from the weed one smokes (in this case , smoking purple haze)
SMT: and his eyes are red because of all that haze.
Seq2Seq: his eyes are red because of all the weed he smokes.
Retrieval: his eyes are red as a sign of the fatigue of travel and , possibly , from drugs and alcohol .

Table 3: Lyrics excerpts with annotations from Genius (‘Human’) and automated annotators.

Properties Automated Evaluation Human Evaluation

Length Ratio Profanity/Tok. BLEU iBLEU METEOR SARI Fluency Information

Human 1.19 0.0027 - - - - 3.93 3.53
SMT (Sent.) 1.23 0.0068 6.22 1.44 12.20 38.42 3.82 3.31
Seq2Seq (Sent.) 1.05 0.0023 5.33 3.64 9.28 36.52 3.76 3.25
Seq2Seq 1.32 0.0022 5.15 3.46 10.56 36.86 3.83 3.34
Retrieval 1.18 0.0038 2.82 2.27 5.10 32.76 3.93 2.98

Table 4: Quantitative evaluation of different automated annotators.

For Seq2Seq models, we use OpenNMT (Klein
et al., 2017) and optimize for perplexity on the de-
velopment set. Vocabulary for both lyrics and an-
notations is reduced to the 50,000 most frequent
tokens and are embedded in a 500-dimensional
space.

We use two layers of stacked bi-directional
LSTMs with hidden states of 1024 dimensions.
We regularize using dropout (keep probability of
0.7) and train using stochastic gradient descent
with batches of 64 samples for 13 epochs.

The decoder of the SMT model is tuned for op-
timal BLEU scores on the development set using
minimum error rate training (Bertoldi et al., 2009).

5 Results

To measure agreement between collaborators, we
compute the kappa statistic (Fleiss, 1971). Kappa
statistics for fluency and information are 0.05 and
0.07 respectively, which indicates low agreement.
The task of evaluating lyric annotations was diffi-
cult for CrowdFlower collaborators as was appar-
ent from their evaluation of the task. For evalua-
tion in future work, we recommend recruitment of
expert collaborators familiar with the Genius plat-
form and song lyrics.

Table 3 shows examples of lyrics with annota-

tions from Genius and those generated by baseline
models.

A notable observation is that translation models
learn to take the role of narrator, as is common
in CI annotations, and recognize slang language
while simplifying it to more standard English.

Automatic and human evaluation scores are
shown in Table 4. Next to evaluation metrics, we
show two properties of automatically generated
annotations; the average annotation length relative
to the lyric and the occurrence of profanity per to-
ken in annotations, using a list of 343 swear words.

The SMT model scores high on BLEU, ME-
TEOR and SARI but shows a large drop in per-
formance for iBLEU, which penalizes lexical sim-
ilarity between lyrics and generated annotations as
apparent from the amount profanity remaining in
the generated annotations.

Standard SMT rephrases the song lyric from a
third person perspective but is conservative in lex-
ical substitutions and keeps close to the grammar
of the lyric. A more appropriate objective func-
tion for tuning the decoder which promotes lex-
ical dissimilarity as done for paraphrase genera-
tion, would be beneficial for this approach.

Seq2Seq models generate annotations more dis-
similar to the song lyric and obtain higher iBLEU
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Figure 2: Attention visualization of Seq2Seq mod-
els for ALA.

and Information scores. To visualize some of
the alignments learned by the translation mod-
els, Fig. 2 shows word-by-word attention scores
for a translation by the Seq2Seq model.

While the retrieval model obtains quality anno-
tations when test lyrics are highly similar to lyrics
from the training set, retrieved annotations are of-
ten unrelated to the test lyric or specific to the song
lyric it is retrieved from.

Out of the unsupervised metrics, METEOR ob-
tained the highest Pearson correlation (Pearson,
1895) with human ratings for Information with a
coefficient of 0.15.

6 Related Work

Work on modeling of social annotations has
mainly focused on the use of topic models (Iwata
et al., 2009; Das et al., 2014) in which annotations
are assumed to originate from topics. They can be
used as a preprocessing step in machine learning
tasks such as text classification and image recog-
nition but do not generate language as required in
our ALA task.

Text simplification and paraphrase generation
have been widely studied. Recent work has high-
lighted the need for large text collections (Xu
et al., 2015) as well as more appropriate evalua-
tion measures (Xu et al., 2016; Galley et al., 2015).
They indicated that especially informal language,

with its high degree of lexical variation, e.g., as
used in social media or lyrics, poses serious chal-
lenges (Xu et al., 2013).

Text generation for artistic purposes, such as
poetry and lyrics, has been explored most com-
monly using templates and constraints (Barbieri
et al., 2012). In regard to rap lyrics, Wu et al.
(2013) present a system for rap lyric generation
that produces a single line of lyrics that is meant
to be a response to a single line of input. Most re-
cent work is that of Zhang et al. (2014) and Potash
et al. (2015), who show the effectiveness of RNNs
for the generation of poetry and lyrics.

The task of annotating song lyrics is also related
to metaphor processing. As annotators often ex-
plain metaphors used in song lyrics, the Genius
dataset can serve as a resource to study computa-
tional modeling of metaphors (Shutova and Teufel,
2010).

7 Conclusion and Future Work

We presented and released the Genius dataset to
study the task of Automated Lyric Annotation. As
a first investigation, we studied automatic gener-
ation of context independent annotations as ma-
chine translation and information retrieval. Our
baseline system tests indicate that our corpus is
suitable to train machine translation systems.

Standard SMT models are capable of rephrasing
and simplifying song lyrics but tend to keep close
to the structure of the song lyric. Seq2Seq models
demonstrated potential to generate more fluent and
informative text, dissimilar to the lyric.

A large fraction of the annotations is heav-
ily based on context and background knowledge
(CS), one of their most appealing aspects. As
future work we suggest injection of structured
and unstructured external knowledge (Ahn et al.,
2016) and explicit modeling of references (Yang
et al., 2016).
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Abstract

When people recall and digest what they
have read for writing summaries, the im-
portant content is more likely to attract
their attention. Inspired by this obser-
vation, we propose a cascaded attention
based unsupervised model to estimate the
salience information from the text for
compressive multi-document summariza-
tion. The attention weights are learned
automatically by an unsupervised data re-
construction framework which can capture
the sentence salience. By adding sparsity
constraints on the number of output vec-
tors, we can generate condensed informa-
tion which can be treated as word salience.
Fine-grained and coarse-grained sentence
compression strategies are incorporated to
produce compressive summaries. Experi-
ments on some benchmark data sets show
that our framework achieves better results
than the state-of-the-art methods.

1 Introduction

The goal of Multi-Document Summarization
(MDS) is to automatically produce a succinct
summary, preserving the most important informa-
tion of a set of documents describing a topic1

(Luhn, 1958; Edmundson, 1969; Goldstein et al.,
2000; Erkan and Radev, 2004b; Wan et al., 2007;
Nenkova and McKeown, 2012). Considering the
procedure of summary writing by humans, when
people read, they will remember and forget part

∗The work described in this paper is supported by grants
from the Research and Development Grant of Huawei Tech-
nologies Co. Ltd (YB2015100076/TH1510257) and the
Grant Council of the Hong Kong Special Administrative Re-
gion, China (Project Code: 14203414).

1A topic represents a real event, e.g., “AlphaGo versus
Lee Sedol”.

of the content. Information which is more impor-
tant may make a deep impression easily. When
people recall and digest what they have read to
write summaries, the important information usu-
ally attracts more attention (the behavioral and
cognitive process of selectively concentrating on
a discrete aspect of information, whether deemed
subjective or objective, while ignoring other per-
ceivable information2) since it may repeatedly ap-
pears in some documents, or be positioned in the
beginning paragraphs.

In the context of multi-document summariza-
tion, to generate a summary sentence for a key as-
pect of the topic, we need to find its relevant parts
in the original documents, which may attract more
attention. The semantic parts with high atten-
tion weights plausibly represent and reconstruct
the topic’s main idea. To this end, we propose a
cascaded neural attention model to distill salient
information from the input documents in an un-
supervised data reconstruction manner, which in-
cludes two components: reader and recaller. The
reader is a gated recurrent neural network (LSTM
or GRU) based sentence sequence encoder which
can map all the sentences of the topic into a global
representation, with the mechanism of remember-
ing and forgetting. The recaller decodes the global
representation into significantly fewer diversified
vectors for distillation and concentration. A cas-
caded attention mechanism is designed by incor-
porating attentions on both the hidden layer (dense
distributed representation of a sentence) and the
output layer (sparse bag-of-words representation
of summary information). It is worth noting that
the output vectors of the recaller can be viewed
as word salience, and the attention matrix can be
used as sentence salience. Both of them are auto-
matically learned by data reconstruction in an un-

2https://en.wikipedia.org/wiki/Attention (Apr., 2017)

2081



supervised manner. Thereafter, the word salience
is fed into a coarse-grained sentence compression
component. Finally, the attention weights are in-
tegrated into a phrase-based optimization frame-
work for compressive summary generation.

In fact, the notion of “attention” has gained
popularity recently in neural network modeling,
which has improved the performance of many
tasks such as machine translation (Bahdanau et al.,
2015; Luong et al., 2015). However, very few
previous works employ attention mechanism to
tackle MDS. Rush et al. (2015) and Nallapati
et al. (2016) employed attention-based sequence-
to-sequence (seq2seq) framework only for sen-
tence summarization. Gu et al. (2016), Cheng
and Lapata (2016), and Nallapati et al. (2016) also
utilized seq2seq based framework with attention
modeling for short text or single document sum-
marization. Different from their works, our frame-
work aims at conducting multi-document summa-
rization in an unsupervised manner.

Our contributions are as follows: (1) We pro-
pose a cascaded attention model that captures
salient information in different semantic represen-
tations. (2) The attention weights are learned au-
tomatically by an unsupervised data reconstruc-
tion framework which can capture the sentence
salience. By adding sparsity constraints on the
number of output vectors of the recaller, we can
generate condensed vectors which can be treated
as word salience; (3) We thoroughly investigate
the performance of combining different attention
architectures and cascaded structures. Experimen-
tal results on some benchmark data sets show that
our framework achieves better performance than
the state-of-the-art models.

2 Framework Description

2.1 Overview

Our framework has two phases, namely, in-
formation distillation for finding salient
words/sentences, and compressive summary
generation. For the first phase, our cascaded neu-
ral attention model consists of two components:
reader and recaller as shown in Figure 1. The
reader component reads in all the sentences in the
document set corresponding to the topic/event.
The information distillation happens in the re-
caller component where only the most important
information is preserved. Precisely, the recaller
outputs fewer vectors s than that of the input

Enc

Dec

Figure 1: Our cascaded attention based unsuper-
vised information distillation framework. X is the
original input sentence sequence of a topic. H i is
the hidden vectors of sentences. “Enc” and “Dec”
represent the RNN-based encoding and decoding
layer respectively. cg is the global representation
for the whole topic. Ah and Ao are the distilled
attention matrices for the hidden layer and the out-
put layer respectively, representing the salience of
sentences. Ho is the output hidden layer. s1 and
s2 are the distilled condensed vectors representing
the salience of words. Note that they are neither
origin inputs nor golden summaries.

sentences x for the reader.
After the learning of the neural attention model

finishes, the obtained salience information will be
used in the second phase for compressive sum-
mary generation. This phase consists of two com-
ponents: (i) the coarse-grained sentence compres-
sion component which can filter the trivial infor-
mation based on the output vectors S from the
neural attention model; (ii) the unified phrase-
based optimization method for summary genera-
tion in which the attention matrix Ao is used to
conduct fine-grained compression and summary
construction.

2.2 Attention Modeling for Distillation

2.2.1 Reader
In the reader stage, for each topic, we extract all
the sentences X = {x1, x2, . . . , xm} from the set
of input documents corresponding to a topic and
generate a sentence sequence with length m. The
sentence order is the same as the original order of
the documents. Then the reader reads the whole
sequence sentence by sentence. We employ the
bag-of-words (BOW) representation as the initial
semantic representation for sentences. Assume
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that the dictionary size is k, then xi ∈ Rk.
Sparsity is one common problem for the BOW

representation, especially when each vector is gen-
erated from a single sentence. Moreover, down-
stream algorithms might suffer from the curse of
dimensionality. To solve these problems, we add
a hidden layer Hv (v for input layer) which is a
densely distributed representation above the input
layer as shown in Figure 1. Such distributed rep-
resentation can provide better generalization than
BOW representation in many different tasks (Le
and Mikolov, 2014; Mikolov et al., 2013). Specif-
ically, the input hidden layer will project the input
sentence vector xj to a new space Rh according
to Equation 1. Then we obtain a new sentence se-
quence Hv = [hv1, h

v
2, . . . , h

v
m].

hvj = tanh(W v
xhxj + bvh) (1)

where W v
xh and bvh are the weight and bias respec-

tively. The superscript v means that the variables
are from the input layer.

While reading the sentence sequence, the reader
should have the ability of remembering and for-
getting. Therefore, we employ the RNN models
with various gates (input gate, forget gate, etc.)
to imitate the remembering and forgetting mech-
anism. Then the RNN based neural encoder (the
third layer in Figure 1) will map the whole embed-
ding sequence to a single vector cg which can be
regarded as a global representation for the whole
topic. Let t be the index of the sequence state for
the sentence xt, the hidden unit het (e for encoder
RNN) of the RNN encoder can be computed as:

het = f(het−1, h
v
t ) (2)

where the RNN f(·) computes the current hidden
state given the previous hidden state het−1 and the
sentence embedding hvt . The encoder generates
hidden states {het} over all time steps. The last
state {hem} is extracted as the global representa-
tion cg for the whole topic. The structure for f(·)
can be either an LSTM (Hochreiter and Schmid-
huber, 1997) or GRU (Cho et al., 2014).

2.2.2 Recaller
The recaller stage is a reverse of the reader stage,
but it outputs less number of vectors in S as shown
in Figure 1. Given the global representation cg, the
past hidden state hdt−1 (d for decoder RNN) from
the decoder layer, an RNN based decoder gener-
ates several hidden states according to:

hdt = f(hdt−1, cg) (3)

We use cg to initialize the first decoder hidden
state. The decoder will generate several hidden
states {hdt } over pre-defined time steps. Then,
similar to the reader stage, we add an output hid-
den layer after the decoder layer:

hot = tanh(W o
hhh

d
t + boh) (4)

where W o
hh and boh are the weight and bias respec-

tively for the projection from hdt to hot . Finally, the
output layer maps these hidden vectors to the con-
densed vectors S = [s1, s2, . . . , sn], Each output
vector st has the same dimension k as the input
BOW vectors and is obtained as follows:

st = σ(Whsh
o
t + bs) (5)

For the purpose of distillation and concentration,
we restrict n to be very small.

2.2.3 Cascaded Attention Modeling
Salience estimation for words and sentences is a
crucial component in MDS, especially in the un-
supervised summarization setting. We propose a
cascaded attention model for information distil-
lation to tackle the salience estimation task for
MDS. We add attention mechanism not only in
the hidden layer, but also in the output layer. By
this cascaded attention model, we can capture the
salience of sentences from two different and com-
plementary vector spaces. One is the embedding
space that provides better generalization, and the
other one is the BOW vector space that captures
more nuanced and subtle difference.

For each output hidden state hot , we align it with
each input hidden state hvi by an attention vector
aht,i ∈ Rm (recall that m is the number of input
sentences). aht,i is derived by comparing hot with
each input sentence hidden state hvi :

aht,i =
exp(score(hot , h

v
i ))∑

i′ exp(score(hot , h
v
i′))

(6)

where score(·) is a content-based function to cap-
ture the relation between two vectors. Several dif-
ferent formulations can be used as the function
score(·) which will be elaborated later.

Based on the alignment vectors {aht,i}, we can
create a context vector cht by linearly blending the
sentence hidden states {hvi′}:

cht =
∑

i′
aht,i′h

v
i′ (7)

Then the output hidden state can be updated based
on the context vector. Let h̃ot = hot , then update the
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original state according to the following operation:

hot = tanh(W a
chc

h
t +W a

hhh̃
o
t ) (8)

The alignment vector aht,i captures which sentence
should be attended more in the hidden space when
generating the condensed representation for the
whole topic.

Besides the attention mechanism on the hidden
layer, we also directly add attention on the out-
put BOW layer which can capture more nuanced
and subtle difference information from the BOW
vector space. The hidden attention vector aht,i is
integrated with the output attention by a weight
λa ∈ [0, 1]:

āot,i =
exp(score(st, xi))∑
i′ exp(score(st, xi′))

(9)

aot,i = λaā
o
t,i + (1− λa)aht,i (10)

The output context vector is computed as:

cot =
∑

i′
aot,i′xi′ (11)

To update the output vector st in Equation 5, we
develop a different method from that of the hidden
attentions. Specifically we use a weighted combi-
nation of the context vectors and the original out-
puts with λc ∈ [0, 1]. Let s̃t = st, then the updated
st is:

st = λcc
o
t + (1− λc)s̃t (12)

The parameters λa and λc can also be learned dur-
ing training.

There are several different alternatives for the
function score(·):

score(ht, hs) =





ht
Ths dot

ht
TWhs tensor

vT tanh(W [ht;hs]) concat
(13)

Considering their behaviors as studied in (Luong
et al., 2015), we adopt “concat” for the hidden
attention layer, and “dot” for the output attention
layer.

2.2.4 Unsupervised Learning
By minimizing the loss owing to using the con-
densed output vectors to reconstruct the original
input sentence vectors, we are able to learn the so-
lutions for all the parameters as follows.

min
Θ

1

2m

m∑

i=1

‖xi −
n∑

j=1

sja
o
j,i‖22 + λs‖S‖1 (14)

where Θ denotes all the parameters in our model.
In order to penalize the unimportant terms in the
output vectors, we put a sparsity constraint on the
rows of S using l1-regularization, with the weight
λs as a scaling constant for determining its relative
importance.

Let s̄ be the magnitude vector computed from
the columns in S (S ∈ Rn×k). Once the train-
ing is finished, each dimension of the vector s̄ can
be regarded as the word salience score. Accord-
ing to Equation 14, si ∈ S is used to reconstruct
the original sentence space X , and n � m (the
number of sentences in X is much more than the
number of vectors in S) Therefore a large value
in s̄ means that the corresponding word contains
important information about this topic and it can
serve as the word salience.

Moreover, the output layer attention matrix
Ao can be regarded as containing the sentence
salience information. Note that each output vec-
tor si is generated based on the cascaded atten-
tion mechanism. Assume that aoi = Aoi,: ∈ Rm
is the attention weight vector for si. According to
Equation 9, a large value in aoi conveys a meaning
that the corresponding sentence should contribute
more when generating si. We also use the magni-
tude of the columns inAo to represent the salience
of sentences.

2.3 Compressive Summary Generation Phase

2.3.1 Coarse-grained Sentence Compression

Using the information distillation result from the
cascaded neural attention model, we conduct
coarse-grained compression for each individual
sentence. Such strategy has been adopted in some
multi-document summarization methods (Li et al.,
2013; Wang et al., 2013; Yao et al., 2015). Our
coarse-grained sentence compression jointly con-
siders word salience obtained from the neural at-
tention model and linguistically-motivated rules.
The linguistically-motivated rules are designed
based on the observed obvious evidence for uncrit-
ical information from the word level to the clause
level, which include news headers such as “BEI-
JING, Nov. 24 (Xinhua) –”, intra-sentential at-
tribution such as “, police said Thursday”, “, he
said”, etc. The information filtered by the rules
will be processed according to the word salience
score. Information with smaller salience score
(< ε) will be removed.
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2.3.2 Phrase-based Optimization for
Summary Construction

After coarse-grained compression on each single
sentence as described above, we design a uni-
fied optimization method for summary generation.
We refine the phrase-based summary construction
model in (Bing et al., 2015) by adjusting the goal
as compressive summarization. We consider the
salience information obtained by our neural atten-
tion model and the compressed sentences in the
coarse-grained compression component.

Based on the parsed constituency tree for each
input sentence as described in Section 2.3.1, we
extract the noun-phrases (NPs) and verb-phrases
(VPs). The salience Si of a phrase Pi is defined
as:

Si = {
∑

t∈Pi
tf(t)/

∑

t∈Topic
tf(t)} × ai (15)

where ai is the salience of the sentence containing
Pi. tf(t) is the frequency of the concept t (uni-
gram/bigram) in the whole topic. Thus, Si inherits
the salience of its sentence, and also considers the
importance of its concepts.

The overall objective function of our optimiza-
tion formulation for selecting salient NPs and VPs
is formulated as an integer linear programming
(ILP) problem:

max{
∑

i
αiSi−

∑
i<j

αij(Si + Sj)Rij} (16)

where αi is the selection indicator for the phrase
Pi, Si is the salience scores of Pi, αij and Rij
is the co-occurrence indicator and the similarity
of a pair of phrases (Pi, Pj) respectively. The
similarity is calculated by the Jaccard Index based
method. Specifically, this objective maximizes the
salience score of the selected phrases as indicated
by the first term, and penalizes the selection of
similar phrase pairs.

In order to obtain coherent summaries with
good readability, we add some constraints into the
ILP framework such as sentence generation con-
straint: Let βk denote the selection indicator of
the sentence xk. If any phrase from xk is selected,
βk = 1. Otherwise, βk = 0. For generating a
compressed summary sentence, it is required that
if βk = 1, at least one NP and at lease one VP of
the sentence should be selected. It is expressed as:

∀Pi ∈ xk, αi ≤ βk ∧
∑

i
αi ≥ βk, (17)

Other constraints include sentence number, sum-
mary length, phrase co-occurrence, etc. For de-
tails, please refer to McDonald (2007), Woodsend
and Lapata (2012), and Bing et al. (2015).

The objective function and constraints are lin-
ear. Therefore the optimization can be solved
by existing ILP solvers such as the simplex algo-
rithm (Dantzig and Thapa, 2006). In the imple-
mentation, we use a package called lp solve3.

In the post-processing, the phrases and sen-
tences in a summary are ordered according to their
natural order if they come from the same docu-
ment. Otherwise, they are ordered according to
the timestamps of the corresponding documents.

3 Experimental Setup

3.1 Datasets

DUC: Both DUC 2006 and DUC 2007 are used
in our evaluation. DUC 2006 and DUC 2007 con-
tain 50 and 45 topics respectively. Each topic has
25 news documents and 4 model summaries. The
length of the model summary is limited to 250
words. TAC: We also use TAC 2010 and TAC
2011 in our experiments. TAC 2011 is the latest
standard summarization benchmark data set and
it contains 44 topics. Each topic falls into one
of 5 predefined event categories and contains 10
related news documents and 4 model summaries.
TAC 2010 is used as the parameter tuning data set
of our TAC evaluation.

3.2 Settings

For text processing, the input sentences are repre-
sented as BOW vectors with dimension k. The
dictionary is created using unigrams and named
entity terms. The word salience threshold ε used
in sentence compression is 0.005. For the neu-
ral network framework, we set the hidden size as
500. All the neural matrix parametersW in hidden
layers and RNN layers are initialized from a uni-
form distribution between [−0.1, 0.1]. Adadelta
(Schmidhuber, 2015) is used for gradient based
optimization. Gradient clipping is adopted by
scaling gradients then the norm exceeded a thresh-
old of 10. The maximum epoch number in the op-
timization procedure is 200. We limit the num-
ber of distilled vectors n = 5. The attention cas-
caded parameter λa and λc can be learned by our
model. The sparsity penalty λs in Equation 14 is

3http://lpsolve.sourceforge.net/5.5/
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Table 1: Comparisons on TAC 2010

System R-1 R-2 R-SU4
CW 0.353 0.092 0.123
SC 0.346 0.083 0.116
AttenC-tensor-gru 0.339 0.078 0.115
AttenC-concat-gru 0.353 0.089 0.121
AttenC-dot-lstm 0.352 0.089 0.121
AttenH-dot-gru 0.348 0.086 0.119
AttenO-dot-gru 0.348 0.085 0.118
AttenC-dot-gru 0.359 0.092 0.124
(w\o coarse-comp) 0.351 0.089 0.122

0.001. Our neural network based framework is im-
plemented using Theano (Bastien et al., 2012) on
a single GPU of Tesla K80.

We use ROUGE score as our evaluation metric
(Lin, 2004) with standard options. F-measures of
ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-
SU4 (R-SU4) are reported.

4 Results and Discussions

4.1 Effect of Existing Salience Models and
Different Attention Architectures

We quantitatively evaluate the performance of dif-
ferent variants on the dataset of TAC 2010. The
experimental results are shown in Table 1. Note
that the summary generation phase for different
methods are the same, and only the salience es-
timation methods are different. Commonly used
existing methods for salience estimation include:
concept weight (CW) (Bing et al., 2015) and
sparse coding (SC) (Li et al., 2015). As men-
tioned in Section 2.2.3, there are several alterna-
tives for the attention scoring function score(·):
dot, tensor, and concat. Moreover, we also de-
sign experiments to show the benefit of our cas-
caded attention mechanism versus the single atten-
tion method. AttenC denotes the cascaded atten-
tion mechanism. AttenH and AttenO represent
the attention only on the hidden layer or the output
layer respectively without cascaded combination.

Among all the methods, the cascaded attention
model with dot structure achieves the best perfor-
mance. The effect of different RNN models, such
as LSTM and GRU, is similar. However, there
are less parameters in GRU resulting in improve-
ments for the efficiency of training. Therefore, we
choose AttenC-dot-gru as the attention structure
of our framework in the subsequent experiments.
Moreover, the results without coarse-grained sen-

Table 2: Results on DUC 2006.

System R-1 R-2 R-SU4
Random 0.280 0.046 0.088
Lead 0.308 0.048 0.087
LexRank 0.360 0.062 0.118
TextRank 0.373 0.066 0.125
MDS-Sparse 0.340 0.052 0.107
DSDR 0.377 0.073 0.117
RA-MDS 0.391 0.081 0.136
ABS-Phrase 0.392 0.082 0.137
C-Attention 0.393* 0.087* 0.141*

Table 3: Results on DUC 2007.

System R-1 R-2 R-SU4
Random 0.302 0.046 0.088
Lead 0.312 0.058 0.102
LexRank 0.378 0.075 0.130
TextRank 0.403 0.083 0.144
MDS-Sparse 0.353 0.055 0.112
DSDR 0.398 0.087 0.137
RA-MDS 0.408 0.097 0.150
ABS-Phrase 0.419 0.103 0.156
C-Attention 0.423* 0.107* 0.161*

tence compression (Section 2.3.1) show that the
compression can indeed improve the sumamriza-
tion performance.

4.2 Main Results of Compressive MDS

We compare our system C-Attention with sev-
eral unsupervised summarization baselines and
state-of-the-art models. Random baseline se-
lects sentences randomly for each topic. Lead
baseline (Wasson, 1998) ranks the news chrono-
logically and extracts the leading sentences one
by one. TextRank (Mihalcea and Tarau, 2004)
and LexRank (Erkan and Radev, 2004a) esti-
mate sentence salience by applying the PageRank
algorithm to the sentence graph. PKUTM (Li
et al., 2011) employs manifold-ranking for sen-
tence scoring and selection; ABS-Phrase (Bing
et al., 2015) generates abstractive summaries us-
ing phrase-based optimization framework. Three
other unsupervised methods based on sparse cod-
ing are also compared, namely, DSDR (He et al.,
2012), MDS-Sparse (Liu et al., 2015), and RA-
MDS (Li et al., 2015).

As shown in Table 2, Table 3, and Table 4, our
system achieves the best results on all the ROUGE
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Table 4: Results on TAC 2011.

System R-1 R-2 R-SU4
Random 0.303 0.045 0.090
Lead 0.315 0.071 0.103
LexRank 0.313 0.060 0.102
TextRank 0.332 0.064 0.107
PKUTM 0.396 0.113 0.148
ABS-Phrase 0.393 0.117 0.148
RA-MDS 0.400 0.117 0.151
C-Attention 0.400* 0.121* 0.153*

* Statistical significance tests show that our method is better
than the best baselines.

metrics. The reasons are as follows: (1) The
attention model can directly capture the salient
sentences, which are obtained by minimizing the
global data reconstruction error; (2) The cascaded
structure of attentions can jointly consider the
embedding vector space and bag-of-words vector
space when conducting the estimation of sentence
salience; (3) The coarse-grained sentence com-
pression based on distilled word salience, and the
fine-grained compression via phrase-based unified
optimization framework can generate more con-
cise and salient summaries. It is worth noting that
PKUTM used a Wikipedia corpus for providing
domain knowledge. The system SWING (Min
et al., 2012) is the best system for TAC 2011. Our
results are not as good as SWING. The reason
is that SWING employs category-specific features
and requires supervised training. These features
help them select better category-specific content
for the summary. In contrast, our model is basi-
cally unsupervised.

4.3 Linguistic Quality Evaluation

The linguistic quality of summaries generated by
ABS-Phrase, PKUTM, and our model from 20
topics of TAC 2011 is evaluated using the five lin-
guistic quality questions on grammaticality (Q1),
non-redundancy (Q2), referential clarity (Q3), fo-
cus (Q4), and coherence (Q5) in Document Un-
derstanding Conferences (DUC). A Likert scale
with five levels is employed with 5 being very
good with 1 being very poor. A summary was
blindly evaluated by three assessors on each ques-
tion. The results are given in Table 5. PKUTM
is an extractive method that picks the original sen-
tences, hence it achieves higher score in Q1 gram-
maticality. ABS-Phrase is an abstractive method
and can generate new sentences by merging differ-

Table 5: Evaluation of linguistic quality.

System Q1 Q2 Q3 Q4 Q5 AVG
ABS-Phrase 3.75 3.38 3.75 3.35 3.12 3.47
PKUTM 4.13 3.45 3.83 3.33 2.92 3.53
Ours 3.96 3.50 3.79 3.50 3.25 3.60

Table 6: Top-10 terms extracted from each topic
according to the word salience

Topic 1 Topic 2 Topic 3
school heart HIV

shooting disease Africa
Auvinen study circumcision
Finland risk study
police test infection
video blood trial

Wednesday red woman
gunman telomere drug

post level health

ent phrases, which decreases the grammaticality.
Grammaticality of our compression-based frame-
work is better than ABS-Phrase, but not as good
as PKUTM. However, our framework performs
the best on some other metrics such as Q2 (non-
redundancy) and Q4 (focus). The reason is that
our framework can compress and remove some
uncritical and redundancy content from the orig-
inal sentences, which leads to better performance
on Q2 and Q4.

4.4 Case Study: Distilled Word Salience

As mentioned above, the output vectors S in our
neural model contain the distilled word salience
information. In order to show the performance
of word salience estimation, we select 3 topics
(events) from different categories of TAC 2011:
“Finland Shooting”, “Heart Disease”, and “Hiv In-
fection Africa”. For each topic, we sort the dic-
tionary terms according to their salience scores,
and extract the top-10 terms as the salience esti-
mation results as shown in Table 6. We can see
that the top-10 terms reveal the most important in-
formation of each topic. For the topic “Finland
Shooting”, there is a sentence from the golden
summary “A teenager at a school in Finland went
on a shooting rampage Wednesday, November 11,
2007, killing 8 people, then himself.” It is obvious
that the top-10 terms from Table 6 can capture this
main point.
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4.5 Case Study: Attention-based Sentence
Salience

In our model, the distilled attention matrix Ao can
be treated as sentence salience estimation. Let â be
the magnitude of the columns in Ao and â ∈ Rm.
âi represents the salience of the sentence xi. We
collect all the attention vectors for 8 topics of TAC
2011, and display them as an image as shown in
Figure 2. The x-axis represents the sentence id (we
show at most 100 sentences), and the y-axis repre-
sents the topic id. The gray level of pixels in the
image indicates different salience scores, where
dark represents a high salience score and light
represents a small score. Note that different top-
ics seem to hold different ranges of salience scores
because they have different number of sentences,
i.e. m. According to Equation 9, topics contain-
ing more sentences will distribute the attention to
more units, therefore, each sentence will get a rela-
tively smaller attention weight. But this issue does
not affect the performance of MDS since different
topics are independently processed.

In Figure 2, there are some chunks in each topic
(see Topic 3 as an example) having higher atten-
tion weights, which indeed automatically captures
one characteristic of MDS: sentence position is
an important feature for news summarization. As
observed by several previous studies (Li et al.,
2015; Min et al., 2012), the sentences in the be-
ginning of a news document are usually more im-
portant and tend to be used for writing model sum-
maries. Manual checking verified that those high-
attention chunks correspond to the beginning sen-
tences. Our model is able to automatically capture
this information by assigning the latter sentences
in each topic lower attention weights.

4.6 Summary Case Analysis

Table 7 shows the summary of the topic “Hawkins
Robert Van Maur” in TAC 2011. The summary
contains four sentences, which are all compressed
with different compression ratio. Some uncrit-
ical information is excluded from the summary
sentences, such as “police said Thursday” in S2,
“But” in S3, and “he said” in S4. In addition, the
VP “killing eight people” in S2 is also excluded
since it is duplicate with the phrase “killed eight
people” in S3. Moreover, from the case we can
find that the compression operation did not harm
the linguistic quality.

Table 7: The summary of the topic “Hawkins
Robert Van Maur”.

S1: The young gunman who opened fire at a mall
busy with holiday shoppers appeared to choose his
victims at random, according to police[, but a note
he left behind hinted at a troubled life].
S2: The teenage gunman who went on a shooting
rampage in a department store, [killing eight peo-
ple,] may have smuggled an assault rifle into the
mall underneath clothing[, police said Thursday].
S3: [But] police said it was Hawkins who went
into an Omaha shopping mall on Wednesday and
began a shooting rampage that killed eight people.
S4: Mall security officers noticed Hawkins briefly
enter the Von Maur department store at Omaha’s
Westroads Mall earlier Wednesday[, he said].

5 Related Works

According to different machine learning
paradigms, summarization models can be
divided into supervised framework and unsuper-
vised framework. Some previous works have been
proposed based on unsupervised models. For
example, Mihalcea and Tarau (2004) and Erkan
and Radev (2004a) estimated sentence salience by
applying the PageRank algorithm to the sentence
graph. He et al. (2012), Liu et al. (2015), Li et al.
(2015) and Song et al. (2017) employed sparse
coding techniques for finding the salient sentences
as summaries. Li et al. (2017) conducted salience
estimation jointly considering reconstructions on
several different vector spaces generated by a
variational auto-ecoder framework.

Some recent works utilize attention modeling
based recurrent neural networks to tackle the task
of single-document summarization. Rush et al.
(2015) proposed a sentence summarization frame-
work based on a neural attention model using a
supervised sequence-to-sequence neural machine
translation model. Gu et al. (2016) combined a
copying mechanism with the seq2seq framework
to improve the quality of the generated summaries.
Nallapati et al. (2016) also employed the typi-
cal attention modeling based seq2seq framework,
but utilized a trick to control the vocabulary size
to improve the training efficiency. However, few
previous works employ attention mechanism to
tackle the unsupervised MDS problem. In con-
trast, our attention-based framework can gener-
ate summaries for multi-document summarization
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Figure 2: Visualization for sentence attention.

settings in an unsupervised manner.

6 Conclusions

We propose a cascaded neural attention based un-
supervised salience estimation method for com-
pressive multi-document summarization. The at-
tention weights for sentences and salience values
for words are both learned by data reconstruction
in an unsupervised manner. We thoroughly inves-
tigate the performance of combining different at-
tention architectures and cascaded structures. Ex-
perimental results on some benchmark data sets
show that our framework achieves good perfor-
mance compared with the state-of-the-art meth-
ods.
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Abstract

We propose a new framework for ab-
stractive text summarization based on a
sequence-to-sequence oriented encoder-
decoder model equipped with a deep re-
current generative decoder (DRGN). La-
tent structure information implied in the
target summaries is learned based on a re-
current latent random model for improv-
ing the summarization quality. Neural
variational inference is employed to ad-
dress the intractable posterior inference for
the recurrent latent variables. Abstractive
summaries are generated based on both
the generative latent variables and the dis-
criminative deterministic states. Extensive
experiments on some benchmark datasets
in different languages show that DRGN
achieves improvements over the state-of-
the-art methods.

1 Introduction

Automatic summarization is the process of auto-
matically generating a summary that retains the
most important content of the original text doc-
ument (Edmundson, 1969; Luhn, 1958; Nenkova
and McKeown, 2012). Different from the common
extraction-based and compression-based methods,
abstraction-based methods aim at constructing
new sentences as summaries, thus they require a
deeper understanding of the text and the capabil-
ity of generating new sentences, which provide
an obvious advantage in improving the focus of
a summary, reducing the redundancy, and keeping
a good compression rate (Bing et al., 2015; Rush
et al., 2015; Nallapati et al., 2016).

∗The work described in this paper is supported by a grant
from the Grant Council of the Hong Kong Special Adminis-
trative Region, China (Project Code: 14203414).

Apple sues Qualcomm for nearly $1 billion

Twitter fixes botched @POTUS account transfer

Track Trump’s 100-day promises, Silicon Valley-style

The emergence of the ‘cyber cold war’

Tesla Autopilot not defective in fatal crash

Twitter mostly meets modest diversity goals

Uber to pay $20 million for misleading drivers

top stories_

Figure 1: Headlines of the top stories from the
channel “Technology” of CNN.

Some previous research works show that
human-written summaries are more abstractive
(Jing and McKeown, 2000). Moreover, our in-
vestigation reveals that people may naturally fol-
low some inherent structures when they write the
abstractive summaries. To illustrate this observa-
tion, we show some examples in Figure 1, which
are some top story summaries or headlines from
the channel “Technology” of CNN. After analyz-
ing the summaries carefully, we can find some
common structures from them, such as “What”,
“What-Happened” , “Who Action What”, etc.
For example, the summary “Apple sues Qual-
comm for nearly $1 billion” can be structural-
ized as “Who (Apple) Action (sues) What (Qual-
comm)”. Similarly, the summaries “[Twitter]
[fixes] [botched @POTUS account transfer]”,
“[Uber] [to pay] [$20 million] for misleading
drivers”, and “[Bipartisan bill] aims to [reform]
[H-1B visa system]” also follow the structure of
“Who Action What”. The summary “The emer-
gence of the ‘cyber cold war”’ matches with
the structure of “What”, and the summary “St.
Louis’ public library computers hacked” follows
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the structure of “What-Happened”.

Intuitively, if we can incorporate the latent
structure information of summaries into the ab-
stractive summarization model, it will improve
the quality of the generated summaries. How-
ever, very few existing works specifically consider
the latent structure information of summaries in
their summarization models. Although a very pop-
ular neural network based sequence-to-sequence
(seq2seq) framework has been proposed to tackle
the abstractive summarization problem (Lopyrev,
2015; Rush et al., 2015; Nallapati et al., 2016), the
calculation of the internal decoding states is en-
tirely deterministic. The deterministic transforma-
tions in these discriminative models lead to lim-
itations on the representation ability of the latent
structure information. Miao and Blunsom (2016)
extended the seq2seq framework and proposed a
generative model to capture the latent summary in-
formation, but they did not consider the recurrent
dependencies in their generative model leading to
limited representation ability.

To tackle the above mentioned problems, we
design a new framework based on sequence-
to-sequence oriented encoder-decoder model
equipped with a latent structure modeling com-
ponent. We employ Variational Auto-Encoders
(VAEs) (Kingma and Welling, 2013; Rezende
et al., 2014) as the base model for our genera-
tive framework which can handle the inference
problem associated with complex generative
modeling. However, the standard framework of
VAEs is not designed for sequence modeling
related tasks. Inspired by (Chung et al., 2015),
we add historical dependencies on the latent
variables of VAEs and propose a deep recurrent
generative decoder (DRGD) for latent structure
modeling. Then the standard discriminative
deterministic decoder and the recurrent generative
decoder are integrated into a unified decoding
framework. The target summaries will be decoded
based on both the discriminative deterministic
variables and the generative latent structural
information. All the neural parameters are learned
by back-propagation in an end-to-end training
paradigm.

The main contributions of our framework
are summarized as follows: (1) We propose
a sequence-to-sequence oriented encoder-decoder
model equipped with a deep recurrent generative
decoder (DRGD) to model and learn the latent

structure information implied in the target sum-
maries of the training data. Neural variational in-
ference is employed to address the intractable pos-
terior inference for the recurrent latent variables.
(2) Both the generative latent structural informa-
tion and the discriminative deterministic variables
are jointly considered in the generation process of
the abstractive summaries. (3) Experimental re-
sults on some benchmark datasets in different lan-
guages show that our framework achieves better
performance than the state-of-the-art models.

2 Related Works

Automatic summarization is the process of auto-
matically generating a summary that retains the
most important content of the original text doc-
ument (Nenkova and McKeown, 2012). Tradi-
tionally, the summarization methods can be classi-
fied into three categories: extraction-based meth-
ods (Erkan and Radev, 2004; Goldstein et al.,
2000; Wan et al., 2007; Min et al., 2012; Nalla-
pati et al., 2017; Cheng and Lapata, 2016; Cao
et al., 2016; Song et al., 2017), compression-based
methods (Li et al., 2013; Wang et al., 2013; Li
et al., 2015, 2017), and abstraction-based meth-
ods. In fact, previous investigations show that
human-written summaries are more abstractive
(Barzilay and McKeown, 2005; Bing et al., 2015).
Abstraction-based approaches can generate new
sentences based on the facts from different source
sentences. Barzilay and McKeown (2005) em-
ployed sentence fusion to generate a new sentence.
Bing et al. (2015) proposed a more fine-grained
fusion framework, where new sentences are gen-
erated by selecting and merging salient phrases.
These methods can be regarded as a kind of in-
direct abstractive summarization, and complicated
constraints are used to guarantee the linguistic
quality.

Recently, some researchers employ neural net-
work based framework to tackle the abstractive
summarization problem. Rush et al. (2015) pro-
posed a neural network based model with local
attention modeling, which is trained on the Giga-
word corpus, but combined with an additional log-
linear extractive summarization model with hand-
crafted features. Gu et al. (2016) integrated a
copying mechanism into a seq2seq framework to
improve the quality of the generated summaries.
Chen et al. (2016) proposed a new attention mech-
anism that not only considers the important source

2092



segments, but also distracts them in the decoding
step in order to better grasp the overall meaning of
input documents. Nallapati et al. (2016) utilized
a trick to control the vocabulary size to improve
the training efficiency. The calculations in these
methods are all deterministic and the representa-
tion ability is limited. Miao and Blunsom (2016)
extended the seq2seq framework and proposed a
generative model to capture the latent summary in-
formation, but they do not consider the recurrent
dependencies in their generative model leading to
limited representation ability.

Some research works employ topic models to
capture the latent information from source docu-
ments or sentences. Wang et al. (2009) proposed
a new Bayesian sentence-based topic model by
making use of both the term-document and term-
sentence associations to improve the performance
of sentence selection. Celikyilmaz and Hakkani-
Tur (2010) estimated scores for sentences based
on their latent characteristics using a hierarchical
topic model, and trained a regression model to ex-
tract sentences. However, they only use the latent
topic information to conduct the sentence salience
estimation for extractive summarization. In con-
trast, our purpose is to model and learn the latent
structure information from the target summaries
and use it to enhance the performance of abstrac-
tive summarization.

3 Framework Description

3.1 Overview

As shown in Figure 2, the basic framework of
our approach is a neural network based encoder-
decoder framework for sequence-to-sequence
learning. The input is a variable-length sequence
X = {x1,x2, . . . ,xm} representing the source
text. The word embedding xt is initialized ran-
domly and learned during the optimization pro-
cess. The output is also a sequence Y =
{y1,y2, . . . ,yn}, which represents the generated
abstractive summaries. Gated Recurrent Unit
(GRU) (Cho et al., 2014) is employed as the ba-
sic sequence modeling component for the encoder
and the decoder. For latent structure modeling, we
add historical dependencies on the latent variables
of Variational Auto-Encoders (VAEs) and propose
a deep recurrent generative decoder (DRGD) to
distill the complex latent structures implied in the
target summaries of the training data. Finally, the
abstractive summaries will be decoded out based

on both the discriminative deterministic variables
H and the generative latent structural information
Z.

3.2 Recurrent Generative Decoder

Assume that we have obtained the source text rep-
resentation he ∈ Rkh . The purpose of the decoder
is to translate this source code he into a series
of hidden states {hd1,hd2, . . . ,hdn}, and then revert
these hidden states to an actual word sequence and
generate the summary.

For standard recurrent decoders, at each time
step t, the hidden state hdt ∈ Rkh is calculated us-
ing the dependent input symbol yt−1 ∈ Rkw and
the previous hidden state hdt−1:

hdt = f(yt−1,hdt−1) (1)

where f(·) is a recurrent neural network such as
vanilla RNN, Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), and Gated
Recurrent Unit (GRU) (Cho et al., 2014). No mat-
ter which one we use for f(·), the common trans-
formation operation is as follows:

hdt = g(Wd
yhyt−1 +Wd

hhh
d
t−1 + bdh) (2)

where Wd
yh ∈ Rkh×kw and Wd

hh ∈ Rkh×kh are
the linear transformation matrices. bdh is the bias.
kh is the dimension of the hidden layers, and kw is
the dimension of the word embeddings. g(·) is the
non-linear activation function. From Equation 2,
we can see that all the transformations are deter-
ministic, which leads to a deterministic recurrent
hidden state hdt . From our investigations, we find
that the representational power of such determin-
istic variables are limited. Some more complex
latent structures in the target summaries, such as
the high-level syntactic features and latent topics,
cannot be modeled effectively by the deterministic
operations and variables.

Recently, a generative model called Variational
Auto-Encoders (VAEs) (Kingma and Welling,
2013; Rezende et al., 2014) shows strong capa-
bility in modeling latent random variables and
improves the performance of tasks in different
fields such as sentence generation (Bowman et al.,
2016) and image generation (Gregor et al., 2015).
However, the standard VAEs is not designed for
modeling sequence directly. Inspired by (Chung
et al., 2015), we extend the standard VAEs by
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Figure 2: Our deep recurrent generative decoder (DRGD) for latent structure modeling.

introducing the historical latent variable depen-
dencies to make it be capable of modeling se-
quence data. Our proposed latent structure mod-
eling framework can be viewed as a sequence
generative model which can be divided into two
parts: inference (variational-encoder) and gener-
ation (variational-decoder). As shown in the de-
coder component of Figure 2, the input of the orig-
inal VAEs only contains the observed variable yt,
and the variational-encoder can map it to a latent
variable z ∈ Rkz , which can be used to reconstruct
the original input. For the task of summarization,
in the sequence decoder component, the previous
latent structure information needs to be considered
for constructing more effective representations for
the generation of the next state.

For the inference stage, the variational-encoder
can map the observed variable y<t and the pre-
vious latent structure information z<t to the pos-
terior probability distribution of the latent struc-
ture variable pθ(zt|y<t, z<t). It is obvious that
this is a recurrent inference process in which zt
contains the historical dynamic latent structure in-
formation. Compared with the variational infer-
ence process pθ(zt|yt) of the typical VAEs model,
the recurrent framework can extract more complex
and effective latent structure features implied in
the sequence data.

For the generation process, based on the la-
tent structure variable zt, the target word yt at the
time step t is drawn from a conditional probabil-
ity distribution pθ(yt|zt). The target is to maxi-
mize the probability of each generated summary
y = {y1,y2, . . . ,yT } based on the generation
process according to:

pθ(y) =

T∏

t=1

∫
pθ(yt|zt)pθ(zt)dzt (3)

For the purpose of solving the intractable integral
of the marginal likelihood as shown in Equation 3,
a recognition model qφ(zt|y<t, z<t) is introduced
as an approximation to the intractable true poste-
rior pθ(zt|y<t, z<t). The recognition model pa-
rameters φ and the generative model parameters
θ can be learned jointly. The aim is to reduce
the Kulllback-Leibler divergence (KL) between
qφ(zt|y<t, z<t) and pθ(zt|y<t, z<t):
DKL[qφ(zt|y<t, z<t)‖pθ(zt|y<t, z<t)]

=

∫

z
qφ(zt|y<t, z<t) log

qφ(zt|y<t, z<t)
pθ(zt|y<t, z<t)

dz

= Eqφ(zt|y<t,z<t)[log qφ(zt|·)− log pθ(zt|·)]
where · denotes the conditional variables y<t and
z<t. Bayes rule is applied to pθ(zt|y<t, z<t),
and we can extract log pθ(z) from the expectation,
transfer the expectation term Eqφ(zt|y<t,z<t) back
to KL-divergence, and rearrange all the terms.
Consequently the following holds:

log pθ(y<t) =

DKL[qφ(zt|y<t, z<t)‖pθ(zt|y<t, z<t)]
+ Eqφ(zt|y<t,z<t)[log pθ(y<t|zt)]
−DKL[qφ(zt|y<t, z<t)‖pθ(zt)]

(4)

LetL(θ, φ; y) represent the last two terms from the
right part of Equation 4:

L(θ, ϕ; y) =

Eqφ(zt|y<t,z<t)
{∑T

t=1
log pθ(yt|zt)

−DKL[qφ(zt|y<t, z<t)‖pθ(zt)]
}

(5)

Since the first KL-divergence term of Equation 4
is non-negative, we have log pθ(y<t) ≥ L(θ, φ; y)
meaning that L(θ, φ; y) is a lower bound (the ob-
jective to be maximized) on the marginal likeli-
hood. In order to differentiate and optimize the
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lower bound L(θ, φ; y), following the core idea
of VAEs, we use a neural network framework for
the probabilistic encoder qφ(zt|y<t, z<t) for bet-
ter approximation.

3.3 Abstractive Summary Generation
We also design a neural network based frame-
work to conduct the variational inference and gen-
eration for the recurrent generative decoder com-
ponent similar to some design in previous works
(Kingma and Welling, 2013; Rezende et al., 2014;
Gregor et al., 2015). The encoder component and
the decoder component are integrated into a uni-
fied abstractive summarization framework. Con-
sidering that GRU has comparable performance
but with less parameters and more efficient com-
putation, we employ GRU as the basic recurrent
model which updates the variables according to
the following operations:

rt = σ(Wxrxt +Whrht−1 + br)
zt = σ(Wxzxt +Whzht−1 + bz)
gt = tanh(Wxhxt +Whh(rt � ht−1) + bh)
ht = zt � ht−1 + (1− zt)� gt

where rt is the reset gate, zt is the update gate. �
denotes the element-wise multiplication. tanh is
the hyperbolic tangent activation function.

As shown in the left block of Figure 2, the en-
coder is designed based on bidirectional recurrent
neural networks. Let xt be the word embedding
vector of the t-th word in the source sequence.
GRU maps xt and the previous hidden state ht−1
to the current hidden state ht in feed-forward di-
rection and back-forward direction respectively:

⇀

ht = GRU(xt,
⇀

ht−1)
↼

ht = GRU(xt,
↼

ht−1)
(6)

Then the final hidden state het ∈ R2kh is concate-
nated using the hidden states from the two direc-
tions: het =

⇀

ht||
↼

h. As shown in the middle block
of Figure 2, the decoder consists of two compo-
nents: discriminative deterministic decoding and
generative latent structure modeling.

The discriminative deterministic decoding is an
improved attention modeling based recurrent se-
quence decoder. The first hidden state hd1 is ini-
tialized using the average of all the source input

states: hd1 = 1
T e

T e∑
t=1

het , where het is the source in-

put hidden state. T e is the input sequence length.

The deterministic decoder hidden state hdt is cal-
culated using two layers of GRUs. On the first
layer, the hidden state is calculated only using the
current input word embedding yt−1 and the previ-
ous hidden state hd1t−1:

hd1t = GRU1(yt−1,h
d1
t−1) (7)

where the superscript d1 denotes the first decoder
GRU layer. Then the attention weights at the time
step t are calculated based on the relationship of
hd1t and all the source hidden states {het}. Let ai,j
be the attention weight between hd1i and hej , which
can be calculated using the following formulation:

ai,j =
exp(ei,j)∑T e

j′=1 exp(ei,j′)

ei,j = vT tanh(Wd
hhh

d1
i +We

hhh
e
j + ba)

where Wd
hh ∈ Rkh×kh , We

hh ∈ Rkh×2kh , ba ∈
Rkh , and v ∈ Rkh . The attention context is ob-
tained by the weighted linear combination of all
the source hidden states:

ct =
∑T e

j′=1
at,j′h

e
j′ (8)

The final deterministic hidden state hd2t is the
output of the second decoder GRU layer, jointly
considering the word yt−1, the previous hidden
state hd2t−1, and the attention context ct:

hd2t = GRU2(yt−1,h
d2
t−1, ct) (9)

For the component of recurrent generative
model, inspired by some ideas in previous works
(Kingma and Welling, 2013; Rezende et al., 2014;
Gregor et al., 2015), we assume that both the prior
and posterior of the latent variables are Gaussian,
i.e., pθ(zt) = N (0, I) and qφ(zt|y<t, z<t) =
N (zt;µ,σ

2I), where µ and σ denote the varia-
tional mean and standard deviation respectively,
which can be calculated via a multilayer percep-
tron. Precisely, given the word embedding yt−1,
the previous latent structure variable zt−1, and the
previous deterministic hidden state hdt−1, we first
project it to a new hidden space:

hezt = g(Wez
yhyt−1+Wez

zhzt−1+Wez
hhh

d
t−1+bezh )

where Wez
yh ∈ Rkh×kw , Wez

zh ∈ Rkh×kz , Wez
hh ∈

Rkh×kh , and bezh ∈ Rkh . g is the sigmoid acti-
vation function: σ(x) = 1/(1 + e−x). Then the
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Gaussian parameters µt ∈ Rkz and σt ∈ Rkz can
be obtained via a linear transformation based on
hezt :

µt = Wez
hµh

ez
t + bezµ

log(σ2
t ) = Whσh

ez
t + bezσ

(10)

The latent structure variable zt ∈ Rkz can be cal-
culated using the reparameterization trick:

ε ∼ N (0, I), zt = µt + σt ⊗ ε (11)

where ε ∈ Rkz is an auxiliary noise variable. The
process of inference for finding zt based on neural
networks can be teated as a variational encoding
process.

To generate summaries precisely, we first in-
tegrate the recurrent generative decoding compo-
nent with the discriminative deterministic decod-
ing component, and map the latent structure vari-
able zt and the deterministic decoding hidden state
hd2t to a new hidden variable:

h
dy
t = tanh(W

dy
zhzt +Wdz

hhh
d2
t + b

dy
h ) (12)

Given the combined decoding state h
dy
t at the

time t, the probability of generating any target
word yt is given as follows:

yt = ς(Wd
hyh

dy
t + bdhy) (13)

where Wd
hy ∈ Rky×kh and bdhy ∈ Rky . ς(·) is the

softmax function. Finally, we use a beam search
algorithm (Koehn, 2004) for decoding and gener-
ating the best summary.

3.4 Learning
Although the proposed model contains a recurrent
generative decoder, the whole framework is fully
differentiable. As shown in Section 3.3, both the
recurrent deterministic decoder and the recurrent
generative decoder are designed based on neural
networks. Therefore, all the parameters in our
model can be optimized in an end-to-end paradigm
using back-propagation. We use {X}N and {Y }N
to denote the training source and target sequence.
Generally, the objective of our framework con-
sists of two terms. One term is the negative log-
likelihood of the generated summaries, and the
other one is the variational lower boundL(θ, φ;Y )
mentioned in Equation 5. Since the variational
lower bound L(θ, φ;Y ) also contains a likelihood
term, we can merge it with the likelihood term of
summaries. The final objective function, which

needs to be minimized, is formulated as follows:

J =
1

N

N∑

n=1

T∑

t=1

{
− log

[
p(y

(n)
t |y(n)<t , X

(n))

]

+DKL

[
qφ(z

(n)
t |y(n)

<t , z
(n)
<t )‖pθ(z(n)t )

]} (14)

4 Experimental Setup

4.1 Datesets
We train and evaluate our framework on three pop-
ular datasets. Gigawords is an English sentence
summarization dataset prepared based on Anno-
tated Gigawords1 by extracting the first sentence
from articles with the headline to form a source-
summary pair. We directly download the prepared
dataset used in (Rush et al., 2015). It roughly con-
tains 3.8M training pairs, 190K validation pairs,
and 2,000 test pairs. DUC-20042 is another En-
glish dataset only used for testing in our experi-
ments. It contains 500 documents. Each document
contains 4 model summaries written by experts.
The length of the summary is limited to 75 bytes.
LCSTS is a large-scale Chinese short text summa-
rization dataset, consisting of pairs of (short text,
summary) collected from Sina Weibo3 (Hu et al.,
2015). We take Part-I as the training set, Part-II
as the development set, and Part-III as the test set.
There is a score in range 1 ∼ 5 labeled by human
to indicate how relevant an article and its summary
is. We only reserve those pairs with scores no less
than 3. The size of the three sets are 2.4M, 8.7k,
and 725 respectively. In our experiments, we only
take Chinese character sequence as input, without
performing word segmentation.

4.2 Evaluation Metrics
We use ROUGE score (Lin, 2004) as our evalua-
tion metric with standard options. The basic idea
of ROUGE is to count the number of overlapping
units between generated summaries and the ref-
erence summaries, such as overlapped n-grams,
word sequences, and word pairs. F-measures of
ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-
L) and ROUGE-SU4 (R-SU4) are reported.

4.3 Comparative Methods
We compare our model with some baselines and
state-of-the-art methods. Because the datasets are

1https://catalog.ldc.upenn.edu/ldc2012t21
2http://duc.nist.gov/duc2004
3http://www.weibo.com
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quite standard, so we just extract the results from
their papers. Therefore the baseline methods on
different datasets may be slightly different.

• TOPIARY (Zajic et al., 2004) is the best on
DUC2004 Task-1 for compressive text sum-
marization. It combines a system using lin-
guistic based transformations and an unsu-
pervised topic detection algorithm for com-
pressive text summarization.

• MOSES+ (Rush et al., 2015) uses a phrase-
based statistical machine translation system
trained on Gigaword to produce summaries.
It also augments the phrase table with “dele-
tion” rulesto improve the baseline perfor-
mance, and MERT is also used to improve
the quality of generated summaries.

• ABS and ABS+ (Rush et al., 2015) are both
the neural network based models with local
attention modeling for abstractive sentence
summarization. ABS+ is trained on the Gi-
gaword corpus, but combined with an ad-
ditional log-linear extractive summarization
model with handcrafted features.

• RNN and RNN-context (Hu et al., 2015) are
two seq2seq architectures. RNN-context in-
tegrates attention mechanism to model the
context.

• CopyNet (Gu et al., 2016) integrates a
copying mechanism into the sequence-to-
sequence framework.

• RNN-distract (Chen et al., 2016) uses a new
attention mechanism by distracting the his-
torical attention in the decoding steps.

• RAS-LSTM and RAS-Elman (Chopra et al.,
2016) both consider words and word po-
sitions as input and use convolutional en-
coders to handle the source information. For
the attention based sequence decoding pro-
cess, RAS-Elman selects Elman RNN (El-
man, 1990) as decoder, and RAS-LSTM se-
lects Long Short-Term Memory architecture
(Hochreiter and Schmidhuber, 1997).

• LenEmb (Kikuchi et al., 2016) uses a mech-
anism to control the summary length by con-
sidering the length embedding vector as the
input.

• ASC+FSC1 (Miao and Blunsom, 2016) uses
a generative model with attention mechanism
to conduct the sentence compression prob-
lem. The model first draws a latent summary
sentence from a background language model,
and then subsequently draws the observed
sentence conditioned on this latent summary.

• lvt2k-1sent and lvt5k-1sent (Nallapati et al.,
2016) utilize a trick to control the vocabulary
size to improve the training efficiency.

4.4 Experimental Settings
For the experiments on the English dataset Giga-
words, we set the dimension of word embeddings
to 300, and the dimension of hidden states and la-
tent variables to 500. The maximum length of doc-
uments and summaries is 100 and 50 respectively.
The batch size of mini-batch training is 256. For
DUC-2004, the maximum length of summaries is
75 bytes. For the dataset of LCSTS, the dimen-
sion of word embeddings is 350. We also set the
dimension of hidden states and latent variables to
500. The maximum length of documents and sum-
maries is 120 and 25 respectively, and the batch
size is also 256. The beam size of the decoder
was set to be 10. Adadelta (Schmidhuber, 2015)
with hyperparameter ρ = 0.95 and ε = 1e − 6
is used for gradient based optimization. Our neu-
ral network based framework is implemented us-
ing Theano (Theano Development Team, 2016).

5 Results and Discussions

5.1 ROUGE Evaluation

Table 1: ROUGE-F1 on validation sets

Dataset System R-1 R-2 R-L
GIGA StanD 32.69 15.29 30.60

DRGD 36.25 17.61 33.55
LCSTS StanD 33.88 21.49 31.05

DRGD 36.71 24.00 34.10

We first depict the performance of our model
DRGD by comparing to the standard decoders
(StanD) of our own implementation. The compari-
son results on the validation datasets of Gigawords
and LCSTS are shown in Table 1. From the re-
sults we can see that our proposed generative de-
coders DRGD can obtain obvious improvements
on abstractive summarization than the standard de-
coders. Actually, the performance of the standard
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Table 2: ROUGE-F1 on Gigawords

System R-1 R-2 R-L
ABS 29.55 11.32 26.42
ABS+ 29.78 11.89 26.97
RAS-LSTM 32.55 14.70 30.03
RAS-Elman 33.78 15.97 31.15
ASC + FSC1 34.17 15.94 31.92
lvt2k-1sent 32.67 15.59 30.64
lvt5k-1sent 35.30 16.64 32.62
DRGD 36.27 17.57 33.62

Table 3: ROUGE-Recall on DUC2004

System R-1 R-2 R-L
TOPIARY 25.12 6.46 20.12
MOSES+ 26.50 8.13 22.85
ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81
RAS-Elman 28.97 8.26 24.06
RAS-LSTM 27.41 7.69 23.06
LenEmb 26.73 8.39 23.88
lvt2k-1sen 28.35 9.46 24.59
lvt5k-1sen 28.61 9.42 25.24
DRGD 31.79 10.75 27.48

Table 4: ROUGE-F1 on LCSTS

System R-1 R-2 R-L
RNN 21.50 8.90 18.60
RNN-context 29.90 17.40 27.20
CopyNet 34.40 21.60 31.30
RNN-distract 35.20 22.60 32.50
DRGD 36.99 24.15 34.21

decoders is similar with those mentioned popular
baseline methods.

The results on the English datasets of Giga-
words and DUC-2004 are shown in Table 2 and
Table 3 respectively. Our model DRGD achieves
the best summarization performance on all the
ROUGE metrics. Although ASC+FSC1 also uses
a generative method to model the latent summary
variables, the representation ability is limited and
it cannot bring in noticeable improvements. It
is worth noting that the methods lvt2k-1sent and
lvt5k-1sent (Nallapati et al., 2016) utilize linguis-
tic features such as parts-of-speech tags, named-
entity tags, and TF and IDF statistics of the words
as part of the document representation. In fact,
extracting all such features is a time consuming
work, especially on large-scale datasets such as

Gigawords. lvt2k and lvt5k are not end-to-end
style models and are more complicated than our
model in practical applications.

The results on the Chinese dataset LCSTS are
shown in Table 4. Our model DRGD also achieves
the best performance. Although CopyNet employs
a copying mechanism to improve the summary
quality and RNN-distract considers attention in-
formation diversity in their decoders, our model is
still better than those two methods demonstrating
that the latent structure information learned from
target summaries indeed plays a role in abstractive
summarization. We also believe that integrating
the copying mechanism and coverage diversity in
our framework will further improve the summa-
rization performance.

5.2 Summary Case Analysis

In order to analyze the reasons of improving
the performance, we compare the generated sum-
maries by DRGD and the standard decoders StanD
used in some other works such as (Chopra et al.,
2016). The source texts, golden summaries, and
the generated summaries are shown in Table 5.
From the cases we can observe that DRGD can in-
deed capture some latent structures which are con-
sistent with the golden summaries. For example,
our result for S(1) “Wuhan wins men’s soccer ti-
tle at Chinese city games” matches the “Who Ac-
tion What” structure. However, the standard de-
coder StanD ignores the latent structures and gen-
erates some loose sentences, such as the results for
S(1) “Results of men’s volleyball at Chinese city
games” does not catch the main points. The reason
is that the recurrent variational auto-encoders used
in our framework have better representation ability
and can capture more effective and complicated la-
tent structures from the sequence data. Therefore,
the summaries generated by DRGD have consis-
tent latent structures with the ground truth, leading
to a better ROUGE evaluation.

6 Conclusions

We propose a deep recurrent generative decoder
(DRGD) to improve the abstractive summariza-
tion performance. The model is a sequence-
to-sequence oriented encoder-decoder framework
equipped with a latent structure modeling compo-
nent. Abstractive summaries are generated based
on both the latent variables and the determinis-
tic states. Extensive experiments on benchmark
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Table 5: Examples of the generated summaries.

S(1): hosts wuhan won the men ’s soccer title
by beating beijing shunyi #-# here at the #th
chinese city games on friday.
Golden: hosts wuhan wins men ’s soccer title
at chinese city games.
StanD: results of men ’s volleyball at chinese
city games.
DRGD: wuhan wins men ’s soccer title at
chinese city games.
S(2): UNK and the china meteorological
administration tuesday signed an agreement
here on long - and short-term cooperation in
projects involving meteorological satellites and
satellite meteorology.
Golden: UNK china to cooperate in meteorol-
ogy.
StanD: weather forecast for major chinese
cities.
DRGD: china to cooperate in meteorological
satellites.
S(3): the rand gained ground against the dollar
at the opening here wednesday , to #.# to the
greenback from #.# at the close tuesday.
Golden: rand gains ground.
StanD: rand slightly higher against dollar.
DRGD: rand gains ground against dollar.
S(4): new zealand women are having more
children and the country ’s birth rate reached its
highest level in ## years , statistics new zealand
said on wednesday.
Golden: new zealand birth rate reaches ##-
year high.
StanD: new zealand women are having more
children birth rate hits highest level in ## years.
DRGD: new zealand ’s birth rate hits ##-
year high.

datasets show that DRGD achieves improvements
over the state-of-the-art methods.
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Abstract

The need for automatic document sum-
marization that can be used for practi-
cal applications is increasing rapidly. In
this paper, we propose a general frame-
work for summarization that extracts sen-
tences from a document using externally
related information. Our work is aimed
at single document summarization using
small amounts of reference summaries.
In particular, we address document sum-
marization in the framework of multi-
task learning using curriculum learning for
sentence extraction and document classi-
fication. The proposed framework en-
ables us to obtain better feature representa-
tions to extract sentences from documents.
We evaluate our proposed summarization
method on two datasets: financial report
and news corpus. Experimental results
demonstrate that our summarizers achieve
performance that is comparable to state-
of-the-art systems.

1 Introduction

With rapid increase in the volume of textual data
that are available both online and offline, the
need for automatic document summarization that
can be implement in practical scenarios is in-
creasing (Li et al., 2016; Chopra et al., 2016;
Takase et al., 2016). Among the several sum-
marization systems, extractive summarization ap-
proaches (Erkan and Radev, 2004; McDonald,
2007; Wong et al., 2008) are widely used. These
techniques identify and subsequently concatenate
relevant sentences automatically from a docu-
ment to create its summary while preserving its
original information content. Such approaches
are popular and widely used for practical appli-

cations because they are computationally cost-
effective and less complex. Extractive summariza-
tion approaches based on neural network-based
approaches (Kågebäck et al., 2014; Cao et al.,
2015; Yin and Pei, 2015; Cao et al., 2016) have ad-
vanced rapidly. Recently, an attentional encoder-
decoder for extractive single-document summa-
rization was proposed and its application to the
news corpus was demonstrated (Cheng and Lap-
ata, 2016; Nallapati et al., 2017).

The neural network-based approaches rely
heavily on large amounts of reference sum-
maries for training neural models, and conse-
quently, for tuning a large number of parameters.
The reference summaries are manually or semi-
automatically created in advance. Some existing
studies employ parallel corpora as artificial ref-
erence summaries (Woodsend and Lapata, 2010;
Cheng and Lapata, 2016). However, preparing
such large volumes of reference summaries man-
ually is sometimes costly. Particularly, it is infea-
sible for humans to create hundreds of thousands
of reference summaries in cases where summa-
rization requires domain-specific or expert knowl-
edge. Such cases include financial reports, finan-
cial and economic news (Filippova et al., 2009),
and scientific articles (Parveen et al., 2016).

A fundamental requirement in extractive sum-
marization is the identification of salient sentences
from a document, i.e., sentences that represent key
subjects mentioned in the document. Such sub-
jects are often described in the form of topics, cat-
egories, sentiments, and other meta-information
about a document. Sometimes they are extracted
from external information related to document
contents. Once one knows the subjects of a docu-
ment beforehand, a straightforward strategy in ex-
tractive summarization is to select sentences that
are relevant to the subjects. Importantly, subjects
should be inferred from sentences identified from
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the document. For example, assume that we are
about to summarize a financial report of a com-
pany with knowledge from external information
sources that the company has strong earnings. In
this case, we might select sentences that explain
factors affecting increase of earnings so that a
reader of the summary can intuitively understand
the company’s financial situation.

The key idea is that we regard the subjects
of a document as pseudo-rough reference sum-
maries. Then, if we are able to estimate the sub-
jects with small amounts of documents and the ex-
ternal information in them, the identification of
salient sentences from a document can be sup-
ported by sentence features that have been learned
from document subject estimation. As a result,
smaller amounts of actual reference summaries are
only needed as mutually learning feature represen-
tations for both subject estimation and sentence
identification from pseudo-rough reference sum-
maries.

As described earlier, we focus on single docu-
ment summarization with small amounts of refer-
ence summaries, and propose a general framework
for summarization that is useful for extracting sen-
tences from a document along with its external re-
lated information. Particularly, we formalize esti-
mation of the above-described document subjects
as a document classification task and solve doc-
ument summarization in the framework of multi-
task learning for sentence extraction and docu-
ment classification.

Our proposed summarization framework com-
prises two components: one designed for sentence
extraction, which selects sentences relevant to the
subjects of an input document, and one for docu-
ment classification, which predicts the subject of
the input document. In the multi-task learning
framework, document classification supports sen-
tence extraction by learning common feature rep-
resentations of salient sentences for summariza-
tion. We use recurrent neural network encoder–
decoder as sentence extractor and document clas-
sifier.

We evaluate our proposed summarization
method on two datasets: the NIKKEI, the leading
financial news publisher in Japan and a financial
report corpus; and the New York Times Annotated
Corpus (Sandhaus, 2008). The results of experi-
mental evaluations demonstrate that our summa-
rizers achieve a performance that is comparable to

those of state-of-the-art systems.
The contribution of this paper is two-fold. First,

we propose a general framework for single doc-
ument summarization with small amounts of ref-
erence summaries, which is important for practi-
cal implementation of summarization techniques.
Second, we propose a multi-task learning method
with curriculum learning that supports sentence
extraction from a document while solving docu-
ment classification. Here, we assume that a doc-
ument is classifiable into certain subjects, which
comprise the meta-information of the document.
Furthermore, sentences for a summary are ex-
tracted in relation to the subjects.

2 Problem Statement and Data
Preparation

In this section, we define the task of sentence
extraction for document summarization as ad-
dressed in this paper. We specifically exam-
ine documents that satisfy the following require-
ments. (1) Reference summaries are few. (2)
The document is associated with a list of sub-
jects, {a1, a2, · · · , am} (ai ∈ {0, 1}), that in-
cludes topics, categories, sentiments, and other
meta-information. aj = 1 denotes that the doc-
ument is classified into the subject j. Given a doc-
ument D consisting of a sequence of sentences
{s1, s2, · · · , sn}, we aim to extract k sentences
in relation to a document subject aj , which is ex-
pected to be included in the summary (k < n) of
the document. We predict both a subject aj for the
document and a label yi ∈ {0, 1} for each sen-
tence within the document, which indicates that
the i-th sentence should be extracted.

In this study, we use two datasets for our sen-
tence extraction task: the NIKKEI financial report
corpus and New York Times news corpus.

For the financial report corpus, we used finan-
cial reports published every quarter during 2013–
2016 by Japanese exchange listed companies. The
reports explained the economic activity and the
factors affecting revenue or profits for the quarter.
For the reference summary, which is the gold stan-
dard summary used for training a classifier that
predicts a sentence label, we use financial news
articles published by the NIKKEI 1. The NIKKEI
publishes articles summarizing financial reports of
each company. It covers approximately 10 % of all
the reports: 3911 reports from 2013 to 2016. The

1http://www.nikkei.com/
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Figure 1: Proposed multi-task learning framework for sentence extraction with document classification

language of the reports and the articles is Japanese.
For the document subject of a financial report, we
used profit and revenue information as a subject
aj (j = 1, 2), which indicates its profit and rev-
enue increase compared to an earlier term.

Our second dataset, the New York Times An-
notated Corpus (NYTAC), is a collection of arti-
cles from the New York Times. The gold standard
summaries are attached to some of the articles. As
the subject of a document article, we use already
annotated category of the news from its metadata
such as Business and Arts.

For the task of sentence extraction, the gold
standard labels indicating sentences that should be
extracted are needed. To attach the labels on sen-
tences that maximize the Rouge score with respect
to gold summaries, we introduce a greedy ap-
proach (Cheng and Lapata, 2016; Nallapati et al.,
2017). We first select one sentence that has a max-
imum Rouge score with respect to the entire gold
standard summary. We add it to the reference sum-
mary set and select sentences incrementally until
no candidate sentence improves the score when
added to the current summary set. The labels of
sentences in the summary set are set as y = 1.
The greedy approach is efficient because the com-
putational costs associated with the identification
of a global optimal summary set are too large.

The labels are attached by computing ROUGE-
1 (Lin, 2004). ROUGE-1 and ROUGE-2 are re-
ported as best for emulating evaluation by hu-
mans (Owczarzak et al., 2012). For financial re-
ports, words apart from nouns, verbs, adjectives,
and adverbs are removed for computing appropri-
ate ROUGE scores. The accuracy between the la-
bels attached by ROUGE-1 and humans is 81%.

3 Summarization Model

This section introduces our novel summarization
framework. Figure 1 presents the proposed multi-
task learning framework for sentence extraction
with document classification. The left half of the
figure shows the common sentence extraction part.
The right half depicts a novel sentence extraction
by document classification. We assume that a doc-
ument is classifiable into certain subjects that rep-
resent meta-information of the document, and as-
sume that sentences for a summary are extracted
in relation to the subjects. Therefore, solving doc-
ument classification supports sentence extraction
from a document with multi-task learning of both
tasks.

In Fig. 1, si denotes the embedding of sentence
i. Furthermore, yi denotes whether the sentence
should be extracted and aj is a subject of a doc-
ument, which includes topics, categories, senti-
ments, or other meta-information. The predictor
component computes pi ≡ p(yi = 1 | D), the
probability of sentence i extraction. Our proposed
method estimates pi by learning both sentence ex-
traction and document classification.

We now explain how learning document clas-
sification supports sentence extraction. In Fig. 1,
savg is the weighted average of si in terms of
the probability of sentence extraction. It means
that savg includes much more information about
sentences with higher extraction probability. The
probability that the document is related to a sub-
ject qj ≡ p(aj = 1 | D) is estimated by savg.
The error is larger if the contents of extracted sen-
tences do not correspond with the document sub-
ject. By feeding back this error to the predictor,
the model learns to extract sentences related to
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Figure 2: Sentence extraction model using LSTM-RNN with multi-task learning

the document subject. For example, in the case
of a financial report, profit information indicating
profit and revenue increase compared with an ear-
lier term is used as a document subject. Positive
sentences are expected to be extracted so that the
extracted sentences reflect good financial results if
the profit and revenue increase.

Figure. 2 shows the entire model. With respect
to the predictor component in the proposed model,
we use an encoder–decoder architecture modeled
by recurrent neural networks (Kim et al., 2016)
based on recent neural extractive summarization
approaches (Cheng and Lapata, 2016; Nallapati
et al., 2017). However, our summarization frame-
work is applicable to all models of sentence ex-
traction using distributed representation as inputs.
We explain four sub-modules of the summariza-
tion model: sentence encoder, document encoder,
sentence extraction, and document classification.

3.1 Sentence Encoder
We use Convolutional Neural Network (CNN) to
obtain a sentence embedding from word embed-
dings. The training speed of single-layer CNN is
high. It is effective for sentence-level classifica-
tion such as sentiment analysis (Kim, 2014). Ac-
tually, CNN is suitable for use because our model
requires a high computational cost. Sentence em-
beddings are used for both sentence extraction and
document classification.

Let xi ∈ Rd denote the embedding of the i-
th word in the sentence, and xi:i+q−1 ∈ Rdq rep-
resent a concatenated vector that represents a se-
quence of q words. Convolutional filter w ∈ Rdq
is applied as

siw = f(w · xi:i+q + b), (1)

where f is a nonlinear function such as the hy-
perbolic tangent and b is the bias. Max pooling
over time is applied to obtain a single feature sw
representing the sentence under filter w.

3.2 Document Encoder and Extractor

The LSTM-RNN Encoder–Decoder model is used
for sentence extraction. First, on the encoder part,
all sentences of a document are input into the hid-
den layers of RNN. LSTM assigns the input gate,
forget gate, output gate, and memory cells as acti-
vation functions of RNN.

In Fig. 2, hn ∈ Rk is the output of the encoder
part, for which information of all sentences is in-
put. The extraction probability is estimated based
on the encoder part output. The hidden layer of the
decoder part h̄t ∈ Rk is updated by LSTM equal
to the encoder part. The initial value h̄0 is hn. The
input is the prior sentence st−1 multiplied by the
extraction probability pt−1. Therefore, more in-
formation about sentences that are likely to be ex-
tracted is input to the hidden layer. Based on each
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hidden layer, the extraction probability of sentence
t is computed as shown below.

ht = LSTM(st, ht−1) (2)

h̄t = LSTM(pt−1 · st−1, h̄t−1) (3)

pt = σ(wy · [ht : h̄t] + by) (4)

Here, wy ∈ R2k represents the weight vector,
by stands for the bias, and : is the concatenation
operator of vectors. By concatenating the hidden
layers of the decoder part with the encoder part,
the extraction probability is computed by refer-
encing the information of input sentences more di-
rectly. It seems reasonable to pay attention to the
input sentence directly when deciding whether the
sentence should be extracted or not.

3.3 Document Classification
Using the embeddings and estimated extraction
probability of sentences, the probability distribu-
tion of input document subjects is estimated. The
probability that a document is classified into the
subject j, qj , is computed as shown below.

qj = σ(wa · savg + ba) (5)

savg =

∑
t pt · st∑
i pi

(6)

Here, wa signifies the weight vector and ba
is the bias. Additionally, savg represents the
weighted average of sentence embeddings. Each
sentence is weighted by the estimated extraction
probability. The predictor computes the probabil-
ity distribution of a document subject from savg,
which means that the predictor pays more atten-
tion to sentences that are likely to be extracted.

3.4 Multi-Task Learning with Curriculum
Learning

This section presents an explanation of the proce-
dure followed to train the summarization model.
The model parameters are updated to maximize
the likelihood of all sentence labels and document
subject labels. This is equivalent to minimization
of the following error terms.

Ey(θ)=−
n∑

t=1

(yt log pt+(1−yt) log(1−pt))

+λθ‖θ‖2
(7)

Ea(θ)=−
m∑

j=1

(aj log qj+(1−aj) log(1−qj))

+λθ‖θ‖2
(8)

In these equations, ‖θ‖2 is the L2 norm, and λθ
is the regularization term. L2 regularization is in-
troduced to avoid overfitting.

Multi-task learning is generally complicated be-
cause the parameter is optimized simultaneously
for sentence extraction and document classifica-
tion. We introduce curriculum learning (Bengio
et al., 2009) to overcome this difficulty. Curricu-
lum learning is a learning method that aims to im-
prove the performance of a complicated model or
data. The model starts by learning a simple model
or data, and gradually adapts to more complicated
ones.

We introduce two kinds of curriculum learn-
ing for multi-task learning. We apply baby step
curriculum learning (Cirik et al., 2016), which
demonstrates the effectiveness of the LSTM-RNN
architecture. In this, the dataset is categorized
based on the difficulty and added to the order of
ease.

We divide the dataset into three subsets based
on the combination of document type and objec-
tive function. The first subset has documents with
an attached reference summary. The model is
trained for optimizing sentence extraction. The
second uses the same documents as the first. How-
ever, the objective function is document classifica-
tion. The last one has documents with no refer-
ence summary. Only the likelihood of document
subjects as pseudo-rough reference summaries is
maximized in the last dataset. For sentence extrac-
tion task, it is more difficult to train from the last
dataset than the first dataset because information
related to document subjects are more truncated
than the reference summary. The second dataset is
the bridge between the first and the last.

For document classification, sentences are
weight-averaged by the estimated sentence extrac-
tion probability pt. In the second dataset, sen-
tences are weighted not only by pt, but also the
true label yt. pt in Eq.(6) is replaced by p̄t as fol-
lows.

p̄t = κpt + (1− κ)yt (9)

Here, κ is the mixing rate of extraction probabil-
ity and the true label. At the beginning of training,
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pt is not predicted accurately. This will affect doc-
ument classification adversely, therefore κ is set to
nearly zero so that the true label yt is used for doc-
ument classification. By using the true label, train-
ing for sentence extraction and document classi-
fication does not mutually interfere. As training
progress, κ gets larger and document classification
supports sentence extraction.

We believe that our basic idea of curriculum
learning, with some modifications depending on
the task applied, can be applied for other kinds of
multi-task learning in general.

4 Experimental Setup

4.1 Dataset

The NIKKEI Financial Report Corpus

For training and evaluation, we used financial re-
ports published from April 2013 through Septem-
ber 2016. The reports used for evaluation and
validation were published in the last and the sec-
ond to last quarter. All other reports were used
for training. The numbers of reports used for
training, validation, and evaluation were 12, 262,
191, and 183. In the training dataset, 8, 725 re-
ports with no reference summary were included
and used only for training of document classifi-
cation, which predicts document subjects. As for
document subjects, we used subjects of two kinds
as aj ∈ {0, 1} (j = 1, 2), indicating that the
profit and revenue increases compared with the
prior term. aj = 1 denotes that the value in-
creases.

New York Times Annotated Corpus

For the experiment using NYTAC, we evaluated
our model using different amounts of reference
summary. The numbers of articles used for both
validation and evaluation were 200. For training,
we prepared 125, 250, and 500 articles. For train-
ing of document classification, we used 3000 ar-
ticles for which the reference summary was not
attached. As document subjects, we used the
category of a news article aj ∈ {0, 1} (j =
1, 2, · · · , C) as a subject. Each subject corre-
sponded to a news article category, such as ”Busi-
ness” and ”Arts.” aj = 1 denotes that a document
is classified into the category j. C is the number
of categories, which is 26 in our experiment.

4.2 Implementation Details

The word embeddings were pre-trained using
Skip-gram (Mikolov et al., 2013) on all 1, 043, 064
articles in the Japanese version of Wikipedia.
The dimensions of word embedding were 200.
Those of the hidden layer in LSTM-RNN were
400. For CNN, the list of kernel sizes was
{1, 2, 3, 4, 5, 6}. The number of feature maps was
50. Adadelta (Zeiler, 2012) was used for updat-
ing parameters. The initial learning rate was 10−6.
The hyper parameters were optimized using grid
search. We extracted three sentences with the
highest scores in the manner described in an ear-
lier report (Cheng and Lapata, 2016).

4.3 Baselines

For the NIKKEI financial report dataset, we used
LEAD, which extracts the leading three sentences
of a document as a baseline. We also built a base-
line classifier LREG using logistic regression and
human engineered features. The features were
sentence length, position in the document, number
of entities, nouns, verbs, adverbs, and adjectives in
the sentence. We also added the sentiment of sen-
tence to the features. For the financial report sum-
marization, sentiment information is important be-
cause positive/negative sentences are frequently
included in the summary when the revenue in-
creases/decreases. The sentiment is computed by
the frequency of words that appear in the articles
when the revenue increases/decreases. For both
datasets, we assigned NN-SE(Cheng and Lapata,
2016) as the baseline. The difference between
NN-SE and our model is the introduction of multi-
task learning and curriculum learning. The hyper-
parameters are the same as those of our model.
Through comparison with NN-SE, we can validate
the effectiveness of the proposed framework.

5 Results

5.1 Results obtained from the NIKKEI
Financial Report Corpus

Table1 presents the results for financial reports
using F-measure. The precision and recall are
calculated based on binary classification setup.
LEAD, LREG, and NN-SE are used as the base-
lines. The proposed neural multi-task learning
model, NN-ML, is significantly inferior to NN-SE
and LREG. However, NN-ML-CL, the proposed
model with curriculum learning, is superior to all
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Table 1: F-measure evaluation (%) on financial re-
ports

Models F-measure Precision Recall
LEAD 42.1 39.1 50.4
LREG 60.5 67.6 66.5
NN-SE 59.9 58.0 68.8
NN-ML 55.2 52.1 64.6
NN-ML-CL 60.6 54.6 74.9

Table 2: F-measure evaluation (%) depending on
the amount of reference summary

Models 125 250 500 1000 2000
NN-SE 55.2 56.1 58.0 58.0 58.1
NN-ML-CL 58.1 58.4 59.4 59.3 59.2

other models. This result shows that merely in-
troducing multi-task learning does not positively
influence on sentence extraction. However, cur-
riculum learning overcomes the difficulty of multi-
task learning; thus, document classification has
positive effects on sentence extraction.

We confirmed the relation between the effec-
tiveness of our model and the amount of refer-
ence summaries. We compared NN-ML-CL (our
model) and NN-SE in several cases for which the
amounts of reference summaries were 125, 250,
500, 1000, and 2000; the results are shown in Ta-
ble 2. As observed, NN-ML-CL is superior to NN-
SE in all cases. The margin between NN-ML-CL
and NN-SE grows as the amount decreases, which
means that document classification is more effec-
tive in cases with fewer reference summaries.

We also reported the results of human evalu-
ation for summaries generated by the respective
systems. Referring to the gold summary, partic-
ipants ranked the generated summaries generated
by four systems: NN-ML-CL(our system), NN-
SE, LEAD, and LREG. The judging criteria was
informativeness, which indicates how a generated
summary covers information in the gold summary.
From the test documents, we remove summaries
for which the same sentences were extracted by
different systems and randomly sampled 20 docu-
ments. 6 persons participated in the evaluation.

Table 3 presents the distribution of ranking and
the average. Our NN-ML-CL model is ranked first
in more than half the tests and markedly surpasses
other models. Comparison with NN-SE verifies
the effectiveness of multi-task learning for human
evaluation.

Table 3: Ranking distributions (%) and the aver-
age evaluated by humans

Models 1st 2nd 3rd 4th Ave.
LEAD 21.7 20.0 28.3 30.0 2.67
LREG 20.0 28.3 26.7 25.0 2.45
NN-SE 31.7 21.7 16.7 30.0 2.57
NN-ML-CL 51.7 20.0 21.7 6.7 1.83

Table 4: ROUGE scores (%) for various amounts
of reference summaries in NYTAC

Model Ref. ROUGE-1 ROUGE-2
NN-SE 125 17.2 12.1

250 16.8 11.3
500 18.0 12.5

NN-ML-CL 125 18.1 12.7
250 18.3 12.7
500 18.5 12.9

5.2 Results on NYTAC

Table 4 presents our results for NYTAC using
ROUGE-1 and ROUGE-2. In all cases, NN-ML-
CL outperforms NN-SE on both metrics. When
the amount of reference summary is 250, the mar-
gin between NN-ML-CL and NN-SE is the largest
on each metric. For cases with 125 and 500 ref-
erence summaries, improvement is observed, but
the margin is smaller than in the case for financial
reports.

5.3 Discussion

In this section, we discuss how document clas-
sification contributes to the improvement of sen-
tence extraction performance on the financial re-
port dataset.

As mentioned above, NN-ML, the model that
uses multi-task learning, exhibits a performance
that is worse than that of NN-SE, the model that
does not use multi-task learning. One possible ex-
planation would be that it is difficult to optimize
the parameters to maximize the likelihood of both
sentence extraction and document classification si-
multaneously. If the learning task of sentence ex-
traction does not proceed well enough, the task of
document classification may also not work well.
The reason is that the classification task relies on
the estimated probability for sentence extraction in
our proposed summarization framework.

However, curriculum learning improves the per-
formance of the model with multi-task learn-
ing. By introducing curriculum learning into the
framework, we are able to start training the model

2107



Table 5: Rates (%) of extracted sentences corre-
sponding with a document subject

Correspond Not Others
NN-SE 40.0 40.0 20.0
NN-ML-CL 85.7 14.3 0.0

Table 6: Example of gold summary and sentences
extracted using NN-ML-CL and NN-SE

Sentences extracted by NN-ML-CL
The rapid progress of the strong yen adversely influenced
financial results, but the growth of revenue in areas such
as Europe, Asia, and Oceania increased the revenue to 535
billion yen.
The demand for air conditioners increased because of the
intense July heat.
Sentences extracted by NN-SE
As for fluorine resin, the demand for semiconductors rose
steadily. However, competing Chinese companies gained
power, and revenue for electrical wire use declined.
The revenue of parts for guided missiles increase year-on-
year, but the revenue of medical equipment decrease.
News Article (Gold summary)
In Southeast Asia and Europe, high-end models of air
conditioners sold well. In China and US, revenue rose and
overcame the adverse influence of strong yen. The cor-
porate tax ratio reduction also supported business perfor-
mance. The revenue of air-conditioners, a leading prod-
uct of Daikin, rose 9% in Southeast Asia. The revenue
network in Vietnam and Indonesia expanded. revenue of
air-conditioners rose at a higher pace than market scale.
In China, the revenue of air conditioners for business use
recovered. High-end models were also selling well.

only for sentence extraction. Then, the training for
document classification is started gradually. Even-
tually, it contributes to the improvement of the per-
formance of sentence extraction through the multi-
task learning approach.

From the results for the financial report corpus,
we confirmed that the contents of sentences ex-
tracted by our model corresponded with revenue
and profit changes. Before validation, the sen-
tences were categorized as corresponding to or not
corresponding to others. We compared the results
of sentence extraction with NN-ML-CL and NN-
SE and checked the category distribution of sen-
tences extracted using NN-ML-CL or NN-SE.

Table 5 shows that 85.7% of sentences extracted
using NN-ML-CL correspond to changes of rev-
enues and profits. However, only 40.0% of sen-
tences extracted by NN-SE correspond to these pa-
rameters, which indicates that document classifi-
cation supports extraction of sentences related to
the revenue and profit change, and contributes to
the improvement.

Table 6 shows sentences extracted from finan-
cial reports published by Daikin, Ltd., the lead-
ing air-conditioner manufacturer in Japan. During
this term, the air conditioner revenue increased;
moreover, revenues and profits increased consid-
erably year-on-year. NN-ML-CL extracted sen-
tences that mention the good revenue performance
of air-conditioners in Asia and Europe, which is
the same as that in the gold summary. In contrast,
NN-SE extracts sentences mentioning the bad rev-
enue performance of fluorine resin and medical
equipment, which are not described in the gold
summary. NN-SE is badly affected owing to train-
ing on past reports and articles. Our model ex-
tracts sentences with words that appear frequently
in a positive context. Therefore, sentences related
to good revenue performance are extracted.

There are two main ways of applications for our
summarization approach with document classifi-
cation. In the first case, the text collection has
explicitly annotated document labels, which in-
cludes the collection of news articles with their
category information, product reviews with their
rating, scholarly paper abstracts with their disci-
pline information, etc. In the second case, a docu-
ment label can be acquired from external informa-
tion sources about the text collection. For financial
reports, the information about financial situation
of a target company is extracted from the financial
statement, which in turn can be used for a label of
document classification.

6 Related Work

Based on the recent advances of neural network-
based approaches (Kågebäck et al., 2014; Cao
et al., 2015; Yin and Pei, 2015; Cao et al.,
2016), an attentional encoder-decoder for extrac-
tive single-document summarization and its appli-
cation to the news corpus was proposed (Cheng
and Lapata, 2016; Nallapati et al., 2017). Al-
though we employ an encoder-decoder architec-
ture in the predictor component of our summariza-
tion framework, the framework can be applied to
all models of sentence extraction using distributed
representation as inputs, including recently ad-
vanced other attention-based encoder-decoder net-
works (Wang et al., 2016; Yang et al., 2016)

(Cheng and Lapata, 2016; Nallapati et al.,
2017) argue that a stumbling block to applying
neural network models to extractive summariza-
tion is the lack of training data and documents with
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sentences labeled as summary-worthy. To over-
come this, several studies have used artificial ref-
erence summaries (Sun et al., 2005; Svore et al.,
2007; Woodsend and Lapata, 2010; Cheng and
Lapata, 2016) compiled by collecting documents
and corresponding highlights from other sources.
However, preparing such a parallel corpus often
requires domain-specific or expert knowledge de-
pending on the domain (Filippova et al., 2009;
Parveen et al., 2016). Our summarization uses
document-associated information as pseudo rough
reference summaries, which enables us to learn
feature representations for both document classi-
fication and sentence identification with smaller
amounts of actual reference summaries.

Neural networks based multi-task learning has
recently proven effective in many NLP problems
(Liu et al., 2015, 2016; Firat et al., 2016; Dong
et al., 2015). Aiming at single document summa-
rization with relatively small amounts of reference
summaries, we demonstrated document summa-
rization in the framework of multi-task learning
with curriculum learning for sentence extraction
and document classification. This enabled us to
obtain better feature representations to extract sen-
tences from documents.

7 Conclusion

In this paper, we proposed a general framework
for extractive summarization using document sub-
jects. Our key idea is to use a multi-task learn-
ing method that supports sentence extraction while
enabling document classification, assuming that a
document can be classified into certain subjects,
and sentences for a summary are extracted in rela-
tion to the subjects.

This framework enables single document sum-
marization with relatively small amounts of refer-
ence summaries since document subjects can be
used as pseudo-rough reference summaries. Our
proposed method can be widely applied for actual
documents attached with meta-information such
as product reviews, sports news and so on.

Experimental results showed that our model is
less effective on the news corpus. For higher per-
formance, more information such as the embed-
dings of news descriptors for document classifica-
tion must be used.
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Mikael Kågebäck, Olof Mogren, Nina Tahmasebi, and
Devdatt Dubhashi. 2014. Extractive summarization
using continuous vector space models. In the second
Workshop on Continuous Vector Space Models and
their Compositionality in EACL, pages 31–39.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

2109



Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI, pages 2741–2749.

Wei Li, Lei He, and Hai Zhuge. 2016. Abstractive
news summarization based on event semantic link
network. In COLING, pages 236–246.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out Workshop in ACL, volume 8.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In IJICAI, pages 2873–2879.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
NAACL-HLT, pages 912–921.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Eu-
ropean Conference on Information Retrieval, pages
557–564.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Workshop in ICLR.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In AAAI, pages 3075–3081.

Karolina Owczarzak, John M Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assessment of
the accuracy of automatic evaluation in summariza-
tion. In Workshop on Evaluation Metrics and Sys-
tem Comparison for Automatic Summarization in
ACL, pages 1–9.

Daraksha Parveen, Mohsen Mesgar, and Michael
Strube. 2016. Generating coherent summaries of
scientific articles using coherence patterns. In
EMNLP, pages 772–783.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, 6(12).

Jian-Tao Sun, Dou Shen, Hua-Jun Zeng, Qiang Yang,
Yuchang Lu, and Zheng Chen. 2005. Web-page
summarization using clickthrough data. In ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 194–201.

Krysta Marie Svore, Lucy Vanderwende, and Christo-
pher JC Burges. 2007. Enhancing single-document
summarization by combining ranknet and third-
party sources. In EMNLP-CoNLL, pages 448–457.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hi-
rao, and Masaaki Nagata. 2016. Neural headline
generation on abstract meaning representation. In
EMNLP, pages 1054–1059.

Y Wang et al. 2016. Attention-based lstm for aspect-
level sentiment classification. In EMNLP, pages
606–615.

Kam-Fai Wong, Mingli Wu, and Wenjie Li. 2008. Ex-
tractive summarization using supervised and semi-
supervised learning. In COLING, pages 985–992.

Kristian Woodsend and Mirella Lapata. 2010. Auto-
matic generation of story highlights. In ACL, pages
565–574.

Z Yang et al. 2016. hierarchical attention networks
for document classification. In NAACL-HLT, pages
1480–1489.

Wenpeng Yin and Yulong Pei. 2015. Optimizing sen-
tence modeling and selection for document summa-
rization. In IJCAI, pages 1383–1389.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

2110



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2111–2116
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Towards Automatic Construction of News Overview Articles by News
Synthesis

Jianmin Zhang and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{zhangjianmin2015, wanxiaojun}@pku.edu.cn

Abstract

In this paper we investigate a new task
of automatically constructing an overview
article from a given set of news arti-
cles about a news event. We propose a
news synthesis approach to address this
task based on passage segmentation, rank-
ing, selection and merging. Our proposed
approach is compared with several typi-
cal multi-document summarization meth-
ods on the Wikinews dataset, and achieves
the best performance on both automatic e-
valuation and manual evaluation.

1 Introduction

There are usually many news articles about a news
event, and news summaries can be used for read-
ers to quickly learn the most salient information
of the news articles. News summaries in previous
studies are usually very short, and most of them
consist of about one or two hundred words. How-
ever, in many circumstances, readers want to learn
more about an event, but the news summary is in-
sufficient to read, and people are reluctant to read
each news article one by one. A possible solution
to this problem is constructing a long and compre-
hensive news overview article to summarize and
present all important facts about the news even-
t in an unbiased way. The news overview articles
can be considered long summaries, however, news
overview articles are more comprehensive and the
article texts are harder to arrange and organize.

In this paper, we conduct a pilot study to inves-
tigate the new task of automatic construction of a
news overview article from a set of news articles
about an event. We argue that traditional multi-
document summarization methods can be applied
to this task, but they do not perform well because
sentence-based extraction used in these method-

s is not suitable for constructing and organizing a
long article. Instead, we propose a news synthesis
approach to address this task. Our approach uses
passage as the basic unit. In this study, passage
does not mean a natural paragraph, but means a
block of text (maybe multiple paragraphs) about a
subtopic of an event. Our approach first segments
news articles into passages with the SenTiling al-
gorithm, and then ranks the passages with the Di-
vRank algorithm. Finally, it selects and merges a
few passages to construct the long news overview
article.

We automatically build an evaluation dataset
based on English Wikinews 1. Most Wikinews ar-
ticles are synthesis articles and they are written us-
ing information from other online news sources.
All the important facts available from all sources
about a news event are combined into a single ar-
ticle for the reader’s convenience, and the infor-
mation is presented in a neutral manner avoiding
the bias that may be present in other news sources.
Therefore, we treat a Wikinews article as an ide-
al overview article (i.e., reference) of the source
news articles.

We compare our proposed approach with sev-
eral typical multi-document summarization meth-
ods based on the Wikinews dataset. The result-
s are very promising and our approach achieves
the best performance on both automatic evaluation
and manual evaluation. In this study, we demon-
strate the feasibility of automatic construction of
long overview articles from a set of news articles.

The contributions of this paper are summarized
as follows: 1) we are the first to investigate the
task of automatic construction of news overview
articles from a set of source news articles; 2) we
automatically build an evaluation dataset based on
Wikinews; 3) we propose a news passage-based

1https://en.wikinews.org/wiki/Main Page
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synthesis approach to address this task; 4) evalua-
tion results verify the efficacy of our approach.

2 Our News Synthesis Approach

We propose a news synthesis approach to automat-
ic construction of news overview articles from a
set of source news articles. Our approach uses pas-
sage as the basic unit, and consists of three main
steps: passage segmentation, passage ranking, and
passage selection and merging. The rationale of
using passage rather than sentence lies in that 1)
the sentences in a passage are more complete and
coherent than multiple sentences selected from d-
ifferent places in different documents; 2) it is eas-
ier to arrange several passages than to arrange a
large number of sentences.

2.1 Passage Segmentation

In this step, we aim to segment each source news
article into several passages, where each passage
represents a subtopic of the event. In order to
achieve this goal, we adopt the TextTiling algo-
rithm (Hearst, 1997), which is a popular algorithm
for discovering subtopic structure using term rep-
etition. The original TextTiling algorithm usually
splits a sentence into different passages, and in or-
der to remedy this problem, we slightly modify the
TextTiling algorithm and our new SenTiling algo-
rithm consists of three steps:

Tokenization refers to the division of the input
text into individual lexical units, and the tokens are
converted to lower-case characters and stemmed
using the Porter stemmer.

Lexical score determination refers to assign-
ing a lexical score of each gap between text blocks.
To avoid the incomplete sentence in the segmenta-
tion result, we regard a sentence as a text block
and calculate a lexical score for the gap at the end
of each sentence by the cosine similarity value be-
tween 100 words before and after the gap. We do
not use natural paragraphs as blocks because their
lengths are highly irregular.

Boundary identification assigns a depth score
to each sentence gap and then determines the pas-
sages to assign to a document. The depth score is
computed in the same way as in (Hearst, 1997)
and it corresponds to how strongly the cues for
a subtopic changed on both sides of a given gap
and is based on the distance from the peaks on
both sides of the valley to that valley. Since every
gap is a potential segment boundary. We select a

boundary only if the depth score exceeds the aver-
age depth scores s minus the standard deviation σ
of their scores (thus assuming that the scores are
normally distributed), as s− σ.

2.2 Passage Ranking

We use DivRank (Mei et al., 2010) to rank pas-
sages, because DivRank automatically balances
the prestige and the diversity of the top ranked pas-
sages in a principled way. It is motivated from a
general time-variant random walk process known
as the vertex-reinforced random walk. Let pT (v)
be the probability that the walk is at state v at time
T , and pT (u, v) be the transition probability from
any state u to any state v at time T .
pT (v) =

∑
u∈V pT−1(u, v)pT−1(u)

pT (u, v) = (1− λ) · p∗(v) + λ · p0(u,v)·pT (v)DT (u)

where DT (u) =
∑

v∈V p0(u, v)pT (v). And
p∗(v) is a uniform distribution which represents
the prior preference of visiting vertex v. p0(u, v)
is the organic transition probability prior to any
reinforcement, which is estimated as in a regular
time-homogenous random walk by the normalized
cosine similarity value between u and v.

After a sufficiently large T , the reinforced ran-
dom walk will converge to a stationary distribu-
tion, and each passage node will be assigned with
a rank score.

2.3 Passage Selection and Merging

We aim to select several important but non-
redundant passages to form the overview article.
The selection can be done according to the Di-
vRank scores because the scores balance the pres-
tige and the diversity of most of the top ranked
passages, but it occasionally happens that two rel-
evant passages both get high scores. In order to
remedy this problem and make the content for
each subtopic more comprehensive and complete,
we further merge relevant passages by adding in-
formative sentences from relevant passages into
the selected passage. The greedy selection process
is illustrated in Algorithm 1.

The function merge(gi∗, gj∗) merges the sen-
tences of gi∗ into gj∗ one by one. If the aver-
age similarity between a sentence si∗,k in gi∗ and
each sentence in gj∗ is less than ξ, we insert the
sentence si∗,k into gj∗ and find the insertion po-
sition between two sentences sj∗,m and sj∗,n in
gj∗, where the average of the similarity between
si∗,k and sj∗,m, and the similarity between si∗,k
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Algorithm 1 Passage Selection and Merging
Input:

Passage set G = g1, ..., gn and each passage
gi is assigned with a DivRank score p(gi);
The cosine similarity value gSimi,j between
any two passages gi and gj ;

Output:
The passage set O in the overview article;

1: Initialize O = φ
2: while G 6= φ and O does not reach the length

limit do
3: gi∗ = argmaxgi∈G p(gi);
4: G = G− gi∗
5: gj∗ = argmaxgj∈O gSimi∗,j ;
6: if gSimi∗,j∗ > τ then
7: gj∗ = merge(gi∗, gj∗)
8: else
9: O = O ∪ gi∗

10: end if
11: end while
12: return O

and sj∗,n is the largest.
Finally, we arrange the passages inO with topo-

logical sorting to form the overview article. We
follow two principles: 1) If passages u and v are
from the same news article and u is before v, they
should be adjacent and have the same order in the
overview article; 2) If passages u and v are from
different news articles and u has higher DivRank
score than v, u and the passages coming from the
same news article with u should be placed before
v in the overview article.

3 Evaluation Dataset and Baselines

As mentioned in the introduction section, we used
Wikinews to construct the evaluation dataset. We
first crawled 18121 English Wikinews and their
source news articles via the associated URLs.
However, many Wikinews articles have very few
source news articles and they are very short, and
moreover, the URLs for many of the source news
are out of date. We filtered the Wikinews articles
for which the number of available source news ar-
ticles are less than 5. Finally, we selected 100
longest Wikinews from the remaining set for test-
ing 2. The average number of words of Wikinews
in the test set is 598 and the average number of
total words of their source news articles is 2136.

2The dataset is accompanied and it will be released soon.

Accordingly, the length limit of overview articles
produced by different methods is 600 words.

Our approach is compared with several typical
multi-document summarization methods: Lead,
Coverage, Centroid (Radev et al., 2004), Tex-
tRank (Mihalcea and Tarau, 2004), ClusterCM-
RW (Wan and Yang, 2008), ILP (Gillick and
Favre, 2009) and Submodular (Li et al., 2012).
We also implement SenDivRank that applies the
DivRank algorithm on sentences.

For our approach, τ is set to 0.4 and ξ is set to
0.5 based on an additional small development set
chosen from the remaining Wikinews set. λ in the
DivRank algorithm is set to 0.85 by default. Under
the control of these thresholds, we only merge a
very small number of passages and insert very few
sentences from one passage to another passage, so
the influence of passage merging on the coherence
is very subtle.

4 Evaluation Results and Analysis

Automatic Evaluation: Similar to traditional
summarization tasks, we use the ROUGE metric-
s (Lin and Hovy, 2003) to automatically evalu-
ate the quality of peer overview articles against
the gold-standard references. We use ROUGE-
1.5.5 and report the F-scores of ROUGE-1 (R-1),
ROUGE-2 (R-2) and ROUGE-SU4 (R-SU4).

Firstly, we perform evaluation on the whole ar-
ticles and Table 1 shows the comparison results.
We can see that our approach outperforms all the
baseline methods with respect to ROUGE-2 and
ROUGE-SU4. The Submodular method achieves
the highest ROUGE-1 score, but our approach also
achieves very high ROUGE-1 score, which is very
close to that of the Submodular method.

Method R-1 R-2 R-SU4
Lead 0.48029 0.16183 0.21156

Coverage 0.48085 0.15849 0.20615
TextRank 0.49453 0.16370 0.21457
Centroid 0.48582 0.16099 0.20919

ILP 0.49302 0.16651 0.21493
ClusterCMRW 0.49363 0.17205 0.22033

Submodular 0.50273 0.16963 0.21775
SenDivRank 0.48701 0.17491 0.22382

Our Approach 0.50215 0.18631 0.23426

Table 1: Comparison results on overall evaluation

Secondly, in order to better evaluating the con-
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Method R-1 R-2 R-SU4
Lead 0.38757 0.10631 0.15138

Coverage 0.38932 0.10399 0.14714
TextRank 0.40246 0.10651 0.15327
Centroid 0.38910 0.10297 0.14774

ILP 0.40004 0.11256 0.15641
ClusterCMRW 0.40565 0.11855 0.16195

Submodular 0.39990 0.11044 0.15442
SenDivRank 0.39462 0.11575 0.16028

Our Approach 0.41913 0.13369 0.17735

Table 2: Comparison results on two-part evalua-
tion I

Method R-1 R-2 R-SU4
Lead 0.39850 0.11888 0.16209

Coverage 0.39957 0.11610 0.15753
TextRank 0.41132 0.12045 0.16317
Centroid 0.40071 0.11772 0.15859

ILP 0.40795 0.12149 0.16350
ClusterCMRW 0.41379 0.12769 0.16935

Submodular 0.40677 0.11903 0.16163
SenDivRank 0.40210 0.12704 0.17001

Our Approach 0.42207 0.14401 0.18392

Table 3: Comparison results on two-part evalua-
tion II

tent organization in long articles, we split each ar-
ticle (both peer article and reference article) into
two parts with equal length, and compare the first
parts in the peer and reference articles, and then
compare the second parts in the peer and reference
articles. Lastly, the ROUGE scores are averaged
across the two parts. Table 2 shows the compari-
son results based on this evaluation protocol (two-
part evaluation I). Furthermore, we allow the first
part in a reference article to match with the sec-
ond part in a peer article, and vice versa. We allow
one-to-one matching and find the optimal match-
ing between the two sets of parts, which refers to
the matching with the largest sum of the similarity
values of the matched parts. We then compute and
average the ROUGE scores of the matched part-
s. Table 3 shows the comparison results based on
this evaluation protocol (two-part evaluation II).
We can see from Tables 2 and 3 that our proposed
approach performs much better than the baseline
methods over all three metrics.

Manual Evaluation: We randomly select 30
test cases for manual evaluation. We employ

Method Cov. Read. Overall
TextRank 2.86 2.34 2.50
Centroid 2.83 2.17 2.33

ILP 2.17 1.17 2.27
ClusterCMRW 3.33 2.34 2.83

Submodular 2.51 2.03 2.34
SenDivRank 3.51 2.47 2.86

Our Approach 3.85 3.32 3.47

Table 4: Manual evaluation results

three students as human judges and each judge
is asked to read the reference Wikinews and the
peer overview article produced by each method,
and then give a rating score between 1 and 5 with
respect to three aspects: content coverage, read-
ability and overall responsiveness. 5 means “very
good”, 3 means “acceptable”, and 1 means “very
bad”. The methods producing the articles are blind
to the judges. Finally, the rating scores with re-
spect to each aspect across different test cases
are averaged, and then averaged across the three
judges. Table 4 shows the manual evaluation re-
sults. We can see that our proposed approach can
produce news overview articles with better con-
tent coverage, readability and overall responsive-
ness than baseline methods. The quality of the
news overview articles is generally acceptable by
the human judges.

In all, our proposed approach are more effective
than typical multi-document summarization meth-
ods for addressing this challenging task. It is fea-
sible to automatically construct news overview ar-
ticles with news synthesis.

5 Related Work

The most closely related work is multi-document
summarization, which aims to produce a concise
(or short) summary to deliver the major informa-
tion for a given document set. Most summariza-
tion methods rank and select a few existing sen-
tences in the documents or compose new sen-
tences with phrases to form a summary. Typi-
cal summarization methods include graph-based
ranking methods (Erkan and Radev, 2004; Mihal-
cea and Tarau, 2005; Berg-Kirkpatrick et al., 2011;
Wan and Zhang, 2014; Wan and Yang, 2008), sen-
tence classification or regression based method-
s (Conroy and O’leary, 2001; Shen et al., 2007;
Ouyang et al., 2007), ILP-based methods (Mc-
Donald, 2007; Gillick and Favre, 2009; Xie et al.,

2114



2009; Berg-Kirkpatrick et al., 2011; Woodsend
and Lapata, 2012; Bing et al., 2015), submodu-
lar maximization based methods (Lin and Bilmes,
2010, 2011; Sipos et al., 2012), DPP (Determinan-
tal Point Process) based methods (Kulesza et al.,
2012), and neural model based methods (Rush
et al., 2015; Chopra et al., 2016; Nallapati et al.,
2016), etc.

Other related work includes automatic genera-
tion of well-structured Wikipedia articles (Sauper
and Barzilay, 2009; Yao et al., 2011). Differ-
ent from Wikinews, Wikipedia articles usually
have domain-dependent templates for content fill-
ing and organization.

6 Conclusion

In this pilot study we proposed a news synthesis
approach to address the challenging task of au-
tomatic generation of news overview articles. E-
valuation results on Wikinews verified the efficacy
and feasibility of the proposed approach. In fu-
ture work, we will investigate supervised learning
methods for passage ranking and selection, and try
to paraphrase the selected passages.
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Abstract

Discourse parsing has long been treated as
a stand-alone problem independent from
constituency or dependency parsing. Most
attempts at this problem are pipelined
rather than end-to-end, sophisticated, and
not self-contained: they assume gold-
standard text segmentations (Elementary
Discourse Units), and use external parsers
for syntactic features. In this paper
we propose the first end-to-end discourse
parser that jointly parses in both syntax
and discourse levels, as well as the first
syntacto-discourse treebank by integrating
the Penn Treebank with the RST Tree-
bank. Built upon our recent span-based
constituency parser, this joint syntacto-
discourse parser requires no preprocessing
whatsoever (such as segmentation or fea-
ture extraction), achieves the state-of-the-
art end-to-end discourse parsing accuracy.

1 Introduction

Distinguishing the semantic relations between
segments in a document can be greatly beneficial
to many high-level NLP tasks, such as summariza-
tion (Louis et al., 2010; Yoshida et al., 2014), sen-
timent analysis (Voll and Taboada, 2007; Soma-
sundaran et al., 2009; Bhatia et al., 2015), ques-
tion answering (Ferrucci et al., 2010; Jansen et al.,
2014), and textual quality evaluation (Tetreault
et al., 2013; Li and Jurafsky, 2016).

There has been a variety of research on dis-
course parsing (Marcu, 2000a; Soricut and Marcu,
2003; Pardo and Nunes, 2008; Hernault et al.,

∗ The source code and the joint treebank are available at
https://github.com/kaayy/josydipa.

† Current address: Google Inc., New York, NY, USA.

2010; da Cunha et al., 2012; Joty et al., 2013; Joty
and Moschitti, 2014; Feng and Hirst, 2014; Ji and
Eisenstein, 2014; Li et al., 2014a,b; Heilman and
Sagae, 2015; Wang et al., 2017). But most of them
suffer from the following limitations:

1. pipelined rather than end-to-end: they as-
sume pre-segmented discourse, and worse
yet, use gold-standard segmentations, except
Hernault et al. (2010);

2. not self-contained: they rely on external syn-
tactic parsers and pretrained word vectors;

3. complicated: they design sophisticated fea-
tures, including those from parse-trees.

We argue for the first time that discourse parsing
should be viewed as an extension of, and be per-
formed in conjunction with, constituency parsing.
We propose the first joint syntacto-discourse tree-
bank, by unifying constituency and discourse tree
representations. Based on this, we propose the first
end-to-end incremental parser that jointly parses at
both constituency and discourse levels. Our algo-
rithm builds up on the span-based parser (Cross
and Huang, 2016); it employs the strong general-
ization power of bi-directional LSTMs, and parses
efficiently and robustly with an extremely simple
span-based feature set that does not use any tree
structure information.

We make the following contributions:

1. We develop a combined representation of
constituency and discourse trees to facilitate
parsing at both levels without explicit conver-
sion mechanism. Using this representation,
we build and release a joint treebank based on
the Penn Treebank (Marcus et al., 1993) and
RST Treebank (Marcu, 2000a,b) (Section 2).

2. We propose a novel joint parser that parses at
both constituency and discourse levels. Our
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(b) The corresponding RST-PTB tree (our work)

Figure 1: Examples of the RST discourse treebank and our syntacto-discourse treebank (PTB-RST).

parser performs discourse parsing in an end-
to-end manner, which greatly reduces the ef-
forts required in preprocessing the text for
segmentation and feature extraction, and, to
our best knowledge, is the first end-to-end
discourse parser in literature (Section 3).

3. Even though it simultaneously performs con-
stituency parsing, our parser does not use any
explicit syntactic feature, nor does it need any
binarization of discourse trees, thanks to the
powerful span-based framework of Cross and
Huang (2016) (Section 3).

4. Empirically, our end-to-end parser outper-
forms the existing pipelined discourse pars-
ing efforts. When the gold EDUs are pro-
vided, our parser is also competitive to other
existing approaches with sophisticated fea-
tures (Section 4).

2 Combined Representation & Treebank

We first briefly review the discourse structures in
Rhetorical Structure Theory (Mann and Thomp-
son, 1988), and then discuss how to unify dis-
course and constituency trees, which gives rise to
our syntacto-discourse treebank PTB-RST.

2.1 Review: RST Discourse Structures
In an RST discourse tree, there are two types of
branchings. Most of the internal tree nodes are

binary branching, with one nucleus child contain-
ing the core semantic meaning of the current node,
and one satellite child semantically decorating the
nucleus. Like dependency labels, there is a rela-
tion annotated between each satellite-nucleus pair,
such as “Background” or “Purpose”. Figure 1(a)
shows an example RST tree. There are also non-
binary-branching internal nodes whose children
are conjunctions, e.g., a “List” of semantically
similar EDUs (which are all nucleus nodes); see
Figure 2(a) for an example.

2.2 Syntacto-Discourse Representation

It is widely recognized that lower-level lexical and
syntactic information can greatly help determin-
ing both the boundaries of the EDUs (i.e., dis-
course segmentation) (Bach et al., 2012) as well as
the semantic relations between EDUs (Soricut and
Marcu, 2003; Hernault et al., 2010; Joty and Mos-
chitti, 2014; Feng and Hirst, 2014; Ji and Eisen-
stein, 2014; Li et al., 2014a; Heilman and Sagae,
2015). While these previous approaches rely on
pre-trained tools to provide both EDU segmenta-
tion and intra-EDU syntactic parse trees, we in-
stead propose to directly determine the low-level
segmentations, the syntactic parses, and the high-
level discourse parses using a single joint parser.
This parser is trained on the combined trees of
constituency and discourse structures.

We first convert an RST tree to a format similar
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◦

•

and ASA Ltd. jumped 35
8 to 495

8 .

•

Battle Mountain Gold climbed 3
4 to 163

4 ;

•

Hecla Mining rose 5
8 to 14;

•

The metals sector outgained other industry groups.
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The metals sector

Figure 2: Another example of RST vs. PTB-RST, demonstrating a discourse tree over two sentences and
a non-binary relation (List). The lower levels of the PTB-RST tree are collapsed due to space contraints.

to those constituency trees in the Penn Treebank
(Marcus et al., 1993). For each binary branching
node with a nucleus child and a satellite child, we
use the relation as the label of the converted parent
node. The nucleus/satellite relation, along with the
direction (either← or→, pointing from satellite to
nucleus) is then used as the label. For example, at
the top level in Figure 2, we convert

◦

. . .

•

. . .

Elaboration

to

←Elaboration

. . .. . .

For a conjunctive branch (e.g. “List”), we simply
use the relation as the label of the converted node.

After converting an RST tree into the con-
stituency tree format, we then replace each leaf
node (i.e., EDU) with the corresponding syntactic
(sub)tree from PTB. Given that the sentences in
the RST Treebank (Marcu, 2000b) is a subset of
that of PTB, we can always find the correspond-
ing constituency subtrees for each EDU leaf node.
In most cases, each EDU corresponds to one sin-
gle (sub)tree in PTB, since the discourse bound-
aries generally do not conflict with constituencies.
In other cases, one EDU node may correspond to
multiple subtrees in PTB, and for these EDUs we
use the lowest common ancestor of those subtrees
in the PTB as the label of that EDU in the con-
verted tree. E.g., if C–D is one EDU in the PTB
tree A

DCB

it might be converted to Purpose→
A

DC

B

if the relation annonated in RST is B
Purpose−→ C–D.

Figures 1–2 are two examples of discourse trees
and their combined syntacto-discourse trees.

2.3 Joint PTB-RST Treebank
Using the conversion strategy described above we
build the first joint syntacto-discourse treebank
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Figure 3: PTB-RST: length distribution (# tokens).

based on the Penn Treebank and RST Treebank.
This PTB-RST treebank is released as a set of
tools to generate the joint trees given Penn Tree-
bank and RST Treebank data. During the align-
ment between the RST trees and the PTB trees,
we only keep the common parts of the two trees.

We follow the standard training/testing split of
the RST Treebank. In the training set, there are
347 joint trees with a total of 17,837 tokens, and
the lengths of the discourses range from 30 to
2,199 tokens. In the test set, there are 38 joint
trees with a total of 4,819 tokens, and the lengths
vary from 45 to 2,607. Figure 3 shows the dis-
tribution of the discourse lengths over the whole
dataset, which on average is about 2x of PTB sen-
tence length, but longest ones are about 10x the
longest lengths in the Treebank.

3 Joint Syntacto-Discourse Parsing

Given the combined syntacto-discourse treebank,
we now propose a joint parser that can perform
end-to-end discourse segmentation and parsing.

3.1 Extending Span-based Parsing
As mentioned above, the input sequences are sub-
stantially longer than PTB parsing, so we choose
linear-time parsing, by adapting a popular greedy
constituency parser, the span-based constituency
parser of Cross and Huang (2016).

As in span-based parsing, at each step, we main-
tain a a stack of spans. Notice that in conventional
incremental parsing, the stack stores the subtrees
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input w0 . . . wn−1

axiom ⟨ −1Some text and the symbol or scaled

1

0⟩: (0, ∅) goal ⟨ −1Some text and the symbol or scaled

1
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sh
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1

j⟩ : (c, t)

⟨... iSome text and the symbol or scaled

1
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labelX
⟨... iSome text and the symbol or scaled

1

k j⟩ : (c, t)

⟨... iSome text and the symbol or scaled

1

j⟩ : (c + sc labelX (i, k, j), t ∪ {iXj})

nolabel
⟨... iSome text and the symbol or scaled

1

k j⟩ : (c, t)

⟨... iSome text and the symbol or scaled

1

j⟩ : (c + scnolabel(i, k, j), t)

Figure 4: Deductive system for joint syntactic
and discourse parsing. scsh(·, ·), sccomb(·, ·, ·),
sc labelX (·, ·, ·), and scnolabel(·, ·, ·) are scoring
functions evaluated in the neural network.

constructed so far, but in span-based constituency
parsing, the stack only stores the boundaries of
subtrees, which are just a list of indices ...iSome text and the symbol or scaled

1

kSome text and the symbol or scaled

1

j .
In other words, quite shockingly, no tree structure
is represented anywhere in the parser. Please refer
Cross and Huang (2016) for details.

Similar to span-based constituency parsing, we
alternate between structural (either shift or com-
bine) and label (labelX or nolabel) actions in an
odd-even fashion. But different from Cross and
Huang (2016), after a structural action, we choose
to keep the last branching point k, i.e., iSome text and the symbol or scaled

1

k j

(mostly for combine, but also trivially for shift).
This is because in our parsing mechanism, the dis-
course relation between two EDUs is actually de-
termined after the previous combine action. We
need to keep the splitting point to clearly find the
spans of the two EDUs to determine their rela-
tions. This midpoint k disappears after a label ac-
tion; therefore we can use the shape of the last
span on the stack (whether it contains the split
point, i.e., iSome text and the symbol or scaled

1

k j or iSome text and the symbol or scaled

1

j) to determine the par-
ity of the step and thus no longer need to carry the
step z in the state as in Cross and Huang (2016).

The nolabel action makes the binarization of the
discourse/constituency tree unnecessary, because
nolabel actually combines the top two spans on the
stack σ into one span, but without annotating the
new span a label. This greatly simplifies the pre-
processing and post-processing efforts needed.

Prec. Recall F1
Constituency 87.6 86.9 87.2

Discourse 46.5 40.2 43.0
Overall 83.5 81.6 82.5

Table 1: Accuracies on PTB-RST at constituency
and discourse levels.

3.2 Recurrent Neural Models and Training

The scoring functions in the deductive system
(Figure 4) are calculated by an underlying neu-
ral model, which is similar to the bi-directional
LSTM model in Cross and Huang (2016) that eval-
uates based on span boundary features. Again, it
is important to note that no discourse or syntactic
tree structures are represented in the features.

During the decoding time, a document is
firstl passed into a two-layer bi-directional LSTM
model, then the outputs at each text position of the
two layers of the bi-directional LSTMs are con-
catenated as the positional features. The spans at
each parsing step can be represented as the fea-
ture vectors at the boundaries. The span features
are then passed into fully connected networks with
softmax to calculate the likelihood of perform-
ing the corresponding action or marking the cor-
responding label.

We use the “training with exploration” strat-
egy (Goldberg and Nivre, 2013) and the dynamic
oracle mechanism described in Cross and Huang
(2016) to make sure the model can handle unseen
parsing configurations properly.

4 Empirical Results

We use the treebank described in Section 2 for em-
pirical evaluation. We randomly choose 30 docu-
ments from the training set as the development set.

We tune the hyperparameters of the neural
model on the development set. For most of the hy-
perparameters we settle with the same values sug-
gested by Cross and Huang (2016). To alleviate
the overfitting problem for training on the relative
small RST Treebank, we use a dropout of 0.5.

One particular hyperparameter is that we use a
value β to balance the chances between training
following the exploration (i.e., the best action cho-
sen by the neural model) and following the correct
path provided by the dynamic oracle. We find that
β = 0.8, i.e., following the dynamic oracle with a
probability of 0.8, achieves the best performance.
One explanation for this high chance to follow the
oracle is that, since our combined trees are signif-
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description syntactic feats. segmentation structure +nuclearity +relation
Bach et al. (2012) segmentation only Stanford 95.1 - - -

Hernault et al. (2010) end-to-end pipeline Penn Treebank 94.0 72.3 59.1 47.3
joint syntactic & discourse parsing - 95.4 78.8 65.0 52.2

Table 2: F1 scores of end-to-end systems. “+nuclearity” indicates scoring of tree structures with nucle-
arity included. “+relation” has both nuclearity and relation included (e.g.,←Elaboration).

syntactic feats structure +nuclearity +relation
human annotation (Ji and Eisenstein, 2014) - 88.7 77.7 65.8

sparse

Hernault et al. (2010) Penn Treebank 83.0 68.4 54.8
Joty et al. (2013) Charniak (retrained) 82.7 68.4 55.7

Joty and Moschitti (2014) Charniak (retrained) - - 57.3
Feng and Hirst (2014) Stanford 85.7 71.0 58.2

Heilman and Sagae (2015) ZPar (retraied) 83.5 68.1 55.1
Wang et al. (2017) Stanford 86.0 72.4 59.7

neural

Li et al. (2014a)
Stanford

82.4 69.2 56.8
+ sparse features 84.0 70.8 58.6

Ji and Eisenstein (2014)
MALT

80.5 68.6 58.3
+ sparse features 81.6 71.1 61.8

span-based discourse parsing - 84.2 67.7 56.0

Table 3: Experiments using gold segmentations. The column of “syntactic feats” shows how the syntactic
features are calculated in the corresponding systems. Note that our parser predicts solely based on the
span features from bi-directionaly LSTM, instead of any explicitly designed syntactic features.

icantly larger than the constituency trees in Penn
Treebank, lower β makes the parsing easily divert
into wrong trails that are difficult to learn from.

Since our parser essentially performs both con-
stituency parsing task and discourse parsing task.
We also evaluate the performances on sentence
constituency level and discourse level separately.
The result is shown in Table 1. Note that in con-
stituency level, the accuracy is not directly com-
parable with the accuracy reported in Cross and
Huang (2016), since: a) our parser is trained on a
much smaller dataset (RST Treebank is about 1/6
of Penn Treebank); b) the parser is trained to opti-
mize the discourse-level accuracy.

Table 2 shows that, in the perspective of end-
to-end discourse parsing, our parser first outper-
forms the state-of-the-art segmentator of Bach
et al. (2012), and furthermore, in end-to-end pars-
ing, the superiority of our parser is more pro-
nounced comparing to the previously best parser
of Hernault et al. (2010).

On the other hand, the majority of the conven-
tional discourse parsers are not end-to-end: they
rely on gold EDU segmentations and pre-trained
tools like Stanford parsers to generate features.
We perform an experiment to compare the per-

formance of our parser with them given the gold
EDU segments (Table 3). Note that most of these
parsers do not handle multi-branching discourse
nodes and are trained and evaluated on binarized
discourse trees (Feng and Hirst, 2014; Li et al.,
2014a,b; Ji and Eisenstein, 2014; Heilman and
Sagae, 2015), so their performances are actually
not directly comparable to the results we reported.

5 Conclusion

We have presented a neural-based incremental
parser that can jointly parse at both constituency
and discourse levels. To our best knowledge, this
is the first end-to-end parser for discourse parsing
task. Our parser achieves the state-of-the-art per-
formance in end-to-end parsing, and unlike previ-
ous approaches, needs little pre-processing effort.
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Abstract

We introduce a novel iterative approach
for event coreference resolution that grad-
ually builds event clusters by exploiting
inter-dependencies among event mentions
within the same chain as well as across
event chains. Among event mentions in
the same chain, we distinguish within- and
cross-document event coreference links
by using two distinct pairwise classifiers,
trained separately to capture differences in
feature distributions of within- and cross-
document event clusters. Our event coref-
erence approach alternates between WD
and CD clustering and combines argu-
ments from both event clusters after ev-
ery merge, continuing till no more merge
can be made. And then it performs fur-
ther merging between event chains that
are both closely related to a set of other
chains of events. Experiments on the
ECB+ corpus show that our model outper-
forms state-of-the-art methods in joint task
of WD and CD event coreference resolu-
tion.

1 Introduction

Event coreference resolution is the task of iden-
tifying event mentions and clustering them such
that each cluster represents a unique real world
event. The capability of resolving links among co-
referring event identities is vital for information
aggregation and many NLP applications, includ-
ing topic detection and tracking, information ex-
traction, question answering and text summariza-
tion (Humphreys et al., 1997; Allan et al., 1998;
Daniel et al., 2003; Narayanan and Harabagiu,
2004; Mayfield et al., 2009; Zhang et al., 2015).
Yet, studies on event coreference are few com-

pared to the well-studied entity coreference reso-
lution.

Event mentions that refer to the same event can
occur both within a document (WD) and across
multiple documents (CD). One common practice
(Lee et al., 2012) to approach CD coreference
task is to resolve event coreference in a mega-
document created by concatenating topic-relevant
documents, which essentially does not distinguish
WD and CD event links.

However, intuitively, recognizing CD corefer-
ent event pairs requires stricter evidence com-
pared to WD event linking because it is riskier to
link two event mentions from two distinct docu-
ments rather than the same document. In a per-
fect scenario where all WD event mentions are
properly clustered and their participants and argu-
ments are combined within a cluster, CD cluster-
ing can be performed with ease as sufficient ev-
idences are collected through initial WD cluster-
ing. Therefore, another very common practice for
event coreference is to first group event mentions
within a document and then group WD clusters
across documents (Yang et al., 2015).

Nonetheless, WD coreference chains are
equally hard to resolve. Event mentions in the
same document can look very dissimilar (”killed/
VB” and ”murder/ NN”), have event arguments
(i.e., participants and spatio-temporal information
of an event (Bejan and Harabagiu, 2010)) partially
or entirely omitted, or appear in distinct contexts
compared to their antecedent event mentions, par-
tially to avoid repetitions. Under this irresolute
state, approaching WD and CD individually is in-
competent.

While CD coreference resolution is overall dif-
ficult, we observe that some CD coreferent event
mentions, especially the ones that appear at the
beginning of documents, share sufficient contexts
and are relatively easier to resolve. At the same
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time, many of them bear sufficient differences that
can bring in new information and further lead
to more WD merges and consequently more CD
merges.

Guided by these observations, we present an
event coreference approach that exploits inter-
dependencies among event mentions within an
event chain both within a document and across
documents, by sequentially applying WD and CD
merges in an alternating manner until no more
merge can be made. We combine argument fea-
tures of event mentions after each CD (WD) merge
in order to resolve more difficult WD (CD) merges
in the following iterations. Furthermore, our
model uses two distinct pairwise classifiers that
are separately trained with features intrinsic to
each type. Specifically, the WD classifier uses fea-
tures based on event mentions and their arguments
while the CD classifier relies on features charac-
terizing surrounding contexts of event mentions as
well.

We further exploit second-order inter-
dependencies across event clusters in order
to resolve additional WD and CD coreferent event
pairs. Intuitively, if two event mentions are related
to the same set of events, it is likely that the two
event mentions refer to the same real world event,
even when their word forms and local contexts
are distinct. Specifically, we merge event clusters
if their event mentions are tightly associated
(i.e., having the same dependency relations) or
loosely associated (i.e., co-occurring in the same
sentential context) with enough (i.e., passing a
threshold) other events that are known coreferent.

Experimental results on the benchmark event
coreference dataset, ECB+ (Cybulska and Vossen,
2014b,a), show that our model extensively ex-
ploits inter-dependencies between events and out-
performs the state-of-the-art methods for both WD
and CD event coreference resolution.

2 Related Work

Different approaches, focusing on either of WD
or CD coreference chains, have been proposed for
event coreference resolution. Works specific to
WD event coreference includes pairwise classi-
fiers (Ahn, 2006; Chen et al., 2009) graph based
clustering method (Chen and Ji, 2009), informa-
tion propagation (Liu et al., 2014), and markov
logic networks Lu et al. (2016). As to only CD
event coreference, Cybulska and Vossen (2015a)

created pairwise classifiers using features indicat-
ing granularities of event slots and in another work
(2015b), grouped events based on compatibilities
of event contexts.

Like this work, several studies have consid-
ered both WD and CD event coreference resolu-
tion task together. However to simplify the prob-
lem, they (Lee et al., 2012; Bejan and Harabagiu,
2010, 2014) created a meta-document by concate-
nating topic-relevant documents and treated both
as an identical task. Most recently, Yang et al.
(2015) applied a two-level clustering model that
first groups event mentions within a document and
then groups WD clusters across documents in a
joint inference process. Our approach advances
these works and emphasizes on different natures
of WD and CD clusters along with the benefits of
distinguishing WD merges from CD merges and
exploiting their mutual dependencies.

Iterative models, in general, have been applied
to both entity coreference resolution (Singh et al.,
2009; Clark and Manning, 2015, 2016; Wiseman
et al., 2016) and prior event coreference resolution
(Lee et al., 2012) works, which gradually build
clusters and enable later merges to benefit from
earlier ones. Especially, Lee et al. (2012) used
an iterative model to jointly build entity and event
clusters and showed the advantages of information
flow between entity and event clusters through se-
mantic role features. Our model, by alternating be-
tween WD and CD merges, allows the multi-level
flow of first order interdependencies. Moreover,
additional cross cluster merges based on 2nd order
interdependencies effectively exploits the seman-
tic relations among events, in contrast to only se-
mantic roles (between events and arguments) used
in previous work.

3 System Overview and A Worked
Example

Inter-dependencies among event mentions can
be effectively exploited by conducting sequential
WD and CD merges in an iterative manner. In ad-
dition, recognizing second order relations between
event chains relies on adequate number of event
mentions that are already linked. Therefore, our
model conducts event coreference in two stages.
In the first stage, it iteratively conducts WD and
CD merges as suggested by pairwise WD and CD
merging classifiers respectively. Argument fea-
tures of individual event mentions are propagated
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Figure 1: An example of Event Coreference using the iterative two stage model. All event mentions are
boldfaced; solid arrow line between event mentions show second order relations between them; dashed
lines link coreferent event mentions and are tagged with the type of merge.

within a cluster after each merge operation. In
the second stage, it explores second order relations
across event clusters w.r.t context event mentions
in order to carefully generate candidate event clus-
ters and perform further merging.

The example in Figure 1 illustrates the two
stages of our proposed approach. It shows two
iterations of WD and CD merges. In iteration
1, relatively easy coreferent event mentions were
linked, including the two shooting and two trial
event mentions in doc1 and doc2 as well as the
event mentions presented, trial and murder across
the two documents. Argument propagation was
conducted after each merge and murder’s argu-
ment ”mother of 12” in doc1 is combined with
the murder event in doc2 after iteration 1. Then
in iteration 2, more merges were made by rec-
ognizing additional coreferent event mentions in-
cluding event mentions in one document (e.g.,
murdering and killed in doc2) and event men-
tions across the two documents (e.g., shooting in
doc1 and �shootout in doc2). Next, two additional
merges were made by leveraging second-order
inter-dependencies. Specifically, both the event
mentions released in doc1 and presented in doc2
are in the same dependency relation (“nmod”)

with a mention of the trial event cluster, therefore,
a new merge was made between clusters contain-
ing the two mentions. Following this, the event
mentions court hearing in doc1 and trial in doc2
were identified to have multiple coreferent events
in their sentential contexts, therefore, the clusters
containing these two event mentions were merged
as well.

4 Detailed System Description:
Exploiting Interdependencies between
Events

4.1 Document Clustering

Our approach starts with a pre-processing step that
clusters input documents (D) into a set of docu-
ment clusters (C). This is meant to reduce search
space and mitigate errors (Lee et al., 2012). In
our experiments, we used the Affinity Propaga-
tion algorithm (Buitinck et al., 2013) on tf − idf
vectors, where terms are only proper nouns and
verbs (excludes reporting and auxiliary verbs) in
the document. While it is interesting to under-
stand the influences of wrong document clusters
to event coreference, this algorithm yielded per-
fect document clusters on the benchmark ECB+
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dataset (Cybulska and Vossen, 2014b,a). This is
consistent with the prior study (Lee et al., 2012)
on the related ECB dataset (Bejan and Harabagiu,
2010) 1, which shows that document clustering in
the ECB dataset is trivial.

Algorithm 1:
input: set of Documents D

Within-Document Classifier: ΘWD
Cross-Document Classifier: ΘCD

// clusters of event mentions

1 EM = {}
// clusters of Documents

2 C = ClusterDocument(D)
3 for each document cluster c in C do
4 EM′ = {Singleton Clusters}

// Iterative WD and CD Merging

6 while iterate do
7 iterate = False
8 for each two clusters E1, E2 ∈ EM′
s.t. ∃e1 ∈ E1, e2 ∈ E2, (e1, e2) ∈ a Doc, and
score(ΘWD, e1, e2) > 0.60 do
9 Merge(E1, E2, EM′)
10 iterate = True
11 if not iterate break
12 iterate = False
13 for each two clusters E1, E2 ∈ EM′
s.t. ∃e1 ∈ E1, e2 ∈ E2, (e1, e2) /∈ a Doc, and
score(ΘCD, e1, e2) > 0.90 do
14 Merge(E1, E2, EM′)
15 iterate = True

// Exploiting Second-Order Inter-

dependencies Across Event Chains

16 while ∃ two clusters E1, E2 ∈ EM′ s.t.
GovernorModifierRelated(E1, E2,ΘCD) do
17 EM′ = Merge(E1, E2, EM′)
18 while ∃ two clusters E1, E2 ∈ EM′ s.t.
ContextSimilarity(E1, E2,ΘCD) do
19 EM′ = Merge(E1, E2, EM′)
20 EM = EM + EM′
21 output: EM

4.2 Iterative WD and CD Merging

We iteratively conduct WD merges and CD
merges until no more merge can be done. We train
pairwise classifiers for identifying event clusters
to merge. Specifically for WD merges as indi-
cated in lines 8-10 in Algorithm 1, we iteratively
go through pairs of clusters that contain a pair

1The ECB+ dataset is an extended version of the ECB
dataset. Both datasets have documents for the same 43 topics.

of within-document event mentions, one mention
from each cluster. If the similarity score between
the two event mentions is above a tuned threshold
of 0.6 2, we merge the two clusters. Similarly, for
CD merges described in lines 13-15 of Algorithm
1, we iteratively go through pairs of clusters that
contain a pair of cross-document event mentions
and merge the two clusters if the similarity score
between the two event mentions is above another
tuned threshold of 0.9 3. Following each cluster
pair merge, arguments are combined for the two
merged clusters.

4.3 Merging by Exploiting Second-Order
Inter-dependencies Across Event Chains

Intuitively, two event mentions that share events
in their contexts are likely to be coreferent. Simi-
larly, if their context events are coreferent, the two
events are likely to be coreferent as well.

First, if two event mentions are in the
same dependency relation with two other event
mentions that are known coreferent, then the
first two event mentions are likely to de-
scribe the same real world event as well. In
steps 16-17 of Algorithm 1, we perform event
cluster merges by collecting evidence pertain-
ing to dependency relations. The subrou-
tine GovernorModifierRelated (E1, E2,ΘCD)
checks whether two event mentions e1 and e2,
from clusters E1 and E2 respectively, have a re-
lated event e3 from another cluster E3, such that
E3 /∈ {E1, E2} and pairs (e1, e3), (e2, e3) are
linked with the same dependency relation. Note
that observing shared event mentions in the con-
texts will increase the likelihood that the two event
mentions are coreferent, but we can not suffi-
ciently infer the coreference relation yet, we still
need to look at features describing the event men-
tions. Therefore, if the condition was satisfied,
the subroutine eventually makes merges based on
the CD confidence score assigned to the event pair
(e1, e2) but using a lower threshold of 0.8.

In addition, seeing coreferent event mentions in
the sentential contexts of two events will increase
the likelihood that the two events are coreferent
as well. Then as shown in steps 18-19, we fur-

2all tunings are performed on Validation dataset (topics
23-25)

3Note that these high threshold for WD- and CD- classi-
fiers are meant to retain high precision and avoid error prop-
agation in subsequent stages. Output from each classifier is a
number bounded in [0,1].
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Figure 2: Pairwise Classifiers for resolving (a) Within-Document Coreference Links (b) Cross-Document
Coreference Links. EM: event mentions; Arg0, Arg1, ArgM:LOC, ArgM:TMP: semantic roles.

ther use context events co-occurring in the same
sentence as another parameter to perform addi-
tional clustering. SubroutineContextSimilarity
(E1, E2,ΘCD) generates a context vector (CV) for
each event cluster and check whether cosine sim-
ilarity between context vectors of two clusters E1

andE2 (cos( ~CV1, ~CV2)) is above 0.7. Specifically,
we define context clusters for an event mention as
the different event clusters that have event men-
tions co-occurring in the same sentence. Then the
context vector of an event cluster has an entry for
each of its context clusters, with the value to be the
number of sentences where event mentions from
the two clusters co-occur. This subroutine also
makes merges based on the CD confidence score
using the same lower threshold of 0.8.

5 Distinguishing WD and CD Merging

We implement two distinct pairwise classifiers to
effectively utilize the distributional variations in
WD and CD clusters. The first classifier (WD)
is used for calculating a similarity between two
event mentions within a document and recogniz-
ing coreferent event mention pairs. The second
classifier (CD) is used for calculating a similar-
ity between two event mentions across two doc-
uments and then identifying coreferent event men-
tion pairs across documents. Both classifiers were
implemented as neural nets (Chollet, 2015). The
architectures of the two classifiers are shown in
Figure 2.

WD Classifier: the neural network based WD
classifier essentially inherits the features that have

been shown effective in previous event corefer-
ence studies (Ahn, 2006; Chen et al., 2009), in-
cluding both features for event words and fea-
tures for their arguments. Specifically, the classi-
fier includes a common neural layer shared by two
event mentions to embed event lemma and parts-
of-speech features. Then the classifier calculates
cosine similarity and euclidean distance between
two event embeddings, one per event mention. In
addition, the classifier includes a neural layer com-
ponent to embed event arguments that are over-
lapped between the two event mentions. Its out-
put layer takes the calculated cosine similarity and
euclidean distance between event mention embed-
dings as well as the embedding of the overlapped
event arguments as input, and output a confidence
score to indicate the similarity of the two event
mentions.

CD Classifier: the CD classifier mimics the
WD classifier except that the CD classifier con-
tains an additional LSTM layer (Hochreiter and
Schmidhuber, 1997) to embed context words. The
LSTM layer is shared by both event mentions in
order to calculate context word embeddings for
both event mentions. Specifically, three words to
each side of an event word together with the event
word itself are used to calculate the context em-
bedding for each event mention. The classifier
then calculates cosine similarity and euclidean dis-
tance between two context embeddings as well.
The output neural net layer will take two sets
of cosine similarity and euclidean distance scores
that have been calculated w.r.t. context embed-
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dings and event word embeddings, as well as the
embedding of the overlapped event arguments as
input, and further calculate a confidence score
indicating the similarity of two event mentions
across documents.

5.1 Characteristics of WD and CD Event
Linking

In order to further understand characteristics of
within- and cross-document event linking, we
trained two classifiers having the same CD clas-
sifier architecture (Figure 2(b)) but with differ-
ent sets of event pairs, within-document or cross-
document event pairs, then analyzed the impacts
of features on each type of event linking by com-
paring the neural net learned weights for each fea-
ture. Table 1 shows the comparisons of feature
weights.

Features WD CD
Event Word Embedding: Euc 1.017 0.207
Event Word Embedding: Cos 1.086 1.142
Context Embedding: Euc 0.038 0.422
Context Embedding: Cos 0.004 3.910
Argument Embedding 0.349 3.270

Table 1: Comparisons of Feature Weights
Learned Using In-doc or Cross-doc Coreferent
Event Pairs, Euc: Euclidean Distance, Cos: Co-
sine Similarity

We can see that within-document event linking
mainly relies on the euclidean distance and co-
sine similarity scores calculated using event word
features, with a reasonable amount of weight as-
signed to overlapped arguments’ embedding as
well. However, only very small weights were as-
signed to the similarity and distance scores calcu-
lated using context embeddings. In contrast, in the
classifier trained with cross-doc coreferent event
mention pairs, the highest weight was assigned to
the cosine similarity score calculated using con-
text embeddings of two event mentions. Addi-
tionally, both the cosine similarity score calculated
using event word embeddings and the overlapped
argument features were assigned high weights as
well. The comparisons clearly demonstrate the
significantly different nature of WD and CD event
coreference.

5.2 Neural Net Classifiers and Training
In both WD and CD classifiers, we use neural net-
work layer with 60 neurons for embedding event
word features and another layer with 1 neuron

for embedding argument features. Additionally,
in CD classifier, we use an LSTM layer with 30
neurons to embed context features. Dropout of
0.25 was applied to both the event word neural
net layer and the context layer. We used sig-
moid activation function for the dense layers and
tanh activation for the LSTM layer. We used 300-
dimensional word embeddings and one hot 374 di-
mensional pos tag embeddings in all our experi-
ments. Therefore, input to word embedding layer
is a 337-dimensional vector and to LSTM layer is
300*7 dimensional vectors.

We train both classifiers using the ECB+ cor-
pus (Cybulska and Vossen, 2014b,a). We train the
WD classifier using all pairs of WD event men-
tions that are in an annotated event chain as pos-
itive instances and using all pairs of WD event
mentions that are not in an annotated event chain
as negative instances. However, there are signif-
icantly more CD coreferent event mention pairs
annotated in the ECB+ corpus, therefore, we ran-
domly sampled 70% of all the CD coreferent event
mention pairs as positive instances and randomly
sampled from non-coreferent CD event mention
pairs as negative instances. Specifically, number
of negative instances are kept 5 times of positive
instances.

Note that the pairwise classifiers will be used
throughout the iterative merging stage. However,
after each merge, argument propagation is con-
ducted to enrich features for each event mention in
the merged cluster and the number of arguments of
an event mention will grow after several merges.
In order to account for the growing number of ar-
guments in iterative merging, we augment argu-
ments for each event mention in training instances
with arguments derived from other event mentions
in the same pair. The augmenting was performed
randomly for only 50% of event mentions.

6 Evaluation

We perform all the experiments on the ECB+
corpus (Cybulska and Vossen, 2014b,a), which
is an extension to the earlier EventCorefBank
(ECB) (Bejan and Harabagiu, 2010) dataset. We
have adopted the settings used in Yang et al.
(2015). We divide the dataset into training set
(topics 1-20), validation set (topics 21-23) and test

4Corresponding to the unique 36 POS tags based on the
Stanford POS tagger (Toutanova et al., 2003) and an addi-
tional ’padding’.
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set (topics 24-43). Table 2 shows the distribution
of the corpus.

Train Dev Test Total
#Documents 462 73 447 982
#Sentences 7,294 649 7,867 15,810
#Event Mentions 3,555 441 3,290 7,286
#CD Chains 687 47 486 1,220
#WD Chains 2,499 316 2,137 4,952
Avg. WD chain length 2.835 2.589 2.553 2.686
Avg. CD chain length 5.17 9.39 6.77 5.98

Table 2: ECB+ Corpus Statistics.

We used event mentions identified by CRF
based event extractor used in Yang et al.
(2015) and extracted event arguments by apply-
ing state-of-the-art semantic role labeling system
(SwiRL (Surdeanu et al., 2007)). In addition,
we used the Stanford parser (Chen and Manning,
2014) for generating dependency relations, parts-
of-speech tags and lemmas. We use pre-trained
Glove vectors (Pennington et al., 2014)5 for word
representation and one-hot vectors for parts-of-
speech tags.

We evaluate our model using four commonly
adopted event coreference evaluation metrics,
namely, MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAFe (Luo, 2005) and
CoNLL F1 (Pradhan et al., 2014). We used the
publicly available official implementation of re-
vised coreference scorer (v8.01).6

6.1 Baseline Systems

We compare our iterative event coreference reso-
lution model with five baseline systems.

LEMMA: The Lemma match baseline links
event mentions within- or cross- documents which
have the same lemmatized head word. It is often
considered a strong baseline for this task.

HDDCRP (Yang et al., 2015): The second base-
line is the supervised Hierarchical Distance De-
pendent Bayesian Model, the most recent event
coreference system evaluated on the same ECB+
dataset. This model uses distances between event
mentions, generated using a feature-rich learnable
distance function, as Bayesian priors for single
pass non-parametric clustering.

HDP-LEX7: A reimplementation of the unsu-
pervised hierarchical bayesian model by Bejan

5 Trained on 840 billion tokens of Common Crawl data,
http://nlp.stanford.edu/projects/glove/

6 https://github.com/conll/reference-coreference-scorers
7 The results were taken from the paper Yang et al. (2015).

and Harabagiu (2010, 2014).
Agglomerative 7: A Reimplementation of two-

step agglomerative clustering model, WD cluster-
ing followed by CD clustering (Chen et al., 2009).

We have trained our systems using the same
ECB+ dataset and the same set of event mentions
as these prior systems.

6.2 Our Systems
We evaluate several variation systems of our pro-
posed model.

Common Classifier (WD or CD): the system
implementing only the first stage of iterative WD
& CD merging. In addition, the same neural net
classifier with the architecture as shown in Figure
2(a) (the WD classifier) or in Figure 2(b) (the CD
classifier) was applied for both WD and CD merg-
ing. The neural net classifiers were trained using
all coreferent event mention pairs including both
within-document and cross-document ones.

WD and CD Classifiers: distinguishes WD from
CD merges by using two distinct classifiers (Fig-
ure 2(a), 2(b)) in the first stage of the algorithm.

+ 2nd Order Relations: after iterative WD and
CD merges within each individual chain as sug-
gested by pairwise classifiers (the first stage), fur-
ther merges (the second stage) were conducted
leveraging second order event inter-dependencies
across event chains.

6.3 Results
Table 3 shows the comparison results for both
within-document and cross-document event coref-
erence resolution. In the first stage of iterative
merging, using two distinct WD and CD classifiers
for corresponding WD and CD merges yields clear
improvements for both WD and CD event coref-
erence resolution tasks, compared with using one
common classifier for both types of merges. In
addition, the second stage of iterative merging fur-
ther improves both WD and CD event coreference
resolution performance stably by leveraging sec-
ond order event inter-dependencies. The improve-
ments are consistent when measured using various
coreference resolution evaluation metrics.

Our full model achieved more than 8% of
improvements when compared with the lemma
matching baseline, using the CoNLL F1-score for
both WD and CD coreference resolution tasks.
Furthermore, it outperforms state-of-the-art HD-
DCRP model for both WD and CD event corefer-
ence resolution by 2.1% and 4.9% respectively.
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Cross-Document Coreference Results
B3 MUC CEAFEe CoNLL
R P F1 R P F1 R P F1 F1

LEMMA 39.5 73.9 51.4 58.1 78.2 66.7 58.9 37.5 46.2 54.8
Common Classifier (WD) 46 72.8 56.4 60.4 76.8 68.4 59.5 42.1 49.3 58
+ 2nd Order Relations 48.8 72.1 58.2 61.8 78.9 69.3 59.3 44.1 50.6 59.4
Common Classifier (CD) 44.9 64.7 53 66.1 66.4 66.2 51.9 46.4 49 56.1
+ 2nd Order Relations 52.2 58.4 55.1 70.4 66.2 68.3 54.1 45.2 49.2 57.5
WD & CD Classifiers 49 71.9 58.3 63.8 78.9 70.6 59.3 48.1 53.1 60.7
+ 2nd Order Relations (Full Model) 56.2 66.6 61 67.5 80.4 73.4 59 54.2 56.5 63.6
HDDCRP Yang et al. (2015) 40.6 78.5 53.5 67.1 80.3 73.1 68.9 38.6 49.5 58.7
HDP-LEX Bejan and Harabagiu (2010) 43.7 65.6 52.5 63.5 75.5 69.0 60.2 34.8 44.1 55.2
Agglomerative Chen et al. (2009) 40.2 73.2 51.9 59.2 78.3 67.4 65.6 30.2 41.1 53.6

Within-Document Coreference Results
LEMMA 56.8 80.9 66.7 35.9 76.2 48.8 67.4 62.9 65.1 60.2
Common Classifier (WD) 59.7 80.5 68.6 44.6 75 55.9 68.2 67.7 67.9 64.2
+ 2nd Order Relations 62.7 79.4 70 50.3 75.2 60.3 68.6 70.5 69.5 66.6
Common Classifier (CD) 65.2 67.1 66.1 47.6 53.9 50.5 69.2 62.1 65.5 60.7
+ 2nd Order Relations 66.9 69.1 68 56.7 55.1 55.9 70.4 63.6 66.8 62.8
WD & CD classifiers 63.8 79.9 70.9 51.6 75.3 61.2 68.6 70.5 69.5 67.2
+ 2nd Order Relations (Full Model) 69.2 76 72.4 58.5 67.3 62.6 67.9 76.1 71.8 68.9
HDDCRP Yang et al. (2015) 67.3 85.6 75.4 41.7 74.3 53.4 79.8 65.1 71.7 66.8
HDP-LEX Bejan and Harabagiu (2010) 67.6 74.7 71.0 39.1 50.0 43.9 71.4 66.2 68.7 61.2
Agglomerative Chen et al. (2009) 67.6 80.7 73.5 39.2 61.9 48.0 76.0 65.6 70.4 63.9

Table 3: Within- and cross-document event coreference result on ECB+ Corpus.

7 Discussion and Analysis

Cross-Document Coreference Results
Fmeasure B3 MUC CEAFEe CoNLL
1 Iteration 56 69.3 50.3 58.5
2 Iterations 57.9 69.9 52.4 60.1
3 Iterations 58.3 70.6 53.1 60.7

Within-Document Coreference Results
1 Iteration 69.7 55.8 68.8 64.8
2 Iterations 70.2 60.3 69.4 66.6
3 Iterations 70.9 61.2 69.5 67.2

Table 4: Per-iteration Performance Analysis for
the First Stage of Iterative WD & CD Merging.

Stage I: The first stage of our algorithm, itera-
tive WD and CD merging, went for three iterations
(See Table 4). Our analysis of merges in each iter-
ation shows that most of the merges in the initial it-
eration are between event mentions with the same
lemma or shared arguments. In the second and
third iterations, more merges were between event
mentions with synonymous lemmas or shared ar-
guments that have been accumulated in previous
iterations. Example merges between synonymous
event mentions include (nominate, nominations),
(die, death), (murder, killing), (hit, strike), (attack,
bomb) etc.

Stage II: It is even more intriguing to discuss
the clusters that were merged in stage 2 of merg-
ing, that leverages second order event interdepen-
dencies across event chains. We found that al-

most all of the 81 merges happening in the second
stage are between event mentions that are quite
dissimilar including (take over, replace), (unveil,
announce), (win, victory, comeback), (downtime,
problem, outage), (cut, damage), (spark, trigger)
etc. Most interestingly, two event pairs which are
antonymous to each other, (win, beat) and (defeat,
victory), were also correctly merged.

Errors: while our iterative algorithm has gradu-
ally resolved coreference relations between event
mentions that are synonyms or distant by sur-
face forms, many coreference links were over-
looked and many unrelated events were wrongly
predicted as coreferential. We analyzed our sys-
tem’s final predictions in order to identify the most
common sources of errors.

Missed Coreference Links: We found that
many event mentions have few or no argument
in their local context, and our event coreference
resolution system often failed to link these event
mentions with their coreferential mentions. For
instance, in the following event mention pairs
that were overlooked by the system, (operations,
raids), (operations, sweep), (suicide, hang), (pros-
ecution, jail), and (participating, role), one or both
event mentions do not have an argument in their
local context. This is mainly because the base
WD and CD classifiers heavily rely on features
extracted from the local context of two event men-
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tions, including event words and event arguments,
in resolving the coreference relation. For these
event mentions having few arguments identified,
the iterative algorithm may get stuck from the be-
ginning.

While it is a grand challenge to further re-
solve coreferential relations between event men-
tions that do not have sufficient local features,
these missed coreference links easily break a long
and influential event chain into several sub-chains,
which makes event coreference resolution results
less useful for many potential applications, such as
text summarization.

Wrongly Predicted Coreference Links: The
majority of this type of errors are between non-
coreferent event mentions that have the same
lemma. This is especially common among report-
ing event mentions and light verb mentions. For
instance, we found that 24 non-coreferent event
clusters corresponding to reporting events, e.g.,
said, told and reported, and 13 non-coreferent
clusters corresponding to light verbs, e.g., take,
give and get, were incorrectly merged by the sys-
tem.

8 Conclusions and Future Work

We presented a novel approach for event coref-
erence resolution that extensively exploits event
inter-dependencies between event mentions in the
same chain and event mentions across chains.
The approach iteratively conducts WD and CD
merges followed by further merges leveraging sec-
ond order event inter-dependencies across chains.
We further distinguish WD and CD merges using
two distinct classifiers that capture differences of
within- and cross-document event clusters in fea-
ture distributions. Our system was shown effec-
tive in both WD and CD event coreference and has
outperformed the previous best event coreference
system in both tasks.

Note that our approach is flexible to incorpo-
rate different strategies for conducting WD and
CD merges. In the future, we plan to continue
to investigate the distinct characteristics of WD
and CD coreferent event mentions in order to fur-
ther improve event coreference performance. Es-
pecially, we are interested in including additional
discourse-level features for improving WD coref-
erence merge performance, such as, features indi-
cating the distance between two event mentions in
a document.
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Abstract

In neural text generation such as neural
machine translation, summarization, and
image captioning, beam search is widely
used to improve the output text quality.
However, in the neural generation set-
ting, hypotheses can finish in different
steps, which makes it difficult to decide
when to end beam search to ensure op-
timality. We propose a provably optimal
beam search algorithm that will always re-
turn the optimal-score complete hypothe-
sis (modulo beam size), and finish as soon
as the optimality is established (finishing
no later than the baseline). To counter
neural generation’s tendency for shorter
hypotheses, we also introduce a bounded
length reward mechanism which allows a
modified version of our beam search al-
gorithm to remain optimal. Experiments
on neural machine translation demonstrate
that our principled beam search algorithm
leads to improvement in BLEU score over
previously proposed alternatives.

1 Introduction

In recent years, neural text generation using re-
current networks have witnessed rapid progress,
quickly becoming the state-of-the-art paradigms
in machine translation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2014), summarization (Rush et al., 2015; Ranzato
et al., 2016), and image captioning (Vinyals et al.,
2015; Xu et al., 2015). In the decoder of neu-
ral generation, beam search is widely employed to
boost the output text quality, often leading to sub-
stantial improvement over greedy search (equiva-
lent to beam size 1) in metrics such as BLEU or

† Current address: Google Inc., New York, NY, USA.

ROUGE; for example, Ranzato et al. (2016) re-
ported +2.2 BLEU (on single reference) in trans-
lation and +3.5 ROUGE-2 in summarization, both
using a beam of 10. Our own experiments on ma-
chine translation (see Sec. 5) show +4.2 BLEU (on
four references) using a beam of 5.

However, unlike traditional beam search in
phrase-based MT or shift-reduce parsing where
all hypotheses finish in the same number of steps,
here in neural generation, hypotheses can finish in
vastly different numbers of steps. Once you find a
completed hypothesis (by generating the </s> sym-
bol), there are still other active hypotheses in the
beam that can continue to grow, which might lead
to better scores. Therefore when can you end the
beam search? How (and when) can you guarantee
that the returned hypothesis has the optimal score
modulo beam size?

There have not been satisfying answers to these
questions, and existing beam search strategies are
heuristic methods that do not guarantee optimality.
For example, the widely influential RNNsearch
(Bahdanau et al., 2014) employs a “shrinking
beam” method: once a completed hypothesis is
found, beam size shrinks by 1, and beam search
would finish if beam size shrinks to 0 or if the
number of steps hits a hard limit. The best scoring
completed hypothesis among all completed ones
encountered so far is returned. On the other hand,
OpenNMT (Klein et al., 2017), whose PyTorch
version will be the baseline in our experiments,
uses a very different strategy: beam search ter-
minates whenever the highest-ranking hypothesis
in the current step is completed (which is also the
one returned), without considering any other com-
pleted hypotheses. Neither of these two methods
guarantee optimality of the returned hypothesis.

We therefore propose a novel and simple beam
search variant that will always return the optimal-
score complete hypothesis (modulo beam size),
and finish as soon as the optimality is established.
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However, another well-known problem remains,
that the generated sentences are often too short,
compared to previous paradigms such as SMT
(Shen et al., 2016). To alleviate this problem, pre-
vious efforts introduce length normalization (as
a switch in RNNsearch) or length reward (He
et al., 2016) borrowed from SMT (Koehn et al.,
2007). Unfortunately these changes will invali-
date the optimal property of our proposed algo-
rithm. So we introduce a bounded length reward
mechanism which allows a modified version of
our beam search algorithm to remain optimal. Ex-
periments on neural machine translation demon-
strate that our principled beam search algorithm
leads to improvement in BLEU score over previ-
ously proposed alternatives.

2 Neural Generation and Beam Search

Here we briefly review neural text generation and
then review existing beam search algorithms.

Assume the input sentence, document, or image
is embedded into a vector x, from which we gen-
erate the output sentence y which is a completed
hypothesis:1

y∗ = argmax
y:comp(y)

p(y | x)

= argmax
y:comp(y)

∏

i≤|y|
p(yi | x,y<i)

where y<i is a popular shorthand notation for the
prefix y0y1...yi−1. We say that a hypothesis y is
completed, notated comp(y), if its last word is
</s>, i.e.,

comp(y)
∆
= (y|y| = </s>)

in which case it will not be further expanded.
A crucial difference in RNN-based neural gen-

eration compared to previous paradigms such as
phrase-based MT is that we no longer decom-
pose p(yi | x,y<i) into the translation model,
p(yi | x), and the language model, p(yi | y<i),
and more importantly, we no longer approximate
the latter by n-gram models. This ability to model
arbitrarily-lengthed history using RNNs is an im-
portant reason for NMT’s substantially improved
fluency compared to SMT.

To (approximately) search for the best output
y∗, we use beam search, where the beam Bi at step

1For simplicity reasons we do not discuss bidirectional
LSTMs and attentional mechanisms here but our algorithms
still work with those encoders (we have tested them).

i is an ordered list of size (at most) b, and expands
to the next beam Bi+1 of the same size:

B0 =[⟨<s>, p(<s> | x)⟩]

Bi =
b

top{⟨y′◦ yi, s·p(yi|x,y)⟩ | ⟨y′, s⟩ ∈ Bi−1}

where the notation topb S selects the top b scoring
items from the set S, and each item is a pair ⟨y, s⟩
where y is the current prefix and s is its accumu-
lated score (i.e., product of probabilities).

3 Optimal Beam Search (modulo beam size)

We propose a very simple method to optimally fin-
ish beam search, which guarantees the returned
hypothesis is the highest-scoring completed hy-
pothesis modulo beam size; in other words, we
will finish as soon as an “optimality certificate”
can be established that future hypotheses will
never score better than the current best one.

Let best≤i be the best completed hypothesis so
far up to step i, i.e.,

best≤i
∆
= max{y ∈ ∪j≤iBj | comp(y)} (1)

We update it every time we find a completed hy-
pothesis (if there is none yet, then it remains unde-
fined). Now at any step i, if best≤i is defined, and
the highest scoring item Bi,1 in the current beam
Bi scores worse than or equal to best≤i, i.e., when

Bi,1 ≤ best≤i (2)

we claim the optimality certificate is established,
and terminate beam search, returning best≤i (here
smaller means worse, since we aim for the highest-
probability completed hypothesis).

Theorem 1 (optimality). When our beam search
algorithm terminates, the current best completed
hypothesis (i.e., best≤i) is the highest-probability
completed hypothesis (modulo beam size).

Proof. If Bi,1 ≤ best≤i then Bi,j ≤ Bi,1 ≤
best≤i for all items Bi,j in beam Bi. Future de-
scendants grown from these items will only be no
better, since probability ≤ 1, so all items in current
and future steps are no better than best≤i.

Theorem 2 (early stopping). Our beam search al-
gorithm terminates no later than OpenNMT’s ter-
mination criteria (when Bi,1 is completed).

Proof. When Bi,1 is itself completed, best≤i =
max{Bi,1, · · · } ≥ Bi,1, so our stopping criteria is
also met.
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Figure 1: Comparison between optimal beam
search and OpenNMT-py’s default search, in terms
of search quality (model score, ↑ is better).

This above Theorem shows that our search is
stopping earlier once the optimality certificate is
established, exploring fewer items than Open-
NMT’s default search. Also note that the latter,
even though exploring more items than ours, still
can return suboptimal solutions; e.g., when Bi,1 is
worst than best≤i (they never stored best≤i). In
practice, we noticed our search finishes about 3–
5 steps earlier than OpenNMT at a beam of 10,
and this advantage widens as beam size increases,
although the overall speedup is not too notice-
able, given the target language sentence length is
much longer. Also, our model scores (i.e., log-
probabilities) are indeed better (see Fig. 1), where
the advantage is also more pronounced with larger
beams (note that OpenNMT baseline is almost flat
after b = 10, while our optimal beam search still
steadily improves). Combining these two Theo-
rems, it is interesting to note that our method is
not just optimal but also faster.

4 Optimal Beam Search for Bounded
Length Reward

However, optimal-score hypothesis, though satis-
fying in theory, is not ideal in practice, since neu-
ral models are notoriously bad in producing very
short sentences, as opposed to older paradigms
such as SMT (Shen et al., 2016). To alleviate
this problem, two methods have been proposed:
(a) length normalization, used in RNNsearch as
an option, where the revised score of a hypothesis
is divided by its length, thus favoring longer sen-
tences; and (b) explicit length reward (He et al.,
2016) borrowed from SMT, rewarding each gen-

erated word by a constant tuned on the dev set.
Unfortunately, each of these methods breaks

the optimality proof of our beam search algo-
rithm in Section 3, since a future hypothesis, be-
ing longer, might end up with a higher (revised)
score. We therefore devise a novel mechanism
called “bounded length reward”, that is, we reward
each word until the length of the hypothesis is
longer than the “estimated optimal length”. In ma-
chine translation and summarization, this optimal
length l can be ratio · |x| where |x| is the source
sentence length, and ratio is the average ratio of
reference translation length over source sentence
length on the dev set (in our Chinese-to-English
NMT experiments, it is 1.27 as the English side
is a bit longer). Note that we use the same ratio
estimated from dev on test, assuming that the op-
timal length ratio for test (which we do not know)
should be similar to those of dev ones. We denote
s̃c(y) to be the revised score of hypothesis y with
the bounded length reward, i.e.,

s̃c(y)
∆
= sc(y) + r · min{l, |y|}.

We also define ˜best≤i to be the revised version
of best≤i that optimizes the revised instead of the
original score, i.e.,

˜best≤i
∆
= argmax

y∈∪j≤iBj ,comp(y)
s̃c(y)

Now with bounded length reward, we can mod-
ify our beam search algorithm a little bit and still
guarantee optimality. First we include in the re-
vised cost a reward r for each generated word, as
long as the length is less than l, the estimated op-
timal length. If at step i, the highest scoring item
Bi,1’s revised score (i.e., including bounded length
reward) plus the heuristic “future” extra length re-
ward of a descendant, r · max{l − i, 0}, is worse
than (or equal to) the similarly revised version of
best≤i, i.e.,

s̃c(Bi,1) + r · max{l − i, 0} ≤ s̃c( ˜best≤i) (3)

at which time we claim the revised optimality
certificate is established, and terminate the beam
search and return ˜best≤i.

Actually with some trivial math we can simplify
the stopping criteria to

sc(Bi,1) + r · l ≤ s̃c( ˜best≤i). (4)

This much simplified but still equivalent crite-
ria can speed up decoding in practice, since this
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sents tokens vocab. w/ BPE
Chinese 1M 28M 112k 18k
English 1M 23M 93k 10k

Table 1: Machine translation training set.

means we actually do not need to compute the re-
vised score for every hypothesis in the beam; we
only need to add the bounded length reward when
one is finished (i.e., when updating ˜best≤i), and
the simplified criteria only compares it with the
original score of a hypothesis plus a constant re-
ward r · l.

Theorem 3 (modified optimality). Our modified
beam search returns the highest-scoring com-
pleted hypothesis where the score of an item is its
log-probability plus a bounded length reward.

Proof. by admissibility of the heuristic.

Theorem 4 (correctness of the simplified criteria).
Eq. 4 is equivalent to Eq. 3.

Proof. trivial.

5 Experiments: Neural Translation

5.1 Data Preparation, Training, and Baselines

We conduct experiments on Chinese-to-English
neural machine translation, using OpenNMT-
py,2 the PyTorch port of the Lua-based Open-
NMT (Klein et al., 2017). We choose this li-
brary because PyTorch’s combination of Python
with Torch’s dynamic computation graphs made
it much easier to implement various search algo-
rithms on it than on Theano-based implementa-
tions derived from RNNsearch (Bahdanau et al.,
2014) (such as the widely used GroundHog3 and
Laulysta4 codebases) as well as the original Lu-
aTorch version of OpenNMT. We use 1M Chi-
nese/English sentence pairs for training (see Ta-
ble 1 for statistics); we also trained on 2M sen-
tence pairs and only saw a minor improvement so
below we report results from 1M training. To al-
leviate the vocabulary size issue we employ byte-
pair encoding (BPE) (Sennrich et al., 2015) which
reduces the source and target language vocabulary
sizes to 18k and 10k, respectively; we found BPE
to significantly improve BLEU scores (by at least
+2 BLEU) and reduce training time. Following

2https://github.com/opennmt/opennmt-py
3https://github.com/lisa-groundhog/
4https://github.com/laulysta/nmt/

reward r 0 1 1.1 1.2 1.3 1.4 1.5
BLEU 32.2 34.6 34.6 34.7 34.6 34.6 34.6
len. ratio 0.88 .95 .96 .97 .98 .98 .99
best b 4 17 17 15 20 20 17

Table 2: Tuning length reward r (with beam size
b=1..20) for optimal bounded-reward beam search.

other papers on Chinese-English translation such
as Shen et al. (2016), we use NIST 06 newswire
portion (616 sentences) for development and NIST
08 newswire portion (691 sentences) for testing;
we will report case-insensitive 4-reference BLEU-
4 scores (using original segmentation).

Following OpenNMT-py’s default settings, we
train our NMT model for 20 epochs to minimize
perplexity on the training set (excluding 15% sen-
tences longer than 50 source tokens), with a batch
size of 64, word embedding size of 500, and
dropout rate of 0.3. The total number of param-
eters is 29M. Training takes about an hour per
epoch on Geforce 980 Ti GPU, and the model at
epoch 15 reaches the lowest perplexity on the dev
set (9.10) which is chosen as the model for testing.

On dev set, the default decoder of OpenNMT-py
reaches 29.2 BLEU with beam size 1 (greedy) and
33.2 BLEU with the default beam size of 5. To put
this in perspective, the most commonly used SMT
toolkit Moses (Koehn et al., 2007) reaches 30.1
BLEU (with beam size 70) using the same 1M sen-
tence training set (trigram language model trained
on the target side). With 2.56M training sentence
pairs, Shen et al. (2016) reported 32.7 BLEU on
the same dev set using Moses and 30.7 BLEU
using the baseline RNNsearch (GroundHog) with
beam size 10 (without BPE, without length nor-
malization or length reward). So our OpenNMT-
py baseline is extremely competitve.

5.2 Beam Search & Bounded Length Reward

We compare the following beam search variants:

1. OpenNMT-py’s default beam search, finish-
ing only when the top hypothesis in a step is
completed (see Section 2);

2. The “shrinking beam” method in RNNsearch
with two variants to encourage longer trans-
lations:

(a) length normalization; Google NMT (Wu
et al., 2016) also adopted a similar
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Figure 2: BLEU score and length ratio against beam size (on dev) of various beam search algorithms for
neural machine translation.

mechanism.
(b) unbounded length reward (tuned on dev

set) in Baidu NMT (He et al., 2016).

3. Our optimal-ending beam search (Section 3);

4. Our modified optimal-ending beam search
for bounded length reward (Section 4).

Notice that length reward has no effect on both
methods 1 and 2(a) above. To tune the optimal
length reward r we run our modified optimal-
ending beam search algorithm with all combina-
tions of r = 0, 0.5, 1, 1.1, 1.2, 1.3, 1.4 with beam
sizes b = 1 . . . 20 on the dev set, since different
beam sizes might prefer different length rewards.
We found r = 1.2 to be the best among all length
rewards (see Table 2) which is used in Figure 2
and b = 15 is the best for r = 1.2.

We can observe from Figure 2 that (a) our opti-
mal beam search with bounded length reward per-
forms the best, and at b=15 it is +5 BLEU better
than b=1; (b) pure optimal beam search degrades
after b=4 due to extremely short translations; (c)
both the shrinking beam method with length nor-
malization and OpenNMT-py’s default search al-
leviate the shortening problem, but still produce
very short translations (length ratio ∼0.9). (d) the
shrinking beam method with length reward works
well, but still 0.3 BLEU below our best method.
These are confirmed by the test set (Tab. 3).

6 Conclusions

We have presented a beam search algorithm for
neural sentence generation that always returns

decoder b dev test
Moses 70 30.14 29.41

OpenNMT-py default 16 33.60 29.75
shrinking, len. norm. 17 33.71 30.11

shrinking, reward r=1.3 15 34.42 30.37
optimal beam search, r=1.2 15 34.70 30.61

Table 3: Final BLEU scores on the test set (nist
08) using best settings from the dev set (nist 06).

optimal-score completed hypotheses. To counter
neural generation’s natural tendancy for shorter
hypotheses, we introduced a bounded length re-
ward mechanism which allows a modified version
of our beam search algorithm to remain optimal.
Experiments on top of strong baselines have con-
firmed that our principled search algorithms (to-
gether with our bounded length reward mecha-
nism) outperform existing beam search methods in
terms of BLEU scores. We will release our imple-
mentations (which will hopefully be merged into
OpenNMT-py) when this paper is published. 5
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Abstract

We propose simple and flexible training
and decoding methods for influencing out-
put style and topic in neural encoder-
decoder based language generation. This
capability is desirable in a variety of appli-
cations, including conversational systems,
where successful agents need to produce
language in a specific style and generate
responses steered by a human puppeteer
or external knowledge. We decompose the
neural generation process into empirically
easier sub-problems: a faithfulness model
and a decoding method based on selective-
sampling. We also describe training and
sampling algorithms that bias the genera-
tion process with a specific language style
restriction, or a topic restriction. Human
evaluation results show that our proposed
methods are able to to restrict style and
topic without degrading output quality in
conversational tasks.

1 Introduction

Neural encoder-decoder models have demon-
strated great promise in many sequence gener-
ation tasks, including neural machine transla-
tion (Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2014; Luong et al., 2015; Wu
et al., 2016), image captioning (Xu et al., 2015),
summarization (Rush et al., 2015; Gu et al.,
2016; Kikuchi et al., 2016), and conversation gen-
eration (Vinyals and Le, 2015; Sordoni et al.,
2015; Shang et al., 2015; Shao et al., 2017; Li
et al., 2015). These encouraging early successes
have motivated research interest in training more
natural-sounding conversational systems based on
large volumes of open-domain human-to-human
interactions. In order to create more human-like

chat context Where are you?

Twitter bot i’m on my way to london now.
Star Wars bot we’re heading to the dark side of jabba’s

palace.
Hillary bot i’m here in philadelphia, pennsylvania
Trump bot i went to the white house. we were in

brooklyn.
Kennedy bot i am on the question of the united states.

chat context What are you doing?

Twitter bot i’m just chilling with my dad, i’m just
sitting in the kitchen and listening to music

Star Wars bot i’m doing my magic solo.
Hillary bot i’m running for president, i’m going to be

talking about some of these things
Trump bot i’m building a wall, right now

Kennedy bot today, i am asking the congress for a new
program to make a new effort to increase
the tax privileges and to stimulate

Table 1: Example responses from our Star Wars,
Hillary, Trump, and Kennedy bots with scented
conversation models.

patterns of conversation, the agents need to have
recognizable (and tunable) style, just as individ-
ual humans do, and also need to accept guidance
from separate information processing modules in
order to increase quality of responses. In an ex-
treme case, an agent may be micro-managed by
a human user who uses the neural model to en-
force grammar and style (e.g., a level of polite-
ness, or a type of humor), while driving the con-
tent directly (e.g., by expressing In this manner,
the neural model becomes an authoring tool, rather
than an independent chat-bot. On the other hand,
in fully automated agent systems, the agent may
be influenced by a knowledge database, or some
other artificial information system, while running
in a pre-set style or a style deemed best based on
the course of the conversation.

One obstacle to achieving this with neural lan-
guage generation models is that the sentence rep-
resentation is distributed across all coordinates of
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the embedding vector in a way that is hard to dis-
entangle, and thus control. In order to gain insight
into the full distribution of what a decoder might
produce given the prompt sentence as input, the
model has to be heavily (and sometimes cleverly)
sampled. The second problem is that neural mod-
els only become highly functional after training
with very large amounts of data, while the strongly
recognizable style usually must be defined by a
relatively tiny corpus of examples (e.g., all Sein-
feld episodes, or all popular song lyrics).

In this paper, we address the challenge of how
to enforce the decoder models to mimic a specific
language style with only thousands of target sen-
tences, as well as generating specific content in
that style. We developed and experimented with
several training and decoding procedures to allow
the model to adapt to target language style and
follow additional content guidance. Our experi-
ments, conducted on an open-domain corpus of
Twitter conversations and small persona corpora,
show that our methods are capable of responding
to queries in a transferred style without significant
loss of relevance, and can respond within a specific
topic as restricted by a human. Some examples of
‘scenting’ the base conversation model with par-
ticular styles are shown in Table 1. More can be
found in the Supplementary Material.

2 Related Work

Recurrent neural network based encoder-decoder
models have been applied to machine translation
and quickly achieved state-of-the-art results (Bah-
danau et al., 2014; Luong et al., 2015). As an ex-
tension, the attention mechanism enables the de-
coder to revisit the input sequence’s hidden states
and dynamically collects information needed for
each decoding step. Specifically, our conversa-
tion model is established based on a combination
of the models of (Bahdanau et al., 2014) and (Lu-
ong et al., 2015) that we found to be effective. In
section 3, we describe the attention-based neural
encoder-decoder model we used in detail.

This work follows the line of research initiated
by (Ritter et al., 2011) and (Vinyals and Le, 2015)
who treat generation of conversational dialog as
a data-drive statistical machine translation (SMT)
problem. Sordoni et al. (2015) extended (Rit-
ter et al., 2011) by re-scoring SMT outputs using
a neural encoder-decoder model conditioned on
conversation history. Recently, researchers have

used neural encoder-decoder models to directly
generate responses in an end-to-end fashion with-
out relying on SMT phrase tables(Vinyals and Le,
2015; Sordoni et al., 2015; Shang et al., 2015;
Shao et al., 2017; Li et al., 2015).

Li et al. (2016) defined a “persona” as the char-
acter that an artificial agent, as actor, plays or per-
forms during conversational interactions. Their
dataset requires user identification for all speak-
ers in the training set, while our methods treat the
base data (millions of twitter conversations) as un-
labeled, and the target persona is defined simply
by a relatively small sample of their speech. In this
sense, the persona can be any set of text data. In
our experiments, for example, we used a generic
Star Wars character that was based on the entire
set of Star Wars scripts (in addition to 46 million
base conversations from Twitter). This provides us
with a system that can talk about almost anything,
being able to respond to most prompts, but in a
recognizable Star Wars style. Other possibilities
include training (styling) on famous personalities,
or certain types of poetry, or song lyrics, or even
mixing styles by providing two or more datasets
for styling. Thus our targets are highly recogniz-
able styles, and use of these for emphasis (or cari-
cature) by human puppeteers who can choose from
multiple options and guide neural models in a di-
rection they like. We expect that these tools might
not only be useful in conversational systems, but
could also be popular in social media for text au-
thoring that goes well beyond spelling/grammar
auto correction.

3 Neural Encoder-Decoder Background

In general, neural encoder-decoder models aim at
generating a target sequence Y =

(
y1, . . . , yTy

)

given a source sequenceX = (x1, . . . , xTx). Each
word in both source and target sentences, xt or yt,
belongs to the source vocabulary Vx, and the target
vocabulary Vy respectively.

First, an encoder converts the source se-
quence X into a set of context vectors C =
{h1,h2, . . . ,hTx}, whose size varies with regard
to the length of the source passage. This context
representation is generated using a multi-layered
recurrent neural network (RNN). The encoder
RNN reads the source passage from the first token
until the last one, where hi = Ψ (hi−1,Ex [xt]) .
Here Ex ∈ R|Vx|×d is an embedding matrix con-
taining vector representations of words, and Ψ is
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a recurrent activation unit that we employ in the
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997).

The decoder, which is also implemented as an
RNN, generates one word at a time, based on the
context vector set returned by the encoder. The
decoder’s hidden state h̄t is a fixed-length con-
tinuous vector that is updated in the same way
as encoder. At each time step t in the decoder,
a time-dependent attentional context vector ct is
computed based on the current hidden state of the
decoder h̄t and the whole context set C.

Decoding starts by computing the content-
based score of each context vector as: et,i =
h̄>t Wahi. This relevance score measures how
helpful the i-th context vector of the source se-
quence is in predicting next word based on the de-
coder’s current hidden state h̄>t . Relevance scores
are further normalized by the softmax function:
αt,i =

exp(et,i)∑Tx
j=1 exp(et,j)

, and we call αt,i the at-

tention weight. The time-dependent context vec-
tor ct is then the weighted sum of the context
vectors with their attention weights from above:
ct =

∑Tx
i=1 αt,ihi.

With the context vector ct and the hidden state
ht, we then combine the information from both
vectors to produce an attentional hidden state as
follow: zt = tanh(Wc[ct;ht]). The probability
distribution for the next target symbol is computed
by p(yt = k|ỹ<t, X) ∝ exp(Wszt + bt).

4 Decoding with Selective Sampling

The standard objective function for neural
encoder-decoder models is the log-likelihood of
target T given source S, which at test time yields
the statistical decision problem:

T̂ = arg max
T

{
log p(T |S)}. (1)

However, as discussed in (Li et al., 2015; Shao
et al., 2017), simply conducting beam search over
the above objective will tend to generate generic
and safe responses that lack diversity, such as “I
am not sure”. In section 7.3, we present a ranking
experiment in which we verify that an RNN-based
neural decoder provides a poor approximation of
the above conditional probability, and instead bi-
ases towards the target language model p(T ). For-
tunately, the backward model p(S|T ) empirically
perform much better than p(T |S) on the relevance
ranking task. Therefore, we directly apply Bayes’

rule to Equation 1, as in statistical machine trans-
lation (Brown et al., 1993), and use:

T̂ = arg max
T

{
log p(S|T ) + log p(T )}. (2)

Since p(T |S) is empirically biased towards p(T ),
in practice, this objective also resembles the Max-
imum Mutual Information (MMI) objective func-
tion in (Li et al., 2015).

The challenge now is to develop an effective
search algorithm for a target words sequence that
maximize the product in Equation 2. Here, we
follow a similar process as in (Wen et al., 2015)
which generates multiple target hypotheses with
stochastic sampling based on p(T |S), and then
ranks them with the objective function 2 above.
However, as also observed by (Shao et al., 2017),
step-by-step naive sampling can accumulate errors
as the sequence gets longer.

To reduce language errors of stochastic sam-
pling, we introduce a sample selector to choose
the next token among N stochastically sampled
tokens based on the predicted output word dis-
tributions. The sample selector, which is a
multilayer perceptron in our experiments, takes
the following features: 1) the log-probability
of current sample word in p(wt|S); 2) the
entropy of current predicted word distribution,∑

wt
P (wt|S) logP (wt|S) for all wt in the vo-

cabulary; 3) the log-probability of current sample
word in p(wt|∅), which we found effective in rank-
ing task. The selector outputs a binary variable
that indicates whether the current sample should
be accepted or rejected.

At test time, if none of theN sampled tokens are
above the classification threshold, we choose the
highest scored token. If there are more than 1 ac-
ceptable samples amongN stochastically sampled
tokens, we randomly choose one among them.
Ideally, this permits us to safely inject diversity
while maintaining language fluency. We also use
the sample acceptor’s probabilities as the language
model score P (T ) for objective in equation 2.

As regards directly integrating beam-search, we
found (a) that beam-search often produces a set
of similar top-N candidates, and (b) that decoding
with only the objective p(Y |X) can easily lead to
irrelevant candidates. (See section 7.3) Therefore,
we use the selective-sampling method to generate
candidates for all our experiments; this (a) sam-
ples stochastically then (b) selects using a learned
objective from data. The sample-then-select ap-
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proach encourages more diversity (v.s. MMI’s
beam-search) while still maintain language flu-
ency (v.s. naive-sampling).

5 Output style restriction using a small
‘scenting’ dataset

In this section, we propose three simple yet effec-
tive methods of influencing the language style of
the output in the neural encoder-decoder frame-
work. Our language style restricting setup as-
sumes that there is a large open-domain parallel
corpus that provides training for context-response
relevance, and a smaller monologue speaker cor-
pus that reflects the language characteristics of the
target speaker. We will refer to this smaller set as
a ‘scenting’ dataset, since it hints at, or insinuates,
the characteristics of the target speaker.

5.1 Rank: Search in the Target Corpus

Our first approach to scenting is to simply use
the all sentences in the target speaker’s corpus
as generation candidates, ranked by the objective
(2) for a given prompt. Since these sentences
are naturally-occurring instead of generated word-
by-word, we can safely assume p(T ) is constant
(and high), and so the objective only requires sort-
ing the sentences based on the backward model
p(S|T ).

RNN-based ranking methods are among the
most effective methods for retrieving relevant re-
sponses (Wang and Nyberg, 2015, 2016). Thus
this approach is a very strong baseline. Its lim-
itation is also obvious: by limiting all possible
responses to a fixed finite set of sentences, this
method cannot provide a good response if such a
response is not already in the scenting dataset.

5.2 Multiply: Mixing the base model and the
target language model during generation

In our second method we use both the vanilla
encoder-decoder model trained on open-domain
corpus and the target domain language model
trained on the corpus while decoding output sen-
tence. The idea is to use a speaker’s language
model, which is also RNN-based in our ex-
periments, to restrict the open-domain encoder-
decoder model’s step-by-step word prediction.
Similar ideas have been tested in domain adap-
tation for statistical machine translation (Koehn
and Schroeder, 2007), where both in-domain and
open-domain translation tables were used as can-

didates for generating target sentence. Because
open-domain encoder-decoder models are trained
with various kinds of language patterns and top-
ics, choosing a sequence that satisfies both mod-
els may produce relevant responses that are also
in the target language style. We found that a
straightforward way of achieving this is to multi-
ply the two models’ distributions p1(t|S)λ1p2(t)

λ2

at each point and then re-normalize before sam-
pling. The weights can be tuned either by the per-
plexity on the validation set, or through manually
controlling the trade-off between style restriction
and answer accuracy.

5.3 Finetune: Over-training on Target
Corpus with Pseudo Context

Fine-tuning is a widely used in the neural network
community to achieve transfer learning. This strat-
egy permits us to train the neural encoder-decoder
on a larger general parallel corpus, and then use
the learned parameters to initialize the training of
a styled model. Most of the time, however, the
target speaker’s corpus will lack training data in
parallel form. For example, if we train on song
lyrics or movie scripts, or political speeches, the
data will not be in a question-answer form. To
make encoder-decoder overtraining possible, we
treat every sentence in the scenting corpus as a tar-
get sentence T generated a pseudo context from
the backward model p(S|T ) trained on the open-
domain corpus. Over-training on such pairs im-
parts the scenting dataset’s language characteris-
tics, while retaining the generality of the original
model. We also found that the previous sentence
in the styled corpus (i.e., previous sentence in the
speech) provides helpful context for the current
sentence, analogous with a question-answer link.
Thus we use both pseudo context and the previ-
ous sentence as possible sources S to fine-tune the
in-domain decoder. To avoid overfitting, we stop
overtraining when the perplexity on the in-domain
validation set starts to increase. A corresponding
sample acceptor is also trained for the fine-tuned
model: we found it helpful to initialize this from
the open-domain model’s sample acceptor.

6 Restricting the Output Topic

We further introduce a topic restricting method for
neural decoders based on the Counting Grid (Jo-
jic and Perina, 2011) model, by treating language
guidance as a topic embedding. Our model exten-
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sion provides information about the output topic in
the form of an additional topic embedding vector
to the neural net at each time step.

6.1 CG: Counting Grids
The basic counting grid πk is a set of distribu-
tions on the d-dimensional toroidal discrete grid
E indexed by k. The grids in this paper are bi-
dimensional and typically from (Ex = 32) ×
(Ey = 32) to (Ex = 64) × (Ey = 64) in size.
The index z indexes a particular word in the vo-
cabulary z = [1 . . . Z]. Thus, πi(z) is the proba-
bility of the word z at the d-dimensional discrete
location i, and

∑
z πi(z) = 1 at every location on

the grid. The model generates bags of words, each
represented by a list of words w = {wn}Nn=1 with
each word wn taking an integer value between 1
and Z. The modeling assumption in the basic CG
model is that each bag is generated from the dis-
tributions in a single window W of a preset size,
e.g., (Wx = 5)× (Wy = 5). A bag can be gener-
ated by first picking a window at a d-dimensional
location `, denoted as W`, then generating each of
the N words by sampling a location kn for a par-
ticular micro-topic πkn uniformly within the win-
dow, and sampling from that micro-topic.

Because the conditional distribution p(kn|`) is a
preset uniform distribution over the grid locations
inside the window placed at location `, the variable
kn can be summed out (Jojic and Perina, 2011),
and the generation can directly use the grouped
histograms

h`(z) =
1

|W|
∑

j∈W`

πj(z), (3)

where |W| is the area of the window, e.g. 25 when
5×5 windows are used. In other words, the posi-
tion of the window ` in the grid is a latent variable
given which we can write the probability of the
bag as

P (w|`) =
∏

wn∈w
h`(wn) =

∏

wn∈w

( 1

|W| ·
∑

j∈W`

πj(wn)
)

(4)

As the grid is toroidal, a window can start at any
position and there is as many h distributions as
there are π distributions. The former will have a
considerably higher entropy as they are averages
of many π distributions. Although the basic CG
model is essentially a simple mixture assuming the
existence of a single source (one window) for all
the features in one bag, it can have a very large

number of (highly related) choices h to choose
from. Topic models (Blei et al., 2003; Lafferty
and Blei, 2006), on the other hand, are admixtures
that capture word co-occurrence statistics by using
a much smaller number of topics that can be more
freely combined to explain a single document (and
this makes it harder to visualize the topics and pin-
point the right combination of topics to use in in-
fluencing the output).

In a well-fit CG model, each data point tends to
have a rather peaky posterior location distribution
because the model is a mixture. The CG model
can be learned efficiently using the EM algorithm
because the inference of the hidden variables, as
well as updates of π and h can be performed us-
ing summed area tables (Crow, 1984), and are thus
considerably faster than most of the sophisticated
sampling procedures used to train other topic mod-
els. The use of overlapping windows helps both in
controlling the capacity of the model and in orga-
nizing topics on the grid automatically: Two over-
lapping windows have only slighly different h dis-
tributions, making CGs especially useful in visu-
alization applications where the grid is shown in
terms of the most likely words in the component
distributions π (Perina et al., 2014).1

Having trained the grid on some corpus (in our
case a sample of the base model’s corpus), the
mapping of either a source S and/or target T sen-
tence can be obtained by treating the sentences as
bags of words. By appending one or both of these
mappings to the decoder’s embedding of the target
T , the end-to-end encoder-decoder learning can be
performed in a scenario where the decoder is ex-
pected to get an additional hint through a CG map-
ping. In our experiments, we only used the embed-
ding of the target T as the decoder hint, and we ap-
pended the full posterior distribution over CG lo-
cations to the encoder’s embedding. At test time,
we only have the S and need to generate T without
knowing where it may map in the counting grid.
We considered two ways of providing a mapping:
• The user provides a hint sentence H (could

be just a few words in any order), and the CG
mapping of the user’s hint, i.e. the full poste-
rior distribution p(`|H), is used in the decod-
ing. The posterior probabilities over 32× 32
grid locations are unwrapped into a vector

1(Chen et al., 2017) have recently proposed using LDA
for topic modeling in Sequence-To-Sequence response gen-
eration models. We believe that the CG embedding used here
will prove easier to apply and interpret through visualization.
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Figure 1: A part of a Counting Grid trained on Twitter data and its use in providing topical hints in
decoding. For the source sentence at the top, the decoder may produce the two target samples on the
right, if the circled locations are used as a hint, or the two sentences at the bottom if the locations in the
lower right are picked.

with a size of |L| = 1024, and then concate-
nated with the word embedding as the input at
each time-step. That acts to expand the user’s
hint into a sentence with similar content (and
style if the model is also styled).
• The CG is scanned and a variety of mappings

are tested as inputs to provide a diverse set of
possible answers. In our experiments, instead
of scanning over all 1024 possible locations
in the grid, we retrieved several possible an-
swers using information retrieval (ranking of
the data samples in the training set based on
the source S and picking the top ten). Then
the CG mapping p(`|H) of these retrieved
hints is used to decode several samples from
each.

As an example, Figure 1 shows a portion of a CG
trained on randomly chosen 800k tweets from the
twitter corpus. In each cell of the grid, we show
the top words in the distribution πj(z) over words
(z) in that location (j). (Each cell has a distribu-
tion over the entire vocabulary). As a response
to “I am hungry,” using two highlighted areas as
hints, we can generate either a set of empathic re-
sponses, such as ‘Me too,’ or food suggestions,
such as ‘Let’s have cake.’ It will also be evident

that some areas of the grid may produce less sen-
sical answers. These can later be pruned by likeli-
hood criteria or by user selection.

7 Experiments

7.1 Datasets

Yahoo! Answer Dataset. We use the Compre-
hensive Questions and Answers dataset2 to train
and validate the performances of different decod-
ing setups with ranking experiments described in
section 7.3. This dataset contains 4.4 million Ya-
hoo! Answers questions and the user-selected best
answers. Unlike the conversational datasets, such
as the Twitter dataset described below, it con-
tains more relevant and specific responses for each
question, which leads to less ambiguity in ranking.

Twitter Conversation Dataset. We trained our
base encoder-decoder models on the Twitter Con-
versation Triple Dataset described in (Sordoni
et al., 2015), which consists of 23 million conver-
sational snippets randomly selected from a collec-
tion of 129M context-message-response triples ex-
tracted from the Twitter Firehose over the 3-month

2http://webscope.sandbox.yahoo.com/
catalog.php?datatype=l
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period from June through August 2012. For the
purposes of our experiments, we split the triples
into context-message and message-response pairs
yielding 46M source-target pairs. For tuning and
evaluation, we used the development dataset of
size 200K conversation pairs and the test dataset of
5K examples. The corpus is preprocessed using a
Twitter specific tokenizer (O’Connor et al., 2010).
The vocabulary size is limited to 50,000 exclud-
ing the special boundary symbol and the unknown
word tag.

Scenting datasets. A variety of persona charac-
ters have been trained and tested, including Hillary
Clinton, Donald Trump, John F. Kennedy, Richard
Nixon, singer-songwriters, stand-up comedians,
and a generic Star Wars character. In experiments,
we evaluated on a diverse set of representative tar-
get speakers:

JFK. We mainly tested our models on John
F. Kennedy’s speeches collected from American
Presidency Project3, which contains 6474 training
and 719 validation sentences.

Star Wars. Movie subtitles of three Star
Wars movies are also tested4. They are extracted
from Cornell Movie-Dialogs Corpus (Danescu-
Niculescu-Mizil and Lee, 2011), and have 495
training and 54 validation sentences.

Singer-Songwriter. We also evaluated our ap-
proach on a lyric corpus from a collective of
singers: Coldplay, Linkin Park, and Green Day.
The lyric dataset is collected from mldb.org and
has 9182 training and 1020 validation lines.

Debate Chat Contexts. We designed testing
questionnaires with 64 chat contexts spanning a
range of topics in politic, science, and technology:
the sort of questions we might ask in an entertain-
ing political debate.5 To test the model’s ability to
control output topic in section 7.4.3, we also cre-
ated one hint per question.

7.2 Network Setup and Implementation
Our encoder and decoder RNNs contains two-
layer stacked LSTMs. Each LSTM layer has
a memory size of 500. The network weights
are randomly initialized using a uniform distri-
bution (−0.08, 0.08), and are trained with the
ADAM optimizer (Kingma and Ba, 2014), with

3http://www.presidency.ucsb.edu/
4 Koncel-Kedziorski et al. (2016) also uses Star Wars

scripts to test theme rewriting of algebra word problems.
5See the Supplementary material.

an initial learning rate of 0.002. Gradients were
clipped so their norm does not exceed 5. Each
mini-batch contains 200 answers and their ques-
tions. The words of input sentences were first con-
verted to 300-dimensional vector representations
learned from the RNN based language modeling
tool word2vec (Mikolov et al., 2013). The begin-
ning and end of each passage are also padded with
a special boundary symbol. During decoding, our
model generates 500 candidate samples in parallel,
then ranks them. As these are processed in batches
on GPU, generation is very efficient. We also ex-
perimented incorporating an information retrieval
(IR) module to automatically collect topic hints for
CG-based decoder. Specifically, a full-text index
of twitter corpus is built using solr6, and the top
10 searched results based on the source sentence
are be used to generate posterior CG distributions
as hints.

7.3 Validating the Decoding Setup with
Ranking

We performed a ranking evaluation applying dif-
ferent decoding setups on the Yahoo! Answers
dataset. Here we wanted to test the relevance judg-
ment capacities of different setups, and validate
the necessity of the new decoding method dis-
cussed in section 4. Yahoo! Answers question is
used as source S, and its answer is treated as tar-
get T . Each test question is associated with one
true answer and 19 random answers from the test
set. MRR (Mean Reciprocal Rank) and P@1 (pre-
cision of top1) were then used as evaluation met-
rics.

Table 2 shows the answer ranking evaluation
results: the forward model P (T |S), by itself is
close to the performance of random selection in
distinguishing true answer from wrong answers.
This implies that a naive beam search over only
the forward model may generate irrelevant out-
puts. One hypothesis was that P (T |S) is bi-
ased toward P (T ), and performance indeed im-
proves after normalizing by P (T ). However,
it is difficult to directly decode with objective
P (T |S)/P (T |∅), because this objective removes
the influence of the target-side language model.
Decoding only according to this function will
thus result in only low-frequency words and un-
grammatical sentences, behavior also noted by (Li
et al., 2015; Shao et al., 2017).

6https://lucene.apache.org/solr/
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Ranking Methods MRR P@1
Prnn(T |S) 0.224 0.075
Prnn(T |S)/Prnn(T |∅) 0.652 0.524
Prnn(S|T ) 0.687 0.556

Table 2: Ranking the true target answer among
random answers on Yahoo! Answers test set.

7.4 Human Evaluations

7.4.1 Systems
We tested 10 different system configurations to
evaluate the overall output quality, and their abili-
ties of influencing output language style and topic:
• vanilla-sampling each word in the target.
• selective-sampling as described in section 4;

all the following systems are using it as well.
• cg-ir uses IR results to create counting grid

topic hints (sections 6.1 and 7.2).
• rank uses proposals from the full JFK corpus

as in section 5.1.
• multiply with a JFK language model as in

section 5.2.
• finetune with JFK dataset as in section 5.3.
• finetune-cg-ir uses IR results as topic hints

for fine-tuned JFK.
• finetune-cg-topic forced to use the given

topic hint for fine-tuned JFK.
• singer-songwriter fine-tuned cg-topic.
• starwars fine-tuned cg-topic.

7.4.2 Evaluation Setup
Owing to the low consistency between automatic
metrics and human perception on conversational
tasks (Liu et al., 2016; Stent et al., 2005) and
the lack of true reference responses from persona
models, we evaluated the quality of our generated
text with a set of judges recruited from Amazon
Mechanical Turk (AMT). Workers were selected
based on their AMT prior approval rate (>95%).
Each questionnaire was presented to 3 different
workers. We evaluated our proposed models on
the 64 debate chat contexts. Each of the evalu-
ated methods generated 3 samples for every chat
context. To ensure calibrated ratings between sys-
tems, we show the human judges all system out-
puts (randomly ordered) for each particular test
case at the same time. For each chat context, we
conducted three kinds of assessments:

Quality Assessment Workers were provided
with the following guidelines: “Given the chat

Methods Quality (MOS) Style
vanilla-sampling 2.286 ± 0.046 —
selective-sampling 2.681 ± 0.049 10.42%
cg-ir 2.566 ± 0.048 10.24%
rank 2.477 ± 0.048 21.88%
multiply 2.627 ± 0.048 13.54%
finetune 2.597 ± 0.046 20.83%
finetune-cg-ir 2.627 ± 0.049 20.31%
finetune-cg-topic 2.667 ± 0.045 21.09%
singer-songwriter 2.373 ± 0.045 —
starwars 2.677 ± 0.048 —

Table 3: Results of quality assessments with 5-
scale mean opinion scores (MOS) and JFK style
assessments with binary ratings. Style results are
statistically significant compared to the selective-
sampling by paired t-tests (p < 0.5%).

context, a chat-bot needs to continue the conver-
sation. Rate the potential answers based on your
own preference on a scale of 1 to 5 (the highest):”

• 5-Excellent: “Very appropriate response, and
coherent with the chat context.”
• 4-Good: “Coherent with the chat context.”
• 3-Fair: “Interpretable and related. It is OK

for you to receive this chat response.”
• 2-Poor: “Interpretable, but not related.”
• 1-Bad: “Not interpretable.”

In this test, the outputs of all 10 systems evaluated
are then provided to worker together for a total of
30 responses. In total, we gathered 64 · 30 · 3 =
5760 ratings for quality assessments, and 47 dif-
ferent workers participated.

Style Assessment. We provided following in-
structions: “Which candidate responses are likely
to have come from or are related to [Persona
Name]?”. Checkboxes were provided for the re-
sponses from style-influenced systems and from
selective-sampling as a baseline.

Topic Assessment. The instruction was:
“Which candidate answers to the chat context
above are similar or related to the following
answer: ‘[a hint topic provided by us]’?”. This
was also a checkbox questionnaire. Candidates
are from both style- and topic-influenced systems
(fine-tuned cg-topic), and from selective-sampling
as a baseline.
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Persona Style Topic
Ours Base Ours Base

John F. Kennedy 21% 10% 33% 22%
Star Wars 27% 3% 14% 8%
Singer-Songwriter 31% 23% 17% 9%

Table 4: The style and topic assessments (both bi-
nary) of three models with different personas and
with restriction of specific target topic for each
chat context. All style and topic results are statis-
tically significant compared to the Base (selective-
sampling) by paired t-tests with p < 0.5%.

7.4.3 Results
Overall Quality. We conducted mean opinion
score (MOS) tests for overall quality assessment
of generated responses with questionnaires de-
scribed above. Table 3 shows the MOS results
with standard error. It can be seen that all the
systems based on selective sampling are signifi-
cantly better than vanilla sampling baseline. When
restricting output’s style and/or topic, the MOS
score results of most systems do not decline signif-
icantly except singer-songwriter, which attempts
to generate lyrics-like outputs in response to to
political debate questions, resulting in uninter-
pretable strings.

Our rank method uses p(S|T ) to pick the an-
swer from the original persona corpus, and is thus
as good at styling as the person themselves. Be-
cause most of our testing questionnaire is po-
litical, the rank was indeed often able to find
related answers in the dataset (JFK). Also, un-
like generation-based approaches, rank has oracle-
level language fluency and it is expected to have
quality score of at least 2 (“Interpretable, but not
related”). Overall, however, the quality score of
rank is still lower than other approaches. Note that
a hybrid system can actually chose between rank
and the decoder’s outputs based on likelihood, as
shown in the example of bJFk-bNixon debate in
the supplemental material.

Influencing the Style. Table 3 also shows the
likelihood of being labeled as JFK for different
methods. It is encouraging that finetune based ap-
proaches have similar chances as the rank system
which retrieves sentences directly from JFK cor-
pus, and are significantly better than the selective-
sampling baseline.

Influencing both Style and Topic. Table 4 sum-
marizes the results in terms of style (the fraction of
answers labeled as in-style for the target persona),
and topic (the percentage of answers picked as re-
lated to the human-provided topic hint text). We
used the last three of the ten listed systems, which
are both styled and use specific topic hints to gen-
erate answers. These results demonstrate that it
is indeed possible to provide simple prompts to
a styled model and drive their answers in a de-
sired direction while picking up the style of the
persona. It also shows that the style of some char-
acters is harder to recreate than others. For exam-
ple, workers are more likely to label baseline re-
sults as lyrics from a singer-songwriter than lines
from Star Wars movies, which might be because
lyrics often take significant freedom with struc-
ture and grammar. We also found that it is harder
for Star Wars and Singer-Songwriter bots to fol-
low topic hints than it is for the John F. Kennedy
model, largely because the political debate ques-
tions we used overlap less with the topics found in
the scenting datasets for those two personas.

8 Conclusions

In this study we investigated the possibility of
steering the style and content in the output of a
neural encoder-decoder model7. We showed that
acquisition of highly recognizable styles of fa-
mous personalities, characters, or professionals, is
achievable, and that it is even possible to allow
users to influence the topic direction of conver-
sations. The tools described in the paper are not
only useful in conversational systems (e.g., chat-
bots), but can also be useful as authoring tools in
social media. In the latter case, the social media
users might use neural models as consultants to
help with crafting responses to any post the user
is reading. The AMT tests show that these models
do indeed provide increased recognizability of the
style, without sacrificing quality or relevance.
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Abstract

This paper introduces a novel train-
ing/decoding strategy for sequence label-
ing. Instead of greedily choosing a la-
bel at each time step, and using it for
the next prediction, we retain the proba-
bility distribution over the current label,
and pass this distribution to the next pre-
diction. This approach allows us to avoid
the effect of label bias and error propaga-
tion in sequence learning/decoding. Our
experiments on dialogue act classification
demonstrate the effectiveness of this ap-
proach. Even though our underlying neu-
ral network model is relatively simple, it
outperforms more complex neural mod-
els, achieving state-of-the-art results on
the MapTask and Switchboard corpora.

1 Introduction

Dialogue Act (DA) classification is a sequence-
labeling task, where a sequence of utterances is
mapped into a sequence of DAs. The DAs are se-
mantic classifications of the utterances, and differ-
ent corpora usually have their own DA labels.

Two of the most popular DA classification
datasets are Switchboard (Godfrey et al., 1992; Ju-
rafsky et al., 1997) and MapTask (Anderson et al.,
1991). There have been many works on DA classi-
fication applied to these two datasets; some focus
on textual data (Kalchbrenner and Blunsom, 2013;
Stolcke et al., 2000), while others explore speech
data (Julia et al., 2010). The classification meth-
ods used can be broadly divided into instance-
based methods (Julia et al., 2010; Gambäck et al.,
2011) and sequence-labeling methods (Stolcke

et al., 2000; Kalchbrenner and Blunsom, 2013;
Ji et al., 2016; Shen and Lee, 2016; Tran et al.,
2017). Instance-based methods treat each utter-
ance as an independent data point, which allows
the application of general machine learning mod-
els, such as Support Vector Machines. Sequence-
labeling methods include methods based on Hid-
den Markov Models (HMMs) (Stolcke et al.,
2000) and neural networks (Kalchbrenner and
Blunsom, 2013; Ji et al., 2016; Shen and Lee,
2016; Tran et al., 2017).

Stolcke et al. employed an HMM, using a
Language Model to produce emission probabili-
ties. The neural models are particularly success-
ful, posting a higher accuracy on Switchboard than
the HMM. Specifically, Kalchbrenner and Blun-
som (2013) model a DA sequence with a recur-
rent neural network (RNN) where sentence repre-
sentations are constructed by means of a convolu-
tional neural network (CNN); Ji et al. (2016) treat
the labels as latent variables in a generative RNN;
Shen and Lee (2016) employ attentional RNNs for
the independent prediction of DAs; and Tran et
al. (2017) model the DAs in a conversation by
means of a hierarchical RNN. In this paper, we
also rely on RNNs, but our architecture is much
simpler than the above neural models, while post-
ing competitive results.

Most neural network models for DA classifica-
tion employ greedy decoding (Tran et al., 2017; Ji
et al., 2016), as its speed and simplicity support an
on-line decoding process (i.e., producing a label
immediately after receiving an utterance). For se-
quential labeling, the DA label in the current time
step is very important (Tran et al., 2017). How-
ever, using a greedy approach to connect the cur-
rent label directly to the next label may degrade
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Figure 1: Model architecture.

performance, because the current predicted label
may be noisy, which in turn leads to the propa-
gation of errors through the sequence (Tran et al.,
2017; Ranzato et al., 2015).

Recently, Bengio et al. (2015) proposed a tech-
nique called Scheduled Sampling that tries to solve
the label-bias problem by alternating between the
predicted label and the correct label during train-
ing. This makes the model gradually adapt to the
noisiness of the predicted label. However, this
method still relies upon a single current label, and,
by omitting the distribution over the possible la-
bels, this model loses information about the cur-
rent stage. In contrast, we propose to condition the
next label on a predicted distribution of the current
label. Specifically, we introduce two variants of
this idea: the Uncertainty Propagation model and
the Average Embedding model.

2 Sequential DA Prediction

We are interested in predicting DAs {z1, . . . , zt}
in a conversation as we receive textual utterances
{xxx1, . . . ,xxxt} sequentially. Importantly, we do not
have access to future utterances when predicting a
DA at time t.

Model. We propose a discriminative model,
where the probability of DAs conditioned on ut-
terances is decomposed as follows (Figure 1):

p(zzz1:t|xxx1:t) =
t∏

i=1

pθθθ(zi|zi−1,xxxi) (1)

where zzz1:t and xxx1:t respectively denote the se-
quence of DAs and utterances up to time step t.
Our model resembles a maximum entropy Markov
model, as it conditions the label of the next time
step on the label of the current step and the next
received utterance. The conditional distribution
term pθθθ(zi|zi−1,xxxi) is realised by neural models

as follows:

zi|zi−1,xxxi ∼ softmax(WWW (zi−1)ccc(xxxi) + bbb(zi−1))
(2)

where ccc(xxxi) is the distributed representa-
tion of utterance xxxi (discussed below), and
{WWW (zi−1), bbb(zi−1)} are DA-specific parameters
gated on the current DA zi−1.

The encoding function for an utterance is
an RNN with long-short term memory (LSTM)
units (Graves, 2013; Hochreiter and Schmidhuber,
1997), where the final hidden state of the RNN is
taken as the representation of the whole sequence
of text:

hhht,n = fffφφφ(hhht,n−1, eee(xt,n)) , ccc(xxxt) = hhht,Nt (3)

where xt,n is the n-th token in the t-th utterance,
and Nt is the length of the utterance.

The parameter set of our model θθθ includes
{WWW (`), bbb(`)}L`=1 for the gating component (where
L is the number of DAs), as well as the
LSTM parameters φφφ and the word-embedding ta-
ble {eee(w)}w∈W , whereW is the dictionary.

Uncertainty Propagation. In this model, the
distribution over the labels at the current time step
is passed to the next time step. Specifically, the
quantity of interest is the posterior probability of
the DA of the next time step given all the utter-
ances observed so far. This posterior probability
can be rewritten as

pθθθ(zt|xxx1:t) =
∑

z1,...,zt−1

pθθθ(zzz1:t|xxx1:t)

=
∑

zt−1

pθθθ(zt|zt−1,xxxt)pθθθ(zt−1|xxx1:t−1) (4)

According to Equation 4, the label uncertainty
at the next time step t can be computed by a dy-
namic programming algorithm based on the label
uncertainty of the current time step combined with
the local potentials pθθθ(zt|zt−1,xxxt).
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The use of posterior probability for prediction is
also motivated by the minimum Bayes risk decod-
ing (MBR). In the sequential setting, we are inter-
ested in predicting the next DA that minimizes the
expected loss

argmin
ẑt

∑

z1,...,zt−1

pθθθ(zzz1:t|xxx1:t)loss(zt, ẑt)

= argmin
ẑt

pθθθ(zt|xxx1:t)loss(zt, ẑt) (5)

where ẑt is the predicted label, zt is the actual la-
bel, and loss(zt, ẑt) = 1zt 6=ẑt .

In addition to decoding, we use posterior prob-
ability when training the model. That is, our train-
ing objective is

∑

(xxx1:T ,zzz1:T )∈D

T∑

t=1

log pθθθ(zt|xxx1:t) (6)

where D is the set of conversations in the train-
ing set, each consisting of a sequence of utterances
xxx1:T annotated with its gold sequence of DAs zzz1:T .

Average Embedding. This model offers a new
perspective where a neural net combines an infer-
ence machine and a model (rather than simply en-
coding a model). Specifically, this model repre-
sents in its architecture, through a weighted sum of
embeddings, the inference procedure encoded in
Equation 4 for the Uncertainty Propagation model:

softmax(Eq(zt−1)[WWW
(zt−1)]ccc(xxxt)+Eq(zt−1)[bbb

(zt−1)])
(7)

where q(zt) is an embedding that represents the
uncertainty at time step t. q(zt) is computed se-
quentially as new utterances are received, and used
in both decoding and training.

This formulation contrasts with Uncertainty
Propagation, where the expectation is over the dis-
tributions:

Epθθθ(zt−1|xxx1:t−1)[softmax(WWW (zt−1)ccc(xxxt) + bbb(zt−1))]
(8)

It is worth noting that Equations 7 and 8 yield
the same result if the distributions involved in cal-
culating the expectations are point-mass distribu-
tions and they are equal.

Although we could have used a more elab-
orate neural architecture as the inference ma-
chine for the Average Embedding model, we em-
ployed a simple softmax architecture to make this
model comparable with the principled inference
algorithm for our Uncertainty Propagation model,
which is based on Equation 4.

Comparison to traditional graphical models
Our models have several similarities with the tra-
ditional HMM model and inference algorithms,
such as Forward-Backward decoding and the
Viterbi algorithm. However, there are some key
differences. Firstly, our model is discrimina-
tive, whereas HMM is generative. Secondly, our
method is designed for online decoding (the fu-
ture inputs to a specific classification decision are
unknown), whereas both Forward-Backward de-
coding and Viterbi require access to the whole se-
quence. Thirdly, Viterbi’s objective is to decode
for the most probable sequence of labels, whereas
our decoding algorithm’s objective is to find the
sequence of most probable labels (conditioned on
the inputs observed so far). Lastly, our Uncer-
tainty Propagation model is not only a basis for
decoding, but also for training (the training ob-
jective in Equation 6 requires the calculation of
the posterior probability in Equation 4). Overall,
the best analogue of our Uncertainty Propagation
model to methods used in HMMs and other graph-
ical models is the forward message calculation in
the Forward-Backward algorithm.

3 Experiments

3.1 Data sets

For our experiments, we use the MapTask and
Switchboard corpora.

The MapTask Dialog Act corpus (Anderson
et al., 1991) consists of 128 conversations tagged
with 13 DAs. The MapTask conversations focus
on instructions and clarifications — in the Map-
Task experiment, there is one instruction giver and
one instruction follower. The task of the instruc-
tion giver is to guide the instruction follower to
follow a pre-determined path, and the instruction
follower must draw this path on his/her map. We
use 12 conversations for validation, 13 for testing,
and the rest for training.

The Switchboard Dialog Act corpus (Godfrey
et al., 1992; Jurafsky et al., 1997) consists of 1155
transcribed telephone conversations about general
topics, encoded into 42 DAs. We use the exper-
imental setup proposed by Stolcke et al. (2000):
1115 conversations for training and 19 for testing.

3.2 Baselines

Our first baseline is the model without any current
label information. Next, we compare our models
with other strategies for incorporating the current
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Accuracy
Models Switchboard MapTask
No current label 72.93% 61.27%
True current label 73.15% 63.36%
Predicted current label 73.91% 64.53%
Scheduled Sampling 74.43% 64.50%
Average Embedding 75.04% 65.09%
Uncertainty Propagation 75.61% 65.87%

Table 1: Results of different strategies to leverage
the current label.

labels, viz those that use predicted label in train-
ing, and those that use correct label. These models
simply employ the predicted/correct label to gate
the parameters in Equation 2 during training. Dur-
ing testing, both models can only use the predicted
label.

Another baseline is Bengio et al.’s (2015)
Scheduled Sampling technique, where the train-
ing model uses the current correct label with prob-
ability p and the predicted label with probability
1 − p, and p is scheduled to decrease over time.
This strategy tries to solve the label-bias problem
by making the model gradually adapt to the noisy
predicted current label.

Finally, we consider the results obtained by
corpus-specific baselines, viz (Julia et al., 2010;
Surendran and Levow, 2006; Tran et al., 2017) for
MapTask, and (Stolcke et al., 2000; Kalchbrenner
and Blunsom, 2013; Ji et al., 2016; Shen and Lee,
2016; Tran et al., 2017) for Switchboard.

3.3 Results
Table 1 compares our results with those obtained
by the baselines. Our two models, Uncertainty
Propagation and Average Embedding, outperform
all the baselines. Among these two models, Un-
certainty Propagation, which is more analytically
grounded, outperforms the Average Embedding
model. Using the true current label during train-
ing seems to degrade performance compared to us-
ing the predicted label, which is expected, since
the true label is not available during testing. The
Scheduled Sampling method performs similarly to
the predicted-label method for the MapTask cor-
pus, and outperforms this method for the Switch-
board corpus.

Tables 2 and 3 compare our models’ perfor-
mance on the MapTask and Switchboard corpora
respectively with that of several strong baselines.
On MapTask, we achieved the best results for

Baseline models Accuracy
Julia et al. (2010) 55.4 %
Surendran and Levow (2006) 59.1%
Tran et al. (2017) 61.6%
Our models:

Average Embedding 62.6%
Uncertainty Propagation 62.9%

Table 2: Results on MapTask data.

Baseline models Accuracy
Stolcke et al. (2000) 71.0%
Shen and Lee (2016) 72.6%
Kalchbrenner and Blunsom (2013) 73.9%
Tran et al. (2017) 74.5%
Ji et al. (2016) (77.0%) 72.5%
Our models:

Average Embedding 75.0%
Uncertainty Propagation 75.6%

Table 3: Results on Switchboard data.

textual input, using the four-fold cross-validation
setup used by Surendran and Levow (2006) and
Julia et al. (2010). On Switchboard, we also ob-
tained the best results among the systems with
the same experimental setting. It is worth noting
that Ji et al. (2016) reported a higher accuracy of
77.0%, but the paper does not provide enough in-
formation about the experimental setup to repli-
cate this result, and we only got 72.5% accuracy
using the paper’s publicly available code.

3.4 Analysis

To quantify the effectiveness of the different mod-
els on reducing the label-bias problem, we calcu-
late the probability of the models making a cor-
rect prediction after they have made a sequence of
n mistakes. We expect our models, Uncertainty
Propagation and Average Embedding, to be more
robust than the label-sensitive baselines in recov-
ering from errors.

The results in Table 4 confirm our expectations.
The simple model with no current label, while
performing worse than all other models in accu-
racy, does not suffer from the label-bias problem.
Among the models with current label information,
Uncertainty Propagation suffers the least from la-
bel bias. It even outperforms the model with no
current label on Switchboard for all values of n,
and on MapTask for n = 2. Interestingly, Aver-
age Embedding performs quite well for n = 1, but

2154



MapTask Switchboard
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

Not affected by label bias:
No Previous label 60.29% 56.90% 55.67% 66.99% 63.10% 56.52%

Affected by label bias:
True current label 53.12% 50.38% 47.89% 61.74% 60.93% 60.71%
Predicted current label 55.89% 53.65% 49.10% 64.38% 62.21% 62.59%
Scheduled Sampling 54.28% 53.32% 50.00% 64.67% 63.49% 60.87%
Average Embedding 56.50% 53.76% 52.56% 66.51% 61.71% 55.22%
Uncertainty Propagation 57.13% 57.37% 53.93% 67.78% 66.57% 66.36%

Table 4: Probability that the models recover from a sequence of n prediction mistakes.

its ability to recover from errors drops quickly as
the length of the erroneous conditioning sequence
increases, especially on Switchboard, where the
number of labels is higher. This may explain its
slightly lower accuracy compared to the Uncer-
tainty Propagation model. However, in general,
the difference in accuracy between these two mod-
els is small, because they are rather unlikely to
make several consecutive errors.

4 Conclusion

In this paper, we proposed two strategies to
encode current label uncertainty in sequence-
labeling RNN models. The experimental results
show that our models achieve a very strong perfor-
mance on the MapTask and Switchboard corpora
using a simple underlying RNN architecture.

Although we experimented with DA classifica-
tion, the idea presented in this paper is general, and
can be applied to many sequence-labeling tasks.
Our approach is particularly suitable for tasks in-
volving streaming data where the model only has
access to current and previous observations.

In the future, we plan to combine our strategies
with more complex neural architectures, and ex-
plore their application to other sequence-labeling
problems.
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Abstract

In this paper, drawing intuition from the
Turing test, we propose using adversar-
ial training for open-domain dialogue gen-
eration: the system is trained to pro-
duce sequences that are indistinguish-
able from human-generated dialogue ut-
terances. We cast the task as a rein-
forcement learning (RL) problem where
we jointly train two systems, a generative
model to produce response sequences, and
a discriminator—analagous to the human
evaluator in the Turing test— to distinguish
between the human-generated dialogues
and the machine-generated ones. The out-
puts from the discriminator are then used
as rewards for the generative model, push-
ing the system to generate dialogues that
mostly resemble human dialogues.

In addition to adversarial training we de-
scribe a model for adversarial evaluation
that uses success in fooling an adversary as
a dialogue evaluation metric, while avoid-
ing a number of potential pitfalls. Ex-
perimental results on several metrics, in-
cluding adversarial evaluation, demonstrate
that the adversarially-trained system gener-
ates higher-quality responses than previous
baselines.

1 Introduction

Open domain dialogue generation (Ritter et al.,
2011; Sordoni et al., 2015; Xu et al., 2016; Wen
et al., 2016; Li et al., 2016b; Serban et al., 2016c,
2017) aims at generating meaningful and coher-
ent dialogue responses given the dialogue history.
Prior systems, e.g., phrase-based machine trans-
lation systems (Ritter et al., 2011; Sordoni et al.,
2015) or end-to-end neural systems (Shang et al.,

2015; Vinyals and Le, 2015; Li et al., 2016a; Yao
et al., 2015; Luan et al., 2016) approximate such a
goal by predicting the next dialogue utterance given
the dialogue history using the maximum likelihood
estimation (MLE) objective. Despite its success,
this over-simplified training objective leads to prob-
lems: responses are dull, generic (Sordoni et al.,
2015; Serban et al., 2016a; Li et al., 2016a), repeti-
tive, and short-sighted (Li et al., 2016d).

Solutions to these problems require answering
a few fundamental questions: what are the cru-
cial aspects that characterize an ideal conversation,
how can we quantitatively measure them, and how
can we incorporate them into a machine learning
system? For example, Li et al. (2016d) manually
define three ideal dialogue properties (ease of an-
swering, informativeness and coherence) and use
a reinforcement-learning framework to train the
model to generate highly rewarded responses. Yu
et al. (2016b) use keyword retrieval confidence as
a reward. However, it is widely acknowledged that
manually defined reward functions can’t possibly
cover all crucial aspects and can lead to suboptimal
generated utterances.

A good dialogue model should generate utter-
ances indistinguishable from human dialogues.
Such a goal suggests a training objective resem-
bling the idea of the Turing test (Turing, 1950).
We borrow the idea of adversarial training (Good-
fellow et al., 2014; Denton et al., 2015) in com-
puter vision, in which we jointly train two mod-
els, a generator (a neural SEQ2SEQ model) that
defines the probability of generating a dialogue se-
quence, and a discriminator that labels dialogues
as human-generated or machine-generated. This
discriminator is analogous to the evaluator in the
Turing test. We cast the task as a reinforcement
learning problem, in which the quality of machine-
generated utterances is measured by its ability to
fool the discriminator into believing that it is a

2157



human-generated one. The output from the dis-
criminator is used as a reward to the generator,
pushing it to generate utterances indistinguishable
from human-generated dialogues.

The idea of a Turing test—employing an evalu-
ator to distinguish machine-generated texts from
human-generated ones—can be applied not only
to training but also testing, where it goes by the
name of adversarial evaluation. Adversarial evalua-
tion was first employed in Bowman et al. (2016) to
evaluate sentence generation quality, and prelimi-
narily studied for dialogue generation by Kannan
and Vinyals (2016). In this paper, we discuss poten-
tial pitfalls of adversarial evaluations and necessary
steps to avoid them and make evaluation reliable.

Experimental results demonstrate that our ap-
proach produces more interactive, interesting, and
non-repetitive responses than standard SEQ2SEQ

models trained using the MLE objective function.

2 Related Work

Dialogue generation Response generation for
dialogue can be viewed as a source-to-target trans-
duction problem. Ritter et al. (2011) frame the gen-
eration problem as a machine translation problem.
Sordoni et al. (2015) improved Ritter et al.’s sys-
tem by rescoring the outputs of a phrasal MT-based
conversation system with a neural model incorpo-
rating prior context. Recent progress in SEQ2SEQ

models have inspired several efforts (Vinyals and
Le, 2015; Serban et al., 2016a,d; Luan et al., 2016)
to build end-to-end conversational systems that first
apply an encoder to map a message to a distributed
vector representing its meaning and then generate
a response from the vector.

Our work adapts the encoder-decoder model to
RL training, and can thus be viewed as an exten-
sion of Li et al. (2016d), but with more general
RL rewards. Li et al. (2016d) simulate dialogues
between two virtual agents, using policy gradient
methods to reward sequences that display three
useful conversational properties: informativity, co-
herence, and ease of answering. Our work is also
related to recent efforts to integrate the SEQ2SEQ

and reinforcement learning paradigms, drawing on
the advantages of both (Wen et al., 2016). For
example, Su et al. (2016) combine reinforcement
learning with neural generation on tasks with real
users. Asghar et al. (2016) train an end-to-end RL
dialogue model using human users.

Dialogue quality is traditionally evaluated (Sor-
doni et al., 2015, e.g.) using word-overlap metrics

such as BLEU and METEOR scores used for ma-
chine translation. Some recent work (Liu et al.,
2016) has started to look at more flexible and reli-
able evaluation metrics such as human-rating pre-
diction (Lowe et al., 2017) and next utterance clas-
sification (Lowe et al., 2016).

Adversarial networks The idea of generative
adversarial networks has enjoyed great success in
computer vision (Radford et al., 2015; Chen et al.,
2016a; Salimans et al., 2016). Training is formal-
ized as a game in which the generative model is
trained to generate outputs to fool the discrimina-
tor; the technique has been successfully applied to
image generation.

However, to the best of our knowledge, this idea
has not achieved comparable success in NLP. This
is due to the fact that unlike in vision, text gener-
ation is discrete, which makes the error outputted
from the discriminator hard to backpropagate to
the generator. Some recent work has begun to ad-
dress this issue: Lamb et al. (2016) propose provid-
ing the discriminator with the intermediate hidden
vectors of the generator rather than its sequence
outputs. Such a strategy makes the system differen-
tiable and achieves promising results in tasks like
character-level language modeling and handwriting
generation. Yu et al. (2016a) use policy gradient
reinforcement learning to backpropagate the error
from the discriminator, showing improvement in
multiple generation tasks such as poem generation,
speech language generation and music generation.
Outside of sequence generation, Chen et al. (2016b)
apply the idea of adversarial training to sentiment
analysis and Zhang et al. (2017) apply the idea to
domain adaptation tasks.

Our work is distantly related to recent work that
formalizes sequence generation as an action-taking
problem in reinforcement learning. Ranzato et al.
(2016) train RNN decoders in a SEQ2SEQ model
using policy gradient to obtain competitive ma-
chine translation results. Bahdanau et al. (2017)
take this a step further by training an actor-critic
RL model for machine translation. Also related is
recent work (Shen et al., 2016; Wiseman and Rush,
2016) to address the issues of exposure bias and
loss-evaluation mismatch in neural translation.

3 Adversarial Training for Dialogue
Generation

In this section, we describe in detail the compo-
nents of the proposed adversarial reinforcement
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learning model. The problem can be framed as fol-
lows: given a dialogue history x consisting of a se-
quence of dialogue utterances,1 the model needs to
generate a response y = {y1, y2, ..., yT }. We view
the process of sentence generation as a sequence of
actions that are taken according to a policy defined
by an encoder-decoder recurrent neural network.

3.1 Adversarial REINFORCE
The adversarial REINFORCE algorithm consists
of two components: a generative model G and a
discriminative model D.

Generative model The generative model G de-
fines the policy that generates a response y given
dialogue history x. It takes a form similar to
SEQ2SEQ models, which first map the source input
to a vector representation using a recurrent net and
then compute the probability of generating each
token in the target using a softmax function.

Discriminative model The discriminative model
D is a binary classifier that takes as input a se-
quence of dialogue utterances {x, y} and outputs
a label indicating whether the input is generated
by humans or machines. The input dialogue is
encoded into a vector representation using a hi-
erarchical encoder (Li et al., 2015; Serban et al.,
2016b),2 which is then fed to a 2-class softmax
function, returning the probability of the input dia-
logue episode being a machine-generated dialogue
(denoted Q−({x, y})) or a human-generated dia-
logue (denoted Q+({x, y})).
Policy Gradient Training The key idea of the
system is to encourage the generator to generate
utterances that are indistinguishable from human
generated dialogues. We use policy gradient meth-
ods to achieve such a goal, in which the score
of current utterances being human-generated ones
assigned by the discriminator (i.e., Q+({x, y}))
is used as a reward for the generator, which is
trained to maximize the expected reward of gener-
ated utterance(s) using the REINFORCE algorithm
(Williams, 1992):

J(θ) = Ey∼p(y|x)(Q+({x, y})|θ) (1)

1We approximate the dialogue history using the concate-
nation of two preceding utterances. We found that using more
than 2 context utterances yields very tiny performance im-
provements for SEQ2SEQ models.

2To be specific, each utterance p or q is mapped to a vector
representation hp or hq using LSTM (Hochreiter and Schmid-
huber, 1997). Another LSTM is put on sentence level, map-
ping the context dialogue sequence to a single representation.

Given the input dialogue history x, the bot gener-
ates a dialogue utterance y by sampling from the
policy. The concatenation of the generated utter-
ance y and the input x is fed to the discriminator.
The gradient of (1) is approximated using the like-
lihood ratio trick (Williams, 1992; Glynn, 1990;
Aleksandrov et al., 1968):

∇J(θ) ≈ [Q+({x, y})− b({x, y})]
∇ log π(y|x)

= [Q+({x, y})− b({x, y})]
∇
∑

t

log p(yt|x, y1:t−1) (2)

where π denotes the probability of the generated
responses. b({x, y}) denotes the baseline value to
reduce the variance of the estimate while keeping
it unbiased.3 The discriminator is simultaneously
updated with the human generated dialogue that
contains dialogue history x as a positive example
and the machine-generated dialogue as a negative
example.

3.2 Reward for Every Generation Step
(REGS)

The REINFORCE algorithm described has the dis-
advantage that the expectation of the reward is ap-
proximated by only one sample, and the reward
associated with this sample (i.e., [Q+({x, y}) −
b({x, y})] in Eq(2)) is used for all actions (the gen-
eration of each token) in the generated sequence.
Suppose, for example, the input history is what’s
your name, the human-generated response is I am
John, and the machine-generated response is I don’t
know. The vanilla REINFORCE model assigns
the same negative reward to all tokens within the
human-generated response (i.e., I, don’t, know),
whereas proper credit assignment in training would
give separate rewards, most likely a neutral reward
for the token I, and negative rewards to don’t and
know. We call this reward for every generation
step, abbreviated REGS.

Rewards for intermediate steps or partially de-
coded sequences are thus necessary. Unfortunately,
the discriminator is trained to assign scores to fully

3 Like Ranzato et al. (2016), we train another neural net-
work model (the critic) to estimate the value (or future reward)
of current state (i.e., the dialogue history) under the current
policy π. The critic network takes as input the dialogue history,
transforms it to a vector representation using a hierarchical
network and maps the representation to a scalar. The network
is optimized based on the mean squared loss between the
estimated reward and the real reward.
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generated sequences, but not partially decoded
ones. We propose two strategies for computing in-
termediate step rewards by (1) using Monte Carlo
(MC) search and (2) training a discriminator that
is able to assign rewards to partially decoded se-
quences.

In (1) Monte Carlo search, given a partially de-
coded sP , the model keeps sampling tokens from
the distribution until the decoding finishes. Such
a process is repeated N (set to 5) times and the N
generated sequences will share a common prefix
sP . These N sequences are fed to the discrimi-
nator, the average score of which is used as a re-
ward for the sP . A similar strategy is adopted in
Yu et al. (2016a). The downside of MC is that it
requires repeating the sampling process for each
prefix of each sequence and is thus significantly
time-consuming.4

In (2), we directly train a discriminator that is
able to assign rewards to both fully and partially
decoded sequences. We break the generated se-
quences into partial sequences, namely {y+1:t}

NY+

t=1

and {y−1:t}
NY−
t=1 and use all instances in {y+1:t}

NY+

t=1

as positive examples and instances {y−1:t}
NY−
t=1 as

negative examples. The problem with such a strat-
egy is that earlier actions in a sequence are shared
among multiple training examples for the discrimi-
nator (for example, token y+1 is contained in all par-
tially generated sequences, which results in overfit-
ting. To mitigate this problem, we adopt a strategy
similar to when training value networks in AlphaGo
(Silver et al., 2016), in which for each collection of
subsequences of Y , we randomly sample only one
example from {y+1:t}

NY+

t=1 and one example from
{y−1:t}

NY−
t=1 , which are treated as positive and neg-

ative examples to update the discriminator. Com-
pared with the Monte Carlo search model, this strat-
egy is significantly more time-effective, but comes
with the weakness that the discriminator becomes
less accurate after partially decoded sequences are
added in as training examples. We find that the MC
model performs better when training time is less of
an issue.

For each partially-generated sequence Yt =
y1:t, the discriminator gives a classification score

4Consider one target sequence with length 20, we need to
sample 5*20=100 full sequences to get rewards for all inter-
mediate steps. Training one batch with 128 examples roughly
takes roughly 1 min on a single GPU, which is computation-
ally intractable considering the size of the dialogue data we
have. We thus parallelize the sampling processes, distributing
jobs across 8 GPUs.

Q+(x, Yt). We compute the baseline b(x, Yt) us-
ing a similar model to the vanilla REINFORCE
model. This yields the following gradient to update
the generator:

∇J(θ) ≈
∑

t

(Q+(x, Yt)− b(x, Yt))

∇ log p(yt|x, Y1:t−1) (3)

Comparing (3) with (2), we can see that the val-
ues for rewards and baselines are different among
generated tokens in the same response.

Teacher Forcing Practically, we find that updat-
ing the generative model only using Eq. 1 leads
to unstable training for both vanilla Reinforce
and REGS, with the perplexity value skyrocket-
ing after training the model for a few hours (even
when the generator is initialized using a pre-trained
SEQ2SEQ model). The reason this happens is that
the generative model can only be indirectly exposed
to the gold-standard target sequences through the
reward passed back from the discriminator, and
this reward is used to promote or discourage its
(the generator’s) own generated sequences. Such a
training strategy is fragile: once the generator (acci-
dentally) deteriorates in some training batches and
the discriminator consequently does an extremely
good job in recognizing sequences from the gener-
ator, the generator immediately gets lost. It knows
that its generated sequences are bad based on the
rewards outputted from the discriminator, but it
does not know what sequences are good and how
to push itself to generate these good sequences (the
odds of generating a good response from random
sampling are minute, due to the vast size of the
space of possible sequences). Loss of the reward
signal leads to a breakdown in the training process.

To alleviate this issue and give the generator
more direct access to the gold-standard targets, we
propose also feeding human generated responses to
the generator for model updates. The most straight-
forward strategy is for the discriminator to auto-
matically assign a reward of 1 (or other positive
values) to the human generated responses and for
the generator to use this reward to update itself on
human generated examples. This can be seen as
having a teacher intervene with the generator some
fraction of the time and force it to generate the
true responses, an approach that is similar to the
professor-forcing algorithm of Lamb et al. (2016).

A closer look reveals that this modification is the
same as the standard training of SEQ2SEQ mod-
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For number of training iterations do
. For i=1,D-steps do
. Sample (X,Y) from real data
. Sample Ŷ ∼ G(·|X)
. Update D using (X,Y ) as positive examples and
(X, Ŷ ) as negative examples.
. End
.
. For i=1,G-steps do
. Sample (X,Y) from real data
. Sample Ŷ ∼ G(·|X)

. Compute Reward r for (X, Ŷ ) using D.

. Update G on (X, Ŷ ) using reward r

. Teacher-Forcing: Update G on (X,Y )

. End
End

Figure 1: A brief review of the proposed adversarial
reinforcement algorithm for training the generator
G and discriminator D. The reward r from the
discriminator D can be computed using different
strategies according to whether using REINFORCE
or REGS. The update of the generator G on (X, Ŷ )
can be done by either using Eq.2 or Eq.3. D-steps
is set to 5 and G-steps is set to 1.

els, making the final training alternately update
the SEQ2SEQ model using the adversarial objec-
tive and the MLE objective. One can think of the
professor-forcing model as a regularizer to regu-
late the generator once it starts deviating from the
training dataset.

We also propose another workaround, in which
the discriminator first assigns a reward to a human
generated example using its own model, and the
generator then updates itself using this reward on
the human generated example only if the reward
is larger than the baseline value. Such a strategy
has the advantage that different weights for model
updates are assigned to different human generated
examples (in the form of different reward values
produced by the generator) and that human gen-
erated examples are always associated with non-
negative weights.

A sketch of the proposed model is shown in
Figure 1.

3.3 Training Details

We first pre-train the generative model by predict-
ing target sequences given the dialogue history.
We trained a SEQ2SEQ model (Sutskever et al.,
2014) with an attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015) on the OpenSubti-
tles dataset. We followed protocols recommended

by Sutskever et al. (2014), such as gradient clip-
ping, mini-batch and learning rate decay. We also
pre-train the discriminator. To generate negative
examples, we decode part of the training data. Half
of the negative examples are generated using beam-
search with mutual information reranking as de-
scribed in Li et al. (2016a), and the other half is
generated from sampling.

For data processing, model training and decod-
ing (both the proposed adversarial training model
and the standard SEQ2SEQ models), we employ
a few strategies that improve response quality, in-
cluding: (2) Remove training examples with length
of responses shorter than a threshold (set to 5). We
find that this significantly improves the general re-
sponse quality.5 (2) Instead of using the same learn-
ing rate for all examples, using a weighted learning
rate that considers the average tf-idf score for to-
kens within the response. Such a strategy decreases
the influence from dull and generic utterances.6 (3)
Penalizing intra-sibling ranking when doing beam
search decoding to promote N-best list diversity as
described in Li et al. (2016c). (4) Penalizing word
types (stop words excluded) that have already been
generated. Such a strategy dramatically decreases
the rate of repetitive responses such as no. no. no.
no. no. or contradictory responses such as I don’t
like oranges but i like oranges.

4 Adversarial Evaluation

In this section, we discuss strategies for success-
ful adversarial evaluation. Note that the proposed
adversarial training and adversarial evaluation are
separate procedures. They are independent of each
other and share no common parameters.

The idea of adversarial evaluation, first proposed
by Bowman et al. (2016), is to train a discriminant
function to separate generated and true sentences,
in an attempt to evaluate the model’s sentence gen-
eration capability. The idea has been preliminarily
studied by Kannan and Vinyals (2016) in the con-
text of dialogue generation. Adversarial evaluation
also resembles the idea of the Turing test, which

5To compensate for the loss of short responses, one can
train a separate model using short sequences.

6We treat each sentence as a document. Stop words are
removed. Learning rates are normalized within one batch.
For example, suppose t1, t2, ..., ti, ... ,tN denote the tf-idf
scores for sentences within current batch and lr denotes the
original learning rate. The learning rate for sentence with
index i is N · lr · ti∑

i′ ti′
. To avoid exploding learning rates

for sequences with extremely rare words, the tf-idf score of a
sentence is capped at L times the minimum tf-idf score in the
current batch. L is empirically chosen and is set to 3.
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requires a human evaluator to distinguish machine-
generated texts from human-generated ones. Since
it is time-consuming and costly to ask a human to
talk to a model and give judgements, we train a
machine evaluator in place of the human evaluator
to distinguish the human dialogues and machine
dialogues, and we use it to measure the general
quality of the generated responses.

Adversarial evaluation involves both training and
testing. At training time, the evaluator is trained
to label dialogues as machine-generated (negative)
or human-generated (positive). At test time, the
trained evaluator is evaluated on a held-out dataset.
If the human-generated dialogues and machine-
generated ones are indistinguishable, the model
will achieve 50 percent accuracy at test time.

4.1 Adversarial Success

We define Adversarial Success (AdverSuc for short)
to be the fraction of instances in which a model is
capable of fooling the evaluator. AdverSuc is the
difference between 1 and the accuracy achieved
by the evaluator. Higher values of AdverSuc for a
dialogue generation model are better.

4.2 Testing the Evaluator’s Ability

One caveat with the adversarial evaluation methods
is that they are model-dependent. We approximate
the human evaluator in the Turing test with an au-
tomatic evaluator and assume that the evaluator is
perfect: low accuracy of the discriminator should
indicate high quality of the responses, since we
interpret this to mean the generated responses are
indistinguishable from the human ones. Unfor-
tunately, there is another factor that can lead to
low discriminative accuracy: a poor discriminative
model. Consider a discriminator that always gives
random labels or always gives the same label. Such
an evaluator always yields a high AdverSuc value
of 0.5. Bowman et al. (2016) propose two different
discriminator models separately using unigram fea-
tures and neural features. It is hard to tell which
feature set is more reliable. The standard strategy
of testing the model on a held-out development set
is not suited to this case, since a model that overfits
the development set is necessarily superior.

To deal with this issue, we propose setting up a
few manually-invented situations to test the ability
of the automatic evaluator. This is akin to setting
up examinations to test the ability of the human
evaluator in the Turing test. We report not only the
AdverSuc values, but also the scores that the evalu-

ator achieves in these manually-designed test cases,
indicating how much we can trust the reported Ad-
verSuc. We develop scenarios in which we know
in advance how a perfect evaluator should behave,
and then compare AdverSuc from a discriminative
model with the gold-standard AdverSuc. Scenarios
we design include:
• We use human-generated dialogues as both

positive examples and negative examples. A
perfect evaluator should give an AdverSuc
of 0.5 (accuracy 50%), which is the gold-
standard result.
• We use machine-generated dialogues as both

positive examples and negative examples. A
perfect evaluator should give an AdverSuc of
0.5 (accuracy 50%).
• We use original human-generated dialogues

as positive examples and dialogues consisting
of random utterances as negative examples. A
perfect evaluator should give an AdverSuc of
0 (accuracy 100%).
• We use original human-generated dialogues

as positive examples and dialogues with re-
sponses replaced by the utterances immedi-
ately following the true responses. A perfect
evaluation should give an AdverSuc of 0 (ac-
curacy 100%).

The evaluator reliability error (ERE) is the average
deviation of an evaluator’s adversarial error from
the gold-standard error in the above tasks, with
equal weight for each task. The smaller the error,
the more reliable the evaluator is.

4.3 Machine-vs-Random Accuracy

Evaluator reliability error uses scenarios con-
structed from human-generated dialogues to assess
feature or hyper-parameter choice for the evaluator.
Unfortunately, no machine-generated responses are
involved in the ERE metric. The following exam-
ple illustrates the serious weakness resulting from
this strategy: as will be shown in the experiment
section, when inputs are decoded using greedy or
beam search models, most generation systems to
date yield an adversarial success less than 10 per-
cent (evaluator accuracy 90 percent). But when
using sampling for decoding, the adversarial suc-
cess skyrockets to around 40 percent,7 only 10
percent less than what’s needed to pass the Turing
test. A close look at the decoded sequences using
sampling tells a different story: the responses from

7Similar results are also reported in Kannan and Vinyals
(2016).
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Input tell me ... how long have you had this falling sickness ?
Vanilla-MLE i ’m not a doctor .
Vanilla-Sample well everything you did was totally untrue .
REINFORCE i don ’t know how long it ’s been .
REGS Monte Carlo A few months, I guess .

Input so i had the doctors test sammy ’s response to conditioning .
Vanilla-MLE sammy wrote the test sammy wrote the test .
Vanilla-Sample objects pick objects up objects objects objects objects objects
REINFORCE i ’m not sure that ’s relevant .
REGS Monte Carlo so he took the pills .

Input what are you going to do ?
Vanilla-MLE i ’m going to the movies .
Vanilla-Sample get him outta here first !
REINFORCE i ’m going to get you .
REGS Monte Carlo i ’m going to get you a new car .

Input they fear your power your intellect .
Vanilla-MLE you ’re the only one who knows what ’s going on .
Vanilla-Sample when they are conquered and you surrender they will control all of us .
REINFORCE i ’m afraid i ’m not ready yet .
REGS Monte Carlo i ’m not afraid of your power .

Table 1: Sampled responses from different models. More in Appendix Tables 5 and 6.

sampling are sometimes incoherent, irrelevant or
even ungrammatical.

We thus propose an additional sanity check, in
which we report the accuracy of distinguishing be-
tween machine-generated responses and randomly
sampled responses (machine-vs-random for short).
This resembles the N-choose-1 metric described
in Shao et al. (2017). Higher accuracy indicates
that the generated responses are distinguishable
from randomly sampled human responses, indicat-
ing that the generative model is not fooling the
generator simply by introducing randomness. As
we will show in Sec. 5, using sampling results in
high AdverSuc values but low machine-vs-random
accuracy.

5 Experimental Results

In this section, we detail experimental results on
adversarial success and human evaluation.

Setting ERE
SVM+Unigram 0.232
Concat Neural 0.209

Hierarchical Neural 0.193
SVM+Neural+multil-features 0.152

Table 2: ERE scores obtained by different models.

5.1 Adversarial Evaluation
ERE We first test adversarial evaluation models
with different feature sets and model architectures
for reliability, as measured by evaluator reliability
error (ERE). We explore the following models: (1)
SVM+Unigram: SVM using unigram features.8 A

8Trained using the SVM-Light package (Joachims, 2002).

multi-utterance dialogue (i.e., input messages and
responses) is transformed to a unigram represen-
tation; (2) Concat Neural: a neural classification
model with a softmax function that takes as input
the concatenation of representations of constituent
dialogues sentences; (3) Hierarchical Neural: a
hierarchical encoder with a structure similar to the
discriminator used in the reinforcement; and (4)
SVM+Neural+multi-lex-features: a SVM model
that uses the following features: unigrams, neural
representations of dialogues obtained by the neural
model trained using strategy (3),9 the forward like-
lihood log p(t|s) and backward likelihood p(s|t).

ERE scores obtained by different models are re-
ported in Table 2. As can be seen, the hierarchical
neural evaluator (model 3) is more reliable than
simply concatenating the sentence-level represen-
tations (model 2). Using the combination of neural
features and lexicalized features yields the most
reliable evaluator. For the rest of this section, we
report results obtained by the Hierarchical Neu-
ral setting due to its end-to-end nature, despite its
inferiority to SVM+Neural+multil-features.

Table 3 presents AdverSuc values for different
models, along with machine-vs-random accuracy
described in Section 4.3. Higher values of Adver-
Suc and machine-vs-random are better.

Baselines we consider include standard
SEQ2SEQ models using greedy decoding (MLE-
greedy), beam-search (MLE+BS) and sampling, as
well as the mutual information reranking model of
Li et al. (2016a) with two algorithmic variations:
(1) MMI+p(t|s), in which a large N-best list is first

9The representation before the softmax layer.
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Model AdverSuc machine-vs-random
MLE-BS 0.037 0.942

MLE-Greedy 0.049 0.945
MMI+p(t|s) 0.073 0.953
MMI-p(t) 0.090 0.880
Sampling 0.372 0.679

Adver-Reinforce 0.080 0.945
Adver-REGS 0.098 0.952

Table 3: AdverSuc and machine-vs-random scores
achieved by different training/decoding strategies.

generated using a pre-trained SEQ2SEQ model and
then reranked by the backward probability p(s|t)
and (2) MMI−p(t), in which language model
probability is penalized during decoding.

Results are shown in Table 3. What first stands
out is decoding using sampling (as discussed in Sec-
tion 4.3), achieving a significantly higher AdverSuc
number than all the rest models. However, this does
not indicate the superiority of the sampling decod-
ing model, since the machine-vs-random accuracy
is at the same time significantly lower. This means
that sampled responses based on SEQ2SEQ mod-
els are not only hard for an evaluator to distinguish
from real human responses, but also from randomly
sampled responses. A similar, though much less
extreme, effect is observed for MMI−p(t), which
has an AdverSuc value slightly higher than Adver-
Reinforce, but a significantly lower machine-vs-
random score.

By comparing different baselines, we find that
MMI+p(t|s) is better than MLE-greedy, which is in
turn better than MLE+BS. This result is in line with
human-evaluation results from Li et al. (2016a).
The two proposed adversarial algorithms achieve
better performance than the baselines. We expect
this to be the case, since the adversarial algorithms
are trained on an objective function more similar
to the evaluation metric (i.e., adversarial success).
REGS performs slightly better than the vanilla RE-
INFORCE algorithm.

5.2 Human Evaluation

For human evaluation, we follow protocols de-
fined in Li et al. (2016d), employing crowdsourced
judges to evaluate a random sample of 200 items.
We present both an input message and the gener-
ated outputs to 3 judges and ask them to decide
which of the two outputs is better (single-turn gen-
eral quality). Ties are permitted. Identical strings
are assigned the same score. We also present the
judges with multi-turn conversations simulated be-
tween the two agents. Each conversation consists

Setting adver-win adver-lose tie
single-turn 0.62 0.18 0.20
multi-turn 0.72 0.10 0.18

Table 4: The gain from the proposed adversarial
model over the mutual information system based
on pairwise human judgments.

of 3 turns. Results are presented in Table 4. We
observe a significant quality improvement on both
single-turn quality and multi-turn quality from the
proposed adversarial model. It is worth noting that
the reinforcement learning system described in Li
et al. (2016d), which simulates conversations be-
tween two bots and is trained based on manually
designed reward functions, only improves multi-
turn dialogue quality, while the model described
in this paper improves both single-turn and multi-
turn dialogue generation quality. This confirms that
the reward adopted in adversarial training is more
general, natural and effective in training dialogue
systems.

6 Conclusion and Future Work

In this paper, drawing intuitions from the Turing
test, we propose using an adversarial training ap-
proach for response generation. We cast the model
in the framework of reinforcement learning and
train a generator based on the signal from a dis-
criminator to generate response sequences indis-
tinguishable from human-generated dialogues. We
observe clear performance improvements on multi-
ple metrics from the adversarial training strategy.

The adversarial training model should theo-
retically benefit a variety of generation tasks in
NLP. Unfortunately, in preliminary experiments
applying the same training paradigm to machine
translation, we did not observe a clear performance
boost. We conjecture that this is because the
adversarial training strategy is more beneficial to
tasks in which there is a big discrepancy between
the distributions of the generated sequences and
the reference target sequences. In other words, the
adversarial approach is more beneficial on tasks in
which entropy of the targets is high. Exploring this
relationship further is a focus of our future work.
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Input maybe his eyes were too big for his stomach .
Vanilla-MLE he ’s got a big mouth .
Vanilla-Sample i ’m sure he ’s unhappy with the fact .
Reinforce he ’s a little bit of a pain .
MC i don ’t think so .
Input they didn ’t have much success with this problem commander .
Vanilla-MLE they ’re not the only ones who have been in the system .
Vanilla-Sample it ’s the new priority only .
Reinforce they ’re not the only ones who can help us .
MC can we find someone else ?
Input and he carried them all the time wherever he went .
Vanilla-MLE i don ’t know who he is .
Vanilla-Sample the church ... suffered the winds of 900 meters with horse aid .
Reinforce he was a good man .
MC he was a very good man .
Input somebody probably flushed their pet snake down the toilet .
Vanilla-MLE i ’m sure the dog will be here soon .
Vanilla-Sample i could at least think .
Reinforce i don ’t think so .
MC i don ’t think so .
Input excuse me but how did we pay for these suits ?
Vanilla-MLE i ’m not a beggar .
Vanilla-Sample is this the money eugene ?
Reinforce i don ’t know what to do .
MC how much money you owe me ?
Input ... while the beautiful and happy world was madly destroyed ;
Vanilla-MLE i was born in the world of the world
Vanilla-Sample as in childhood i took you to one tenth of a postcard
Reinforce and the world was full of joy .
MC and the world was full of joy .
Input i was kinda hoping that you were my dad .
Vanilla-MLE i ’m just a little bit of a little bit of a little bit of a little bit of a
Vanilla-Sample shiny gold gold and silver in the mountains .
Reinforce i ’m not gonna be a baby .
MC i ’m not going to be a father .
Input the man who does that is not afraid to die .
Vanilla-MLE he ’s not afraid of the dark .
Vanilla-Sample even the program is the only truth
Reinforce he ’s also not afraid of me .
MC he ’s such a brave man !
Input do you have any idea what caused the explosion ?
Vanilla-MLE i think it ’s the same thing .
Vanilla-Sample i ’m still very nervous .
Reinforce maybe it ’s just a coincidence .
MC i don ’t know if it ’s a coincidence .
Input don ’t bother the citizens in hong kong island anymore
Vanilla-MLE i ’ll be back in a few days
Vanilla-Sample you wiii be transferred to the target court
Reinforce i ’m not sure if you can handle it without bothering them .
MC i ’m not going to be a nuisance
Input you know you ought to find yourself a girl .
Vanilla-MLE you know what i mean ?
Vanilla-Sample it ’s full of crime ...
Reinforce i don ’t know what you ’re talking about .
MC i don ’t want to be a girl .
Input i got you the big screen tv deluxe UNknown machine
Vanilla-MLE i ’m gonna be a little late for the movie .
Vanilla-Sample you mean you ’re living ?
Reinforce i ’m gonna get you a new one .
MC i ’m gonna get you a new tv set .
Input we won ’t give her the chance to surprise us .
Vanilla-MLE she ’s not going to be a party member .
Vanilla-Sample the timing ’s good and bad .
Reinforce we ’ll have to get her back .
MC i don ’t think we have to worry about her .
Input does it live in this matter we call dna ?
Vanilla-MLE i don ’t think so .
Vanilla-Sample and it requires time to be wrong and no one believes it .
Reinforce it ’s a genetic disorder .
MC i don ’t think so .

Table 5: Appendix: Responses sampled from different models.
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Input i ’ll have to drive home .
Vanilla-MLE i ’ll be back in a minute .
Vanilla-Sample let ’s go for some fun .
Reinforce i ’ll drive you home .
MC i don ’t have a car .
Input i had to work late and then i went for a walk .
Vanilla-MLE i was in the middle of the road .
Vanilla-Sample my body was just pounding .
Reinforce i was just trying to help you .
MC i was just trying to get a little sleep .
Input lots of cream lots of sugar .
Vanilla-MLE i ’m gonna be in the kitchen .
Vanilla-Sample was this gay or red ?
Reinforce i don ’t want to be a vegetable .
MC i ’m not a very good cook .
Input so they just let him go ?
Vanilla-MLE he ’s not gonna let them go through the motions .
Vanilla-Sample they asked him whether we could go see ernesto ?
Reinforce i don ’t know what to do .
MC he ’s not going to be here any longer .
Input you must not bomb this town .
Vanilla-MLE you have to go back to the city .
Vanilla-Sample the one is a multiple choice .
Reinforce I think I have to .
MC I think I have to .
Input communism recently failed in eastern europe .
Vanilla-MLE the war is not over .
Vanilla-Sample there are people who hope that in tokyo they won ’t risk losing

their departing .
Reinforce and the people who are not the same .
MC the war is still going on .
Input you should stop in more often .
Vanilla-MLE I don ’t think so .
Vanilla-Sample is it possible as old as you ?
Reinforce i ’m not going to be a burden on you .
MC i don ’t want to be a burden .
Input he couldn ’t have heard us .
Vanilla-MLE he was in the middle of the night .
Vanilla-Sample he should have been somewhere out here .
Reinforce he ’s not a good guy .
MC he ’s got a lot of nerve.
Input that ’s our wake up call .
Vanilla-MLE we ’re gonna be late for the meeting .
Vanilla-Sample c ’mon c ’mon let ’s get outta here .
Reinforce i ’ll be right back .
MC we ’re gonna have to get to the station .
Input i had ’em when i started .
Vanilla-MLE i ’m gonna get ’em .
Vanilla-Sample those weak rotten guys had me in a rush on a broken swoop .
Reinforce i don ’t know what to do .
MC i was just a little bit nervous .
Input oatmeal delicious start into a new day
Vanilla-MLE i ’ll be right back
Vanilla-Sample sure if you don ’t put it into the water
Reinforce i ’m gonna be a little busy with the dishes .
MC i ’m gonna make you a little dinner .

Table 6: Appendix: More responses sampled from different models.
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Abstract

Previous work on dialog act (DA) classifi-
cation has investigated different methods,
such as hidden Markov models, maximum
entropy, conditional random fields, graph-
ical models, and support vector machines.
A few recent studies explored using deep
learning neural networks for DA classifi-
cation, however, it is not clear yet what is
the best method for using dialog context
or DA sequential information, and how
much gain it brings. This paper proposes
several ways of using context informa-
tion for DA classification, all in the deep
learning framework. The baseline system
classifies each utterance using the con-
volutional neural networks (CNN). Our
proposed methods include using hierar-
chical models (recurrent neural networks
(RNN) or CNN) for DA sequence tagging
where the bottom layer takes the sentence
CNN representation as input, concatenat-
ing predictions from the previous utter-
ances with the CNN vector for classifica-
tion, and performing sequence decoding
based on the predictions from the sentence
CNN model. We conduct thorough ex-
periments and comparisons on the Switch-
board corpus, demonstrate that incorporat-
ing context information significantly im-
proves DA classification, and show that we
achieve new state-of-the-art performance
for this task.

1 Introduction

Dialog act (DA) represents a function of a
speaker’s utterance in either human-to-human or
human-to-computer conversations. Correct identi-
fication of DAs is important for understanding hu-

man conversations, as well as for developing intel-
ligent human-to-computer dialog systems (either
written or spoken dialogs). For example, recogniz-
ing DAs can help identify questions and answers
in meetings, customer service, online forum, etc.
Many machine learning techniques have been in-
vestigated and shown reasonable performance for
DA classification, for example, (Ang et al., 2005;
Ji and Bilmes, 2005; Kalchbrenner and Blunsom,
2013; Ribeiro et al., 2015), just to name a few.
Intuitively we would expect that leveraging dia-
log context can help classify the current utterance.
For example, if the previous sentence is a question,
then there is a high probability that the current sen-
tence is a response to that question. Such con-
text information has been explored in some pre-
vious methods, for example, hidden Markov mod-
els (HMM), conditional random fields (CRF), dy-
namic Bayesian networks (DBN). Given the re-
cent success of the deep learning framework in
various language processing tasks, in this work
we also employ neural networks for DA classifica-
tion. In fact, such models have been used in some
recent studies for DA classification, e.g., (Rojas-
Barahona et al., 2016; Kalchbrenner and Blunsom,
2013; Zhou et al., 2015); however, previous work
has not thoroughly evaluated the use of context in-
formation for this task, and there is still a lack of
good understanding about how we can use context
information and how useful it is. This is the ques-
tion we aim to answer in this work.

The contributions of this paper are: 1) We pro-
pose several ways to incorporate context informa-
tion for DA classification over the baseline method
of using convolutional neural networks (CNN) for
sentence classification, including: (a) a hierarchi-
cal RNN/LSTM and CNN to model the utterance
sequence in the conversation, where the input to
the higher level LSTM and CNN unit is the sen-
tence vector from the sentence level CNN model;
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(b) a two-step approach where the predicted DA
results for the previous utterances, either labels
or probability distributions, are concatenated with
the sentence CNN vector for the current utterance
as the new input for classification; (c) sequence
level decoding based on the predicted DA prob-
abilities and the transition probabilities between
DA labels. Some of these methods have not been
exploited previously for this task. 2) We perform
a detailed and thorough analysis of different mod-
eling approaches and some impacting factors in
the models (such as the context length, represen-
tations and quality of the predictions). This is the
first study with such kind of comparisons. 3) We
achieve new state-of-the-art results.

2 Related work

Previous work has investigated different machine
learning techniques for DA classification such as
Maximum entropy, DBN, HMM, and SVM (Ang
et al., 2005; Ji and Bilmes, 2005; Venkataraman
et al., 2003; Webb et al., 2005; Fernandez and Pi-
card, 2002; Mast et al., 1996; Liu, 2006; Kral and
Cerisara, 2014). Different features have been ex-
plored in these models, including lexical, syntac-
tic features, prosodic cues, and speaker interac-
tions. In particular, context information has been
previously used in some methods. For example,
some early studies used HMMs (Venkataraman
et al., 2003; Stolcke et al., 2000), where the “hid-
den” states are the DA tags, which generate the se-
quence of words as observations. The observation
probabilities are obtained by DA specific word-
based language models, and a DA tag based n-
gram language model provides the transition prob-
abilities between the DA tags. (Ji and Bilmes,
2005; Dielmann and Renals, 2008) used DBN for
sequence decoding and examined both the gen-
erative and the conditional modeling approaches.
CRF, as a powerful sequence labeling method, has
also been widely used to incorporate context in-
formation for DA classification (Kim et al., 2010;
Quarteroni et al., 2011; Chen and Eugenio, 2013;
Dielmann and Renals, 2008). It is worth noting
that (Ribeiro et al., 2015) used different configu-
rations to capture information from previous con-
text in the SVM classifiers, such as n-grams or DA
predictions. This is similar to our work in that we
also evaluate using the previous utterances, and
the predicted DAs for them. However, our mod-
eling approaches are all based on DNNs, as de-

scribed in more details in Section 3, and the inter-
action between utterances and DA labels is mod-
eled in the hierarchical models in a more princi-
pled way.

Recently deep learning has been widely adopted
in many language processing tasks, including DA
classification. Context or sequence information
is also explored in this framework. For exam-
ple, (Rojas-Barahona et al., 2016) proposed to use
DNN for DA classification and slot filling, and
evaluated on two different sets. They showed that
their proposed CNN+LSTM model has negligible
gain on one data set, and significant improvement
on the other one for the joint DA classification
and slot filling task. (Kalchbrenner and Blunsom,
2013) proposed methods for discourse decompo-
sition, and investigated using recurrent CNN for
DA classification, reporting some positive results,
e.g., 2.9% improvement over the LM-HMM base-
line. In this paper we propose different meth-
ods in the deep learning framework to incorporate
context information. Our hierarchical LSTM and
CNN method has some similarities to that used
in (Rojas-Barahona et al., 2016; Kalchbrenner and
Blunsom, 2013), but unlike those that focus on just
one method, we propose a few approaches and per-
form comparisons among them for a deeper under-
standing of different methods and their contribut-
ing factors.

The discussions above are limited to DA clas-
sification using speech/text data. Other knowl-
edge sources have also been used in a multimodal
setting (e.g., haptic actions in (Chen and Euge-
nio, 2013)). In this study we just rely on tex-
tual information. Also note that in some scenar-
ios, for example, speech conversations where tran-
scripts are from speech recognition systems, DA
segmentation is also needed. This problem has
been addressed in some previous work, for exam-
ple, (Lendvai, 2007; Quarteroni et al., 2011; Ang
et al., 2005), which often uses a classification or
sequence labeling setup for the segmentation task,
or performs joint DA segmentation and classifica-
tion. We use pre-segmented utterances and focus
just on the DA classification task in this work.

3 DA Classification Methods

3.1 Task

Our task is to classify each utterance in a conversa-
tion into a predefined DA tag set. We use Switch-
board data in our experiments (see Section 4.1 for
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DA type speaker sentence
statement-opinion B I always kind of think it would be neat to be able to watch

them and be there for them all the time
back-channel A Uh-huh

question-yes-no B Is that what you do?
yes-answer A Uh yeah
statement A Actually I teach my kids at home
statement A so I’m here all the time

summarize/reformulate B: Oh so they don’t go to school

Table 1: An example of Switchboard conversation with the DA labels.

additional information on the data). There are dif-
ferent granularities of the tag sets. In this work we
use 42 tags (Jurafsky et al., 1997), which has been
widely used in previous studies of DA classifica-
tion on this data set. Table 1 shows an example
of some utterances in a Switchboard conversation.
We can see that the ‘answer’ DA follows the ‘ques-
tion’ one, which is quite intuitive. Our goal is thus
to model such sequential information for DA clas-
sification. Again in this work we only use the tran-
scriptions of the utterances along with the speaker
information (i.e., if the current utterance is from
the same or different speaker as the previous one),
without any speech related features.

3.2 CNN for utterance classification

All of our methods are built based on the ba-
sic CNN sentence representation, which has been
widely used recently in sentence as well as doc-
ument classification (Collobert et al., 2011; Kim,
2014), therefore we first briefly describe this base-
line. Figure 1 shows the context independent
CNN-based classification method. Let w[1...n] rep-
resent the word embedding sequence for a sen-
tence with n words, where wi ∈ Rd is the d-
dimensional embedding vector for the ith word.
A temporal convolution operation is applied to the
sentence:

c[1...n] = w̃[1...n] ∗ f

where w̃[1...n] denotes the sequence w[1...n] with
zero padding, and f is a filter map for the convo-
lution operation. A max pooling layer is then ap-
plied over the resulting sequence c[1...n] to obtain
one value for the sentence. If we use l window
sizes and k filters for each window, then l×k con-
volutional sequences are generated for each sen-
tence, and after max pooling, we obtain a fixed-
length vector s with a dimension of l × k. This is
the feature vector representation for the sentence,

which is then used as the input in a multi-layer
perceptron (MLP) or feedforward neural network
for sentence classification. We only use one layer
MLP in this work.

This baseline CNN model learns textual infor-
mation in each sentence for DA classification. We
can incorporate additional features into this model,
for example, if the current sentence is from the
same speaker as the previous one. Figure 1 shows
the use of such additional features – they are con-
catenated with the CNN-based textural vector, and
then fed to the MLP for DA classification. In the
rest of the paper, when there is no confusion, we
also use CNN for the cases when additional fea-
tures are concatenated with the standard CNN for
sentence-level representation. We use this CNN
model as a baseline, and in the following will ex-
plore several methods using context information
for DA classification.

3.3 Use history DA information
As discussed earlier, we expect there is valuable
sequential information among the DA tags, there-
fore in the first approach, we combine the history
DA information with the current utterance to clas-
sify its DA tag. This is represented as additional
features concatenated with the CNN sentence rep-
resentation, as shown in Figure 1. We evaluate dif-
ferent configurations in this framework.

• Use DA labels. We compare using reference
and system predicted DA labels in training
and testing. Note that using reference labels
in testing is not a real testing setup. This is
just meant to provide an upper bound and un-
derstand the performance degradation due to
prediction errors.

• Use probabilities for system predictions. In-
stead of taking the hard decisions from the
system’s predictions, we evaluate using the
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Figure 1: Baseline context-independent CNN-based DA classification method.

posterior probabilities from the system in or-
der to capture more information.

• History length. We compare using DA infor-
mation from different number of previous ut-
terances.

Note that for most of these setups above when
system’s predicted DA information is used, we
need to go through the following procedure:

• train a context-independent sentence CNN
model

• use it to generate predictions, for training and
test data

• add the corresponding history DA informa-
tion in the training set to retrain a model

• add the history DA information in the test set
and apply the new model

The only scenario where these steps are not re-
quired is when reference DA tags are used in both
training and testing. There is one additional caveat
that is worth pointing out – when generating the
DA predictions for the training data, ideally we
need to perform cross validation for the training
set such that all the training sentences are labeled
by a model trained from data that does not include
this sentence, and thus we have matched infor-
mation used in training and testing; however, we
noticed that our model does not overfit the train-
ing data very much, and the training accuracy is
not significantly different from the test accuracy,

therefore we simply apply the trained CNN model
to the training set itself to obtain the DA predic-
tions for all the training sentences, and train the
new model.

3.4 CNN + DA transition decoding

In this approach, we perform conversation level
decoding that combines the probabilities from the
context-independent CNN model and the DA tag
transition probabilities. The DA classification
problem can be represented as:

Ŷ = argmaxP (Y |X) = argmaxP (Y )P (X|Y )

= argmaxP (Y )
∏

i

P (xi|yi)

where Y is the DA tag sequence, and X con-
tains the entire conversation, i.e., sequence of sen-
tences. P (Y ) can be computed for the DA tag
sequence (similar to word-based n-gram language
model, here “words” are DA tags), and the prob-
ability of a tag given the utterance (P (xi|yi)) can
be obtained from the rescaled probability from the
CNN model (that is P (yi|xi)). For decoding, we
can use either Viterbi decoding to find the most
likely DA sequence (as shown above) or forward-
backward decoding to determine the best tag for
each utterance in the sequence. This model is
similar to the HMM model used previously for
this task (Stolcke et al., 2000), and the difference
is in that the probability of a DA given the sen-
tence is estimated by the CNN model, a discrim-
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Figure 2: Hirarchical CNN: sequence CNN on top
of sentence CNN for DA classification.

inative model, in contrast to the word-based lan-
guage model that is a generative model.

3.5 Hierarchical model: CNN+CNN

Once we have the sentence vector representation
built based on the baseline CNN model, we use
another CNN to incorporate context information
of an utterance for its classification. Figure 2
shows this method. The sequence of sentences is
represented by a sequence of fixed length vectors
s[1...m], where m is the number of sentences in
the conversation, and si is the vector representa-
tion for sentence i from the baseline CNN model.
Similar to the CNN model for word sequence, we
apply a temporal convolutional layer with differ-
ent filters to s[1...m]. Different from the sentence
CNN model for word sequences, here we do not
perform pooling for the entire dialog sequence, as
the classification task is for each sentence, not the
whole conversation (sentence sequence). Instead,
for each sentence, the output of every convolu-
tional filter is concatenated to form the sentence’s
representation, and then an MLP is used for its
classification. This approach can be thought as a
hierarchical neural network, where the high level
CNN is used to capture context information.

3.6 Hierarchical model: CNN+RNN

The hierarchical CNN method uses the neighbor-
ing sentences to learn the dependencies among
consecutive utterances. A different method to
model the sequential information is via an RNN
that is intrinsically capable of learning the tempo-
ral dynamics, which is suitable for the problem. In
this hierarchical model, the representation for each
sentence is still learned by the CNN as in the base-

Figure 3: RNN/Bi-LSTM on top of sentence CNN
for DA classification.

line, while the dialog-level sequence information
among sentences is modeled by the RNN. Here,
we use bidirectional-LSTM (BLSTM) to learn the
context before and after the current sentence. The
left-to-right LSTM output and the one from the
reverse direction are concatenated and input to a
hidden layer for classification. BLSTM has been
widely used recently for various sequence labeling
problems (such as part-of-speech tagging, named
entity recognition) and achieved state-of-the-art
performance. Figure 3 shows the structure of the
model. Note that the difference between these last
two models and the one using history DA infor-
mation is in that DA labels are not explicitly rep-
resented in these hierarchical models.

4 Experiments

4.1 Data
We use Switchboard data in our experiments. This
corpus has been widely used in the community for
DA classification. In this data, two people talked
over the phone about a given topic for several min-
utes. 1155 conversations have been manually la-
beled with DAs. 40 conversations were held out
for testing and development. However, there is no
standard as to what are the test ones (it is unknown
from the earliest paper using this data (Stolcke
et al., 2000)). Therefore we randomly split the set
into two, 20 conversations in each, with similar
amount of utterances. We use one set as the devel-
opment set and evaluate on the other set. As men-
tioned earlier, we do not use speech features, and
only use textual information and speaker change
feature in this study. For all the experiments, we
use human transcripts. This setup is expected to
be applicable to written conversations/dialogs. Ta-
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ble 2 shows the basic statistics of the data.

conversations sentences
training 1115 196,753
test set 1 20 3,764
test set 2 20 3,771

Table 2: Data information.

4.2 Results
4.2.1 Baseline CNN
For all the DNN models, we did not tune model
parameters very much. Most of the parameters
were chosen based on literature or our experience
with other DNN-based text classification tasks.
We used pretrained embeddings (dimension 200)
to initialize word vectors to use in CNN, and then
update them during training.1 To avoid overfitting,
we use a dropout of 0.5. The baseline CNN uses
three windows: 1, 2, and 3, and 100 filter maps for
each. The output hidden layer dimension is 100.
For learning, we use Adagrad with a learning rate
of 0.01.

Table 3 shows the baseline classification accu-
racy results when no context information is used,
for three setups: the baseline sentence CNN model
with the pretrained embeddings, when speaker
change information is added, and when no pre-
trained embeddings are used. We can see the
slight performance change because of the added
speaker change feature. When no pretrained em-
beddings are used, i.e., no additional information
is used from other resources, there is a perfor-
mance degradation of 2-3%. Note that these re-
sults are better or at least comparable to state-
of-the-art performance. In fact, we also imple-
mented a CRF tagging model for this data set,
where we used bag-of-word features for each ut-
terance, therefore the information is similar to that
used in the DNN framework (but the CRF does
model DA tag sequential information). This CRF
model has an accuracy of about 74% for the two
sets combined. The CNN model without using
pretrained embeddings has worse results than the
CRF system that is trained just using the Switch-
board data, confirming that when using word em-
beddings as word representations, pretrained em-
beddings are beneficial when the training size is
small. However, the CNN model can effectively

1The embeddings we used are generated based on our col-
lected web data. We compared it to other embeddings, e.g.,
Senna, and found the performance difference is very small.

leverage word embedding information (obtained
from unlabeled data), whereas it is not straightfor-
ward to use such information in the CRF classi-
fiers. This shows an advantage of the DNN-based
method.

set 1 set 2
CNN 74.47 76.88

+ speaker change 74.73 77.12
no pretrained embedding 71.81 74.49

Table 3: DA classification accuracy (%) when us-
ing the baseline CNN without context information.

4.2.2 Hierarchical models: CNN+CNN/RNN
For the hierarchical models described in Sec-
tion 3.5 and 3.6, i.e., adding CNN and BLSTM
on top of the baseline sentence CNN, we kept the
same model parameters in the sentence CNN part.
The dimension is 64 for both the higher level CNN
and LSTM. For these sequence labeling tasks,
we use stochastic gradient descent (SGD), with a
learning rate of 0.01. We observed this yielded
better performance than Adagrad learning. Table
4 shows the results for different setups in these two
models to evaluate the impact of context informa-
tion. For LSTM, we compare using LSTM and
BLSTM; for CNN, we show results when using
different context window sizes in the top layer.

set 1 set 2
baseline CNN 74.73 77.12

window 2 76.2 79.16
CNN+CNN window 3 76.78 79.05

window 4 77.15 79.74
BLSTM 76.91 79.71

CNN+RNN LSTM 76.35 79.71

Table 4: DA classification results (%) when using
the hierarchical structure: sentence CNN followed
by dialog sequence level CNN or RNN/BLSTM.

From the table we can see that using LSTM and
CNN to model context information for DA clas-
sification is effective, both models significantly
outperforming the baseline. Regarding the effect
of context, in general there is slightly more gain
when more context is used, as in BLSTM, or larger
windows in CNN. For CNN, when we increase the
window more, to beyond 4, there is no further im-
provement. The greatest difference comes from
using context vs. not using it at all.
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history DA = ref or sys DA representation set 1 set 2
training testing

ref ref label 78.19 80.96
one ref sys label 75.72 77.94

sys sys label 76.78 79.26
sys sys probabilities 76.62 79.45
ref ref label 78.93 81.54

two sys sys label 76.41 79.98
sys sys probabilities 76.51 80.14
ref ref label 79.62 81.76

three sys sys label 76.54 80.06
sys sys probabilities 76.73 79.9

baseline CNN 74.73 77.12

Table 5: DA classification results (%) when incorporating history DA information in the current utterance
in the CNN method. Three factors are examined: context history length, DA representations, and where
DA information is from.

4.2.3 CNN + DA prediction
As described in Section 3.3, another method to in-
corporate context information is to use the DAs
from previous utterances. We perform a detailed
analysis to examine three factors under this frame-
work:

• context history: we use a window of up to 3,
i.e., information from the previous one, two,
or three utterances;

• representation of the DA information,
whether it is DA label or probabilities;

• reference vs. system predicted DA labels dur-
ing training and testing.

Using the reference DA labels in testing is ex-
pected to give an oracle or upper bound perfor-
mance for this set of experiments. Table 5 shows
the results for these setups. The predictions for
the utterances are generated using the baseline
CNN model, with the pretrained embeddings and
speaker information (i.e., the best utterance clas-
sification model). The model parameters in the
second-round CNN training (when additional his-
tory DA information is included) are the same as
the baseline CNN.

From Table 5 we can see that in terms of the
representation of the history DA information, us-
ing hard labels and soft predictions achieves sim-
ilar performance. For model training, it is better
to have matched information in training and test-
ing. Using reference DA labels during training and

system predictions in testing (second row in the re-
sults) is less effective compared to using both sys-
tem predictions in training and testing. The quality
of the prediction also affects the usefulness of the
DA prediction information, as demonstrated by
the better performance when the reference labels
are used compared to using system predicted DAs,
which is expected. The immediate previous utter-
ance has the largest impact on the prediction of the
current utterance (comparing to not using context
at all), and adding longer context helps less. In
addition, using the reference previous DA labels
(ref train and ref test condition) benefits more than
using system predicted DA labels when longer his-
tory is used, suggesting that more predicted DAs,
when used together, become more noisy and bring
less gain.

4.2.4 Overall results
Table 6 summarizes the results for different sys-
tems, including the baseline CNN model without
using context information (this baseline uses pre-
trained embeddings and speaker change feature),
and four different ways of using context: (a) pre-
dicted DA information (posterior probabilities) is
combined with the current sentence’s CNN-based
representation; (b) applying a BLSTM on top of
the sentence CNN representation; (c) hierarchical
CNN that combines the current sentence’s CNN
representation with its neighbors; (d) sequence de-
coding by combining CNN posteriors with DA
transition scores.

From the results, we can see the positive effect
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set 1 set 2
CNN baseline, no context 74.73 77.12

CNN + DA predictions 76.73 79.9
CNN + RNN/BLSTM 76.91 79.7

CNN + CNN 77.15 79.74
CNN prob + DA transition 76.70 79.69

Table 6: DA classification results (%) using differ-
ent systems.

when context information is used. All the meth-
ods using context yield significant improvement
over the baseline (statistically significant based on
t-test). Comparing representing context informa-
tion via the DA labels of the previous utterances
vs. using the hierarchical CNN or RNN model, we
see there is not much difference. This observation
is somewhat different from that found in (Ribeiro
et al., 2015; Kim et al., 2010) where using previ-
ous DA predictions yields more gain than adding
n-gram features from the previous utterances. We
believe one reason for this difference is the use
of the DNN framework to model the utterance se-
quences. Given the current data size and the oracle
performance in Table 5, we expect that when more
data is available, using larger neural networks will
further improve the performance. Furthermore,
we want to mention that overall these results rep-
resent new state-of-the-art performance for this
task ((Kalchbrenner and Blunsom, 2013) reported
73.9% accuracy using recurrent CNN, though the
results are not directly comparable since they only
evaluated on 19 test conversations).

4.2.5 Final remarks
As expected, our experimental results demonstrate
that we can effectively incorporate context infor-
mation to improve DA classification. We con-
ducted some analyses to see what errors are cor-
rected when we use the context models compared
to the baseline results. Due to space limit, we
show one positive example below where adding
context changes the prediction from ‘backchannel’
to ‘answer’.

• Example:
- Is this a mail order parts house that special-
izes in parts for parts for uh old imports?
- right

It is clear that using context can help disam-
biguate and better predict the DAs for the current

utterance. In fact, we noticed that close to 5% of
errors are correctly changed from ‘back channel’
to ‘reply’ when context information is used.

One of the most frequent errors we notice the
system makes is the mislabels between ‘state-
ment’ and ‘statement-opinion’. To correctly iden-
tify statement-opinion DAs, we can perform some
opinion or subjectivity recognition, but that is out
of the scope of this study. Another frequent error
is the confusion between backchannel and agree-
ment. For example, ‘right’ and ‘yeah’ are common
words for both categories, and even with context
information, they are still hard to disambiguate for
the current models.

Finally it is worth pointing out that our work
uses an offline setting where we perform DA tag-
ging for the entire conversation. In real world ap-
plications, an online setting may be needed; how-
ever, information from previous utterances can
still be used there. In fact, most of the per-
formance gain from incorporating context infor-
mation comes from the previous utterances (e.g.,
the difference between the hierarchical LSTM and
BLSTM is very small). Our findings about the ef-
fectiveness of context information are applicable
to the online setting.

5 Conclusions

We proposed several approaches to incorporate
context information in the deep learning frame-
work for DA classification in conversations, in-
cluding expanding the sentence CNN vector with
the predicted DA information from previous ut-
terances to train another model, hierarchical mod-
els based on CNN or LSTM to model the DA se-
quence on top of the sentence CNN representation,
or dialog level decoding once the sentence CNN
generates its hypothesis. Compared to the base-
line using CNN for utterance classification, our
proposed methods effectively leverage context in-
formation and achieve significantly better perfor-
mance. We observe that there is very small dif-
ference among different approaches. Our results
represent the state-of-the-art for DA classification
on the Switchboard data. We conducted thorough
evaluations to understand the impact of different
factors, and our results shed lights on the use of
context information for similar tasks. In our future
work, we plan to apply these approaches to other
tasks, such as intent recognition and slot filling in
language understanding.
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Abstract

We present an unsupervised model of dia-
logue act sequences in conversation. By
modeling topical themes as transitioning
more slowly than dialogue acts in conver-
sation, our model de-emphasizes content-
related words in order to focus on con-
versational function words that signal di-
alogue acts. We also incorporate speaker
tendencies to use some acts more than
others as an additional predictor of dia-
logue act prevalence beyond temporal de-
pendencies. According to the evaluation
presented on two dissimilar corpora, the
CNET forum and NPS Chat corpus, the ef-
fectiveness of each modeling assumption
is found to vary depending on characteris-
tics of the data. De-emphasizing content-
related words yields improvement on the
CNET corpus, while utilizing speaker ten-
dencies is advantageous on the NPS cor-
pus. The components of our model com-
plement one another to achieve robust per-
formance on both corpora and outperform
state-of-the-art baseline models.

1 Introduction

Dialogue acts (DAs), or speech acts, represent
the intention behind an utterance in conversa-
tion to achieve a conversational goal (Austin,
1975). Modeling conversations as structured DA
sequences is a step toward the automated under-
standing of dialogue, useful for dialogue agents
(Traum, 1999; Louwerse et al., 2002) and the
processing of informal online conversational data
(Misra and Walker, 2013; Vosoughi and Roy,
2016). Distributions of DAs can also be used
as predictors of conversational outcome measures
such as student learning in tutoring systems (Lit-

man and Forbes-Riley, 2006) and engagement in
meetings (Wrede and Shriberg, 2003). Unsuper-
vised models for DA recognition may substitute or
aid costly human annotation. We present an unsu-
pervised model of DA sequences in conversation
that overcomes limitations of prior models.

The first improvement our model offers is sep-
arating out content-related words to emphasize
words more relevant to DAs. DAs are associ-
ated more closely with style and function words
such as discourse markers and light verbs than
with content words, which are more related to the
propositional content (Erkens and Janssen, 2008;
O’Shea et al., 2012). However, separating out con-
tent words is not standard in our field. For ex-
ample, in some rule-based semantic and pragmatic
parsing, the content and function of dialogue acts
are not formally distinguished in the formalization
(Becker et al., 2011), especially in domain-specific
applications in dialogue systems (Gavaldà, 2004).
A separation between content and function is use-
ful for making cross-domain or cross-task gener-
alizations about conversational processes.

Our model filters out content words by imple-
menting the assumption that conversations pro-
ceed against a backdrop of underlying topics that
transition more slowly than DAs or that are con-
stant throughout. Based on a difference in tran-
sition speed, two types of language models are
learned: foreground language models that capture
DA-related words and background language mod-
els for content words. Although some existing
models assume a background or domain-specific
language model to filter out words unrelated to
DAs (Lee et al., 2013; Paul, 2012; Ritter et al.,
2010), they either require domain labels or do not
learn topics underlying conversations.

The second improvement offered by our model
is inclusion of speaker preferences, or tendencies
to use some DAs more than others. Prior mod-
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els of DAs in conversation often rely on the dis-
course property of conditional relevance (Levin-
son, 1983; Martin and Rose, 2003), i.e., tenden-
cies for sequences of conversational DAs such as
questions followed by answers, greetings followed
by greetings, and invitations followed by accep-
tances (Sidnell, 2011). Though conditional rele-
vance, which motivates the use of Markov models
for inducing DA representations, is one stable sig-
nal to discover DAs in discourse data (Brychcı́n
and Král, 2017; Lee et al., 2013), there are rea-
sons that it is a less strong signal than ultimately
desired. One of the reasons is that the DA of an
utterance depends not only on the preceding DA,
but also on the speaker’s personal style (Appling
et al., 2013) or preferences for certain DAs. Our
model explicitly accounts for speaker preferences
as a factor in determining the DA of an utterance.

Our model also includes additional structure
to account for assumptions about distribution and
packaging of observed DAs in running discourse.
First, one utterance can involve more than one
DA (Levinson, 1983); for example, asking a
question in a forum may involve introducing the
speaker, explaining the problem, etc. Hence, we
assume that DAs operate on more than one level
simultaneously, and an utterance-level DA is a
mixture of finer-grained sentence-level DAs. Sec-
ond, online conversations often have multi-level
structure, branching into multiple conversational
threads using replies. Our model supports conver-
sations that have such multi-level structure.

To illustrate the generalizability of our model,
we evaluate it on two corpora with very differ-
ent characteristics in terms of utterance length, the
number of speakers per conversation, and the do-
main: CNET and NPS Chat Corpus. We evalu-
ate the DA recognition accuracy of our model and
compare the result with other latest models. As
we tune the model parameters for each corpus, we
use our model as a lens to understand the rela-
tionship between the nature of conversations and
effective model components for identifying DAs,
which may inform future model design.

For the remainder of the paper, we will discuss
prior work on dialogue acts and existing models
(Section 2) and explain our model design (Section
3). Then we will describe our evaluation method
and corpora (Section 4) and discuss the lessons
learned from our empirical investigation (Section
5). We conclude the paper in Section 6.

2 Related Work

Austin (1975) makes a distinction between the il-
locutionary, social intention of an utterance (as
seen in the indirect sentence “Can you pass the
salt?”) and the locutionary act of an utterance,
which includes the ostensible surface-level mean-
ing of the words. DAs are commonly thought of as
describing illocutionary actions in talk. Example
DAs used in computational systems include yes-
no question, statement, backchannel, and opin-
ion (Jurafsky et al., 1998).

Winograd and Flores (1986) were some of the
first to conceptualize DAs with state transitions
as a model for conversation. Similarly, contem-
porary unsupervised DA models often use a hid-
den Markov model (HMM) to structure a genera-
tive process of utterance sequences (Ritter et al.,
2010). It is commonly assumed that each hid-
den state corresponds to a DA, but different ap-
proaches use different representations for states.

One common representation of a state is a
multinomial distribution over words, from which
words related to DAs are generated. Often, this
generative process includes domain- or content-
related language models that are independent of
states and used to filter out words unrelated to
DAs (Lee et al., 2013; Ritter et al., 2010). How-
ever, these language models have some limita-
tions. For instance, Lee et al. (2013) rely on do-
main labels for learning domain-specific language
models, which may require human annotation,
whereas our model learns them without labels.
Ritter et al. (2010) learn conversation-specific lan-
guage models to filter out content words. We
take a different approach, simultaneously learning
content-related topics underlying the entire cor-
pus and filtering out these content words. Al-
though most models incorporate a general lan-
guage model to separate out common words (Lee
et al., 2013; Paul, 2012; Ritter et al., 2010), we
do not learn it because we assume that common
words are relevant to DAs.

Word embedding vector representations have
also been researched as the outputs of latent states.
For example, Brychcı́n and Král (2017) represent
an utterance as a weighted sum of word vectors
from GloVe1. Each utterance vector is generated
from a Gaussian distribution that parameterizes a
latent state. This model has been shown to capture

1https://nlp.stanford.edu/projects/
glove/
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DAs effectively for short utterances.
DAs are not completely determined by preced-

ing DAs (Levinson, 1983), and this difficulty can
be overcome partly by modeling speaker style, as
there is evidence that each speaker has preferences
for certain DAs (Appling et al., 2013). Joty et al.
(2011) model speakers as outputs generated by an
HMM, but this structure makes it hard to adjust
the contribution of speaker preferences and may
overestimate the influence of speakers. We model
speaker preferences more directly such that the
preceding DA and the speaker together determine
an utterance’s probability distribution over DAs.

One reason for the nondeterministic nature of
DAs is that one utterance can involve more than
one DA (Levinson, 1983); this suggests that one
language model per DA may not be enough. Paul
(2012) represents latent states as mixtures of top-
ics, but there is no one-to-one relationship be-
tween states and DAs. Joty et al. (2011) assume
that words are drawn individually from a fixed
number of language models specific to each DA.
However, we observe that one sentence usually
performs a consistent finer-grained act, so we con-
strain each sentence in an utterance to one lan-
guage model. Thus, utterances, which may consist
of multiple sentences, are represented as a mixture
of finer-grained sentence-level DAs.

Word order in an utterance may play an impor-
tant role in determining a DA, as in the differ-
ence between “I am correct” and “am I correct”.
Ezen-Can and Boyer (2015) compute the similar-
ity between utterances based on word order using
a Markov random field and cluster similar utter-
ances to identify DAs. This model, however, does
not consider transitions between clusters.

Online conversations often have asynchronous,
multi-level structure (e.g., nested replies). In Joty
et al. (2011)’s model, individual reply structure
paths from the first utterance to terminal utterances
are teased apart into separate sequential conver-
sations by duplicating utterances. However, this
method counts the same utterance multiple times
and requires an aggregation method for making a
final decision of the DA for each utterance. We ad-
dress multi-level structure without duplicating ut-
terances.

The properties of the models explained so far
are summarized in Table 1.

The relative importance of each structural com-
ponent in a model may not be identical across all

Sp Tr LM ML M

Brychcı́n and Král (2017) N Y - N N
Ezen-Can and Boyer (2015) N N - N N
Lee et al. (2013) N Y GD N N
Paul (2012) N Y G N Y
Joty et al. (2011) Y Y U Y Y
Ritter et al. (2010) N Y GD N N

Our model Y Y D Y Y

Table 1: Properties of baseline models.
(Columns) Sp: speaker preferences, Tr: DA
transitions, LM: language models unrelated to
DAs (G: general background, D: domain-specific,
U: unspecified), ML: multi-level structure sup-
port, M: mixture of language models for DAs.

corpora. Differences, especially as they are at-
tributed to meaningful contextual variables, can be
interesting both practically and theoretically. One
contribution of our work is considering how dif-
ferences in these kinds of contextual variables lead
to meaningful differences in the utility of our dif-
ferent modeling assumtions. More typical work
in the field has emphasized methodological con-
cerns such as minimization of parameter tuning,
for example, by using a hierarchical Dirichlet pro-
cess to determine the number of latent DAs auto-
matically (Lee et al., 2013; Ritter et al., 2010) or
by simply assuming that a word is equally likely
to be DA-related or general (Paul, 2012). While
these efforts are useful, especially when maximiz-
ing the likelihood of the data, searching for the op-
timal values of parameters for DA recognition may
allow us to better understand the contribution of
each model component depending on the charac-
teristics of the dialogue, which in turn can inform
future model design.

3 Model

Our model, CSM (content word filtering and
speaker preferences model), is based on an HMM
combined with components for content word fil-
tering and speaker preferences. In the model, each
latent state represents an utterance-level DA as a
mixture of foreground topics, each of which rep-
resents a sentence-level DA. Each sentence in an
utterance is assigned one foreground topic. To fil-
ter content words, there is a set of background top-
ics shared across conversations, and each conver-
sation is assigned a background topic that under-
lies the whole conversation.
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Figure 1: Graphical representation. Shaded nodes
represent observable variables.

A transition between states is defined on every
parent-child utterance pair, supporting multi-level
structure. The state of an utterance is dependent
on both its parent’s state and its speaker. Speakers
are specific to each conversation, i.e., a speaker
participating in multiple conversations is treated as
different speakers for different conversations. The
graphical representation of CSM is in Figure 1.

The formal generative process of conversations
is as follows:

• For each speaker a, draw a preference distri-
bution over states πAa ∼ Dir(γA).

• For each state s

� Draw a transition probability distribution
over states πSs ∼ Dir(γS).

� Draw a probability distribution over fore-
ground topics θFs ∼ Dir(αF ).

• For each foreground topic t, draw a probabil-
ity distribution over words φFt ∼ Dir(β).

• For each background topic t, draw a proba-
bility distribution over words φBt ∼ Dir(β).

• For the corpus, draw a distribution over back-
ground topics θB ∼ Dir(αB).

• For each conversation

� Draw a background topic zB ∼ Cat(θB).

� For each utterance u, with its speaker au, its
parent p, and the parent’s state sp,

� Draw a state su ∼ Cat(νπSsp+(1−ν)πAau).
� For each sentence
� Draw a foreground topic zF ∼ Cat(θFsu).
� For each word
· Draw an indicator of “foreground” or

“background” l ∼ Cat((η, 1− η)).
· If l is “foreground”, draw a word
w ∼ Cat(φF

zF
).

· If l is “background”, draw a word
w ∼ Cat(φB

zB
).

According to this model, content words are sep-
arated out into background topics in several ways.
A background topic does not transition as fre-
quently as foreground topics within a conversa-
tion. Accordingly, words that are consistently used
across utterances in a conversation are likely to be
clustered into the background topic zB , whereas
words whose use is sensitive to the previous state
and the speaker are likely to be clustered into fore-
ground topics zF . However, common function
words, such as pronouns, prepositions, and punc-
tuations, may also be separated out. Hence, η, the
probability of a word being foreground, adjusts the
degree of filtering. The higher the η value, the
more words are likely to be generated from a fore-
ground topic, and thus the more function words
are included in foreground topics, leaving back-
ground topics with content words. Hence, we may
set η high if we believe function words play an im-
portant role in DAs in a corpus and low otherwise.
Note that η = 0.5 is equivalent to the assump-
tion of existing models that a word is equally likely
to be foreground or background (Lee et al., 2013;
Paul, 2012). Background topics capture content
words underlying the corpus, as they are shared
across conversations.

Speaker preferences are captured as a probabil-
ity distribution over DAs (πA), which, along with
the preceding state, affects the probability of the
current state. ν adjusts the contribution of the
speaker’s preferences; the higher ν, the weaker the
contribution. So, we may set ν low if the role or
conversational style of each speaker is believed to
be invariant and each speaker is expected to con-
duct specific DAs. If there is not enough such ev-
idence and the conversation is driven without spe-
cific roles of the speakers, then we may set ν high.
We find that corpora have different optimal values
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NSS
ij Transition from state i to state j

NAS
ij Assignment of speaker i to state j

NSF
ij Assignment of state i to foreground topic j
NB
j Assignment to background topic j

NFW
ij Assignment of foreground topic i to word j

NBW
ij Assignment of background topic i to word j

Table 2: Descriptions of counter matrices.

of ν depending on the conversational characteris-
tics.

We use collapsed Gibbs sampling for inference
to integrate out πS , πA, θF , θB , φF , and φB .
Given conversation text with speakers for each ut-
terance, along with the hyperparameters, ν, and
η, the Gibbs sampler estimates the following vari-
ables using counter matrices explained in Table 2:

πSij =
NSS
ij + γS

∑
j′(N

SS
ij′ + γS)

, πAij =
NAS
ij + γA

∑
j′(N

AS
ij′ + γA)

θFij =
NSF
ij + αF

∑
j′(N

SF
ij′ + αF )

, θBj =
NB
j + αB

∑
j′(N

B
j′ + αB)

φFij =
NFW
ij + β

∑
j′(N

FW
ij′ + β)

, φBij =
NBW
ij + β

∑
j′(N

BW
ij′ + β)

.

We may use slice sampling (Neal, 2003) to esti-
mate ν and η too, but the estimated values of ν
and η may not be optimal for DA recognition. We
can also obtain state assignments for utterances
by taking a sample from the Gibbs sampler. De-
tailed derivation for Gibbs sampling and the code
are available online2.

4 Evaluation

This section describes our evaluation method and
settings.

4.1 Task and Metrics

We evaluate our model in terms of accuracy in
utterance-level DA recognition. Since the output
of the model is assignments to discovered states
for utterances, not pre-determined DA labels, we
use a clustering evaluation method, as adopted
by previous work on unsupervised DA model-
ing. Specifically, we use homogeneity, complete-
ness, and v-measure as metrics (Rosenberg and
Hirschberg, 2007). Homogeneity represents the
degree to which utterances assigned to the same

2https://github.com/yohanjo/
Dialogue-Acts

CNET NPS

# conversations 310 15
# utterances 1,332 10,567
# DAs 12 15
# domains 24 -
Median # utterances/conversation 3 706
Median # words/utterance 51 2
Median # speakers/conversation 2 94

Table 3: Corpora statistics.

CNET NPS

Question-Question Accept
Question-Add Bye
Question-Confirmation Clarify
Question-Correction Continuer
Answer-Answer Emotion
Answer-Add Emphasis
Answer-Confirmation Greet
Answer-Correction Reject
Answer-Objection Statement
Resolution System
Reproduction yAnswer
Other nAnswer

whQuestion
ynQuestion
Other

Table 4: Dialogue act tags in the corpora.

cluster by the model share the same DA in the la-
beled corpus. Completeness represents the degree
to which utterances that have the same DA accord-
ing to the gold standard are assigned to the same
cluster. V-measure is the harmonic mean of ho-
mogeneity and completeness. These metrics are
easy to interpret and have been demonstrated to
be invariant to dataset size and number of clusters.
This enables a meaningful comparison of accuracy
across different corpora.

4.2 Corpora and Preprocessing

We evaluate on two corpora: CNET and NPS Chat
(see Table 3 for statistics).

CNET (Kim et al., 2010) is a set of post threads
from the Operating System, Software, Hardware,
and Web Development sub-forums of CNET. This
corpus is tagged with 12 DAs, including Question-
Question, Question-Confirmation, Answer-Add,
Resolution, and Other (Table 4). Note that
question- and answer-related DAs are two-level.
Most posts are tagged with one DA; in case a post
is tagged with multiple DAs, we choose the first
DA in the meta-data3. Each post is considered an

3Some tagging systems, such as the DAMSL-style, break
down an utterance that has multiple DAs.
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utterance and each thread as a conversation. Each
thread has only a few posts (median 3) and in-
volves a few speakers (median 2). Since there are
many URLs, email addresses, and numbers in text,
we replace them with special tokens using reg-
ular expressions, and tokenize with the Stanford
PTBTokenizer included in Stanford Parser 3.7.04.

NPS Chat (Forsythand and Martell, 2007) is a
set of conversations from various online chat ser-
vices. This corpus is tagged with 15 DAs, includ-
ing Emotion, System, and whQuestion (Table 4).
Every turn is tagged with a DA and considered an
utterance. Each conversation is long (median 706
utterances) and involves many speakers (median
94). This corpus has already been tokenized, so
we only replace usernames with a special token.
Conversations in NPS have no reply structure, but
we build in multi-level structure, simply treating
an utterance that mentions another user as a child
of the nearest utterance of the mentioned user. We
compare the DA accuracy of the multi-level struc-
ture and the original linear structure in Section 5.

4.3 Models and Parameters

We set the numbers of states and background top-
ics to the numbers of DAs and domains, respec-
tively, if these numbers are available. For NPS, we
search for the optimal number of background top-
ics between 1 and 2, because there are only a few
conversations. The optimal number of foreground
topics is chosen among multiples of five between
the number of states and four times the number
of states, and the weights for state transition (ν)
and foreground topics (η) are chosen among mul-
tiples of 0.1. For Dirichlet hyperparameters, we
use αF = 0.1, γA = 0.1, β = 0.001 to induce
sparsity, and γS = 1, αB = 1 for the uniform dis-
tribution over all configurations.

We randomly split each corpus into five groups
and use three groups for training, one for param-
eter tuning, and one for testing. We run 5-fold
cross-validation and report the average optimal pa-
rameter values and accuracy across the folds. The
number of sampling iterations was chosen such
that the log-likelihood of the data has converged.
For each fold, we take 10 samples during infer-
ence on the test data with interval of 10 iterations
and compute the mean and standard deviation of
the 50 samples from all folds.

4https://nlp.stanford.edu/software/
lex-parser.html

We compare our model with the three most re-
cent unsupervised models we surveyed. The base-
line models and settings are as follows.

Gaussian mixture HMM (Brychcı́n and Král,
2017), based on an HMM, has a characteristic out-
put representation: utterance vectors. These vec-
tors are generated from Gaussian distributions in-
stead of using language models as in most exist-
ing models. After following their same prepro-
cessing steps, we trained a model on the training
data, chose the optimal word vector dimensional-
ity on the validation data (among 50, 100, 200, and
300, as used in the original model), and performed
inference on the test data. We used the original
source code from the authors for training and mod-
ified the code for inference.

MRF-based clustering (Ezen-Can and Boyer,
2015) considers word order within an utterance
to calculate similarity between utterances using
an MRF. Then k-medoids clustering is conducted
based on the similarity scores, resulting in clus-
ters that represent DAs. The similarity score be-
tween two utterances is asymmetric, so we took
the average value of each direction and inversed
it to obtain the distance between two utterances.
We trained a model on the training data, chose the
optimal parameter values (λi, λt, αd in the original
paper) on the validation data, and assigned clusters
to the test data. We implemented the algorithm
since the original code was not available.

HDP-HMM (Lee et al., 2013) is based on an
HMM, and each word comes from either the state-
specific, general background, or domain-specific
language model. HDP-HMM automatically de-
cides the number of states using a hierarchical
Dirichlet process, but we manually set the num-
ber of DAs in our experiment, assuming that we
know the number of DAs of interest. We trained
a model on the training data and performed infer-
ence on the test data; the validation data was not
used since there are no parameters to tune. We
used the original source code from the authors for
training and modified the code for inference.

5 Results

Accuracy of DA recognition in terms of homo-
geneity, completeness, and v-measure on both cor-
pora is summarized in Table 5. We also tested the
following configurations:

• CSM + Domain uses true domain labels
when learning background topics by force-
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CNET NPS
Model H C V H C V

Brychcı́n and Král (2017) .13± .00 .09± .00 .10± .00 .24± .10 .33± .06 .28± .08

Ezen-Can and Boyer (2015) .03± .00 .37± .00 .05± .00 .26± .00 .33± .00 .28± .00

Lee et al. (2013) .09± .03 .16± .03 .11± .03 .36± .02 .28± .02 .31± .02

CSM .24± .03 .38± .04 .29± .03 .35± .04 .31± .04 .33± .04

CSM + Domain .27± .02 .33± .11 .29± .05 N/A
CSM - Speaker .24± .03 .38± .04 .29± .03 .21± .03 .19± .05 .20± .04

CSM - Multi-level .23± .04 .33± .06 .27± .04 .35± .02 .30± .04 .32± .03

CSM - Background Topics .15± .03 .11± .02 .12± .02 .35± .04 .31± .04 .33± .04

Table 5: Accuracy of DA recognition (the higher the better). Smaller numbers are population standard
deviations. (Columns) H: homogeneity, C: completeness, V: v-measure. Optimal parameter values for
CSM: # foreground topics=34, η = .86, ν = 1.00 for CNET and # foreground topics=35, η = 1.00,
ν = 0.58 for NPS.

fully assigning a conversation the back-
ground topic corresponding to the true label.
• CSM - Speaker does not use speaker prefer-

ences by setting ν = 1.
• CSM - Multi-level ignores multi-level struc-

ture; that is, utterances in each conversation
are ordered by time.
• CSM - Background Topics uses only one

background topic.

Overall, our model performs significantly better
than the baselines for CNET and marginally better
for NPS. The baseline models show a large vari-
ance in performance depending on the characteris-
tics of the corpus. In contrast, our model has a low
variance between the corpora, because the content
word filtering, distinction between utterance-level
and sentence-level DAs, and speaker preferences
complement one another to adapt to different cor-
pora. For example, content word filtering and DA
level distinction play more significant roles than
speaker preferences on CNET, whereas their ef-
fects are reversed on NPS. The details will be de-
scribed later with qualitative analyses.

There may be several reasons for the poor per-
formance of the baseline models on CNET. First,
in our model, each utterance-level DA (latent
state) is a probability distribution over sentence-
level DAs (foreground topics), which better cap-
tures multiple sentence-level DAs in long utter-
ances as in CNET. The utterances in CNET are
long and may be too complex for the baseline
models, which use a simpler representation for
utterance-level DAs. Another reason for the low

BT0 drive partition drives partitions c
BT1 router wireless network connected connection
BT2 vista camera canon windows scanner
BT3 drive ipod touch data recovery
BT4 speakers firewall sound still no
BT5 / \blaster dos drive
BT6 windows cd i xp boot
BT7 page xp sp3 ! content
BT8 ram mhz 1gb 512mb screen
BT9 his rupesh to company he
BT10 xp drive drivers new hard
BT11 tv port cpu motherboard grounded
BT12 file files copy external mac
BT13 “ password flash ##NUMBER## ?
BT14 fan fans cpu case air
BT15 ram card 2.4 graphics nvidia
BT16 registry file shutdown machines screen
BT17 div site % ie6 firefox
BT18 printer sound would card contact
BT19 hosting web hostgator they host
BT20 ubuntu linux memory boot reader
BT21 mac compression archive format trash
BT22 bluetooth router wireless laptop 802.11
BT23 email address account mail bounce

Table 6: Background topics learned from CNET.
(Columns) Left: topic index, right: top 5 words.

performance could be that the baseline models do
not filter out content words as our model does.

In the remainder of this section, we describe our
qualitative analysis on the results. All examples
shown in the analysis are from the result with the
optimal parameter values for the first fold.

Filtering content words Our model effectively
separates content words from DA-related words
without using the domain label of each conver-
sation. As an example, the background topics
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learned by our model from CNET are shown in
Table 6. These topics are clearly related to the sub-
jects of the forum, rather than reflecting DAs, and
the topics are distinctive from one another and co-
hesive in themselves.

The main purpose of learning background top-
ics is to filter out content words and retain DA-
related words as foreground. The learned back-
ground topics serve this purpose well, as these top-
ics increase v-measure by 0.17 (CSM vs. CSM -
Background Topics). It is also promising that the
background topics learned without domain labels
perform as well as when they are learned with do-
main labels (CSM vs. CSM + Domain), because
domain labels may not always be available.

Function words play an important role in DAs
in CNET as indicated by the high optimal value
of η = 0.86 (the probability of a word being
foreground). The higher η means more function
words are included in foreground topics, leaving
background topics with content words (Section 3).
The high η is evidence contrary to the common
practice of designating a general background topic
to filter out common words and assuming that a
word is equally likely to be foreground or back-
ground (Lee et al., 2013; Paul, 2012).

The effectiveness of our method of separat-
ing background topics turns out to diminish
when there are no consistent conversational top-
ics within and across conversations as in NPS. Our
model learns not to use background topics (η = 1)
for NPS, because background topics may filter out
function words and DA-related words that occur
more consistently throughout a conversation than
content words do.

Mixture of foreground topics As a conse-
quence of filtering out content words, the fore-
ground topics reflect various acts in conversa-
tion. Some of the learned foreground topics from
CNET are shown in Table 7a. These topics cap-
ture important sentence-level DAs that constitute
utterance-level DAs that are assigned to each post
in CNET. For example, Question-Question is an
utterance-level DA that often starts a conversation,
and conducting this DA typically includes multi-
ple finer-grained acts, such as explaining the en-
vironment and situation, asking a question, and
thanking, as shown in the post:

I am currently running Windows XP Media Edi-
tion on a 500G hard drive. (FT20) / I want
to move my XP to it’s own partition, move all

Environments (FT20) . i a ##NUMBER## and have -
rrb- xp -lrb- : windows my is the
dell vista

Error msgs (FT12) . the # * messages / : it log
Asking (FT19) any help you ? ! . appreciated i

suggestions
Thanking (FT17) thanks . for the ! in advance help

your all response
Problem (FT8) : \file is the c corrupted follow-

ing missing or error
Wishes (FT14) . bob good luck
Reference (FT5) ##URL##
Praise (FT1) . thank you ˜ sovereign , and are

excellent recommendations
Explanation (FT10) the . to , i and a it you is that of

(a) Foreground topics learned from CNET.

Wh question (FT7) ##USERNAME## ? how you are
u good is round where who . ??

Wh question (FT27) ##USERNAME## ? you i u what
how , ok ’m for up do have

YN question (FT1) chat any wanna / me pm to ? any-
one f guys m want here

Greeting (FT5) ##USERNAME## hi hey :) hello
wb ! ... hiya ty

Laughing (FT0) ##USERNAME## lol lmao yes !
hey up !!!! ?

Laughing (FT12) lol ##USERNAME## haha ! brb
omg nite hiyas hb :p !!! . ha lmfao

Emotion (FT30) ok ! im lol my its in ” ... oh always
System logs (FT25) part join

(b) Foreground topics learned from NPS.

Table 7: Foreground topics learned from the cor-
pora. (Columns) Left: interpretation (topic in-
dex), right: top words truncated for clarity.

of my files(music, games, work) to another, and
then install the Windows 7 beta on another parti-
tion. (FT10) / I don’t know if this is possible
or not, but I have access to Partition Magic 8,
and am wondering if I can do it with that or not.
(FT10) / I am not worried about installing 7 on
another partition, but am not sure if I can move
my files onto a separate one while keeping XP
intact. (FT10) / Any help is great, thank you.
(FT17)

Likewise, the Answer-Answer DA includes finer
acts such as wishes or URLs, as in the posts:

Simple - Download and install the Vista Rebel
XT drivers from canon usa.com. (FT10) / Once
installed...........go to camera menu and switch the
communication to Print/PTP. (FT10) / Don’t
forget to switch it back if you’re connecting to an
XP machine. (FT10) / Good Luck (FT14)

http://forums.microsoft.com/MSDN/ShowPost.aspx?
PostID=1996406&amp;SiteID=1 (FT5)

When a problem is resolved, the Resolution DA
may be performed with thanking and praising:

Excellent summary Thank you. (FT1) / Sounds
like at some point it’s worth us making the tran-
sition to a CMS... (FT10)
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FT10 covers explanations and statements, as well
as long sentences. The distinction between two
levels DAs is effective for CNET, as our model
beats the baselines significantly.

The foreground topics learned from NPS also
reflect DAs in the corpus (Table 7b). The distinc-
tion between utterance-level and sentence-level
DAs is not beneficial for NPS because each ut-
terance is short and usually conducts only one
DA. As a consequence, the model has difficulty
grouping foreground topics (i.e., sentence-level
DAs) that are related to one another into the same
utterance-level DAs (i.e., states); for CNET, on the
other hand, foreground topics that co-occur in the
same utterance tend to cluster to the same state.

The DAs of some foreground topics not shown
in Table 7 are difficult to interpret, and those topics
possibly capture aspects of sentences other than
DAs. However, they do not have undue influence
in our model.

Speaker preferences Speaker preferences sub-
stantially increase the v-measure by 0.13 for NPS
(CSM vs. CSM - Speaker). Notably, speaker
preferences complement the mixture of sentence-
level DAs, which is not good at clustering related
sentence-level DAs into the same utterance-level
DA for short utterances. More specifically, each
speaker is modeled to have sparse preferences for
utterance-level DAs (i.e., states), so foreground
topics used by the same speaker, often represent-
ing the same utterance-level DA, tend to cluster to
the same state.

Speaker preferences also capture the character-
istic styles of some speakers. Among speakers
who are found to have sparse preferences by our
model, some actively express reactions and often
mark laughter (FT12). Others frequently agree
(FT0), greet everyone (FT5), or have many ques-
tions (FT7, FT27). Accordingly, the model finds a
relatively high optimal weight for speaker prefer-
ences in NPS (ν = 0.58).

In contrast, CNET benefits little from speaker
preferences (ν = 1), partly because there is not
enough information about each speaker in such
short conversations. Speakers also show little pref-
erence for DAs as defined in the corpus. For
instance, while a conversation initiator tends to
ask questions in successive posts, these questions
are annotated as different DAs (e.g., Question-
Question, Question-Add, Question-Confirmation,
etc.) depending on the position of the post within

the conversation.

Multi-level structure Our model’s ability to ac-
count for multi-level structure improves the accu-
racy of DA recognition for both corpora (CSM
vs. CSM - Multi-level). For NPS, where multi-
level structure is not explicit, this improvement
comes from simple heuristics for inferring multi-
level structure based on user mentions.

Sentence length and foreground topics In our
model, all words in the same sentence are assigned
to the same foreground topic, just as many exist-
ing models assign one utterance one topic. Topic
assignment is based on similarity of words in a
sentence to other sentences in that topic, and short
sentences often find similar sentences more easily
than long sentences do. Therefore, learned topics
tend to be characteristic of short sentences that are
similar enough to form the separate topics, and as
a result, long sentences may be assigned the same
topic regardless of the DA actually performed.

6 Conclusion

We have presented an unsupervised model of DAs
in conversation that separates out content words
to better capture DA-related words and that incor-
porates speaker preferences. Our model also uses
a mixture of sentence-level DAs for utterance-
level DAs and supports multi-level thread struc-
ture. We find that different characteristics of con-
versation require different modeling assumptions
for DA recognition. Unlike the baseline mod-
els, which show a large variance in performance
across corpora, our model is robust for both cor-
pora used in the evaluation due to the model com-
ponents complementing one another. Specifically,
content word filtering is found to be effective when
each conversation has a consistent conversational
topic, and the separation between sentence-level
and utterance-level DAs is beneficial for long ut-
terances. Speaker preferences are found to be
helpful when speakers have characteristic styles of
conversation. These findings in addition to the fact
that many function words are not filtered out as
background may help inform future model design.
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Abstract

The study on human-computer conversa-
tion systems is a hot research topic nowa-
days. One of the prevailing method-
s to build the system is using the gen-
erative Sequence-to-Sequence (Seq2Seq)
model through neural networks. Howev-
er, the standard Seq2Seq model is prone
to generate trivial responses. In this pa-
per, we aim to generate a more meaning-
ful and informative reply when answering
a given question. We propose an implicit
content-introducing method which incor-
porates additional information into the Se-
q2Seq model in a flexible way. Specifical-
ly, we fuse the general decoding and the
auxiliary cue word information through
our proposed hierarchical gated fusion u-
nit. Experiments on real-life data demon-
strate that our model consistently outper-
forms a set of competitive baselines in
terms of BLEU scores and human evalu-
ation.

1 Introduction

To establish a conversation system with adequate
artificial intelligence is a long-cherished goal for
researchers and practitioners. In particular, auto-
matic conversation systems in open domains are
attracting increasing attention due to its wide ap-
plications, such as virtual assistants and chatbot-
s. In open domains, researchers mainly focus on
data-driven approaches, since the diversity and un-
certainty make it impossible to prepare the inter-
action logic and domain knowledge. Basically,
there are two mainstream ways to build an open-
domain conversation system: 1) to search pre-
established database for candidate responses by

∗Corresponding author: ruiyan@pku.edu.cn

query retrieval (Isbell et al., 2000; Wang et al.,
2013; Yan et al., 2016; Song et al., 2016), and 2) to
generate a new, tailored utterance given the user-
issued query (Shang et al., 2015; Vinyals and Le,
2015; Serban et al., 2016; Mou et al., 2016; Song
et al., 2016). In these studies, generation-based
conversation systems have shown impressive po-
tential. Especially, the Sequence-to-Sequence (Se-
q2Seq) model (Sutskever et al., 2014) based on
neural networks has been extensively used in prac-
tice; the idea is to encode a query as a vector and to
decode the vector into a reply. Inspired by (Mou
et al., 2016), we mainly focus on the generative
short-text conversation without context informa-
tion.

Despite this, the performance of Seq2Seq
generation-based conversation systems is far from
satisfactory because its generation process is not
controllable; it responses to a query according to
the pattern learned from the training corpus. As
a result, the system is likely to generate an un-
expected reply even with little semantics, e.g, “I
don’t know” and “Okay” due to the high frequency
of these patterns in training data (Li et al., 2016a;
Mou et al., 2016). To address this issue, Li et al.
(2016a) proposed to increase diversity in the Se-
q2Seq model so that more informative utterances
have a chance to stand out. Mou et al. (2016)
provided a content-introducing approach that gen-
erates a reply based on a predicted word. The
word is usually enlightening and drives the gen-
erated response to be more meaningful. However,
this method is to some extent rigid; it requires the
predicted word to explicitly occur in the generat-
ed utterance. As shown in Table 1, sometimes, it
is better to generate a semantic related sentence
based on the cue word rather than including it in
the reply directly.

As for such content-introducing method, there
are two aspects that need to be taken into consid-
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Query 你不觉得好丑吗(Don’t you think it is ugly?)
Cue Word 审美(Aesthetics)
Reply 好恶心啊! (It’s disgusting!)
Query 先放个大招(Let me use my ultimate power.)
Cue Word 技能(Skill)
Reply 新技能？(New skill?)

Table 1: The content-introducing conversation ex-
amples.

eration. 1) How to add the additional cue words
during the generation process? One of the pre-
vailing methods is modifying the neural cell with
various gating mechanisms (Wen et al., 2015a,b;
Xu et al., 2016). However, we need careful oper-
ation to ensure the neuron works as expected. 2)
How to display the cue words in replies? As men-
tioned above, the explicit content-introducing ap-
proach in (Mou et al., 2016) does not fit well with
all situations.

In this paper, we present an implicit content-
introducing method for generative conversation
systems, which incorporates cue words using our
proposed hierarchical gated fusion unit (HGFU) in
a flexible way. Our main contributions are as fol-
lows:

• We propose the cue word GRU, another neu-
ral cell, to deal with the auxiliary informa-
tion. Compared with other gating methods,
our cue word GRU is more flexible.

• We focus on the implicit content-introducing
method during generation: the information
of the cue word will be fused into the gen-
eration process but not necessarily occur ex-
plicitly. In this way, we change the “hard”
content-introducing method into a new “soft”
schema.

The rest of paper is organized as follows. We s-
tart by introducing the technical background. In
Section 3, we describe our proposed method. In
Section 4, we illustrate the experimental setup and
evaluations against a variety of baselines. Section
5 briefly reviews related work. Finally, we con-
clude our paper in Section 6.

2 Technical Background

2.1 Seq2Seq Model and Attention
Mechanism

Seq2Seq model was first introduced in statistical
machine translation; the idea is to encode a source

sentence as a vector by a recurrent neural network
(RNN) and to decode the vector to a target sen-
tence by another RNN. Now, the conversational
generation is treated as a monolingual translation
task (Ritter et al., 2011; Shang et al., 2015). Given
a queryQ = (x1, ..., xn), the encoder represents it
as a context vector C and then the decoder gener-
ates a response R = (y1, ..., ym) word by word by
maximizing the generation probability of R con-
ditioned on Q. The objective function of Seq2Seq
can be written as:

p(y1, ..., ym|x1, ..., xn)

=p(y1|C)
T∏

t=2

p(yt|C, y1, ..., yt−1)
(1)

To be specific, the encoder RNN calculates the
context vector by:

ht = f(xt, ht−1);C = hT (2)

where ht is the hidden state of encoder RNN
at time t and f is a non-linear transformation
which can be a long-short term memory unit (L-
STM) (Hochreiter and Schmidhuber, 1997) or a
gated recurrent unit (GRU) (Cho et al., 2014). In
this work, we implement f using GRU.

The decoder RNN generates each reply word
conditioned on the context vector C. The prob-
ability distribution pt of candidate words at every
time step t is calculated as:

st = f(yt−1, st−1, C); pt = softmax(st, yt−1)
(3)

where st is the hidden state of decoder RNN at
time t and yt−1 is the generated word in the reply
at time t− 1.

Attention mechanisms (Bahdanau et al., 2014)
have been proved effective to improve the gener-
ation quality. In Seq2Seq with attention, each yi
corresponds to a context vector Ci; it is weighted
average of all hidden states of the encoder. For-
mally, Ci is defined as Ci =

∑T
j=1 αijhj , where

αij is given by:

αij =
exp(eij)∑T
k=1 exp(eik)

; eij = η(si−1, hj) (4)

where η is usually implemented as a multi-layer
perceptron (MLP) with tanh as an activation func-
tion.
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Figure 1: The architecture of our system. Based
on the constructed corpus, we train our implicit
content-introducing conversation system. Given a
user-issued query, we first predict the cue word.
Then, we incorporate the cue word into decoding
process to generate a meaningful response.

2.2 Pointwise Mutual Information

Pointwise mutual information (PMI) (Church and
Hanks, 1990) is a measure of association ratio
based on the information theoretic concept of mu-
tual information. Given a pair of outcomes x and
y belonging to discrete random variables X and
Y , the PMI quantifies the discrepancy between
the probability of their coincidence based on their
joint distribution and their individual distributions.
Mathematically:

PMI(x, y) = log
p(x, y)

p(x)p(y)
= log

p(x|y)
p(x)

(5)

This quantity is zero if x and y are independent,
positive if they are positively correlated, and neg-
ative if they are negatively correlated.

3 Implicit Content-Introducing
Conversation System

Figure 1 provides an overview of our system archi-
tecture. We crawl conversational data from social
media which are publicly available. After filtering
and cleaning procedures, we establish the conver-
sational parallel dataset, which consists of a large
number of aligned 〈query − reply〉 pairs. Based
on the entire set, we first predict the cue word for
the given query in Subsection 3.1. Next, we pro-
pose the new implicit content-introducing process,
which explores when to incorporate the predicted
cue word in Subsection 3.2 and how to apply such
information in Subsection 3.3.

Input: 𝑦𝑡−1  

ℎ𝑡 

Output: 𝑦𝑡  
Cue  

word 

= 

𝑦0 

ℎ1 

𝑦1 

𝑦1 

ℎ2 

𝑦2 

𝑦2 

ℎ3 

𝑦3 

  𝑦𝑡−1 

ℎ𝑡 

𝑦𝑡 

… 

Cue 
 word 

Figure 2: The information fusion patterns. The
local information initialization is presented by the
blue arrowhead and the global information incep-
tion includes both the blue arrowhead and the
green arrowhead.

3.1 Cue Word Prediction
In computational linguistics, PMI has been used
for finding collocations and associations between
words. As mentioned in Mou et al. (2016), it is
an appropriate statistic for cue words prediction,
which is also adopted in this paper to predict a cue
word Cw for the given query. Formally, given a
query word wq and a reply word wr, the PMI is
computed as:

PMI(wq, wr) = log
p(wq|wr)
p(wq)

(6)

Then, we choose the cue word Cw with
highest PMI score against the query words
wq1, ..., wqn during the prediction, i.e., Cw =
argmaxwr PMI(wq1, ..., wqn, wr), where

PMI(wq1, ..., wqn, wr) ≈ log

∏
i p(wqi|wr)∏
i p(wqi)

=
∑

i

log
p(wqi|wr)
p(wqi)

=
∑

i

PMI(wqi, wr)

(7)
The approximation is based on the indepen-

dence assumptions of both the prior distribu-
tion p(wqi) and posterior distributions p(wqi|wr).
Even the two assumptions may not be true, we use
them in a pragmatic way so that the word-level P-
MI is additive for a whole utterance. PMI penal-
izes a common word by dividing its prior proba-
bility; hence, it prefers a word which is most “mu-
tually informative” with the query.

3.2 Information Fusion Patterns
To implant the specific information in conversa-
tion system, we consider two types of information
fusion patterns, namely 1) Local information ini-
tialization 2) Global information inception.

Local information initialization. In the local
pattern, we fuse the cue word Cw as the auxiliary
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Figure 3: The structure of a HGFU. The bottom of
two GRUs deal with corresponding input source,
i.e., the last generated word yt−1 and the cue word
Cw. After that, fusion unit combines the output of
two GRUs to compute current hidden state ht.

.

information only in the beginning of decoding. We
describe this kind of pattern by the blue arrowhead
in Figure 2. Recurrent neural networks(RNNs)
such as gated recurrent units (GRUs) have the a-
bility to keep the information from the beginning
to the end to some extent. Therefore, the cue word
added on the first step of the neural networks can
still influence the generation of the later steps.

Global information inception. However, we
observe that, although the network is capable of
deciding what to keep in the cell state to affect the
later generation, the influence of the added infor-
mation in the beginning of decoding is becoming
weaker and weaker over time. Therefore, to pro-
vide the model a broader and more flexible space
for learning, we propose a global information in-
ception pattern, which fuses the cue word Cw as
the auxiliary information at every step of decod-
ing. This process is presented by both the blue
arrowhead and the green arrowheads in Figure 2.

3.3 Hierarchical Gated Fusion Unit

In this subsection, we propose our Hierarchical
Gated Fusion Unit (HGFU), which incorporates
cue words into the generation process and relaxes
the constraint from the “hard” content-introducing
method into a new “soft” schema. Figure 3 pro-
vides an overview of the structure of a HGFU. As

seen, the framework consists of three components:
the standard GRU, the cue word GRU, and the fu-
sion unit. Among them, standard GRU and cue
word GRU take the last generated word yt−1 and
cue word Cw respectively as the decoder GRU’s
input; the fusion unit combines the hidden states
of both GRUs to predict the next word yt. In the
following, we will illustrate these components in
detail.

3.3.1 Standard GRU

We adopt the standard gated recurrent unit (GRU)
with the attention mechanism at the decoder part.
Let ht−1 be the last hidden state, yt−1 be the em-
bedding of the last generated word, and Ct be the
current attention-based context. The current hid-
den state of the general decoding, hy, is defined
as:

ry = σ(Wryt−1 + Urht−1 + UcrCt + br)

zy = σ(Wzyt−1 + Uzht−1 + UczCt + bz)

h̃y = tanh(Whyt−1 + Uh(ry ◦ ht−1) + UchCt + bh)

hy = (1− zy) ◦ ht−1 + zy ◦ h̃y
(8)

where W ’s ∈ Rdim×E and U ’s ∈ Rdim×dim are
weight matrices; b’s ∈ Rdim are bias terms; E
denotes the word embedding dimensionality and
dim denotes the number of hidden state units.
This general decoding process is presented by the
“Standard GRU” in Figure 3.

3.3.2 Cue word GRU

To generate more meaningful and informative
replies, we introduce cue words as the additional
information during generation. Naturally, the key
point lies in how to incorporate such information.
One of the prevailing methods is modifying the
neural cell by various gating mechanisms. How-
ever, these approaches are designed specially for
a specific scenario, and not effective as expected
when they are employed to other tasks. To tackle
this issue, we propose the cue word GRU, another
independent neural cell, to deal with the auxiliary
information. Since this neural cell can be replaced
easily by other units, it greatly improves the flexi-
bility and reusability.

Given the last hidden state ht−1 , the additional
cue word Cw and the current attention-based con-
text Ct, the new hidden state of the auxiliary de-
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coding hw is computed by following equations:

rw = σ(WrCw + Urht−1 + UcrCt + br)

zw = σ(WzCw + Uzht−1 + UczCt + bz)

h̃w = tanh(WhCw + Uh(rw ◦ ht−1) + UchCt + bh)

hw = (1− zw) ◦ ht−1 + zw ◦ h̃w
(9)

where W ’s and U ’s are weights and b’s are bias
terms like those in the standard GRU. Note that the
standard GRU does not share parameter matrixes
with the cue word GRU. The “Cue word GRU” in
Figure 3 describes the auxiliary decoding process.

3.3.3 Fusion unit

To combine both the general decoding information
and the auxiliary decoding information, we apply
the fusion unit (Arevalo et al., 2017) integrating
the hidden states of both standard GRU, i.e., hy,
and the cue word GRU, i.e., hw, to compute the
current hidden state ht. The equations are as fol-
lows:

h
′
y = tanh(W1hy)

h
′
w = tanh(W2hw)

k = σ(Wk[h
′
y, h

′
w])

ht = k ◦ hy + (1− k) ◦ hw
θ = {W1,W2,Wk}

(10)

with θ the parameters to be learned. From the e-
quations above we can see that, the gate neuron k
controls the contribution of the information calcu-
lated from hy and hw to the overall output of the
unit.

3.4 Model Training

When training on the aligned corpus, we random-
ly sample a noun in the reply as the cue word. The
objective function was the cross entropy error be-
tween the generated word distribution pt and the
actual word distribution yt in the training corpus.

4 Experiments

In this section, we compare our method with the-
state-of-art response generation models based on a
huge conversation resource. The objectives of our
experiments are to 1) evaluate the effectiveness of
our proposed HGFU model, and 2) explore how
cue words affect the process of reply generation.

谢 谢 夸 奖 ！ 么 么 哒 ！ 

内 心 是 崩 溃 的 吧 

递 纸 巾 ！ 

说 过 吗 ？ 好 像 没 有 说 过 啊 ！ 
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Figure 4: Heat map and the k gate openness. Bot-
tom: The correlation between the generated reply
words and the cue word. Top: The openness of k
gate in fusion unit.

4.1 Experimental setup

We evaluated our model on a massive Chi-
nese dataset of human conversation crawled from
the Baidu Tieba1 forum. There are 500,000
〈query − reply〉 pairs for training, 2,000 for val-
idation, and another unseen 27,871 samples for
testing. In total, we kept about 63,000 distinct
words.

In our experiments, the encoder, the standard
decoder and the cue word decoder have 1,000 hid-
den units; the word embedding dimensionality is
610 which were initialized randomly and learned
during training. We applied AdaDelta with a mini-
batch size of 80 for optimization. These values
were mostly chosen empirically. In order to pre-
vent overfitting, early stopping was implemented
using a held-out validation set.

4.2 Comparison Methods

In this paper, we conduct extensive experiments
to compare our proposed method against sever-
al representative baselines. All the methods ac-
tually are implemented in two ways to utilize the
cue word, which are local information initializa-
tion and global information inception.

rGRU: Through a specially designed Recal-
l gate (Xu et al., 2016), domain knowledge was
transformed into the extra global memory of a
deep neural network.

SCGRU: In SCGRU (Wen et al., 2015b), an ad-
ditional control cell was introduced to gate the dia-

1http://tieba.baidu.com
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Query 班主任还拍了我超级丑的照片已被笑死.(上上上镜镜镜)
Related Criterion Labels(Cue word) The teacher took a photo of me; it was really ugly

and people laughed at me. (Photogenic)
Reply1 谁的照片？Whose photo? Logic Consistency Unsuitable
Reply2 什么时候拍的？When did he took the photo? Implicit Relevance Neutral
Reply3 抱抱。Give you a hug. Implicit Relevance Neutral
Reply4 我拍照也都是巨丑的！My photos are also ugly! —— Suitable

Table 2: An example query, corresponding cue word in bold and its candidate replies with human anno-
tation. The query states that people laughed at the author’s photo, it is unsuitable to ask the ownership
of this photo in Reply1. Generally, Reply2 and Reply3 apply to this scenario, but they do not reflec-
t semantic relevance with the cue word. Reply4 talks about the respondent’s situation and related to
“Photogenic”, thus it is a suitable response.

logue act (DA) features during the generation pro-
cess.

SLGD: We implemented the Stochastic
Language Generation in Dialogue (SLGD)
method (Wen et al., 2015a), which added ad-
ditional features in each gate of the neural
cell.

FGRU: To explore more fusion strategies, intu-
itively, we fused the cue word and hidden states by
vector concatenation during the decoding process.

Note that rGRU and SCGRU incorporate addi-
tional information by gating mechanisms, while
SLGD and FGRU fuse the information into each
gate of the neural cell directly.

4.3 Experiment Evaluation

Objective metrics. To evaluate the performance
of different methods for the conversation gener-
ation task, we leverage BLEU (Papineni et al.,
2002) as the automatic evaluation metric, which
is originally designed for machine translation and
evaluates the output by using n-gram matching
between the output and the reference. Here, we
use BLEU-1, BLEU-2 and BLEU-3 in our experi-
ments.

Subjective metrics. Since automatic metric-
s may not consistently agree with human percep-
tion (Stent et al., 2005), human testing is essential
to assess subjective quality. Hence, we randomly
sampled 150 queries in the test set, then we invited
five annotators to offer a judgment. For fairness,
all of our human evaluation was conducted in a
random, blind fashion, i.e., replies obtained from
the five evaluated models are pooled and random-
ly permuted for each annotator. Three levels are
assigned to a reply with scores from 0 to 2: 0 =

Method BLEU-1 BLEU-2 BLEU-3 Human score

Local

rGRU 1.087 0.419 0.249
SCGRU 2.135 0.622 0.255
SLGD 1.678 0.508 0.209
FGRU 2.262 0.598 0.208
HGFU 1.861 0.545 0.209

Global

rGRU 1.793 0.676 0.277 0.542
SCGRU 3.637 0.981 0.369 0.73
SLGD 4.146 1.059 0.367 0.71
FGRU 4.197 1.013 0.282 0.677
HGFU 4.893 1.225 0.393 0.942

Table 4: Performance of evaluated methods.

Unsuitable reply, 2 = Suitable reply, and 1 = Neu-
tral reply.

To make the annotation task operable, the suit-
ability of the generated reply is judged not only
based on Grammar and Fluency, Logic Consis-
tency and Semantic Relevance following (Shang
et al., 2015), but also Implicit Relevance, i.e., the
generated reply should be semantically relevant to
the predicted cue word, no matter the cue word
explicitly appears in the reply or not. If any of the
first three criteria is contradicted, the reply should
be labeled as “Unsuitable”. Only the replies con-
forming to all requirements are labeled as “Suit-
able”. Table 2 shows an example of the annotation
results of a query and its replies. The first reply is
labeled as “Unsuitable” because of the logic con-
sistency. Reply2 and Reply3 are not semantically
related to the cue word, and is therefore annotated
as “Neutral”.

4.4 Overall Performance

The overall results against all baseline methods
are listed in Table 4. Our proposed HGFU mod-
el in global schema obviously shows better per-
formance than the baseline methods; it obtains the
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Chinese Sentence English Tranlation
Query 写的真心棒！(夸夸夸奖奖奖) What a nice written! (Appreciation)
Reply 谢谢夸奖！么么哒！ Thanks for your appreciation! Love you!
Query 还是无法淡定。(内内内心心心) Still cannot calm down. (Heart)
Reply 内心是崩溃的吧。 Your heart must be broken.
Query 我先去哭一会。(纸纸纸巾巾巾) I am going to cry for a while. (Tissue)
Reply 递纸巾！ Offer you a tissue!
Query 当初你们不是说过他是诺维斯基吗？(说说说过过过) Didn’t you say that he was Nowitzki†? (Say)
Reply 说过吗？好像没有说过啊！？ Did I say it? I don’t seem to say it!?

Table 3: The explicit introducing-content cases of our HGFU model. The predicted cue word in bold
explicitly occurs in the generated reply. Nowitzki† is a NBA basketball player.

highest BLEU scores as well as the highest human
score.

In terms of automatic evaluations, the global-
based methods perform much better than a set of
local-based methods, which demonstrates the ef-
fectiveness of global information inception. As
mentioned above, the global schema provides the
model a broader and more flexible space for learn-
ing, which is benefit for information fusion. When
it comes to human scores (For the sake of con-
venience, we only conducted human evaluation in
global schema), there are similar conclusions to
BLEU results.

From Table 4, we can see that the performance
of rGRU is not as good as the other systems, while
SCGRU outperforms the others in the local pattern
and shows comparative performance in the glob-
al schema. These two methods both augment the
standard neural network with specially designed
gate to control the cue word, but the results vary
greatly. It is the limitation of gating mechanism-
s that is lacking in adaptiveness. Besides, SLGD
adding cue word term in each gate of the neural
cell has the similar result as FGRU method, which
concatenates cue word with hidden state. Basical-
ly, our proposed HGFU has a significant improve-
ment against the baseline systems. The most prob-
able credits come from the cue word GRU: we ap-
ply the extra GRU unit to control the auxiliary in-
formation instead of fusion in the standard GRU,
which is more flexible.

Till now, we have elaborated the overall per-
formance of all methods. Next we will come to
a closer look at some representative cases of our
HGFU model for further analysis and discussions.

4.5 Analysis and Case Studies

Given a query and the cue word, our HGFU model
generates a meaningful and informative response.
In Table 3, the predicted cue word occurs in the
generated response and we treat this kind of gen-
eration as the explicit introducing-content. How-
ever, we do not strictly restrict tothis. As shown in
Table 5,our HGFUmodel also generates the replies
without containing the cue word, while the re-
sponsesare still somehow related to the cue word
and the query. This reflects our expectation: the
information of the cue word will be fused into the
generation process but not necessarily occur ex-
plicitly. It provesthe characteristics of our pro-
posed new “soft” schema, whichare more flexible,
extensible, and controllable.

We further analyze these explicit cases using a
heat map as shown in Figure 4. We use various
shades of blue to present the extent of correla-
tion between the cue word and the generated re-
ply. The darker the blue is, the higher correlation
they have. For the added information in the reply
(Here is exactly the cue word in darkblue), its po-
sition and occurrence times are not fixed, which
are autonomously controlled by our model.

Besides, the rectangular pulse is also a signif-
icant presentation of this correlation, which indi-
cates how the k gate in fusion unit balance the in-
fluence of hy and hw. When in the high level of
the rectangular pulse, k “opens” the switch of hw
to generate the current word; when in the low lev-
el, the fusion unit mainly takes hy for generation.
We observe that the switch corresponds with the
heat map: the generated word is more correlated
with the cue word when the switch is open.
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Chinese Sentence English Tranlation
Query 在微博看到这样一个评论真

的是完全无法反驳。(观观观点点点)
I saw such a comment in the microblog which can-
not be refused completely. (View)

Reply 路人表示不服啊！ As an outsider, I am not convinced!
Query 怎么突然就下雨了？(委委委屈屈屈) Why is it raining suddenly? (Grievance)
Reply 好伤心啊。 So sad.
Query 泰民这张也是做了很久桌

面。(屏屏屏保保保)
This photo of Taemin† was also taken as a desktop
for a long while. (Screenshot)

Reply 锁屏吗？ As the lockscreen?
Query 混脸熟求勾搭！(小小小新新新) Make acquaintance and seek chances for further re-

lations! (Freshman)
Reply 同新人！求认识。 I am also the new! Nice to meet you.

Table 5: The implicit introducing-content cases of our HGFU model. The cue word in bold is not
contained in the reply, while the response is still related to the cue word. Taemin† is a Korean singer.

5 Related work

5.1 Conversation Systems

Automatic human-computer conversation has at-
tractedincreasing attention over the past few years.
At the very beginning, people start the research
using hand-crafted rules and templates (Walker
et al., 2001; Misu and Kawahara, 2007; Williams
et al., 2013). These approaches require no da-
ta or little data for trainingbuthuge manual ef-
fort to build the model, which is very time-
consuming. For now, buildinga conversation sys-
temmainly falls into two categories: retrieval-
based and generation-based. As information re-
trieval techniques are developing fast, Leuski et al.
(2009) build systems to select the most suit-
able response from the query-reply pairs using
a statistical language model in cross-lingual in-
formation retrieval. Yan et al. (2016) propose
a retrieval-based conversation system with the
deep learning-to-respond schema through a deep
neural network framework driven by web data.
Recently, generation-based conversation system-
s have shownimpressive potential. Shang et al.
(2015) generate replies for short-text conversation
by Seq2Seq-basedneural networks with local and
global attentions.

5.2 Content Introducing

In vertical domains, Wen et al. (2015b) apply an
additional control cell to gate the dialogue ac-
t (DA) features during the generation process to
ensure the generated repliesexpressthe intended
meaning. Also, the Stochastic Language Gener-
ation in Dialogue method (Wen et al., 2015a) adds
additional features in each gate of the neural cel-

l. Xu et al. (2016) introduce a new trainable gate
to recall the global domain memory to enhance the
ability of modeling the sequence semantics. Dif-
ferent from the above work, our paper addresses
the problem of content introducing in the open-
domain generative conversation systems.

In open domains, Xing et al. (2016) incorpo-
rate topic information into Seq2Seq framework to
generate informative and interesting responses. To
provide informative clues for content introducing,
Li et al. (2016b) detect entities from previous ut-
terances and search for more related entities in
a large knowledge graph. A very recent study
similar to ours is Mou et al. (2016), where the
predicted word explicitly occurs in the generated
utterance. Unlike the existing work, we explore
an implicit content-introducing method for neural
conversation systems, which utilizes the addition-
al cue word in a “soft” manner to generate a more
meaningful response given a user-issued query.

6 Conclusion

In this paper, we explore an implicit content-
introducing method for generative short-text con-
versation system. Given a user-issued query, our
proposed HGFU incorporates an additional cue
word in a “soft” manner to generate a more mean-
ingful response. The HGFU model consists of
three components: the standard GRU, the cue
word GRU and the fusion unit. The standard GRU
operates a general decoding process, and the cue
word GRU imitates this process but treats the pre-
dicted cue word as the current input. As for the fu-
sion unit, it combines both the hidden states of the
standard GRU and the cue word GRU to generate
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the current output word. The experimental results
demonstrate the effectiveness of our approach.
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Abstract

The key to building an evolvable dialogue
system in real-world scenarios is to en-
sure an affordable on-line dialogue policy
learning, which requires the on-line learn-
ing process to be safe, efficient and eco-
nomical. But in reality, due to the scarcity
of real interaction data, the dialogue sys-
tem usually grows slowly. Besides, the
poor initial dialogue policy easily leads to
bad user experience and incurs a failure
of attracting users to contribute training
data, so that the learning process is un-
sustainable. To accurately depict this, t-
wo quantitative metrics are proposed to as-
sess safety and efficiency issues. For solv-
ing the unsustainable learning problem,
we proposed a complete companion teach-
ing framework incorporating the guidance
from the human teacher. Since the human
teaching is expensive, we compared vari-
ous teaching schemes answering the ques-
tion how and when to teach, to economi-
cally utilize teaching budget, so that make
the online learning process affordable.

1 Introduction

A task-oriented dialogue system is designed for
interacting with humans users to accomplish sev-
eral predefined domains or tasks (Young et al.,
2013; Daubigney et al., 2012). Dialogue Man-
ager is the core component in a typical dialogue
system, which controls the flow of dialogue by
a state tracker and a policy module (Levin et al.,
1997). The state tracker tracks the internal s-
tate of the system while the policy module de-
cides the response to the user according to the s-
tatus of states (Sun et al., 2014a; Thomson and

∗Both authors contributed equally to this work.

Young, 2010). The approaches of constructing
a policy module can be divided into two cate-
gories: rule-based and statistical. Rule-based poli-
cies are usually hand-crafted by domain experts
which means they are inconvenient and difficult to
be optimized (Williams and Young, 2007; Wang
and Lemon, 2013). In recent mainstream statisti-
cal studies, Partially Observable Markov Decision
Process (POMDP) framework has been applied to
model dialogue management with unobservable s-
tates, where policy training can be formulated as
a Reinforcement Learning (RL) problem, which
enables the policy to be optimized automatically
(Kaelbling et al., 1998; Arnold, 1998; Young et al.,
2013).

Though RL-based approaches have the poten-
tial to improve themselves as they interact more
with human users and achieve better performance
than rule-based approaches, they are rarely used in
real-world applications, especially in on-line sce-
narios, since the training process is unsustainable.

Vicious Cycle: Unsustainable On-line Learning

Poor (initial) Policy

Bad User  
Experience

Insufficient Real  
User (Data)

Unsafe Policy Behavior (Solvable) ✔

Individual Rationality (Unsolvable) ✘

Possible Solutions to break the vicious cycle

Inefficient Learning Process (Solvable) ✔

The main causes of unsustainable on-line dia-
logue policy learning are two-fold:

• Safety issue: the initial policy trained from
scratch may lead to terrible user experience
at the early training period, thus fail to attract
sufficient users for more dialogues to do fur-
ther policy training.

• Efficiency issue: if the progress of policy
learning is not so efficient, it will exhaust
users’ patience before the policy reaches a
desirable performance level.
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Prior works have mainly focused on improving
efficiency, such as Gaussian Processes RL (Gašić
et al., 2010), deep RL (Fatemi et al., 2016), etc.
For deep RL approaches, recent researches on the
student-teacher RL framework have shown promi-
nent acceleration to policy learning process (Tor-
rey and Taylor, 2013; Williams and Zweig, 2016;
Amir et al., 2016). In such framework, the teach-
er agent instructs the student agent by providing
suggestions on what actions should be taken next
(Clouse, 1996).

For the safety issue, Chen et al. (2017) devel-
oped several teaching strategies answering “how”
the human teacher guide the learning process.

However, those previous teaching methods ex-
clude “when” to teach from concern. They sim-
ply exhaust all the budget continuously from the
beginning, which is wasteful and causes a heavy
workload of the human teacher. An affordable dia-
logue policy learning with human teaching should
require a lighter workload and economically uti-
lize teaching budget.

Furthermore, as for safety and efficiency eval-
uation, previous works have been observing the
training curves and testing curves to tell which one
is better, or evaluate policy performance after cer-
tain dialogues of training, which are subjective and
error prone (Chen et al., 2015a; Su et al., 2016;
Chen et al., 2017).

Our contribution is to address the above prob-
lems. We propose a complete framework of com-
panion teaching, and develop various teaching
schemes which combine different teaching strate-
gies and teaching heuristics together, to answer
the questions of “how” and “when” to teach to
achieve affordable dialogue policy learning (sec-
tion 2). Specifically, a novel failure prognosis
based teaching heuristic is proposed, where Mul-
tiTask Learning (MTL) is utilized to predict the
dialogue success reward (section 3). To avoid
the drawbacks of traditional subjective measure-
ments, we propose two evaluation metrics, called
Risk Index (RI) and Hitting Time (HT), to quantify
the safety and efficiency of on-line policy learning
respectively (section 4). Simulation experiments
showed, with the proposed companion teaching
schemes, sustainable and affordable on-line dia-
logue policy learning has been achieved (section
5).

2 Companion Teaching Framework

The companion teaching framework is an on-line
policy training framework with three intelligen-
t participants: machine dialogue manager, human
user, and human teacher (Chen et al., 2017). Un-
der this framework, the human teacher is able to
accompany the dialogue manager to guide poli-
cy learning with a limited teaching budget. By
investigating the real work mode in a call cen-
ter, this framework makes a reasonable assump-
tion that human teacher has access to the extracted
dialogue states from the dialogue state tracker as
well as the system’s dialogue act, and can also re-
ply in the same format.

However, there are two major problems in the
previous framework. First, the system will judge
whether a dialogue session succeeds by several
simple rules and then determine whether to feed a
success reward signal to dialogue manager for re-
inforcement learning. Actually, the success feed-
back made by the system lacks flexibility and cred-
ibility, and it could mislead the policy learning. A
more suitable judge should be the user or the hu-
man teacher. Second, the previous framework on-
ly answers in which way the human teacher can
guide the online dialogue policy learning, but an-
other essential question, when should the human
teacher give guidance, remains undiscussed.

INPUT 
(ASR / SLU)

OUTPUT 
(NLG / TTS)

Dialogue State  
Tracking (DST)

Policy Model 
(parameters θ)

     Reward Function    

1.
2. 3.

rusr
t rtea

t

⏱

Dialogue Manager

Human  
User

Human  
Teacher

Figure 1: Companion Teaching Framework for
On-line Policy Learning

In this paper, we proposed a complete frame-
work of companion teaching, depicted as Figure
1. At each turn, the input module receives a speech
input from the human user, then produces possible
utterances ut of the speech in text. After that, the
dialogue state tracker extracts the dialogue state st
from possible utterances. This dialogue state will
be shared with policy model and human teacher
if needed. When the final response at, has been
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determined, the output module will translate this
dialogue act to the natural language and reply to
the human user. The success signal will be fed
back by the user or the human teacher as an im-
portant part of system reward, at the end of each
session. The human teacher can take the initia-
tive or be activated by student initiated heuristic
to give the dialogue guidance with strategies cor-
responding to different configurations of switches
in the illustration. We call the combination of s-
trategy and heuristic as teaching scheme.

2.1 Teaching Strategies
The teacher can choose among three teaching s-
trategies corresponding to different configurations
of switches in a wiring diagram as Figure 1 shows:
The left switch is a Single-Pole, Double-Throw
(SPDT) switch, which controls whether the an-
swer is made by the system (connected to 1) or
given by the teacher as an example (connected to
2). The right switch is a simple on-off switch,
which represents whether there is an extra reward
signal from the teacher (ON) or not (OFF). The s-
trategy related to the right switch is called teaching
via Critic Advice (CA), also known as turn-level
reward shaping (Thomaz and Breazeal, 2008; Ju-
dah et al., 2010). When the switch at position 3 is
turned on, the teacher will give the policy model
extra turn-level reward to distinguish the student’s
actions between good and bad actions. Besides,
the left switch corresponds to teaching via Exam-
ple Action (EA), which means the teacher gives
example action for the student to take according
to the student’s state.

The other strategy is proposed by Chen et al.
(2017), which take the advantages of both EA and
CA, named teaching via Example Action with Pre-
dicted Critique (EAPC). With this strategy, the hu-
man teacher gives example actions, meanwhile, a
weak action predictor is trained using this teach-
ing information to provide the extra reward even
in teacher’s absence.

2.2 Teaching Heuristics
The strategies only answer how the human teacher
can offer companion teaching to the system. How-
ever, the timing of teaching should not be ignored
for the sake of utilizing the limited teaching bud-
get better. Exhausting all the budget at early train-
ing stage, named Early teaching heuristic (Early),
is simple and straightforward but wastes teaching
opportunities on unnecessary cases. Thus, it is im-

perative to design some effective heuristics to in-
struct when the teacher should give a hand to the
student.

In addition to early teaching, the teaching
heuristics can be broadly divided into two cat-
egories: teacher-initiated heuristics and student-
initiated heuristics (Amir et al., 2016). However,
the teacher-initiated approaches require the con-
stant long-term attention of the teacher to moni-
tor the dialogue process (Torrey and Taylor, 2013;
Amir et al., 2016), which is costly and impractical
for real applications. Therefore, in this paper, we
only discuss student-initiated heuristics, shown as
the line with a stopwatch in Figure 1, which means
that the student agent decides when to ask for the
teacher’s help.

Previous works have presented several effective
heuristics based on state importance, I(s), which
is determined by the Q-values of the RL agent:

I(s) = maxaQ(s,a) −minaQ(s,a)

Torrey and Taylor (2013) proposed State Impor-
tance based Teaching heuristic (SIT) which make
the student ask for advice only when the current
state is important:

I(s) > tsi, (1)

where tsi is a fixed threshold for importance.
And Clouse (1996) proposed an State Uncertain-
ty based Teaching heuristic (SUT) which ask for
advice when the student is uncertain about which
action to take:

I(s) < tsu, (2)

where tsu is a given threshold for uncertainty.
Though teaching effort can be conserved by on-

ly applying to those important or uncertain states,
it may end up wasting advice if the dialogue is
likely to be successful without teaching. In this
paper, we propose a novel Failure Prognosis based
Teaching heuristic (FPT) for on-line policy learn-
ing to reduce that unnecessary advice. The details
are given in section 3. For comparison, we will al-
so investigate Random teaching heuristic (Rand)
which means the student seek for advice with a
fixed probability pr.

3 Failure Prognosis Based Teaching
Heuristic

To make better use of teaching advice, we propose
to use an on-line turn-level task success predictor
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to predict whether the ongoing dialogue will end
in success and ask for advice only when the cur-
rent prediction is a failure. The proposed approach
utilizes MultiTask Learning (MTL) for the policy
model to estimate future dialogue success reward
and is compatible with various RL algorithms. In
this paper, we implement the policy model with a
Deep Q-Network (DQN), in which a neural net-
work function approximator, named Q-network, is
used to estimate the action-value function (Mnih
et al., 2013).

3.1 Multitask Deep Q-Network

The goal of the policy model is to interact with hu-
man user by choosing actions in each turn to max-
imize future rewards. We define the dialogue state
shared by dialogue state tracker in the t-th turn as
st, the action taken by policy model under current
policy πθ with parameters θ in the t-th turn as at,
and at ∼ πθ(·|st). In an ideal dialogue environ-
ment, once the policy model emit an action at, the
human user will give an explicit feedback, like a
normal response or a feedback of whether the di-
alogue is successful, which will be converted to a
reward signal rt delivering to the policy model im-
mediately, and then the policy model will transit to
next state st+1. The reward rt is composed of two
parts:

rt = rturnt + rsucct ,

where rturnt is the turn penalty reward and rsucct

is the dialogue success reward. Typically, rturnt is
fixed for each turn as a negative constant Rturn,
while rsucct equals to a predefined positive con-
stantRsucc only when the dialogue terminates and
receives a successful user feedback otherwise ze-
ro.

In DQN algorithm, all these transitions
(st, at, rt, st+1) will be stored in a replay mem-
ory D. And the objective is to optimize MSE be-
tween Q-network Q(s, a; θ) and Q-learning target
Qe. The loss function L(θ) is defined as:

L(θ) = Es,a∼πθ
[
(Qe −Q(s, a; θ))2

]
. (3)

During the training period, Qe is estimated with
old fixed parameter θ− and sampled transitions
e ∼ D:

Qe = r + γ max
at+1

Q(st+1, at+1; θ
−), (4)

where γ is the discount factor.

The reward Q(s, a) estimated by original Q-
learning algorithm is essentially a combination
of future turn penalty reward Qturn(s, a) and fu-
ture dialogue success reward Qsucc(s, a). For a
task-oriented dialogue system, the prediction of
Qsucc(s, a) is much more important because it re-
flects the possibility of the dialogue to be success-
ful. If these two rewards are estimated separate-
ly, the objective of Qsucc(s, a) can be optimized
explicitly, and we can get more insights into the
estimated future. We found that in practice, opti-
mizing these two objectives with MultiTask Learn-
ing (MTL) converges faster and more stable com-
pared with two separate models, the reason of
which may lie in that MTL can learn different re-
lated tasks in parallel using shared representation-
s, which will be helpful for each task to be learned
better (Caruana, 1997). The structure of proposed
MTL-DQN is depicted in Figure 2.

Figure 2: MTL-DQN structure

3.2 Failure Prognosis

In the proposed multitask DQN, we define on-line
task success predictor T (st) as:

T (st) = Qsucc(st, at),

where at is the action taken under state st. It is
reasonable to assume that the dialogue is going
to fail if T (st) is relatively small. Based on the
task success predictor, we propose a novel student-
initiated heuristic, named Failure Prognosis based
Teaching heuristic (FPT).

The key to the proposed heuristic is to define
failure prognosis quantitatively. A straight way is
to set a ratio threshold α, and consider it to be fail-
ure prognosis when T (st) < αRsucc. However,
this assumes that the numerical scale of Qsucc is
consistent through the training period, which is not
always the case. And the student’s noisy estima-
tion ofQsucc at early training period will make the
learning process unstable. To smooth the teaching,
we consider using a turn-level sliding window n-
ear the current state to calculate an average value
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as the replacement of the fixed Rsucc. So in the t-
th turn, the failure prognosis for the student to be
true is equivalent to:

T (st) < α
1

w

t−1∑

j=t−w
T (sj), (5)

where w is the size of the sliding window.

4 Quantitative Measurements for Safety
and Efficiency

The performance of different teaching strategies
and heuristics should be measured in both the safe-
ty and efficiency dimension. However, the mea-
surements in these two dimensions are subjective
and error prone in the previous work (Chen et al.,
2017). Especially for assessing the degree of safe-
ty of various teaching strategies and heuristics, we
simply obverse the training curves so that we can-
not tell of two interleaving curves which training
process is safer. Thus, it is imperative to set up
some quantitive measurements for both safety and
efficiency evaluations. In this paper, we propose
two scalar criteria: Risk Index (RI) and Hitting
Time (HT).

4.1 Risk Index

The Risk Index is a nonnegative index designed to
indicate how risky the training process could be
for evaluating the safety issue during the whole
online dialogue policy learning process. Because
we expect that the system satisfies the quality-of-
service requirement in the early training period,
specifically, we hope it can keep a relatively ac-
ceptable success rate. It is straightforward to set a
success rate threshold for the training process. In
a real application scenario, this threshold can be
obtained by an appropriate user study.

If the success rate over a training process keeps
above this threshold all the time, we will think this
training process is absolutely safe. Therefore, its
RI should equal to zero.

On the other hand, if the success rate over a
training process rises and falls and sometimes is
below the threshold, it is risky. The riskiness con-
sists of two parts:

• Disruptiveness: Sometimes the success rate
during a certain period will fall much lower
than the threshold, which could be very dis-
ruptive. To quantify the disruptiveness, we

consider the function

dis(t) = threshold−%succ(t)

over the training process. The higher the val-
ue of dis(t′) is, the riskier the training pro-
cess could be during the period of a certain
length centered with time t′.

• Persistence: Another thing we should take
into account is the duration of the time at high
risk. Let δrisk(t) be the indicator of whether
threshold ≥ %succ(t). Then the persis-
tence can be quantified as total risky time

per(T ) =

∫ T

t=0
δrisk(t)dt

The longer the danger persists over the train-
ing process, the value of persistence of the
training process will be, and the riskier it is.

Our Risk Index integrate these two contents of
riskiness. That is, a nonnegative scalar

RI =

∫ T

t=0
dis(t)δrisk(t)dt,

which measures the integrated riskiness for the on-
line training process of total length T . The RI
also has an intuitive interpretation as the area of
the region which is below the threshold line and
above training curve. Straightforwardly, high RI
indicates poor safety.

4.2 Hitting Time
To measure the efficiency, we proposed the Hitting
Time in order to show how fast the system learns
and reaches the satisfactory performance.

The difficulty of designing such a criterion lies
in the dramatic and undamped fluctuation of the
test curves, which is inherent in the instability
dialogue task. Therefore, many popular criteria
for the evaluating dynamic performance in con-
trol theory, such as “settling time” and “rise time”,
cannot be applied to evaluate efficiency here.

We use Hitting Time to evaluate efficiency over
the fluctuant testing curve first by fitting it to the
empirical learning curve

f(t) = a− b · e−(t/c)2 ,

where the parameter a is the stationary perfor-
mance which is predicted as the asymptotic goal
of the system, b relates to the initial performance,
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and c relates to the climbing speed. This empirical
model forces our fitted learning curve be an “S”
shape curve satisfying constraints f ′(0) = 0 and
f ′′(c/2) = 0. Then we observe when this fitted
learning curve hits the target performance τ and
this time (measured in sessions) is Hitting Time. It
can be calculated analytically as follow

HT = c

√
ln

(
b

a− τ

)
.

Ideally, the ultimate success rate a should be
very close under different settings because of the
sufficient training. However, if the success rate
keeps very poor during the given sessions, the fit-
ted awill be very low, and even less than the target
satisfactory performance τ . In this situation, a is
meaningless, and HT becomes a complex number.
And this indicates the real hitting time is far larg-
er than given number of sessions T . We will note
the HT in this case as ULT (Unacceptably Large
Time).

In this way, we overcome the fluctuation and
make the HT tell us how much time the system
takes to hit and surpass the target success rate.

5 Experiments and Results

Three objectives are set for our experiments: (1)
Observing the effect of multitask DQN; (2) Con-
trasting the performances of different teaching
schemes (strategies and heuristics) under the com-
panion teaching framework; (3) Observing the
safety and efficiency issues under sparse user feed-
back scenarios.

5.1 Experimental Setup
Our experiments are conducted with the Dialogue
State Tracking Challenge 2 (DSTC2) dataset,
which is on restaurant information domain (Hen-
derson and Thomson, 2014). The human user is
emulated by an agenda-based user simulator with
error model (Schatzmann et al., 2007), while the
human teacher is emulated by a pre-trained poli-
cy model with success rate of about 0.78 through
multitask DQN approach without teaching. A
rule-based tracker is used for dialogue state track-
ing (Sun et al., 2014b). The semantic parser is
implemented according to an SVM-based method
proposed by Henderson et al. (2012). The natu-
ral language generator is implemented and modi-
fied based on an RNNLG toolkit (Wen et al., 2016,
2015a,c,b).

Early Rand SIT SUT FPT

None pr = 0.6 tsi = 5 tsu = 10
α = 1.2
w = 25

Table 1: Experimental configurations of teaching
heuristics introduced in section 2.2 and 3.2.

In our experiments, all dialogues are limited to
twenty turns. The “dialogue success” is judged by
the user simulator according to whether all user
goals are satisfied. And for policy learning, we
set a small per-turn penalty of one to encourage
short interactions, i.e. Rturn = −1, and a large
dialogue success reward of thirty to appeal to suc-
cessful interactions, i.e. Rsucc = 30 , and the dis-
count factor γ is set to one. Table 1 summarizes
the heuristics studied in our experiments, together
with corresponding configurations which are cho-
sen empirically.

5.2 Observing the Effect of MTL-DQN

The MTL-DQN described in section 3.1 can esti-
mate the prediction ofQturn andQsucc respective-
ly. In our experiments, it was implemented with
one shared hidden layer and two dependent hidden
layers for two different tasks using MXNet (Chen
et al., 2015b).

Figure 3 shows a typical failure in dialogue pol-
icy training. The policy showed in the example
hasn’t been trained well, and it tends to ask the
user to repeat over and over again when the confi-
dence score of the user utterance is not high, which
causes the user to terminate the dialogue impa-
tiently.

Figure 3: An example of failed dialogue while
training without teaching. The labels “Score” and
“FP” represent for the confidence score of user ut-
terance and the value of failure prognosis of the
current turn respectively.
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This kind of failure can be predicted and cor-
rected in advance. By equation 5, the third turn
will be estimated to be failure prognosis, which
can be a sign for the teacher to intervene and cor-
rect the following actions to avoid dialogue fail-
ure. Besides, the explicit separate estimation of
Qturn and Qsucc provides a better understanding
of the state of the current turn. For example, al-
though the first turn and second turn have similar
Q-values (Qturn+Qsucc), the latter turn is predict-
ed with less future turns and less possibility to lead
to dialogue success. See appendix A for additional
successful example.

5.3 Comparing Different Teaching Schemes

Our proposed complete companion teaching
framework allows us to teach dialogue system-
s with different teaching schemes, which consist-
s various strategies and heuristics. In our exper-
iments, we compared 18 schemes consisting of
three teaching strategies (CA, EA and EAPC), and
six teaching heuristics (Early, Rand, SIT, SUT, FP-
T and SUT&FPT). The SUT&FPT heuristic mean-
s the student only ask for advice when equation 2
and 5 are both satisfied. For comparison, we use
No Teaching (NoTeaching) as the baseline.

To verify the effects of different companion
teaching schemes, we conduct a set of experiments
to see their performances on safety and efficiency
dimensions. During training, the teacher can on-
ly teach for a limited budget of 1000 turns. All the
training curves shown in this paper are moving av-
erage curves with a window of size 250 dialogues
and over eight runs with an endurable standard er-
ror.

5.3.1 Safety Evaluation
To compare effects of different teaching schemes
on safety dimension, we use the Risk Index (RI) in
section 4.1 to quantitatively measure each training
process. We set the empirical safety threshold as
65% here. The results are shown in Table 2.

As RIs implies, schemes composed with EAPC
strategy is much safer than those composed with
other strategies. As for teaching heuristics, FP-
T, SUT and SUT&FPT are three relatively safer
heuristic accompanying different strategies. One
exception is that Early teaching looks more suit-
able for CA. A possible explanation is that when
the teacher gives critique earlier, the student will
mind its behavior earlier so that increase safe-
ty. Figure 4 shows the training curves of on-line

CA EA EAPC
Early 98.5 110.6 56.1
Rand 193.4 102.4 65.5
FPT 154.4 86.2 53.6
SIT 230.8 121.7 66.0
SUT 183.5 95.8 44.5∗
SUT&FPT 131.6 101.8 54.6
NoTeaching 202.9

Table 2: RIs of learning processes under differ-
ent teaching schemes. The least risky teaching
scheme is annotated with ∗. For comparing differ-
ent teaching heuristics with fixed teaching strate-
gy, the smallest RIs in each column are bold and
underlined, the 2nd smallest ones are bold only,
and the 3rd smallest ones are underlined only. See
abbreviations of schemes in section 2.1 and 2.2.

learning process under EAPC with various heuris-
tics. Among all 18 teaching schemes, EAPC+SUT
is the safest teaching scheme which reduces about
78% risk of no-teaching learning.

5.3.2 Efficiency Evaluation
We use Hitting Time (HT) in section 4.2 to mea-
sure the efficiency of learning process under dif-
ferent teaching schemes. The empirical satisfacto-
ry target success rate for the student is 70% in our
experimental settings.

CA EA EAPC
Early 3390.9 3479.4 4354.7
Rand 3669.0 3518.5 2979.2
FPT 3089.4 2921.1 2798.4
SIT 3576.4 4339.7 3768.7
SUT 3230.4 2954.5 3300.2
SUT&FPT 2890.7 3393.0 2702.2∗

NoTeaching 3204.1

Table 3: HTs of test curves of different teaching
schemes. The most efficient teaching scheme is
annotated with ∗. For comparing different teach-
ing heuristics with fixed strategy on efficiency is-
sue, the smallest HTs in each column are bold and
underlined, and the 2nd smallest bold only. See
abbreviations of schemes in section 2.1 and 2.2.

Table 3 contains all HTs of learning process un-
der 18 teaching schemes. Intuitively, The num-
ber in the table reflect the number of sessions
at which the model achieves target success rate.
As it shows, not any teaching scheme will im-
prove the learning efficiency. If the teacher in-
tervenes at an improper time, it will distract sys-
tem or confuse system even with a right guidance.
But teaching when a potential failure exists (F-
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Figure 4: On-line learning process under different
teaching schemes (EAPC + different heuristics).
The yellow dashed line indicates safe success rate
threshold. The area in gray indicates how risky a
training process is. See abbreviations of schemes
in section 2.1 and 2.2.

PT) is always good for improving learning effi-
ciency. EAPC+SUT&FPT is the teaching scheme
that leads to the most efficient learning process in
our experiments. Figure 6 gives some example
test curves and fitted empirical learning curves of
learning process under EAPC with various heuris-
tics.

5.3.3 Teacher’s Workload
We also observe teacher’s workload of all the
teaching schemes since economically utilizing
teaching budget is one of our goals.

CA+Early CA+FPT

CA+SIT CA+SUT CA+SUT&FPT

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

#session

#
te
ac
he
d
tu
rn

EA+Early EA+FPT

EA+SIT EA+SUT EA+SUT&FPT

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

#session

#
te
ac
he
d
tu
rn

EAPC+Early EAPC+FPT

EAPC+SIT EAPC+SUT EAPC+SUT&FPT

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

#session

#
te
ac
he
d
tu
rn

CA+Rand

EA+Rand

EAPC+Rand

Figure 5: Cumulative usage of teaching budget.
The total teaching budget is 1000 for every teach-
ing scheme. See abbreviations of schemes in sec-
tion 2.1 and 2.2.

Figure 5 illustrates the cumulative usage of
teaching budget of 18 teaching schemes. It shows
that early teaching is the most costly teaching
heuristic so that the teaching budget is soon used
up. SIT looks a bit lazy at the beginning and con-
sumes teaching budget slowly. When the teaching
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Figure 6: Test curves and fitted empirical learning
curves of learning process with different teaching
schemes (EAPC+different heuristic). See abbrevi-
ations of schemes in section 2.1 and 2.2.

strategy is EA or EAPC, FPT-based schemes do
not use up full teaching budget in our experiments.
Combine SUT and FPT, the workload is relative-
ly lighter than that of teaching in other heuristic-
s. And through proper teaching schemes, we can
make better use of the teaching budget and reduce
teacher’s workload.

5.4 Safety and Efficiency Issues under Sparse
User Feedback Scenarios

In real application scenarios, the user rarely pro-
vides feedback at the end of the dialogue, so that
safety and efficiency issues are even more serious.
To observe the effectiveness of different teaching
schemes under sparse user feedback, we conduct-
ed experiments with sparse user feedback.

The user feedback rate is set to 30% empirical-
ly and experiments are carried out under teaching
schemes consisting of EAPC strategies and differ-
ent heuristics, since EAPC is much safer and more
efficient than other teaching strategies.

RIs HTs
NoTeaching 608.2 ULT
Early 223.0 6881.8
Rand 226.6 ULT
FPT 171.5 6753.0
SIT 308.8 7868.4
SUT 183.3 5876.9
SUT&FPT 155.4 8420.9

Table 4: RIs & HTs of learning processes un-
der EAPC strategy and different heuristics when
user feedback rate is 30%. See abbreviations of
schemes in section 2.1 and 2.2.

Table 4 records the RIs and HTs of those differ-
ent learning process when user feedback is sparse.
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We can see that when the user feedback rate drop-
s from 100% to 30%, the RIs and HTs increase
dramatically. The NoTeaching baseline is very
risky and inefficient (its hitting time is even unpre-
dictable within 10000 sessions learning). Howev-
er, with teaching scheme such as EAPC+FPT, both
safety and efficiency can be improved a lot.

6 Conclusions and Future Work

This paper addressed the safety and efficiency is-
sues of sustainable on-line dialogue policy learn-
ing with different teaching schemes, which answer
both “how” and “when” to teach, within the com-
plete companion teaching framework. To evaluate
the policy learning process precisely, we proposed
two measurements, Risk Index (RI) and Hitting
Time (HT), to quantify the degree of safety and ef-
ficiency. Particularly, through multitask learning,
we managed to optimize the predicted remaining
turns and dialogue success reward explicitly, based
on which we developed a novel Failure Progno-
sis based Teaching (FPT) heuristic to better utilize
the fixed teaching budget and make the teaching
affordable.

Experiments showed that different teaching
schemes have different effects on safety and ef-
ficiency dimension. And they also require differ-
ent workload of the teacher. Among 18 compared
teaching schemes, FPT-based heuristics combined
with EAPC strategy achieved promising perfor-
mance on RI and HT, and required relatively slight
workload. This result indicates a proper teaching
scheme under the companion teaching framework
is able to guarantee a sustainable and affordable
on-line dialogue policy learning process.

There are several directions for our future work.
We expect to deploy our proposed framework in
real-world scenarios collaborating with real hu-
man teachers to verify the results presented in this
paper and discover more potential challenges of
on-line dialogue system development. Further-
more, the current study is focused on dialogue suc-
cess rate, which is a simplification of the human
satisfaction evaluation. So future work is needed
to take more qualities into consideration to achieve
better user experience.
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Abstract

Sequence-to-sequence models have been
applied to the conversation response gen-
eration problem where the source se-
quence is the conversation history and
the target sequence is the response. Un-
like translation, conversation responding
is inherently creative. The generation of
long, informative, coherent, and diverse
responses remains a hard task. In this
work, we focus on the single turn set-
ting. We add self-attention to the de-
coder to maintain coherence in longer
responses, and we propose a practical
approach, called the glimpse-model, for
scaling to large datasets. We introduce
a stochastic beam-search algorithm with
segment-by-segment reranking which lets
us inject diversity earlier in the generation
process. We trained on a combined data
set of over 2.3B conversation messages
mined from the web. In human evalua-
tion studies, our method produces longer
responses overall, with a higher proportion
rated as acceptable and excellent as length
increases, compared to baseline sequence-
to-sequence models with explicit length-
promotion. A back-off strategy produces
better responses overall, in the full spec-
trum of lengths.

1 Introduction

Building computer systems capable of general-
purpose conversation is a challenging problem.
However, it is a necessary step toward building in-
telligent agents that can interact with humans via

∗Both authors contributed equally to this work.
†Work done as a member of the Google Brain Residency

program (g.co/brainresidency).

natural language, and for eventually passing the
Turing test. The sequence-to-sequence (seq2seq)
model has proven very popular as a purely data-
driven approach in domains that can be cast as
learning to map to and from variable-length se-
quences, with state-of-the art results in many do-
mains, including machine translation (Cho et al.,
2014; Sutskever et al., 2014; Wu et al., 2016).
Neural conversation models are the latest devel-
opment in the domain of conversation modeling,
with the promise of training computers to converse
in an end-to-end fashion (Vinyals and Le, 2015;
Shang et al., 2015; Sordoni et al., 2015; Wen et al.,
2016). Despite promising results, there are still
many challenges with this approach. In particu-
lar, these models produce short, generic responses
that lack diversity (Sordoni et al., 2015; Li et al.,
2015). Even when longer responses are explicitly
encouraged (e.g. via length normalization), they
tend to be incoherent (“The sun is in the center of
the sun.”), redundant (“i like cake and cake”), or
contradictory (“I don’t own a gun, but I do own a
gun.”).

In this paper, we provide two methods to ad-
dress these issues with minimal modifications to
the standard seq2seq model. First, we present
a glimpse model that only trains on fixed-length
segments of the target-side at a time, allowing
us to scale up training to larger data sets. Sec-
ond, we introduce a segment-based stochastic de-
coding technique which injects diversity earlier
in the generated responses. Together, we find
that these two methods lead to both longer re-
sponses and higher ratings, compared to a baseline
seq2seq model with explicit length and diversity-
promoting heuristics integrated into the generation
procedure (see Table 1 for examples generated us-
ing our model).

In Section 2, we present a high-level overview
of these two techniques. We then discuss each
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technique in more detail in Sections 3 and 4. Fi-
nally, we report small and large-scale experimen-
tal evaluations of the proposed techniques in Sec-
tion 5.

2 Overview and Motivation

A major difference between translation and re-
sponding to conversations is that, in the former, the
high-level semantic content to generate in the tar-
get sequence y is completely given by the source
sequence, i.e., given the source x, there is low con-
ditional entropy in the target distribution P (y|x).
In the seq2seq approach, the decoder network
therefore only has to keep track of where it is in the
output, and the content to generate can be trans-
formed from the relevant parts in the source via the
attention mechanism (Bahdanau et al., 2014). In
contrast, in conversation response generation, the
prompt turn may be short and general (e.g., “what
do you have planned tonight”), while an appropri-
ate response may be long and informative.

The standard seq2seq model struggles with gen-
erating long responses, since the decoder has to
keep track of everything output so far in its fixed-
length hidden state vector, which leads to incoher-
ent or even contradictory outputs. To combat this,
we propose to integrate target-side attention into
the decoder network, so it can keep track of what
has been output so far. This frees up capacity in
the hidden state for modeling the higher-level se-
mantics required during the generation of coherent
longer responses. We were able to achieve small
perplexity gains using this idea on the small Open-
Subtitles 2009 data set (Tiedemann, 2009). How-
ever, we found it to be too memory-intensive when
scaling up to larger data sets.

As a trade-off, we propose a technique (called
the ‘glimpse model’) which interpolates between
source-side-only attention on the encoder, and
source and target-side attention on the encoder
and decoder, respectively. Our solution simply
trains the decoder on fixed-length glimpses from
the target side, while having both the source se-
quence and the part of the target sequence before
the glimpse on the encoder, thereby sharing the at-
tention mechanism on the encoder. This can be
implemented as a simple data-preprocessing tech-
nique with an unmodified standard seq2seq imple-
mentation, and allows us to scale training to very
large data sets without running into any memory
issues. See Figure 1 for a graphical overview,

where we illustrate this idea with a glimpse-model
of length 3.

Given such a trained model, the next chal-
lenge is how to generate long, coherent, and di-
verse responses with the model. As observed
in the previous section and in other work, stan-
dard maximum a posteriori (MAP) decoding us-
ing beam search often yields short, uninforma-
tive, and high-frequency responses. One ap-
proach to produce longer outputs is to em-
ploy length-promoting heuristics (such as length-
normalization (Wu et al., 2016)) during decod-
ing. We find this increases the length of the out-
puts, however often at the expense of coherence.
Another approach to explicitly create variation in
the generated responses is to rerank the N -best
MAP-decoded list of responses from the model us-
ing diversity-promoting heuristics (Li et al., 2015)
or a backward RNN (Wen et al., 2015). We
find this works for shorter responses, but not for
long responses, primarily for two reasons: First,
the method relies on the MAP-decoding to pro-
duce the N -best list, and as mentioned above,
MAP-decoding prefers short, generic responses.
Second, it is too late to delay reranking in the
beam search until the whole sequence has been
generated, since beam-search decoding tends to
yield beams with low diversity per given prompt,
even when the number of beams is high. In-
stead, our solution is to break up the reranking
over shorter segments, and to rerank segment-by-
segment, thereby injecting diversity earlier during
the decoding process, where it has the most impact
on the resulting diversity of the generated beams.

To further improve variation in the generated
responses, we replace the deterministic MAP-
decoding of the beam search procedure with sam-
pling. If a model successfully captures the distri-
bution of responses given targets, one can expect
simple greedy sampling to produce reasonable re-
sponses. However, due to model underfitting, the
learned distributions are often not sharp enough,
causing step-by-step sampling to accumulate er-
rors along the way, manifesting as incoherent out-
puts. We find that integrating sampling into the
beam-search procedure yields responses that are
more coherent and with more variation overall.

In summary, the contributions of this work are
the following:

1. We propose to integrate target-side attention
in neural conversation models, and provide a
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PROMPT: RESPONSE FROM BASELINE (A) vs OUR METHOD (B)

what do you have planned tonight A: I have no idea what I want to do with my life. I have no idea what I want to (Bad, Mediocre, Bad)
B: I was planning on doing a few of these, but I’m not sure what to choose. I need to find a place to camp, and I don’t have a lot
of time to make a plan. (Excellent, Good, Mediocre)

I’d like to read a good science fiction novel. Haven’t read scifi
in a while.

A: If you like sci fi you should check out The Name of the Wind by Patrick Rothfuss (Excellent, Excellent, Excellent)
B: If you want to know what sci-fi is, read the first book by Neil Gaiman. It’s a sci-fi sci-fi sci-fi novel. It is really good and I
recommend it to all of you. It has a great premise. (Acceptable, Excellent, Acceptable)

Got any big weekend plans? A: I have plans for the weekend but I don’t know if I will be able to make it to the (Bad, Mediocre, Bad)
B: I don’t really have much to do on Saturday. But I plan on going to the movies at the mall and going to the show. (Good,
Good, Bad)

Sometimes flying messes my ears, because of the air pressure.
Especially if I have a cold or something, flying gets me messed
up.

A: I don’t know why, but when I was a kid I used to do this all the time when I was younger. (Good, Bad, Bad)
B: I have no idea why, but I feel exactly the same way. I don’t know why, but my brain is so sensitive to air that it makes my
nose twitch. (Excellent, Mediocre, Good)

Yeah. I have this friend, and we get bored just hanging out here
sometimes, so we take little trips to places. We went to Seattle
a couple of months ago.

A: What kind of things do you like to do? (Excellent, Excellent, Excellent)
B: That sounds like a great time. I have a lot of friends that go to Seattle, so I was wondering if you could share any of the
locations? (Excellent, Excellent, Excellent)

have you seen Suicide Squad? A: I have not, but I will check it out. (Good, Good, Good)
B: I saw it in a theater once and it was great. It was very... I don’t know, a little dark. I like the psychological effects and the
way it portrays the characters in the movie. (Excellent, Excellent, Excellent)

Actually I like the snow too, except for today. It’s all slushy and
it’s all over the sidewalks and it’s gross.

A: I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the
snow. (Acceptable, Good, Good)
B: I’m in the same boat as you. I hate it when it’s snowy and I don’t like to shovel it all day. :( So this is a perfect excuse to not
get out of bed and go somewhere else. (Excellent, Good, Acceptable)

What do you hope to see in the future? A: I want to be able to go back in time to when I was born. I want to be (Mediocre, Bad, Mediocre)
B: I want to see an actual movie where the characters have the ability to hide the fact that they are actually in the movie. (Good,
Acceptable, Acceptable)

what dangers could happen with the singularity? A: I don’t think it would be that big of a deal. (Acceptable, Mediocre, Acceptable)
B: If you look at it from the perspective of an alien, you can’t say that there aren’t any alternative ways to deal with it. (Accept-
able, Mediocre, Acceptable)

I think you’re a little crazy. A: I don’t think you know what that word means. (Acceptable, Good, Good)
B: I am, actually. I don’t think I’m crazy though. I certainly am. (Acceptable, Mediocre, Acceptable)

Table 1: Some example responses generated from the baseline (A) compared to our model (B), with
human ratings in parentheses. These were selected for quality. See the appendix for an unbiased sample.

practical approach, referred to as the glimpse
model, which scales well and is easy to im-
plement on top of the standard sequence-to-
sequence model.

2. We introduce a stochastic beam-search pro-
cedure with segment-by-segment reranking
which improves the diversity of the generated
responses.

3. We present large-scale experiments with hu-
man evaluations showing the proposed tech-
niques improve over strong baselines.

4. We release our collection of context-free con-
versation prompts used in our evaluations as
a benchmark for future open-domain conver-
sation response research.

3 Seq2Seq Model with Attention on
Target

We discuss conversation response generation in
the sequence-to-sequence problem setting. In
this setting, there is a source sequence x =
(x1, x2, ..., xM ), and a target sequence y =
(y0, y1, y2, ..., yN ). We assume y0 is always the
start-of-sequence token and yN is the end-of-
sequence token. In a typical sequence-to-sequence
model, the encoder gets its input from the source
sequence x and the decoder models the condi-
tional language model P (y|x) of the target se-
quence y, given x.

Seq2seq models with attention (Bahdanau et al.,
2014) parameterize the per-symbol conditional
probability as:

P
(
yi|y[0:i−1];x

)
= DecoderRNN ((hi)

yi−1, hi−1,Attention (hi−1,x))
(1)

for 1 ≤ i ≤ N , where DecoderRNN() is a re-
current neural network that map the sequence of
decoder symbols into fixed-length vectors, and At-
tention() is a function that yields a fixed-size vec-
tor summary of the encoder symbols x (the ‘fo-
cus’) most relevant to predicting yi, given the pre-
vious recurrent state of the network hi−1 (the ‘con-
text’). The full conditional probability follows
from the product rule, as:

P (y|x) =

N∏

i=1

P
(
yi|y[0:i−1];x

)
(2)

We propose to implement target-side attention
by augmenting the attention mechanism to include
the part of the target sequence already generated,
i.e., we include y[0:i−2] in the arguments to the at-
tention function: Attention(hi−1,y[0:i−2],x). We
implemented this in TensorFlow (Abadi et al.,
2015) using 3 LSTM layers on both the encoder
and the decoder, with 1024 units per layer. We
experimented on the OpenSubtitles 2009 data set,
and obtained a small perplexity gain from the
target-side attention: 24.6 without versus 24.2
with. However, OpenSubtitles is a small data set,
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(a) The vanilla sequence-to-sequence model.
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(b) Length-3 Target-glimpse Model

Figure 1: The vanilla seq2seq with attention on the left, and our proposed target-glimpse model on the
right. The symbol “>” and “<” are start-of-sequence and end-of-sequence, respectively.

and the majority of its response sequences are
shorter than 10 tokens. This may prevent us from
seeing bigger gains, since our method is designed
to help with longer outputs. In order to train on the
much larger Reddit data set, we implemented this
method on top of the GNMT model (Wu et al.,
2016). Unfortunately, we met with frequent out-
of-memory issues, as the 8-layer GNMT model is
already very memory-intensive, and adding target-
side attention made it even more so. Ideally, we
would like to retain the model’s capacity in or-
der to train a rich response model, and therefore
a more efficient approach is necessary.

To this end, we propose the target-glimpse
model which has a fixed-length decoder. The
target-glimpse model is implemented as a stan-
dard sequence-to-sequence model with attention,
where the decoder has a fixed length K. Dur-
ing training, we split the target sequence into non-
overlapping, contiguous segments (glimpses) with
fixed length K, starting from the beginning. We
then train on each of these glimpses, one at a time
on the decoder, while putting all target-side sym-
bols before the glimpse on the encoder. For ex-
ample, if a sequence y is split into two glimpses
y1 and y2, each with length K (y2 may be shorter
thanK), then we will train the model with two ex-
amples, (x→ y1), and (x,y1 → y2). Each time
the concatenated sequence on the left of the arrow
is put on the encoder and the sequence on the right
is put on the decoder. Figure 1(b) illustrates the
training of (x,y1 → y2) when K = 3. In our im-
plementation, we always put the source-side end-
of-sequence token at the end of the whole encoder
sequence, and we split the glimpses according to
the decoder time steps. For example, if the se-
quence y is y0, y1, y2, ..., y10, and K = 3, the first
example will have y0, y1, y2 on the input layer of
the decoder, and y1, y2, y3 on the output layer of
the decoder. The second example has y3, y4, y5 as

input of the decoder and y4, y5, y6 as the output of
the decoder, and so on. In our experiments, we use
K = 10.

While decoding each glimpse, the decoder
therefore attends to both the source sequence and
the part of the target sequence that precedes the
glimpse, thereby benefiting from the GNMT en-
coder’s bidirectional RNN. Through generaliza-
tion, the decoder should learn to decode a glimpse
of length K in any arbitrary position of the target
sequence (which we will exploit in our decoding
technique discussed in Section 4). One drawback
of this model, however, is that the context inputs
to the attention mechanism only include the words
that have been generated so far in this glimpse,
rather than the words from the full target side. The
workaround that we use is to simply connect the
last hidden state of the GNMT-encoder to the ini-
tial hidden state of the decoder1, thereby giving the
decoder access to all previous symbols regardless
of the starting position of the glimpse.

4 Stochastic Decoding with
Segment-by-Segment Reranking

We now turn our attention from training to in-
ference (decoding). Our strategy is to perform
reranking with a normalized score at the seg-
ment level, where we generate the candidate seg-
ments using a trained glimpse-model and using a
stochastic beam search procedure, which we dis-
cuss next. The full decoding algorithm proceeds
segment by segment.

The standard beam search algorithm generates
symbols step-by-step by keeping a set of the B
highest-scoring beams generated so far at each
step2. The algorithm adds all possible single-token
extensions to every existing beam, and then selects

1This is the default in standard seq2seq models, but not in
the GNMT model.

2Beams are also called ‘hypotheses’, and B is referred to
as the ‘beam width’.
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the top B beams. In our stochastic beam search
algorithm, we replace this deterministic top-B se-
lection by a stochastic sampling operation in order
to encourage variation. Further, to discourage a
single beam from dominating the search and de-
creasing the final response diversity, we perform a
two-step sampling procedure: 1) For each single-
token extension of an individual beam we don’t
enumerate all possibilities, but instead sample a
fixed number ofD candidate tokens to be added to
the beam. This yields a total ofB×D beams, each
with one additional symbol. 2) We then compute
the accumulated conditional log-probabilities for
each beam (normalized across all B ×D beams),
and treat these as the logits for sub-sampling B
beams for the next step. We repeat this procedure
until we reach the desired segment-length H , or
until a segment ends with the end-of-sequence to-
ken.

For a given source sequence, we can use this
stochastic beam search algorithm to generate B
candidate H-length segments as the beginning of
the target sequence. We then perform a rerank-
ing step (described below), and keep one of these.
The concatenation of the source and the first tar-
get segment is then used as the input for generat-
ing the next B candidate segments. The algorithm
continues until the segment selected ends with an
end-of-sequence token.

This algorithm behaves similarly to standard
beam search when the categorical distribution
used during the process is sharp (‘peaked’), since
the samples are likely to be the top categories
(words) . However, when the distribution is
smooth, many of the choices are likely. In con-
versation response generation we are dealing with
a conditional probability model with high entropy,
so this is what often happens in practice.

For the reranking, we normalize the scores
using random prompts. In particular, suppose
yk = y1, ..., yk−1 is a candidate segment, and
(x,y1:k−1) is the input to the stochastic beam
search. The normalized score is then computed
as follows:

S (yk|x,y1:k−1) =
P (yk|x,y1:k−1)∑

x′∈Φ P (yk|x′,y1:k−1)
(3)

In this equation, the set Φ is a collection of ran-
domly sampled source sequences (prompts). In
our experiments, we randomly select Q prompts
from the context-free evaluation set (introduced in

the Experiments section).
It is worth noting that when Φ is an unbi-

ased sample from P (x), the summation in the
denominator is a Monte-Carlo approximation of
P (yk|y1:k−1). In the case of reranking whole
target sequences y, this becomes the marginal
P (y), which corresponds to the same diversity-
promoting objective used in (Li et al., 2015).
However, we found that our approximation works
better in terms of N-choose-1 accuracy (see Sec-
tion 5.2), which suggests that its value may be
closer to the true conditional probability.

In our experiments, we set number of random
prompts Q to 15, segment length H to 10, num-
ber of beams B to 2, and samples per beam D
to 10. We select a small value for B, since we
find that larger values makes the algorithm behave
more like standard beam search.

5 Experimental Results

In this section we present experimental results
for evaluating the target-glimpse model and the
stochastic decoding method that we presented. We
train the model using the Google neural machine
translation model (GNMT, (Wu et al., 2016)), on
a data set that combines multiple sources mined
from the Web:

1. The full Reddit data3 that contains 1.7 billion
messages (221 million conversations).

2. The 2009 Open Subtitles data (0.5 million
conversations, (Tiedemann, 2009)).

3. The Stack Exchange data (0.8 million conver-
sations).

4. Dialogue-like texts that we recognized and
extracted from the web (17 million conver-
sations).

For all these data sets, we extract pairs of mes-
sages where one can be considered as a response
to the other. For example, in the Reddit data set,
the messages belonging to the same post are or-
ganized as a tree. A child node is a message that
replies to its parent. This may not necessarily be
true as people may be replying to other messages
that are also visually close. However, for our cur-
rent single-turn experiments, we treat these as a
single exchange.

3Download links are at https://redd.it/3bxlg7
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In this setting, the GNMT model trained on
prompt-to-response pairs works surprisingly well
without modification when generating short re-
sponses with beam search. Similar to previous
work on neural conversation models, we find that
the generated responses are almost always gram-
matical, and sometimes even interesting. They
are also usually on topic. In addition, we found
that even greedy sampling from the 8-layer GNMT
model produces grammatical responses most of
the time, although these responses are more likely
to be semantically-broken than responses gener-
ated using standard beam search. We would like to
leverage the benefits of greedy sampling, because
the induced variation generates more surprises and
may potentially help improve user-engagement,
and we found that our proposed segment-based
beam sampling procedure accomplishes this to
some extent.

5.1 Evaluation Metric

It is difficult to come up with an objective eval-
uation metric for conversation response genera-
tion that can be computed automatically. The con-
ditional distribution P (y|x) is supposed to have
high entropy in order to be interesting (many pos-
sible valid responses to a given prompt). Therefore
BLEU scores used in translation are not a good fit
(also see (Liu et al., 2016)). Other than looking
at the evaluation set perplexity, we use two met-
rics, the N-choose-1 accuracy and 5-scale side-
by-side human evaluation. In the N-choose-K
metric, we use the model as a retriever. Given a
prompt, we ask the model to rank N candidate
responses, where one is the ground truth and the
other N − 1 are random responses from the same
data set. We then calculate the N-choose-K ac-
curacy as the proportion of trials where the true
response is in the top K. The prompts used for
evaluation are selected randomly from the same
data set. This metric isn’t necessarily correlated
well with the true response quality, but provides a
useful first diagnostic for faster experimental itera-
tion. It takes about a day to train a small model on
a single GPU that reaches 2-choose-1 accuracies
of around 70% or 80%, but it is much harder to
make progress on the 50-choose-1 accuracy. As a
reference, human performance on the 10-choose-1
task is around 45% accuracy.

In the 5-scale human evaluation, we use a

collection of 200 context-free prompts4. These
prompts are collected from the following sources,
and filtered to prompts that are context-free (i.e.
do not depend on previous turns in the conversa-
tion), general enough, and by eliminating near du-
plicates:

1. The questions and statements that users asked
an internal testing bot.

2. The Fisher corpus (David et al., 2004).

3. User inputs to the Jabberwacky chatbot5.

These can be either generic or specific. Some
example prompts from this collection are shown
in Table 1. These prompts are open-domain (not
about any specific topic), and include a wide range
of topics. Many require some creativity for an-
swering, such as “Tell me a story about a bear.”
Our evaluation set is therefore not from the same
distribution as our training set. However, since our
goal is to produce good general conversation re-
sponses, we found it to be a good general purpose
evaluation set.

The evaluation itself is done by human raters.
They are well-trained for the purpose of ensuring
rating quality, and they are native English speak-
ers. The A 5-scale rating is produced for each
prompt-response pair: Excellent, Good, Accept-
able, Mediocre, and Bad. For example, the in-
structions for rating Excellent is “On topic, inter-
esting, shows understanding, moves the conver-
sation forward. It answers the question.” The
instruction for Acceptable is “On topic but with
flaws that make it seem like it didnt come from
a human. It implies an answer.” The instruction
for Bad is “A completely off-topic statement or
question, nonsensical, or grammatically broken. It
does not provide an answer.”

In our experiments, we perform the evaluations
side-by-side, each time using responses generated
from two methods. Every prompt-response pair is
rated by three raters. We rate 200 pairs in total for
every method, garnering 600 ratings overall. After
the evaluation, we report aggregated results from
each method individually.

5.2 Motivating Experiments
To see whether generating long responses is in-
deed a challenging problem, we trained the plain

4This list will be released to the community.
5http://www.jabberwacky.com/
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seq2seq with the GNMT model where the encoder
holds the source sequence and the decoder holds
the target sequence. We experimented with the
standard beam search and the beam search with
length normalization α = 0.8 similar to (Wu et al.,
2016). With this length normalization the gener-
ated responses are indeed longer. However, they
are more often semantically incoherent. It pro-
duces “I have no idea what you are talking about.”
more often, similarly observed in (Li et al., 2016).
The human evaluation results are summarized in
Figure 2(b). Methods that generate longer re-
sponses have more Bad and less Excellent / Good
ratings.

We also performed the N-choose-1 evaluation
on the baseline model using different normal-
ization schemes. The results are shown in Ta-
ble 2(a). No Normalization means that we use
P (y|x) for scoring, Normalize by Marginal uses
P (y|x)/P (y), as suggested in (Li et al., 2015),
and Normalize by Random Prompts is our scoring
objective described in Section 4. The significant
boost when using both normalization schemes in-
dicates that the conditional log probability pre-
dicted by the model may be biased towards the
language model probability of P (y). After adding
the normalization, the score may be closer to the
true conditional log probability.

Overall, this reranking evaluation indicates that
our heuristic is preferred to scoring using the
marginal. However, it is unfortunately hard to di-
rectly make use of this score during beam search
decoding (i.e., generation), since the resulting se-
quences are usually ungrammatical, as also ob-
served by (Li et al., 2015). This is the motivation
for using a segment-by-segment reranking proce-
dure, as described in Section 4.

5.3 Large-Scale Experiments

For our large-scale experiments, we train our
target-glimpse model on the full combined data
set. Figure 2(d) shows the training progress curve.
In this figure, we also include the curve forK = 1,
that is, the glimpse model with decoder-length
1. It is clear enough that this model progresses
much slower, so we terminated it early. How-
ever, it is surprising that the glimpse model with
K = 10 progresses faster than the baseline model
with only source-side attention, because the model
is trained on examples with decoder-length fixed
at 10, while the average response length is 38 in

our data set. This means it takes on average 3.8x
training steps for the glimpse model to train on the
same number of raw training-pairs as the baseline
model. Despite this, the faster progress indicates
that target-side attention indeed helps the model
generalize better.

The human evaluation results shown in Figure 2
compare our proposed method with the baseline
seq2seq model. For this, we trained a length-10
target-glimpse model and decoded with stochastic
beam-search using segment-by-segment rerank-
ing. In our experiments, we were unable to gen-
erate better long, coherent responses using the
whole-sequence level reranking method from (Li
et al., 2015) compared to using standard beam
search with length-normalization6. We therefore
choose the latter as our baseline, because it is the
only method which generates responses that are
long enough that we can compare to.

Figure 2 shows that our proposed method gen-
erates more long responses overall. One third
of all responses are longer than 100 characters,
while the baseline model produces only a neg-
ligible fraction. Although we do not employ
any length-promoting objectives in our method,
length-normalization is used for the baseline. For
responses generated by our method, the proportion
of Acceptable and Excellent responses remains
constant or even increases as the responses grow
longer. Conversely, human ratings decline sharply
with length for the baseline model.

The percentage of test cases with major agree-
ment is high for both methods. We consider a test
to have major agreement if two ratings out of the
three are the same. For the baseline method, 80%
of the responses have major agreements, and for
our method it is 70%.

However, shorter responses have a much
smaller search space, and we find that standard
beam search tends to generate better (“safer”)
short responses. To maximize cumulative re-
sponse quality, we therefore implemented a back-
off strategy that combines the strengths of the two
methods. We choose to fallback to the baseline
model without length normalization when the lat-
ter produces a response shorter than 40 characters,
otherwise we use the response from our method.
This corresponds to the white histogram in Fig-
ure 2(b). Compared to the other methods in the fig-

6This is because the method reranks the responses in the
N -best list resulting from the beam search, which tend to be
short with not much variation to begin with.

2216



ure, the combined strategy results in more ratings
of Excellent, Good, Acceptable, and Mediocre,
and fewer Bad ratings. With this strategy, among
the responses generated for the same 200 prompts,
133 were from the standard beam search and 67
were from our model. Out of the 67 long re-
sponses, two thirds were longer than 60 characters
and half were longer than 75 characters. To com-
pare the combined model’s performance with the
baseline, we generated responses from both mod-
els using the same 200 prompts. For 20 of the re-
sponse pairs, human raters had no preference, but
for the remaining 180, human raters preferred the
combined model’s response in 103 cases and the
baseline’s in only 77, indicating a significant win.

6 Conclusion

The research of building end-to-end systems that
can engage in general-purpose conversation is still
in its infancy. More significant progress is ex-
pected to be made with more advanced neural ar-
chitectures. However, our results reported in this
paper show that minimal modeling change and a
slightly more advanced decoding technique, com-
bined with training over very large data sets, can
still lead to noticeable improvements in the quality
of responses generated using neural conversation
models. Overall, we found using fixed-lengths in
the decoder to make it easier to train on large data
sets, as well as to allow us to improve the diversity
and coherence of the generated responses earlier
during generation, when it has most impact. While
the focus of this work has been on conversation
modeling, we expect some of these results to carry
over to other sequence-to-sequence settings, such
as machine translation or image-captioning.
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Figure 2: (a) N-choose-1 evaluation on the baseline model. (d) Training progress of different models on
the full combined data set. Length-1 and Length-10 are the target-glimpse models we propose, and Plain
Seq2seq is the baseline model we described. (b)(c)(e)(f): Human evaluation results on the conversation
data. (b) The histogram of 5 ratings per method. (c) The length thresholds (horizontal axis) and the
number of responses generated that are above the length threshold (vertical axis); (e) The proportion of
responses above the length-threshold that are judged at least Acceptable; (f) The proportion of responses
above the length-threshold that are judged as Excellent. The length thresholds are all measured in number
of characters.
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Abstract

We investigate an end-to-end method for
automatically inducing task-based dia-
logue systems from small amounts of
unannotated dialogue data. It combines an
incremental semantic grammar - Dynamic
Syntax and Type Theory with Records
(DS-TTR) - with Reinforcement Learn-
ing (RL), where language generation and
dialogue management are a joint deci-
sion problem. The systems thus pro-
duced are incremental: dialogues are pro-
cessed word-by-word, shown previously
to be essential in supporting natural, spon-
taneous dialogue. We hypothesised that
the rich linguistic knowledge within the
grammar should enable a combinatorially
large number of dialogue variations to be
processed, even when trained on very few
dialogues. Our experiments show that our
model can process 74% of the Facebook
AI bAbI dataset even when trained on only
0.13% of the data (5 dialogues). It can
in addition process 65% of bAbI+, a cor-
pus1 we created by systematically adding
incremental dialogue phenomena such as
restarts and self-corrections to bAbI. We
compare our model with a state-of-the-
art retrieval model, memn2n (Bordes et al.,
2017). We find that, in terms of semantic
accuracy, memn2n shows very poor robust-
ness to the bAbI+ transformations even
when trained on the full bAbI dataset.

1 Introduction

There are currently several key problems for the
practical data-driven (rather than hand-crafted)
development of task-oriented dialogue systems,

1Dataset available at https://bit.ly/babi_plus

among them: (1) large amounts of dialogue data
are needed, i.e. thousands of examples in a do-
main; (2) this data is usually required to be anno-
tated with task-specific semantic/pragmatic infor-
mation for the domain (e.g. various dialogue act
schemes); and (3) the resulting systems are gen-
erally turn-based, and so do not support natural
spontaneous dialogue which is processed incre-
mentally, word-by-word, with many characteristic
phenomena that arise from this incrementality.

In overcoming issue (2), a recent advance made
in research on (non-task) chat dialogues has been
the development of so-called “end-to-end" sys-
tems, in which all components are trained from
textual dialogue examples, e.g. (Sordoni et al.,
2015; Vinyals and Le, 2015). However, as Bordes
and Weston (2017) argued, these end-to-end meth-
ods may not transfer well to task-based settings
(where the user is trying to achieve a domain goal,
such as booking a flight or finding a restaurant, re-
sulting in an API call). Bordes and Weston (2017)
then presented an end-to-end method using Mem-
ory Networks (memn2ns), which achieves 100%
performance on a test-set of 1000 dialogues, af-
ter being trained on 1000 dialogues. This method
processes dialogues turn-by-turn, and so does not
have the advantages of more natural incremen-
tal systems (Aist et al., 2007; Skantze and Hjal-
marsson, 2010); nor does it really perform lan-
guage generation, rather it’s based on a retrieval
model that selects from a set of candidate system
responses seen in the data.

This paper investigates an approach to these
challenges - dubbed babble - using an incremental,
semantic parser and generator for dialogue (Es-
hghi et al., 2011; Eshghi, 2015), based around the
Dynamic Syntax grammar formalism (DS, Kemp-
son et al. (2001); Cann et al. (2005)).

Our advance in this paper, for end-to-end sys-
tems, is therefore twofold: (a) the babble method
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overcomes the requirement for large amounts of
dialogue data (i.e. 1000s of dialogues in a do-
main); (b) resulting systems are word-by-word in-
cremental, in both parsing, generation and dia-
logue management. We show that using only 5 ex-
ample dialogues from the bAbI, Task 1 dataset (i.e.
0.13% of the training data used by (Bordes et al.,
2017)) babble can automatically induce dialogue
systems which process 74% of the bAbI testset
in an incremental manner. We then introduce an
extended incremental version of the bAbI dataset,
which we call bAbI+ (see section 4.1), which
adds some characteristic incremental phenomena
- such as mid-utterance self-corrections - to the
bAbI dialogues (this new dataset is freely avail-
able). Using this, we demonstrate that the bab-
ble system can in addition generalise to, and pro-
cess 65% of the bAbI+ dataset, still when trained
only on 5 dialogues from bAbI. We compare this
method to (Bordes et al., 2017)’s memn2n, which,
in terms of semantic accuracy (reflected in how
well api-calls are predicted at the end of bAbI
Task 1), shows very poor robustness to the bAbI+
transformations, even when it is trained on the full
bAbI dataset.

This overall method is portable to other task-
based domains. Furthermore, as we use a seman-
tic parser, the semantic/contextual representations
of the dialogue can be used directly for large-scale
inference, required in more complex tasks (e.g. in-
teractive QA and search).

1.1 Dimensions of Pragmatic Synonymy

There are two important dimensions along which
dialogues can vary, but nevertheless, lead to iden-
tical contexts: interactional, and lexical. Inter-
actional synonymy is analogous to syntactic syn-
onymy - when two distinct sentences are parsed to
identical logical forms - except that it occurs not
only at the level of a single sentence, but at the di-
alogue or discourse level. Fig. 1 shows examples
of interactional variants that lead to very similar
final contexts, in this case, that the user wants to
buy an LG phone. These dialogues can be said to
be pragmatically synonymous for this domain. Ar-
guably, a good computational model of dialogue
processing, and interactional dynamics should be
able to capture this synonymy.

Lexical synonymy relations, on the other hand,
hold among utterances, or dialogues, when differ-
ent words (or sequences of words) express mean-

ings that are sufficiently similar in a particular do-
main. What is striking about lexical synonymy re-
lations is that unlike syntactic/interactional ones,
they can often break down when one moves to an-
other domain: lexical synonymy relations are do-
main specific.

Eshghi & Lemon (2014) developed a method
similar in spirit to Kwiatkowski et al. (2013) for
capturing lexical synonymy relations by creating
clusters of semantic representations based on ob-
servations that they give rise to similar or identi-
cal extra-linguistic actions observed within a do-
main (e.g. a data-base query, a flight booking, or
any API call). Distributional methods could also
be used for this purpose (see e.g. Lewis & Steed-
man (2013)). In general, this kind of clustering is
achieved when the domain-general semantics re-
sulting from semantic parsing is grounded in a par-
ticular domain.

We note that while interactional synonymy re-
lations in dialogue should be accounted for by se-
mantic grammars or formal models of dialogue
structure (such as DS-TTR (Eshghi et al., 2012),
or KoS (Ginzburg, 2012)), lexical synonymy rela-
tions have to be learned from data.

2 Why a grammar-based approach?

Recent end-to-end data-driven machine learn-
ing approaches treat dialogue as a sequence-to-
sequence generation problem, and train their mod-
els from large datasets e.g. (Sordoni et al., 2015;
Wen et al., 2016b,a; Vinyals and Le, 2015). The
systems resulting from these types of approach are
in principle able to handle variations/patterns that
they have encountered (sufficiently often) in the
training data, but not beyond.

This large-data constraint is problematic for de-
velopers but is also strange when we consider the
structural knowledge that we have about language
and dialogue that can be encoded in grammars and
computational models of interaction. Indeed, it
is often stated that for humans to learn how to
perform adequately in a domain, one example is
enough from which to learn (e.g. Li et. al (2006)).

Furthermore, as these systems do not parse to
logical forms, they do not allow for explicit infer-
ence, which further limits their application.

We therefore develop a method combining
learning from data with an incremental seman-
tic grammar of dialogue that is able to generalise
from small number of observations in a domain –
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USR: I would like an LG laptop

sorry uhm phone
SYS: okay.

USR: I would like a
phone by LG.

SYS: sorry a what?
USR: a phone by LG.
SYS: okay.

SYS: what would you like?
USR: an LG phone
SYS: okay.

SYS: what would you like?
USR: a phone
SYS: by which brand?
USR: LG
SYS: okay

SYS: you’d like a ...?
USR: a phone
SYS: by what brand?
USR: LG.
SYS: okay

SYS: so would you like a computer?
USR: no, a phone.
SYS: okay. by which brand?
USR: LG.
SYS: okay.

Figure 1: Some Interactional Variations in a Shopping Domain

in fact even from just a few examples of success-
ful dialogues – to a large range of interactional and
syntactic variations, including everyday natural in-
cremental phenomena.

3 Inducing Dialogue Systems

Our overall method involves incrementally pars-
ing dialogues, and encoding the resulting seman-
tics as state vectors in a Markov Decision Pro-
cess (MDP), which is then used for Reinforcement
Learning (RL) of word-level actions for system
output (i.e. a combined incremental DM and NLG
module for the resulting dialogue system).

3.1 Dynamic Syntax and Type Theory with
Records (DS-TTR)

Dynamic Syntax (DS) is an action-based, word-
by-word incremental and semantic grammar for-
malism (Kempson et al., 2001; Cann et al., 2005),
especially suited to the highly fragmentary and
context-dependent nature of dialogue. In DS,
words are conditional actions - semantic updates;
and dialogue is modelled as the interactive and in-
cremental construction of contextual and semantic
representations (Eshghi et al., 2015) - see Fig. 2.
The contextual representations afforded by DS
are of the fine-grained semantic content that is
jointly negotiated/agreed upon by the interlocu-
tors, as a result of processing questions and an-
swers, clarification interaction, acceptances, self-
/other-corrections, restarts, and other characteris-
tic incremental phenomena in dialogue - see 3 for a
sketch of how self-corrections and restarts are pro-
cessed via a backtrack and search mechanism over
the parse search graph (see Hough (2011); Hough
and Purver (2014); Eshghi et al. (2015) for details
of the model, and how this parse search graph is
effectively the context of the conversation). Gen-
eration/linearisation in DS is defined using trial-
and-error parsing (see Section 3.2, with the pro-
vision of a generation goal, viz. the semantics

of the utterance to be generated. Generation thus
proceeds, just as with parsing, on a word-by-word
basis (see Purver et al. (2014); Hough (2015) for
details). The upshot of this is that using DS, we
can not only track the semantic content of some
current turn as it is being constructed (parsed or
generated) word-by-word, but also the context of
the conversation as whole, with the latter also en-
coding the grounded/agreed content of the con-
versation (see e.g. Fig. 4, and see Eshghi et al.
(2015); Purver et al. (2010) for details). Crucially
for our model below, the inherent incrementality
of DS-TTR together with the word-level, as well
as cross-turn, parsing constraints it provides, en-
ables the word-by-word exploration of the space
of grammatical dialogues, and the semantic and
contextual representations that result from them.

Type Theory with Records (TTR) is an exten-
sion of standard type theory shown to be useful in
semantics and dialogue modelling (Cooper, 2005;
Ginzburg, 2012). To accommodate dialogue pro-
cessing, and allow for richer representations of the
dialogue context recent work has integrated DS
and the TTR framework to replace the logical for-
malism in which meanings are expressed (Purver
et al., 2010, 2011; Eshghi et al., 2012). In TTR,
logical forms are specified as record types (RTs),
sequences of fields of the form [ l : T ] contain-
ing a label l and a type T . RTs can be witnessed
(i.e. judged as true) by records of that type, where
a record is a sequence of label-value pairs [ l = v ],
and [ l = v ] is of type [ l : T ] just in case v is of
type T (see Fig. 2 for example record types).

Importantly for us here, the standard subtype re-
lation ⊑ can be defined for record types: R1 ⊑ R2
if for all fields [ l : T2 ] in R2, R1 contains [ l : T1 ]
where T1 ⊑ T2. A record type can thus be in-
definitely extended, and is therefore always under-
specified by definition. This allows for incremen-
tally growing meanings to be expressed in a natu-
ral way as more words are parsed or generated in
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[
event : es
p1=today(event) : t

]
7→



event=arrive : es
p1=today(event) : t
p2=pres(event) : t
x=robin : e
p3=sub j(event,x) : t


7→



event=arrive : es
p1=today(event) : t
p2=pres(event) : t
x=robin : e
p3=sub j(event,x) : t
x1 : e
p3= f rom(event,x1) : t



7→



event=arrive : es
p1=today(event) : t
p2=pres(event) : t
x=robin : e
p=sub j(event,x) : t
x1=S weden : e
p3= f rom(event,x1) : t



“A: Today” 7→ “..Robin arrives” 7→ “B: from?” 7→ “A: Sweden”

Figure 2: Incremental parsing using DS-TTR

Figure 3: DS-TTR: Incremental Parsing of self-corrections and restarts

turn. In addition, as will become clear below, this
subtype checking operation is the key mechanism
used in our system below for feature checking.

3.2 Overall Method: babble

In this section we describe our method for combin-
ing incremental dialogue parsing with Reinforce-
ment Learning for Dialogue Management (DM)
and Natural Language Generation (NLG) where
these are treated as a joint decision/optimisation
problem.

We start with two resources: a) a DS-TTR
parser DS (either learned from data (Eshghi et al.,
2013a), or constructed by hand), for incremental
language processing, but also, more generally, for
tracking the context of the dialogue using Eshghi
et al.’s model of feedback (Eshghi et al., 2015; Es-
hghi, 2015; Eshghi et al., 2011); b) a set D of tran-
scribed successful dialogues in the target domain.

We perform the following steps overall to in-
duce a fully incremental dialogue system from D:

1. Automatically induce the MDP state space,
S , and the dialogue goal, GD, from D;

2. Automatically define the state encoding func-
tion F : C → S ; where s ∈ S is a (binary)
state vector, designed to extract from the cur-
rent context of the dialogue, the semantic fea-
tures observed in the example dialogues D;
and c ∈ C is a DS context, viz. a pair of TTR
Record Types: ⟨cp, cg⟩, where cp is the con-
tent of the current, PENDING clause as it is
being constructed, but not necessarily fully
grounded yet; and cg is the content already

jointly built and GROUNDED by the inter-
locutors (loosely following the DGB model
of (Ginzburg, 2012)).

3. Define the MDP action set as the DS lexicon
L (i.e. actions are words);

4. Define the reward function R as reaching GD,
while minimising dialogue length.

We then solve the generated MDP using
Reinforcement Learning, with a standard Q-
learning method, implemented using BURLAP
(McGlashan, 2016): train a policy π : S → L,
where L is the DS Lexicon, and S the state space
induced using F. The system is trained in inter-
action with a (semantic) simulated user, also au-
tomatically built from the dialogue data and de-
scribed in the next section.

The state encoding function, F As shown in
figure 4 the MDP state is a binary vector of size
2 × |Φ|, i.e. twice the number of the RT fea-
tures. The first half of the state vector contains the
grounded features (i.e. agreed by the participants)
ϕi, while the second half contains the current se-
mantics being incrementally built in the current di-
alogue utterance. Formally:
s = ⟨F1(cp), . . . , Fm(cp), F1(cg), . . . , Fm(cg)⟩;
where Fi(c) = 1 if c ⊑ ϕi, and 0 otherwise. (Recall
that ⊑ is the RT subtype relation).

3.2.1 Semantic User Simulation
The simulator is in charge of two key tasks dur-
ing training: (1) generating user turns in the right
dialogue contexts; and (2) word-by-word monitor-
ing of the utterance so far generated by the sys-
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Grounded Semantics Current Turn Semantics Dialogue so far



x2 : e
e2=like : es
x1=US R : e
p2=pres(e2) : t
p5=sub j(e2,x1) : t
p4=ob j(e2,x2) : t
p11=phone(x2) : t





x2 : e
e2=like : es
x1=US R : e
p2=pres(e2) : t
p5=sub j(e2,x1) : t
p4=ob j(e2,x2) : t
p11=phone(x2) : t
x3 : e
p10=by(x2,x3) : t
p9=brand(x3) : t
p10=question(x3) : t



SYS: What would you like?
USR: a phone
SYS: by which brand?

RT Feature:
[

x10 : e
p15=brand(x10) : t

][
e3=like : es
p2=pres(e3) : t

]
x10 : e
x8 : e
p14=by(x8,x10) : t




e3=like : es
x5=usr : e
p7=sub j(e3,x5) : t




x8 : e
e3=like : es
p6=ob j(e3,x8) : t



F1 ↓ F2 ↓ F3 ↓ F4 ↓ F5 ↓
State:

⟨ Current Turn: 1, 1, 1, 1, 1, ⟩
Grounded: 0, 1, 0, 1, 1

Figure 4: Semantics to MDP state encoding with RT features

tem during exploration (i.e. babbling grammati-
cal word sequences) by the system. To exploit
(and evaluate) the full generalisation properties of
the DS dialogue model, both (1) and (2) use the
full machinery of the DS parser, as well the state
encoding function F, described above. They are
thus performed based on the semantic context of
the dialogue so far, as tracked by DS (rather than,
e.g. being based on string or template matching).
Since this includes not just the semantic features
of the current turn, but also of the history of the
conversation, our simulator respects the turn or-
derings encountered in the data, i.e. it is sensitive
to the order in which information is gathered from
the user.

The rules required for (1) & (2) are extracted
automatically from the raw dialogue data, D, us-
ing DS and F. The dialogues in D are parsed and
encoded using F incrementally. For (1), all the
states that trigger the user into action, si = F(c)
– where c is a DS context – immediately prior to
any user turn are recorded, and mapped to what the
user ends up saying in those contexts - for more
than one training dialogue there may be more than
one candidate (in the same context/state). The
rules thus extracted will be of the form:
strig → {u1, . . . , un}, where ui are user turns.

Now note that the si’s prior to the user turns also
immediately follow system turns. And thus to per-
form (2), i.e. to monitor the system’s behaviour
during training, we only need to check further that
the current state resulting from processing a word
generated by the system, subsumes - is extendible
to - one of the si. We perform this through a sim-

ple bitmask operation (recall that the states are bi-
nary). The simulation can thus semantically iden-
tify erroneous/out-of-domain actions (words) by
the system. It would then terminate the learning
episode and penalise the system immediately, aid-
ing speed of training significantly.

4 Evaluation

We have so far induced two prototype dialogue
systems, one in an ‘electronics shopping’ domain
(see Kalatzis et al. (2016) and Fig. 1) and another
in a ‘restaurant-search’ domain, showing that fully
incremental dialogue systems can be automati-
cally induced from small amounts of unannotated
dialogue transcripts (Kalatzis et al., 2016; Eshghi
et al., 2017) - in this case both systems were boot-
strapped from a single successful example dia-
logue. We are in the process of evaluating these
systems with real users.

In this paper, however, our focus is not on build-
ing dialogue systems per se, but on: (1) study-
ing and quantifying the interactional and struc-
tural generalisation power of the DS-TTR gram-
mar formalism (see Section 2), and that of sym-
bolic, grammar-based approaches to language pro-
cessing more generally. We focus here on spe-
cific dialogue phenomena, such as mid-sentence
self-corrections, hesitations, and restarts (see be-
low); (2) doing the same for Bordes and We-
ston’s (2017) state-of-the-art, bottom up response
retrieval model, without use of linguistic knowl-
edge of any form; and (3) comparing (1) and (2).

In order to test and quantify the interactional
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and structural generalisation power/robustness of
the two models, babble and memn2n, we need
contrasting dialogue data-sets that control for in-
teractional vs. lexical variations in the input dia-
logues. Furthermore, to make our results compa-
rable to the existing approach of Bordes and We-
ston (2017), we need to use the same dataset that
they have used. We therefore use Facebook AI
Research’s bAbI dialogue tasks dataset (Bordes
et al., 2017). These are goal-oriented dialogues
in the domain of restaurant search. Here we tackle
Task 1, where in each dialogue the system asks the
user about their preferences for the properties of a
restaurant, and each dialogue results in an API call
which contains values of each slot obtained. Other
than the explicit API call notation, there are no an-
notations in the data whatsoever.

4.1 The bAbI+ dataset

While containing some lexical variation, the origi-
nal bAbI dialogues significantly lack interactional
variation vital for natural real-life dialogue. In
order to obtain such variation while holding lex-
ical variation constant, we created the bAbI+
dataset by systematically transforming the bAbI
dialogues.

bAbI+ is an extension of the original bAbI Task
1 dialogues with everyday incremental dialogue
phenomena (hesitations, restarts, and corrections
– see below). While the original bAbI tasks 2—7
increase the user’s goal complexity, modifications
introduced in bAbI+ can be thought of as orthog-
onal to this: we instead increase the complexity of
surface forms of dialogue utterances, while keep-
ing every other aspect of the task fixed.

The variations introduced in bAbI+ are: 1.
Hesitations, e.g. as in “we will be uhm eight”;
2. Restarts, e.g. “can you make a restau-
rant uhm yeah can you make a restaurant
reservation for four people with french cuisine in a
moderate price range”; and 3. Corrections affect-
ing task-specific information - both short-distance
ones correcting one token, e.g. “with french oh no
spanish food”, and long-distance NP/PP-level
corrections, e.g. “with french food uhm sorry
with spanish food”.

The phenomena above are mixed in probabilis-
tically from the fixed sets of templates to the origi-
nal data2. The modifications affect a total of 11336

2See https://github.com/ishalyminov/babi_
tools

utterances in the 3998 dialogues. Around 21%
of user turns contain corrections, 40% hesitations,
and 5% restarts (they are not mutually exclusive,
so that an utterance can contain up to 3 modifi-
cations). Our modifications, with respect to cor-
rections in particular, are more conservative than
those observed in real-world data: Hough (2015)
reports that self-corrections appear in 20% of all
turns of natural conversations from the British Na-
tional Corpus, and in 40% of turns in the Map
Task, a corpus of human-human goal-oriented di-
alogues. Here’s part of an example dialogue in the
bAbI+ corpus:

sys: hello what can I help you with today?
usr: I’d like to book a uhm yeah I’d like to book a

table in a expensive price range
sys: I’m on it. Any preference on a type of cuisine?
usr: with indian food no sorry with spanish food

please

4.2 Memory Network setup
In all the experiments we describe below, we fol-
low Bordes and Weston’s setup by using a memn2n
(we took an open source Tensorflow implementa-
tion for bAbI QA tasks and modified it3 accord-
ing to their setup – see details below). In or-
der to adapt the data for the memn2n, we trans-
form the dialogues into <story, question, answer>
triplets. The number of triplets for a single dia-
logue is equal to the number of the system’s turns,
and in each triplet, the answer is the current sys-
tem’s turn, the question is the user’s turn preced-
ing it, and the story is a list of all the previous turns
among both sides.

The memn2n hyperparameters are set as follows:
1 hop, and 128 as the size of embeddings; we train
it for 100 epochs with a learning rate of 0.01 and
a batch size of 8 – in this we follow the best bAbI
Task 1 setup reported by (Bordes et al., 2017).

4.3 Testing the DS-TTR parser
Dynamic Syntax (DS) lexicons are learnable from
data (Eshghi et al., 2013a,b). But since the lexicon
was induced from a corpus of child-directed utter-
ances in this prior work, there were some construc-
tions as well as individual words that it did not
include4. One of the authors therefore extended
this induced grammar manually to cover the bAbI
dataset, which, despite not being very diverse,

3See https://github.com/ishalyminov/memn2n
4We are currently looking into applying Eshghi et al.’s

(2013a) model to induce DS grammars from larger seman-
tic corpora such as the Groningen Meaning Bank, leading to
much more wide-coverage lexicons
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contains a wide range of complex grammatical
constructions, such as long sequences of preposi-
tional phrases, adjuncts, short answers to yes/no
and wh-questions, appositions of NPs, causative
verbs etc.

We parsed all dialogues in the bAbI train and
test sets, as well as on the bAbI+ corpus word-by-
word, including both user and system utterances,
in context. The grammar parses 100% of the dia-
logues, i.e. it does not fail on any word in any of
the dialogues. We assess the semantic accuracy of
the parser on bAbI & bAbI+ using the dialogue-
final api-calls in section 4.5 below.

4.4 Experiment 1: Generalisation from small
data

We have now set out all we need to perform the
first experiment. Our aim here is to assess the
generalisation power that results from the gram-
mar and our state encoding method (section 3.1)
- we dub our overall model babble - and compare
this to the state of the art results of Bordes et al.
(2017). The method in Bordes et al. (2017) is not
generative, rather it is based on retrieval of sys-
tem responses, based on the history of the dialogue
up to that point. Therefore, for direct comparison,
and for simplicity of exposition, we do the same
here: we apply the method described for creating
a user simulation (section 3.2.1), this time for the
system side, resulting in a ‘system simulation’. We
then use this to predict a system response, by pars-
ing and encoding the containing test dialogue up
to the point immediately prior to the system turn.
This results in a triggering state, strig, which is
then used as the key to look up the system’s re-
sponse from the rules constructed as per section
3.2.1. The returned response is then parsed word-
by-word as normal, and this same process con-
tinues for the rest of the dialogue. This method
uses the full machinery of DS-TTR & our state-
encoding method - the babble model - and will
thus reflect the generalisation properties that we
are interested in.

Cross-Validation Since we are here interested
in data efficiency and generalisation we use all the
bAbI and bAbI+ data - the train, dev, and test sets
- as follows: we train Bordes & Weston’s memn2n
and babble from 1-5 examples selected at random
from the longest dialogues in bAbI – note bAbI+
data is never used for training in these experi-
ments. This process is repeated across 10 folds.

The models are then tested on sets of 1000 ex-
amples selected at random, in each fold. Both
the training and test sets constructed in this way
are kept constant in each fold across the babble &
memn2n models. The test sets are selected either
exclusively from bAbI or exclusively from bAbI+.

4.4.1 Results: Predicting system turns

Table 1 shows per utterance accuracies for the bab-
ble & memn2n models. Per utterance accuracy is
the percentage of all system turns in the test di-
alogues that were correctly predicted. The table
shows that babble can generalise to a remarkable
74% of bAbI and 65% of bAbI+ with only 5 input
dialogues from bAbI. It also shows that memn2ns
can also generalise remarkably well. Although as
discussed below, this result is misleading on its
own as the memn2ns are very poor at generating
the final api-calls correctly on both the bAbI &
bAbI+ data, and are thus making too many seman-
tic mistakes.

4.5 Experiment 2: Semantic Accuracy

The results from Experiment 1 on their own can
be misleading, as correct prediction of system re-
sponses does not in general tell us enough about
how well the models are interpreting the dia-
logues, or whether they are doing this with a suf-
ficient level of granularity. To assess this, in this
second experiment, we measure the semantic ac-
curacy of each model by looking exclusively at
how accurately they predict the final api-calls
in the bAbI & bAbI+ datasets. For the memn2n
model, we follow the same overall procedure as in
the previous experiment: train on bAbI data, and
test on bAbI+.

4.5.1 Results: Prediction of api-calls

BABBLE Mere successful parsing of all the di-
alogues in the bAbI and bAbI+ datasets as shown
above doesn’t mean that the semantic representa-
tions compiled for the dialogues were in fact cor-
rect. To measure the semantic accuracy of the DS-
TTR parser we programmatically checked that the
correct slot values – those in the api-call anno-
tations – were in fact present in the semantic rep-
resentations produced by the parser for each dia-
logue (see Fig. 2 for example semantic representa-
tions). We further checked that there is no other in-
correct slot value present in these representations.
The results showed that the parser has 100% se-
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# of training dialogues: 1 2 3 4 5
babble on bAbI 67.12 73.36 72.63 73.32 74.08
memn2n on bAbI 2.77 59.15 70.94 71.68 72.6
babble on bAbI+ 59.42 65.27 63.45 64.34 65.2
memn2n on bAbI+ 0.22 56.75 68.65 71.84 73.2

Table 1: Mean per utterance accuracies (%) for memn2n & babble models across the bAbI & bAbI+
datasets (10 folds)

mantic accuracy on both bAbI and bAbI+5. This
result is not surprising, given that DS-TTR is a
general model of incremental language process-
ing, including phenomena such as self-corrections
and restarts (see Hough (2015) for details of the
model).

MEMN2N Given just 1 to 5 training instances
from bAbI as in the previous experiment, the mean
api-call prediction accuracy of the memn2n
model is nearly 0 on both bAbI and bAbI+.
This is not at all unexpected, since prediction of
the api-calls is a generative process, unlike the
prediction of system turns which can be done on a
retrieval/look-up basis alone. For this, the model
needs to observe the different word sequences that
might determine each parameter (slot) value, and
observe them with sufficient frequency and vari-
ation. This is unlike a semantic parser like DS-
TTR, that produces semantic representations for
the dialogues as a result of the structural, linguis-
tic knowledge that it embodies.

Nevertheless, we were also interested in the
general semantic robustness of the memn2nmodel,
to the transformations in bAbI+, i.e. how well
does the memn2nmodel interpret bAbI+ dialogues,
when trained on the full bAbI dataset? Does it
then learn to generalise to (process) the bAbI+ di-
alogues with sufficient semantic accuracy?

Table 2 shows that we can fully replicate the re-
sults reported in Bordes et al. (2017): the memn2n
model can predict the api-calls with 100% ac-
curacy, when trained on the bAbI train-set and
tested on the bAbI test-set. But when this same
model is tested on bAbI+, the accuracy drops to a

5A helpful reviewer points out that the DS-TTR setup is
a carefully tuned rule-based system, thus perhaps rendering
these results trivial. But we note that the results here are not
due to ad-hoc constructions of rules/lexicons, but due to the
generality of the grammar model, and its attendant incremen-
tal, left-to-right properties; and that the same parser can be
used in other domains. Furthermore, the ability to process
self-corrections, restarts, etc. “comes for free”, without the
need to add or posit new machinery

testing configuration accuracy
memn2n on bAbI 100
memn2n on bAbI+ 28

Table 2: api-call prediction accuracies (%) for
the memn2n model trained on the bAbI trainset

very poor 28%, making any dialogue system built
using this model unusable in the face of natural,
spontaneous dialogue data. This is further dis-
cussed below.

5 Discussion
5.1 babble

The method described above has the following
advantages over previous approaches to dialogue
system development:

– incremental (and thus more natural) language
understanding, dialogue management, and gener-
ation;

– “end-to-end" method for task-based systems:
no Dialogue Act annotations are required (i.e. re-
duced development time and effort);

– a complete dialogue system for a new task can
be automatically induced, using only ‘raw’ data –
i.e. successful dialogue transcripts;

– the MDP state and action spaces are automat-
ically induced, rather than having to be designed
by hand (as in prior work);

– wide-coverage, task-based dialogue systems
can be built from much smaller amounts of data as
shown in section 4 .

This final point bears further examination. As
an empirically adequate model of incremental lan-
guage processing in dialogue, the DS-TTR gram-
mar is required to capture interactional variants
such as question-answer pairs, over- and under-
answering, self- and other-corrections, clarifica-
tion, split-utterances, and ellipsis more generally.
As we showed in section 4, even if most of these
structures are not present in the training exam-
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ple(s), the resulting trained system is able to han-
dle them, thus resulting in a very significant gen-
eralisation around the original data.

We also note that since we were in this instance
interested in a direct comparison with memn2ns
over the bAbI & bAbI+ datasets, we didn’t ex-
ploit the power of Reinforcement Learning and
exploration as we described above - as we have
done before with other systems (Kalatzis et al.,
2016). Therefore the generalisation results we
report above for babble follow entirely from the
knowledge present within the grammar as a com-
putational model of dialogue processing and con-
textual update, rather than this having been learned
from data. Applying the full RL method described
above would have meant that the system would
actually discover many interactional and syntac-
tic variations that are not present in bAbI, nor in
bAbI+.

5.2 memn2n

Even when trained on very few training instances,
the memn2n model was able to predict system re-
sponses remarkably well. But results from Exper-
iment 2 above showed that this was misleading:
the memn2ns were making a drastic number of se-
mantic mistakes when interpreting the dialogues,
both in the bAbI and bAbI+ datasets. Even when
trained on the full bAbI data-set, the model per-
formed badly on bAbI+ in terms of semantic ac-
curacy. We diagnose these results as follows:
Problem complexity: The first thing to notice is
that in bAbI dialogue Task 1, the responses are
highly predictable and stay constant regardless
of the actual task details (slot values) up to the
point of the final api-calls; and further, that the
prediction of api-calls is a generative process,
unlike the prediction of the system turns, which
is retrieval-based. This, in our view, explains
the very large difference in memn2n performance
across the two prediction tasks.

Model robustness to the bAbI+ transforma-
tions:. The variations introduced in bAbI+ are
repetitions of both content and non-content words,
as well additional incorrect slot values. The model
was working in the same setup as babble, there-
fore none of those variations could be treated as
unknown tokens for either system. Although in
the case of memn2n, some of the mixed-in words
never appeared in the training data, and bAbI+ ut-
terances were augmented significantly with those

words – so it was interesting to see how such un-
trained embeddings would affect the latent mem-
ory representations inside memn2n. The resulting
performance suggests that there was no signifi-
cant impact on memn2n from these variations as
far as the predicting system responses was con-
cerned. But the incorrect slot values introduced
in self-corrections affect the system’s task com-
pletion performance significantly, only appearing
at the point of api-call predictions.

We note also that none of our experiments in
this paper involved training memn2n on bAbI+
data. There is a very interesting question here: is
the memn2nmodel in principle able to learn to pro-
cess the bAbI+ structures if it is in fact trained on
it? And how much bAbI+ data would it require to
do so? These issues are address in detail in Sha-
lyminov et al. (2017).

6 Conclusions

Our main advances are in a) training end-to-end
dialogue systems from small amounts of data,
b) incremental processing for wider coverage of
more natural everyday dialogues (e.g. containing
self-repairs).

We compared our grammar-based approach
to dialogue processing (DS-TTR) with a state-
of-the-art, end-to-end response retrieval model
(memn2ns) (Bordes et al., 2017), when training on
small amounts of dialogue data.

Our experiments show that our model can pro-
cess 74% of the Facebook AI bAbI dataset even
when trained on only 0.13% of the data (5 dia-
logues). It can in addition process 65% of bAbI+,
a corpus we created by systematically adding in-
cremental dialogue phenomena such as restarts
and self-corrections to bAbI. We find on the other
hand that the memn2n model is not robust to the
structures we introduced in bAbI+, even when
trained on the full bAbI dataset.
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Matthew Purver, Julian Hough, and Eleni Gre-
goromichelaki. 2014. Dialogue and compound
contributions. In S. Bangalore and A. Stent, edi-
tors, Natural Language Generation in Interactive
Systems, Cambridge University Press, pages 63–92.
http://www.cambridge.org/us/academic/subjects/engineering/communications-
and-signal-processing/natural-language-generation-
interactive-systems.

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.
2017. Challenging Neural Dialogue Models with
Natural Data: Memory Networks Fail on Incremen-
tal Phenomena. In Proceedings of the 21st Work-
shop on the Semantics and Pragmatics of Dialogue
(SemDial 2017 - SaarDial).

Gabriel Skantze and Anna Hjalmarsson. 2010. To-
wards incremental speech generation in dialogue
systems. In Proceedings of the SIGDIAL 2010 Con-
ference. Association for Computational Linguistics,
Tokyo, Japan, pages 1–8.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive
generation of conversational responses. arXiv
(1506.06714).

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv (1506.05869v3).

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina
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Abstract

Building a dialogue agent to fulfill com-
plex tasks, such as travel planning, is chal-
lenging because the agent has to learn
to collectively complete multiple subtasks.
For example, the agent needs to reserve a
hotel and book a flight so that there leaves
enough time for commute between arrival
and hotel check-in. This paper addresses
this challenge by formulating the task in
the mathematical framework of options
over Markov Decision Processes (MDPs),
and proposing a hierarchical deep rein-
forcement learning approach to learning a
dialogue manager that operates at differ-
ent temporal scales. The dialogue man-
ager consists of: (1) a top-level dialogue
policy that selects among subtasks or op-
tions, (2) a low-level dialogue policy that
selects primitive actions to complete the
subtask given by the top-level policy, and
(3) a global state tracker that helps ensure
all cross-subtask constraints be satisfied.
Experiments on a travel planning task with
simulated and real users show that our ap-
proach leads to significant improvements
over three baselines, two based on hand-
crafted rules and the other based on flat
deep reinforcement learning.

1 Introduction

There is a growing demand for intelligent personal
assistants, mainly in the form of dialogue agents,
that can help users accomplish tasks ranging from
meeting scheduling to vacation planning. How-
ever, most of the popular agents in today’s market,
such as Amazon Echo, Apple Siri, Google Home
and Microsoft Cortana, can only handle very sim-
ple tasks, such as reporting weather and requesting

songs. Building a dialogue agent to fulfill complex
tasks remains one of the most fundamental chal-
lenges for the NLP community and AI in general.

In this paper, we consider an important type of
complex tasks, termed composite task, which con-
sists of a set of subtasks that need to be fulfilled
collectively. For example, in order to make a travel
plan, we need to book air tickets, reserve a hotel,
rent a car, etc. in a collective way so as to satisfy a
set of cross-subtask constraints, which we call slot
constraints. Examples of slot constraints for travel
planning are: hotel check-in time should be later
than the flight’s arrival time, hotel check-out time
may be earlier than the return flight depart time,
the number of flight tickets equals to that of hotel
check-in people, and so on.

It is common to learn a task-completion dia-
logue agent using reinforcement learning (RL);
see Su et al. (2016); Cuayáhuitl (2017); Williams
et al. (2017); Dhingra et al. (2017) and Li et al.
(2017a) for a few recent examples. Compared
to these dialogue agents developed for individ-
ual domains, the composite task presents addi-
tional challenges to commonly used, flat RL ap-
proaches such as DQN (Mnih et al., 2015). The
first challenge is reward sparsity. Dialogue pol-
icy learning for composite tasks requires explo-
ration in a much larger state-action space, and it
often takes many more conversation turns between
user and agent to fulfill a task, leading to a much
longer trajectory. Thus, the reward signals (usu-
ally provided by users at the end of a conversa-
tion) are delayed and sparse. As we will show in
this paper, typical flat RL methods such as DQN
with naive ✏-greedy exploration is rather ineffi-
cient. The second challenge is to satisfy slot con-
straints across subtasks. This requirement makes
most of the existing methods of learning multi-
domain dialogue agents (Cuayáhuitl, 2009; Gasic
et al., 2015b) inapplicable: these methods train a
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collection of policies, one for each domain, and
there is no cross-domain constraints required to
successfully complete a dialogue. The third chal-
lenge is improved user experience: we find in our
experiments that a flat RL agent tends to switch
between different subtasks frequently when con-
versing with users. Such incoherent conversations
lead to poor user experience, and are one of the
main reasons that cause a dialogue session to fail.

In this paper, we address the above mentioned
challenges by formulating the task using the math-
ematical framework of options over MDPs (Sutton
et al., 1999), and proposing a method that com-
bines deep reinforcement learning and hierarchi-
cal task decomposition to train a composite task-
completion dialogue agent. At the heart of the
agent is a dialogue manager, which consists of (1)
a top-level dialogue policy that selects subtasks
(options), (2) a low-level dialogue policy that se-
lects primitive actions to complete a given subtask,
and (3) a global state tracker that helps ensure all
cross-subtask constraints be satisfied.

Conceptually, our approach exploits the struc-
tural information of composite tasks for efficient
exploration. Specifically, in order to mitigate the
reward sparsity issue, we equip our agent with an
evaluation module (internal critic) that gives in-
trinsic reward signals, indicating how likely a par-
ticular subtask is completed based on its current
state generated by the global state tracker. Such
intrinsic rewards can be viewed as heuristics that
encourage the agent to focus on solving a sub-
task before moving on to another subtask. Our ex-
periments show that such intrinsic rewards can be
used inside a hierarchical RL agent to make ex-
ploration more efficient, yielding a significantly
reduced state-action space for decision making.
Furthermore, it leads to a better user experience,
as the resulting conversations switch between sub-
tasks less frequently.

To the best of our knowledge, this is the first
work that strives to develop a composite task-
completion dialogue agent. Our main contribu-
tions are three-fold:

• We formulate the problem in the mathemati-
cal framework of options over MDPs.

• We propose a hierarchical deep reinforce-
ment learning approach to efficiently learning
the dialogue manager that operates at differ-
ent temporal scales.

• We validate the effectiveness of the proposed
approach in a travel planning task on simu-
lated as well as real users.

2 Related Work

Task-completion dialogue systems have attracted
numerous research efforts. Reinforcement learn-
ing algorithms hold the promise for dialogue pol-
icy optimization over time with experience (Schef-
fler and Young, 2000; Levin et al., 2000; Young
et al., 2013; Williams et al., 2017). Recent ad-
vances in deep learning have inspired many deep
reinforcement learning based dialogue systems
that eliminate the need for feature engineering (Su
et al., 2016; Cuayáhuitl, 2017; Williams et al.,
2017; Dhingra et al., 2017; Li et al., 2017a).

All the work above focuses on single-domain
problems. Extensions to composite-domain dia-
logue problems are non-trivial due to several rea-
sons: the state and action spaces are much larger,
the trajectories are much longer, and in turn re-
ward signals are much more sparse. All these
challenges can be addressed by hierarchical re-
inforcement learning (Sutton et al., 1999, 1998;
Singh, 1992; Dietterich, 2000; Barto and Mahade-
van, 2003), which decomposes a complicated task
into simpler subtasks, possibly in a recursive way.
Different frameworks have been proposed, such as
Hierarchies of Machines (Parr and Russell, 1997)
and MAXQ decomposition (Dietterich, 2000). In
this paper, we choose the options framework for its
conceptual simplicity and generality (Sutton et al.,
1998); more details are found in the next sec-
tion. Our work is also motivated by hierarchical-
DQN (Kulkarni et al., 2016) which integrates hi-
erarchical value functions to operate at different
temporal scales. The model achieved superior per-
formance on a complicated ATARI game “Mon-
tezuma’s Revenge” with a hierarchical structure.

A related but different extension to single-
domain dialogues is multi-domain dialogues,
where each domain is handled by a sepa-
rate agent (Lison, 2011; Gasic et al., 2015a,b;
Cuayáhuitl et al., 2016). In contrast to composite-
domain dialogues studied in this paper, a conver-
sation in a multi-domain dialogue normally in-
volves one domain, so completion of a task does
not require solving sub-tasks in different domains.
Consequently, work on multi-domain dialogues
focuses on different technical challenges such as
transfer learning across different domains (Gasic
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et al., 2015a) and domain selection (Cuayáhuitl
et al., 2016).

3 Dialogue Policy Learning

Our composite task-completion dialogue agent
consists of four components: (1) an LSTM-
based language understanding module (Hakkani-
Tür et al., 2016; Yao et al., 2014) for identifying
user intents and extracting associated slots; (2) a
state tracker for tracking the dialogue state; (3)
a dialogue policy which selects the next action
based on the current state; and (4) a model-based
natural language generator (Wen et al., 2015) for
converting agent actions to natural language re-
sponses. Typically, a dialogue manager contains
a state tracker and a dialogue policy. In our imple-
mentation, we use a global state tracker to main-
tain the dialogue state by accumulating informa-
tion across all subtasks, thus helping ensure all
inter-subtask constraints be satisfied. In the rest of
this section, we will describe the dialogue policy
in details.

User

Top-level dialogue 
policy learning

Low-level dialogue
policy learning

Internal Critic

Dialogue
action

Dialogue
action

Intrinsic
reward

Subgoal

Dialogue
states

Extrinsic
reward

Agent

Figure 1: Overview of a composite task-
completion dialogue agent.

3.1 Options over MDPs
Consider the following process of completing a
composite task (e.g., travel planning). An agent
first selects a subtask (e.g., book-flight-ticket),
then takes a sequence of actions to gather related
information (e.g., departure time, number of tick-
ets, destination, etc.) until all users’ requirements
are met and the subtask is completed, and finally
chooses the next subtask (e.g., reserve-hotel) to
complete. The composite task is fulfilled after all

its subtasks are completed collectively. The above
process has a natural hierarchy: a top-level process
selects which subtasks to complete, and a low-
level process chooses primitive actions to com-
plete the selected subtask. Such hierarchical de-
cision making processes can be formulated in the
options framework (Sutton et al., 1999), where op-
tions generalize primitive actions to higher-level
actions. Different from the traditional MDP set-
ting where an agent can only choose a primitive
action at each time step, with options the agent
can choose a “multi-step” action which for exam-
ple could be a sequence of primitive actions for
completing a subtask. As pointed out by Sutton
et al. (1999), options are closely related to actions
in a family of decision problems known as semi-
Markov decision processes.

Following Sutton et al. (1999), an option con-
sists of three components: a set of states where
the option can be initiated, an intra-option policy
that selects primitive actions while the option is in
control, and a termination condition that specifies
when the option is completed. For a composite
task such as travel planning, subtasks like book-
flight-ticket and reserve-hotel can be modeled as
options. Consider, for example, the option book-
flight-ticket: its initiation state set contains states
in which the tickets have not been issued or the
destination of the trip is long away enough that a
flight is needed; it has an intra-option policy for re-
questing or confirming information regarding de-
parture date and the number of seats, etc.; it also
has a termination condition for confirming that all
information is gathered and correct so that it is
ready to issue the tickets.
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𝑎1, 𝑔1 𝑎2, 𝑔1 𝑎3, 𝑔1

𝑔2

𝑎4, 𝑔2 𝑎5, 𝑔2 𝑎6, 𝑔2

𝑔n

Top-level Dialogue Policy 𝝅𝑔(𝑔𝑡; 𝑠𝑡)

Low-level Dialogue Policy 𝝅𝑎,𝑔(𝑎𝑡; 𝑠𝑡, 𝑔𝑡)

𝝅𝑔(𝑔𝑡; 𝑠𝑡) 𝝅𝑎,g(𝑎𝑡; 𝑠𝑡, 𝑔𝑡)𝑠𝑡
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𝑔2
𝑔𝑛

𝑎1
𝑎2
𝑎𝑚

… …

𝑠𝑡
𝑔𝑡

Figure 2: Illustration of a two-level hierarchical
dialogue policy learner.

3.2 Hierarchical Policy Learning
The intra-option is a conventional policy over
primitive actions, we can consider an inter-option
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policy over sequences of options in much the same
way as we consider the intra-option policy over
sequences of actions. We propose a method that
combines deep reinforcement learning and hierar-
chical value functions to learn a composite task-
completion dialogue agent as shown in Figure 1. It
is a two-level hierarchical reinforcement learning
agent that consists of a top-level dialogue policy
⇡g and a low-level dialogue policy ⇡a,g, as shown
in Figure 2. The top-level policy ⇡g perceives
state s from the environment and selects a subtask
g 2 G, where G is the set of all possible subtasks.
The low-level policy ⇡a,g is shared by all options.
It takes as input a state s and a subtask g, and out-
puts a primitive action a 2 A, where A is the set
of primitive actions of all subtasks. The subtask g
remains a constant input to ⇡a,g, until a terminal
state is reached to terminate g. The internal critic
in the dialogue manager provides intrinsic reward
ri
t(gt), indicating whether the subtask gt at hand

has been solved; this signal is used to optimize
⇡a,g. Note that the state s contains global infor-
mation, in that it keeps track of information for all
subtasks.

Naturally, we aim to optimize the low-level pol-
icy ⇡a,g so that it maximizes the following cumu-
lative intrinsic reward at every step t:

max
⇡a,g

E
hX

k�0

�kri
t+k

���st = s, gt = g, at+k = ⇡a,g(st+k)
i
,

where ri
t+k denotes the reward provided by the in-

ternal critic at step t + k. Similarly, we want the
top-level policy ⇡g to optimize the cumulative ex-
trinsic reward at every step t:

max
⇡g

E
hX

k�0

�kre
t+k

���st = s, at+k = ⇡g(st+k)
i
,

where re
t+k is the reward received from the envi-

ronment at step t + k when a new subtask starts.
Both the top-level and low-level policies can

be learned with deep Q-learning methods, like
DQN. Specifically, the top-level dialogue policy
estimates the optimal Q-function that satisfies the
following:

Q⇤1(s, g) = E
hN�1X

k=0

�kre
t+k+

�N · maxg0 Q
⇤
1(st+N , g0)|st = s, gt = g

i
, (1)

where N is the number of steps that the low-level
dialogue policy (intra-option policy) needs to ac-
complish the subtask. g0 is the agent’s next subtask

in state st+N . Similarly, the low-level dialogue
policy estimates the Q-function that satisfies the
following:

Q⇤2(s, a, g) = E
h
ri
t+

� · max
at+1

Q⇤2(st+1, at+1, g)|st = s, gt = g
i
.

Both Q⇤1(s, g) and Q⇤2(s, a, g) are represented by
neural networks, Q1(s, g; ✓1) and Q2(s, a, g; ✓2),
parameterized by ✓1 and ✓2, respectively.

The top-level dialogue policy tries to minimize
the following loss function at each iteration i:

L1(✓1,i) = E(s,g,re,s0)⇠D1
[(yi �Q1(s, g; ✓1,i))

2]

yi = re + �N max
g0

Q1(s
0, g0, ✓1,i�1) ,

where, as in Equation (1), re =
PN�1

k=0 �
kre

t+k is
the discounted sum of reward collected when sub-
goal g is being completed, and N is the number of
steps g is completed.

The low-level dialogue policy minimizes the
following loss at each iteration i using:

L2(✓2,i) = E(s,g,a,ri,s0)⇠D2
[(yi �

Q2(s, g, a; ✓2,i))
2]

yi = ri + �max
a0

Q2(s
0, g, a0, ✓2,i�1) .

We use SGD to minimize the above loss func-
tions. The gradient for the top-level dialogue pol-
icy yields:

r✓1,i
L1(✓1,i) = E(s,g,re,s0)⇠D1

[(re+

�N max
g0

Q2(s
0, g0, ✓1,i�1)�Q1(s, g, ✓1,i))

r✓1,i
Q1(s, g, ✓1,i)]

(2)

The gradient for the low-level dialogue policy
yields:

r✓2,i
L2(✓2,i) = E(s,g,a,ri,s0)⇠D2

[(ri+

�max
a0

Q2(s
0, g, a0, ✓2,i�1)�Q2(s, g, a, ✓2,i))

r✓2,i
Q2(s, g, a, ✓2,i)]

(3)

Following previous studies, we apply two most
commonly used performance boosting methods:
target networks and experience replay. Experi-
ence replay tuples (s, g, re, s0) and (s, g, a, ri, s0),
are sampled from the experience replay buffers D1

and D2 respectively. A detailed summary of the
learning algorithm for the hierarchical dialogue
policy is provided in Appendix B.
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4 Experiments and Results

To evaluate the proposed method, we conduct ex-
periments on the composite task-completion dia-
logue task of travel planning.

4.1 Dataset
In the study, we made use of a human-human
conversation data derived from a publicly avail-
able multi-domain dialogue corpus1 (El Asri et al.,
2017), which was collected using the Wizard-of-
Oz approach. We made a few changes to the
schema of the data set for the composite task-
completion dialogue setting. Specifically, we
added inter-subtask constraints as well as user
preferences (soft constraints). The data was
mainly used to create simulated users, as will be
explained below shortly.

4.2 Baseline Agents
We benchmark the proposed HRL agent against
three baseline agents:

• A Rule Agent uses a sophisticated hand-
crafted dialogue policy, which requests and
informs a hand-picked subset of necessary
slots, and then confirms with the user about
the reserved tickets.

• A Rule+ Agent requests and informs all the
slots in a pre-defined order exhaustedly, and
then confirms with the user about the re-
served tickets. The average turn of this agent
is longer than that of the Rule agent.

• A flat RL Agent is trained with a standard flat
deep reinforcement learning method (DQN)
which learns a flat dialogue policy using ex-
trinsic rewards only.

4.3 User Simulator
Training reinforcement learners is challenging be-
cause they need an environment to interact with.
In the dialogue research community, it is common
to use simulated users as shown in Figure 3 for
this purpose (Schatzmann et al., 2007; Asri et al.,
2016). In this work, we adapted the publicly-
available user simulator, developed by Li et al.
(2016), to the composite task-completion dialogue
setting using the human-human conversation data
described in Section 4.1.2 During training, the

1https://datasets.maluuba.com/Frames
2A detailed description of the user simulator is presented

in Appendix A.

simulator provides the agent with an (extrinsic) re-
ward signal at the end of the dialogue. A dialogue
is considered to be successful only when a travel
plan is made successfully, and the information
provided by the agent satisfies user’s constraints.
At the end of each dialogue, the agent receives a
positive reward of 2⇤max turn (max turn = 60
in our experiments) for success, or a negative re-
ward of �max turn for failure. Furthermore, at
each turn, the agent receives a reward of�1 so that
shorter dialogue sessions are encouraged.

User Goal A user goal is represented by a set
of slots, indicating the user’s request, requirement
and preference. For example, an inform slot, such
as dst city=“Honolulu”, indicates a user require-
ment, and a request slot, such as price=“?”, indi-
cates a user asking the agent for the information.

In our experiment, we compiled a list of user
goals using the slots collected from the human-
human conversation data set described in Sec-
tion 4.1, as follows. We first extracted all the
slots that appear in dialogue sessions. If a slot has
multiple values, like “or city=[San Francisco,
San Jose]”, we consider it as a user preference
(soft constraint) which the user may later revise its
value to explore different options in the course of
the dialogue. If a slot has only one value, we treat
it as a user requirement (hard constraint), which is
unlikely negotiable. If a slot is with value ”?”, we
treat it as a user request. We removed those slots
from user goals if their values do not exist in our
database. The compiled set of user goals contains
759 entries, each containing slots from at least two
subtasks: book-flight-ticket and reserve-hotel.

User Type To compare different agents’ ability
to adapt to user preferences, we also constructed
three additional user goal sets, representing three
different types of (simulated) users, respectively:

• Type A: All the informed slots in a user goal
have a single value. These users have hard
constraints for both the flight and hotel, and
have no preference on which subtask to ac-
complish first.

• Type B: At least one of informed slots in the
book-flight-ticket subtask can have multiple
values, and the user (simulator) prefers to
start with the book-flight-ticket subtask. If the
user receives “no ticket available” from the
agent during the conversation, she is willing
to explore alternative slot values.
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Figure 3: Illustration of the Composite Task-Completion dialogue System

• Type C: Similar to Type B, at least one of in-
formed slots of the reserve-hotel subtask in a
user goal can have multiple values. The user
prefers to start with the reserve-hotel subtask.
If the user receives a “no room available” re-
sponse from the agent, she is willing to ex-
plore alternative slot values.

4.4 Implementation
For the RL agent, we set the size of hidden layer
to 80. For the HRL agent, both top-level and low-
level dialogue policies had a hidden layer size of
80. RMSprop was applied to optimize the pa-
rameters. We set batch size to 16. During train-
ing, we used the ✏-greedy strategy for exploration.
For each simulation epoch, we simulated 100 dia-
logues and stored these state transition tuples in an
experience replay buffer. At the end of each sim-
ulation epoch, the model was updated with all the
transition tuples in the buffer in a batch manner.

The experience replay strategy is critical to the
success of deep reinforcement learning. In our ex-
periments, at the beginning, we used a rule-based
agent to run N (N = 100) dialogues to popu-
late the experience replay buffer, which was an
implicit way of imitation learning to initialize the
RL agent. Then, the RL agent accumulated all the
state transition tuples and flushes the replay buffer
only when the current RL agent reached a success
rate threshold no worse than that of the Rule agent.

This strategy was motivated by the following
observation. The initial performance of an RL
agent was often not strong enough to result in

dialogue sessions with a reasonable success rate.
With such data, it was easy for the agent to learn
the locally optimal policy that “failed fast”; that is,
the policy would finish the dialogue immediately,
so that the agent could suffer the least amount of
per-turn penalty. Therefore, we provided some
rule-based examples that succeeded reasonably of-
ten, and did not flush the buffer until the per-
formance of the RL agent reached an acceptable
level. Generally, one can set the threshold to be
the success rate of the Rule agent. To make a fair
comparison, for the same type of users, we used
the same Rule agent to initialize both the RL agent
and the HRL agent.

4.5 Simulated User Evaluation

On the composite task-completion dialogue task,
we compared the HRL agent with the baseline
agents in terms of three metrics: success rate3, av-
erage rewards, and the average number of turns per
dialogue session.

Figure 4 shows the learning curves of all four
agents trained on different types of users. Each
learning curve was averaged over 10 runs. Table 1
shows the performance on test data. For all types
of users, the HRL-based agent yielded more robust
dialogue policies outperforming the hand-crafted
rule-based agents and flat RL-based agent mea-
sured on success rate. It also needed fewer turns
per dialogue session to accomplish a task than the
rule-based agents and flat RL agent. The results

3Success rate is the fraction of dialogues where the tasks
are successfully accomplished within the maximum turns.
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Type A Type B Type C
Agent Succ. Turn Reward Succ. Turn Reward Succ. Turn Reward
Rule .322 46.2 -24.0 .240 54.2 -42.9 .205 54.3 -49.3

Rule+ .535 82.0 -3.7 .385 110.5 -44.95 .340 108.1 -51.85
RL .437 45.6 -3.3 .340 52.2 -23.8 .348 49.5 -21.1

HRL .632 43.0 33.2 .600 44.5 26.7 .622 42.7 31.7

Table 1: Performance of three agents on different User Types. Tested on 2000 dialogues using the best
model during training. Succ.: success rate, Turn: average turns, Reward: average reward.

(a) Success Rate of User Type A (b) Success Rate of User Type B (c) Success Rate of User Type C

Figure 4: Learning curves of dialogue policies for different User Types under simulation

Figure 5: Performance of HRL agent versus RL
agent tested with real users: success rate, num-
ber of tested dialogues and p-values are indicated
on each bar; the rightmost green ones are for total
(difference in mean is significant with p < 0.01).

across all three types of simulated users suggest
the following conclusions.

First, he HRL agent significantly outperformed
the RL agent. This, to a large degree, was at-
tributed to the use of the hierarchical structure of
the proposed agent. Specifically, the top-level di-
alogue policy selected a subtask for the agent to
focus on, one at a time, thus dividing a complex
task into a sequence of simpler subtasks. The se-
lected subtasks, combined with the use of intrin-
sic rewards, alleviated the sparse reward and long-
horizon issues, and helped the agent explore more

Figure 6: Distribution of user ratings for HRL
agent versus RL agent, and total.

efficiently in the state-action space. As a result, as
shown in Figure 4 and Table 1, the performance of
the HRL agent on types B and C users (who may
need to go back to revise some slots during the
dialogue) does not drop much compared to type A
users, despite the increased search space in the for-
mer. Additionally, we observed a large drop in the
performance of the RL Agent due to the increased
complexity of the task, which required more di-
alogue turns and posed a challenge for temporal
credit assignment.

Second, the HRL agent learned much faster
than the RL agent. The HRL agent could reach
the same level of performance with a smaller num-
ber of simulation examples than the RL agent,

2237



Table 2: Sample dialogue by RL and HRL agents with real user: Left column shows the dialogue with
the RL agent; Right column shows the dialogue with the HRL agent; bolded slots are the joint constraints
between two subtasks.

User Goal
reserve-hotel subtask:
{

“request slots”: { “inform slots”: {
“hotel price”: “?” “hotel city”: “Cancun”,
“hotel date checkout”: “?” “hotel numberofpeople”: “3”,
“hotel name”: “?” “hotel date checkin”: “09/20”

}, }
}

book-flight-ticket subtask:
{

“request slots”: { “inform slots”: {
“price”: “?” “or city”: “Campinas”,
“return time dep”: “?” “dst city”: “Cancun”,
“return date dep”: “?” “numberofpeople”: “3”,
“depart time dep”: “?” “depart date:̈ ”9/20”
“seat”: “?” }

}
}

RL agent HRL agent
Agent: Welcome to our travel agent. May I know your Agent: Welcome to our travel agent. May I know your
original city, destination city and departure date? original city, destination city and departure date?
User: I depart from Campinas to Cancun and prefer to User: I depart from Campinas to Cancun and prefer to
leave on 09-20. leave on 09-20.
Agent: There is a return flight on 9/26 and hotel checkout date Agent: Only Business class seat is available.
is on 9/26 too.
User: My wife and son will travel with me, three people in total. User: What is the depart time?
Agent: There is a hotel called Hotel Tropic available for you. Agent: Departure time is at 10:00AM.
User: What depart time is available? User: My wife and son will travel with me,

three people in total.
Agent: Departure time is at 10:00AM. Agent: There is one return flight departed at 4:00PM.
User: What is the departure time of return flight? User: What is the date of the return flight?
Agent: It is 4:00PM. Agent: It is on 9/26 and hotel checkout date is also 9/26.
User: Which seat is available? User: What’s the price for the flight?
Agent: Only Business class available. Agent: Total is 1399 dollars for flight.
User: What’s the price for the flight? User: Which hotel is available?
Agent: Total is 1399 dollars for flight. Agent: A hotel called Hotel Tropic is available for you.
User: What’s the price for the hotel? User: What’s the price for the hotel?
Agent: It is 1091 dollars for hotel. Agent: It is 1091 dollars for hotel.
User: Could you please help me book the tickets? User: Could you please help me book the tickets?
Agent: Departure flight on 9/20 and hotel checkin date Agent: Okay. Tickets are issued.
on 9/20 are available.
User: Could you please help me book the tickets? User: Thanks!
Agent: Okay. Tickets are issued. Agent: Thanks!
User: Thanks!
Agent: Thanks!

Success: but the agent does not behave naturally where is an Success
inter-subtask transition from book-flight-ticket to reserve-hotel.

demonstrating that the hierarchical dialogue poli-
cies were more sample-efficient than flat RL pol-
icy and could significantly reduce the sample com-
plexity on complex tasks.

Finally, we also found that the Rule+ and flat RL
agents had comparable success rates, as shown in
Figure 4. However, a closer look at the correlation
between success rate and the average number of
turns in Table 1 suggests that the Rule+ agent re-
quired more turns which adversely affects its suc-
cess, whilst the flat RL agent achieves similar suc-
cess with much less number of turns in all the user
types. It suffices to say that our hierarchical RL
agent outperforms all in terms of success rate as
depicted in Figure 4.

4.6 Human Evaluation

We further evaluated the agents, which were
trained on simulated users, against real human
users, recruited from the authors’ affiliation. We
conducted the study using the HRL and RL agents,
each tested against two types of users: Type A
users who had no preference for subtask, and Type
B users who preferred to complete the book-flight-
ticket subtask first. Note that Type C users were
symmetric to Type B ones, so were not included
in the study. We compared two (agent, user type)
pairs: {RL A, HRL A} and {RL B, HRL B}; in
other words, four agents were trained against their
specific user types. In each dialogue session, one
of the agents was randomly picked to converse
with a user. The user was presented with a user
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goal sampled from our corpus, and was instructed
to converse with the agent to complete the task. If
one of the slots in the goal had multiple values, the
user had multiple choices for this slot and might
revise the slot value when the agent replied with
a message like “No ticket is available” during the
conversation. At the end of each session, the user
was asked to give a rating on a scale from 1 to 5
based on the naturalness and coherence of the di-
alogue. (1 is the worst rating, and 5 the best). We
collected a total of 225 dialogue sessions from 12
human users.

Figure 5 presents the performance of these
agents against real users in terms of success rate.
Figure 6 shows the comparison in user rating. For
all the cases, the HRL agent was consistently bet-
ter than the RL agent in terms of success rate and
user rating. Table 2 shows a sample dialogue ses-
sion. We see that the HRL agent produced a more
coherent conversation, as it switched among sub-
tasks much less frequently than the flat RL agent.

5 Discussion and Conclusions

This paper considers composite task-completion
dialogues, where a set of subtasks need to be ful-
filled collectively for the entire dialogue to be suc-
cessful. We formulate the policy learning prob-
lem using the options framework, and take a hier-
archical deep RL approach to optimizing the pol-
icy. Our experiments, both on simulated and real
users, show that the hierarchical RL agent signifi-
cantly outperforms a flat RL agent and rule-based
agents. The hierarchical structure of the agent also
improves the coherence of the dialogue flow.

The promising results suggest several directions
for future research. First, the hierarchical RL
approach demonstrates strong adaptation ability
to tailor the dialogue policy to different types of
users. This motivates us to systematically inves-
tigate its use for dialogue personalization. Sec-
ond, our hierarchical RL agent is implemented us-
ing a two-level dialogue policy. But more com-
plex tasks might require multiple levels of hierar-
chy. Thus, it is valuable to extend our approach to
handle such deep hierarchies, where a subtask can
invoke another subtask and so on, taking full ad-
vantage of the options framework. Finally, design-
ing task hierarchies requires substantial domain
knowledge and is time-consuming. This challenge
calls for future work on automatic learning of hi-
erarchies for complex dialogue tasks.
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Heriberto Cuayáhuitl. 2009. Hierarchical reinforce-
ment learning for spoken dialogue systems.
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Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry and Verena Rieser
School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh
j.novikova, o.dusek, ac293, v.t.rieser@hw.ac.uk

Abstract

The majority of NLG evaluation relies
on automatic metrics, such as BLEU. In
this paper, we motivate the need for
novel, system- and data-independent au-
tomatic evaluation methods: We inves-
tigate a wide range of metrics, includ-
ing state-of-the-art word-based and novel
grammar-based ones, and demonstrate that
they only weakly reflect human judge-
ments of system outputs as generated by
data-driven, end-to-end NLG. We also
show that metric performance is data- and
system-specific. Nevertheless, our results
also suggest that automatic metrics per-
form reliably at system-level and can sup-
port system development by finding cases
where a system performs poorly.

1 Introduction

Automatic evaluation measures, such as BLEU (Pa-
pineni et al., 2002), are used with increasing fre-
quency to evaluate Natural Language Generation
(NLG) systems: Up to 60% of NLG research
published between 2012–2015 relies on automatic
metrics (Gkatzia and Mahamood, 2015). Auto-
matic evaluation is popular because it is cheaper
and faster to run than human evaluation, and it is
needed for automatic benchmarking and tuning of
algorithms. The use of such metrics is, however,
only sensible if they are known to be sufficiently
correlated with human preferences. This is rarely
the case, as shown by various studies in NLG
(Stent et al., 2005; Belz and Reiter, 2006; Reiter
and Belz, 2009), as well as in related fields, such
as dialogue systems (Liu et al., 2016), machine
translation (MT) (Callison-Burch et al., 2006), and
image captioning (Elliott and Keller, 2014; Kilick-
aya et al., 2017). This paper follows on from the

above previous work and presents another evalu-
ation study into automatic metrics with the aim
to firmly establish the need for new metrics. We
consider this paper to be the most complete study
to date, across metrics, systems, datasets and do-
mains, focusing on recent advances in data-driven
NLG. In contrast to previous work, we are the first
to:
• Target end-to-end data-driven NLG, where we
compare 3 different approaches. In contrast to
NLG methods evaluated in previous work, our sys-
tems can produce ungrammatical output by (a)
generating word-by-word, and (b) learning from
noisy data.
• Compare a large number of 21 automated met-
rics, including novel grammar-based ones.
• Report results on two different domains and
three different datasets, which allows us to draw
more general conclusions.
• Conduct a detailed error analysis, which sug-
gests that, while metrics can be reasonable indi-
cators at the system-level, they are not reliable at
the sentence-level.
•Make all associated code and data publicly avail-
able, including detailed analysis results.1

2 End-to-End NLG Systems

In this paper, we focus on recent end-to-end, data-
driven NLG methods, which jointly learn sentence
planning and surface realisation from non-aligned
data (Dušek and Jurčı́ček, 2015; Wen et al., 2015;
Mei et al., 2016; Wen et al., 2016; Sharma et al.,
2016; Dušek and Jurčı́ček, 2016, Lampouras and
Vlachos, 2016). These approaches do not require
costly semantic alignment between Meaning Rep-
resentations (MR) and human references (also re-
ferred to as “ground truth” or “targets”), but are

1Available for download at: https://github.com/
jeknov/EMNLP_17_submission
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System Dataset TotalBAGEL SFREST SFHOTEL

LOLS 202 581 398 1,181
RNNLG - 600 477 1,077
TGEN 202 - - 202
Total 404 1,181 875 2,460

Table 1: Number of NLG system outputs from dif-
ferent datasets and systems used in this study.

based on parallel datasets, which can be collected
in sufficient quality and quantity using effective
crowdsourcing techniques, e.g. (Novikova et al.,
2016), and as such, enable rapid development of
NLG components in new domains. In particular,
we compare the performance of the following sys-
tems:
• RNNLG:2 The system by Wen et al. (2015) uses
a Long Short-term Memory (LSTM) network to
jointly address sentence planning and surface re-
alisation. It augments each LSTM cell with a gate
that conditions it on the input MR, which allows it
to keep track of MR contents generated so far.
• TGEN:3 The system by Dušek and Jurčı́ček
(2015) learns to incrementally generate deep-
syntax dependency trees of candidate sentence
plans (i.e. which MR elements to mention and the
overall sentence structure). Surface realisation is
performed using a separate, domain-independent
rule-based module.
• LOLS:4 The system by Lampouras and Vlachos
(2016) learns sentence planning and surface reali-
sation using Locally Optimal Learning to Search
(LOLS), an imitation learning framework which
learns using BLEU and ROUGE as non-decomposable
loss functions.

3 Datasets

We consider the following crowdsourced datasets,
which target utterance generation for spoken dia-
logue systems. Table 1 shows the number of sys-
tem outputs for each dataset. Each data instance
consists of one MR and one or more natural lan-
guage references as produced by humans, such
as the following example, taken from the BAGEL

dataset:5

2https://github.com/shawnwun/RNNLG
3https://github.com/UFAL-DSG/tgen
4https://github.com/glampouras/JLOLS_

NLG
5Note that we use lexicalised versions of SFHOTEL and

SFREST and a partially lexicalised version of BAGEL, where
proper names and place names are replaced by placeholders
(“X”), in correspondence with the outputs generated by the

MR: inform(name=X, area=X, pricerange=moderate,
type=restaurant)
Reference: “X is a moderately priced restaurant in X.”

• SFHOTEL & SFREST (Wen et al., 2015) pro-
vide information about hotels and restaurants in
San Francisco. There are 8 system dialogue act
types, such as inform, confirm, goodbye etc. Each
domain contains 12 attributes, where some are
common to both domains, such as name, type,
pricerange, address, area, etc., and the others are
domain-specific, e.g. food and kids-allowed for
restaurants; hasinternet and dogs-allowed for ho-
tels. For each domain, around 5K human refer-
ences were collected with 2.3K unique human ut-
terances for SFHOTEL and 1.6K for SFREST. The
number of unique system outputs produced is
1181 for SFREST and 875 for SFHOTEL.
• BAGEL (Mairesse et al., 2010) provides informa-
tion about restaurants in Cambridge. The dataset
contains 202 aligned pairs of MRs and 2 corre-
sponding references each. The domain is a subset
of SFREST, including only the inform act and 8 at-
tributes.

4 Metrics

4.1 Word-based Metrics (WBMs)

NLG evaluation has borrowed a number of au-
tomatic metrics from related fields, such as MT,
summarisation or image captioning, which com-
pare output texts generated by systems to ground-
truth references produced by humans. We refer to
this group as word-based metrics. In general, the
higher these scores are, the better or more simi-
lar to the human references the output is.6 The
following order reflects the degree these metrics
move from simple n-gram overlap to also consid-
ering term frequency (TF-IDF) weighting and se-
mantically similar words.
•Word-overlap Metrics (WOMs): We consider
frequently used metrics, including TER (Snover
et al., 2006), BLEU (Papineni et al., 2002), ROUGE

(Lin, 2004), NIST (Doddington, 2002), LEPOR (Han
et al., 2012), CIDEr (Vedantam et al., 2015), and
METEOR (Lavie and Agarwal, 2007).
• Semantic Similarity (SIM): We calculate the Se-
mantic Text Similarity measure designed by Han
et al. (2013). This measure is based on distri-
butional similarity and Latent Semantic Analysis

systems, as provided by the system authors.
6Except for TER whose scale is reversed.
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(LSA) and is further complemented with semantic
relations extracted from WordNet.

4.2 Grammar-based metrics (GBMs)

Grammar-based measures have been explored in
related fields, such as MT (Giménez and Màrquez,
2008) or grammatical error correction (Napoles
et al., 2016), and, in contrast to WBMs, do not rely
on ground-truth references. To our knowledge, we
are the first to consider GBMs for sentence-level
NLG evaluation. We focus on two important prop-
erties of texts here – readability and grammatical-
ity:

• Readability quantifies the difficulty with which
a reader understands a text, as used for e.g. eval-
uating summarisation (Kan et al., 2001) or text
simplification (Francois and Bernhard, 2014). We
measure readability by the Flesch Reading Ease
score (RE) (Flesch, 1979), which calculates a ra-
tio between the number of characters per sentence,
the number of words per sentence, and the num-
ber of syllables per word. Higher RE score indi-
cates a less complex utterance that is easier to read
and understand. We also consider related mea-
sures, such as characters per utterance (len) and
per word (cpw), words per sentence (wps), syl-
lables per sentence (sps) and per word (spw), as
well as polysyllabic words per utterance (pol) and
per word (ppw). The higher these scores, the more
complex the utterance.

• Grammaticality: In contrast to previous NLG
methods, our corpus-based end-to-end systems
can produce ungrammatical output by (a) gener-
ating word-by-word, and (b) learning from noisy
data. As a first approximation of grammatical-
ity, we measure the number of misspellings (msp)
and the parsing score as returned by the Stanford
parser (prs). The lower the msp, the more gram-
matically correct an utterance is. The Stanford
parser score is not designed to measure grammat-
icality, however, it will generally prefer a gram-
matical parse to a non-grammatical one.7 Thus,
lower parser scores indicate less grammatically-
correct utterances. In future work, we aim to use
specifically designed grammar-scoring functions,
e.g. (Napoles et al., 2016), once they become pub-
licly available.

7http://nlp.stanford.edu/software/
parser-faq.shtml

5 Human Data Collection

To collect human rankings, we presented the MR
together with 2 utterances generated by differ-
ent systems side-by-side to crowdworkers, which
were asked to score each utterance on a 6-point
Likert scale for:
• Informativeness: Does the utterance provide all
the useful information from the meaning represen-
tation?
• Naturalness: Could the utterance have been
produced by a native speaker?
• Quality: How do you judge the overall quality
of the utterance in terms of its grammatical cor-
rectness and fluency?

Each system output (see Table 1) was scored by
3 different crowdworkers. To reduce participants’
bias, the order of appearance of utterances pro-
duced by each system was randomised and crowd-
workers were restricted to evaluate a maximum of
20 utterances. The crowdworkers were selected
from English-speaking countries only, based on
their IP addresses, and asked to confirm that En-
glish was their native language.

To assess the reliability of ratings, we calculated
the intra-class correlation coefficient (ICC), which
measures inter-observer reliability on ordinal data
for more than two raters (Landis and Koch, 1977).
The overall ICC across all three datasets is 0.45
(p < 0.001), which corresponds to a moderate
agreement. In general, we find consistent differ-
ences in inter-annotator agreement per system and
dataset, with lower agreements for LOLS than for
RNNLG and TGEN. Agreement is highest for the
SFHOTEL dataset, followed by SFREST and BAGEL

(details provided in supplementary material).

6 System Evaluation

Table 2 summarises the individual systems’ over-
all corpus-level performance in terms of automatic
and human scores (details are provided in the sup-
plementary material).

All WOMs produce similar results, with SIM

showing different results for the restaurant domain
(BAGEL and SFREST). Most GBMs show the same
trend (with different levels of statistical signifi-
cance), but RE is showing inverse results. System
performance is dataset-specific: For WBMs, the
LOLS system consistently produces better results
on BAGEL compared to TGEN, while for SFREST

and SFHOTEL, LOLS is outperformed by RNNLG in
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BAGEL SFHOTEL SFREST

metric TGEN LOLS RNNLG LOLS RNNLG LOLS

WOMs More overlap More overlap* More overlap*
SIM More similar More similar* More similar
GBMs Better grammar(*) Better grammar(*) Better grammar
RE More complex* More complex* More complex*
inform 4.77(Sd=1.09) 4.91(Sd=1.23) 5.47*(Sd=0.81) 5.27(Sd=1.02) 5.29*(Sd=0.94) 5.16(Sd=1.07)
natural 4.76(Sd=1.26) 4.67(Sd=1.25) 4.99*(Sd=1.13) 4.62(Sd=1.28) 4.86 (Sd=1.13) 4.74(Sd=1.23)
quality 4.77(Sd=1.19) 4.54(Sd=1.28) 4.54 (Sd=1.18) 4.53(Sd=1.26) 4.51 (Sd=1.14) 4.58(Sd=1.33)

Table 2: System performance per dataset (summarised over metrics), where “*” denotes p < 0.05 for all
the metrics and “(*)” shows significance on p < 0.05 level for the majority of the metrics.

terms of WBMs. We observe that human informa-
tiveness ratings follow the same pattern as WBMs,
while the average similarity score (SIM) seems to
be related to human quality ratings.

Looking at GBMs, we observe that they seem
to be related to naturalness and quality ratings.
Less complex utterances, as measured by read-
ability (RE) and word length (cpw), have higher
naturalness ratings. More complex utterances, as
measured in terms of their length (len), number
of words (wps), syllables (sps, spw) and polysyl-
lables (pol, ppw), have lower quality evaluation.
Utterances measured as more grammatical are on
average evaluated higher in terms of naturalness.

These initial results suggest a relation between
automatic metrics and human ratings at system
level. However, average scores can be mislead-
ing, as they do not identify worst-case scenarios.
This leads us to inspect the correlation of human
and automatic metrics for each MR-system output
pair at utterance level.

7 Relation of Human and Automatic
Metrics

7.1 Human Correlation Analysis

We calculate the correlation between automatic
metrics and human ratings using the Spearman
coefficient (ρ). We split the data per dataset
and system in order to make valid pairwise com-
parisons. To handle outliers within human rat-
ings, we use the median score of the three human
raters.8 Following Kilickaya et al. (2017), we use
the Williams’ test (Williams, 1959) to determine
significant differences between correlations. Ta-
ble 3 summarises the utterance-level correlation

8As an alternative to using the median human judgment
for each item, a more effective way to use all the human
judgments could be to use Hovy et al. (2013)’s MACE tool
for inferring the reliability of judges.

results between automatic metrics and human rat-
ings, listing the best (i.e. highest absolute ρ) re-
sults for each type of metric (details provided in
supplementary material). Our results suggest that:
• In sum, no metric produces an even moderate
correlation with human ratings, independently of
dataset, system, or aspect of human rating. This
contrasts with our initially promising results on the
system level (see Section 6) and will be further dis-
cussed in Section 8. Note that similar inconsisten-
cies between document- and sentence-level eval-
uation results are observed in MT (Specia et al.,
2010).
• Similar to our results in Section 6, we find that
WBMs show better correlations to human ratings
of informativeness (which reflects content selec-
tion), whereas GBMs show better correlations to
quality and naturalness.
• Human ratings for informativeness, naturalness
and quality are highly correlated with each other,
with the highest correlation between the latter two
(ρ = 0.81) reflecting that they both target surface
realisation.
• All WBMs produce similar results (see Figure 1
and 2): They are strongly correlated with each
other, and most of them produce correlations with
human ratings which are not significantly different
from each other. GBMs, on the other hand, show
greater diversity.
• Correlation results are system- and dataset-
specific (details provided in supplementary mate-
rial). We observe the highest correlation for TGEN

on BAGEL (Figures 1 and 2) and LOLS on SFREST,
whereas RNNLG often shows low correlation be-
tween metrics and human ratings. This lets us
conclude that WBMs and GBMs are sensitive to
different systems and datasets.
• The highest positive correlation is observed be-
tween the number of words (wps) and informative-
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BAGEL SFHOTEL SFREST

TGEN LOLS RNNLG LOLS RNNLG LOLS

Best inform. 0.30* (BLEU-1) 0.20* (ROUGE) 0.09 (BLEU-1) 0.14* (LEPOR) 0.13* (SIM) 0.28* (LEPOR)
WBM natural. -0.19* (TER) -0.19* (TER) 0.10* (METEOR) -0.20* (TER) 0.17* (ROUGE) 0.19* (METEOR)

quality -0.16* (TER) 0.16* (METEOR) 0.10* (METEOR) -0.12* (TER) 0.09* (METEOR) 0.18* (LEPOR)
Best inform. 0.33* (wps) 0.16* (ppw) -0.09 (ppw) 0.13* (cpw) 0.11* (len) 0.21* (len)

GBM natural. -0.25* (len) -0.28* (wps) -0.17* (len) -0.18* (sps) -0.19* (wps) -0.21* (sps)
quality -0.19* (cpw) 0.31* (prs) -0.16* (ppw) -0.17* (spw) 0.11* (prs) -0.16* (sps)

Table 3: Highest absolute Spearman correlation between metrics and human ratings, with “*” denoting
p < 0.05 (metric with the highest absolute value of ρ given in brackets).

Figure 1: Spearman correlation results for TGEN on BAGEL. Bordered area shows correlations between
human ratings and automatic metrics, the rest shows correlations among the metrics. Blue colour of
circles indicates positive correlation, while red indicates negative correlation. The size of circles denotes
the correlation strength.

Figure 2: Williams test results: X represents
a non-significant difference between correlations
(p < 0.05; top: WBMs, bottom: GBMs).

ness for the TGEN system on BAGEL (ρ = 0.33,
p < 0.01, see Figure 1). However, the wps met-
ric (amongst most others) is not robust across sys-
tems and datasets: Its correlation on other datasets
is very weak, (ρ ≤ .18) and its correlation with in-

formativeness ratings of LOLS outputs is insignifi-
cant.
• As a sanity check, we also measure a random
score [0.0, 1.0] which proves to have a close-to-
zero correlation with human ratings (highest ρ =
0.09).

7.2 Accuracy of Relative Rankings

We now evaluate a more coarse measure, namely
the metrics’ ability to predict relative human rat-
ings. That is, we compute the score of each metric
for two system output sentences corresponding to
the same MR. The prediction of a metric is cor-
rect if it orders the sentences in the same way as
median human ratings (note that ties are allowed).
Following previous work (Vedantam et al., 2015;
Kilickaya et al., 2017), we mainly concentrate
on WBMs. Results summarised in Table 4 show
that most metrics’ performance is not significantly
different from that of a random score (Wilcoxon
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signed rank test). While the random score fluc-
tuates between 25.4–44.5% prediction accuracy,
the metrics achieve an accuracy of between 30.6–
49.8%. Again, the performance of the metrics is
dataset-specific: Metrics perform best on BAGEL

data; for SFHOTEL, metrics show mixed perfor-
mance while for SFREST, metrics perform worst.

informat. naturalness quality

BAGEL
raw
data

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR, SIM

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR, SIM

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR, SIM

SFHOTEL
raw
data

TER, BLEU1-4,
ROUGE, LEPOR,
CIDEr, METEOR,
SIM

METEOR N/A

SFREST

raw
data

SIM LEPOR N/A

quant.
data

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR

SIM

N/A N/A

Table 4: Metrics predicting relative human rating
with significantly higher accuracy than a random
baseline.

Discussion: Our data differs from the one used
in previous work (Vedantam et al., 2015; Kilick-
aya et al., 2017), which uses explicit relative rank-
ings (“Which output do you prefer?”), whereas we
compare two Likert-scale ratings. As such, we
have 3 possible outcomes (allowing ties). This
way, we can account for equally valid system
outputs, which is one of the main drawbacks of
forced-choice approaches (Hodosh and Hocken-
maier, 2016). Our results are akin to previous
work: Kilickaya et al. (2017) report results be-
tween 60-74% accuracy for binary classification
on machine-machine data, which is comparable to
our results for 3-way classification.

Still, we observe a mismatch between the or-
dinal human ratings and the continuous metrics.
For example, humans might rate system A and
system B both as a 6, whereas BLEU, for exam-
ple, might assign 0.98 and 1.0 respectively, mean-
ing that BLEU will declare system B as the win-
ner. In order to account for this mismatch, we
quantise our metric data to the same scale as the
median scores from our human ratings.9 Applied
to SFREST, where we previously got our worst re-

9Note that this mismatch can also be accounted for by
continuous rating scales, as suggested by Belz and Kow
(2011).

sults, we can see an improvement for predicting
informativeness, where all WBMs now perform
significantly better than the random baseline (see
Table 4). In the future, we will investigate re-
lated discriminative approaches, e.g. (Hodosh and
Hockenmaier, 2016; Kannan and Vinyals, 2017),
where the task is simplified to distinguishing cor-
rect from incorrect output.

8 Error Analysis

In this section, we attempt to uncover why auto-
matic metrics perform so poorly.

8.1 Scales

We first explore the hypothesis that metrics are
good in distinguishing extreme cases, i.e. system
outputs which are rated as clearly good or bad by
the human judges, but do not perform well for ut-
terances rated in the middle of the Likert scale, as
suggested by Kilickaya et al. (2017). We ‘bin’ our
data into three groups: bad, which comprises low
ratings (≤2); good, comprising high ratings (≥5);
and finally a group comprising average ratings.

We find that utterances with low human ratings
of informativeness and naturalness correlate sig-
nificantly better (p < 0.05) with automatic metrics
than those with average and good human ratings.
For example, as shown in Figure 3, the correlation
between WBMs and human ratings for utterances
with low informativeness scores ranges between
0.3 ≤ ρ ≤ 0.5 (moderate correlation), while the
highest correlation for utterances of average and
high informativeness barely reaches ρ ≤ 0.2 (very
weak correlation). The same pattern can be ob-
served for correlations with quality and natural-
ness ratings.

This discrepancy in correlation results between
low and other user ratings, together with the
fact that the majority of system outputs are rated
“good” for informativeness (79%), naturalness
(64%) and quality (58%), whereas low ratings do
not exceed 7% in total, could explain why the
overall correlations are low (Section 7) despite the
observed trends in relationship between average
system-level performance scores (Section 6). It
also explains why the RNNLG system, which con-
tains very few instances of low user ratings, shows
poor correlation between human ratings and auto-
matic metrics.
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No. system MR system output human reference WOMs SIM humans

1 LOLS inform(name = the donatello,
hasinternet = yes)

well there is a hotel with in-
ternet access called the do-
natello

the donatello has internet 1.4 5 6

2 LOLS inform nomatch(area =
embarcadero, kidsallowed=
yes, pricerange = expensive)

i but i but i but i but i but i
but i but i but i but i

unfortunately i could not find
any expensive restaurants in
embarcadero that allow kids.

1.1 1 1

3 TGEN inform(name = X, area =
riverside, eattype =
restaurant, food = fastfood,
pricerange = cheap)

x is a restaurant on the
riverside called located at
the riverside and at is

x is a cheap fastfood restau-
rant located near the riverside

2.4 4 1

4 RNNLG inform nomatch(kidsallowed
= yes, food = moroccan)

i am sorry, i did not find any
restaurants that allows kids
and serve moroccan.

sorry, there are no restau-
rants allowing kids and serv-
ing moroccan food

1.85 4 5

Table 5: Example pairs of MRs and system outputs from our data, contrasting the average of word-
overlap metrics (normalised in the 1-6 range) and semantic similarity (SIM) with human ratings (median
of all measures).

Figure 3: Correlation between automatic metrics
(WBMs) and human ratings for utterances of bad
informativeness (top), and average and good infor-
mativeness (bottom).

8.2 Impact of Target Data

Characteristics of Data: In Section 7.1, we ob-
served that datasets have a significant impact on
how well automatic metrics reflect human ratings.
A closer inspection shows that BAGEL data differs
significantly from SFREST and SFHOTEL, both in
terms of grammatical and MR properties. BAGEL

has significantly shorter references both in terms
of number of characters and words compared to
the other two datasets. Although being shorter, the
words in BAGEL references are significantly more
often polysyllabic. Furthermore, BAGEL only con-
sists of utterances generated from inform MRs,
while SFREST and SFHOTEL also have less complex
MR types, such as confirm, goodbye, etc. Utter-
ances produced from inform MRs are significantly
longer and have a significantly higher correlation
with human ratings of informativeness and natu-
ralness than non-inform utterance types. In other
words, BAGEL is the most complex dataset to gen-

erate from. Even though it is more complex, met-
rics perform most reliably on BAGEL here (note that
the correlation is still only weak). One possible
explanation is that BAGEL only contains two human
references per MR, whereas SFHOTEL and SFREST

both contain 5.35 references per MR on average.
Having more references means that WBMs natu-
rally will return higher scores (‘anything goes’).
This problem could possibly be solved by weight-
ing multiple references according to their quality,
as suggested by (Galley et al., 2015), or following
a reference-less approach (Specia et al., 2010).
Quality of Data: Our corpora contain crowd-
sourced human references that have grammatical
errors, e.g. “Fifth Floor does not allow childs”
(SFREST reference). Corpus-based methods may
pick up these errors, and word-based metrics will
rate these system utterances as correct, whereas
we can expect human judges to be sensitive to
ungrammatical utterances. Note that the pars-
ing score (while being a crude approximation of
grammaticality) achieves one of our highest cor-
relation results against human ratings, with |ρ| =
.31. Grammatical errors raise questions about the
quality of the training data, especially when be-
ing crowdsourced. For example, Belz and Reiter
(2006) find that human experts assign low rank-
ings to their original corpus text. Again, weighting
(Galley et al., 2015) or reference-less approaches
(Specia et al., 2010) might remedy this issue.

8.3 Example-based Analysis

As shown in previous sections, word-based met-
rics moderately agree with humans on bad quality
output, but cannot distinguish output of good or
medium quality. Table 5 provides examples from
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Dimension of human ratings
Study Sentence Planning Surface Realisation Domain

this paper weak positive (ρ = 0.33, WPS) weak negative (ρ = 0.− 31, parser) NLG, restaurant/hotel search
(Reiter and Belz, 2009) none strong positive (Pearson’s r = 0.96, NIST) NLG, weather forecast

(Stent et al., 2005) weak positive (ρ = 0.47, LSA) negative (ρ = −0.56, NIST) paraphrasing of news
(Liu et al., 2016) weak positive (ρ = 0.35, BLEU-4) N/A dialogue/Twitter pairs

(Elliott and Keller, 2014) positive (ρ = 0.53, METEOR) N/A image caption
(Kilickaya et al., 2017) positive (ρ = 0.64, SPICE) N/A image caption

(Cahill, 2009) N/A negative (ρ = −0.64, ROUGE) NLG, German news texts
(Espinosa et al., 2010) weak positive (ρ = 0.43, TER) positive (ρ = 0.62, BLEU-4) NLG, news texts

Table 6: Best correlation results achieved by our and previous work. Dimensions targeted towards Sen-
tence Planning include ‘accuracy’, ‘adequacy’, ‘correctness’, ‘informativeness’. Dimensions for Surface
Realisation include ‘clarity’, ‘fluency’, ‘naturalness’.

our three systems.10 Again, we observe differ-
ent behaviour between WOMs and SIM scores. In
Example 1, LOLS generates a grammatically cor-
rect English sentence, which represents the mean-
ing of the MR well, and, as a result, this utter-
ance received high human ratings (median = 6) for
informativeness, naturalness and quality. How-
ever, WOMs rate this utterance low, i.e. scores of
BLEU1-4, NIST, LEPOR, CIDEr, ROUGE and METEOR nor-
malised into the 1-6 range all stay below 1.5. This
is because the system-generated utterance has low
overlap with the human/corpus references. Note
that the SIM score is high (5), as it ignores human
references and computes distributional semantic
similarity between the MR and the system output.
Examples 2 and 3 show outputs which receive low
scores from both automatic metrics and humans.
WOMs score these system outputs low due to lit-
tle or no overlap with human references, whereas
humans are sensitive to ungrammatical output and
missing information (the former is partially cap-
tured by GBMs). Examples 2 and 3 also illus-
trate inconsistencies in human ratings since sys-
tem output 2 is clearly worse than output 3 and
both are rated by human with a median score of 1.
Example 4 shows an output of the RNNLG system
which is semantically very similar to the reference
(SIM=4) and rated high by humans, but WOMs fail
to capture this similarity. GBMs show more accu-
rate results for this utterance, with mean of read-
ability scores 4 and parsing score 3.5.

9 Related Work

Table 6 summarises results published by previous
studies in related fields which investigate the re-
lation between human scores and automatic met-

10Please note that WBMs tend to match against the refer-
ence that is closest to the generated output. Therefore, we
only include the closest match in Table 5 for simplicity.

rics. These studies mainly considered WBMs,
while we are the first study to consider GBMs.
Some studies ask users to provide separate ratings
for surface realisation (e.g. asking about ‘clarity’
or ‘fluency’), whereas other studies focus only on
sentence planning (e.g. ‘accuracy’, ‘adequacy’, or
‘correctness’). In general, correlations reported by
previous work range from weak to strong. The re-
sults confirm that metrics can be reliable indica-
tors at system-level (Reiter and Belz, 2009), while
they perform less reliably at sentence-level (Stent
et al., 2005). Also, the results show that the met-
rics capture realization better than sentence plan-
ning. There is a general trend showing that best-
performing metrics tend to be the more complex
ones, combining word-overlap, semantic similar-
ity and term frequency weighting. Note, however,
that the majority of previous works do not report
whether any of the metric correlations are signifi-
cantly different from each other.

10 Conclusions

This paper shows that state-of-the-art automatic
evaluation metrics for NLG systems do not suf-
ficiently reflect human ratings, which stresses the
need for human evaluations. This result is opposed
to the current trend of relying on automatic evalua-
tion identified in (Gkatzia and Mahamood, 2015).

A detailed error analysis suggests that auto-
matic metrics are particularly weak in distinguish-
ing outputs of medium and good quality, which
can be partially attributed to the fact that hu-
man judgements and metrics are given on differ-
ent scales. We also show that metric performance
is data- and system-specific.

Nevertheless, our results also suggest that auto-
matic metrics can be useful for error analysis by
helping to find cases where the system is perform-
ing poorly. In addition, we find reliable results on
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system-level, which suggests that metrics can be
useful for system development.

11 Future Directions

Word-based metrics make two strong assump-
tions: They treat human-generated references as
a gold standard, which is correct and complete.
We argue that these assumptions are invalid for
corpus-based NLG, especially when using crowd-
sourced datasets. Grammar-based metrics, on the
other hand, do not rely on human-generated ref-
erences and are not influenced by their quality.
However, these metrics can be easily manipulated
with grammatically correct and easily readable
output that is unrelated to the input. We have
experimented with combining WBMs and GBMs
using ensemble-based learning. However, while
our model achieved high correlation with humans
within a single domain, its cross-domain perfor-
mance is insufficient.

Our paper clearly demonstrates the need for
more advanced metrics, as used in related fields,
including: assessing output quality within the di-
alogue context, e.g. (Dušek and Jurčı́ček, 2016);
extrinsic evaluation metrics, such as NLG’s con-
tribution to task success, e.g. (Rieser et al., 2014;
Gkatzia et al., 2016; Hastie et al., 2016); building
discriminative models, e.g. (Hodosh and Hock-
enmaier, 2016), (Kannan and Vinyals, 2017); or
reference-less quality prediction as used in MT,
e.g. (Specia et al., 2010). We see our paper as
a first step towards reference-less evaluation for
NLG by introducing grammar-based metrics. In
current work (Dušek et al., 2017), we investigate a
reference-less quality estimation approach based
on recurrent neural networks, which predicts a
quality score for a NLG system output by compar-
ing it to the source meaning representation only.

Finally, note that the datasets considered in this
study are fairly small (between 404 and 2.3k hu-
man references per domain). To remedy this, sys-
tems train on de-lexicalised versions (Wen et al.,
2015), which bears the danger of ungrammatical
lexicalisation (Sharma et al., 2016) and a possi-
ble overlap between testing and training set (Lam-
pouras and Vlachos, 2016). There are ongoing ef-
forts to release larger and more diverse data sets,
e.g. (Novikova et al., 2016, 2017).
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Pei-Hao Su, David Vandyke, and Steve Young.
2015. Semantically conditioned LSTM-based
natural language generation for spoken dialogue
systems. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing. Lisbon, Portugal, pages 1711–1721.
http://aclweb.org/anthology/D15-1199.

Evan James Williams. 1959. Regression analysis. John
Wiley & Sons, New York, NY, USA.

2252



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2253–2263
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Challenges in Data-to-Document Generation

Sam Wiseman and Stuart M. Shieber and Alexander M. Rush
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA, USA

{swiseman,shieber,srush}@seas.harvard.edu

Abstract

Recent neural models have shown signif-
icant progress on the problem of generat-
ing short descriptive texts conditioned on
a small number of database records. In
this work, we suggest a slightly more dif-
ficult data-to-text generation task, and in-
vestigate how effective current approaches
are on this task. In particular, we introduce
a new, large-scale corpus of data records
paired with descriptive documents, pro-
pose a series of extractive evaluation meth-
ods for analyzing performance, and ob-
tain baseline results using current neural
generation methods. Experiments show
that these models produce fluent text, but
fail to convincingly approximate human-
generated documents. Moreover, even
templated baselines exceed the perfor-
mance of these neural models on some
metrics, though copy- and reconstruction-
based extensions lead to noticeable im-
provements.

1 Introduction

Over the past several years, neural text genera-
tion systems have shown impressive performance
on tasks such as machine translation and summa-
rization. As neural systems begin to move toward
generating longer outputs in response to longer
and more complicated inputs, however, the gener-
ated texts begin to display reference errors, inter-
sentence incoherence, and a lack of fidelity to
the source material. The goal of this paper is to
suggest a particular, long-form generation task in
which these challenges may be fruitfully explored,
to provide a publically available dataset for this
task, to suggest some automatic evaluation met-
rics, and finally to establish how current, neural

text generation methods perform on this task.
A classic problem in natural-language genera-

tion (NLG) (Kukich, 1983; McKeown, 1992; Re-
iter and Dale, 1997) involves taking structured
data, such as a table, as input, and producing text
that adequately and fluently describes this data as
output. Unlike machine translation, which aims
for a complete transduction of the sentence to be
translated, this form of NLG is typically taken
to require addressing (at least) two separate chal-
lenges: what to say, the selection of an appropriate
subset of the input data to discuss, and how to say
it, the surface realization of a generation (Reiter
and Dale, 1997; Jurafsky and Martin, 2014). Tra-
ditionally, these two challenges have been modu-
larized and handled separately by generation sys-
tems. However, neural generation systems, which
are typically trained end-to-end as conditional lan-
guage models (Mikolov et al., 2010; Sutskever
et al., 2011, 2014), blur this distinction.

In this context, we believe the problem of
generating multi-sentence summaries of tables or
database records to be a reasonable next-problem
for neural techniques to tackle as they begin to
consider more difficult NLG tasks. In particu-
lar, we would like this generation task to have the
following two properties: (1) it is relatively easy
to obtain fairly clean summaries and their corre-
sponding databases for dataset construction, and
(2) the summaries should be primarily focused on
conveying the information in the database. This
latter property ensures that the task is somewhat
congenial to a standard encoder-decoder approach,
and, more importantly, that it is reasonable to eval-
uate generations in terms of their fidelity to the
database.

One task that meets these criteria is that of gen-
erating summaries of sports games from associ-
ated box-score data, and there is indeed a long
history of NLG work that generates sports game
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summaries (Robin, 1994; Tanaka-Ishii et al., 1998;
Barzilay and Lapata, 2005). To this end, we make
the following contributions:

• We introduce a new large-scale corpus con-
sisting of textual descriptions of basketball
games paired with extensive statistical tables.
This dataset is sufficiently large that fully
data-driven approaches might be sufficient.

• We introduce a series of extractive evalua-
tion models to automatically evaluate output
generation performance, exploiting the fact
that post-hoc information extraction is signif-
icantly easier than generation itself.

• We apply a series of state-of-the-art neural
methods, as well as a simple templated gener-
ation system, to our data-to-document gener-
ation task in order to establish baselines and
study their generations.

Our experiments indicate that neural systems
are quite good at producing fluent outputs and
generally score well on standard word-match met-
rics, but perform quite poorly at content selection
and at capturing long-term structure. While the
use of copy-based models and additional recon-
struction terms in the training loss can lead to im-
provements in BLEU and in our proposed extrac-
tive evaluations, current models are still quite far
from producing human-level output, and are sig-
nificantly worse than templated systems in terms
of content selection and realization. Overall, we
believe this problem of data-to-document genera-
tion highlights important remaining challenges in
neural generation systems, and the use of extrac-
tive evaluation reveals significant issues hidden by
standard automatic metrics.

2 Data-to-Text Datasets

We consider the problem of generating descriptive
text from database records. Following the notation
in Liang et al. (2009), let s = {rj}Jj=1 be a set of
records, where for each r∈ s we define r.t∈T to
be the type of r, and we assume each r to be a bi-
narized relation, where r.e and r.m are a record’s
entity and value, respectively. For example, a
database recording statistics for a basketball game
might have a record r such that r.t = POINTS, r.e
= RUSSELL WESTBROOK, and r.m = 50. In
this case, r.e gives the player in question, and r.m
gives the number of points the player scored. From

these records, we are interested in generating de-
scriptive text, ŷ1:T = ŷ1, . . . , ŷT of T words such
that ŷ1:T is an adequate and fluent summary of s.
A dataset for training data-to-document systems
typically consists of (s, y1:T ) pairs, where y1:T is
a document consisting of a gold (i.e., human gen-
erated) summary for database s.

Several benchmark datasets have been used in
recent years for the text generation task, the most
popular of these being WEATHERGOV (Liang
et al., 2009) and ROBOCUP (Chen and Mooney,
2008). Recently, neural generation systems have
show strong results on these datasets, with the sys-
tem of Mei et al. (2016) achieving BLEU scores
in the 60s and 70s on WEATHERGOV, and BLEU
scores of almost 30 even on the smaller ROBOCUP

dataset. These results are quite promising, and
suggest that neural models are a good fit for
text generation. However, the statistics of these
datasets, shown in Table 1, indicate that these
datasets use relatively simple language and record
structure. Furthermore, there is reason to believe
that WEATHERGOV is at least partially machine-
generated (Reiter, 2017). More recently, Lebret
et al. (2016) introduced the WIKIBIO dataset,
which is at least an order of magnitude larger in
terms of number of tokens and record types. How-
ever, as shown in Table 1, this dataset too only
contains short (single-sentence) generations, and
relatively few records per generation. As such, we
believe that early success on these datasets is not
yet sufficient for testing the desired linguistic ca-
pabilities of text generation at a document-scale.

With this challenge in mind, we introduce
a new dataset for data-to-document text gen-
eration, available at https://github.com/
harvardnlp/boxscore-data. The dataset
is intended to be comparable to WEATHERGOV

in terms of token count, but to have significantly
longer target texts, a larger vocabulary space, and
to require more difficult content selection.

The dataset consists of two sources of arti-
cles summarizing NBA basketball games, paired
with their corresponding box- and line-score ta-
bles. The data statistics of these two sources, RO-
TOWIRE and SBNATION, are also shown in Ta-
ble 1. The first dataset, ROTOWIRE, uses profes-
sionally written, medium length game summaries
targeted at fantasy basketball fans. The writing
is colloquial, but relatively well structured, and
targets an audience primarily interested in game
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WIN LOSS PTS FG PCT RB AS . . .
TEAM

Heat 11 12 103 49 47 27
Hawks 7 15 95 43 33 20

AS RB PT FG FGA CITY . . .
PLAYER

Tyler Johnson 5 2 27 8 16 Miami
Dwight Howard 4 17 23 9 11 Atlanta
Paul Millsap 2 9 21 8 12 Atlanta
Goran Dragic 4 2 21 8 17 Miami
Wayne Ellington 2 3 19 7 15 Miami
Dennis Schroder 7 4 17 8 15 Atlanta
Rodney McGruder 5 5 11 3 8 Miami
Thabo Sefolosha 5 5 10 5 11 Atlanta
Kyle Korver 5 3 9 3 9 Atlanta
. . .

The Atlanta Hawks defeated the Miami Heat
, 103 - 95 , at Philips Arena on Wednesday
. Atlanta was in desperate need of a win and
they were able to take care of a shorthanded
Miami team here . Defense was key for
the Hawks , as they held the Heat to 42
percent shooting and forced them to commit
16 turnovers . Atlanta also dominated in the
paint , winning the rebounding battle , 47
- 34 , and outscoring them in the paint 58
- 26.The Hawks shot 49 percent from the
field and assisted on 27 of their 43 made
baskets . This was a near wire - to - wire
win for the Hawks , as Miami held just one
lead in the first five minutes . Miami ( 7 -
15 ) are as beat - up as anyone right now
and it ’s taking a toll on the heavily used
starters . Hassan Whiteside really struggled
in this game , as he amassed eight points ,
12 rebounds and one blocks on 4 - of - 12
shooting ...

Figure 1: An example data-record and document pair from the ROTOWIRE dataset. We show a subset of the game’s records
(there are 628 in total), and a selection from the gold document. The document mentions only a select subset of the records, but
may express them in a complicated manner. In addition to capturing the writing style, a generation system should select similar
record content, express it clearly, and order it appropriately.

RC WG WB RW SBN

Vocab 409 394 400K 11.3K 68.6K
Tokens 11K 0.9M 19M 1.6M 8.8M
Examples 1.9K 22.1K 728K 4.9K 10.9K
Avg Len 5.7 28.7 26.1 337.1 805.4
Rec. Types 4 10 1.7K 39 39
Avg Records 2.2 191 19.7 628 628

Table 1: Vocabulary size, number of total tokens, number of
distinct examples, average generation length, total number of
record types, and average number of records per example for
the ROBOCUP (RC), WEATHERGOV (WG), WIKIBIO (WB),
ROTOWIRE (RW), and SBNATION (SBN) datasets.

statistics. The second dataset, SBNATION, uses
fan-written summaries targeted at other fans. This
dataset is significantly larger, but also much more
challenging, as the language is very informal, and
often tangential to the statistics themselves. We
show some sample text from ROTOWIRE in Fig-
ure 1. Our primary focus will be on the RO-
TOWIRE data.

3 Evaluating Document Generation

We begin by discussing the evaluation of gener-
ated documents, since both the task we introduce
and the evaluation methods we propose are moti-
vated by some of the shortcomings of current ap-
proaches to evaluation. Text generation systems
are typically evaluated using a combination of au-
tomatic measures, such as BLEU (Papineni et al.,
2002), and human evaluation. While BLEU is

perhaps a reasonably effective way of evaluating
short-form text generation, we found it to be un-
satisfactory for document generation. In particu-
lar, we note that it primarily rewards fluent text
generation, rather than generations that capture the
most important information in the database, or that
report the information in a particularly coherent
way. While human evaluation, on the other hand,
is likely ultimately necessary for evaluating gener-
ations (Liu et al., 2016; Wu et al., 2016), it is much
less convenient than using automatic metrics. Fur-
thermore, we believe that current text generations
are sufficiently bad in sufficiently obvious ways
that automatic metrics can still be of use in evalu-
ation, and we are not yet at the point of needing to
rely solely on human evaluators.

3.1 Extractive Evaluation

To address this evaluation challenge, we begin
with the intuition that assessing document quality
is easier than document generation. In particular,
it is much easier to automatically extract informa-
tion from documents than to generate documents
that accurately convey desired information. As
such, simple, high-precision information extrac-
tion models can serve as the basis for assessing
and better understanding the quality of automatic
generations. We emphasize that such an evalua-
tion scheme is most appropriate when evaluating
generations (such as basketball game summaries)
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that are primarily intended to summarize informa-
tion. While many generation problems do not fall
into this category, we believe this to be an interest-
ing category, and one worth focusing on because
it is amenable to this sort of evaluation.

To see how a simple information extraction sys-
tem might work, consider the document in Fig-
ure 1. We may first extract candidate entity
(player, team, and city) and value (number and cer-
tain string) pairs r.e, r.m that appear in the text,
and then predict the type r.t (or none) of each can-
didate pair. For example, we might extract the
entity-value pair (“Miami Heat”, “95”) from the
first sentence in Figure 1, and then predict that the
type of this pair is POINTS, giving us an extracted
record r such that (r.e, r.m, r.t) = (MIAMI HEAT,
95, POINTS). Indeed, many relation extraction
systems reduce relation extraction to multi-class
classification precisely in this way (Zhang, 2004;
Zhou et al., 2008; Zeng et al., 2014; dos Santos
et al., 2015).

More concretely, given a document ŷ1:T , we
consider all pairs of word-spans in each sentence
that represent possible entities e and values m.
We then model p(r.t | e,m;θ) for each pair, us-
ing r.t = ε to indicate unrelated pairs. We use ar-
chitectures similar to those discussed in Collobert
et al. (2011) and dos Santos et al. (2015) to param-
eterize this probability; full details are given in the
Appendix.

Importantly, we note that the (s, y1:T ) pairs
typically used for training data-to-document sys-
tems are also sufficient for training the informa-
tion extraction model presented above, since we
can obtain (partial) supervision by simply check-
ing whether a candidate record lexically matches
a record in s.1 However, since there may be mul-
tiple records r∈ s with the same e and m but with
different types r.t, we will not always be able to
determine the type of a given entity-value pair
found in the text. We therefore train our clas-
sifier to minimize a latent-variable loss: for all
document spans e and m, with observed types
t(e,m) = {r.t : r∈ s, r.e= e, r.m=m} (possi-
bly {ε}), we minimize

L(θ) = −
∑

e,m

log
∑

t′∈t(e,m)

p(r.t = t′ | e,m;θ).

We find that this simple system trained in this way
is quite accurate at predicting relations. On the

1Alternative approaches explicitly align the document
with the table for this task (Liang et al., 2009).

ROTOWIRE data it achieves over 90% accuracy on
held-out data, and recalls approximately 60% of
the relations licensed by the records.

3.2 Comparing Generations
With a sufficiently precise relation extraction sys-
tem, we can begin to evaluate how well an auto-
matic generation ŷ1:T has captured the information
in a set of records s. In particular, since the pre-
dictions of a precise information extraction system
serve to align entity-mention pairs in the text with
database records, this alignment can be used both
to evaluate a generation’s content selection (“what
the generation says”), as well as content placement
(“how the generation says it”).

We consider in particular three induced metrics:

• Content Selection (CS): precision and re-
call of unique relations r extracted from
ŷ1:T that are also extracted from y1:T . This
measures how well the generated document
matches the gold document in terms of se-
lecting which records to generate.

• Relation Generation (RG): precision and
number of unique relations r extracted from
ŷ1:T that also appear in s. This measures how
well the system is able to generate text con-
taining factual (i.e., correct) records.

• Content Ordering (CO): normalized
Damerau-Levenshtein Distance (Brill
and Moore, 2000)2 between the sequences
of records extracted from y1:T and that
extracted from ŷ1:T . This measures how well
the system orders the records it chooses to
discuss.

We note that CS primarily targets the “what to say”
aspect of evaluation, CO targets the “how to say it”
aspect, and RG targets both.

We conclude this section by contrasting the
automatic evaluation we have proposed with
recently proposed adversarial evaluation ap-
proaches, which also advocate automatic metrics
backed by classification (Bowman et al., 2016;
Kannan and Vinyals, 2016; Li et al., 2017). Un-
like adversarial evaluation, which uses a black-
box classifier to determine the quality of a gener-
ation, our metrics are defined with respect to the

2DLD is a variant of Levenshtein distance that allows
transpositions of elements; it is useful in comparing the or-
dering of sequences that may not be permutations of the same
set (which is a requirement for measures like Kendall’s Tau).
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predictions of an information extraction system.
Accordingly, our metrics are quite interpretable,
since by construction it is always possible to deter-
mine which fact (i.e., entity-value pair) in the gen-
eration is determined by the extractor to not match
the database or the gold generation.

4 Neural Data-to-Document Models

In this section we briefly describe the neural gener-
ation methods we apply to the proposed task. As a
base model we utilize the now standard attention-
based encoder-decoder model (Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2015). We
also experiment with several recent extensions to
this model, including copy-based generation, and
training with a source reconstruction term in the
loss (in addition to the standard per-target-word
loss).

Base Model For our base model, we map each
record r∈ s into a vector r̃ by first embedding r.t
(e.g., POINTS), r.e (e.g., RUSSELL WESTBROOK),
and r.m (e.g., 50), and then applying a 1-layer
MLP (similar to Yang et al. (2016)).3 Our source
data-records are then represented as s̃ = {r̃j}Jj=1.
Given s̃, we use an LSTM decoder with atten-
tion and input-feeding, in the style of Luong et al.
(2015), to compute the probability of each target
word, conditioned on the previous words and on
s. The model is trained end-to-end to minimize
the negative log-likelihood of the words in the gold
text y1:T given corresponding source material s.

Copying There has been a surge of recent work
involving augmenting encoder-decoder models to
copy words directly from the source material on
which they condition (Gu et al., 2016; Gülçehre
et al., 2016; Merity et al., 2016; Jia and Liang,
2016; Yang et al., 2016). These models typically
introduce an additional binary variable zt into the
per-timestep target word distribution, which indi-
cates whether the target word ŷt is copied from the
source or generated:

p(ŷt | ŷ1:t−1, s) =
∑

z∈{0,1}
p(ŷt, zt = z | ŷ1:t−1, s).

In our case, we assume that target words are
copied from the value portion of a record r; that
is, a copy implies ŷt= r.m for some r and t.

3We also include an additional feature for whether the
player is on the home- or away-team.

Joint Copy Model The models of Gu et al.
(2016) and Yang et al. (2016) parameterize the
joint distribution table over ŷt and zt directly:

p(ŷt, zt | ŷ1:t−1, s) ∝



copy(ŷt, ŷ1:t−1, s) zt = 1, ŷt ∈ s
0 zt = 1, ŷt 6∈ s
gen(ŷt, ŷ1:t−1, s) zt = 0,

where copy and gen are functions parameterized
in terms of the decoder RNN’s hidden state that as-
sign scores to words, and where the notation ŷt ∈ s
indicates that ŷt is equal to r.m for some r∈ s.

Conditional Copy Model Gülçehre et al.
(2016), on the other hand, decompose the joint
probability as:

p(ŷt, zt | ŷ1:t−1, s) ={
pcopy(ŷt | zt, ŷ1:t−1, s) p(zt | ŷ1:t−1, s) zt=1

pgen(ŷt | zt, ŷ1:t−1, s) p(zt | ŷ1:t−1, s) zt=0,

where an MLP is used to model p(zt | ŷ1:t−1, s).
Models with copy-decoders may be trained to

minimize the negative log marginal probability,
marginalizing out the latent-variable zt (Gu et al.,
2016; Yang et al., 2016; Merity et al., 2016). How-
ever, if it is known which target words yt are
copied, it is possible to train with a loss that does
not marginalize out the latent zt. Gülçehre et al.
(2016), for instance, assume that any target word
yt that also appears in the source is copied, and
train to minimize the negative joint log-likelihood
of the yt and zt.

In applying such a loss in our case, we again
note that there may be multiple records r such
that r.m appears in ŷ1:T . Accordingly, we
slightly modify the pcopy portion of the loss of
Gülçehre et al. (2016) to sum over all matched
records. In particular, we model the probability
of relations r ∈ s such that r.m = yt and r.e
is in the same sentence as r.m. Letting r(yt) =
{r ∈ s : r.m = yt, same−sentence(r.e, r.m)},
we have:

pcopy(yt | zt, y1:t−1, s) =
∑

r∈r(yt)
p(r | zt, y1:t−1, s).

We note here that the key distinction for our pur-
poses between the Joint Copy model and the Con-
ditional Copy model is that the latter conditions on
whether there is a copy or not, and so in pcopy the
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source records compete only with each other. In
the Joint Copy model, however, the source records
also compete with words that cannot be copied. As
a result, training the Conditional Copy model with
the supervised loss of Gülçehre et al. (2016) can
be seen as training with a word-level reconstruc-
tion loss, where the decoder is trained to choose
the record in s that gives rise to yt.

Reconstruction Losses Reconstruction-based
techniques can also be applied at the document-
or sentence-level during training. One simple
approach to this problem is to utilize the hidden
states of the decoder to try to reconstruct the
database. A fully differentiable approach using
the decoder hidden states has recently been
successfully applied to neural machine translation
by Tu et al. (2017). Unlike copying, this method
is applied only at training, and attempts to learn
decoder hidden states with broader coverage of
the input data.

In adopting this reconstruction approach we
segment the decoder hidden states ht into d TB e
contiguous blocks of size at most B. Denoting a
single one of these hidden state blocks as bi, we
attempt to predict each field value in some record
r ∈ s from bi. We define p(r.e, r.m | bi), the prob-
ability of the entity and value in record r given bi,
to be softmax(f(bi)), where f is a parameterized
function of bi, which in our experiments utilize a
convolutional layer followed by an MLP; full de-
tails are given in the Appendix. We further extend
this idea and predictK records in s from bi, rather
than one. We can train with the following recon-
struction loss for a particular bi:

L(θ) = −
K∑

k=1

min
r∈s

log pk(r | bi;θ)

= −
K∑

k=1

min
r∈s

∑

x∈{e,m,t}
log pk(r.x | bi;θ),

where pk is the k’th predicted distribution over
records, and where we have modeled each com-
ponent of r independently. This loss attempts to
make the most probable record in s given bi more
probable. We found that augmenting the above
loss with a term that penalizes the total variation
distance (TVD) between the pk to be helpful.4

4Penalizing the TVD between the pk might be useful if,
for instance, K is too large, and only a smaller number of
records can be predicted from bi. We also experimented with

Both L(θ) and the TVD term are simply added
to the standard negative log-likelihood objective at
training time.

5 Experimental Methods

In this section we highlight a few important de-
tails of our models and methods; full details are
in the Appendix. For our ROTOWIRE models, the
record encoder produces r̃j in R600, and we use
a 2-layer LSTM decoder with hidden states of the
same size as the r̃j , and dot-product attention and
input-feeding in the style of Luong et al. (2015).
Unlike past work, we use two identically struc-
tured attention layers, one to compute the standard
generation probabilities (gen or pgen), and one to
produce the scores used in copy or pcopy.

We train the generation models using SGD and
truncated BPTT (Elman, 1990; Mikolov et al.,
2010), as in language modeling. That is, we split
each y1:T into contiguous blocks of length 100,
and backprop both the gradients with respect to
the current block as well as with respect to the en-
coder parameters for each block.

Our extractive evaluator consists of an ensem-
ble of 3 single-layer convolutional and 3 single-
layer bidirectional LSTM models. The convolu-
tional models concatenate convolutions with ker-
nel widths 2, 3, and 5, and 200 feature maps in the
style of (Kim, 2014). Both models are trained with
SGD.

Templatized Generator In addition to neu-
ral baselines, we also use a problem-specific,
template-based generator. The template-based
generator first emits a sentence about the teams
playing in the game, using a templatized sentence
taken from the training set:

The <team1> (<wins1>-<losses1>) de-

feated the <team2> (<wins2>-<losses2>)

<pts1>-<pts2>.

Then, 6 player-specific sentences of the following
form are emitted (again adapting a simple sentence
from the training set):

<player> scored <pts> points (<fgm>-

<fga> FG, <tpm>-<tpa> 3PT, <ftm>-

<fta> FT) to go with <reb> rebounds.

encouraging, rather than penalizing the TVD between the pk,
which might make sense if we were worried about ensuring
the pk captured different records.
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The 6 highest-scoring players in the game are used
to fill in the above template. Finally, a typical end
sentence is emitted:

The <team1>’ next game will be at home

against the Dallas Mavericks, while the

<team2> will travel to play the Bulls.

Code implementing all models can be found
at https://github.com/harvardnlp/
data2text. Our encoder-decoder models are
based on OpenNMT (Klein et al., 2017).

6 Results

We found that all models performed quite poorly
on the SBNATION data, with the best model
achieving a validation perplexity of 33.34 and a
BLEU score of 1.78. This poor performance is
presumably attributable to the noisy quality of the
SBNATION data, and the fact that many docu-
ments in the dataset focus on information not in
the box- and line-scores. Accordingly, we focus
on ROTOWIRE in what follows.

The main results for the ROTOWIRE dataset are
shown in Table 2, which shows the performance
of the models in Section 4 in terms of the metrics
defined in Section 3.2, as well as in terms of per-
plexity and BLEU.

6.1 Discussion
There are several interesting relationships in the
development portion of Table 2. First we note that
the Template model scores very poorly on BLEU,
but does quite well on the extractive metrics, pro-
viding an upper-bound for how domain knowledge
could help content selection and generation. All
the neural models make significant improvements
terms of BLEU score, with the conditional copy-
ing with beam search performing the best, even
though all the neural models achieve roughly the
same perplexity.

The extractive metrics provide further insight
into the behavior of the models. We first note
that on the gold documents y1:T , the extractive
model reaches 92% precision. Using the Joint
Copy model, generation only has a record gen-
eration (RG) precision of 47% indicating that re-
lationships are often generated incorrectly. The
best Conditional Copy system improves this value
to 71%, a significant improvement and potentially
the cause of the improved BLEU score, but still far
below gold.

The Utah Jazz ( 38 - 26 ) defeated the Houston Rockets ( 38
- 26 ) 117 - 91 on Wednesday at Energy Solutions Arena in
Salt Lake City . The Jazz got out to a quick start in this one
, out - scoring the Rockets 31 - 15 in the first quarter alone
. Along with the quick start , the Rockets were the superior
shooters in this game , going 54 percent from the field and
43 percent from the three - point line , while the Jazz went
38 percent from the floor and a meager 19 percent from deep
. The Rockets were able to out - rebound the Rockets 49 -
49 , giving them just enough of an advantage to secure the
victory in front of their home crowd . The Jazz were led
by the duo of Derrick Favors and James Harden . Favors
went 2 - for - 6 from the field and 0 - for - 1 from the three
- point line to score a game - high of 15 points , while also
adding four rebounds and four assists ....

Figure 2: Example document generated by the Conditional
Copy system with a beam of size 5. Text that accurately re-
flects a record in the associated box- or line-score is high-
lighted in blue, and erroneous text is highlighted in red.

Notably, content selection (CS) and content or-
dering (CO) seem to have no correlation at all
with BLEU. There is some improvement with CS
for the conditional model or reconstruction loss,
but not much change as we move to beam search.
CO actually gets worse as beam search is utilized,
possibly a side effect of generating more records
(RG#). The fact that these scores are much worse
than the simple templated model indicates that fur-
ther research is needed into better copying alone
for content selection and better long term content
ordering models.

Test results are consistent with development re-
sults, indicating that the Conditional Copy model
is most effective at BLEU, RG, and CS, and that
reconstruction is quite helpful for improving the
joint model.

6.2 Human Evaluation

We also undertook two human evaluation studies,
using Amazon Mechanical Turk. The first study
attempted to determine whether generations con-
sidered to be more precise by our metrics were
also considered more precise by human raters. To
accomplish this, raters were presented with a par-
ticular NBA game’s box score and line score, as
well as with (randomly selected) sentences from
summaries generated by our different models for
those games. Raters were then asked to count how
many facts in each sentence were supported by
records in the box or line scores, and how many
were contradicted. We randomly selected 20 dis-
tinct games to present to raters, and a total of 20
generated sentences per game were evaluated by
raters. The left two columns of Table 3 contain the
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Development

RG CS CO PPL BLEU
Beam Model P% # P% R% DLD%

Gold 91.77 12.84 100 100 100 1.00 100
Template 99.35 49.7 18.28 65.52 12.2 N/A 6.87

B=1

Joint Copy 47.55 7.53 20.53 22.49 8.28 7.46 10.41
Joint Copy + Rec 57.81 8.31 23.65 23.30 9.02 7.25 10.00
Joint Copy + Rec + TVD 60.69 8.95 23.63 24.10 8.84 7.22 12.78
Conditional Copy 68.94 9.09 25.15 22.94 9.00 7.44 13.31

B=5

Joint Copy 47.00 10.67 16.52 26.08 7.28 7.46 10.23
Joint Copy + Rec 62.11 10.90 21.36 26.26 9.07 7.25 10.85
Joint Copy + Rec + TVD 57.51 11.41 18.28 25.27 8.05 7.22 12.04
Conditional Copy 71.07 12.61 21.90 27.27 8.70 7.44 14.46

Test

Template 99.30 49.61 18.50 64.70 8.04 N/A 6.78
Joint Copy + Rec (B=5) 61.23 11.02 21.56 26.45 9.06 7.47 10.88
Joint Copy + Rec + TVD (B=1) 60.27 9.18 23.11 23.69 8.48 7.42 12.96
Conditional Copy (B=5) 71.82 12.82 22.17 27.16 8.68 7.67 14.49

Table 2: Performance of induced metrics on gold and system outputs of RotoWire development and test data. Columns indicate
Record Generation (RG) precision and count, Content Selection (CS) precision and recall, Count Ordering (CO) in normalized
Damerau-Levenshtein distance, perplexity, and BLEU. These first three metrics are described in Section 3.2. Models com-
pare Joint and Conditional Copy also with addition Reconstruction loss and Total Variation Distance extensions (described in
Section 4).

average numbers of supporting and contradicting
facts per sentence as determined by the raters, for
each model. We see that these results are generally
in line with the RG and CS metrics, with the Con-
ditional Copy model having the highest number of
supporting facts, and the reconstruction terms sig-
nificantly improving the Joint Copy models.

Using a Tukey HSD post-hoc analysis of an
ANOVA with the number of contradicting facts as
the dependent variable and the generating model
and rater id as independent variables, we found
significant (p < 0.01) pairwise differences in con-
tradictory facts between the gold generations and
all models except “Copy+Rec+TVD,” as well as a
significant difference between “Copy+Rec+TVD”
and “Copy”. We similarly found a significant pair-
wise difference between “Copy+Rec+TVD” and
“Copy” for number of supporting facts.

Our second study attempted to determine
whether generated summaries differed in terms of
how natural their ordering of records (as captured,
for instance, by the DLD metric) is. To test this,
we presented raters with random summaries gen-
erated by our models and asked them to rate the
naturalness of the ordering of facts in the sum-
maries on a 1-7 Likert scale. 30 random sum-
maries were used in this experiment, each rated
3 times by distinct raters. The average Likert rat-
ings are shown in the rightmost column of Table 3.

# Supp. # Cont. Order Rat.

Gold 2.04 0.70 5.19
Joint Copy 1.65 2.31 3.90
Joint Copy + Rec 2.33 1.83 4.43
Joint Copy + Rec +TVD 2.43 1.16 4.18
Conditional Copy 3.05 1.48 4.03

Table 3: Average rater judgment of number of box score
fields supporting (left column) or contradicting (middle col-
umn) a generated sentence, and average rater Likert rating for
the naturalness of a summary’s ordering (right column). All
generations use B=1.

While it is encouraging that the gold summaries
received a higher average score than the gener-
ated summaries (and that the reconstruction term
again improved the Joint Copy model), a Tukey
HSD analysis similar to the one presented above
revealed no significant pairwise differences.

6.3 Qualitative Example

Figure 2 shows a document generated by the Con-
ditional Copy model, using a beam of size 5. This
particular generation evidently has several nice
properties: it nicely learns the colloquial style of
the text, correctly using idioms such as “19 per-
cent from deep.” It is also partially accurate in its
use of the records; we highlight in blue when it
generates text that is licensed by a record in the
associated box- and line-scores.

At the same time, the generation also contains
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major logical errors. First, there are basic copy-
ing mistakes, such as flipping the teams’ win/loss
records. The system also makes obvious seman-
tic errors; for instance, it generates the phrase
“the Rockets were able to out-rebound the Rock-
ets.” Finally, we see the model hallucinates fac-
tual statements, such as “in front of their home
crowd,” which is presumably likely according to
the language model, but ultimately incorrect (and
not supported by anything in the box- or line-
scores). In practice, our proposed extractive eval-
uation will pick up on many errors in this pas-
sage. For instance, “four assists” is an RG error,
repeating the Rockets’ rebounds could manifest in
a lower CO score, and incorrectly indicating the
win/loss records is a CS error.

7 Related Work

In this section we note additional related work not
noted throughout. Natural language generation
has been studied for decades (Kukich, 1983; McK-
eown, 1992; Reiter and Dale, 1997), and generat-
ing summaries of sports games has been a topic of
interest for almost as long (Robin, 1994; Tanaka-
Ishii et al., 1998; Barzilay and Lapata, 2005).

Historically, research has focused on both con-
tent selection (“what to say”) (Kukich, 1983;
McKeown, 1992; Reiter and Dale, 1997; Duboue
and McKeown, 2003; Barzilay and Lapata, 2005),
and surface realization (“how to say it”) (Gold-
berg et al., 1994; Reiter et al., 2005) with earlier
work using (hand-built) grammars, and later work
using SMT-like approaches (Wong and Mooney,
2007) or generating from PCFGs (Belz, 2008)
or other formalisms (Soricut and Marcu, 2006;
White et al., 2007). In the late 2000s and early
2010s, a number of systems were proposed that
did both (Liang et al., 2009; Angeli et al., 2010;
Kim and Mooney, 2010; Lu and Ng, 2011; Kon-
stas and Lapata, 2013).

Within the world of neural text generation,
some recent work has focused on conditioning
language models on tables (Yang et al., 2016),
and generating short biographies from Wikipedia
Tables (Lebret et al., 2016; Chisholm et al.,
2017). Mei et al. (2016) use a neural encoder-
decoder approach on standard record-based gen-
eration datasets, obtaining impressive results, and
motivating the need for more challenging NLG
problems.

8 Conclusion and Future Work

This work explores the challenges facing neural
data-to-document generation by introducing a new
dataset, and proposing various metrics for auto-
matically evaluating content selection, generation,
and ordering. We see that recent ideas in copying
and reconstruction lead to improvements on this
task, but that there is a significant gap even be-
tween these neural models and templated systems.
We hope to motivate researchers to focus further
on generation problems that are relevant both to
content selection and surface realization, but may
not be reflected clearly in the model’s perplexity.

Future work on this task might include ap-
proaches that process or attend to the source
records in a more sophisticated way, generation
models that attempt to incorporate semantic or
reference-related constraints, and approaches to
conditioning on facts or records that are not as ex-
plicit in the box- and line-scores.
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Abstract

In this paper, we present a set of compu-
tational methods to identify the likeliness
of a word being borrowed, based on the
signals from social media. In terms of
Spearman’s correlation values, our meth-
ods perform more than two times better
(∼ 0.62) in predicting the borrowing like-
liness compared to the best performing
baseline (∼ 0.26) reported in literature.
Based on this likeliness estimate we asked
annotators to re-annotate the language tags
of foreign words in predominantly native
contexts. In 88% of cases the annotators
felt that the foreign language tag should be
replaced by native language tag, thus in-
dicating a huge scope for improvement of
automatic language identification systems.

1 Introduction

In social media communication, multilingual peo-
ple often switch between languages, a phe-
nomenon known as code-switching or code-
mixing (Auer, 1984). This makes language iden-
tification and tagging, which is perhaps a pre-
requisite for almost all other language processing
tasks that follow, a challenging problem (Barman
et al., 2014). In code-mixing people are subcon-
sciously aware of the foreign origin of the code-
mixed word or the phrase. A related but linguisti-
cally and cognitively distinct phenomenon is lex-
ical borrowing (or simply, borrowing), where a
word or phrase from a foreign language say L2

is used as a part of the vocabulary of native lan-
guage say L1. For instance, in Dutch, the En-
glish word “sale” is now used more frequently

than the Dutch equivalent “uitverkoop”. Some
English words like “shop” are even inflected in
Dutch as “shoppen” and heavily used. While it is
difficult in general to ascertain whether a foreign
word or phrase used in an utterance is borrowed
or just an instance of code-mixing (Bali et al.,
2014), one tell tale sign is that only proficient mul-
tilinguals can code-mix, while even monolingual
speakers can use borrowed words because, by def-
inition, these are part of the vocabulary of a lan-
guage. In other words, just because an English
speaker understands and uses the word “tortilla”
does not imply that she can speak or understand
Spanish. A borrowed word from L2 initially ap-
pears frequently in speech, then gradually in print
media like newspaper and finally it loses its ori-
gin’s identity and is used in L1 resulting in an in-
clusion in the dictionary of L1 (Myers-Scotton,
2002; Thomason, 2003). Borrowed words often
take several years before they formally become
part of L1 dictionary. This motivates our research
question “is early-stage automatic identification of
likely to be borrowed words possible?”. This is
known to be a hard problem because (i) it is a
socio-linguistic phenomenon closely related to ac-
ceptability and frequency, (ii) borrowing is a dy-
namic process; new borrowed words enter the lex-
icon of a language as old words, both native and
borrowed, might slowly fade away from usage,
and (iii) it is a population level phenomenon that
necessitates data from a large portion of the pop-
ulation unlike standard natural language corpora
that typically comes from a very small set of au-
thors. Automatic identification of borrowed words
in social media content (SMC) can improve lan-
guage tagging by recommending the tagger to tag
the language of the borrowed words as L1 instead
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of L2. The above reasons motivate us to resort
to the social media (in particular, Twitter), where
a large population of bilingual/multilingual speak-
ers are known to often tweet in code-mixed collo-
quial languages (Carter et al., 2013; Solorio et al.,
2014; Vyas et al., 2014; Jurgens et al., 2017; Ri-
jhwani et al., 2017). We designed our methodol-
ogy to work for any pair of languages L1 and L2

subject to the availability of sufficient SMC. In the
current study, we consider Hindi asL1 and English
as L2.

The main stages of our research are as follows:
Metrics to quantify the likeliness of borrowing
from social media signals: We define three novel
and closely similar metrics that serve as social sig-
nals indicating the likeliness of borrowing. We
compare the likeliness of borrowing as predicted
by our model and a baseline model with that from
the ground truth obtained from human judges.
Ground truth generation: We launch an exten-
sive survey among 58 human judges of various
age groups and various educational backgrounds
to collect responses indicating if each of the can-
didate foreign word is likely borrowed.
Application: We randomly selected some words
that have a high, low and medium borrowing like-
liness as predicted by our metrics. Further, we
randomly selected one tweet for each of the cho-
sen words. The chosen words in almost all of
these tweets have L2 as their language tag while a
majority of the surrounding words have a tag L1.
We asked expert annotators to re-evaluate the lan-
guage tags of the chosen words and indicate if they
would prefer to switch this tag from L2 from L1.

Finally, our key results are outlined below:
1. We obtained the Spearman’s rank correlation
between the ground-truth ranking and the ranking
based on our metrics as ∼ 0.62 for all the three
variants which is more than double the value (∼
0.26) if we use the most competitive baseline (Bali
et al., 2014) available in the literature.
2. Interestingly, the responses of the judges in the
age group below 30 seem to correspond even bet-
ter with our metrics. Since language change is
brought about mostly by the younger population,
this might possibly mean that our metrics are able
to capture the early signals of borrowing.
3. Those users that mix languages the least in their
tweets present the best signals of borrowing in
case they do mix the languages (correlation of our
metrics estimated from the tweets of these users

with that of the ground truth is ∼ 0.65).
4. Finally, we obtain an excellent re-annotation
accuracy of 88% for the words falling in the surely
borrowed category as predicted by our metrics.

2 Related work

In linguistics code-mixing and borrowing have
been studied under the broader scope of language
change and evolution. Linguists have for a long
time focused on the sociological and the con-
versational necessity of borrowing and mixing in
multilingual communities (see Auer (1984) and
Muysken (1996) for a review). In particular,
Sankoff et al. (1990) describes the complexity of
choosing features that are indicative of borrow-
ing. This work further showed that it is not al-
ways true that only highly frequent words are bor-
rowed; nonce words could also be borrowed along
with the frequent words. More recently, (Nzai
et al., 2014) analyzed the formal conversation of
Spanish-English multilingual people and found
that code mixing/borrowing is not only restricted
to daily speech but is also prevalent in formal con-
versations. (Hadei, 2016) showed that phonolog-
ical integration could be evaluated to understand
the phenomenon of word borrowing. Along sim-
ilar lines, (Sebonde, 2014) showed morphological
and syntactic features could be good indicators for
numerical borrowings. (Senaratne, 2013) reported
that in many languages English words are likely to
be borrowed in both formal and semi-formal text.

Mixing in computer mediated communica-
tion and social media: (Sotillo, 2012) investi-
gated various types of code-mixing in a corpora
of 880 SMS text messages. The author observed
that most often mixing takes place at the beginning
of a sentence as well as through simple insertions.
Similar observations about chat and email mes-
sages have been reported in (Bock, 2013; Negrón,
2009). However, studies of code-mixing with
Chinese-English bilinguals from Hong Kong (Li,
2009) and Macao (San, 2009) brings forth results
that contrast the aforementioned findings and in-
dicate that in these societies code-mixing is driven
more by linguistic than social motivations.

Recently, the advent of social media has im-
mensely propelled the research on code-mixing
and borrowing as a dynamic social phenom-
ena. (Hidayat, 2012) noted that in Facebook,
users mostly preferred inter-sentential mixing and
showed that 45% of the mixing originated from
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real lexical needs, 40% was used for conversa-
tions on a particular topic and the rest 5% for con-
tent clarification. In contrast, (Das and Gambäck,
2014) showed that in case of Facebook messages,
intra-sentential mixing accounted for more than
half of the cases while inter-sentential mixing ac-
counted only for about one-third of the cases. In
fact, in the First Workshop on Computational Ap-
proaches to Code Switching a shared task on code-
mixing in tweets was launched and four differ-
ent code-mixed corpora were collected from Twit-
ter as a part of the shared task (Solorio et al.,
2014). Language identification task has also been
handled for English-Hindi and English-Bengali
code-mixed tweets in (Das and Gambäck, 2013).
Part-of-speech tagging have been recently done
for code-mixed English-Hindi tweets (Solorio and
Liu, 2008; Vyas et al., 2014).

Diachronic studies: As an aside, it is interest-
ing to note that the availability of huge volumes of
timestamped data (tweet streams, digitized books)
is now making it possible to study various lin-
guistic phenomena quantitatively over different
timescales. For instance, (Sagi et al., 2009) uses
latent semantic analysis for detection and tracking
of changes in word meaning, whereas (Frermann
and Lapata, 2016) presents a Bayesian approach
for the same problem. (Peirsman et al., 2010)
presents a distributed model for automatic identi-
fication of lexical variation between language va-
rieties. (Bamman and Crane, 2011) discusses a
method for automatically identifying word sense
variation in a dated collection of historical books
. (Mitra et al., 2014) presents a computational
method for automatic identification of change in
word senses across different timescales. (Cook
et al., 2014) presents a method for novel sense
identification of words over time.

Despite these diverse and rich research agendas
in the field of code-switching and lexical dynam-
ics, there has not been much attempt to quantify
the likeliness of borrowing of foreign words in a
language. The only work that makes an attempt
in this direction is (Bali et al., 2014), which is de-
scribed in detail in Sec 3.1. One of the primary
challenges faced by any quantitative research on
lexical borrowing is that borrowing is a social phe-
nomenon, and therefore, it is difficult to identify
suitable indicators of such a lexical diffusion pro-
cess unless one has access to a large population-
level data. In this work, we show for the first time

how certain simple and closely related signals en-
coding the language usage of social media users
can help us construe appropriate metrics to quan-
tify the likeliness of borrowing of a foreign word.

3 Methodology

In this section, we present the baseline metric and
propose three new metrics that quantify the likeli-
ness of borrowing.

3.1 Baseline metric

Baseline metric – We consider the log(FL2
FL1

) value
proposed in (Bali et al., 2014) as the baseline met-
ric. Here FL2 denotes the frequency of the L1

transliterated form of the word w in the standard
L1 newspaper corpus. FL1 , on the other hand, de-
notes the frequency of the L1 translation of the
word w in the same newspaper corpus. For our
experiments discussed in the later sections, both
the transliteration and the translation of the words
have been done by a set of volunteers who are na-
tive L1 speakers. The authors in (Bali et al., 2014)
claim that the more positive the value of this met-
ric is for a word w, the higher is the likeliness of
its being borrowed. The more negative the value
is, the higher are the chances that the word w is an
instance of code-mixing.
Ranking – Based on the values obtained from the
above metric for a set of target words, we rank
these words; words with high positive values fea-
ture at the top of the rank list and words with high
negative values feature at the bottom of the list.
For two words having the same log(FL2

FL1
) value,

we resolve the conflict by assigning each of these
the average of their two rank positions. In a subse-
quent section, we shall compare this rank list with
the one obtained from the ground truth responses.

3.2 Proposed metric

In this section, we present three novel and closely
related metrics based on the language usage pat-
terns of the users of social media (in specific, Twit-
ter). In order to define our metrics, we need all the
words to be language tagged. The different tags
that a word can have are: L1, L2, NE (Named En-
tity) and Others. Based on the word level tag, we
also create a tweet level tag as follows:

1. L1: Almost every word (> 90%) in the tweet
is tagged as L1.

2. L2: Almost every word (> 90%) in the tweet
is tagged as L2.
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3. CML1: Code-mixed tweet but majority (i.e.,
> 50%) of the words are tagged as L1.

4. CML2: Code-mixed tweet but majority (i.e.,
> 50%) of the words are tagged as L2.

5. CMEQ: Code-mixed tweet having very sim-
ilar number of words tagged as L1 and L2

respectively.
6. Code Switched: There is a trail of L1 words

followed by a trail of L2 words or vice versa.
Using the above classification, we define the

following metrics:
Unique User Ratio (UUR) – The Unique User Ra-
tio for word usage across languages is defined as
follows:

UUR(w) =
UL1 + UCML1

UL2

(1)

where UL1 (UL2 , UCML1) is the number of unique
users who have used the word w in a L1 (L2,
CML1) tweet at least once.
Unique Tweet Ratio (UTR) – The Unique Tweet
Ratio for word usage across languages is defined
as follows:

UTR(w) =
TL1 + TCML1

TL2

(2)

where TL1 (TL2 , TCML1) is the total number of L1

(L2, CML1) tweets which contain the word w.
Unique Phrase Ratio (UPR) – The Unique Phrase
Ratio for word usage across languages is defined
as follows:

UPR(w) =
PL1

PL2

(3)

where PL1 (PL2) is the number of L1 (L2) phrases
which contain the word w. Note that unlike the
definitions of UUR and UTR that exploit the
word level language tags, the definition of UPR
exploits the phrase level language tags.
Ranking – We prepare a separate rank list of the
target words based on each of the three proposed
metrics – UUR, UTR and UPR. The higher the
value of each of this metric the higher is the like-
liness of the word w to be borrowed and higher
up it is in the rank list. In a subsequent section,
we shall compare these rank lists with the one pre-
pared from the ground truth responses.

4 Experiments

In this section we discuss the dataset for our ex-
periments, the evaluation criteria and the ground
truth preparation scheme.

4.1 Datasets and preprocessing

In this study, we consider code-mixed tweets gath-
ered from Hindi-English bilingual Twitter users in
order to study the effectiveness of our proposed
metrics. The native language L1 is Hindi and
the foreign language L2 is English. To bootstrap
the data collection process, we used the language
tagged tweets presented in (Rudra et al., 2016).
In addition to this, we also crawled tweets (be-
tween Nov 2015 and Jan 2016) related to 28 hash-
tags representing different Indian contexts cov-
ering important topics such as sports, religion,
movies, politics etc. This process results in a
set of 811981 tweets. We language-tag (see de-
tails later in this section) each tweet so crawled
and find that there are 3577 users who use mixed
language for tweeting. Next, we systematically
crawled the time lines of these 3577 users between
Feb 2016 and March 2016 to gather more mixed
language tweets. Using this two step process we
collected a total of 1550714 distinct tweets. From
this data, we filtered out tweets that are not writ-
ten in romanized script, tweets having only URLs
and tweets having empty content. Post filtering we
obtained 725173, tweets which we use for the rest
of the analysis. The datasets can be downloaded
from http://cnerg.org/borrow

Language tagging: We tag each word in a tweet
with the language of its origin using the method
outlined in (Gella et al., 2013). Hi represents a pre-
dominantly Hindi tweet, En represents a predom-
inantly English tweet, CMH (CME) represents
code-mixed tweets with more Hindi (English)
words, CMEQ represents code-mixed tweets with
almost equal number of Hindi and English words
and CS represents code-switched tweets (the num-
ber and % of tweets in each of the above six cat-
egories are presented in the supplementary mate-
rial). Like the word level, the tagger also provides
a phrase level language tag. Once again, the differ-
ent tags that an entire phrase can have are: En, Hi
and Oth (Other). The metrics defined in the pre-
vious section are computed using these language
tags.
Newspaper dataset for the baseline: As we had
discussed in the previous section, for the construc-
tion of the baseline ranking we need to resort to
counting the frequency of the foreign words (i.e.,
English words) and their Hindi translations in a
newspaper corpus as has been outlined in (Bali
et al., 2014). For this purpose, we use the FIRE
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dataset built from the Hindi Jagaran newspaper
corpus1 which is written in Devanagari script.

4.2 Target word selection

We first compute the most frequent foreign (i.e.,
English words) in our tweet corpus. Since we are
interested in the frequency of the English word
only when it appears as a foreign word we do not
consider the (i) Hi tweets since they do not have
any foreign word, (ii) En tweets since here the
English words are not foreign words and the (iii)
code-switched tweets. Based on the frequency of
usage of English as a foreign word, we select the
top 1000 English words. Removal of stop words
and text normalization leaves beyond 230 nouns
(see supplementary material for the list of words).
Final selection of target words: In language
processing, context plays an important role in
understanding different properties of a word.
For our study, we also attempt to use the lan-
guage tags as features of the context words
for a given target word. Our hypothesis here
is that there should exist classes of words that
have similar context features and the likelihood
of being borrowed in each class should be
different. For example, when an English word
is surrounded by mostly Hindi words it seems
to be more likely borrowed. We present two
examples in the box below to illustrate this.
Example I:
@****** Welcome. Film jaroor dekhna.
Nahi to injection ready hai.
Example II:
@***** Trust @*****
Kuch to ache se karo sirji....
Har jagah bhaagte rehna is not a good thing.

In Example I the English word “film” is sur-
rounded by mostly Hindi words. On the other
hand, in Example II the English word “thing” is
surrounded mostly by English words. Note that
the word “film” is very commonly used by Hindi
monolingual speakers and is therefore highly
likely to have been borrowed unlike the English
word “thing” which is arguably an instance of
mixing. This socio-linguistic difference seems to
be very appropriately captured by the language
tag of the surrounding words of these two words
in the respective tweets. Based on this hypothesis

1Jagaran corpus: http:/fire.irsi.res.in/
fire/static/data

we arrange the 230 words into contextually
similar groups (see supplementary material for
the grouping details). Finally, using the baseline
metric log(FEFH ) (E: English, H: Hindi), we
proportionately choose words from these groups
as follows:
Words with very high or very low values of
log(FEFH ) (hlws) – we select words having the
highest and the lowest values of log(FEFH ) from
each of the context groups. This constitutes
a set of 30 words. Note that these words are
baseline-biased and therefore the metric should be
able to discriminate them well.
Words with medium values of log(FEFH ) (mws) –
we selected 27 words having not so high and not
so low log(FEFH ) at uniformly at random.
Full set of words (full) – Thus, in total we
selected 57 target words for the purpose of our
evaluation. We present these words in the box
below.

Baseline-biased words – ’thing’, ’way’, ’woman’,
’press’, ’wrong’, ’well’, ’matter’, ’reason’, ’ques-
tion’, ’guy’, ’moment’, ’week’, ’luck’, ’president’,
’body’, ’job’, ’car’, ’god’, ’gift’, ’status’, ’univer-
sity’, ’lyrics’, ’road’, ’politics’, ’parliament’, ’review’,
’scene’, ’seat’, ’film’, ’degree’
Randomly selected words – ’people’, ’play’, ’house’,
’service’, ’rest’, ’boy’, ’month’, ’money’, ’cool’, ’de-
velopment’, ’group’, ’friend’, ’day’, ’performance’,
’school’, ’blue’, ’room’, ’interview’, ’share’, ’request’,
’traffic’, ’college’, ’star’, ’class’, ’superstar’, ’petrol’,
’uncle’

4.3 Evaluation criteria
We present a four step approach for evaluation as
follows. We measure (i) how well theUUR, UTR
and UPR based ranking of the hlws set, the mws
set and the full set correlate with the ground truth
ranking (discussed in the next section) in compar-
ison to the rank given by the baseline metric, (ii)
how well the different rank ranges obtained from
our metric align with the ground truth as compared
to the baseline metric, (iii) whether there are some
systematic effects of the age group of the survey
participants on the rank correspondence, (iv) how
our metrics if computed from the tweets of users
who (a) rarely mix languages, (b) almost always
mix languages and (c) are in between (a) and (b),
align with the ground truth.
Rank correlation: We measure the standard
Spearman’s rank correlation (ρ) (Zar, 1972) pair-
wise between rank lists generated by (i) UUR
(ii) UTR (iii) UPR (iv) baseline metric and the
ground truth.

We shall describe the next four measurements
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taking UUR as the running example. The same
can be extended verbatim for the other two similar
metrics.

Rank ranges: We split each of the three rank lists
(UUR, ground truth and baseline) into five differ-
ent equal-sized ranges as follows – (i) surely bor-
rowed (SB) containing top 20% words from each
list, (ii) likely borrowed (LB) containing the next
20% words from each list, (iii) borderline (BL)
constituting the subsequent 20% words from each
list, (iv) likely mixed (LM) comprising the next
20% words from each list and (v) surely mixed
(SM) having the last 20% words from each rank
list. Therefore, we have three sets of five buckets,
one set each for UUR, the ground truth and the
baseline based rank list.

Next we calculate the bucket-wise correspon-
dence between (i) the UUR and the ground truth
set and (ii) the baseline and the ground truth set in
terms of standard precision and recall measures.
For our purpose, we adapt these measures as fol-
lows.
G: ground truth bucket set, Bb: baseline bucket
set, Ub: UUR bucket set;
BS ∈ {Bb, Ub}, T (type of bucket) = {SB, LB,
BL, LM, SM};
bt = words in type t bucket from BS, gt = words
in type t bucket from G, t ∈ T ;
tpt (no. of true positives) = |bt ∩ gt|, fpt (no. of
false positives) = |bt − gt|, tnt (no. of true nega-
tives) = |gt − bt|;
Bucket-wise precision and recall therefore:
precision(bt) =

tpt
fpt+tpt

; recall(bt) = tpt
tnt+tpt

For a given set, we obtained the overall macro pre-
cision (recall) by averaging the precision (recall)
values over the five buckets. For a given set, we
also obtained the overall micro precision by first
adding the true positives across all the buckets and
then normalizing by the sum of the true and the
false positives over all the buckets. We take an
equivalent approach for obtaining the micro recall.

Age group effect: Here we construct two ground
truth rank lists one using the responses of the par-
ticipants with age below 30 (young population)
and the other using the responses of the rest of the
participants (elderly population). Next we repeat
the above two evaluations considering each of the
new ground truth rank lists.

Extent of language mixing: Here we divide all
the 3577 users into three categories – (i) High
(users who have more than 20% of tweets as code-

mixed), (ii) Mid (users who have 7–20% of their
tweets as code-mixed, and (iii) Low (users who
have less than 7% of their tweets as code-mixed).
We create three UUR based rank lists for each of
these three user categories and respectively com-
pare them with the ground truth rank list.

4.4 Ground truth preparation

Since it is very difficult to obtain a suitable ground
truth to validate the effectiveness of our proposed
ranking scheme, we launched an online survey to
collect human judgment for each of the 57 target
words.
Online survey We conducted the online survey2

among 58 volunteers majority of whom were ei-
ther native language(Hindi) speakers or had very
high proficiency in reading and writing in that lan-
guage. The participants were selected from dif-
ferent age groups and different educational back-
grounds. Every participant was asked to respond
to a multiple choice question about each of the
57 target words. Therefore, for every single tar-
get word, 58 responses were gathered. The mul-
tiple choice question had the following three op-
tions and the participants were asked to select the
one they preferred the most and found more natu-
ral – (i) a Hindi sentence with the target word as
the only English word, (ii) the same Hindi sen-
tence in (i) but with the target word replaced by
its Hindi translation and (iii) none of the above two
options. There were no time restrictions imposed
while gathering the responses, i.e., the volunteers
theoretically had unlimited time to decide their re-
sponses for each target word.
Language preference factor For each target
word, we compute a language preference fac-
tor (LPF ) defined as (CountEn − CountHi),
where CountHi refers to the number of survey
participants who preferred the sentence contain-
ing the Hindi translation of the target word while
CountEn refers to the number of survey partic-
ipants who preferred the sentence containing the
target word itself. More positive values of LPF
denotes higher usage of target word as compared
to its Hindi translation and therefore higher likeli-
ness of the word being borrowed.
Ground truth rank list generation We generate
the ground truth rank list based on the LPF score
of a target word. The word with the highest value

2Survey portal: https://goo.gl/forms/
L0kJm8BNMhRj0jA53
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Rank-List1 Rank-List2 ρ− hlws ρ−mws ρ− full
UUR Ground truth 0.67 0.64 0.62
UTR Ground truth 0.66 0.63 0.63
UPR Ground truth 0.66 0.64 0.62
Baseline Ground truth 0.49 0.14 0.26

Table 1: Spearman’s rank correlation coefficient
(ρ) among the different rank lists. Best result is
marked in bold.

of LPF appears at the top of the ground truth rank
list and so on in that order. Tie breaking between
target words having equal LPF values is done by
assigning average rank to each of these words.

Age group based rank list: As discussed in the
previous section, we prepare the age group based
rank lists by first splitting the responses of the sur-
vey participants in two groups based on their age
– (i) young population (age < 30) and (ii) elderly
population (age ≥ 30). For each group we then
construct a separate LPF based ranking of the
target words.

5 Results

5.1 Correlation among rank lists

The Spearman’s rank correlation coefficient (ρ) of
the rank lists for the hlws set, themws set and the
full set according to the baseline metric, UUR,
UTR and UPR with respect to the ground truth
metric LPF are noted in table 1. We observe that
for the full set, the ρ between the rank lists ob-
tained from all the three metrics UUR, UTR, and
UPR with respect to the ground truth is ∼ 0.62
which is more than double the ρ (∼ 0.26) between
the baseline and the ground truth rank list. This
clearly shows that the proposed metrics are able
to identify the likeliness of borrowing quite accu-
rately and far better than the baseline. Further, a
remarkable observation is that our metrics outper-
form the baseline metric even for the hlws set that
is baseline-biased. Likewise, for the mws set, our
metrics outperform the baseline indicating a supe-
rior recall on arbitrary words. The ranking of the
full set of words obtained from the ground truth,
the baseline and the UUR metric is available in
the supplementary material.

We present the subsequent results for the full
set and the UUR metric. The results obtained for
the other two metrics UTR and UPR are very
similar and therefore not shown.

Bucket type Ground truth bucket Baseline bucket UUR bucket
SB 11 11 11
LB 11 11 11
BL 12 12 12
LM 11 11 11
SM 12 12 12

Table 2: Number of words falling in each bucket
of three bucket sets.

Bucket type prec./rec. Baseline prec./rec. UUR

SB 0.27 0.27
LB 0.09 0.18
BL 0.08 0.33
LM 0.18 0.36
SM 0.33 0.50

Table 3: Bucket-wise precision/recall. Best results
are marked in bold.

5.2 Rank list alignment across rank ranges

The number of target words falling in each bucket
across the three rank lists are the same and are
noted in table 2. Thus, the precision and recall as
per the definition are also the same. The bucket-
wise precision/recall for the baseline and UUR
with respect to the ground truth are noted in ta-
ble 3. We observe that while in the SB bucket
both the baseline and UUR perform equally well,
for all the other buckets UUR massively outper-
forms the baseline. This implies that for the case
where the likeliness of borrowing is the strongest,
the baseline does as good as UUR. However, as
one moves down the rank list, UUR turns out to
be a considerably better predictor than the base-
line. The overall macro and micro precision/recall
as shown in table 4 further strengthens our obser-
vation that UUR is a better metric than the base-
line.

5.3 Age group based analysis

As already discussed earlier, we split the ground
truth responses based on the age group of the sur-
vey participants. We split the responses into two
groups – (i) young population (age < 30) and (ii)
elderly population (age ≥ 30) so that there are al-
most equal number of responses in both the groups
(see supplementary material for the exact distribu-
tion).
Rank correlation: The Spearman’s rank correla-
tion of UUR and the baseline rank lists with these

Measure Baseline UUR

Macro prec./rec. 0.19 0.33
Micro prec./rec. 0.19 0.33

Table 4: Overall macro and micro precision/recall.
Best results are marked in bold.

2270



Rank-List1 Rank-List2 ρ

Baseline Ground-truth-Young 0.26
UUR Ground-truth-Young 0.62
Baseline Ground-truth-Elder 0.27
UUR Ground-truth-Elder 0.53

Table 5: Spearman’s rank correlation across the
two age groups. Best results are marked in bold.

Bucket
type

Young-
Baseline
p/r

Young-
UUR
p/r

Elder-
Baseline
p

Elder-
UUR
p

Elder-
baseline
r

Elder-
UUR
r

SB 0.27 0.27 0.27 0.36 0.25 0.33
LB 0.09 0.18 0.09 0.18 0.08 0.17
BL 0.08 0.33 0.16 0.08 0.28 0.14
LM 0.18 0.36 0.18 0.45 0.14 0.35
SM 0.33 0.5 0.41 0.25 0.41 0.25

Table 6: Bucket-wise precision (p)/recall (r) for
UUR and the baseline metrics for the two new
ground truths. Best results are marked in bold.

two ground truth rank lists are shown in table 5.
Interestingly, the correlation between UUR rank
list and the young population ground truth is better
than the elderly population ground truth. This pos-
sibly indicates that UUR is able to predict recent
borrowings more accurately. However, note that
the UUR rank list has a much higher correlation
with both the ground truth rank lists as compared
to the baseline rank list.
Rank ranges: Table 6 shows the bucket-wise pre-
cision and recall for UUR and the baseline met-
rics with respect to two new ground truths. For the
young population once again the number of words
in each bucket for all the three sets is the same thus
making the values of the precision and the recall
same. In fact, the precision/recall for this ground
truth is exactly same as in the case of the original
ground truth.

In contrast, when we consider the ground truth
based on the responses of the elderly population,
the number of words across the different buckets
are different across the three sets. In this case, we
observe that the precision/recall values are better
for the UUR metric in SB, LB and LM buckets.

Finally, the overall macro and micro precision
and recall for both the age groups are noted in
table 7. Once again, for both the young and the
elderly population based ground truths, the macro
and micro precision and recall values for theUUR
metric are higher compared to that of the baseline.

5.4 Extent of language mixing

As mentioned earlier, we divide the set of 3577
users into three categories. The Spearman’s cor-

Measure Young-
Baseline

Young-
UUR

Elder-
Baseline

Elder-
UUR

Mac. pre. 0.19 0.33 0.22 0.27
Mac. rec. 0.19 0.33 0.23 0.25
Mic.
pre./rec.

0.19 0.33 0.23 0.26

Table 7: Overall macro and micro precision and
recall for the two new ground truths. Best results
are marked in bold.

Bucket Number of users ρ

High 302 0.52
Mid 744 0.60
Low 2531 0.65

Table 8: Spearman’s correlation between UUR
and the ground truth in the different user buckets.
Best results are marked in bold.

relation between UUR and the ground truth for
each of these buckets are given in table 8. As we
can see, for Low bucket the ρ value is maximum.
This points to the fact that the signals of borrow-
ing is strongest from the users who rarely mix lan-
guages.

6 Re-annotation results

In order to conduct the re-annotation experiments
we performed the following. To begin with, we
ranked all the 230 English nouns in non-increasing
order of their UUR values. We then randomly se-
lected 20 words each having (i) high UUR (top
20%) values (call TOP ), (ii) low UUR (bottom
20%) values (call BOT ), and (iii) middle UUR
(middle 20%) values (call MID). This makes a
total of 60 words. Using this word list we ex-
tracted one tweet each that contained the (foreign)
word from this list along with all other words in
the tweet tagged in Hindi (Hall). We similarly pre-
pared another such list of 60 words and extracted
one tweet each in which most of the other words
were tagged in Hindi (Hmost).

We presented the selected words and the cor-
responding tweets to a set of annotators and
asked them to annotate these selected words once
again. Over all the words, we calculated the mean
(µE→H ) and the standard deviation (σE→H ) of the
fraction of cases where the annotators altered the
tag of the selected word from English to Hindi.
The average inter-annotator agreement (Fleiss,
1971) for our experiments was found to be as high
as 0.64. For the words in the TOP list, the frac-
tion of times the tag is altered is 0.91 (0.85) with
an inter-annotator agreement of 0.84 (0.80) for the
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Word-rank Context µE→H σE→H
TOP Hall 0.91 0.15
TOP Hmost 0.85 0.23
MID Hall 0.58 0.28
MID Hmost 0.61 0.34
BOT Hall 0.13 0.18
BOT Hmost 0.16 0.21

Table 9: Re-annotation results

Hall (Hmost) category. In other words, on average,
in as high as 88% of cases the annotators altered
the tags of the words that are highly likely to be
borrowed (i.e., TOP ) in a largely Hindi context
(i.e., Hall or Hmost). Table 9 shows the fractional
changes for all the other possible cases. An in-
teresting observation is that the annotators rarely
flipped the tags for the words in theBOT list (i.e.,
the sure mixing cases) in either of the Hall or the
Hmost contexts. These results strongly support the
inclusion of our metric in the design of future au-
tomatic language tagging tasks.

7 Discussion and conclusion

In this paper, we proposed a few new metrics for
estimating the likliness of borrowing that rely on
signals from large scale social media data. Our
best metric is two-fold better than the previous
metric in terms of the accuracy of the predic-
tion. There are some interesting linguistic aspects
of borrowing as well as certain assumptions re-
garding the social media users that have important
repercussions on this work and its potential exten-
sions, which are discussed in this section.

Types of borrowing: Linguists define broadly
three forms of borrowing, (i) cultural, (ii) core,
and (iii) therapeutic borrowings. In cultural bor-
rowing, a foreign word gets borrowed into native
language to fill a lexical gap. This is because there
is no equivalent native language word present to
represent the same foreign word concept. For in-
stance, the English word ‘computer’ has been bor-
rowed in many Indian languages since it does not
have a corresponding term in those languages3. In
core borrowing, on the other hand, a foreign word
replaces its native language translation in the na-
tive language vocabulary. This occurs due to over-
whelming use of the foreign word over native lan-
guage translation as a matter of prestige, ease of
use etc. For example, the English word ‘school’

3Words for “computer” were coined in many Indian lan-
guages through morphological derivation from the term for
“compute”, however, none of these words are used in either
formal or informal contexts.

has become much more prevalent than its corre-
sponding Hindi translation ‘vidyalaya’ among the
native Hindi speakers. Finally, therapeutic bor-
rowing refers to borrowing of words to avoid taboo
and homonomy in the native language. In this
paper, although we did not perform any category
based studies, most of our focus was on core bor-
rowing.

Language of social media users: We assumed
that if a user is predominantly using Hindi words
in a tweet then the chances of him/her being a na-
tive Hindi speaker should be high, since, while
the number of English native speakers in India
is 0.02%, the number of Hindi native speakers is
41.03%4. This assumption has also been made
in earlier studies (Rudra et al., 2016). Note that
even if a user is not a native Hindi speaker but a
proficient (or semi-proficient) Hindi speaker, the
main results of our analysis should hold. For in-
stance, consider two foreign words ‘a’ and ‘b’. If
‘a’ is frequently borrowed in the native language,
then the proficient speaker would also tend to bor-
row ‘a’ similar to a native speaker. Even if due
to lack of adequate native vocabulary, the non-
native speaker borrows the word ‘b’ in some cases,
these spurious signals should get eliminated since
we are making an aggregate level statistics over a
large population.

Future directions: It would be interesting to
understand and develop theoretical justification
for the metrics. Further, it would be useful to
study and classify various other linguistic phe-
nomena closely related to core borrowing, such as:
(i) loanword, where a form of a foreign word and
its meaning or one component of its meaning gets
borrowed, (ii) calques, where a foreign word or
idiom is translated into existing words of native
language, and (iii) semantic loan, where the word
in the native language already exists but an addi-
tional meaning is borrowed from another language
and added to existing meaning of the word.

Finally, we would also like to incorporate our
findings into other standard tasks of multilingual
IR and multilingual speech synthesis (for example
to render the appropriate native accent to the bor-
rowed word).

4http://bit.ly/2ufOvea
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Abstract

In this paper, we demonstrate how the
state-of-the-art machine learning and text
mining techniques can be used to build ef-
fective social media-based substance use
detection systems. Since a substance use
ground truth is difficult to obtain on a large
scale, to maximize system performance,
we explore different unsupervised feature
learning methods to take advantage of a
large amount of unsupervised social me-
dia data. We also demonstrate the benefit
of using multi-view unsupervised feature
learning to combine heterogeneous user
information such as Facebook “likes” and
“status updates” to enhance system per-
formance. Based on our evaluation, our
best models achieved 86% AUC for pre-
dicting tobacco use, 81% for alcohol use
and 84% for illicit drug use, all of which
significantly outperformed existing meth-
ods. Our investigation has also uncovered
interesting relations between a user’s so-
cial media behavior (e.g., word usage) and
substance use.

1 Introduction

A substance use disorder (SUD) is defined as a
condition in which recurrent use of substances
such as alcohol, drugs and tobacco causes clin-
ically and functionally significant impairment in
an individual’s daily life (SAMHSA, 2015). Ac-
cording to the 2014 National Survey on Drug Use
and Health, 1 in 10 Americans age 12 and older
had a substance use disorder. Substance use also
costs Americans more than $700 billion a year in
increased health care costs, crimes and lost pro-
ductivity (NIDA, 2015).

These days, people also spend a significant
amount of time on social media such as Twitter,
Facebook and Instagram to interact with friends
and families, exchange ideas and thoughts, pro-
vide status updates and organize events and activ-
ities. The ubiquity and widespread use of social
media underlines the needs to explore its intersec-
tion with substance use and its potential as a scal-
able and cost-effective solution for screening and
preventing substance misuse and abuse.

In this research, we employ the state-of-the-art
machine learning and text mining algorithms to
build automated substance use prediction systems,
which can be used to identify people who are at
risk of SUD. Since SUD data are often expen-
sive to obtain at a large scale, to maximize system
performance, we focus on methods that employ
unsupervised feature learning to take advantage
of a large amount of unsupervised social media
data. Previous research in Machine Learning, Im-
age Processing, Speech and Natural language Pro-
cessing has shown that to be able to utilize a large
amount of unsupervised data is one of the most re-
liable ways to achieve good performance (Le et al.,
2011; Lee et al., 2009; Le and Mikolov, 2014).
Moreover, by analyzing rich human behavior data
on social media, we can also gain insight into pat-
terns of use and risk factors associated with sub-
stance use. The main contributions of this work
include:

1. We have explored a comprehensive set of
single-view feature learning methods to take
advantage of a large amount of unsupervised
social media data. Our results have shown
significant improvement over baseline sys-
tems that only use supervised training data.

2. We have explored several multi-view learn-
ing algorithms to take advantage of heteroge-
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neous user data such as Facebook “likes” and
“status updates”. Our results have demon-
strated significant improvement over base-
lines that only use a single data type.

3. We have uncovered new insight into the rela-
tionship between a person’s social media ac-
tivities and substance use such as the relation-
ship between word usage and SUD.

2 Related Work

Substance use disorder (SUD) encompasses a
complex pattern of behaviors. Many studies have
been conducted to discover factors interacting
with SUD. A growing number of studies have
confirmed a strong association between personal
traits and substance use. For example, (Camp-
bell et al., 2014) found that smokers have signif-
icantly higher openness to experience and lower
conscientiousness, a personality trait related to a
tendency to show self-discipline, act dutifully, and
aim for achievement. (Cook et al., 1998) examined
the links between alcohol consumption and per-
sonality and found that alcohol use is correlated
positively with sociability and extraversion. (Ter-
racciano et al., 2008) conducted a study involving
1102 participants and found a link between drug
use and low conscientiousness. (Carroll et al.,
2009) revealed risk factors related to addiction
such as age, sex, impulsivity, sweet-liking, nov-
elty reactivity, proclivity for exercise, and environ-
mental impoverishment. Additionally, addiction
is also linked to environmental and social factors
such as neighborhood environment (Crum et al.,
1996), family environment (Cadoret et al., 1986;
Brent, 1995) and social norms (Botvin, 2000; Oet-
ting and Beauvais, 1987).

Traditionally, in behavior science research, data
are collected from surveys or interviews with a
limited number of people. The advent of social
media makes a large volume of diverse user data
available to researchers, which makes it possible
to study SUD based on online user behaviors in
a natural setting. Typical data from social me-
dia include demographics (age, gender etc.), sta-
tus updates (text posts etc.), social networks (fol-
lower and following graph etc.) and likes (thumb
up/down etc.). Recently, social media analytics
has increasingly become a powerful tool to help
understand the traits and behaviors of millions of
social media users such as personal traits (Gol-

beck et al., 2011; Volkova and Bachrach, 2015;
Youyou et al., 2015; Kiliç and Pan, 2016), brand
preferences (Yang et al., 2015), communities and
events (Sayyadi et al., 2009), influenza trend (Ara-
maki et al., 2011) and crime (Li et al., 2012). So
far, however, there has been limited work that di-
rectly applies large scale social media analytics
to automatically predict SUD. Among the work
known to us, (Zhou et al., 2016) identified com-
mon drug consumption behaviors with regard to
the time of day and week. They also discov-
ered common interests shared by drug users such
as celebrities (e.g, Chris Tucker) and comedians
(e.g., cheechandchong). In addition, (Kosinski
et al., 2013) automatically predicted SUD based
on social media likes. Since their dataset is very
similar to ours, we will use the Kosinski model as
one of our baselines.

3 Dataset

The data for the study was collected from 2007 to
2012 as a part of the myPersonality project (Kosin-
ski et al., 2015). myPersonality was a popular
Facebook application that offered to its users psy-
chometric tests and feedback on their scores. The
data were gathered with an explicit opt-in consent
for reuse for research purposes. Our study uses
three separate datasets from myPersonality: Face-
book status updates (a.k.a. posts), Facebook likes
and SUD status.

The status update dataset contains 22 million
textual posts authored by 153,000 users. The av-
erage posts per user is 143 and the average words
per user is 1730. We removed users who only have
non-English posts and those who have written less
than 500 words. Our final status update dataset
includes 106,509 users with 21 million posts. Af-
ter filtering out low frequency words (those appear
less than 50 times in our corpus), the vocabulary
size of the status update dataset is 73,935.

The likes dataset contains the Facebook likes
used to express positive sentiment toward vari-
ous targets such as products, movies, books, ex-
pressions, websites and people (they are called
Like Entities or LEs). Previous studies have
demonstrated that social media likes speak vol-
umes about who we are. In addition to directly sig-
naling interests and preferences, social media likes
are indicative of ethnicity, intelligence and per-
sonality (Kosinski et al., 2013). The like dataset
includes the likes of 11 million Facebook users.
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Overall, there are 9.9 million unique LEs and 1.8
billion user-like pairs in this dataset. The average
likes per user is 161 and the average Likes each
LE received is 182. We filter out users who have
a small number of likes as well as LEs receiving
a small number of likes. The filtering threshold
for users is 50 and is 800 for LEs. After the filter-
ing, our like dataset contains 5,138,857 users and
253,980 unique LEs.

The SUD dataset contains a total of 13,557 par-
ticipants (Stillwell and Tunney, 2012). Users were
asked to answer questions like “Do you smoke?”,
with answers “daily or more”, “less than daily” or
“never”. They also completed the Cigarette De-
pendence Scale (CDS-5) (Etter et al., 2003), Al-
cohol Use Questionnaire(AUQ) (Townshend and
Duka, 2005) and the Assessment of Substance
Misuse Questionnaire (ASMA) (Willner, 2000).
Based on these assessments, the participants were
divided into groups for each SUD type. For ex-
ample, based on the assessment of tobacco use, a
person is categorized as “daily or more” (group 3),
“less than daily” (group 2), or “never” (group 1).
The validity of the grouping was confirmed by the
CDS-5 scores of the groups. Similarly, based on
the assessment of alcohol use, participants were
categorized as “weekly or more” (group 3), “less
than once a week” (group 2) or “never” (group
1). Finally, based on the assessment of drug use,
a person is assigned to “weekly or more” (group
3), “less than once a week” (group 2), or “never”
(group 1). Among all the SUD participants, 37%
of them are males and 63% are females. Their av-
erage age is 23 years old.

Since the like, status update and SUD datasets
are only partially overlapping, their intersections
are usually much smaller. Table 1 summarizes the
sizes and usage of these datasets. Table 2 shows
additional details of the SUD dataset including the
distributions of each SUD class.

In summary, among all the datasets we have, the
unsupervised like dataset is the largest (5 million+
people). We also have a significant amount of un-
supervised status update data (100k+ users). In
contrast, the supervised datasets which have the
SUD ground truth are pretty small, ranging from
896 for the intersection of the likes, status updates
and SUD (LikeStatusSUD in Table 1) to 3508,
which is the intersection of the likes and SUD
(LikesSUD in Table 1). Thus, the main focuses
of this research include (1) employing unsuper-

vised feature learning to take advantage of a large
amount of unsupervised data (2) employing multi-
view learning to combine heterogeneous user data
for better prediction.

4 Single-View Post Embedding (SPE)

The main purpose of this study is to demonstrate
the usefulness of employing unsupervised feature
learning to derive a feature representation of a
user’s Facebook posts to take advantage of a large
amount of unsupervised data. Since we only use
Facebook status updates (a.k.a. posts) in this
study, we call the process Single-view user Post
Embedding (SPE).

4.1 SPE Feature Learning Methods

Since each user is associated with a sequence
of textual posts, we have explored the following
methods to learn a SPE for the user.

Singular Value Decomposition (SVD) is a
mathematical technique that is frequently used for
dimension reduction (De Lathauwer et al., 2000).
Given any m ∗ n matrix A, the algorithm will find
matrices U , V and W such that A = UWV T .
Here U is an orthonormal m∗n matrix, W is a di-
agonal n ∗n metrix and V is an orthonormal n ∗n
matrix. Dimensionality reduction is done by com-
puting R = U ∗ Wr where Wr neglects all but
the r largest singular values in the diagonal matrix
W . In our study, the m is the number of users,
n is the number of unique words in the vocabu-
lary. Aij = k where k is how many times wordj
appears in useri’s posts.

Latent Dirichlet Allocation (LDA) is a genera-
tive graphical model that allows sets of documents
to be explained by unobserved latent topics (Blei
et al., 2003). For each document, LDA outputs a
multinomial distribution over a set of latent topics.
For each topic, LDA also outputs a multinomial
distribution over the vocabulary.

To learn an SPE for each user based on all
his/her posts, we have tried several methods (1)
UserLDA: it treats all the posts from each user
as one big document and trains an LDA model to
drive the topic distribution for this document. The
per-document topic distribution is then used as the
SPE for this user. (2) PostLDA Doc: it treats each
post as a separate document and trains an LDA
model to derive a topic distribution for each post.
To derive the SPE for each user, we aggregate
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Table 1: Dataset Descriptions

Dataset users AvgUserLikes AvgUserPosts Usage

Likes 5,138,857 184 NA Single View Feature Learning
LikesSUD 3,508 267 NA Single View SUD Prediction
Status Update 106,509 NA 143 Single View Feature Learning
StatusSUD 1,231 NA 195 Single View SUD Prediction
LikeStatus 54,757 232 220 Multi-View Feature Learning
LikeStatusSUD 896 277 219 Multi-View SUD Predication

Table 2: Class Distribution of Different SUD Datasets

Dataset Tabacco Use Alcohol Use Drug Use
3 2 1 3 2 1 3 2 1

LikeSUD 498 290 2603 469 1174 1716 171 276 1965
StatusSUD 226 95 880 179 416 596 76 102 671
LikeStatusSUD 147 69 660 123 290 453 262 53 75

all the per-post topic distribution vectors from the
same user by averaging them. (3) PostLDA Word:
instead of using the average of post-based topic
distribution vectors, we used a word-based ag-
gregation method suggested in (Schwartz et al.,
2013):

p(topic|user) =
∑

w∈voc
P (topic|w) ∗ p(w|user)

where voc represents the vocabulary, p(w|user) is
the probability that word w appears in the posts of
user and p(topic|w) is the topic distribution of a
word w, which is available internally in an LDA
model. For the UserLDA model, all the hyper pa-
rameters were set to default values. For all the
PostLDA models, since Facebook posts are usu-
ally short and have a small number of topics in
each post, we set the hyper parameter α to 0.3, as
suggested in (Schwartz et al., 2013)

Document Embedding with Distributed Mem-
ory (D-DM) Given a document, D-DM simulta-
neously learns a vector representation for each
word and a vector for the entire document (Le and
Mikolov, 2014). During training, the document
vector and one or more word vectors are aggre-
gated to predict a target word in the context. To
learn an SPE for each user, we have explored two
methods (1) User-D-DM: it treats all the posts by
the same user as one document and trains a docu-
ment vector to represent the user. (2) Post-D-DM:
it treats each post as a document and train a D-DM
to learn a vector for each post. To derive the SPE
for a user, we aggregate all the post vectors from
the same person using “average”.

Document Embedding with Distributed Bag of

Table 3: SPE: Prediction Results

Methods Tobacco Alcohol Drug
Unigram 0.663 0.672 0.644
LIWC 0.731 0.689 0.758
SVD 0.779 0.724 0.764
UserLDA 0.641 0.603 0.599
PostLDA Word 0.733 0.617 0.628
PostLDA Doc 0.768 0.687 0.721
Post-D-DM 0.536 0.622 0.520
User-D-DM 0.775 0.730 0.767
Post-D-DBOW 0.531 0.606 0.526
User-D-DBOW 0.802 0.768 0.819

Words (D-DBOW) D-DBOW learns a global doc-
ument vector to predict words randomly sampled
from the document (Le and Mikolov, 2014). Un-
like D-DM, D-DBOW only learns a vector for the
entire document. It does not learn vectors for in-
dividual words. Neither does it use a local con-
text window since the words for prediction are ran-
domly sampled from the entire document. Similar
to D-DM, to derive the SPE for a user, we used
two methods (1) User-D-DBOW and (2) Post-D-
DBOW.

4.2 SUD Prediction with SPE

In our experiments, to search for the best model,
we systematically varied the output SPE dimen-
sion from 50, 100, 300, to 500. We used the Gen-
sim implementation of SVD, LDA, D-DM and D-
DBOW in our experiments. For D-DM, the con-
text window size was set to 5.

We compared our models with two baselines
that use only supervised learning (1) a unigram
model which uses unigrams as the predicting fea-
tures. Since we have a large number of uni-
grams, we performed supervised feature selection
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to lower the total number of input features. Fi-
nally since all our SUD variables have three val-
ues, we employed SVM in 3-way classifications.
(2) a LIWC model which uses human engineered
LIWC features for SUD prediction. LIWC is a
psycholinguistic lexicon (Pennebaker et al., 2015)
that has been frequently used in text-based human
behavior prediction. Since the number of LIWC
features is relatively small, no feature selection
was performed. Here, we only used the Status Up-
date dataset in Table 1 as the training data for SPE
learning and the StatusSUD dataset for supervised
SUD prediction .

We evaluate the performance of our models us-
ing 10-fold cross validation. The evaluation re-
sults shown in Table 3 are based on weighted ROC
AUC of the best models. Among all the fea-
ture learning methods for Facebook status updates,
User-D-DBOW performed the best. It signifi-
cantly outperformed all the baseline systems that
only rely on supervised training (p < 0.01 based
on t-tests). It also significantly outperformed all
the traditional feature learning methods such as
LDA and SVD (p < 0.01 based on t-tests). More-
over, in terms of whether to treat all the posts by
the same user as one big document or separate
documents, LDA prefers one post one document
(models with a “post” prefix) while all the doc-
ument vector-based methods prefer one user one
document (models with a “User” prefix). More-
over, to use post-level LDA to derive the SPE of
a user, the document-based aggregation method
(PostLDA Doc) performed better than the word-
based method (PostLDA Word).

5 Single-View Like Embedding (SLE)

In addition to textual posts, each user account is
also associated with a set of likes. Since the like
dataset is very sparse (e.g., among the millions of
unique likes on Facebook, each user only has a
small number of likes), we conduct experiments
to learn a dense vector representation for all the
likes by a user. We call this process Single-view
user Like Embedding (SLE).

5.1 SLE Feature Learning Methods

The input to SLE is simply a set of LEs liked by
a user. Each LE is represented by its id. To map
such a representation to a dense user like vector,
we have tried multiple methods.

Singular Value Decomposition (SVD) is simi-
lar to the one used in SPE except Aij = 1 if useri
likes LEj . Otherwise, it is 0. Here A is a m ∗ n
matrix wherem is the number of users and n is the
number of unique LEs in the like dataset.

Latent Dirichlet Allocation (LDA). To apply
LDA to the like data, each individual LE is treated
as a word token and all the LEs liked by the same
person form a document. The order of the LEs
in the document is random. For each user, LDA
outputs a multinomial distribution over a set of la-
tent “Like Topics”. For example, a “Like Topic”
about “hip hop music” may include famous hip
hop songs and musicians.

Autoencoder (AE) is a neural network-based
method for self-taught learning (Hinton and
Salakhutdinov, 2006). It learns an identity func-
tion so that the output is as close to the input as
possible. Although an identity function seems a
trivial function to learn, by placing additional con-
straints (e.g,, to make the number of neurons in the
hidden layer much smaller than that of the input),
we can still force the system to uncover structures
in the data. Architecturally, the AE we used has
one input layer, one hidden layer and one output
layer. For each user, we construct a training in-
stance (X,Y ) where the input vector X and out-
put vector Y are the same. The size of X and Y is
the total number of unique LEs in our dataset. Xi

and Yi equal to 1 if the user likes LEi. Otherwise
they are 0.

Document Vector with Distributed Memory
(D-DM) We also applied D-DM to the like data.
Given all the likes of a user, D-DM learns a vector
representation for each LE as well as a document
vector for all the LEs from the same user. We use
the learned document vector as the output SLE.

Document Vector with Distributed Bag of
Words (D-DBOW) Similarly, we applied D-
DBOW to the like dataset. Since D-DBOW does
not use a local context window and the words
for prediction are randomly sampled from the en-
tire document, it is more appropriate for the like
dataset than D-DM. where the relative positions
of LEs do matter.

5.2 SUD Prediction with SLE

Similarly, we systematically varied the output SLE
dimension from 50, 100, 300, to 500 in order
to search for the best model. We used the Gen-
sim implementation of SVD, LDA, D-DM and D-
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Table 4: SLE: Prediction Results

Method Tobacco Alcohol Drug
Unigram 0.687 0.651 0.673
Kosinski? 0.730∗ 0.700∗ 0.650∗

AE 0.678 0.648 0.672
SVD 0.757 0.756 0.753
LDA 0.723 0.737 0.704
D-DM 0.688 0.713 0.687
D-DBOW 0.787 0.795 0.791
?:2-way classification, 3-way for the others

DBOW in our experiments. For D-DM, the con-
text window size was set to 20. We used Keras
with Theano backend to implement AE.

We used SVM to perform 3-way classification.
We compared our results with a unigram base-
line. We also compared our results with that of
the Kosinski model reported in (Kosinski et al.,
2013). The Kosinski model was trained on the
same Facebook like dataset. However, its results
were based on two-way classification, a simpler
task than 3-way classification. All the results are
based on weighted ROC AUC.

As shown in Table 4, among all the SLE meth-
ods, the D-DBOW model performed the best. It
significantly outperformed the unigram baseline
that does not use any unsupervised data (p < 0.01
based on t-tests). It also significantly outper-
formed all the traditional feature learning method
such as SVD and LDA (The Kosinski model
used SVD for feature learning) (p < 0.01 based
on t-tests). Between the two document vector-
based methods, D-DBOW outperformed D-DM.
We think this is due to the fact that D-DBOW does
not use local context window, thus is not sensitive
to the positions of LEs in a document. Since LE
positions are randomly decided in our like data,
D-DBOW seems to be a better fit for this dataset.

6 Multi-View User Embedding (MUE)

The main purpose of this study is to demonstrate
the usefulness of combining heterogeneous user
data such as likes and posts to learn a dense vec-
tor representation for each user. Since we employ
unsupervised multi-view feature learning to com-
bine these data, we call this process Multi-view
User Embedding (MUE).

6.1 MUE Feature Learning Methods

We have explored two multi-view feature learn-
ing algorithms: Canonical Correlation Analysis
(CCA) and Deep Canonical Correlation Analysis

(DCCA).
Canonical Correlation Analysis (CCA) CCA is

a statistical method for exploring the relationships
between two multivariate sets of variables (vec-
tors) (Hardoon et al., 2004). Given two vectors
X and Y , CCA tries to find aX , bY that are max-
imally correlated:

(a∗, b∗) = argmax
a,b

corr(a
′
X, b

′
Y ) (1)

= argmax
a,b

a
′∑

XY b√
a′
∑

XX ab
′∑

Y Y b
(2)

where (X,Y ) denote random vectors with covari-
ances

∑
XX = Cov(X,X),

∑
Y Y = Cov(Y, Y )

and cross-covariance
∑

XY = Cov(X,Y ). CCA
has been used frequently in unsupervised data
analysis (Sargin et al., 2006; Chaudhuri et al.,
2009; Kumar and Daumé, 2011; Sharma et al.,
2012).

Deep Canonical Correlation Analysis (DCCA)
DCCA aims to lean highly correlated deep archi-
tectures, which can be a non-linear extension of
CCA (Andrew et al., 2013). The intuition is to find
a maximally correlated representation of the two
views by passing them through multiple stacked
layers of nonlinear transformation (Andrew et al.,
2013). Typically, there are three steps to train
DCCA: (1) using a denoising autoencoder to pre-
train each single view. In our experiments, we
pretrain each single view using SPE or SLE. (2)
computing the gradient of the correlation of top-
level representation. (3) tuning parameters using
back propagation to optimize the total correlation.
Previously, DCCA was found to be more effec-
tive than CCA in image processing (Andrew et al.,
2013).

6.2 SUD Prediction With MUE

The input to MUE are the two single views ob-
tained earlier (i.e. SPE or SLE). Here, we choose
the outputs from D-DBOW since it consistently
outperformed all the other methods in learning
SPEs and SLEs. We have run CCA and DCCA
in two settings (1) balanced setting in which the
SPE and SLE dimensions are always the same (2)
imbalanced setting in which the dimension of SPE
may be different from that of SLE. Since we var-
ied the output dimensions of SPE and SLE from
50, 100, 300, to 500 systematically, the input di-
mension to MUE under the balanced setting are
100, 200, 600 and 1000. When running CCA
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Figure 1: LIWC Features that are Most Significantly Correlated with Substance Use.

and DCCA under the imbalanced setting, we only
chose the best SPE (with 50 dimensions) and the
best SLE (with 300 dimensions). We also varied
the number of MUE output dimensions systemati-
cally from 20,50,100,200,300,400,500 to 1000 (up
to the total input MUE dimensions). We used the
LikeStatus dataset in Table 1 as the training data
for multi-view unsupervised feature learning. For
MUE-based supervised SUD predication, we used
the LikeStatusSUD data. In our experiments, we
use a variant of CCA called wGCCA implemented
by (Benton et al., 2016) where we set the weights
for both views to be equal 1. We used the DCCA
implementation by (Andrew et al., 2013) which
uses Keras and Theano as the deep learning plat-
form 2. We also varied the number of hidden lay-
ers from 1 to 3 to tune the performance.

We compared our multi-view learning results
with 3 baselines: BestSPE and BestSLE are the
best single view models. We also used a 3rd
baseline called Unigram combine, which simply
concatenates all the post and like unigrams to-
gether and then applies supervised feature selec-
tion before uses the remaining features in a SVM-
based classification. As shown in Table 5, both
wGCCA and DCCA significantly outperformed
the unigram-based baseline (p < 0.01 based on t-
test). The difference between the best multi-view
models (wGCCA balanced for Alcohol and drug,
wGCCA imbalanced for illicit drugs) and the best
single view models are also significant (p < 0.01).
wGCCA also performed significantly better than
DCCA on our tasks (p < 0.01 based on t-tests).

7 Social Media and Substance Use

In addition to building models that predict SUD,
we are also interested in understanding the rela-

1https://github.com/abenton/wgcca
2https://github.com/VahidooX/DeepCCA

Table 5: MUE: Prediction Results

Tobacco Alcohol Drug
BestSPE 0.802 0.768 0.819
BestSLE 0.787 0.795 0.791
Unigram combine 0.685 0.669 0.662
wGCCA balanced 0.848 0.811 0.844
wGCCA imbalanced 0.855 0.799 0.832
DCCA balanced 0.774 0.778 0.742
DCCA imbalanced 0.760 0.781 0.737

tionship between a person’s social media activi-
ties and substance use behavior. Since many of
the SPEs and SLEs are not easily interpretable, in
this section, we focus on the LIWC features from
status updates and the LDA topics from both Likes
and status updates. Since the SUD ground truth is
an ordinal variable and the LIWC/LDA features
are numerical, we used Spearman’s rank corre-
lation analysis to identify features that are most
significantly correlated with SUD. Figure 1 shows
the LIWC features that are significantly correlated
with at least one type of SUD (p < 0.05). The
color red represents a positive correlation while
blue represents a negative correlation. In addi-
tion, the saturation of the color indicates the sig-
nificance of the correlation. The darker the color
is, the more significant the correlation is.

As shown in Figure 1, swear words such as
“fuck” and “shit”, sexual words such as “horny”
and “sex”, words related to biological process such
as “blood” and “pain” are positively correlated
with all three types of SUD. In addition, words re-
lated to money such as “cash”, words related to
body such as “hands” and “legs”, words related
to ingestion such as “eat” and “drink” are posi-
tively correlated with both alcohol and drug use;
words related to motion such as “car” and “go”
are positively correlated with both alcohol and to-
bacco use. In addition, female references such as
“girl” and “woman”, prepositions, space reference
words such as “up” and “down” are positively cor-
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Table 6: Topics Most Significantly Correlated with Substance Use.

Significance Topic

Tobacco

Posts + (T1) fuck, shit, ass, fucking, bitch, face, don’t, kick, damn, man, lol, hell...
- (T2) paper, book, writing, read, class, essay, english, finished, reading, time, page ...

Likes + (T3) Tool, Misfits, A Perfect Circle, Rob Zombie ...
- (T4) The Twilight Saga, Forever 21, Twilight, Victoria’s Secret, Katy Perry

Alcohol

Posts + (T5) tonight, night, free, party, tickets, bar, saturday, friday, dj, drink, club, show, beer, ladies...
– (T6) class, history, paper, math, science, writing, essay, finished, study, test, final, exam ...

Likes ++ (T7) V For Vendetta, Boondock Saints, Pan’s Labyrinth ...
– (T8) Cookie Monster, Squirt, Last Day of School, Hunger Games Official Page, Wonka ...

Drug

Posts ++ (T9) fuck, shit, ass, fucking, bitch, face, don’t, kick, damn, man, lol, hell...
- (T10) dinner, nice, shopping, christmas, home, weekend, lunch, family, house,love,wine :-)...

Likes + (T11) Radiohead,The Cure, Depeche Mode, The Smiths, Arctic Monkeys ...
- (T12) Music, Movies, Traveling, Photography, Dancing ...

related with alcohol use, while words related to
anger such as “hate” and “kill”, words related to
health such as “clinic” and “pill” are positively
correlated with drug use.

In terms of LIWC features that are negatively
correlated with SUD, words associated with the
past such as “did” and “ago” are negatively corre-
lated with both tobacco and drug use; assent words
such as “ok”, “yes” and “agree” are negatively cor-
related to both alcohol and tobacco use. In addi-
tion, male references such as “boy” and “man”,
words related to reward such as “prize” and “ben-
efit”, words related to positive emotions such as
“nice” and “sweet”, first person pronouns (plu-
ral) such as “we” and “our” are negatively corre-
lated to drug use. Moreover, impersonal pronouns
such as “it”, differentiation words such as “but”
and “else”, and work-related words such as “job”
and “work” are negatively correlated with alcohol
use. Surprisingly, risk related words such as “dan-
ger”, words related to sadness, death and negative
emotions are also negatively correlated with alco-
hol use.

There are a few surprising correlations in our
results. For example, female references such as
“girl” and “woman” are positively related to alco-
hol use while male references such as “man” and
“boy” are negatively related to drug use. To inter-
pret this, previous research has shown (Schwartz
et al., 2013) that female references actually are
used more often by male authors and vice versa.
Thus, our findings suggest that males are more
likely to use alcohol while females are less likely

to use illicit drugs.
We have also used Spearman’s correlation anal-

ysis to identify SUD-related “Like Topics” and
“Status update Topics” learned by LDA. Since the
number of significant topics is quite large, in Ta-
ble 6, we only show a few samples. Based on a
user’s status updates, “swear topics” (T1, T9) are
positively correlated with both tobacco and drug
use, which is consistent with our LIWC findings.
The “night life topic” (T5) is positively related
to alcohol use. In addition, school related top-
ics (T2, T6) are negatively correlated with tobacco
and alcohol use. Positive family-related activities
(T10) are negatively correlated with drug use. In
addition, based on the LDA topics learned from
“likes”, a preference for rock music (T3,T11) is
positive correlated with tobacco and drug use. A
preference for movies such as “V For Vendetta”
and “Boondock Saints” (T7) is positively cor-
related with alcohol use, while having a hobby
(T12), liking cartoons and shows favored by kids
(T8) or liking movies and brands favored by girls
(T4) are negatively correlated with drug, alcohol
and tobacco use.

8 Discussion and Future Work

Currently, our multi-view unsupervised features
learning methods only learn from the intersection
of the like and status update data, which is much
smaller than either the like or the status update
data. Similarly, MUE-based supervised predic-
tion used only the intersection of all three datasets
which is very small (only contains 896 users).
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Thus, it would be useful if a future multi-view fea-
ture learning algorithm is capable of using all the
available data (e.g., the union of all the supervised
and unsupervised training data). Moreover, our
best SPE model only has 50 dimensions while our
best SLE model has 300 dimensions. This might
be because the supervised training data used by
SPE is almost three times smaller than that used
by SLE . But surprisingly, SPE-based models per-
formed better than SLE-based models. We expect
that with more training data, the performance of
SPE-based methods can be further improved.

9 Conclusion

We believe social media is a promising plat-
form for both studying SUD-related human be-
haviors as well as engaging the public for sub-
stance abuse prevention and screening. In this
study, we have focused on four main tasks (1)
employing unsupervised features learning to take
advantage of a large amount of unsupervised so-
cial media data (2) employing multi-view feature
learning to combine heterogeneous user informa-
tion such as “likes” and “status updates” to learn
a comprehensive user representation (3) building
SUD prediction models based on learned user fea-
tures (4) employing correlation analysis to obtain
human-interpretable results. Our investigation has
not only produced models with the state-of-the-art
prediction performance (e.g., for all three types of
SUD, our models achieved over 80% prediction
accuracy based on AUC), but also demonstrated
the benefits of incorporating unsupervised hetero-
geneous user data for SUD prediction.
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Abstract

Variations of word associations across dif-
ferent groups of people can provide in-
sights into people’s psychologies and their
world views. To capture these variations,
we introduce the task of demographic-
aware word associations. We build a new
gold standard dataset consisting of word
association responses for approximately
300 stimulus words, collected from more
than 800 respondents of different gender
(male/female) and from different locations
(India/United States), and show that there
are significant variations in the word as-
sociations made by these groups. We
also introduce a new demographic-aware
word association model based on a neu-
ral net skip-gram architecture, and show
how computational methods for measur-
ing word associations that specifically ac-
count for writer demographics can outper-
form generic methods that are agnostic to
such information.

1 Introduction

Understanding the associations that are formed in
the mind is paramount to understanding the way
humans acquire language throughout a lifetime of
learning (Elman et al., 1997; Rogers and McClel-
land, 2004). Furthermore, word associations are
believed to mirror the mental model of the concep-
tual connections in a human mind, and constitute a
direct path to assessing one’s semantic knowledge
(Nelson et al., 2004; Mollin, 2009).

Word associations start forming early in life, as
language is acquired and one learns based on the
environment where concepts lie in relation to each
other. For example, we may learn to associate
“mother” with “warmth,” or “fire” with “burn.”
Yet, this mental model is not static but highly dy-
namic, and is shaped by new experiences over

a lifetime. For instance, (Tresselt and Mayzner,
1964) showed that word associations change with
time, and that for respondents in younger age
groups their variability is lower, while for those in
older age groups the variability is higher, as their
life experiences modify the commonality between
respondents from the same group.

Computational linguistics has traditionally
taken the “one-size-fits-all” approach, with most
models being agnostic to the language of the
speakers behind the language. With the introduc-
tion and adoption of Web 2.0, there has been an
exponential increase in the availability of digital
user-centric data in the form of blogs, microblogs
and other forms of online participation. Such data
often times can be augmented with demographic
or other user-focused attributes, whether these are
user-provided (e.g., from a user’s online profile) or
labeled using an automatic system. This enables
computational linguists to go beyond generic
corpus-based metrics of word associations, and
attempt to extract associations that pertain to given
demographic groups that would not have been
possible without administering time consuming
and resource intensive word association surveys.

While current NLP methods generally deal with
more advanced tasks (relation extraction, text sim-
ilarity, etc.), at their very core many of these
tasks assume some way of drawing connections
(or associations) between words. Therefore, as a
step toward demographic-aware NLP, we choose
to work on the core task of “word association.”
The algorithms we introduce can be immediately
applied to demographic-aware word similarity,
and with some minor changes to demographic-
aware text similarity. Future stages could also
include demographic-aware labeled associations,
and more advanced applications such as informa-
tion retrieval (which relies heavily on word asso-
ciations/similarity), demographic-aware keyword
extraction, dialogue personalization, and so forth.
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Note that a few other researchers have explored
demographic-aware NLP models with promising
results, primarily focusing on the use of demo-
graphics for various forms of text classification
(Hovy, 2015) or sentiment and subjectivity clas-
sification (Volkova et al., 2013).

The paper makes several main contribu-
tions. First, we create a novel dataset of
demographic-aware word associations, consist-
ing of approximately 300 stimulus words along
with 800 responses per word collected from a
demographically-diverse group of respondents,
for a total of 228,800 responses. Removing spam
responses resulted in 176,097 responses. Analyses
that we perform on this dataset demonstrate that
indeed word associations vary across user dimen-
sions.1 Second, we show that the associations we
obtained follow the same pattern as those elicited
during traditional classroom surveys. Third, we
propose an evaluation metric suited for the free
association norms task. Fourth, we introduce a
demographic-aware model based on a skip-gram
architecture and through several comparative ex-
periments, we show that we are able to surpass the
performance attainable on demographic agnostic
models.

We specifically focus on two demographic di-
mensions: location and gender. For location,
we consider India and United States (US), choice
made primarily because these two countries have
a large English-speaking population, represented
both on social media and on crowdsourcing plat-
forms.

2 Related Work

Word associations have captured the attention of
psychologists since at least the early 1900. In
(1910), Kent and Rosanoff proposed the use of
a set of 100 emotionally neutral words for word
associations surveys. A psycholinguistics study
that looked at the impact that the nationality of re-
spondents may have on formed word associations
was carried out by Rosenzweig (1961), employ-
ing the stimulus word list proposed by Kent and
Rosanoff (1910) manually translated into several
West European languages. Based on the primary
responses coming from native speakers of English,
French, German and Italian, which were mapped

1This work is not centered around comparing different
word forms, as one would encounter for example in British
English and American English, but rather around different
word associations that people with a particular demographic
characteristic are inclined to make, e.g., “health” in India is
more strongly associated with “wealth”, while in the United
States it is more strongly associated with “sick.”

back into English, the author concludes that the
associations formed by speakers of the four lan-
guages are very similar, with “almost half the com-
parisons in any pair of languages yielding agree-
ments,” where the most frequent responses are en-
countered across pairs of languages. Given that
the primary responses were compared across lan-
guages and people with a relatively common ori-
gin (West European), our work seeks to investi-
gate whether similar results are encountered when
looking at different locations (namely US versus
India). Furthermore, our study is conducted in
English from the beginning, to eliminate a third
party’s subjectivity in mapping primary responses
from one language to another.

There have also been attempts in computational
linguistics to derive associations not based on sur-
vey results (which are static and resource inten-
sive), but based on statistics derived from large
corpora (Church et al., 1989; Wettler and Rapp,
1989; Church and Hanks, 1990). Research in se-
mantic similarity can also be used to model as-
sociations based on several directions: (1) co-
occurrence metrics that rely on large corpora such
as PMI (Church and Hanks, 1990), second order
PMI (Islam and Inkpen, 2008), or Dice (Dice,
1945); (2) distributional similarity-based mea-
sures, that characterize a word by its surround-
ing context such as LSA (Landauer and Dumais,
1997), ESA (Gabrilovich and Markovitch, 2007),
or SSA (Hassan and Mihalcea, 2011); and (3)
knowledge-based metrics that rely on resources
such as lexica or thesauri (Leacock and Chodorow,
1998; Lesk, 1986; Jarmasz and Szpakowics, 2003;
Hughes and Ramag, 2007). However, most of
these metrics have so far been applied to model
the relatedness between two words, namely given
a word pair, to score how similar the two words
are; as such, they have not been used to predict
free association norms, namely given a word, to
attempt to determine the most likely word that a
human would associate with that stimulus.

Large word association databases exist, such as
the one collected by Deyne et al. (2013), who
used a set of 12,000 stimulus words and surveyed
70,000 participants. Yet to our knowledge, no con-
certed attempt has been made to gather word asso-
ciations jointly with the demographic characteris-
tics of the people behind them.

While not directly seeking to extract word as-
sociations but rather trying to represent language
meaning through a locality lens, (Bamman et al.,
2014) have proposed using distributed representa-
tions to model words employed by social media
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users from different US states. They were able to
show that the regional meaning of words can suc-
cessfully be carried by word embeddings, for ex-
ample the word “wicked” was most similar to the
word “evil” in Kansas, while in Massachusetts, it
was most similar to “super” (based on the cosine
similarity of the words’ vectorial representation).
In contrast, our rationale in this article is to explore
if word associations can be automatically derived
from large corpora annotated with user-centered
attributes such as location or gender.

3 Word Associations Dataset

Word association data collection typically consists
of providing participants with a list of words, also
known in the psycholinguistics literature as stim-
ulus words, and asking them to provide the first
word that comes to mind in response to each stim-
ulus. For instance, given a stimulus word such
as cat, one would expect answers such as dog or
mouse. Earlier work on word associations admin-
istered the tests in classroom settings, with 100
words per survey, and the results were compiled
into tables of norms of word associations (Kent
and Rosanoff, 1910; Nelson et al., 2004).

Since our goal is to explore the effect of demo-
graphics on word associations, we created a task
on Amazon Mechanical Turk (AMT) able to reach
a wide and demographically diverse audience. The
survey was structured into two sections: the word
association part, followed by a demographic sur-
vey. Given the online nature of the survey, and
since we aimed for a high quality dataset, each
participant was presented with a set of 50 stimu-
lus words at a time (instead of 100). The demo-
graphic section consisted of seven questions cov-
ering gender, age, location, occupation, ethnicity,
education, and income.

Stimuli. The stimulus list consists of a set of ap-
proximately 300 words. Among these, 99 words
are sourced from the word list proposed by Kent
and Rosanoff (1910) (standard list).2 The remain-
ing words are identified using the method for find-
ing word-usage differences between two groups
introduced in (Garimella et al., 2016), which re-
lies on large collections of texts authored by the
two groups to identify words that can be accu-
rately classified by an automatic classifier as be-
longing to one group versus another. Using their
method, we obtain 100 words as the top most dif-

2Note that this list originally included 100 words. The
word “foot” was however misspelled in our survey, and in-
stead we gathered answers for “food.”

ferent words between US and India (culture list),
and another set of 100 words as the top most differ-
ent words between male and female (gender list).
The reunion of these three lists results in 286 stim-
ulus words for which we collect word associations.
Examples are shown in Table 1.

Responses. The task was published separately
for respondents from US and India, as AMT has
an option of only presenting the survey to people
from a preselected geographical location. Six dif-
ferent surveys, each including approximately 50
stimulus words, were administered for each re-
gion. The survey was conducted in English for
both countries, noting that one of the official lan-
guages of India is English (alongside Hindi). Each
survey also included four spam-checking ques-
tions with previously known answers (e.g., What
is the color of the sky?, with five options blue, red,
pink, green, yellow), which were used to filter out
respondents who were filling out the survey with-
out reading the questions.

For each set, we gathered 400 responses per re-
gion, resulting in 800 responses for both US and
India. After removing the respondents who did
not pass the spam-checking questions, we were
left with an average of 752 responses per word,
which we then balanced by gender, to retain an
equal number of Indian women, Indian men, US
women, and US men. This resulted in 492 and 480
responses for the two sets of 50 standard stimulus
words, 436 and 468 for the culture words, and 440
and 432 for the gender words. Similar to (Rosen-
zweig, 1961), all the responses were normalized
(i.e. plural was mapped to singular, gerund to in-
finitive, etc.); in our case we used the Stanford
CoreNLP Lemmatizer (Manning et al., 2014), ulti-
mately aggregating the responses into a gold stan-
dard.

Table 1 shows the top associations for a few
sample stimuli, as collected from India and US,
and males and females. Finer-grained qualita-
tive analyses also reveal interesting distinctions.
For instance bath is overwhelmingly associated by
men with water, while US women associate it with
bubble, and Indian women with soap. Interest-
ingly, US men seem to provide responses based
on collocations, e.g., they answer Kane for citizen
(citizen Kane), weight for heavy (heavyweight), or
lion for mountain (mountain lion); on the contrary,
women more often provide responses that consist
of synonym or antonym words, e.g., person for cit-
izen, health for sick, or light for heavy.

For further insight, Table 2 shows the average
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Gender Location
Word Male Female India US
beautiful girl, woman, pretty pretty, girl, ugly girl, nature, flower pretty, girl, ugly
cheese pizza, bread, milk butter, mouse, pizza pizza, butter, bread cracker, swiss, cheddar
hard soft, rock, work soft, work, rock work, stone, rock soft, rock, time
health good, wealth, care good, wealth, sick wealth, good, fitness good, sick, care
range distance, gun, shooting gun, rover, mountain price, rover, wide gun, distance, rover
admit hospital, guilt, card hospital, confess, one hospital, card, accept guilt, one, confess
mix tape, match, juice cake, tape, stir juice, tape, match stir, tape, cake
organize clean, arrange, party clean, arrange, meeting arrange, meeting, party clean, sort, neat
stack pile, book, box book, pile, hay book, queue, pile pile, book, pancake

Table 1: Top three most frequent responses for sample stimulus words.

number of different responses obtained for a given
stimulus word, with the lowest variability word,
and the highest variability word.3 The second col-
umn lists the correlations between the frequency
of the primary response and the number of dif-
ferent responses, as also reported by (Jenkins and
Palermo, 1965). This correlation is negative, as
the more people agree on the primary response, the
fewer overall unique answers for a stimulus word
are provided. Additionally, Figure 1 shows the
Zipfian distribution of average norm frequency;
the most frequent response is given on average by
24% of the respondents, while the third most fre-
quent response is given by 7% of them.

Demo- Correla- Lowest Highest
graphic Avg. tion Variability Variability

Standard
India 60.88 -0.52 stove city
US 51.19 -0.53 bath trouble
Male 61.63 -0.45 stove city
Female 56.75 -0.55 stove city

All
India 72.27 -0.59 stove regardless
US 57.03 -0.56 east basically
Male 70.33 -0.52 stove regardless
Female 66.54 -0.59 east respectively

Table 2: Average number of responses obtained
for a given stimulus word, correlation between fre-
quency of primary response and number of dif-
ferent responses, words exhibiting the lowest vari-
ability, and words with the highest variability.

Analyses of Demographic Variations. To
model norm strength within a given demographic
group or across groups, we tabulate how often
respondents from a group match the most frequent

3In several of our data analyses, in order to allow for a di-
rect comparison with the word list from (Kent and Rosanoff,
1910), in addition to showing statistics for the entire dataset
(All), we also show statistics separately compiled for the list
from (Kent and Rosanoff, 1910) (Standard).

1 2 3 4 5 6 7 8 9 10
0%

5%

10%

15%

20%

25%

Ranks

Figure 1: Primary response frequency (in percent)
versus rank for the Standard word list.

answer (Primary) or one of the most frequent ten
answers for that group (Top10). That is, given
the response for one stimulus word as provided
by one held-out survey respondent at a time, we
determine whether that response matches the most
frequent association of the remaining members
of the same group (Table 3, Primary columns),
or one of the top 10 associations pertaining
to that same group (Table 3, Top10 columns).
Similarly, we measure the match with the most
frequent or the top 10 responses from the other
group, as shown in Table 4. As expected, the
intra-group similarities are significantly higher
than the inter-group similarities, which supports
our hypothesis that different groups make dif-
ferent word associations, which tend to be more
coherent within a group than across groups.
While males and females have similar ranges
for their agreement figures, we notice that on
average US respondents have stronger intra-group
agreements. Note also that inter-group similarities
are asymmetrical, as multiple words may have
the same association frequency for one group, yet
for the complementary group that may not be the
case.
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As an additional analysis of demographic vari-
ations in the responses received, for each respon-
dent, we predict his / her demographic group using
a majority vote conducted across all the user’s re-
sponses using a simple rule-based system that as-
signs each response to the group having the high-
est frequency for that particular association. For
instance, given the response sun obtained from
a respondent for the stimulus yellow, we assign
the respondent to either India or US depending
on the highest normalized frequency of the re-
sponse sun for the same stimulus in each of those
groups. A similar rule-based assignment is also
used for gender. Thus, we compute the response
words and their normalized frequencies based on
the responses from 80% of the users chosen ran-
domly, and accordingly predict the demographic
group for the remaining 20% of the users based
on a decision across the entire set of a user’s re-
sponses. Table 5 shows the results of these predic-
tions, which indicate high location variability (i.e.,
we can predict with high accuracy the location of
a respondent), and medium gender variability.

Demo- Standard All
graphic Primary Top10 Primary Top10
India-India 0.23 0.77 0.18 0.78
US-US 0.29 0.82 0.25 0.81
Male-Male 0.23 0.79 0.19 0.79
Female-Female 0.25 0.80 0.21 0.81

Table 3: Intra-group similarities (the higher the
similarity, the more cohesive the group is).

Demo- Standard All
graphic Primary Top10 Primary Top10
India-US 0.18 0.55 0.14 0.50
US-India 0.20 0.60 0.16 0.56
Male-Female 0.22 0.63 0.17 0.59
Female-Male 0.24 0.66 0.19 0.61

Table 4: Inter-group similarities (the higher the
similarity, the less distinct the groups are).

Demographic Standard All
Gender 0.60 0.56
Location 0.94 0.94

Table 5: Predictions based on similarity to group.

4 Computational Models of Word
Associations

We first introduce a new model for measuring
word associations that leverages a shallow neu-

ral net architecture to embed demographically-
enriched words. We then compare the perfor-
mance of the predicted associations to those re-
sulting from other approaches, including tradi-
tional corpus-based measures such as mutual in-
formation or vector-space models, as well as a
recent distributed learning model with word em-
beddings. For each of these methods, we predict,
evaluate, and compare generic associations (de-
void of any demographic information), as well as
demographic-aware associations.

4.1 Composite Skip-gram Models
We introduce a new word association model,
which relies on the skip-gram neural net architec-
ture (Mikolov et al., 2013), and leverages its effi-
ciency and ability to deal with less frequent words.

The skip-gram model tries to predict the context
given a word, that is, for each word wi in the input
sequence w1, . . . , wT , the model tries to predict
wi−2, wi−1, wi+1 and wi+2, assuming, for exam-
ple, a sliding window of five words. Mathemati-
cally, the model maximizes the objective function

J =
1

T

T∑

i=1

c∑

j=−c,j 6=0

logP (wi+j |wi) (1)

where T is the number of tokens in the data set, c
is the number of context words on each side of the
target word wi and P (wi+j |wi) is the probability
to observe word wi+j in the context of word wi.

To make this model demographic-aware, we
propose two variations, which we refer to as com-
posite skip-gram models (C − SGM ). In the first
one (EMB1), the target word wi is tagged with
a demographic label L (e.g., gender). For exam-
ple, for the target word “formulaL=female” we try
to predict a high probability for “baby” and “milk”
occurring in the neighboring context. The under-
lying reasoning is that tagged words that appear in
similar contexts will be nudged toward each other,
while those that do not, will further distance them-
selves. This allows discrepancies to emerge be-
tween how the words are embedded given a de-
mographic dimension.

In the second variation (EMB2), we also in-
clude the demographic label in the context. That
is, for each skip-gram (ci,left, wi, ci,right) we gener-
ate three skip-grams

(clabel
i,left, wi, ci,right)

(ci,left, wlabel
i , ci,right)

(ci,left, wi, clabel
i,right) (2)

The two models seek to capture different sce-
narios. In the first model, where we only add
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the demographic label to the target word, the em-
bedding of the labeled word is optimized with re-
spect to the generic embedding of the context.
In the second model, the optimization is rather
symmetric, allowing tagged and generic embed-
dings to influence each other. Thus, the optimiza-
tion function seeks to predict both tagged and un-
tagged words in the vicinity given a target word,
instead of only focusing on predicting untagged
words like EMB1. The embeddings resulting from
such a model should allow for more accurate rep-
resentations across the tagged and untagged vo-
cabulary, where for example the word “mother”
uttered by a female would be close to the word
“mother” (regardless of author gender). In both
scenarios, the embeddings space accommodates
both tagged and untagged words at the same time,
being very computationally robust, and allowing
comparisons across the tagged version of words,
as well as between generic words and their tagged
surrogates. For both variations, we compute the
cosine similarity between the stimulus word and
each of the vocabulary words (whether generic
or demographic-enhanced), and retain the clos-
est unique candidates (after dropping their demo-
graphic tag).

4.2 Other Word Association Models
Mutual Information (MI). We implement
the information theoretic measure proposed by
Church and Hill (1990). It is defined as follows:

I(x, y) = log2
P (x, y)

P (x)P (y)
(3)

This measure compares the probability of observ-
ing words x and y together (the joint probability)
with the probabilities of observing x and y inde-
pendently. The joint probability, P (x, y), is gen-
erally estimated by counting the number of times
x is followed by y in a window of w words, and
normalizing this count with the size of the corpus.
We follow Church and Hill and set the window
size w to five, as it is large enough to capture verb-
argument constraints, and not so large to restrict to
strict adjacency. For a given stimulus word, (1) we
use the entire corpus and compute the generic MI
word association with the rest of the vocabulary,
and get the top associations according to their MI
scores; and (2) we use the section of the corpus
obtained for a given demographic, and determine
the top demographic-aware MI word associations.

Vector-Space Model (VSM). We also imple-
ment the traditional vector-space model, where

each word is represented by a tf.idf weighted vec-
tor inside the term-document matrix (represent-
ing term occurrences inside the documents in the
corpus), with a length equal to the number of
documents D in the corpus (Salton and McGill,
1986). For a given stimulus word, cosine simi-
larities are computed with all the remaining word
vectors in the vocabulary, and those words hav-
ing the highest similarity are considered as the top
responses. Similar to MI, we use all the docu-
ments in the corpus to produce generic word as-
sociations, while only those documents pertaining
to a specific demographic value are utilized to de-
rive demographic-aware associations.

Skip-gram Language Model. We also use the
distributional representation technique of word
embeddings (SGLM ) proposed by Bamman et
al. (2014). Specifically, information about the
speaker (geography, in their case) is used while
learning the vector-space representations of word
meanings from textual data that is supplemented
with metadata about the authors. In addition to
the global embedding matrix Wmain that contains
low-dimensional representations for every word
in the vocabulary (Mikolov et al., 2013), this ap-
proach has an additional |C| matrices {Wc} of the
same size as Wmain, where |C| denotes the num-
ber of values the demographic variable has in the
data (e.g., if gender is the demographic variable,
C = {female,male} and |C| = 2). Each of
these |C|matrices captures the effect that each de-
mographic variable value has on each word in the
vocabulary. To index the embedding of a stimulus
word w ∈ R|V |×k, the hidden layer h is computed
as the sum of the matrix multiplications with each
of the independent embeddings:

h = wTWmain + Σc∈CwTWc (4)

It then predicts the value of the context word y us-
ing another parameter matrix X ∈ R|V |×k based
on a softmax function o = softmax(Xh), where
o ∈ R|V |×k. Backpropagation using (input x, out-
put y) word tuples learns the values of the various
embedding matrices W and parameter matrix X ,
which maximize the likelihood of context words y
conditioned on the stimulus word x.

We use this approach in its original implemen-
tation provided by (Bamman et al., 2014) to com-
pute the word embedding vectors for all the words
in the vocabulary. Given a stimulus word, the clos-
est vocabulary words with the highest cosine sim-
ilarity are retained as the top association predic-
tions for the given stimulus word.
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5 Experiments

All our models require textual data with demo-
graphic information. We introduce below the data
we used and the metrics we adopted for evaluation.

Data. Given the requirement of having gender
and location information associated with the data,
we resort to blogs, and collect from Google Blog-
ger4 a large set of blog posts authored between
1999 and 2016. Table 6 shows the breakdown
of the raw blog counts per demographic category.
From these, we retain only those posts with non-
empty content, and preprocess the data by remov-
ing HTML tags, converting all the tokens to their
lemmatized forms,5 and discarding those lemmas
with a frequency less than 10, in order to avoid
misspellings and other noise characteristic to so-
cial media content.

Demo-
graphic

Raw Balanced
Profiles Posts Profiles Posts Tokens

India 1,520 339,624 1,520 34,987 16,884K
US 3,273 825,093 1,520 32,782 11,706K
Male 2,031 597,935 1,818 44,299 21,971K
Female 1,818 321,779 1,818 45,980 17,070K

Table 6: Raw and balanced blog dataset statistics.

From the above pool of blog posts, we cre-
ate two datasets with complementary demographic
classes (1) location: India-US and (2) gender:
male-female.

We process each of these datasets so that they
are profile-balanced with no peaks for any specific
years, by applying several heuristics: (1) Com-
pute the minimum number of users n over all the
classes (e.g., Indian and US authors in the case
of the location dataset). (2) From each class, se-
lect the top n users based on the number of years
they were blogging and the number of posts they
wrote.6 This ensures that the maximum amount of
data will be available for the selected users. (3)
For each of these n users, pick at most 50 posts
in a round-robin fashion from the years in which
they blogged. (4) Let M be the total number of
posts collected in this manner from all the classes.
In order to avoid having most of the posts com-
ing from a small number of years, set a cutoff X
as a fraction of M . For each year, a maximum of
X posts will be chosen from the set of M posts
(X = 0.1M ). (5) To ensure that all the users

4www.blogger.com
5We normalize the word forms using the Stanford

CoreNLP lemmatizer (Manning et al., 2014).
6Prolific users will be chosen first. For a class with exactly

n users, all users will be chosen.

get to contribute posts, and that the contribution
of prolific writers is kept in check, maintain user
participation scores:
p(user) =

posts collected from user
total number of posts collected

(5)

These scores are updated after every year is pro-
cessed, as explained further. (6) Sort the years
in increasing order of number of posts and iterate
through them; identify the lowest number of posts
contributed by the least prolific writer, then col-
lect the minimum number of posts from all users
who published in that year in a round-robin man-
ner. Then, select additional posts from users in
increasing order of participation scores, until the
number of posts for the year reaches the cutoff
X . (7) After each year, update the user partici-
pation scores. Table 6 shows the number of users
and posts retained after balancing. This particular
composition is used in our location data set (con-
sisting of India and US posts) and gender data set
(consisting of females and males posts).

Metrics. Given that the word association task is
relatively similar to the lexical substitution task,
in terms of open vocabulary and lack of a “right”
answer, we decided to borrow the best and out-
of-ten (oo10) evaluation metrics traditionally used
for the latter (McCarthy and Navigli, 2009), yet
corrected for weight (Jabbari et al., 2010). Briefly,
these measures take the best (or top ten) responses
from a system, and compare them against the gold
standard, while accounting for the frequencies of
the responses in the gold standard. In addition,
since Figure 1 shows that the top three ranking
norms are provided as answers by approximately
42% of the respondents, with the remaining norms
following a long Zipfian distribution in terms of
frequency of appearance, we also compute out-
of-three (oo3), which represents a more focused
approximation of our ability to predict human as-
sociations (note that out-of-ten covers 62% of the
responses). Several recent papers on word as-
sociations evaluated their models indirectly via
Pearson or Spearman correlation performance on
a word similarity task (Chaudhari et al., 2011;
Deyne et al., 2016); we choose instead to evaluate
word associations directly, by using metrics that
more closely align with the evaluations performed
in the field of psychology where the best output
of a system is compared against the most frequent
human response (Bel-Enguix, 2014; Mohammad,
2011).

For a given stimulus word w with human re-
sponses Hw, suppose a system returns a set of
answers Sw. We estimate how well this system
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can find a best substitute for w using Equation 6,
where the function freqw(s) returns the count of a
system response s in Hw, and maxfreqw returns
the maximum count of any response in Hw.

best(w) =
Σs∈Swfreqw(s)

maxfreqw × |Sw|
(6)

oon(w) =
Σs∈Snwfreqw(s)

|Hw|
(7)

Equation 7 measures the coverage of a system by
allowing it to offer a set Snw of n responses for
w, where each response s is weighted by its fre-
quency freqw(s) in Hw.

6 Evaluations and Discussions

We conduct evaluations using all the word associ-
ation models described in Section 4. The results
using the best, out-of-three, and out-of-ten evalua-
tion metrics are listed in Table 7. For all the em-
beddings experiments, we use 300 latent dimen-
sions. The Gen variation uses the demographic-
blind dataset, whereas the DA variation uses the
demographic-aware dataset.7

The MI and VSM models do not perform well
in the word association prediction task, whether
considering the generic or the demographic-aware
data. We should emphasize, however, that the
generic version of these models is able to consider
co-occurrences across the entire generic datasets,
while the demographic-aware co-occurrences can
only be computed from the section of the dataset
that matches a particular demographic; as such,
these latter models are placed at a disadvantage.

Perhaps not surprisingly, the neural network
skip-gram-based architectures, whether SGLM or
our C-SGM, always achieve better results when
compared to MI or VSM. The demographic-aware
variation proposed by (Bamman et al., 2014) uses
an extended skip-gram architecture that encodes
a generic embedding, and several demographic-
based filters per class, which in our case trans-
lates into three matrices of 300 dimensions each,
the first for the generic words, and the subsequent
ones for skews to be applied to the generic words
in order to render the embedding through the lens
of a given demographic. SGLM − Gen in our
case are the predictions based on the generic ma-
trix, while SGLM−DA are the predictions mod-
ified along the lines of a particular demographic.

7To place the results in this table in perspective, it is im-
portant to note that results for this task are traditionally low.
Given that the most frequent response is selected on average
by 24% of respondents (see Figure 1), we can see that even
for humans, the highest score would be around 0.24.

Our composite skip-gram models encode a sin-
gle matrix that contains a mix of demographic-
aware and generic words expressed as 300 latent
dimensions. For both gender and location, our
gender-aware models (EMB1 and EMB2) sur-
pass the SGLM gender-aware model. Surpris-
ingly, while SGLM was never meant to be generic,
the predictions based on its generic embedding
matrix prove to be a difficult baseline to surpass,
similar to C-SGM generic. Nonetheless, the com-
posite skip-gram models (EMB1 and EMB2)
do achieve best and second best rankings in the
vast majority of cases (when compared to the best
among all the other methods), with EMB1 be-
ing the more robust variation performing well both
for gender and for location. Focusing on the per-
formance of EMB1, the highest gains are ob-
served for India-based predictions, for best (from
0.05 to 0.08) and out-of-three (from 0.07 to 0.12);
for male-based predictions increasing from 0.11 to
0.13 for best, and from 0.17 to 0.20 for out-of-
three; and for female-based predictions, increas-
ing from 0.13 to 0.14 for best, and from 0.17 to
0.20 for out-of-three. US-based associations are
the hardest to predict, probably because of the di-
verse makeup of society; additional evaluations
are needed to pinpoint the exact cause.

To determine how susceptible the embedding
model is to skewed, but larger training data, we
also run a separate experiment on the entire raw
set of blogs we collected (described on the left of
Table 6), where we re-generate the EMB1 and
EMB2 models. While the entire dataset is signif-
icantly larger than the balanced set, it is also sig-
nificantly skewed: the data in the India:US dataset
was skewed in a proportion of 1:0.48 tokens, while
for Female:Male the proportion was 1:0.41 to-
kens. As was the case for the balanced dataset,
the EMB1 model is still the most robust (see the
bottom section in Table 7), and it achieves signifi-
cant gains when compared to its balanced counter-
part, in particular for best (for the US demographic
from 0.03 to 0.13, and for India from 0.08 to 0.11),
and for out-of-three (for US from 0.07 to 0.15, and
for India from 0.12 to 0.17), which suggests that
as an avenue for future research, we can explore
the use of significantly larger even if unbalanced
datasets to train our models.

7 Conclusion

In this paper, we introduced the task of
demographic-aware word associations. To under-
stand the various ways in which people associate
words, we collected a new large demographics-
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best oo3 oo10 best oo3 oo10
Method Type IN US IN US IN US M F M F M F
MI Gen 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

DA 0.00 0.00 0.01 0.00 0.02 0.02 0.00 0.01 0.01 0.01 0.01 0.02
VSM Gen 0.00 0.00 0.01 0.01 0.03 0.03 0.00 0.00 0.02 0.02 0.05 0.05

DA 0.00 0.00 0.02 0.01 0.04 0.02 0.00 0.01 0.02 0.01 0.04 0.06
SGLM Gen 0.02 0.02 0.03 0.03 0.06 0.05 0.13 0.13 0.18 0.18 0.20 0.21

DA 0.05 0.01 0.07 0.02 0.11 0.03 0.10 0.13 0.16 0.18 0.18 0.20

C-SGM
Gen 0.05 0.04 0.07 0.07 0.11 0.10 0.11 0.13 0.17 0.17 0.20 0.21
EMB1 0.08 0.03 0.12 0.07 0.18 0.10 0.13 0.14 0.20 0.20 0.25 0.26
EMB2 0.09 0.02 0.14 0.04 0.19 0.06 0.10 0.16 0.17 0.20 0.23 0.25

C-SGM-raw EMB1 0.11 0.13 0.17 0.15 0.21 0.17 0.09 0.16 0.17 0.18 0.21 0.23
EMB2 0.10 0.08 0.15 0.12 0.19 0.15 0.09 0.14 0.15 0.16 0.18 0.20

Table 7: Best, out-of-three (oo3), and out-of-ten (oo10) scores across the various methods. IN: India,
US: United States, M: Male, F: Female. The numbers in bold mark the highest scores, those in italics,
the second highest.

enhanced dataset of approximately 300 stimulus
words and their associated norms compiled from
800 respondents for a total of 176,097 non-spam
responses, and show that for people of different
demographics, associations do differ with gender
and location.

We proposed a new demographic-aware word
association method based on composite skip-gram
models that are able to jointly embed generic and
gender tagged words. We showed that this method
improves over its generic counterpart, and also
outperforms previously proposed models of word
association, thus demonstrating that it is useful to
account for the demographics of the people behind
the language when performing the task of auto-
matic word association. We regard this as a first
step toward demographic-aware NLP, and in fu-
ture work we plan to address other more advanced
NLP tasks while accounting for demographics.

The word association dataset introduced in this
paper is publicly available from http://lit.
eecs.umich.edu/downloads.html.
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Abstract

We develop a novel factored neural model
that learns comment embeddings in an un-
supervised way leveraging the structure of
distributional context in online discussion
forums. The model links different con-
text with related language factors in the
embedding space, providing a way to in-
terpret the factored embeddings. Eval-
uated on a community endorsement pre-
diction task using a large collection of
topic-varying Reddit discussions, the fac-
tored embeddings consistently achieve im-
provement over other text representations.
Qualitative analysis shows that the model
captures community style and topic, as
well as response trigger patterns.

1 Introduction

Massive user-generated content on social media
has drawn interests in predicting community reac-
tions in the form of virality (Guerini et al., 2011),
popularity (Suh et al., 2010; Hong et al., 2011;
Lakkaraju et al., 2013; Tan et al., 2014), commu-
nity endorsement (Jaech et al., 2015; Fang et al.,
2016), persuasive impact (Althoff et al., 2014;
Tan et al., 2016; Wei et al., 2016), etc. Many of
these studies have analyzed content-agnostic fac-
tors such as submission timing and author social
status, as well as language factors that underlie the
textual content, e.g., the topic and idiosyncrasies
of the community. In particular, there is an in-
creasing amount of work on online discussion fo-
rums such as Reddit that exploits the conversa-
tional and community-centric nature of the user-
generated content (Lakkaraju et al., 2013; Althoff
et al., 2014; Jaech et al., 2015; Tan et al., 2016;
Wei et al., 2016; He et al., 2016a; Fang et al.,
2016), which contrasts with Twitter where the au-

thor’s social status seems to play a larger role in
popularity. This paper focuses on Reddit, using
the karma score1 as a readily available measure of
community endorsement.

Some of the prior work on Reddit investi-
gates specific linguistic phenomena (e.g. polite-
ness, topic relevance, community style matching)
using feature engineering to understand their role
in predicting community reactions (Althoff et al.,
2014; Jaech et al., 2015). In contrast, this pa-
per explores methods for unsupervised text em-
bedding learning using a model structured so as to
provide some interpretability of the results when
used in comment endorsement prediction. The
model aims to characterize the interdependence
of comment on its global context and subsequent
responses that is characteristic of multi-party dis-
cussions. Specifically, we propose a factored neu-
ral model with separate mechanisms for represent-
ing global context, comment content and response
generation. By factoring the model, we hope un-
supervised learning will pick up different compo-
nents of interactive language in the resulting em-
beddings, which will improve prediction of com-
munity reactions.

Distributed representations of text, or text em-
beddings, have achieved great success in many
language processing applications, using both su-
pervised and unsupervised methods. Unsuper-
vised learning, in particular, has been successful
at different levels, including words (Mikolov et al.,
2013b), sentences (Kiros et al., 2015), and docu-
ments (Deerwester et al., 1990; Le and Mikolov,
2014). Studies have also shown that the learned
embedding captures both syntactic and semantic
functions of words (Mikolov et al., 2013a; Pen-
nington et al., 2014; Levy and Goldberg, 2014;
Faruqui et al., 2015a). At the same time, em-

1karma = #up-votes - #down-votes. See https://
goo.gl/TnXgCr.
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beddings are often viewed as uninterpretable – it
is difficult to align embedding dimensions to ex-
isting semantic or syntactic classes. This con-
cern has triggered attempts in developing more
interpretable embedding models (Faruqui et al.,
2015b), which is also a goal of our work. We
leverage the fact that the structure of the distribu-
tional context impacts what is learned in an unsu-
pervised way and include multiple objectives for
separating different types of context.

Here, we are interested in linking two types
of context with corresponding language factors
learned in the embedding space that may impact
comment reception. First, conformity to the topic
and the language use of the community tends to
make the content better accepted (Lakkaraju et al.,
2013; Tan et al., 2014; Tran and Ostendorf, 2016).
Those global modes typically influence the au-
thor’s generation of local content. Second, charac-
teristics of a comment can influence the responses
it triggers. Clearly, questions and statements will
elicit different responses, and comments directed
at a particular discussion participant may prompt
that individual to respond. Of more interest here
are aspects of comments that might elicit minimal
response or responses with different sentiments,
which are relevant for eventual endorsement.

The primary contribution of this work is the de-
velopment of a factored neural model to jointly
learn these aspects of multi-party discussions from
a large collection of Reddit comments in an un-
supervised fashion. Extending the recent neural
attention model (Bahdanau et al., 2015), the pro-
posed model can interpret the learned latent global
modes as community-related topic and style. A
comment-response generation model component
captures aspects of the comment that are response
triggers. The multi-factored comment embedding
is evaluated on the task of predicting the comment
endorsement for three online communities differ-
ent in topic trends and writing style. The represen-
tation of textual information using our approach
consistently outperforms multiple document em-
bedding baselines, and analyses of the global
modes and response trigger subvectors show that
the model learns common communication strate-
gies in discussion forums.

2 Model Description

To characterize different aspects of language use
in a comment, the proposed model factorizes a

Figure 1: The structure of the full model omitting
output layers, illustrating the computation of at-
tention weights for b2 and d3 in a comment w1:4

with its response r1:4. Purple circles ak and a′j
represent scalars computed in (1) and (6), respec-
tively. ⊗ and ⊕ are scaling and element-wise ad-
dition operators, respectively. Black arrowed lines
are connections carrying weight matrices.

comment embedding into two sub-vectors, i.e. a
local mode vector and a content vector. The lo-
cal mode vector, computed as a mixture of global
mode vectors, exploits the global context of a
comment. In Reddit discussions that we use, the
global mode represents the topic and language id-
iosyncracies (style) of a particular subreddit. More
specific information communicated in the com-
ment is captured in the content vector. The gen-
eration process of a comment is modeled through
a recurrent neural network (RNN) language model
(LM) conditioned on local mode and content vec-
tors, while the global mode vectors are jointly
learned during the training. Moreover, a residual
learning architecture (He et al., 2016b) is used to
extend the RNN LM for separating the informa-
tion flow of the mode and the content vectors.

In addition to the global context, the full model
further exploits direct responses to the comment in
order to learn better comment embeddings. This is
achieved by modeling the generation of comment
responses through another RNN LM conditioned
on response trigger vectors. The response trigger
vectors are computed as mixtures of content vec-
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tors, with the idea that they will characterize as-
pects of the comment that incent others to respond,
whether that be information or framing.

The full model is illustrated in Fig. 1. While
the end goal is a joint framework, the model is de-
scribed in the following two sub-sections in terms
of two components: i) mode vectors for capturing
global context, and ii) response trigger vectors for
exploiting comment responses.

2.1 Mode Vectors
Using an RNN LM shown in the upper part of
Fig. 1, we model the generation process of a word
sequence by predicting the next word conditioned
on the global context as well as the local con-
tent. The global context is encoded in the lo-
cal mode vector, computed as a mixture of global
mode vectors with mixture weights inferred based
on content vectors. The local mode vector indi-
cates where the comment fits in terms of what peo-
ple in this subreddit generally say. It changes dy-
namically with the content vector as the comment
generation progresses, considering the possibility
of topic shifts or different broad categories of dis-
cussion participants.

Suppose there is a set of K latent global modes
with distributed representations m1:K ∈ Rn. For
the t-th wordwt in a sequence, a local mode vector
bt ∈ Rn is computed as

bt =
∑K
k=1 a(ct,mk)⊗mk,

where ct ∈ Rn is the content vector for the cur-
rent partial sequence w1:t, ⊗ multiplies a vector
by a scalar, and the function a(ct,mk) outputs a
scalar association probability for the current con-
tent vector ct and a mode vector mk. The associ-
ation function a(c,mk) is defined as

a(c,mk) =
exp(vT tanh(U [c;mk])∑K
i=1 exp(v

T tanh(U [c;mi]))
, (1)

where U ∈ Rn×2n and v ∈ Rn are parameters
characterizing the similarity between mk and c.

The computation of the association probabil-
ity is the well-known attention mechanism (Bah-
danau et al., 2015). However, unlike the original
attention RNN model where the attended vector is
concatenated with the input vector to augment the
input to the recurrent layer, we adopt a residual
learning approach (He et al., 2016b) to learn con-
tent vectors. For the t-th word wt in a sequence,
the content vector ct under the original attention
RNN model is computed as

ct = f(Wxt +Gbt−1, ct−1), (2)

where xt ∈ Rd is the word embedding for wt,
bt−1 ∈ Rn and ct−1 ∈ Rn are previous lo-
cal mode and content vectors, respectively, W ∈
Rn×d and G ∈ Rn×n are weight matrices trans-
forming the input to the recurrent layer, and f(·, ·)
is the recurrent layer activation function. To ad-
dress the vanishing gradient issue in RNNs, we use
the gated recurrent unit (Cho et al., 2014) for the
RNN layer, i.e.

f(p,q) = (1−u)� tanh(p+R[r� q])+u� q,

where � is the element-wise multiplication, R is
the recurrent weight matrix, and u and r are the
update and reset gates, respectively. In this paper,
we compute the content vector ct as follows:

ct = f(Wxt,Gbt−1 + ct−1). (3)

Comparing (2) and (3), it can be seen that we
first aggregate the local mode vector bt−1 and the
content vector ct−1 and treat the resulting vec-
tor Gbt−1 + ct−1 as the memory of the recurrent
layer. The resulting hidden state vectors from the
recurrent layer are content vectors ct’s. The use
of residual learning is motivated by the following
considerations. The local mode vector bt−1 can
be seen as a non-linear transformation of ct−1 into
a global mode space parameterized by m1:K . If
the global information carried in bt−1 is residual
for generating the following word in the comment,
the model only needs to exploit the information in
local content ct−1 and learns to zero out the local
mode vector bt−1, i.e. G = 0. He et al. (2016b)
show that the residual learning usually leads to a
more well-conditioned model which promises bet-
ter generalization ability.

Finally, the RNN LM estimates the probability
of the (t + 1)-th word wt+1 based on the current
local mode vector bt and content vector ct, i.e.

Pr(wt+1|w1:t) = softmax(Q(Gbt + ct)), (4)

where Q ∈ RV×n is the weight matrix, and V is
the vocabulary size. Note that the model jointly
learns all parameters in the RNN together with
the mode vectors m1:K . This differs our model
from the context-dependent RNN LM (Mikolov
and Zweig, 2012), which is conditioned on a con-
text vector inferred from a pre-trained topic model.
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2.2 Response Trigger Vectors

Another important aspect of comments in online
discussions is how other participants react to the
content. In order to exploit those characteris-
tics, we use comment-reply pairs in online discus-
sions and build this component upon the encoder-
decoder framework with the attention mechanism
(Bahdanau et al., 2015), which is illustrated in the
lower part of Fig. 1. The decoder is essentially an-
other RNN LM conditioned on response trigger
vectors aiming at distilling relevant parts of the
comment which other people are responding to.

Let rj denote the j-th word in a reply to a com-
ment w1, · · · , wT . The decoder RNN LM com-
putes a hidden vector hj ∈ Rn for rj as follows,

hj = f(W†xj +G†dj−1,hj−1), (5)

where W† ∈ Rn×d and G† ∈ Rn×n are weight
matrices, xj is rj’s word embeddings from a
shared embedding dictionary as used by the en-
coder RNN LM in Subsection 2.1, and dj−1 ∈ Rn
and hj−1 ∈ Rn are the response trigger vector
and hidden vector at the previous time step, re-
spectively. The initial hidden vector h0 is set to
be the last content vector cT . With the comment’s
content vectors c1, · · · , cT obtained from the en-
coder RNN LM in Subsection 2.1, a response trig-
ger vector dj is computed as the mixture:

dj =
∑T
t=1 a

′(hj , ct) · ct, (6)

where a′(hj , ct) is a similar function to a(ct,mk)
defined in (1) with different parameters. Similar
to the encoder RNN LM, the decoder RNN LM
estimates the probability of the (j + 1)-th word
rj+1 in the reply based on the hidden vector hj
and the response trigger vector dj , i.e.

Pr(rj+1|r1:j) = softmax(Q† [hj ;dj ]),

where Q† ∈ RV×2n is the weight matrix.
Note the decoder RNN only aims at providing

additional supervision signals in training the en-
coder RNN through a response generation task. At
test time, we do not use the responses therefore do
not need to run the decoder RNN LM.

3 Model Learning

The full model is trained by maximizing the log-
likelihood of the data, i.e.

∑
i log Pr(w

(i)

1:T (i)) + α log Pr(r
(i)

1:J(i) |w(i)

1:T (i)),

where the two terms correspond to the log-
likelihood of the encoder RNN LM and the de-
coder RNN LM, respectively, and α is the hyper
parameter which weights the importance of the
second term. In our experiments, we let α = 0.1.
During the training, each comment-reply pair is
used as a training sample. Considering that com-
ments may receive a huge number of replies, we
keep up to 5 replies for each comment. Due to
memory limitations associated with the RNN, we
use only the first 50 words of comments and the
first 20 words of replies. If a comment has no re-
ply, a special token is used. All weights are ran-
domly initialized according to N (0, 0.01). The
model is optimized using Adam (Kingma and Ba,
2015) with an initial learning rate 0.01. Once
the validation log-likelihood decreases for the first
time, we halve the learning rate at each epoch. The
training process is terminated when the validation
log-likelihood decreases for the second time. In
our experiments, we learn word embeddings of di-
mension d = 256 from scratch. The number of
modes K is set to 16. A single-layer RNN is used,
with the dimension n of hidden layers set to 64.

4 Data and Task

In this paper, we work with Reddit discussion
threads, taking advantage of their conversational
and community-centric nature as well as the avail-
able karma scores. Each thread starts from a post
and grows with comments to the post or other
comments within the thread, presented as a tree
structure. Posts and comments can be voted up or
down by readers depending on whether they agree
or disagree with the opinion, find it amusing vs. of-
fensive, etc. A karma score is computed as the dif-
ference between up-votes and down-votes, which
has been used as a proxy of community endorse-
ment for a Reddit comment. Three popular sub-
reddits with different topics and styles are studied2

AskWomen (814K comments), AskMen (1,057K
comments), and Politics (2,180K comments).
For each subreddit, we randomly split comments
by threads into training, validation, and test data,
with a 3:1:1 ratio. The vocabulary of each sub-
reddit is built on the training set. After removing
singletons, the vocabulary sizes are 45K, 52K, and
60K for AskWomen, AskMen, and Politics,
respectively.

2Comment IDs and labels used in this paper is at https:
//github.com/hao-cheng/factored_neural.
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Figure 2: Averaged F1 scores of different classifiers. Blue bars show the performance using no comment
embeddings. Orange bars show the absolute improvement by using factored comment embeddings.

Task: Considering the heavy-tailed Zipfian distri-
bution of karma scores, regression with a mean
squared error objective may not be informative be-
cause low-karma comments dominate the overall
objective. Following (Fang et al., 2016), we quan-
tize comment karma scores into 8 discrete levels
and design a task consisting of 7 binary classifica-
tion subtasks which individually predict whether a
comment’s karma is at least level-l for each level
l = 1, · · · , 7. This task is sensitive to the order of
quantized karma scores, e.g., for the level-6 sub-
task, predicting a comment as level-5 or level-7
would lead to different evaluation results such as
recall, which is not the case for a standard multi-
class classification task. Additionally, compared
to a standard multi-class classification task, these
subtasks alleviate the unbalanced data issue, al-
though higher levels are still more skewed.
Evaluation metric: For each level-l binary clas-
sification subtask, we compute the F1 score by
treating comments at levels lower than l as nega-
tive samples and others as positive samples. Note
that we only compute F1 scores for l ∈ {1, . . . , 7}
since no comment is at a level lower than 0. The
averaged F1 scores is used as an indicator of the
overall prediction performance.

5 Experiments

In this section, we evaluate the effectiveness of the
factored comment embeddings on the quantized
karma prediction task. We use the concatenation
of the local mode vector and the content vector at
the last time step as the factored comment embed-
ding. First, we study the overall prediction perfor-
mance of four different classifiers under two set-
tings, i.e., using factored comment embeddings or
not. Then we compare the factored comment em-
beddings inferred from the full model and its two

Range Description
0/1 Whether the comment author is the user who initiated the thread.

Z≥0

Number of comments made by the author.
Number of replies to the comment.
Number of earlier comments.
Number of later comments.
Number of sibling comments.
Number of comments in the subtree rooted from the comment.
Height of the subtree rooted from the comment.
Depth of the comment in the tree rooted from the original post.

R≥0

Relative comment time (in hours) with respect to the original post.
Relative comment time (in hours) with respect to the parent com-
ment.
Normalized† number of replies to the comment.
Normalized† number of comments in the subtree rooted from the
comment.

Table 1: Content-agnostic features. † means two
kinds of normalization are used: 1) zero-mean nor-
malization; 2) divided by the squared-root-rank of
the feature value in the thread.

AskWomen AskMen Politics
Baseline 53.6% 49.3% 51.3%

BoW 53.1% 50.9% 51.8%
LDA 55.3% 51.1% 52.5%

Doc2Vec 55.2% 51.7% 53.0%
Factored\M 54.2% 51.8% 52.9%
Factored\R 55.1% 51.9% 53.4%

Factored 56.3% 52.7% 54.8%

Table 2: Averaged F1 scores of DeepOR classi-
fiers using different text features. Baseline results
do not use any text features.

variants with other kinds of text features using the
best type of classifiers. Finally, we carry out error
analysis on prediction results of the best classifiers
using the factored comment embeddings.

5.1 Classifiers

The following four types of classifiers are studied:
• ShallowLR: A standard multi-class logistic re-

gression model;
• ShallowOR: An ordinal regression model (Ren-

nie and Srebro, 2005), which can exploit the or-
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der information of the quantized karma labels;
• DeepLR: A feed-forward neural network using

the logistic regression objective;
• DeepOR: A feed-forward neural network using

the ordinal regression objective.
These classifiers have different objectives and
model complexities, allowing us to study the ro-
bustness of the learned comment embeddings. The
factored comment embeddings are inferred from
the proposed models trained on the same training
data but independently with these classifiers.

As baselines, we train the classifiers using only
content-agnostic features, as shown in Table 1,
which have strong correlations with community
endorsement (Jaech et al., 2015; Fang et al., 2016).
In our pilot work, we experimented with several
groups of features from (Jaech et al., 2015) to find
the content-agnostic features used in our paper.
Since Jaech et al. (2015) work on a different task
(ranking comments in a short time window), many
of the useful content-agnostic features from (Jaech
et al., 2015), including k-index, do not give ad-
ditional improvement over the selected configura-
tion for the karma prediction task.

All classifiers are trained on the training data
for each subreddit independently, with hyper-
parameter tuned on the validation data. The
penultimate weights are regularized using L2

and the regularization parameters are selected in
{0.0, 0.001, 0.01, 0.1, 1.0}. The number of hid-
den layers for deep classifiers are chosen from
{1, 2, 3}, and the number of hidden neurons is se-
lected from {32, 48, 64}.

We report the prediction performance on the test
data, as shown in Fig. 2. We observe that us-
ing comment embeddings consistently improves
the performance of these classifiers. While Shal-
lowOR significantly outperforms ShallowLR, in-
dicating the usefulness of exploiting the order in-
formation in quantized karma labels, the differ-
ence is much smaller for deep classifiers. Also,
deep classifiers consistently outperforms their
shallow counterparts.

5.2 Text Features
We compare the factored comment embeddings
with the following text features:
• BoW: A sparse bag-of-word representation;
• LDA: A vector of topic probabilities inferred

from the topic modeling (Blei et al., 2003);
• Doc2Vec: Embeddings inferred from the para-

graph vector model (Le and Mikolov, 2014).
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80%
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Figure 3: F1 scores of the DeepOR classifier for
individual subtasks. Error bars indicate the im-
provement of using the factored comment embed-
dings over the classifier using no text features.

For these models, which do not use RNNs, all
words in a comment are used. We use the gen-
sim implementations (Řehůřek and Sojka, 2010)
for both LDA and Doc2Vec. For LDA, the num-
ber of topic is selected in {16, 32, 64}, and 32
works the best on the validation set for all sub-
reddits. For Doc2Vec, we select the embedding
dimension from {32, 64, 128}, and 64 works the
best on the validation set for all subreddits. We
train the Doc2Vec for 20 epochs, and the learning
rate is initialized as 0.025 and decreased by 0.001
at each epoch.

In addition to the factored comment embed-
dings obtained from our full model, we study two
variants of the full model: 1) a model trained with-
out the mode vector component (Factored\M),
which is a normal sequence-to-sequence attention
model (Bahdanau et al., 2015), and 2) a model
trained without the response trigger vector compo-
nent (Factored\R). All textual representations are
used together with the baseline content-agnostic
features described previously.

Since the DeepLR and the DeepOR perform
best across all subreddits and they have similar
trends, we report results of the DeepOR in Tabel 2.
Among all text features, the BoW has the worst av-
eraged F1 scores and even hurts the performance
for AskWomen, probably due to the data sparsity
problem. Both the LDA and the Doc2Vec out-
perform the BoW. The Doc2Vec performs slightly
better on AskMen and Politics, which might
be attributed to the relative larger training data
size. The factored comment embeddings derived
from the full model consistently achieve better av-
eraged F1 scores. It can be observed that the
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(a) w/o comment embeddings (b) w/ comment embeddings

Figure 4: The confusion matrices for the DeepOR
classifier on Politics. The color of cell on the
i-th row and the j-th column indicates the percent-
age of comments with quantized karma level i that
are classified as j, and each row is normalized.

two variants of the full model mostly lead to
similar performance as the Doc2Vec, though the
Factored\R embeddings usually have higher aver-
aged F1 scores than the Factored\M embeddings.
These results suggest advantages of jointly model-
ing two components, which may drive the model
to discover more latent factors and patterns in the
data that could be useful for downstream tasks.

5.3 Error Analysis

In this subsection, we focus on analyzing how fac-
tored comment embeddings improve the predic-
tion results of the DeepOR classifiers. The F1
scores for individual subtasks are shown in Fig. 3.
Note that the higher the level is, the more skewed
the task is, i.e. a lower positive ratio. As expected,
comments with the lowest endorsement level are
easier to classify. Adding comment embeddings
primarily boosts the performance of the classifier
on the high-endorsement tasks (level > 5, 6) and
the low-endorsement tasks (level > 0, 1).

Confusion matrices for the DeepOR classifier
with and without factored comment embeddings
are shown in Fig. 4 for Politics. Using the
additional comment embeddings leads to a higher
concentration of cell weights near the diagonals,
corresponding to errors that mainly confuse neigh-
boring levels. Without any text features, the clas-
sifier seems to only distinguish four levels. We ob-
serve similar trends on AskWomen and AskMen.

6 Qualitative Analysis

In this section, we conduct analysis to better
understand what the factored model is learning,
again using the Politics subreddit. First, we
analyze latent global modes learned from the full

Figure 5: The box plot of strongest association po-
sitions for each global mode in Politics.

model. For each global mode, we extract com-
ments with top association scores. Note that
the model assumes a locally coherent mixture of
global modes and updates the mixture for each ob-
served word. Thus, each comment receives a se-
quence of association probabilities over the global
modes. The association score βk between a com-
ment w1:T and Mode-k is then computed as βk =
maxt∈{1,··· ,T} a(ct,mk) for k ∈ {1, · · · ,K},
where a(ct,mk) is defined in (1). In Table 3,
we show examples from the most coherent modes
out of the 16 learned modes. Some modes seem
to be capturing style (modes 2, 6, and 10), while
others are related to topics (modes 7 and 16).
Mode-2 captures the style of starting with rhetor-
ical question to express negative sentiment and
disagreement. Many comments in Mode-6 be-
gin with words of drawing attention such as “bull”
and “psst”. Mode-10 tends to be associated
with comments telling a story about a closely re-
lated person. Many comments in Mode-7 dis-
cuss low salaries, whereas Mode-16 comments
discuss politicians or ideology of the Republican.

The characteristics of examples in modes 2
and 6 suggested that modes might have a loca-
tion dependency, so we looked at word positions
with the strongest association of each mode, i.e.
argmaxt∈{1,··· ,T}a(ct,mk). For each Mode-k,
we only keep comments with association score
higher than mean(βk)+std(βk). Fig. 5 shows the
box plot of locations where the strongest associ-
ation happens. It can be seen that modes 2 and
6 usually have the strongest association at the be-
ginning of a comment. For modes 3, 8, 15 and 16,
the strongest associations occur over a wider span
in comments. In addition to the interpretability of
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Mode-2

• Oh come on! Really? One can’t make that trip and spend maybe half and save the other for milk, bread and things that do spoil? . . .
• Remind me. How many filibusters did Harry Reid conduct this year? . . .
• Feckless tyrant? How did you do that with your brain? . . .
• Seriously? You have to be registered to vote. . . .
• Holy f*, seriously? This is some heavy duty shit. . . .

Mode-6

• Bull. Plenty of individuals influence policy by never missing a single chance to vote, no matter how minor the election. . . .
• Bull. Conservatives hate Obamacare so much because if their constituents got mental health treatment, they’d stop voting Republican.
• Utter bull s*. Where was the compromise from Obama and the Dems when they pushed through Obamacare without ONE Republican vote. . . .
• psst. . . it’s college
• psst- he’s “black” - meaning that one of his ancestors is black (as if it’s pollutant of some sort).

Mode-7

• . . . , I used to work 55+ hours a week, salaried, lower quartile salary to boost. . . .
• Or possibly that the standard of living between unemployment and the “jobs” that are out there is really insignificant. . . .
• Where on earth is 7.25 a living wage? If by some miracle you get 40 hours a week that’s only $1,160 before taxes. . . .
• If you have to work 40 hours a week to pay your bills that means you are controlled in your fight for survival. . . .
• . . . Working 15 hours a week for extra pocket money when you’re a teen is easy. Working 50 hours a week at fast food to cover rent, food, . . .

Mode-10

• . . . Had a guy stalk a trans friend of mine for months trying to terrorize her because . . .
• A co-worker of mine got audited by the IRS because . . .
• . . . Some conservative friends of mind wanted to meet up at a coffee house with shittier coffee because the other one was too “liberal”. . . .
• . . . Friend of mine works with mentally unstable and aggressive people as part of some social service. . . .
• . . . A student of mine asked our own AP about an atheist group and he just flat out said “You kidding me?” . . .

Mode-16

• . . . These same people will continue to listen to the bullshit that is the Republican Party. And when that happens, they have this twisted reality . . .
• . . . After spending almost my entire life in Texas and as a Born gain evangelical conservative Republican, I learned my lessons about how completely
dishonest and corrupted that entire culture is the hard way. . . . I will never gain ever vote for or support any kind of conservative. . . .
• . . . has been our greatest embarrassment, but what makes matter even worse is the support he has for re-election. I would not be surprised . . .
• Well, it is entirely possible that . . . the underlying cause of Limbaugh’s attack was that this guy was playing the type of dirty politics . . .
• . . . this was more of a referendum on the GOP leadership in Congress by Republican voters, because let’s face it, they haven’t done anything.. . .

Table 3: Examples of comments associated with the learned global modes for Politics.

the learned modes as one can get from LDA, these
observations suggest that our model may further
capture word location effects which may help pre-
dicting community endorsement.

Next, we analyze the response characteristics by
examining the response trigger vectors associated
with the onset of comment responses, which is a
special start-of-reply token. These response trig-
ger vectors are clustered into 8 classes via k-means
and visualized in Fig. 6 using t-SNE (van der
Maaten and Hinton, 2008). For each cluster, we
study the karma distribution, as well as comments
together with the first reply. Related data statistics
and examples are shown in Fig. A-4 and Tables A-
2&A-3 in the supplementary materials. The hor-
izontal dimension seems to be associated with
how many replies a comment elicits. The vertical
dimension is less interpretable but most clusters
have identifiable traits. The far left classes (Class-
1&4) both have few replies and low karma, often
two-party exchanges where Class-4 has more neg-
ative sentiment. Class-2 comments tend to involve
complements, whereas comments in Class-3 usu-
ally trigger a reply with but-clause for a contrast
and disagreement intent. Comments in Class-5
mostly receive responses expanding on the orig-
inal comments. Class-6 has a lot of sarcastic
and cynical comments and replies. Comments in
Class-7 are mostly anomalous since their first re-
sponses were usually [deleted]. It seems there are
multiple response trigger factors in the proposed
embedding model, some may reflect dialog acts
and others sentiment, any of which may be helpful
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Figure 6: t-SNE visualization of response trigger
vectors clustered using k-means.

in predicting community endorsement.

7 Related Work

The skip-thought vector method (Kiros et al.,
2015) is most closely related to our work in terms
of utilizing context for unsupervised sequence
modeling under the sequence-to-sequence frame-
work (Sutskever et al., 2014). A key difference
is the context being exploited. The skip-thought
vector method uses surrounding sentences by ab-
stracting the skip-gram structure (Mikolov et al.,
2013a) from word to sequence. In our model,
we exploit two types of context that are unique in
online discussions: 1) the global context such as
community topic and style which is learned in the
mode vectors, and 2) the responses to a comment
modeled as the response trigger vectors. More-
over, we augment our model with the attention
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mechanism (Bahdanau et al., 2015) to push the
model to distill the relevant information from con-
text.

The neural attention mechanism has been used
for a variety of natural language processing tasks,
e.g., machine translation (Bahdanau et al., 2015),
question answering (Sukhbaatar et al., 2015), con-
stituency parsing (Vinyals et al., 2015), social me-
dia opinion mining (Yang and Eisenstein, 2017).
and dependency parsing (Cheng et al., 2016).
The attention mechanism developed in this paper
for exploiting global modes differs from previous
work in that the global modes being attended over
are latent rather than explicitly observed, and in
that they are learned jointly with the full model.

Predicting the community endorsement has
been studied by using either hand-crafted features
(Jaech et al., 2015) or neural models (Fang et al.,
2016; Zayats and Ostendorf, 2017), but all of them
focus on supervised learning. Unsupervised learn-
ing strategies have been explored for character-
izing different factors in language. A hierarchi-
cal Dirichlet process model was originally pro-
posed for topic variations but has been extended
to characterize multiple factors in (Huang and Re-
nals, 2008). While much of the Dirichlet modeling
work uses multinomial distributions, a loglinear
version is introduced in (Eisenstein et al., 2011).
Multi-dimensional structure latent factors in text
are modeled by extending the sparsity-promoting
topic model in (Paul and Dredze, 2012). Our
model instead uses a neural network to character-
ize latent language factors, where the learned la-
tent language factors could have a dependency on
word positions.

8 Conclusion

This paper introduces a new factored neural model
for unsupervised learning of comment embed-
dings leveraging two different types of context
in online discussions. By extending the atten-
tion mechanism and using residual learning, our
method is able to jointly model global context,
comment content and response generation. Quan-
titative experiments on three different subreddits
show that the factored embeddings achieve consis-
tent improvement in predicting quantized karma
scores over other standard document embedding
methods. Analyses on the learned global modes
show community-related style and topic character-
istics are captured in our model. Also, we observe

that response trigger vectors characterize certain
aspects of comments that elicit different response
patterns.

A potential future direction is to explore
whether the comment embeddings derived from
the unsupervised factored neural model can be
useful across multiple tasks. Recently, a dataset
with dialogue act annotations on Reddit discus-
sions is published and can be used for a dialogue
act prediction task (Zhang et al., 2017). Iden-
tifying or ranking persuasive arguments in the
ChangeMyView subreddit (as studied in (Tan
et al., 2016; Wei et al., 2016)) and asking for favors
in the RandomActsOfPizza subreddit (used in
(Althoff et al., 2014)) are also interesting for fu-
ture work.
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Abstract

This paper presents a corpus and exper-
iments to determine dimensions of inter-
personal relationships. We define a set of
dimensions heavily inspired by work in so-
cial science. We create a corpus by retriev-
ing pairs of people, and then annotating
dimensions for their relationships. A cor-
pus analysis shows that dimensions can be
annotated reliably. Experimental results
show that given a pair of people, values to
dimensions can be assigned automatically.

1 Introduction

The task of information extraction (IE) consists in
creating structured representations from unstruc-
tured text. These representations usually consist
of relations explicitly stated in text, and involve
two or more arguments. For example, IE sys-
tems would extractSPOUSE(John, Mary) or MAR-
RIED(John, Mary, 1994) from John and Mary
have been married since 1994. IE systems have
a long history, and became popular after eval-
uations such as MUC (Grishman and Sundheim,
1996) and ACE (Doddington et al., 2004).

Traditional IE systems are supervised and ex-
tract relations defined before training takes place
(Peng and McCallum, 2004). More recently, open
IE systems have been proposed to extractall re-
lations explicitly stated in text in an unsuper-
vised manner and without defining relations a
priori (Mausam et al., 2012). Regarding inter-
personal relations—relations that take as argu-
ments two people—both IE approaches extract re-
lations such asRELATIVE, FRIEND andCOMMU-
NICATES WITH. Open IE systems are domain in-
dependent and would extract, in principle, rela-
tions such asCLASSMATES and ADVISOR from
students’ diaries or biographies of scientists.

While useful for applications such as ques-
tion answering (Yao and Van Durme, 2014), these
dyadic relations only provide a generic under-
standing of the relationship between two people.
For example,COMMUNICATES WITH may relate
people who have anintenseor superficial rela-
tionship (e.g., engaged couples talking about wed-
ding plans vs. home owners discussing remodels
with contractors),pleasure-or task-orientedrela-
tionships (e.g., friends planning a backpacking trip
vs. software developers discussing the next deliv-
ery), and may bespatially nearor distant (e.g.,
inviduals having an in-person meeting vs. those
exchanging emails or talking on the phone).

These elemental properties of interpersonal re-
lationships are calleddimensionsin social science,
and have been studied for decades (Wish et al.,
1976). In those studies, the goal is to understand
how relationships areperceivedby people, not to
extract them. Note that unlike interpersonal re-
lationships, their dimensions are usually implic-
itly stated in text, thus extracting them is chal-
lenging. Also, extracting dimensions of interper-
sonal relationships requires text understanding be-
yond the event in which two people participate.
As shown above, two people who communicate
may have different dimension values depending on
what they talk about or the communication device.

In this paper, we target dimensions of inter-
personal relationships that characterize the nature
of relationships beyond a name per relationship.
The main contributions are: (a) set of dimensions
of interpersonal relationships, including dimen-
sions from previous work outside computational
linguistics and novel ones; (b) corpus consisting
of pairs of people and values for the dimensions of
their relationships (Cohen’s kappa: 0.68); (c) de-
tailed corpus analysis; and (d) experimental results
showing that the dimensions can be extracted au-
tomatically from text.
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Dimension Other descriptors and aliases Ref.
Cooperative vs. Competitive friendly vs. hostile, promotive vs. contrient [1]

Equal vs. Hierarchical autonomy vs. control, submission vs. dominance [1]
Intense vs. Superficial important vs. insignificant, influential vs. trivial [1]

Pleasure vs. Task Oriented personal vs. impersonal, emotionally involved vs. detached [1]
Active vs. Passive direct vs. indirect, unequivocal vs. equivocal [2]

Intimate vs. Unintimate emotionally close vs. distant, indifferent, random [3]
Temporary vs. Enduring momentary vs. lasting, provisional vs. permanent [4]
Concurrent vs. Nonconcurrent convergent vs. divergent, synchronous vs. asynchronousNew

Spatially Near vs. Distant nearby vs. faraway, attached vs. detached New

Table 1: Dimensions of interpersonal relationships targeted in this paper. [1] stands for (Wish et al.,
1976), [2] for (Kelley, 2013), [3] for (Adamopoulos, 2012), and [4] for (Deutsch, 2011). Newindicates
a dimension discovered after analyzing several examples and pilot annotations.

2 Related Work

Extracting relations between entities such as
people, organizations and locations is the core
goal of the task of information extraction. A
few competitions have served as evaluation
benchmarks (Grishman and Sundheim, 1996;
Doddington et al., 2004; Kulick et al., 2014;
Surdeanu and Heng, 2014), and include interper-
sonal relationships such asBUSINESS, SPOUSE

and CHILDREN. Aguilar et al. (2014) compare
several evaluations, and automated approaches
to relation extraction—also referred to as link
prediction and knowledge base completion—
include (Yu and Lam, 2010; Nguyen et al., 2016;
West et al., 2014). Open information extraction
(Wu and Weld, 2010; Angeli et al., 2015) has
emerged as an unsupervised domain-independent
approach to extract relations. Regardless of
details, all these previous efforts extract explicit
relations, and do not attempt to characterize
instances of relations with dimensions.

Besides extracting relations per se, there
have been efforts within computational lin-
guistics involving interpersonal relationships.
Voskarides et al.(2015) extract human-readable
descriptions of relations in a knowledge graph
by ranking sentences that justify the relations.
Iyyer et al.(2016) propose an unsupervised algo-
rithm to extract relationship trajectories of fic-
tional characters, i.e., how interpersonal rela-
tionships evolve over time in fictional stories.
Bracewell et al. (2012) introduce 9 social acts
(e.g., agreement, undermining) designed to char-
acterize relationships between individuals exhibit-
ing adversarial and collegial behavior (similar to
our cooperative vs. competitive dimension).

Researchers have studied from a com-
putational perspective how people com-

municate with each other. For example,
Danescu-Niculescu-Mizil et al.(2012) study how
power differences affects language style in online
communities, and Prabhakaran and Rambow
(2014) present a classifier to detect power re-
lationships in email threads. Similarly,Gilbert
(2012) explores how people in hierarchical
relationships communicate through email, and
Bramsen et al. (2011) focus on identifying
power relationships in social networks. Po-
liteness in online forums has also been studied
(Danescu-Niculescu-Mizil et al., 2013). While
power (similar to our equal vs. hierarchical
dimension, Section3) and politeness could be
considered dimensions, these works exploit
structural and linguistic features derived from
communications between two individuals. Unlike
all of them, we extract 9 dimensions of interper-
sonal relationships from sentences describing an
event involving two people, and without needing
language samples from them.

3 Dimensions of Interpersonal
Relationships

Dimensions of interpersonal relationships have
been studied for decades outside of computational
linguistics, mostly in psychology and social sci-
ence in general (Wish et al., 1976). The set of di-
mensions is by no means agreed upon, and neither
is the terminology to refer to what apparently is
the same dimension. For example, the termsdomi-
nance, submission, potency, autonomyandcontrol
are used to describe the distribution of power in a
relationship (Deutsch, 2011).

The dimensions we work with in this paper are
primarily borrowed from previous works in social
science, although we add two new dimensions. In-
terestingly, the previous works which define these
dimensions do so from a theoretical point of view

2308



or after conducting experiments with subjects to
reveal how they perceive interpersonal relation-
ships. The latter was done using multidimensional
scaling analysis after subjects compared 25 rela-
tionships, e.g., between a parent and child, be-
tween business partners (Wish et al., 1976).

Table 1 presents the nine dimensions targeted
in this paper along with the original references
and aliases found in the literature. Social scien-
tists have proposed additional dimensions, e.g.,
voluntary vs. involuntary, public vs. private and
licit vs. illicit ( Deutsch, 2011), or self-benefiting
vs. service-oriented (Adamopoulos, 2012). We
discarded these additional dimensions because we
discovered that they are not applicable to most
pairs of people we work with (Section4).

We provide below brief descriptions of the nine
dimensions of interpersonal relationships we work
with. Note that these dimensions are not com-
pletely independent, for example,enduring rela-
tionships are usuallyintenseandintimate, andin-
tenseand pleasure-orientedrelationship are al-
most alwaysintimate. Section4.3 presents exam-
ples, and Section4.4 discusses inter-dimensional
correlations and inter-annotator agreement. We
point the reader to the references in Table1 for
additional details, rationales, and examples.

Cooperative vs. CompetitiveA relationship is
cooperativeif both people (a) have a common
interest or goal, (b) like each other, (c) bene-
fit from the relationship, or (d) think alike or
have similar views. Otherwise, the relation-
ship iscompetitive.

Equal vs. Hierarchical A relationship isequalif
both people (a) have the same social sta-
tus, (b) are at the same level in the power
structure, (c) share similar responsibilities, or
(d) have the same role. Otherwise, the rela-
tionship ishierarchical.

Intense vs. SuperficialA relationship isintense
if both people interact with each other fre-
quently, i.e., they are involved repeatedly.
Otherwise, the relationship issuperficial.

Pleasure vs. Task OrientedA relationship is
pleasure orientedif both people interact so-
cially and their relationship is not bound by
professional rules or regulations. Otherwise,
the relationship istask oriented.

Active vs. PassiveA relationship isactiveif both
people are involved in a shared activity or
event that grants the relationship. Otherwise,

the relationship ispassive. For example, in-
dividuals commuting to work in the same car
have anactive relationship, but those who
happen to take the same subway line to work
have apassiverelationship.

Intimate vs. Unintimate A relationship is inti-
mateif both people are emotionally close and
warm to each other. Otherwise, the relation-
ship inunintimate.

Temporary vs. Enduring A relationship istem-
porary if it lasts less than a day. A relation-
ship isenduringif it lasts over a month. Oth-
erwise (if it lasts more than a day and less
than a month), this dimension is undefined.

Concurrent vs. Nonconcurrent A relationship
is concurrent if both people are involved
in an event or action at the same time.
Otherwise, the relationship isnonconcurrent.

Spatially Near vs. Distant A relationship isspa-
tially near (or near for short) if both people
are at the same location during the event that
grants the relationship. Otherwise, the rela-
tionship isspatially distant(or distant).

4 Building a Corpus of Dimensions of
Interpersonal Relationships

Existing corpora annotating relations (Section2)
only consider selected interpersonal relationships
and do not target dimensions. Our goal is to tar-
get dimensions of interpersonal relationships be-
tween any two individuals, from weak links (e.g.,
journalists interviewing celebrities) to strong ties
(e.g., close friends). Thus, we create a corpus1 by
first retrieving pairs of people, and then annotating
dimensions for their relationships.

We decided to add our annotations to
OntoNotes (Hovy et al., 2006). Doing so has
several advantages. First, OntoNotes contains
texts from several domains and genres (e.g.,
conversational telephone speech, weblogs, broad-
cast), thus we not only work with newspaper
articles. Second, OntoNotes includes part-of-
speech tags, named entities and coreference
chains, three annotation layers that allow us to
streamline the corpus creation process.

4.1 Retrieving Pairs of People

We retrieve pairs of people within each sentence
in OntoNotes following four steps:

1Available athttp://hilt.cse.unt.edu/

2309



Figure 1: Frequencies of the top 20 most frequent verbs afterretrieving pairs of people (Section4.1). We
discard verbs with frequency<4, and randomly select up to 26 pairs per verb for a total of 1,048 pairs.

1. Collect all instances of personal pronouns
(part-of-speech tag PRP)I, heandshe.

2. Collect all named entities PERSON.
3. Keep one mention per coreference chain, giv-

ing priority to named entities over pronouns.
4. Generate combinations of 2 elements from

the union of the pronouns and named entities
subject to the following constraints: at least
(a) one is a PERSON named entity, and
(b) one is thensubj(nominal subject syntac-

tic dependency) of a verb.
The elements of the pair that satisfy restric-
tions (4a) and (4b) need not be the same.

Note that removing duplicate mentions (Step 3)
does not reduce the number of relationships tar-
geted, it simply avoids duplicate pairs. Also, the
only syntactic constraint is that one person in the
pair must be the nominal subject of a verb. Thus,
we work with relationships between individuals
from different clauses, and connected with a va-
riety of syntactic paths (see Examples in Table2).

The total number of pairs generated skipping
Steps 3 and 4 would be 4,886. After removing du-
plicate mentions (Step 3), the number is reduced
to 3,481; restrictions (4a) and (4b) further reduce
the number to 3,143 and 2,696 respectively. Exe-
cuting all steps yields 2,364 pairs.

Figure1 presents verb frequencies for the top 20
most frequent verbs in the 2,364 pairs. In order to
reduce the annotation effort and account for a vari-
ety of verbs, we set to annotate 1,000 pairs. After
trying several thresholds, we retrieved 1,048 pairs
by selecting pairs from verbs that occur at least 4
times, and randomly selecting up to 26 pairs per
verb (most verbs occur less than 26 times).

4.2 Annotating Dimensions of Interpersonal
Relationships

After generating pairs, annotators determine val-
ues for each dimension of interpersonal relation-
ships. The annotation interface shows the sentence

from which the pair was generated, and the pre-
vious and next sentence to provide some context.
The pair of people of interest were highlighted,
but no additional information was shown (e.g., the
verb of which one person is the subject).

Annotators assign a value to each dimension
based on the relationship between the two individ-
uals at the time the verbal event of which one of
the individuals is the subject takes place. They
were trained to take into account context (previ-
ous and next sentences), and to interpret the text
as they normally would. Therefore, they assign
values using world knowledge that may not be ex-
plicitly stated in the text. For example, two peo-
ple talking on the phone would have aspatially
distantrelationship because (most likely) they are
not next to each other while talking. Annotating
the changes over time of the dimensions is outside
the scope of this paper.

During the first batch of annotations, we discov-
ered that for a given pair of people, dimensions
sometimes cannot be determined because (a) there
is not enough evidence in the text provided (i.e.,
sentence from which the pair was generated, pre-
vious and next sentences) or (b) the pair is invalid
and assigning dimensions is nonsensical. We use
0 label in the former case, andinv in the latter.
For example, in the sentence[He]y [criticized]verb

[Ken Starr]x, the value for the dimensionspatially
near (vs. distant) was marked0 as there is not
enough information to determine whetherHe and
Ken Starrare at the same location whencriticized
took place. The most frequent example ofinv is
whenGod is marked as a PERSON named entity
in the gold annotations in OntoNotes.

In the rest of the paper, we refer to dimensions
by the first descriptor in Table1, and use1 if the
first descriptor of a dimension is true, and-1 if
the second descriptor is true. For example label
-1 applied to dimensiontemporarymeans that the
realtionship isenduring.

2310



Sentence C
oo

pe
ra

tiv
e

E
qu

al

In
te

ns
e

P
le

as
ur

e
O

ri
en

te
d

A
ct

iv
e

In
tim

at
e

Te
m

po
ra

ry

C
on

cu
rr

en
t

S
pa

tia
lly

N
ea

r

1 [Cheney]x [got]verb a telephone call from his democratic counterpart [Joseph
Lieberman]y wishing him a speedy recovery.

1 1 -1 -1 1 -1 1 1 -1

2 [. . . ] [I] x [interviewed]verb one of the nation’s top jockies [Shane Sellers]y about
the battle he waged everyday to control his weight.

1 -1 -1 -1 1 -1 1 1 1

3 [I] x have always remembered the encouragement which Mr. [Yu Youren]y
[gave]verb me as a young reporter. He said that to be a fearless champion of
social justice, as is expected of a journalist, the [. . . ]

1 -1 1 -1 1 1 -1 1 1

4 One day, Dingxiang took the opportunity to again urge him to change his ways
[. . . ]. After this, [Zhang Sheng]x [threw]verb out [Dingxiang]y, sold off the family
possessions, and spent his days living a life of dissipation.

-1 1 -1 1 1 -1 -1 1 1

Table 2: Annotation examples for pairs of people (x, y). We refer to dimensions by their first descriptor
(Section3); 1 (-1) indicates that the first (second) descriptor is true, and0 that the value is unknown.
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65.9%

27.4%
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79.3%
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Cooperative Equal Intense Pleasure Oriented Active

15%

79.3%
80.1%

14.5%

46.4%

47.1%

40.4%

51.4%

1

-1

Intimate Temporary Concurrent Spatially Near

Figure 2: Label distribution per dimension of interpersonal relationships. The missing portion of each
pie chart corresponds to labels0 andinv, which always amount to less than 5% each.

4.3 Annotation Examples

We present annotation examples from our cor-
pus in Table2, including context if it is relevant.
We acknowledge that some annotations are am-
biguous, and discuss label distributions and inter-
annotator agreement in Section4.4.

Sentences (1) and (2) encode aCOMMUNICA-
TION relationships between two individuals, and
both arecooperative, superficial, work oriented,
active, unintimate, temporary, and concurrent.
The values for two dimensions, however, are dif-
ferent. Two counterparts (Sentence 1) are at the
same level in the power structure (equal), but inter-
viewer and interviewee are not (Sentence 2). Sim-
ilarly, talking on the phone entails that the individ-
uals arespatially distant(Sentence 1), but inter-

viewing (most likely) means that they werespa-
tially near (Sentence 2). One could argue that
0 would be a better label forspatially near in
Sentence (2), but annotators interpreted thatinter-
viewedrefers to an in-person interview.

Sentence (3) in context describes one person
(Yu Youren) encouraging another one (I). Annota-
tors indicate that this relationship, unlike the ones
in Sentences (1) and (2), isintense(frequent inter-
action), intimate (emotionally close), andendur-
ing (lasting over a month). These values are not
explicitly stated, but they are understood given the
long-lasting impactYu Yourenhad onI.

Finally, Sentence (4) exemplifies acompetitive
relationship. The context describes a struggling
relationship betweenDingxiangandZhang Sheng.
When the latterthrew the former out, the rela-
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Cooperative –
Equal -.06 –
Intense .24 .11 –
Pleasure Or..14 .29 .39 –
Active .18 .22 .43 .25 –
Intimate .18 .17 .59 .62 .31 –
Temporary -.17 .10 -.56 -.43 -.27 -.61 –
Concurrent .17 .22 .31 .21 .74 .26 -.17 –
Spat. Near .21 .18 .30 .25 .68 .28 .19 .89

Table 3: Pearson correlations between dimensions
of interpersonal relationships in our corpus.

Dimension Agreement κ coefficient
Cooperative 86% 0.74
Equal 81% 0.63
Intense 84% 0.73
Pleasure Oriented 86% 0.70
Active 82% 0.59
Intimate 83% 0.68
Temporary 76% 0.61
Concurrent 84% 0.72
Spatially Near 80% 0.67
All 82% 0.68

Table 4: Inter-annotator agreement per dimension
of interpersonal relationships.κ values in the
0.60–0.80 range are consideredsubstantial, over
0.80 would beperfect(Landis and Koch, 1977).

tionship wassuperficialandunintimate, but (most
likely) existed for longer than a month (enduring).

4.4 Corpus Analysis

Label Distribution. Figure2 shows the percent-
age of label1 (first descriptor) and-1 (second de-
scriptor) per dimension in our corpus. The per-
centage of Label0 ranges from 0.86% (tempo-
rary) to 4.3% (cooperative) depending on the di-
mension, and the percentage ofinv is 4.6% (not
shown in Figure2). Importantly, annotators as-
signed a useful value (either1 or-1) to most pairs
of people (>90%) for all dimensions.

The distributions of1 and-1 clearly show that
most dimensions are biased towards one label. For
example, few relationships arepleasure oriented
(14.4%) orenduring(14.5%). The exceptions are
concurrent vs. nonconcurrent, with roughly the
same percentages (46.4% and 47.1%),spatially
near vs. distant(40.4% and 51.4%) andactive vs.
passive(58.4% and 35.3%). These distributions
are not a representative sample of all interpersonal
relationships, we would expect manypleasure ori-

entedand intimate relationship if we work with
personal diaries instead of OntoNotes.

Inter-Dimension Correlations. While the dimen-
sions we work with have a long tradition in social
science (Section2), to the best of our knowledge,
they have not been extensively annotated in text
before. Table3 shows inter-dimensional correla-
tions for all pairs of dimensions in our corpus. Not
surprisingly, some dimensions correlate with each
other. For example,enduring relationships tend
to also beintense(0.56) andintimate (0.61), and
concurrentrelationships tend to beactive (0.74).
The highest correlation is betweenconcurrentand
spatially near(0.89), indicating that if two people
participate in a common event at the same time,
usually they are at the same location (see coun-
terexample in Table2, Sentence 1). Note, how-
ever, that most correlations are low, and some di-
mensions (e.g.,cooperative, equal) have low cor-
relations (<0.30) with all dimensions.

Inter-Annotator Agreement. The annotations
were done by two graduate students. They started
annotating small batches of pairs of people, and
discussed disagreements with each other. After
several iterations, they annotated independently
10% of all pairs of people generated. Table4
depicts the inter-annotator agreements obtained.
Overall Cohen’s kappa coefficient is 0.68, and the
coefficients range between 0.59 to 0.74 depend-
ing on the dimension. Note that kappa coefficients
in the range 0.60–0.80 are consideredsubstantial,
and over 0.80 would beperfect(Landis and Koch,
1977). Given these high agreements, the rest of
pairs were annotated once.

5 Experiments and Results

We conduct experiments using standard super-
vised machine learning. Each pair of people be-
come an instance, and we split instances into train-
ing (80%) and test (20%). As a learning algorithm,
we use SVM with RBF kernel as implemented in
scikit-learn (Pedregosa et al., 2011).

We report results in the test set after tuning the
SVM parameters (C andγ) using 10-fold cross-
validation with the training set. More specifically,
we train one classifier per dimension, and exper-
iment with all instances but the ones annotated
inv. Thus, each classifier predicts 3 labels:1 (the
first descriptor applies),-1 (the second descriptor
applies), and0 (neither descriptor applies).
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Feature Description

Verb

word, tag Word form and part-of-speech tag of the verb
dep out Outgoing syntactic dependency from verb
depsin Flags indicating incoming syntactic dependencies to the verb
lex name Name of the WordNet lexical file of the verb
token before Word form and part-of-speech tag of the token before the verb
token after Word form and part-of-speech tag of the token after the verb

Person

words, tags Concatenation of word forms and part-of-speech tags
type Flag indicating whether the person is a pronoun or named entity
dep out Outgoing syntactic dependency
distanceverb Number of tokens between the person and the verb
first token Word form and part-of-speech tag of the first token in the person
last token Word form and part-of-speech tag of the last token in the person
token before Word form and part-of-speech tag of the token before the person
token after Word form and part-of-speech tag of the token after the person

Personx Persony
direction Flag indicating whetherx occurs before or aftery
type Flag indicating whetherx andy are PERSON NEs, or either one is a pronoun

Table 5: Feature set used to determine dimensions of interpersonal relationships between pairs of people
(x, y). Verbfeatures are extracted from the verb of which eitherx or y is the subject,Personfeatures are
extracted fromx andy independently, andPersonsfeatures are extracted fromx andy.

5.1 Feature Set

The features we work with are summarized in Ta-
ble 5. Most features are standard and have been
used before to extract relations from text (Section
2). Following the notation in Table2, we refer to
the pair of people asx andy.

Verb features capture information about the
verb to whichx or y attach. We include words
and part-of-speech tags (verb, and tokens before
and after), the name of the WordNet lexical file to
which the verb belongs, and dependencies.

Personfeatures are extracted fromx andy inde-
pendently, and consists mostly of words and part-
of-speech tags. We also include a flag indicating
whether the person is a pronoun or named entity
(type feature), and the number of tokens between
the person and the verb (distanceverb).

Personx Persony features capture information
of bothx andy. They capture (a) whetherx occurs
before or aftery in the sentence, and (b) whether
they are both named entities or one is a pronoun
and the other one a named entity (type feature).

5.2 Results

We present overall results (averages of the classi-
fiers for each dimension) using the majority base-
line and with several feature combinations in Table
6. Then, we present detailed results per dimension
with the best feature combination in Table7. We
only present results obtained in the test set.
Overall Results and Feature Ablation (Table
6). The majority baseline obtains 0.53 aver-
age F-measure. Recall that we build a classifier
per dimension, thus the combination of the nine

Features Label P R F

Majority
Baseline

1 0.43 0.76 0.55
0 0.00 0.00 0.00
-1 0.57 0.59 0.64
Avg. 0.45 0.65 0.53

Verb

1 0.62 0.72 0.64
0 0.00 0.00 0.00
-1 0.71 0.78 0.65
Avg. 0.62 0.71 0.65

Verb, Personx

1 0.68 0.75 0.69
0 0.00 0.00 0.00
-1 0.78 0.79 0.78
Avg. 0.70 0.74 0.71

Verb, Persony

1 0.64 0.72 0.67
0 0.00 0.00 0.00
-1 0.74 0.76 0.74
Avg. 0.66 0.70 0.67

Verb, Personx,
Persony ,
Personx Persony

1 0.69 0.74 0.70
0 0.00 0.00 0.00
-1 0.77 0.80 0.76
Avg. 0.71 0.76 0.72

Table 6: Results obtained for all dimensions with
several combinations of features.

majority-baseline classifiers predict two labels:1
(0.55 F-measure) and-1 (0.64 F-measure).

Models trained with any combination of fea-
tures outperform the majority baseline, but they
never learn to predict label0. Since0 occurs be-
tween 0.86% and 4.3% depending on the dimen-
sion (Section4.4), this limitation does not affect
overall performance substantially.

2313



Dimension
1 (1st descriptor) 0 (unknown) -1 (2nd descriptor) All
P R F P R F P R F P R F

Cooperative 0.73 0.96 0.83 0.00 0.00 0.00 0.60 0.19 0.29 0.66 0.72 0.65
Equal 0.56 0.10 0.17 0.00 0.00 0.00 0.74 0.97 0.84 0.68 0.74 0.66
Intense 0.39 0.30 0.34 0.00 0.00 0.00 0.78 0.85 0.82 0.67 0.71 0.69
Pleasure 0.40 0.28 0.33 0.00 0.00 0.00 0.87 0.93 0.90 0.79 0.82 0.80
Active 0.69 0.85 0.76 0.00 0.00 0.00 0.68 0.51 0.58 0.67 0.69 0.67
Intimate 0.44 0.17 0.24 0.00 0.00 0.00 0.88 0.98 0.93 0.81 0.86 0.83
Temporary 0.85 0.96 0.91 0.00 0.00 0.00 0.33 0.10 0.16 0.77 0.83 0.79
Concurrent 0.72 0.80 0.76 0.00 0.00 0.00 0.77 0.75 0.76 0.71 0.74 0.73
Spat. Near 0.66 0.68 0.67 0.00 0.00 0.00 0.73 0.79 0.76 0.66 0.70 0.68
Average 0.69 0.74 0.70 0.00 0.00 0.00 0.77 0.80 0.76 0.71 0.76 0.72

Table 7: Results obtained for each dimension with the best combination of features for all dimensions
(Verb + Personx + Persony + Personx Persony , boldfaced in Table6)

Verb features alone yield a 0.65 average F-
measure (1: 0.64,-1: 0.65). Adding features de-
rived from x (Verb + Personx) improves perfor-
mance (0.71 average F-measure), and adding fea-
tures derived fromy (Verb + Persony) slightly im-
proves performance (0.67 average F-measure). In
both cases,-1 is predicted more accurately than1
(0.78 vs. 0.69 and 0.74 vs. 0.67).

Finally, adding all features (Verb + Personx +
Persony + Personx Persony) yields the best results
(average F-measure: 0.72), although by a minimal
margin with respect toVerb + Personx.
Detailed Results per Dimension. Table 7
presents results per dimension with the best over-
all combination of features (Verb + Personx +
Persony + Personx Persony).

All dimensions obtain overall F-measures be-
tween 0.65 and 0.83 (last column). Results per
label are heavily biased towards the most frequent
label per dimension (Figure2), although it is the
case that the models we experiment with predict
both1 and-1 for all dimensions. As stated above,
none of them predict0, but this limitation does
not substantially penalize overall performance be-
cause of the low frequency of this label.

The model obtains the same F-measures for1
and-1 with concurrentdimension (0.76), and the
labels of this dimension are virtually distributed
uniformly (46.4% vs. 47.1%, Figure2). Similarly,
F-measures for1 and-1 with spatially nearand
activedimensions are similar (0.67 vs. 0.76 and
0.76 vs. 0.58), and the labels are distributed rela-
tively evenly in our corpus (40.4% vs 51.4% and.
58.4% vs. 35.3%).

Finally, F-measures per label with other dimen-

sion are biased towards the most frequent label.
For example, only 15% of all pairs of people have
an enduring relationship (Figure2), and the F-
measure for1 with temporarydimension is much
higher (0.91) that for-1 (0.16).

6 Conclusions

We have presented a set of nine dimensions of
interpersonal relationships, including dimensions
with a long tradition in social science and new
ones. These dimensions allow us to differenti-
ate core characteristics of the relationship between
two individuals. For example, people that commu-
nicate may bespatially nearor spatially distant
(asking questions in class vs. chatting online), and
have a pleasure-oriented or work-oriented rela-
tionship (somebody wishing good luck to a friend
vs. interviewer and interviewee).

Our annotations show that assigning values to
dimensions can be done reliably (Cohen’s kappa:
0.68), and that useful values (1 and-1 labels) are
assigned to dimensions in most pairs of people
(>90%). Experimental results following a stan-
dard supervised machine learning approach show
that assigning values to dimensions can be auto-
mated (0.72 overall F-measure), and that results
per label and dimensions are biased towards the
most frequent label.

We believe that extracting dimensions of inter-
personal relationships complements previous ef-
forts that extract relationships. Our future plans
include studying values of dimensions for selected
relationships (e.g.,COWORKER), and investigat-
ing changes on the dimensions of the relationship
over time. The latter would allow us to, for exam-
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ple, analyze how the relationship between two in-
dividuals changes over time, and determine which
events make a relationship go fromsuperficialto
intenseand vice versa.
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Abstract

Social media collect and spread on the
Web personal opinions, facts, fake news
and all kind of information users may be
interested in. Applying argument min-
ing methods to such heterogeneous data
sources is a challenging open research is-
sue, in particular considering the peculiar-
ities of the language used to write textual
messages on social media. In addition,
new issues emerge when dealing with ar-
guments posted on such platforms, such
as the need to make a distinction between
personal opinions and actual facts, and to
detect the source disseminating informa-
tion about such facts to allow for prove-
nance verification. In this paper, we ap-
ply supervised classification to identify ar-
guments on Twitter, and we present two
new tasks for argument mining, namely
facts recognition and source identification.
We study the feasibility of the approaches
proposed to address these tasks on a set
of tweets related to the Grexit and Brexit
news topics.

1 Introduction

Argument mining aims at automatically extract-
ing natural language arguments and their relations
from a variety of textual corpora, with the fi-
nal goal of providing machine-processable struc-
tured data for computational models of arguments
and reasoning engines (Peldszus and Stede, 2013;
Lippi and Torroni, 2016). Several approaches have
been proposed so far to tackle the two main tasks
identified in the field: i) arguments extraction,
i.e., to detect arguments within the input natural
language texts and the further detection of their
boundaries, and ii) relations prediction, i.e., to

predict what are the relations holding between the
arguments identified in the first task1. Social me-
dia platforms like Twitter2 and newspapers blogs
allow users to post their own viewpoints on a cer-
tain topic, or to disseminate news read on news-
papers. Being these texts short, without standard
spelling and with specific conventions (e.g., hash-
tags, emoticons), they represent an open challenge
for standard argument mining approaches (Sna-
jder, 2017). The nature and peculiarity of social
media data rise also the need of defining new tasks
in the argument mining domain (Addawood and
Bashir, 2016; Llewellyn et al., 2014).

In this paper, we tackle the first standard task
in argument mining, addressing the research ques-
tion: how to mine arguments from Twitter? Going
a step further, we address also the following sub-
questions that arise in the context of social media:
i) how to distinguish factual arguments from opin-
ions? ii) how to automatically detect the source
of factual arguments? To answer these questions,
we extend and annotate a dataset of tweets ex-
tracted from the streams about the Grexit and the
Brexit news. To address the first task of argument
detection, we apply supervised classification to
separate argument-tweets from non-argumentative
ones. By considering only argument-tweets, in the
second step we apply again a supervised classifier
to recognize tweets reporting factual information
from those containing opinions only. Finally, we
detect, for all those arguments recognized as fac-
tual in the previous step, what is the source of such
information (e.g., the CNN), relying on the type of
the Named Entities recognized in the tweets. The
last two steps represent new tasks in the argument

1We refer the reader interested in more details on ar-
gument mining to (Peldszus and Stede, 2013; Lippi and
Torroni, 2016) as survey papers, and to the proceedings
of the Argument Mining workshop series (https://
argmining2017.wordpress.com/).

2www.twitter.com
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mining research field, of particular importance in
social media applications.

2 Mining arguments on Twitter

In this section, we describe the approaches we
have developed to address the following tasks: i)
Argument detection, ii) Factual vs opinion classifi-
cation, and iii) Source identification, on social me-
dia data. Our experimental setting - whose goal is
to investigate the tasks’ feasibility on such peculiar
data - considers a dataset of tweets related to the
political debates on whether or not Great Britain
and Greece had to leave the European Union (i.e.
#Brexit and #Grexit threads in Twitter).

2.1 Experimental setting

Dataset.3 The only available resource of anno-
tated tweets for argument mining is DART (Bosc
et al., 2016a). From the highly heterogeneous top-
ics contained in such resource (i.e. the letter to
Iran written by 47 U.S. senators; the referendum
for or against Greece leaving the EU; the release
of Apple iWatch; the airing of the 4th episode of
the 5th season of the TV series Game of Thrones),
and considering the fact that tweets discussing a
political topic generally have a more developed
argumentative structure than tweets commenting
on a product release, we decided to select for our
experiments the subset of the DART dataset on
the thread #Grexit (987 tweets). Then, following
the same methodology described in (Bosc et al.,
2016a), we have extended such dataset collect-
ing 900 tweets from the thread on #Brexit. From
the original thread, we filtered away retweets, ac-
counts with a bot probability >0.5 (Davis et al.,
2016), and almost identical tweets (Jaccard dis-
tance, empirically evaluated threshold). Given that
tweets in DART are already annotated for task
1 (argument/non-argument, see Section 2.2), two
annotators carried out the same task on the newly
extracted data. Moreover, the same annotators an-
notated both datasets (Grexit/Brexit) for the other
two tasks of our experiments, i.e. i) given the ar-
gument tweets, annotation of tweets as either con-
taining factual information or opinions (see Sec-
tion 2.3), and ii) given factual argument tweets, an-
notate their source when explicitly cited (see Sec-
tion 2.4). Tables 1, 2 and 3 contain statistical in-
formation on the datasets.

3Annotated data are available upon request to the authors.

Inter annotator agreement (IAA) (Carletta,
1996) between the two annotators has been cal-
culated for the three annotation tasks, result-
ing in κ=0.767 on the first task (calculated on
100 tweets), κ=0.727 on the second task (on 80
tweets), and Dice=0.84 (Dice, 1945)4 on the third
task (on the whole dataset). More specifically, to
compute IAA, we sampled the data applying the
same strategy: for the first task, we randomly se-
lected 10% of the tweets of the Grexit dataset (our
training set); for task 2, again we randomly se-
lected 10% of the tweets annotated as argument
in the previous annotation step; for task 3, given
the small size of the dataset, both annotators an-
notated the whole corpus.

dataset # argument # non-arg total
Brexit 713 187 900
Grexit 746 241 987
total 1459 428 1887

Table 1: Dataset for task 1: argument detection

dataset # factual arg. # opinion total
Brexit 138 575 713
Grexit 230 516 746
total 368 1091 1459

Table 2: Dataset for task 2: factual arguments vs
opinions classification

dataset # arg. with # arg. without total
source cit. source cit.

Brexit 40 98 138
Grexit 79 151 230
total 119 249 368

Table 3: Dataset for task 3: source identification

Classification algorithms. We tested Logistic
Regression (LR) and Random Forest (RF) classifi-
cation algorithms, relying on the scikit-learn tool
suite5. For the learning methods, we have used a
Grid Search (exhaustive) through a set of prede-
fined hyper-parameters to find the best perform-
ing ones (the goal of our work is not to optimize

4Dice is used instead of κ to account for partial agreement
on the set of sources detected in the tweets.

5http://scikit-learn.org/
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the classification performance but to provide a pre-
liminary investigation on new tasks in argument
mining over Twitter data). We extract argument-
level features from the dataset of tweets (follow-
ing (Wang and Cardie, 2014)), that we group into
the following categories:

• Lexical (L): unigram, bigram, WordNet verb
synsets;

• Twitter-specific (T): punctuation, emoticons;

• Syntactic/Semantic (S): we have two versions
of dependency relations as features, one be-
ing the original form, the other generalizing
a word to its POS tag in turn. We also use the
syntactic tree of the tweets as feature. We ap-
ply the Stanford parser (Manning et al., 2014)
to obtain parse trees and dependency rela-
tions;

• Sentiment (SE): we extract the sentiment
from the tweets with the Alchemy API6, the
sentiment analysis feature of IBM’s Semantic
Text Analysis API. It returns a polarity label
(positive, negative or neutral) and a polarity
score between -1 (totally negative) and 1 (to-
tally positive).

As baselines we consider both LR and RF algo-
rithms with a set of basic features (i.e., lexical).

2.2 Task 1: Argument detection

The task consists in classifying a tweet as being
an argument or not. We consider as arguments
all those text snippets providing a portion of a
standard argument structure, i.e., opinions under
the form of claims, facts mirroring the data in
the Toulmin model of argument (Toulmin, 2003),
or persuasive claims, following the definition of
argument tweet provided in (Bosc et al., 2016a,b).
Our dataset contains 746 argument tweets and
241 non-argument tweets for Grexit (that we use
as training set), and 713 argument tweets and
187 non-argument tweets for Brexit (the test set).
Below we report an example of argument tweet
(a), and of a non-argument tweet (b).

(a) Junker asks “who does he think I am”. I sus-
pect elected PM Tsipras thinks Junker is an un-
elected Eurocrat. #justsaying #democracy #grexit

6https://www.ibm.com/watson/
alchemy-api.html

(b) #USAvJPN #independenceday #Justin-
BieberBestIdol Macri #ConEsteFrioYo happy 4th
of july #Grefenderum Wireless Festival

We cast the argument detection task as a binary
classification task, and we apply the supervised al-
gorithms described in Section 2.1. Table 4 reports
on the obtained results with the different config-
urations, while Table 5 reports on the results ob-
tained by the best configuration, i.e., LR + All fea-
tures, per each category.

Approach Precision Recall F1
RF+L 0.76 0.69 0.71
LR+L 0.76 0.71 0.73

LR+all features 0.80 0.77 0.78

Table 4: Results obtained on the test set for the
argument detection task (L=lexical features)

Category P R F1 #arguments
per category

non-arg 0.46 0.60 0.52 187
arg 0.89 0.82 0.85 713

avg/total 0.80 0.77 0.78 900

Table 5: Results obtained by the best model on
each category of the test set for the argument de-
tection task

Most of the miss-classified tweets are either
ironical, e.g.:

If #Greece had a euro for every time someone
mentioned #Grexit and #Greferendum they would
probably have enough for a bailout. #GreekCrisis

that was wrongly classified as argument, or
contain reported speech, e.g.:

Jeremy Warner: Unintentionally, the Greeks have
done themselves a favour. Soon, they will be out of
the euro http://t.co/YmqXi36lGj #Grexit

that was wrongly classified as non argument. Our
results are comparable to those reported in (Bosc
et al., 2016b) (they trained a supervised classifier
on the tweets of all topics in the DART dataset but
the iWatch, used as test set). Better performances
obtained in our setting are most likely due to a bet-
ter feature selection, and to the fact that in our case
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the topics in the training and test sets are more ho-
mogeneous.

2.3 Task 2: Factual vs opinion classification

This task consists in classifying argument-
tweets as containing factual information or being
opinion-based (Park et al., 2015). Our interest fo-
cuses in particular on factual argument-tweets, as
we are interested then in the automated identifi-
cation of their sources. This would allow then to
rank factual tweet-arguments depending on the re-
liability or expertise of their source for subsequent
tasks as fact checking. Given the huge amount of
work in the literature devoted to opinion extrac-
tion, we do not address any further analysis on
opinion-based arguments here, referring the inter-
ested reader to (Liu, 2012).

An argument is annotated as factual if it
contains a piece of information which can be
proved to be true (see example (a) below), or
if it contains “reported speech” (see example
(b) below). All the other argument tweets are
considered as “opinion” (see example (c) below).

(a) 72% of people who identified as “English”
supported #Brexit (while no majority among
those identifying as “British”) https://t.
co/MuUXqncUBe

(b) #Hollande urges #UK to start #Brexit
talks as soon as possible. https://t.co/
d12TV8JqYD.
(c) Trump is going to sell us back to England.
#Brexit #RNCinCLE

Our dataset contains 230 factual argument tweets
and 516 opinion argument tweets for Grexit (train-
ing set), and 138 factual argument tweets and 575
opinion argument tweets for Brexit (test set).

To address the task of factual vs opinion ar-
guments classification, we apply the supervised
classification algorithms described in Section 2.1.
Tweets from Grexit dataset are used as training set,
and those from Brexit dataset as test set. Table 6
reports on the obtained results, while Table 7 re-
ports on the results obtained by the best configura-
tion, i.e. LR + All features, per each category.

Most of the miss-classified tweets contain re-
ported opinions/reported speech and are wrongly
classified by the algorithm as opinion - such
behaviour could be expected given that senti-
ment features play a major role in these cases, e.g.,

Approach Precision Recall F1
RF+L 0.75 0.68 0.71
LR+L 0.75 0.75 0.75

LR+all features 0.81 0.79 0.80

Table 6: Results obtained on the test set for
the factual vs opinion argument classification task
(L=lexical features)

Category P R F1 #arguments
per category

fact 0.49 0.50 0.50 138
opinion 0.88 0.87 0.88 575
avg/total 0.81 0.79 0.80 713

Table 7: Results obtained by the best model on
each category of the test set for the factual vs opin-
ion argument classification task

Thomas Piketty accuses Germany of for-
getting history as it lectures Greece
http://t.co/B0UqPn0i6T #grexit

Again, the other main reason for miss-
classification is sarcasm/irony contained in the
tweets, e.g.,

So for Tsipras, no vote means back to the table,
for Varoufakis, meant Grexit?

that was wrongly classified as fact.

2.4 Task 3: Source identification

Since factual arguments (as defined above) are
generally reported by news agencies and indi-
viduals, the third task we address - and that can
be of a value in the context of social media - is
the recognition of the information source that
disseminates the news reported in a tweet (when
explicitly mentioned). For instance, in:

The Guardian: Greek crisis: European leaders
scramble for response to referendum no vote.
http://t.co/cUNiyLGfg3

the source of information is The Guardian news-
paper. Such annotation is useful to rank factual
tweet-arguments depending on the reliability or
expertise of their source in news summarization or
fact-checking applications, for example.
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Our dataset contains 79 factual argument tweets
where the source is explicitly cited for Grexit
(training set), and 40 factual argument tweets
where the source is explicitly cited for Brexit (test
set). Given the small size of the available anno-
tated dataset, to address this task we implemented
a simple string matching algorithm that relies on
a gazetteer containing a set of Twitter usernames
and hashtags extracted from the training data, and
a list of very common news agencies (e.g. BBC,
CNN, CNBC). If no matches are found, the algo-
rithm extracts the NEs from the tweets through
(Nooralahzadeh et al., 2016)’s system, and applies
the following two heuristics: i) if a NE is of
type dbo:Organisation or dbo:Person,
it considers such NE as the source; ii) it searches
in the abstract of the DBpedia7 page linked
to that NE if the words “news”, “newspaper”
or “magazine” appear (if found, such entity is
considered as the source). In the example above,
the following NEs have been detected in the
tweet: “The Guardian” (linked to the DBpedia
resource http://dbpedia.org/page/
The_Guardian) and “Greek crisis” (linked
to http://dbpedia.org/page/Greek_
government-debt_crisis). Applying the
mentioned heuristics, the first NE is considered as
the source. Table 8 reports on the obtained results.
As baseline, we use a method that considers all
the NEs detected in the tweet as sources.

Approach Precision Recall F1
Baseline 0.26 0.48 0.33

Matching+heurist. 0.69 0.64 0.67

Table 8: Results obtained on the test set for the
source identification task

Most of the errors of the algorithm are due to in-
formation sources not recognized as NEs (in par-
ticular, when the source is a Twitter user), or NEs
that are linked to the wrong DBpedia page. How-
ever, in order to draw more interesting conclusions
on the most suitable methods to address this task,
we would need the increase the size of the dataset.

3 Discussion and Future work

This paper investigated argument mining tasks on
Twitter data. The main contribution is twofold:
first, we propose one of the very few approaches
of argument mining on Twitter, and second, we

7http://www.dbpedia.org

propose and evaluate two new tasks for argument
mining, i.e., facts recognition and source identifi-
cation. These tasks are particularly relevant when
applied to social media data, in line with the open
popular challenges of fact-checking and source
verification to which these results contribute.

The issue of argument detection on Twitter
has already been addressed in the literature. Bosc
et al. (2016a,b) address a binary classification task
(argument-tweet vs. non argument), as first step
of their pipeline. Goudas et al. (2015) experi-
ments machine learning techniques over a dataset
in Greek extracted from social media. They first
detect argumentative sentences, and second iden-
tify premises and claims. However, none of them
is neither interested in distinguishing facts from
opinions nor to identify the arguments’ sources.
An argumentation-based approach is applied to
Twitter data to extract opinions in (Grosse et al.,
2015), with the aim of detecting conflicting ele-
ments in an opinion tree to avoid potentially incon-
sistent information. Both the goal and the adopted
methodology are different from ours.

Being it a work in progress, several open issues
have to be considered as future research. Among
them, we are currently extending the dataset of an-
notated tweets both in terms of annotated tweets
per topic, and in terms of addressed topics (e.g.
Brexit after the referendum, Trump), in order to
have more instances of facts and sources. On such
extended dataset, we plan to run experiments us-
ing the three modules of the system as a pipeline.

Moreover, we plan to extend our pipeline by
considering also the links provided in the tweets
to verify their sources, i.e., if a tweet claims to re-
port information from the CNN but the link ac-
tually redirects towards an advertisement website
the source is not indubitably the CNN.
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Abstract

We focus on non-standard usages of com-
mon words on social media. In the context
of social media, words sometimes have
other usages that are totally different from
their original. In this study, we attempt to
distinguish non-standard usages on social
media from standard ones in an unsuper-
vised manner. Our basic idea is that non-
standardness can be measured by the in-
consistency between the expected mean-
ing of the target word and the given con-
text. For this purpose, we use context em-
beddings derived from word embeddings.
Our experimental results show that the
model leveraging the context embedding
outperforms other methods and provide us
with findings, for example, on how to con-
struct context embeddings and which cor-
pus to use.

1 Introduction

On social media such as Twitter, we often find
posts that are difficult to interpret without prior
knowledge on non-standard usage of words. For
example, consider the following Japanese sen-
tence1:

鯖の 負担が 増える
mackerel-POSS load-NOM increase-PRS
“The load on a mackerel increases”,

which does not make sense given the standard us-
ages for the words in the sentence. But here, mack-
erel is a non-standard usage that means computer
server. The entire sentence should be interpreted
as “The load on the computer server increases”.

1This is interlinear-gloss text representation. POSS,
NOM, PRS respectively represent the possessive case, nom-
inative case, and present tense. The third line is the standard
translation of the Japanese sentence.

The Japanese word “鯖 (saba)” (i.e., mackerel) is
used to mean computer server by Japanese com-
puter geeks because saba happens to have a pro-
nunciation that is similar to sābā (i.e., computer
server). When a word is used in a meaning that is
different from its dictionary meaning, we call such
a usage non-standard.2

Non-standard usages can be found in many lan-
guages (Sboev, 2016). For example, the word
“catfish” means a ray-finned fish as in a standard
dictionary, but on social media, it can mean a
person who pretends to be someone else in or-
der to create a fake identity. Such non-standard
usages would be an obstacle to a variety of lan-
guage processings including machine translation;
Google Translate cannot correctly interpret exam-
ples such as this. Humans, however, would be able
to notice non-standard usages from the inconsis-
tency between the expected word meaning and the
context.

The purpose of this work is to develop a
method for distinguishing non-standard usages of
Japanese words from standard ones. Since it is im-
practical to construct a large labeled data set for
each word, we focus on unsupervised approaches.
The main idea in our method is that the differ-
ence between the target word’s embedding learned
from a general corpus and the embedding pre-
dicted from the given context would be a good in-
dicator of the degree of non-standardness.

2 Data

We created a dataset for evaluating our method.
First, we selected 40 words that have non-
standard usages, including computer terms, com-
pany/service names, and other Internet slang. Ten

2Although some non-standard usages are metaphoric,
such as sunshine in “you are my sunshine”, our definition of
non-standard usages covers a wider variety of usages, as in
the example of “mackerel”.
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Category Usage
standard non-standard

Computer terms 416 234
Company/Service names 440 252

Other Internet slang 817 814
Total 1,673 1,300

Table 1: Statistics of the dataset.

of the 40 words were computer terms, another 10
were company/service names, and the remaining
20 were other Internet slang. For each of the
40 target words, we found 100 tweets that con-
tained the target word. Here, we used Twitter
as the source for examples since there are many
non-standard usages on it. To segment tweets into
words, we used the Japanese morphological ana-
lyzer MeCab3 with the standard IPA standard dic-
tionary.4

Next, we asked two human annotators to judge
whether the usage of the target word in each tweet
is standard, non-standard, a named entity, or un-
decidable. We excluded tweets which at least one
annotator judged as undecidable (96 tweets).5 Co-
hen’s kappa of the annotations for the remain-
ing 3,904 tweets was 0.808. We further excluded
tweets which at least one annotator judged as con-
taining a named entity (772 tweets) in order to fo-
cus the dataset on our main purpose.6

Finally, to create a final dataset, we selected
from the remaining 3,132 tweets the 2,973 tweets
that are judged as standard by both annotators
or as non-standard by them. The selected 2,973
tweets are equivalent to 94.9% of the entire set
of tweets, which suggests that human can reli-
ably distinguish non-standard usages from stan-
dard ones. The statistics of the final dataset are
shown in Table 2.

3 Methodology

Our basic idea for distinguishing word usages is
that if a word is used in a non-standard manner,
the context words around it will tend to differ from
standard context words. To implement this idea,
we employed word embeddings. Below, we re-
view the Skip-gram model used for obtaining the
word embeddings in Section 3.1 and present our

3http://taku910.github.io/mecab/
4https://ja.osdn.net/projects/ipadic/
5The undecidable tweets are meaningless expressions

such as the emoticon “(*´茸｀*)”, which includes the word
“茸”.

6Most of the discarded target words are in a named entity,
such as the word “尻” in “利尻島”. These expressions are
different from our definition of non-standard usage.

method in Section 3.2.

3.1 Skip-gram

Skip-gram (Mikolov et al., 2013) is widely used
for obtaining word embeddings. Given a se-
quence of words w1, w2, ..., wT as train-
ing data, Skip-gram maximizes the likelihood
1
T

∑T
t=1

∑
−m≤i≤m,i ̸=0 log p(wt+i|wt), where m

is the window size. wt+i is a context word nearby
wt. p(wk|wt) is given by

p(wk|wt) =
exp(vIN

wt
· vOUT

wk
)

∑W
w=1 exp(vIN

wt
· vOUT

w )
,

where W is the vocabulary size of the training
data. Skip-gram learns a model predicting con-
text words using word embeddings vIN and vOUT ,
which are called input embedding and output em-
bedding respectively.

The embeddings are learned in such a way
that vIN

wt
·vOUT

wk
− log

∑W
w=1 exp(vIN

wt
· vOUT

w ) in-
creases if word wt occurs near wk in the train-
ing corpus. As a result, vIN

wt
· vOUT

wk
tends to be

large for such words and small for word pairs that
do not co-occur in the training corpus. We ex-
ploited this tendency for recognizing non-standard
usages; if the dot-product between the embeddings
of the target word and the context words is small, it
should indicate a non-standard usage, on the con-
dition that the embeddings have been learned on a
general balanced corpus where words correspond
to their standard meanings in most cases.

vIN is widely used as a word embedding
in many studies, while vOUT has not been in
the limelight; only a few researchers have ex-
amined the effectiveness of vOUT (Mitra et al.,
2016; Press and Wolf, 2017). In recent stud-
ies, embeddings vIN are usually used for mea-
suring the similarity between words. However,
given the characteristics described in the pre-
vious paragraph and SGNS’s equivalence with
shifted positive pointwise mutual information
(Levy and Goldberg, 2014), if we want to measure
to what extent word wt tends to co-occur with wk

in the training data, then we should use the simi-
larity of vIN

wt
· vOUT

wk
, instead of vIN

wt
· vIN

wk
.

In this study, we show the importance of using
vOUT in a task where we need to see if a word
matches its context.
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Figure 1: Overview of our method. Our model exploits context embedding and weighting.

3.2 Distinguishing Non-standard Usages
from Standard Ones

Following the idea described in Section 3.1, we
propose a method for distinguishing non-standard
usages from standard ones by leveraging word em-
beddings. An overview of our method is shown in
Figure 1. We use Skip-gram with Negative Sam-
pling (SGNS) (Mikolov et al., 2013) for obtaining
the word embeddings.

Given a target word wt and its context wc as in-
put, we calculate the following weighted average
of scaled dot-products as a measure of standard-
ness:

∑
wj∈wc

σ(vIN
wt

· vOUT
wj

) × αwj∑
wj∈wc

αwj

, (1)

where vIN
wt

is the input embedding for the target
word wt and vOUT

wj
is the output embedding for the

context word wj . αwj is a non-negative weight for
the word wj , and σ is the sigmoid function used
for scaling dot-products into a range from 0 to 1.
Although the values of αwj are arbitrary, we will
use the values given by the training algorithm used
in word2vec7 and gensim (Řehůřek and Sojka,
2010), popular tools for obtaining word embed-
dings. In their training of word embeddings, con-
text words that are closer to the target word are
weighted higher.8 We therefore set αwj to be
m+1−dwj , where m is the window size and dwj

is an integer that represents the distance between
wj and the target word. Hence, this is a decaying
weighting. In contrast, with uniform weights, we
set αwj to be 1 for all wj in the context. We call

the score of Equation (1) standardness. If the stan-
dardness is low, our method regards the instance
as non-standard; otherwise, our method regards
it as standard. We should note again that, in our
method, word embeddings should be learned on a
general balanced corpus that is different from the
domain of the target instances.

4 Experiment

4.1 Methods for Comparative Evaluation

Our model has three characteristics: (input and
output) word embeddings, decaying weights, and
a general balanced corpus. We evaluated each of
these characteristics in a task distinguishing non-
standard usages from standard ones.

First, we verified the effectiveness of the input
and output embeddings. We tested a method in
which only input embeddings are used to calcu-
late the similarity: the cosine similarity between
vIN
wt

and vIN
wj

instead of σ(vIN
wt

· vOUT
wj

), which
is a similar framework to that of previous work
(Neelakantan et al., 2014; Gharbieh et al., 2016).
We then tested a method based on the positive
pointwise mutual information (PPMI) (Levy et al.,
2015; Hamilton et al., 2016). Here, suppose that
M is a matrix in which each element is a PPMI of
words wi and wj . vIN

wt
· vOUT

wj
in Equation (1) is

replaced with the (t, j)-element of the low-rank ap-
proximation of M obtained through singular value
decomposition (SVD). We refer to this model as
SVD.

7code.google.com/archive/p/word2vec/
8This weighting scheme is mentioned in (Levy et al.,

2015).
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Corpus Description #word #token

BCCWJ9 Japanese Balanced 131,913 1.1b
Corpus

Web10 Sentences randomly 336,048 6.0b
picked from the Web

Wikipedia11 Japanese Wikipedia 1,081,154 8.9b
Newspaper12 Japanese Newspapers 1,204,914 15.0b

Table 2: Description of corpora.

Next, we replaced the decaying weights α with
uniform weights to examine the impact of decay-
ing weights.

Finally, we conducted experiments with differ-
ent training corpora to examine the impact of the
balanced corpus. We used four corpora as training
data for obtaining word embeddings. These cor-
pora are described in Table 2.

4.2 Experimental Settings

In the training of the word embeddings, we set the
window size to 5, and the dimensions of the word
embeddings to 300. We regarded the words with
frequency counts of 5 or less in the training data
as unknown words and replaced those words with
“<unk>”. We used gensim (Řehůřek and Sojka,
2010) as an implementation of SGNS, where we
set the number of negative samples to 10. We
used the code provided by Levy et al. (2015)
as the SVD implementation. For the evaluations,
we ranked test instances in ascending order of
standardness score and evaluated the ranking in
terms of the area under the ROC curve (AUC)
(Davis and Goadrich, 2006).

4.3 Results

Table 3 shows the AUC for each model.13 First,
we examined the impact of the choice of training
corpus for obtaining word embeddings. The mod-
els with BCCWJ are constantly better than those
with other corpora, although BCCWJ is smaller
than the others (Table 2). This result suggests that
use of a balanced corpus is crucial in our method
for this task.

9The Balanced Corpus of Contemporary Written Japanese
(Maekawa et al., 2010).

10Japanese sentences are collected using the method de-
scribed in (Kawahara and Kurohashi, 2006).

11We downloaded Japanese Wikipedia articles in July 2016
from https://dumps.wikimedia.org/jawiki/.

12We used editions of the Mainichi Shimbun, Nihon Keizai
Shimbun, and Yomiuri Shimbun published from 1994 to
2004.

corpus SGNS IN-OUT SGNS IN-IN SVD
decay uni decay uni decay uni

BCCWJ .875 .870 .846 .837 .821 .813
Web .846 .842 .817 .807 .771 .765

Wikipedia .827 .821 .824 .805 .739 .732
Newspaper .844 .839 .825 .810 .770 .764

Table 3: Area under the ROC curve (AUC) in us-
age classification task for each model.

Next, we examined the impact of context em-
beddings. Table 3 shows that our model (SGNS
IN-OUT) with BCCWJ achieved the best AUCs
(.875 and .870), better than the AUCs of SGNS
IN-IN with BCCWJ (.846 and .837). This result
suggests that input embeddings should be used in
combination with output embeddings for the task
of judging whether a word matches its context or
not. Table 3 also shows that SGNS-based models
are better than SVD-based models.

As we discussed in Section 3.2, we used two
weighting schemes for each model. Although the
AUC of each decaying weight model is larger than
that of the corresponding uniform weight model,
the differences were not statistically significant.

5 Related Work

The previous studies focused on distinguishing
non-standard usages that are multi-word expres-
sions or idiomatic expressions (Kiela and Clark,
2013; Salehi et al., 2015; Li and Sporleder, 2010).
The task of this research is similar to new
sense detection (Cook et al., 2014). Our re-
search target includes jargon, whose actual mean-
ing is difficult to infer without specific knowl-
edge about its usage (Huang and Riloff, 2010).
Recent studies in computational linguistics have
used word embeddings and other techniques
to capture various semantic changes in words,
such as diachronic changes, geographical varia-
tions, and sentiment changes (Mitra et al., 2014;
Kulkarni et al., 2015; Frermann and Lapata, 2016;
Eisenstein et al., 2010; Hamilton et al., 2016;
Yang and Eisenstein, 2016).

A few researchers have exploited output em-
beddings for natural language applications such as
document ranking (Mitra et al., 2016) and improv-
ing language models (Press and Wolf, 2017).

13Although we also conducted experiments with a sigmoid
function for the SGNS IN-IN model and with the cosine sim-
ilarity for the SVD model, their accuracies were worse than
those in Table 3.
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6 Conclusion

We presented a model that uses context embed-
dings to distinguish Japanese non-standard usages
from standard ones on social media. Our experi-
mental results show that our model is better than
the other models tested. They indicate the impor-
tance of context embeddings. To sum up, to dis-
tinguish non-standard usage, (1) using a balanced
corpus as training data for obtaining word embed-
dings is crucial, (2) exploiting context embeddings
derived from input and output word embeddings
of SGNS achieves the best AUC, and (3) decaying
weights have little impact on performance.

We are interested in expanding our method for
detecting words that have non-standard usages.
We are also interested in finding the meanings of
the detected non-standard usages.
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Abstract

The framing of an action influences how
we perceive its actor. We introduce conno-
tation frames of power and agency, a prag-
matic formalism organized using frame se-
mantic representations, to model how dif-
ferent levels of power and agency are im-
plicitly projected on actors through their
actions. We use the new power and
agency frames to measure the subtle, but
prevalent, gender bias in the portrayal of
modern film characters and provide in-
sights that deviate from the well-known
Bechdel test. Our contributions include
an extended lexicon of connotation frames
along with a web interface that provides
a comprehensive analysis through the lens
of connotation frames.

1 Introduction

A viewer’s impression of a movie character is in-
fluenced by how they are written and portrayed,
which can in turn influence how people form
stereotypes on gender norms (Behm-Morawitz
and Mastro, 2008). A character’s actions can be
projected with varying levels of power and agency,
depending on the specific verbs used. For instance,
somebody who “accepts” things is implied to be a
passive decision-maker (or of lower agency) than
somebody who “assesses” things. While not ex-
plicitly stated, these connotative meanings pro-
jected by different verbs can influence the assump-
tions the audience makes about the people being
described. These assumptions can have negative
consequences if they reinforce negative stereo-
types (Walton and Spencer, 2009).

To formalize this implicit information about
people projected by actions, we introduce power
and agency connotation frames, two new types of

The man with the roses beckons Irene forward.

 agency 

Another man steps in behind her, trapping her...

She slices upwards with a razor-sharp knife...
The move ends with Irene's finger over her own mouth...

He obeys, eyes bulging.

agency

agency

agency 

 power

+
power

+

+

power

—

power

Figure 1: An excerpt from a box-office hit, Sher-
lock Holmes (2009). Bolded words are the predi-
cates, solid underlined phrases are the agent of the
verb, and dash underlined words are the theme.
The full example with additional nuanced discus-
sion is available in Figure 6 in the appendix.

predicate-specific connotative relationships as an
extension to Rashkin et al. (2016)’s connotation
frame lexicon. For instance, in Figure 1, the verb
“beckoning” implies that its theme (Irene) has less
power than its agent (the man). In the third line,
Irene displays strong agency when she “slices” in
self-defense. In contrast, when the man “obeys”,
the man has low implied agency.

Using the new connotation lexicon, we present
a quantitative study to reveal the subtle, but preva-
lent gender1 bias in modern films. Going beyond
the surface level analysis such as screen time or
number of female characters (Google, 2017), our
study aims for a more focused and precise anal-
ysis of power differentials between fictional men
and women.

In summary, our major contributions include the
creation and release of a lexicon with two new
connotative dimensions: power and agency and an

1We acknowledge that gender lies on a spectrum, and re-
ducing it to a male-female binary is simplistic, however our
data limits a more complex understanding of gender.
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AGENT THEME

power(AG < TH)

VERB
implore

He implored the tribunal to show mercy.

The princess waited for her prince.

AGENT THEME

agency(AG) = -

VERB
wait

Figure 2: The formal notation of the connotation
frames of power and agency. The first example
shows the relative power differential implied by
the verb “implored”, i.e., the agent (“he”) is in
a position of less power than the theme (“the tri-
bunal”). In contrast, “He demanded the tribunal
show mercy” implies that the agent has authority
over the theme. The second example shows the
low level of agency implied by the verb “waited”.

interactive demo website of our findings (see Fig-
ure 5 in the appendix for a screenshot).2 Further-
more, as will be seen in Section 4.1, connotation
frames offer new insights that complement and de-
viate from the well-known Bechdel test (Bechdel,
1986). In particular, we find that high-agency
women through the lens of connotation frames are
rare in modern films. It is, in part, because some
movies (e.g., Snow White) accidentally pass the
Bechdel test and also because even movies with
strong female characters are not entirely free from
the deeply ingrained biases in social norms.

2 Connotation Frames of Power and
Agency

We create two new connotation relations, power
and agency (examples in Figure 3), as an expan-
sion of the existing connotation frame lexicons.3

Three AMT crowdworkers annotated the verbs
with placeholders to avoid gender bias in the con-
text (e.g., X rescued Y; an example task is shown
in the appendix in Figure 7). We define the anno-
tated constructs as follows:

Power Differentials Many verbs imply the au-
thority levels of the agent and theme relative to

2http://homes.cs.washington.edu/˜msap/
movie-bias/.

3The lexicons and a demo are available at http://
homes.cs.washington.edu/˜msap/movie-bias/.

power(AG<TH) power(AG>TH)

agency(AG)=− agency(AG)=+

Figure 3: Sample verbs in the connotation frames
with high annotator agreement. Size is indicative
of verb frequency in our corpus (bigger = more
frequent), color differences are only for legibility.

one another. For example, if the agent “dom-
inates” the theme (denoted as power(AG>TH)),
then the agent is implied to have a level of control
over the theme. Alternatively, if the agent “hon-
ors” the theme (denoted as power(AG<TH)), the
writer implies that the theme is more important or
authoritative. We used AMT crowdsourcing to la-
bel 1700 transitive verbs for power differentials.
With three annotators per verb, the inter-annotator
agreement is 0.34 (Krippendorff’s α).

Agency The agency attributed to the agent of the
verb denotes whether the action being described
implies that the agent is powerful, decisive, and
capable of pushing forward their own storyline.
For example, a person who is described as “ex-
periencing” things does not seem as active and de-
cisive as someone who is described as “determin-
ing” things. AMT workers labeled 2000 transi-
tive verbs for implying high/moderate/low agency
(inter-annotator agreement of 0.27). We denote
high agency as agency(AG)=+, and low agency
as agency(AG)=−.

Pairwise agreements on a hard constraint are
56% and 51% for power and agency, respec-
tively. Despite this, agreements reach 96% and
94% when moderate labels are counted as agree-
ing with either high or low labels, showing that an-
notators rarely strongly disagree with one another.
Some contributing factors in the lower KA scores
include the subtlety of choosing between neutral
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Figure 4: Label distributions for power and
agency based on the crowdsourced annotations.

and positive/negative as well as the skews in the
distributions of labels (i.e. more positive than neg-
ative labels, see Figure 4). Note that a similar dif-
ference between KA scores and soft percent agree-
ment was found in our previous connotation frame
work (Rashkin et al., 2016).

3 Bias in Movie Scripts

We use 772 movie scripts from (Gorinski and La-
pata, 2015) as a test bed to validate our new con-
notation frames. Scripts have distinct structure,
which allows us to easily parse narrations, dia-
logues and character names.

We automatically extract 21K male/female
characters, using a name-gender list4 along with
gender specific lexicons (e.g., “actor”/“actresses”,
“duke”/“duchess”) to automatically assign gender
based on their first three narrations. To iden-
tify verbs with characters as their agent, we de-
pendency parse the narratives using the SpaCy5

parser. Power and agency label distributions in our
corpus are consistent with the annotation distribu-
tion (Figure 4), and there is little variance across
movies (see Figure 8 in the appendix).

In our dataset, there are nearly twice as many
men as there are women (34.6% women), in line
with previous findings by Smith et al. (2015)
and Radford and Gallé (2015). Women are also
less present on screen and speak less in movies
(Google, 2017). We control for that disparity in
all subsequent analyses by including the number
of words for each character (standardized) as a co-
variate. Findings in all the following sections hold
when controlling for movie genre (as retrieved
from IMDB.com), as well as when controlling for
effects from individual movies.

4http://www.cs.cmu.edu/Groups/AI/util/
areas/nlp/corpora/names/0.html

5https://spacy.io/

Frame β gender
agency(AG)=+ −0.951 M∗∗
power(AG>TH) −0.468 M∗∗
agency(AG)=− 0.277 F∗∗
power(AG<TH) not sig.

Table 1: Power and agency connotation frames for
male and female narratives, controlled for length
of narrative text. β represents the change in log-
odds of a character being male/female were the
corresponding frame to change by one unit. Sig-
nificant results (∗∗ : p<.001) are in bold. “Male”
was coded as 0, “Female” as 1.

3.1 Bias in Narratives

Narratives describe what characters are doing. We
investigate how they vary in terms of power and
agency, using our connotation frames. We mea-
sure how each standardized frame metric is asso-
ciated with the gender of the character through a
logistic regression, controlling for the total num-
ber of words that the character said, and correcting
for multiple comparisons using Holm’s correction
(Holm, 1979).

Listed in Table 1, our results show that male
characters are portrayed with higher level of
agency compared to women. Men are also por-
trayed to have more authority than women as they
are more often the agent of powerful verbs.

This suggests that screenwriters tend to have fe-
male characters contribute more to the aesthetic of
the movie through low-agency verbs, rather than
the plot, which is reminiscent of existing gender
bias tests for movies (Yehl, 2013).

3.2 Bias in Character Expression

To further our validation of the new connota-
tive dimensions, we look at how characters ex-
press themselves in movies. Using our connota-
tion frames and LIWC (Tausczik and Pennebaker,
2016), we compile metrics for every character’s
dialogue. As in subsection 3.1, metrics were stan-
dardized for better β interpretability. LIWC re-
sults that are not discussed below can be found in
the appendix (Tables 4 and 5).

From Table 2, it seems male characters display
more power and authority through their speech
than their female counterparts do. Specifically,
women are written to use more hedges (# Hedges)
whereas men are written to use more imperative
sentences (# Imperative Sent.), a finding that re-
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Frame/metric β gender
agency(AG)=− 0.968 F∗∗
agency(AG)=+ −2.177 M∗∗
power(AG>TH) −0.542 M∗∗
power(AG<TH) 0.236 F∗∗

# Imperative Sent. −0.232 M∗∗
# Hedges 0.165 F∗∗
I 0.835 F∗∗
they −0.160 M∗∗
we −0.361 M∗∗
you 0.405 F∗∗
assent 0.202 F∗∗
space −1.136 M∗∗
discrep 0.423 F∗∗
inhib −0.171 M∗∗

Table 2: Gender association with our connotation
frames and a subset of LIWC metrics for char-
acters’ dialogue, controlled for number of words
spoken. All results are significant (∗∗ : p<.001).

flects real-world dialogues (Prabhakaran et al.,
2014). The usage of imperatives tends to con-
vey power and dominance according to the find-
ings of Bramsen et al. (2011). Along with the fact
that female characters tend to agree (assent) more
than male characters, this corroborates the finding
in subsection 3.1 that male characters are gener-
ally given more power and agency. Furthermore,
male characters use inhibitory language more (in-
hib), which contains words pertaining to blocking
or allowing, suggesting that these characters are in
positions of power.

Further evidence of power imbalances is found
through function words. Women tend to use I and
you pronouns more, whereas men use we and they
pronouns more, echoing real life (Schwartz et al.,
2013). Kacewicz et al. (2014) found an associa-
tion between using “I” pronouns and being lower
status, and conversely between “we” pronouns and
being higher status. This corroborates the theory
that women in movies are generally portrayed with
a lower status than men.

Men in movies tend to mention more physi-
cal actions (space category) whereas women tend
talk about what “could” be but isn’t (discrep;
e.g.,“should”, “would”). This evokes more com-
manding connotations for male characters and
subordinate connotations for female ones, rein-
forcing gender stereotypes.

These findings, rooted in previous research,
confirm that our connotation frames capture exist-

Metric/Frame β P/F
F dial. # Words 10.02 pass∗∗

F dial. agency(AG)=+ −9.65 fail∗∗

F dial. power(AG>TH) 2.05 pass∗

F narr. power(AG>TH) −1.19 fail∗

Table 3: Significant correlates of passing the
Bechdel test. F: metric for female characters,
computed on the dialogues (dial.) or on the nar-
ratives (narr.). ∗ : p<.05; ∗∗ : p<.001.

ing bias in how male and female characters display
different levels of power and agency in their dia-
logue.

4 Power, Agency and the Bechdel test

A movie passes the Bechdel test (Bechdel, 1986) if
it (1) has two (named) female characters, (2) who
talk to each other, (3) about something other than a
man. While this is a low bar, a surprising number
of movies fail at least one of the three criteria. In
particular, as many as 42% of the movies in our
dataset fail the test according to an online database
of the Bechdel scores.6

4.1 Beyond the Bechdel Test

We provide comparative insights between the
analysis based on connotation frames and the
Bechdel test. First, we aggregate our connota-
tion frames, both on dialogue and narration, into
movie-level averages per gender. Then, we add
features capturing presence of female/male char-
acters (e.g., # F/M words, # F/M characters).
Table 3 shows the correlation between passing
the Bechdel test and our movie-level connotation
frame features using a multivariate logistic regres-
sion.

As expected, a movie with more female speak-
ing time is more likely to pass the Bechdel test
since it mostly captures female representation.
We also find that female characters using agent-
empowering verbs, which tend to be more as-
sertive, slightly increases the odds of passing the
Bechdel test. Female speakers who use empower-
ing verbs, regardless of the verb’s agent, tend to
go against the gender-norms of hedging and being
less assertive (as we showed in subsection 3.2).

Unexpectedly, movies where women talk with
high agency are much less likely to pass the

6Available at http://bechdeltest.com. We use
this site to obtain ratings for 324 of the movies in our cor-
pus.
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Bechdel test. Perhaps these movies typically
only show scenes of women interacting in a
male-dominated setting. Similarly, the use of
more agent-empowering verbs in female narra-
tives decrease the odds of passing the Bechdel
test. Chances of two powerful women talking to
each other might be lower because movies are less
likely to have a lot of powerful women.7

Power and Agency of Princesses We further
provide a qualitative analysis using Wikipedia plot
summaries for movies that are not in our script
dataset. Bechdel-passing movies with female pro-
tagonists, such as Frozen (2013) or Cinderella
(1950), still perpetuate negative female stereo-
types. In Frozen, Elsa is portrayed as the only
high agency, high power woman, as seen below.8

Anna and Cinderella, despite also being protago-
nists, display significantly less power and agency.
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The Bechdel test is limited, either by being too
inclusive of movies who portray women in non-
authoritative, passive positions or by excluding
movies that have strong women with agency, who
just happen not to talk to each other about some-
thing besides men. Our extensions to the connota-
tion frame lexicon provide finer grained informa-
tion about how women are portrayed through their
expression and their actions, which can act com-
plementary to measures of their presence.

5 Related work

There is much prior research focus on bias in so-
cial media (Garcia et al., 2014; Prabhakaran et al.,
2014; Ratkiewicz et al., 2011; Yano et al., 2010;
Srivastava and Sahami, 2009), complementing our
investigation on movies. Fast et al. (2016) ex-
amine the stereotypes present in fan-fiction us-

7Similar observations may have inspired the Mako Mori
test (Romano, 2013), which looks at whether there’s a female
character with a story arc that doesn’t support a man’s.

8Note that plot summaries are more biased toward active
verbs, which explains the low negative agency for all charac-
ters.

ing a lexicon-based strategy that focus on com-
monly gender-biased attributes (e.g., emotional for
women) rather than the overall power dynamics of
the story. In a similar vein, Ramakrishna et al.
(2015) learn word-level “gender ladenness” fea-
tures by looking at the neighbors of 925 manually
annotated words.

There exist various sets of high-level criteria to
assess gender bias of character portrayal in fic-
tion (Yehl, 2013; Romano, 2013; Powers, 2016).
Agarwal et al. (2015), in particular, automate the
Bechdel test using social network features, finding
that women are less central to the plot in movies
that fail it. We compare our linguistic analysis of
power and agency with the Bechdel test, demon-
strating the need for more fine-grained analysis of
how gender is depicted in movies.

Close in spirit to our investigation, Schofield
and Mehr (2016) train a number of classifiers over
movie scripts for determining the gender of indi-
vidual (and pairs) of speakers as well as the ex-
pected length of their relationships. In contrast,
we focus on understanding how the gender of a
given character implicitly relates to features that
track their control over their own path (agency)
and the world around them (power).

6 Conclusion

We created and released new connotation frames
of power and agency, allowing for more nuanced
writing analysis than previously possible. We vali-
date our new frames through a case study on movie
scripts. Specifically, we analyze differences in
power and agency for male and female characters,
and compare these dimensions to the Bechdel test.
Our connotation frames confirm evidence of im-
balances in gender portrayal in movies.
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Abstract

Much of our online communication is text-
mediated and, lately, more common with
automated agents. Unlike interacting with
humans, these agents currently do not tai-
lor their language to the type of person
they are communicating to. In this pilot
study, we measure the extent to which hu-
man perception of basic user trait infor-
mation – gender and age – is controllable
through text. Using automatic models of
gender and age prediction, we estimate
which tweets posted by a user are more
likely to mis-characterize his traits. We
perform multiple controlled crowdsourc-
ing experiments in which we show that we
can reduce the human prediction accuracy
of gender to almost random – an over 20%
drop in accuracy. Our experiments show
that it is practically feasible for multiple
applications such as text generation, text
summarization or machine translation to
be tailored to specific traits and perceived
as such.

1 Introduction

Advances in Natural Language Processing are
leading to a point when text generation methods
are deployed at scale. However, in the quest to
make these applications more likable, effective
and hence more usable, these methods should con-
sider a way to adapt themselves to the person or
type of persons they are interacting with (Bates,
1994; Loyall and Bates, 1997) e.g., a student may
learn better from a tutoring agent that expresses
similar traits to himself (Baylor and Kim, 2004).

In this study, we explore the feasibility of con-
trolling human perception of traits using auto-
mated methods. Flekova et al. (2016); Carpenter

et al. (2016) are the first to study the difference be-
tween user traits and their perception by external
raters using tweets from social media. Their focus
was on quantifying differences between percep-
tion and reality and analyzing text features which
lead to mis-perception. This study goes a step fur-
ther, and using the same experimental design and
crowdsourcing, aims to use automatic methods to
control human perception of basic user traits –
here age and gender – through tweets. To this end,
we use gender and age prediction algorithms to se-
lect tweets posted by users with a known trait with
the goal of increasing or decreasing human rater
accuracy in guessing their traits.

Obfuscating gender as identified by an automatic
classifier was attempted in (Reddy and Knight,
2016). This problem is related, but very differ-
ent to ours as we study human perception which
is both different (Flekova et al., 2016) and more
complex. Reddy and Knight (2016) study a range
of lexical substitutions that can be performed in or-
der to decrease the prediction accuracy of a classi-
fier, although acknowledging that these may affect
lexical coherence. In this pilot study, we circum-
vent this problem by using tweets known to have
been written by the same person, with the down-
side of possible topic confounds.

Our experiments show that, for gender, we can
decrease the human accuracy in perceiving gen-
der from text by more than 20% as compared to
a random selection of their tweets, with accuracy
in this case being only slightly higher than chance.
Further, this accuracy is even lower when predict-
ing males. For age perception, we show consistent
results in altering perception as both younger or
older, albeit for relatively smaller age differences.

Applications of our proposed line of research
include conversational agents or automated e-
mail generation. Personalization was motivated in
the context of machine translation (Mirkin et al.,
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2015) and recently attempted for gender (Rabi-
novich et al., 2017), even though the authors do
not use humans to evaluate perception of gen-
der. Automatic text personalization to user traits
can also go beyond basic demographics to more
salient ones such as social status (Preoţiuc-Pietro
et al., 2015a,b), political ideology (Preoţiuc-Pietro
et al., 2017a) or psychological traits such as per-
sonality (Schwartz et al., 2013; Guntuku et al.,
2015a,b, 2016, 2017), narcissism (Preotiuc-Pietro
et al., 2016), trust or empathy (Abdul-Mageed
et al., 2017).

2 Data Set

We study two user traits through two Twitter data
sets containing users with known gender and age
information. First, for gender, we use a subset of
200 users (100 males, 100 females) of the data
set collected by (Burger et al., 2011) and released
by (Volkova et al., 2013) which mapped users
to their gender by linking their Twitter account
to their publicly self-declared gender on related
blogs. The age data set consists of 200 users that
self-reported their age in a survey and disclosed
their public Twitter data that are part of a larger set
used in (Flekova et al., 2016). The users are chosen
to have an age in the 15–34 year old interval in the
year 2015 and we only use tweets posted in 2015
in our analysis. We selected exactly 10 users of
each age in this interval, as these are the most fre-
quent ages present in our data set, most language
variation happens in this interval and these are the
age range which raters can most accurately pre-
dict (Nguyen et al., 2014).

We use the Twitter API to download up to 3200
tweets from these users. We pre-process tweets by
filtering those not written in English as detected
by an automated method (Lui and Baldwin, 2012),
removing duplicate tweets (i.e., having the same
first 6 tokens) and removing re-tweets as these are
not authored by the user. All potentially sensitive
or revealing information contained in tweets such
as URL’s, usernames, @-mentions, phone num-
bers were removed and replaced with placeholders
before shown to annotators. Other than publicly
available tweets, no other metadata or information
was presented with the task, so raters were not able
to map the tweets to actual user identities. The
raters were also unaware of the conditions (Ran-
dom, Opposite, Same, Youngest or Oldest) they
were assigned to when performing the ratings. All

our experiments received approval from Institu-
tional Review Board (IRB) of the University of
Pennsylvania.

We are aware that the proposed long-term appli-
cations we envision for this research can have per-
sonal impact on users. Hence, we propose follow-
ing criteria which should be at the core of future
research in controlling human perception, which
we encourage to be completed over time:
• Transparency: data trained to build the person-

alized models should be transparent to any user.
This would allow to observe any possible biases
that may exist in the data.
• Control: the user interacting with a personal-

ized system should be aware of the type of
personalization employed by the agent (e.g. by
gender, by which particular age group) and
should be able to disable it when desired.

3 Experimental Setup

We use Amazon Mechanical Turk to create crowd-
sourcing tasks for predicting age and gender from
tweets. Each HIT consists of 20 tweets authored
by a single user and selected using different meth-
ods. The annotators were asked to predict gender
(M/F) or age (integer value in 13–90) and rate their
confidence of their guess from 1 (not at all confi-
dent) to 5 (very confident). We collected 3 annota-
tions for each author and set of tweets.

Participants received a small compensation
(.04$) for each rating and could repeat the task
as many times as they wished, but never for the
same authors and set of tweets. They were also
presented with an initial bonus (.25$). For quality
control, the participants underwent a short train-
ing and qualification questions, their location was
limited to the US and they had to spend at least 10
seconds on each HIT before they were allowed to
submit their guess.

In order to estimate which tweets are more likely
to be written by females or a older user, we use the
classifier introduced in (Sap et al., 2014). This is a
regularized Linear SVM that obtains state-of-the-
art prediction results on user gender (91.9% accu-
racy) and age (r = .835) prediction from social
media text. We apply the model to all our tweets
and select for each user 20 tweets based on the fol-
lowing criteria:
• Random: tweets chosen at random from a

user’s timeline;
• Opposite: for gender, tweets that are predicted
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Single Rating Majority Vote
Baseline 50% 50%
Opposite 55.74% 61.57%
Random 76.67% 83.99%

Same 91.33% 95.49%
Table 1: Human accuracy in gender perception experiments
in the three text selection conditions.

as more likely to be written by someone of the
different gender;
• Same: for gender, tweets predicted to be written

by someone of the same gender as the author.
• Youngest: for age, tweets from a user that are

predicted as youngest age;
• Oldest: for age, tweets from a user that are pre-

dicted as oldest age;
The tweets selected based on the automatic pre-

diction are presented in the order of prediction
scores e.g. tweets for Youngest are sorted with the
lowest predicted age being shown at the top of the
list. Experiments with random ordering of tweets
showed similar results.

4 Results

In this section we analyze the extent to which our
experiments manage to alter trait perception, the
errors and confidence of the annotations.

4.1 Gender
Overall accuracy results for our gender experi-
ments are presented for both individual ratings and
majority vote in Table 1. In all experimental se-
tups, the raters were able to guess gender better
than chance, with the majority vote of the three
raters higher by a significant margin (5.77% on av-
erage) than the individual votes.

Our selection procedure has great impact on
rater accuracy. Selecting tweets most likely to be
written by the opposite gender – even if they are
posted by the same user in reality – has an im-
pact of decreasing the individual rater accuracy
by 20.93% to only slightly above random guess
(55.75%). For the majority vote ratings, the de-
crease is 22.42% (paired T-test, t = 8.06, p <
10−14). On the other hand, selecting the tweets
that are most likely to be posted by a user from
the same gender as determined by our automatic
model has the impact of increasing the individual
rater accuracy by 14.66%. The majority vote pre-
diction is increased by a relatively smaller amount
(11.5% – paired T-test, t = 7.09, p < 10−11),
which we attribute to the accuracy being very
close to oracle performance.

The confusion matrices from the three experi-
ments are presented in Table 2. A couple of pat-
terns stand out: females are easier to be accu-
rately identified in all three experiments and males
are more likely to be confused for females than
vice-versa. This resulted in raters guessing more
users to be females, despite our data set being bal-
anced. Intriguingly, in the Opposite experiment,
males were more often confused for females than
correctly guessed, with females being guessed far
more accurately, making the average accuracy bet-
ter than chance. In the Same experiment, females
are again easier to guess, with accuracy being very
close to perfect. These results show that females
are more distinctive in their language use on Twit-
ter and thus are harder to be confused for males.
On the other hand, as proven by the Opposite ex-
periment, posts written by males can be selected
such that they are perceived as written by females.

The inter-annotator agreement is presented in
Table 4. Pairwise agreement at a user level is very
high for the Same setup, decreasing significantly
for the Random and Opposite setups.

The average self-rated confidence in assess-
ments for the three experiments are presented in
Table 3. Self-rated confidence mirrors almost per-
fectly the accuracy scores in all experiments and
cases: confidence is higher on average in cases
when accuracy is higher. Users are in general more
confident when accurately guessing a female, and
are least accurate when inaccurately guessing a
female. Noteworthy, in the Opposite experiment,
users who incorrectly guessed males were more
confident than when correctly identifying males,
which is not the case for females. This further
shows that females are use more distinctive lan-
guage on Twitter, while males could be more eas-
ily mistaken for females.

4.2 Age

Overall accuracy results for our age experiments
are presented in Table 5. We only report results
with a user age computed as the average three
guesses. Results with individual ratings are very
similar and we omit them for brevity.

The experiments show that our model’s selection
matches human perception: in the Younger exper-
iment, the average predicted age is lower than in
the Random experiment, which is in turn lower
on average than the predicted age in the Oldest
setup. Further, in the Younger experiment, many
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(a) Random tweets (Acc. 76.66%).

Predicted
Male Female

R
ea

l Male 35.99% 14%
Female 9.33% 40.67%

(b) Opposite Tweets (Acc. 55.73%).

Predicted
Male Female

R
ea

l Male 23.47% 26.35%
Female 17.9% 32.26%

(c) Same Tweets (Accuracy 91.33%).

Predicted
Male Female

R
ea

l Male 43.5% 6.5%
Female 2.16% 47.83%

Table 2: Normalized confusion matrices of human guesses (Predicted) compared to ground truth (Real).

(a) Random tweets (Average 3.37).

Predicted
Male Female

R
ea

l Male 3.22 2.92
Female 2.78 3.80

(b) Opposite Tweets (Average 3.44).

Predicted
Male Female

R
ea

l Male 3.24 3.57
Female 3.14 3.65

(c) Same Tweets (Average 3.85).

Predicted
Male Female

R
ea

l Male 3.70 2.76
Female 2.76 4.18

Table 3: Average confidence of human guesses (Predicted) depending on ground truth (Real).

(a) Gender
Cohen’s κ Agreement

Opposite .252 64.3%
Random .354 68%

Same .764 88.3%

(b) Age
St. Dev. Pearson r

Youngest 3.40 .368
Random 4.06 .170
Oldest 4.89 .341

Table 4: Inter-annotator agreement statistics.
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Figure 1: The average predicted ages compared to real age in
the three experiments. The black line represents the ideal fit,
the colored lines represent a LOESS fit to the data.

more users’ age is under-estimated as compared to
when predicting average age and in the Older ex-
periment, more users’ age is over-estimated. We
also note that in the Random setup, raters tend
to under-estimate age (53.5% younger vs. 39.3%
older), with the mean being lower than in the data
(23.3 vs. 24.5), which aligns with previous re-
search (Nguyen et al., 2014).

Figure 1 plots the average prediction for users
by age in the three experiments. Intriguingly, even
in the Younger setup, users under 18 y.o. are pre-
dicted as older, while the groups of users over
20 y.o. are all under-predicted. Notably, the same
near-linear pattern largely holds for the other two

experiments, with the age cut-off being different
(23 for Random, 27 for Oldest).

The accuracies of the three experiments are very
similar regardless if comparing the number of cor-
rect guesses or guesses within 1, 3 of 5 years of
the actual age. By examining Figure 1, we real-
ize that the set of users accurately predicted shifts
from one method to the other. This highlights that,
even if controlling age perception is feasible, this
is possible only for a difference of a few years.

The inter-annotator agreement is presented in
Table 4. First, the average standard deviation
across the three guesses for each author shows
that Youngest setup generates the most similar
guesses, which tend to be in the younger age
range. In contrast, the Oldest setup generates
the largest variance in guesses. Average Pearson
correlation between the three guesses per author
shows that both controlled setups result in higher
agreement between raters than the Random setup,
which shows that users are easier to rank by age
based on their extreme language use (Oldest or
Youngest) compared to a random tweet sample.

Finally, the average self-confidence of the rat-
ings is highest in the Youngest experiment (µ =
3.35), followed by the Older experiment (µ =
3.20) with the Random experiment (µ = 2.97)
lowest. Further, we checked if there is a relation-
ship between true or predicted age and self-rated
confidence. In the Youngest experiment, both true
age and predicted age are negatively correlated
with self-rated confidence (true age: Pearson r =
−0.218, p-value < 10−8, predicted age: Pearson
r = −.246, p-value < 10−10), showing that raters
believe their guess is easier when encountering
younger users. In the Random experiment, a sig-
nificant correlation exists between self-rated confi-
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Mean σ Median Correct Younger Older ≤1 Year ≤3 Years ≤5 Years
Baseline 24.0 0.0 24.0 5.0% 40.0% 45.0% 15.0% 35.0% 55.0%
Youngest 22.0 4.4 21.6 7.6% 62.2% 30.1% 20.7% 44.3% 59.0%
Random 23.3 4.8 22.8 7.1% 53.5% 39.3% 21.3% 42.8% 61.3%
Oldest 26.4 5.7 26.0 7.5% 36.2% 56.2% 22.0% 41.5% 60.6%

Table 5: Age prediction results in the three experimental setups. The predicted user age is the average age of the three human
ratings. The Baseline represents always selecting the average age in our data set.

Gender
Opposite (M) Opposite (F)

dress Just saw a dress style i can only describe as [...] his Chinese men amputated his own leg: URL
herself What’s USER doing on The Voice and why is she calling her-

self ’James’
wife The Good Wife exists to squeeze every last ounce of sincerity

and hope out of your soul.
husband .USER USER Wait ... you’re meeting your husband in Cleve-

land?
haircut Right. Haircut when I get home.

women’s Forget women’s rights or voters rights [...] burger Best burger anywhere. [...]
him Glad I was able to send him to the heartbreak hotel... of I spend 99% of my awake time thinking about food I can’t

eat.
Age

Youngest (–) Oldest (+)
literally that’s literally living the dream daughter [...] USER makes my 2-month-old daughter stop fussing :)
so im laughing so hard years i love [...] regretting everything from like three years ago
though You cute though via Christmas is almost here! Let’s party! URL via USER
excited IM SO EXCITED URL ago One year ago today URL URL
guys you guys killed it USER ok I’m OK with that. URL

Table 6: Most impactful features in tweet selection and representative tweet.

dence and predicted age only (Pearson r = −.172,
p-value < 10−5), while we found no relationship
in the Oldest experiment. This indicates that lan-
guage use at least apparently is more distinguish-
able for younger users, probably due to specific
topics or interests.

5 Qualitative Analysis

Finally, we show in Table 6 the top features that
impact selection of tweets in representative se-
tups from this paper together with a representa-
tive tweet. The top features are computed by mul-
tiplying the regression/classification weight with
the user-normalized average frequency of the fea-
ture in the displayed tweets. For gender, we use
the Opposite setup to show words most indicative
of females present in tweets selected and written
by males and viceversa. Gender specific features
are used with different senses than usual (‘dress’,
‘wife’, ‘women’s’), in reference to other persons
rather than oneself (‘herself’, ‘his’), or represent
stylistic (‘of’) or topical (‘haircut’, ‘burger’) dif-
ferences. For age, we select the feature most in-
dicative of a younger user in the Youngest setup
and the ones most indicative of older age in the
Oldest setup. In this case, most of the top words
are stylistic (‘literally’, ‘so’, ‘though’, ‘excited,
‘guys’, ‘ok’, ‘via’) with features indicative of older
age referencing the past (‘years’, ‘ago’) or gener-
ally specific of older age (‘daughter’).

6 Conclusions

We have presented the first study into automati-
cally controlling human perception of written text.
Our exploration used gender and age as basic hu-
man traits, which most have a good level of knowl-
edge about, to measure the extent to which alter-
ing perception in text-mediated communication is
feasible. Our results showed that this is possible to
some extent, being especially accurate for males.
Age experiments demonstrated consistent results
across the three experiments, although alteration
seems possible only for relatively small age deltas.

In this first experiments on this topic, we chose
to perform tweet selection rather than genera-
tion, as these methods often generate text that is
not semantically and syntactically correct or nat-
ural for a reader. In future work, we will experi-
ment with automatically altering or generating text
while keeping topic constant, as our current re-
sults are in part topically driven. Alterations can be
performed through stylistic transformations such
as normalization or by using paraphrasing as sug-
gested in (Preoţiuc-Pietro et al., 2016, 2017b).

Text adaptation is especially important for con-
versational agents that interact only through text.
As humans, we automatically perform this adapta-
tion through multiple additional channels: speech
tone, frequency, facial expression; which the agent
can not alter. In addition to methodology, future
work will also need to take into account ethical
implications of this personalization.
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Abstract

Highlighting the recurrence of topics us-
age in candidates speeches is a key fea-
ture to identify the main ideas of each
candidate during a political campaign. In
this paper, we present a method combin-
ing standard topic modeling with signa-
ture mining for analyzing topic recurrence
in speeches of Clinton and Trump during
the 2016 American presidential campaign.
The results show that the method extracts
automatically the main ideas of each can-
didate and, in addition, provides informa-
tion about the evolution of these topics
during the campaign.

1 Introduction

Political discourse analysis (Van Dijk, 1998) is a
branch of discourse analysis that aims at explicit-
ing from speeches or debates the salient features
of political discourses. From that point of view, a
presidential election provides interesting datasets
to study. Indeed, it is a major political event in
a country and gives rise to many political meet-
ings where candidates discuss personally selected
societal problems and detail their own solutions.
In that context, the identification of the favourite
topics of candidates as well as how they evolve
throughout the campaign is a crucial task.

In (Savoy, 2010), the author presents an analy-
sis of the evolution of topics in political speeches
by comparing the words that are overused or un-
derused by Obama and McCain during the 2008
US presidential campaign. The dynamics of these
particular words usage is analyzed over monthly
periods to identify the underlying dynamics of the
campaign topics. A limitation of this approach
is that the period is fixed (monthly) whereas pre-
dictable (vote, debates) or unpredictable (scan-

dals) events usually give the rhythm to a political
campaign. Other work used topic modeling meth-
ods, such as Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), Latent Semantic Anlayis (LSA)
(Landauer et al., 1998) or Non-negative Matrix
Factorization (NMF) (Lee and Seung, 1999), to
study political texts (Prabhakaran et al., 2014;
Quinn et al., 2010). For instance in (Quinn et al.,
2010), a topic model for legislative speech is de-
fined. However, those works study topics one at a
time whereas a set of co-referenced topics is more
relevant since it constitutes the core of a candi-
date’s political program. There exist other works
about political text analysis (Calvet and Véronis,
2008) but they focus on the use of predefined
single words in speeches over time, whereas we
aim at finding (without knowing in advance which
topic are recurrent) the recurrent topics (multiple
topics) usage over time.

In this paper, we propose to identify in political
speeches the favourite topics considered by each
candidate as well as how and when they evolve
throughout the campaign. In our opinion, this
gives critical clues to identify and to explain each
candidate’s main ideas and their evolution. Thus,
we describe an approach to extract the topic signa-
ture of a candidate from her/his political speeches,
i.e. the set of topics discussed by some candi-
date over time. The method associates NMF, a
standard topic modeling technique (Lee and Se-
ung, 1999), with signature mining (Gautrais et al.,
2017) to analyze the speeches of Hillary Clinton
and Donald Trump during the 2016 US presiden-
tial campaign. The advantages of this approach
are twofold. First, the set of campaign speeches is
modeled with topic signatures, i.e. recurrent top-
ics occurring at a flexible periodicity during the
campaign, instead of sets of specific words oc-
curring at a fixed periodicity. The topic signature
provides a more abstract view of each candidate’s
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main ideas and propositions. Second, the signa-
ture mining technique automatically adapts the pe-
riodicity to the campaign rhythms, to provide a
better insight of the campaign dynamics.

2 Topic Signature Model

To model recurrent topics in a political cam-
paign, we use the signature model (Gautrais et al.,
2017). This model was originally developed to
capture the recurrent purchase behavior of retail
customers. The analogy between politics and re-
tail is that customers’ purchases consist of regu-
larly bought products, and, similarly, politicians’
speeches contain recurrent topics.

We consider a set of topics (W) and a
sequence of speeches (α) such that α =
〈(t1, S1), (t2, S2) . . . (tn, Sn)〉 where ∀i ∈ [1, n],
Si ⊆ W and ti gives the timestamp of Si. For in-
stance, in Figure 1,W = {a, b, c, d, e} and α is a
sequence of seven speeches displayed in chrono-
logical order. We see that during Speech S3, two
topics were addressed: b and d.

A k-segmentation of a sequence of speeches α,
P (α, k) = 〈E1 . . . Ek〉, is a sequence of k non-
overlapping consecutive sub-sequences of α, Ei,
called episodes, each consisting of consecutive
speeches. An example of a 4-segmentation is
given in Figure 1, the first episode E1 contains
3 speeches (S1, S2, S3), E2 contains 2 speeches
(S4, S5), E3 contains speech S6 and E4 contains
speech S7. This segmentation contains episodes
of different sizes, in both number of speeches and
time span. This flexibility of the model allows for
adapting the episodes size to the sequence rhythm.

A topic k-signature, Rec(α, k), is defined
as a maximal set of recurrent topics in a k-
segmentation of α. Roughly, given P (α, k) =
〈E1 . . . Ek〉 a k-segmentation of α, we have
Rec(P (α, k)) =

⋂
Ei∈P (α,k)(

⋃
Sj∈Ei Sj). In

other words, Rec(P (α, k)) contains the set of
all recurrent topics that are present in each
episode of P (α, k). Rec(α, k) is maximal means
that it is obtained from a k-segmentation of α
that maximizes the size of the recurrent top-
ics set: Rec(α, k) = Rec(Pmax(α, k)) with
Pmax(α, k) = argmax{P (α,k)} |Rec(P (α, k))|.
k gives the number of recurrences of the topic
signature in sequence α. Thus, given a num-
ber of recurrences k, finding the topic k-signature
relies on finding the k-segmentation that maxi-
mizes the size of the topic set that appears in

each episode of that segmentation. For example,
in Figure 1, {a, b} is a topic 4-signature, indeed
Rec(α, 4) = E1 ∩ E2 ∩ E3 ∩ E4
= (S1 ∪ S2 ∪ S3) ∩ (S4 ∪ S5) ∩ (S6) ∩ (S7) =
{a, b, c, d}∩{a, b}∩{a, b}∩{a, b, c, e} = {a, b}.
There is no largest set of topics that is repeated in
each episode of a 4-segmentation of α. As one
can see in this example, episodes can be of differ-
ent sizes, and speeches are grouped into episodes
such that the topic signature is the largest.

The signature model contains two types of in-
formation. First, the intersection of allEj contains
the topics that are recurrent. In our case, this re-
veals the topics that one candidate has been speak-
ing about, throughout the campaign speeches.
The second information is temporal, through the
episode timestamps. These timestamps reveal the
rhythm of the topics usage. The signature actually
links both information, to give the recurrent topics
and their dynamic.

By varying the value of k, one can explore the
main topics (if k is large) or the secondary top-
ics, that are still recurrent (when k is low). There-
fore, recurrent topics and their dynamics can be
analyzed on different time scales. The difference
with some previous approaches (Savoy, 2010) is
that the size of each episode Ej is not defined in
advance. Instead, the signature adapts the segmen-
tation and episode size to reveal the rhythm of the
topics usage.

3 Case Study: 2016 US Presidential
Campaign

In this section, the topic signatures of Clinton and
Trump during the 2016 US presidential campaign
are analyzed.

3.1 Dataset
The dataset contains the transcripts of campaign
speeches of both candidates Clinton and Trump,
from April, 2015 to November, 2016. The
speeches have been extracted from the American
Presidency Project (APP)1. This yielded a total of
164 speeches: 93 for Clinton and 71 for Trump2.

3.2 Preprocessing
The dataset was preprocessed as follows. First,
the sentences that did not correspond to a candi-

1http://www.presidency.ucsb.edu/2016_
election.php

2Including the 3 presidential debates. Speeches of Clinton
prior to April 2015 were discarded
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Figure 1: A speech sequence and a 4-segmentation. The recurrent topics are {a, b}.

date utterance (journalists questions, introduction
by another speaker . . . ) were removed. Next, the
sentences were tokenized and the tokens associ-
ated with some Part-of-Speech (POS) tags were
kept. Precisely, nouns, adjectives and foreign
words were kept while verbs and personal nouns
were removed. While removing verbs can lead to
a loss of semantic information, we found that it
resulted in more interpretable topics. This choice
of removing verbs has previously been made for
topic modeling in political texts (Zirn and Stuck-
enschmidt, 2014). Personal nouns were discarded
to remove all references to interviewers or other
politicians. We considered keeping some proper
nouns (the ones of both campaigners and of some
other politicians) but it added noise in the topic
modeling step, without providing additional rele-
vant information. Finally, remaining tokens were
lemmatized and stop words were removed. We
used the WordNet lemmatizer (Miller and Fell-
baum, 1998) and the list of stop words from the
nltk library3 (Bird et al., 2009). The final dataset
contained 6240 different lemma.

3.3 Topic Modeling

Even though words could be analyzed directly
(Savoy, 2010), we decided to analyze topics. This
choice is mainly guided by the fact that we are
looking for recurrent topics, and working directly
on words gave uninteresting results, as recurrent
words are not directly representative of each can-
didate ideas. Different topic modeling techniques
were tested (Stevens et al., 2012) (LDA (Blei et al.,
2003) and NMF (Lee and Seung, 1999)) with dif-
ferent parameters, number of topics and settings
(with or without verbs for example). As a result,
we concluded that using NMF on count vectors
with 15 topics produced the most meaningful, di-
verse, yet non redundant topics. Some of these
topics and their top lemma are shown in Table 1.

3http://www.nltk.org/

Table 1: Some topics found by NMF, and their
main lemma.

Topic name Main topic lemma
Economic policy economy, growth, new,

business, income, wage
Woman president and voters woman, election, president,

future, young
Illegal immigration immigration, illegal, law,

border, criminal, visa
Climate change energy, climate, change,

clean, future, important

However, it should be noted that other topic mod-
eling techniques ((Greene and Cross, 2017) for ex-
ample) could be used, and lead to meaningful re-
sults. Indeed, as our method is built on top of top-
ics, any technique that provides good enough top-
ics can be used. Any improvements in the topic
model can help to draw more precise conclusions
(if cleaner topics are available). This remark is
also true regarding our choice of removing verbs
and personal nouns.

Within NMF, a speech is represented as a nu-
meric weight vector across all topics. How-
ever, the signature model works on symbolic data,
which means that a set of representative topics
for each speech has to be selected. As we want
to discriminate the main topics of a speech from
the remaining ones, we applied a clustering on the
weight vectors of each speech. Two clusters were
looked for, the first containing the highest weights
i.e. the cluster of the main topics, and the second
containing the secondary or absent topics, with
lowest weights. We used the spectral clustering
technique (Shi and Malik, 2000) from the scikit-
learn library4 (Pedregosa et al., 2011). We did not
used techniques based on the Euclidean distance
(such as k-means (MacQueen et al., 1967)) as it
is not suited to separate main topics from minor
ones. Three main topics emerged per speech on

4http://scikit-learn.org
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Figure 2: Campaign topics through time for each candidate. Each circle represents the presence of a
topic in a speech. The larger the topic, the more present in a speech. Trump speeches are depicted in red,
Clinton speeches in blue.

average.

3.4 Topic Signature Extraction

To study the main topics on different time scales,
we computed signatures with different values of k.
Table 2 displays the results.

3.5 Discussion

About Extracted Topics Figure 2 displays a vi-
sualization of all main topics. Only the last months
of the campaign are plotted, since both candi-
dates were particularly active during that period
and speeches were sparse earlier. The visualiza-
tion is especially suited to analyze single topics.
First, we can see that most topics are discrimina-
tive, they appear often in one candidate’s speech
while being almost absent in the other’s. Some
topics, like Communities and police, are shared
but not used on the same time line. Another exam-
ple is the use of the Climate change issues topic.
We can see that it is mainly used at the end of the
presidential campaign by Clinton.5

About Topic Signatures While the previous
section shows how individual topics can be ana-

5Climate change issues became a topic of interest when
Clinton attacked Trump on him saying that climate change is
a hoax in the first presidential debate (September 26, 2016).

lyzed, the signature allows for analyzing the main
topics as a whole. Let us look at each candi-
date’s recurring topics in Table 2. The main top-
ics of each candidate are well separated, showing
that each candidate has its own targeted voters.
Clinton focused on topics related to communities,
youth, issues for the next generations, and woman
as president. Trump focused on topics such as new
economical policies, illegal immigration, new so-
cial policies and criticism of the former govern-
ment.

Table 2: Signature topics in speeches of Clinton
(top) and Trump (bottom), for some values of k.

Clinton
No Recurrences (k) Signature topics
C1 57 Woman as President
C2 30 C1 + Future challenges for President
C3 16 C2 + Communities and police
C4 12 C3 + Childcare and education

Trump
No Recurrences (k) Signature topics
T1 48 Social policy and critics
T2 28 T1 + New economic policy

T3.1 15 T2 + Illegal immigration
T3.2 15 T2 + Education policy
T4.1 9 T3.2 + Illegal immigration (T3.1 + T3.2)
T4.2 9 T3.2 + Money and wall at border

The signature of Clinton is quite simple, as low-
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Sep 2016 Oct 2016 Nov 2016
T2 + Illegal Immigration

T2 + Education policy
1
2

3
4

Figure 3: Episodes of two Trump signatures. T3.1: Social policy and critics + New economic policy +
Illegal immigration ; T3.2: Social policy and critics + New economic policy + Education policy. Every
rectangle in pink or blue represents an episode, and each black dot represents a speech belonging to an
episode. Each numbered ellipse represents a group (annotated by hand) of episodes.

ering the minimal number of occurrences only
adds new topics to the signature. This means that
Clinton is very stable in her main topics. This ob-
servation is also partially true for Trump. Indeed,
Trump has sometimes different signatures for a
given number of occurrences. For example, with
k = 15, Trump speeches main topics can include
Illegal immigration or Education policy, but not
both together. This is interesting because it shows
that Trump is more diverse in his recurrent topics
and that some of them rarely occur together.

To further deepen the analysis of the fact that
Trump speeches include either Education policy or
Illegal Immigration but rarely both, let us look at
the episodes of the related signatures, represented
in Figure 3. First, we note that the difference be-
tween both signatures episodes began to be appar-
ent by September 2016. Indeed, the signature con-
taining Illegal immigration only has three episodes
(Group 2), whereas the one with Education policy
has 11 episodes (Group 1). This large difference
shows that, in September, Trump discussed his
main topics a lot (Criticism of former government,
New social policies and New economic policy) in
association with Education policies. In October
2016, he switched to Illegal immigration while
keeping his main topics, as there are 3 episodes
for Education policy (Group 3) whereas there are 7
episodes for Illegal immigration (Group 4). While
the fact that Trump stopped talking about Educa-
tion policy at the end of September 2016 is vis-
ible in Figure 2, the segmentation performed by
the signature brings additional information. In-
deed, the signature is changing only one of its top-
ics, so we know that Trump kept talking about his
other main topics (Social policy and critics and
New economic policy) while switching from Ed-
ucation policy to Illegal immigration.

Another important point is that by the beginning
of October, when Trump switched from Educa-

tion policy to Illegal immigration, the episodes are
longer than the remaining ones (Group 4). This
means that Trump’s main topics are distributed
among more speeches than before, which can re-
flect a change in his strategy. This information is
not easily visible in Figure 2, but it is available
from a simple analysis of Trump signature.

This case study, based on topic signatures,
shows that our method is able to derive each can-
didate’s recurrent topics. Analyzing episodes and
related signature topics enables to spot changes in
Trump speeches and to explain how some of his
recurrent topics are related to each other. This
kind of precise analysis is beyond the capabilities
of naive regular segmentation techniques.

4 Conclusion

We have presented a new method for analyzing po-
litical discourse. It associates standard topic mod-
eling with signature mining and enables the iden-
tification of the main topics of politicians during a
campaign as well as their dynamics. The 2016 US
presidential campaign analysis provides interest-
ing results: though the discourse of H. Clinton was
relatively stable, important changes could be iden-
tified in the discourse and communication strategy
of D. Trump. These specific results on the cam-
paign dynamics were obtained thanks to the tem-
poral flexibility of the model.

In the future, we would like to apply the
method to more challenging data, such as polit-
ical tweets. Preliminary results on the 2016 US
campaign tweets show that the topics used by
both candidates were different from their speech:
the tweets, being shorter than speeches, empha-
size more oversimplified criticism of the opponent
rather than justified political ideas.
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Abstract

Recommendations are often rated for their
subjective quality, but few researchers
have studied quality in terms of objec-
tive utility. We explore quality assess-
ment with respect to both subjective (i.e.
users’ ratings) and objective (i.e., did it in-
fluence? did it improve decisions?) met-
rics in a massive online geopolitical fore-
casting system, ultimately comparing lin-
guistic characteristics of each quality met-
ric. Using a variety of features, we predict
all types of quality with better accuracy
than the simple yet strong baseline of rec-
ommendation length. For example, more
complex sentence constructions, as evi-
denced by subordinate conjunctions, are
characteristic of recommendations leading
to objective improvements in forecasting.
Our analyses also reveal rater biases; for
example, forecasters are subjectively bi-
ased in favor of recommendations men-
tioning business deals and material things,
even though such recommendations do not
indeed prove any more useful objectively.

1 Introduction

Finding good recommendations is an integral part
of a modern information-seeking life – from pur-
chasing products based on reviews to finding an-
swers to baffling questions. Following the tradi-
tion of sentiment analysis, many have proposed
methods to automatically assess the quality of rec-
ommendations or comments based on subjective
ratings of their usefulness (Liu et al., 2007; Siers-
dorfer et al., 2010; Becker et al., 2012; Momeni
et al., 2013) or of persuasiveness (Wei et al., 2016).
However, information thought to be useful does
not always prove so, and subjective ratings may be

driven by biases. Reviews which convince you to
watch a movie or buy a product do not guarantee
that you will enjoy the product, and the most con-
vincing or highest rated answers to questions on
sites like Stack Overflow or Yahoo Answers are
not always the most accurate.

We explore recommendations in a unique
dataset, an online forecasting competition, which
offers a rare glimpse into both subjective and ob-
jective quality. In this competition, the users
(forecasters) had a measurable goal — to fore-
cast the outcomes of geopolitical events — and a
need to effectively gather information in order to
reach this goal. They viewed recommendations (or
“tips”) from other forecasters, rated them, and po-
tentially updated their own forecast. This data not
only allows us to access what information the fore-
casters thought useful based on their ratings, but
also what was objectively useful based on (a) the
rate at which forecasters change their prediction
after viewing tips and, (b) the average improve-
ment (or decrease) in their prediction accuracy af-
ter this change.

We seek to tease out subjective biases by dis-
tinguishing the linguistic characteristics of rec-
ommendations with high subjective ratings from
those of objective utility. Since objectively good
recommendations tend to get higher subjective
assessments, detecting such differences is non-
trivial. Past literature has suggested that sub-
jective quality is well predicted by comment
length (Agichtein et al., 2008; Beygelzimer et al.,
2015); We seek differences beyond this. We build
quality predictive models from linguistic features
of recommendations — 1 to 3 word sequences,
parts-of-speech, and mentions of concepts from a
taxonomy — comparing to surface-level features
(length and readability). We then explore the lan-
guage which distinguishes high quality comments
from low quality, controlling for comment length,
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and ultimately what distinguishes high subjective
quality from objective quality in order to reveal
subjective biases.

Contributions. We see the key contribution of
this paper, perhaps non-conventional for NLP, as
presenting an evidence-based suggestion for the
field to consider metrics of objective quality be-
yond that of subjective ratings. To the best of
our knowledge this represents the first study of
objective comment quality using randomized ex-
perimental data. Specific novel contributions in-
clude (a) the development of automated assess-
ments fit to objective outcomes, (b) the identifi-
cation of linguistic features distinguishing high-
from low-quality comments, (c) the use of a new,
important, real-world domain for NLP – geopo-
litical information, and (d), most consequentially,
the identification of subjective biases manifested
in the comments’ text itself.

2 Data Set

Data were collected from the massive online
geopolitical forecasting system (MOOF) de-
scribed by Mellers et al. (Mellers et al., 2015;
Atanasov et al., 2016). Forecasters completed
tasks where they indicated the probability of dis-
crete outcomes for specific future geopolitical
events around the world. For example, forecasters
might be asked to forecast the likelihood of a coup
in Venezuela within the next 12 months. Respon-
dents indicated a probability for the event and, af-
ter the event resolved, they received a score (Brier,
1950) based on how close their probability re-
flected the outcome of the event.1

Recommendations generated from a another
parallel forecasting system were presented as
“tips”. In the parallel system, the recommendation
writers were asked “Why did you answer the way
you did?” when making forecasts, and were given
the option to mark their response as potentially
being useful to others. Comments marked useful
from the parallel system were then presented as
tips within the main MOOF system, where they
were evaluated for their subjective and objective
usefulness. Below is an example of one such com-
ment:

1Data, in the form of quality ratings, POS fea-
tures, and aggregate concept features is released at
http://http://www3.cs.stonybrook.edu/
˜has/objective_quality/. Due to IRB privacy
considerations we are unable to release the full data set.

Predicting the foreign ministers will
meet and state something along the lines
of ”hoping for a summit at the appropri-
ate time.” ... Predict this because of the
cautious language here and elsewhere:
http://www.china.org.cn/wap/2015-
03/13/... If wrong, will have time to
redress the damage done before any
possible summit.

The above forecaster identifies a reason for their
decision, a source of information (a Chinese news
website), and even a contingency plan if their rea-
soning doesn’t seem to be planning out. Fig-
ure 1 shows a representative screen shot from the
MOOF system.

We focus on one subjective and two objective
quality metrics for these recommendations:
rating: subjective ratings on a 5-point scale by the
forecasters in the parallel system.
influence: the rate at which MOOF forecasters up-
date their predictions after reading the comment.
benefit: the mean change in MOOF forecaster ac-
curacy resulting from updating their predictions
after rating the comment. Because there were nu-
merous confounding factors regarding the magni-
tude of change (i.e. forecaster quality, time un-
til task resolution), we simply encoded the change
as a binary indicator of whether it was positive or
negative.

For the purposes of this study, we consider both
influence and benefit as assessments of objective
utility, though they each capture different aspects
of utility (behavioral influence of others in the case
of influence; and specifically positive influence in
the case of benefit). The MOOF forecasters did
not know who wrote the tip or any other infor-
mation about it; their actions were based on the
comment’s content and not reputation of the com-
ment author. MOOF forecasters were also linked
directly to the form to update their forecast from
the comment to minimize outside influences be-
tween the reading of the comment and prediction
update. However, as the forecasters were not in a
laboratory, other Web browsing behavior in other
tabs could not be controlled.

In order to balance quality score reliability with
quantity of recommendation data, we restricted
the dataset to recommendations with at least 10
words that received at least 3 ratings. This re-
sulted in 8, 498 comments with ratings and influ-
ence scores. Out of those, 4, 317 comments had at
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Figure 1: Screenshot of the forecasting system prompting users to justify their forecasts with recommen-
dations. These recommendations are then passed on to the parallel MOOF system as “tips” which are
rated and sometimes lead forecasters to change their predictions.

rating v rating v influence v
influence benefit benefit

.45* .01 .06*

Table 1: Correlation (Pearson product-moment
coefficient) between all subjective and objective
quality metrics: rating: forecaster subjective rat-
ing, influence: forecaster update rate, benefit:
change in forecast accuracy due to update. *sig-
nificant at p < .01.

least one associated change in forecast, and thus
had a score for the final metric, benefit.

Table 1 shows correlations (Pearson product-
moment coefficients) between all subjective and
objective quality metrics. Rating and influence are
fairly predictive of each other (r = 0.45, p <
0.01), and neither correlates particularly strongly
with benefit. (r = 0.01, p > .01 for rating v bene-
fit, and r = 0.06, p < .01 for influence v benefit).
This implies that while comments rated for subjec-
tive utility are also more likely to influence users,
they are not necessary influencing them in a pos-
itive way. Further, it is possible (and indeed the
case) that the characteristics of comments deemed
subjectively useful may differ from those that ob-
jectively provide benefit. In Section 4 we consider
the content that leads to these differences in the
metrics.

3 Regression

Our goal is to predict the quality score of a com-
ment from its content over each of the three qual-
ity metrics: rating, influence, and benefit. These
3 types of features were chosen in order to ac-
count for qualitatively different types of linguistic
attributes. To capture linguistic variance at vary-
ing resolutions, we use a combination of open-
vocabulary and taxonomic linguistic features:
ngrams: 1 to 3 word sequences. These ngrams
were recorded as binary variables indicating
whether each ngram appeared in each comment.
We limited ngrams to those mentioned in at least
0.1% of all comments.
parts-of-speech: POS frequences The Stanford
Part-of-Speech tagger was used to identify parts of
speech in each comment. The relative frequency
of each tag (i.e., the probability of the tag, given
the comment) was recorded.
concepts: Nominal concepts within a hierarchy.
The WordNet noun ontology (Fellbaum, 1998)
was used. For each comment, we tracked all of
the hypernyms of each noun within the comment.
As features per comment, we use the presence of
each hypernym concept, limited to those concepts
that appeared in at least 0.1% of all comments.

To control for task-specific language, features
(n-grams) were restricted to those mentioned in at
least 50% of forecasting tasks. The n-grams, in-
tended to capture fine-grained lexical information,
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were also restricted to those mentioned in at least
1% of comments, while the parts-of-speech and
concepts, intended to capture more coarse-grained
linguistic characteristics, were restricted to those
appearing in 5% of comments. These thresholds
were chosen such that total number of features was
within the same order of magnitude as the number
of recommendations with objective scores In the
end, there were 1, 202 unique n-grams, 32 unique
parts-of-speech, and 155 unique concepts.

3.1 Predictive Modeling
We built predictive models of all three quality met-
rics based on the linguistic features of the mes-
sages. To handle covariance and avoid over-fitting
with so many features, we used a series of feature
selection and dimensionality reduction techniques
fed into a ridge regression to create the models.
Specifically, we filtered the features (which were
already restricted to those present in at least 50%
of the forecasting tasks) to those with a small lin-
ear correlation with the outcome, defined as hav-
ing a family-wise error rate < 60 (Toothaker,
1993). This feature selection was run indepen-
dently on each type of feature (n-grams, parts-of-
speech, and concepts). Similar to correcting for
multiple hypothesis tests, family-wise error pe-
nalizes groups containing more features (i.e. n-
grams) more stringently.

We then used randomized singular value de-
composition (SVD) (Halko et al., 2011) to reduce
the feature set to 1/5 the number of original fea-
tures. Randomized SVD uses stochastic sampling
to more efficiently calculate the principal com-
ponents (Martinsson et al., 2011).In this context,
SVD functions as a type of regularization to re-
duce variance by removing lesser principal com-
ponents (and thus helping to avoid overfit). Fi-
nally, the resulting dimensions were fit to the given
quality metric using L2 penalized linear regres-
sion. All feature selection, dimensionality reduc-
tion, and L2 parameter tuning were done over a
held-out portion of the training set.

3.2 Evaluation
To evaluate our models out-of-sample, we use 10-
fold cross-validation over the subjective ratings
(rating) and update rates (influence). In this pro-
cess, a random selection of 1/10th of the com-
ments are held-out as a test set, while the other
9/10ths are used to train (estimate) the model. This
model is then used to predict the quality of the

rating influence benefit

baseline .59 .24 .02

our model .76* .37 .21*

Table 2: Predictive accuracy (out-of-sample Pear-
son correlation coefficient) of our content-based
models across the subjective and objective mea-
sures. baseline: square-root number of words;
our model: based on ngrams, parts-of-speech, and
concepts. *significant reduction in error over the
baseline at p < .001.

comments in the 1/10th sample and compared to
the true quality for those comments (using Pear-
son correlation in this case). However, many of
our scores for change in forecaster accuracy (ben-
efit) are based simply on one change and thus quite
unreliable. While it is best to include such noisy
data when training, it does not provide a very ac-
curate assessment. Therefore, we use dedicated
training and test sets, where the test set is a ran-
dom sample of 500 comments with more than 3
updates and thus a more reliable mean change in
forecaster accuracy.

As a baseline, we use the square-root of the
number of words in the comment. This may
seem like weak measure of quality, but the his-
tory of automatic quality assessment is saturated
with findings that length is the best predictor of
quality. This holds true for both answers to ques-
tions (Agichtein et al., 2008; Surdeanu et al., 2011;
Beygelzimer et al., 2015); as well as e-commerce
reviews (Cao et al., 2011; Racherla and Friske,
2012). Of course, length is not as shallow as it
may seem at first; given no strong incentive for
authors to leave long comments, length is likely
a proxy for thoroughness of the comment. Still,
because we would like to understand the content
distinguishing various metrics of quality, we view
length as a baseline to move beyond.

Table 2 compares the accuracy of models built
on content (ngrams, parts-of-speech, and con-
cepts) to the baseline of length. In all cases, our
models, based on content, perform significantly
better than those based only on length. Further in
the case of benefit (change in forecaster accuracy),
length has virtually no predictive power.
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measure readability length & readability

rating .23 .59

influence .08 .24

Table 3: Predictive accuracy (out-of-sample
Pearson correlation coefficient) of the baseline of
length and the baseline of readability and their
combination across the subjective and objective
measures. length: square-root number of words;
readability: Flesch-Kincaid Scale.

3.3 Relation to Readability

Some previous work used on readability measures
to evaluate comment quality (e.g. (Agichtein
et al., 2008; Hsu et al., 2009)). Readability of-
ten refers to the difficulty or complexity scale of
a comment, determining the minimum age group
able to perceive it. Various readability measures
have been suggested in the past such as Flesch-
Kincaid Formula (Kincaid et al., 1975), Gunning-
Fog Index (Gunning, 1952), and SMOG Grading
(Mc Laughlin, 1969). All methods are based on
the combination of the count of syllables or words
in the comment (as a representation of syntactic
complexity), and the number of sentences in the
comments (representing the semantic complexity).
Such measures of readability are often considered
naive and questionable, however, they are com-
monly used and present a coarse evaluation of the
comment’s complexity.

We used Flesch-Kincaid scale to measure read-
ability. This scale measures readability by the
average number of syllables per word as well as
the average number of words per sentence (Doak
et al., 1996). We combined the baseline of length
and the baseline of readability in order to measure
the quality of comments. Table 3 shows results for
readability and length plus readability. We find no
significant improvement in the baseline and that
our model based on content still adds significantly
more predictive accuracy.2

4 Differential Analysis

The prediction results show promise for automated
quality assessment, and that linguistic content can
predict quality above-and-beyond length (a proxy
for comprehensiveness). Next, we explore what

2Adding length and readability together to the full model
had no benefit.

content exactly it is that is predictive of each qual-
ity metric, and what content suggests biases dis-
tinguishing subjective versus objective quality.

4.1 Method
To identify distinguishing features, we use a series
of multivariate linear regressions to find the rela-
tionship between each individual linguistic feature
and the given quality metric, controlling for com-
ment length – a process known as differential lan-
guage analysis (Schwartz et al., 2013). Specifi-
cally, the individual linguistic feature along with
the comment length (logged) are standardized and
used as independent variables, and then fit to the
standardized form of the given quality metric. The
coefficient given is then taken as the standardized
effect size of the relationship between that fea-
ture and the quality metric, holding length con-
stant (Fox, 1997). In other words, it tells us how
much the feature can explain the quality score, be-
yond what is explainable simply from length.

Using regression to relate variables, although
rarely done in Computer Science domains, is stan-
dard practice in social and political science (Fox,
1997), though typically not over thousands of
potential independent variables as we do here.
Therefore, we also correct for multiple hypothe-
ses by using the Benjamini-Hochberg proce-
dure (Benjamini and Hochberg, 1995) over our
significance tests.

Differential language analysis allows us to ob-
serve and test the unique relationship between
each feature and each metric, holding length con-
stant. In addition, we use the difference between
standardized metric scores to find the features that
distinguish high quality comments in one metric
versus another. All methods were implemented
within the package, dlatk (Schwartz et al., 2017).

4.2 Quality Comment Features
Figure 2 shows the n-grams most highly correlated
with each of our quality metrics. Size indicates
correlation strength while color represents over-
all frequency. Across both subjective ratings and
objective update rates, we see discussion of news
plays an important role (e.g. “news”, “article”,
and “www.reuters.com”). We do not see the same
from comments resulting in positive changes of
forecaster accuracy (benefit), which seemed to be
distinguished by negation (e.g. “no”, “unlikely”).
For influence, we see other features indicating
probabilistic reasoning (e.g. “%”); the individual

2352



Figure 2: Top: ngrams (words and phrases) most distinguishing high quality comments based on (a)
subjective ratings, (b) objective forecaster update rates, and (c) objective changes in forecaster accuracy.
Bottom: ngrams (words and phrases) most distinguishing (d) subjective ratings from objective update
rates and (e) objective update rates from objective changes in forecaster accuracy. All correlates are
significant at p < .05 after a Benjamini-Hochberg false-discovery rate correction.

numbers in influence actually represent numbered
lists of signal. These features are more indicative
of a comment that convinces one to update their
prediction rather than one that highly rated.

We can directly observe the differences in what
the metrics capture by looking at the final two vi-
sualizations in Figure 2, rating v influence and rat-
ing v benefit. Rating v influence tells us which
ngrams were predictive of high quality comments
that were less likely to result in a forecast update.
Discussion of energy topics (e.g. “oil”, “prices”,
“cut”, “production”) are predictive of comments
subjectively rated higher than their update rates
would suggest. Further, discussion of dates (e.g.
“january”, “may”, “days”, “2015”, “2013”) seems
to predict comments that lead forecasters to update
but which do not actually result in better predic-
tions (influence v benefit). Discussion of news and
articles (“article”, “news”, “html”, “question” ap-
pears to predict subjectively top-rated comments
from those comments that actually result in better

predictions (influence v benefit).

Table 4 shows differential language of quality
based on part-of-speech. We observe that some
patterns from the ngram results are generalized.
Examples of these patterns include more num-
bers, parentheses, and quotes in highly rated and
influential comments. Other results are some-
what novel, such as the use of more adverbs and
subordinate conjunctions (e.g. “though”, “since”,
“whereas”) in comments leading to better forecast
accuracy, and that both ratings and influence fa-
vored quotes.

We notice that including explanation or af-
terthought (using more parentheses) can predict
subjectively high rated comments from the com-
ments leading to updated ratings. The use of
quotes and numbers along with mentioning proper
nouns can predict influential comments that do
not help in better predictions. Including explana-
tion, quotes, and numbers as well as reporting past
events seems to predict comment that convinces
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Parts-of-speech

rating parentheses number line-break quote verb, past-tense

influence line-break number parentheses verb, past-tense quote

benefit adverb sub-conjunction - - -

rating v influence parentheses - - - -

influence v benefit quotes proper noun number - -

rating v benefit parentheses quotes number verb, past-tense -

Table 4: Top: Most distinguishing parts-of-speech correlating with the three metrics of quality: sub-
jective rating, forecaster updates (influence), and forecaster accuracy (benefit). Bottom: parts-of-speech
most predictive of differences in quality metric scores (rating v influence and rating v benefit). All
correlates are significant at p < .05 after a Benjamini-Hochberg false-discovery rate correction.

one to update their prediction as opposed to help-
ing better forecasting accuracy.

Distinguishing concepts, in Table 5 offer a dif-
ferent perspective. Discussions of documents and
written material characterize highly rated and in-
fluential comments, while changes in accuracy
(benefit) were characterized by more discussion of
abstract attributes or states of being. Highly rated
comments were more likely to discuss concepts re-
lated to transactions and materials than influential
comments, but they are more likely to discuss con-
cepts about creation compared to comments re-
sulting in better predictions.

5 Related Work

While no prior work has focused on recommenda-
tion quality in terms of how readers change or im-
prove decisions (i.e. objective metrics), there is an
extensive body of literature on the automated anal-
ysis of subjective comment quality from which
we build. Such work typically uses subjective
assessments specific to their application domain
(e.g. thumbs up/ thumbs down over YouTube com-
ments, answer ratings in Yahoo Answers, or help-
fulness ratings of Amazon product reviews). Be-
low we discuss such work organized into three
main categories of subjective comment quality:
comment usefulness, the quality of answers in QA
platform, and comment helpfulness.

Comment usefulness concerns the acceptance
(vs. non-acceptance) of comments by a commu-
nity (Siersdorfer et al., 2010). Some previous
work has focused on the usefulness of YouTube
comments. For example, Siersdorfer et. al. (Siers-

dorfer et al., 2010) have used support vector ma-
chines to identify the acceptance of comments by
the community in 6 million comments on 67,000
YouTube videos. They showed that community
feedback and term weight features can be good
predictors of comment acceptance. Other work
such as (Momeni et al., 2013) predicted com-
ment usefulness on YouTube and Flickr, and found
that comments rated as useful usually include
named entities and “insight”-related terms (think,
know, consider, etc.), whereas non-useful com-
ments contain emotional and affective expression,
and “certainty”-related (always, never, etc.).

Others working on comment quality assessment
focus on user-generated answers in social media
and QA platforms. (Bian et al., 2008) present a
general ranking approach for finding the answers
from 1,250 TREC factoid questions containing at
least one similar question from Yahoo! Answers.
They found that various features including tex-
tual (e.g. word overlap, length ratio), and com-
munity (e.g. total points, total answers) are im-
portant in retrieving factual answers, whereas sta-
tistical features (e.g. length, lifetime, popularity)
are not very effective. Exploring if additional fea-
tures could outperform answer length in predicting
the best answer, Beygelzimer et al. (2015) con-
sidered a wide variety of features including func-
tional, linguistic, questioner and answerer person-
alization, and “superlative” features, but were un-
able to overcome the length baseline.

Helpfulness is mainly defined in the context of
online reviews and represents the number of users
indicating a particular review was helpful. Us-
ing structural features like sentence tokens, length,
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Concepts

rating
document, written document, papers – writ-
ing that provides information (especially in-
formation of an official nature).

gathering, assemblage – a group of persons
together in one place.

influence

writing, written material, piece of writing –
the work of a writer; anything expressed in
letters of the alphabet (especially when con-
sidered from the point of view of style and
effect).

auditory communication – communication
that relies on hearing.

benefit attribute – an abstraction belonging to or
characteristic of an entity.

state – the way something is with respect to
its main attributes.

rating v influence
transaction, dealing, dealings – the act of
transacting within or between groups (as car-
rying on commercial activities).

material, stuff – the tangible substance that
goes into the makeup of a physical object.

rating v benefit creation – an artifact that has been brought
into existence by someone.

Table 5: Top: Select concepts correlating with the three metrics of quality: subjective rating, forecaster
updates (influence), and forecaster accuracy (benefit). Bottom: concepts most predictive of differences
in qualtric metric scores (rating v influence and rating v benefit). All correlates are significant at p < .05
after a Benjamini-Hochberg false-discovery rate correction.

proportion of question sentences along with lex-
ical and syntactic features, Kim et. al. (2006)
could achieve rank correlations of up to 0.66 with
helpfulness votes of Amazon reviews. Ghose
and Ipeirotis (2011) analyzed length, readability,
and subjective and objective information on Ama-
zon.com reviews finding that reviews with ob-
jective, and highly subjective sentences are rated
more helpful. Similar findings were reported by
Mudambi and Schuff (2010), finding that review
extremity, review depth, and product type affect
the perceived helpfulness of the review.

Most studies listed thus far found length of
comment to be the dominant predictor, with other
features providing minimal benefit. However, a
few studies (including our own) have found this
baseline can be overcome. For example, Racherla
and Friske (Racherla and Friske, 2012) investi-
gated perceived usefulness of consumer reviews
on Yelp and found that reputation and expertise
were more important than total number of words
on perceived usefulness.

All of these prior works focus on assessing sub-
jective aspects of comments (usefulness, quality,
and helpfulness); Perhaps the study coming clos-
est in spirit to our own was Ghose et al. Ghose
et al. (2007) who quantified quality of reviews
by the economic change they produced. How-
ever, they still were not dealing with a randomized
experiment and so conclusions were correlational

and the objective was better sales of the product
rather than benefit to the reader (i.e. leading to a
better decision).

6 Conclusion

Our results suggest three key findings. First, what
one writes in a comment is more important than
simply how much one writes; this is true across
both subjective and objective outcomes, though
length had virtually no predictive ability for im-
proving forecaster accuracy. Second, we found
many linguistic features characteristic of quality,
many of which seemingly align with attributes
of strong forecasters (Mellers et al., 2015). For
example, high quality comments contained sig-
nals of probabilistic reasoning (e.g. “%”, “un-
likely”, numerical parts-of-speech), inductive rea-
soning (e.g. justifications with “news” and doc-
uments), and cognitive flexibility (e.g. subordi-
nate conjunctions which signal more complex sen-
tence constructions used to relate two independent
clauses or ideas).

Most importantly, our results suggest a sub-
jective bias: that what people believe to be use-
ful does not always turn out to be truly useful.
Subjective ratings were favorably biased towards
comments containing energy-related content (e.g.
“oil”, “production”, “prices”), news articles, and
nouns of creation and materials (as opposed to ab-
stractions or attributes).
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The implications of identifying subjective bi-
ases in comment quality extend to many domains
involving comment ratings. Consumers of com-
ments, typically, desire information that ultimately
leads to real utility benefits, and this domain is
not the only one where objective quality can be
obtained: For example, one could: (1) ask con-
sumers of restaurant reviews to indicate if one con-
vinces them to go to the restaurant and then follow
up on their experience, (2) consider evaluating re-
search paper quality – reviewer ratings versus ci-
tation count (influence), (3) determine whether the
answer to the question about how to drive to con-
serve fuel lead to the reader actually using less
gas? A review being convincing or being ”liked”
may correlate with better outcomes, but it is not
equivalent.
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Abstract

We propose a language-independent data-
driven method to exhaustively extract
bursty phrases of arbitrary forms (e.g.,
phrases other than simple noun phrases)
from microblogs. The burst (i.e., the
rapid increase of the occurrence) of a
phrase causes the burst of overlapping N-
grams including incomplete ones. In other
words, bursty incomplete N-grams in-
evitably overlap bursty phrases. Thus, the
proposed method performs the extraction
of bursty phrases as the set cover problem
in which all bursty N-grams are covered by
a minimum set of bursty phrases. Experi-
mental results using Japanese Twitter data
showed that the proposed method outper-
formed word-based, noun phrase-based,
and segmentation-based methods both in
terms of accuracy and coverage.

1 Introduction

Background and motivation. Trends on mi-
croblogs reflect manifold real-world events includ-
ing natural disaster, new product launch, televi-
sion broadcasting, public speech, airplane acci-
dent, scandal and national holiday. To catch real-
world events, not a few researchers and practi-
tioners have sought ways to detect trends on mi-
croblogs. Trend detection often involves bursty
phrase extraction, i.e., extracting phrases of which
occurrence rate in microblog texts posted within a
certain period of time (and from a certain location)
is much higher than that of the normal state. Ex-
tracted bursty phrases are directly used as trends as
Twitter1 officially provides, or sent to higher-order
processes such as clustering and event labeling.

1https://twitter.com/.

Bursty phrases on microblogs are likely to be
noun phrases, but sometimes deviate from such
standards. The title of a movie, song, game or any
creation can be an arbitrary form like a long and/or
general phrase (e.g., Spielberg’s movie “catch me
if you can”, the Beatles’ song “let it be”)2. A
memorable phrase (e.g., Steve Jobs’s phrase “stay
hungry, stay foolish”) can also be a bursty phrase
on microblogs. Even numbers and symbols can be
potentially bursty phrases (e.g., “1984” can be a
novel, “!!!” can be an artist). Any filtering rule
such as stop word removal, part-of-speech (POS)
tag restrictions, or length limit can mistakenly fil-
ter out bursty phrases.

Extracting irregularly-formed bursty phrases as
described in the previous paragraph is difficult
since no restriction can be used anymore to fil-
ter out incomplete N-grams. However, they are
rare and little influence the overall accuracy even
if they are correctly extracted. Not only that, tack-
ling such difficult and rare cases easily leads to
extracting many incomplete N-grams and deteri-
orating the accuracy. Almost all existing work has
therefore ignored difficult and rare cases, and con-
centrated on extracting simple phrases (e.g., uni-
grams, bi-grams, tri-grams, or noun phrases iden-
tified by POS taggers). By sacrificing minorities,
most bursty phrases can be extracted with high
accuracy. Thus, irregularly-formed phrases have
been abandoned in bursty phrase extraction (and
alike in many text analysis tasks).

Contributions. In this work, we aim to accu-
rately and exhaustively extract bursty phrases of
arbitrary forms from microblogs. The challenge
here is: How do we avoid extracting bursty incom-
plete N-grams without introducing any filtering
rule? To solve this challenging problem, we pro-
pose a set cover-based method. We found that the

2We used old but popular titles for illustrative purposes.
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Table 1: Representative trend detection methods based on bursty phrases.
Method Unit of process Measure of burst

(Sayyadi et al., 2009) Noun phrase TF, DF, IDF
(O’Connor et al., 2010) Uni-gram, bi-gram, tri-gram Burstiness
(Mathioudakis and Koudas, 2010) Uni-gram Burstiness
(Weng and Lee, 2011) Uni-gram DF-IDF, H-measure (wavelet analysis)
(Metzler et al., 2012) Uni-gram Burstiness
(Li et al., 2012) N-gram of any length Deviation from Gaussian distribution
(Cui et al., 2012) Hashtag Deviation from Gaussian distribution
(Benhardus and Kalita, 2013)-1 Uni-gram, bi-gram, tri-gram Burstiness
(Benhardus and Kalita, 2013)-2 Uni-gram TF-IDF, entropy
(Aiello et al., 2013)-1 Uni-gram Burstiness
(Aiello et al., 2013)-2 Uni-gram, bi-gram, tri-gram DF-IDF
(Abdelhaq et al., 2013) Uni-gram Deviation from Gaussian distribution
(Schubert et al., 2014) Uni-gram (pair) Deviation from Gaussian distribution
(Feng et al., 2015) Hashtag Deviation from Gaussian distribution

burst (i.e., the rapid increase of occurrence) of a
phrase causes the burst of overlapping incomplete
N-grams. For example, if phrase “let it be” bursts,
the occurrence of some overlapping N-grams such
as “let it”, “let it be is”, and “it be is” inevitably in-
creases, possibly generating bursty incomplete N-
grams. Given that bursty incomplete N-grams al-
ways accompany overlapping bursty phrases, we
can avoid extracting bursty incomplete N-grams
using the set cover problem (Chvátal, 1979). The
proposed set cover-based method finds a minimum
set of bursty phrases that cover all bursty N-grams
including incomplete ones. Because the set cover
problem is NP-complete, the proposed method ap-
proximately solves it by iteratively choosing an N-
gram that most covers remaining bursty N-grams.

The advantages of the proposed method are as
follows. 1) Exhaustive. The proposed method
can extract bursty (contiguous) phrases of arbi-
trary forms. In our experiment, the coverage has
been shown to be larger than that of word-based,
noun phrase-based, and segmentation-based meth-
ods. 2) Accurate. With adequate preprocess-
ing of auto-generated texts, the proposed method
achieved 99.3% of precision for top 10 bursty
phrases and 97.3% for top 50 bursty phrases,
which were even higher than the comparative
methods. 3) Language-independent. Because
the proposed method processes texts as a sequence
of characters (or words), it works in any languages
including those without word boundary such as
Japanese. 4) Purely data-driven. The proposed
method only requires raw microblog texts and
does not need external resources.

2 Related Work

Much work has been focused on trend detection or
event detection from microblogs. Majority of rep-
resentative trend detection methods (summarized
in Table 1) start with extracting bursty phrases, of-
ten followed by clustering bursty phrases in order
to link them to real-world events. Others first build
clusters of words (uni-grams) by using word co-
occurrence (Pervin et al., 2013) or topic models
(Aiello et al., 2013; Diao et al., 2012; Lau et al.,
2012) and then apply burst detection for clusters.
Also, there are different approaches such as the
document-based approach (Aiello et al., 2013),
sketch-based model (Xie et al., 2013) and bursty
biterm topic model (Yan et al., 2015).

It is noteworthy that most methods in Table 1
only focus on uni-grams, short N-grams (up to
tri-grams), or noun phrases (or rely on hashtags).
This is because majority of bursty phrases con-
form to such simple forms. The rest of bursty
phrases are rare but their forms are irregular and
difficult to stereotype by using rules. Trying to ex-
tract such irregularly-formed phrases easily leads
to the deterioration of the precision due to incor-
rect extraction. Also, the recall can hardly be in-
creased since they are only a small portion of all
bursty phrases. To balance the precision and re-
call of bursty phrase extraction, focusing on sim-
ple phrases and ignoring rare cases is a reasonable
strategy. In the field of trend detection on mi-
croblogs, this ignoring-minority strategy has be-
come a de facto standard. However, it always fails
to extract irregularly-formed bursty phrases. In
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this work, we tackle the challenge of extracting
bursty phrases without any restriction of forms.

Among methods in Table 1, Li et al. (Li
et al., 2012) have only attempted to extract
bursty phrases of arbitrary forms. Their method,
Twevent, applies text segmentation (or chunk-
ing) before measuring the degree of the burst.
Every microblog text is represented as a se-
quence of word N-grams called segments. N-
gram length, Symmetric Conditional Probability
(SCP) (da Silva and Lopes, 1999), and seman-
tic resources extracted from Wikipedia are inte-
grated to obtain the best segmentation results. Ow-
ing to a good segmentation algorithm, it can po-
tentially detect bursty phrases other than noun
phrases, uni-grams, bi-grams, and tri-grams with
high accuracy. However, it is still possible to miss
irregularly-formed bursty phrases because they are
likely to be segmented incorrectly. Our set cover-
based method guarantees that all bursty N-grams
including irregularly-formed ones must be cov-
ered by extracted bursty phrases. Thus, it is un-
likely to miss irregularly-formed bursty phrases.

One more thing to note in Table 1 is that how
to measure the degree of the burst can be largely
classified into a few groups: burstiness, TF-IDF-
based measures, and distribution-based methods.
The simplest approach is burstiness, which is the
ratio of the occurrence rate in target and reference
document sets. Reference document set is usu-
ally constructed from past microblog texts. TF-
IDF-based measures compute term frequency (TF)
or document frequency (DF) in the target docu-
ment set and inverse document frequency (IDF)
in the reference document set. Distribution-based
methods generally measure how much the ob-
served frequency deviates from the distribution of
the normal state using standard scores (z-scores).
The Poisson distribution is proper to represent the
number of occurrence of phrases, but the Gaussian
distribution is often used as its approximation due
to computational reasons. We in this work primar-
ily adopt a Gaussian distribution-based approach
and use the z-score as the measure of the burst
because it reasonably works well for the different
magnitude of the number of occurrence.

3 Bursty Phrase Extraction

3.1 Problem Formulation

We formalize the problem of bursty phrase extrac-
tion from microblogs. Target document set DT is a

set of microblog messages posted within a certain
period of time (e.g., one day, three hours). Refer-
ence document set DR is a set of microblog mes-
sages posted before the target time. Both are usu-
ally limited to certain locations or languages. Each
document is a sequence of characters (or words).
The objective here is to extract bursty complete
phrases from DT as much as possible using DR

as the normal state. The output format is a list of
bursty N-grams L = [g1, g2, · · · , g|L|] (gi is an N-
gram or a sequence of characters) ranked by the
degree of the burst. The accuracy and coverage
of top K (K is a user-specified parameter) bursty
phrases are important evaluation criteria.

The degree of the burst for N-grams in DT is
defined as the z-score when the Gaussian distribu-
tion is estimated from DR. While most N-grams
occur once in a single microblog message, a few
N-grams are repeatedly used in it. We thus em-
ploy the document frequency-based z-score as the
degree of the burst. The z-score of N-gram g is
specifically computed as

zscore(g) =
df(g) − µ(g)

σ(g)
(1)

where df(g) is the document frequency of g in
DT , and µ(g) and σ(g) are respectively the mean
and standard deviation for the document frequency
of g estimated from DR. Given that the Gaus-
sian distribution used here is the approximation of
the Poisson distribution, σ(g) is approximated by√

µ(g). To smooth µ(g) when g never occurs in
DR, we add δ = 1 to µ(g).

3.2 Basic Idea

To exhaustively extract bursty phrases without any
restriction of their forms, we have to refrain from
using filtering rules such as stop word removal,
POS tag restrictions, and length limit. Without
filtering rules, there are far more bursty incom-
plete N-grams than bursty complete phrases. It
is challenging to extract bursty phrases including
irregularly-formed ones and at the same time to
avoid extracting bursty incomplete N-grams. Is
there any evident difference between bursty in-
complete N-grams and bursty phrases of irregular
forms?

We scrutinized Twitter data and found the fol-
lowing fact: Bursty incomplete N-grams always
accompany overlapping bursty phrases provided
that the definition of the burst is appropriate. We
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Algorithm 1: Greedy Set Cover Algorithm for Bursty Phrase Extraction
Input: Target document set DT , reference document set DR

Output: Ranked list of bursty phrases L
1 Initialize L;
2 Get a set of valid N-grams GV = {gi} satisfying burstiness(gi) ≥ 1 + ϵ;
3 Get a set of bursty N-grams GB = {gi} ⊂ GV satisfying zscore(gi) ≥ θ and zscoretf (gi) ≥ θ;
4 Discard trivial N-grams from GV ;
5 while GB ̸= ∅ do
6 Select g ∈ GV that most cover the occurrence of bursty N-grams in GB;
7 Get a set of longer N-grams Gg ⊂ GV containing g;
8 Determine a set of containment N-grams GC ⊂ Gg for g;
9 if GC = ∅ then

10 Push g into L;
11 Negate the occurrence of all N-grams in GB and GV where g overlaps;
12 Delete gi ∈ GB if it does not satisfy zscoretf (gi) ≥ θ;
13 else
14 Negate the occurrence of g where containment N-grams gi ∈ GC overlap;
15 end
16 end
17 Rerank L based on the actual z-score;

explain this phenomenon in due order. When
many microblog users intensively use a certain
phrase, it becomes a bursty phrase. Here, the
increment of the occurrence of the phrase con-
tributes to the increment of the occurrence of over-
lapping N-grams. Consequently, (incomplete) N-
grams that overlap the phrase can also burst. Thus,
bursty incomplete N-grams always have their orig-
inal bursty phrases that overlap each other.

Based on the phenomenon described in the pre-
vious paragraph, bursty incomplete N-grams cease
bursting if their original bursty phrases disappear
from microblog texts. In other words, all bursty
N-grams including incomplete ones can be cov-
ered (overlapped) by bursty phrases. Given that
bursty phrases cause bursty incomplete N-grams
but the reverse was not true, we can formalize the
extraction of bursty phrases as the set cover prob-
lem (Chvátal, 1979) where a minimum number of
bursty phrases are selected to cover all bursty N-
grams. When all selected bursty phrases are re-
moved from microblog texts, it is guaranteed that
there is no bursty N-gram.

3.3 Proposed Algorithm

Algorithm 1 is a pseudo-code of the greedy set
cover algorithm for bursty phrase extraction. As
formulated in Section 3.1, the input data is target
DT and reference document sets DR of microblog

messages. The output is a ranked list of bursty
phrases L = [g1, g2, · · · , g|L|]. Basically, Algo-
rithm 1 iteratively selects an N-gram that most
covers the occurrence of bursty N-grams (Line 6)
until all bursty N-grams are covered. In the fol-
lowing, we describe points of the Algorithm 1.

3.3.1 Bursty N-grams and Valid N-grams
A set of bursty N-grams GB in Algorithm 1 (Line
3) corresponds to the universe of the set cover
problem which should be all covered. Bursty N-
grams satisfy z-score threshold θ both in document
frequency-based (Eq. (1)) and term frequency-
based z-scores (Eq. (2)).

zscoretf (g) =
tf(g) − µtf (g)

σtf (g)
(2)

Here, tf(g) is the term frequency of g in DT , and
µtf (g) and σtf (g) are respectively the mean and
standard deviation for the term frequency of g es-
timated from DR. The term frequency-based z-
score is used to judge whether a bursty N-gram
in GB still bursts when its occurrences are partly
covered. This is required to handle N-grams re-
peatedly occurring in a single microblog message.

Valid N-grams in GV (Line 2) are qualified to
be bursty phrases to cover GB . We differenti-
ate bursty N-grams and valid N-grams (specifi-
cally, GB ⊂ GV ) to handle threshold problems.
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Namely, it is possible that bursty incomplete N-
grams satisfy the z-score threshold but their origi-
nal bursty phrases do not satisfy the threshold. The
criterion of the valid N-gram is defined by using
burstiness.

burstiness(g) =
df(g)

dfR(g)
· |DR|
|DT | (3)

Here, dfR(g) is the document frequency of N-
gram g in DR. To avoid division by zero, smooth-
ing term δ = 1 is added to dfR(g). When
burstiness(g) satisfies threshold 1 + ϵ (i.e., the
occurrence of g actually increases), g becomes a
valid N-gram. To reduce pointless processes, triv-
ial N-grams that can never be phrases (e.g., start-
ing or ending with spaces, occurring only as a part
of a sole longer N-gram) are discarded (Line 4).

3.3.2 Occurrence-based Set Covering
Whereas the standard set cover problem assumes
that each item is atomic, i.e., the state of an item
is either not covered or covered, the proposed
method manages the state of covering by using
all occurrences of bursty N-grams. When a valid
N-gram is selected (Line 10), the occurrence of
all N-grams in GB and GV that the valid N-gram
overlaps is negated (Line 11). Here, a bursty N-
gram in GB is completely covered if the term
frequency-based z-score computed from remain-
ing occurrences of the N-gram does not satisfy the
threshold (Line 12).

Occurrence-based set covering can solve the
case when a bursty N-gram is covered by multi-
ple bursty phrases. That is, the bursty N-gram is
not completely covered even if one of the bursty
phrases is selected. For example, given two bursty
phrases “let it be” and “let it go” (a song), incom-
plete N-gram “let it” ceases bursting only when the
occurrence of both phrases is negated. Also, it can
handle partially overlapping N-grams (e.g., “let it
be” and “be is”) based on the number of overlaps.

3.3.3 Containment N-grams
N-grams that are contained in multiple phrases
should be carefully treated in the set cover prob-
lem. Shorter N-grams are likely to be contained in
more phrases and chosen in the set cover problem
even if they are incomplete. For example, when
phrases “let it be” and “let it go” burst, shared
incomplete N-gram “let it” is likely to cover the
occurrence of bursty N-grams more than the two
phrases. To prevent selecting shared incomplete

N-grams, we determine containment relations be-
tween an N-gram and longer N-grams contain-
ing it (Lines 7, 8). We define longer N-grams
in containment relations as containment N-grams.
Containment relations negate the occurrence of
the shorter N-gram where containment N-grams
overlap (Line 14). Containment relation is in-
spired by the idea of rectified frequency used in a
segmentation-based quality phrase mining method
(Liu et al., 2015), though how to rectify the fre-
quency is different. Note that containment rela-
tions do not necessarily mean that shorter N-grams
are incomplete because both shorter and longer N-
grams can be phrases (e.g., “new york” and “new
york times”).

How to determine containment relations is de-
signed not to contradict the greedy set cover al-
gorithm. Briefly, containment relations hold when
only the containment N-grams among longer N-
grams can cover the occurrence of bursty N-grams
more than the shorter N-gram owing to the con-
tainment relations. That is, we find a stable state
of containment relations. To find a stable state, we
initially define temporal containment relations and
then iteratively find a set of containment N-grams
so that containment relations become stable.

Initial containment N-grams are determined us-
ing burst context variety, which is an extension of
accessor variety (Feng et al., 2004). Accessor va-
riety roughly measures how much an N-gram is
likely to be a phrase. It specifically counts the
number of distinct characters (or words) before or
after the N-gram and employs the minimum one.
The drawback of accessor variety is that it han-
dles left and right contexts independently. We thus
modify it as context variety in which both left and
right contexts are simultaneously counted. Con-
text variety can also be calculated using the set
cover problem. In particular, a left or right char-
acter (or word) that most covers the occurrence of
the N-gram is iteratively selected until all the oc-
currences are covered. Burst context variety is a
further extension of context variety to count the
number of contexts only for additional term fre-
quencies given the mean of the term frequency.
When the burst context variety of an N-gram is not
greater than that of a longer N-gram, we extract the
context (i.e., left or right character) and define all
longer N-grams having the context as initial con-
tainment N-grams.
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There are two minute settings for measuring
burst context variety. One is that the start and end
of every line are all unique and should be counted
as distinct contexts. The other is that symbols3

should be ignored when checking left and right
contexts of the N-gram.

3.3.4 Reranking Bursty Phrases
The output L is finally reranked by using actual
z-scores (Line 17), which are different from z-
scores calculated from raw document frequency.
The actual z-score is calculated from the num-
ber of occurrences of bursty N-grams that N-gram
g ∈ L actually covered during the set cover pro-
cess. Since a single valid N-gram usually cov-
ers multiple bursty N-grams, the z-score for ev-
ery covered bursty N-gram is recalculated and the
maximum is used as the actual z-score. When the
maximum z-score exceeds the original z-score, the
original z-score is preserved. Without reranking,
incomplete N-grams that covered very few occur-
rences of bursty N-grams may be overestimated.

4 Evaluation

We evaluated the proposed method using two
weeks of Japanese Twitter data.

4.1 Setup

Dataset. We created a dataset using Twit-
ter Streaming API statuses/sample. We chose
Japanese as a language because it was one of pop-
ular languages used in Twitter and because it has
no word boundary and finding phrases is diffi-
cult compared to space-delimited languages such
as English. We specifically collected 15 days of
tweets from September 30 to October 14, 20164.
For each day from October 1 to 14, we extracted
bursty phrases in reference to the previous day.

To maximally alleviate the influence of auto-
generated contents such as tweets posted by bots
and spammers, we filtered out them. Detecting
bots and spammers (Chu et al., 2010; Subrahma-
nian et al., 2016) is a nontrivial research task and
out of the scope of this paper. In this experiment,
we used simple but effective heuristics. First, we
only used tweets posted by Twitter official clients5

3In our experiments, we used isalnum (or iswalnum for
wide characters) in C++ standard library to distinguish words
and symbols.

4We considered that a day changed at 4 am JST.
5https://about.twitter.com/products/

list.

because they were mainly used by normal users.
Second, we discarded tweets including URLs be-
cause most spammers tried to lure users to visit
their websites. Third, retweets (actions to propa-
gate someone’s tweets) were discarded. The max-
imum and minimum numbers of remaining tweets
per day were 326,002 (Oct. 2) and 253,044 (Oct.
13), respectively. Additionally, we deleted hash-
tags (starting by #) and mentions (starting by @)
from tweets. Note that the degree of the burst for
URLs, hashtags, and mentions can be indepen-
dently measured. We concentrated on extracting
bursty phrases from plain texts.

Ground truth. To create the ground truth, we
mixed N-grams extracted with all methods and
then manually annotated each N-gram by check-
ing its real usage in tweets. While most N-grams
were easily judged as complete phrase (i.e., cor-
rect) or incomplete N-grams (i.e., incorrect), a few
N-grams were difficult to judge (e.g., a last name
that was not frequently used to indicate the person
in tweets). We annotated such N-grams as maybe
correct and regarded as correct in the strict case
and incorrect in the loose case when measuring
evaluation metrics.

Evaluated methods. In the proposed method
(Proposed), we processed Japanese texts as se-
quences of characters. Default threshold parame-
ters θ and ϵ were set to 10 and 0.5, respectively.
Comparative methods included the word-based
method (Word), noun phrase-based method (NP),
and segmentation-based method (Segment) (Li
et al., 2012). Because these methods require word
breaking, we used MeCab (Kudo et al., 2004) (ver-
sion 0.996, ipadic as a dictionary), a Japanese
morphological analyzer. The word-based method
uses all self-sufficient words as candidate phrases.
The noun phrase-based method regards concate-
nated successive nouns as a candidate phrase.
In word-based and noun phrase-based methods,
the dictionary or vocabulary significantly affects
the performance. Thus, we also used neologd6

(Sato et al., 2017) (version v0.0.5 updated at May
2, 2016), a neologism dictionary extracted from
many language resources on the web, as an ad-
ditional dictionary (+Dic). The segmentation-
based method detects segments (chunks) from a
sequence of words as candidate phrases. The
segmentation model was constructed using three

6https://github.com/neologd/
mecab-ipadic-neologd.
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Table 2: Average precision of top K bursty
phrases (strict case).

Method Top10 Top20 Top30 Top40 Top50
Word 0.700 0.714 0.731 0.743 0.743
Word+Dic 0.929 0.907 0.895 0.907 0.904
NP 0.936 0.929 0.936 0.927 0.930
NP+Dic 0.971 0.968 0.962 0.955 0.954
Segment 0.921 0.918 0.905 0.918 0.914
Proposed 0.993 0.993 0.981 0.979 0.973

Table 3: Average precision of top K bursty
phrases (loose case).

Method Top10 Top20 Top30 Top40 Top50
Word 0.764 0.779 0.812 0.821 0.817
Word+Dic 0.950 0.936 0.936 0.945 0.941
NP 0.950 0.943 0.952 0.945 0.946
NP+Dic 0.971 0.979 0.974 0.971 0.973
Segment 0.957 0.954 0.952 0.955 0.953
Proposed 0.993 0.996 0.998 0.995 0.991

months of tweets (from July 1 to Sept. 30, 2016)
and Japanese Wikipedia dump data (as of Oct. 1,
2016).

Evaluation metrics. We employed precision
and min-z-score of top K bursty phrases (K was
set to 10, 20, 30, 40, or 50) as evaluation metrics.
We measured the precision both in strict and loose
cases based on the ground truth labels. The min-
z-score (the minimum of the z-score, computed
from raw document frequency) was introduced to
evaluate how much the top K output ranked by z-
scores included highly bursty phrases. To increase
the min-z-score, all the top K phrases should have
high z-scores and hence highly bursty phrases
should not be ignored. Thus the min-z-score can
evaluate the coverage of extracted bursty phrases
using a fixed size of the output. Higher precision
and min-z-score indicate that the method can more
accurately and exhaustively extract bursty phrases.

4.2 Performance Results: Precision

Tables 2, 3 show the precision of bursty phrase
extraction. It was surprisingly that the proposed
method achieved higher precision than noun-
phrase based methods, which were supposed to be
safety by sacrificing irregularly-formed phrases.
The precision of the proposed method for top 50
bursty phrases was 97.3% (correct phrases were
681 out of 700) in the strict case and 99.1% (694
out of 700) in the loose case. The precision for
top 10 bursty phrases was 99.3% (139 out of 140)

Table 4: Average min-z-score of top K bursty
phrases.

Method Top10 Top20 Top30 Top40 Top50
Word 41.5 25.7 20.4 17.2 15.3
Word+Dic 44.7 29.0 22.5 19.3 16.7
NP 42.6 26.4 20.4 16.7 14.6
NP+Dic 42.7 28.8 21.0 17.6 15.3
Segment 45.0 31.2 24.3 20.5 18.0
Proposed 50.1 33.5 24.8 21.5 19.4

even in the strict case. The results demonstrate
that the burst information alone can accurately find
the boundary of bursty phrases using the set cover
problem. Error cases of the proposed method were
largely classified into two: base sequences of di-
versified expressions and phrases with strongly-
correlated attached characters.

In comparative methods, the accuracy tended to
be high when noun phrases were used and the dic-
tionary was well defined. Especially, the use of the
neologism dictionary boosted the precision. The
segmentation-based method also marked moder-
ately high precision.

4.3 Performance Results: Coverage

Table 4 shows the min-z-score of bursty phrase ex-
traction. The proposed method achieved higher
min-z-score than the comparative methods. This
was because the proposed method extracted bursty
phrases regardless of their forms. Noun phrase-
based methods tended to miss highly bursty
phrases of irregular forms. Therefore the min-
z-score of extracted top K bursty phrases be-
came small. Among comparative methods, the
segmentation-based method best achieved the
min-z-score since it did not restrict the form of
phrases. However, it was still possible to miss
very irregular phrases due to segmentation mis-
takes and the min-z-score was less than that of the
proposed method. The use of the neologism dic-
tionary increased the min-z-score as well as the
precision, indicating that it had no negative effect.

To intuitively assess the coverage of the pro-
posed method, we manually counted the num-
ber of bursty phrases that were extracted with
the proposed method (when K = 10, i.e., 139
correct phrases) but completely missed with the
comparative methods. Here, we regarded com-
pletely missed when neither of the bursty phrase,
overlapping N-grams including incomplete ones
nor orthographic variants were extracted in top
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Table 5: Number of bursty phrases extracted with
the proposed method (K = 10) but completely
missed with comparative methods.

Word Word+Dic NP NP+Dic Segment
17/139 7/139 10/139 4/139 8/139

Table 6: Average precision of top K bursty
phrases with different parameter settings in the
proposed method (strict case).

Parameters Top10 Top20 Top30 Top40 Top50
θ=5, ϵ=0.2 0.993 0.993 0.976 0.977 0.971
θ=5, ϵ=0.5 0.993 0.993 0.976 0.977 0.971
θ=5, ϵ=1.0 0.993 0.993 0.976 0.979 0.971
θ=10, ϵ=0.2 0.993 0.993 0.981 0.979 0.973
θ=10, ϵ=0.5 0.993 0.993 0.981 0.979 0.973
θ=10, ϵ=1.0 0.993 0.993 0.981 0.979 0.973
θ=15, ϵ=0.2 0.993 0.989 0.971 0.971 0.966
θ=15, ϵ=0.5 0.993 0.989 0.971 0.971 0.966
θ=15, ϵ=1.0 0.993 0.989 0.971 0.971 0.966

100 bursty N-grams. Table 5 shows the results.
Although the percentages were small, any com-
parative method completely missed some highly
bursty phrases that were extracted with the pro-
posed method. Note that the proposed method did
not completely miss top 10 bursty phrases of com-
parative methods at all since the set cover problem
inevitably covered all bursty N-grams.

4.4 Influence of Parameter Settings

We changed threshold parameters θ and ϵ to eval-
uate their influence on performance. Tables 6, 7
show the performance results with different pa-
rameter settings. We confirmed that both parame-
ters, especially ϵ, hardly affected the precision and
min-z-score. The results indicate that the thresh-
old parameters can be roughly set based on data.

4.5 Examples

Table 8 shows top 10 bursty phrases (all of them
are correct) on Oct. 1. This day contained many
irregularly-formed phrases; phrases containing hi-
ragana7 characters (rank 5, 7, 8, 10), other than
noun phrases (rank 5, 7), and containing symbols
(rank 3). Especially,映っちゃった (rank 5) andし
やがれ (rank 7) were troublesome since they con-
tain hiragana characters and at the same time they
are other than noun phrases. Even with the neol-

7In Japanese, hiragana is mainly used for auxiliary words
and thus difficult to break into words or phrases.

Table 7: Average min-z-score of top K bursty
phrases with different parameter settings in the
proposed method.

Parameters Top10 Top20 Top30 Top40 Top50
θ=5, ϵ=0.2 50.6 33.4 24.9 21.4 19.2
θ=5, ϵ=0.5 50.6 33.4 24.8 21.4 19.2
θ=5, ϵ=1.0 50.6 33.4 24.9 21.4 19.3
θ=10, ϵ=0.2 50.1 33.5 24.8 21.5 19.4
θ=10, ϵ=0.5 50.1 33.5 24.8 21.5 19.4
θ=10, ϵ=1.0 50.2 33.5 24.9 21.5 19.5
θ=15, ϵ=0.2 50.2 33.5 25.1 21.8 19.4
θ=15, ϵ=0.5 50.2 33.5 25.1 21.8 19.5
θ=15, ϵ=1.0 50.2 33.5 25.1 21.8 19.6

Table 8: Example of top 10 bursty phrases in
Japanese (Oct. 1, 2016).

1. 三代目 (Sandaime, generally meaning “third”,
short name of a music group)

2. 坂口杏里 (Sakaguchi Anri, celebrity)
3. HE★ VENS (idol group)
4. プリライ (Pri-rai, short name of a live concert)
5. 映っちゃった (Utsucchatta, generally meaning “it

was reflected”, short name of a TV program)
6. 単独 (Tandoku, generally meaning “singleness”,

implying a live concert without supporting acts)
7. しやがれ (Shiyagare, generally a phrase used in an

imperative sentence, short name of a TV program)
8. うたプリ (Utapri, short name of an anime)
9. WORKING (short name of an anime)
10.うたぷり (Utapri, short name of an anime)

ogism dictionary, the noun phrase-based method
extractedしやがれ but missed映っちゃった.

To demonstrate the language-independent na-
ture of the proposed method, we also applied it
to English with character-level processing8. Ta-
ble 9 shows an example of bursty phrases ex-
tracted from English tweets. Whereas an incom-
plete phrase (rank 2) was extracted due to auto-
generated contents that could not be eliminated
from data, other top bursty phrases were correctly
extracted. The proposed method also extracted
a very long Internet meme (rank 5), which burst
along with its counterpart “anyone that knows me
knows i love _________.” (rank 17).

5 Conclusions

We proposed a language-independent data-driven
method to accurately and exhaustively extract
bursty phrases of arbitrary forms from microblogs.
We found that bursty incomplete N-grams always

8Of course, we can process English in word level.
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Table 9: Example of top 10 bursty phrases in
English (Oct. 1, 2016, PST). Note that these
bursty phrases were generated by processing En-
glish tweets in character level.

1. LizQuen InSydney Oct30 (maybe an auto-
generated phrase used like a tag)

2. for The 100 most beautiful faces in 2016
(maybe an auto-generated sequence used to vote
a celebrity for the ranking)

3. Lamar Jackson (American football player)
4. Clemson (American football team)
5. quote with what you think the answer is and

copy this tweet to see what people say about you
(Internet meme)

6. Tennessee (American football team)
7. Louisville (American football team)
8. Milner (American football player)
9. FSU (American football team)
10. Louis Walsh (talent manager)

accompany overlapping bursty phrases by ascer-
taining the mechanism why incomplete N-grams
burst. Based on the findings, the proposed method
solves the extraction of bursty phrases as the set
cover problem where a minimum set of bursty
phrases covers all bursty N-grams including in-
complete ones. We confirmed from experimen-
tal results that the proposed method outperformed
noun phrase-based and segmentation-based meth-
ods both in terms of the accuracy and coverage.
The source code of the proposed method is pub-
licly available9.

The future work includes the reduction or esti-
mation of the computation time and memory us-
age. They increase as the target document set
grows or, specifically the number of occurrences
of bursty N-grams increases. Also, handling auto-
generated contents is an important issue. The pro-
posed method should be used with effective meth-
ods of identifying auto-generated contents, bots,
and spammers in microblogs.
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Abstract

Neural networks have achieved state-of-
the-art performance on several structured-
output prediction tasks, trained in a fully
supervised fashion. However, annotated
examples in structured domains are of-
ten costly to obtain, which thus limits
the applications of neural networks. In
this work, we propose Maximum Mar-
gin Reward Networks, a neural network-
based framework that aims to learn from
both explicit (full structures) and implicit
supervision signals (delayed feedback on
the correctness of the predicted structure).
On named entity recognition and seman-
tic parsing, our model outperforms previ-
ous systems on the benchmark datasets,
CoNLL-2003 and WebQuestionsSP.

1 Introduction

Structured-output prediction problems, where the
goal is to determine values of a set of inter-
dependent variables, are ubiquitous in NLP. Struc-
tures of such problems can range from simple se-
quences like part-of-speech tagging (Ling et al.,
2015) and named entity recognition (Lample et al.,
2016), to complex syntactic or semantic analysis
such as dependency parsing (Dyer et al., 2015) and
semantic parsing (Dong and Lapata, 2016). State-
of-the-art methods of these tasks are often neu-
ral network models trained using fully annotated
structures, which can be costly or time-consuming
to obtain. Weakly supervised learning settings,
where the algorithm assumes only the existence of
implicit signals on whether a prediction is correct,
are thus more appealing in many scenarios.

For example, Figure 1 shows a weakly super-
vised setting of learning semantic parsers using
only question–answer pairs. When the system
generates a candidate semantic parse during train-
ing, the quality needs to be indirectly measured by

Q:  Who played Meg in Season 1 of Family Guy? 

𝜆𝑥.∃𝑦. 𝑐𝑎𝑠𝑡 FamilyGuySeason1,𝑦 ∧ 𝑎𝑐𝑡𝑜𝑟 𝑦, 𝑥  𝜆𝑥.∃𝑦. 𝑐𝑎𝑠𝑡 FamilyGuySeason1,𝑦 ∧ 𝑎𝑐𝑡𝑜𝑟 𝑦, 𝑥  

KBKB
Lacey Chabert, Seth MacFarlane, Alex Borstein, 
Seth Green, John Viener, Alec Sulkin
Lacey Chabert, Seth MacFarlane, Alex Borstein, 
Seth Green, John Viener, Alec Sulkin

A:  Lacey Chabert 

Figure 1: Learning a semantic parser using im-
plicit supervision signals (labeled answers). Since
there are no gold parses, a model needs to explore
different parses, where their quality can only be
indirectly verified by comparing retrieved answers
and the labeled answers.

comparing the derived answers from the knowl-
edge base and the provided labeled answers.

This setting of implicit supervision increases
the difficulty of learning a neural model, not only
because the signals are vague and noisy, but also
delayed. For instance, among different semantic
parses that result in the same answers, typically
only few of them correctly represent the meaning
of the question. Moreover, the correctness of an-
swers corresponding to a parse can only be eval-
uated through an external oracle (e.g., executing
the query on the knowledge base) after the parse
is fully constructed. Early model update before the
search of a full semantic parse is complete is gen-
erally infeasible.1 It is also not clear how to lever-
age implicit and explicit signals integrally during
learning when both kinds of labels are present.

In this work, we propose Maximum Margin Re-
ward Networks (MMRN), which is a general neu-
ral network-based framework that is able to learn
from both implicit and explicit supervision sig-
nals. By casting structured-output learning as a
search problem, the key insight in MMRN is the

1Existing weakly supervised methods (Clarke et al., 2010;
Artzi and Zettlemoyer, 2013) often leverage domain-specific
heuristics, which are not always available.
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special mechanism of rewards. Rewards can be
viewed as the training signals that drive the model
to explore the search space and to find the cor-
rect structure. The explicit supervision signals can
be viewed as a source of immediate rewards, as
we can often instantly know the correctness of the
current action. On the other hand, the implicit su-
pervision can be viewed as a source of delayed re-
wards, where the reward of the actions can only be
revealed later. We unify these two types of reward
signals by using a maximum margin update, in-
spired by structured SVM (Joachims et al., 2009).

The effectiveness of MMRN is demonstrated on
three NLP tasks: named entity recognition, entity
linking and semantic parsing. MMRN outperforms
the current best results on CoNLL-2003 named
entity recognition dataset (Tjong Kim Sang and
De Meulder, 2003), reaching 91.4% F1, in the
close setting where no gazetteer is allowed. It also
performs comparably to the existing state-of-the-
art systems on entity linking. Models for these
two tasks are trained using explicit supervision.
For semantic parsing, where only implicit super-
vision signals are provided, MMRN is able to learn
from delayed rewards, improving the entity link-
ing component and the overall semantic parsing
framework jointly, and outperforms the best pub-
lished system by 1.4% absolute on the WebQSP
dataset (Yih et al., 2016).

In the rest of the paper, we survey the most
related work in Sec. 2 and give an in-depth dis-
cussion on comparing MMRN and other learning
frameworks in Sec. 7. We start the description of
our method from the search formulation and the
state–action spaces in our targeted tasks in Sec. 3,
followed by the reward and learning algorithm in
Sec. 4 and the detailed neural model design in
Sec. 5. Sec. 6 reports the experimental results and
Sec. 8 concludes the paper.

2 Related Work

Structured output prediction tasks have been stud-
ied extensively in the field of natural language pro-
cessing (NLP). Many supervised structured learn-
ing algorithms has been proposed for capturing
the relationships between output variables. These
models include structured perceptron (Collins,
2002; Collins and Roark, 2004), conditional ran-
dom fields (Lafferty et al., 2001), and structured
SVM (Taskar et al., 2004; Joachims et al., 2009).
Later, the learning to search framework is pro-

posed (Daumé and Marcu, 2005; Daumé et al.,
2009), which casts the structured prediction task
as a general search problem. Most recently,
recurrent neural networks such as LSTM mod-
els (Hochreiter and Schmidhuber, 1997) have been
used as a general tool for structured output mod-
els (Vinyals et al., 2015).

Latent structured learning algorithms address
the problem of learning from incomplete labeled
data (Yu and Joachims, 2009; Quattoni et al.,
2007). The main difference compared to our
framework is the existence of the external envi-
ronment when learning from implicit signals.

Upadhyay et al. (2016) first proposed the idea of
learning from implicit supervision, and is the most
related paper to our work. Compared to their lin-
ear algorithm, our framework is more principled
and general as we integrate the concept of margin
in our method. Furthermore, we also extend the
framework using neural models.

3 Search-based Inference

In our framework, predicting the best structured
output, inference, is formulated as a state/action
search problem. Our search space can be de-
scribed as follows. The initial state, s0, is the
starting point of the search process. We define
γ(s) as the set of all feasible actions that can
be taken at s, and denote s′ = τ(s, a) as the
transition function, where s′ is the new state af-
ter taking action a from s. A path h is a se-
quence of state–action pairs, starting with the ini-
tial state: h = {(s0, a0), . . . , (sk, ak)}, where
si = τ(si−1, ai−1), ∀i = 1, . . . , k. We denote
h ; ŝ, if ŝ = τ(sk, ak), the final state which the
path h leads to. A path essentially is a partial or
complete structured prediction. For each input x,
we define H(x) to be the set of all possible paths
for the input. We also define E(x) = {h | h ∈
H(x),h ; ŝ, γ(ŝ) = ∅}, which is all possible
paths that lead to terminal states.

Given a state s and an action a, the scoring func-
tion fθ(s, a) measures the quality of an immediate
action with respect to the current state, where θ is
the model parameters. The score of a path h is
defined as the sum of the scores for state-action
pairs in h: fθ(h) =

∑k
i=0 fθ(si, ai). During test

time, inference is to find the best path in E(x):
argmaxh∈E(x) fθ(h;x). In practice, inference is
often approximated by beam search when no effi-
cient algorithm exists.

2369



In the remaining of this section, we describe
the states and actions in the targeted tasks in this
work: named entity recognition, entity linking and
semantic parsing. The the model and learning al-
gorithm will be discussed in Sec. 4 and Sec. 5.

3.1 Named entity recognition

The task of named entity recognition (NER) is to
identify entity mentions in a sentence, as well as
to assign their types, such as Person or Location.
Following the conventional setting, we treat it as
a sequence labeling problem using the standard
BIOES encoding. For instance, a “B-LOC” tag
on a word means that the word is the beginning of
a multi-word location entity.

Given a sentence as input, the states represent
the tags assigned to the words. Starting from the
initial state, s0, where no tag has been assigned,
the search process explores the sequence tagging
from the left-to-right order. For each word, the
actions are the legitimate tags that can be assigned
to it, which depend on previous actions. For exam-
ple, if the “S-PER” tag (“S” means a single word
entity) has been assigned to the previous word,
then an action of labeling the current word with
either “I-PER” or “E-PER” cannot can be taken.
The search reaches a terminal state when all words
in the sentence have been tagged.

3.2 Entity linking

The problem of entity linking (EL) is similar to
NER, but instead of tagging the mention using a
small set of generic entity types, the goal here is
to ground the mention to a specific entity, stored
in a knowledge base or described by a Wikipedia
page. For example, consider the sentence “nfl
news: draft results for giants” and assume that the
mention candidates “nfl” and “giants” are given. A
state reflects how we have assigned the entity la-
bels to these candidates. Following the same left-
to-right order and starting from the empty assign-
ment s0, the first action to take is to assign the
entity label to the first candidate “nfl”. A legit-
imate action set can be all the entities that have
been associated with this mention in the training
set (e.g., “National Football League” or “National
Fertilizers Limited”). Once the action is com-
pleted, the transition function will bring the focus
to the next mention candidate (i.e., “giants”). The
search reaches a terminal state when all the candi-
date mentions in the sentence have been linked.

Family Guy Season 1 cast actor

Meg Griffin

xy

𝜆𝑥. ∃𝑦. 𝑐𝑎𝑠𝑡 FamilyGuySeason1, 𝑦 ∧ 𝑎𝑐𝑡𝑜𝑟 𝑦, 𝑥  
             ∧ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟(𝑦,MegGriffin) 

Figure 2: Semantic parses in λ-calculus (top) and
query graph (bottom) of the question “who played
meg in season 1 of family guy?”

3.3 Semantic parsing

Our third targeted task is semantic parsing (SP),
which is a task of mapping a text utterance to a for-
mal meaning representation. In this paper, we fo-
cus on a specific type of semantic parsing problem
that maps a natural language question to a struc-
tured query, which is executed on a knowledge
base to retrieve the answer to the original question.

Figure 2 shows the semantic parses of an ex-
ample question “who played meg in season 1 of
family guy”, assuming the knowledge base is Free-
base (Bollacker et al., 2008). An entity linking
component plays an important role by mapping
“meg” to MegGriffin and “season 1 of family
guy” to FamilyGuySeason1. Predicates like
cast, actor and character are also from the
knowledge base that define the relationships be-
tween these entities and the answer. Together the
semantic parse in λ-calculus is shown in the top of
Figure 2. Equivalently, the semantic parse can be
represented as a query graph (Figure 2 bottom),
which is used in the STAGG system (Yih et al.,
2015). The nodes are either grounded entities or
variables, where x is the answer entity. The edges
denote the relationship between two entities.

Regardless of the choice of the formal language,
the process of constructing the semantic parse is
typically formulated as a search problem. A state
is essentially a partial or complete semantic parse,
and an action is to extend the current semantic
parse by adding a new relation or constraint.

Different from previous systems which treat en-
tity linking as a static component, our search space
consists of the search space of both entity linking
and semantic parsing. That is, the search space is
the union of the search space of entity linking de-
scribed in Section 3.2 and the search space of the
semantic parses, which we describe below. Inte-
grating search spaces allows the model to use im-
plicit signals to update both the semantic parsing
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and the entity linking systems. To the best of our
knowledge, this is the first work that jointly learns
the entity linking and semantic parsing systems.

Our search space is defined as follows. Start-
ing from the initial state s0, the model first ex-
plores the entity linking search space. Once
the entity linking assignment are assigned (e.g.
FamilyGuySeason1 in Figure 2.) The sec-
ond phase is then to determine the main rela-
tionship between the topic entity and the an-
swer (e.g., the cast-actor chain between
FamilyGuySeason1 and x). Constraints (e.g.,
the character is MegGriffin) that describe
the additional properties that the answer needs to
have are added last. In this case, any state that is a
legitimate semantic parse (consisting of one topic
entity and one main relationship, as well as zero or
more constraints) can lead to a terminal state.

4 Maximum Margin Reward Networks

In this section, we introduce the learning frame-
work of MMRN, which includes two main compo-
nents: reward and max-margin loss. The former is
a mechanism for using implicit and explicit super-
vision signals in a unified way; the latter formally
defines the learning objective.

4.1 Reward

The key insight of MMRN is that different types of
supervision signals can be represented using the
appropriate design of the reward function. A re-
ward function is defined over a state–action pair
R(s, a), representing the true quality of taking ac-
tion a in the state s. The reward for a path can
be formally defined as: R(h) =

∑k
i=0R(si, ai).

Intuitively, when the annotated action sequences
(explicit supervision signals) exist, the model only
needs to learn to imitate the annotated sequence.
For instance, when learning NER in the fully su-
pervised setting, the equivalent way of using Ham-
ming distance is to define the reward R(s, a) to be
1 if a matches the annotated sequence at the cur-
rent state, and 0 otherwise.

In the setting where only implicit supervision
is available, the reward function can still be de-
signed to capture the signals. For instance, when
only the question–answer pairs exist for learning
the semantic parser, the reward can be defined by
comparing the answers derived from a candidate
parse and the labeled answers. More formally, as-
sume that s = τ(s′, a) is the state after applying

Family Guy Season 1 cast actor xy

𝑌 𝑠 = {Lacey Chabert, Seth MacFarlane, Alex Borstein,  

                   Seth Green, John Viener, Alec Sulkin} 

𝐴 =  Lacey Chabert                                                          

𝑠 = 

Figure 3: For the question “who played meg in
season 1 of family guy?”, the candidate semantic
parse s lists all the actors in “Family Guy Season
1” (Y (s)). By comparing Y (s) to the answer set
A, the precision is 1

6 and the recall is 1. Therefore,
the F1 score used for the reward is 2

7 .

action a to state s′. Let Y (s) be the set of predicted
answers generated from state s, and Y (s) = {}
when s is not a legitimate semantic parse. The
reward function R(s′, a) can be defined by com-
paring Y (s) and the labeled answers, A, to the in-
put question. While a set similarity function like
the Jaccard coefficient can be used as the reward
function, we chose the F1 score in this work as
it was used as the evaluation metric in previous
work (Berant et al., 2013). Figure 3 shows an ex-
ample of this reward function.

4.2 Max-Margin Loss & Learning Algorithm
The MMRN learning algorithm can be viewed as
an extension of M3N (Taskar et al., 2004) and
Structured SVM (Joachims et al., 2009; Yu and
Joachims, 2009). The learning algorithm takes
three steps, where the first two involve two differ-
ent search procedures. The final step is to update
the models with respect to the inference results.

Finding the best path The first search step is
to find the best path h∗ by solving the following
optimization problem:

h∗ = argmax
h∈E(x)

R(h; y) + εfθ(h). (1)

The first term defines the path that has the highest
reward. Because it is possible that several paths
share the same reward, the second term leverages
the current model and serves as the tie-breaker,
where ε is a hyper-parameter that is set to a small
positive number in our experiments.

When explicit supervision is available, solving
Eq. (1) is trivial – the search simply returns the
annotated sequence. In the case of implicit super-
vision, where true rewards are only revealed for
complete action sequences, the search problem be-
comes difficult as the rewards of early state–action
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pairs are zeros. In this situation, the search algo-
rithm uses the model score fθ to guide the search.
One possible design is to use beam search for the
optimization problem, where the search procedure
follows the current model in the early stage (given
thatR(h) = 0). After generating several complete
action sequences, the true reward function is then
used to find h∗. The tie-breaker also picks the best
sequence when there are multiple sequences that
lead to the same reward. Note that h∗ can change
between iterations because of the tie-breaker.

Finding the most violated path Once h∗ is
found, it is used as our reference path. We would
like to update the model so that the scoring func-
tion fθ will behave similarly to the reward R.
More formally, we aim to update the model pa-
rameters θ to satisfy the following constraint.

fθ(h
∗)− fθ(h) ≥ R(h∗)−R(h),∀h.

The constraint implies that the “best” action se-
quence should rank higher than any other se-
quence by a margin computed from rewards
as R(h∗) − R(h). The degree of violation
of this constraint, with respect to h, is thus
(R(h∗)−R(h)) − (fθ(h

∗)− fθ(h)) = fθ(h) −
R(h)− fθ(h∗) +R(h∗). The max-margin loss is
defined accordingly:

L(h,h∗) = max(fθ(h)−R(h)−fθ(h∗)+R(h∗), 0)

L(h,h∗) is our optimization goal, where we want
to update the model by fixing the biggest violation.
Note that the associated constraint is only violated
when L(h,h∗) is positive. To find the path h in
this step that maximizes the violation is equivalent
to maximizing fθ(h) − R(h), given that the rest
of the terms are constant with respect to h.

When there exist only explicit supervision sig-
nals, our objective function reduces to the one
for optimizing structured SVM without regular-
ization. For implicit signals, we find h∗ approxi-
mately before we optimize the margin loss. In this
case, the search is not exact as the reward signals
are delayed. Nevertheless, we found the margin
loss worked well empirically, as it kept decreasing
in general until being stable.

Algorithm 1 summarizes the learning procedure
of MMRN. Search is used in both Line 2 and 3. In
Line 4, the algorithm performs a gradient update
to modify all the model parameters.

Algorithm 1 Maximum Margin Reward Networks

1: for a random labeled data (x, y) do
2: h∗ ← argmax

h∈E(x)
R(h; y) + εfθ(h)

3: ĥ← argmax
h∈E(x)

fθ(h)−R(h; y)

4: update θ by minimizing L(ĥ,h∗)
5: end for

4.3 Practical Considerations
Although the learning algorithm of MMRN is sim-
ple and general, the quality of the learned model is
dictated by the effectiveness of the search proce-
dure. Increasing the beam size generally helps im-
prove the model, but also slows down the training,
and has a limited effect when dealing with a large
search space. Domain-specific heuristics for prun-
ing search space should thus be used when avail-
able. For instance, in the task of semantic parsing,
when the reward of a legitimate semantic parse is
0, it implies that none of the derived answers is in-
cluded in the labeled set of answers. When all the
possible follow-up actions can only make the se-
mantic parse stricter (e.g., adding constraints), and
result in a subset of the current derived answers, it
is clear that the rewards of all these new states are
0 as well. Paths from this state can thus be pruned.

Another strategy for improving search quality
is to use approximated reward in the early stage of
search. Very often the true rewards at this stage
are 0, and are not useful to guide the search to find
the best path. The approximated reward function
can be thought of as estimating whether there ex-
ists a high-reward state that is reachable from the
current state. The effectiveness of this strategy has
been demonstrated successfully by several recent
efforts (Mnih et al., 2013; Krishnamurthy et al.,
2015; Silver et al., 2016; Narasimhan et al., 2016).

5 Neural Architectures

While the learning algorithm of MMRN described in
Sec. 4 is general, the exact model design is task-
dependent. In this section, we describe in detail
the neural network architectures of the three tar-
geted tasks, named entity recognition, entity link-
ing and semantic parsing.

5.1 Named Entity Recognition
Recall that NER is formulated as a sequence la-
beling problem, and each action is to label a word
with a tag using the BIOES encoding (cf. Sec. 3.1).
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Input 𝑥

Previous action embedding
f𝜃(𝑠, 𝑎)

State 𝑠 determines the word index 𝑚

Action 𝑎
determines the 

tag type

word

Figure 4: The action scoring model for NER.

The model of the action scoring function fθ(s, a)
is depicted in Figure 4, which is basically the dot
product of the action embedding and state em-
bedding. The action embedding is initialized ran-
domly for each action, but can be fine-tuned dur-
ing training (i.e. back-propagate the error through
the network and update the word/entity type em-
beddings). The state embedding is the concate-
nation of bi-LSTM word embeddings of the cur-
rent word, the character-based word embeddings,
and the embedding of the previous action. We
also include the orthographic embeddings pro-
posed by Limsopatham and Collier (2016).

5.2 Entity Linking

An action in entity linking is to determine whether
a mention should be linked to a particular entity
(cf. Sec. 3.2). As shown in Figure 5, we design the
scoring function as a feed-forward neural network
that takes as input three different input vectors: (1)
surface features from hand-crafted mention-entity
statistics that are similar to the ones used in (Yang
and Chang, 2015); (2) mention context embed-
dings from a bidirectional LSTM module; (3) en-
tity embeddings constructed from entity type em-
beddings. All these embeddings, except the fea-
ture vectors, are fine-tuned during training.

Some unique properties of our entity linking
model are worth noticing. First, we add mention
context embeddings from a bidirectional LSTM
module as additional input. While using LSTMs
is a common practice for sequence labeling, it is
not usually used for short-text entity linking. For
each mention, we only extract the output from the
bi-LSTM module at the start and end tokens of
the mention, and concatenate them as the men-
tion context embeddings. Second, we construct
entity embeddings using the average of its Free-
base (Bollacker et al., 2008) type embeddings2,

2We use only the 358 most frequent Freebase entity types.

Avg.{…
Statistic features 

Input 𝑥

Two hidden layers

=

Average of entity type embeddings

f𝜃(𝑠, 𝑎)

State 𝑠 determines the mention index 𝑚 Action 𝑎 determines the entity index

Mention 𝑚

Figure 5: The action scoring model for EL.

initialized using pre-trained embeddings. Adding
these two types of embeddings has shown to im-
prove the performance in our experiments.

5.3 Semantic Parsing

Our semantic parsing model follows the STAGG
system (Yih et al., 2015), which uses a stage-
wise search procedure to expand the candidate
semantic parses gradually (cf. Sec. 3.3). Com-
pared to the original system, we make two notable
changes. First, we use a two-layer feed-forward
neural network to replace the original linear ranker
that scores the candidate semantic parses. Second,
instead of using a separately trained entity link-
ing system, we incorporate our entity linking net-
works described in Sec. 5.2 as part of the semantic
parsing model. The training process will thus fine
tune the entity linking component to improve the
semantic parsing system.

6 Experiments

It is important to have a general machine learn-
ing model working for both implicit and explicit
supervision signals. We valid our learning frame-
work when the explicit supervision signals are pre-
sented, as well as demonstrate the support of the
scenario where supervision signals are mixed.

Specifically, in this section, we report the exper-
imental results of MMRN on named entity recogni-
tion and entity linking, both using explicit super-
vision, and on semantic parsing, using implicit su-
pervision. In all our experiments, we tuned hyper-
parameters on the development set (each task re-
spectively), and then re-trained the models on the
combination of the training and development set.

6.1 Named entity recognition

We use the CoNLL-2003 shared task data for the
NER experiments, where the standard evaluation
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System F1

Collobert et al. (2011) 89.59
Huang et al. (2015) 90.10
Chiu and Nichols (2015) 90.77
Ratinov and Roth (2009) 90.88
Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.21

MMRN-NER Beam = 5 90.03
MMRN-NER Beam = 20 91.39

Table 1: Explicit Supervision: Named Entity
Recognition. Our MMRN with beam size 20 out-
performs current best systems, which are based on
neural networks.

NEEL-Test TACL
F1 F1

S-MART 77.7 63.6
NTEL 77.9 68.1
MMRN-EL 78.5 67.5
MMRN-EL - Entity 77.4 66.5
MMRN-EL - LSTM 76.6 66.0

Table 2: Explicit Supervision: Entity Linking.
Our system trained with MMRN is comparable to
the state-of-art NTEL system.

metric is the F1 score. The pre-trained word em-
beddings are 100-dimension GloVe vectors trained
on 6 billion tokens (Pennington et al., 2014)3. The
search procedure is conducted using beam search,
and the reward function is simply the number of
correct tag assignments to the words.

The results are shown in Table 1, compared
with recently proposed systems based on neural
models. When the beam size is set to 20, MMRN
achieves 91.4, which is the best published result
so far (without using any gazetteers). Notice that
when beam size is 5, the performance drops to
90.03. This demonstrates the importance of search
quality when applying MMRN.

6.2 Entity linking

For entity linking, we adopt two publicly avail-
able datasets for tweet entity linking: NEEL (Cano
et al., 2014)4 and TACL (Guo et al., 2013; Fang

3Available at http://nlp.stanford.edu/projects/glove/
4NEEL dataset was originally created for an entity link-

ing competition: http://microposts2016.seas.
upenn.edu/challenge.html

and Chang, 2014; Yang and Chang, 2015; Yang
et al., 2016). We follow prior works (Guo et al.,
2013; Yang and Chang, 2015) and perform the
standard evaluation for an end-to-end entity link-
ing system by computing precision, recall, and F1

scores, according to the entity references and the
system output. An output entity is considered cor-
rect if it matches the gold entity and the mention
boundary overlaps with the gold mention bound-
ary. Interested readers can refer to (Carmel et al.,
2014) for more detail.

We initialize the word embeddings from pre-
trained GloVe vectors trained on the twitter cor-
pus, and type embeddings from the pre-trained
skip-gram model (Mikolov et al., 2013)5. Sizes
of both word embeddings are set to 200. Inference
is done using a dynamic programming algorithm.

Results of entity linking experiments are pre-
sented in Table 2, which are compared with
those of S-MART (Yang and Chang, 2015)6 and
NTEL (Yang et al., 2016)7, two state-of-the-art en-
tity linking systems for short texts. Our MMRN-EL
is comparable to the best system. We also con-
ducted two ablation studies by removing the entity
type vectors (MMRN-EL - Entity), and by removing
the LSTM vectors (MMRN-EL - LSTM). Both show
significant performance drops, which validates the
importance of these two additional input vectors.

6.3 Semantic parsing

For semantic parsing, we use the dataset We-
bQSP8 (Yih et al., 2016) in our experiments. This
dataset is a clean and enhanced version of the
widely used WebQuestions dataset (Berant et al.,
2013), which consists of pairs of questions and an-
swers found in Freebase. Compared to WebQues-
tions, WebQSP excludes questions with ambigu-
ous intent, and provides verified answers and full
semantic parses to the remaining 4,737 questions.

We follow the implicit supervision setting
in (Yih et al., 2016), using 3, 098 question–answer
pairs for training, and 1, 639 for testing. A subset
of 620 pairs from the training set is used for hyper-
parameter tuning. Because there can be multiple
answers to a question, the quality of a semantic
parser is measured using the averaged F1 score of
the predicted answers.

5Available at https://code.google.com/archive/p/word2vec/
6The winning system of the NEEL challenge.
7To have a fair comparison, we compare to the results of

NTEL which do not use pretrained user embedding.
8Available at http://aka.ms/WebQSP
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We experiment with two configurations of in-
corporating the entity linking component. MMRN-
PIPELINE trains an MMRN-EL model using the en-
tity linking labels in WebQSP separately. Given a
question, the entities in it are first predicted, and
used as input to the semantic parsing system. In
contrast, MMRN-JOINT incorporates the MMRN-EL
model in the whole framework. During this joint
training process, 15 entity link results are sam-
pled according to the current MMRN-EL model,
and passed to the downstream networks. In both
cases, we use the previous entity linking model
trained on the NEEL dataset to initialize the pa-
rameters. As discussed in Sec. 4.1, in this implicit
supervision setting, we directly set the (delayed)
reward function to be the F1 score, which can be
obtained by comparing the annotated answers with
predicted answers.

Table 3 summarizes the results of the MMRN-
based semantic parsing systems and other strong
baselines. The SP column reports the aver-
aged F1 scores. Compared to the pipeline ap-
proach (MMRN-PIPELINE), the joint learning frame-
work (MMRN-JOINT) improves significantly, reach-
ing 68.1% F1. To compare different learning
methods, we also apply REINFORCE (Williams,
1992), a popular policy gradient algorithm, to train
our joint model using the same setting and re-
ward function.9 MMRN-JOINT outperforms REIN-
FORCE and its variant, REINFORECE+, which
re-normalizes the probabilities of the sampled can-
didate sequences. Its result is also better than
the state-of-the-art STAGG system. Note that
we use the same architectures and initialization
procedures for MMRN-PIPELINE/JOINT and REIN-
FORCE/REINFORCE+. Therefore, the superior
performance of MMRN-JOINT shows that the joint
learning plays a crucial role in addition to the
choices of architecture. Comparing to STAGG,
note that Yih et al. (2016) did not jointly train the
entity linker and semantic parser together, but they
did improve the results by taking the top 10 predic-
tions of their entity linking system for re-ranking
parses. Our algorithm further allows to update the
entity linker with the labels for semantic parsing
and shows superior performance.

Our joint model also improves the entity link-
ing prediction on the questions in WebQSP us-
ing the implicit signals (the EL columns in Ta-

9The REINFORCE algorithm uses warm initialization—
the entity linking parameters are initialized using the model
trained on the NEEL dataset.

SP EL
Avg. F1 P R F1

MMRN-PIPELINE 62.5 85.6 77.5 81.3
MMRN-JOINT 68.1 89.3 78.9 83.7

REINFORCE 62.9 87.5 76.6 81.7
REINFORCE+ 66.7 91.1 76.9 83.4

STAGG 66.8 – – –

Table 3: Implicit Supervision: Semantic Pars-
ing. By updating the entity linking and semantic
parsing models jointly, MMRN-JOINT improves over
MMRN-PIPELINE by 5 points in F1 and outperforms
REINFORCE+ (SP). It also improves the entity
linking result on the WebQSP questions (EL).

ble 3). The F1 score of MMRN-JOINT on entity link-
ing is 2.4 points higher than the baseline MMRN-
PIPELINE. Note that the entity linking results of
MMRN-PIPELINE (line 1) are exactly the results of
the entity linking component MMRN-EL. The result
is also better than REINFORCE, and comparable
to REINFORCE+.

Recently Liang et al. (2016) proposed Neural
Symbolic Machine (NSM) and reported the best
result of 69.0 F1 score on the WebQSP dataset us-
ing the weak supervision settings.10 The NSM
architecture for semantic parsing is significantly
different from the architecture used in (Yih et al.,
2016) and the one used in this paper. In contrast,
MMRN is a general learning framework that allows
joint training on existing models (i.e. entity link-
ing and semantic parsing modules). This allows
MMRN to use the labels of semantic parsing task as
implicit supervision signals for the entity linking
module. It would be interesting to apply MMRN on
the newly proposed architectures as well.

7 Discussion

We discuss several issues that are highly related to
MMRN in this section.

Learning to Search There are two main dif-
ferences between MMRN and search-based algo-
rithms, such as SEARN (Daumé et al., 2009)
and DAGGER (Ross et al., 2011). First, both
SEARN and DAGGER focus on imitation learn-
ing, assuming explicit supervision signals exist.
They use a two-step model learning approach:

10The paper is published after the submission of this paper.
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(1) create cost-sensitive examples by listing state–
action pairs and their corresponding (estimated)
losses; (2) apply cost-aware training algorithms.
In contrast, MMRN directly updates the parameters
using back-propagation based on search results of
each example. Second, SEARN mixes the op-
timal and current policies during learning, while
MMRN performs search twice and simply pushes
the current policy towards the optimal one. Re-
cently, Chang et al. (2015) extend this line of work
and discuss different roll-in and roll-out strate-
gies during training for structured contextual ban-
dit settings. As MMRN uses two search procedures,
there is no need to mix different search policies.

Reinforcement Learning In many reinforce-
ment learning scenarios, the search space is not
fully controllable by the agent. For example, a
chess playing agent cannot control the move made
by its opponent, and has to commit a single move
and wait for the opponent. Note that the agent can
still think ahead and build a search tree, but only
one move can be made in the end. In contrast, in
scenarios like semantic parsing, the whole search
space is controlled by the agent itself. Therefore,
from the initial state, we can explore several search
paths and get their real rewards. This may ex-
plain why MMRN can be more efficient than RE-
INFORCE, as MMRN can use the reward signals of
multiple paths more effectively. In addition, MMRN
is not a probabilistic model, so it does not need
to handle normalization issues, which often causes
large variance in estimating the gradient direction
when optimizing the expected reward.

Semantic Parsing MMRN can be applied for
many semantic parsing tasks. One key step is to
design the right approximated reward for a given
task to guide the beam search to nd the reference
parses in MMRN, given that the actual reward is of-
ten very sparse. In our companion paper, (Iyyer
et al., 2017), we used a simple form of approx-
imated reward to get feedback as early as possi-
ble during search. In other words, the semantic
parse will be executed as soon as the parse is ex-
ecutable (even if the parse is still not completed)
during search. The execution results will be used
to calculate the Jaccard coefficient with respect to
the labeled answers as the approximated rewards.
The use of approximated reward has been proven
to be effective in (Iyyer et al., 2017).

An important research direction for semantic

parsing is to reduce the supervision cost. In (Yih
et al., 2016), the authors demonstrated that label-
ing semantic parses is possible and often more
effective with a sophisticated labeling interface.
However, collecting answers may still be easier or
faster for certain problems or annotators. This sug-
gests that we could allow the annotators to choose
to label semantic parses or answers in order to
minimize the supervision cost. MMRN would be
an ideal learning algorithm for this scenario.

8 Conclusion

This paper proposes Maximum Margin Reward
Networks, a structured learning framework that
can learn from both explicit and implicit supervi-
sion signals. In the future, we plan to apply Max-
imum Margin Reward Networks on other struc-
tured learning tasks. Improving MMRN for dealing
with large search space is an important future di-
rection as well.
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Abstract

Several approaches have been proposed to
model either the explicit sequential struc-
ture of an argumentative text or its implicit
hierarchical structure. So far, the adequacy
of these models of overall argumentation
remains unclear. This paper asks what type
of structure is actually important to tackle
downstream tasks in computational argu-
mentation. We analyze patterns in the over-
all argumentation of texts from three cor-
pora. Then, we adapt the idea of positional
tree kernels in order to capture sequential
and hierarchical argumentative structure to-
gether for the first time. In systematic ex-
periments for three text classification tasks,
we find strong evidence for the impact of
both types of structure. Our results suggest
that either of them is necessary while their
combination may be beneficial.

1 Introduction
Argumentation theory has established a number
of major argument models focusing on different
aspects, such as the roles of an argument’s units
(Toulmin, 1958), the inference scheme of an argu-
ment (Walton et al., 2008), or the support and attack
relations between arguments (Freeman, 2011). The
common ground of these models is that they con-
ceptualize an argument as a conclusion (in terms of
a claim) inferred from a set of pro and con premises
(reasons), which in turn may be the conclusions of
other arguments. For the overall argumentation of
a monological argumentative text such as the one in
Figure 1(a), this results in an implicit hierarchical
structure with the text’s main claim at the lowest
depth. In addition, the text has an explicit linguistic
structure that can be seen as a regulated sequence of
speech acts (van Eemeren and Grootendorst, 2004).
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[1] The death penalty is a legal means that as such is not practicable 
in Germany. [2] For one thing, inviolable human dignity is anchored 
in our constitution, [3] and furthermore no one may have the right to 
adjudicate upon the death of another human being. [4] Even if many 
people think that a murderer has already decided on the life or death 
of another person, [5] this is precisely the crime that we should not 
repay with the same.

(b)

(a) monological argumentative text

Figure 1: (a) Example text with five argument units,
taken from the Arg-Microtexts corpus introduced in
Section 3. (b) Graph visualization of the sequential
and hierarchical overall argumentation of the text.

Figure 1(b) illustrates the interplay of the two types
of overall structure in form of a tree-like graph.

Natural language processing research has largely
adopted the outlined hierarchical models for min-
ing arguments from text (Stab and Gurevych, 2014;
Habernal and Gurevych, 2015; Peldszus and Stede,
2016). However, the adequacy of the resulting over-
all structure for downstream analysis tasks of com-
putational argumentation has rarely been evaluated
(see Section 2 for details). In fact, a computational
approach that can capture patterns in hierarchical
overall argumentation is missing so far. Even more,
our previous work indicates that a sequential model
of overall structure is preferable for analysis tasks
such as stance classification or quality assessment
(Wachsmuth and Stein, 2017).

In this paper, we ask and investigate what model
of (monological) overall argumentation is impor-
tant to tackle argumentation-related analysis tasks.
To this end, we consider three corpora with fully
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annotated argument structure (Section 3). Each
corpus allows studying one text classification task,
two of which we hypothesize to benefit from mod-
eling argumentation (myside bias, stance), the third
not (genre). An empirical analysis of the corpora
reveals class-specific patterns of how people argue
(Section 4). In order to combine the explicit se-
quential and the implicit hierarchical structure of
an argumentative text for the first time, we then
adapt the approach of route kernels (Aiolli et al.,
2009), modeling overall argumentation in form of
a positional tree (Section 5).

On this basis, we design an experiment to eval-
uate the impact of the different types of argumen-
tative structure (Section 6). In particular, we de-
compose our approach into four complementary
modeling steps, both for a general model of overall
argumentation and for the specific models of the
given corpora. Using the structure annotated in the
corpora, we systematically compare the effective-
ness of all eight resulting models and two standard
baselines in the three classification tasks.

Our results provide strong evidence that both
sequential and hierarchical structure are important.
As indicated by related work, sequential structure
nearly competes with hierarchical structure, at least
based on the specific argument models. Even more
impressively, modeling hierarchical structure prac-
tically solves the task of identifying argumentation
with myside bias, achieving an outstanding accu-
racy of 97.1%. For stance classification, the combi-
nation captured by positional trees works best. In
contrast, all types of structure fail in distinguishing
genres, suggesting that they indeed capture proper-
ties of argumentation. We conclude that the impact
of modeling overall structure on downstream analy-
sis tasks is high, while the required type may vary.

Contributions To summarize, the main contribu-
tions of this paper are the following:

1. Empirical insights into how people structure
argumentative texts in overall terms.

2. The first approach to model and analyze the
sequential and hierarchical overall structure
of argumentative texts in combination.

3. Evidence that modeling overall structure im-
pacts argumentation-related analysis tasks.

2 Related Work
The study of overall argumentation traces back to
Aristotle (2007) who outlined the impact of the

sequential arrangement of the different parts of a
speech. Conceptually, theory agrees that a mono-
logical argumentative text has an implicit tree-like
hierarchical structure: Toulmin (1958) defines an
argument as a claim supported by data that is rea-
soned by a warrant, which in turn may have a back-
ing. In addition, a rebuttal may be given showing
exceptions to the claim. The role of support and
attack relations is investigated by Freeman (2011)
who models dialectical arguments that discuss both
a proponent’s and an opponent’s view on the main
claim argued for. Walton et al. (2008) put the focus
on the inference scheme that describes how an argu-
ment’s conclusion follows from its premises, which
may themselves be conclusions of arguments.

In natural language processing, argumentation
research deals with the mining of argument units
and their relations from text (Mochales and Moens,
2011). Several corpora with annotated argument
structure have been published in the last years.
Many of the corpora adapt the hierarchical mod-
els from theory (Reed and Rowe, 2004; Habernal
and Gurevych, 2015; Peldszus and Stede, 2016) or
propose comparable models (Stab and Gurevych,
2014). Since we target monological overall argu-
mentation, we use those that capture the complete
structure of texts, as detailed in Section 3. Corpora
focusing on dialogical argumentation (Walker et al.,
2012), topic-related arguments (Rinott et al., 2015),
or sequential structure (Wachsmuth et al., 2014b;
Al Khatib et al., 2016) are out of scope.

We do not mine the structure of argumentative
texts, but we exploit the previously mined structure
to tackle downstream tasks of computational argu-
mentation, namely, to classify the myside bias and
stance of texts. For myside bias, Stab and Gurevych
(2016) use features derived from discourse struc-
ture, whereas Faulkner (2014) and Sobhani et al.
(2015) model arguments to classify stance. Ong
et al. (2014) and we ourselves (Wachsmuth et al.,
2016) do similar to assess the quality of persua-
sive essays, and Beigman Klebanov et al. (2016)
examine how an essay’s content and structure influ-
ence quality. Other works predict the outcome of
legal cases based on the applied types of reasoning
(Brüninghaus and Ashley, 2003) or analyze infer-
ence schemes for given arguments (Feng and Hirst,
2011). In contrast to the local structure of single
arguments employed by all these approaches, we
study the impact of the global overall structure of
complete monological argumentative texts.
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In (Wachsmuth et al., 2017), we point out that
the argumentation quality of a text is affected by
interactions of its content at different levels of gran-
ularity, from single argument units over arguments
to overall argumentation. Stede (2016) explores
how different depths of overall argumentation can
be identified, observing differences across genres.
Unlike in our experiments, however, the genres
considered there reflect diverging types of argu-
mentation. Related to argumentation, Feng et al.
(2014) build upon rhetorical structure theory (Mann
and Thompson, 1988) to assess the coherence of
texts, while Persing et al. (2010) score the organi-
zation of persuasive essays based on sequences of
sentence and paragraph functions.

We introduced the first explicit computational
model of overall argumentation in (Wachsmuth
et al., 2014a). There, we compared the flow of local
sentiment in a review to a set of learned flow pat-
terns in order to classify global sentiment. Recently,
we generalized the model in order to make flows
applicable to any type of information relevant for
argumentation-related analysis tasks (Wachsmuth
and Stein, 2017). However, flows capture only se-
quential structure, whereas here we also model the
hierarchical structure of overall argumentation. To
this end, we make use of kernel methods.

Kernel methods are a popular approach for learn-
ing on structured data, with several applications
in natural language processing (Moschitti, 2006b)
including argument mining (Rooney et al., 2012).
They employ a similarity function defined between
any two input objects that are represented in a task-
specific implicit feature space. The evaluation of
such a kernel function relies on the common fea-
tures of the input objects (Cristianini and Shawe-
Taylor, 2000). The kernel function encodes knowl-
edge of the task in the form of these features.

Several kernel functions have been defined for
structured data. To assess the impact of sequential
argumentation, we refer to the function of Mooney
and Bunescu (2006), which computes common sub-
sequences of two input sequences. For trees, most
existing approaches count common subtrees of a
certain type (Collins and Duffy, 2001; Moschitti,
2006a; Kimura and Kashima, 2012), but they do not
take the ordering of the nodes in the subtrees into
account. In contrast, Aiolli et al. (2009) developed
a kernel that combines the content of substructures
with the relative positions inside trees, called the
route kernel. Similarly, the tree kernel of Daumé III

and Marcu (2004) includes positional information
for document compression. For overall argumenta-
tion, we decided to use the route kernel in Section 5,
as it makes the modeling of the sequential positions
of an argument unit in a text straightforward. This
allows us to capture both the sequential and the
hierarchical structure at the same time. To our
knowledge, no work has done this before.1

Neural networks denote an alternative for learn-
ing on structured data. They become particularly
effective when few prior knowledge about what is
important to address a task at hand is available, be-
cause they can learn any feature representation in
principle (Goodfellow et al., 2016). Due to this flex-
ibility, however, large amounts of data are required
for training an effective model, making neural net-
works inadequate for the small datasets that allow
studying overall argumentation.

3 Tasks and Datasets
We seek to study the impact of modeling overall
argumentation on downstream tasks without the
noise from argument mining errors. To this end, we
rely on three ground-truth argument corpora. Each
corpus is suitable for evaluating one text classifica-
tion task and comes with a specific model of overall
argumentation, as detailed in the following.

Myside Bias on AAE-v2 The Argument Anno-
tated Essays corpus was originally been presented
by Stab and Gurevych (2014). We use version 2 of
the corpus (available on the website of the authors),
which consists of 402 persuasive student essays. In
each essay, all main claims, claims, and premises
are annotated as such. Each claim has a pro or
con stance towards each instance of the main claim,
whereas each premise supports or attacks a claim or
another premise. Thereby, argumentation is mod-
eled as one tree structure for each major claim.

Stab and Gurevych (2016) added a myside bias
class to each essay, reflecting whether its argumen-
tation is one-sided considering only arguments for
the own stance (251 cases) or not (151 cases).

Stance on Arg-Microtexts The Arg-Microtexts
corpus of Peldszus and Stede (2016) contains 112
short argumentative texts. They cover 18 different
controversial topics and are annotated according to
Freeman (2011): Each argument unit takes the role
of the proponent or opponent of a main claim. What

1While extensions of the route kernel idea have been pub-
lished later on (Aiolli et al., 2011, 2015), we resort to the
original version in this paper for simplicity.
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AAE-v2 Arg-Microtexts Web Discourse

Argument units 6089 576 1149
Avg. units/text 15.1 5.1 3.4
Min. units/text 7 3 0
Max. units/text 28 10 16

Arguments 5687 443 560
Avg. depth 2.8 2.0 0.6
Min. depth 2 1 0
Max. depth 5 4 1

Texts 402 112 340

Table 1: Statistics of the argument units and argu-
ments in the three corpora analyzed in this paper.

the main claim is follows from a tree-like overall
structure emerging from four types of relations:
normal or example support from one unit to another,
a rebuttal of units by other units, and undercutters
where a relation is attacked by another unit.

For 88 texts, the stance towards a specified topic
is labeled as pro (46) or con (42). We use these
labels for classification, but we do not access the
topic. This way, stance needs to be identified only
based on a text itself — a very challenging task.2

Genre on Web Discourse Finally, we consider
the Argument Annotated User-Generated Web Dis-
course corpus of Habernal and Gurevych (2015).
There, 340 texts are annotated according to a modi-
fied version of the specific model of Toulmin (1958)
where claims are supported by premises or attacked
by rebuttals. Rebuttals in turn may be attacked by
refutations. Besides, emotional units not participat-
ing in the actual arguments are marked as pathos.
The support and attack relations build up the overall
argumentation of a text.

The corpus composes argumentative texts of four
genres, namely, 5 articles, 216 comments to arti-
cles, 46 blog posts, and 73 forum posts. The genre
is specified in form of a label for each text. Due to
the low number, we ignore the articles below.

To give an idea of the sequential and hierarchical
overall structure in each corpus, Table 1 presents
statistics of the argument units, the arguments (in
terms of relations between two or more units), and
the depth of the resulting argumentation.

While the size of the given corpora and the va-
riety of tasks are limited, the only other available
corpus with fully annotated argument structure that
we are aware of is AraucariaDB (Reed and Rowe,

2We do not include the topic, in order not to conflate the
impact of modeling argumentation with the influence of the
topic. The corpus is too small to analyze topic differences.

2004). No downstream task can be tackled on Arau-
cariaDB besides inference scheme classification
(Feng and Hirst, 2011). As all schemes compose
a conclusion and a set of premises (without more
specific roles), analyzing overall structure hardly
makes sense, which is why we omit the corpus.

4 Insights into Overall Argumentation
Before we approach overall argumentation com-
putationally, this section analyzes the three given
corpora empirically to provide insights into how
people argue in overall terms. For this, we unify
the specific corpus models of overall argumentation
outlined above in one general model.

4.1 A Unified View of Overall Argumentation
The texts in all corpora are segmented into argu-
ment units, partly with non-argumentative spans in
between that we ignore here for lack of relevance.
To capture the sequential ordering of the segmenta-
tion, we assign a global index to each unit.

As described in Section 3, the specific models
of all three corpora in the end consider an argu-
ment as a composition of one unit serving as the
conclusion with one or more units that support or
attack the conclusion (the premises). This compo-
sition is defined through multiple relations from
one premise to one conclusion each. There is one
exception, namely, the undercutter relations in the
Arg-Microtexts corpus have a relation as their tar-
get. To obtain a unified form in the general model,
we modify the undercutters such that they target
the premise of the undercutted relation.

In all corpora, a premise may be the conclusion
of another argument, while no argument unit serves
as a premise in multiple arguments. This leads to a
tree structure for each main claim of the associated
text. A main claim corresponds to a unit that is not
a premise. In AAE-v2 and in Web Discourse, more
than one such unit may exist per text.

Depending on the corpus, the distinction of sup-
port and attack is encoded through a specified rela-
tion type, a unit’s stance, or both. We unify these
alternatives by modeling the stance of each unit to-
wards its parent in the associated tree. This stance
can be derived in all corpora.3 All other unit and
relation types from the specific models are ignored,
since there is no clear mapping between them.

3Alternatively, the stance towards the main claim could be
modeled. We decided against this alternative to avoid possibly
wrong reinterpretations, e.g., it is unclear whether a unit that
attacks its parent always supports a unit attacked by the parent.
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Figure 2: Visualization of the overall argumentation in the three considered corpora based on the introduced
general model, averaged over all texts as well over all those texts that belong to a particular class. Left to
right: Position in the text. Top to bottom: Depth in graph. Brightness: Inverse relative frequency of each
position/depth combination in the corpus. Light red to gray: Proportion of argument units with con stance.

General Model As a result, we model the overall
argumentation of an argumentative text as a forest
of trees. Each node in a tree corresponds to an argu-
ment unit. It has an assigned stance (pro or con) as
well as a global index that defines its position in the
text. Each edge defines a relation from a premise
(the child node) to a conclusion (the parent node).
Each main claim defines the root of a tree.

Figure 1(b) has already illustrated an instance of
the general model. The general model is slightly
less expressive than the specific models. We evalu-
ate in Section 6 to what extent this reduces its use
for tackling argumentation-related analysis tasks.
The advantage of the general model is that it allows
a comparison of patterns of overall argumentation
across corpora, as we do in the following.4

4.2 Visualization of Argumentation Patterns
Based on the general model, we empirically ana-
lyze class-specific patterns of overall argumenta-
tion on the three corpora. To this end, we compute
one “average graph” for all texts in each complete
corpus and one such graph for all texts with a par-
ticular class (e.g., for all “no myside bias” texts
in case of AAE-v2). In an average graph, each
node is labeled with the relative frequency of the
associated combination of position and depth in
all texts (edges accordingly). We align positions

4Besides, although not in the focus here, we also assume
stance to be easier to detect in practice than fine-grained roles.

of different texts based on their start node, due to
our observation that the first argument unit over-
proportionally often represents the main claim.5 In
addition the relative frequency, we determine the
proportion of con to pro stance for each node.

As we aim to provide intuitive insights into how
people argue in overall terms, we discuss the graphs
in an informal visual way instead of listing exact
numbers.6 In the visualizations in Figure 2, bright-
ness captures (inverse) frequency, so darker nodes
represent more frequent argument units. The di-
ameter of the inner light-red part of each node re-
flects its proportion of con stance. Nodes with a
relative frequency below 0.3% and/or an absolute
frequency below 3 are pruned, along with all their
associated edges.

AAE-v2 Figure 2(a) stresses that most students
state the main claim (depth 0, position 1) in a per-
suasive essay first. When the first argument unit is
a premise of the main claim instead, it often attacks
the main claim, as the large light-red proportion of
the node at depth 1 and position 1 conveys. While,
on average, texts with myside bias do not differ in
length from those without, the latter show more
con stance, especially at depth 1. Also, argumenta-

5We also considered using the main claim as the fix point,
but the resulting graphs would be much wider than the longest
argumentation, which may be misleading.

6We provide files with the exact frequencies of all nodes
and edges at: http://www.arguana.com/software.html

2383



tion without myside bias shows more variance, as
indicated, for instance, by the nodes at depth 0 and
position 12 and 13 respectively. In contrast, clear
patterns in the sequential ordering of pro and con
stance are not recognizable in AAE-v2.

Arg-Microtexts According to the graphs in Fig-
ure 2(b), the position of the main claim varies in
the microtexts. While the proportion of con stance
seems rather similar between pro and con texts, our
visualization reveals that their overall structure is
“mirror-inverted” to a limited extent: Most pro texts
start with the main claim (depth 0, position 1), dis-
cuss con stance later (red proportions increase to
the right), and deepen the argumentation in a top-
down fashion (most edges from top left to bottom
right). Vice versa, con texts more often present the
main claim later, attack it earlier, and seem to argue
more bottom-up. This suggests that both sequential
and hierarchical structure play a role here.

Web Discourse The web discourse texts, finally,
comprise rather shallow argumentation across all
genres. Slight structural differences can be seen,
especially, the comments appear a little shorter and
richer of pro stance on average. Besides, the blog
posts have more con stance later. Still, the darker
and thus more frequent nodes are at similar posi-
tions in all graphs. So, if at all, differences may be
reflected in a sequential model of argumentation,
which implicitly covers length. In terms of the hier-
archical structure of the frequent nodes, the graphs
of all genres are rather indistinguishable.

Altogether, the visualizations give first support
for the impact of modeling overall argumentation.
In particular, we hypothesize that hierarchical over-
all structure is decisive for myside bias, whereas
a combination of sequential and hierarchical struc-
ture helps to distinguish pro-stance from con-stance
texts. In contrast, we expect that the impact on clas-
sifying genres in the Web Discourse corpus is low.

5 Modeling Overall Argumentation
This section presents our kernel-based approaches
for argumentation-related analysis tasks. They rely
on a tree representation of overall argumentation.

5.1 Representation of Overall Argumentation
We model the overall structure of an argumentative
text in form of a positional tree T = (V,E) that, in
principle, equals those exemplified in Figure 1 and
analyzed above. Each node v ∈ V represents an
argument unit and each edge e = (v1, v2) ∈ E a

relation between two units. Technically, we there-
for map the forest of trees representing a text (see
Section 4) to a single tree by adding a “virtual” root
node v0 to V that is the parent of all tree roots.

In analysis tasks, we seek to compare sequential
and hierarchical structures irrespective of the actual
texts and the size of the associated trees. To this
end, we represent labels and positions as follows:

Labels The tree kernel approaches in natural lan-
guage processing discussed in Section 2 include
text (usually words) in the leaf nodes. In contrast,
we label each node v ∈ V with the type of the asso-
ciated argument unit only. Thereby, we almost fully
abstract from the content of texts, which benefits
the identification of common structures. In case of
the general model, the only two labels are pro and
con. In case of the specific models, we combine the
role of a unit with the type of the relation the unit
is the source of (if any). On Arg-Microtexts, for in-
stance, this creates labels such as opponent-support
or opponent-undercutter.

Positions As we adapt the route kernels of Aiolli
et al. (2009) below, we follow their representation
of sequential structure with one exception. In par-
ticular, the authors assigned an index to each edge
that numbers the child nodes of each node ascend-
ing from 1. Thereby, they encoded the relative
positions of sibling nodes to each other. To capture
the ordering of argument units in a text from left
to right, we also model positions as indices of the
edges in E. Unlike Aiolli et al. (2009), however,
we use indices decreasing from -1 in the left direc-
tion of the parent node and ascending from 1 to
the right (derived from the nodes’ global indices).
While such a simple relabeling allows us to reuse
their algorithm for computing kernels, it makes a
decisive difference, namely, it encodes the relative
positions of child nodes to their parent. This in turn
implies the sequential structure of the whole tree.

Figure 3(a) exemplifies the tree representation
for the argument unit types of the general model,
omitting the virtual root v0 for simplicity. Analo-
gously, the types of the specific models of the three
considered corpora could be used.

5.2 Kernel-based Modeling Approaches
Based on the tree representation, we now introduce
four approaches for modeling overall argumenta-
tion. Figure 3(b) illustrates the kernel representa-
tions of each approach. As discussed in Section 2,
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Figure 3: (a) Tree representation exemplified for
the general model; node labels are unit types, edge
indices relative positions of child nodes. (b) Kernel
representations of the tree for all four approaches.

the associated kernel function compares the repre-
sentations of the trees T, T ′ of any two texts.

Label Frequencies (a1) Our simplest model of
overall argumentation does not encode structure
at all. Instead, it compares only the frequencies
of each node label in T and T ′. We represent the
model with a linear kernel, which in the end corre-
sponds to a standard feature representation.

Label Sequences (a2) To encode sequential over-
all structure, we refer to the kernel of Mooney and
Bunescu (2006), representing the sequential order-
ing of node labels in a tree by all contiguous subse-
quences. The similarity of two trees T and T ′ fol-
lows from the proportion of common subsequences,
but longer subsequences are penalized by a decay
factor. This approach can be seen as an imitation of
our flow model (Wachsmuth and Stein, 2017).7

Label Tree Paths (a3) We capture hierarchical
overall structure adapting the non-positional part of
the route kernel of Aiolli et al. (2009), label paths.

7We use a sequence kernel instead of flows in order to
obtain a uniform setting. In Wachsmuth and Stein (2017), we
also analyze flow abstractions (e.g., collapsing sequences of
the same label). Here, we resort only to the original sequence.

A label path ξ(vi, vj) denotes the sequence of la-
bels of the nodes in the shortest path between vi, vj
in a tree (including vi, vj). Following Aiolli et al.
(2009), we consider only label paths starting at the
root vi = v0, abbreviated here as ξ(vj). Implicitly,
other paths may still be considered through the use
of polynomial kernels with degree d > 1. As the
authors, we compare any two paths with a function
δ whose values is 1 when the paths are identical
and 0 otherwise. Given two trees T = (V,E) and
T ′ = (V ′, E′), we then define a normalized poly-
nomial kernel Kξ(T, T

′) over all label paths as:
(∑

v∈V

∑

v′∈V ′

δ(ξ(v), ξ(v′))
|V | · |V ′|

)d

Positional Tree Paths (a4) In addition to label
paths, Aiolli et al. (2009) define a route π(vi, vj)
as the sequence of edge indices on the shortest path
between any two nodes vi, vj in a tree, i.e., the se-
quence of local positions. As above, they restrict
their view to routes starting at the root, which we
denote as π(vj), and compare them using δ. To
combine positional information with label informa-
tion, the authors build the product of a kernel based
on the label paths and a kernel based on routes. As
a result, sequential and hierarchical overall struc-
ture are compared at the same time. For overall
argumentation, we define the resulting normalized
polynomial product kernel Kξπ(T, T

′) as:
(∑

v∈V

∑

v′∈V ′

δ(ξ(v), ξ(v′)) · δ(π(v), π(v′))
(|V | · |V ′|)2

)d

Each approach, a1–a4, can be seen as represent-
ing one particular step of modeling overall argu-
mentation; a4 combines the complementary steps
of a2 and a3, both of which implicitly include a1.

6 Evaluation
Finally, we evaluate all four approaches to model
overall argumentation from Section 5 on the three
tasks associated to the corpora from Section 3.8

6.1 Experimental Set-up
Our goal is to assess the theoretical impact of each
introduced step of modeling overall argumentation
as far as possible. To this end, we conduct a sys-
tematic experiment where we use the ground-truth
argument structure in each corpus for the associated
downstream task based on the following set-up:

8The Java source code for reproducing the experiment
results is available at: http://www.arguana.com/software.html
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Myside Bias on AAE-v2 Stance on Arg-Microtexts Genre on Web Discourse

# Approach General model Specific model General model Specific model General model Specific model

b1 POS n-grams 63.3 63.3 58.8 58.8 74.0 (99.9% >a2) 74.0 (99.9% >a2)

b2 Token n-grams 70.5 (95% >b1) 70.5 (95% >b1) 65.2 (99% >a2) 65.2 75.6 (99.9% >a2) 75.6 (99.9% >a2)

a1 Label frequencies 83.4 (99.9% >b2) 85.7 (99.9% >b2) 49.7 54.4 62.6 (95% >a4) 61.4
a2 Label sequences 87.9 (99.9% >b2) 94.7 (99.9% >a1) 52.2 62.3 64.5 (95% >a3) 64.5 (99.9% >a3)

a3 Label tree paths 97.1 (99.9% >a2) 97.1 (95% >a2) 59.8 (95% >a1) 61.9 58.1 55.5
a4 Positional tree paths 95.8 (99.9% >a2) 95.6 (99.9% >a1) 66.7 (99% >a2) 67.8 (95% >a1) 53.4 55.2

ba Best bi + Best aj 97.1 (99.9% >a2) 97.1 (95% >a2) 69.8 (99.9% >a2) 71.0 (95% >a1) 75.7 (99.9% >a2) 75.9 (99.9% >a2)

Majority baseline 62.4 62.4 52.3 52.3 64.5 64.5

Table 2: Accuracy in 10-fold cross-validation (10 repetitions, fairness in training) of all evaluated
approaches on each of the three task/corpus combinations, both based on a general model of arguments
and based on the specific model of the respective corpus. The highest value on each corpus is marked in
bold; the best bi and aj in each column are italicized. In parenthesis: The confidence level in percent at
which the respective approach is significantly better than the specified approach and all worse approaches.

Approaches The modeling steps are reflected by
the approaches a1–a4 from Section 5. For each task,
we measure the accuracy of all four approaches.
We do this once for our general model of overall
argumentation from Section 4 and once for the
specific model annotated in the respective corpus,
in order to assess the loss of resorting to our always
applicable general model.

Baselines As a basic task-intrinsic measure, we
compare a1–a4 to the majority baseline that always
predicts the majority class in the given corpus. In
addition, we employ two standard feature types and
combine them with a1–a4, in order to roughly as-
sess the need for modeling argumentation:

b1 POS n-grams. The frequency of each part-
of-speech 1- to 3-gram found in ≥ 5% of all
texts. This style feature has been effective in
argumentation-related analysis tasks (Persing
and Ng, 2015; Wachsmuth et al., 2016).

b2 Token n-grams. The frequency of each token
1- to 3-gram found in ≥ 5% of all texts. This
content feature is strong in many text analysis
tasks (Joachims, 1998; Pang et al., 2002).

From the tackled tasks, only myside bias has been
approached on the given datasets in previous work.
While we mention the respective results for com-
pleteness below, a comparison is in fact unfair due
to our resort to ground-truth argument structure.

Experiments The evaluation of all approaches
and baselines was done using the kernel-based ma-
chine learning platform KeLP (Filice et al., 2015),
performing classification with the available imple-
mentation of LibSVM (Chang and Lin, 2011). As

we target the theoretically possible impact of mod-
eling overall argumentation, we tested a number
of hyperparameter configurations.9 We performed
10-fold cross-validation on the complete corpora
and repeated each experiment 10 times, with in-
stance shuffling in between. Then, we averaged the
accuracy of each configuration over all folds and
repetitions. To prevent the classifiers from using
knowledge about the class distributions, we used
fairness during training, i.e., each class was given
an equal weight (Filice et al., 2014). Thus, the
majority baseline is not a trivial competitor.

6.2 Results
Table 2 presents the best obtained results of each
evaluated approach for each task/corpus combina-
tion. To clarify the reliability of the differences be-
tween the results, the table includes the confidence
level (starting at 95%) at which each approach is
significantly better than all weaker approaches ac-
cording to a two-tailed paired student’s t-test.10

Myside Bias on AAE-v2 The highest accuracy
reported for classifying myside bias is 77.0 (Stab
and Gurevych, 2016). While the comparability is
limited (see above), we see that label frequencies
(a1) already achieve 83.4 and 85.7 for the general
and specific model respectively, outperforming all
baselines with 99.9% confidence. Matching the in-
sights from Section 4, the sole proportion of attacks
thus seems a good predictor of myside bias.

9SVM C parameter: 0.01, 0.1, 1, 10, 100; sequence kernel
decay factor: 0, 0.5, 1; polynomial tree kernel degree: 1, 2, 3.

10While selecting the best result a posteriori gives an upper
bound on the true effectiveness, we do this to assess to what
extent each approach captures task-relevant information.
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Label sequences (a2) further improve over a1,
which underlines that also the sequential position
of con stance and attack relations has an impact. a2
is particular strong under the specific model (94.7).
Unlike the general model, this model reflects some
hierarchical information via the roles of argument
units, such as premise. a2 performs only slightly
worse than the label tree paths (a3), indicating that
an adequate sequential model can compete with a
hierarchical model, as we hypothesized in previous
work (Wachsmuth and Stein, 2017).

Nevertheless, a3 turns out best on AAE-v2, most
likely due to its capability to capture the depth at
which con stance occurs. Considering that no cor-
pus annotation is perfect, the outstanding accuracy
of 97.1 conveys an important finding: Modeling the
tree structure of an argumentation basically solves
the myside bias task without requiring other fea-
tures. Neither the positional tree paths (a4) nor the
combination with token n-grams (ba) can add to
that. Also, there is no difference between the gen-
eral and the specific model, underlining that the
unit roles in AAE-v2 are implicitly covered by the
hierarchical structure in the general model.

Stance on Arg-Microtexts The accuracy results
for the given challenging variant of stance classi-
fication (see Section 3) are much lower. Under
the general model, the label frequencies (49.7) do
not even compete with the majority baseline (52.3).
Notable gains are achieved by the label sequences
under the specific model (62.3), slightly beating
the label tree paths (61.9). Putting them together
in the positional tree paths (a4) yields an accuracy
of 66.7 and 67.8 respectively; more than the token
n-grams (b2, 65.2). Combining a4 and b2 in ba
in turn results in the best observed accuracy value
(71.0 on the specific model).

We conclude that both sequential and hierarchi-
cal overall structure are important for the distinc-
tion of pro from con argumentation, supporting
our hypothesis from Section 4. They complement
content-oriented approaches, such as b2. More-
over, the fine-grained unit and relation types of the
specific model annotated in Arg-Microtexts seem
useful, consistently obtaining higher accuracy than
the general model. Notice, though, that due to the
small size of the corpus, only few reported gains
are statistically significant, as shown in Table 2.

Genre on Web Discourse Although Section 4
has made minor structural differences in Web Dis-
course visible, Table 2 shows that a1–a4 all fail in

genre classification: None of them beats the ma-
jority baseline (64.5), suggesting that no decisive
discriminative patterns are learned. Both POS and
token n-grams (b1–b2) significantly outperform a1–
a4 at 99.9% confidence. While combining b2 with
a2 (ba) minimally increases accuracy from 75.6 to
75.9, the results reveal that overall argumentation
hardly impacts genre — as hypothesized.

7 Conclusion
This paper provides answers to the question of how
the overall structure of a monological argumen-
tative text should be modeled in order to tackle
downstream tasks of computational argumentation.
We have adopted the idea of including positional in-
formation in tree kernels in order to capture the ex-
plicit sequential and the implicit hierarchical over-
all structure of the text at the same time. In system-
atic experiments, we have demonstrated the strong
impact of modeling overall argumentation. Most
impressively, we have found that hierarchical struc-
ture decides about myside bias alone, while the
combination of sequential and hierarchical struc-
ture has turned out beneficial for classifying stance.
The missing impact on genre supports that the pre-
sented approaches actually capture argumentation-
related properties of a text.

So far, however, we have restricted our view
to ground-truth argument structure, leaving the in-
tegration of computational argument mining ap-
proaches to future work. While the noise from
mining errors might qualify some of our findings,
we also expect that larger corpora will allow us
to discover more reliable and discriminative pat-
terns. After all, our results underline the general
importance of modeling overall argumentation.
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Abstract

We propose a new encoder-decoder ap-
proach to learn distributed sentence rep-
resentations that are applicable to multiple
purposes. The model is learned by using a
convolutional neural network as an encoder
to map an input sentence into a continuous
vector, and using a long short-term mem-
ory recurrent neural network as a decoder.
Several tasks are considered, including sen-
tence reconstruction and future sentence
prediction. Further, a hierarchical encoder-
decoder model is proposed to encode a sen-
tence to predict multiple future sentences.
By training our models on a large collection
of novels, we obtain a highly generic con-
volutional sentence encoder that performs
well in practice. Experimental results on
several benchmark datasets, and across a
broad range of applications, demonstrate
the superiority of the proposed model over
competing methods.

1 Introduction

Learning sentence representations is central to
many natural language modeling applications. The
aim of a model for this task is to learn fixed-
length feature vectors that encode the seman-
tic and syntactic properties of sentences. Deep
learning techniques have shown promising per-
formance on sentence modeling, via feedfor-
ward neural networks (Huang et al., 2013), re-
current neural networks (RNNs) (Hochreiter and
Schmidhuber, 1997), convolutional neural net-
works (CNNs) (Kalchbrenner et al., 2014; Kim,
2014; Shen et al., 2014), and recursive neural net-
works (Socher et al., 2013). Most of these models
are task-dependent: they are trained specifically for
a certain task. However, these methods may be-

come inefficient when we need to repeatedly learn
sentence representations for a large number of dif-
ferent tasks, because they may require retraining a
new model for each individual task. In this paper,
in contrast, we are primarily interested in learning
generic sentence representations that can be used
across domains.

Several approaches have been proposed for learn-
ing generic sentence embeddings. The paragraph-
vector model of Le and Mikolov (2014) incorpo-
rates a global context vector into the log-linear neu-
ral language model (Mikolov et al., 2013) to learn
the sentence representation; however, at predic-
tion time, one needs to perform gradient descent to
compute a new vector. The sequence autoencoder
of Dai and Le (2015) describes an encoder-decoder
model to reconstruct the input sentence, while the
skip-thought model of Kiros et al. (2015) extends
the encoder-decoder model to reconstruct the sur-
rounding sentences of an input sentence. Both the
encoder and decoder of the methods above are mod-
eled as RNNs.

CNNs have recently achieved excellent results
in various task-dependent natural language applica-
tions as the sentence encoder (Kalchbrenner et al.,
2014; Kim, 2014; Hu et al., 2014). This motivates
us to propose a CNN encoder for learning generic
sentence representations within the framework of
encoder-decoder models proposed by Sutskever
et al. (2014); Cho et al. (2014). Specifically, a
CNN encoder performs convolution and pooling
operations on an input sentence, then uses a fully-
connected layer to produce a fixed-length encoding
of the sentence. This encoding vector is then fed
into a long short-term memory (LSTM) recurrent
network to produce a target sentence. Depending
on the task, we propose three models: (i) CNN-
LSTM autoencoder: this model seeks to reconstruct
the original input sentence, by capturing the in-
tra-sentence information; (ii) CNN-LSTM future
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Figure 1: Illustration of the CNN-LSTM encoder-decoder models. The sentence encoder is a CNN, the
sentence decoder is an LSTM, and the paragraph generator is another LSTM. (Left) (a)+(c) represents the
autoencoder; (b)+(c) represents the future predictor; (a)+(b)+(c) represents the composite model. (Right)
hierarchical model. In this example, the input contiguous sentences are: this is great. you will love it! i
promise.

predictor: this model aims to predict a future sen-
tence, by leveraging inter-sentence information;
(iii) CNN-LSTM composite model: in this case,
there are two LSTMs, decoding the representation
to the input sentence itself and a future sentence.
This composite model aims to learn a sentence en-
coder that captures both intra- and inter-sentence
information.

The proposed CNN-LSTM future predictor
model only considers the immediately subsequent
sentence as context. In order to capture longer-
term dependencies between sentences, we further
introduce a hierarchical encoder-decoder model.
This model abstracts the RNN language model
of Mikolov et al. (2010) to the sentence level. That
is, instead of using the current word in a sentence
to predict future words (sentence continuation), we
encode a sentence to predict multiple future sen-
tences (paragraph continuation). This model is
termed hierarchical CNN-LSTM model.

As in Kiros et al. (2015), we first train our
proposed models on a large collection of novels.
We then evaluate the CNN sentence encoder as
a generic feature extractor for 8 tasks: semantic
relatedness, paraphrase detection, image-sentence
ranking and 5 standard classification benchmarks.
In these experiments, we train a linear classifier
on top of the extracted sentence features, without
additional fine-tuning of the CNN. We show that
our trained sentence encoder yields generic repre-

sentations that perform as well as, or better, than
those of Kiros et al. (2015); Hill et al. (2016), in all
the tasks considered.

Summarizing, the main contribution of this pa-
per is a new class of CNN-LSTM encoder-decoder
models that is able to leverage the vast quan-
tity of unlabeled text for learning generic sen-
tence representations. Inspired by the skip-thought
model (Kiros et al., 2015), we have further explored
different variants: (i) CNN is used as the sentence
encoder rather than RNN; (ii) larger context win-
dows are considered: we propose the hierarchical
CNN-LSTM model to encode a sentence for pre-
dicting multiple future sentences.

2 Model description

2.1 CNN-LSTM model

Consider the sentence pair (sx, sy). The encoder,
a CNN, encodes the first sentence sx into a fea-
ture vector z, which is then fed into an LSTM
decoder that predicts the second sentence sy. Let
wtx ∈ {1, . . . , V } represent the t-th word in sen-
tences sx, where wtx indexes one element in a V -
dimensional set (vocabulary); wty is defined simi-
larly w.r.t. sy. Each word wtx is embedded into
a k-dimensional vector xt = We[w

t
x], where

We ∈ Rk×V is a word embedding matrix (learned),
and notation We[v] denotes the v-th column of ma-
trix We. Similarly, we let yt = We[w

t
y].

2391



CNN encoder The CNN architecture in Kim
(2014); Collobert et al. (2011) is used for sentence
encoding, which consists of a convolution layer
and a max-pooling operation over the entire sen-
tence for each feature map. A sentence of length T
(padded where necessary) is represented as a matrix
X ∈ Rk×T , by concatenating its word embeddings
as columns, i.e., the t-th column of X is xt.

A convolution operation involves a filter Wc ∈
Rk×h, applied to a window of h words to produce
a new feature. According to Collobert et al. (2011),
we can induce one feature map c = f(X ∗Wc +
b) ∈ RT−h+1, where f(·) is a nonlinear activation
function such as the hyperbolic tangent used in our
experiments, b ∈ RT−h+1 is a bias vector, and ∗
denotes the convolutional operator. Convolving
the same filter with the h-gram at every position
in the sentence allows the features to be extracted
independently of their position in the sentence. We
then apply a max-over-time pooling operation (Col-
lobert et al., 2011) to the feature map and take its
maximum value, i.e., ĉ = max{c}, as the feature
corresponding to this particular filter. This pooling
scheme tries to capture the most important feature,
i.e., the one with the highest value, for each fea-
ture map, effectively filtering out less informative
compositions of words. Further, pooling also guar-
antees that the extracted features are independent
of the length of the input sentence.

The above process describes how one feature
is extracted from one filter. In practice, the
model uses multiple filters with varying window
sizes (Kim, 2014). Each filter can be considered
as a linguistic feature detector that learns to rec-
ognize a specific class of n-grams (or h-grams, in
the above notation). However, since the h-grams
are computed in the embedding space, the model
naturally handles similar h-grams composed of syn-
onyms. Assume we have m window sizes, and for
each window size, we use d filters; then we obtain
a md-dimensional vector to represent a sentence.

Compared with the LSTM encoders used
in Kiros et al. (2015); Dai and Le (2015); Hill et al.
(2016), a CNN encoder may have the following ad-
vantages. First, the sparse connectivity of a CNN,
which indicates fewer parameters are required, typ-
ically improves its statistical efficiency as well as
reduces memory requirements (Goodfellow et al.,
2016). For example, excluding the number of pa-
rameters used in the word embeddings, our trained
CNN sentence encoder has 3 million parameters,

while the skip-thought vector of Kiros et al. (2015)
contains 40 million parameters. Second, a CNN
is easy to implement in parallel over the whole
sentence, while an LSTM needs sequential compu-
tation.

LSTM decoder The CNN encoder maps sen-
tence sx into a vector z. The probability of a
length-T sentence sy given the encoded feature
vector z is defined as

p(sy|z) =
T∏

t=1

p(wty|w0
y, . . . , w

t−1
y , z) (1)

where w0
y is defined as a special start-of-the-

sentence token. All the words in the sentence are
sequentially generated using the RNN, until the
end-of-the-sentence symbol is generated. Specif-
ically, each conditional p(wty|w<ty , z), where <
t = {0, . . . , t− 1}, is specified as softmax(Vht),
where ht, the hidden units, are recursively updated
through ht = H(yt−1,ht−1, z), and h0 is defined
as a zero vector (h0 is not updated during training).
V is a weight matrix used for computing a distribu-
tion over words. Bias terms are omitted for simplic-
ity throughout the paper. The transition function
H(·) is implemented with an LSTM (Hochreiter
and Schmidhuber, 1997).

Given the sentence pair (sx, sy), the objective
function is the sum of the log-probabilities of the
target sentence conditioned on the encoder repre-
sentation in (1):

∑T
t=1 log p(w

t
y|w<ty , z). The total

objective is the above objective summed over all
the sentence pairs.

Applications Inspired by Srivastava et al. (2015),
we propose three models: (i) an autoencoder, (ii)
a future predictor, and (iii) the composite model.
These models share the same CNN-LSTM model
architecture, but are different in terms of the
choices of the target sentence. An illustration of
the proposed encoder-decoder models is shown in
Figure 1(left).

The autoencoder (i) aims to reconstruct the same
sentence as the input. The intuition behind this is
that an autoencoder learns to represent the data us-
ing features that explain its own important factors
of variation, and hence model the internal struc-
ture of sentences, effectively capturing the intra-
sentence information. Another natural task is en-
coding an input sentence to predict the subsequent
sentence. The future predictor (ii) achieves this, ef-
fectively capturing the inter-sentence information,
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which has been shown to be useful to learn the se-
mantics of a sentence (Kiros et al., 2015). These
two tasks can be combined to create a composite
model (iii), where the CNN encoder is asked to
learn a feature vector that is useful to simultane-
ously reconstruct the input sentence and predict
a future sentence. This composite model encour-
ages the sentence encoder to incorporate contextual
information both within and beyond the sentence.

2.2 Hierarchical CNN-LSTM model
The future predictor described in Section 2.1 only
considers the immediately subsequent sentence as
context. By utilizing a larger surrounding context,
it is likely that we can learn even higher-quality
sentence representations. Inspired by the standard
RNN-based language model (Mikolov et al., 2010)
that uses the current word to predict future words,
we propose a hierarchical encoder-decoder model
that encodes the current sentence to predict mul-
tiple future sentences. An illustration of the hier-
archical model is shown in Figure 1(right), with
details provided in Figure 2.

Our proposed hierarchical model characterizes
the hierarchy word-sentence-paragraph. A para-
graph is modeled as a sequence of sentences, and
each sentence is modeled as a sequence of words.
Specifically, assume we are given a paragraph
D = (s1, . . . , sL), that consists of L sentences.
The probability for paragraph D is then defined as

p(D) =

L∏

`=1

p(s`|s<`) (2)

where s0 is defined as a special start-of-the-
paragraph token. As shown in Figure 2(left), each
p(s`|s<`) in (2) is calculated as

p(s`|s<`) = p(s`|h(p)
` ) (3)

h
(p)
` = LSTMp(h

(p)
`−1, z`−1) (4)

z`−1 = CNN(s`−1) (5)

where h(p)
` denotes the `-th hidden state of the

LSTM paragraph generator, and h(p)
0 is fixed as

a zero vector. The CNN in (5) is as described
in Section 2.1, encoding the sentence s`−1 into a
vector representation z`−1.

Equation (4) serves as the paragraph-level lan-
guage model (Mikolov et al., 2010), which encodes
all the previous sentence representations z<` into a
vector representation h(p)

` . This hidden state h(p)
`

LSTMS LSTMS

CNN CNN w2v w2v

(Left) LSTMP                                                                        (Right) LSTMS

Figure 2: Detailed illustration of the hierarchical
CNN-LSTM model. (Left) LSTM paragraph gen-
erator. (Right) LSTM sentence decoder.

is used to guide the generation of the `-th sentence
through the decoder (3), which is defined as

p(s`|h(p)
` ) =

T∏̀

t=1

p(w`,t|w`,<t,h(p)
` ) (6)

where w`,0 is defined as a special start-of-the-
sentence token. T` is the length of sentence `, and
w`,t denotes the t-th word in sentence `. As shown
in Figure 2(right), each p(w`,t|w`,<t,h(p)

` ) in (6) is
calculated as

p(w`,t|w`,<t,h(p)
` ) = softmax(Vh(s)

`,t ) (7)

h
(s)
`,t = LSTMs(h

(s)
`,t−1,x`,t−1,h

(p)
` ) (8)

where h(s)
`,t denotes the t-th hidden state of the

LSTM decoder for sentence `, x`,t−1 denotes the
word embedding for w`,t−1, and h(s)

`,0 is fixed as
a zero vector for all ` = 1, . . . , L. V is a weight
matrix used for computing distribution over words.

3 Related work

Various methods have been proposed for sentence
modeling, which generally fall into two categories.
The first consists of models trained specifically for
a certain task, typically combined with downstream
applications. Several models have been proposed
along this line, ranging from simple additional com-
position of the word vectors (Mitchell and Lapata,
2010; Yu and Dredze, 2015; Iyyer et al., 2015) to
those based on complex nonlinear functions like re-
cursive neural networks (Socher et al., 2011, 2013),
convolutional neural networks (Kalchbrenner et al.,
2014; Hu et al., 2014; Johnson and Zhang, 2015;
Zhang et al., 2015; Gan et al., 2017), and recurrent
neural networks (Tai et al., 2015; Lin et al., 2017).
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The other category consists of methods aiming
to learn generic sentence representations that can
be used across domains. This includes the para-
graph vector (Le and Mikolov, 2014), skip-thought
vector (Kiros et al., 2015), and the sequential de-
noising autoencoders (Hill et al., 2016). Hill et al.
(2016) also proposed a sentence-level log-linear
bag-of-words (BoW) model, where a BoW repre-
sentation of an input sentence is used to predict ad-
jacent sentences that are also represented as BoW.
Most recently, Wieting et al. (2016); Arora et al.
(2017); Pagliardini et al. (2017) proposed methods
in which sentences are represented as a weighted
average of fixed (pre-trained) word vectors. Our
model falls into this category, and is most related
to Kiros et al. (2015).

However, there are two key aspects that make our
model different from Kiros et al. (2015). First, we
use CNN as the sentence encoder. The combination
of CNN and LSTM has been considered in image
captioning (Karpathy and Fei-Fei, 2015), and in
some recent work on machine translation (Kalch-
brenner and Blunsom, 2013; Meng et al., 2015;
Gehring et al., 2016). Our utilization of a CNN is
different, and more importantly, the ultimate goal
of our model is different. Our work aims to use a
CNN to learn generic sentence embeddings.

Second, we use the hierarchical CNN-LSTM
model to predict multiple future sentences, rather
than the surrounding two sentences as in Kiros
et al. (2015). Utilizing a larger context window
aids our model to learn better sentence representa-
tions, capturing longer-term dependencies between
sentences. Similar work to this hierarchical lan-
guage modeling can be found in Li et al. (2015);
Sordoni et al. (2015); Lin et al. (2015); Wang and
Cho (2016). Specifically, Li et al. (2015); Sordoni
et al. (2015) uses an LSTM for the sentence en-
coder, while Lin et al. (2015) uses a bag-of-words
to represent sentences.

4 Experiments

We first provide qualitative analysis of our CNN
encoder, and then present experimental results on 8
tasks: 5 classification benchmarks, paraphrase de-
tection, semantic relatedness and image-sentence
ranking. As in Kiros et al. (2015), we evaluate the
capabilities of our encoder as a generic feature ex-
tractor. To further demonstrate the advantage of our
learned generic sentence representations, we also
fine-tune our trained sentence encoder on the 5 clas-

sification benchmarks. All the CNN-LSTM mod-
els are trained using the BookCorpus dataset (Zhu
et al., 2015), which consists of 70 million sentences
from over 7000 books.

We train four models in total: (i) an autoen-
coder, (ii) a future predictor, (iii) the composite
model, and (iv) the hierarchical model. For the
CNN encoder, we employ filter windows (h) of
sizes {3,4,5} with 800 feature maps each, hence
each sentence is represented as a 2400-dimensional
vector. For both, the LSTM sentence decoder and
paragraph generator, we use one hidden layer of
600 units.

The CNN-LSTM models are trained with a vo-
cabulary size of 22,154 words. In order to learn a
generic sentence encoder that can encode a large
number of possible words, we use two methods
of considering words not in the training set. Sup-
pose we have a large pretrained word embedding
matrix, such as the publicly available word2vec
vectors (Mikolov et al., 2013), in which all test
words are assumed to reside.

The first method learns a linear mapping be-
tween the word2vec embedding space Vw2v and
the learned word embedding space Vcnn by solv-
ing a linear regression problem (Kiros et al., 2015).
Thus, any word from Vw2v can be mapped into
Vcnn for encoding sentences. The second method
fixes the word vectors in Vcnn as the corresponding
word vectors in Vw2v , and we do not update the
word embedding parameters during training. Thus,
any word vector from Vw2v can be naturally used
to encode sentences. By doing this, our trained
sentence encoder can successfully encode 931,331
words.

For training, all weights in the CNN and non-
recurrent weights in the LSTM are initialized from
a uniform distribution in [-0.01,0.01]. Orthogonal
initialization is employed on the recurrent matrices
in the LSTM. All bias terms are initialized to zero.
The initial forget gate bias for LSTM is set to 3.
Gradients are clipped if the norm of the parame-
ter vector exceeds 5 (Sutskever et al., 2014). The
Adam algorithm (Kingma and Ba, 2015) with learn-
ing rate 2× 10−4 is utilized for optimization. For
all the CNN-LSTM models, we use mini-batches
of size 64. For the hierarchical CNN-LSTM model,
we use mini-batches of size 8, and each paragraph
is composed of 8 sentences. We do not perform
any regularization other than dropout (Srivastava
et al., 2014). All experiments are implemented
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A you needed me? this is great. its lovely to see you. he had thought he was going crazy.
B you got me? this is awesome. its great to meet you. i felt like i was going crazy.
C i got you. you are awesome. its great to meet him. i felt like to say the right thing.

D i needed you. you are great. its lovely to see him. he had thought to say the right thing.

Table 1: Vector “compositionality” using element-wise addition and subtraction. Let z(s) denote the
vector representation z of a given sentence s. We first calculate z?=z(A)-z(B)+z(C). The resulting vector
is then sent to the LSTM to generate sentence D.

Query and nearest sentence

johnny nodded his curly head , and then his breath eased into an even rhythm .
aiden looked at my face for a second , and then his eyes trailed to my extended hand .

i yelled in frustration , throwing my hands in the air .
i stand up , holding my hands in the air .

i loved sydney , but i was feeling all sorts of homesickness .
i loved timmy , but i thought i was a self-sufficient person .

“ i brought sad news to mistress betty , ” he said quickly , taking back his hand .
“ i really appreciate you taking care of lilly for me , ” he said sincerely , handing me the money .

“ i am going to tell you a secret , ” she said quietly , and he leaned closer .
“ you are very beautiful , ” he said , and he leaned in .

she kept glancing out the window at every sound , hoping it was jackson coming back .
i kept checking the time every few minutes , hoping it would be five oclock .

leaning forward , he rested his elbows on his knees and let his hands dangle between his legs .
stepping forward , i slid my arms around his neck and then pressed my body flush against his .

i take tris ’s hand and lead her to the other side of the car , so we can watch the city disappear behind us .
i take emma ’s hand and lead her to the first taxi , everyone else taking the two remaining cars .

Table 2: Query-retrieval examples. In each case (block of rows), the first sentence is a query, while the
second sentence is the retrieved result from a random subset of 1 million sentences from the BookCorpus
dataset.

in Theano (Bastien et al., 2012), using a NVIDIA
GeForce GTX TITAN X GPU with 12GB memory.

4.1 Qualitative analysis
We first demonstrate that the sentence representa-
tion learned by our model exhibits a structure that
makes it possible to perform analogical reasoning
using simple vector arithmetics, as illustrated in Ta-
ble 1. It demonstrates that the arithmetic operations
on the sentence representations correspond to word-
level addition and subtractions. For instance, in the
3rd example, our encoder captures that the differ-
ence between sentence B and C is “you" and “him",
so that the former word in sentence A is replaced
by the latter (i.e., “you”-“you”+“him”=“him”),
resulting in sentence D.

Table 2 shows nearest neighbors of sentences
from a CNN-LSTM autoencoder trained on the
BookCorpus dataset. Nearest neighbors are scored
by cosine similarity from a random sample of 1
million sentences from the BookCorpus dataset.
As can be seen, our encoder learns to accurately

capture semantic and syntax of the sentences.

4.2 Quantitative evaluations
Classification benchmarks We first study the
task of sentence classification on 5 datasets:
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004),
SUBJ (Pang and Lee, 2004), MPQA (Wiebe et al.,
2005) and TREC (Li and Roth, 2002). On all the
datasets, we separately train a logistic regression
model on top of the extracted sentence features. We
restrict our comparison to methods that also aims to
learn generic sentence embeddings for fair compar-
ison. We also provide the state-of-the-art results us-
ing task-dependent learning methods for reference.
Results are summarized in Table 3. Our CNN en-
coder provides better results than the combine-skip
model of Kiros et al. (2015) on all the 5 datasets.

We highlight some observations. First, the au-
toencoder performs better than the future predic-
tor, indicating that the intra-sentence information
may be more important for classification than the
inter-sentence information. Second, the hierarchi-
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Method MR CR SUBJ MPQA TREC MSRP(Acc/F1)

ParagraphVec DM (Hill et al., 2016) 61.5 68.6 76.4 78.1 55.8 73.6 / 81.9
SDAE (Hill et al., 2016) 67.6 74.0 89.3 81.3 77.6 76.4 / 83.4
SDAE+emb. (Hill et al., 2016) 74.6 78.0 90.8 86.9 78.4 73.7 / 80.7
FastSent (Hill et al., 2016) 70.8 78.4 88.7 80.6 76.8 72.2 / 80.3

uni-skip (Kiros et al., 2015) 75.5 79.3 92.1 86.9 91.4 73.0 / 81.9
bi-skip (Kiros et al., 2015) 73.9 77.9 92.5 83.3 89.4 71.2 / 81.2
combine-skip (Kiros et al., 2015) 76.5 80.1 93.6 87.1 92.2 73.0 / 82.0

Our Results†

autoencoder 75.53 78.97 91.97 87.96 89.8 73.61 / 82.14
future predictor 72.56 78.44 90.72 87.48 86.6 71.87 / 81.68
hierarchical model 75.20 77.99 91.66 88.21 90.0 73.96 / 82.54
composite model 76.34 79.93 92.45 88.77 91.4 74.65 / 82.21
combine‡ 77.21 80.85 93.11 89.09 91.8 75.52 / 82.62

hierarchical model+emb. 75.30 79.37 91.94 88.48 90.4 74.25 / 82.70
composite model+emb. 77.16 80.64 92.14 88.67 91.2 74.88 / 82.28
combine+emb.‡ 77.77 82.05 93.63 89.36 92.6 76.45 / 83.76

Task-dependent methods

CNN (Kim, 2014) 81.5 85.0 93.4 89.6 93.6 −
AdaSent (Zhao et al., 2015) 83.1 86.3 95.5 93.3 92.4 −
Bi-CNN-MI (Yin and Schütze, 2015) − − − − − 78.1/84.4
MPSSM-CNN (He et al., 2015) − − − − − 78.6/84.7

Table 3: Classification accuracies on several standard benchmarks. The last column shows results on the
task of paraphrase detection, where the evaluation metrics are classification accuracy and F1 score. †The
first and second block in our results were obtained using the first and second method of considering words
not in the training set, respectively. ‡“combine” means concatenating the feature vectors learned from
both the hierarchical model and the composite model.

cal model performs better than the future predictor,
demonstrating the importance of capturing long-
term dependencies across multiple sentences. Our
combined model, which concatenates the feature
vectors learned from both the hierarchical model
and the composite model, performs the best. This
may be due to that: (i) both intra- and long-term
inter-sentence information are leveraged; (ii) it is
easier to linearly separate the feature vectors in
higher dimensional spaces. Further, using (fixed)
pre-trained word embeddings consistently provides
better performance than using the learned word
embeddings. This may be due to that word2vec
provides more generic word representations, since
it is trained on the large Google News dataset (con-
taining 100 billion words) (Mikolov et al., 2013).

To further demonstrate the advantage of the
learned generic representations, we train a CNN
classifier (i.e., a CNN encoder with a logistic regres-
sion model on top) with two different initialization
strategies: random initialization and initialization
with trained parameters from the CNN-LSTM com-
posite model. Results are shown in Figure 3(left).
The pretraining provides substantial improvements
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Figure 3: (Left) Effect of pretraining on the 5 clas-
sification benchmarks. The error bars are over 10
different runs. (Right) Effect of pretraining on ac-
curacy for the TREC dataset, in terms of change
in the size of the labeled training set. The error
bars are over 10 different samples of training sets.
Pretraining means initializing the CNN parameters
from the trained CNN-LSTM composite model.

(3.52% on average) over random initialization of
CNN parameters. Figure 3(right) shows the effect
of pretraining as the number of labeled sentences
is varied. For the TREC dataset, the performance
improves from 79.7% to 84.1% when only 10%
sentences are labeled. As the size of the set of la-
beled sentences grows, the improvement becomes
smaller, as expected. For future work, our CNN-
LSTM model can be also used for semi-supervised
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Image Annotation Image Search
Method R@1 Med r R@1 Med r

uni-skip† 30.6 3 22.7 4
bi-skip† 32.7 3 24.2 4
combine-skip† 33.8 3 25.9 4

Our Results

hierarchical model+emb. 32.7 3 25.3 4
composite model+emb. 33.8 3 25.7 4
combine+emb. 34.4 3 26.6 4

Task-dependent methods

DVSA∗ 38.4 1 27.4 3
m-RNN‡ 41.0 2 29.0 3

Table 4: Results for image-sentence ranking ex-
periments on the COCO dataset. R@K denotes
Recall@K (higher is better) and Med r is the me-
dian rank (lower is better). (†) taken from Kiros
et al. (2015). (∗) taken from Karpathy and Fei-Fei
(2015). (‡) taken from Mao et al. (2015).

learning, with the autoencoder on all the data (la-
beled and unlabled), and the classifier only on the
labeled data.

Paraphrase detection Now we consider para-
phrase detection on the MSRP dataset (Dolan et al.,
2004). On this task, one needs to predict whether
or not two sentences are paraphrases. The training
set consists of 4076 sentence pairs, and the test set
has 1725 pairs. As in Tai et al. (2015), given two
sentence representations zx and zy, we first com-
pute their element-wise product zx � zy and their
absolute difference |zx − zy|, and then concate-
nate them together. A logistic regression model
is trained on top of the concatenated features to
predict whether two sentences are paraphrases. We
present our results on the last column of Table 3.
Our best result is better than the other results that
use task-independent methods.

Image-sentence ranking We consider the task
of image-sentence ranking, which aims to retrieve
items in one modality given a query from the other.
We use the COCO dataset (Lin et al., 2014), which
contains 123,287 images each with 5 captions. For
development and testing we use the same splits
as Karpathy and Fei-Fei (2015). The development
and test sets each contain 5000 images. We further
split them into 5 random sets of 1000 images, and
report the average performance over the 5 splits.
Performance is evaluated using Recall@K, which
measures the average times a correct item is found
within the top-K retrieved results. We also report
the median rank of the closest ground truth result

Method r ρ MSE

uni-skip† 0.8477 0.7780 0.2872
bi-skip† 0.8405 0.7696 0.2995
combine-skip† 0.8584 0.7916 0.2687

Our Results

autoencoder 0.8284 0.7577 0.3258
future predictor 0.8132 0.7342 0.3450
hierarchical model 0.8333 0.7646 0.3135
composite model 0.8434 0.7767 0.2972
combine 0.8533 0.7891 0.2791

hierarchical model+emb. 0.8352 0.7588 0.3152
composite model+emb. 0.8500 0.7867 0.2872
combine+emb. 0.8618 0.7983 0.2668

Task-dependent methods

Bi-LSTM‡ 0.8567 0.7966 0.2736
Tree-LSTM‡ 0.8676 0.8083 0.2532

Table 5: Results on the SICK semantic relatedness
task. The evaluation metrics are Pearson’s r, Spear-
man’s ρ and mean squared error (MSE). (†) taken
from Kiros et al. (2015). (‡) taken from Tai et al.
(2015).

in the ranked list.
We represent images using 4096-dimensional

feature vectors from VggNet (Simonyan and Zis-
serman, 2015). Each caption is encoded using
our trained CNN encoder. The training objec-
tive is the same pairwise ranking loss as used
in Kiros et al. (2015), which takes the form of
max(0, α− f(xn, yn) + f(xn, ym)), where f(·, ·)
is the image-sentence score. (xn, yn) denotes the
related image-sentence pair, and (xn, ym) is the
randomly sampled unrelated image-sentence pair
with n 6= m. For image retrieval from sentences, x
denotes the caption, y denotes the image, and vice
versa. The objective is to force the matching score
of the related pair (xn, yn) to be greater than the
unrelated pair (xn, ym) by a margin α, which is set
to 0.1 in our experiments.

Table 4 shows our results. Consistent with pre-
vious experiments, we empirically found that the
encoder trained using the fixed word embedding
performed better on this task, hence only results
using this method are reported. As can be seen,
we obtain the same median rank as in Kiros et al.
(2015), indicating that our encoder is as competi-
tive as the skip-thought vectors (Kiros et al., 2015).
The performance gain between our encoder and
the combine-skip model of Kiros et al. (2015) on
the R@1 score is significant, which shows that the
CNN encoder has more discriminative power on re-
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trieving the most correct item than the skip-thought
vector.

Semantic relatedness For our final experiment,
we consider the task of semantic relatedness on the
SICK dataset (Marelli et al., 2014), consisting of
9927 sentence pairs. Given two sentences, our goal
is to produce a real-valued score between [1, 5]
to indicate how semantically related two sentences
are, based on human generated scores. We compute
a feature vector representing the pair of sentences
in the same way as on the MSRP dataset. We follow
the method in Tai et al. (2015), and use the cross-
entropy loss for training. Results are summarized
in Table 5. Our result is better than the combine-
skip model of Kiros et al. (2015). This suggests
that CNN also provides competitive performance
at matching human relatedness judgements.

5 Conclusion

We presented a new class of CNN-LSTM encoder-
decoder models to learn sentence representations
from unlabeled text. Our trained convolutional
encoder is highly generic, and can be an alternative
to the skip-thought vectors of Kiros et al. (2015).
Compelling experimental results on several tasks
demonstrated the advantages of our approach. In
future work, we aim to use more advanced CNN
architectures (Conneau et al., 2016) for learning
generic sentence embeddings.
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Abstract

We present a novel approach for training
artificial neural networks. Our approach is
inspired by broad evidence in psychology
that shows human learners can learn effi-
ciently and effectively by increasing inter-
vals of time between subsequent reviews of
previously learned materials (spaced repeti-
tion). We investigate the analogy between
training neural models and findings in psy-
chology about human memory model and
develop an efficient and effective algorithm
to train neural models. The core part of our
algorithm is a cognitively-motivated sched-
uler according to which training instances
and their “reviews” are spaced over time.
Our algorithm uses only 34-50% of data
per epoch, is 2.9-4.8 times faster than stan-
dard training, and outperforms competing
state-of-the-art baselines.1

1 Introduction

Deep neural models are known to be computa-
tionally expensive to train even with fast hard-
ware (Sutskever et al., 2014; Wu et al., 2016). For
example, it takes three weeks to train a deep neu-
ral machine translation system on 100 Graphics
Processing Units (GPUs) (Wu et al., 2016). Fur-
thermore, a large amount of data is usually required
to train effective neural models (Goodfellow et al.,
2016; Hirschberg and Manning, 2015).

Bengio et al. (2009) and Kumar et al. (2010) de-
veloped training paradigms which are inspired by
the learning principle that humans can learn more
effectively when training starts with easier con-
cepts and gradually proceeds with more difficult
concepts. Since these approaches are motivated by

1Our code is available at scholar.harvard.edu/
hadi/RbF/

a “starting small” strategy they are called curricu-
lum or self-paced learning.

In this paper, we present a novel training
paradigm which is inspired by the broad evidence
in psychology that shows human ability to retain
information improves with repeated exposure and
exponentially decays with delay since last expo-
sure (Cepeda et al., 2006; Averell and Heathcote,
2011). Spaced repetition was presented in psychol-
ogy (Dempster, 1989) and forms the building block
of many educational devices, including flashcards,
in which small pieces of information are repeatedly
presented to a learner on a schedule determined
by a spaced repetition algorithm. Such algorithms
show that human learners can learn efficiently and
effectively by increasing intervals of time between
subsequent reviews of previously learned materi-
als (Dempster, 1989; Novikoff et al., 2012).

We investigate the analogy between training neu-
ral models and findings in psychology about human
memory model and develop a spaced repetition al-
gorithm (named Repeat before Forgetting, RbF)
to efficiently and effectively train neural models.
The core part of our algorithm is a scheduler that
ensures a given neural network spends more time
working on difficult training instances and less time
on easier ones. Our scheduler is inspired by fac-
tors that affect human memory retention, namely,
difficulty of learning materials, delay since their
last review, and strength of memory. The scheduler
uses these factors to lengthen or shorten review
intervals with respect to individual learners and
training instances. We evaluate schedulers based
on their scheduling accuracy, i.e., accuracy in es-
timating network memory retention with respect
to previously-seen instances, as well as their effect
on the efficiency and effectiveness of downstream
neural networks.2

2 In this paper, we use the terms memory retention, recall,
and learning interchangeably.
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The contributions of this paper are: (1) we show
that memory retention in neural networks is af-
fected by the same (known) factors that affect mem-
ory retention in humans, (2) we present a novel
training paradigm for neural networks based on
spaced repetition, and (3) our approach can be ap-
plied without modification to any neural network.

Our best RbF algorithm uses 34-50% of train-
ing data per epoch while producing similar results
to state-of-the-art systems on three tasks, namely
sentiment classification, image categorization, and
arithmetic addition.3 It also runs 2.9-4.8 times
faster than standard training, and outperforms com-
peting state-of-the-art baselines.

2 Neural and Brain Memory Models

Research in psychology describes the following
memory model for human learning: the probability
that a human recalls a previously-seen item (e.g.,
the Korean translation of a given English word) de-
pends on the difficulty of the item, delay since last
review of the item, and the strength of the human
memory. The relation between these indicators
and memory retention has the following functional
form (Reddy et al., 2016; Ebbinghaus, 1913):

Pr(recall) = exp(−difficulty × delay
strength

). (1)

An accurate memory model enables estimating
the time by which an item might be forgotten by
a learner so that a review can be scheduled for the
learner before that time.

We investigate the analogy between the above
memory model and memory model of artificial
neural networks. Our intuition is that if the proba-
bility that a network recalls an item (e.g., correctly
predicts its category) depends on the same factors
(difficulty of the item, delay since last review of
the item, or strength of the network), then we can
develop spaced repetition algorithms to efficiently
and effectively train neural networks.

2.1 Recall Indicators
We design a set of preliminarily experiments to
directly evaluate the effect of the aforementioned
factors (recall indicators) on memory retention in
neural networks. For this purpose, we use a set
of training instances that are partially made avail-
able to the network during training. This scheme

3We obtained similar results on QA tasks (Weston et al.,
2016) but they are excluded due to space limit.

Epochs

delay
Sliding review 

window

First review 
point (fRev)

Last review 
point (lRev)

Recall 
point (Rec) 

epoch = 0 

{A ∪ B }

{A ∪ C }  {A ∪ C }

Figure 1: Effect of recall indicators on network
retention. Training data is uniformly at random
divided into three disjoint sets A, B, and C that
respectively contain 80%, 10%, and 10% of the
data. Network retention is computed against set B
instances at recall point.

will allow us to intrinsically examine the effect of
recall indicators on memory retention in isolation
from external effects such as size of training data,
number of training epochs, etc.

We first define the following concepts to ease
understanding the experiments (see Figure 1):

• First and Last review points (fRev and
lRev) of a training instance are the first and
last epochs in which the instance is used to
train the network respectively,

• Recall point (Rec) is the epoch in which net-
work retention is computed against some train-
ing instances; network retention is the prob-
ability that a neural network recalls (i.e. cor-
rectly classifies) a previously-seen training in-
stance, and

• Delay since last review of a training instance
is the difference between the recall point and
the last review point of the training instance.

Given training data and a neural network, we uni-
formly at random divide the data into three disjoint
sets: a base set A, a review set B, and a replace-
ment set C that respectively contain 80%, 10%, and
10% of the data. As depicted in Figure 1, instances
of A are used for training at every epoch, while
those in B and C are partially used for training.
The network initially starts to train with {A ∪ C}
instances. Then, starting from the first review point,
we inject the review set B and remove C, training
with {A ∪ B} instances at every epoch until the
last review point. The network will then continue
training with {A ∪ C} instances until the recall
point. At this point, network retention is computed
against set B instances, with delay defined as the
number of epochs since last review point. The intu-
ition behind using review and replacement sets, B
and C respectively, is to avoid external effects (e.g.
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Figure 2: (a) Delay since last review vs. average network retention (accuracy) on set B instances at recall
point. Recall point is fixed and set to the epoch in which networks obtain their best performance based on
rote training. (b) The same as (a) except that recall point is set to the epoch in which networks obtain half
of their best performance based on rote training. (c) Item Difficulty (normalized loss at last review point)
vs. average network retention at recall point on set B instances. (d) Network strength (network accuracy
on validation data at recall point) vs. average network retention at recall point on set B instances. Length
of sliding window is fixed throughout experiments and set to 5 epochs.

size of data or network generalization and learning
capability) for our intrinsic evaluation purpose.

To conduct these experiments, we identify dif-
ferent neural models designed for different tasks.4

For each network, we fix the recall point to either
the epoch in which the network is fully trained (i.e.,
obtains its best performance based on standard or
“rote” training in which all instances are used for
training at every iteration), or partially trained (i.e.,
obtains half of its best performance based on rote
training). We report average results across these
networks for each experiment.

2.1.1 Delay since Last Review
As aforementioned, delay since last review of a
training instance is the difference between the re-
call point (Rec) and the last review point (lRev)
of the training instance. We evaluate the effect of
delay on network retention (against set B instances)
by keeping the recall point fixed while moving the
sliding window in Figure 1. Figures 2(a) and 2(b)
show average network retention across networks
for the fully and partially trained recall points re-
spectively. The results show an inverse relationship
between network retention and delay since last re-
view in neural networks.

2.1.2 Item Difficulty
We define difficulty of training instances by the
loss values generated by a network for the instances.
Figure 2(c) shows the difficulty of set B instances at
the last review point against average network reten-
tion on these instances at recall point. We normal-
ize loss values to unit vectors (to make them com-

4See section 4, we use Addition and CIFAR10 datasets and
their corresponding neural networks for these experiments.

parable across networks) and then average them
across networks for both fully and partially trained
recall points. As the results show, network reten-
tion decreases as item difficulty increases.

2.1.3 Network Strength

We define strength of a network by its performance
on validation data. To understand the effect of
network strength on its retention, we use the same
experimental setup as before except that we keep
the delay (difference between recall point and last
review point) fixed while gradually increasing the
recall point; this will make the networks stronger
by training them for more epochs. Then, at every
recall point, we record network retention on set B
instances and network accuracy on validation data.
Average results across networks for two sets of 10
consecutive recall points (before fully and partially
trained recall points) are shown in Figure 2(d). As
the results show, network retention increases as
memory strength increases.

The above experiments show that memory re-
tention in neural networks is affected by the same
factors that affect memory retention in humans: (a)
neural networks forget training examples after a
certain period of intervening training data (b): the
period of recall is shorter for more difficult exam-
ples, and (c): recall improves as networks achieve
better overall performance. We conclude that de-
lay since last review, item difficulty (loss values of
training instances), and memory strength (network
performance on validation data) are key indicators
that affect network retention and propose to design
spaced repetition algorithms that take such indica-
tors into account in training neural networks.
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Algorithm 1. Leitner System
Input: H : training data, V : validation data, k : num-
ber of iterations, n : number of queues
Output: trained model

0 Q = [q0, q1, . . . , qn−1]
1 q0 = [H], qi = [] for i in [1, n− 1]
2 For epoch = 1 to k:
3 current batch = []
4 For i = 0 to n− 1:
5 If epoch%2i == 0:
6 current batch = current batch+ qi
7 End For
8 pmos, dmos,model = train(current batch,V)
9 update queue(Q, pmos, dmos)
10 End for
11 return model
q0 epochs = {1, 2, 3, 4, 5, . . . }
q1 epochs = {2, 4, 6, 8, 10, . . . }
q2 epochs = {4, 8, 12, 16, 20, . . . }
. . .

Figure 3: Leitner System. The train(.) function
trains the network for one epoch using instances
in the current batch, and the update queue(.)
function promotes the recalled (correctly classified)
instances, pmos, to the next queue and demotes the
forgotten ones, dmos, to q0.

3 Spaced Repetition

We present two spaced repetition-based algorithms:
a modified version of the Leitner system developed
in (Reddy et al., 2016) and our Repeat before For-
getting (RbF) model respectively.

3.1 Leitner System
Suppose we have n queues {q0, q1, . . . , qn−1}. The
Leitner system initially places all training instances
in the first queue, q0. As Algorithm 1 shows,
at each training iteration, the Leitner scheduler
chooses some queues to train a downstream neu-
ral network. Only instances in the selected queues
will be used for training the network. During train-
ing, if an instance from qi is recalled (e.g. correctly
classified) by the network, the instance will be “pro-
moted” to qi+1, otherwise it will be “demoted” to
the first queue, q0.5

The Leitner scheduler reviews instances of qi
at every 2i iterations. Therefore, instance in
lower queues (difficult/forgotten instances) are re-
viewed more frequently than those in higher queues
(easy/recalled ones). Figure 3 (bottom) provides
examples of queues and their processing epochs.
Note that the overhead imposed on training by

5 Note that in (Reddy et al., 2016) demoted instances are
moved to qi−1. We observed significant improvement in Leit-
ner system by moving such instances to q0 instead of qi−1.

the Leitner system is O(|current batch|) at every
epoch for moving instances between queues.

3.2 RbF Model
3.2.1 RbF Memory Models
The challenge in developing memory models is
to estimate the time by which a training instance
should be reviewed before it is forgotten by the
network. Accurate estimation of the review time
leads to efficient and effective training. However, a
heuristic scheduler such as Leitner system is sub-
optimal as its hard review schedules (i.e. only 2i-
iteration delays) may lead to early or late reviews.

We develop flexible schedulers that take recall in-
dicators into account in the scheduling process. Our
schedulers lengthen or shorten inter-repetition in-
tervals with respect to individual training instances.
In particular, we propose using density kernel func-
tions to estimate the latest epoch in which a given
training instance can be recalled. We aim to investi-
gate how much improvement (in terms of efficiency
and effectiveness) can be achieved using more flex-
ible schedulers that utilize the recall indicators.

We propose considering density kernels as sched-
ulers that favor (i.e., more confidently delay) less
difficult training instances in stronger networks. As
a kernel we can use any non-increasing function of
the following quantity:

xi =
di × ti
se

, (2)

where di indicates the loss of network for a training
instance hi ∈ H, ti indicates the number of epochs
to next review of hi, and se indicates the perfor-
mance of network— on validation data— at epoch
e. We investigate the Gaussian, Laplace, Linear,
Cosine, Quadratic, and Secant kernels as described
below respectively:

fgau(x, τ) = exp(−τx2), (3)

flap(x, τ) = exp(−τx), (4)

flin(x, τ) =

{
1− τx x < 1

τ

0 otherwise
, (5)

fcos(x, τ) =

{
1
2 cos(τπx) + 1 x < 1

τ

0 otherwise
,

(6)

fqua(x, τ) =

{
1− τx2 x2 < 1

τ

0 otherwise
, (7)

fsec(x, τ) =
2

exp(−τx2) + exp(τx2)
, (8)
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Figure 4: RbF kernel functions with τ = 1.

where τ is a learning parameter. Figure 4 depicts
these kernels with τ = 1. As we will discuss in
the next section, we use these kernels to optimize
delay with respect to item difficulty and network
strength for each training instance.

3.2.2 RbF Algorithm
Our Repeat before Forgetting (RbF) model is a
spaced repetition algorithm that takes into account
the previously validated recall indicators to train
neural networks, see Algorithm 2. RbF divides
training instances into current and delayed batches
based on their delay values at each iteration. In-
stances in the current batch are those that RbF is
less confident about their recall and therefore are
reviewed (used to re-train the network) at current
iteration. On the other hand, instances in the de-
layed batch are those that are likely to be recalled
by the network in the future and therefore are not re-
viewed at current epoch. At each iteration, the RbF
scheduler estimates the optimum delay (number of
epochs to next review) for each training instance
in the current batch. RbF makes such item-specific
estimations as follows:

Given the difficulty of a training instance di, the
memory strength of the neural network at epoch e,
se, and an RbF memory model f (see section 3.2.1),
RbF scheduler estimates the maximum delay t̂i for
the instance such that it can be recalled with a con-
fidence greater than the given threshold η ∈ (0, 1)
at time e+ t̂i. As described before, di and se can
be represented by the current loss of the network
for the instance and the current performance of the
network on validation data respectively. Therefore,
the maximum delay between the current (epoch e)
and next reviews of the instance can be estimated
as follows:

t̂i = argmin
ti

(
f(xi, τ̂)− η

)2
, (9)

s.t 1 ≤ ti ≤ k − e

Algorithm 2. RbF Training Model
Input: H : training data, V : validation data, k : num-
ber of iterations, f : RbF kernel, η: recall confidence
Output: trained model

0 ti = 1 for hi ∈ H
1 For epoch = 1 to k:
2 current batch = {hi : ti <= 1}
3 delayed batch = {hi : ti > 1}
4 sepoch,model = train(current batch,V)

5 τ̂ = argminτ
(
f(xi, τ)− ai

)2 ∀hi ∈ V, ai ≥ η
6 t̂i = argminti

(
f(xi, τ̂)−η

)2∀hi ∈ current batch
7 ti = ti − 1 ∀hi ∈ delayed bach
8 End for
9 return model

Figure 5: RbF training model. The train(.) func-
tion at line 5 trains the network for one epoch using
instances in the current batch. Note that at each
iteration epoch, xi is computed using Equation (2)
and strength of the current model, sepoch.

where τ̂ is the optimum value for the learning pa-
rameter obtained from validation data, see Equa-
tion (10). In principle, reviewing instances could
be delayed for any number of epochs; in practice
however, delay is bounded both below and above
(e.g., by queues in the Leitner system). Thus, we
assume that, at each epoch e, instances could be
delayed for at least one iteration and at most k − e
iterations where k is the total number of training
epochs. We also note that ti is a lower bound of the
maximum delay as se is expected to increase and
di is expected to decrease as the network trains in
next iterations.

Algorithm 2 shows the outline of the proposed
RbF model. We estimate the optimum value of τ
(line 5 of Algorithm 2) for RbF memory models us-
ing validation data. In particular, RbF uses the loss
values of validation instances and strength of the
network obtained at the previous epoch to estimate
network retention for validation instances at the
current epoch (therefore ti = 1 for every validation
instance). The parameter τ for each memory model
is computed as follows:

τ̂ = argmin
τ

(
f(xj , τ)− aj

)2
,∀hj ∈ V, aj ≥ η,

(10)
where aj ∈ (0, 1) is the current accuracy of the
model for the validation instance hj . RbF then
predicts the delay for current batch instances and
reduces the delay for those in the delayed batch
by one epoch. The overhead of RbF is O(|H|) to
compute delays and O(|V|) to compute τ̂ . Note
that (9) and (10) have closed form solutions.
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Dataset train, dev, test Network Task

IMDb 20K, 5K, 25K

MLP/fastext
(Joulin et al.,
2017), best
epoch=8

sentiment
analysis

CIFAR10 45K, 5K, 10K
CNN (Chan
et al., 2015)
best epoch=64

image clas-
sification

Addition 40K, 5K, 10K
LSTM (Sutskever
et al., 2014)
best epoch=32

arithmetic
addition

Table 1: Datasets, models, and tasks.

4 Experiments

Table 1 describes the tasks, datasets, and models
that we consider in our experiments. It also reports
the training epochs for which the models produce
their best performance on validation data (based on
rote training). We note that the Addition dataset is
randomly generated and contains numbers with at
most 4 digits.6

We consider three schedulers as baselines: a
slightly modified version of the Leitner scheduler
(Lit) developed in Reddy et al. (2016) for human
learners (see Footnote 5), curriculum learning (CL)
in which training instances are scheduled with re-
spect to their easiness (Jiang et al., 2015), and
the uniform scheduler of rote training (Rote) in
which all instances are used for training at every
epoch. For Lit, we experimented with different
queue lengths, n = {3, 5, 7}, and set n = 5 in
the experiments as this value led to the best perfor-
mance of this scheduler across all datasets.

Curriculum learning starts training with easy
instances and gradually introduces more com-
plex instances for training. Since easiness infor-
mation is not readily available in most datasets,
previous approaches have used heuristic tech-
niques (Spitkovsky et al., 2010; Basu and Chris-
tensen, 2013) or optimization algorithms (Jiang
et al., 2015, 2014) to quantify easiness of training
instances. These approaches consider an instance
as easy if its loss is smaller than a threshold (λ).
We adopt this technique as follows: at each itera-
tion e, we divide the entire training data into easy
and hard sets using iteration-specific λe and the
loss values of instances, obtained from the current
partially-trained network. All easy instances in con-
junction with αe ∈ [0, 1] fraction of easiest hard
instances (those with smallest loss values greater
than λe) are used for training at iteration e. We set

6https://github.com/fchollet/keras/
blob/master/examples/addition_rnn.py
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Figure 6: Accuracy of schedulers in predicting
network retention. For these experiments recall
confidence is set to its default value, η = 0.5.

each λe to the average loss of training instances
that are correctly classified by the current partially-
trained network. Furthermore, at each iteration e,
we set αe = e/k to gradually introduce complex
instances at every new iteration.7 Note that we treat
all instances as easy at e = 0.

Performance values reported in experiments are
averaged over 10 runs of systems and the confi-
dence parameter η is always set to 0.5 unless other-
wise stated.

4.1 Evaluation of Memory Models
In these experiments, we evaluate memory sched-
ulers with respect to their accuracy in predicting
network retention for delayed instances. Since cur-
riculum learning does not estimate delay for train-
ing instances, we only consider Leitner and RbF
schedulers in these experiments.

For this evaluation, if a scheduler predicts a delay
t for a training instance h at epoch e, we evaluate
network retention with respect to h at epoch e+ t.
If the network recalls (correctly classifies) the in-
stance at epoch e+ t, the scheduler has correctly
predicted network retention for h, and otherwise, it
has made a wrong prediction. We use this binary
outcome to evaluate the accuracy of each sched-
uler. Note that the performance of schedulers on
instances that have not been delayed is not a ma-
jor concern. Although failing to delay an item
inversely affects efficiency, it makes the network
stronger by providing more instances to train from.
Therefore, we consider a good scheduler as the one
that accurately delays more items.

Figure 6 depicts the average accuracy of sched-
ulers in predicting networks’ retention versus the
average fraction of training instances that they de-
layed per epoch. As the results show, all schedulers

7k is the total number of iterations.
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Figure 7: Effect of recall confidence η on the accu-
racy of different schedulers in predicting network
retention (best seen in color.)

delay substantial amount of instances per epoch. In
particular, Cos and Qua outperform Lit in both pre-
dicting network retention and delaying items, de-
laying around 50% of training instances per epoch.
This is while Gau and Sec show comparable ac-
curacy to Lit but delay more instances. On the
other hand, Lap, which has been found effective in
Psychology, and Lin are less accurate in predicting
network retention. This is because of the trade-
off between delaying more instances and creating
stronger networks. Since these schedulers are more
flexible in delaying greater amount of instances,
they might not provide networks with enough data
to fully train.

Figure 7 shows the performance of RbF sched-
ulers with respect to the recall confidence parame-
ter η, see Equation (9). As the results show, sched-
ulers have poor performance with smaller values of
η. This is because smaller values of η make sched-
ulers very flexible in delaying instances. However,
the performance of schedulers are not dramatically
low even with very small ηs. Our further analyses
on the delay patterns show that although a smaller
η leads to more delayed instances, the delays are
significantly shorter. Therefore, most delayed in-
stances will be “reviewed” shortly in next epochs.
These bulk reviews make the network stronger and
help it to recall most delayed instance in future
iterations.

On the other hand, greater ηs lead to more ac-
curate schedulers at the cost of using more train-
ing data. In fact, we found that larger ηs do not
delay most training instances in the first few itera-
tions. However, once the network obtains a reason-
ably high performance, schedulers start delaying
instances for longer durations. We will further
study this effect in the next section.

Model Accuracy TIPE X Faster Gain
CL 0.868 0.71 0.93 1.40
Lit 0.859 0.67 2.87 1.85
Gau 0.874 0.48 3.02 2.16
Lap 0.857 0.34 4.66 3.15
Lin 0.864 0.36 4.78 3.07
Cos 0.868 0.49 2.90 2.10
Qua 0.871 0.50 2.95 2.08
Sec 0.866 0.44 3.09 2.33
Cos η = 0.9 0.880 0.76 2.36 1.42
Rote 0.887 1.00 1.00 1.00

Table 2: Comparison of schedulers in terms of aver-
age network accuracy, average fraction of instances
used for training per epoch (TIPE), and the extent
to which a model runs faster than Rote training (X
Times Faster). Gain column indicates the Accuracy

TIPE
improvement over rote training.

4.2 Efficiency and Effectiveness

We compare RbF against Leitner and curriculum
learning in terms of efficiency of training and effec-
tiveness of trained models. We define effectiveness
as the accuracy of a trained network on balanced
test data, and efficiency as (a): fraction of instances
used for training per epoch, and (b): required time
for training the networks. For RbF schedulers, we
set η to 0.5 and consider the best performing kernel
Cosine with η = 0.9 based on results in Figure 7.

The results in Table 2 show that all training
paradigms have comparable effectiveness (Accu-
racy) to that of rote training (Rote). Our RbF sched-
ulers use less data per epoch (34-50% of data) and
run considerably faster than Rote (2.90-4.78 times
faster for η = 0.5). The results also show that Lit is
slightly less accurate but runs 2.87 time faster than
Rote; note that, as a scheduler, Lit is less accurate
than RbF models, see Figures 6 and 7.

In addition, CL leads to comparable performance
to RbF but is considerably slower than other sched-
ulers. This is because this scheduler has to identify
easier instances and sort the harder ones to sample
training data at each iteration. Overall, the perfor-
mance of Lit, CL, Cos η = .5 and Cos η = .9
are only 2.76, 1.90, 1.88, and 0.67 absolute values
lower than that of Rote respectively. Considering
the achieved efficiency, these differences are negli-
gible (see the overall gain in Table 2).

Figure 8 reports detailed efficiency and effective-
ness results across datasets and networks. For clear
illustration, we report accuracy at iterations 2i ∀i in
which Lit is trained on the entire data, and consider
Cos η = .5 as RbF scheduler. In terms of efficiency
(first row of Figure 8), CL starts with (small set of)
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Figure 8: Efficiency and Effectiveness of schedulers across three datasets and networks. RbF uses Cos
η = .5 as kernel. CL starts with (small set of) easier instances and gradually incorporate slightly harder
instances at each iteration. Lit and RbF start big and gradually delay reviewing easy instances.

easier instances and gradually increases the amount
of training data by adding slightly harder instances
into its training set. On the other hand, Lit and
RbF start big and gradually delay reviewing (easy)
instances that the networks have learned. The dif-
ference between these two training paradigms is
apparent in Figures 8(a)-8(c).

The results also show that the efficiency of a
training paradigm depends on the initial effective-
ness of the downstream neural network. For CL
to be efficient, the neural network need to initially
have low performance (accuracy) so that the sched-
uler works on smaller set of easy instances. For
example, in case of Addition, Figures 8(b) and 8(e),
the initial network accuracy is only 35%, therefore
most instances are expected to be initially treated
as hard instances and don’t be used for training.
On the other hand, CL shows a considerably lower
efficiency for networks with slightly high initial
accuracy, e.g. in case of IMDb or CIFAR10 where
the initial network accuracy is above 56%, see Fig-
ures 8(a) and 8(d), and 8(c) and 8(f) respectively.

In contrast to CL, Lit and RbF are more efficient
when the network has a relatively higher initial per-
formance. A higher initial performance helps the

schedulers to more confidently delay “reviewing”
most instances and therefore train with a much
smaller set of instances. For example, since the
initial network accuracy in IMDb or CIFAR10 is
above 56%, Lit and RbF are considerably more
efficient from the beginning of the training pro-
cess. However, in case of low initial performance,
Lit and RbF tend to avoid delaying instances at
lower iterations which leads to poor efficiency at
the beginning. This is the case for the Addition
dataset in which instances are gradually delayed
by these two schedulers even at epoch 8 when the
performance of the network reaches above 65%,
see Figures 8(e) and 8(b). However, Lit gains its
true efficiency after iteration 12, see Figure 8(b),
while RbF still gradually improves the efficiency.
This might be because of the lower bound delays
that RbF estimates, see Equation (9).

Furthermore, the effectiveness results in Figure 8
(bottom) show that all schedulers produce compa-
rable accuracy to the Rote scheduler throughout the
training process, not just at specific iterations. This
indicates that these training paradigms can much
faster achieve the same generalizability as standard
training, see Figures 8(b) and 8(e).
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Figure 9: Robustness against overtraining.

4.3 Robustness against Overtraining

We investigate the effect of spaced repetition on
overtraining. The optimal number of training
epochs required to train fastText on the IMDb
dataset is 8 epochs (see Table 1). In this experiment,
we run fastText on IMDb for greater number
of iterations to investigate the robustness of differ-
ent schedulers against overtraining. The results in
Figure 9 show that Lit and RbF (Cos η = 0.5) are
more robust against overtraining. In fact, the perfor-
mance of Lit and RbF further improve at epoch 16
while CL and Rote overfit at epoch 16 (note that CL
and Rote also require considerably more amount
of time to reach to higher iterations). We attribute
the robustness of Lit and RbF to the scheduling
mechanism which helps the networks to avoid re-
training with easy instances. On the other hand,
overtraining affects Lit and RbF at higher training
iterations, compare performance of each scheduler
at epochs 8 and 32. This might be because these
training paradigms overfit the network by paying
too much training attention to very hard instances
which might introduce noise to the model.

5 Related Work

Ebbinghaus (1913, 2013), and recently Murre and
Dros (2015), studied the hypothesis of the expo-
nential nature of forgetting, i.e. how information
is lost over time when there is no attempt to re-
tain it. Previous research identified three critical
indicators that affect the probability of recall: re-
peated exposure to learning materials, elapsed time
since their last review (Ebbinghaus, 1913; Wixted,
1990; Dempster, 1989), and more recently item
difficulty (Reddy et al., 2016). We based our inves-
tigation on these findings and validated that these
indicators indeed affect memory retention in neural
networks. We then developed training paradigms
that utilize the above indicators to train networks.

Bengio et al. (2009) and Kumar et al. (2010)
also developed cognitively-motivated training
paradigms which are inspired by the principle that
learning can be more effective when training starts
with easier concepts and gradually proceeds with
more difficult ones. Our idea is motivated by the
spaced repetition principle which indicates learn-
ing improves with repeated exposure and decays
with delay since last exposure (Ebbinghaus, 1913;
Dempster, 1989). Based on this principle, we devel-
oped schedulers that space the reviews of training
instances over time for efficient and effective train-
ing of neural networks.

6 Conclusion and Future Work

We developed a cognitively-motivated training
paradigm (scheduler) that space instances over time
for efficient and effective training of neural net-
works. Our scheduler only uses a small fraction
of training data per epoch but still effectively train
neural networks. It achieves this by estimating the
time (number of epochs) by which training could
be delayed for each instance. Our work was in-
spired by three recall indicators that affect memory
retention in humans, namely difficulty of learning
materials, delay since their last review, and mem-
ory strength of the learner, which we validated in
the context of neural networks.

There are several avenues for future work in-
cluding the extent to which our RbF model and its
kernels could be combined with curriculum learn-
ing or Leitner system to either predict easiness of
novel training instances to inform curriculum learn-
ing or incorporate Leitner’s queueing mechanism
to the RbF model. Other directions include extend-
ing RbF to dynamically learn the recall confidence
parameter with respect to network behavior, or de-
veloping more flexible delay functions with theo-
retical analysis on their lower and upper bounds.
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Abstract

In this work, we study the problem of part-
of-speech tagging for Tweets. In contrast
to newswire articles, Tweets are usually
informal and contain numerous out-of-
vocabulary words. Moreover, there is a
lack of large scale labeled datasets for
this domain. To tackle these challenges,
we propose a novel neural network to
make use of out-of-domain labeled data,
unlabeled in-domain data, and labeled in-
domain data. Inspired by adversarial
neural networks, the proposed method
tries to learn common features through
adversarial discriminator. In addition,
we hypothesize that domain-specific fea-
tures of target domain should be preserved
in some degree. Hence, the proposed
method adopts a sequence-to-sequence au-
toencoder to perform this task. Experi-
mental results on three different datasets
show that our method achieves better per-
formance than state-of-the-art methods.

1 Introduction

During the last decade, social media have become
extremely popular, on which billions of user-
generated contents are posted every day. Many
users have been writing about their thoughts and
lives on the go. The massive unstructured data
from social media provides valuable informa-
tion for a variety of applications such as stock
prediction (Bollen et al., 2011), public health
analysis (Wilson and Brownstein, 2009; Paul and
Dredze, 2011), real-time event detection (Sakaki
et al., 2010), and so on. The quality of these appli-
cations is highly impacted by the performance of
natural language processing tasks.

∗Corresponding author.

@DORSEY33 lol aw i thought u 

was talkin bout another time . nd i dnt

see u either ! 

USR UH UH PRP VBD PRP 

VBD VBG IN DT NN . CC PRP VBP  

VB PRP RB .

Figure 1: An example of tagged Tweet, which
contains nonstandard orthography, emoticon, and
abbreviation. The tagset is defined similar as that
of PTB (Marcus et al., 1993).

Part-of-speech (POS) tagging is one of the most
important natural language processing tasks. It
has also been widely used in the social media
analysis systems (Ritter et al., 2012; Lamb et al.,
2013; Kiritchenko et al., 2014). Most state-
of-the-art POS tagging approaches are based on
supervised methods. Hence, they usually require
a large amount of annotated data to train models.
Many datasets have been constructed for POS
tagging task. Because newswire articles are
carefully edited, benchmarks usually use them for
annotation (Marcus et al., 1993). However, user-
generated contents on social media are usually
informal and contain many nonstandard lexical
items. Moreover, the difference in domains be-
tween training data and evaluation data may heav-
ily impact the performance of approaches based
on supervised methods (Caruana and Niculescu-
Mizil, 2006). Hence, most POS tagging meth-
ods cannot achieve the same performance as
reported on newswire domain when applied on
Twitter (Owoputi et al., 2013).

To perform the Twitter POS tagging task, some
approaches have been proposed to perform the
task. Gimpel et al. (2011) manually annotated
1,827 tweets and carefully studied various fea-
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tures. Ritter et al. (2011) also constructed a
labeled dataset, which contained 787 tweets, to
empirically evaluate the performance of super-
vised methods on Twitter. Owoputi et al. (2013)
incorporated word clusters into the feature sets
and further improved the performance. From
these works, we can observe that the size of the
training data was much smaller than the newswire
domain’s.

Besides the challenge of lack of training data,
the frequent use of out-of-vocabulary words also
makes this problem difficult to address. Social
media users often use informal ways of expressing
their ideas and often spell words phonetically
(e.g., “2mor” for “tomorrow”). In addition,
they also make extensive use of emoticons and
abbreviations (e.g., “:-)” for smiling emotion and
“LOL” for laughing out loud). Moreover, new
symbols, abbreviations, and words are constantly
being created. Figure 1 shows an example of
tagged Tweet.

To tackle the challenges posed by the lack of
training data and the out-of-vocabulary words, in
this paper, we propose a novel recurrent neu-
ral network, which we call Target Preserved
Adversarial Neural Network (TPANN) to per-
form the task. It can make use of a large
quantity of annotated data from other resource-
rich domains, unlabeled in-domain data, and a
small amount of labeled in-domain data. All of
these datasets can be easily obtained. To make
use of unlabeled data, motivated by the work
of Goodfellow et al. (2014) and Chen et al. (2016),
the proposed method extends the bi-directional
long short-term memory recurrent neural network
(bi-LSTM) with an adversarial predictor. To
overcome the defect that adversarial networks can
merely learn the common features, we propose to
use an autoencoder only acting on target dataset to
preserve its own specific features. For tackling the
out-of-vocabulary problem, the proposed method
also incorporates a character level convolutional
neutral network to leverage subword information.

The contributions of this work are as follows:

• We propose to incorporate large scale unla-
beled in-domain data, out-of-domain labeled
data, and in-domain labeled data for Twitter
part-of-speech tagging task.

• We introduce a novel recurrent neural net-
work, which can learn domain-invariant rep-

resentations through in-domain and out-of-
domain data and construct a cross domain
POS tagger through the learned represen-
tations. The proposed method also tries
to preserve the specific features of target
domain.

• Experimental results demonstrate that the
proposed method can lead to better perfor-
mance in most of cases on three different
datasets.

2 Approach

In this work, we propose a novel recurrent neural
network, Target Preserved Adversarial Neural
Network (TPANN), to learn common features
between resource-rich domain and target domain,
simultaneously to preserve target domain-specific
features. It extends the bi-directional LSTM
with adversarial network and autoencoder. The
architecture of TPANN is illustrated in Figure 2.
The model consists of four components: Feature
Extractor, POS Tagging Classifier, Domain Dis-
criminator and Target Domain Autoencoder. In
the following sections, we will detail each part of
the proposed architecture and training methods.

2.1 Feature Extractor
The feature extractor F adopts CNN to extract
character embedding features, which can tackle
the out-of-vocabulary word problem effectively.
To incorporate word embedding features, we
concatenate word embedding to character em-
bedding as the input of bi-LSTM on the next
layer. Utilizing a bi-LSTM to model sentences,
F can extract sequential relations and context
information.

We denote the input sentence as x and the i-th
word as xi. xi ∈ S(x) and xi ∈ T (x) represent
input samples are from source domain and target
domain, respectively. We denote the parameters
of F as θf . Let V be the vocabulary of words,
and C be the vocabulary of characters. d is the
dimensionality of character embedding then Q ∈
Rd×|C| is the representation matrix of vocabulary.
We assume that word xi ∈ V is made up of
a sequence of characters Ci = [c1, c2, . . . , cl],
where l is the max length of word and every word
will be padded to this length. Then Ci ∈ Rd×l
would be the inputs of CNN.

We apply a narrow convolution between Ci and
filter H ∈ Rd×k, where k is the width of the filter.
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Figure 2: The general architecture of the proposed method.

After that we add a bias and apply nonlinearity to
obtain a feature map mi ∈ Rl−k+1. Specifically,
the j-th element of mi is given by:

ik[j] = tanh(〈Ci[∗, j : j + k − 1],H〉+ b), (1)

where Ck[∗, j : j + k − 1] is the j-to-(j + k −
1)-th column of Ci and 〈A,B〉 = Tr(ABT ) is
the Frobenius inner product. We then apply a
max-over-time pooling operation (Collobert et al.,
2011) over the feature map. CNN uses multiple
filters with varying widths to obtain the feature
vector ~ci for word xi. Then, the character-level
feature vector ~ci is concatenated to the word
embedding ~wi to form the input of bi-LSTM
on the next layer. The word embedding ~w is
pretrained on 30 million tweets. Then, the hidden
states h of bi-LSTM turn into the features that will
be transfered to P , Q andR, i.e. F(x) = h.

2.2 POS Tagging Classifier and Domain
Discriminator

POS tagging classifier P and domain discrimi-
nator Q take F(x) as input. They are standard
feed-forward networks with a softmax layer for
classification. P predicts POS tagging label to
get classification capacity, and Q discriminates
domain label to make F(x) domain-invariant.

The POS tagging classifier P maps the feature
vector F(xi) to its label. We denote the param-
eters of this mapping as θy. The POS tagging

classifier is trained on Ns samples from the source
domain with the cross entropy loss:

Ltask = −
Ns∑

i=1

yi ∗ log ŷi, (2)

where yi is the one-hot vector of POS tagging
label corresponding to xi ∈ S(x), ŷi is the
output of top softmax layer: ŷi = P(F(xi)).
During the training time, The parameters θf and
θy are optimized to minimize the classification
loss Ltask. This ensures that P(F(xi)) can make
accurate prediction on the source domain.

Conversely, domain discriminator maps the
same hidden states h to the domain labels with
parameters θd. The domain discriminator aims to
discriminate the domain label with following loss
function:

Ltype = −
Ns+Nt∑

i=1

{di log d̂i+(1−di) log(1− d̂i)},

(3)
where di is the ground truth domain label for sam-
ple i, d̂i is the output of top layer: d̂i = Q(F(xi)).
Nt meansNt samples from the target domain. The
domain discriminator is trained towards a saddle
point of the loss function through minimizing
the loss over θd while maximizing the loss over
θf (Ganin et al., 2016). Optimizing θf ensures
that the domain discriminator can’t discriminate
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the domain, i.e., the feature extractor finds the
common features between the two domains.

2.3 Target Domain Autoencoder
Through training adversarial networks, we can
obtain domain-invariant features hcommon, but
it will weaken some domain-specific features
which are useful for POS tagging classification.
Merely obtaining domain invariant features would
therefore limit the classification ability.

Our model tries to tackle this defect by intro-
ducing domain-specific autoencoder R, which at-
tempts to reconstruct target domain data. Inspired
by (Sutskever et al., 2014) but different from (Dai
and Le, 2015), we treat the feature extractor F as
encoder. In addition, we combine the last hidden
states of the forward LSTM and backward LSTM
in F as the initial state h0(dec) of the decoder
LSTM. Hence, we don’t need to reverse the order
of words of the input sentences and the model
avoids the difficulty of ”establish communication”
between the input and the output (Sutskever et al.,
2014).

Similar to (Zhang et al., 2016), we use h0(dec)
and embedding vector of the previous word as
the inputs of the decoder, but in a computation-
ally more efficient manner by computing pre-
vious word representation. We assume that
(x̂1, · · · , x̂T ) is the output sequence. zt is the t-th
word representation: zt = MLP (ht), and MLP
is the multiple perceptron function. Hidden state
ht = LSTM([h0(dec) : zt−1], ht−1), where [· : ·]
is the concatenation operation. We estimate the
conditional probability p(x̂1, · · · , x̂T |h0(dec)) as
follows:

p(x̂1, · · · , x̂T |h0(dec)) =
T∏

t=1

p(x̂t|h0(dec), z1, · · · , zt−1),
(4)

where each p(x̂t|h0(dec), z1, · · · , zt−1) distribu-
tion is computed with softmax over all the words
in the vacabulary.

Our aim is to minimize the following loss
function with respect to parameters θr:

Ltarget = −
Nt∑

i=1

xi ∗ log x̂i, (5)

where xi is the one-hot vector of i-th word. This
makes h0(dec) learn an undercomplete and most
salient sentence representation of target domain

data. When the adversarial networks try to
optimize the hidden representation to common
representation hcommon, The target domain au-
toencoder counteracts a tendency of the adver-
sarial network to erase target domain features
by optimizing the common representation to be
informative on the target-domain data.

2.4 Training
Our model can be trained end-to-end with standard
back-propagation, which we will detail in this
section.

Our ultimate training goal is to minimize the
total loss function with parameters {θf , θy, θr, θd}
as follows:

Ltotal = αLtask + βLtarget + γLtype, (6)

where α, β, γ are the weights to balance the effects
of P ,R and Q.

For obtaining domain-invariant representation
hcommon, inspired by (Ganin and Lempitsky,
2015), we introduce a special gradient reversal
layer (GRL), which does nothing during forward
propagation, but negates the gradients if it receives
backward propagation, i.e. g(F(x)) = F(x)
but ∇g(F(x)) = −λ∇F(x). We insert the
GRL between F and Q, which can run standard
Stochastic Gradient Descent with respect to θf and
θd. The parameter −λ drives the parameters θf
not to amplify the dissimilarity of features when
minimize Ltpye. So by introducing a GRL, F can
drive its parameters θf to extract hidden represen-
tations that help the POS tagging classification and
hamper the domain discrimination.

In order to preserve target domain-specific
features, we only optimize the autoencoder on
target domain data for reconstruction tasks.

Through above procedures, the model can learn
the common features between domains, simulta-
neously preserve target domain-specific features.
Finally, we can update the parameters as follows:

θf = θf − µ(α
∂Litask
∂θf

+ β
∂Litarget
∂θf

− γ · λ
∂Litype
∂θf

)

θy = θy − µ · α
∂Litask
∂θy

θr = θr − µ · β
∂Litarget
∂θr

θd = θd − µ · γ
∂Litype
∂θd

,

(7)
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Dataset # Tokens
WSJ 1,173,766
UNL 1,177,746

RIT-Twitter
RIT-Train 10,652
RIT-Dev 2,242
RIT-Test 2,291

NPSCHAT 44,997
ARK-Twitter OCT27 26,594

DAILY547 7,707

Table 1: The statistics of the datasets used in our
experiments.

where µ is the learning rate. Because the size of
the WSJ is more than 100 times that of the labeled
Twitter dataset, if we directly train the model with
the combined dataset, the final results are much
worse than those using two training steps. So, we
adopt adversarial training on WSJ and unlabeled
Twitter dataset at the first step, then use a small
number of in-domain labeled data to fine-tune the
parameters with a low learning rate.

3 Experiments

In this section, we will detail the datasets used for
experiments and experimental setup.

3.1 Datasets

The methods proposed in this work incorporate
out-of-domain labeled data from resource-rich
domains, large scale unlabeled in-domain data,
and a small number of labeled in-domain data.
The datasets used in this work are as follows:
Labeled out-of-domain data. We use a standard
benchmark dataset for adversarial POS tagging,
namely the Wall Street Journal (WSJ) data from
the Penn TreeBank v3 (Marcus et al., 1993),
sections 0-24 for the out-of-domain data.
Labeled in-domain data. For training and
evaluating POS tagging approaches, we compare
the proposed method with other approaches on
three benchmarks: RIT-Twitter (Ritter et al.,
2011), NPSCHAT (Forsyth, 2007), and ARK-
Twitter (Gimpel et al., 2011).
Unlabeled in-domain data. For training the
adversarial network, we need to use a dataset
that has large scale unlabeled tweets. Hence, in
this work, we construct large scale unlabeled data
(UNL), from Twitter using its API.

The detailed data statistics of the datasets used
in this work are listed in Table 1.

3.2 Experimental Setup

We select both state-of-the-art and classic methods
for comparison, as follows:

• Stanford POS Tagger: Stanford POS Tag-
ger is a widely used tool for newswire
domains (Toutanova et al., 2003). In this
work, we train it using two different sets,
the WSJ (sections 0-18) and a WSJ, IRC,
and Twitter mixed corpus. We use Stanford-
WSJ and Stanford-MIX to represent them,
respectively.

• T-POS: T-Pos (Ritter et al., 2011) adopts the
Conditional Random Fields and clustering
algorithm to perform the task. It was trained
from a mixture of hand-annotated tweets and
existing POS-labeled data.

• GATE Tagger: GATE tagger (Derczynski
et al., 2013) is based on vote-constrained
bootstrapping with unlabeled data. It com-
bines cases where available taggers use dif-
ferent tagsets.

• ARK Tagger: ARK tagger (Owoputi et al.,
2013) is a system that reports the best accu-
racy on the RIT dataset. It uses unsupervised
word clustering and a variety of lexical
features.

• bi-LSTM: Bidirectional Long Short-Term
Memory (LSTM) networks have been widely
used in a variety of sequence labeling
tasks (Graves and Schmidhuber, 2005). In
this work, we evaluate it at character level,
word level, and combining them together.
bi-LSTM (word level) uses one layer of
bi-LSTM to extract word-level features
and adopts a random initialization method
to transform words to vectors. bi-LSTM
(character level) represents a method
that combines bi-LSTM and CNN-based
character embedding, a similar approach with
character-aware neural network described
in (Kim et al., 2015) to handle the out-of-
vocabulary words. bi-LSTM (word level
pretrain) architecture is the same as that of
bi-LSTM(word level) but adopts word2vec
tool (Mikolov et al., 2013) to vectorize.
bi-LSTM (combine) concatenates word to
character features.
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Methods RIT-Test RIT-Dev
Stanford-WSJ (Toutanova et al., 2003) 73.37% 83.29%
Stanford-MIX 83.14% 84.19%
T-POS (Ritter et al., 2011) 84.55% 84.83%
GATE Tagger (Derczynski et al., 2013) 88.69% 89.37%
ARK Tagger (Owoputi et al., 2013) 90.40% -
bi-LSTM (word level) 75.91% 76.94%
bi-LSTM (word level pretrain) 85.99% 86.93%
bi-LSTM (character level) 82.85% 84.30%
bi-LSTM (combine) 89.48% 89.30%
bi-LSTM (combine + WSJ) 83.54% 83.64%
bi-LSTM (combine + WSJ + adversarial) 83.76% 84.45%
bi-LSTM (combine + WSJ + fine-tune) 89.87% 90.23%
bi-LSTM (combine + WSJ + adversarial + fine-tune) 90.60% 90.73%
TPANN (combine + WSJ + adversarial + fine-tune + autoencoder) 90.92% 91.08%

Table 2: Token level accuracies of different methods on RIT-Test and RIT-Dev. bi-LSTM(combine)
refers to combining word level with character level. bi-LSTM(combine + WSJ) refers to the model
trained on WSJ and tested on RIT. bi-LSTM(combine + WSJ + adversarial) refers to adversarial model
trained on 1.1 million tokens of labeled WSJ data and the same scale of unlabeled Twitter data, then
tested on RIT. Fine-tune means adding RIT-train data to fine-tune.

The hyper-parameters used for our model are as
follows. AdaGrad optimizer trained with cross-
entropy loss is used with 0.1 as the default learning
rate. The dimensionality of word embedding is set
to 200. The dimensionality for random initialized
character embedding is set to 25. We adopt a
bi-LSTM for encoding with each layer consisting
of 250 hidden neurons. We set three layers of
standard LSTM for decoding. Each LSTM layer
consists of 500 hidden neurons. Adam optimizer
trained with cross-entropy loss is used to fine-tune
with 0.0001 as the default learning rate. Fine-
tuning is run for 100 epochs using early stop.

4 Results and Discussion

In this section, we will report experimental results
and a detailed analysis of the results for the three
different datasets.

4.1 Evaluation on RIT-Twitter

The RIT-Twitter is split into training, development
and evaluation sets (RIT-Train, RIT-Dev, RIT-
Test). The splitting method is shown in (Der-
czynski et al., 2013), and the dataset statistics are
listed in Table 1. Table 2 shows the results of our
method and other approaches on the RIT-Twitter
dataset. RIT-Twitter uses the PTB tagset with
several Twitter-specific tags: retweets, @user-
names, hashtags, and urls. Since words in these

categories can be tagged almost perfectly using
simple regular expressions, similar to (Owoputi
et al., 2013), we use regular expressions to tags
these words appropriately for all systems.

From the results of the Stanford-WSJ, we can
observe that the newswire domain is different from
Twitter. Although the token-level accuracy of the
Stanford POS Tagger is higher than 97.0% on
the PTB dataset, its performance on Twitter drops
sharply to 73.37%. By incorporating some in-
domain labeled data for training, the accuracy of
Stanford POS Tagger can reach up to 83.14%.
Taking a variety of linguistic features and many
other resources into consideration, the T-POS,
GATE tagger, and ARK tagger can achieve better
performance.

The second part of Table 2 shows the results of
the bi-LSTM based methods, which are trained on
the RIT-Train dataset. According to the results of
word level, we can see that word2vec can provide
valuable information. The pre-trained word vec-
tors in bi-LSTM(word level pretrain) give almost
10% higher accuracy than bi-LSTM(word level).

Comparing the character-level bi-LSTM with
word-level bi-LSTM with random initialization,
we can observe that the character-level method can
achieve better performance than the word-level
method. bi-LSTM(combine) combines word with
character features, as described in Section 2.1,
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Figure 3: The visualization of bi-LSTM’s outputs of the extracted features. The left figure shows the
results when no adversary is performed. The right figure shows the results when the adversary procedure
is incorporated into training. Blue points correspond to the source PTB domain examples, and red points
correspond to the target Twitter domain.

which achieves the best results at 89.48% in the
bi-LSTM based baseline systems and shows that
the morphological features and pre-trained word
vectors are both useful for POS tagging.

The third part of Table 2 shows the results of
our methods incorporating out-of-domain labeled
data, in-domain unlabeled data, and in-domain la-
beled data. Putting everything together, our model
can achieve 90.92% on this dataset. Compared
with the architecture without an adversarial model,
our method is almost 1% better. It demonstrates
that adversarial networks can significantly help
with tasks of this nature. Through introducing
the autoencoder in target domain, we can preserve
domain-specific features for better performance.
Compared with the ARK tagger, which achieves
the previous best result on this dataset, our model
is also 0.52% better, the error reduction rate is
more than 5.5%.

To better understand why adversarial networks
can help transfer domains from newswire to
Twitter, in this work we also followed the
method Ganin and Lempitsky (2015) used
to visualize the outputs of LSTM with t-
SNE (Van Der Maaten, 2013). Figure 3 shows
the visualization results. From the figure, we
can see that the adversary in our method makes
the two distributions of features much more
similar, which means that the outputs of bi-LSTM
are domain-invariant. Hence, the PTB training
data can provide much more help than directly
combining PTB and RIT-Train together.

Methods Accuracy
Forsyth (2007) 90.8%
ARK Tagger 93.4% ± 0.3%
TPANN 94.1%

Table 3: Tagging accuracies on NPSChat Corpus.

4.2 Evaluation on NPSChat

IRC, which contains Internet relay room messages
from 2006, is a medium of online conversational
text. Its content is very similar to tweets. We
evaluate the proposed method on the NPSChat
corpus (Forsyth, 2007), a PTB-part-of-speech an-
notated dataset of IRC.

We compared our method with a tagger in the
same setup as experiments with (Forsyth, 2007).
The training part contains 90% of the data. The
testing part contains the other 10%. Table 3 shows
the results of the ARK Tagger and our method.
We used PTB, unlabeled Twitter, and the training
part of NPSChat to train our model. From the
results, we can see that our model achieved 94.1%
accuracy. This is significantly better than the
result Forsyth (2007) reported, which was 90.8%.
They trained their tagger with a mix of several
POS-annotated corpora (12K from Twitter, 40K
from IRC, and 50K from PTB). Our method also
outperforms state-of-the-art results 93.4%±0.3%,
which was achieved by the ARK Tagger with
various external corpus and features, e.g., Brown
clustering, PTB, Freebase lists of celebrities, and
video games.
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Methods Accuracy
Gimpel et al. (2011) version 0.2 90.8%
ARK Tagger 93.2%
TPANN 92.8%

Table 4: Tagging accuracies on DAILY547.

4.3 Evaluation on ARK-Twitter

ARK-Twitter data contains an entire dataset con-
sisting of a number of tweets sampled from
one particular day (October 27, 2010) described
in (Gimpel et al., 2011). This part is used
for training. They also created another dataset,
which consists of 547 tweets, for evaluation
(DAILY547). This dataset consists of one random
English tweet from every day between January
1, 2011 and June 30, 2012. The distribution of
training data may be slightly different from the
testing data, for example a substantial fraction
of the messages in the training data are about
a basketball game. Since ARK-Twitter uses a
different tagset with PTB, we manually construct
a table to link tags for the two datasets.

Table 4 shows the results of different methods
on this dataset. From the results, we can see that
our method can achieve a better result than (Gim-
pel et al., 2011). However, the performance
of our method is worse than the ARK Tagger.
Through analyzing the errors, we find that 16.7%
errors occurr between nouns and proper nouns.
Since our method do not include any ontology
or knowledge, proper nouns can not be easily
detected. However, the ATK Tagge add a token-
level name list feature. The name list is useful
for proper nouns recognition, which fires on
names from many sources, such as Freebase
lists of celebrities, the Moby Words list of US
Locations, proper names from Mark Kantrowitz’s
name corpus and so on. So, our model is
also competitive when lacking of manual feature
knowledge.

5 Related Work

Part-of-Speech tagging is an important pre-
processing step and can provide valuable
information for various natural language
processing tasks. In recent years, deep
learning algorithms have been successfully
used for POS tagging. A number of approaches
have been proposed and have achieved some
progress. Santos and Guimaraes (2015) proposed

using a character-based convolutional neural
network to perform the POS tagging problem.
Bi-LSTMs with word, character or unicode byte
embedding were also introduced to achieve the
POS tagging and named entity recognition tasks
(Plank et al., 2016; Chiu and Nichols, 2015; Ma
and Hovy, 2016). In this work, we study the
problem from a domain adaption perspective.
Inspired by these works, we also propose to
use character-level methods to handle out-of-
vocabulary words and bi-LSTMs to model the
sequence relations.

Adversarial networks were successfully used
for image generation (Goodfellow et al., 2014;
Dosovitskiy et al., 2015; Denton et al., 2015),
domain adaption (Tzeng et al., 2014; Ganin et al.,
2016), and semi-supervised learning (Denton
et al., 2016). The key idea of adversarial networks
for domain adaption is to construct invariant
features by optimizing the feature extractor as an
adversary against the domain classifier (Zhang
et al., 2017).

Sequence autoencoder reads the input sequence
into a vector and then tries to reconstruct it. Dai
and Le (2015) used the model on a number of
different tasks and verified its validity. Li et al.
(2015) introduced the model to hierarchically
build an embedding for a paragraph, showing that
the model was able to encode texts to preserve
syntactic, semantic, and discourse coherence.

In this work, we incorporate adversarial
networks with autoencoder to obtain domain-
invariant features and keep domain-specific
features. Our model is more suitable for target
domain tasks.

6 Conclusion

In this work, we propose a novel adversarial
neural network to address the POS tagging prob-
lem. Besides learning common representations
between source domain and target domain, it
can simultaneously preserve specific features of
target domain. The proposed method leverages
newswire resources and large scale in-domain
unlabeled data to help POS tagging classification
on Twitter, which has a few of labeled data. We
evaluate the proposed method and several state-of-
the-art methods on three different corpora. In most
of the cases, the proposed method can achieve
better performance than previous methods. Ex-
perimental results demonstrate that the proposed
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method can make full use of these resources,
which can be easily obtained.
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Abstract
The number of word embedding models
is growing every year. Most of them are
based on the co-occurrence information of
words and their contexts. However, it is
still an open question what is the best def-
inition of context. We provide a system-
atical investigation of 4 different syntactic
context types and context representation-
s for learning word embeddings. Com-
prehensive experiments are conducted to
evaluate their effectiveness on 6 extrinsic
and intrinsic tasks. We hope that this pa-
per, along with the published code, would
be helpful for choosing the best contex-
t type and representation for a given task.

1 Introduction

Recently, there is a growing interest in word em-
bedding models, where words are embedded into
low-dimensional (dense) real-valued vectors. The
trained word embeddings can be directly used for
solving intrinsic tasks like word similarity and
word analogy. They are also helpful for solv-
ing extrinsic tasks, such as part-of-speech tagging,
chunking, named entity recognition (Collobert and
Weston, 2008; Collobert et al., 2011) and text clas-
sification (Socher et al., 2013; Kim, 2014).

The training objectives of word embedding
models are based on the Distributional Hypoth-

esis (Harris, 1954) that can be stated as follows:
“words that occur in similar contexts tend to have
similar meanings”. In most word embedding mod-
els, the “context” is defined as the words which
precede and follow the target word within some
fixed distance (Bengio et al., 2003; Mnih and Hin-
ton, 2007; Mikolov et al., 2013a; Pennington et al.,
2014). Among them, Global Vectors (GloVe)
proposed by Pennington et al. (2014), Contin-
uous Skip-Gram (CSG) 1 and Continuous Bag-
Of-Words (CBOW) proposed by Mikolov et al.
(2013b) achieve state-of-the-art results on a range
of linguistic tasks, and scale to corpora with bil-
lions of words.

The traditional sparse vector-space models have
explored many different types of context. Cur-
ran (2004); Padó and Lapata (2007); Clark (2012)
have discussed a set of context definitions beyond
simple linear context. For example, a sentence or
document could be used as the boundary instead of
window size. Contextual words could be associat-
ed with their relative sides (left/right) or position-
s (+1/-2) to the target word. They could also be
associated with part-of-speech or grammatical re-
lation labels. The weight of each contextual word
can be explicitly defined. Moreover, words that
are connected to target word in dependency parse

1Many researches refer to Continuous Skip-Gram as SG.
However, in order to distinguish linear (continuous) context
and DEPS (dependency-based) context, we refer it as CSG.
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Basic Model Context
Representation

Context
Type Linear DEPS

generalized unbound CSG (Mikolov et al., 2013a) this work

Skip-Gram bound Structured SG (Ling et al., 2015)
POSIT (Levy and Goldberg, 2014b) DEPS (Levy and Goldberg, 2014a)

generalized unbound CBOW (Mikolov et al., 2013a) this work

Bag-Of-Words bound CWINDOW (Ling et al., 2015) this work

original unbound GloVe (Pennington et al., 2014) this work

GloVe bound this work this work

Table 1: Summary of prior research on word embedding models with different syntactic context types
and context representations. For linear context, bound indicates words associated with positional infor-
mation. For DEPS context, bound indicates words associated with dependency relation.

tree can be considered as context.
Recent word embedding models have also ex-

plored some of the above context types. Levy
and Goldberg (2014b); Ling et al. (2015)2 im-
prove CSG and CBOW by introducing position-
aware context representation. Levy and Goldberg
(2014a) propose dependency-based context (DEP-
S) for CSG.

However, different types of syntactic contex-
t have not been systematically compared for dif-
ferent word embeddings. This paper explores two
context types (linear or DEPS) and two context
representations (bound or unbound), as shown in
Table 1. Three popular word embedding models
(CBOW, GloVe, and CSG) are compared on word
similarity, word analogy, part-of-speech tagging,
chunking, named entity recognition, and text clas-
sification tasks.

2 Related Work

Several studies directly compare different word
embedding models. Lai et al. (2016) compare
6 word embedding models using different cor-
pora and hyper-parameters. Nayak and Man-
ning (2016) provide a set of evaluations, along
with an online tool, for word embedding models.
Levy and Goldberg (2014c) show the theoretical
equivalence of CSG and PPMI matrix factoriza-
tion. Levy et al. (2015) further discuss the con-
nections between 4 word embedding models (PP-
MI, SVD, CSG, GloVe) and re-evaluate them with

2In these two papers, the description of position-aware
(bound) context are quite different. However, their ideas are
actually identical.

the same hyper-parameters. Suzuki and Nagata
(2015) investigate different configurations of CS-
G and GloVe and merge them together. Yin and
Schutze (2016) propose 4 ensemble methods and
show their effectiveness over individual ones.

There is also research evaluating different con-
text types in learning word embeddings. Heylen
et al. (2008) compares dependency-based and lin-
ear vector space model for finding semantical-
ly related nouns in Dutch. Vulic and Korhonen
(2016) compare CSG and dependency-based mod-
els on various languages. Their results suggest that
dependency-based models are better at detecting
functional similarity in English, although that does
not necessarily hold for other languages. Bansal
et al. (2014) show that DEPS context is preferable
to linear context on parsing task. Melamud et al.
(2016) investigate the performance of CSG, DEP-
S and a substitute-based word embedding model
(Yatbaz et al., 2012)3, which shows that differen-
t types of intrinsic tasks have clear preference for
particular types of contexts. On the other hand,
for extrinsic tasks, the optimal context types need
to be carefully tuned on specific dataset.

The contribution of this study is that in addition
to linear and dependency-based context we also
consider bound and unbound context representa-
tions, as will be described below. Furthermore,
we systematically evaluate three word embedding
models: CSG, CBOW and GLoVe.

3We do not consider this type of context, since in our pi-
lot studies it performed consistently worse than the other two
context types. The same observation is also made by Mela-
mud et al. (2016); Vulic and Korhonen (2016).

2422



in the text. The context vocabulary C is thus
identical to the word vocabulary W . However,
this restriction is not required by the model; con-
texts need not correspond to words, and the num-
ber of context-types can be substantially larger
than the number of word-types. We generalize
SKIPGRAM by replacing the bag-of-words con-
texts with arbitrary contexts.

In this paper we experiment with dependency-
based syntactic contexts. Syntactic contexts cap-
ture different information than bag-of-word con-
texts, as we demonstrate using the sentence “Aus-
tralian scientist discovers star with telescope”.

Linear Bag-of-Words Contexts This is the
context used by word2vec and many other neu-
ral embeddings. Using a window of size k around
the target word w, 2k contexts are produced: the
k words before and the k words after w. For
k = 2, the contexts of the target word w are
w−2, w−1, w+1, w+2. In our example, the contexts
of discovers are Australian, scientist, star, with.2

Note that a context window of size 2 may miss
some important contexts (telescope is not a con-
text of discovers), while including some acciden-
tal ones (Australian is a context discovers). More-
over, the contexts are unmarked, resulting in dis-
covers being a context of both stars and scientist,
which may result in stars and scientists ending
up as neighbours in the embedded space. A win-
dow size of 5 is commonly used to capture broad
topical content, whereas smaller windows contain
more focused information about the target word.

Dependency-Based Contexts An alternative to
the bag-of-words approach is to derive contexts
based on the syntactic relations the word partic-
ipates in. This is facilitated by recent advances
in parsing technology (Goldberg and Nivre, 2012;
Goldberg and Nivre, 2013) that allow parsing to
syntactic dependencies with very high speed and
near state-of-the-art accuracy.

After parsing each sentence, we derive word
contexts as follows: for a target word w with
modifiers m1, . . . ,mk and a head h, we consider
the contexts (m1, lbl1), . . . , (mk, lblk), (h, lbl

−1
h ),

2word2vec’s implementation is slightly more compli-
cated. The software defaults to prune rare words based on
their frequency, and has an option for sub-sampling the fre-
quent words. These pruning and sub-sampling happen before
the context extraction, leading to a dynamic window size. In
addition, the window size is not fixed to k but is sampled
uniformly in the range [1, k] for each word.

Australian scientist discovers star with telescope

amod nsubj dobj

prep

pobj

Australian scientist discovers star telescope

amod nsubj dobj

prep with

WORD CONTEXTS

australian scientist/amod−1

scientist australian/amod, discovers/nsubj−1

discovers scientist/nsubj, star/dobj, telescope/prep with
star discovers/dobj−1

telescope discovers/prep with−1

Figure 1: Dependency-based context extraction example.
Top: preposition relations are collapsed into single arcs,
making telescope a direct modifier of discovers. Bottom: the
contexts extracted for each word in the sentence.

where lbl is the type of the dependency relation be-
tween the head and the modifier (e.g. nsubj, dobj,
prep with, amod) and lbl−1 is used to mark the
inverse-relation. Relations that include a preposi-
tion are “collapsed” prior to context extraction, by
directly connecting the head and the object of the
preposition, and subsuming the preposition itself
into the dependency label. An example of the de-
pendency context extraction is given in Figure 1.

Notice that syntactic dependencies are both
more inclusive and more focused than bag-of-
words. They capture relations to words that are
far apart and thus “out-of-reach” with small win-
dow bag-of-words (e.g. the instrument of discover
is telescope/prep with), and also filter out “coinci-
dental” contexts which are within the window but
not directly related to the target word (e.g. Aus-
tralian is not used as the context for discovers). In
addition, the contexts are typed, indicating, for ex-
ample, that stars are objects of discovery and sci-
entists are subjects. We thus expect the syntactic
contexts to yield more focused embeddings, cap-
turing more functional and less topical similarity.

4 Experiments and Evaluation

We experiment with 3 training conditions: BOW5
(bag-of-words contexts with k = 5), BOW2
(same, with k = 2) and DEPS (dependency-based
syntactic contexts). We modified word2vec to
support arbitrary contexts, and to output the con-
text embeddings in addition to the word embed-
dings. For bag-of-words contexts we used the
original word2vec implementation, and for syn-
tactic contexts, we used our modified version. The
negative-sampling parameter (how many negative
contexts to sample for every correct one) was 15.

Figure 1: Illustration of dependency parse tree.

3 Word Embeddings Models

In this section, we first introduce different contexts
in detail, and discuss their strengths and weakness-
es. We then show how CSG, CBOW and GloVe
can be generalized to use these contexts.

3.1 Context Types

There are many different types of context, both
on document and sentence level. For syntactic
contexts, the current literature discusses mainly
the linear (used in most word embedding models)
and dependency-based contexts (DEPS (Levy and
Goldberg, 2014a)). Linear context is defined as
the positional neighbors of the target word in texts.
DEPS context is defined as the syntactic neighbors
of the target word based on dependency parse tree,
as shown in Figure 14.

Compared to the linear context, DEPS context
can capture more relevant words that are further
away from the target word in the text. For ex-
ample in Figure 1, linear context does not include
the word-context pair “discovers telescope”, while
DEPS context contains this information. DEP-
S context can also exclude some uninformative
word-context pairs like “with star” and “telescope
with”.

Note that dependency parsing is time-
consuming. Despite its parallelizability, our
implementation still takes nearly a month to finish
dependency parsing for the Wikipedia corpus on a
32-core machine. it is only fair to compare linear
and DEPS context if we ignore the time com-
plexity. it is also worth noting that part-of-speech
labels are required when performing dependency
parsing.

3.2 Context Representations

In the original CSG, CBOW and GloVe model-
s, contexts are represented by words without any
additional information. Ling et al. (2015) modify

4This example is from Levy and Goldberg (2014a)

Context
Representation

Context
Type Linear DEPS

unbound
australian,
scientist,
star, with

scientist,
star,
telescope

bound
australian/-2,
scientist/-1,
star/+1, with/+2

scientist/nsubj,
star/dobj,
telescope/prep with

Table 2: Illustration of bound and unbound rep-
resentations under linear and DEPS context types.
This example is based on Figure 1, and the target
word is “discovers”.

CSG and CBOW by introducing position-bound
words, where each contextual word is associated
with their relative position to the target word. This
allows CSG and CBOW to distinguish different
sequential positions and capture the structural in-
formation from the context. We refer to methods
that bind positional information with the contextu-
al word as bound (context) representation, as op-
posed to unbound (context) representation where
contextual words are treated the same irrespective
of their positions with regards to the target word.

The original DEPS uses “bound” representation
by default: each word is associated with its depen-
dency relation to the target word. In this paper, we
also investigate the simpler context representation
where no dependency relation is associated with a
word. This enables a fair comparison with conven-
tional models like CSG, CBOW and GloVe, since
they do not use bound representation either. An
example of different syntactic context types and
context representations is shown in Table 2.

Intuitively, bound representation should work
better than unbound representation, since it uses
information about relative word positions. How-
ever, this is not always the case in practice. An
obvious drawback is that bound representation is
more sparse than unbound representation, espe-
cially for DEPS context type. In our data, there
were 47 dependency relations in dependency parse
tree. Although not every combination of depen-
dency relations and words appear in the word-
context pair collection, in practice it still enlarges
the contextual words’ vocabulary about 5 times.

Both syntactic context types (linear and DEPS)
and the choice of context representations (bound
and unbound) have a dramatic effect on the word
embeddings. Bound linear representation transfer-
s each contextual word into a new one, and the
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Linear (window size 1) DEPS

P

(australian, scientist)
(scientist, australian)
(scientist, discovers)
(discovers, scientist)
(discovers, star)
. . .

(australian, scientist)
(scientist, australian)
(scientist, discovers)
(discovers, scientist)
(discovers, star)
(discovers, telescope)
. . .

M

(australian, scientist)
(scientist, australian,
discovers)
(discovers, scientist,
star)
. . .

(australian, scientist)
(scientist, australian,
discovers)
(discovers, scientist,
star, telescope)
. . .

M

(australian, scientist, 1)
(scientist, australian, 1)
(scientist, discovers, 1)
(discovers, scientist, 1)
(discovers, star, 1)
. . .

(australian, scientist, 1)
(scientist, australian, 1)
(scientist, discovers, 1)
(discovers, scientist, 1)
(discovers, star, 1)
(discovers, telescope, 1)
. . .

Table 3: Illustration of collection P , M andM for
sentence “australian scientist discovers star with
telescope”. Unbound representation is used in this
example. Words in the collections are Bold. .

word-context pairs are changed completely. DEP-
S, as compared to the linear contexts, increases the
likelihood that the contextual words are in a mean-
ingful relation with the target word, although some
words captured by DEPS would also be found in
the linear contexts if the window is wide enough.
For example, in Table 2, “scientist” and “star” are
considered as the contextual words of “discovers”
in both linear and DEPS context types.

3.3 Generalization

Let P be a collection of word-context pairs. P can
be merged based on the words to form a collection
M with size of |V |, where V is the vocabulary.
Each element (w, c1, c2, .., cnw) ∈ M is word w
and its contexts, where nw is the number of word
w’s contexts. P can also be merged based on both
words and contexts to form a collection M . Each
element (w, c,#(w, c)) ∈ M is the word w, con-
text c, and the times they appear in collection P .
An example of these collections is shown in Ta-
ble 3.

3.3.1 Generalized Bag-Of-Words

The objective function of Generalized Bag-Of-
Words (GBOW) is defined as:

∑

(w,c1,..,cnw )∈M
log p

(
w

∣∣∣∣∣
nw∑

i=1

~ci

)
(1)

With negative sampling technique, the log prob-
ability is calculated by:

log σ

(
~w ·

nw∑

i=1

~ci

)
−

K∑

k=1

log σ

(
~wNk ·

nw∑

1=i

~ci

)
(2)

where σ is the sigmoid function, K is the negative
sampling size, ~w and ~c is the vector for word w
and c respectively. The negatively sampled word
wNk is randomly selected on the basis of its uni-
gram distribution ( #(w)∑

w#(w))
ds, where #(w) is the

number of times that word w appears in the cor-
pus, and ds is the distribution smoothing hyper-
parameter which is usually defined as 0.75.

Note that with negative sampling technique,
both GBOW and original CBOW (Mikolov et al.,
2013a) will learn two sets of embeddings (word
embeddings and context embeddings). In the o-
riginal CBOW, the context embeddings can also
be considered as word embeddings, since the vo-
cabulary set of words and contexts are the same.
However, for bound context, the words (i.e. scien-
tist) and contexts (i.e. scientist/nsubj) are quite d-
ifferent. It is necessary to distinguish conditioned
and conditioning variables. For example, in Fig-
ure 1, the context “scientist/nsubj” can only be
predicted by word “discovers”. However, most of
the word is connected to several contextual word-
s. Due to this, the sum of contextual word em-
beddings should be used for predicting the target
word.

3.3.2 Generalized Skip-Gram

For generalized Skip-Gram (GSG), the definition
is more straightforward and the objective function
actually needs no specification (Levy and Gold-
berg, 2014b). Nonetheless, in order to make it
consistent with our GBOW, we also specify the
conditioned and conditioning variables in the ob-
jective function:

∑

(w,c)∈P
log p (w|~c)

=
∑

(w,c)∈P

[
log σ (~w · ~c)−

K∑

k=1

log σ ( ~wNk · ~c)
] (3)

Note that this generalization does not change
the nature of the models for linear context. In our
pilot experiments on word analogy and word sim-
ilarity, the performance of both GSG and GBOW
is almost identical to their original versions.
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Figure 2: Correlation results for similarity and relatedness categories on WordSim353 (word similarity)
dataset.

3.3.3 GloVe
Unlike GSG and GBOW, GloVe explicitly opti-
mizes a log-bilinear regression model based on
word co-occurrence matrix. Since GloVe is al-
ready a very generalized model, with the previous
defined collection M , the final objective function
is written as:

∑

(w,c)∈M

f(#(w, c))(~w · ~c+ ~bw + ~bc − log#(w, c)) (4)

where ~bw and ~bc are biases for word and contex-
t. f is a non-decreasing weighting function and
ensures that large #(w, c) is not over-weighted.

Note that the inputs of GSG, GBOW and Glove
are the collections P , M and M respectively.
Once the corpus and hyper-parameters are fixed,
these collections (and thus the learned word em-
beddings) are determined only by the choice of
context types and representations.

4 Experiments

We evaluate the effectiveness of different syntactic
context types and context representations on word
similarity, word analogy, part-of-speech tagging,
chunking, named entity recognition, and text clas-
sification tasks. In this section we describe our
models, and then report and discuss the experi-
mental results on each task.

4.1 Word Embeddings
Previously, the word2vecf toolkit 5 (Levy et al.,
2015) extended the word2vec toolkit 6 (Mikolov
et al., 2013b) to accept the input of collection P

5https://bitbucket.org/yoavgo/
word2vecf

6http://code.google.com/p/word2vec/

rather than raw corpus. This makes CSG mod-
el accept arbitrary contexts (e.g. DEPS context).
However, CBOW and GloVe are not considered in
that toolkit. We implement word2vecPM toolkit,
a further extension of word2vecf, which sup-
ports generalized CSG, CBOW and GloVe with
the input of collection P , M and M respectively.
For fair comparison, as suggested by Levy et al.
(2015), we use the same hyper-parameters 7 for al-
l embedding models. English Wikipedia (August
2013 dump) is used as the training corpus. The
Stanford CoreNLP (Manning et al., 2014) is used
for dependency parsing. After parsing, tokens are
converted to lowercase. Words and contexts that
appear fewer than 100 times in the collection P
are ignored.

4.2 Word Similarity Task
Word similarity task aims at producing semantic
similarity scores of word pairs, which are com-
pared with the human scores using Spearman’s
correlation. The cosine distance is used for gener-
ating similarity scores between two word vectors.
We use the WordSim353 (Finkelstein et al., 2001)
dataset, divided into similarity and relatedness cat-
egories (Zesch et al., 2008; Agirre et al., 2009).

Previous research (Levy and Goldberg, 2014a;
Melamud et al., 2016) concluded that compared
to linear context, DEPS context can capture more
functional similarity (e.g. tiger/cat) rather than
topical similarity (relatedness) (e.g. tiger/jungle).
However, their experiments do not distinguish the

7Negative sampling size is set to 5 for SG and 2 for
CBOW. Distribution smoothing is set to 0.75. No dynamic
context or “dirty” sub-sampling is used. The window size is
fixed to 2. The number of iterations is set to 2, 5 and 30 for
SG, CBOW and GloVe respectively.
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Model Context
Type

Context
Representation

Similarity Relatedness Similarity+Relatedness
WS353 Rare Words SimLex-999 WS353 MEN Mech Turk

GSG
linear unbound .757 .414 .417 .563 .732 .632

bound .762 .421 .434 .543 .695 .608

dep unbound .776 .422 .418 .531 .728 .644
bound .792 .413 .421 .483 .674 .643

GBOW
linear unbound .747 .436 .439 .503 .718 .644

bound .689 .403 .428 .427 .659 .512

dep word .669 .412 .386 .395 .667 .541
bound .799 .434 .403 .502 .640 .587

GloVe
linear unbound .645 .354 .323 .545 .662 .587

bound .670 .400 .363 .481 .563 .587

dep unbound .696 .371 .342 .539 .692 .603
bound .734 .409 .406 .468 .541 .557

Table 4: Numerical results on word similarity datasets. Best results in group are marked Bold.

Model Context Context Google Google MSR Inflectional Derivational Encyclopedia LexicographyType Representation Sem Syn morphology morphology

GSG
linear unbound .708 .639 .642 .678 .110 .242 .083

bound .702 .454 .653 .668 .111 .208 .099

dep unbound .716 .661 .644 .691 .122 .253 .095
bound .600 .307 .600 .668 .112 .170 .099

GBOW
linear unbound .628 .566 .601 .618 .096 .201 .074

bound .602 .376 .569 .572 .091 .157 .081

dep unbound .573 .553 .520 .496 .094 .216 .076
bound .495 .248 .516 .563 .086 .126 .078

GloVe
linear unbound .471 .719 .454 .425 .033 .226 .054

bound .502 .218 .542 .559 .044 .129 .095

dep unbound .513 .700 .525 .491 .043 .227 .063
bound .402 .121 .525 .446 .033 .093 .083

Table 5: Numerical results on word analogy datasets. Best results in group are marked Bold.

effect of different context representations: un-
bound representation is used for linear contex-
t (Mikolov et al., 2013b), while bound represen-
tation is used for dependency-based context (Levy
and Goldberg, 2014a). Moreover, only CSG mod-
el is considered.

We revisit those claims with more systematical
experiments. As shown in the top-left sub-figure
of Figure 2, DEPS does outperform the linear con-
textin GSG and GloVe in the similarity section
of WordSim353, confirming its ability to capture
functional similarity. However, the advantage of
DEPS does not fully transfer to GBOW. Although
bound DEPS context for GBOW is still the best
performer, unbound DEPS context performs the
worst, which shows the importance of bound vs
unbound representation.

Note that the results are also reversed on Word-
Sim353 relatedness section (the right subfigure of
Figure 2), which shows that linear context is more
suitable for capturing topical similarity.

Overall, DEPS context type does not get all the
credit for capturing functional similarity. Contex-
t representations play an important role for word

similarity task. it is only safe to say that DEP-
S context captures functional similarity with the
“help” of bound representation. In contrast, lin-
ear context type captures topical similarity with
the “help” of unbound representation.

However, the above findings come with a ma-
jor caveat: a lot seems to depend on the particular
dataset, in addition to the model and context type.
We experimented with MEN dataset (Bruni et al.,
2012), Mechanical Turk dataset (Radinsky et al.,
2011), Rare Words dataset (Luong et al., 2013),
and SimLex-999 dataset (Hill et al., 2016) (Ta-
ble 4), and we were not able to observe uniform
trends even for datasets that are supposed to cap-
ture the same relation - like the similarity part of
WordSim353, Rare Words and SimLex.

Still, some models do favor a certain contex-
t type for both similarity and relatedness: e.g.
GBOW favors linear unbound contexts, while
GLoVE in most cases prefers DEPS over the linear
context. In case of GCG, however, context type
needs to be optimized for the particular dataset.

2426



25 50 10
0

25
0

50
0

0.2

0.3

0.4

0.5

0.6

0.7

In
fle

ct
io

ns
 (L

R
C

os
)  

ac
cu

ra
cy

 (%
)

Skip-Gram

25 50 10
0

25
0

50
0

0.2

0.3

0.4

0.5

0.6

0.7

CBOW

25 50 10
0

25
0

50
0

0.2

0.3

0.4

0.5

0.6

0.7

GloVe

25 50 10
0

25
0

50
0

0.05
0.10
0.15
0.20
0.25
0.30

D
er

iv
at

io
n 

(L
R

C
os

)  
ac

cu
ra

cy
 (%

)

25 50 10
0

25
0

50
0

0.05
0.10
0.15
0.20
0.25
0.30

25 50 10
0

25
0

50
0

0.05
0.10
0.15
0.20
0.25
0.30

25 50 10
0

25
0

50
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

En
cy

cl
op

ed
ia

 (L
R

C
os

)  
ac

cu
ra

cy
 (%

)

25 50 10
0

25
0

50
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

25 50 10
0

25
0

50
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

25 50 10
0

25
0

50
0

dimension

0.04

0.06

0.08

0.10

0.12

Le
xi

co
gr

ap
hy

 (L
R

C
os

)  
ac

cu
ra

cy
 (%

)

25 50 10
0

25
0

50
0

dimension

0.04

0.06

0.08

0.10

0.12

25 50 10
0

25
0

50
0

dimension

0.04

0.06

0.08

0.10

0.12

unbound linear context bound linear context unbound DEPS context bound DEPS context

Figure 3: Averaged accuracy results for all Inflections, Derivation, Encyclopedia and Lexicography cat-
egories on BATS word analogy dataset.

4.3 Word Analogy Task

Word analogy task aims at answering the question-
s like “a is to a’ as b is to ?”, such as “Lon-
don is to Britain as Tokyo is to Japan”. We fol-
low the evaluation protocol in Levy and Goldberg
(2014b), which answers the questions using LR-
Cos method (Drozd et al., 2016). LRCos shows
significant improvement over the traditional vec-
tor offset method. We use BATS analogy dataset
(Gladkova et al., 2016) in our experiments.

As shown in Figure 3, context representation
plays an important role in word analogy task. The
choice of context representation (bound or un-
bound) actually has much larger impact than the
choice of context type (linear or DEPS). The re-
sults on Encyclopedia category are perhaps the
most evident. The performance of unbound lin-
ear context and unbound DEPS context is similar.
However, for most models and categories, bound
representation seems to outperform unbound rep-
resentation. When bound representation is used,
the performance drops around 5 − 15 percent for
DEPS context in terms of accuracy. This is con-
sistent with the findings of Levy and Goldberg
(2014a), who report that DEPS context did not
work well for the analogy task.

As shown in Table 5, we have also experiment-
ed on two much smaller datasets: MSR analogy

dataset (Mikolov et al., 2013c), and Google analo-
gy dataset (Mikolov et al., 2013a) (with semantic
and syntactic questions). They also show that the
choice of context representation has more impact
than the choice of context type.

4.4 POS, Chunking and NER Tasks

Although intrinsic evaluations like word similar-
ity and word analogy tasks could provide direc-
t insights about different context types and repre-
sentations, they have certain methodological prob-
lems (Gladkova and Drozd, 2016), and the exper-
imental results above cannot be directly translated
to the typical uses of word embeddings in down-
stream tasks (Schnabel et al., 2015; Linzen, 2016;
Chiu et al., 2016). Thus extrinsic tasks should also
be considered.

In this subsection, we evaluate the effective-
ness of different word embedding models with dif-
ferent contexts on Part-of-Speech Tagging (POS),
Chunking8 and Named Entity Recognition (NER)
tasks 9. For these tasks, a NLP system assigns la-
bels to elements of texts. Note that in practice, one
should NOT use DEPS context for POS-tagging
and chunking tasks, since their labels are used in

8CoNLL 2000 shared task http://www.cnts.ua.
ac.be/conll2000/chunking

9CoNLL 2003 shared task http://www.cnts.ua.
ac.be/conll2003/ner
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Figure 4: Accuracy or F1-score results on Part-of-Speech Tagging, Chunking and Named Entity Recog-
nition tasks.

parsing the source corpus.
Following the evaluation protocol used in Kiros

et al. (2015), we restrict the predicting model to
Logistic Regression Classifier10. The classifier’s
input for predicting the label of word wi is sim-
ply the concatenation of word vectors ~wi−2, ~wi−1,
~wi, ~wi+1, ~wi+2. This ensures that the quality of
embedding models is directly evaluated, and their
strengths and weaknesses are easily observed.

Model Context Context POS Chunking NERType Representation

GSG
linear unbound 95.3 87.2 76.6

bound 96.0 88.5 77.4

dep unbound 95.6 87.5 75.5
bound 96.3 88.5 76.2

GBOW
linear unbound 95.2 87.7 74.7

bound 95.7 88.3 75.2

dep unbound 95.4 87.3 74.3
bound 96.0 88.6 75.5

GloVe
linear unbound 91.6 79.6 70.8

bound 95.5 88.2 74.8

dep unbound 92.8 82.0 70.7
bound 95.5 87.5 72.0

Table 6: Numerical results on Part-of-Speech Tag-
ging, Chunking and Named Entity Recognition
tasks. Best results in group are marked Bold.

As shown in Figure 4 and Table 6, GSG, GBOW
and GloVe exhibit overall similar trends. When
the same context type is used, bound represen-
tation outperforms unbound representation on all
tasks. Sequence labeling tasks are not sensitive to

10The implementation by scikit is used http://
scikit-learn.org/

syntax. For bound representation, the ignorance of
syntax becomes beneficial, since it decreases the
amount of noise and sparsity.

Moreover, DEPS context type works slight-
ly better than linear context type in most cases.
These results suggest that unbound linear contex-
t (as in traditional CSG and CBOW) may not be
the best choice of input word vectors for sequence
labeling. Bound representations should always be
used and DEPS context type is also worth consid-
ering. Again, similar to the word analogy task,
GloVe is more sensitive to different context repre-
sentations than Skip-Gram and CBOW.

4.5 Text Classification Task

Finally, we evaluate the effectiveness of differen-
t word embedding models with different syntactic
contexts on text classification task. Text classifi-
cation is one of the most popular and well-studied
tasks in natural language processing. Recently,
deep neural networks achieve state-of-the-art re-
sults on this task (Socher et al., 2013; Kim, 2014;
Dai and Le, 2015). They often need pre-trained
word embeddings as inputs to improve their per-
formances. Similarly to the previous evaluation of
sequence labeling tasks, instead of building com-
plex deep neural networks, we use a simpler clas-
sification method called Neural Bag-of-Words (Li
et al., 2017) to directly evaluate the word em-
beddings: texts are first represented by the sum
of their word vectors, then a Logistic Regression
Classifier (the same as that in previous subsection)
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Model Context Context Sentence-level Document-level
Type Rep. MR CR Subj RT-2k IMDB

GSG
linear unbound 76.1 78.3 90.9 83.5 85.2

bound 75.3 79.0 90.4 82.2 85.2

dep unbound 76.0 77.7 90.7 84.8 85.1
bound 75.0 77.5 90.0 84.7 84.5

GBOW
linear unbound 74.9 77.9 90.4 82.0 85.0

bound 74.1 77.8 90.3 80.7 84.1

dep unbound 75.0 77.6 90.1 82.4 84.9
bound 73.5 78.2 89.9 80.7 83.4

GloVe
linear unbound 73.4 76.7 89.6 79.2 83.5

bound 73.2 77.5 90.0 79.8 83.4

dep unbound 74.0 77.7 89.5 81.3 83.5
bound 72.5 76.7 88.8 79.2 83.5

random word embeddings 63.9 72.8 79.9 72.2 77.2

Table 7: Accuracy results on 5 text classification
datasets. Best results in group are Bold

is built upon these text representations for classifi-
cation.

Different word embedding models are evaluated
on 5 text classification datasets. The first 3 dataset-
s are sentence-level: short movie review sentiment
(MR) (Pang and Lee, 2005), customer product re-
views (CR) (Nakagawa et al., 2010), and subjec-
tivity/objectivity classification (SUBJ) (Pang and
Lee, 2004). The other 2 datasets are document-
level with multiple sentences: full-length movie
review (RT-2k) (Pang and Lee, 2004), and IMDB
movie review (IMDB) (Maas et al., 2011)11.

As shown in Table 7, pre-trained word embed-
dings outperform random word embeddings by a
large margin. This strengthens the previous claim
that pre-trained word embeddings are highly use-
ful for text classification (Iyyer et al., 2015; Li
et al., 2017). Unlike in the other tasks, in text clas-
sification all models exhibit similar performance.
Text classification has less focus on syntax and
function similarity. Because of that, models with
bound representation perform worse than those
with unbound representation on almost all dataset-
s except CR. Models with DEPS context type and
linear context type are comparable. These obser-
vations suggest that simple unbound linear context
type (as in traditional CSG and CBOW) is still the
best choice of pre-training word embeddings for
text classification, which is already used in most
studies.

5 Conclusion

This paper provides a first systematical investiga-
tion of different syntactic context types (linear vs

11Please see Wang and Manning (2012) for more detailed
introduction and pre-processing of these datasets.

dependency-based) and different context represen-
tations (bound vs unbound) for learning word em-
beddings. We evaluate GSG, GBOW and GloVe
models on intrinsic property analysis tasks (word
similarity and word analogy), sequence labeling
tasks (POS, Chunking and NER) and text classi-
fication task.

We find that most tasks have clear preference
for different context types and representations.
Context representation plays a more importan-
t role than context type for learning word embed-
dings. Only with the “help” of bound representa-
tion does DEPS context capture functional similar-
ity. Word analogies seem to prefer unbound rep-
resentation, although performance varies by ques-
tion type No matter which syntactic context type
is used, bound representation is essential for se-
quence labeling tasks, which benefits from its a-
bility of capturing functional similarity. GSG with
unbound linear context is still the best choice for
text classification task. Linear context is sufficient
for capturing topical similarity compared to more
labor-intensive DEPS context. Words’ position in-
formation is generally useless for text classifica-
tion, which makes bound representation contribute
less to this task.

In the spirit of transparent and reproducible ex-
periments, the word2vecPM toolkit 12 is pub-
lished along with this paper. We hope researcher-
s will take advantage of the code for further im-
provements and applications to other tasks.
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Chloé Braud and Ophélie Lacroix and Anders Søgaard
CoAStaL DIKU

University of Copenhagen
University Park 5, 2100 Copenhagen

chloe.braud@gmail.com lacroix@di.ku.dk soegaard@di.ku.dk

Abstract

Discourse segmentation is the first step in
building discourse parsers. Most work on
discourse segmentation does not scale to
real-world discourse parsing across lan-
guages, for two reasons: (i) models rely
on constituent trees, and (ii) experiments
have relied on gold standard identification
of sentence and token boundaries. We
therefore investigate to what extent con-
stituents can be replaced with universal de-
pendencies, or left out completely, as well
as how state-of-the-art segmenters fare in
the absence of sentence boundaries. Our
results show that dependency information
is less useful than expected, but we pro-
vide a fully scalable, robust model that
only relies on part-of-speech information,
and show that it performs well across lan-
guages in the absence of any gold-standard
annotation.

1 Introduction

Discourse segmentation is the task of identify-
ing, in a document, the minimal units of text –
called Elementary Discourse Units (EDU) (Carl-
son et al., 2001) – that will be then linked by
semantico-pragmatic relations – called discourse
relations. Discourse segmentation is the first step
when building a discourse parser, and has a large
impact on the building of the final structure –
predicted segmentation leads to a drop in perfor-
mance of about 12-14% (Joty et al., 2015).

In this work, we focus on the Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988)
in which discourse analysis is a tree covering an
entire document. Most of the recent discourse
parsers have been developed within this frame-
work, making crucial the development of robust

RST discourse segmenters. Many corpora have
been annotated within this framework for several
domains and languages – such as English with
the RST Discourse Treebank (RST-DT) (Carlson
et al., 2001), but also Spanish (da Cunha et al.,
2011), Brazilian Portuguese (Cardoso et al., 2011;
Collovini et al., 2007; Pardo and Seno, 2005;
Pardo and Nunes, 2004) or German (Stede and
Neumann, 2014).

State-of-the-art performance for discourse seg-
mentation on the RST-DT is about 94% in
F1 (Xuan Bach et al., 2012). Most work on dis-
course parsing has focused on English and on the
RST-DT (Ji and Eisenstein, 2014; Feng and Hirst,
2014; Li et al., 2014; Joty et al., 2013), and so
discourse segmentation (Xuan Bach et al., 2012;
Fisher and Roark, 2007; Subba and Di Eugenio,
2007). And while discourse parsing is a document
level task, discourse segmentation is done at the
sentence level, assuming that sentence boundaries
are known. This prevents from using discourse in-
formation for a wider range of downstream tasks.

Moreover, while discourse parsing is a seman-
tic task involving a large range of information,
the annotation guidelines reflect that segmentation
is merely based on syntax: in practice, an EDU
can not overlap sentence boundaries – while some
discourse trees can cross the sentence boundaries
(van der Vliet and Redeker, 2011) –, and de-
ciding whether a clause is an EDU in the RST-
DT strongly depends on its syntactic function –
e.g. “Clauses that are subjects or objects of a
main verb are not treated as EDUs” (Carlson and
Marcu, 2001). Consequently, existing discourse
segmenters heavily rely on information derived
from constituent trees usually following the Penn
Treebank (PTB) (Marcus et al., 1993) guidelines.
Nevertheless constituent trees are not easily avail-
able for any language. Finally, even for English,
using predicted trees leads to a large drop in per-
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formance for discourse segmentation.
Recently, Braud et al. (2017) proposed the first

cross-lingual and cross-domain experiments for
discourse segmentation, relying only on words
and Part-of-Speech (POS) tags (morpho-syntactic
level). However, they focus on document-level
discourse segmentation – preventing from a com-
parison with previous work –, and they did not in-
clude any syntactic information. In this paper, we
significantly extend their work by investigating the
use of syntactic information, reporting results with
various sets of features at the sentence level – vary-
ing the settings between gold and predicted, and
fine-grained vs coarse grained information –, and
studying the impact of tokenisation.

Our contributions

• We develop new discourse segmenters that
can be used for many languages and domains
since they rely on easily available resources;

• We investigate the usefulness of syntactic in-
formation when derived from Universal De-
pendencies (UD) (Nivre et al., 2016) parse
trees, compare it to simpler representations
and show that accurate POS tags are better
than low quality parse trees;

• We compare different settings considering
gold and predicted POS tags, tokenization
and sentence segmentation.

2 Related work

First discourse segmenters on the RST-DT were
based on hand-crafted rules, relying on punc-
tuation, POS tags, discourse cues (e.g. “but”,
“because”, “after”) and syntactic information (Le
Thanh et al., 2004; Tofiloski et al., 2009). Seg-
menters based on handwritten rules have also been
developed for Brazilian Portuguese (Pardo and
Nunes, 2008) (51.3% to 56.8%, depending on the
genre), for Spanish (da Cunha et al., 2010, 2012)
(80%) and for Dutch (van der Vliet, 2010) (73%
with automatic parse, 82% with gold parse).1

More recent discourse segmenters on the RST-
DT are based on binary classifiers at the word
level (Soricut and Marcu, 2003; Fisher and Roark,
2007; Joty et al., 2015), possibly using a neu-
ral network architecture (Subba and Di Eugenio,
2007). Joty et al. (2015) also report results for

1For German, Sidarenka et al. (2015) propose a segmenter
in clauses (that may be EDU or not).

the Instructional corpus (Subba and Di Eugenio,
2009) (F1 80.9% on 10-fold).

Interestingly, Fisher and Roark (2007) investi-
gate the utility of parse-derived features for the
task. More precisely, they compare different sets
of features derived from constituent trees, us-
ing n-grams or paths in a tree that could be a
full constituent tree or a shallow parse (chunks).
Their system thus requires chunker or constituent
parser. In contrast, we investigate the usefulness
of syntactic information derived from dependency
parses, and we extend their work in also compar-
ing our results to the use of only POS tags and
words.

For English RST-DT, the best discourse seg-
mentation results were presented in Xuan Bach
et al. (2012) (F1 91.0% with automatic parse, 93.7
with gold parse). They cast discourse segmenta-
tion as a sequence labeling problem, as also done
in (Sporleder and Lapata, 2005; Hernault et al.,
2010). More precisely, they develop a base sys-
tem using CRF on top of which they add a rerank-
ing model. Their base system relies on lexico-
syntactic features including words, POS tags –
from the Penn Treebank (PTB) annotation scheme
–, and paths in the constituent trees. The rerank-
ing systems then considers subtrees features, cor-
responding to the boundaries of a candidate EDU
and the common boundary of two consecutive can-
didates EDUs. This post-processing only leads
to small improvements: about 1.2% when using
gold syntactic information, and only 0.3% with
predicted trees.

All these systems rely on a quite large range
of lexical and syntactic features (e.g. token,
POS tags, chunks, lexicalized production rules,
discourse connectives). Sporleder and Lapata
(2005) present arguments for a knowledge-lean
system that can be used for low-resourced lan-
guages. Their system, however, still relies on
several tools and gold annotations (e.g. POS
tagger, chunker, list of connectives, gold sen-
tences). Moreover, previous work always rely
on gold sentence boundaries, and only consid-
ers intra-sentential segment boundaries while sen-
tence boundaries are not available for all lan-
guages.

Braud et al. (2017) recently proposed the first
systems for discourse segmentation of entire doc-
uments directly applicable to low-resource lan-
guages. Their systems only rely on Universal De-
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pendencies POS tagging, for which models are
available for many languages. As done in that
study, we do sequence prediction using a neural
network. However, we extend their work signifi-
cantly in reporting results for intra-sentential seg-
mentation, in comparing more settings concerning
the availability of information (tokenisation, POS
tags), and in including syntactic information into
our systems.

3 Discourse segmentation

3.1 Binary task

Since the EDUs cover the documents entirely, dis-
course segmentation is generally cast as a binary
task at the word level, where the goal is to find
which word indicates an EDU boundary: A word
is thus either beginning an EDU (label ’B’), or
within an EDU (label ’I’).

This design choice assumes that EDUs are ad-
jacent spans of text, that is an EDU begins just
after the end of the previous EDU. This is not en-
tirely true in RST corpora, where embedded EDUs
could break up another EDU, as in Example (1)
taken from the RST-DT annotation manual (Carl-
son and Marcu, 2001). The units 1 and 3 form
in fact one EDU, which is acknowledged by the
annotation of a pseudo-relation SAME-UNIT be-
tween these segments.

(1) [But maintaining the key components (. . .)]1
[– a stable exchange rate and high levels of imports –]2
[will consume enormous amounts (. . .).]3

We follow previous work on treating this as
three segments, but note that this may not be
the optimal solution. It introduces a bias: while
most of the EDUs are full clauses, EDU 1 and 3
are fragments. Other designs are possible, espe-
cially a multi-label setting as done in (Afantenos
et al., 2010) for a corpus annotated within the Seg-
mented Discourse Representation Theory (Asher
and Lascarides, 2003). While it seems relevant
to deal with this issue during segmentation rather
than using a pseudo-relation, it introduces new is-
sues (i.e. the final structures are not trees any-
more). We thus leave this question for future work.

3.2 Sentence vs document-level segmentation

Most of the existing work on discourse segmen-
tation always assume a gold segmentation of the
sentences: since an EDU boundary never crosses

a sentence boundary,2 these systems only perform
intra-sentential segmentation. This is motivated
by the quite high performance of sentence seg-
menters. In our experiments, we report intra-
sentential results, in order to compare our systems
to previous ones.

However, sentence boundaries are not always
available. In a situation where both inter and
intra-sentential segmentation is required, there are
two alternatives: processing the tasks sequentially
or simultaneously. In preliminary experiments
we considered using the multilingual system UD-
Pipe 3 (Straka et al., 2016) to segment document
into sentences in an effort to use tools available in
multiple languages. However, the segmentation is
far from perfect: 7.5% of the words marked as be-
ginning a sentence were not an EDU boundary in
the RST-DT, thus corresponding to an error.

We thus rather decided to rely on a model per-
forming both inter- and intra-sentential segmenta-
tion. We aim at building systems directly segment-
ing entire documents. Then in order to provide
performance of discourse segmenters in a realistic
setting, our final systems jointly predict sentence
and intra-sentential EDU boundaries.

Finally, for the English RST-DT, we present two
performance metrics:

• F1 for intra-sentential boundaries only (see
Section 7.1), in order to be comparable with
state-of-the-art systems;

• and F1 for all EDU boundaries, in order to
set up a document-level baseline (see Section
7.2).

For the other languages and domains, since we do
not have access to gold sentence boundaries, we
only present results at the document level.

4 Approach

4.1 Neural network for sequence prediction

We model the task as a sequence prediction task
using a neural network architecture. Our model
consists of a stacked k-layer bi-LSTM, a variant of
LSTM (Hochreiter and Schmidhuber, 1997) that

2With two exceptions in the RST DT, possibly due to
errors in the discourse or syntactic annotation (Documents
2343 and 0678). As probably done in previous works, we do
not consider these cases as separate sentences, following the
discourse annotation.

3http://ufal.mff.cuni.cz/udpipe
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reads the input in both regular and reversed or-
der. This enables to take into account both left and
right context (Graves and Schmidhuber, 2005).
This is a crucial property for discourse segmenta-
tion, especially with the simplified representations
we consider, since the decision depends on the
context, e.g. coordinated NPs are not segmented
while coordinated VPs are, our model must thus
learn to distinguish a VP from a NP without using
constituent parses.

The model takes as input a concatenation of
randomly initialized and trainable embeddings of
words and their morpho-syntactic features (see
Section 4.3). The sequence goes through the k-
stacked layers, and we output the concatenation
of the backward and forward states. At the upper
level, we compute the prediction using a Multi-
Layer Perceptron. We used the Adam trainer.
All other hyper parameters were tuned on devel-
opment data; see Section 6.2 for a description
of hyper-parameter tuning, and our final param-
eters. 4

4.2 Tokenization and sentence splitting

In order to evaluate the impact of tokenization on
discourse segmentation we propose two settings
for English: one for which we evaluate on gold to-
kens – as done in all previous work –, and another
one where tokenization is pre-processed using the
UDPipe tokenizer. For the other languages, the
task is always evaluated on non-gold tokens.

In the same way, we investigate the impact
of gold sentence splitting by considering the tra-
ditional setting where discourse segmentation is
only intra-sentential (gold sentences) and the more
realistic one where we directly segment docu-
ments (sentence boundaries are unknown).

4.3 Features

To the best of our knowledge, we are the first to re-
port the scores one can expect when not using syn-
tactic trees and/or cue phrases, that is, only based
on words or POS tags. These are interesting re-
sults, because they correspond to representations
that can be built easily for any new language.

In addition, we investigate the impact of gold vs
predicted features for discourse segmentation for
English, and of automatic pre-processing of the
data before feature extraction (tokenization). Un-

4Our system has been implemented with the Dynamic
Neural Network Toolkit (Neubig et al., 2017).

til now, only the impact of using predicted con-
stituent trees had been investigated. But since
constituent treebanks are not readily available for
many languages, we limit ourselves to (predicted)
dependency trees.

Focusing on English allows us to set up a base-
line using predicted feature information (docu-
ment level) which could then be evaluated on other
languages for which no gold features are available.

We evaluate both the performance when using
single features and when combining the features
described above, each corresponding to a (ran-
domly intialized) real valued vector. The vectors
for each features are concatenated to build a rep-
resentation of a single word.

Lexical information Our first features are lexi-
cal. We use each token as a feature, being repre-
sented by a real-valued vector.

Morpho-syntactic features POS tags are also
valuable information for the task, for example con-
junctions and adverbs may often begin an EDU,
because they can correspond to a discourse con-
nective (e.g. “because”, “if”, “and”, “after”).

For English, we want to compare between gold
and predicted information: gold PTB POS vs pre-
dicted PTB POS. For this last setting, we use pre-
dicted POS tag features for both training and test-
ing our discourse segmenter in order to minimize
the difference between training data and test data.
We use our own POS-tagger,5 which achieves
96.6% accuracy on test data, to predict the POS-
tags. The test and development (discourse) data
are tagged using a model trained on the entire
training set, and the training data are tagged using
a 10-fold cross-validation.

We also compare between scarce and available
information (predicted setting): PTB POS (fine
grained - 45 tags) vs UD POS (coarse grained -
17 tags). For predicting UD POS tags we make
use of the UDPipe system (retrained on the v1.3
UD data).

Syntactic information We augment our repre-
sentation with syntactic information available for
many languages: supertags (STAGS) extracted
from dependency parsed trees (predicted using
UDpipe in the same setting as for POS-tags).

5Bi-LSTM tagger (keras-based implementation) using
non-supervised features about words (e.g. capitalization, suf-
fixes).
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to bolster its new material supply and develop new uses tokens
PART VERB PRON ADJ NOUN NOUN CONJ VERB ADJ NOUN POS
mark advcl nmod amod compound dobj cc conj amod dobj hlab
advcl root dobj dobj dobj advcl advcl advcl dobj conj hhlab

bolster goes supply supply supply bolster bolster bolster uses develop htok
goes faces bolster bolster bolster goes goes goes develop bolster hhtok

R Root R R R L L L R L hdir
VERB VERB NOUN NOUN NOUN VERB VERB VERB NOUN VERB hpos

B I I I I I B I I I

advcl

mark

nmod
amod

compound

dobj
cc

conj

amod

dobj

Figure 1: Features extracted from a (part of a) sentence and its predicted UD dependency tree.

Our selection of supertags is first inspired by the
work of Ouchi et al. (2016) on supertagging for
dependency parsing, and second on our own ex-
pertise of discourse segmentation and UD scheme.
Actually a large part of EDU boundaries which
need syntactic information to be disambiguated
are function words such as “to” or “and”. Since
the UD scheme favors the attachments via content
words rather than function words, the latter are of-
ten leaves in the dependency trees. It means that
the valuable information for these words comes
from their parents, their grand-parents or their sib-
lings. We thus extract the following features for
each token:

• hlab, the label of its incoming dependency
(47 UD labels);

• hhlab, the label of its incoming dependency
of the token’s head (37 UD labels + NONE :
26% nmod, 23% root);

• hdir, the direction of its incoming depen-
dency (3 tags : RIGHT, LEFT or ROOT);

• hpos, the UD POS-tag of its head (17 UD tags
+ ROOT : 41% NOUNs, 34% VERBs and 10%
PROPNs);

• htok, its head token (11.483 different tokens);

• hhtok, the head of its head token (8.266 dif-
ferent tokens);

• sleft, the POS and incoming label of its left
siblings (if it is a coordination or an object)
(265 tags);

• sright, the POS and incoming label of its right
siblings (if it is a coordination or an object)
(331 tags).

An example for which supertags help to identify
EDU boundaries is presented in Figure 1.

5 Corpora

Corpus #Doc #EDU #Sent #Word

En-SFU-DT 400 28, 260 16, 827 328, 362
En-DT 385 21, 789 9, 074 210, 584
Pt-DT 330 12, 594 4, 385 136, 346
Es-DT 266 3, 325 1, 816 57, 768
En-Instr-DT 176 5, 754 3, 090 56, 197
De-DT 174 2, 979 1, 805 33, 591

Table 1: Number of documents, EDUs, sentences
and words (according to UDPipe).

For English, we use three corpora, allowing us
to evaluate how robust is our model across do-
mains. First, we report results on the RST-DT
(from now on called En-DT), the most widely used
corpus for this task. This corpus is composed of
Wall Street Journal articles, it has been annotated
over the Penn Treebank. We also report perfor-
mance on the SFU review corpus6 (En-SFU-DT)

6https://www.sfu.ca/˜mtaboada
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containing product reviews, and on the instruc-
tional corpus (En-Instr-DT) (Subba and Di Euge-
nio, 2009) built on instruction manuals.7

We also evaluate our model across languages.
For Spanish, we report performance on the cor-
pus (Es-DT) presented in (da Cunha et al., 2011),8.
For German, we use the Postdam corpus (De-
DT) (Stede, 2004; Stede and Neumann, 2014).
For Brazilian Portuguese (Pt-DT), we merged four
corpora (Cardoso et al., 2011; Collovini et al.,
2007; Pardo and Seno, 2005; Pardo and Nunes,
2003, 2004) as done in (Maziero et al., 2015;
Braud et al., 2017).

Table 1 summarizes statistics about the data.

6 Experiments

6.1 Evaluation

For English, on the En-DT, evaluation for dis-
course segmentation has been done under different
conditions.

First, all previous systems were evaluated on the
same set of 38 documents that initially contains
991 sentences – and more precisely on each sen-
tence of this set for intra-sentential results. How-
ever, Soricut and Marcu (2003) do not consider
sentences that are not exactly spanned by a dis-
course subtree (keeping only 941 sentences in the
test set), and Sporleder and Lapata (2005) only
keep the sentences that contain intra-sentential
EDUs (608 sentences).

Since we want to give results at the document
level, – with the sentence boundaries being pre-
dicted as the other EDU boundaries –, there is no
reason to remove any sentences. We thus keep all
the 991 sentences in the test set as done in (Fisher
and Roark, 2007; Xuan Bach et al., 2012) at the
sentence level, and in (Braud et al., 2017) at the
document level.

For the other corpora (see Section 5), we either
use the official test set (Es-DT, 84 documents) or
build a test set containing 38 documents chosen
randomly.

Second, since Soricut and Marcu (2003), the
evaluation scores do not include the first boundary
of a sentence. Exceptions are (Sporleder and Lap-
ata, 2005), and some results in (Fisher and Roark,
2007) given to compare with the former.

7We only report fully supervised results, we thus do not
consider the GUM corpus and the corpus for Dutch, contrary
to (Braud et al., 2017).

8We only use the test set from the annotator A.

For intra-sentential results, we also ignore the
first boundary of each sentence when computing
the final score. At the document level, we ignore
the first boundary of each document (thus keep-
ing the first boundary of the sentences within the
document).

The reported score is the F1 over the boundaries
(the ’B’ labels), ignoring the non-boundary words
(’I’ labels).

6.2 Hyper-parameters

The model has several hyper-parameters, all tuned
on the development set over the F1.

Concerning the dimensions of the input layer d,
we tested several values when experimenting on
models using only one type of feature (for the
POS tags, we only tuned on PTB gold), with
d ∈ {50, 100, 200, 300} for the words, and d ∈
{4, 8, 16, 32, 64} for the others.9 We then keep the
best values (300 for words, 64 for the POS tags
and 32 for each supertag10) for each feature when
concatenating.

We also tuned the number of hidden layers
n ∈ {1, 2}, and the size of the hidden layers
h ∈ {50, 100, 200, 400} when experimenting on
single features, and used 1 hidden layer of size 200
in our final experiments. Our output layer is of size
32.

The number of iterations i with 1 ≤ i ≤ 20 is
tuned on the development set for each experiment.

Note that this may not be optimal, as better re-
sults could be obtained by tuning all the hyper-
parameters for each set of features. But we aim
at providing a fair comparison between the mod-
els, and thus always keep the same architecture.

7 Results

7.1 Intra-sentential segmentation

Our results for intra-sentential segmentation are
summarized in Table 2. Recall that these results
are only on the En-DT.

Single features Using only words lead to 81.3%
in F1, which is already high considering that words
are generally considered as a too sparse represen-
tation especially with a quite small dataset.

9Supertags that correspond to words – i.e. “htok” and “hh-
tok” – are considered as words and thus correspond to vectors
of the same dimension as other words.

10We report results using the supertags where the input is
the concatenation of several vectors with 32 dimensions rep-
resenting each supertag.

2437



It is clear that lexical information can help, for
example to identify EDUs corresponding to com-
plements of attribution verbs – the verb could be
the word at the end of the previous EDU as in ex-
ample (2a) or the word beggining the EDU as in
example (2b) –, these verbs being part of a limited
list (e.g. “declared”, “said”, “reported”).

(2) a. [Mercedes officials said] [they expect flat
sales next year]

b. [Kodak understands] [HDTV is where
everybody is going,”] [says RIT’s Mr.
Spaull.]

More precisely, we found out that only 1, 409
tokens are an EDU boundary in the En-DT training
set (over about 16, 577 tokens in the vocabulary).
Among them, 909 only appear once as a bound-
ary, and 104 are a boundary more than 10 times
making for 79.7% of all the boundaries. Lexical
information is thus not so sparse for this task.

Using POS tags alone allows to improve these
results, but only when using PTB gold POS
(+3.7%). Contrary to words, 99.7% of the POS
tags from the PTB appear as an EDU boundary
more than 10 times, but only a few are almost
always indicating the beginning of an EDU (i.e.
more than 70% of the occurrences), namely WDT,
-LRB-, WP, WRB and WP$. Our results demon-
strate that our model is able to take into account
the context in terms of the surrounding POS tags
to identify a boundary.

As expected, using predicted PTB POS tags
leads to lower results than gold ones (-3.4%), re-
flecting the impact of the noise introduced. More-
over, using fine grained PTB POS tags, even pre-
dicted ones, is better than using coarse grained
POS UD (-5.4%), indicating that the UD scheme
lacks fine distinctions needed for the task. For
example, WDT and WP$ are mapped to DET in
the UD scheme, and WP to PRON, two categories
that become very ambiguous between indicating
an EDU boundary or not (respectively, 28% and
10%), thus inducing more errors. Note that using
words only is better, or similar to using predicted
or coarse-grained POS tags, demonstrating once
again the usefulness of the lexical information.

Finally, using supertags (STAGS) leads to re-
sults similar to using words or predicted PTB
POS tags, but higher than the ones obtained with
the POS UD (+4.8%), reflecting that they in-
clude more information. Among the supertags, we

found that using “sleft” and “sright” does not make
real difference when the supertags are used alone
(80.9% with them, and 81% without). This could
come from the huge sparsity of this feature.11 We
decided to not include them in the rest of the ex-
periments.

System (Morpho-)syntax F1

Gold tokenization

(Subba and Di Eugenio, 2007) Gold 86.1
(Subba and Di Eugenio, 2007) Pred 84.4
(Xuan Bach et al., 2012) Gold 92.5
(Xuan Bach et al., 2012) Rerank Gold 93.7
(Xuan Bach et al., 2012) Pred 90.7
(Xuan Bach et al., 2012) Rerank Pred 91.0
(Fisher and Roark, 2007) Pred 90.5

Words - 81.3

POS PTB Gold 85.0
POS PTB Pred 81.6
POS UD Pred 76.2

STAGS Pred 81.0

Words+POS PTB Gold 91.0
Words+POS PTB Pred 87.6
Words+POS UD Pred 87.4

POS UD+STAGS Pred 79.6
Words+POS UD+STAGS Pred 86.1

Predicted tokenization

Words - 82.7

POS UD Pred 74.0

Words + POS UD Pred 86.3
Words + POS UD + STAGS Pred 86.8

Table 2: Intra-sentential results on the En-DT.
Xuan Bach et al. (2012) report the best results,
Subba and Di Eugenio (2007) is a segmenter based
on neural networks, Fisher and Roark (2007) pro-
posed a study on syntactic information.

Combining features Combining words and
gold PTB POS tags leads to our better results
(91%), with a large increase over using only words
(+9.7%) or PTB gold POS (+6%). Note that this
score is as high as the one reported by (Xuan Bach
et al., 2012; Fisher and Roark, 2007) when using
predicted constituent trees: this indicates that a
syntactic information that is noisy does not help
that much, since perfect POS tags are enough to
reach the same performance.

As previously, using predicted PTB POS tags
or coarse-grained UD POS tags leads to a drop
in performance compared to gold PTB POS tags,

1194% of the tokens have no “sleft” tag and 90% no
“sright” tag.
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but the scores are still largely higher than when
only one type of features is used, demonstrating
that lexical and morpho-syntactic features bring
complementary information. The gain in F1 is
even higher when using noisy/coarse grained POS
tags than when using gold ones, showing that lex-
ical information allows to replace part of the miss-
ing/incorrect information.

Finally, combining supertags leads to mixed
results: they allow to improve over using only
UD POS tags (+3.4%), showing that they con-
vey new relevant information, but the scores are
lowered compared to using only the supertags (-
1.4%). Moreover, when combined also with words
(Words+POS UD+STAGS), we observe a small
drop in performance compared to only combining
them with the UD POS tags (Words+POS UD, -
1.3%). More importantly, using syntactic infor-
mation does not lead to results as high as the ones
obtained with gold PTB POS tags.

Predicted tokenization In general, relying on
predicted tokens lowers the performance, probably
because it leads to more errors for POS tagging (-
2.2% when using only the UD POS tags compared
to gold tokenization). However, it does not really
affect performance with lexical information, and
the other scores are similar to the ones obtained
with gold tokens.

7.2 Document-level results

Multi-lingual and multi-domain results are pre-
sented in Table 3. Again, the use of syntactic infor-
mation leads to mixed results: in general, results
are similar with or without supertags, but it could
also lead to a large drop in performance as it can
be seen especially for the En-DT, the En-SFU-DT
and the En-Instr-DT. It could come from more im-
portant differences in the annotation schemes for
these very different domains.

Our results are in general better than the one re-
ported in (Braud et al., 2017), which could come
from the way features are incorporated (they en-
code each document as a sequence of words and
POS tags, rather than directly combining the vec-
tors). Our scores on the En-DT are a bit lower
than those reported in (Braud et al., 2017), but
note that these authors fine tuned their system at
the document level, while we optimized it at the
intra-sentential one.

SOA Words+UD Words+UD+S-tags

En-DT (news) 89.5 89.0 87.0

En-SFU-DT 85.5 87.6 86.0
En-Instr-DT 87.1 88.3 86.4

Pt-DT 82.2 82.9 83.0
Es-DT 79.3 78.7 78.3
De-DT 85.1 85.8 86.2

Table 3: Multi-domain and multi-lingual
document-level results. State-of-the-art (SOA)
results reported in (Braud et al., 2017).

8 Discussion

In order to investigate the drop in F1 between gold
and predicted POS tags we looked at the distribu-
tion of the POS tags in the train set, and, for each
POS, the percentage of instances being a discourse
boundary and their accuracy when predicted.

Globally, the accuracy of POS-tagging on EDU
boundaries is lower (95.6%) than on the non-EDU
boundaries. However, the most frequent POS as-
signed to EDU boundaries (i.e. ’IN’, ’CC’, ’PRP’,
’TO’ and ’VBG’) achieve accuracy between 97.4
and 100% and cover 50% of the EDU boundaries.

We also saw that some very frequent POS are
rarely an EDU boundary, such as ’NN, ’JJ’ or the
comma.12 But the low accuracy of some of these
frequent POS tags (94.8 for ’NN’ and 90.1 for
’JJ’) can still hurt discourse segmentation as they
often appear in the context of the EDU bound-
aries. On the contrary, some quite infrequent
POS are really frequent EDU boundaries, such
as ’WP’ (Wh-pronoun), ’WDT’ (Wh-determiner),
’WRB’ (Wh-adverb), -LRB-, ’WP$’ (Possessive
wh-pronoun) and ’LS’ (List item marker). Ex-
cept for ’WDT’ (90.8%) their POS-tagging scores
are high (100% for ’WP’, ’-LRB-’ and ’Wp$’ and
98.3% for ’WRB’). But because they are infre-
quent, they could be hard to identify as bound-
aries. They could be even more difficult to iden-
tify using the UD scheme since these POS tags are
mapped to frequent UD POS tags that cover very
different tokens (’DET’, ’PRON’, ’ADV’).

9 Conclusion

We proposed new discourse segmenters that make
use of resources available for many languages and
domains. We investigated the usefulness of syn-

12The only example with a comma corresponds probably
to a segmentation error, the comma being preceded by a point
corresponding to an acronym (Doc 1390).
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tactic information when derived from dependency
parse trees, and showed that this information is
not as useful as expected, and that gold POS tags
give as high results as using predicted constituent
trees. We also showed that scores are lowered
when considering a realistic setting, relying on
predicted tokenization and not assuming gold sen-
tences. We make our code available at https://
bitbucket.org/chloebt/discourse/.
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Chloé Braud, Ophélie Lacroix, and Anders Søgaard.
2017. Cross-lingual and cross-domain discourse
segmentation of entire documents. In arXiv preprint
arXiv::1704.04100, To appear in Proceedings of
ACL 17.

Paula C.F. Cardoso, Erick G. Maziero, Mara Luca Cas-
tro Jorge, Eloize R.M. Seno, Ariani Di Felippo, Lu-
cia Helena Machado Rino, Maria das Gracas Volpe
Nunes, and Thiago A. S. Pardo. 2011. CSTNews
- a discourse-annotated corpus for single and multi-
document summarization of news texts in Brazilian
Portuguese. In Proceedings of the 3rd RST Brazilian
Meeting, pages 88–105.

Lynn Carlson and Daniel Marcu. 2001. Discourse tag-
ging reference manual. Technical report, University
of Southern California Information Sciences Insti-
tute.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure Theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.

Sandra Collovini, Thiago I Carbonel, Juliana Thiesen
Fuchs, Jorge César Coelho, Lúcia Rino, and Renata
Vieira. 2007. Summ-it: Um corpus anotado com
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Abstract

Much of human dialogue occurs in semi-
cooperative settings, where agents with
different goals attempt to agree on com-
mon decisions. Negotiations require com-
plex communication and reasoning skills,
but success is easy to measure, making
this an interesting task for AI. We gather
a large dataset of human-human negoti-
ations on a multi-issue bargaining task,
where agents who cannot observe each
other’s reward functions must reach an
agreement (or a deal) via natural language
dialogue. For the first time, we show it is
possible to train end-to-end models for ne-
gotiation, which must learn both linguistic
and reasoning skills with no annotated di-
alogue states. We also introduce dialogue
rollouts, in which the model plans ahead
by simulating possible complete continu-
ations of the conversation, and find that
this technique dramatically improves per-
formance. Our code and dataset are pub-
licly available.1

1 Introduction

Intelligent agents often need to cooperate with oth-
ers who have different goals, and typically use
natural language to agree on decisions. Negotia-
tion is simultaneously a linguistic and a reasoning
problem, in which an intent must be formulated
and then verbally realised. Such dialogues contain
both cooperative and adversarial elements, and re-
quire agents to understand, plan, and generate ut-
terances to achieve their goals (Traum et al., 2008;
Asher et al., 2012).

1https://github.com/facebookresearch/
end-to-end-negotiator

We collect the first large dataset of natural lan-
guage negotiations between two people, and show
that end-to-end neural models can be trained to
negotiate by maximizing the likelihood of human
actions. This approach is scalable and domain-
independent, but does not model the strategic
skills required for negotiating well. We fur-
ther show that models can be improved by train-
ing and decoding to maximize reward instead of
likelihood—by training with self-play reinforce-
ment learning, and using rollouts to estimate the
expected reward of utterances during decoding.

To study semi-cooperative dialogue, we gather
a dataset of 5808 dialogues between humans on a
negotiation task. Users were shown a set of items
with a value for each, and asked to agree how to
divide the items with another user who has a dif-
ferent, unseen, value function (Figure 1).

We first train recurrent neural networks to imi-
tate human actions. We find that models trained to
maximise the likelihood of human utterances can
generate fluent language, but make comparatively
poor negotiators, which are overly willing to com-
promise. We therefore explore two methods for
improving the model’s strategic reasoning skills—
both of which attempt to optimise for the agent’s
goals, rather than simply imitating humans:

Firstly, instead of training to optimise likeli-
hood, we show that our agents can be consider-
ably improved using self play, in which pre-trained
models practice negotiating with each other in or-
der to optimise performance. To avoid the models
diverging from human language, we interleave re-
inforcement learning updates with supervised up-
dates. For the first time, we show that end-to-
end dialogue agents trained using reinforcement
learning outperform their supervised counterparts
in negotiations with humans.

Secondly, we introduce a new form of planning
for dialogue called dialogue rollouts, in which an
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Figure 1: A dialogue in our Mechanical Turk interface, which we used to collect a negotiation dataset.

agent simulates complete dialogues during decod-
ing to estimate the reward of utterances. We show
that decoding to maximise the reward function
(rather than likelihood) significantly improves per-
formance against both humans and machines.

Analysing the performance of our agents, we
find evidence of sophisticated negotiation strate-
gies. For example, we find instances of the model
feigning interest in a valueless issue, so that it can
later ‘compromise’ by conceding it. Deceit is a
complex skill that requires hypothesising the other
agent’s beliefs, and is learnt relatively late in child
development (Talwar and Lee, 2002). Our agents
have learnt to deceive without any explicit human
design, simply by trying to achieve their goals.

The rest of the paper proceeds as follows: §2 de-
scribes the collection of a large dataset of human-
human negotiation dialogues. §3 describes a base-
line supervised model, which we then show can
be improved by goal-based training (§4) and de-
coding (§5). §6 measures the performance of our
models and humans on this task, and §7 gives a
detailed analysis and suggests future directions.

2 Data Collection

2.1 Overview

To enable end-to-end training of negotiation
agents, we first develop a novel negotiation task
and curate a dataset of human-human dialogues
for this task. This task and dataset follow our
proposed general framework for studying semi-
cooperative dialogue. Initially, each agent is
shown an input specifying a space of possible ac-
tions and a reward function which will score the
outcome of the negotiation. Agents then sequen-
tially take turns of either sending natural language

messages, or selecting that a final decision has
been reached. When one agent selects that an
agreement has been made, both agents indepen-
dently output what they think the agreed decision
was. If conflicting decisions are made, both agents
are given zero reward.

2.2 Task

Our task is an instance of multi issue bargaining
(Fershtman, 1990), and is based on DeVault et al.
(2015). Two agents are both shown the same col-
lection of items, and instructed to divide them so
that each item assigned to one agent.

Each agent is given a different randomly gen-
erated value function, which gives a non-negative
value for each item. The value functions are con-
strained so that: (1) the total value for a user of
all items is 10; (2) each item has non-zero value
to at least one user; and (3) some items have non-
zero value to both users. These constraints enforce
that it is not possible for both agents to receive a
maximum score, and that no item is worthless to
both agents, so the negotiation will be competitive.
After 10 turns, we allow agents the option to com-
plete the negotiation with no agreement, which is
worth 0 points to both users. We use 3 item types
(books, hats, balls), and between 5 and 7 total
items in the pool. Figure 1 shows our interface.

2.3 Data Collection

We collected a set of human-human dialogues us-
ing Amazon Mechanical Turk. Workers were paid
$0.15 per dialogue, with a $0.05 bonus for max-
imal scores. We only used workers based in the
United States with a 95% approval rating and at
least 5000 previous HITs. Our data collection in-
terface was adapted from that of Das et al. (2016).
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Crowd Sourced Dialogue

Agent 1 Input
3xbook value=1
2xhat value=3
1xball value=1

Agent 2 Input
3xbook value=2
2xhat value=1
1xball value=2

Dialogue
Agent 1: I want the books and the hats,
you get the ball
Agent 2: Give me a book too and we
have a deal
Agent 1: Ok, deal
Agent 2: <choose>

Agent 1 Output
2xbook 2xhat

Agent 2 Output
1xbook 1xball

Perspective: Agent 1

Perspective: Agent 2

Input
3xbook value=1
2xhat value=3
1xball value=1

Output
2xbook 2xhat

Dialogue
write: I want the books
and the hats, you get
the ball read: Give me
a book too and we have
a deal write: Ok, deal
read: <choose>

Input
3xbook value=2
2xhat value=1
1xball value=2

Dialogue
read: I want the books
and the hats, you get
the ball write: Give me
a book too and we have
a deal read: Ok, deal
write: <choose>

Output
1xbook 1xball

Figure 2: Converting a crowd-sourced dialogue (left) into two training examples (right), from the per-
spective of each user. The perspectives differ on their input goals, output choice, and in special tokens
marking whether a statement was read or written. We train conditional language models to predict the
dialogue given the input, and additional models to predict the output given the dialogue.

We collected a total of 5808 dialogues, based
on 2236 unique scenarios (where a scenario is the
available items and values for the two users). We
held out a test set of 252 scenarios (526 dialogues).
Holding out test scenarios means that models must
generalise to new situations.

3 Likelihood Model

We propose a simple but effective baseline model
for the conversational agent, in which a sequence-
to-sequence model is trained to produce the com-
plete dialogue, conditioned on an agent’s input.

3.1 Data Representation

Each dialogue is converted into two training ex-
amples, showing the complete conversation from
the perspective of each agent. The examples differ
on their input goals, output choice, and whether
utterances were read or written.

Training examples contain an input goal g,
specifying the available items and their values, a
dialogue x, and an output decision o specifying
which items each agent will receive. Specifically,
we represent g as a list of six integers correspond-
ing to the count and value of each of the three item
types. Dialogue x is a list of tokens x0..T contain-
ing the turns of each agent interleaved with sym-
bols marking whether a turn was written by the

agent or their partner, terminating in a special to-
ken indicating one agent has marked that an agree-
ment has been made. Output o is six integers de-
scribing how many of each of the three item types
are assigned to each agent. See Figure 2.

3.2 Supervised Learning

We train a sequence-to-sequence network to gen-
erate an agent’s perspective of the dialogue condi-
tioned on the agent’s input goals (Figure 3a).

The model uses 4 recurrent neural networks,
implemented as GRUs (Cho et al., 2014): GRUw,
GRUg, GRU−→o , and GRU←−o .

The agent’s input goals g are encoded using
GRUg. We refer to the final hidden state as hg.
The model then predicts each token xt from left to
right, conditioned on the previous tokens and hg.
At each time step t, GRUw takes as input the pre-
vious hidden state ht−1, previous token xt−1 (em-
bedded with a matrix E), and input encoding hg.
Conditioning on the input at each time step helps
the model learn dependencies between language
and goals.

ht = GRUw(ht−1, [Ext−1, hg]) (1)

The token at each time step is predicted with a
softmax, which uses weight tying with the embed-
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Input Encoder Output Decoder

write: Take one hat read: I need two write: deal . . .

(a) Supervised Training

Input Encoder Output Decoder

write: Take one hat read: I need two write: deal . . .

(b) Decoding, and Reinforcement Learning

Figure 3: Our model: tokens are predicted conditioned on previous words and the input, then the output
is predicted using attention over the complete dialogue. In supervised training (3a), we train the model
to predict the tokens of both agents. During decoding and reinforcement learning (3b) some tokens are
sampled from the model, but some are generated by the other agent and are only encoded by the model.

ding matrix E (Mao et al., 2015):

pθ(xt|x0..t−1, g) ∝ exp(ETht) (2)

Note that the model predicts both agent’s words,
enabling its use as a forward model in Section 5.

At the end of the dialogue, the agent outputs a
set of tokens o representing the decision. We gen-
erate each output conditionally independently, us-
ing a separate classifier for each. The classifiers
share bidirectional GRUs and an attention mech-
anism (Bahdanau et al., 2014) over the dialogue,
and additionally condition on the input goals.

h
−→o
t = GRU−→o (h

−→o
t−1, [Ext, ht]) (3)

h
←−o
t = GRU←−o (h

←−o
t+1, [Ext, ht]) (4)

hot = [h
←−o
t , h

−→o
t ] (5)

hat =W a[tanh(W hhot )] (6)

αt =
exp(w · hat )∑
t′ exp(w · hat′)

(7)

hs = tanh(W s[hg,
∑

t

αtht]) (8)

The output tokens are predicted using softmax:

pθ(oi|x0..t, g) ∝ exp(W oihs) (9)

The model is trained to minimize the negative
log likelihood of the token sequence x0..T con-
ditioned on the input goals g, and of the outputs
o conditioned on x and g. The two terms are
weighted with a hyperparameter α.

L(θ) =−
∑

x,g

∑

t

log pθ(xt|x0..t−1, g)
︸ ︷︷ ︸

Token prediction loss

− α
∑

x,g,o

∑

j

log pθ(oj |x0..T , g)
︸ ︷︷ ︸

Output choice prediction loss

(10)

Unlike the Neural Conversational Model
(Vinyals and Le, 2015), our approach shares all
parameters for reading and generating tokens.

3.3 Decoding
During decoding, the model must generate an
output token xt conditioned on dialogue history
x0..t−1 and input goals g, by sampling from pθ:

xt ∼ pθ(xt|x0..t−1, g) (11)

If the model generates a special end-of-turn to-
ken, it then encodes a series of tokens output by
the other agent, until its next turn (Figure 3b).

The dialogue ends when either agent outputs a
special end-of-dialogue token. The model then
outputs a set of choices o. We choose each item
independently, but enforce consistency by check-
ing the solution is in a feasible set O:

o∗ = argmax
o∈O

∏

i

pθ(oi|x0..T , g) (12)

In our task, a solution is feasible if each item is as-
signed to exactly one agent. The space of solutions
is small enough to be tractably enumerated.

4 Goal-based Training

Supervised learning aims to imitate the actions of
human users, but does not explicitly attempt to
maximise an agent’s goals. Instead, we explore
pre-training with supervised learning, and then
fine-tuning against the evaluation metric using re-
inforcement learning. Similar two-stage learning
strategies have been used previously (e.g. Li et al.
(2016); Das et al. (2017)).

During reinforcement learning, an agent A at-
tempts to improve its parameters from conversa-
tions with another agent B. While the other agent
B could be a human, in our experiments we used

2446



read: You get
one book and
I’ll take every-
thing else.

write: Great deal,
thanks!

write: No way, I
need all 3 hats read: Ok, fine

read: I’ll give you 2

read: No problem

read: Any time

choose: 3x hat

choose: 2x hat

choose: 1x book

choose: 1x book

9

6

1

1

Dialogue history Candidate responses Simulation of rest of dialogue Score

Figure 4: Decoding through rollouts: The model first generates a small set of candidate responses. For
each candidate, it then simulates a number of possible complete future conversations by sampling, and
estimates the expected future reward by averaging the scores. The system outputs the candidate with the
highest expected reward.

our fixed supervised model that was trained to im-
itate humans. The second model is fixed as we
found that updating the parameters of both agents
led to divergence from human language. In effect,
agentA learns to improve by simulating conversa-
tions with the help of a surrogate forward model.

Agent A reads its goals g and then generates
tokens x0..n by sampling from pθ. When x gener-
ates an end-of-turn marker, it then reads in tokens
xn+1..m generated by agent B. These turns alter-
nate until one agent emits a token ending the di-
alogue. Both agents then output a decision o and
collect a reward from the environment (which will
be 0 if they output different decisions). We denote
the subset of tokens generated by A as XA (e.g.
tokens with incoming arrows in Figure 3b).

After a complete dialogue has been generated,
we update agent A’s parameters based on the out-
come of the negotiation. Let rA be the score agent
A achieved in the completed dialogue, T be the
length of the dialogue, γ be a discount factor that
rewards actions at the end of the dialogue more
strongly, and µ be a running average of completed
dialogue rewards so far2. We define the future re-
ward R for an action xt ∈ XA as follows:

R(xt) =
∑

xt∈XA

γT−t(rA(o)− µ) (13)

We then optimise the expected reward of each
action xt ∈ XA:

LRLθ = Ext∼pθ(xt|x0..t−1,g)[R(xt)] (14)

2As all rewards are non-negative, we instead re-scale them
by subtracting the mean reward found during self play. Shift-
ing in this way can reduce the variance of our estimator.

The gradient of LRLθ is calculated as in REIN-
FORCE (Williams, 1992):

∇θLRLθ =
∑

xt∈XA

Ext [R(xt)∇θ log(pθ(xt|x0..t−1, g))]

(15)

5 Goal-based Decoding

Likelihood-based decoding (§3.3) may not be op-
timal. For instance, an agent may be choosing be-
tween accepting an offer, or making a counter of-
fer. The former will often have a higher likelihood
under our model, as there are fewer ways to agree
than to make another offer, but the latter may lead
to a better outcome. Goal-based decoding also al-
lows more complex dialogue strategies. For exam-
ple, a deceptive utterance is likely to have a low
model score (as users were generally honest in the
supervised data), but may achieve high reward.

We instead explore decoding by maximising ex-
pected reward. We achieve this by using pθ as a
forward model for the complete dialogue, and then
deterministically computing the reward. Rewards
for an utterance are averaged over samples to cal-
culate expected future reward (Figure 4).

We use a two stage process: First, we gener-
ate c candidate utterances U = u0..c, represent-
ing possible complete turns that the agent could
make, which are generated by sampling from pθ
until the end-of-turn token is reached. Let x0..n−1
be current dialogue history. We then calculate
the expected reward R(u) of candidate utterance
u = xn,n+k by repeatedly sampling xn+k+1,T

from pθ, then choosing the best output o using
Equation 12, and finally deterministically comput-
ing the reward r(o). The reward is scaled by the
probability of the output given the dialogue, be-
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Algorithm 1 Dialogue Rollouts algorithm.
1: procedure ROLLOUT(x0..i, g)
2: u∗ ← ∅
3: for c ∈ {1..C} do . C candidate moves
4: j ← i
5: do . Rollout to end of turn
6: j ← j + 1
7: xj ∼ pθ(xj |x0..j−1, g)
8: while xk /∈ {read:, choose:}
9: u← xi+1..xj . u is candidate move

10: for s ∈ {1..S} do . S samples per move
11: k ← j . Start rollout from end of u
12: while xk 6= choose: do

. Rollout to end of dialogue
13: k ← k + 1
14: xk ∼ pθ(xk|x0..k−1, g)

. Calculate rollout output and reward
15: o← argmaxo′∈O p(o

′|x0..k, g)
16: R(u)← R(u) + r(o)p(o′|x0..k, g)
17: if R(u) > R(u∗) then
18: u∗ ← u

19: return u∗ . Return best move

cause if the agents select different outputs then
they both receive 0 reward.

R(xn..n+k) = Ex(n+k+1..T ;o)∼pθ [r(o)pθ(o|x0..T )]
(16)

We then return the utterance maximizing R.

u∗ = argmax
u∈U

R(u) (17)

We use 5 rollouts for each of 10 candidate turns.

6 Experiments

6.1 Training Details

We implement our models using PyTorch. All
hyper-parameters were chosen on a development
dataset. The input tokens are embedded into a
64-dimensional space, while the dialogue tokens
are embedded with 256-dimensional embeddings
(with no pre-training). The input GRUg has a
hidden layer of size 64 and the dialogue GRUw
is of size 128. The output GRU−→o and GRU←−o
both have a hidden state of size 256, the size of
hs is 256 as well. During supervised training, we
optimise using stochastic gradient descent with a
minibatch size of 16, an initial learning rate of
1.0, Nesterov momentum with µ=0.1 (Nesterov,

1983), and clipping gradients whose L2 norm ex-
ceeds 0.5. We train the model for 30 epochs and
pick the snapshot of the model with the best val-
idation perplexity. We then annealed the learn-
ing rate by a factor of 5 each epoch. We weight
the terms in the loss function (Equation 10) using
α=0.5. We do not train against output decisions
where humans selected different agreements. To-
kens occurring fewer than 20 times are replaced
with an ‘unknown’ token.

During reinforcement learning, we use a learn-
ing rate of 0.1, clip gradients above 1.0, and use
a discount factor of γ=0.95. After every 4 rein-
forcement learning updates, we make a supervised
update with mini-batch size 16 and learning rate
0.5, and we clip gradients at 1.0. We used 4086
simulated conversations.

When sampling words from pθ, we reduce the
variance by doubling the values of logits (i.e. us-
ing temperature of 0.5).

6.2 Comparison Systems
We compare the performance of the following:
LIKELIHOOD uses supervised training and decod-
ing (§3), RL is fine-tuned with goal-based self-
play (§4), ROLLOUTS uses supervised training
combined with goal-based decoding using rollouts
(§5), and RL+ROLLOUTS uses rollouts with a base
model trained with reinforcement learning.

6.3 Intrinsic Evaluation
For development, we use measured the perplexity
of user generated utterances, conditioned on the
input and previous dialogue.

Results are shown in Table 3, and show that
the simple LIKELIHOOD model produces the most
human-like responses, and the alternative training
and decoding strategies cause a divergence from
human language. Note however, that this diver-
gence may not necessarily correspond to lower
quality language—it may also indicate different
strategic decisions about what to say. Results in
§6.4 show all models could converse with humans.

6.4 End-to-End Evaluation
We measure end-to-end performance in dialogues
both with the likelihood-based agent and with hu-
mans on Mechanical Turk, on held out scenarios.

Humans were told that they were interacting
with other humans, as they had been during the
collection of our dataset (and few appeared to re-
alize they were in conversation with machines).
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vs. LIKELIHOOD vs. Human

Model
Score
(all)

Score
(agreed)

%
Agreed

% Pareto
Optimal

Score
(all)

Score
(agreed)

%
Agreed

% Pareto
Optimal

LIKELIHOOD 5.4 vs. 5.5 6.2 vs. 6.2 87.9 49.6 4.7 vs. 5.8 6.2 vs. 7.6 76.5 66.2
RL 7.1 vs. 4.2 7.9 vs. 4.7 89.9 58.6 4.3 vs. 5.0 6.4 vs. 7.5 67.3 69.1

ROLLOUTS 7.3 vs. 5.1 7.9 vs. 5.5 92.9 63.7 5.2 vs. 5.4 7.1 vs. 7.4 72.1 78.3
RL+ROLLOUTS 8.3 vs. 4.2 8.8 vs. 4.5 94.4 74.8 4.6 vs. 4.2 8.0 vs. 7.1 57.2 82.4

Table 1: End task evaluation on heldout scenarios, against the LIKELIHOOD model and humans from
Mechanical Turk. The maximum score is 10. Score (all) gives 0 points when agents failed to agree.

Metric Dataset
Number of Dialogues 5808

Average Turns per Dialogue 6.6
Average Words per Turn 7.6

% Agreed 80.1
Average Score (/10) 6.0
% Pareto Optimal 76.9

Table 2: Statistics on our dataset of crowd-
sourced dialogues between humans.

Model Valid PPL Test PPL Test Avg. Rank
LIKELIHOOD 5.62 5.47 521.8

RL 6.03 5.86 517.6
ROLLOUTS - - 844.1

RL+ROLLOUTS - - 859.8

Table 3: Intrinsic evaluation showing the average
perplexity of tokens and rank of complete turns
(out of 2083 unique human messages from the test
set). Lower is more human-like for both.

We measure the following statistics:
Score: The average score for each agent (which
could be a human or model), out of 10.
Agreement: The percentage of dialogues where
both agents agreed on the same decision.
Pareto Optimality: The percentage of Pareto
optimal solutions for agreed deals (a solution is
Pareto optimal if neither agent’s score can be im-
proved without lowering the other’s score). Lower
scores indicate inefficient negotiations.

Results are shown in Table 1. Firstly,
we see that the RL and ROLLOUTS models
achieve significantly better results when negotiat-
ing with the LIKELIHOOD model, particularly the
RL+ROLLOUTS model. The percentage of Pareto
optimal solutions also increases, showing a bet-
ter exploration of the solution space. Compared
to human-human negotiations (Table 2), the best
models achieve a higher agreement rate, better
scores, and similar Pareto efficiency. This result
confirms that attempting to maximise reward can
outperform simply imitating humans.

Similar trends hold in dialogues with humans,

with goal-based reasoning outperforming imita-
tion learning. The ROLLOUTS model achieves
comparable scores to its human partners, and the
RL+ROLLOUTS model actually achieves higher
scores. However, we also find significantly more
cases of the goal-based models failing to agree a
deal with humans—largely a consequence of their
more aggressive negotiation tactics (see §7).

7 Analysis

Table 1 shows large gains from goal-based meth-
ods. In this section, we explore the strengths and
weaknesses of our models.

Goal-based models negotiate harder. The
RL+ROLLOUTS model has much longer dialogues
with humans than LIKELIHOOD (7.2 turns vs. 5.3
on average), indicating that the model is accepting
deals less quickly, and negotiating harder.

A negative consequence of more aggressive
negotiation strategies is that humans were more
likely to walk away with no deal, resulting in
lower agreement rates. Even though failing to
agree was worth 0 points, people often preferred
this course over capitulating to an uncompromis-
ing opponent—a factor not well captured by the
simulated partner in reinforcement learning train-
ing or rollouts (as reflected by the larger gains
from goal-based models in dialogues with the
LIKELIHOOD model). In particular, the goal-based
models are prone to simply rephrasing the same
demand each turn, which is a more effective strat-
egy against the LIKELIHOOD model than humans.

One approach to mitigating this issue would
be to learn the impact of uncooperative strategies
across multiple rounds of negotiation (Lerer and
Peysakhovich, 2017). In single dialogues, failing
to agree is never better than reaching some agree-
ment. However, across multiple rounds, learning
to walk away without a deal may incentivize part-
ners to cooperate more in future.

Figure 5 shows an example of our goal-based
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Input
Human 1xbook value=3 1xhat value=1 3xball value=2
RL+ROLLOUTS 1xbook value=6 1xhat value=4 3xball value=0
RL+ROLLOUTS You can have the balls if i can have the hat and book
Human Nope, give me the books and you can have

everything else
RL+ROLLOUTS Ok. I will take the book and one hat
Human I get all the balls?
RL+ROLLOUTS Yes. I can do that.
Human Ok, deal
Output Reward
RL+ROLLOUTS 1xbook 1xhat 10/10
Human 3xball 6/10

Figure 5: Example of a model stubbornly holding
out for maximum points in a dialogue.

Input
Human 3xbook value=2 3xhat value=1 1xball value=1
RL+ROLLOUTS 3xbook value=1 3xhat value=2 1xball value=1
Human I’d like the books and the hats.
RL+ROLLOUTS I will take the books and hats
Human I really need the books and at least one other object.
RL+ROLLOUTS Ok, you can have one book and one ball
Human If I can have all the books, I can leave you the rest.
RL+ROLLOUTS Deal
Output Reward
RL+ROLLOUTS 3xhat 1xball 7/10
Human 3xbook 6/10

Figure 6: Example of model compromising.

model stubbornly negotiating until it achieves a
good outcome.

Models learn to be deceptive. Deception can be
an effective negotiation tactic. We found numer-
ous cases of our models initially feigning interest
in a valueless item, only to later ‘compromise’ by
conceding it. Figure 7 shows an example. This
strategy has previously been coded into negotia-
tion agents by Gratch et al. (2016), whereas our
agents have learned it from data.

Models produce meaningful novel sentences.
One interesting question is whether our models are
capable of generating novel sentences in the new
circumstances they find themselves in, or if they
simply repeat messages from the training data ver-
batim. We find that 76% of messages produced by
the LIKELIHOOD model in self-play were found in
the training data. We manually examined the novel
utterances produced by our model, and found that
the overwhelming majority were fluent English
sentences in isolation—showing that the model
has learnt a good language model for the domain
(in addition to results that show it uses language
effectively to achieve its goals). These results sug-
gest that although neural models are prone to the
safer option of repeating sentences from training
data, they are capable of generalising when nec-

Input
RL+ROLLOUTS 4xbook value=0 2xhat value=5 1xball value=0
Human 4xbook value=1 2xhat value=2 1xball value=2
RL+ROLLOUTS You can have the ball if I can have everything else.
Human No can’t do that the ball is not going to give

me anything
RL+ROLLOUTS I need the hats and you can have the rest
Human Deal
RL+ROLLOUTS Great! Thank you!
Output Reward
RL+ROLLOUTS 2xhat 10/10
Human 4xbook 1xball 6/10

Figure 7: Dialogue in which the model’s initial in-
terest in the valueless books allows it to compro-
mise while achieving a maximum score.

essary. Future work should choose domains that
force a higher degree of diversity in utterances.

Maintaining multi-sentence coherence is chal-
lenging. One common linguistic error we see
RL+ROLLOUTS make is to start a message by in-
dicating agreement (e.g. I agree or Deal), but then
going on to propose a counter offer—a behaviour
that human partners found frustrating. One ex-
planation is that the model has learnt that in the
supervised data, messages beginning with I agree
are often at the end of the dialogue, and partners
rarely reply with further negotiation—so the mod-
els using rollouts and reinforcement learning be-
lieve this tactic will help their offer to be accepted.

8 Related Work

Most work on goal orientated dialogue systems
has assumed that state representations are anno-
tated in the training data (Williams and Young,
2007; Henderson et al., 2014; Wen et al., 2016).
The use of state annotations allows a cleaner sep-
aration of the reasoning and natural language as-
pects of dialogues, but our end-to-end approach
makes data collection cheaper and allows tasks
where it is unclear how to annotate state. Bordes
and Weston (2016) explore end-to-end goal orien-
tated dialogue with a supervised model—we show
improvements over supervised learning with goal-
based training and decoding. Recently, He et al.
(2017) use task-specific rules to combine the task
input and dialogue history into a more structured
state representation than ours.

Reinforcement learning (RL) has been applied
in many dialogue settings. RL has been widely
used to improve dialogue managers, which man-
age transitions between dialogue states (Singh
et al., 2002; Pietquin et al., 2011; Rieser and
Lemon, 2011; Gašic et al., 2013; Fatemi et al.,
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2016). In contrast, our end-to-end approach has
no explicit dialogue manager that can be updated
in isolation, and we found it necessary to inter-
leave RL and supervised learning to avoid RL re-
ducing the quality of language generation. Li et al.
(2016) improve metrics such as diversity for non-
goal-orientated dialogue using RL, which would
make an interesting extension to our work. Das
et al. (2017) use reinforcement learning to improve
cooperative bot-bot dialogues. RL has also been
used to allow agents to invent new languages (Das
et al., 2017; Mordatch and Abbeel, 2017). To our
knowledge, our model is the first to use RL to im-
prove the performance of an end-to-end goal ori-
entated dialogue system in dialogues with humans.

Work on learning end-to-end dialogues has con-
centrated on ‘chat’ settings, without explicit goals
(Ritter et al., 2011; Vinyals and Le, 2015; Li et al.,
2015). These dialogues contain a much greater di-
versity of vocabulary than our domain, but do not
have the challenging adversarial elements. Such
models are notoriously hard to evaluate (Liu et al.,
2016), because the huge diversity of reasonable
responses, whereas our task has a clear objec-
tive. Our end-to-end approach would also be much
more straightforward to integrate into a general-
purpose dialogue agent than one that relied on an-
notated dialogue states (Dodge et al., 2016).

There is a substantial literature on multi-agent
bargaining in game-theory, e.g. Nash Jr (1950).
There has also been computational work on mod-
elling negotiations (Baarslag et al., 2013)—our
work differs in that agents communicate in unre-
stricted natural language, rather than pre-specified
symbolic actions, and our focus on improving per-
formance relative to humans rather than other au-
tomated systems. Our task is based on that of De-
Vault et al. (2015), who study natural language
negotiations for pedagogical purposes—their ver-
sion includes speech rather than textual dialogue,
and embodied agents, which would make inter-
esting extensions to our work. The only au-
tomated natural language negotiations systems
we are aware of have first mapped language to
domain-specific logical forms, and then focused
on choosing the next dialogue act (Rosenfeld et al.,
2014; Cuayáhuitl et al., 2015; Keizer et al., 2017).
Our end-to-end approach is the first to learn com-
prehension, reasoning and generation skills in a
domain-independent data driven way.

Our use of a combination of supervised and re-

inforcement learning for training, and stochastic
rollouts for decoding, builds on strategies used
in game playing agents such as AlphaGo (Silver
et al., 2016). Our work is a step towards real-
world applications for these techniques. Our use
of rollouts could be extended by choosing the
other agent’s responses based on sampling, us-
ing Monte Carlo Tree Search (MCTS) (Kocsis and
Szepesvári, 2006). However, our setting has a
higher branching factor than in domains where
MCTS has been successfully applied, such as Go
(Silver et al., 2016)—future work should explore
scaling tree search to dialogue modelling.

9 Conclusion

We have introduced end-to-end learning of natu-
ral language negotiations as a task for AI, argu-
ing that it challenges both linguistic and reason-
ing skills while having robust evaluation metrics.
We gathered a large dataset of human-human ne-
gotiations, which contain a variety of interesting
tactics. We have shown that it is possible to train
dialogue agents end-to-end, but that their ability
can be much improved by training and decoding
to maximise their goals, rather than likelihood.
There remains much potential for future work,
particularly in exploring other reasoning strate-
gies, and in improving the diversity of utterances
without diverging from human language. We will
also explore other negotiation tasks, to investi-
gate whether models can learn to share negotiation
strategies across domains.
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Ioannis Efstathiou, Klaus-Peter Engelbrecht, Mihai
Dobre, Alexandra Lascarides, and Oliver Lemon.
2017. Evaluating Persuasion Strategies and Deep
Reinforcement Learning methods for Negotiation
Dialogue agents. In Proceedings of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2017).

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
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Abstract

Hand-crafted rules and reinforcement
learning (RL) are two popular choices to
obtain dialogue policy. The rule-based
policy is often reliable within predefined
scope but not self-adaptable, whereas RL
is evolvable with data but often suffers
from a bad initial performance. We em-
ploy a companion learning framework to
integrate the two approaches for on-line
dialogue policy learning, in which a pre-
defined rule-based policy acts as a teacher
and guides a data-driven RL system by
giving example actions as well as ad-
ditional rewards. A novel agent-aware
dropout Deep Q-Network (AAD-DQN) is
proposed to address the problem of when
to consult the teacher and how to learn
from the teacher’s experiences. AAD-
DQN, as a data-driven student policy, pro-
vides (1) two separate experience memo-
ries for student and teacher, (2) an uncer-
tainty estimated by dropout to control the
timing of consultation and learning. Sim-
ulation experiments showed that the pro-
posed approach can significantly improve
both safety and efficiency of on-line pol-
icy optimization compared to other com-
panion learning approaches as well as su-
pervised pre-training using static dialogue
corpus.

1 Introduction

A task-oriented spoken dialogue system (SDS) is
a system that can continuously interact with a
human to accomplish a predefined task through
speech. Dialogue manager, which maintains the
dialogue state and decides how to respond, is the

core of an SDS. In this paper, we focus on the dia-
logue policy.

At the early research, the spoken dialogue sys-
tems assume observable dialogue states. Dialogue
policy is simply a set of hand-crafted mapping
rules from state to machine action. This is referred
to as rule-based policy, which often has acceptable
performance but has no ability of self-adaption.
Nowadays rule-based policy is popular in com-
mercial dialogue systems.

However, in real world scenarios, unpredictable
user behavior, inevitable automatic speech recog-
nition, and spoken language understanding errors
make it difficult to maintain the true dialogue state
and make the decision. Hence, in recent years,
there is a research trend towards statistical dia-
logue management. A well-founded theory for
this is the partially observable Markov decision
process (POMDP) (Kaelbling et al., 1998), which
can provide robustness to errors from the input
module and automatic policy optimization by re-
inforcement learning. Most POMDP based policy
learning research is usually carried out using ei-
ther user simulator or employed users (Williams
and Young, 2007; Young et al., 2010). The trained
policy is not guaranteed to work well in real world
scenarios. Therefore, on-line policy training has
been of great interest (Gašić et al., 2011). Re-
cently, Chen et al. (2017) proposed two qualita-
tive metrics 1 to measure on-line policy learning:
safety and efficiency. Safety reflects whether the
initial policy can satisfy the quality-of-service re-
quirement in real-world scenarios during the on-
line policy learning period. Efficiency reflects how
long it takes for the on-line policy training algo-
rithm to reach a satisfactory performance level.

Most traditional RL-based policy training suf-

1The quantitative evaluation metrics of safety and effi-
ciency are proposed in section 4.
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fers poor initial performance, i.e. causes the safety
problem. In light of above, Chen et al. (2017) pro-
posed a safe and efficient on-line policy optimiza-
tion framework, i.e. companion teaching (CT),
in which a human teacher is added in the classic
POMDP. The teacher has two missions: one is to
show example actions, another is to act as a critic
to give the student extra reward which can make
the learning of policy more efficient. The example
actions not only make the learning safer but also
can be directly used by the training of the student
policy. However, there are costs to the teaching of
a human teacher.

Based on CT, companion learning (CL) frame-
work is proposed to integrate rule-based policy
and RL-based policy, resulting in safe and efficient
on-line policy learning. Here, the rule-based pol-
icy acts as a virtual teacher which replaces the hu-
man teacher in CT. There are a few differences be-
tween these two kinds of teachers. First, because
it has no marginal cost when it’s deployed, the rule
teacher can be consulted at any time if needed.
On the other hand, the rule policy is not as good
as the human teacher, therefore it’s important to
determine when and how much the student pol-
icy depends on the rule teacher. Here, we propose
an agent-aware dropout Deep Q-Network (AAD-
DQN) as the student statistical policy, which pro-
vides (1) two separate experience replay pools for
student and teacher, (2) an uncertainty estimated
by dropout which can be used to control the tim-
ing of consultation and learning.

In summary, our main contributions are three-
folds: (1) Companion learning (CL) framework
was proposed to integrate rule-based policy and
RL-based policy. (2) An agent-aware dropout
Deep Q-Network (AAD-DQN) was proposed as
the statistical student policy. (3) Compared with
other companion teaching approaches (Chen et al.,
2017) as well as supervised pre-training using
static dialogue corpus (Fatemi et al., 2016), CL
with AAD-DQN can achieve better performance.

2 Related Work

Most previous studies of on-line policy learn-
ing have been focused on the efficiency issue,
such as Gaussian Process Reinforcement Learning
(GPRL) (Gašić et al., 2010). In GPRL, the kernel
function defines prior correlations of the objective
function given different belief states, which can
significantly speed up the policy learning (Gašić

and Young, 2014). Alternative methods include
Kalman temporal difference reinforcement learn-
ing (Pietquin et al., 2011).

More recently, deep reinforcement learning
(DRL) (Mnih et al., 2015) is applied in dialogue
policy optimization, including deep Q-Network
(DQN) (Cuayáhuitl et al., 2015; Fatemi et al.,
2016; Zhao and Eskenazi, 2016; Lipton et al.,
2016) and policy gradient (PG) methods, e.g. RE-
INFORCE (Williams and Zweig, 2016; Su et al.,
2016; Williams et al., 2017), Advantage Actor-
Critic (A2C) (Fatemi et al., 2016). In order
to speed up the learning of DQN, Lipton et al.
(2016) proposed an efficient exploration technique
based on Thompson sample from a Bayesian neu-
ral network. Furthermore, they showed that using
a few successful dialogues generated by a rule-
based policy to pre-fill the replay buffer can ben-
efit the learning at the beginning. To improve
the efficiency of PG methods, policy network is
initialized with supervised learning (SL) before
RL training (Williams and Zweig, 2016; Williams
et al., 2017; Su et al., 2016, 2017; Fatemi et al.,
2016), which is similar to the idea in (Silver et al.,
2016). However, combining RL with SL for dia-
logue policy optimization is not new. Henderson
et al. (2008) were among the first to prove the ben-
efits of combining supervised and reinforcement
learning. In the experiments, we will compare CL
with these pre-training methods.

Although the improvement of efficiency can
benefit the safety of learning process, no matter
how efficient the algorithm is, an unsafe on-line
learned policy can lead to bad user experience at
the beginning of learning period and consequently
fail to attract sufficient real users to continuously
improve the policy. Therefore, it is important to
address the safety issue. There are few works
about the safety issue of on-line dialogue policy
optimization. Williams (2008) proposed a method
for integrating business rules and POMDPs. The
rules act as the action mask, i.e. the rules nomi-
nate a set of one or more actions, and the POMDP
chooses the optimal action.

3 Proposed Framework

3.1 Companion Learning for On-line Policy
Optimization

In the CL framework, there are two agents: one
is the student policy, another is the teacher pol-
icy. Here, teacher policy is the extra part com-
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Figure 1: (a) RL-based Companion Learning(CL) Framework with Logic Rules in an SDS. (b) Agent-
Aware Dropout DQN (AAD-DQN) for CL.

pared with the classic statistical dialogue manager
architecture (Young et al., 2013). The goal of on-
line policy training is to optimize the student pol-
icy from data via interaction with users in real sce-
narios. The teacher guides the policy learning at
each turn as a companion of the dialogue policy,
hence, referred to as companion learning 2. The
CL framework is described in Figure 1(a).

At each turn, the input module (ASR and SLU)
receives an acoustic input signal from the human
user and the dialogue state tracker keeps the di-
alogue state up-to-date. The dialogue state is
then transmitted to both the student policy and the
teacher policy. The student policy first generates a
candidate action astut and when it needs help from
the teacher policy, it sends astut with some auxil-
iary information which will be transmitted to the
teacher. The teacher policy can then help the stu-
dent policy with one of the following ways or both:

• Example Action (EA): The teacher gener-
ates an action ateat instead of astut according
to its policy. It corresponds to the left switch
in Figure 1(a).

• Critic Advice (CA): The teacher will not ex-
plicitly show an action. Instead, it gives an
extra reward rintt to the student policy. It cor-
responds to the right switch in Figure 1(a).

The action from control module is then transmitted
to the output module, which generates the nature
text and audio. At each turn, an extrinsic reward
signal rextt will be given to the student policy by

2The name companion learning has another potential
meaning that the agents can learn from each other, i.e. the
rules guide the RL training, and the optimised RL policy can
provide some intuition for the revision of rules. We will give
some preliminary discussions about this point in section 5.3.

the environment, i.e. the user. The extrinsic re-
ward rextt with the extra intrinsic reward rintt will
be used to update the policy parameters θ using
reinforcement learning algorithms.

In the CL framework, there are two things that
matter: one is when to consult the teacher, another
is how to use the teacher’s experiences. In this pa-
per, an agent-aware dropout DQN (AAD-DQN) is
proposed. As shown in Figure 1(b), the certainty
information during the interaction is used to define
a companion function, which controls how often to
sample the teacher’s experiences for updating pa-
rameters during the training phase (left), and when
to use EA or CA teaching method during decision
phase (right).

The rest of this section is organized as fol-
lows. The next subsection introduces the agent-
aware experience replay in DQN. The definition
of certainty in DQN and the companion function
are presented in subsection 3.3. The rule-based
teacher policy is described in subsection 3.4.

3.2 Agent-Aware Experience Replay in DQN

A Deep Q-Network (DQN) is a multi-layer neu-
ral network which maps a belief state bt to the
Q values of the possible actions at at that state,
Q(bt, at; θ), where θ is the weight vector of the
neural network. Neural networks for the approxi-
mation of value functions have long been investi-
gated (Lin, 1993). However, these methods were
previously quite unstable (Mnih et al., 2013). In
DQN, Mnih et al. (2013, 2015) proposed two tech-
niques to overcome this instability, namely expe-
rience replay and the use of a target network.

At every turn, the transition including the pre-
vious belief state bt, previous action at, corre-
sponding reward rt and current belief state bt+1

is put in a finite pool (Lin, 1993). In this pa-
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per, two pools Dstu and Dtea are used to store
the student’s experiences and the teacher’s experi-
ences respectively as shown in Figure 1(b). When
the teaching method EA is used in the t-th turn,
at = ateat and the transition is put in Dtea, other-
wise at = astut and the transition is put in Dstu
. When CA is used, rt = rextt + rintt , otherwise
rt = rextt . Once any of the pool has reached its
predefined maximum size, adding a new transition
results in deleting the oldest transition in the pool.
During training, a pool is first selected from Dtea
andDstu. The probability of selectingDtea is ptea,
i.e. D ∼ Ber(Dtea,Dstu; ptea)

3.Then a mini-
batch of transitions is uniformly sampled from the
selected pool, i.e. (bt, at, rt,bt+1) ∼ U(D). We
call this agent-aware experience replay.

Except for the experience replay, a target net-
work with weight vector θ− is used. This target
network is similar to the Q-network except that its
weights are only copied every K steps from the
Q-network, and remain fixed during all the other
steps. The loss function for the Q-network at each
iteration takes the following form:

L(θ) = ED∼Ber(Dtea,Dstu;ptea), (bt,at,rt,bt+1)∼U(D)[(
rt + γmax

at+1

Q(bt+1, at+1; θ
−)−Q(bt, at; θ)

)2
]

(1)
where γ ∈ [0, 1] is the discount factor.

The probability ptea controls how often the stu-
dent learns from the teacher’s experiences. As
the learning goes on, the probability will decrease.
More details will be described in the next section.

3.3 Companion Strategy

It’s important for the student to estimate an appro-
priate point to end the reliance on the teacher. If
the reliance is ended too early, the student itself
may not reach an acceptable performance, result-
ing in the sharp drop of performance, which is the
safety problem. However, if the student always re-
lies on the teacher, it’s hard to improve its perfor-
mance to surpass the teacher’s performance, which
is the efficiency problem.

We get some inspirations from the studying pro-
cess of a call center service agent. Consider how
a new call center service agent gets started. At
first, an experienced call center agent tells him
some basic rules and the new agent works by of-
ten consulting these rules. His confidence about

3Ber is short for Bernoulli.

how to make decisions gradually increases during
the continuous practice. Eventually, he is so con-
fident about his own decisions that he no longer
needs any consultation to these rules and even ex-
plores some better response ways through inter-
action with users which are not initially included
in the rules. Similarly, we can use the uncer-
tainty/certainty of the Q-network to determine the
teaching time.

There are several methods to estimate the un-
certainty/certainty in deep neural networks, e.g.
Bayesian neural networks (Blundell et al., 2015),
dropout (Gal and Ghahramani, 2016), bootstrap
(Osband et al., 2016) . Here we use the dropout
to estimate the certainty of Q-Network. We call
this Q-network DropoutQNetwork. Dropout is a
technique used to avoid over-fitting in neural net-
works. It was introduced several years ago by
(Hinton et al., 2012) and studied more extensively
in (Srivastava et al., 2014). When dropout is used
in training, the elements of the output of each hid-
den layer h is randomly set to zero with probabil-
ity p, i.e. h′ = h � z 4 where z is binary vector
and each element zi ∼ Ber(1−p). h′ is scaled by
1

1−p and then fed to the next layer. At test time the
dropout is disabled, i.e. the output of each hidden
layer h is directly fed to the next layer. Although
dropout was suggested as an ad-hoc technique, re-
cently it was theoretically proven that the dropout
training in deep neural networks is an approximate
Bayesian inference in deep Gaussian processes
(Gal and Ghahramani, 2016). Therefore, a direct
result of this theory gives us tools to model un-
certainty with dropout neural networks. To obtain
the uncertainty, similar with that at train phrase the
dropout is enabled at test phrase. For each input
instance (i.e. dialogue belief state) bt, performing
N stochastic forward passes through the network
and averaging the output qi , [qi1, · · · , qiM ] to
get the mean and the variance. Generally, the vari-
ance can be utilized to measure the uncertainty of
output. However, it’s not a normalized criteria,
and it’s hard to set a threshold below which we
should be confident with the output.

Instead, we proposed a novel method to mea-
sure the certainty of the decision of student policy
at t-th turn. For each stochastic forward passes,
the action ati = arg maxj qij is regarded as a
vote. After N passes 5, there is a committee

4Here � is the element-wise product.
5The N forward passes can be done in parallel, e.g. the

2457



{at1, · · · , atN} consisting of N votes. The ac-
tion astut that should be taken in the belief state
bt is the one with the largest percentage of the
votes, and the corresponding percentage is defined
as certainty ct. The process is described in Algo-
rithm 1.

Algorithm 1 The Decision Procedure of Student
Policy πstu(bt, N)

Require:
The repeat times N and the belief state bt

1: Initial the probability vector p =
[p1, · · · , pM ] with zero vector, where M
is the number of actions.

2: for i = 1, N do
3: qi← DropoutQNetwork(bt)
4: ati ← arg maxj qij
5: p[ati]← p[ati] + 1/N
6: end for
7: ct ← maxj pj
8: astut ← arg maxj pj
9: return astut , ct

At the end of e-th dialogue, the average cer-
tainty of all turns is computed, i.e. Ce =
1
Te

∑Te
t=0 ct, where Te is the number of turns in

e-th dialogue. Generally, the variance of Ce be-
tween successive dialogues is high. In order to the
smooth the estimation, here we use the moving av-
erage of Ce in previous W dialogues to represent
the certainty of student at current dialogue, i.e.

Ce =
1

W

e−1∑

i=e−W
Ci. (2)

As the training goes on, Ce grows until it con-
verges. If Ce in all successive W dialogues are
greater then a threshold Cth as shown in Figure
2, it’s assumed that the student reaches a point
where it is confident enough with its own decision
steadily. Therefore, the teaching, both EA and CA,
should be ended from now on.

Before the end of the teaching, CA is done in
all turns. However, if EA is always done, the dis-
appearance of the teacher may cause a dramatic
change in the hybrid decision policy, which re-
sults in a sharp drop of performance. To deal
with this issue, a monotonically increasing func-
tion of the relative certainty Ptea(∆Ce) is pro-
posed to control the frequency of EA teaching.

dialogue state can be repeated N times to form a mini-batch,
then one forward is executed to getN outputs simultaneously.

∆Ce represents the distance between Ce and Cth,
i.e. ∆Ce = max(0, Cth − Ce). The effect of
Ptea(∆Ce) is that the closer Ce is to Cth, the
more unlikely EA teaching is executed. Besides
controlling how often the student directly consult
the teacher, another mission of Ptea(∆Ce) is to
control how often the teacher’s experiences are re-
played, i.e. the probability ptea described in sec-
tion 3.2. Implementation details of Ptea(∆Ce) are
described in Appendix C.

Figure 2: Illustration of average certainty Ce and
the probability ptea.

The full procedure of companion learning with
logic rules is described in Algorithm 2.

3.4 Teacher Policy: Logic Rules
Rule-based policy is popular in commercial dia-
logue systems (Williams, 2008). The policy, i.e.
the dialogue plan/flow, is designed by a domain
expert. His knowledge of task domain and busi-
ness rules is encoded in the rules. There are
many methods to represent the decision rules, e.g.
propositional logic, first-order logic, decision tree.
Here, we use the ordered propositional logic rules,
which can be easily translated into IF-THEN rules.
When making the decision, these rules are exe-
cuted in pre-defined order. If the conditions of any
rule are satisfied, the decision process will be ter-
minated and the output is the corresponding ac-
tion. In this paper, three hand-crafted logic rules,
R1, R2, and R3 , were used as the teacher:

• R1: confirm the most likely value in slots
where the most likely value has probability
between 0.1 and 0.66;

• R2: offer a restaurant if there is at least one
slot in which the belief of most likely value is
more than the belief of special value “none”;

6This threshold is the best one we have tried.
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Algorithm 2 Companion Learning with Logic
Rules
Require:

The number of stochastic forward pass N , the
maximal extra reward δ > 0.

1: Initialize the parameters θ of student policy
2: Initialize replay pools Dtea and Dstu with {},

certainty memory C with {}, teaching with
True.

3: for e = 1, E do
4: Update the dialogue belief state b0

5: Initialize the average certainty Ce ← 0
6: if teaching is True then
7: teaching, ptea ← Companion(C)
8: end if
9: for t = 0, Te do

10: Set intrinsic reward rintt ← 0
11: Get system action and the corresponding

certainty, i.e. astut , ct ← πstu(bt, N)
12: Ce ← Ce + ct
13: Get action from the rule-based policy, i.e.

ateat ← πtea(bt)
14: EA ∼ Ber(ptea)
15: if teaching is True and EA is True

then
16: at ← ateat
17: else
18: at ← astut
19: end if
20: if teaching is True then
21: rintt ← (2× 1{at = ateat } − 1)δ
22: end if
23: Ce ← 1

Te
Ce, and store Ce in C

24: Give the action at to the environment,
observe the extrinsic reward rextt and up-
date the dialogue belief state bt+1

25: rt ← rintt + rextt

26: if EA is True then
27: Store {bt, at, rt,bt+1} in Dtea
28: else
29: Store {bt, at, rt,bt+1} in Dstu
30: end if
31: Update the parameters θ of

DropoutQNetwork according to the
equation (1).

32: end for
33: end for
34: return θ

Algorithm 3 Companion Function Companion(C)
Require:

The average certainty memory C at e-th dia-
logue and the moving window size W .

1: Initialize teaching with False, ptea with 0
2: for i = 0,W do
3: Compute the moving average certainty

Ce−i in (e-i)-th dialogue with equation (2).

4: if Ce−i < Cth then
5: teaching ← True
6: break
7: end if
8: end for
9: if teaching is True then

10: ∆Ce ← max(0, Cth − Ce)
11: ptea ← Ptea(∆Ce)
12: end if
13: return teaching, ptea

• R3: request values for a slot which is uni-
formly selected from a pre-defined slot list.

The corresponding pseudo-codes are presented in
Appendix B.

4 Evaluation Metrics of On-line Policy
Optimization

Most previous work on the evaluation of RL-based
dialogue policy optimization focuses on the final
performance (FP) when the system converges to
a steady level. However, for on-line policy op-
timization, it’s important to measure the learning
process. Except for FP, we proposed two quantita-
tive metrics: safety loss and efficiency loss.

4.1 Safety Loss
In the on-line training process, unless the perfor-
mance of the system reaches the acceptable perfor-
mance Sa, the interaction between users and the
system will be unsafe and causes trouble to con-
tinuing training. So the safety of the system is de-
fined to be the system’s ability to maintain perfor-
mance above the acceptable performance Sa.

We quantify the safety loss of the system by
summing up the performance gap between the
acceptable performance and the system perfor-
mance Se in every episode during the on-line
learning. Suppose there are E dialogues, then

L1 =
E∑
e=1

max(0, Sa − Se). The safety loss has an
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intuitive interpretation as the area of the region be-
low the threshold and above training curve. This
metric is similar to the integral of absolute error
(IAE) (Shinners, 1998) metric commonly adopted
in the evaluation of control systems (Gaing, 2004;
Jesus and Tenreiro MacHado, 2008).

4.2 Efficiency Loss

Another important issue of on-line learning is effi-
ciency. The efficiency indicates the speed at which
the system reaches a specific performance level. In
reality, we can tolerate a system to make mistakes
at the beginning but it should improve at a signif-
icant speed until reaching the ideal performance
Si. Therefore, later failures should weight more
than early failures to evaluate efficiency. Sim-
ilar to the integral of time multiplied by abso-
lute error (ITAE) (Shinners, 1998) metric, we pro-
pose a metric efficiency loss. We multiply the
performance gap between ideal performance and
current performance with the episode index, thus
giving later failure greater penalty. Specifically,

L2 =
E∑
e=1

max(0, Si − Se)e.
More illustrations about safety loss and effi-

ciency loss are given in Appendix D.

5 Experiments

Our experiments have three objectives: (1) Com-
paring our proposed dropout DQN in Algorithm 1
with some baselines when there is no teacher. (2)
Comparing CL with other two baselines when the
teacher gets involved, and investigating the ben-
efits of our proposed agent-aware experience re-
play. (3) Visually analyzing the differences in be-
haviors between the rule-based teacher policy and
the optimized student policy.

An agenda-based user simulator (Schatzmann
et al., 2007a) with error model (Schatzmann et al.,
2007b) was implemented to emulate the behav-
ior of the human user, and a rule-based policy
with 0.695 success rate described in section 3.2
was used as the teacher in our experiments. The
purpose of the user’s interacting with SDS is to
find restaurant information in the Cambridge (UK)
area (Henderson and Thomson, 2014). This do-
main has 7 slots of which 4 can be used by the
system to constrain the database search. The sum-
mary action space consists of 16 summary actions.
More details are described in Appendix A.

For reward, at each turn, an extrinsic reward of

−0.05 is given to the student policy. At the end of
the dialogue, a reward of +1 is given for dialogue
success. The maximal extra reward δ is 0.05.

For each set-up, 10000 dialogues are used
for training, the moving dialogue success rate is
recorded with a window size of 1000. The final
results are the average of 40 runs.

5.1 Policy Learning without Teaching
In this section, four policies without teaching are
compared:

• DQN: A vanilla deep Q-Network (Mnih et al.,
2015) which has two hidden layers, each with
128 nodes.

• A2C: An advantage actor-critic policy which
consists of an actor network and a critic net-
work (Fatemi et al., 2016).

• Dropout DQN 1 and Dropout DQN 32:
They both have a dropout layer after each
hidden layer. The dropout rate is 0.2. Their
difference is that the number of stochas-
tic forward pass N of Dropout DQN 32
in Algorithm 1 is 32, while that of
Dropout DQN 1 is 1. Dropout DQN 1
makes decision according to one output of
Q-network similar to that of vanilla DQN.
Dropout DQN 1 was first proposed in (Gal
and Ghahramani, 2016), and was confirmed
that Dropout DQN 1 can obtain more effi-
cient exploration.

Figure 3: Comparison of four policies without
teaching.

The learning curves are described in Figure 3
and the evaluation results are described in Table
1. Comparing Dropout DQN 1 with DQN in fig-
ure 3, the improvement of efficiency caused by
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Metrics No Teaching Teaching
DQN Dropout DQN 1 Dropout DQN 32 A2C A2C PreTrain EA CL D CL AAD

Safety 1043.3 321.4 258.0 1020.8 176.9 48.8 30.6 18.6
Efficiency(×104) 534.7 249.1 75.6 299.0 205.4 58.0 62.6 53.5

FP 0.684 0.709 0.749 0.727 0.726 0.751 0.749 0.751

Table 1: The quantitative evaluation results of different methods. Here final performance (FP) is the
success rate of last 2000 dialogues. The FP of Dropout DQN 32 0.749 is used as the ideal performance
Si for computing efficiency loss, and the performance of the rules 0.695 is used as the acceptable
performance Sa for computing safety loss.

dropout can be observed as claimed in (Gal and
Ghahramani, 2016). However, Dropout DQN 1
seems to suffer premature and sub-optimal con-
vergence, while our proposed Dropout DQN 32,
whose decision is based on multi votes (algo-
rithm 1), can result in improvement of effi-
ciency and better final performance. Moreover,
Dropout DQN 32 also performs much better
than the policy gradient method A2C.

For the following experiments, the times of
stochastic forward pass N in Algorithm 1 is 32.

5.2 Policy Learning with Teaching

In this section, four methods of teaching by the
rule-based policy are compared:

• EA: 500 dialogues are taught with EA at the
beginning (Chen et al., 2017).

• A2C PreTrain: At the beginning, 500 di-
alogue are collected with rule-based policy.
These examples are used to pre-train the actor
network with supervised learning. After the
pre-training, the policy is continuously opti-
mized with the A2C algorithm (Fatemi et al.,
2016).

• CL AAD: Full CL with AAD-DQN described
in section 3.

• CL D: CL without agent-aware experience
repay, i.e. the teacher’s experiences and stu-
dent’s experiences are put in one pool and are
uniformly sampled for the experience replay
in equation (1).

As can be seen in Figure 4, there is a big dip in
the performance of A2C PreTrain. One possi-
ble explanation is that because the rule-based pol-
icy is sub-optimal, the pre-training makes the stu-
dent policy reach a local minimum point. The rl-
training should first make it escape from the local

Figure 4: Comparison of four methods with teach-
ing by rule-based teacher.

minimum point, which results in a temporary loss
in performance.

Comparing CL methods (CL D and CL AAD)
with EA in Figure 4 and in Table 1, we can con-
clude that CL can significantly boost the safety
of learning process. Moreover, except for safety,
CL AAD can boost the efficiency, which benefits
from the agent-aware experience replay.

5.3 Comparison of Optimized Student Policy
and Rule-based Teacher Policy

To interpret what the student has learnt, we fur-
ther compare the rules and an optimized student
policy with 76.7% success rate. The rule-based
policy is used to collect 5000 dialogues, while in
each turn the decision made by the student policy
is also recorded. Figure 5 is a confusion matrix.
The x-axis denotes the student’s decision and the
y-axis denotes the rules’ decision. The numbers
on the left are the statistics for each action in 5000
dialogues. Each element in the matrix denotes the
normalized number of turns when the rule chooses
the action in the corresponding line, the student
chooses the action in the corresponding column.

As is shown in Figure 5, offer and confirm
are two action types used most frequently. In
more than half of turns when the rule-based pol-
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Figure 5: Confusion matrix between the decisions
of rule-based policy and the decisions of the opti-
mised student policy. The x-axis denotes the stu-
dent’s decision and the y-axis denotes the rules’
decision.

icy chooses offer 1, the student policy will choose
a different action. Furthermore, from the element
in line offer 1 and column request area, we can
find that in this situation the student policy prefers
the action request area. Inspired by this disagree-
ment, we designed a new rule:

• R4: request values for slot area when there is
only one other slot constraint for the database
query.

Similarly, as can be seen in Figure 5, in a con-
siderable proportion of turns when the rule-based
policy chooses confirm area, confirm pricerange,
or confirm name, the student policy will choose
the action offer 2, which may mean that for slots
area, pricerange, or name, when there are val-
ues for database query, the system should offer
a restaurant instead of confirming the slot-value
constraints. Therefore, the rule R1 in section 3.2
was revised as follows:

• R1*: For slot food, confirm the most likely
value has the probability between 0.1 and 0.6;
For slot area, pricerange and name, confirm
the most likely value, the belief of which is
smaller than the belief of the special value
“none” and is larger than 0.1.

Table 2 is the evaluation results of different or-
dered rules. The rule R4 can significantly boost
the success rate (comparing line 2 with line 1),

Ordered Rules Success Rate #Turn Reward
R1, R2, R3 0.695 4.58 0.4657

R1, R4, R2, R3 0.749 5.16 0.4910
R1*, R2, R3 0.705 4.44 0.4824

R1*, R4, R2, R3 0.753 4.98 0.5042

Table 2: Evaluation results of different ordered
rules. As a reference, the performance of opti-
mised student policy is success rate 0.767, #turn
5.10 and reward 0.5124.

while the rule R1* can both boost the success rate
and decrease the dialogue length (comparing line
3 with line 1). The combination of R4 and R1*
takes respective advantages (comparing line 4 with
line 1, line 2 and line 3). The performance of fi-
nal order rules is comparable to the performance
of optimized student policy.

It is worth noting that the primary rules R1, R2,
and R3 in section 3.2 don’t distinguish between
different slots. However, the new rules R4 and
R1* are all slot-specific, which it is difficult to de-
sign at the beginning.

6 Conclusion

This paper has proposed a companion learning
framework to unify rule-based policy and RL-
based policy. Here, the rule-based policy acts as
a teacher, which either directly shows example ac-
tion or gives an extra reward. Based on the un-
certainty estimated using a dropout Q-Network, a
companion strategy is proposed to control when
the student policy directly consults rules and how
often the student policy learns from the teacher’s
experiences. Simulation experiments showed that
our proposed framework can significantly improve
both safety and efficiency of on-line policy opti-
mization. Additionally, we visually analyzed the
differences in behaviors between the rule-based
teacher policy and the optimized student policy,
which gave us some inspirations to refine the rules.
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Milica Gašić and Steve Young. 2014. Gaussian pro-
cesses for pomdp-based dialogue manager optimiza-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22(1):28–40.

James Henderson, Oliver Lemon, and Kallirroi
Georgila. 2008. Hybrid reinforcement/supervised
learning of dialogue policies from fixed data sets.
Computational Linguistics, 34(4):487–511.

Matthew Henderson and Blaise Thomson. 2014. The
second dialog state tracking challenge. In SIGDIAL,
volume 263, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Isabel S. Jesus and J. A. Tenreiro MacHado. 2008.
Fractional control of heat diffusion systems. Non-
linear Dynamics, 54(3):263–282.

Leslie Pack Kaelbling, Michael L Littman, and An-
thony R Cassandra. 1998. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, 101(1-2):99–134.

Long-Ji Lin. 1993. Reinforcement learning for robots
using neural networks. Ph.D. thesis, Fujitsu Labo-
ratories Ltd.

Zachary C Lipton, Jianfeng Gao, Lihong Li, Xiujun
Li, Faisal Ahmed, and Li Deng. 2016. Efficient
exploration for dialogue policy learning with bbq
networks & replay buffer spiking. arXiv preprint
arXiv:1608.05081.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Na-
ture, 518(7540):529–533.

Ian Osband, Charles Blundell, Alexander Pritzel, and
Benjamin Van Roy. 2016. Deep exploration via
bootstrapped dqn. In Advances in Neural Informa-
tion Processing Systems, pages 4026–4034.

Olivier Pietquin, Matthieu Geist, and Senthilkumar
Chandramohan. 2011. Sample Efficient On-line
Learning of Optimal Dialogue Policies with Kalman
Temporal Differences. In IJCAI, pages 1878–1883.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007a. Agenda-based
user simulation for bootstrapping a pomdp dialogue
system. In NAACL, pages 149–152, Morristown,
NJ, USA. Association for Computational Linguis-
tics.

Jost Schatzmann, Blaise Thomson, and Steve Young.
2007b. Error simulation for training statistical di-
alogue systems. In Automatic Speech Recognition
& Understanding, 2007. ASRU. IEEE Workshop on,
pages 526–531. IEEE.

Stanley M Shinners. 1998. Modern control system the-
ory and design. John Wiley & Sons.

2463



David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Mil-
ica Gasic, and Steve Young. 2017. Sample-efficient
actor-critic reinforcement learning with supervised
data for dialogue management. In Proceedings of
the 18th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL).

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. Continu-
ously learning neural dialogue management. arXiv
preprint arXiv:1606.02689.

Jason D Williams. 2008. The best of both worlds: uni-
fying conventional dialog systems and pomdps. In
INTERSPEECH, pages 1173–1176.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig.
2017. Hybrid code networks: practical and efficient
end-to-end dialog control with supervised and rein-
forcement learning. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics.

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech and Language,
21(2):393–422.

Jason D Williams and Geoffrey Zweig. 2016. End-to-
end LSTM-based dialog control optimized with su-
pervised and reinforcement learning. CoRR.
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Abstract

In this paper we introduce a practical
first step towards the creation of an auto-
mated debate agent: a state-of-the-art re-
current predictive model for predicting de-
bate winners. By having an accurate pre-
dictive model, we are able to objectively
rate the quality of a statement made at a
specific turn in a debate. The model is
based on a recurrent neural network ar-
chitecture with attention, which allows the
model to effectively account for the entire
debate when making its prediction. Our
model achieves state-of-the-art accuracy
on a dataset of debate transcripts anno-
tated with audience favorability of the de-
bate teams. Finally, we discuss how future
work can leverage our proposed model for
the creation of an automated debate agent.
We accomplish this by determining the
model input that will maximize audience
favorability toward a given side of a debate
at an arbitrary turn.

1 Introduction

Conversational agents are a well-researched area
of natural language generation (Pilato et al.,
2007; Bigham et al., 2008; Augello et al., 2008;
Agostaro et al., 2005; Bessho et al., 2012). Else-
where in the field of natural language generation,
there is work that seeks to generate persuasive text
(Carenini and Moore, 2006; Reiter et al., 2003;
Rosenfeld and Kraus, 2016), which is a logical
first step towards creating an automated debate
agent. One major deficiency of existing work in
this area is its assessment of how convincing (or
compelling) a piece of text is; the approaches use
theory-driven models of persuasion, rather than
being empirically motivated. Furthermore, none

of these works provide a model that can optimize
persuasiveness at an arbitrary point in a conversa-
tion.

One of the main reasons for a lack of
empirically-driven persuasive generation systems
is the absence of labeled data. In order to allevi-
ate this problem (though not directly for the sake
of producing an automated debate agent), Zhang
et al. (2016) have introduced a dataset of debate
transcripts from the “Intelligence Squared” (IQ2)1

debates. In these debates, two teams are present,
arguing either for or against a given topic. For
each debate, an audience poll is conducted both
prior to and after the debate. Whichever team has
the largest gain in audience support between the
pre/post debate polls is the winner. This is a natu-
ral way to account for the fact that some sides of a
debate may be harder to argue than others, and that
audience members may be initially biased given a
debate topic.

Because of the sequential nature of debating, a
Recurrent Neural Network (RNN) is an attractive
choice for modeling the problem. Rather than just
using the final hidded state for prediction, which
likely has lost information from early in the de-
bate, we propose to use an attention mechanism
(Bahdanau et al., 2014) that creates a weighted
sum over all hidden states, and is subsequently
used for the final prediction. We motivate the use
of an RNN, as opposed to a temporally flat clas-
sifier, for several reasons. First, using an RNN
allows us to naturally incorporate predicting au-
dience favorability at each turn while explicitly
modeling the turn sequence. Logistic regression,
on the other hand, would not allow us to model the
sequence explicitly. Secondly, our model allows
us to take raw features as input, without having to
compute summary statistics necessary for the fea-

1http://www.intelligencesquaredus.org/
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tures used in the model of Zhang et al. (2016). Fi-
nally, since our end goal is debate automation, an
RNN is a natural choice for debate turn generation.

There are two major difficulties dealing with
the IQ2 dataset: first, since the construction of
the dataset is non-trivial, there are only 108 data
points, resulting in Zhang et al.’s proposal for
leave-one-out (LOO) evaluation. Second, con-
sidering the use of an RNN, the sequences are
long, with an average length of 246 (and a stan-
dard deviation of 67). In order to overcome this,
we incorporate signals based on implicit audience
feedback during the debate into the model’s loss
function. Instead of just training the model based
on error from the audience’s final verdict, pro-
pogated through a substantial amount of timesteps,
there are intermittent errors propogated backward
through the network based on audience reactions,
such as applauding or laughing. These internal
signals also help regularize the network. In a way,
they help generalize the hidden representation of
the RNN, allowing it to better contain a distributed
representation of the audience’s favorability to-
wards a given team.

In our proposed model, the audience’s opinion
is directly a function of the weighted hidden repre-
sentations. Since the previous hidden representa-
tions are all fixed at a given timestep, and the cur-
rent hidden representation is directly a function of
these previous hidden representations as well as
the current input, the audience’s current poll de-
pends directly on the timestep’s input. Therefore,
at a given timestep, our framework allows us to
determine the input that would maximize the audi-
ence’s favorability toward the orating team. This
is due to the fact that the inputs are themselves rep-
resentations of a given team’s statement at a par-
ticular turn in the debate.

We evaluate our model on the dataset from
Zhang et al., posting state-of-the-art accuracy. Our
results show that our proposed regularization tech-
nique is imperative for the RNN-based model to
perform competitively with the models previously
proposed by Zhang et al.. The attention mecha-
nism also contributes to the best performing sys-
tem. Afterward, we show how our model can be
used to track audience favorability throughout the
debate, as well as the aforementioned input opti-
mization, using it in a case study to instruct a de-
bate team about optimal debate strategy at a given
turn.

2 Related Work

Previous work that focuses on conversational
language seeks to predict such qualities as
disagreements (Allen et al., 2014; Wang and
Cardie, 2016), divergence (Niculae and Danescu-
Niculescu-Mizil, 2016), and participant stance
(Sridhar et al., 2015; Somasundaran and Wiebe,
2010; Thomas et al., 2006; Rosenthal and McK-
eown, 2015). What is most relevant for our pur-
poses are the methods these models use for dealing
with conversational data. Allen et al. (2014) apply
discourse parsing (Joty et al., 2013) and fragment
quotation graph (Carenini et al., 2007) tools to
detect disagreement in online discussion threads.
Wang and Cardie (2016) believe that disagreement
can be predicted by the presence of substantially
long sequences of negative sentiment, motivating
them to build a sequential sentiment prediction
model using a particular kind of Conditional Ran-
dom Field (Mao and Lebanon, 2007). Niculae
and Danescu-Niculescu-Mizil (2016) use several
novel features that capture the flow of ideas in the
data, as well as team dynamics. Ultimately, how-
ever, all these models apply manually derived, pre-
processed features and use a basic classifier, like
Random Forest or Logistic Regression. In con-
trast, an RNN model is able to learn which inter-
actions and overall sequences of rhetoric are im-
portant for predictive power.

There is much less work that approaches the
problem of predicting persuasiveness of text. This
is due primarily to the lack applicable datasets.
However, Habernal and Gurevych (2016b) have
recently presented a dataset where argument pairs
are annotated for argument convincingness, as
well as finer-grained annotations related to the ef-
fectiveness of arguments (Habernal and Gurevych,
2016a). The authors experimented with feature-
based classifiers, as well as various RNN architec-
tures to construct predictive models for the dataset.

The most relevant work for this paper is of
course Zhang et al. (2016). The authors use a set
of features derived from the notion of idea flow
in the debate. More specifically, they follow the
method of Monroe et al. (2008) to identify talk-
ing points used by the sides present in a debate.
The authors then create features based on the cov-
erage of talking points during the debate. Finally,
a Logistic Regression model uses these features to
predict which team wins the debate. We also note
the work of Santos et al. (2016), which also makes
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predictions on a dataset derived from the IQ2 de-
bates. In contrast, their work analyses speech sig-
nals, as opposed to textual data.

3 Predictive Model

In this section we explain how we apply an RNN
to the task of predicting debate winners. We start
by addressing the fact that for IQ2 dataset, each
timestep involves a text span, as opposed to single
tokens, and explaining how we convert this text
span into a vector representation for RNN input.
Secondly, we explain our RNN model architec-
ture, including our use of an attention mechanism
to create a weighted sum over all hidden states,
as well as a regularization technique based on im-
plicit audience reaction.

3.1 Representing Debate Turns

Our work follows that of Zhang et al. (2016), and
uses talking point-based features, specifically a
‘bag of talking points’. Talking points for each de-
bate are identified using a term frequency inverse
document frequency (tfidf) metric applied to text
tokens. Token counts, whether at a document or
corpus level, occur only for the introduction text,
as done by Zhang et al. This is based on the belief
that the introductory arguments best showcase po-
tential talking points. We take the 10 tokens with
highest tfidf scores for each debate, and, across all
debates, each token ranking maps to a fixed index
in the turn representation. This representation is
binary.

Zhang et al.’s results suggest that the interaction
of talking points between debate teams can pos-
sess strong predictive power. Therefore, we also
calculate talking points at a team level within de-
bates. We accomplish this by simply taking term
frequency counts for tokens spoken by a given
team. Like with the overall debate talking points,
we chose the 10 highest ranked talking points from
each side and include them in the input represen-
tation. Moreover, we believe we can use a simpler
talking point metric than that proposed by Monroe
et al. (2008) (and used by Zhang et al.) because the
recurrent nature of the model will naturally cap-
ture the interaction, coverage, and ignorance of the
two team’s (and overall) talking points.

Aside from talking point-based features, we in-
clude the following linguistic features: 1) bag-of-
words for tokens that have been used in at least
50 debates; 2) GloVe embeddings of tokens (Pen-

nington et al., 2014). We use max pooling over
all the tokens’ embeddings to create the embed-
ding features. We also use the following non-
linguistic features: 1) whether the turn occurs dur-
ing the opening, discussion, or conclusion phase
of the debate; 2) whether the turn is from the ‘for’
or ‘against’ team, as well as moderator or other
speakers, such as show host etc; 3) the initial audi-
ence poll is provided at each timestep. This is sim-
ilar in spirit to Cho et al. (2014)’s decoder model
that accesses the final encoder hidden state at each
timestep.

We acknowledge that it would be possible
to model individual turns (sequences of tokens)
with a separate RNN. We choose to use hand-
engineered features for two reasons: First, the
current representation, mainly the talking points
and BOW features, are easily interpretable given
the goal of providing rhetorical strategy for de-
baters. Using an RNN for this purpose would re-
quire training a decoder in order to interpret the
optimal rhetoric at a given turn (see Section 7).
Secondly, it follows that having a trainable rep-
resentation would introduce additional parameters
into the model, which is a concern, given the lim-
ited amount of data.

3.2 Recurrent Architecture

Our RNN model uses a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
component. At each timestep, the model re-
ceives as input a turn representation defined in
Section 3.1. After consuming all turn represen-
tations, a simple model without attention woud
pass the final hidden state, hf , through two fully-
connected layers (with an intermediate represen-
tation ha to which we apply sigmoid activation),
whose weights have subscripts post to identify
that this transformation happens after the debate:

ha = σ(W 1
posthf + b1post) (1)

a = W 2
postha + b2post (2)

where σ is the sigmoid function. This transforma-
tion outputs a vector with three dimensions, which
corresponds to the fact that the audience poll has
three possibilities: for, against, and undecided.

Since the polling is given as a percentage break-
down, we apply softmax to create a valid prob-
ability probability distribution for the audience,
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Figure 1: An illustration of our training objective from Equation 9 unrolled over time. FCpre and FCpost
refer to Equations 1/2 and 8, respectively.

p(A):
p(A|Θ) = softmax(a) (3)

which is for a given set of model paramters, Θ.
We train the model to minimize the Kullback-

Leibler (KL) divergence between the target and
predicted audience poll percentages. Given a
training corpus of debates D with target post-
debate audience polls Atargeti , the optimization
objective is:

arg min
Θ

∑

d∈D
DKL(p(Atargetd )||p(Ad|Θ)) (4)

which simply sums the KL-Divergence of the tar-
get and predicted audience poll percentages (prob-
abilities) across all training examples. At test time,
the model uses the percentages from p(A|Θ) to
calculate which team increased their support from
the audience the most, using the pre-debate audi-
ence poll, which is given. For notation purposes,
we refer to this KL-divergence for post debate
audience polling Dpost

KL . The optimization objec-
tive from Equation 4 describes our base model.
Shortly, we will describe how we regularize this
base model using implicit audience feedback.

3.2.1 Attention Mechanism
The model we have described to this point uses the
final hidden state to predict the final audience poll.
A concern with this approach is that the final hid-
den state has a difficult time encoding the activity
from the earlier parts of the debate. We propose to
rectify this issue by creating a weighted sum over
all hidden states, following the the attention mech-
anism from Bahdanau et al. (2014). Given hidden

states from all RNN timesteps, (h1, ..., hf ), we de-
termine the weight for hi as follows. First, we
compute a raw attention score:

ri = vT tanh(Wahi + ba) (5)

where v,Wa, ba are model parameters. hi’s
weight is computed from applying softmax to r:

αi = softmax(r)i (6)

which we use to compute the weighted sum across
all hidden states:

hs =

f∑

i=1

αihi (7)

Therefore, the attention version of our model uses
hs in Equation 1 to predict the final audience poll.

3.2.2 Initializing RNN Hidden State
As we have mentioned, audience polls occur both
before and after the debate. Thus, we continue
the theme of using the RNN hidden state to ex-
press audience polling by exploiting the initial au-
dience poll to initialize the RNN hidden state, h0.
The model uses the initial audience poll, apre, and
applies a fully-connected layer with parameters
Wpre and bpre:

h0 = tanh(Wpreapre + bpre) (8)

We choose tanh for the activation function be-
cause it is the same activation function used by the
LSTM cell. The RNN now is initialized with a
hidden state that reflects the audience’s initial atti-
tude towards a given debate topic.
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3.2.3 Regularization via Implicit Audience
Feedback

The IQ2 dataset offers two challenges for imple-
menting an RNN-based approach. First, which is
a difficulty for any type of supervised model, is
the small dataset size. There are a total of 108
data points, which, even with LOO evaluation,
leaves only 107 examples for training a model.
For neural networks in particular, there is worry
that overfitting easily occurs when the amount of
model parameters is much greater than the dataset
size (Lawrence et al., 1998; Ingrassia and Mor-
lini, 2005). Aside from the dataset size, the se-
quences of debate turns are long, averaging 246.
This means that, on average, our model will run
for 246 timesteps, making it difficult to train the
network (Bengio et al., 1994) (the structure of the
LSTM memory cell was designed to solve this is-
sue, which motivates our use of it in our model).

In order to overcome these difficulties, we pro-
pose to regularize our network based on implicit
audience feedback that occurs during the debate,
and is provided as metadata with the debate tran-
script. Specifically, provided along side each de-
bate turn, there is a ‘non-text’ field that indicates
if any sounds occurred during the turn such as ap-
plause or laughter from the audience. We view
the presence of applause or laughter from the au-
dience as a sign of endorsement during that par-
ticular turn. Therefore, at that particular timestep,
the hidden state should be able to directly predict
this occurrence. Considering applause as a sign
of endorsement is not controversial, but laughter
could be viewed as more ambiguous. However,
consider the audience of the debates: the debates
air on the Bloomberg network and National Pub-
lic Radio, suggesting a higher level of maturity of
the audience, which is less likely to laugh at the
participants, rather than at their jokes. For exam-
ple, here is a turn in the debate ‘Men are Finished’
wherein laughter occurs: “Wait. What was that
phrase you used, surviving off the fumes of sex-
ism? I think we are our finest example there.” This
is an intentional joke by the speaker, who is part of
of the winning team in the debate.

This signal can be integrated in a supervised
manner into the loss function by converting the
audience reaction at a given timestep into a three-
dimensional vector, representing the current, im-
plied audience favorability. We create such a vec-
tor at a debate turn if either applause or laughter

occurs at that timestep, and the speaker is one of
the debate teams. On possibility is to create have a
one-hot vector implying the audience favorability
at the turn, with the mapping of side to index dic-
tated by the target vector,Atargeti , and is set for the
corpus. There is a major problem with using a one-
hot vector: the probability distributions learned by
the model will become too skewed, since the ulti-
mate goal is to better generalize the prediction of
debate polls, rarely are the polls so unbalanced to-
ward one side. Moreover, the one-hot vector will
only ever have mass in the indices for the ‘for’ and
‘against’ teams, and neglecting the ‘undecided’ in-
dex, which is an important sector in the polling.
Therefore, we create a soft vector as follows: a
random number, n, is chosen in the interval (1

3 , 1).
The index corresponding to the speaking team at
timestep i has value n. The remaining two indices
have value 1−n

2 . This vector is notated Atargetit
,

specifying that the reaction occurred at timestep t
for debate i. On average, such reactions occur 21
times during a debate, with a standard deviation of
10. Consequently, this approach adds 2,268 more
supervised signals to the dataset.

As we did with the post-debate poll, we can
compute a lost based on the kl-divergence between
Atargetit

and the prediction probability at timestep
t, which is a function of ht using the same trans-
formations described in Equations 1, 2, and 3, but
replacing hf with ht. The attention model can
been used as well. In this case, we compute hst
by slicing r (from equation 5) to only include in-
dices up to t. We denote the KL-divergence be-
tween target and prediction distributions across all
timesteps of a training example is Dreact

KL , since
these signals are based on audience reaction.

The same strategy can be applied to hi using
the pre-debate polls. Although this signal does not
propagate through the RNN, it can still train the
weights of the fully-connected layers used in our
model. We refer to this KL-divergence as Dpre

KL,
since it uses the pre-debate poll. Bringing together
these separate error signals, we arrive at the train-
ing objective of our full model:

arg min
Θ

∑

d∈D
Dpre
KL +Dreact

KL +Dpost
KL (9)

where Θ is the model parameters used to produce
the prediction probabilities. Figure 1 provides an
illustration of our training objective, unrolled over
time.
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With this new optimization objective, each ex-
ample now trains our model based on (on average)
23 supervised signals. As a result, each training
example allows the model to become more gen-
eralizable, particularly because the hidden states
are now better-tuned to encode audience favora-
bility. This methodology allows the model to bet-
ter leverage the small dataset size. Moreover, the
intermittent error signals from audience reaction,
Dreact
KL , combined with the pre-debate error signal,

Dpre
KL, help assuage the difficulties of training our

model based on a final error signal propagated for
many timesteps. We would like to reiterate that
this regularization technique is only used to train
the model, and not used for prediction, and there-
fore will not be an issue when making predictions
for new debates, nor will it create an unrealistic
circumstance for using the model for creating a de-
bate agent.

4 Experimental Design

Our experiments are conducted on the IQ2 dataset
(Zhang et al., 2016). We use LOO evaluation, re-
sulting in a training set of 107 examples. The eval-
uation metric is simply prediction accuracy for de-
bate winners. The winning team is based on audi-
ence polling. Polls are conducted before and af-
ter the debate, and audience members can vote as
being either for or against a given debate topic,
as well as being undecided. The team that has
the highest increase in audience support from the
pre to post debate poll is the winning team. The
model trains for 100 epochs. Once training is com-
plete, we test on the held-out data point. As Zhang
et al. note, there are three debates in the dataset
that have a tie between the debate teams. Follow-
ing their procedure, we do not test on these data
points. However, we still include these examples
in the training sets, because our training objective
is to predict polls, not debate winners. The final
test accuracy is averaged across the remaining 105
LOO runs. Furthermore, we note that the dataset
is effectively balanced, as there are 53 and 52 ex-
amples with the two possible labels.

We implement all our models in TensorFlow
(Abadi et al., 2016). We use the LSTM cell
equipped with peephole connections (Gers et al.,
2002). This architecture allows the gates to see the
current cell state, along with the hidden state. We
believe that because of the long sequences present
in the dataset, it is important to have all the gates

Model Accuracy
LR BOW 0.50
LR React 0.60
LR Flow 0.63
LR Flow* 0.65
LSTM 0.55
LSTM + Att 0.57
LSTM + Reg 0.64
LSTM + Att, Reg 0.71
LSTM + Att, Drpt 0.60

Table 1: The results of LOO evaluation on the IQ2
dataset. See the beginning of Section 5 for an ex-
planation of the models.

take into account the cell state when producing a
hidden layer. This adds a stronger notion of mem-
ory to the model. While we expect the hidden state
to represent audience favorability, we believe the
cell state can capture the further latent notion of
debate strategy, observable through the interaction
of talking points between the debate teams. The
models have cell and hidden size of 128, and the
intermediate layer from Equation 2 has size 16.
Lastly, we use a batch size of 8.

5 Results

The results of our experiment are presented in
Table 1. Att means the model has the attention
mechanism from Section 3.2.1; Reg means the
model uses the optimization objective from Equa-
tion 9 (all other models use the optimization ob-
jective from Equation 4); Drpt means the model
uses dropout (a popular regularization technique
for neural networks (Srivastava et al., 2014)) of
0.5. We compare our results against the best mod-
els from Zhang et al. (2016). Each model uses
a Logistic Regression (LR) classifier, and distin-
guishes itself by the features it uses. The main
features developed by the authors relate to the in-
teraction (flow) of talking points between the de-
bate teams. There are two types of models that
use the flow features: LR Flow and LR Flow*.
Whereas the former uses all developed flow fea-
tures, the latter uses feature selection to keep the
most powerful flow features. LR React uses fea-
tures based on audience reaction metadata, and LR
BOW uses bag-of-words features.

The results show that the LSTM attention model
regularized by audience reaction achieves the
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highest accuracy. Furthermore, the results high-
light the importance of this regularization tech-
nique, since the simple LSTM model records the
second lowest accuracy of any of the models pre-
sented. This leads us to believe that the regular
LSTM model falls victim to the lack of training
data, preventing the larger amount of model pa-
rameters (compared to a logistic regression model)
from generalizing. The results also show that the
attention model has higher performance than the
regular LSTM model, and the difference in per-
formance is heightened when the regularization
technique is applied. We believe this is because
the attention mechanism adds additional param-
eters to the model, so it seems reasonable that
adding additional training signals helps the model
to generalize better. Lastly, our proposed regular-
ization technique is far superior for generalization
than the popular dropout method. We believe the
strong performance of the proposed regularization
technique is because it causes the LSTM’s hidden
states to better generalize the notion of encoding
audience favorability. Furthermore, our model’s
goal is to predict distributions, as opposed to la-
bels. Whereas dropout can be effective at aiding
in collapsing representations of the same class into
neighboring points of a latent space, our model
needs to be able to predict polls that it may have
not encountered in training. Our regularization
technique aids in this as well by providing more
training data, more polls.

6 Tracking Audience Favorability

One of the advantages of mapping a recurrent
model’s hidden states to audience favorability is
that we can produce a favorability poll at any turn
(timestep) during the debate. In contrast, a tem-
porally flat model, such as the logistic regression
models from Zhang et al., produce a prediction of
audience favorability based on features extracted
from the entire debate. Using our mapping of hid-
den states to audience favorability, we can deter-
mine, at each turn, the current audience favorabil-
ity, and track it throughout the entire debate. Fig-
ure 2 shows this applied to the “men are finished”
debate, wherein the lines on the graph, cut verti-
cally, represent predicted audience polls at a given
debate turn. This debate saw the greatest increase
in audience support from the pre to post debate
poll: the ‘for’ increased their favorability by 46%
(46 points). The three lines correspond to the three

Figure 2: A visualization of audience favorabil-
ity for the debate “men are finished”. At each
turn in the debate, our model predicts the audi-
ence favorability. The y-axis shows the percent-
age of the audience that supports a given side, and
the x-axis show the turn number for a given poll.
Even though these are purely predictions from the
model, it is able to show the rise in audience fa-
vorability for the ‘for’ team, as well as the decline
in favorability for the ‘against’ team. From the
graph, we can see that the ‘for’ team had a large
spike in audience support roughly between turns
20 and 40, which corresponds to the beginning of
the debate’s discussion section.

possible positions an audience member can take
regarding the debate topic. This visualization can
be particularly useful for rhetorical analysis of de-
bate performance, because the resulting graph al-
lows us to see inflection points in audience favora-
bility. These inflection points suggest that a debate
team used very effective (or ineffective) rhetoric at
that particular turn.

7 Optimizing Input for Audience
Favorability

Aside from achieving a new state-of-the-art result
on the IQ2 debate corpus, the main appeal of the
model we have introduced is that it creates a map-
ping between the hidden states and audience fa-
vorability of the debate teams. This mapping is
given in Equations 1 and 2, where a weighted sum
over all over all hidden states (the actual notation
in these equation apply the fully-connected trans-
formation to a final hidden state, hf , unlike the
attention model which uses hs from Equation 7) is
transformed into a real-valued 3-dimensional vec-
tor a. The values of the vector indicate ‘raw’ fa-
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vorability, which is realized as a probability dis-
tribution (or alternatively, a poll of the audience)
after applying the softmax activation. Further-
more, given fixed model parameters Θ, the current
hidden state is a function of the previous hidden
states, previous cell state (if, like our model, an
LSTM cell is used), as well as the current input.
At a given timestep, the previous hidden and cell
states are known. Therefore, a is directly a func-
tion of the current input x at a given timestep. This
notion of optimizing input for a target ‘class’ is
akin to the work of Simonyan et al. (2013), who
use a trained convolutional neural network to find
the optimal input image for a desired object class.

7.1 Input Optimization Objective
Similar to our approach in Section 3.2.3 to en-
code implicit audience feedback, we can construct
a three-dimensional one-hot vector with the index
switched on that corresponds to the debate team
whose favorability we seek to optimize. We will
call this vector Afav. Given input xi at timestep
i, we seek to to optimize the probability of Afav

given xi:

arg max
xi

p(Afav|xi, h1, ..., hi−1, ci−1; Θ) (10)

Where i ∈ (1, ..., T ) and T is the maximum num-
ber of timesteps (turns) for a debate. In practice,
we achieve this optimization by minimizing the
cross-entropy between the the target one-hot vec-
tor and the output of applying the softmax function
to a, as in Equation 3.

7.2 Applying Optimized Input for Persuasive
Strategy

In the debate ‘men are finished’, the ‘for’ team
won the debate, increasing their favorability by an
astonishing 46% (conversely, the ‘against’ team
saw a 25% decrease in favorability). According
to our model’s sequential predictions (and visible
in Figure 2), a major turning point occurred at
turn 27. Quantitatively, we can examine the
turn-by-turn change in audience favorability:
from this we see that one of the largest increases
in audience favorability occurred at turn 27. It is
not a surprise to find out that the team that spoke
during turn 27 was the ‘for’ team. When asked by
the moderator if there can be equality between the
sexes without deeming men as being finished, the
‘for’ team said the following (the text is annotated
for the presence of talking points, marked by a

subscript that specifies whose talking point it is:
A (against), F (for), or G, a general talking point
based on overall token frequency (see Section
3.1)):

It is possible, but it just doesn’t work that
way. I mean, if we can all agree that there
was male dominance for a long time and
that male dominance is over, then I think
we agree that menG,A are finished. So the
resolution is about male dominance which
we’ve taken for granted for so many tens
of thousands of years. And so, even if
you have parity, you have the end of male
dominance. I mean, if you have womenF
rising and catching up to menG,A, then
you no longer have male dominance. And
so that’s what I meant when I, early on,
tried to define the resolution as menG,A are
finished, the era of male dominance, it’s
finished, which we’ve taken for granted
for all this time.

Note that the term ‘women’ is only a talking point
for the ‘for’ team. In their response the ‘against’
team says:

They are not finished. That’s absurd.
You agreed to it in your opening that you
didn’t want to say menG,A are finished.
You thought there might be inklings of a
suggestion that it may be happening. But
what you’re defending now is that menG,A
are finished. I’m saying it’s absurd. I’m
saying that some menG,A are in trouble.
But rather than declare their extinction, we
should be doing what we can to help them.

To determine our model’s strategy immediately af-
ter the 27th turn, we apply the previous hidden and
cell states to the optimization objective in Equa-
tion 10, taking the place of h1, ..., hi− 1 and ci−1,
respectively. We fit the training objective to the
current states, as well as the weights of the pre-
viously trained predictive model, and examine the
resulting optimized input vector. We train the opti-
mized input model for 15,000 epochs, which goes
very fast because there is a ‘single’ training data
point, and the model is not recurrent. As we can
see in the actual ‘against’ team’s response, the
only talking point brought up is ‘men’, which can
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hardly be viewed as an enlightening notion in the
context of the debate. Alternatively, the highest
rated talking point from the optimized input is in
fact the exact talking point brought up by the ‘for’
team: ‘women’. This suggestion by our model is
in line with the hypothesis of Zhang et al. (2016),
that winning teams are effective in adopting their
opponent’s talking points. In terms of bag-of-word
features: the optimized input ranks the following
tokens as the ten highest (in descending order of
score, and note the tokens have been stemmed):
‘sound’, ‘present’, ‘recent’, ‘line’, ‘decid’, ‘veri’,
‘spent’, ‘save’, ‘moder’, and ‘found’. Most of
these tokens remain somewhat vague with respect
to their relevance to the debate. The token ‘re-
cent’ seems relevant, given that the debate topic
has an inherent temporal nature. ‘Save’ is rel-
evant in that some of the debate discussion ap-
proaches the question of whether men need saving.
In the top 20 tokens we also find ‘done’, ‘com-
par’, ‘grow’, and ‘without’, which are all rele-
vant: ‘done’ is synonymous with ‘finished’, ‘com-
par’ given that the debate is often comparing men
to women, ‘grow’ could refer to the growth of
women in society, and ‘without’ is a token specif-
ically in the question the moderator asked prior to
turn 27 (equality between the sexes without deem-
ing men as being finished).

8 Conclusion

We have presented an RNN model for predicting
debate winners, with the specific goal of predict-
ing the final (or intermediate) audience poll. The
model takes at each timestep a representation of
a given debate turn. The model uses an attention
mechanism that creates a weighted sum over all
hidden states. In order to achieve state-of-the-art
results on a corpus of debate transcripts (Zhang
et al., 2016), we regularize the RNN model by
propagating errors based on implicit audience re-
action. Our results show that this regularization
technique is critical for obtaining a state-of-the-art
result. We have also shown the practical appli-
cation of our model in two scenarios. First, the
model can be used to make a prediction of au-
dience polling at every debate turn. This allows
for an analysis of the key turning points during
the debate, based on inflections in audience fa-
vorability. Second, the model can be used to de-
termine the optimal input at a given debate turn.
Knowledge of this input can inform debaters as to

the best current persuasive strategy. Future work
can leverage optimal inputs to create a language
model that can become an automated debate agent.
However, since the input is partially based on the
knowledge of talking points, there is a potential for
an information retrieval-based task to provide the
talking points for the debate agent (if one desires
a fully-automated system than can work without
the presence of introductory remarks, from which
talking points are currently extracted). Finally, fu-
ture work can also examine the trained model itself
in further detail, seeking to understand the debate
strategy.
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Abstract

Monolingual evaluation of Machine
Translation (MT) aims to simplify human
assessment by requiring assessors to com-
pare the meaning of the MT output with a
reference translation, opening up the task
to a much larger pool of genuinely qual-
ified evaluators. Monolingual evaluation
runs the risk, however, of bias in favour
of MT systems that happen to produce
translations superficially similar to the ref-
erence and, consistent with this intuition,
previous investigations have concluded
monolingual assessment to be strongly
biased in this respect. On re-examination
of past analyses, we identify a series of
potential analytical errors that force some
important questions to be raised about the
reliability of past conclusions, however.
We subsequently carry out further investi-
gation into reference bias via direct human
assessment of MT adequacy via quality
controlled crowd-sourcing. Contrary to
both intuition and past conclusions, results
show no significant evidence of reference
bias in monolingual evaluation of MT.

1 Introduction

Despite it being known for some time now that au-
tomatic metrics, such as BLEU (Papineni et al.,
2002), provide a less than perfect substitute for
human assessment (Callison-Burch et al., 2006),
evaluation in MT more often than not still com-
prises BLEU scores. Besides increased time and
resources required by the alternative, human eval-
uation of systems, human assessment of MT faces
additional challenges, in particular the fact that
human assessors of translation quality tend to be
highly inconsistent. In recent Conference on Ma-

chine Translation (WMT) shared tasks, for exam-
ple, manual evaluators complete a relative ranking
(RR) of the output of five alternate MT systems,
where they must rank the quality of competing
translations from best to worst. Within this set-up,
when presented with the same pair of MT output
translations, human assessors often disagree with
one another’s preference, and even their own pre-
vious judgment about which translation is better
(Callison-Burch et al., 2007; Bojar et al., 2016).
Low levels of inter-annotator agreement in human
evaluation of MT not only cause problems with re-
spect to the reliability of MT system evaluations,
but unfortunately have an additional knock-on ef-
fect with respect to the meta-evaluation of metrics,
in providing an unstable gold standard. As such,
provision of a fair and reliable human evaluation
of MT remains a high priority for empirical evalu-
ation.

Direct assessment (DA) (Graham et al., 2013,
2014, 2016) is a relatively new human evaluation
approach that overcomes previous challenges with
respect to lack of reliability of human judges. DA
collects assessments of translations separately in
the form of both fluency and adequacy on a 0–100
rating scale, and, by combination of repeat judg-
ments for translations, produces scores that have
been shown to be highly reliable in self-replication
experiments (Graham et al., 2015). The main com-
ponent of DA used to provide a primary ranking
of systems is adequacy, where the MT output is
assessed via a monolingual similarity of meaning
assessment. A reference translation is displayed to
the human assessor (rendered in gray) and below
it the MT output (in black), with the human judge
asked to state the degree to which they agree that
The black text adequately expresses the meaning
of the gray text in English.1 The motivation behind

1Instructions are translated into a given target language.
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constructing DA as a monolingual MT evaluation
are as follows:

• Monolingual assessment of MT opens up the
annotation task to a larger pool of genuinely
qualified human assessors;

• Crowd-sourced workers are unlikely to make
use of information that is not entirely nec-
essary for completing a given task; and are
therefore unlikely to use the source language
input if the reference is also displayed or to
make use of the source input inconsistently;

• Displaying only the source without a refer-
ence greatly increases both the difficulty of
the task and the time required to complete
each annotation, which is too serious a trade-
off when we wish to carry out human assess-
ment on a very large scale;

• Varying levels of proficiency in the source
language across different human assessors
could contribute to inconsistency in bilingual
MT evaluations.

Although DA has been shown to overcome the
long-standing challenge of lack of reliability in
human evaluation of MT, the possibility still ex-
ists that, although scores collected with DA have
been shown to be almost perfectly reliable in self-
replication experiments, both sets of scores, al-
though consistent with each other, could in fact
both be biased in the same way. Graham et al.
(2013) include in the design of DA a number of
criteria aimed at minimizing such bias: (i) assess-
ment of individual translations in isolation from
others to avoid a given system being scored un-
fairly low due to its translations being assessed
more frequently alongside high quality transla-
tions (Bojar et al., 2011); (ii) elicit assessment
scores via a Likert-style question without inter-
mediate labeling, motivated by medical research
showing patients’ ratings of their own health to be
highly dependent on the exact wording of descrip-
tors (Seymour et al., 1985); (iii) accurate qual-
ity control by assessing the consistency of judges
with reference only to their own rating distribu-
tions, to accurately remove inconsistent crowd-
sourced data while avoiding removal of data that
legitimately diverges from the scoring strategy of a
given expert judge; and (iv) score standardization
to avoid bias introduced by legitimate variations in
scoring strategies.

Despite efforts to avoid bias in Graham et al.
(2013), since DA is a monolingual evaluation of
MT that operates via comparison of MT output
with a reference translation, it is therefore still pos-
sible, while avoiding other sources of bias, that
DA incurs reference bias where the level of su-
perficial similarity of translations with reference
translations results in an unfair gain, or indeed an
unfair disadvantage for systems that yield trans-
lations that legitimately deviate from the surface
form of reference translations. Following this in-
tuition, Fomicheva and Specia (2016) carry out
an investigation into bias in monolingual evalua-
tion of MT and conclude that in a monolingual
setting, human assessors of MT are strongly bi-
ased by the reference translation. In this paper,
we provide further analysis of experiments orig-
inally provided in Fomicheva and Specia (2016),
in addition to further investigation into the degree
to which the intuition about reference bias can be
supported.

2 Background

Fomicheva and Specia (2016) provide an investi-
gation into reference bias in monolingual evalu-
ation of MT. 100 Chinese to English MT output
translations are assessed by 25 human judges on
a five-point scale, in the form of their response
(None, Little, Much, Most, or All) to the following
question: how much of the meaning of the human
translation is also expressed in the machine trans-
lation?. Precisely the same 100 translations were
assessed by all 25 judges. Human judges were di-
vided into five groups of five: Group 1 (G1) was
shown the source language input and the MT out-
put only and carried out a bilingual assessment,
while Groups 2–5 (G2–G5) were not shown the
source input but instead compared the MT out-
put to a human-generated reference translation. A
distinct set of reference translations was assigned
to each group G2–G5. Inter-annotator agreement
(IAA) was measured for pairs of judges as follows
(the total number of judge pairs resulting from
each setting is provided in parentheses):
• SOURCE: a given pair of judges assessed

translations in a bilingual setting (all possible
pairs within G1 =

(
5
2

)
= 10 pairs);

• SAME: a given pair of judges assessed trans-
lations in a monolingual setting by compari-
son with precisely the same reference trans-
lation (the sum of all possible pairs result-
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DIFF SAME SOURCE

0.163 ± 0.01 0.197 ±0.01 0.190 ± 0.02

Table 1: Average Kappa coefficients and 99% con-
fidence intervals reported in Fomicheva and Spe-
cia (2016)

ing from each individual group G2–G5 =(
5
2

)
+
(
5
2

)
+
(
5
2

)
+
(
5
2

)
= 40 pairs);

• DIFF: a given pair of judges assessed trans-
lations in a monolingual setting by com-
parison with a distinct reference translation
(cross product of judges belonging to the four
groups G2–G5 = G2×G3×G4×G5 = 150
pairs).

Reference bias is investigated by comparison
of levels of IAA, via Cohen’s Kappa (κ) and
weighted Kappa coefficients. The hypothesis, al-
though not explicitly stated, is that if agreement of
human assessors of MT in SAME is higher than
that of assessors in DIFF, then the likely cause
is reference bias in human assessment scores.
Agreement in terms of Cohen’s Kappa reported in
Fomicheva and Specia (2016) are reproduced here
in Table 1, where a small increase of 0.034 in av-
erage Kappa is shown for pairs of human asses-
sors in SAME over that of DIFF. To avoid draw-
ing conclusions from a difference that is likely to
have occurred simply by chance, confidence inter-
vals (CIs) are provided and the non-overlapping
CIs for SAME and DIFF shown in Table 1 pro-
vide the basis for the conclusion that IAA is sig-
nificantly higher for SAME compared to DIFF and
subsequently that monolingual evaluation of MT
is strongly biased by the reference translation. On
examination of the analysis that led to the con-
clusion of strong reference bias, we unfortunately
discover a series of methodological issues with re-
spect to confidence interval estimation, however,
that raise doubt about the reliability of this con-
clusion.2

A clear indication of the precise approach to
CI estimation attempted in Fomicheva and Specia
(2016) is unfortunately not explicitly stated but out
of the range of methods that exist the approach
that is applied most resembles bootstrap resam-
pling. Conventionally speaking, bootstrap resam-

2We provide a re-analysis of experiment data specifically
with respect to Cohen’s Kappa. All errors outlined for Co-
hen’s Kappa also lead to the same inaccuracies for weighted
Kappa in Fomicheva and Specia (2016), however.

pling can be applied to CI estimation of a point
estimate for a sample, D, of size N , by simulat-
ing the variance in the population sampling dis-
tribution (Efron and Tibshirani, 1993). A stan-
dard method of estimating CIs via bootstrap re-
sampling is to generate a bootstrap distribution for
the statistic of interest made up of M repeat com-
putations of it, each time drawing a random sam-
ple of size N from D with replacement. Although
most similar to bootstrap resampling, the applica-
tion in Fomicheva and Specia (2016) to CI estima-
tion of Kappa coefficients diverges in some impor-
tant ways from a standard application, however.
We therefore provide a comparison of the analy-
sis drawn in Fomicheva and Specia (2016) with a
standard bootstrap implementation.

Figure 1(a) shows SAME and DIFF bootstrap
distributions, reproduced from code released with
Fomicheva and Specia (2016), originally yielding
non-overlapping CIs that led to the conclusion of
strong reference bias.3 Although the level of sta-
tistical significance is reported to be 99%, CIs in
Figure 1(a) show that the proportion of each boot-
strap distribution was substantially underestimated
leading to overly narrow CI limits for both SAME

and DIFF. In contrast, Figure 1(b) shows CIs re-
sulting from an accurately computed proportion
of 95% of the same bootstrap distribution, where
even at the lower level of 95% significance (as op-
posed to 99%) CIs for SAME and DIFF now over-
lap, reversing the conclusion of strong reference
bias.

In addition, CI estimation diverges from boot-
strap resampling with respect to the number of
bootstrap samples employed. Since there are a to-
tal of NN possible distinct bootstrap samples for
a given sample D (taking order into account), in
a conventional bootstrap implementation a Monte
Carlo approximation of size M is employed, and
the larger M is, the closer the distribution ap-
proaches the true bootstrap distribution (Chernick
and LaBudde, 2014). In Fomicheva and Specia
(2016), CIs are computed via only 50 bootstrap
samples, however.4 Figure 1(c) shows the change
in location of CIs for a typical M =1,000, as op-
posed to M =50 (Figure 1(b)).

3CIs correspond closely to those of the original (Table 1)
but differ by a tiny amount due to the randomness involved in
regeneration from the code.

4We note that M is described as 100 in the publication,
but 50 in the released code. Our question raised about the
methodology also stands for M =100.
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(a) Inacc. BD, M=50, n=20, R=no (b) Acc. BD, M=50, n=20, R=no (c) Acc. BD, M=1000, n=20, R=no
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Figure 1: (a) Original bootstrap distribution (BD) and confidence intervals (CI) for average Kappa co-
efficients when human annotators employ the same reference translation (Same K) or a different ref-
erence translation (Diff K) in Fomicheva and Specia (2016) (“Inacc. BD”=inaccurate BD proportion;
“Acc. BD”=accurate BD proportion; “M”=number of bootstrap samples; “n”=bootstrap sample size;
“R=yes”: sampled with replacement; “R=no”: sampled without replacement); (b) is (a) with accurate
BD proportion; (c) is (b) with conventional M ; (d) is (c) with R=yes; (f) is (d) with N=n (N is the full
sample size); (e) is (f) with M=50; (f) corresponds to correct BD with all CI errors corrected.

Furthermore, bootstrap distributions in
Fomicheva and Specia (2016) are computed
by random sampling without replacement, and the
size of each bootstrap does not equal the original
sample size N .5 Figure 1(d) shows bootstrap
distributions of Figure 1(c) when the sampling
without replacement error is corrected, and Figure
1(f) shows bootstrap distributions of Figure 1(d)
when the sample size error is corrected.

In summary, Figure 1(f) shows all errors with
respect to CI estimate in Fomicheva and Specia
(2016) corrected, and subsequently CIs for a stan-
dard implementation of bootstrap, which can be
contrasted to those that led to the original conclu-
sion of strong reference bias in Figure 1(a). CIs

5A variant of bootstrap does exist whereN is intentionally
lowered to appropriately reduce the variance estimate but is
only applicable when that of standard bootstrap is known to
be over-estimated (Chernick and LaBudde, 2014).

in Figure 1(f) for SAME and DIFF now overlap re-
vealing that experiments in Fomicheva and Specia
(2016), thus far do not show any evidence of ref-
erence bias.

2.1 Measures of Central Tendency

Even if the correct implementation of bootstrap re-
sampling, shown in Figure 1(f), had shown non-
overlapping confidence intervals, it would still un-
fortunately not have been appropriate to draw a
conclusion from this of reference bias, however,
due to the fact that significant differences are not
investigated for the statistic of interest, the Kappa
coefficient, but only for a measure of central ten-
dency of two Kappa coefficient distributions, the
average Kappa of each Kappa distribution. One
reason for avoiding a comparison based on signif-
icant differences in average Kappa, as opposed to
the Kappa point estimates themselves, is that it is

2479



possible for the average of two distributions to be
equal, or indeed have a small but non-significant
difference, while the underlying distributions dif-
fering considerably in several other respects.

Figure 2 shows Kappa coefficient distributions
for all pairs of judges in SAME (40 pairs), DIFF

(150 pairs) and SOURCE (10 pairs), revealing all
distributions to have very similar Kappa coeffi-
cient distributions, with the one exception arising
for SOURCE, where two of the human annotator
pairs had an unusually high agreement level.6

A more informative comparison about levels of
agreement in SAME and DIFF examines signifi-
cant differences in Kappa point estimates, as op-
posed to comparison based on a measure of cen-
tral tendency. For this reason, despite there be-
ing no significant difference in average Kappa for
SAME and DIFF, we also examine the proportion
of Kappa point estimates of judge pairs in SAME

that are significantly different from agreement lev-
els of judge pairs in DIFF, which will provide gen-
uine insight into differences in levels of agreement
between the two groups.

Table 2 shows proportions of all judge pairs
with significant differences in Kappa point esti-
mates (non-overlapping confidence intervals) for
each combination of settings (Revelle, 2014).7

The number of significant differences in Kappa
point estimates for pairs of judges in SAME and
DIFF is only 13%, or, in other words, 87% of judge
pairs across SAME and DIFF have no significant
difference in agreement levels. Table 2 also in-
cludes proportions of significant differences for
Kappa point estimates resulting from judges be-
longing to a single setting (significance testing all
Kappa of SAME with respect to all other Kappa be-
longing to SAME, for example), revealing that the
proportion of significant differences within SAME

(12%) to be very similar to that of SAME × DIFF

(13%), and similarly for DIFF (12%), with only a
single percentage point difference in both cases
in proportions of significant differences. Sub-
sequently, even after correcting the measure of
central tendency error in Fomicheva and Specia
(2016), evidence of reference bias can still not be
concluded.

6The difference in distributions for SOURCE is exagger-
ated to some degree due to the total number of annotator pairs
in SOURCE being substantially lower than the other two set-
tings (only 10 pairs).

7Our re-analysis code is available at https://
github.com/qingsongma/percentage-refBias
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Figure 2: Distribution of Kappa coefficients for
translations assessed with the same reference
translation (“Same K”), different reference trans-
lations (“Diff K”) and source sentences (“Src K”)
(Fomicheva and Specia (2016) data set).

SOURCE SAME DIFF

SOURCE 47% (45) 29% (400) 27% (1,500)
SAME − 12% (780) 13% (6,000)
DIFF − − 12% (11,175)

Table 2: Percentage of human annotator pairs
in Fomicheva and Specia (2016) with signifi-
cant differences in Kappa coefficients for pairs of
annotators shown the same reference translation
(SAME), different reference translations (DIFF) or
the source language input only (SOURCE), total
numbers of annotator comparisons in each case are
provided within parentheses, numbers of annota-
tor pairs was 10 for SOURCE, 40 for SAME and
150 for DIFF.

2.2 Differences in Ratings

The effect that reference bias may or may not have
on actual 1–5 ratings attributed to translations, is
again only reported in terms of a measure of cen-
tral tendency, i.e. average ratings, in Fomicheva
and Specia (2016). The average rating of each
group shown a distinct reference translation is re-
ported, showing distinct average scores for asses-
sors employing a distinct set of reference transla-
tions. Due to the fact that each group had a dis-
tinct average rating, the conclusion is drawn that
MT quality is perceived differently depending on
the human translation used as gold-standard. It
is however, entirely possible that, the difference in
average ratings is in part or even fully caused by
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Figure 4: Proportions of 1–5 ratings (1=lowest; 5=highest) for translations when human assessors are
shown different reference translations (DIFF), the same reference translation (SAME), the source input
versus a reference translation (Source vs Ref.) or the source input (SOURCE) for data in Fomicheva and
Specia (2016).

1.5 2.0 2.5 3.0 3.5

Average Ratings
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0.91

0.76

0.66

0.55

0.41

SAME(G5)

SAME(G4)

DIFF(G2 − G5)

SAME(G3)

SAME(G2)

SOURCE(G1)

Figure 3: Average rating of human assessors
shown the source input (SOURCE), the same ref-
erence translation (SAME), or a distinct reference
translation (DIFF); range of average ratings pro-
vided adjacent to each setting.

the known lack of consistency across human an-
notators in general.

Quite a substantial leap is made therefore be-
tween the difference in average ratings and the
cause of that difference. To investigate this fur-
ther, we reproduce the average ratings for asses-
sors shown a distinct reference translation, each
represented by a green square along the line la-
beled “DIFF(G2–G5)” in Figure 3, where the over-
all range in average ratings is 0.76. The extrem-
ity of this range is better put into context by com-
parison with the average rating of human asses-
sors shown the same reference translation, each
labeled SAME in Figure 3, where the range of av-
erage ratings attributed to human assessors shown
the same reference can be as large as 0.97 (G5).
Thus, it cannot be concluded from a difference in

average ratings for annotators shown distinct ref-
erence translations that the cause of this difference
is the reference translation.

However, comparison of ratings based only on
averages, again hides detail that an analysis could
otherwise benefit from. We therefore examine
the distribution of individual ratings attributed to
translations, and how well ratings for the same
translation correspond when pairs of annotators
employ the same or distinct reference translation
(or indeed the source input) in Figure 4.8 The
rating pattern in Figure 4 (a) of judge pairs em-
ploying a distinct reference translation compared
to those in Figure 4 (b), where assessors employ
the same reference translation, shows agreement
at the level of individual ratings to be almost in-
distinguishable, showing no evidence of reference
bias.

3 Alternate Reference Bias Investigation

Although we can now say that experiments in
Fomicheva and Specia (2016) showed no evidence
of reference bias, a further issue lies in the fact that
low IAA was incurred throughout the study, and
low IAA unfortunately provides no assurance with
respect to the reliability of conclusions, even when
corrected for analytical errors. In addition, the fact
that IAA was itself the measure by which bias was
investigated is also likely to exacerbate any prob-
lems with respect to reliability of conclusions. We
therefore provide our own additional investigation
into reference bias in monolingual evaluation of
MT. Instead of investigating via IAA, we explore
the degree to which unfairly high or low ratings
might be assigned to translations with respect to

8The sum of percentages in a given row equals 100% in
each heat map.
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Figure 5: (a) Scatter plot of direct assessment (DA) scores for 100 Chinese to English translations carried
out by comparison with a generic reference translation (DA Gen-Ref) or DA with the reference replaced
by a human post-edit of the MT output (DA Postedit); (b) sentence-level (smoothed) BLEU scores for
the same translations also plotted against DA POST-EDIT; translations and references of (a) and (b) data
set of Fomicheva and Specia (2016); post-edits provided by professional translators with access to the
source and MT output only. BLEU and DA scores are standardized for ease of comparison in all plots.

surface similarity or dissimilarity with the refer-
ence translation.

Reference-similarity bias is the attribution of
unfairly high scores to translations due to high
surface-similarity with the reference translation
even though the translation is not high quality.
A converse kind of reference bias can also oc-
cur, which we call reference-dissimilarity bias,
where unfairly low scores are attributed to transla-
tions that are superficially dissimilar to the refer-
ence translation but are in fact high quality trans-
lations. The challenge in investigating reference
bias lies in the ability to accurately distinguish be-
tween translations that receive unfair scores due to
surface-similarity or dissimilarity from those that
achieved a fair score due to the translation being
genuinely high or low quality.

To separate genuine high quality translations
from those that score unfairly high, we carry out
two separate assessments of the same set of trans-
lations. Firstly, we carry out a standard monolin-
gual MT evaluation that employs a generic ref-
erence translation (GEN-REF setting), the scores
that potentially encounter reference bias. Sec-
ondly, we carry out an additional human evalu-
ation of the same translations, where, instead of
the generic reference, the human assessor com-
pares the MT output with a human post-edit of it
(POST-EDIT setting). The latter human assessment

is highly unlikely to encounter any form of refer-
ence bias because the assessment employs a post-
edit of the MT output, which itself will only differ
the MT output with respect to the parts of it that
are genuinely incorrect. Translations encounter-
ing reference-similarity bias can then be identified
by a high GEN-REF score combined with a low
POST-EDIT score, and vice-versa for reference-
dissimilarity, a low GEN-REF score combined with
a high POST-EDIT score.

3.1 Reference Bias Experiments

Experiments were carried out using the original
100 Chinese to English translations released by
Fomicheva and Specia (2016), in addition to 70
English to Spanish MT translations (WMT-13
Quality Estimation Task 1.1).9 Professional trans-
lators, entirely blind to the purpose of the study,
were employed to post-edit the MT outputs used in
the POST-EDIT setting, and were shown the source
input document and the MT output document only
(no reference translations).10

Once post-edits had been created, DA was em-
ployed in two separate runs on Amazon Mechani-

9A single generic reference translation was chosen at ran-
dom from the Chinese to English data set; only a single refer-
ence is available for each translation in the English to Spanish
data set.

10Post-editors were paid at the standard rate.
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Figure 6: (a) Scatter plot of direct assessment (DA) scores for 70 English to Spanish translations carried
out by comparison with a generic reference translation (DA Gen-Ref) or DA with the reference replaced
by a human post-edit of the MT output (DA Postedit); (b) sentence-level (smoothed) BLEU scores for the
same translations also plotted against DA POST-EDIT; translations and generic references for (a) and (b)
WMT-13 Quality Estimation Task 1.1 (Bojar et al., 2013) data set; post-edits provided by professional
translators with access to the source and MT output only. DA and BLEU scores are standardized for
ease of comparison in all plots.

cal Turk,11 once for GEN-REF and once for POST-
EDIT. Besides employing distinct reference trans-
lations in the assessment, all other set-up crite-
ria were identical for both evaluation settings, in-
cluding the conventional segment-level DA set-
ting, where a minimum of 15 human assessments
are combined into a mean DA score for a given
translation, after strict quality control measures
and score standardization have been applied.

3.2 Results and Discussion

Figure 5(a) shows a scatter-plot of DA scores at-
tributed to translations for GEN-REF compared to
POST-EDIT in the Chinese to English experiment.
Translations that encounter reference-dissimilarity
bias are expected to appear in the lower-right
quadrant of Figure 5(a), receiving an unfairly low
GEN-REF score combined with a high POST-EDIT

score. As can be seen from Figure 5(a) only a very
small number of translations fall into this quad-
rant, all of which are very closely located to adja-
cent upper-right and lower-left quadrants. A single
translation in Figure 5(a) is an outlier in this re-
spect, receiving a high POST-EDIT score in combi-
nation with a lower than average GEN-REF score,

11https://www.mturk.com

possibly indicating reference bias. On closer in-
spection, however, the score combination is in fact
the result of a mistake in the reference translation.
Although the low GEN-REF score was the result of
an error in the reference translation, a single trans-
lation having this score combination is not suffi-
cient evidence to conclude strong reference bias.
In future work we would like to investigate the fre-
quency of erroneous reference translations in ex-
isting MT test sets, although we expect them to be
few, accurate statistics would provide a better indi-
cation of the degree to which they could negatively
impact the accuracy of DA evaluations.

Figure 5(a) is also void of evidence of
reference-similarity bias, as only a small number
of translations lie in the upper-left quadrant and
are all very close to the origin and/or adjacent
quadrants.

Contrasting Figure 5(a), the correspondence of
GEN-REF scores to POST-EDIT scores, with Fig-
ure 5(b), the correspondence of known reference-
biased BLEU scores, in contrast a large number
of BLEU scores for translations do encounter ref-
erence bias, as seen by the spread of translations
appearing across both the bottom-right and upper-
left quadrants.
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Similarly for English to Spanish, the correspon-
dence between GEN-REF and POST-EDIT scores
for translations are shown in Figure 6(a), where,
again, only a small number of translations ap-
pear in the bottom-right and upper-left quadrants,
all lying very close to adjacent quadrants, again,
showing no significant indication of reference
bias. A single translation appears to break the
trend again, however, receiving a low GEN-REF

score combined with a high POST-EDIT score, lo-
cated in the lower-right quadrant of Figure 6(a).
On closer inspection, the low GEN-REF score is
the result of something unexpected, as the MT out-
put is in fact an accurate translation while at the
same time the generic reference is also correct,
but unusually the meaning of the two diverge from
each other.12 Again, a single translation receiving
this score combination is not sufficient evidence
to conclude reference bias to be a significant prob-
lem for monolingual evaluation. The lack of ref-
erence bias in Figure 6(a) can again be contrasted
to known reference-biased BLEU scores in Figure
6(b) for English to Spanish.

4 Conclusions

In this paper, we provided an investigation into ref-
erence bias in monolingual evaluation of MT. Our
review of past investigations reveals potential an-
alytical errors and raises questions about the relia-
bility of past conclusions of strong reference bias.
This motivates our further investigation for Chi-
nese to English and English to Spanish MT em-
ploying direct human assessment in a monolingual
MT evaluation setting. Results showed no signif-
icant evidence of reference bias, contrary to prior
reports and intuition.
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Abstract

Neural machine translation represents an
exciting leap forward in translation qual-
ity. But what longstanding weaknesses
does it resolve, and which remain? We ad-
dress these questions with a challenge set
approach to translation evaluation and er-
ror analysis. A challenge set consists of a
small set of sentences, each hand-designed
to probe a system’s capacity to bridge a
particular structural divergence between
languages. To exemplify this approach,
we present an English–French challenge
set, and use it to analyze phrase-based
and neural systems. The resulting analy-
sis provides not only a more fine-grained
picture of the strengths of neural systems,
but also insight into which linguistic phe-
nomena remain out of reach.

1 Introduction

The advent of neural techniques in machine trans-
lation (MT) (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Sutskever et al., 2014) has led
to profound improvements in MT quality. For
“easy” language pairs such as English/French or
English/Spanish in particular, neural (NMT) sys-
tems are much closer to human performance than
previous statistical techniques (Wu et al., 2016).
This puts pressure on automatic evaluation met-
rics such as BLEU (Papineni et al., 2002), which
exploit surface-matching heuristics that are rela-
tively insensitive to subtle differences. As NMT
continues to improve, these metrics will inevitably
lose their effectiveness. Another challenge posed
by NMT systems is their opacity: while it was
usually clear which phenomena were ill-handled

∗Work performed while at NRC.

Src The repeated calls from his mother
should have alerted us.

Ref Les appels répétés de sa mère auraient
dû nous alerter.

Sys Les appels répétés de sa mère devraient
nous avoir alertés.

Is the subject-verb agreement correct (y/n)? Yes

Figure 1: Example challenge set question.

by previous statistical systems—and why—these
questions are more difficult to answer for NMT.

We propose a new evaluation methodology cen-
tered around a challenge set of difficult examples
that are designed using expert linguistic knowl-
edge to probe an MT system’s capabilities. This
methodology is complementary to the standard
practice of randomly selecting a test set from “real
text,” which remains necessary in order to predict
performance on new text. By concentrating on
difficult examples, a challenge set is intended to
provide a stronger signal to developers. Although
we believe that the general approach is compatible
with automatic metrics, we used manual evalua-
tion for the work presented here. Our challenge
set consists of short sentences that each focus on
one particular phenomenon, which makes it easy
to collect reliable manual assessments of MT out-
put by asking direct yes-no questions. An example
is shown in Figure 1.

We generated a challenge set for English to
French translation by canvassing areas of linguis-
tic divergence between the two language pairs, es-
pecially those where errors would be made visible
by French morphology. Example choice was also
partly motivated by extensive knowledge of the
weaknesses of phrase-based MT (PBMT). Neither
of these characteristics is essential to our method,
however, which we envisage evolving as NMT
progresses. We used our challenge set to evalu-
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ate in-house PBMT and NMT systems as well as
Google’s GNMT system.

In addition to proposing the novel idea of a chal-
lenge set evaluation, our contribution includes our
annotated English–French challenge set, which
we provide in both formatted text and machine-
readable formats (see supplemental materials). We
also supply further evidence that NMT is system-
atically better than PBMT, even when BLEU score
differences are small. Finally, we give an analysis
of the challenges that remain to be solved in NMT,
an area that has received little attention thus far.

2 Related Work

A number of recent papers have evaluated NMT
using broad performance metrics. The WMT
2016 News Translation Task (Bojar et al., 2016)
evaluated submitted systems according to both
BLEU and human judgments. NMT systems
were submitted to 9 of the 12 translation direc-
tions, winning 4 of these and tying for first or
second in the other 5, according to the official
human ranking. Since then, controlled compar-
isons have used BLEU to show that NMT out-
performs strong PBMT systems on 30 transla-
tion directions from the United Nations Parallel
Corpus (Junczys-Dowmunt et al., 2016a), and on
the IWSLT English-Arabic tasks (Durrani et al.,
2016). These evaluations indicate that NMT per-
forms better on average than previous technolo-
gies, but they do not help us understand what as-
pects of the translation have improved.

Some groups have conducted more detailed er-
ror analyses. Bentivogli et al. (2016) carried out a
number of experiments on IWSLT 2015 English-
German evaluation data, where they compare ma-
chine outputs to professional post-edits in order to
automatically detect a number of error categories.
Compared to PBMT, NMT required less post-
editing effort overall, with substantial improve-
ments in lexical, morphological and word order er-
rors. NMT consistently out-performed PBMT, but
its performance degraded faster as sentence length
increased. Later, Toral and Sánchez-Cartagena
(2017) conducted a similar study, examining the
outputs of competition-grade systems for the 9
WMT 2016 directions that included NMT com-
petitors. They reached similar conclusions regard-
ing morphological inflection and word order, but
found an even greater degradation in NMT perfor-
mance as sentence length increased, perhaps due

to these systems’ use of subword units.
Most recently, Sennrich (2016) proposed an ap-

proach to perform targeted evaluations of NMT
through the use of contrastive translation pairs.
This method introduces a particular type of er-
ror automatically in reference sentences, and then
checks whether the NMT system’s conditional
probability model prefers the original reference
or the corrupted version. Using this technique,
they are able to determine that a recently-proposed
character-based model improves generalization on
unseen words, but at the cost of introducing new
grammatical errors.

Our approach differs from these studies in a
number of ways. First, whereas others have ana-
lyzed sentences drawn from an existing bitext, we
conduct our study on sentences that are manually
constructed to exhibit canonical examples of spe-
cific linguistic phenomena. We focus on phenom-
ena that we expect to be more difficult than av-
erage, resulting in a particularly challenging MT
test suite (King and Falkedal, 1990). These sen-
tences are designed to dive deep into linguistic
phenomena of interest, and to provide a much
finer-grained analysis of the strengths and weak-
nesses of existing technologies, including NMT
systems.

However, this strategy also necessitates that we
work on fewer sentences. We leverage the small
size of our challenge set to manually evaluate
whether the system’s actual output correctly han-
dles our phenomena of interest. Manual evaluation
side-steps some of the pitfalls that can come with
Sennrich (2016)’s contrastive pairs, as a ranking
of two contrastive sentences may not necessarily
reflect whether the error in question will occur in
the system’s actual output.

3 Challenge Set Evaluation

Our challenge set is meant to measure the ability
of MT systems to deal with some of the more diffi-
cult problems that arise in translating English into
French. This particular language pair happened to
be most convenient for us, but similar sets can be
built for any language pair.

One aspect of MT performance excluded from
our evaluation is robustness to sparse data. To con-
trol for this, when crafting source and reference
sentences, we chose words that occurred at least
100 times in our training corpus (section 4.1).1

1With two exceptions: spilt (58 occurrences), which is
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The challenging aspect of the test set we are pre-
senting stems from the fact that the source English
sentences have been chosen so that their closest
French equivalent will be structurally divergent
from the source in some crucial way. Transla-
tional divergences have been extensively studied
in the past—see for example (Vinay and Darbel-
net, 1958; Dorr, 1994). We expect the level of
difficulty of an MT test set to correlate well with
its density in divergence phenomena, which we
classify into three main types: morpho-syntactic,
lexico-syntactic and purely syntactic divergences.

3.1 Morpho-syntactic divergences

In some languages, word morphology (e.g. inflec-
tions) carries more grammatical information than
in others. When translating a word towards the
richer language, there is a need to recover ad-
ditional grammatically-relevant information from
the context of the target language word. Note that
we only include in our set cases where the relevant
information is available in the linguistic context.2

One particularly important case of morpho-
syntactic divergence is that of subject–verb agree-
ment. French verbs typically have more than 30
different inflected forms, while English verbs typ-
ically have 4 or 5. As a result, English verb forms
strongly underspecify their French counterparts.
Much of the missing information must be filled in
through forced agreement in person, number and
gender with the grammatical subject of the verb.
But extracting these parameters can prove diffi-
cult. For example, the agreement features of a co-
ordinated noun phrase are a complex function of
the coordinated elements: a) the gender is femi-
nine if all conjuncts are feminine, otherwise mas-
culine wins; b) the conjunct with the smallest per-
son (p1<p2<p3) wins; and c) the number is al-
ways plural when the coordination is “et” (“and”)
but the case is more complex with “ou” (“or”).

A second example of morpho-syntactic diver-
gence between English and French is the more ex-
plicit marking of the subjunctive mood in French

part of an idiomatic phrase, and guitared (0 occurrences),
which is meant to test the ability to deal with ”nonce words”
as discussed in section 5.

2The so-called Winograd Schema Challenges
(en.wikipedia.org/wiki/Winograd Schema Challenge) often
involve cases where common-sense reasoning is required to
correctly choose between two potential antecedent phrases
for a pronoun. Such cases become En → Fr translation
challenges if the relevant English pronoun is they and its
alternative antecedents happen to have different grammatical
genders in French: they→ ils/elles.

subordinate clauses. In the following example, the
verb “partiez”, unlike its English counterpart, is
marked as subjunctive:

He demanded that you leave immedi-
ately. → Il a exigé que vous partiez
immédiatement.

When translating an English verb within a subor-
dinate clause, the context must be examined for
possible subjunctive triggers. Typically these are
specific lexical items found in a governing posi-
tion with respect to the subordinate clause: verbs
such as “exiger que”, adjectives such as “regret-
table que” or subordinate conjunctions such as “à
condition que”.

3.2 Lexico-syntactic divergences

Syntactically governing words such as verbs tend
to impose specific requirements on their comple-
ments: they subcategorize for complements of a
certain syntactic type. But a source language gov-
ernor and its target language counterpart can di-
verge on their respective requirements. The trans-
lation of such words must then trigger adjustments
in the target language complement pattern. We can
only examine here a few of the types instantiated
in our challenge set.

A good example is argument switching. This
refers to the situation where the translation of a
source verb Vs as Vt is correct but only provided
the arguments (usually the subject and the object)
are flipped around. The translation of “to miss” as
“manquer à” is such a case:

John misses Mary → Mary manque à
John.

Failing to perform the switch results in a severe
case of mistranslation.

A second example of lexico-syntactic diver-
gence is that of “crossing movement” verbs. Con-
sider the following example:

Terry swam across the river → Terry a
traversé la rivière à la nage.

The French translation could be glossed as, “Terry
crossed the river by swimming.” A literal transla-
tion such as “Terry a nagé à travers la rivière,” is
ruled out.
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3.3 Syntactic divergences
Some syntactic divergences are not relative to the
presence of a particular lexical item but rather
stem from differences in the set of available
syntactic patterns. Source-language instances of
structures missing from the target language must
be mapped onto equivalent structures. Here are
some of the types appearing in our challenge set.

The position of French pronouns is a major
case of divergence from English. French is basi-
cally an SVO language like English but it departs
from that canonical order when post-verbal com-
plements are pronominalized: the pronouns must
then be rendered as proclitics, that is phonetically
attached to the verb on its left side.

He gave Mary a book. → Il a donné un
livre à Marie.

He gavei itj to herk. → Il lej luik a
donnéi.

Another example of syntactic divergence be-
tween English and French is that of stranded
prepositions. In both languages, an operation
known as “WH-movement” will move a rela-
tivized or questioned element to the front of the
clause containing it. When this element hap-
pens to be a prepositional phrase, English offers
the option to leave the preposition in its normal
place, fronting only its pronominalized object. In
French, the preposition is always fronted along-
side its object:

The girl whomi he was dancing withj is
rich. → La fille avecj quii il dansait est
riche.

A final example of syntactic divergence is the
use of the so-called middle voice. While English
uses the passive voice in agentless generic state-
ments, French tends to prefer the use of a special
pronominal construction where the pronoun “se”
has no real referent:

Caviar is eaten with bread. → Le caviar
se mange avec du pain.

This completes our exemplification of morpho-
syntactic, lexico-syntactic and purely syntactic di-
vergences. Our actual test set includes several
more subcategories of each type. The ability of
MT systems to deal with each such subcategory is
then tested using at least three different test sen-
tences. We use short test sentences so as to keep

the targeted divergence in focus. The 108 sen-
tences that constitute our current challenge set can
be found in Appendix 7.

3.4 Evaluation Methodology

Given the very small size of our challenge set, it is
easy to perform a human evaluation of the respec-
tive outputs of a handful of different systems. The
obvious advantage is that the assessment is then
absolute instead of relative to one or a few refer-
ence translations.

The intent of each challenge sentence is to test
one and only one system capability, namely that
of coping correctly with the particular associated
divergence subtype. As illustrated in Figure 1,
we provide annotators with a question that spec-
ifies the divergence phenomenon currently being
tested, along with a reference translation with the
areas of divergence highlighted. As a result, judg-
ments become straightforward: was the targeted
divergence correctly bridged, yes or no?3 There
is no need to mentally average over a number
of different aspects of the test sentence as one
does when rating the global translation quality of
a sentence, e.g. on a 5-point scale. However,
we acknowledge that measuring translation per-
formance on complex sentences exhibiting many
different phenomena remains crucial. We see our
approach as being complementary to evaluations
of overall translation quality.

One consequence of our divergence-focused ap-
proach is that faulty translations will be judged as
successes when the faults lie outside of the tar-
geted divergence zone. However, this problem is
mitigated by our use of short test sentences.

4 Machine Translation Systems

We trained state-of-the-art neural and phrase-
based systems for English-French translation on
data from the WMT 2014 evaluation.

4.1 Data

We used the LIUM shared-task subset of the WMT
2014 corpora,4 retaining the provided tokenization

3Sometimes the system produces a translation that cir-
cumvents the divergence issue. For example, it may dodge a
divergence involving adverbs by reformulating the translation
to use an adjective instead. In these rare cases, we instruct our
annotators to abstain from making a judgment, regardless of
whether the translation is correct or not.

4http://www.statmt.org/wmt14/translation-task.html
http://www-lium.univ-lemans.fr/∼schwenk/nnmt-shared-
task
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corpus lines en words fr words
train 12.1M 304M 348M
mono 15.9M —- 406M
dev 6003 138k 155k
test 3003 71k 81k

Table 1: Corpus statistics. The WMT12/13 eval
sets are used for dev, and the WMT14 eval set is
used for test.

and corpus organization, but mapping characters
to lowercase. Table 1 gives corpus statistics.

4.2 Phrase-based systems

To ensure a competitive PBMT baseline, we per-
formed phrase extraction using both IBM4 and
HMM alignments with a phrase-length limit of 7;
after frequency pruning, the resulting phrase table
contained 516M entries. For each extracted phrase
pair, we collected statistics for the hierarchical re-
ordering model of Galley and Manning (2008).

We trained an NNJM model (Devlin et al.,
2014) on the HMM-aligned training corpus, with
input and output vocabulary sizes of 64k and 32k.
Words not in the vocabulary were mapped to one
of 100 mkcls classes. We trained for 60 epochs
of 20k × 128 minibatches, yielding a final dev-set
perplexity of 6.88.

Our set of log-linear features consisted of for-
ward and backward Kneser-Ney smoothed phrase
probabilities and HMM lexical probabilities (4
features); hierarchical reordering probabilities (6);
the NNJM probability (1); a set of sparse features
as described by Cherry (2013) (10,386); word-
count and distortion penalties (2); and 5-gram lan-
guage models trained on the French half of the
training corpus and the French monolingual cor-
pus (2). Tuning was carried out using batch lattice
MIRA (Cherry and Foster, 2012). Decoding used
the cube-pruning algorithm of Huang and Chiang
(2007), with a distortion limit of 7.

We include two phrase-based systems in our
comparison: PBMT-1 has data conditions that ex-
actly match those of the NMT system, in that it
does not use the language model trained on the
French monolingual corpus, while PBMT-2 uses
both language models.

4.3 Neural systems
To build our NMT system, we used the Nema-
tus toolkit,5 which implements a single-layer neu-
ral sequence-to-sequence architecture with atten-
tion (Bahdanau et al., 2015) and gated recurrent
units (Cho et al., 2014). We used 512-dimensional
word embeddings with source and target vocabu-
lary sizes of 90k, and 1024-dimensional state vec-
tors. The model contains 172M parameters.

We preprocessed the data using a BPE model
learned from source and target corpora (Sennrich
et al., 2016). Sentences longer than 50 words
were discarded. Training used the Adadelta al-
gorithm (Zeiler, 2012), with a minibatch size of
100 and gradients clipped to 1.0. It ran for 5
epochs, writing a checkpoint model every 30k
minibatches. Following Junczys-Dowmunt et al.
(2016b), we averaged the parameters from the last
8 checkpoints. To decode, we used the AmuNMT
decoder (Junczys-Dowmunt et al., 2016a) with a
beam size of 4.

While our primary results will focus on the
above PBMT and NMT systems, where we can
describe replicable configurations, we have also
evaluated Google’s production system,6 which has
recently moved to NMT (Wu et al., 2016). No-
tably, the “GNMT” system uses (at least) 8 en-
coder and 8 decoder layers, compared to our 1
layer for each, and it is trained on corpora that are
“two to three decimal orders of magnitudes big-
ger than the WMT.” The evaluated outputs were
downloaded in December 2016.

5 Experiments

The 108-sentence English–French challenge set
presented in Appendix 7 was submitted to the
four MT systems described in section 4: PBMT-1,
PBMT-2, NMT, and GNMT. Three bilingual na-
tive speakers of French rated each translated sen-
tence as either a success or a failure according to
the protocol described in section 3.4. For exam-
ple, the 26 sentences of the subcategories S1–S5 of
Appendix 7 are all about different cases of subject-
verb agreement. The corresponding translations
were judged successful if and only if the translated
verb correctly agrees with the translated subject.

The different system outputs for each source
sentence were grouped together to reduce the bur-
den on the annotators. That is, in figure 1, anno-

5https://github.com/rsennrich/nematus
6https://translate.google.com
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tators were asked to answer the question for each
of four outputs, rather than just one as shown. The
outputs were listed in random order, without iden-
tification. Questions were also presented in ran-
dom order to each annotator. Appendix A in the
supplemental materials contains the instructions
shown to the annotators.

5.1 Quantitative comparison

Table 2 summarizes our results in terms of per-
centage of successful translations, globally and
over each main type of divergence. For com-
parison with traditional metrics, we also include
BLEU scores measured on the WMT 2014 test set.

As we can see, the two PBMT systems fare
very poorly on our challenge set, especially
in the morpho-syntactic and purely syntactic
types. Their somewhat better handling of lexico-
syntactic issues probably reflects the fact that
PBMT systems are naturally more attuned to lex-
ical cues than to morphology or syntax. The two
NMT systems are clear winners in all three cat-
egories. The GNMT system is best overall with
a success rate of 68%, likely due to the data and
architectural factors mentioned in section 4.3.7

WMT BLEU scores correlate poorly with
challenge-set performance. The large gap of 2.3
BLEU points between PBMT-1 and PBMT-2 cor-
responds to only a 1% gain on the challenge
set, while the small gap of 0.4 BLEU between
PBMT-2 and NMT corresponds to a 21% gain.

Inter-annotator agreement (final column in ta-
ble 2) is excellent overall, with all three annotators
agreeing on almost 90% of system outputs. Syn-
tactic divergences appear to be somewhat harder
to judge than other categories.

5.2 Qualitative assessment of NMT

We now turn to an analysis of the strengths and
weaknesses of neural MT through the microscope
of our divergence categorization system, hoping
that this may help focus future research on key is-
sues. In this discussion we ignore the results ob-
tained by PBMT-2 and compare: a) the results ob-
tained by PBMT-1 to those of NMT, both systems
having been trained on the same dataset; and b) the

7We cannot offer a full comparison with the pre-NMT
Google system. However, in October 2016 we ran a smaller
35-sentence version of our challenge set on both the Google
system and our PBMT-1 system. The Google system only got
4 of those examples right (11.4%) while our PBMT-1 got 6
right (17.1%).

results of these two systems with those of Google
NMT which was trained on a much larger dataset.

In the remainder of the present section we will
refer to the sentences of our challenge set using
the subcategory-based numbering scheme S1-S26
as assigned in Appendix 7. A summary of the
category-wise performance of PBMT-1, NMT and
Google NMT is provided in Table 3.

Strengths of neural MT
Overall, both neural MT systems do much bet-
ter than PBMT-1 at bridging divergences. In the
case of morpho-syntactic divergences, we observe
a jump from 16% to 72% in the case of our two
local systems. This is mostly due to the NMT sys-
tem’s ability to deal with many of the more com-
plex cases of subject-verb agrement:

• Distractors. The subject’s head noun agree-
ment features get correctly passed to the verb
phrase across intervening noun phrase com-
plements (sentences S1a–c).
• Coordinated verb phrases. Subject agree-

ment marks are correctly distributed across
the elements of such verb phrases (S3a–c).
• Coordinated subjects. Much of the logic that

is at stake in determining the agreement fea-
tures of coordinated noun phrases (cf. our rel-
evant description in section 3.1) appears to be
correctly captured in the NMT translations of
S4.
• Past participles. Even though the rules

governing French past participle agreement
are notoriously difficult (especially after the
“avoir” auxiliary), they are fairly well cap-
tured in the NMT translations of (S5b–e).

The NMT systems are also better at handling
lexico-syntactic divergences. For example:

• Double-object verbs. There are no such verbs
in French and the NMT systems perform the
required adjustments flawlessly (sentences
S8a–S8c).
• Overlapping subcat frames. NMT systems

manage to discriminate between an NP com-
plement and a sentential complement starting
with an NP: cf. to know NP versus to know
NP is VP (S11b–e)
• NP-to-VP complements. These English in-

finitival complements often need to be ren-
dered as finite clauses in French and the NMT
systems are better at this task (S12a–c).
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Divergence type PBMT-1 PBMT-2 NMT Google NMT Agreement
Morpho-syntactic 16% 16% 72% 65% 94%
Lexico-syntactic 42% 46% 52% 62% 94%
Syntactic 33% 33% 40% 75% 81%
Overall 31% 32% 53% 68% 89%
WMT BLEU 34.2 36.5 36.9 — —

Table 2: Summary performance statistics for each system under study, including challenge set success
rate grouped by linguistic category (aggregating all positive judgments and dividing by total judgments),
as well as BLEU scores on the WMT 2014 test set. The final column gives the proportion of system
outputs on which all three annotators agreed.

Finally, NMT systems also turn out to better
handle purely syntactic divergences. For example:

• Yes-no question syntax. The differences be-
tween English and French yes-no question
syntax are correctly bridged by the two NMT
systems (S17a–c).

• French proclitics. NMT systems are signif-
icantly better at transforming English pro-
nouns into French proclitics, i.e. moving
them before the main verb and case-inflecting
them correctly (S23a–e).

• Finally, we note that the Google system man-
ages to overcome several additional chal-
lenges. It correctly translates tag ques-
tions (S18a–c), constructions with stranded
prepositions (S19a–f), most cases of the in-
alienable possession construction (S25a–e)
as well as zero relative pronouns (S26a–c).

The large gap observed between the results of
the in-house and Google NMT systems indicates
that current neural MT systems are extremely data
hungry. But given enough data, they can success-
fully tackle some challenges that are often thought
of as extremely difficult. A case in point here
is that of stranded prepositions (see discussion in
section 3.3), in which we see the NMT model cap-
ture some instances of WH-movement, the text-
book example of long-distance dependencies.

Weaknesses of neural MT
In spite of its clear edge over PBMT, NMT is
not without some serious shortcomings. We al-
ready mentioned the degradation issue with long
sentence which, by design, could not be observed
with our challenge set. But an analysis of our re-
sults will reveal many other problems. Globally,
we note that even using a staggering quantity of
data and a highly sophisticated NMT model, the

Google system fails to reach the 70% mark on
our challenge set. The fine-grained error catego-
rization associated with the challenge set will help
us single out precise areas where more research is
needed. Here are some relevant observations.

Incomplete generalizations. In several cases
where partial results might suggest that NMT has
correctly captured some basic generalization about
linguistic data, further instances reveals that this is
not fully the case.

• Agreement logic. The logic governing
the agreement features of coordinated noun
phrases (see section 3.1) has been mostly
captured by the NMT systems (cf. the 12 sen-
tences of S4), but there are some gaps. For
example, the Google system runs into trouble
with mixed-person subjects (sentences S4d1–
3).

• Subjunctive mood triggers. While some sub-
junctive mood triggers are correctly regis-
tered (e.g. “demander que” and “malheureux
que”), the case of such a highly frequent sub-
ordinate conjunction as provided that → à
condition que is somehow being missed (sen-
tence S6a–c).

• Noun compounds. The French translation
of an English compound N1 N2 is usu-
ally of the form N2 Prep N1. For any
given headnoun N2 the correct preposi-
tion Prep depends on the semantic class of
N1. For example steel/ceramic/plastic knife
→ couteau en acier/céramique/plastique
but butter/meat/steak knife → couteau à
beurre/viande/steak. Given that neural mod-
els are known to perform some semantic gen-
eralizations, we find their performance dis-
appointing on our compound noun examples
(S14a–i).
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Category Subcategory # PBMT-1 NMT Google NMT
Morpho-syntactic Agreement across distractors 3 0% 100% 100%

through control verbs 4 25% 25% 25%
with coordinated target 3 0% 100% 100%
with coordinated source 12 17% 92% 75%
of past participles 4 25% 75% 75%

Subjunctive mood 3 33% 33% 67%
Lexico-syntactic Argument switch 3 0% 0% 0%

Double-object verbs 3 33% 67% 100%
Fail-to 3 67% 100% 67%
Manner-of-movement verbs 4 0% 0% 0%
Overlapping subcat frames 5 60% 100% 100%
NP-to-VP 3 33% 67% 67%
Factitives 3 0% 33% 67%
Noun compounds 9 67% 67% 78%
Common idioms 6 50% 0% 33%
Syntactically flexible idioms 2 0% 0% 0%

Syntactic Yes-no question syntax 3 33% 100% 100%
Tag questions 3 0% 0% 100%
Stranded preps 6 0% 0% 100%
Adv-triggered inversion 3 0% 0% 33%
Middle voice 3 0% 0% 0%
Fronted should 3 67% 33% 33%
Clitic pronouns 5 40% 80% 60%
Ordinal placement 3 100% 100% 100%
Inalienable possession 6 50% 17% 83%
Zero REL PRO 3 0% 33% 100%

Table 3: Summary of scores by fine-grained categories. “#” reports number of questions in each cat-
egory, while the reported score is the percentage of questions for which the divergence was correctly
bridged. For each question, the three human judgments were transformed into a single judgment by
taking system outputs with two positive judgments as positive, and all others as negative.

• The so-called French “inalienable posses-
sion” construction arises when an agent per-
forms an action on one of her body parts, e.g.
I brushed my teeth. The French translation
will normally replace the possessive article
with a definite one and introduce a reflexive
pronoun, e.g. Je me suis brossé les dents (’I
brushed myself the teeth’). In our dataset, the
Google system gets this right for examples in
the first and third persons (sentences S25a,b)
but fails to do the same with the example in
the second person (sentence S25c).

Then there are also phenomena that current
NMT systems, even with massive amounts of data,
appear to be completely missing:

• Common and syntactically flexible idioms.
While PBMT-1 produces an acceptable trans-
lation for half of the idiomatic expressions of

S15 and S16, the local NMT system misses
them all and the Google system does barely
better. NMT systems appear to be short on
raw memorization capabilities.

• Control verbs. Two different classes of verbs
can govern a subject NP, an object NP plus
an infinitival complement. With verbs of the
“object-control” class (e.g. “persuade”), the
object of the verb is understood as the seman-
tic subject of the infinitive. But with those of
the “subject-control” class (e.g. “promise”),
it is rather the subject of the verb which
plays that semantic role. None of the sys-
tems tested here appear to get a grip on sub-
ject control cases, as evidenced by the lack
of correct feminine agreement on the French
adjectives in sentences S2b–d.

• Argument switching verbs. All systems tested
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here mistranslate sentences S7a–c by fail-
ing to perform the required argument switch:
NP1 misses NP2→ NP2 manque à NP1.

• Crossing movement verbs. None of the sys-
tems managed to correctly restructure the
regular manner-of-movement verbs e.g. swim
across X→ traverser X à la nage in sentences
S10a-c. Unsurprisingly, all systems also fail
on the even harder example S10d, in which
the “nonce verb” guitared is a spontaneous
derivation from the noun guitar being cast as
an ad hoc manner-of-movement verb. 8

• Middle voice. None of the systems tested
here were able to recast the English “generic
passive” of S21a–c into the expected French
“middle voice” pronominal construction.

6 Conclusions

We have presented a radically different kind of
evaluation for MT systems: the use of challenge
sets designed to stress-test MT systems on “hard”
linguistic material, while providing a fine-grained
linguistic classification of their successes and fail-
ures. This approach is not meant to replace our
community’s traditional evaluation tools but to
supplement them.

Our proposed error categorization scheme
makes it possible to bring to light different
strengths and weaknesses of PBMT and neural
MT. With the exception of idiom processing, in
all cases where a clear difference was observed
it turned out to be in favor of neural MT. A key
factor in NMT’s superiority appears to be its abil-
ity to overcome many limitations of n-gram lan-
guage modeling. This is clearly at play in dealing
with subject-verb agreement, double-object verbs,
overlapping subcategorization frames and last but
not least, the pinnacle of Chomskyan linguistics,
WH-movement (in this case, stranded preposi-
tions).

But our challenge set also brings to light some
important shortcomings of current neural MT, re-
gardless of the massive amounts of training data
it may have been fed. As may have been already
known or suspected, NMT systems struggle with
the translation of idiomatic phrases. Perhaps more
interestingly, we notice that neural MT’s impres-
sive generalizations still seem somewhat brittle.
For example, the NMT system can appear to have

8 On the concept of nonce word, see
https://en.wikipedia.org/wiki/Nonce word.

mastered the rules governing subject-verb agree-
ment or inalienable possession in French, only to
trip over a rather obvious instantiation of those
rules. Probing where these boundaries are, and
how they relate to the neural system’s training data
and architecture is an obvious next step.

7 Future Work

It is our hope that the insights derived from our
challenge set evaluation will help inspire future
MT research, and call attention to the fact that
even “easy” language pairs like English–French
still have many linguistic issues left to be resolved.
But there are also several ways to improve and ex-
pand upon our challenge set approach itself.

First, though our human judgments of output
sentences allowed us to precisely assess the phe-
nomena of interest, this approach is not scalable
to large sets, and requires access to native speak-
ers in order to replicate the evaluation. It would be
interesting to see whether similar scores could be
achieved through automatic means. The existence
of human judgments for this set provides a gold-
standard by which proposed automatic judgments
may be meta-evaluated.

Second, the construction of such a challenge set
requires in-depth knowledge of the structural di-
vergences between the two languages of interest.
A method to automatically create such a challenge
set for a new language pair would be extremely
useful. One could imagine approaches that search
for divergences, indicated by atypical output con-
figurations, or perhaps by a system’s inability to
reproduce a reference from its own training data.
Localizing a divergence within a difficult sentence
pair would be another useful subtask.

Finally, we would like to explore how to train
an MT system to improve its performance on these
divergence phenomena. This could take the form
of designing a curriculum to demonstrate a par-
ticular divergence to the machine, or altering the
network structure to capture such generalizations.
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Abstract

Leveraging zero-shot learning to learn
mapping functions between vector spaces
of different languages is a promising ap-
proach to bilingual dictionary induction.
However, methods using this approach
have not yet achieved high accuracy on the
task. In this paper, we propose a bridg-
ing approach, where our main contribution
is a knowledge distillation training objec-
tive. As teachers, rich resource transla-
tion paths are exploited in this role. And
as learners, translation paths involving low
resource languages learn from the teach-
ers. Our training objective allows seam-
less addition of teacher translation paths
for any given low resource pair. Since our
approach relies on the quality of monolin-
gual word embeddings, we also propose to
enhance vector representations of both the
source and target language with linguistic
information. Our experiments on various
languages show large performance gains
from our distillation training objective, ob-
taining as high as 17% accuracy improve-
ments.

1 Introduction

In traditional supervised learning, a classifier is
trained on a labeled dataset of the form (X,Y).
Each xi ∈ X is a feature vector representing a
single training instance and yi ∈ Y is the label as-
sociated with xi. In zero-shot learning (Mitchell
et al., 2008), at test time we can encounter a test
instance xj whose corresponding label was not
seen at training time. This setting occurs in do-
mains where Y can take on many values, and ob-
taining labeled examples for all possible Y values
is expensive. Computer vision is one such do-

main, where there are thousands of objects a sys-
tem needs to recognize yet at training time we may
only see examples of some of the objects. In zero-
shot learning, instead of learning parameters as-
sociated with each possible label in Y , the learn-
ing task is cast as a problem of learning a single
mapping function from the vector space of input
instances to the vector space of the output labels.
The resulting induced function can then be applied
to test instances xj whose labels may not have
been seen at training time, producing a projected
vector, ŷj , in the label space. The nearest neigh-
bor of the mapped vector in the label space is then
considered to be the label of xj .

In this paper, we study zero-shot learning in the
context of bilingual dictionary induction, which
is the problem of mapping words from a source
language to equivalent words in a target language.
The label space is the full vocabulary of the target
language which can be on the order of millions
of tokens. First, word embeddings are learned
separately for each language, and second, using
a given seed dictionary, we train a mapping func-
tion to connect the two monolingual vector spaces,
thereby facilitating bilingual dictionary induction.
The advantage of zero-shot learning is that it can
help reduce the amount of labeled data for applica-
tions with many possible labels, such as the appli-
cation we study in this paper, bilingual dictionary
induction. However, the state-of-the-art accuracy
on zero-shot bilingual dictionary induction is still
low. On the task of English to Italian (en → it),
top-1 and top-10 accuracies are around 40% and
60%, respectively (Lazaridou et al., 2015; Dinu
et al., 2014).

An important aspect of zero-shot learning for
bilingual dictionary induction is that, it relies on
availability of a large seed dictionary1. Such large

15000 seed pairs for the (en → it) dataset.
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es en nl en sv en

pt af da

Figure 1: Trilingual paths for Portuguese(pt) to
English(en) via Spanish (es), Afrikaans(af) to
(en) via Dutch (nl), and Danish(da) to (en) via
Swedish(sv).

training dictionaries might not be available for
all languages. However, for a given language
with only a small seed dictionary, there could
be a highly related language with a much larger
seed dictionary. For example, we might have a
small seed dictionary for translating Portuguese
to English (pt → en), but a large seed dictio-
nary for translating Spanish to English language
(es → en). At training time, we can train
the (pt → en) mapping function not only
using the small seed dictionary, but also make
use of the trilingual path going through Spanish,
(pt → es→ en). Since pt and es are highly re-
lated, a small amount of data may be sufficient to
learn the projection (pt→ es). This is the idea of
using a bridge or pivot language in machine trans-
lation (Utiyama and Isahara, 2007). Our contri-
bution is a knowledge distillation training objec-
tive function that encourages the mapping func-
tion ( pt → en) to predict the true English target
words as well as to match the predictions of the
trilingual path ( pt→ es→ en) within a margin.
This is approach allows seamless Example trilin-
gual paths are shown in Figure 1.

By setting up our objective function in this way,
we are distilling knowledge (Bucilu et al., 2006;
Hinton et al., 2015) from the trilingual paths to
train a single mapping function for ( pt→ en). In
our experiments, we show performance gains for
several language pairs, 17% for top-10 precision
for ( pt→ en). We also show that, for a given lan-
guage pair, our objective seamlessly allows us to
distill from several related languages. Moreover,
we learn weights for each of the distillation paths,
thereby automatically learning indicative weights
of how useful each distillation path is. Finally, we
show that even when we only use unlabeled data
to distill knowledge from trilingual paths, we still
obtain performance gains over a model trained on
a small seed dictionary.

Since our approach relies on the quality of
monolingual word embeddings, we also propose

to enhance vector representations of both the
source and target language with linguistic infor-
mation. In particular, we augment word vec-
tors with additional dimensions capturing corpus
statistics of part-of-speech tags of words. Second,
we model sub-word information in the vector rep-
resentations of words.

2 Related Work

Cross Vector Space Mapping with Seed Dictio-
naries. Our work is most related to models that do
zero-shot learning for bilingual dictionary induc-
tion, using maps between vector spaces with seed
dictionaries as training data. Examples include the
models of (Mikolov et al., 2013; Dinu et al., 2014;
Lazaridou et al., 2015; Vulic and Korhonen, 2016).
Like these approaches, we first learn word embed-
dings for each language, then use a seed dictionary
to train a mapping function between the two vec-
tor spaces. In a departure from these prior meth-
ods, we propose to distill knowledge from trilin-
gual paths of nearby languages for languages with
small seed dictionaries using a distillation train-
ing objective. Additionally, we model linguistic
information in the vector space of the source and
target languages. Another line of research in this
vein is the work of (Vulic and Korhonen, 2016),
who analyze how properties of the seed dictio-
nary affect bilingual dictionary induction across
different dimensions (i.e., lexicon source, lexicon
size, translation method, translation pair reliabil-
ity). However, methodologically, their approach is
based on prior work (Mikolov et al., 2013; Dinu
et al., 2014).

Bilingual word embeddings. There is a rich
body of work on bilingual embeddings. Bilin-
gual word embedding learning methods produce
a shared bilingual word embedding space where
words from two languages are represented in the
new space so that similar words, which may be in
different languages, have similar representations.
Such bilingual word embeddings have been used
in a number of tasks including semantic word sim-
ilarity (Faruqui and Dyer, 2014; Ammar et al.,
2016) learning bilingual word lexicons (Mikolov
et al., 2013; Gouws et al., 2015; Vulic and Korho-
nen, 2016), parsing (Guo et al., 2015; Täckström
et al., 2012), information retrieval (Vulic and
Moens, 2015), and cross-lingual document clas-
sification (Klementiev et al., 2012; Kočiskỳ et al.,
2014).
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Some bilingual word embedding methods such
as (Blunsom and Hermann, 2014; Gouws et al.,
2015) require sentence or word aligned data,
which our approach does not require. We com-
pare our approach to the bilingual embeddings
produced by the recent method of (Ammar et al.,
2016). Like our approach, this work does not re-
quire availability of parallel corpora but only a
seed dictionary.

On the aspect of enriching word embeddings
with linguistic knowledge for the purpose of ma-
chine translation, Sennrich and Barry (Sennrich
and Haddow, 2016) introduce linguistic features in
sequence to sequence neural machine translation.
Like our work, they also represent such features
in the embedding layer. In addition to part-of-
speech tags and morphological features, they also
use syntactic dependency labels which are not ap-
plicable to our model since we work at the word
level while their model is at the sentence level.

Knowledge Distillation. Knowledge distilla-
tion was introduced for model compression to
learn small models from larger models (Bucilu
et al., 2006; Hinton et al., 2015). For exam-
ple, from a large neural network model a smaller
model can be distilled such that it generalizes in
the same way as the large model (Romero et al.,
2014). Knowledge distillation was also used by
(Hu et al., 2016) to distill knowledge from logical
rules in the tasks of named entity recognition and
sentiment analysis, thereby enforcing constraints
on the trained model. Our approach is different
from this prior work on knowledge distillation in
that we distill knowledge from mapping functions
of related languages into mapping functions of
languages with only small seed dictionaries.

Domain adaptation, for which there is a long
history, is also related to our work (Ben-David
et al., 2007; Daumé III, 2007; Pan et al., 2010;
Long and Wang, 2015). (Daumé III, 2007) pro-
posed feature augmentation, suggesting that a
model should have features that are general across
domains, as well as features that are domain-
specific. Thus the model learns from all do-
mains while preserving domain-specific informa-
tion. These kinds of models have to be retrained
when a new domain is added. Our work however
only has to train mapping functions that involve a
new language, all others can be distilled without
retraining them.

3 Embedding Linguistic Information

Since our approach relies on the quality of mono-
lingual word embeddings, we would like to work
with high quality word embeddings. We therefore,
first seek to enhance the vector representations of
words in the source and target languages so that
they can capture useful linguistic information. The
intuition is that such information can help narrow
down the words in the target language that are con-
sidered valid translations for a given source lan-
guage word. To that end, we model both part of
speech (POS) tag distributions of words and sub-
word information in the vector representations.

3.1 Part of Speech Distributions

The idea behind modeling POS tags is that words
should have the same part of speech tag in dif-
ferent languages. For example, if we are trans-
lating the noun Katze from German to English, in
English we expect the singular noun cat and not
the plural cats. While this information may be
monolithically represented in word vectors gen-
erated by embedding methods such as Skip-gram
and CBOW, here we seek to explicitly model POS
tags. Since each word can have multiple POS tags,
we model a word’s part of speech information as
a distribution over all the possible POS tags that it
can take on. We learn POS tag statistics by first
tagging a large corpus of each language, we then
use tag counts to generate distributions. For exam-
ple, if the English word, bark appears tagged as a
verb 30 times in our corpus, and tagged as a noun
10 times, we generate a vector which puts 2/3 in
the verb direction, and 1/3 in the noun direction,
and 0 in the directions of all other POS tags. While
these statistics can be noisy, we hope they can still
provide useful signals. We use the universal POS
tags, there are 12 tags in the universal POS tags
(Petrov et al., 2011).

For a given word w, we compute a vector rep-
resentation wi ∈ Rd using a word embedding
method. For now, let’s assume we use the Skip-
gram model. In the next section, we describe an
enhanced word embedding method. We compute
a POS corpus statistics vector vi ∈ R12 for the
word using the 12 universal POS tags. With this
new information, the representation for word i is
given by

xi = (wi, vi) ∈ Rd+12 . (1)
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3.2 Word Internal Structure
Morphology carries information that is useful for
capturing the identity of a word. It represents in-
formation such as tense. When doing cross-lingual
zero-shot projection of a word in a source lan-
guage, we wish to translate to words that have the
same linguistic properties. For example, the Ger-
man word gewinnen should be translated to the
present tensewin, not the past tensewonwhich in
German is gewonnen. We approximate morphol-
ogy by incorporating sub-word information into
the vector representations. There are several ways
of doing this, one approach is to work on the level
of characters. We go for the middle-ground, in
which a word is represented as a combination of a
vector for the word itself with vectors of sub-word
units that comprise it. In particular, for a given a
word we learn a vector representation for the word
itself, and also for each n-gram of >= 3 and < 6
in the word (Bojanowski et al., 2017). Each word
is thus represented by the sum of the vector rep-
resentations of its n-grams, including the word it-
self. This representation is then used to replace wi
in equation 1.

4 Training Objective

A common objective function used in prior work
(Mikolov et al., 2013; Dinu et al., 2014) for learn-
ing cross vector space mapping functions is the
regularized least squares error:

Ŵ = argmin
W∈Rs×t

||XW −Y||F + λ||W|| (2)

where matrix Ŵ is the learned mapping function,
X and Y represent the matrices containing the
vectors for the source language words and vectors
for the target language words, respectively. In-
stead of the least squares loss shown in equation
2, we use a ranking loss, as in (Lazaridou et al.,
2015), which aims to rank correct training data
pairs (xi, yi) higher than incorrect pairs (xi, yj)
with a margin of at least γ. The margin γ is a
hyper-parameter which is application specific, and
the incorrect labels, yj can be selected randomly
such that j 6= i or in a more application specific
manner2.

2 In our experiments, we explored several application spe-
cific approaches for choosing negative examples, including
one that picks negative examples among words whose part of
speech class is different from the positive example. However,
these approaches did produce significant improvement, and
we resorted back to randomly selected negative examples.

Given a seed dictionary training data of the form
Dtr = {xi, yi}mi=1, the margin-based ranking loss
is defined as:

Jsingle =

m∑

i=1

k∑

j 6=i
max

(
0, γ+d(yi, ŷi)−d(yj , ŷi)

)

(3)
where ŷi = Wxi is the prediction, k is the number
of incorrect examples per training instance, and
d(x, y) = (x− y)2 is the distance measure.

For a given correct pair and incorrect pair, sub-
stituting ŷi = Wxi. The loss is given by:

max
(
0, γ+(yi− ŷi)2− (yj− ŷi)2

)
: j 6= i. (4)

To evaluate the derivative analytically, we can
write:

max
(
0, γ + (yi − ŷi)2 − (yj − ŷi)2

)

= θ
(
γ + (yi − ŷi)2 − (yj − ŷi)2

)
×[

γ + (yi − ŷi)2 − (yj − ŷi)2
]

(5)

where θ(x) denotes the Heaviside θ-function. The
derivative with respect to the elements of the ma-
trix W is then approximated by, after neglecting
a term that would only contribute if the difference
(yj − ŷi)2 − (yi − ŷi)2 were exactly γ

∂

∂Wab
(θ
(
γ + (yi − ŷi)2 − (yj − ŷi)2

)
×

[
γ + (yi − ŷi)2 − (yj − ŷi)2

]

' 2θ
(
γ + (yi − ŷi)2 − (yj − ŷi)2

)
×

xi b (yj a − yi a) (6)

5 Model Distillation

In zero-shot learning for bilingual dictionary in-
duction a large seed dictionary is used to train a
mapping function. Such large training dictionar-
ies might not be available for all languages. How-
ever, for a given language with only a small seed
dictionary, there could be a highly related lan-
guage with a much larger seed dictionary. We
propose a method for leveraging mapping func-
tions of nearby languages to train mapping func-
tions for languages where large seed dictionaries
may not be available. Our method is related to no-
tion of having a bridge or pivot language as done
in sentence level translation (Utiyama and Isahara,
2007). We develop a distillation training objec-
tive that allows us to seamlessly leverage several
bridge languages for word level translation.
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5.1 Trilingual Paths for distillation

Let us consider the problem of translating from a
given source language to English. As a running
example, we use Portuguese(pt) as the source lan-
guage. We wish to learn a mapping function from
word vectors in Portuguese to word vectors in En-
glish. We can set up a learning task, using a train-
ing datasetD = {xi, yi}mi=1 and the loss defined in
Equation 3. This gives us the projection function
in the form of a matrix: W(pt→en). We can thus
translate Portuguese words to English as follows:

ŷi
(en)←↩(pt) = W(pt→en)x(pt)i (7)

If the seed dictionary for Portuguese to English
is small, W(pt→en) might generalize poorly, pro-
ducing many wrong translations when using Equa-
tion 7. Suppose, a related language, for example,
Spanish has a lot of training data available, and
we have independently trained its mapping func-
tion, which can make predictions from Spanish to
English as follows:

ŷi
(en)←↩(es) = W(es→en)x(es)i (8)

Since W(es→en) is trained with a lot of data, we
expect it to generalize better and make more accu-
rate predictions than W(pt→en). One insight here
is that since the languages es and pt are highly re-
lated, we need much less data to train an accurate
mapping matrix W(pt→es) than we to need to learn
an accurate W(pt→en). Therefore we train a map-
ping function from Portuguese to Spanish, which
makes predictions as follows.

ŷi
(es)←↩(pt) = W(pt→es)x(pt)i (9)

We now have a second path that goes from Por-
tuguese to English much like Equation 7 but this
path goes via Spanish as follows:

ŷi
(es)←↩(pt) = W(pt→es)x(pt)i

ŷi
(en)←↩(es)←↩(pt) = W(es→en)ŷi(es)←↩(pt) (10)

Figure 2 illustrates the two paths from Por-
tuguese to English. Our main insight is to
use knowledge distillation, to improve the accu-
racy of the mapping matrix W(pt→en) through
ŷi

(en)←↩(es)←↩(pt). This distillation is done by mod-
ifying our learning objective.

es en ŷi
(es) ŷi

(en)

pt x
(pt)
i

W(es→en)

W(pt→es)
W(pt→en)

(a)

ŷi
(es)←↩(pt) = W(pt→es)x(pt)i

ŷi
(en)←↩(es)←↩(pt) = W(es→en)ŷi(es)←↩(pt)

(b)

ŷi
(en)←↩(pt) = W(pt→en)x(pt)i

Figure 2: Translating with both a trilingual path
(dotted lines, and equation (a)) , and a bilingual
path (solid line, and equation (b))

5.2 Distillation Objective

For a given Portuguese word x
(pt)
i , Equation 7

makes the prediction ŷi(en)←↩(pt) and Equation 10
makes the trilingual prediction ŷi

(en)←↩(es)←↩(pt)

which involves three languages. We would like to
improve predictions made by Equation 7 by im-
proving the mapping matrix W(en→pt). There-
fore when training using the Portuguese to English
training data, we want our objective to both min-
imize the loss defined in Equation 3 and simulta-
neously to let W(en→pt) mimic predictions made
through the path ŷi(en)←↩(es)←↩(pt) as “soft targets”
within a margin. The distillation objective is as
follows:

Jd =
m∑

i=1

max
(
0,

(
ŷi

(en)←↩(pt) − ŷi(en)←↩(es)←↩(pt)
)2 − φ

)
,(11)

where φ is the margin. We combine Jsingle and Jd
through a weighted average of the two different
objective functions. Notice that Jd can be com-
puted without having labeled training data. In our
experiments, we show that even in this case of un-
labeled data, which gets rid of Jsingle since it re-
quires labeled data, Jd outperforms models trained
using only Jsingle when the training data is small.

5.3 Multiple Trilingual Paths
We are not restricted to distilling Portuguese
through Spanish only. Our model can, in addition,

2501



for example distill through German, French, and
other languages. We can modify the distillation
loss as follows:

Jd−multi =
m∑
i=1

n∑
j=1

ψj max
(
0,

(
ŷi

(en)←↩(pt) − ŷi(en)←↩(j)←↩(pt)
)2 − φ

)
, (12)

where j labels the distillation language. With the
objective Jd−multi combined with Jsingle, we are
training a mapping function which mimics the be-
havior of many trilingual paths, as “soft targets”
within a margin ψ. We keep φ the same in our
experiments across all trilingual paths. The ψi
are weights that reflect how much we penalize our
model if it diverges from the predictions of a par-
ticular trilingual path. Intuitively, if a language is
similar to our source language, (pt) in this case,
its corresponding ψ value should be high. For ex-
ample, if Spanish is considered more related to
Portuguese than any other language in the trilin-
gual paths in Equation 12, than we expect ∀i 6=
1, ψ1 > φi. This is assuming that the second parts
of the trilingual paths have similar accuracies, ie.
W(es→en), W(fr→en), and W(...→en) have sim-
ilar projection accuracies. The most similar lan-
guage is expected to be the easiest to project into
from Portuguese. For example we might expect
W(pt→es) to be more accurate than W(pt→de), if
we have similar amounts of training data for learn-
ing both of these. We next present how we learn
the ψi values for the multiple paths.

5.4 Weighted Trilingual Paths
Going back to the example, we first learn the
weights using the Portuguese to English training
set,D = {xpti , yeni }mi=1, and then input the weights
into the model before training with Jd−multi and
Jsingle. Suppose we want to compute ψ1 which
corresponds to Spanish in Equation 12. For a
given Portuguese word xpti ∈ D, whose English
translation is yeni , we can compute:

ψdot1i = (yeni )T ŷi
(en)←↩(es)←↩(pt) (13)

We also experimented with a bilinear term:

ψbilinear1i = (yeni )THŷi
(en)←↩(es)←↩(pt) (14)

We found a better performing approach to be:

V =
(
ŷi

(en)←↩(pt) − ŷi(en)←↩(es)←↩(pt)
)2

ψeuclid1i = exp(
1

V
). (15)

P@1 P@5 P@10

Italian (en→ it)
THIS 51.0 66.6 72.4
THIS w/pos 51.6 68.5 73.4
Ridge 29.7 44.2 49.1
Lazaridou et. al 40.2 54.2 60.4
MultiCluster 2.40 7.30 11.0
MultiCCA 0 0.1 0.3

Table 1: Translation accuracy on the English to
Italian dataset of (Dinu et al., 2014).

6 Experimental Evaluation

In this section, we study the following questions:

• What is the effect of modeling linguistic in-
formation in the vector representations of the
source and target languages on accuracy of
bilingual dictionary induction?

• Can our knowledge distillation objective
from trilingual paths involving related lan-
guages improve accuracy of mapping func-
tions of languages with small seed dictionar-
ies?

6.1 Data and Experimental Setup
In most of our experiments, we use the train-
ing data that was used to train the multi-lingual
embeddings in (Ammar et al., 2016). We indi-
cate when this is not the training data used. This
data was obtained automatically by using Google
Translate. For test data, we use manual transla-
tions either from prior work or from searching the
Web, including genealogical word lists 3.

For word vector representations, we use
Wikipedia to train 300 dimensional vectors for all
languages we evaluate on. Based on a validation
set, we set the margin γ in Equation 3 through
Equation 6 to be γ = 0.4, φ in Equations 11, 12,
and 15 to be φ = 0.01. We estimate model param-
eters using stochastic gradient descent.

6.2 Methods Under Comparison
In our experiments, we compare performance of
the following methods.

• The method THIS refers to our model which
uses a max-margin loss function as defined

3For example:
https://familysearch.org/wiki/en/Afrikaans Word List
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in Equation 3. It uses sub-word informa-
tion in the vector representations of words.
One variation of our method is, THIS w/pos,
which includes POS tag statistics as addi-
tional dimensions. The distilled variations of
our method explicitly indicate the languages
involved, for example (pt→ es→ en).

• The method Ridge is used in a number of
prior work (Mikolov et al., 2013; Dinu et al.,
2014; Vulic and Korhonen, 2016). These ap-
proaches use an L2-regularized least-squares
error objective as shown in Equation 2.

• The method Lazaridou et al. was proposed
by (Lazaridou et al., 2015). It uses a max-
margin ranking function and introduces a
way of picking negative examples in comput-
ing the loss.

• The methods MultiCluster and MultiCCA
refer to the multilingual word embeddings
introduced by (Ammar et al., 2016). They
extend canonical correlation analysis (CCA)
based methods (Haghighi et al., 2008;
Faruqui and Dyer, 2014) to a multi-lingual
setting where they treat English as the com-
mon vector space. For these methods, we use
their pre-trained word embeddings.

6.3 Linguistic Information Evaluation
To address the first of our evaluation questions, we
performed experiments on the dataset introduced
by (Dinu et al., 2014), where the state-of-the art
is the work of (Lazaridou et al., 2015). This is
an Italian to English dataset, which consists of 5K
translation pairs as training data, and 1.5K pairs as
test data. In both (Dinu et al., 2014) and (Lazari-
dou et al., 2015), the embeddings were trained on
Wikipedia and additional corpora, we only train
on Wikipedia.

The results for this experiment are shown in Ta-
ble 1. Our method, THIS, performs well above the
previous state of the art (Lazaridou et al., 2015).
For top-1 precision, as can been seen in Table 1,
we obtained an 11% gain. From Table 1, we can
also see that the POS statistics are only marginally
helpful. The word embeddings generated with
MultiCluster and MultiCCA perform poorly, with
MultiCluster doing better than MultiCCA.

We additionally carried out experiments on 8
other language pairs, further showing our method
outperforming prior work. The results are shown

de es fr it nl sv
↓ ↓ ↓ ↓ ↓ ↓
en en en en en en

Train 400k* 400k* 100k* 5k 1,392 110k*
Test 1,180 1,109 810 2,148 296 471

Table 2: Training and test sets for various lan-
guage pairs. The training datasets marked with (*)
are from (Ammar et al., 2016) obtained through
Google Translate. Italian to English is from (Dinu
et al., 2014). The Dutch to English training dataset
is introduced in this paper. With the exception of
Italian to English, all test datasets are introduced
in this paper.

de es fr it nl sv
↓ ↓ ↓ ↓ ↓ ↓
en en en en en en

P@10
THIS 57.8 59.5 67.4 70.0 60.8 54.6
Ridge 32.8 54.2 59.9 66.4 58.8 44.6
MultiCluster 12.2 8.1 4.6 6.9 - 9.0
MultiCCA 6.7 4.3 2.9 5.6 - 10.1

Table 3: Top-10 precision for eight languages
translated to English. The high accuracy on Ital-
ian can be explained by the fact that, unlike other
language pairs, for Italian we do not use Google
Translate training data, but the data of (Dinu et al.,
2014), as shown in Table 2.

in Table 3, and the corresponding data is shown
in Table 2. For these language pairs, we do not
show results for our method, THIS w/pos, since
POS taggers are not available for some of the lan-
guages. We also do not show (Lazaridou et al.,
2015), as they did not do experiments on these data
sets, and we did not have an implementation of
their approach. Additionally, (Ammar et al., 2016)
did not have trained embeddings for Dutch (nl).

6.4 Trilingual Paths for Distillation

To address our second evaluation question, we car-
ried out experiments with languages for which we
only had small seed dictionaries. The training and
test datasets for this setup are shown in Table 4.
We gathered these datasets by searching for man-
ually created datasets. In the cases were we could
not find any, we used Google Translate, which,
however produces some noisy translations. This is
partly due to the fact that the translations are done
out of context.

We begin with thorough experiments on the
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pt pt pt pt da da af af
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
en es fr de en sv en nl

Train 573 701 1,808 465 3,000 1,980 3,744 2,000
Test 296 0 0 0 262 0 459 0

Table 4: Training and test datasets used in the
trilingual path distillation experiments. We evalu-
ated sub-parts of trilingual paths such as pt→ es,
and pt → fr using cross validation hence the test
sets for those languages are zero.

P@10

Portuguese (pt→ en)
1 THIS (pt→ en) 65.2
2 (pt→ en) +(pt→ es→ en) [unlabeled data] 74.0
3 (pt→ en) + (pt→ es→ en) 82.1

4 (pt→ en) + (pt→



de
es
fr


→ en) [Weighted] 81.8

5 (pt→ en) + (pt→



de
es
fr


→ en)[Unweighted] 78.4

6 Ridge 60.8

Table 5: Trilingual path distillation results for Por-
tuguese to English.

Portuguese-English language pair. The results are
shown in Table 5. First, we see that if we distill
through the Spanish trilingual path (pt → es →
en), without using any labeled data from pt→ en,
we already obtain a 9% gain in accuracy, line 2 in
Table 5. If, in addition to distilling through Span-
ish, we use the available training data pt → en,
573 translation pairs, line 3 in Table 5, we ob-
tain a 17% gain in accuracy. We see however that
adding the distillation paths via French, and Ger-
man did not improve performance, line 4 in Ta-
ble 5. This can be attributed to the fact that with
multiple distillation paths, the model has to opti-
mize a more difficult function. On the other hand,
we see that our trilingual weighting mechanism
is effective. Without path weights, top-10 accu-
racy is 78.4% vs 81.8% with weights, lines 4 and
5 in Table 5. The learned weights for the three
languages involved in the trilingual paths for Por-
tuguese are shown in Figure 3. Spanish is the high-
est weighted, followed by French, and German
has the lowest weight. By definition, the learned
weights add up to 1. In Figure 4, we show accu-
racy while varying the size of the seed dictionary.
We can see that, given the small size of the training
data, distillation provides a strong advantage.

Tr
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0.25

0.288

0.325

0.363

0.4

Distillation Language near Portuguese

DE FR ES

Figure 3: Learned weights for languages involved
in trilingual paths for translating Portuguese to En-
glish. Spanish is the highest weighted and German
is the lowest.
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Figure 4: Varying the size of the seed dictionary
for (pt→ en).

Finally, we applied our distillation method to
Afrikaans and Danish. Afrikaans distills from
Dutch, and Danish distills from Swedish. As
shown in Table 6, in both cases, we obtained per-
formance gains. However, in both of these cases,
performance gains are modest. Unlike Portuguese
to English, the seed dictionaries involved in train-
ing these language pairs were obtained automat-
ically using Google Translate and contain noisy
translations.

7 Conclusion

We have presented a knowledge distillation train-
ing objective that leverages trilingual paths of re-
lated languages to improve mapping functions of
languages with small seed dictionaries. The model
produces substantial gains in accuracy for several
language pairs.

There are several future directions. First, due
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P@10

Afrikaans (af → en)
THIS (af → en) 46.4
(af → en)+ (af → nl→ en) [unlabeled data] 49.9
(af → en)+(af → nl→ en) 51.0
Ridge 38.6

Danish (da→ en)
THIS (da→ en) 44.4
(da→ en) + (da→ sv → en) [unlabeled data] 45.2
(da→ en) + (da→ sv → en) 47.2
Ridge 37.1

Table 6: Trilingual path distillation results for
Afrikaans and Danish.

to advances in methods for extracting general pur-
pose knowledge (Mitchell et al., 2015; Nakashole
et al., 2013; Wijaya et al., 2014), the use of se-
mantic knowledge has been explored for several
natural language tasks (Nakashole and Mitchell,
2015; Yang and Mitchell, 2017). However, for
bilingual dictionary induction, and more generally,
machine translation, the role of semantic knowl-
edge has not been fully explored. We consider this
to be a promising line of future work. Second,
although we focus on bilingual dictionary induc-
tion, our knowledge distillation training objective
that enables seamless use of paths of rich resource
languages as teachers of low resource languages
is general and can be applied to problems such as
multilingual tagging and parsing.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A. Smith.
2016. Massively multilingual word embeddings.
CoRR, abs/1602.01925.

Shai Ben-David, John Blitzer, Koby Crammer, Fer-
nando Pereira, et al. 2007. Analysis of represen-
tations for domain adaptation. Advances in neural
information processing systems, 19:137.

Phil Blunsom and Karl Moritz Hermann. 2014. Mul-
tilingual distributed representations without word
alignment.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL.

Cristian Bucilu, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 535–541. ACM.
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Abstract

In this paper, we address the problem of
generating English tag questions (TQs)
(e.g. it is, isn’t it?) in Machine Transla-
tion (MT). We propose a post-edition so-
lution, formulating the problem as a multi-
class classification task. We present (i) the
automatic annotation of English TQs in a
parallel corpus of subtitles and (ii) an ap-
proach using a series of classifiers to pre-
dict TQ forms, which we use to post-edit
state-of-the-art MT outputs. Our method
provides significant improvements in En-
glish TQ translation when translating from
Czech, French and German, in turn im-
proving the fluidity, naturalness, grammat-
ical correctness and pragmatic coherence
of MT output.

1 Introduction

When it comes to the machine translation (MT) of
discourse, revisiting the question of what consti-
tutes a high quality translation is essential; which
aspects of language should be tackled and how
to evaluate them. A first step is to identify the
many stylistic aspects of speech that pose a prob-
lem for current MT techniques and to study how
they could be taken into account and evaluated.

We take a step in this direction by addressing a
new aspect of discourse in MT, related to speaker
attitude and style: the English tag question (here-
after TQ), i.e. utterances such as catchy, ain’t it?
and it wasn’t him, was it?. When translating into
English, TQs present two main challenges. The
first is knowing when to generate one. Similar to
the translation of discourse connectives, TQ use is
a question of style and speaker attitude, and im-
portantly, there is not often a direct, lexical corre-
spondence across languages. TQs are common in

English and far less so in other languages, which
means that other contextual cues are necessary to
determine whether a TQ should appear in the En-
glish translation. The second, in particular for
canonical TQs (e.g. was it?, isn’t it?), is that the
overall grammaticality of the utterance is deter-
mined by the correct choice of tag, which, in a
similar way to anaphor translation, is grammati-
cally dependent on the rest of the MT output.

Our aim in this paper is to improve the gener-
ation of English TQs in an MT setting with En-
glish as the target language. We formulate this as a
multi-class classification task, using features from
both source sentences and machine translated out-
puts. The prediction of the appropriate question
tag to use in the English translation (if any) is
then used to post-edit MT outputs. Our results,
when translating from Czech (CS), French (FR)
and German (DE) into English (EN), display sig-
nificant improvements, as shown by automatic and
manual evaluations (Sec. 5).1

2 English tag questions (TQs)

TQs are interrogative constructions, common in
spoken English, formed of a main clause (typically
declarative), followed by a peripheral interrogative
element, the question tag:

(1) You do believe in happy endings, don’t you?
(2) He can’t do that, can he?

In its canonical form, the English question tag (in
bold) is formed of an auxiliary verb, which can
be negated, followed by a pronoun. It parallels
the verb and subject (underlined) of the preceding
host clause (in italics). The grammatical structure
of TQs and agreement between the host and the
tag gives them the name of grammatical TQs.2

1All scripts and annotations are freely available at http:
//diamt.limsi.fr.

2Although in theory their form is relatively systematic,
their attested usage is more complex.
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There exists a second type of TQ, lexical TQs,
formed of a word or phrase that is invariant to the
subject and verb of the host clause. For example:

(7) He’s a proper bad man, innit?
(8) There’s got to be a cure, right?

TQs’ functions are complex and communicate
information about speaker attitude, tone, the rela-
tionship between dialogue participants, common
ground and dialogue flow (McGregor, 1995). Yet
few languages have such a systematic use of TQs,
in particular of grammatical TQs, as English (Ax-
elsson, 2011). When translating into English, the
first difficulty is appropriately generating English
TQs from a source sentence that does not have a
TQ; the complex and often ambiguous functions
of TQs (e.g. expressing doubt or surprise) can be
expressed differently, and subtly, in the source lan-
guage. The second difficulty is ensuring gram-
matical coherence of canonical TQs. Consider the
German sentence Sie lebt noch, nicht wahr? and
its English translation She’s alive, isn’t she?. The
choice of the question tag isn’t she? is depen-
dent on the subject and verb of the anchor clause.
Had the translation been She still lives, the correct
question tag would have been doesn’t she?.

3 Related work

Discourse is a growing field in MT (Le Nagard
and Koehn, 2010; Hardmeier, 2012, 2014). To our
knowledge, there has been no previous work on
TQs in MT, but the two main challenges described
above are similar to those associated with two pre-
viously studied discursive aspects: the translation
of discourse connectives and of anaphoric pro-
nouns. As with TQs, their frequency is relatively
low, but their mistranslation has a high impact on
coherence, naturalness and therefore human un-
derstanding of translations (Meyer and Popescu-
Belis, 2012).

Discourse connectives (e.g. since, because) in-
dicate the relation between discursive units and are
linked to the overall coherence of a text in a simi-
lar way to TQs. They often have no direct mapping
when translated (Meyer and Webber, 2013) and it
is often necessary to generate a discourse connec-
tive or a TQ where one is not present in the source
sentence. Previous work by Meyer and Webber
(2013) consists in the disambiguation of discourse
connectives in source sentences prior to transla-
tion, using automatic sense classification, which
guides the MT system’s choice of how a discourse

connective should be translated (if at all). How-
ever they do not handle the case of generating dis-
course relations from a source sentences in which
they do not appear lexically, as is our aim for TQs.

The difficulty of anaphoric pronoun translation
is ensuring grammatical agreement between a pro-
noun and its coreferent, when the information rel-
evant to grammatical agreement in the target lan-
guage is not present in the source language. For
example, the French translation of the pronoun it
in I hear an owl but I can’t see it is translated as
le or la, depending on whether owl is translated as
masc. hibou or fem. chouette. The position of the
coreferent, as with the subject and verb for TQs, is
not pre-determined, and identifying which words
the translated pronoun or TQ must agree with is
not always easy. The majority of works perform
classification of pronominal forms in view to post-
editing MT output (Guillou, 2016), encouraged by
the shared task on cross-lingual pronoun predic-
tion at DiscoMT15 (Hardmeier et al., 2015) and
WMT16 (Guillou et al., 2016). We use the same
strategy here, since the coherent use of TQs, like
anaphors, is dependent on the MT translation.

4 Our post-edition approach

Our method to improve the generation of English
TQs in MT is the automatic post-edition of state-
of-the-art MT outputs. We formulate the problem
as a supervised, multi-class classification task, ex-
ploiting lexical features from source sentences and
their machine translations (Sec. 4.2). Possible la-
bels are the different question tag forms (e.g. isn’t
it, ok). Predicted tags are either used to replace the
question tag already present in the MT output or
appended to it otherwise. We test our method for
three source languages (CS, DE and FR) into EN.

4.1 Corpus annotation for English TQs

The first step is to produce annotated data. The
corpora used cover three language pairs: CS-
EN, DE-EN and FR-EN, and are large subsets of
the most recent films of the OpenSubtitles3 par-
allel corpus (Lison and Tiedemann, 2016). The
subtitles were automatically cleaned using heuris-
tics and processed with the MElt tokeniser (Denis
and Sagot, 2012) and the Moses truecaser (Koehn
et al., 2007). We then developed robust, manually
defined lexical rules to identify English TQs. We

3www.opensubtitles.org
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identify both the presence of TQs and the question
tags themselves (e.g. is it?, right?).

A manual evaluation on a random subset of 500
grammatical TQs and 500 lexical TQs shows that
annotations are near perfect (accuracy of ≈98%
and recall of 100% on sentence-final grammatical
TQs whose host clause is in the same subtitle).4

Each corpus was divided into three sets: TRAIN

(23 ), DEV (16 ) and TEST (16 ). The distribution of
TQs is shown in Tab. 1. TQs make up approx-
imately 1% of subtitles, but are common among
questions (≈20%). There are between 238 and
285 distinct English question tags, depending on
the language pair (including a label none for non-
TQs). The most frequent question tag is right?
(≈20%), followed by ok? (≈16%). The major-
ity of labels are grammatical question tags, but the
most frequent (isn’t it?) represents only ≈3% of
all TQs, revealing a huge class imbalance.

#English TQs #labels
#sents all gram. lex. gram. lex.

CS-EN 15.1M 146,782 44,572 102,210 269 15
DE-EN 6.2M 57,435 18,396 39,039 221 16
FR-EN 15.1M 149,847 44,651 105,196 254 16

Table 1: TQ distribution for each language pair.

4.2 Question tag classification
Given the class imbalance (Sec. 4.1) and the dif-
ferent nature of lexical and grammatical TQs, we
hypothesise that first predicting the presence of an
English TQ before selecting tag forms is prefer-
able to directly predicting tags in a single, direct
pass. We compare a single statistical classifier
(hereafter CL-ONE), which directly predicts the
question tag (including the label none), to a more
complex system using a sequence of classifiers
(hereafter CL-SEQ, see Fig. 1). In CL-SEQ, a first
classifier (CL-SEQcoarse) predicts a coarse-grained
label gram (grammatical TQ), lex (lexical TQ) or
none (non-TQ), which determines which classi-
fier (CL-SEQlex or CL-SEQgram) is used to predict
the tag form. Both CL-SEQcoarse and CL-SEQlex
are statistical classifiers. CL-SEQlex is trained on
the TRAIN examples assigned the label lex by CL-
SEQcoarse, which explains why it provides a second
chance to predict grammatical or non-TQs. CL-
SEQgram is a rule-based system, a choice that is
better adapted to the sparse labels of grammatical

4Recall for lexical TQs cannot be accurately measured,
as identification relies on a closed list of forms found in the
literature and observed in the data.

(i) CL-SEQcoarse predicts classes gram, lex and none

(ii) CL-SEQlex predicts lex tags

innit,
right, etc.

(iii) CL-SEQgram predicts gram tags

isn’t it, don’t
you, etc.none

none

gram

lex

Figure 1: CL-SEQ classification: (i) into coarse-
grained classes, (ii–iii) prediction of forms

TQs. Where there is no rule available, this system
too can predict the label none.

Experimental setup All statistical classifiers
are linear classifiers trained using Vowpal Wabbit
(Langford et al., 2009).5,6 To account for class im-
balance, examples are weighted according to their
relative frequency in the TRAIN set, and the de-
gree of weighting is optimised on the DEV set.7

Features used for all statistical classifiers are de-
scribed just below. The rule-based CL-SEQgram
system relies on the MT output alone.

Features We use automatically and manually
defined lexical feature templates. Unless indicated
the features apply to both the source sentence and
the MT output. The first set of features are au-
tomatically identified bag-of-word features, which
represent the 500 uni-, bi- and tri-grams most as-
sociated with a TQ, as measured by a G2 test.
The second set of features are manually defined,
based on language-specific question-response pat-
terns and recognisable lexical clues. They include
(i) the presence of a question tag (and its form),
(ii) the presence of a final question mark, (iii) (CS
and DE only) whether the following subtitle con-
tains a verb that appears in the current subtitle (and
if so, we include as a feature the verb type and the
preceding word in both the current and following
subtitles)8, (iv) the following subtitle contains a
specific response (from a predefined list of replies

5http://hunch.net/˜vw/
6We use “OAA”, FTRL-proximal optimisation, L2 regu-

larisation (λ = 1e− 6) and quadratic features.
7We vary weights from equal for all examples to weights

that fully counterbalance the class distribution.
8In German and Czech, it is common for a reply to a

yes/no question to repeat the verb of the question, e.g. Poslala
jsi mu to? ‘Did you send it to him?’ — Poslala jsem ‘Yes, I
did’ (lit. ‘send (I) did’) (Gruet-Skrabalova, 2013).
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Gram TQs Lex TQs Non-TQs Overall
Lang. pair P R F P* P R F P* P R F P*

CS→EN baseline 52.22 43.83 47.66 35.75 49.76 57.51 53.35 45.35 99.69 99.63 99.66 99.11
CL-ONE 66.15 15.57 25.20 50.09 55.19 40.33 46.60 51.20 99.43 99.84 99.63 99.16
CL-SEQ 56.87 44.96 50.22 38.85 60.76 46.68 52.79 56.58 99.57 99.79 99.68 99.21

DE→EN baseline 45.72 28.68 35.25 9.97 69.07 45.16 54.61 66.59 99.51 99.83 99.67 99.21
CL-ONE 69.76 9.42 16.59 48.54 61.63 45.49 52.34 59.78 99.46 99.88 99.67 99.26
CL-SEQ 59.27 42.74 49.67 35.48 68.70 53.21 59.97 66.69 99.62 99.84 99.73 99.32

FR→EN baseline 41.15 47.18 43.96 12.95 57.63 38.25 46.18 52.55 99.53 99.72 99.62 99.03
CL-ONE 66.30 9.36 16.41 44.87 55.05 28.80 37.81 51.73 99.32 99.89 99.60 99.12
CL-SEQ 58.48 33.95 42.96 38.22 63.02 38.22 47.59 59.42 99.46 99.85 99.65 99.19

Table 2: Precision (P), Recall (R), F-score (F) and fine-grained labelling precision (P*) for the TEST

set on each language pair. Results are given for each coarse-grained TQ class (gram, lex and non-TQ).
Labelling precision is calculated on the subtitles with the corresponding predicted coarse-grained label.
Marked in grey are the cells containing the best F-scores for coarse-grained label groupings and the
overall labelling precision (for fine-grained classes).

such as OK, yes, no, etc.), and (v) the first words
of the MT output (1-4 gram), the last auxiliary, the
last pronoun and the last pronoun-auxiliary pair.

Rule-based grammatical TQ prediction Our
rule-based approach is designed to predict which
grammatical tag should be appended to a given
translation. The rules consist in the identification
of certain lexical cues from the translation. For
instance, utterance-initial words can be a good in-
dicator of the use of a particular question tag: im-
peratives such as let’s ... (indicative of the tag shall
we), and claims about the interlocutor’s perception
such as you think... or you know... (indicative of
the tag don’t you). When there is a single auxiliary
and subject, these are directly used to construct a
question tag, using, as a simplification, the oppo-
site polarity to that of the anchor clause, which is
the most common polarity pattern in TQs. We in-
clude several rules to account for complex clauses
and perform grammatical checking between the
subject and auxiliary of the question tag. The com-
plete set of rules is available at the address cited in
Footnote 1.

“Baseline” MT outputs For Czech and Ger-
man, we use the top systems at WMT16, both at-
tentional encoder-decoder NMT models (Sennrich
et al., 2016). For French, we trained a phrase-
based model with Moses (Koehn et al., 2007).9

Baseline predictions are automatically extracted
from the MT outputs using our English TQ identi-
fication rules (Sec. 4.1).

9We use a combination of three phrase tables and three 4-
gram KenLM language models (Heafield et al., 2013), trained
on Europarl, Ted Talks and 3M-sentence subtitles, tuned us-
ing kbmira on a disjoint 2.5K-sentence subset.

5 Results and analysis

As mentioned by Hardmeier (2012), evaluating
coherence-related MT phenomena is problematic.
A question tag can be the correct choice without
matching the question tag form in the reference
translation (Sec. 2), making traditional metrics in-
volving lexical comparison (including all standard
MT evaluation metrics) ill-adapted to the task.

Despite this, we provide in Tab. 2 results us-
ing traditional metrics. To get a better view of the
scores, we group final predicted question tags into
their coarse-grained classes (gram, lex, none) and
calculate the precision (P), recall (R) and F-score
(F) for these three classes. Within each coarse-
grained class, we also provide labelling precision
(P*), corresponding to the number of question tags
within that coarse-grained class assigned the cor-
rect question tag form according to the gold label.
Labelling precision is also given overall for all test
sentences (in the final column).

Overall labelling precision is significantly im-
proved for all language pairs with both classifica-
tion systems, but in particular for CL-SEQ. This is
partly due to a better prediction of non-TQs, rep-
resented by the high corresponding F-scores for
CL-SEQ for all three language pairs. However it
is also linked to a better labelling of grammatical
and lexical TQs, which can be seen by the high la-
belling precision (P*) in the context of high recall
(R). The higher scores of CL-SEQ over CL-ONE,
particularly in terms of recall, which are most
likely a result of question tag label sparsity, show
that our two-tier strategy of predicting grammat-
ical and lexical tags separately is better adapted
than a single classifier.

There is a notable drop in recall between CL-
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Source Reference Baseline CL-SEQ Judgement

Du hast das gemacht, nicht wahr? You did this , didn’t you? You’ve done that, don’t you? haven’t you? Improved
Das Gehirn zerstören, wisst ihr? Kill the brain, you know? Destroying the brain, you know? none Degraded
Das stimmt, oder? I know, right? That’s true, right? isn’t it Equal (correct)
Das ist merkwürdig, oder? It’s weird, isn’t it? That ’s odd, does it? none Equal (incorrect)

Table 3: Some examples from the manual comparison of the baseline translation and CL-SEQ predictions.
An example is given for each of the possibilities: the prediction is better, worse or the translation and the
prediction are equally good or poor with respect to tag question prediction.

SEQ and CL-SEQ when it comes to grammatical
TQ prediction, which is not as marked for lex-
ical TQ prediction. This is most likely due to
the huge class imbalance in the different question
tags (221 grammatical tags vs. 16 lexical tags),
which causes the purely statistical one-pass sys-
tem to favour the more frequent lexical tags and
struggle to predict the wide range of much rarer
grammatical tags.

baseline
gram lex none Total

go
ld

gram 871 180 1986 3037
lex 429 2878 3066 6373

none 605 1109 1019408 1021122

predicted
gram lex none Total

go
ld

gram 1298 367 1372 3037
lex 418 3391 2564 6373

none 474 1178 1019470 1021122

Table 4: Confusion matrix of for baseline and pre-
dicted versus gold tags (when question tags are
grouped into their three coarse-grained classes) for
DE→EN.

Tab. 4 shows a comparison of baseline and pre-
dicted tags for the DE→EN test set. For ease of
illustration, the question tags are again regrouped
into their three coarse-grained classes (gram, lex
and none). The matrix reveals that for predicted
lexical tags and non-TQs, the majority were cor-
rectly classed into these coarse-grained classes.
However, grammatical tags proved more difficult
to predict, the majority being classed as non-TQs,
most likely a result of the fact that no such tag
question was present on the German source side.
The most common errors on this test set were pre-
dicting a non-TQ when a lexical tag was expected.
For example, CL-SEQ predicted none 1112 times
when the gold tag right? was expected. How-
ever the number of correct predictions of right ex-
ceeded this number (1371 cases) and compared to
baseline predictions, all coarse-grained categories

show an improvement in recall.

Manual analysis Given the drawbacks of auto-
matic metrics, we manually evaluated a set of final
translations post-edited with the predictions pro-
duced by the CL-SEQ system for DE→EN. We
randomly selected 100 examples for which the
baseline translation was modified and, comparing
the baseline and CL-SEQ prediction, we labelled
the example as improved (baseline incorrect and
prediction correct) or degraded (baseline correct
and prediction incorrect) or equal (both baseline
and prediction (in)correct). Examples of these
choices are provided in Tab. 3. We found that post-
edition made an improved choice of tag in 59/100
examples (compared to 13 worse choices). Only
25 of the 59 improved examples exactly matched
the reference tag, confirming the problem of re-
lying solely on traditional metrics. We notice in
particular an improvement in the choice of gram-
matical TQs (33 out of the 59 improvements).

6 Discussion and perspectives

Improvements in the generation of English TQs in
MT outputs, as seen by our manual analysis, result
in improved grammatical coherence, particularly
for grammatical TQs. However, TQ translation is
far from solved. As a stylistic aspect, its prediction
and evaluation are complex and should be further
explored. Possible improvements include improv-
ing the choice of linguistic information used and
using this work to explore how TQs’ functions are
portrayed in languages other than English.

Interesting future work would be to compare the
opposite approach to the task; augmenting source
sentences with disambiguating information prior
to translation, particularly within an NMT frame-
work, which has good potential for handling non-
local context and integrating extra features.
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Abstract

We present a method for translating texts
between close language pairs. The method
does not require parallel data, and it does
not require the languages to be written
in the same script. We show results
for six language pairs: Afrikaans/Dutch,
Bosnian/Serbian, Danish/Swedish, Mace-
donian/Bulgarian, Malaysian/Indonesian,
and Polish/Belorussian. We report BLEU
scores showing our method to outperform
others that do not use parallel data.

1 Introduction

Statistical Natural Language Processing (NLP)
tools often need large amounts of training data in
order to achieve good performance. This limits
the use of current NLP tools to a few resource-
rich languages. Assume an incident happens in
an area with a low-resource language, known as
the Incident Language (IL). For a quick response,
we need to build NLP tools with available data,
as finding or annotating new data is expensive and
time consuming. For many languages this means
that we only have a small amount of often out-of-
domain parallel data (e.g. a Bible or Ubuntu man-
ual), some monolingual data and almost no anno-
tation such as part of speech tags.

Fortunately, many low-resource languages have
one or more higher-resource, closely Related Lan-
guages (RL). Examples of such IL/RL pairs are
Afrikaans/Dutch and Bosnian/Serbian. A natural
idea is to use RL resources to improve the task
for IL. But this requires some kind of conversion
between RL and IL. Assume the required NLP ca-
pability is named entity tagging. If we can con-
vert RL to IL, we can convert all RL training data
along with annotations into IL and train the tagger
for IL. Or, if we can convert IL to RL we can use

the potentially existing RL named entity tagger on
converted IL data and project back the tags.

Following this idea, Currey et al. (2016) use
a rule-based translation system to convert Italian
and Portuguese into Spanish, to improve Span-
ish (here, IL) language modeling, Nakov and
Ng (2009) convert RL/English parallel data to
IL/English where both RL and IL have Latin or-
thography to improve IL/English machine trans-
lation. Hana et al. (2006) use cognates to
adapt Spanish resources to Brazilian Portuguese
to train a part-of-speech tagger. Mann and
Yarowsky (2001) use Spanish/Portuguese cog-
nates to convert an English/Spanish lexicon to En-
glish/Portuguese. These works prove the useful-
ness of RL data to improve NLP for IL, but they
are designed for specific tasks and IL/RL pairs.

In this paper we propose a universal method
for translating texts between closely related lan-
guages. We assume that IL and RL are mostly
cognates, having roughly the same word order.
Our method is orthography-agnostic for alphabetic
systems, and crucially, it does not need any paral-
lel data. From now on, we talk about converting
RL to IL, but the method does not distinguish be-
tween RL and IL; as mentioned above, each direc-
tion of translation can have its own potential uses.

To translate RL to IL, we train a character-based
cipher model and connect it to a word-based lan-
guage model. The cipher model is trained in a
noisy channel model where a character language
model produces IL characters and the model con-
verts them to RL. Expectation Maximization is
used to train the model parameters to maximize
the likelihood of a set of RL monolingual data.
At decoding time, the cipher model reads the RL
text character by character in which words are
separated by a special character, and produces a
weighted lattice of characters representing all the
possible translations for each of the input tokens.
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Figure 1: The process used for training the cipher
model and decoding RL text to IL

The word-based language model takes this lat-
tice and produces a sequence of output words that
maximize the language model score times the ci-
pher model score. Figure 1 depicts this process.

Our cipher models one-to-one, one-to-two and
two-to-one character mappings. This allows us to
handle cases like Cyrillic ‘q’ and Latin ‘ch’, and
also subtle differences in pronunciation between
RL and IL like Portuguese ‘justiça’ and Spanish
‘justicia’. Using a character-based cipher model
provides the flexibility to generate unseen words.
In other words, the vocabulary is limited by the
decoding LM, not the cipher model. Separation
of training and decoding language models enables
us to train the decoding LM on as much data as
is available without worrying about training speed
or memory issues. We can also transliterate out
of vocabulary words by spelling out the best path
produced by cipher model in case no good match
is found for a token in the decoding LM.

2 Related Work

Previous work on translation between related lan-
guages can be categorized into three groups:
Systems for specific language pairs such as
Czech-Slovak (Haji et al., 2000), Turkish-Crimean
Tatar (Cicekli, 2002), Irish-Scottish Gaelic (Scan-
nell, 2006), and Indonesian-Malaysian (Larasati
and Kubo, 2010). Another similar trend is trans-
lation between dialects of the same language like
Arabic dialects to standard Arabic (Hitham et al.,
2008; Sawaf, 2010; Salloum and Habash, 2010).
Also, work has been done on translating back the
Romanized version of languages like Greeklish to
Greek (Chalamandaris et al., 2006) and Arabizi to
Arabic (May et al., 2014). These methods can-
not be applied to our problem because time and
resources are limited to build a translation system
for the specific language pair.

Machine learning systems that use parallel
data: These methods cover a broader range of
languages but require parallel text between related
languages. They include character-level machine
translation (Vilar et al., 2007; Tiedemann, 2009) or
combination of word-level and character-level ma-
chine translation (Nakov and Tiedemann, 2012)
between related languages.

Use of non-parallel data: Cognates can be
extracted from monolingual data and used as a
parallel lexicon (Hana et al., 2006; Mann and
Yarowsky, 2001; Kondrak et al., 2003). However,
our task is whole-text transformation, not just cog-
nate extraction.

Unsupervised deciphering methods, which re-
quire no parallel data, have been used for bilin-
gual lexicon extraction and machine translation.
Word-based deciphering systems ignore sub-word
similarities between related languages (Koehn and
Knight, 2002; Ravi and Knight, 2011b; Nuhn
et al., 2012; Dou and Knight, 2012; Ravi, 2013).
Haghighi et al. (2008) and Naim and Gildea
(2015) propose models that can use orthographic
similarities. However, the model proposed by
(Naim and Gildea, 2015) is only capable of pro-
ducing a parallel lexicon and not translation. Fur-
thermore, both systems require the languages to
have the same orthography and their vocabulary is
limited to what they see during training.

Character-based decipherment is the model we
use for solving this problem. Character-based
decipherment has been previously applied to
problems like solving letter substitution ciphers
(Knight et al., 2006; Ravi and Knight, 2011a)
or transliterating Japanese katakana into English
(Ravi and Knight, 2009), but not for translating
full texts between related languages.

3 Translating RL to IL

We learn a character-based cipher model for trans-
lating RL to IL. At decoding, this model is com-
bined with a word based IL language model to pro-
duce IL text from RL.

3.1 Cipher Model
Our noisy-channel cipher model converts a se-
quence of IL characters s1, ..., sn to a sequence of
RL characters t1, ..., tm. It is a WFST composed
of three components (Figure 2):

WFST1 is a one-to-one letter substitution
model. For each IL character s it writes one RL
character t with probability p1(t|s).
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s,ϵ,1

s′,ϵ,1

...

ϵ,t,p3

ϵ,ϵ,γ

ϵ,ϵ,α

ϵ,ϵ,β

ϵ,t,p1

ϵ,t,p21 ϵ,t′,p22

_,_,1

Figure 2: Part of the cipher model correspond-
ing to reading IL character s from start state. The
same pattern repeats for any IL character. After
reading s, the model goes to WFST1, WFST2, or
WFST3 with respective probability α(s), β(s), or
γ(s). In WFST1, the model produces each RL
character t with probability p1(t|s). In WFST2,
the model produces each two RL characters t
and t′ with probability p21(t|s) and p22(t

′|s). In
WFST3, the model reads each IL character s′

and produces each RL character t with probability
p3(t|ss′). From the last state of WFST1, WFST2,
and WFST3, the model returns to the start state
without reading or writing.The model has a loop
on start state that reads and writes space.

WFST2 is a one-to-two letter substitution
model. For each IL character s, it writes two
RL characters t and t′ with respective probabili-
ties p21(t|s) and p22(t

′|s).
We assume p22(t

′|s) is independent of t.
As a result we can estimate p(tt′|s) =
p(t|s)p(t′|t, s) ≃ p21(t|s)p22(t

′|s) as modeled in
WFST2. This simplification is required to make
the model practicable. Otherwise, the size of the
cipher model would become cubic in the number
of RL and IL characters, and combining it with a
language model would make the system unfeasi-
bly large for training.

WFST3 is a two-to-one letter substitution ci-
pher. For each IL character s, it reads another
IL character s′ with probability 1, and then writes
one RL character t with probability p3(t|ss′). As
we will discuss in Section 3.2 we train p3 directly
from p21 and p22, hence the cubic number of pa-
rameters does not cause a problem.

The start state reads each IL character s and

goes to WFST1, WFST2, or WFST3 with respec-
tive probability α(s), β(s), or γ(s). The last state
of each component returns to start without reading
or writing anything. The start state also reads and
writes space with probability one.

3.2 Training the Model
The cipher model described in Section 3.1 is much
more flexible than a one-to-one letter substitution
cipher. A few thousand sentences of RL mono-
lingual data is not enough to train the model as
a whole, and more training data makes the pro-
cess too slow to be practical. Hence, we break the
full model into WFST1, WFST2, and WFST3 and
train the parameters of each component, i.e. p1,
p21 and p22, and p3 in separate steps. A final step
trains the probability of moving into each of the
components, i.e. α, β, and γ.

Each step of the training uses EM algorithm to
maximize the likelihood of 500 sentences of RL
text in a noisy channel model where a fixed 5-
gram character based IL language model (trained
on 5000 IL sentences) produces an IL text charac-
ter by character and the cipher model converts RL
characters into RL (top section of Figure 1).

Step one: We set α(s) = 1 and β(s) = γ(s) =
0 and train p1IL→RL(t|s) for each IL character
s and each RL character t. In parallel we re-
verse RL and IL and train p1RL→IL(s|t) for each
RL character t and each IL character s. We use
p1(t|s) =

1

2
(p1IL→RL(t|s) + p1RL→IL(s|t)) to

set WFST1 parameters in the next steps.
Step two: We set α(s) = β(s) = 1

2 and
γ(s) = 0, fix p1 and train p21IL→RL(t|s) and
p22IL→RL(t′|s) for each IL character s and each
pair of RL characters t and t′. In parallel we
reverse RL and IL and train p21RL→IL(s|t) and
p22RL→IL(s′|t) for each RL character t and each
pair of IL characters s and s′.

Step three: Our cipher model has to decide af-
ter reading one IL character if it will perform a
one-to-one, one-to-two or two-to-one mapping. In
the first two scenarios the model has enough infor-
mation to decide, but for the two-to-one mapping
the model has to decide before reading the sec-
ond IL character. For instance, consider convert-
ing Bosnian to Serbian. When the model reads the
character “c” it has to decide between one-to-one,
one-to-two and two-to-one mappings. A good de-
cision will be two-to-one mapping because “ch”
maps to q, hence the system learns a large γ for
character “c” but the same γ applies to any other
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afr dut bel pol bos srb dan swe mkd bul mal ind
#sent. 0.9M 4M 1.9M 4M 0.8M 1.6M 4M 4M 0.9M 2.1M 0.4M 4M
#tok. 19M 74M 26M 58M 17M 29M 71M 70M 16M 33M 8M 75M

Table 1: Size of monolingual data available for each language. IL and RL are presented in pairs, IL first.

character that follows “c” which is not desirable.
One way to overcome this problem is to change

the model to make the decision after reading two
IL characters, but this will over-complicate the
model. We use a simpler trick instead. We
compute p3IL→RL(t|ss′) from p21RL→IL(s|t) and
p22RL→IL(s′|t) using Bayes rule:

p3(t|ss′) =
p(ss′|t)p(t)

p(ss′)
≃ p21(s|t)p22(s

′|t)p(t)

p(ss′)
(1)

The estimate is based on our assumption from the
previous step that p22(s

′|t) is independent of s.
For each RL character t we compute the empirical
probability p(t) from monolingual data and p(ss′)
is the normalization factor.

We set p3 parameters using equation (1), but be-
fore normalizing we manually prune the probabili-
ties. If for IL characters s and s′ there exists no RL
character t such that p21(s|t)p22(s

′|t)p(t) > 0.01
we assume that ss′ does not map to any RL char-
acter. Otherwise, we only keep RL characters for
which p21(s|t)p22(s

′|t)p(t) > 0.01 and then ap-
ply the normalization.

Step four: In the final step we fix p1, p21, p22,
and p3 to the trained values and train α(s), β(s),
and γ(s) for each IL character s.

3.3 Decoding

In the decoding step we compose the cipher
WFST with an IL word based language model
WFST and find the best path for the input sen-
tence in the resulting WFST (bottom section of
Figure 1). If the best path has a high enough
score the model outputs the corresponding IL to-
ken. Otherwise it outputs the highest scored char-
acter sequence produced by the cipher model as
and OOV. In our experiments we use 1-gram and
2-gram language models trained on all the existing
IL monolingual data (Table 1).

4 Data
We collect data for six pairs of related languages:
Afrikaans(afr) / Dutch(dut), Bosnian(bos) / Ser-
bian(srb), Danish(dan) / Swedish(swe), Macedo-
nian(mkd) / Bulgarian(bul), Malaysian(mal) / In-
donesian(ind), and Polish(pol) / Belorussian(bel).

For each language, we download the monolin-
gual data from Leipzig corpora (Goldhahn et al.,
2012). The domain of the data is news, web, and
Wikipedia. We consider the language with more
data as RL and the one with less data as IL. Table 1
shows the size of available data for each language.

We also extract the list of alphabets for each lan-
guage from Wikipedia, and collect the Universal
Declaration of Human Rights (UDHR) for each IL
and RL. We manually sentence align these docu-
ments and get 104 sentences and about 1.5K to-
kens per language. We use these documents for
testing the conversion accuracy.

We tokenize and lowercase all the monolin-
gual, parallel and UDHR data with Moses scripts.
We remove all non-alphabetic characters from
each text according to the alphabet extracted from
Wikipedia. This includes numbers, punctuations,
and rare/old characters that are not considered as
official characters of the language. We keep all the
accented variations of characters.

5 Experiments

We translate the UDHR between the related lan-
guages using the following methods:
Copy: Copying the text. This is not applicable for
languages with different orthography.
LS: One-to-one Letter Substitution cipher. This
is equivalent to using WFST1 without a decoding
language model.
LS+1g LM: One-to-one letter substitution cipher
with a 1-gram word language model at decoding.
PM+1g LM, PM+2g LM: The Proposed Method
with respectively 1-gram and 2-gram word lan-
guage model at decoding.

Results are reported for both directions of trans-
lation in Tables 2, and 3. For all the language pairs
except Malaysian(mal) / Indonesian(ind), the pro-
posed method is the best model with a large mar-
gin. Malaysian/Indonesian is a special case where,
although the languages have a different vocabulary
and a slightly different grammar, they have a com-
mon alphabet, and almost all of their cognates are
exactly the same. See Figure 3 for an example. As
a result the proposed method cannot learn much
more than copying.
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afr→dut bel→pol bos→srb dan→swe mkd→bul mal→ind
Copy 1.9 / 29.1 - / - - / - 1.2 / 17.6 5.6 / 34.2 10.0 / 42.7

LS 1.9 / 29.1 0.0 / 7.9 33.2 / 59.4 1.3 / 20.7 9.1 / 39.1 10.0 / 42.7

LS+1g LM 2.9 / 33.3 0.7 / 15.1 32.8 / 59.2 4.5 / 31.3 9.1 / 39.1 10.3 / 43.1

PM+1g LM 4.1 / 36.3 0.0 / 21.8 39.9 / 64.6 6.4 / 36.5 11.8 / 43.3 10.4 / 42.8

PM+2g LM 4.3 / 36.2 1.9 / 24.2 39.2 / 64.4 6.9 / 38.8 11.9 / 43.0 10.4 / 42.8

Table 2: BLEU scores for IL-to-RL translation of UDHR text. Format is BLEU4/BLEU1. Polish /
Belorussian and Serbian / Bosnian have different orthographies hence copying is not applicable.

dut→afr pol→bel srb→bos swe→dan bul→mkd ind→mal
Copy 1.9 / 25.0 - /- - / - 1.2 / 18.7 5.6 / 33.5 10.0 / 41.6

LS 2.13 / 26.5 0.0 / 12.8 33.3 / 60.6 1.3 / 20.7 5.94 / 34.6 10.0 / 41.6

LS+1g LM 3.07 / 27.6 0.7 / 19.7 33.0 / 60.5 3.8 / 32.7 6.9 / 37.6 10.1 / 41.7

PM+1g LM 3.9 / 29.4 1.3 / 23.7 42.3 / 67.8 7.7 / 41.1 9.4 / 40.6 10.1 / 41.7

PM+2g LM 5.2 / 31.2 1.9 / 25.2 42.3 / 67.8 7.6 / 41.2 10.2 / 41.3 10.0 / 41.7

Table 3: BLEU scores for RL-to-IL translation of UDHR text. Format is BLEU4/BLEU1. Polish /
Belorussian and Serbian / Bosnian have different orthographies hence copying is not applicable.

mal: semua manusia dilahirkan bebas dan samarata dari segi kemuliaan dan hakhak
ind: semua orang dilahirkan merdeka dan mempunyai martabat dan hakhak yang sama

Figure 3: First sentence of the first article of UDHR in Malaysian (mal) and Indonesian (ind). These
languages have a different vocabulary, but their cognates (shown in bold) are exact matches.

afr: alle menslike wesens word vry met gelyke -- waardigheid en regte
a2d: alle menslike wezens werd vrij met gelijke -- waardigheid en rechte
dut: alle mensen ------ worden vrij en gelijk in waardigheid en rechten
afr2en: all human beings are free with equal -- dignity and rights
a2d2en: all human beings were free with equal -- dignity and straight
dut2en: all people ------ are free and equal in dignity and rights

Figure 4: First sentence of the first article of UDHR in Afrikaans (afr), Dutch (dut) and its conversion
from Afrikaans to Dutch using PM+2-gram LM (a2d), along with their translations to English.

The proposed method translates between Ser-
bian (srb) and Bosnian (bos) almost perfectly. For
other pairs, we translate between a quarter and
half of the words correctly, but we get few of the
higher n-grams. Figure 4 visualizes the conversion
of the first sentence of the first article of UDHR
from Afrikaans (afr) to Dutch (dut) using PM+2g
LM (4.3 BLEU4, 36.2 BLEU1). Observe that 4
out of 10 tokens are translated correctly, close to
the 36.2 BLEU1 score, and there is no 3 or 4-
gram match. For other tokens except “menslike”
the translation is either correct but non-existent
in the dutch sentence (wezens = beings, met =
with) or has a meaning similar enough that can
be useful in the downstream applications (werd =
were v.s. worden = are, gelijke = equal(noun) v.s.
gelijk = equal(adjective), rechte = straight/right
v.s. rechten = rights). The token “menslike” in
a2d is an OOV. The model is not able to convert
“menslike” (afr) to “mensen” (dut). The language

model does not accept other potential conversions
and passes out “menslike” (a2d) as the best output
of the cipher model.

6 Conclusion

In this paper we present a method for translat-
ing texts between closely related languages with
potentially different orthography, without needing
any parallel data. The only requirement is a few
thousand lines of monolingual data for each lan-
guage and a word language model for the target.
Our experiments on six language pairs show the
proposed method outperforms others that do not
use parallel data.

Acknowledgments

This work was supported by DARPA contract
HR0011-15-C-0115. The authors would like to
thank Marjan Ghazvininejad, Ulf Hermjakob and
Jonathan May for their comments and suggestions.

2517



References
Aimilios Chalamandaris, Athanassios Protopapas, Pir-

ros Tsiakoulis, and Spyros Raptis. 2006. All Greek
to me! An automatic Greeklish to Greek translitera-
tion system. In Proc. LREC.

Ilyas Cicekli. 2002. A machine translation system be-
tween a pair of closely related languages. In Proc.
ISCIS.

Anna Currey, Alina Karakanta, and Jonathan Poitz.
2016. Using related languages to enhance statisti-
cal language models. In Proc. NAACL.

Qing Dou and Kevin Knight. 2012. Large scale deci-
pherment for out-of-domain machine translation. In
Proc. EMNLP.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the
Leipzig corpora collection: From 100 to 200 Lan-
guages. In Proc. LREC.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Klein Dan. 2008. Learning bilingual lexicons
from monolingual corpora. In Proc. ACL.

Jan Haji, Hric Jan, and Kubo Vladislav. 2000. Machine
translation of very close languages. In Proc. ANLP.

Jirka Hana, Anna Feldman, Chris Brew, and Luiz Ama-
ral. 2006. Tagging Portuguese with a Spanish tagger
using cognates. In Proc. ACL workshop on Cross-
Language Knowledge Induction.

Abo Bakr Hitham, Khaled Shaalan, and Ibrahim
Ziedan. 2008. A hybrid approach for converting
written Egyptian colloquial dialect into diacritized
Arabic. In Proc. INFOS.

Kevin Knight, Anish Nair, Nishit Rathod, and Kenji
Yamada. 2006. Unsupervised analysis for decipher-
ment problems. In Proc. COLING.

Philipp Koehn and Kevin Knight. 2002. Learning a
translation lexicon from monolingual corpora. In
Proc. ACL workshop on Unsupervised lexical acqui-
sition.

Grzegorz Kondrak, Daniel Marcu, and Kevin Knight.
2003. Cognates can improve statistical translation
models. In Proc. NAACL.

Septina Dian Larasati and Vladislav Kubo. 2010. A
study of Indonesian-to-Malaysian MT system. In
Proc. MALINDO workshop.

Gideon S Mann and David Yarowsky. 2001. Multipath
translation lexicon induction via bridge languages.
In Proc. NAACL.

Jonathan May, Yassine Benjira, and Abdessamad Echi-
habi. 2014. An Arabizi-English social media statis-
tical machine translation system. In Proc. AMTA.

Iftekhar Naim and Daniel Gildea. 2015. Feature-based
decipherment for large vocabulary machine transla-
tion. In arXiv.

Preslav Nakov and Hwee Tou Ng. 2009. Improved
statistical machine translation for resource-poor lan-
guages using related resource-rich languages. In
Proc. EMNLP.

Preslav Nakov and Jörg Tiedemann. 2012. Combin-
ing word-level and character-level models for ma-
chine translation between closely-related languages.
In Proc. ACL.

Malte Nuhn, Arne Mauser, and Hermann Ney. 2012.
Deciphering foreign language by combining lan-
guage models and context vectors. In Proc. ACL.

Sujith Ravi. 2013. Scalable decipherment for machine
translation via hash sampling. In Proc. ACL.

Sujith Ravi and Kevin Knight. 2009. Learning
phoneme mappings for transliteration without par-
allel data. In Proc. ACL.

Sujith Ravi and Kevin Knight. 2011a. Bayesian infer-
ence for Zodiac and other homophonic ciphers. In
Proc. ACL.

Sujith Ravi and Kevin Knight. 2011b. Deciphering for-
eign language. In Proc. ACL.

Wael Salloum and Nizar Habash. 2010. Dialectal to
standard Arabic paraphrasing to improve Arabic-
English statistical machine translation. In Proc. ACL
workshop on algorithms and resources for modeling
of dialects and language varieties.

Hassan Sawaf. 2010. Arabic dialect handling in hybrid
machine translation. In Proc. AMTA.

Kevin P. Scannell. 2006. Machine translation for
closely related language pairs. In Proc. LREC Work-
shop on Strategies for developing machine transla-
tion for minority languages.

Jörg Tiedemann. 2009. Character-based PSMT for
closely related languages. In Proc. EAMT .

David Vilar, Jan-T. Peter, and Hermann Ney. 2007.
Can we translate letters? In Proc. ACL workshop
on Statistical Machine Translation.

2518



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2519–2528
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Identifying Cognate Sets Across Dictionaries of Related Languages

Adam St Arnaud
Dept of Computing Science

University of Alberta
ajstarna@ualberta.ca

David Beck
Dept of Linguistics

University of Alberta
dbeck@ualberta.ca

Grzegorz Kondrak
Dept of Computing Science

University of Alberta
gkondrak@ualberta.ca

Abstract

We present a system for identifying cog-
nate sets across dictionaries of related lan-
guages. The likelihood of a cognate re-
lationship is calculated on the basis of a
rich set of features that capture both pho-
netic and semantic similarity, as well as
the presence of regular sound correspon-
dences. The similarity scores are used
to cluster words from different languages
that may originate from a common proto-
word. When tested on the Algonquian lan-
guage family, our system detects 63% of
cognate sets while maintaining cluster pu-
rity of 70%.

1 Introduction

Cognates are words in related languages that have
originated from the same word in an ancestor lan-
guage; for example English earth and German
Erde. On average, cognates display higher pho-
netic and semantic similarity than random word
pairs between languages that are indisputably re-
lated (Kondrak, 2013). The term cognate is some-
times used within computational linguistics to de-
note orthographically similar words that have the
same meaning (Nakov and Tiedemann, 2012). In
this work, however, we adhere to the strict linguis-
tic definition of cognates and aim to distinguish
them from lexical borrowings by detecting regular
sound correspondences.

Cognate information between languages is crit-
ical to the field of historical and comparative lin-
guistics, where it plays a central role in determin-
ing the relations and structures of language fami-
lies (Trask, 1996). Automated phylogenetic recon-
structions often rely on cognate information as in-
put (Bouchard-Côté et al., 2013). The percentage
of shared cognates can also be used to estimate the
time of pre-historic language splits (Dyen et al.,

1992). While cognates are valuable to linguists,
their identification is a time-consuming process,
even for experts, who have to sift through hun-
dreds or even thousands of words in related lan-
guages. The languages that are the least well stud-
ied, and therefore the ones in which historical lin-
guists are most interested, often lack cognate in-
formation.

A number of computational methods have been
proposed to automate the process of cognate iden-
tification. Many of the systems focus on iden-
tifying cognates within classes of semantically
equivalent words, such as Swadesh lists of basic
concepts. Those systems, which typically con-
sider only the phonetic or orthographic forms of
words, can be further divided into the ones that
operate on language pairs (pairwise) vs. multilin-
gual approaches. However, because of seman-
tic drift, many cognates are no longer exact syn-
onyms, which severely limits the effectiveness of
such systems. For example, a cognate pair like En-
glish bite and French fendre “to split” cannot be
detected because these words are listed under dif-
ferent basic meanings in the Comparative Indoeu-
ropean Database (Dyen et al., 1992). In addition,
the number of basic concepts is typically small.

In this paper, we address the challenging task of
identifying cognate sets across multiple languages
directly from dictionary lists representing related
languages, by taking into account both the forms
of words and their dictionary definitions (c.f. Fig-
ure 1). Our methods are designed for less-studied
languages — we assume only the existence of ba-
sic dictionaries containing a substantial number of
word forms in a semi-phonetic notation, with the
meaning of words conveyed using one of the major
languages. Such dictionaries are typically created
before Bible translations, which have been accom-
plished for most of the world’s languages.

While our approach is unsupervised, assuming
no cognate sets from the analyzed language fam-
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aːyweːpiwin ease, rest
kaːskipiteːw he pulls him scraping
mihkweːkin red cloth
…

ahkawaːpiwa he watches
meškweːkenwi red woolen handcloth
yoːwe earlier, before
…

iːnekænok they are so big, tall
kaːskeponæːw he scratches him
mæhkiːkan red flannel
…

aːnweːpiwin rest, repose
kaːškipin scrape, claw
miskweːkin red cloth
…

C

F

M

O

C  aːyweːpiwin ease, rest
O  aːnweːpiwin rest, repose

C  mihkweːkin red cloth
F  meškweːkenwi red woolen handcloth
M  mæhkiːkan red flannel
O  miskweːkin red cloth

C  kaːskipiteːw he pulls him scraping
M  kaːskeponæːw he scratches him
O  kaːškipin scrape, claw

42

1725

872

Figure 1: Example of multilingual cognate set identification across four Algonquian dictionaries: Cree
(C), Fox (F), Menominee (M) and Ojibwa (O). Cognate set numbers are shown on the right.

ily to start with, it incorporates supervised ma-
chine learning models that either leverage cognate
data from unrelated families, or use self-training
on subsets of likely cognate pairs. We derive
two types of models to classify pairs of words
across languages as either cognate or not. The
language-independent general model employs a
number of features defined on both word forms
and definitions, including word vector representa-
tions. The additional specific models exploit regu-
lar sound correspondences between specific pairs
of languages. The scores from the general and
specific models inform a clustering algorithm that
constructs the proposed cognate sets.

We evaluate our system on dictionary lists that
represent four indigenous North American lan-
guages from the Algonquian family. On the task
of pairwise classification, we achieve a 42% error
reduction with respect to the state of the art. On
the task of multilingual clustering, our system de-
tects 63% of gold sets, while maintaining a cluster
purity score of 70%. The system code is publicly
available.1

2 Related Work

Most previous work in automatic cognate identi-
fication only consider words as cognates if they
have identical definitions. As such, they make lim-
ited or no use of semantic information. The sim-
plest variant of this task is to make pairwise cog-
nate classifications based on orthographic or pho-

1https://github.com/ajstarna/SemaPhoR

netic forms. Turchin et al. (2010) apply a heuris-
tic based on consonant classes to identify the ratio
of cognate pairs to non-cognate pairs between lan-
guages in an effort to determine the likelihood that
they are related. Ciobanu and Dinu (2013) find
cognate pairs by referring to dictionaries contain-
ing etymological information. Rama (2015) ex-
periments with features motivated by string ker-
nels for pairwise cognate classification.

A more challenging version of the task is to
cluster cognates within lists of words that have
identical definitions. Hauer and Kondrak (2011)
use confidence scores from a binary classifier that
incorporates a variety of string similarity features
to guide an average score clustering algorithm.
Hall and Klein (2010, 2011) define generative
models that model the evolution of words along
a phylogeny according to automatically learned
sound laws in the form of parametric edit dis-
tances. List and Moran (2013) propose an ap-
proach based on sound class alignments and an av-
erage score clustering algorithm. List et al. (2016)
extend the approach to include partial cognates
within word lists.

Cognate identification that considers semantic
information is a less-studied problem. Again, the
task can be framed as either a pairwise classifi-
cation or multi-lingual clustering. In a pairwise
context, Kondrak (2004) describes a system for
identifying cognates between language dictionar-
ies which is based on phonetic similarity, com-
plex multi-phoneme correspondences, and seman-
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tic information. The method of Wang and Sitbon
(2014) employs word sense disambiguation com-
bined with classic string similarity measures for
finding cognate pairs in parallel texts to aid lan-
guage learners.

Finally, very little has been published on creat-
ing cognate sets based on both phonetic and se-
mantic information, which is the task that we fo-
cus on in this paper. Kondrak et al. (2007) com-
bine phonetic and sound correspondence scores
with a simple semantic heuristic, and create cog-
nate sets by using graph-based algorithms on con-
nected components. Steiner et al. (2011) aim at
a fully automated approach to the comparative
method, including cognate set identification and
language phylogeny construction. Neither of those
systems and datasets are publicly available for the
purpose of direct comparison to our method.

3 Methods

In this section, we describe the design of our
language-independent general model, as well as
the language-specific models. Given a pair of
words from related languages, the models produce
a score that reflects the likelihood of the words
being cognate. The models are implemented as
Support Vector Machine (SVM) classifiers via the
software package SVM-Light (Joachims, 1999).
The scores from both types of models are used to
cluster words from different languages into cog-
nate sets.

3.1 Features of the General Model

The general model is a supervised classifier that
makes cognate judgments on pairs of words ac-
companied by their semantic definitions. The
model is intended to be language-independent, so
that it can be trained on cognate annotations from
well-studied languages, and applied to completely
unrelated families. The features of the general
model are of two kinds: phonetic, which pertain
to the analyzed word forms, and semantic, which
refer to their definitions.

The phonetic features are defined on the word
forms, represented in ASJP format (Brown et al.,
2008), which is a simplified phonetic representa-
tion.

• Normalized edit distance is calculated at the
character level, and normalized by the length
of the longer word.

• LCSR is the longest common subsequence ra-
tio of the words.

• Alignment score reflects an overall phonetic
similarity, provided by the ALINE phonetic
aligner (Kondrak, 2009).

• Consonant match returns the number of
aligned consonants normalized by the num-
ber of consonants in the longer word.

For example, consider the words meškwe:kenwi
and mæhki:kan (meSkwekenwi and mEhkikan in
ASJP notation) from cognate set 1725 in Figure 1.
The corresponding values for the above four fea-
tures are 0.364, 0.364, 0.523, and 0.714, respec-
tively.

The semantic features refer to the dictionary
definitions of words. We assume that the defini-
tions are provided in a single meta-language, such
as English or Spanish. We consider not only a def-
inition in its entirety, but also its sub-definitions,
which are separated by commas and semicolons.
We distinguish between a closed class of about
300 stop words, which express grammatical re-
lationships, and an open class of content words,
which carry a meaning. Filtering out stopwords re-
duces the likelihood of spurious matches between
dictionary definitions.

Our semantic features can be divided into those
that focus on surface definition resemblance, and
those that attempt to detect the affinity of meaning.
The features of the first type are the following:

• Sub-definition match denotes an exact match
between any of the word sub-definitions (c.f.
set 42 of Figure 1).

• Sub-definition content match is performed af-
ter removing stop words from definitions.

• Normalized word-level edit distance calcu-
lates the minimum distance between sub-
definitions at the level of words, normalized
by the length of the longer sub-definition.

• Content overlap fires if any sub-definitions
have at least one content word in common.

The second type of semantic features are aimed
at detecting deeper meaning connections between
definitions. We use WordNet (Fellbaum, 1998)
to identify the relations of synonymy and hyper-
nymy, and to associate different inflectional forms
of words. The WordNet-based features are as fol-
lows:
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• Synonym overlap indicates a WordNet syn-
onymy relation between content words across
sub-definitions (e.g. “ease” and “repose”).

• Hypernym overlap indicates a WordNet hy-
pernymy relation between content words
across sub-definitions (e.g. “flannel” and
“cloth”).

• Inflection overlap is a feature that associates
inflectional variants of content words (e.g.
“scrape” and “scraping”).

• Inflection synonym overlap indicates a syn-
onymy relation between lemmas of content
words (e.g. “scratches” and “scraping”).

• Inflection hypernym overlap is defined analo-
gously to the inflection synonym overlap fea-
ture.

In order to detect subtle definition similarity that
goes beyond inflectional variants and simple se-
mantic relations, we add two features designed to
take advantage of recent advances in word vec-
tor representations. The two vector-based features
are:

• Vector cosine similarity is the cosine sim-
ilarity between the two vectors that repre-
sent the average of each vector within a sub-
definition.

• Content vector cosine similarity is analogous,
but only includes content words.

As an example, consider the definitions “he is
in mourning” and “she is widowed,” from Table 5,
which do not fire any of the WordNet-based fea-
tures. Using the entire definitions yields a vec-
tor cosine similarity of 0.566, while considering
only the content words “mourning” and “wid-
owed” produces a feature value of 0.146.

3.2 Regular Correspondences
The features described in the previous section
are language-independent, but we would also like
to take into account cognate information that is
specific to pairs of languages, namely regular
sound correspondences. For example, th/d is a
sound correspondence between English and Ger-
man, occurring in words such as think/denken and
leather/Leder. A model trained on another lan-
guage family would not be able to learn that a cor-
responding th and d is an important indicator of
cognation in English/German pairs.

For each language pair, we derive a specific
model by implementing the approach of Bergsma
and Kondrak (2007). As features, we extract pairs
of substrings, up to length 3, that are consistent
with the alignment induced by the minimum edit
distance algorithm. The models are able to learn
when a certain substring in one language corre-
sponds to a certain substring in another language.

In order to train the specific models, we need
a substantial number of cognate pairs, which are
not initially available in our unsupervised setting.
We use a heuristic method to overcome this lim-
itation. We create sets of words that satisfy the
following two constraints: (1) identical dictionary
definition, and (2) identical first letter. For ex-
ample, this heuristic will correctly cluster the two
words defined as “red cloth” in Figure 1, but will
miss the two other cognates from Set 1725. We
ensure that every set contains words from at least
two languages. The resulting word sets are mu-
tually exclusive, and contain mostly cognates. (In
fact, we use this method as our baseline in the Ex-
periments section.) We extract positive training
examples from these high-precision sets, and cre-
ate negative examples by sampling random entries
from the language dictionaries. A separate specific
model is learned for each language pair in order to
capture regular sound correspondences. Note that
the specific models include no semantic features.
We combine the specific models with the general
model by simply averaging their respective scores.

3.3 Cognate Clustering

We apply our general and specific models to score
pairs of words across languages. Featurizing all
possible pairs of words from all languages is very
time consuming, so we first filter out dissimilar
word pairs that obtain a normalized score below
0.35 from ALINE. In development experiments,
we observed that over 95% of cognate pairs ex-
ceed this threshold.

Once pairwise scores have been computed, we
cluster words into putative cognate sets using a
variant of the UPGMA clustering algorithm (Sokal
and Michener, 1958), which has been used in pre-
vious work on cognate clustering (Hauer and Kon-
drak, 2011; List et al., 2016). Initially, all words
are placed into their own cluster. The score be-
tween clusters is computed as the average of all
pairwise scores between the words within those
clusters. In each iteration, the two clusters with
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the highest average score are merged. For effi-
ciency reasons, only positive scores are included
in the pairwise similarity matrix, which implies
that merges are only performed if all pairwise
scores between two clusters are positive. The al-
gorithm terminates when no pair of clusters have
a positive average score.

4 Experiments

In this section, we discuss two evaluation exper-
iments. After describing the datasets, we com-
pare our cognate classifier to the current state of
the art in pairwise classification. We then consider
the evaluation metrics for our main task of cog-
nate set recovery from raw language dictionaries,
which is followed by the results on the Algonquian
dataset. We refer to our system as SemaPhoR, to
reflect the fact that it exploits three kinds of ev-
idence: Semantic, Phonetic, and Regular Sound
Correspondences.

4.1 Data Sets

Our experiments involve three different language
families: Algonquian, Polynesian, and Totonacan.

The Algonquian dataset consists of four dic-
tionary lists (c.f. Figure 1) compiled by Hewson
(1993) and normalized by Kondrak (2004). We
convert the phonetic forms into a Unicode en-
coding. The gold-standard annotation consists
of 3661 cognate sets, which were established by
Hewson on the basis of the regular correspon-
dences identified by Bloomfield (1946). The
dataset contains as many as 22,747 unique defini-
tions, which highlights the difference between our
task and previous work in cognate identification
within word lists, where cognate relationships are
restricted to a limited set of basic concepts.

The second dataset corresponds to a version
of POLLEX, a large-scale comparative dictionary
of over 60 Polynesian languages (Greenhill and
Clark, 2011). Table 1 shows that nearly 99% of
words in the POLLEX dataset belong to a cognate
set, meaning that it is composed almost entirely
of cognate sets rather than language dictionaries.
This makes the POLLEX dataset unsuitable for
system evaluation; however, we use it to train our
general classifier, by randomly selecting 25,000
cognate and 250,000 non-cognate word pairs. For
calculating our word vector based features, we use
the Python package gensim (Řehůřek and Sojka,
2010) applied to word vectors pre-trained on ap-

Family Lang. Entries Sets Cognates
Algonquian 4 26,985 3,661 8,675
Polynesian 62 27,049 3,690 26,699
Totonacan 10 43,073 ? ?

Table 1: The number of languages, total dictionary
entries, cognate sets, and cognate words for each
language family.

proximately 100 billion English words using the
approach of Mikolov et al. (2013).2 The posi-
tive training instances are constrained to involve
languages that belong to different Polynesian sub-
families.

The final dataset consists of 10 dictionaries of
the Totonacan language family spoken in Mexico.
Since the definitions of the Totonacan dictionar-
ies are in Spanish, we use the Spanish WordNet,
a list of 200 stop words, and approximately 1 bil-
lion pre-trained Spanish word vectors (Cardellino,
2016) for this dataset.3 The Totonacan data is yet
to be fully analyzed by historical linguists, and as
such provides an important motivation for devel-
oping our system.

Although the Totonacan dataset includes no
cognate information, we manually evaluated a
number of candidate cognate sets generated by
our system in the development stage. From these
annotations, we created a pairwise development
set, including all possible 6755 cognate pairs and
67,550 randomly selected non-cognate pairs, and
used it for testing our general model that was
trained on the Polynesian dataset. The resulting
pairwise F-Score of 88.0% shows that our cognate
classification model need not be trained on the
same language family that it is applied to. More-
over, it confirms that our system can function on
datasets where definitions are written in a meta-
language that is different from the one used in the
training set.

4.2 Pairwise Classification Results

Although our main objective is multilingual clus-
tering, the goal of the first experiment is to com-
pare the effectiveness of our pairwise classifiers
against the system of Kondrak (2004), which was
designed to process one language pair at a time.
As much as possible, we try to follow the original
evaluation methodology, which reports 11-point
interpolated precision (Manning et al., 2008, page

2https://code.google.com/archive/p/word2vec
3http://crscardellino.me/SBWCE
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K-2004 SemaPhoR
Dev/Train: CO CO POLLEX

CO 78.7 84.8 82.3
CF 69.8 77.8 76.6
CM 61.8 78.4 80.5
FM 65.2 81.7 81.8
FO 69.5 83.3 79.3
MO 64.1 80.3 81.7

Average 66.1 80.3 80.0

Table 2: 11-Point interpolated precision on the Al-
gonquian noun dataset.

158) on lists of positively classified word pairs
that have been sorted according to their confidence
scores. We also use the same dataset, which is
limited to the nouns in the Algonquian data. As
the original system contained no machine-learning
component, it required no training data, but the
Cree-Ojibwa language pair served as the develop-
ment and tuning set.

We evaluate two variants of our general model:
one trained on the Cree-Ojibwa (CO) noun sub-
set, and another on the POLLEX dataset. The
language-specific models are trained on each re-
spective language pair, using the unsupervised
heuristic approach described in Section 3.2.

Table 2 shows the results on each language pair.
K-2004 denotes the results reported in Kondrak
(2004). The increase in the average 11-point pre-
cision on the five test sets (except Cree-Ojibwa)
from 66.1% to 80.3% represents an error reduc-
tion of 42%. This improvement demonstrates the
superiority of a machine learning approach with a
rich feature set over a categorical approach with
manually-tuned parameters. When our classifier
is trained instead on cognate data from an unre-
lated Polynesian language family, the average 11-
point precision on the test sets drops only slightly
to 80.0%, which confirms its generality.

The correspondence-based specific models con-
tribute towards the high accuracy of our system.
Without them, the average results on the test sets
decrease by 0.9% to 79.4% for the CO-trained
model, and by 3.0% to 77.0% for the POLLEX-
trained model. We conjecture that the language-
specific models are less helpful in the former case
because the general model already incorporates
much of the information that is particular to the
Algonquian family.

4.3 Evaluation Metrics for Clustering

The choice of evaluation metrics for multilingual
cognate clustering, which is our main task, re-
quires careful consideration. Pairwise F-score
works well for pairwise cognate classification, but
in the context of clustering, the number of word
pairs grows quadratically with the size of a set,
which creates a bias against smaller sets. For ex-
ample, a set containing 10 words may contribute
as much to the pairwise recall as 45 two-word sets.

For the task of clustering words with identi-
cal definitions, Hauer and Kondrak (2011) pro-
pose to use B-Cubed F-score (Bagga and Baldwin,
1998). However, we found that B-Cubed F-score
assigns counter-intuitive scores to clusterings in-
volving datasets of dictionary size, in which many
words are outside of any cognate set in the refer-
ence annotation. For example, on the Algonquian
dataset, a trivial strategy of placing each word into
its own cluster (MaxPrecision) would achieve a B-
Cubed F-Score of 89.6%.

In search for a better metric, we considered
MUC (Vilain et al., 1995), which is designed to
score co-reference algorithms. MUC assigns pre-
cision, recall and F-Score based on the number of
missing links in the proposed clusters. However, as
pointed out by Bagga and Baldwin (1998), when
penalizing incorrectly placed elements, MUC is
insensitive to the size of the cluster in question.
For example, a completely useless clustering of all
Algonquian words into one giant set (MaxRecall)
yields a higher MUC F-Score than most of the rea-
sonably effective approaches.

We believe that an appropriate measure of re-
call for a cognate clustering system is the total
number of found sets. A set that exists in the
gold annotation is considered found if any of the
words that belong to the set are clustered together
by the system. We report both partially and com-
pletely found sets. Arguably, the number of par-
tially found sets may be more important, as it is
easier for a linguist to extend a found set to other
languages than to discover the set in the first place.
In fact, a discovery of a single pair of cross-lingual
cognates implies the existence of a correspond-
ing proto-word in their ancestor language, which
is likely to have reflexes in the other languages of
the family.

As a corresponding measure of precision, we
report cluster purity, which has previously been
used to evaluate cognate clusterings by Hall and
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Klein (2011) and Bouchard-Côté et al. (2013). In
order to calculate purity, each output set is first
matched to a gold set with which it has the most
words in common. Then purity is calculated as
the fraction of total words that are matched to
the correct gold set. More formally, let G =
{G1, G2, ..., Gn} be a gold clustering and C =
{C1, C2, ..., Cm} be a proposed clustering. Then

purity(C,G) =
1

N

m∑

i=1

maxj |Gj ∩ Ci|

where N is the total number of words. The trade-
off between the number of found sets and clus-
ter purity gives a good idea of the performance
of a cognate clustering. For example, both of
the MaxRecall and MaxPrecision strategies men-
tioned above would obtain 100% scores according
to one of the measures, but close to 0% according
to the other.

4.4 Cognate Clustering Results
In our main experiment, we apply our system to
the task of creating cognate sets from the Algo-
nquian dataset. The general classification model
is trained on the POLLEX dataset, as described
in Section 4.2, while the language-specific mod-
els are derived following the procedure described
in Section 3.2. The scores from both models are
then used to guide the clustering process. Only
one word from each language is allowed per clus-
ter.

Since most work done in the area of cognate
clustering starts from semantically aligned word
lists, it is difficult to make a direct comparison.
We report the results obtained with LEXSTAT (List
and Moran, 2013).4 The system has no capability
to consider the degree of semantic similarity be-
tween words, so we first group together the words
that have identical definitions and provide these as
its input. As a baseline, we adopt the heuristic
described in Section 3.2, which creates sets from
words that have identical definitions and start with
the same letter.

Table 3 shows the results. LEXSTAT performs
slightly better than the heuristic baseline, but both
are limited by their inability to relate words that
have non-identical definitions. In fact, only 21.4%
of all gold cognate sets in the Algonquian dataset
contain at least two words with the same defi-
nition, which establishes an upper bound on the

4http://lingpy.org

System Found Sets Purity
Heuristic Baseline 18.9 (9.9) 96.4

LEXSTAT 19.6 (10.5) 97.1
SemaPhoR 63.1 (48.2) 70.3

Table 3: Cognate clustering results on the Algo-
nquian dataset (in %). The absolute percentage of
fully found sets is given in parentheses.

number of found sets for systems that are designed
to operate on word lists, rather than dictionaries.
For example, most of the cognates in Figure 1 can-
not be captured by such systems.

Our system, SemaPhoR, finds approximately
three times as many cognate sets as LEXSTAT, and
over 75% of those sets are complete with respect
to the gold annotation. In practical terms, our sys-
tem is able to provide concrete evidence for the
existence of most of the proto-words that have re-
flexes in the recorded languages, and identifies the
majority of those reflexes in the process. The pu-
rity of the produced clusters indicates that there
are many more hits than misses in the system out-
put. In addition, the clusters can be sorted accord-
ing to their confidence scores, in order to facilitate
the analysis of the results by an expert linguist.

5 Discussion

In this section, we interpret the results of our
feature ablation experiments, and analyze several
types of errors made by our system.

5.1 Feature Ablation

In order to determine the relative effect of the fea-
tures described in Section 3.1, we test four vari-
ants of the general model, which employ increas-
ingly complex subsets of features. The simplest
variant uses only the phonetic features that are de-
fined on the word forms. The next variant adds
the features that consider surface definition resem-
blance. The third variant also includes WordNet-
based semantic features. The final variant is the
full system configuration that incorporates the fea-
tures defined on word vector representations, but
without language-specific models.

Table 4 shows the results. The phonetic fea-
tures alone are sufficient to detect just over half
of the cognate sets. Each successive variant sub-
stantially improves the recall at a cost of slightly
lower precision. The full feature set yields a 27%
relative increase in the number of found sets over
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Features Found Sets Purity
Phonetic only 52.0 (36.3) 70.2
+ Definitions 57.4 (41.7) 68.4
+ WordNet 61.9 (46.9) 68.1
+ Word Vectors 66.2 (51.3) 66.5

Table 4: Cognate clustering results on the Algo-
nquian dataset (in %) with subsets of features.

the phonetic-only variant, with only a 5% drop in
cluster purity.

In comparison with our full system, which in-
corporates the language-specific models, the fi-
nal variant finds a greater number of the cognate
sets, but with a trade-off in overall precision (c.f.
SemaPhoR in Table 3). This shows that our sys-
tem is able to exploit regular sound correspon-
dences to filter out a substantial number of false
cognates, such as lexical borrowings or chance re-
semblances. However, the overall contribution of
the specific models is relatively small. One possi-
ble explanation is that the Algonquian languages
are relatively closely related, which enables the
general model to discern most of the cognate re-
lationships on the basis of phonetic and semantic
similarity. For example, many of the regular corre-
spondences detected by the specific models, such
as s:s and hk:kk, involve identical phonemes. The
impact of the specific models could be greater for
a more distantly-related language family.

5.2 Error Analysis

A number of omission errors can be traced to
the imperfect heuristic that constrains the positive
training instances for the language-specific mod-
els to begin with the same letter. Indeed, 88.1% of
Algonquian cognate sets are composed of words
that share the initial phoneme. While this con-
straint yields high-precision training sets that sat-
isfy the transitivity condition, it also introduces a
bias against cognates that differ in the first letter.

The second type of errors made by our system
are caused by semantic drift that has altered the
meaning of the original proto-word. For exam-
ple, “sickness” is difficult for our general model
to associate with “bitterness, pain.” On the other
hand, there are many instances where our system
is successful in identifying non-obvious semantic
similarity, often thanks to the word vector features
of our model. Table 5 provides examples of cog-
nates found by our system that would have been

C ma:ya:čite:he:w he is angry
M miana:četæhæ:w he is nauseated
C pi:sisiw he is in bits
O pi:ssisi he is ground up
C ayiwiskawe:w he is taller than someone else
O aniwiškaw precede, surpass someone
C si:ka:wiw he is in mourning
M se:kawew she is widowed

Table 5: Examples of cognates found with the as-
sistance of word vector features.

very difficult to identify without word vector tech-
nology.

A substantial number of apparent errors made
by our system are due to the complex polysyn-
thetic morphology of Algonquian, in which a
single Algonquian word can express a meaning
of several English words. A number of dis-
tinct cognate sets are highly similar in their def-
initions and phonetic forms. For example, our
system erroneously places the Menominee word
a:kuaqtæ:hsen into a cluster with two similar Cree
and Ojibwa words, instead of associating it with
the Ojibwa word a:kawa:tte:ššin (Table 6). Al-
though it could be argued that such closely-related
forms are all cognate, we refrain from modifying
any gold annotations, even if this negatively im-
pacts the overall accuracy of our system.

C a:kawa:ste:simo:w he lies down in the shade
O a:kawa:tte:ššimo:n be in the shadow
M a:kuaqtæ:hsen he is in the shade
O a:kawa:tte:ššin make shadow

Table 6: A clustering error due to morphology.

Finally, some apparent errors made by our sys-
tem may not be errors at all, but rather reflect the
incompleteness of the gold annotation. For exam-
ple, consider the two false positive pairs in Table
7. Even though they are not listed in Hewson’s
(1993) etymological dictionary, the exact defini-
tion match, coupled with striking phonetic simi-
larity and the presence of regular sound correspon-
dences strongly suggest that they are actually cog-
nates.

M pekuač growing wild
O pekwači growing wild
C niso:te:w twin
O ni:šo:te:nq twin

Table 7: Examples of proposed cognate sets that
are not found in the gold data.
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6 Conclusion

We have presented a comprehensive system for
the novel task of identifying cognate sets directly
from dictionaries of related languages by leverag-
ing both word forms and word definitions. To the
best of our knowledge, it is the first system to use
word vector representations for cognate identifi-
cation. The main insight from our work is that
a cognate classification model can be trained on
one language family, and achieve impressive re-
sults when classifying a completely unrelated lan-
guage family. This allows cognate information
from a high-resource language family to guide
cognate identification between languages that lit-
tle is known about.

There are aspects of cognate identification that
can only be detected by human experts, such as
cognates that have undergone extensive phonetic
and semantic changes, or large-scale lexical bor-
rowing between languages. However, we believe
that our system represents a step towards auto-
mated cognate identification, and will prove a use-
ful tool for historical linguists.
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Abstract

One central mystery of neural NLP is what
neural models “know” about their subject
matter. When a neural machine transla-
tion system learns to translate from one
language to another, does it learn the syn-
tax or semantics of the languages? Can
this knowledge be extracted from the sys-
tem to fill holes in human scientific knowl-
edge? Existing typological databases con-
tain relatively full feature specifications
for only a few hundred languages. Ex-
ploiting the existence of parallel texts in
more than a thousand languages, we build
a massive many-to-one neural machine
translation (NMT) system from 1017 lan-
guages into English, and use this to pre-
dict information missing from typological
databases. Experiments show that the pro-
posed method is able to infer not only syn-
tactic, but also phonological and phonetic
inventory features, and improves over a
baseline that has access to information
about the languages’ geographic and phy-
logenetic neighbors.1

1 Introduction

Linguistic typology is the classification of human
languages according to syntactic, phonological,
and other classes of features, and the investiga-
tion of the relationships and correlations between
these classes/features. This study has been a sci-
entific pursuit in its own right since the 19th cen-
tury (Greenberg, 1963; Comrie, 1989; Nichols,
1992), but recently typology has borne practical
fruit within various subfields of NLP, particularly
on problems involving lower-resource languages.

1Code and learned vectors are available at http://
github.com/chaitanyamalaviya/lang-reps

Figure 1: Learning representations from mul-
tilingual neural MT for typology classification.
(Model MTBOTH)

Typological information from sources like the
World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013), has proven use-
ful in many NLP tasks (O’Horan et al., 2016),
such as multilingual dependency parsing (Ammar
et al., 2016), generative parsing in low-resource
settings (Naseem et al., 2012; Täckström et al.,
2013), phonological language modeling and loan-
word prediction (Tsvetkov et al., 2016), POS-
tagging (Zhang et al., 2012), and machine trans-
lation (Daiber et al., 2016).

However, the needs of NLP tasks differ in many
ways from the needs of scientific typology, and ty-
pological databases are often only sparsely pop-
ulated, by necessity or by design.2 In NLP, on
the other hand, what is important is having a rela-
tively full set of features for the particular group
of languages you are working on. This mis-
match of needs has motivated various proposals
to reconstruct missing entries, in WALS and other
databases, from known entries (Daumé III and
Campbell, 2007; Daumé III, 2009; Coke et al.,
2016; Littell et al., 2017).

In this study, we examine whether we can
2For example, each chapter of WALS aims to provide a

statistically balanced set of languages over language families
and geographical areas, and so many languages are left out in
order to maintain balance.
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tackle the problem of inferring linguistic typol-
ogy from parallel corpora, specifically by training
a massively multi-lingual neural machine trans-
lation (NMT) system and using the learned rep-
resentations to infer typological features for each
language. This is motivated both by prior work in
linguistics (Bugarski, 1991; Garcı́a, 2002) demon-
strating strong links between translation studies
and tools for contrastive linguistic analysis, work
in inferring typology from bilingual data (Östling,
2015) and English as Second Language texts
(Berzak et al., 2014), as well as work in NLP (Shi
et al., 2016; Kuncoro et al., 2017; Belinkov et al.,
2017) showing that syntactic knowledge can be
extracted from neural nets on the word-by-word
or sentence-by-sentence level. This work presents
a more holistic analysis of whether we can dis-
cover what neural networks learn about the lin-
guistic concepts of an entire language by aggre-
gating their representations over a large number of
the sentences in the language.

We examine several methods for discovering
feature vectors for typology prediction, including
those learning a language vector specifying the
language while training multilingual neural lan-
guage models (Östling and Tiedemann, 2017) or
neural machine translation (Johnson et al., 2016)
systems. We further propose a novel method for
aggregating the values of the latent state of the en-
coder neural network to a single vector represent-
ing the entire language. We calculate these feature
vectors using an NMT model trained on 1017 lan-
guages, and use them for typlogy prediction both
on their own and in composite with feature vectors
from previous work based on the genetic and geo-
graphic distance between languages (Littell et al.,
2017). Results show that the extracted representa-
tions do in fact allow us to learn about the typol-
ogy of languages, with particular gains for syn-
tactic features like word order and the presence of
case markers.

2 Dataset and Experimental Setup

Typology Database: To perform our analysis,
we use the URIEL language typology database
(Littell et al., 2017), which is a collection of bi-
nary features extracted from multiple typological,
phylogenetic, and geographical databases such
as WALS (World Atlas of Language Structures)
(Collins and Kayne, 2011), PHOIBLE (Moran
et al., 2014), Ethnologue (Lewis et al., 2015), and

Glottolog (Hammarström et al., 2015). These fea-
tures are divided into separate classes regarding
syntax (e.g. whether a language has prepositions
or postpositions), phonology (e.g. whether a lan-
guage has complex syllabic onset clusters), and
phonetic inventory (e.g. whether a language has
interdental fricatives). There are 103 syntactical
features, 28 phonology features and 158 phonetic
inventory features in the database.

Baseline Feature Vectors: Several previous
methods take advantage of typological implica-
ture, the fact that some typological traits corre-
late strongly with others, to use known features
of a language to help infer other unknown fea-
tures of the language (Daumé III and Campbell,
2007; Takamura et al., 2016; Coke et al., 2016).
As an alternative that does not necessarily require
pre-existing knowledge of the typological features
in the language at hand, Littell et al. (2017) have
proposed a method for inferring typological fea-
tures directly from the language’s k nearest neigh-
bors (k-NN) according to geodesic distance (dis-
tance on the Earth’s surface) and genetic distance
(distance according to a phylogenetic family tree).
In our experiments, our baseline uses this method
by taking the 3-NN for each language according
to normalized geodesic+genetic distance, and cal-
culating an average feature vector of these three
neighbors.

Typology Prediction: To perform prediction,
we trained a logistic regression classifier3 with
the baseline k-NN feature vectors described above
and the proposed NMT feature vectors described
in the next section. We train individual classi-
fiers for predicting each typological feature in a
class (syntax etc). We performed 10-fold cross-
validation over the URIEL database, where we
train on 9/10 of the languages to predict 1/10 of
the languages for 10 folds over the data.

3 Learning Representations for Typology
Prediction

In this section we describe three methods for
learning representations for typology prediction
with multilingual neural models.

LM Language Vector Several methods have
been proposed to learn multilingual language

3We experimented with a non-linear classifier as well, but
the logistic regression classifier performed better.
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models (LMs) that utilize vector representations
of languages (Tsvetkov et al., 2016; Östling and
Tiedemann, 2017). Specifically, these models
train a recurrent neural network LM (RNNLM;
Mikolov et al. (2010)) using long short-term mem-
ory (LSTM; Hochreiter and Schmidhuber (1997))
with an additional vector representing the current
language as an input. The expectation is that
this vector will be able to capture the features of
the language and improve LM accuracy. Östling
and Tiedemann (2017) noted that, intriguingly, ag-
glomerative clustering of these language vectors
results in something that looks roughly like a phy-
logenetic tree, but stopped short of performing ty-
pological inference. We train this vector by ap-
pending a special token representing the source
language (e.g. “〈fra〉” for French) to the begin-
ning of the source sentence, as shown in Fig. 1,
then using the word representation learned for this
token as a representation of the language. We will
call this first set of feature vectors LMVEC, and
examine their utility for typology prediction.

NMT Language Vector In our second set of
feature vectors, MTVEC, we similarly use a lan-
guage embedding vector, but instead learn a multi-
lingual neural MT model trained to translate from
many languages to English, in a similar fashion to
Johnson et al. (2016); Ha et al. (2016). In contrast
to LMVEC, we hypothesize that the alignments to
an identical sentence in English, the model will
have a stronger signal allowing it to more accu-
rately learn vectors that reflect the syntactic, pho-
netic, or semantic consistencies of various lan-
guages. This has been demonstrated to some ex-
tent in previous work that has used specifically en-
gineered alignment-based models (Lewis and Xia,
2008; Östling, 2015; Coke et al., 2016), and we
examine whether these results apply to neural net-
work feature extractors and expand beyond word
order and syntax to other types of typology as
well.

NMT Encoder Mean Cell States Finally, we
propose a new vector representation of a language
(MTCELL) that has not been investigated in pre-
vious work: the average hidden cell state of the
encoder LSTM for all sentences in the language.
Inspired by previous work that has noted that the
hidden cells of LSTMs can automatically capture
salient and interpretable information such as syn-
tax (Karpathy et al., 2015; Shi et al., 2016) or

Syntax Phonology Inventory
-Aux +Aux -Aux +Aux -Aux +Aux

NONE 69.91 83.07 77.92 86.59 85.17 90.68
LMVEC 71.32 82.94 80.80 86.74 87.51 89.94
MTVEC 74.90 83.31 82.41 87.64 89.62 90.94
MTCELL 75.91 85.14 84.33 88.80 90.01 90.85
MTBOTH 77.11 86.33 85.77 89.04 90.06 91.03

Table 1: Accuracy of syntactic, phonological,
and inventory features using LM language vec-
tors (LMVEC), MT language vectors (MTVEC),
MT encoder cell averages (MTCELL) or both
MT feature vectors (MTBOTH). Aux indicates
auxiliary information of geodesic/genetic nearest
neighbors; “NONE -Aux” is the majority class
chance rate, while “NONE +Aux” is a 3-NN clas-
sification.

sentiment (Radford et al., 2017), we expect that
the cell states will represent features that may be
linked to the typology of the language. To cre-
ate vectors for each language using LSTM hidden
states, we obtain the mean of cell states (c in the
standard LSTM equations) for all time steps of all
sentences in each language.4

4 Experiments

4.1 Multilingual Data and Training Regimen

To train a multilingual neural machine translation
system, we used a corpus of Bible translations that
was obtained by scraping a massive online Bible
database at bible.com.5 This corpus contains
data for 1017 languages. After preprocessing the
corpus, we obtained a training set of 20.6 million
sentences over all languages.

The implementation of both the LM and NMT
models described in §3 was done in the DyNet
toolkit (Neubig et al., 2017). In order to ob-
tain a manageable shared vocabulary for all lan-
guages, we divided the data into subwords us-
ing joint byte-pair encoding of all languages (Sen-
nrich et al., 2016) with 32K merge operations. We

4We also tried using the mean of final hidden cell states
of the encoder LSTM, but the mean cell state over all words
in the sentence gave improved performance. Additionally,
we tried using the hidden states h, but we found that these
had significantly less information and lesser variance, due to
being modulated by the output gate at each time step.

5A possible concern is that Bible translations may use ar-
chaic language not representative of modern usage. How-
ever, an inspection of the data did not turn up such archaisms,
likely because the bulk of world Bible translation was done in
the late 19th and 20th centuries. In addition, languages that
do have antique Bibles are also those with many other Bible
translations, so the effect of the archaisms is likely limited.
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used LSTM cells in a single recurrent layer with
512-dimensional hidden state and input embed-
ding size. The Adam optimizer was used with a
learning rate of 0.001 and a dropout of 0.5 was en-
forced during training.

4.2 Results and Discussion

The results of the experiments can be found in
Tab. 1. First, focusing on the “-Aux” results,
we can see that all feature vectors obtained by
the neural models improve over the chance rate,
demonstrating that indeed it is possible to extract
information about linguistic typology from un-
supervised neural models. Comparing LMVEC

to MTVEC, we can see a convincing improve-
ment of 2-3% across the board, indicating that
the use of bilingual information does indeed pro-
vide a stronger signal, allowing the network to
extract more salient features. Next, we can see
that MTCELL further outperforms MTVEC, indi-
cating that the proposed method of investigating
the hidden cell dynamics is more effective than
using a statically learned language vector. Fi-
nally, combining both feature vectors as MTBOTH

leads to further improvements. To measure statis-
tical significance of the results, we performed a
paired bootstrap test to measure the gain between
NONE+AUX and MTBOTH+AUX and found that
the gains for syntax and inventory were significant
(p=0.05), but phonology was not, perhaps because
the number of phonological features was fewer
than the other classes (only 28).

When further using the geodesic/genetic dis-
tance neighbor feature vectors, we can see that
these trends largely hold although gains are much
smaller, indicating that the proposed method is
still useful in the case where we have a-priori
knowledge about the environment in which the
language exists. It should be noted, however, that
the gains of LMVEC evaporate, indicating that ac-
cess to aligned data may be essential when infer-
ring the typology of a new language. We also
noted that the accuracies of certain features de-
creased from NONE-AUX to MTBOTH-AUX, par-
ticularly gender markers, case suffix and negative
affix, but these decreases were to a lesser extent in
magnitude than the improvements.

Interestingly, and in contrast to previous meth-
ods for inferring typology from raw text, which
have been specifically designed for inducing word
order or other syntactic features (Lewis and Xia,

Feature NONE MT Gain
S NUMERAL AFTER NOUN 37.40 81.26 43.86

S NUMERAL BEFORE NOUN 46.49 83.22 36.73
S POSSESSOR AFTER NOUN 42.05 75.60 33.55

S OBJECT BEFORE VERB 50.97 80.89 29.92
S ADPOSITION AFTER NOUN 52.41 79.10 26.69

P UVULAR CONTINUANTS 77.57 97.37 19.80
P LATERALS 67.30 86.48 19.18
P LATERAL L 64.05 78.16 14.10

P LABIAL VELARS 82.16 95.93 13.76
P VELAR NASAL INITIAL 72.14 85.82 13.68

I VELAR NASAL 39.89 62.08 22.20
I ALVEOLAR LATERAL APPROXIMANT 60.92 79.32 18.40

I ALVEOLAR NASAL 81.49 92.98 11.48
I VOICED LABIODENTAL FRICATIVE 65.75 77.10 11.36

I VOICELESS PALATAL FRICATIVE 82.41 93.66 11.25

Table 2: Top 5 improvements from “NONE -Aux”
to “MTBOTH -Aux” in the syntax (“S ”), phonol-
ogy (“P ”), and inventory (“I ”) classes.

Figure 2: Cell trajectories for sentences in lan-
guages where S OBJ BEFORE VERB is either
active or inactive.

2008; Östling, 2015; Coke et al., 2016), our pro-
posed method is also able to infer information
about phonological or phonetic inventory fea-
tures. This may seem surprising or even counter-
intuitive, but a look at the most-improved phonol-
ogy/inventory features (Tab. 2) shows a number
of features in which languages with the “non-
default” option (e.g. having uvular consonants or
initial velar nasals, not having lateral consonants,
etc.) are concentrated in particular geographical
regions. For example, uvular consonants are not
common world-wide, but are common in partic-
ular geographic regions like the North American
Pacific Northwest and the Caucasus (Maddieson,
2013b), while initial velar nasals are common
in Southeast Asia (Anderson, 2013), and lateral
consonants are uncommon in the Amazon Basin
(Maddieson, 2013a). Since these are also regions
with a particular and sometimes distinct syntac-
tic character, we think the model may be find-
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ing regional clusters through syntax, and seeing
an improvement in regionally-distinctive phonol-
ogy/inventory features as a side effect.

Finally, given that MTCELL uses the feature
vectors of the latent cell state to predict typology,
it is of interest to observe how these latent cells
behave for typologically different languages. In
Fig. 2 we examine the node that contributed most
to the prediction of “S OBJ BEFORE VERB”
(the node with maximum weight in the classi-
fier) for German and Korean, where the feature
is active, and Portuguese and Catalan, where the
feature is inactive. We can see that the node
trajectories closely track each other (particularly
at the beginning of the sentence) for Portuguese
and Catalan, and in general the languages where
objects precede verbs have higher average val-
ues, which would be expressed by our mean
cell state features. The similar trends for lan-
guages that share the value for a typological fea-
ture (S OBJ BEFORE VERB) indicate that infor-
mation stored in the selected hidden node is con-
sistent across languages with similar structures.

5 Conclusion and Future Work

Through this study, we have shown that neural
models can learn a range of linguistic concepts,
and may be used to impute missing features in ty-
pological databases. In particular, we have demon-
strated the utility of learning representations with
parallel text, and results hinted at the importance
of modeling the dynamics of the representation as
models process sentences. We hope that this study
will encourage additional use of typological fea-
tures in downstream NLP tasks, and inspire fur-
ther techniques for missing knowledge prediction
in under-documented languages.
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Hal Daumé III. 2009. Non-parametric Bayesian areal
linguistics. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 593–601, Boul-
der, Colorado. Association for Computational Lin-
guistics.
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Abstract

Recent work in NLP has attempted to deal
with low-resource languages but still as-
sumed a resource level that is not present
for most languages, e.g., the availabil-
ity of Wikipedia in the target language.
We propose a simple method for cross-
lingual named entity recognition (NER)
that works well in settings with very min-
imal resources. Our approach makes use
of a lexicon to “translate” annotated data
available in one or several high resource
language(s) into the target language, and
learns a standard monolingual NER model
there. Further, when Wikipedia is avail-
able in the target language, our method can
enhance Wikipedia based methods to yield
state-of-the-art NER results; we evaluate
on 7 diverse languages, improving the
state-of-the-art by an average of 5.5% F1
points. With the minimal resources re-
quired, this is an extremely portable cross-
lingual NER approach, as illustrated using
a truly low-resource language, Uyghur.

1 Introduction

In recent years, interest in the natural language
processing (NLP) community has expanded to in-
clude multilingual applications. Although this
uptick of interest has produced diverse annotated
corpora, most languages are still classified as low-
resource. In order to build NLP tools for low-
resource languages, we either need to annotate
data (a costly exercise, especially for languages
with few native speakers), or find a way to use an-
notated data in other languages in service to the
cause. We refer to the latter techniques as cross-
lingual techniques.

In this paper, we address cross-lingual named

German Spanish Dutch Avg

Baseline 22.61 45.77 43.10 37.27
Previous SOA 48.12 60.55 61.56 56.74
Cheap Translation 57.53 65.18 66.50 62.65

Table 1: We show dramatic improvement on 3 Eu-
ropean languages in a low-resource setting. More
detailed results in Table 2 show that this improve-
ment continues to a wide variety of languages. The
baseline is a simple direct transfer model. The pre-
vious state-of-the-art (SOA) is Tsai et al. (2016)

entity recognition (NER). Prior methods (de-
scribed in detail in Section 2) depend heavily on
limited and expensive resources such as Wikipedia
or large parallel text. Concretely, there are about
3800 written languages in the world.1 Wikipedia
exists in about 280 languages, but most versions
are too sparse to be useful. Parallel text may be
found on an ad-hoc basis for some languages, but
it is hardly a general solution. Religious texts,
such as the Bible and the Koran, exist in many lan-
guages, but the unique domain makes them hard
to use. This leaves the vast majority of the world’s
languages with no general method for NER.

We propose a simple solution that requires only
minimal resources. We translate annotated data in
a high-resource language into a low-resource lan-
guage, using just a lexicon.2 We refer to this as
cheap translation, because in general, lexicons are
much cheaper and easier to find than parallel text
(Mausam et al., 2010).

One of the biggest efforts at gathering lexicons
is Panlex (Kamholz et al., 2014), which has lex-
icons for 10,000 language varieties available to
download today. The quality and size of these dic-

1https://www.ethnologue.com/enterprise-faq/how-many-
languages-world-are-unwritten-0

2We use the terms ‘lexicon’ and ‘dictionary’ interchange-
ably.
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tionaries may vary, but in Section 5.3 we showed
that even small dictionaries can give improve-
ments. If there is no dictionary, or if the quality is
poor, then the Uyghur case study outlined in Sec-
tion 6 suggests that effort is best spent in develop-
ing a high-quality dictionary, rather than gathering
questionable-quality parallel text.

We show that our approach gives non-trivial
scores across several languages, and when com-
bined with orthogonal features from Wikipedia,
improves on state-of-the-art scores. Table 1 com-
pares a simple direct transfer baseline, the previ-
ous state-of-the-art in cross-lingual NER, and our
proposed algorithm. For these languages, we beat
the baseline by 25.4 points, and the state-of-the-art
by 5.9 points. In addition, we found that translat-
ing from a language related to the target language
gives a further boost. We conclude with a case
study of a truly low-resource language, Uyghur,
and show a good score, despite having almost no
target language resources.

2 Related Work

There are two main branches of work in cross-
lingual NLP: projection across parallel data, and
language independent methods.

2.1 Projection

Projection methods take a parallel corpus between
source and target languages, annotate the source
side, and push annotations across learned align-
ment edges. Assuming that source side annota-
tions are of high quality, success depends largely
on the quality of the alignments, which depends,
in turn, on the size of the parallel data.

There is work on projection for POS tagging
(Yarowsky et al., 2001; Das and Petrov, 2011;
Duong et al., 2014), NER (Wang and Manning,
2014; Kim et al., 2012; Ehrmann et al., 2011; Ni
and Florian, 2016), mention detection (Zitouni and
Florian, 2008), and parsing (Hwa et al., 2005; Mc-
Donald et al., 2011).

For NER, the received wisdom is that paral-
lel projection methods work very well, although
there is no consensus on the necessary size of
the parallel corpus. Most approaches require mil-
lions of sentences, with a few exceptions which
require thousands. Accordingly, the drawback to
this approach is the difficulty of finding any paral-
lel data, let alone millions of sentences. Religious
texts (such as the Bible and the Koran) exist in a

large number of languages, but the domain is too
far removed from typical target domains (such as
newswire) to be useful. As a simple example, the
Bible contains almost no entities tagged as ‘orga-
nization’. We approach the problem with the as-
sumption that little to no parallel data is available.

2.2 Language Independent

The second common tool for cross-lingual NLP is
to use language independent features. This is of-
ten called direct transfer, in the sense that a model
is trained on one language and then applied with-
out modification on a dataset in a different lan-
guage. Lexical or lexical-derived features are typ-
ically not used unless there is significant vocabu-
lary overlap between languages.

Täckström et al. (2012) experiments with di-
rect transfer of dependency parsing and NER, and
showed that using word cluster features can help,
especially if the clusters are forced to conform
across languages. The cross-lingual word clusters
were induced using large parallel corpora.

Building on this work, Täckström (2012) fo-
cuses solely on NER, and includes experiments on
self-training and multi-source transfer for NER.

Tsai and Roth (2016) link words and phrases
to entries in Wikipedia and use page categories
as features. They showed that these wikifier fea-
tures are strong language independent features.
We build on this work, and use these features in
our experiments.

Bharadwaj et al. (2016) build a transfer model
using phonetic features instead of lexical fea-
tures. These features are not strictly language-
independent, but can work well when languages
share vocabulary but with spelling variations, as
in the case of Turkish, Uzbek, and Uyghur.

2.3 Others

In a technique similar to ours, Carreras et al.
(2003) use Spanish resources for Catalan NER.
They translate the features in the weight vector,
which has the flavor of a language independent
model with the lexical features of a projection
model. Our work is a natural extension of this pa-
per, but explores these techniques on many more
languages, showing that with some modifications,
it has a broad applicability. Further, we experi-
ment with orthogonal features, and with combin-
ing multiple source languages to get state of the art
results on standard datasets.
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Irvine and Callison-Burch (2016) build a ma-
chine translation system for low-resource lan-
guages by inducing bilingual dictionaries from
monolingual texts.

Koehn and Knight (2001) experiment with vary-
ing knowledge levels on the task of translating
German nouns in a small parallel German-English
corpus. A lexicon along with monolingual text can
correctly translate 79% of the nouns in the evalua-
tion set. They reach a score of 89% when a parallel
corpus is available along with a lexicon, but also
comment on the scarcity of parallel corpora.

The main takeaways from the viewpoint of our
work are a) word level translation can be effec-
tive, at least for nouns, and b) obtaining the correct
word pair is more difficult than choosing between
a set of options.

3 Our method: Cheap Translation

We create target language training data by trans-
lating source data into the target language. It is ef-
fectively the same as standard phrase-based statis-
tical machine translation systems (such as MOSES
(Koehn et al., 2007)), except that the translation
table is not induced from expensive parallel text,
but is built from a lexicon, hence the name cheap
translation.

The entries in our lexicon contain word-to-word
translations, as well as word-to-phrase, phrase-
to-word, and phrase-to-phrase translations. En-
tries typically do not have any further information,
such as part of speech or sense disambiguation.
The standard problems related to ambiguity in lan-
guage apply: a source language word may have
several translations, and several source language
words may have the same translation.

We are mostly concerned with the problem of
multiple translations of a source language word.
For example, in the English-Spanish lexicon, the
English word woman translates into about 50 dif-
ferent words, with meanings ranging from woman,
to female golfer, to youth. Although all candidates
might be technically correct, we are interested in
the most prominent translation. To estimate this,
we gathered cooccurrence counts of each source-
target word pair in the lexicon. For Spanish, in the
case of woman, the most probable translation is
mujer, because it shows up in other contexts in the
dictionary, such as farm woman or young woman,
whereas translations such as joven cooccur infre-
quently with woman. We normalize these cooc-

Algorithm 1 Our translation algorithm
Input

DE : Annotated data in E
L: Lexicon between E–F

Returns
DF : Annotated data in F

1: for ∀wi ∈ DE do
2: p = wiwi+1...wi+j . Window of size j
3: while p not in L and j ≥ 0 do
4: Decrement j
5: p = wiwi+1...wi+j
6: end while
7: if p in L then
8: if |L[p]| > 1 then
9: resolve with LM and prominence

10: end if
11: DF add (L[p], labels of p)
12: else
13: DF add (wi, label of wi)
14: end if
15: Increment i by length of p
16: end for

currence counts in each candidate set, and call this
the prominence score.

With these probabilities in hand, we have effec-
tively constructed a phrase translation table. We
use a simple greedy decoding method (as shown
in Algorithm 1) where options from the lexicon
are resolved by a language model multiplied by the
prominence score of each option. We use SRILM
(Stolcke et al., 2002) trained on Wikipedia (al-
though any large monolingual corpus will do).

During decoding, once we have chosen a candi-
date, we copy all labels from the source phrase to
the target phrase. Since the translation is phrase-
to-phrase, we can copy gold labels directly,3 with-
out worrying about getting good alignments. The
result is annotated data in the target language.

Notice that the algorithm allows for no reorder-
ing beyond what exists in the phrase-to-phrase
entries of the lexicon. Compared to phrase-
tables learned from massive parallel corpora, our
lexicon-based phrase tables are not large enough
or expressive enough for robust reordering. We
leave explorations of reordering to future work.

See Figure 1 for a representative example of
translation from English to Turkish, with a hu-
man translation as reference. There are sin-

3We use a standard BIO labeling scheme.
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Nicaraguan President Violeta Chamorro Unitedtheto fly todue Stateswas

Nikaragualı Cumhurbaşkanı Violeta Chamorro ABDiçiniki taşın arasındayüklenebılırwas bir

Correct: Nikaragua Cumhurbaşkanı Violeta Chamorro ABD'ye uçacaktı

Figure 1: Demonstration of word translation. The top is English, the bottom is Turkish. Lines represent
dictionary translations (e.g. the translates to bir). Correct is the correct translation. This illustrates
congruence in named entity patterns between languages, as well as some errors we are prone to make.

gle words translated into phrases, named entities
copied over verbatim, and phrases translated into
single words. Some words are translated correctly
(President into Cumhurbaşkanı) and some incor-
rectly (fly into iki taşın arasında, which loosely
translates to ‘between two stones’). We see ig-
norance of morphology (seen in translation of
United States), and confused word order. But
in spite of all these mistakes, the context around
the entities, which is what matters for NER, is
reasonably well-preserved. Notably, the word
President/Cumhurbaşkanı is a strong context fea-
ture for both LOC (Nicaragua) and PER (Violeta
Chamorro) in both languages.

4 Experimental Setup

Before we describe our experiments, we describe
some of the tools we used.

4.1 Lexicons
We use lexicons provided by (Rolston and Kirch-
hoff, 2016), which are harvested from PanLex,
Wiktionary, and various other sources. There are
103 lexicons, each mapping between English and
a target language. These vary in size from 56K en-
tries to 1.36M entries, as shown in the second row
of Table 2. There are also noisy translations. Some
entries consist of a single English letter, some are
morphological endings, others are misspellings,
others are obscure translations of metaphors, and
still others are just wrong.

4.2 Datasets
We use data from CoNLL2002/2003 shared tasks
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003). The 4 languages represented
are English, German, Spanish, and Dutch. All
training is on the train set, and testing is on the
test set (TestB). The evaluation metric for all ex-
periments is phrase level F1, as explained in Tjong
Kim Sang (2002).

In order to experiment on a broader range
of languages, we also use data from the RE-
FLEX (Simpson et al., 2008), and LORELEI
projects. From LORELEI, we use Turkish and
Hausa 4 From REFLEX, we use Bengali, Tamil,
and Yoruba.5 We use the same set of test docu-
ments as used in Tsai et al. (2016).

We also use Hindi and Malayalam data from
FIRE 2013,6 pre-processed to contain only PER,
ORG, and LOC tags.

While several of these languages are decidedly
high-resource, we limit the resources used in or-
der to show that our techniques will work in truly
low-resource settings. In practice, this means gen-
erating training data where high-quality manually
annotated data is already available, and using dic-
tionaries where translation is available.

4.3 NER Model
In all of our work we use the Illinois NER system
(Ratinov and Roth, 2009) with standard features
(forms, capitalization, affixes, word prior, word af-
ter, etc.) as our base model. We train Brown clus-
ters on the entire Wikipedia dump for any given
language (again, any monolingual corpus will do),
and include the multilingual gazetteers and wiki-
fier features proposed in Tsai et al. (2016).

5 Experiments

We performed two different sets of experiments:
first translating only from English, then translating
from additional languages selected to be similar to
the target language.

5.1 Translation from English
We start by translating from the highest resourced
language in the world, English. We first show that

4LDC2014E115,LDC2015E70
5LDC2015E13,LDC2015E90,LDC2015E83,

LDC2015E91
6http://au-kbc.org/nlp/NER-FIRE2013/
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our technique gives large improvement over a sim-
ple baseline, then combine with orthogonal fea-
tures, then compare against a ceiling obtained with
Google Translate.

Baseline Improvement
To get the baseline, we trained a model on English
CoNLL data (train set), and applied the model
directly to the target language, mismatching lex-
ical features notwithstanding. We did not use
gazetteers in this approach. For the non-Latin
script languages, Tamil and Bengali, we transliter-
ated the entire English corpus into the target script.
These results are in Table 2, row “Baseline”.

In our approach (“Cheap Translation”), for each
test language, we translated the English CoNLL
data (train set) into that language. The first row
of Table 2 shows the coverage of each dictionary.
For example, in the case of Spanish, 90.94% of the
words were translated into Spanish. This gives an
average of 14.6 points F1 improvement over the
baseline. This shows that simple translation is sur-
prisingly effective across the board. The improve-
ment is most noticeable for Bengali and Tamil,
which are languages with non-Latin script. This
mostly shows that the trivial baseline doesn’t work
across scripts, even with transliteration. Spanish
shows the least improvement over the baseline,
which may be because English and Spanish are so
similar that the baseline is already high.

We found that we needed to normalize the
Yoruba text (that is, remove all pronunciation sym-
bols on vowels) in order to make the data less
sparse. Since the training data for Bengali and
Tamil never shares a script with the test data, we
omit using the word surface form as a feature. This
is indicated by the † in Table 2. Brown clusters,
which implicitly use the word form, are still used.

Wikifier Features
Now we show that our approach is also orthogo-
nal to other approaches, and can be combined with
great effect. Wikifier features (Tsai et al., 2016)
are obtained by grounding words and phrases to
English Wikipedia pages, and using the categories
of the linked page as NER features for the surface
text. Our approach can be naturally combined with
wikifier features. We show results in Table 2, in
the row marked ‘Cheap Translation+Wiki’.

Using wikifier features improves scores for all 7
languages. Further, for all languages we beat Tsai
et al. (2016), with an average of 3.92 points F1

improvement. For the three European languages
(Dutch, German, and Spanish), we have an aver-
age improvement of 4.8 points F1 over Tsai et al.
(2016). This may reflect the fact that English is
more closely related to European languages than
Indian or African languages, in terms of lexical
similarities, word order, and spellings and distri-
bution of named entities. This suggests that it is
advantageous to select a source language similar
to the target language (by some definition of simi-
lar). We explore this hypothesis in Section 5.2.

Google Translate
Since we are performing translation, we compared
against a high-quality translation system to get a
ceiling. We used Google Translate to translate
the English CoNLL training data into the target
language, sentence by sentence. We aligned the
source-target data using fast align (Dyer et al.,
2013), and projected labels across alignments.7

Since this is high-quality translation, we treat it
as an upper bound on our technique, but with the
caveat that the alignments can be noisy given the
relatively small amount of text. This introduces a
source of noise that is not present in our technique,
but the loss from this noise is small compared to
the gain from the high-quality translation. As with
the other approaches, we found that Brown cluster
features were an important signal.

Surprisingly, Google Translate beats our basic
approach with a margin of only 4.3 points. De-
spite the naı̈vete of our approach, we are relatively
close to the ceiling. Further, Google Translate is
limited to 103 languages, whereas our approach
is limited only by available dictionaries. In low-
resource settings, such as the one presented in Sec-
tion 6, Google Translate is not available, but dic-
tionaries are available, although perhaps only by
pivoting through a high-resource language.

5.2 Translation from Similar Languages
Observing that English as a source works well
for European languages, but not as well for non-
European languages, we form a key hypothe-
sis: cheap translation between similar languages
should be better than between different languages.
There are several reasons for this. First, sim-
ilar languages should have similar word order-
ings. Since we do no reordering in translation,
this means the target text has a better chance of a

7Google Translate does not output alignments. If we had
an in-house translation system, we could avoid this step.
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Method Dutch German Spanish Turkish Bengali Tamil Yoruba Avg

Lexicon Coverage 88.01 89.97 90.94 83.80 83.34 73.84 74.60 –
E-L Dict size 961K 1.36M 1.25M 578K 217K 182K 334K –

Baseline 43.10 22.61 45.77 34.63 6.40 4.60 37.70 27.83
Google Translate ceiling 65.71 56.65 53.65 45.63 37.84 29.11 39.18 46.82
Wiki (Tsai et al., 2016) 61.56 48.12 60.55 47.12 43.27 29.64 36.65 46.70

Cheap Translation 53.94 50.96 51.82 46.37 30.47† 25.91† 37.58 42.43
Cheap Translation+Wiki 63.37 57.23 64.10 51.79 46.28† 33.10† 38.52 50.62

Best Combination 64.48 57.53 65.95 48.50 31.70† 27.63† 39.12 47.84
Best Combination+Wiki 66.50 59.11 65.43 53.44 45.70† 34.90† 40.88 52.28

Table 2: Baseline is naive direct transfer, with no gazetteers. ‘Cheap Translation’ translates from English
into the target. Google Translate translates whole sentences, and does not use gazetteers. ‘Cheap Trans-
lation+Wiki’ incorporates wikifier features. ‘Best Combination’ uses language combinations from Table
3 for source training data. † denotes that this run does not use word features.

Target Train lang

Dutch English, German
German English, Dutch
Spanish English, Dutch
Turkish English, Uzbek
Bengali English, Hindi
Tamil English, Malayalam
Yoruba English, Hausa

Table 3: This shows the language selection results.
In each row, we see the target language, and the
languages used for training. For example, when
testing on Dutch, we train on German and English.
These scores came from WALS.

coherent ordering. Second, in case of dictionary
misses, vocabulary common between languages
will be correct in the target language.

This requires two new resources: annotated data
in a similar language S, and a lexicon that maps
from S to T , the target language.

Data in other languages

For most target languages, English is not the clos-
est language, and it is likely that there exists an
annotated dataset in a closer language. There are
annotated datasets available in many languages
with a diversity of script and family. We have
datasets annotated in about 10 different languages,
although more exist.

One caveat is that the source dataset must have a
matching tagset with the target dataset. At present,
we accept this as a limitation, with the understand-
ing that there is a common set of coarse-grained
tags that is widely used (PER, ORG, LOC). We
leave further exploration to future work.

Pivoting Lexicons
Although we cannot expect to find lexicons be-
tween all pairs of languages, we can usually expect
that a language will have at least one lexicon with
a high-resource language. Often that language is
English. We can use this high-resource language
as a pivot to transitively create an S–T dictionary,
although perhaps with some loss of precision.

Assume we want a Turkish-Bengali lexicon
and we have only English-Bengali and English-
Turkish lexicons. We collect all English words
that appear in both dictionaries. Each such En-
glish word has two sets of candidate translations,
one set in Turkish, the other in Bengali. To cre-
ate transitive pairs, we take the Cartesian product
of these two sets of candidate translations. This
will create too many entries, some of which will
be incorrect, but usually the correct entry is there.

Notice also that the resulting dictionary con-
tains only those English words that appear in both
original dictionaries. If either of the original dic-
tionaries is small, the result will be smaller still.

Source Selection and Combination
To choose a related source language, we used
syntactic features of languages retrieved from
the World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013). Each language is
represented as a binary vector with each index in-
dicating presence or absence of a syntactic feature
in that language. We used the feature set called
syntax knn, which includes 103 syntactic features,
such as subject before verb, and possessive suffix,
and uses k-Nearest Neighbors to predict missing
values. We measure similarity as cosine distance
between language vectors.
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In the absence of criteria for a similarity cut-
off, we chose to include only the top most similar
language as source for that target language. The
results of this similarity calculation are shown in
Table 3. For example, when the target language
is Dutch, German is the closest. We also included
English in the training, as the highest resource lan-
guage, and with the highest quality dictionaries.

Results
Our results are in Table 2, in the row named ‘Best
Combination’. The average over all languages sur-
passes the English-source average by 5.4 points,
and also beats (Tsai et al., 2016). We also add wik-
ifier features, and report results in row ‘Best Com-
bination+Wiki.’ This shows improvement on all
but Spanish, with an average improvement of 5.58
points F1 over Tsai et al. (2016). To the best of
our knowledge, these are the best cross-language
settings scores for all these datasets.

While these scores are lower than those seen
on typical NER tasks (70-90% F1), we emphasize
first that cross-lingual scores will necessarily be
much lower than monolingual scores, and second
that these are the best available given the setup.

5.3 Dictionary Ablation

The most expensive resource we require is a lex-
icon. In this section, we briefly explore what ef-
fect the size of the lexicon has on the end result.
Using Turkish, we vary the size of the dictionary
by randomly removing entries. The sizes vary
from no entries to full dictionary (rows ‘Baseline’
and ‘Cheap Translation’ in Table 2, respectively),
with several gradations in the middle. With each
reduced dictionary, we translate from English to
generate Turkish training data as in Section 5.1.
As before, we train an NER model on the gener-
ated data, and test on the Turkish test data. Results
are shown in Figure 2.

Interestingly, we see improvement over the
baseline even with only 500 entries. This improve-
ment continues until 125K entries. It is important
to note that only a small number of dictionary en-
tries – words that typically show up in the contexts
of named entities, such as president, university or
town – are likely to be useful. The larger the dic-
tionary, the more likely these valuable entries are
present. Further, our random removal process may
unfairly prioritize less common words, compared
to a manually compiled dictionary which would
prioritize common words. It is likely that a small
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Figure 2: Effect of dictionary size on F1 score for
Turkish. Each column is an experiment with a ran-
domly reduced dictionary. The orange bars repre-
sent how much of the corpus is translated.

but carefully constructed manual dictionary could
have a large impact.

6 Case study: Uyghur

We have shown in the previous sections that our
method is effective across a variety of languages.
However, all of the tested languages have some re-
sources, most notably, Google Translate and rea-
sonably sized Wikipedias. In this section, we show
that our methods hold up on a truly low-resource
language, Uyhgur.

Uyghur is a language native to northwest China,
with about 25 million speakers.8 It is a Turkic lan-
guage, and is related most closely to Uzbek, al-
though it uses an Arabic writing system. Uyghur
is not supported by Google Translate, and the
Uyghur Wikipedia has less than 3,000 articles. In
contrast, the smallest Wikipedia size language in
our test set is Yoruba, with 30K articles. Because
of the small Wikipedia size, we do not use any
wikifier features.

We did this work as part of the NIST LoReHLT
evaluation in the summer of 2016. The official
evaluation scores were calculated over a set of
4500 Uyghur documents. Each team was given the
unannotated version of those documents, with the
task being to submit annotations on that set. Our
official scores are reported in Table 4, and com-
pared with Bharadwaj et al. (2016).

After the evaluation, NIST released 199 of the
annotated evaluation documents, called the unse-

8https://en.wikipedia.org/wiki/Uyghur_
language, accessed July 21, 2017
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Method All Unseq.

Bharadwaj et al. (2016) 51.2 –
Ours 55.6 51.32

Table 4: F1 scores of official submissions in
LoReHLT16. The numbers in the “All” column
are the scores on the entire evaluation data re-
ported from NIST. We evaluate our submissions
on the unsequestered data in order to compare with
the results in Table 5.

Method F1

Monolingual 69.92

Standard Translation
Train: English 27.20
Train: Turkish 33.02
Train: Uzbek 27.88

Language Specific (stemmed)
Train: English 30.84
Train: Turkish 40.04
Train: Uzbek 40.15
Induced dictionaries 43.46
Manual annotations 42.51

All Lang. Spec. 51.32

Table 5: F1 scores for Uyghur. Monolingual
scores are on the 41 document test set. All other
scores are on the full unsequestered data. We omit
forms or gazetteers but use Brown clusters. ‘Stan-
dard Translation’ uses the same resources as the
scores in Table 2 (e.g. without stemming)

questered set. In this section, we will drill into
the various methods we used to build the transfer
model, and report finer-grained results using the
unsequestered set.

The following are some of the language-specific
techniques we employed.

• Dictionary The dictionary provided for
Uyghur from Rolston and Kirchhoff (2016)
had only 5K entries, so we augmented this
with the dictionary provided in the LORELEI
evaluation, which resulted in 116K entries.

• Name Substitution As with Bengali and
Tamil, very few names were translated. We
found transliteration models were too noisy,
so instead, we gathered a list of gazetteers
from Uyghur Wikipedia, categorized by tag
type (PER, LOC, GPE, ORG). Upon en-
countering an untranslatable NE, we replaced
it with a randomly selected NE from the

gazetteer list corresponding to the tag. This
led to improbable sentences like John Kerry
has joined the Baskin Robbins, but it meant
that NEs were fluent in the target text.

• Stemming We created a very simple stemmer
for Uyghur. This consists of 45 common suf-
fixes sorted longest first. For each Uyghur
word in a corpus, we removed all possible
suffixes (Uyghur words can take multiple suf-
fixes). We stemmed all train and test data.

We report results in Table 5. The first row is
from a monolingual model trained on 158 docu-
ments in the unsequestered set, and tested on the
remaining 41. All other rows test on the com-
plete unsequestered set. The next section, ‘Stan-
dard Translation’, refers to the method described
above. Notably, we do not use stemming for train
or test data here. As with Bengali and Tamil, we
omit form features.

We translate from English, Turkish, and Uzbek,
which are the closest languages predicted by
WALS. Next, we incorporated language specific
methods. The scores we get from training on En-
glish, Turkish and Uzbek all go up because the
stemming makes the features more dense. Next
we generated dictionaries using observations over
Uyghur and Uzbek, and we used non-native speak-
ers to annotate Uyghur data.

6.1 Language Specific Dictionary Induction

We began by romanizing Uyghur text into the
Uyghur Latin alphabet (ULY) so we could read
it. We noticed that Uzbek and Uyghur are very
similar, sharing a sizable amount of vocabulary,
and several morphological rules. However, while
there is a shared vocabulary, the words are usually
spelled slightly differently. For example, the word
for “southern” is “janubiy” in Uzbek and “jenu-
biy” in Uyghur.

We tried several ideas for gathering a mapping
for this shared vocabulary: manual mapping, edit-
distance mapping, and cross-lingual CCA with
word vectors.

Manual mapping: We manually translated about
100 words often found around entities, such as
president, and university

Edit-distance mapping: We gathered (Uyghur,
Uzbek) word pairs with low-edit distance, using a
modified edit-distance algorithm that allowed cer-
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tain substitutions at zero cost. For example, this
discovered such pairs as pokistan-pakistan and
telegraph-télégraf.

Cross-lingual CCA with word vectors: We pro-
jected Uyghur and Uzbek monolingual vectors
into a shared semantic space, using CCA (Faruqui
and Dyer, 2014). We used the list of low edit-
distance word pairs as the dictionary for the pro-
jection. Once all the vectors were in the same
space, we found the closest Uyghur word to each
Uzbek word.

6.2 Results

Scores are in Table 5. Interestingly, the language
specific methods evaluated individually did not
improve much over the generic word translation
methods. But with all language specific methods
combined, ‘All Lang. Spec.’, the score increased
by nearly 10 points, suggesting that the different
training data covers many angles.

To the best of our knowledge, there are no pub-
lished scores on the unsequestered data set. Our
best score is comparable to the score of our evalu-
ation submission on the unsequestered dataset.

7 Conclusion

We have shown a novel cross-lingual method
for generating NER data that gives significant
improvement over state-of-the-art on standard
datasets. The method benefits from annotated data
in many languages, combines well with orthogo-
nal features, and works even when resources are
virtually nil. The simplicity and minimal use of
resources makes this approach more portable than
all previous approaches.
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Abstract

Existing approaches to automatic VerbNet-
style verb classification are heavily de-
pendent on feature engineering and there-
fore limited to languages with mature NLP
pipelines. In this work, we propose a novel
cross-lingual transfer method for inducing
VerbNets for multiple languages. To the
best of our knowledge, this is the first study
which demonstrates how the architectures
for learning word embeddings can be ap-
plied to this challenging syntactic-semantic
task. Our method uses cross-lingual trans-
lation pairs to tie each of the six target lan-
guages into a bilingual vector space with
English, jointly specialising the representa-
tions to encode the relational information
from English VerbNet. A standard cluster-
ing algorithm is then run on top of the
VerbNet-specialised representations, using
vector dimensions as features for learning
verb classes. Our results show that the pro-
posed cross-lingual transfer approach sets
new state-of-the-art verb classification per-
formance across all six target languages
explored in this work.

1 Introduction

Playing a key role in conveying the meaning of a
sentence, verbs are famously complex. They dis-
play a wide range of syntactic-semantic behaviour,
expressing the semantics of an event as well as rela-
tional information among its participants (Jackend-
off, 1972; Gruber, 1976; Levin, 1993, inter alia).

Lexical resources which capture the variabil-
ity of verbs are instrumental for many Natural
Language Processing (NLP) applications. One of
the richest verb resources currently available for
English is VerbNet (Kipper et al., 2000; Kipper,

2005).1 Based on the work of Levin (1993), this
largely hand-crafted taxonomy organises verbs
into classes on the basis of their shared syntactic-
semantic behaviour. Providing a useful level of gen-
eralisation for many NLP tasks, VerbNet has been
used to support semantic role labelling (Swier and
Stevenson, 2004; Giuglea and Moschitti, 2006), se-
mantic parsing (Shi and Mihalcea, 2005), word
sense disambiguation (Brown et al., 2011), dis-
course parsing (Subba and Di Eugenio, 2009), in-
formation extraction (Mausam et al., 2012), text
mining applications (Lippincott et al., 2013; Rimell
et al., 2013), research into human language acqui-
sition (Korhonen, 2010), and other tasks.

This benefit for English NLP has motivated the
development of VerbNets for languages such as
Spanish and Catalan (Aparicio et al., 2008), Czech
(Pala and Horák, 2008), and Mandarin (Liu and
Chiang, 2008). However, end-to-end manual re-
source development using Levin’s methodology is
extremely time consuming, even when supported
by translations of English VerbNet classes to other
languages (Sun et al., 2010; Scarton et al., 2014).
Approaches which aim to learn verb classes au-
tomatically offer an attractive alternative. How-
ever, existing methods rely on carefully engi-
neered features that are extracted using sophisti-
cated language-specific resources (Joanis et al.,
2008; Sun et al., 2010; Falk et al., 2012, i.a.), rang-
ing from accurate parsers to pre-compiled subcate-
gorisation frames (Schulte im Walde, 2006; Li and
Brew, 2008; Messiant, 2008). Such methods are
limited to a small set of resource-rich languages.

It has been argued that VerbNet-style classifica-
tion has a strong cross-lingual element (Jackendoff,
1992; Levin, 1993). In support of this argument,
Majewska et al. (2017) have shown that English
VerbNet has high translatability across different,

1http://verbs.colorado.edu/∼mpalmer/projects/verbnet.html
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even typologically diverse languages. Based on this
finding, we propose an automatic approach which
exploits readily available annotations for English
to facilitate efficient, large-scale development of
VerbNets for a wide set of target languages.

Recently, unsupervised methods for inducing dis-
tributed word vector space representations or word
embeddings (Mikolov et al., 2013a) have been suc-
cessfully applied to a plethora of NLP tasks (Turian
et al., 2010; Collobert et al., 2011; Baroni et al.,
2014, i.a.). These methods offer an elegant way
to learn directly from large corpora, bypassing the
feature engineering step and the dependence on ma-
ture NLP pipelines (e.g., POS taggers, parsers, ex-
traction of subcategorisation frames). In this work,
we demonstrate how these models can be used to
support automatic verb class induction. Moreover,
we show that these models offer the means to ex-
ploit inherent cross-lingual links in VerbNet-style
classification in order to guide the development of
new classifications for resource-lean languages. To
the best of our knowledge, this proposition has not
been investigated in previous work.

There has been little work on assessing the suit-
ability of embeddings for capturing rich syntactic-
semantic phenomena. One challenge is their re-
liance on the distributional hypothesis (Harris,
1954), which coalesces fine-grained syntactic-
semantic relations between words into a broad rela-
tion of semantic relatedness (e.g., coffee:cup) (Hill
et al., 2015; Kiela et al., 2015). This property has
an adverse effect when word embeddings are used
in downstream tasks such as spoken language un-
derstanding (Kim et al., 2016a,b) or dialogue state
tracking (Mrkšić et al., 2016, 2017a). It could have
a similar effect on verb classification, which relies
on the similarity in syntactic-semantic properties
of verbs within a class. In summary, we explore
three important questions in this paper:

(Q1) Given their fundamental dependence on
the distributional hypothesis, to what extent can
unsupervised methods for inducing vector spaces
facilitate the automatic induction of VerbNet-style
verb classes across different languages?

(Q2) Can one boost verb classification for lower-
resource languages by exploiting general-purpose
cross-lingual resources such as BabelNet (Navigli
and Ponzetto, 2012; Ehrmann et al., 2014) or bilin-
gual dictionaries such as PanLex (Kamholz et al.,
2014) to construct better word vector spaces for
these languages?

(Q3) Based on the stipulated cross-linguistic va-
lidity of VerbNet-style classification, can one ex-
ploit rich sets of readily available annotations in
one language (e.g., the full English VerbNet) to
automatically bootstrap the creation of VerbNets
for other languages? In other words, is it possi-
ble to exploit a cross-lingual vector space to trans-
fer VerbNet knowledge from a resource-rich to a
resource-lean language?

To investigate Q1, we induce standard distribu-
tional vector spaces (Mikolov et al., 2013b; Levy
and Goldberg, 2014) from large monolingual cor-
pora in English and six target languages. As ex-
pected, the results obtained with this straightfor-
ward approach show positive trends, but at the same
time reveal its limitations for all the languages in-
volved. Therefore, the focus of our work shifts
to Q2 and Q3. The problem of inducing VerbNet-
oriented embeddings is framed as vector space spe-
cialisation using the available external resources:
BabelNet or PanLex, and (English) VerbNet. For-
malised as an instance of post-processing seman-
tic specialisation approaches (Faruqui et al., 2015;
Mrkšić et al., 2016), our procedure is steered by
two sets of linguistic constraints: 1) cross-lingual
(translation) links between languages extracted
from BabelNet (targeting Q2); and 2) the available
VerbNet annotations for a resource-rich language.
The two sets of constraints jointly target Q3.

The main goal of vector space specialisation is
to pull examples standing in desirable relations,
as described by the constraints, closer together in
the transformed vector space. The specialisation
process can capitalise on the knowledge of Verb-
Net relations in the source language (English) by
using translation pairs to transfer that knowledge
to each of the target languages. By constructing
shared bilingual vector spaces, our method facili-
tates the transfer of semantic relations derived from
VerbNet to the vector spaces of resource-lean target
languages. This idea is illustrated by Fig. 1.

Our results indicate that cross-lingual connec-
tions yield improved verb classes across all six
target languages (thus answering Q2). Moreover,
a consistent and significant boost in verb classi-
fication performance is achieved by propagating
the VerbNet-style information from the source lan-
guage (English) to any other target language (e.g.,
Italian, Croatian, Polish, Finnish) for which no
VerbNet-style information is available during the

2547



fr_défaire
fr_ruiner

fr_fracasser

fr_détruire

en_shatter

en_undo

en_ruin

en_devastate

en_destroy

Figure 1: Transferring VerbNet information from a resource-rich to a resource-lean language through a
word vector space: an English→ French toy example. Representations of words described by two types
of ATTRACT constraints are pulled closer together in the joint vector space. (1) Monolingual pairwise
constraints in English (e.g., (en_ruin, en_shatter), (en_destroy, en_undo)) reflect the EN VerbNet structure
and are generated from the readily available verb classification in English (solid lines). They are used to
specialise the distributional EN vector subspace for the VerbNet relation. (2) Cross-lingual English-French
pairwise constraints (extracted from BabelNet) describe cross-lingual synonyms (i.e., translation links)
such as (en_ruin, fr_ruiner) or (en_shatter, fr_fracasser) (dashed lines). The post-processing fine-tuning
specialisation procedure based on (1) and (2) effectively transforms the initial distributional French vector
subspace to also emphasise the VerbNet-style structure, facilitating the induction of verb classes in French.

fine-tuning process (thus answering Q3).2 We re-
port state-of-the-art verb classification performance
for all six languages in our experiments. For in-
stance, we improve the state-of-the-art F-1 score
from prior work from 0.55 to 0.79 for French, and
from 0.43 to 0.74 for Brazilian Portuguese.

2 Methodology: Specialising for VerbNet

Motivation: Verb Classes and VerbNet Verb-
Net is a hierarchical, domain-independent, broad-
coverage verb lexicon based on Levin’s classifica-
tion and taxonomy of English (EN) verbs (Levin,
1993; Kipper, 2005). Verbs are grouped into classes
(e.g. the class PUT-9.1 for verbs such as place, po-
sition, insert, and arrange) based on their shared
meaning components and syntactic behaviour, de-
fined in terms of their participation in diathesis
alternations, i.e., alternating verb frames that are
related with the same or similar meaning. Verb-
Net extends and refines Levin’s classification, pro-
viding more fine-grained syntactic and semantic
information for individual classes. Each VerbNet
class is characterised by its member verbs, syntac-
tic frames, semantic predicates and typical verb

2On a high level, we demonstrate that a constraints-driven
fine-tuning framework can specialise word embeddings to
reflect VerbNet-style relations which rely not only on verb
sense similarity, but also on similarity in syntax, selectional
preferences, and diathesis alternations.

arguments.3 The current version of VerbNet (v3.2)
contains 8,537 distinct English verbs grouped into
273 VerbNet main classes.

The inter-relatedness of syntactic behaviour and
meaning of verbs is not limited to English (Levin,
1993). The basic meaning components underlying
verb classes are said to be cross-linguistically valid
(Jackendoff, 1992; Merlo et al., 2002)4 and there-
fore the classification has a strong cross-lingual di-
mension. A recent investigation of Majewska et al.
(2017) show that it is possible to manually translate
VerbNet classes and class members to different, ty-
pologically diverse languages with high accuracy.

The practical usefulness of VerbNet style clas-
sification both within and across languages has
been limited by the fact that few languages boast
resources similar to the English VerbNet. Some
VerbNets have been developed completely manu-
ally from scratch, aiming to capture properties spe-
cific to the language in question, e.g., the resources
for Spanish and Catalan (Aparicio et al., 2008),

3The usefulness of VerbNet is further accentuated by avail-
able mappings (Loper et al., 2007) to a number of other verb re-
sources such as WordNet (Fellbaum, 1998), FrameNet (Baker
et al., 1998), and PropBank (Palmer et al., 2005).

4For example, Levin (1993) notes that verbs in Warlpiri
manifest analogous behavior to English with respect to the
conative alternation. In another example, Polish verbs have the
same patterns as EN verbs in terms of the middle construction.
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Czech (Pala and Horák, 2008), and Mandarin (Liu
and Chiang, 2008). Other VerbNets were created
semi-automatically, with the help of other lexical
resources, e.g., for French (Pradet et al., 2014) and
Brazilian Portuguese (Scarton and Aluısio, 2012).
These approaches involved substantial amounts of
specialised linguistic and translation work. Finally,
automatic methods have been developed, e.g., for
French (Sun et al., 2010; Falk et al., 2012) and
Brazilian Portuguese (Scarton et al., 2014), with in-
sufficient accuracy (as emphasised in Sect. 4). Until
now, work in this area has been limited to a small
number of languages, due to the large requirements
in terms of human input and/or the availability of
mature NLP pipelines which exist only for a few
resource-rich languages (e.g., English, German).

In this work, we propose a novel, fully auto-
mated approach for inducing VerbNets for multiple
languages - one based on cross-lingual transfer.
Unlike earlier approaches, our method does not
require any parsed data or manual annotations for
the target language. It encodes the cross-linguistic
validity of Levin-style verb classifications into the
vector-space specialisation framework (Sect. 2.1)
driven by linguistic constraints. A standard cluster-
ing algorithm is then run on top of the VerbNet-
specialised representations using vector dimen-
sions as features to learn verb clusters (Sect. 2.2).
Our approach attains state-of-the-art verb classifi-
cation performance across all six target languages.

2.1 Vector Space Specialisation
Specialisation Model Our departure point is a
state-of-the-art specialisation model for fine-tuning
vector spaces termed PARAGRAM (Wieting et al.,
2015).5 The PARAGRAM procedure injects simi-
larity constraints between word pairs in order to
make their vector space representations more sim-
ilar; we term these the ATTRACT constraints. Let
V = Vs t Vt be the vocabulary consisting of the
source language and target language vocabularies
Vs and Vt, respectively. Let C be the set of word
pairs standing in desirable lexical relations; these
include: 1) verb pairs from the same VerbNet class
(e.g. (en_transport, en_transfer) from verb class
SEND-11.1); and 2) the cross-lingual synonymy

5The original PARAGRAM model as well as other fine-
tuning models from prior work inject pairwise linguistic con-
straints into existing vector spaces in order to improve their
ability to capture semantic similarity/paraphrasability. In this
work, we demonstrate that the same generic specialisation
framework can be used to transform vector spaces to capture
other types of lexical relations such as VerbNet relations.

pairs (e.g. (en_peace, fi_rauha)). Given the initial
distributional space and collections of such AT-
TRACT pairs C, the model gradually modifies the
space to bring the designated word vectors closer
together, working in mini-batches of size k. The
method’s cost function can be expressed as:

O(BC) = OC(BC) +R(BC) (1)

The first term of the method’s cost function (i.e.,
OC) pulls the ATTRACT examples (xl, xr) ∈ C
closer together (see Fig. 1 for an illustration). BC
refers to the current mini-batch of ATTRACT con-
straints. This term is expressed as follows:

OC(BC) =
∑

(xl,xr)∈BC

[
τ (δatt + xltl − xlxr)

+τ (δatt + xrtr − xlxr)
]

(2)

τ(x) = max(0, x) is the standard rectified linear
unit or the hinge loss function (Tsochantaridis et al.,
2004; Nair and Hinton, 2010). δatt is the “attract”
margin: it determines how much vectors of words
from ATTRACT constraints should be closer to each
other than to their negative examples. The negative
example ti for each word xi in any ATTRACT pair
is always the vector closest to xi taken from the
pairs in the current mini-batch, distinct from the
other word paired with xi, and xi itself.6

The second R(BC) term is the regularisation
which aims to retain the semantic information en-
coded in the initial distributional space as long as
this information does not contradict the used AT-
TRACT constraints. Let xiniti refer to the initial dis-
tributional vector of the word xi and let V(BC)
be the set of all word vectors present in the given
mini-batch. If λreg denotes the L2 regularisation
constant, this term can be expressed as:

R(BC) =
∑

xi∈V(BC)

λreg

∥∥∥xiniti − xi

∥∥∥
2

(3)

Linguistic Constraints: Transferring VerbNet-
Style Knowledge The fine-tuning procedure ef-
fectively blends the knowledge from external re-
sources (i.e., the input ATTRACT set of constraints)
with distributional information extracted directly
from large corpora. We show how to propagate
annotations from a knowledge source such as Verb-
Net from source to target by combining two types
of constraints within the specialisation framework:

6Effectively, this term forces word pairs from the in-batch
ATTRACT constraints to be closer to one another than to any
other word in the current mini-batch.
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LEARN-14 BREAK-45.1 ACCEPT-77
(learn, study) (break, dissolve) (accept, understand)
(learn, relearn) (crash, crush) (accept, reject)
(read, study) (shatter, split) (repent, rue)
(cram, relearn) (break, rip) (reject, discourage)
(read, assimilate) (crack, smash) (encourage, discourage)
(learn, assimilate) (shred, splinter) (reject, discourage)
(read, relearn) (snap, tear) (disprefer, understand)

Table 1: Example pairwise ATTRACT constraints
extracted from three VerbNet classes in English.

a) cross-lingual (translation) links between lan-
guages, and b) available VerbNet annotations in
a resource-rich language transformed into pair-
wise constraints. Cross-lingual constraints such
as (pl_wojna, it_guerra) are extracted from Ba-
belNet (Navigli and Ponzetto, 2012), a large-scale
resource which groups words into cross-lingual
BABEL synsets (and is currently available for 271
languages). The wide and steadily growing cover-
age of languages in BabelNet means that our pro-
posed framework promises to support the transfer
of VerbNet-style information to numerous target
languages (with increasingly high accuracy).

To establish that the proposed transfer approach
is in fact independent of the chosen cross-lingual
information source, we also experiment with an-
other cross-lingual dictionary: PanLex (Kamholz
et al., 2014), which was used in prior work on cross-
lingual word vector spaces (Duong et al., 2016;
Adams et al., 2017). This dictionary currently cov-
ers around 1,300 language varieties with over 12
million expressions, thus offering support also for
low-resource transfer settings.7

VerbNet constraints are extracted from the En-
glish VerbNet class structure in a straightforward
manner. For each class V N i from the 273 Verb-
Net classes, we simply take the set of all ni verbs
CLi = {v1,i, v2,i, . . . , vni,i} associated with that
class, including its subclasses, and generate all
unique pairs (vk, vl) so that vk, vl ∈ CLi and
vk 6= vl. Example VerbNet pairwise constraints
are shown in Tab. 1. Note that VerbNet classes in
practice contain verb instances standing in a variety
of lexical relations, including synonyms, antonyms,
troponyms, hypernyms, and the class membership
is determined on the basis of connections between
the syntactic patterns and the underlying semantic
relations (Kipper et al., 2006, 2008).

7Similar to BabelNet, the translations in PanLex were de-
rived from various sources such as glossaries, dictionaries,
and automatic inference from other languages. This results in
a high-coverage lexicon containing a certain amount of noise.

2.2 Clustering Algorithm
Given the initial distributional or specialised collec-
tion of target language vectors Vt, we apply an off-
the-shelf clustering algorithm on top of these vec-
tors in order to group verbs into classes. Following
prior work (Brew and Schulte im Walde, 2002; Sun
and Korhonen, 2009; Sun et al., 2010), we employ
the MNCut spectral clustering algorithm (Meila
and Shi, 2001), which has wide applicability in
similar NLP tasks which involve high-dimensional
feature spaces (Chen et al., 2006; von Luxburg,
2007; Scarton et al., 2014, i.a.). Again, following
prior work (Sun et al., 2010, 2013), we estimate
the number of clusters KClust using the self-tuning
method of Zelnik-Manor and Perona (2004). This
algorithm finds the optimal number by minimising
a cost function based on the eigenvector structure
of the word similarity matrix. We refer the reader
to the relevant literature for further details.

3 Experimental Setup

Languages We experiment with six target lan-
guages: French (FR), Brazilian Portuguese (PT),
Italian (IT), Polish (PL), Croatian (HR), and Finnish
(FI). All statistics regarding the source and size of
training and test data, and linguistic constraints for
each target language are summarised in Tab. 2.

Automatic approaches to verb class induction
have been tried out in prior work for FR and PT. To
the best of our knowledge, our cross-lingual study
is the first aiming to generalise an automatic induc-
tion method to more languages using an underlying
methodology which is language-pair independent.

Initial Vector Space: Training Data and Setup
All target language vectors were trained on large
monolingual running text using the same setup:
300-dimensional word vectors, the frequency cut-
off set to 100, bag-of-words (BOW) contexts, and
the window size of 2 (Levy and Goldberg, 2014;
Schwartz et al., 2016). All tokens were lowercased,
and all numbers were converted to a placeholder
symbol <NUM>.8 FR and IT word vectors were
trained on the standard frWaC and itWaC corpora
(Baroni et al., 2009), and vectors for other target
languages were trained on the corpora of simi-
lar style and size: HR vectors were trained on the
hrWaC corpus (Ljubešić and Klubička, 2014), PT

8Other SGNS parameters were also set to standard values
(Baroni et al., 2014; Vulić and Korhonen, 2016): 15 epochs, 15
negative samples, global learning rate: .025, subsampling rate:
1e− 4. Similar trends in results persist with d = 100, 500.
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French:FR Portuguese:PT Italian:IT Polish:PL Croatian:HR Finnish:FI
Training
Corpus frWaC brWaC itWaC Araneum hrWaC fiWaC
Corpus size (in tokens) 1.6B 2.7B 2B 1.2B 1.4B 1.7B
Vocabulary size 242,611 257,310 178,965 373,882 396,103 448,863

Constraints
# monolingual VerbNet-EN 220,052 220,052 220,052 220,052 220,052 220,052
# mono TARGET (MONO-SYN) 428,329 292,937 362,452 423,711 209,626 377,548
# cross-ling EN-TARGET (BNet) 310,410 245,354 258,102 219,614 160,963 284,167
# cross-ling EN-TARGET (PLex) 225,819 187,386 216,574 154,159 201,329 257,106

Test
# Verbs (# Classes) 169 (16) 660 (17) 177 (17) 258 (17) 277 (17) 201 (17)
Coverage of test instances 94.1% 95.5% 96.6% 93.4% 98.2% 84.6%

Table 2: Statistics of the experimental setup for each target language: training/test data and constraints.
Coverage refers to the percentage of test verbs represented in the target language vocabularies.

vectors on ptWaC (Wagner Filho et al., 2016), FI

vectors on fiWaC (Ljubešić et al., 2016), and PL

vectors on the Araneum Polonicum Maius Web cor-
pus (Benko, 2014). Note that we do not utilise any
VerbNet-specific knowledge in the target language
to induce and further specialise these word vectors.

Source EN vectors were taken directly from the
work of Levy and Goldberg (2014): they are trained
with SGNS on the cleaned and tokenised Polyglot
Wikipedia (Al-Rfou et al., 2013) containing ∼75M
sentences, ∼1.7B word tokens and a vocabulary
of ∼180k words after lowercasing and frequency
cut-off. To measure the importance of the starting
source language space as well as to test if syntactic
knowledge on the source side may be propagated
to the target space, we test two variant EN vector
spaces: SGNS with (a) BOW contexts and the win-
dow size 2 (SGNS-BOW2); and (b) dependency-
based contexts (SGNS-DEPS) (Padó and Lapata,
2007; Levy and Goldberg, 2014).

Linguistic Constraints We experiment with the
following constraint types: (a) monolingual syn-
onymy constraints in each target language extracted
from BabelNet (Mono-Syn); (b) cross-lingual EN-
TARGET constraints from BabelNet; (c) cross-
lingual EN-TARGET constraints plus EN VerbNet
constraints (see Sect. 2.1 and Fig. 1). Unless stated
otherwise, we use BabelNet as the default source
of cross-lingual constraints for (b) and (c).

Vector Space Specialisation The PARAGRAM

model’s parameters are adopted directly from prior
work (Wieting et al., 2015) without any additional
fine-tuning: δatt = 0.6, λreg = 10−9, k = 50. We
train for 5 epochs without early stopping using Ada-
Grad (Duchi et al., 2011). PARAGRAM is in fact a
special case of the more general ATTRACT-REPEL

specialisation framework (Mrkšić et al., 2017b): we
use this more recent and more efficient TensorFlow
implementation of the model in all experiments.9

Test Data The development of an automatic verb
classification approach requires an initial gold stan-
dard (Sun et al., 2010): these have been devel-
oped for FR (Sun et al., 2010), PT (Scarton et al.,
2014), IT, PL, HR, and FI (Majewska et al., 2017).
They were created using the methodology of Sun
et al. (2010), based on the EN gold standard of Sun
et al. (2008) which contains 17 fine-grained Levin
classes with 12 member verbs each. For instance,
the class PUT-9.1 in French contains verbs such as
accrocher, déposer, mettre, répartir, réintégrer, etc.

Evaluation Measures We use standard evalua-
tion measures from prior work on verb clustering
(Ó Séaghdha and Copestake, 2008; Sun and Ko-
rhonen, 2009; Sun et al., 2010; Falk et al., 2012,
i.a.). The mean precision of induced verb clusters
labelled modified purity (MPUR) is computed as:

MPUR =

∑
C∈Clust,nprev(C)>1 nprev(C)

#test_verbs
(4)

Here, each cluster C from the set of all KClust

induced clusters Clust is associated with its preva-
lent class/cluster from the gold standard, and the
number of verbs in an induced cluster C taking this
prevalent class is labelled nprev(C). All other verbs
not taking the prevalent class are considered er-
rors.10 #test_verbs denotes the total number of test
verb instances. The second measure targeting recall
is weighted class accuracy (WACC), computed as:

WACC =

∑
C∈Gold ndom(C)

#test_verbs
(5)

9https://github.com/nmrksic/attract-repel
10Clusters with nprev(C) = 1 are discarded from the count

to avoid an undesired bias towards singleton clusters (Sun and
Korhonen, 2009; Sun et al., 2010).
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Figure 2: F-1 scores in six target languages using the post-processing specialisation procedure from
Sect. 2.1 and different sets of constraints: Distributional refers to the initial vector space in each target
language; Mono-Syn is the vector space tuned using monolingual synonymy constraints from BabelNet;
XLing uses cross-lingual EN-TARGET constraints from BabelNet (TARGET refers to any of the six target
languages); XLing+VerbNet-EN is a fine-tuned vector space which uses both cross-lingual EN-TARGET

constraints plus EN VerbNet constraints. Results are provided with (a) SGNS-BOW2 and (b) SGNS-DEPS
source vector space in English for the XLing and XLing+VerbNet variants, see Sect. 3.

For each cluster C from the set of gold standard
clusters Gold, we have to find the dominant cluster
from the set of induced clusters: this cluster has the
most verbs in common with the gold cluster C, and
that number is ndom(C). As measures of precision
and recall, MPUR and WACC may be combined into
an F-1 score, computed as the balanced harmonic
mean, which we report in this work.11

4 Results and Discussion

Cross-Lingual Transfer Model F-1 verb classifi-
cation scores for the six target languages with dif-
ferent sets of constraints are summarised in Fig. 2.
We can draw several interesting conclusions. First,
the strongest results on average are obtained with
the model which transfers the VerbNet knowledge
from English (as a resource-rich language) to the
resource-lean target language (providing an an-
swer to question Q3, Sect. 1). These improvements
are visible across all target languages, empirically
demonstrating the cross-lingual nature of VerbNet-
style classifications. Second, using cross-lingual
constraints alone (XLing) yields strong gains over
initial distributional spaces (answering Q1 and Q2).
Fig. 2 also shows that cross-lingual similarity con-
straints are more beneficial than the monolingual
ones, despite a larger total number of the monolin-

11We have also experimented with V-measure (Rosenberg
and Hirschberg, 2007), another standard evaluation measure
which balances between homogeneity (precision) and com-
pleteness (recall); we do not report these scores for brevity as
similar trends in results are observed.

gual constraints in each language (see Tab. 2). This
suggests that such cross-lingual similarity links
are strong implicit indicators of class membership.
Namely, target language words which map to the
same source language word are likely to be syn-
onyms and consequently end up in the same verb
class in the target language. However, the cross-
lingual links are even more useful as means for
transferring the VerbNet knowledge, as evidenced
by additional gains with XLing+VerbNet-EN.

The absolute classification scores are the low-
est for the two Slavic languages: PL and HR. This
may be partially explained by the lowest number of
cross-lingual constraints for the two languages cov-
ering only a subset of their entire vocabularies (see
Tab. 2 and compare the total number of constraints
for HR and PL to the numbers for e.g. FI or FR). An-
other reason for weaker performance of these two
languages could be their rich morphology, which
induces data sparsity both in the initial vector space
estimation and in the coverage of constraints.

State-of-the-Art A direct comparison of previ-
ous state-of-the-art classification scores available
for FR (Sun et al., 2010) and PT (Scarton et al.,
2014) on the same test data exemplifies the extent
of improvement achieved by our transfer model.
F-1 scores improve from 0.55 to 0.75 for FR and
from 0.43 to 0.73 for PT. Scarton et al. (2014) ex-
plain the low performance by “the lower quality
NLP tools”. This issue is largely mitigated by our
VerbNet transfer model, which exploits the assump-
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French Italian
Vector space XLing XLing+VN XLing XLing+VN

EN+FR 0.698 0.742 – –
EN+IT – – 0.621 0.795
EN+FR+IT 0.728 0.745 0.650 0.768
EN+FR+PL 0.697 0.717 – –
EN+IT+PL – – 0.658 0.765
EN+FI+FR+IT 0.719 0.751 0.662 0.777
EN+FR+IT+PT 0.710 0.718 0.688 0.760

Table 3: The effect of multilingual vector space
specialisation. Results are reported for FR and IT

using: a) cross-lingual constraints only (XLing);
and b) the VerbNet transfer model (XLing+VN).

tion of cross-linguistic class consistency directly
through a specialised vector space, and also avoids
any reliance on target-language-specific NLP tools.

Starting Source Vector Space Fig. 2a and
Fig. 2b enable a brief analysis of the influence
of the starting EN vector space on the results for
each target language. We observe small but consis-
tent gains with SGNS-DEPS, which utilises syn-
tactic information stemming from a dependency
parser on the source side, over SGNS-BOW for the
XLing variant. The improvements are +2.1 points
on average, visible for 5 out of 6 target languages.
We again see an increase in performance with the
XLing+VerbNet model, but we do not observe any
major difference between the two starting source
spaces now: average slight score difference of 0.3
is in favour of SGNS-BOW2, which outperforms
SGNS-DEPS for 3 out of 6 target languages. This
finding indicates that VerbNet-based linguistic con-
straints are more important for the final classifica-
tion performance, and mitigate the artefacts of the
starting distributional source space.

Bilingual vs. Multilingual The transfer model
can operate with more than two languages, effec-
tively inducing a multilingual vector space. We
analyse such multilingual training based on the re-
sults on FR and IT (Tab. 3). On average, the results
with XLing improve with more languages (see also
the results for EN in Tab. 4), as the model relies
on more constraints for the vector space special-
isation. Yet additional languages do not lead to
clear improvements with XLing+VerbNet: we hy-
pothesise that the specialisation procedure becomes
dominated by cross-lingual constraints which may
diminish the importance of VerbNet-based EN con-
straints. The language configuration in the mul-
tilingual vector space also makes a difference:

VC:XLing Sim:XLing Sim:XLing+VN

EN-Dist 0.484 0.275 –

+FR 0.608 0.556 0.481
+PT 0.633 0.537 0.466
+IT 0.602 0.524 0.476
+PL 0.597 0.469 0.431
+HR 0.582 0.497 0.446
+FI 0.662 0.598 0.491

+FR+IT 0.633 0.571 0.526
+FI+FR+IT 0.641 0.635 0.558
+FR+IT+PT 0.674 0.596 0.515

EN-VN 0.956 – 0.358

Table 4: Comparison of verb classification (VC)
and verb semantic similarity (Sim) for English.
VC is measured on the EN test set of Sun et al.
(2008). Sim is measured on SimVerb-3500 (Gerz
et al., 2016). The scores are Spearman’s ρ corre-
lation scores. EN-Dist is the initial distributional
English vector space: SGNS-BOW2; EN-VN is
the same space transformed using monolingual EN

VerbNet constraints only, an upper bound for the
specialisation-based approach in EN.

e.g., combining PL with the Romance languages
degrades the performance, while FI surprisingly
boosts it slightly. For brevity, we only report the
results for FR and IT. Similar trends are observed
when making the transition from bilingual to multi-
lingual vector spaces for other target languages.

Clustering Algorithm Since vector space spe-
cialisation is detached from the application of
the clustering algorithm, our framework allows
straightforward experimentation with other algo-
rithms. Following prior work (Brew and Schulte im
Walde, 2002; Sun et al., 2010), we also test K-
means clustering. Results for the six languages
using the EN SGNS-BOW2 source space and
Xling+VerbNet-EN are on average 3.8 points lower
than the ones reported in Fig. 2a. K-Means is out-
performed for each target language, confirming
the superiority of spectral clustering established in
prior work, e.g., (Scarton et al., 2014). On the other
hand, we find results with another clustering algo-
rithm, hierarchical agglomerative clustering with
Ward’s linkage (Ward, 1963), on par with spectral
clustering (1.4 points on average in favour of spec-
tral, which is better on 4 out of 6 languages). We
believe that further gains in verb class induction
could be achieved by additional fine-tuning of the
clustering algorithm.

Other Cross-Lingual Sources Replacing Babel-
Net with PanLex as the alternative source of cross-
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Figure 3: F-1 scores when PanLex is used as the
source of cross-lingual ATTRACT constraints (in-
stead of BabelNet). EN Vectors: SGNS-BOW2.

lingual information again leads to large gains with
the cross-lingual transfer model, as is evident from
Fig. 3. This suggests that the proposed approach
does not depend on a particular source of infor-
mation - it can be used with any general-purpose
bilingual dictionary. We mark slight improvements
for 3/6 target languages when comparing the results
with the ones from Fig. 2a. The new state-of-the-art
F-1 scores are 0.79 for FR and 0.74 for PT.

Verb Classification vs. Semantic Similarity
An interesting question originating from prior work
on verb representation learning, e.g., (Baker et al.,
2014) touches upon the correlation between verb
classification and semantic similarity. Due to the
availability of VerbNet constraints and a recent sim-
ilarity evaluation set (SimVerb-3500; it contains hu-
man similarity ratings for 3,500 verb pairs) (Gerz
et al., 2016), we perform the analysis on English:
the results are summarised in Tab. 4. They clearly
indicate that cross-lingual synonymy constraints
are useful for both relationship types (compare the
scores with XLing), with strong gains over the non-
specialised distributional space. However, the inclu-
sion of VerbNet information, while boosting classi-
fication scores for target languages and (trivially)
for EN, deteriorates EN similarity scores across
the board (compare XLing+VN against XLing in
Tab. 4). This suggests that the VerbNet-style class
membership is definitely not equivalent to pure
semantic similarity captured by SimVerb.

4.1 Further Discussion and Future Work
This work has proven the potential of transferring
lexical resources from resource-rich to resource-
poor languages using general-purpose cross-lingual
dictionaries and bilingual vector spaces as means
of transfer within a semantic specialisation frame-

work. However, we believe that the proposed basic
framework may be upgraded and extended across
several research paths in future work.

First, in the current work we have operated with
standard single-sense/single-prototype representa-
tions, thus effectively disregarding the problem
of verb polysemy. While several polysemy-aware
verb classification models for English were de-
veloped recently (Kawahara et al., 2014; Peter-
son et al., 2016), the current lack of polysemy-
aware evaluation sets in other languages impedes
this line of research. Evaluation issues aside, one
idea for future work is to use the ATTRACT-REPEL

specialisation framework for sense-aware cross-
lingual transfer relying on recently developed multi-
sense/prototype word representations (Neelakantan
et al., 2014; Pilehvar and Collier, 2016, inter alia).

Another challenge is to apply the idea from this
work to enable cross-lingual transfer of other struc-
tured lexical resources available in English such as
FrameNet (Baker et al., 1998), PropBank (Palmer
et al., 2005), and VerbKB (Wijaya and Mitchell,
2016). Other potential research avenues include
porting the approach to other typologically diverse
languages and truly low-resource settings (e.g.,
with only limited amounts of parallel data), as well
as experiments with other distributional spaces, e.g.
(Melamud et al., 2016). Further refinements of the
specialisation and clustering algorithms may also
result in improved verb class induction.

5 Conclusion

We have presented a novel cross-lingual transfer
model which enables the automatic induction of
VerbNet-style verb classifications across multiple
languages. The transfer is based on a word vector
space specialisation framework, utilised to directly
model the assumption of cross-linguistic validity of
VerbNet-style classifications. Our results indicate
strong improvements in verb classification accu-
racy across all six target languages explored. All
automatically induced VerbNets are available at:
github.com/cambridgeltl/verbnets.
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Huang, Akira Murakami, Veronika Laippala, and
Anna Korhonen. 2017. Investigating the cross-
lingual translatability of verbnet-style classification.
Language Resources and Evaluation.

Mausam, Michael Schmitz, Robert Bart, Stephen
Soderland, and Oren Etzioni. 2012. Open language
learning for information extraction. In Proceedings
of EMNLP, pages 523–534.

Marina Meila and Jianbo Shi. 2001. A random walks
view of spectral segmentation. In Proceedings of
AISTATS.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. Context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proceedings
of CoNLL, pages 51–61.

Paola Merlo, Suzanne Stevenson, Vivian Tsang, and
Gianluca Allaria. 2002. A multilingual paradigm
for automatic verb classification. In Proceedings of
ACL, pages 207–214.

Cédric Messiant. 2008. A subcategorization acquisi-
tion system for French verbs. In Proceedings of ACL
Student Research Workshop, pages 55–60.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013a. Efficient estimation of word
representations in vector space. In Proceedings of
ICLR Workshop Papers.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their composi-
tionality. In Proceedings of NIPS, pages 3111–3119.
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Abstract

This paper addresses the automatic recog-
nition of telicity, an aspectual notion. A
telic event includes a natural endpoint (she
walked home), while an atelic event does
not (she walked around). Recognizing this
difference is a prerequisite for temporal
natural language understanding. In En-
glish, this classification task is difficult, as
telicity is a covert linguistic category. In
contrast, in Slavic languages, aspect is part
of a verb’s meaning and even available in
machine-readable dictionaries. Our con-
tributions are as follows. We successfully
leverage additional silver standard train-
ing data in the form of projected annota-
tions from parallel English-Czech data as
well as context information, improving au-
tomatic telicity classification for English
significantly compared to previous work.
We also create a new data set of English
texts manually annotated with telicity.

1 Introduction

This paper addresses the computational modeling
of telicity, a linguistic feature which represents
whether the event type evoked by a sentence’s verb
constellation (i.e., the verb and its arguments and
modifiers) has a natural endpoint or not (Comrie,
1976; Smith, 1997), see (1a) and (1b).

(1) (a) Mary ate an apple. (telic)
(b) I gazed at the sunset. (atelic)

Automatic recognition of telicity is a neces-
sary step for natural language understanding tasks
that require reasoning about time, e.g., natural
language generation, summarization, question an-
swering, information extraction or machine trans-
lation (Moens and Steedman, 1988; Siegel and

McKeown, 2000). For example, there is an en-
tailment relation between English Progressive and
Perfect constructions (as shown in (2)), but only
for atelic verb constellations.

(2) (a) He was swimming in the lake. (atelic)
|= He has swum in the lake.

(b) He was swimming across the lake. (telic)
6|= He has swum across the lake.

We model telicity at the word-sense level, cor-
responding to the fundamental aspectual class of
Siegel and McKeown (2000), i.e., we take into ac-
count the verb and its arguments and modifiers,
but no additional aspectual markers (such as the
Progressive). In (2) we classify whether the event
types “swim in the lake” and “swim across the
lake” have natural endpoints. This is defined on
a linguistic level rather than by world knowledge
requiring inference. “Swimming in the lake” has
no natural endpoint, as also shown by the linguis-
tic test presented in (2). In contrast, “swimming
across the lake” will necessarily be finished once
the other side is reached.

In English, the aspectual notion of telicity is a
covert category, i.e., a semantic distinction that is
not expressed overtly by lexical or morphological
means. As illustrated by (2) and (3), the same verb
type (lemma) can introduce telic and atelic events
to the discourse depending on the context in which
it occurs.

(3) (a) John drank coffee. (atelic)
(b) John drank a cup of coffee. (telic)

In Slavic languages, aspect is a component of
verb meaning. Most verb types are either perfec-
tive or imperfective (and are marked as such in
dictionaries). For example, the two occurrences
of “drink” in (3) are translated into Czech using
the imperfective verb “pil” and the perfective verb
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“vypil,” respectively (Filip, 1994):1

(4) (a) Pil kávu. (imperfective)
He was drinking (some) coffee.

(b) Vypil kávu. (perfective)
He drank up (all) the coffee.

Our contributions are as follows: (1) using
the English-Czech part of InterCorp (Čermák and
Rosen, 2012) and a valency lexicon for Czech
verbs (Žabokrtský and Lopatková, 2007), we cre-
ate a large silver standard with automatically de-
rived annotations and validate our approach by
comparing the labels given by humans versus the
projected labels; (2) we provide a freely available
data set of English texts taken from MASC (Ide
et al., 2010) manually annotated for telicity; (3)
we show that using contextual features and the sil-
ver standard as additional training data improves
computational modeling of telicity for English in
terms of F1 compared to previous work.

2 Related work

Siegel and McKeown (2000, henceforth
SMK2000) present the first machine-learning
based approach to identifying completedness, i.e.,
telicity, determining whether an event reaches a
culmination or completion point at which a new
state is introduced. Their approach describes each
verb occurrence exclusively using features reflect-
ing corpus-based statistics of the corresponding
verb type. For each verb type, they collect the
co-occurrence frequencies with 14 linguistic
markers (e.g., present tense, perfect, combination
with temporal adverbs) in an automatically parsed
background corpus. They call these features
linguistic indicators and train a variety of machine
learning models based on 300 clauses, of which
roughly 2/3 are culminated, i.e., telic. Their test
set also contains about 300 clauses, corresponding
to 204 distinct non-stative verbs. Their data sets
are not available, but as this work is the most
closely related to ours, we reimplement their
approach and compare to it in Section 5.

Samardžić and Merlo (2016) create a model for
real-world duration of events (as short or long) of
English verbs as annotated in TimeBank (Puste-
jovsky et al., 2003). The model is informed by
temporal boundedness information collected from

1In Czech, aspectual verb pairs may be related by affixes
as in this example, but this is not always the case. They may
even use different lexemes (Vintr, 2001).

parallel English-Serbian data. Their only features
are how often the respective verb type was aligned
to Serbian verbs carrying certain affixes that indi-
cate perfectiveness or imperfectiveness. Their us-
age of “verb type” differs from ours as they do not
lemmatize, i.e., they always predict that “falling”
is a long event, while “fall” is short. Our approach
shares the idea of projecting aspectual information
from Slavic languages to English, but in contrast
to classifying verb types, we classify whether an
event type introduced by the verb constellation of
a clause is telic or atelic, making use of a machine-
readable dictionary for Czech instead of relying on
affix information.

Loáiciga and Grisot (2016) create an automatic
classifier for boundedness, defined as whether the
endpoint of an event has occurred or not, and show
that this is useful for picking the correct tense in
French translations of the English Simple Past.
Their classifier employs a similar but smaller fea-
ture set compared to ours. Other related work on
predicting aspect include systems aiming at identi-
fying lexical aspect (Siegel and McKeown, 2000;
Friedrich and Palmer, 2014) or habituals (Mathew
and Katz, 2009; Friedrich and Pinkal, 2015).

Cross-linguistic annotation projection ap-
proaches mostly make use of existing manually
created annotations in the source language;
similar to our approach, Diab and Resnik (2002)
and Marasović et al. (2016) leverage properties
of the source language to automatically induce
annotations on the target side.

3 Data sets and annotation projection

We conduct our experiments based on two data
sets: (a) English texts from MASC manually an-
notated for telicity, on which we train and test our
computational models, and (b) a silver standard
automatically extracted via annotation projection
from the Czech-English part of the parallel cor-
pus InterCorp, which we use as additional training
data in order to improve our models.2

3.1 Gold standard: MASC (EN)

We create a new data set consisting of 10 En-
glish texts taken from MASC (Ide et al., 2010),
annotated for telicity. Texts include two essays,
a journal article, two blog texts, two history texts
from travel guides, and three texts from the fic-

2Annotations, guidelines and code available from
https://github.com/annefried/telicity
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MASC (gold standard) InterCorp (silver standard) intersection

clauses (instances) 1863 457,000 -
% telic 82 55 -
% atelic 18 45 -

distinct verb types (lemmas) 567 2262 510
ambiguous verb types 70 1130 69

Table 1: Corpus statistics.

tion genre. Annotation was performed using the
web-based SWAN system (Gühring et al., 2016).
Annotators were given a short written manual with
instructions. We model telicity for dynamic (even-
tive) verb occurrences because stative verbs (e.g.,
“like”) do not have built-in endpoints by defini-
tion. Annotators choose one of the labels telic and
atelic or they skip clauses that they consider to be
stative. In a first round, each verb occurrence was
labeled by three annotators (the second author of
this paper plus two paid student assistants). They
unanimously agreed on telicity labels for 1166
verb occurrences; these are directly used for the
gold standard. Cases in which only two annota-
tors agreed on a telicity label (the third annotator
may have either disagreed or skipped the clause)
are labeled by a fourth independent annotator (the
first author), who did not have access to the la-
bels of the first rounds. This second annotation
round resulted in 697 further cases in which three
annotators gave the same telicity label. Statistics
for our final gold standard, which consists of all
instances for which at least three out of the four
annotators agreed, are shown in Table 1; “ambigu-
ous” verb types are those for which the gold stan-
dard contains both telic and atelic instances. 510
of the 567 verb types also occur in the InterCorp
silver standard, which provides training instances
for 69 out of the 70 ambiguous verb types.

Finally, there are 446 cases for which no three
annotators supplied the same label. Disagreement
and skipping was mainly observed for verbs in-
dicating attributions (“critics claim” or “the film
uses”), which can be perceived either as statives
or as instances of historic present. Other difficult
cases include degree verbs (“increase”), aspectual
verbs (“begin”), perception verbs (“hear”), itera-
tives (“flash”) and the verb “do.” For these cases,
decisions how to treat them may have to be made
depending on the concrete application; for now,
they are excluded from our gold standard. Another
source of error is that despite the training, anno-
tators sometimes conflate their world knowledge

(i.e., that some events necessarily come to an end
eventually, such as the “swimming in the lake” in
(2)) with the annotation task of determining telic-
ity at a linguistic level.

3.2 Silver standard: InterCorp (EN-CZ)
We create a silver standard of approximately
457,000 labeled English verb occurrences (i.e.,
clauses) extracted from the InterCorp parallel cor-
pus project (Čermák and Rosen, 2012). We lever-
age the sentence alignments, as well as part-of-
speech and lemma information provided by In-
terCorp. We use the data from 151 sentence-
aligned books (novels) of the Czech-English part
of the corpus and further align the verbs of all
1:1-aligned sentence pairs to each other using the
verbs’ lemmas, achieving high precision by mak-
ing sure that the translation of the verbs is licensed
by the free online dictionary Glosbe.3 We then
look up the aspect of the Czech verb in Vallex
2.8.3 (Žabokrtský and Lopatková, 2007), a va-
lency lexicon for Czech verbs, and project the la-
bel telic to English verb occurrences correspond-
ing to a perfective Czech verb and the label atelic
to instances translated using imperfective verbs.

Our annotation projection approach leverages
the fact that most perfective Czech verbs will be
translated into English using verb constellations
that induce a telic event structure, as they describe
one-time finished actions. Imperfective verbs, in
contrast, are used for actions that are presented as
unfinished, repeated or extending in time (Vintr,
2001). They are often, but not always, translated
using atelic verb constellations. A notable excep-
tion is the English Progressive: “John was read-
ing a book” signals an ongoing event in the past,
which is telic at the word-sense level but would
require translation using the imperfective Czech
verb “četl.” The initial corpus contained 4% sen-
tences in the Progressive, out of which 89% were
translated using imperfectives.4 Due to the above

3https://glosbe.com
4For comparison, in the manually annotated validation
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described mismatch, we remove all English Pro-
gressive sentences from our silver standard. Statis-
tics for the final automatically created silver stan-
dard are shown in Table 1.

For validation, we sample 2402 instances from
the above created silver standard and have our
three annotators from the first annotation round
mark them in the same way as the MASC data.
Sampling picked one instance per verb type but
was otherwise random. A majority agreement
among the three annotators can be reached in 2126
cases (due to allowing skipping).5 In this sam-
ple, 77.8% of the instances received the label telic
from the human annotators, 61.5% received the la-
bel telic from the projection method. The accuracy
of our projection method can be estimated as about
78%; F1 for the telic class is 0.84, F1 for atelic is
0.65. Errors made by the projection include for
instance habituals, which use the imperfective in
Czech but are not necessarily atelic at the event
type level as in “John cycles to work every day.”

4 Computational modeling

In this section, we describe the computational
models for telicity classification, which we test on
the MASC data and which we improve by adding
the InterCorp silver standard data.

Features. We model each instance by means of
a variety of syntactic-semantic features, using the
toolkit provided by Friedrich et al. (2016).6 Pre-
processing is done using Stanford CoreNLP (Chen
and Manning, 2014) based on dkpro (Eckart de
Castilho and Gurevych, 2014). For the verb’s
lemma, the features include the WordNet (Fell-
baum, 1998) sense and supersense and linguistic
indicators (Siegel and McKeown, 2000) extracted
from GigaWord (Graff et al., 2003). Using only
the latter as features corresponds to the system by
SMK2000 as described in Section 2. The fea-
ture set also describes the verb’s subject and ob-
jects; among others their number, person, count-
ability7, their most frequent WordNet sense and
the respective supersenses, and dependency rela-
tions between the argument and its governor(s).
In addition, tense, voice and whether the clause
is in the Perfect or Progressive aspect is reflected,

sample only 66% of Progressives received the label atelic.
5Of the 2402 cases, annotators completely agreed on 1577

cases (1114 telic, 203 atelic, 260 skipped). 85 cases were 2x
atelic + 1x skipped, 219 cases were 2x telic + 1x skipped.

6https://github.com/annefried/sitent
7http://celex.mpi.nl

as well as the presence of clausal (e.g., temporal)
modifiers. For replicability we make the configu-
ration files for the feature set available.

Classifier. We train L1-regularized multi-class
logistic regression models using LIBLINEAR
(Fan et al., 2008) with parameter settings ε=0.01
and bias=1. For each instance described by fea-
ture vector ~x, the probability of each possible label
y (here telic or atelic) is computed according to

P (y|~x) = 1

Z(~x)
exp

(
m∑

i=1

λifi(y, ~x)

)
,

where fi are the feature functions, λi are the
weights learned for each feature function, and
Z(~x) is a normalization constant (Klinger and
Tomanek, 2007). The feature functions fi indi-
cate whether a particular feature is present, e.g.,
whether the tense of the verb is “past.”

5 Experiments

Experimental settings. We evaluate our models
via 10-fold cross validation (CV) on the MASC
data set. We split the data into folds by documents
in order to make sure that no training data from
the same document is available for each instance
in order to avoid an unfair bias. We report re-
sults in terms of accuracy, F1 per class and macro-
average F1 (the harmonic mean of macro-average
precision and recall). We test significance between
differences in F1 (for each class) using approxi-
mate randomization (Yeh, 2000; Padó, 2006) with
p < 0.1 and significance between differences in
accuracy using McNemar’s test (McNemar, 1947)
with p < 0.01. Table 2 shows our results: signif-
icantly different scores are marked with the same
symbol where relevant (per column).

Results. A simple baseline of labeling each in-
stance with the overall majority class (telic) has a
very high accuracy, but the output of this baseline
is uninformative and results in a low F1. Rows ti-
tled “verb type” use the verb’s lemma as their sin-
gle feature and thus correspond to the informed
baseline of using the training set majority class
for each verb type. Rows labeled “+IC” indicate
that the full set of instances with projected la-
bels extracted from InterCorp has been added as
additional training data in each fold; in rows ti-
tled “+ICs,” the telic instances in InterCorp have
been upsampled to match the 80:20 distribution in
MASC. Our model using the full set of features
significantly outperforms the verb type baseline

2562



as well as SMK2000 (see † ‡ ∗). Using the ad-
ditional training data from InterCorp results in a
large improvement in the case of the difficult (be-
cause infrequent) atelic class (see ?), leading to
the best overall results in terms of F1. The best re-
sults regarding accuracy and F1 are reached using
the sampled version of the silver standard; the dif-
ferences compared to the respective best scores in
each column (in bold) are not significant.

Ablation experiments on the MASC data show
that features describing the clause’s main verb are
most important: when ablating part-of-speech tag
and tense and aspect (Progressive or Perfect), per-
formance deteriorates by 1.8% in accuracy and 5%
F1, hinting at a correlation between telicity and
choice of tense-aspect form. Whether this is due to
an actual correlation of how telic and atelic verbs
are used in context or merely due to annotation er-
rors remains to be investigated in future work.

In sum, our experiments show that using anno-
tations projected onto English text from parallel
Czech text as cheap additional training data is a
step forward to creating better models for the task
of classifying telicity of verb occurrences.

6 Conclusion

Our model using a diverse set of features repre-
senting both verb-type relevant information and
the context in which a verb occurs strongly out-
performed previous work on predicting telicity
(Siegel and McKeown, 2000). We have shown that
silver standard data induced from parallel Czech-
English data is useful for creating computational
models for recognizing telicity in English. Our
new manually annotated MASC data set is freely
available; the projected annotations for InterCorp
are published in a stand-off format due to license
restrictions.

7 Future work

Aspectual distinctions made by one language
rarely completely correspond to a linguistic phe-
nomenon observed in another language. As we
have discussed in Section 3.2, telicity in English
and perfectiveness in Czech are closely related.
As shown by our experiments, the projected la-
bels cover useful information for the telicity clas-
sification task. One idea for future work is thus
to leverage additional projected annotations from
similar phenomena in additional languages, pos-
sibly improving overall performance by combin-

Acc. F1 F1(telic) F1(atelic)

maj. class 82.0 45.0 90.1 0.0

SMK2000 †83.0 63.9 †90.4 †26.8
SMK2000+IC 78.6 65.6 86.8 44.2
SMK2000+ICs ∗81.8 58.2 89.9 ∗12.4

verb type ‡83.8 66.7 ‡91.0 ‡24.9
verb type+IC 82.4 73.5 89.0 57.1
verb type+ICs 85.1 72.2 91.2 ∗51.9

our model †‡86.7 74.5 †‡92.2 † ‡ ?53.7
our model+IC 82.3 76.4 88.6 61.4
our model+ICs ∗86.2 76.2 91.6 ?∗60.6

Table 2: Results for telicity classification on
MASC data (1863 instances), 10-fold CV.

ing complementary information. Clustering more
than two languages may also enable us to induce
clusters corresponding to the different usages of
imperfective verbs in Czech.

The presence of endpoints has consequences for
the temporal interpretation of a discourse (Smith,
1997; Smith and Erbaugh, 2005), as endpoints
introduce new states and therefore signal an ad-
vancement of time. In English, boundedness, i.e.,
whether an endpoint of an event has actually oc-
curred, is primarily signaled by the choice of tense
and Progressive or Perfect aspect. In tense-less
languages such as Mandarin Chinese, bounded-
ness is a covert category and closely related to
telicity. We plan to leverage similar ideas as pre-
sented in this paper to create temporal discourse
parsing models for such languages.

When translating, telic and atelic constructions
also require different lexical choices and appropri-
ate selection of aspectual markers. Hence, telic-
ity recognition is also relevant for machine trans-
lation research and could be a useful component in
computer aided language learning systems, help-
ing learners to select appropriate aspectual forms.
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We thank Klára Jágrová, Irina Stenger and Andrea
Fischer for their help with Czech-specific ques-
tions and with finding appropriate corpora, and
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Abstract

The goal of counterfactual learning for
statistical machine translation (SMT) is
to optimize a target SMT system from
logged data that consist of user feed-
back to translations that were predicted
by another, historic SMT system. A
challenge arises by the fact that risk-
averse commercial SMT systems deter-
ministically log the most probable trans-
lation. The lack of sufficient exploration
of the SMT output space seemingly con-
tradicts the theoretical requirements for
counterfactual learning. We show that
counterfactual learning from determinis-
tic bandit logs is possible nevertheless by
smoothing out deterministic components
in learning. This can be achieved by ad-
ditive and multiplicative control variates
that avoid degenerate behavior in empir-
ical risk minimization. Our simulation
experiments show improvements of up to
2 BLEU points by counterfactual learn-
ing from deterministic bandit feedback.

1 Introduction

Commercial SMT systems allow to record large
amounts of interaction log data at no cost. Such
logs typically contain a record of the source,
the translation predicted by the system, and the
user feedback. The latter can be gathered di-
rectly if explicit user quality ratings of transla-
tions are supported, or inferred indirectly from

the interaction of the user with the translated
content. Indirect feedback in form user clicks
on displayed ads has been shown to be a valu-
able feedback signal in response prediction for
display advertising (Bottou et al., 2013). Similar
to the computational advertising scenario, one
could imagine a scenario where SMT systems
are optimized from partial information in form of
user feedback to predicted translations, instead
of from manually created reference translations.
This learning scenario has been investigated in
the areas of bandit learning (Bubeck and Cesa-
Bianchi, 2012) or reinforcement learning (RL)
(Sutton and Barto, 1998). Figure 1 illustrates the
learning protocol using the terminology of ban-
dit structured prediction (Sokolov et al., 2016;
Kreutzer et al., 2017), where at each round, a
system (corresponding to a policy in RL terms)
makes a prediction (also called action in RL, or
pulling an arm of a bandit), and receives a re-
ward, which is used to update the system.

Figure 1: Online learning from partial feedback.

Counterfactual learning attempts to reuse ex-
isting interaction data where the predictions have
been made by a historic system different from
the target system. This enables offline or batch
learning from logged data, and is important if
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online experiments that deploy the target system
are risky and/or expensive. Counterfactual learn-
ing tasks include policy evaluation, i.e. estimat-
ing how a target policy would have performed if
it had been in control of choosing the predictions
for which the rewards were logged, and policy
optimization (also called policy learning), i.e.
optimizing parameters of a target policy given
the logged data from the historic system. Both
tasks are called counterfactual, or off-policy in
RL terms, since the target policy was actually
not in control during logging. Figure 2 shows
the learning protocol for off-policy learning from
partial feedback.

Figure 2: Offline learning from partial feedback.

The crucial trick to obtain unbiased estimators
to evaluate and to optimize the off-policy sys-
tem is to correct the sampling bias of the log-
ging policy. This can be done by importance
sampling where the estimate is corrected by the
inverse propensity score (Rosenbaum and Ru-
bin, 1983) of the historical algorithm, mitigating
the problem that predictions there were favored
by the historical system are over-represented in
the logs. As shown by Langford et al. (2008)
or Strehl et al. (2010), a sufficient exploration
of the output space by the logging system is a
prerequisite for counterfactual learning. If the
logging policy acts stochastically in predicting
outputs, this condition is satisfied, and inverse
propensity scoring can be applied to correct the
sampling bias. However, commercial SMT sys-
tems usually try to avoid any risk and only log

the most probable translation. This effectively
results in deterministic logging policies, making
theory and practice of off-policy methods inap-
plicable to counterfactual learning in SMT.

This paper presents a case study in counter-
factual learning for SMT that shows that pol-
icy optimization from deterministic bandit logs
is possible despite these seemingly contradic-
tory theoretical requirements. We formalize our
learning problem as an empirical risk minimiza-
tion over logged data. While a simple empiri-
cal risk minimizer can show degenerate behav-
ior where the objective is minimized by avoiding
or over-representing training samples, thus suf-
fering from decreased generalization ability, we
show that the use of control variates can remedy
this problem. Techniques such as doubly-robust
policy evaluation and learning (Dudik et al.,
2011) or weighted importance sampling (Jiang
and Li, 2016; Thomas and Brunskill, 2016) can
be interpreted as additive (Ross, 2013) or multi-
plicative control variates (Kong, 1992) that serve
for variance reduction in estimation. We observe
that a further effect of these techniques is that
of smoothing out deterministic components by
taking the whole output space into account. Fur-
thermore, we conjecture that while outputs are
logged deterministically, the stochastic selection
of inputs serves as sufficient exploration in pa-
rameter optimization over a joint feature repre-
sentation over inputs and outputs. We present
experiments using simulated bandit feedback for
two different SMT tasks, showing improvements
of up to 2 BLEU in SMT domain adaptation
from deterministically logged bandit feedback.
This result, together with a comparison to the
standard case of policy learning from stochas-
tically logged simulated bandit feedback, con-
firms the effectiveness our proposed techniques.

2 Related Work

Counterfactual learning has been known under
the name of off-policy learning in various fields
that deal with partial feedback, namely contex-
tual bandits (Langford et al. (2008); Strehl et al.
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(2010); Dudik et al. (2011); Li et al. (2015),
inter alia), reinforcement learning (Sutton and
Barto (1998); Precup et al. (2000); Jiang and
Li (2016); Thomas and Brunskill (2016), inter
alia), and structured prediction (Swaminathan
and Joachims (2015a,b), inter alia). The idea
behind these approaches is to first perform pol-
icy evaluation and then policy optimization, un-
der the assumption that better evaluation leads
to better optimization. Our work puts a focus
on policy optimization in an empirical risk mini-
mization framework for deterministically logged
data. Since our experiment is a simulation
study, we can compare the deterministic case to
the standard scenario of policy optimization and
evaluation under stochastic logging.

Variance reduction by additive control variates
has implicitly been used in doubly robust tech-
niques (Dudik et al., 2011; Jiang and Li, 2016).
However, the connection to Monte Carlo tech-
niques has not been made explicit until Thomas
and Brunskill (2016), nor has the control vari-
ate technique of optimizing the variance reduc-
tion by adjusting a linear interpolation scalar
(Ross, 2013) been applied in off-policy learn-
ing. Similarly, the technique of weighted im-
portance sampling has been used as variance re-
duction technique in off-policy learning (Precup
et al., 2000; Jiang and Li, 2016; Thomas and
Brunskill, 2016). The connection to multiplica-
tive control variates (Kong, 1992) has been made
explicit in Swaminathan and Joachims (2015b).
To our knowledge, our analysis of both control
variate techniques from the perspective of avoid-
ing degenerate behavior in learning from deter-
ministically logged data is novel.

3 Counterfactual Learning from
Deterministic Bandit Logs

Problem Definition. The problem of counter-
factual learning (in the following used in the
sense of counterfactual optimization) for ban-
dit structured prediction can be described as fol-
lows: LetX be a structured input space, let Y(x)
be the set of possible output structures for input

x, and let ∆ : Y → [0, 1] be a reward func-
tion (and δ = −∆ be the corresponding task
loss function)1 quantifying the quality of struc-
tured outputs. We are given a data log of triples
D = {(xt, yt, δt)}nt=1 where outputs yt for in-
puts xt were generated by a logging system, and
loss values δt were observed only at the gener-
ated data points. In case of stochastic logging
with probability π0, the inverse propensity scor-
ing approach (Rosenbaum and Rubin, 1983) uses
importance sampling to achieve an unbiased es-
timate of the expected loss under the parametric
target policy πw:

R̂IPS(πw) =
1

n

n∑

t=1

δt
πw(yt|xt)
π0(yt|xt)

(1)

≈ Ep(x)Eπ0(y|x)[δ(y)
πw(y|x)

π0(y|x)
]

= Ep(x)Eπw(y|x)[δ(y)].

In case of deterministic logging, we are con-
fined to empirical risk minimization:

R̂DPM(πw) =
1

n

n∑

t=1

δtπw(yt|xt). (2)

Equation (2) assumes deterministically logged
outputs with propensity π0 = 1, t = 1, . . . , n of
the historical system. We call this objective the
deterministic propensity matching (DPM) objec-
tive since it matches deterministic outputs of the
logging system to outputs in the n-best list of
the target system. For optimization under deter-
ministic logging, a sampling bias is unavoidable
since objective (2) does not correct it by impor-
tance sampling. Furthermore, the DPM estima-
tor may show a degenerate behavior in learning.
This problem can be remedied by the use of con-
trol variates, as we will discuss in Section 5.

Learning Principle: Doubly Controlled Em-
pirical Risk Minimization. Our first modifi-
cation of Equation (2) has been originally moti-
vated by the use of weighted importance sam-
pling in inverse propensity scoring because of

1We will use both terms, reward and loss, in order to be
consistent with the respective literature.
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∇R̂DPM = 1
n

∑n
t=1 δtπw(yt|xt)∇ log πw(yt|xt).

∇R̂DPM+R = 1
n

∑n
t=1[δtπ̄w(yt|xt)(∇ log πw(yt|xt)−

∑n
u=1 π̄w(yu|xu)∇ log πw(yu|xu))].

∇R̂ĉDC = 1
n

∑n
t=1[(δt − ĉδ̂t)π̄w(yt|xt)(∇ log πw(yt|xt)−

∑n
u=1 π̄w(yu|xu)∇ log πw(yu|xu))

+ĉ
∑

y∈Y(xt)
δ̂(xt, y)πw(y|xt)∇ log πw(y|xt)].

Table 1: Gradients of counterfactual objectives.

its observed stability and variance reduction ef-
fects (Precup et al., 2000; Jiang and Li, 2016;
Thomas and Brunskill, 2016). We call this ob-
jective the reweighted deterministic propensity
matching (DPM+R) objective:

R̂DPM+R(πw) =
1

n

n∑

t=1

δtπ̄w(yt|xt) (3)

=
1

n

n∑

t=1

δt
πw(yt|xt)∑n
t=1 πw(yt|xt)

.

From the perspective of Monte Carlo simu-
lation, the advantage of this modification can
be explained by viewing reweighting as a mul-
tiplicative control variate (Swaminathan and
Joachims, 2015b). Let Z = δtπw(yt|xt)
and W = πw(yt|xt) be two random vari-

ables, then the variance of r =
1
n

∑n
t=1 Z

1
n

∑n
t=1W

can be approximately written as follows (Kong,
1992): Var(r) ≈ 1

n(r2Var(W ) + Var(Z) −
2rCov(W,Z)). This shows that a positive cor-
relation between the variable W , representing
the target model probability, and the variable Z,
representing the target model scaled by the task
loss function, will reduce the variance of the es-
timator. Since there are exponentially many out-
puts to choose from for each input during log-
ging, variance reduction is useful in counterfac-
tual learning even in the deterministic case. Un-
der a stochastic logging policy, a similar modifi-
cation can be done to objective (1) by reweight-
ing the ratio ρt = πw(yt|xt)

π0(yt|xt) as ρ̄t = ρt∑
t ρt

.
We will use this reweighted IPS objective, called
IPS+R, in our comparison experiments that use
stochastically logged data.

A further modification of Equation (3) is
motivated by the incorporation of a direct re-
ward estimation method in the inverse propen-
sity scorer as proposed in the doubly-robust es-
timator (Dudik et al., 2011; Jiang and Li, 2016;
Thomas and Brunskill, 2016). Let δ̂(xt, yt) be
a regression-based reward model trained on the
logged data, and let ĉ be a scalar that allows
to optimize the estimator for minimal variance
(Ross, 2013). We define a doubly controlled em-
pirical risk minimization objective R̂ĉDC as fol-
lows (for ĉ = 1 we arrive at a similar objective
called R̂DC):

R̂ĉDC(πw) =
1

n

n∑

t=1

[
(δt − ĉδ̂t) π̄w(yt|xt) (4)

+ ĉ
∑

y∈Y(xt)

δ̂(xt, y) πw(y|xt)
]
.

From the perspective of Monte Carlo simu-
lation, the doubly robust estimator can be seen
as variance reduction via additive control vari-
ates (Ross, 2013). Let X = δt and Y =
δ̂t be two random variables. Then Ȳ =∑

y∈Y(xt)
δ̂(xt, y) πw(y|xt) is the expectation2

of Y , and Equation (4) can be rewritten as
Eπ̄w(x)(X− ĉ Y )+ ĉ Ȳ . The variance of the term
X−ĉ Y is Var(X−ĉ Y ) = Var(X)+ĉ2Var(Y )−
2ĉCov(X,Y ). (Ross (2013), Chap. 9.2). Again
this shows that variance of the estimator can be
reduced if the variable X , representing the re-
ward function, and the variable Y , represent-
ing the regression-based reward model, are posi-
tively correlated. The optimal scalar parameter ĉ

2Note that we introduce a slight bias by using πw versus
π̄w in sampling probability and control variate.
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can be derived easily by taking the derivative of
variance term, leading to

ĉ =
Cov(X,Y )

Var(Y )
. (5)

In case of stochastic logging the reweighted
target probability π̄w(yt|xt) is replaced by a
reweighted ratio ρ̄t. We will use such reweighted
models of the original doubly robust model, with
and without optimal ĉ, called DR and ĉDR, in
our experiments that use stochastic logging.

Learning Algorithms. Applying a stochastic
gradient descent update rule wt+1 = wt −
η∇R̂(πw)t to the objective functions defined
above leads to a variety of algorithms. The gradi-
ents of the objectives can be derived by using the
score function gradient estimator (Fu, 2006) and
are shown in Table 1. Stochastic gradient descent
algorithms apply to any differentiable policy πw,
thus our methods can be applied to a variety of
systems, including linear and non-linear mod-
els. Since previous work on off-policy methods
in RL and contextual bandits has been done in
the area of linear classification, we start with an
adaptation of off-policy methods to linear SMT
models in our work. We assume a Gibbs model

πw(yt|xt) =
eα(w>φ(xt,yt))

∑
y∈Y(xt)

eα(w>φ(xt,y))
, (6)

based on a feature representation φ : X × Y →
Rd, a weight vector w ∈ Rd, and a smoothing
parameter α ∈ R+, yielding the following sim-
ple derivative ∇ log πw(yt|xt) = α

(
φ(xt, yt) −∑

y∈Y(xt)
φ(xt, y)πw(yt|xt)

)
.

4 Experiments

Setup. In our experiments, we aim to simu-
late the following scenario: We assume that it
is possible to divert a small fraction of the user
interaction traffic for the purpose of policy eval-
uation and to perform stochastic logging on this
small data set. The main traffic is assumed to be
logged deterministically, following a conserva-
tive regime where one-best translations are used

TED DE-EN News FR-EN

train 122k 30k
validation 3k 1k

test 3k 2k

Table 2: Number of sentences for in-domain data
splits of SMT train, validation, and test data.

for an SMT system that does not change fre-
quently over time. Since our experiments are
simulation studies, we will additionally perform
stochastic logging, and compare policy learn-
ing for the (realistic) case of deterministic log-
ging with the (theoretically motivated) case of
stochastic logging.

In our deterministic-based policy learning ex-
periments, we evaluate the empirical risk mini-
mization algorithms derived from objectives (3)
(DPM+R) and (4). For the doubly controlled ob-
jective we employ two variants: First, ĉ is set to
1 as in (Dudik et al., 2011) (DC). Second, we
calculate ĉ as described in Equation (5) (ĉDC).
The algorithms used in policy evaluation and for
stochastic-based policy learning are variants of
these objectives that replace π̄ by ρ̄ to yield es-
timators IPS+R, DR, and ĉDR of the expected
loss.

All objectives will be employed in a domain
adaptation scenario for machine translation. A
system trained on out-of-domain data will be
used to collect feedback on in-domain data. This
data will serve as the logged data D in the
learning experiments. We conduct two SMT
tasks with hypergraph re-decoding: The first is
German-to-English and is trained using a con-
catenation of the Europarl corpus (Koehn, 2005),
the Common Crawl corpus3 and the News Com-
mentary corpus (Koehn and Schroeder, 2007).
The goal is to adapt the trained system to the
domain of transcribed TED talks using the TED
parallel corpus (Tiedemann, 2012). A second
task uses the French-to-English Europarl data

3http://www.statmt.org/wmt13/
training-parallel-commoncrawl.tgz
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with the goal of domain adaptation to news arti-
cles with the News Commentary corpus (Koehn
and Schroeder, 2007). We split off two parts
from the TED corpus to be used as validation and
test data for the learning experiments. As valida-
tion data for the News Commentary corpus we
use the splits provided at the WMT shared task,
namely nc-devtest2007 as validation data
and nc-test2007 as test data. An overview
of the data statistics can be seen in Table 2.

As baseline, an out-of-domain system is built
using the SCFG framework CDEC (Dyer et al.,
2010) with dense features (10 standard features
and 2 for the language model). After tokeniz-
ing and lowercasing the training data, the data
were word aligned using CDEC’s fast align.
A 4-gram language model is build on the tar-
get languages for the out-of-domain data using
KENLM (Heafield et al., 2013). For News, we
additionally assume access to in-domain target
language text and train another in-domain lan-
guage model on that data, increasing the number
of features to 14 for News.

The framework uses a standard linear Gibbs
model whose distribution can be peaked using a
parameter α (see Equation (6)): Higher value of
α will shift the probability of the one-best trans-
lation closer to 1 and all others closer to 0. Using
α > 1 during training will promote to learn mod-
els that are optimal when outputting the one-best
translation. In our experiments, we found α = 5
to work well on validation data.

Additionally, we tune a system using CDEC’s
MERT implementation (Och, 2003) on the in-
domain data with their references. This full-
information in-domain system conveys the best
possible improvement using the given training
data. It can thus be seen as the oracle system
for the systems which are learnt using the same
input-side training data, but have only bandit
feedback available to them as a learning signal.
All systems are evaluated using the corpus-level
BLEU metric (Papineni et al., 2002).

The logged data D is created by translating
the in-domain training data of the corpora using

TED News

macro avg. 0.67 0.23
micro avg. 15.03 10.87

Table 3: Evaluation of regression-based reward
estimation by average BLEU differences be-
tween estimated and true rewards.

IPS+R DR ĉDR

T
E

D avg. estimate +4.00 +7.98 +6.07
std. dev. 0.64 3.83 2.06

N
ew

s avg. estimate -7.78 +6.63 +0.95
std. dev. 0.97 4.13 2.33

Table 4: Policy evaluation by macro averaged
difference between estimated and ground truth
BLEU on 10k stochastically logged data, aver-
aged over 5 runs.

the original out-of-domain systems, and logging
the one-best translation. For the stochastic ex-
periments, the translations are sampled from the
model distribution. The feedback to the logged
translation is simulated using the reference and
sentence-level BLEU (Nakov et al., 2012).

Direct Reward Estimation. When creating
the logged data D, we also record the feature
vectors of the translations to train the direct re-
ward estimate that is needed for (ĉ)DC. Using
the feature vector as input and the per-sentence
BLEU as the output value, we train a regression-
based random forest with 10 trees using scikit-
learn (Pedregosa et al., 2011). To measure per-
formance, we perform 5-fold cross-validation
and measure the macro average between esti-
mated rewards and the true rewards from the log:
| 1n
∑
δ(xt, yt) − 1

n

∑
δ̂(xt, yt)|. We also report

the micro average which quantifies how far off
one can expect the model to be for a random
sample: 1

n

∑ |δ(xt, yt) − δ̂(xt, yt)|. The final
model used in the experiments is trained on the
full training data. Cross-validation results for
the regression-based direct reward model can be
found in Table 3.
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Policy Evaluation. Policy evaluation aims to
use the logged data D to estimate the perfor-
mance of the target system πw. The small logged
data Deval that is diverted for policy evalua-
tion is created by translating only 10k sentences
of the in-domain training data with the out-of-
domain system and sample translations accord-
ing to the model probability. Again we record
the sentence-level BLEU as the feedback. The
reference translations that also exist for those
10k sentences are used to measure the ground
truth BLEU value for translations using the full-
information in-domain system. The goal of eval-
uation is to achieve a value of IPS+R, DR, and
ĉDR on Deval that are as close as possible to the
ground truth BLEU value.

To be able to measure variance, we create five
folds ofDeval, differing in random seeds. We re-
port the average difference between the ground
truth BLEU score and the value of the log-based
policy evaluation, as well as the standard devi-
ation in Table 4. We see that IPS+R underesti-
mates the BLEU value by 7.78 on News. DR
overestimates instead. ĉDR achieves the closest
estimate, overestimating the true value by less
than 1 BLEU. On TED, all policy evaluation
results are overestimates. For the DR variants
the overestimation result can be explained by the
random forests’ tendency to overestimate. Opti-
mal ĉDR can correct for this, but not always in a
sufficient way.

Policy Learning. In our learning experiments,
learning starts with the weights w0 from the out-
of-domain model. As this was the system that
produced the logged data D, the first iteration
will have the same translations in the one-best
position. After some iterations, however, the
translation that was logged may not be in the first
position any more. In this case, the n-best list is
searched for the correct translation. Due to speed
reasons, the scores of the translation system are
normalized to probabilities using the first 1,000
unique entries in the n-best list, rather than using
the full hypergraph. Our experiments showed
that this did not impact the quality of learning.

In order for the multiplicative control variate
to be effective, the learning procedure has to uti-
lize mini-batches. If the mini-batch size is cho-
sen too small, the estimates of the control vari-
ates may not be reliable. We test mini-batch sizes
of 30k and 10k examples, whereas 30k on News
means that we perform batch training since the
mini-batch spans the entire training set. Mini-
batch size β and early stopping point where se-
lected by choosing the setup and iteration that
achieved the highest BLEU score on the one-best
translations for the validation data. The learning
rate η was selected in the same way, whereas the
possible values were 1e−4, 1e−5, 1e−6 or, al-
ternatively, Adadelta (Zeiler, 2012), which sets
the learning rate on a per-feature basis. The re-
sults on both validation and test set are reported
in Table 5. Statistical significance of the out-
of-domain system compared to all other systems
is measured using Approximate Randomization
testing (Noreen, 1989).

For the deterministic case, we see that in
general DPM+R shows the lowest increase but
can still significantly outperform the baseline.
An explanation of why DPM+R cannot improve
any further, will be addressed separately below.
DC yields improvements of up to 1.5 BLEU
points, while ĉDC obtains improvements of up
to 2 BLEU points over the out-of-domain base-
line. In more detail on the TED data, DC can
close the gap of nearly 3 BLEU by half between
the out-of-domain and the full-information in-
domain system. ĉDC can improve by further
0.6 BLEU which is a significant improvement at
p = 0.0017. Also note that, while ĉDC takes
more iterations to reach its best result on the val-
idation data, ĉDC already outperforms DC at the
stopping iteration of DC. At this point ĉDC is
better by 0.18 BLEU on the validation set and
continues to increase until its own stopping it-
eration. The final results of ĉDC falls only 0.8
BLEU behind the oracle system that had refer-
ences available during its learning process. Con-
sidering the substantial difference in information
that both systems had available, this is remark-
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BLEU BLEU difference BLEU
out-of-domain DPM+R DC ĉDC in-domain

de
te

rm
in

is
tic

T
E

D validation 22.39 +0.59 +1.50 +1.89 25.43
test 22.76 +0.67 +1.41 +2.02 25.58

N
ew

s validation 24.64 +0.62 +0.99 +1.02 27.62
test 25.27 +0.94 +1.05 +1.13 28.08

out-of-domain IPS+R DR ĉDR in-domain

st
oc

ha
st

ic T
E

D validation 22.39 +0.57 +1.92 +1.95 25.43
test 22.76 +0.58 +2.04 +2.09 25.58

N
ew

s validation 24.64 +0.71 +1.00 +0.71 27.62
test 25.27 +0.81 +1.18 +0.95 28.08

Table 5: BLEU increases for learning, over the out-of-domain baseline on validation and test set. Out-
of-domain is the baseline and starting system and in-domain is the oracle system tuned on in-domain
data with references. For the deterministic case, all results are statistically significant at p ≤ 0.001
with regards to the baseline. For the stochastic case, all results are statistically significant at p ≤ 0.002
with regards to the baseline, except for IPS+R on the News corpus.

able. The improvements on the News corpus
show similar tendencies. Again there is a gap
of nearly 3 BLEU to close and with an improve-
ment of 1.05 BLEU points, DC can achieve a no-
table result. ĉDC was able to further improve on
this but not as successfully as was the case for the
TED corpus. Analyzing the actual ĉ values that
were calculated in both experiments allows us to
gain an insight as to why this was the case: For
TED, ĉ is on average 1.35. In the case of News,
however, ĉ has a maximum value of 1.14 and
thus stays quite close to 1, which would equate
to using DC. It is thus not surprising that there is
no significant difference between DC and ĉDC.

Comparison to the Stochastic Case. Even
if not realistic for commercial applications of
SMT, our simulation study allows us to stochas-
tically log large amounts of data in order to com-
pare learning from deterministic logs to the stan-
dard case. As shown in Table 5, the relations be-
tween algorithms and even the absolute improve-
ments are similar for stochastic and determin-
istic logging. Significance tests between each
deterministic/stochastic experiment pair show a
significant difference only in case of DC/DR on

TED data. However, the DR result still does
not significantly outperform the best determinis-
tic objective on TED (ĉDC). The p values for all
other experiment pairs lie above 0.1. From this
we can conclude that it is indeed an acceptable
practice to log deterministically.

5 Analysis

Langford et al. (2008) show that counterfactual
learning is impossible unless the logging sys-
tem sufficiently explores the output space. This
condition is seemingly not satisfied if the log-
ging systems acts according to a deterministic
policy. Furthermore, since techniques such as
“exploration over time” (Strehl et al., 2010) are
not applicable to commercial SMT systems that
are not frequently changed over time, the case
of counterfactual learning for SMT seems hope-
less. However, our experiments present evidence
to the contrary. In the following, we present an
analysis that aims to explain this apparent con-
tradiction.

Implicit Exploration. In an experimental
comparison between stochastic and determinis-
tic logging for bandit learning in computational
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advertising, Chapelle and Li (2011) observed
that varying contexts (representing user and page
visited) induces enough exploration into ad se-
lection such that learning becomes possible. A
similar implicit exploration can also be attributed
to the case of SMT: An identical input word or
phrase can lead, depending on the other words
and phrases in the input sentence, to different
output words and phrases. Moreover, an identi-
cal output word or phrase can appear in different
output sentences. Across the entire log, this im-
plicitly performs the exploration on phrase trans-
lations that seems to be missing at first glance.

Smoothing by Multiplicative Control Vari-
ates. The DPM estimator can show a degen-
erate behavior in that the objective can be mini-
mized simply by setting the probability of every
logged data point to 1.0. This over-represents
logged data that received low rewards, which is
undesired. Furthermore, systems optimized with
this objective cannot properly discriminate be-
tween the translations in the output space. This
can be seen as a case of translation invariance
of the objective, as has been previously noted by
Swaminathan and Joachims (2015b): Adding a
small constant c to the probability of every data
point in the log increases the overall value of
the objective without improving the discrimina-
tive power between high-reward and low-reward
translations.

DPM+R solves the degeneracy of DPM by
defining a probability distribution over the
logged data by reweighting via the multiplica-
tive control variate. After reweighting, the ob-
jective value will decrease if the probability of
a low-reward translation increased, as it takes
away probability mass from other, higher reward
samples. Because of this trade-off, balancing the
probabilities over low-reward and high-reward
samples becomes important, as desired.

Smoothing by Additive Control Variates.
Despite reweighting, DPM+R can still show a
degenerate behavior by setting the probabili-
ties of only the highest-reward samples to 1.0,

while avoiding all other logged data points. This
clearly hampers the generalization ability of the
model since inputs that have been avoided in
training will not receive a proper ranking of their
translations.

The use of an additive control variate can
solve this problem by using a reward estimate
that takes the full output space into account. The
objective will now be increased if the probabil-
ity of translations with high estimated reward is
increased, even if they were not seen in train-
ing. This will shift probability mass to unseen
data with high estimated-reward, and thus im-
prove the generalization ability of the model.

6 Conclusion

In this paper, we showed that off-policy learn-
ing from deterministic bandit logs for SMT is
possible if smoothing techniques based on con-
trol variates are used. These techniques will
avoid degenerate behavior in learning and im-
prove generalization of empirical risk minimiza-
tion over logged data. Furthermore, we showed
that standard off-policy evaluation is applicable
to SMT under stochastic logging policies.

To our knowledge, this is the first application
of counterfactual learning to a complex struc-
tured prediction problem like SMT. Since our
objectives are agnostic of the choice of the un-
derlying model πw, it is also possible to transfer
our techniques to non-linear models such as neu-
ral machine translation. This will be a desidera-
tum for future work.
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Candela, Denis X. Charles, D. Max Chickering,

2574



Elon Portugaly, Dipanakar Ray, Patrice Simard,
and Ed Snelson. 2013. Counterfactual reasoning
and learning systems: The example of computa-
tional advertising. Journal of Machine Learning
Research, 14:3207–3260.
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Abstract

User generated categories (UGCs) are
short texts that reflect how people describe
and organize entities, expressing rich se-
mantic relations implicitly. While most
methods on UGC relation extraction are
based on pattern matching in English cir-
cumstances, learning relations from Chi-
nese UGCs poses different challenges due
to the flexibility of expressions. In this pa-
per, we present a weakly supervised learn-
ing framework to harvest relations from
Chinese UGCs. We identify is-a relations
via word embedding based projection and
inference, extract non-taxonomic relations
and their category patterns by graph min-
ing. We conduct experiments on Chinese
Wikipedia and achieve high accuracy, out-
performing state-of-the-art methods.

1 Introduction

UGCs are descriptive phrases related to entities,
frequently appearing in online encyclopedias and
vertical websites. These texts are concise and in-
formative, reflecting the way people organize and
characterize entities (Xu et al., 2016a).

UGCs (especially Wikipedia categories) are im-
portant sources for knowledge harvesting. Previ-
ous approaches (Flati et al., 2014; Ponzetto and
Strube, 2007; Ponzetto and Navigli, 2009) focus
on inferring is-a relations between entities and
UGCs for taxonomy construction. A few others
extract multiple types of relations from Wikipedia
categories (Nastase and Strube, 2008; Suchanek
et al., 2007). These methods are mostly designed
for English language by employing language-
specific patterns or linguistic rules.

∗Corresponding author.

For Chinese, harvesting semantic relations from
texts poses different challenges. There is no dis-
tinction between singular and plural forms and no
word spaces in Chinese. Word orders can be ar-
ranged in multiple ways with very flexible expres-
sions. As illustrated in Qiu and Zhang (2014);
Chen et al. (2014), the research of relation extrac-
tion from Chinese texts makes less significant pro-
cess than the research for English. Although sev-
eral approaches are proposed to construct Chinese
taxonomies from Wikipedia categories (Li et al.,
2015; Wang et al., 2014), extracting fine-grained
and multi-typed relations from UGCs still needs
further study. This is because there exist very
few high-quality lexical patterns for relation iden-
tification in Chinese UGCs (in contrast to Nas-
tase and Strube (2008); Suchanek et al. (2007)).
Hence this problem is similar to “open relation ex-
traction” (Etzioni et al., 2011) from Chinese short
texts, without pre-defined relation types.

· - Tim Berners-Lee

Winner of Turing Award 1955 
History of the Internet Londoner

· -
Tim Berners-Lee

Turing Award 1955

Londoner

win-prize born-in

is-a
Winner of Turing Award is-a

Figure 1: An illustrative example with respect to
“Tim Berners-Lee” in Chinese Wikipedia.

In this paper, we propose a weakly super-
vised learning framework to mine fine-grained and
multiple-typed relations from Chinese UGCs. A
simple example is illustrated in Figure 11. In-
spired by Fu et al. (2014); Wang et al. (2017), is-a
relations are extracted based on word embedding

1The category “Winner of Turing Award” can serve as a
class of “Tim Berners-Lee” (similar to Wu et al. (2012)) and
be treated as a relational category (similar to Suchanek et al.
(2007)). We regard both are valid and extract two relations.

2577



based projection models. We further refine predic-
tion results by collective inference and hypernym
expansion. For non-taxonomic relations, rela-
tion types and corresponding category patterns are
identified jointly based on graph clique mining.
Finally, these mined “raw” relations are mapped to
canonicalized relation triples. In our work, except
for a set of heuristic rules, the proposed approach
is weakly supervised without manual labeling.

In the experiments, given only 0.6M entities
and their respective 2.4M categories in Chinese
Wikipedia, our method extracts 1.52M relations
with an overall accuracy of 93.6%. The exper-
iments also show that our approach outperforms
previous methods for both is-a and non-taxonomic
relation extraction from Chinese UGCs. The ex-
tracted relations and the labeled test set are pub-
licly available2.

The rest of this paper is as follows. Section 2
summarizes related work. Details of our approach
are described in Section 3 to Section 5, with ex-
periments in Section 6. Finally, we conclude our
paper and discuss the future work in Section 7.

2 Related Work

In this section, we overview the related work on
relation extraction from UGCs.

2.1 Is-a Relation Extraction

Is-a relations are backbones in taxonomies. In
YAGO (Suchanek et al., 2007), a Wikipedia cat-
egory is regarded as conceptual if it matches
the pattern “pre-modifier + head word + post-
modifier”. WikiTaxonomy (Ponzetto and Strube,
2007) constructs a taxonomy from Wikipedia cat-
egories using multiple types of features. The tax-
onomy is reconstructed and improved in Ponzetto
and Navigli (2009). Other similar projects use
classifiers and rule based inference to predict is-a
relations for taxonomy learning (Flati et al., 2014;
Mahdisoltani et al., 2015; Nastase et al., 2010;
Alfarone and Davis, 2015; Shwartz et al., 2016;
Gupta et al., 2016). Since harvesting English is-a
relations is not our focus, we do not elaborate here.

For Chinese, this task is more challenging be-
cause there are few category patterns that can be
used to extract is-a relations from UGCs. Based
on the word formation of Wikipedia categories,
Li et al. (2015) propose a classification method to
build a large Chinese taxonomy from Wikipedia.

2https://chywang.github.io/data/emnlp17.zip

A similar approach is presented in Lu et al. (2015).
Besides encyclopedias, Fu et al. (2013) generate
candidate hypernyms and employ an SVM-based
ranking model to detect the most likely hypernym
of an entity. These methods have relatively high
precision but require careful feature engineering
and a large amount of human work.

Another thread of related work is cross-lingual
approaches, which use larger English knowledge
sources to supervise Chinese is-a relations ex-
traction. For example, Wang et al. (2014) pro-
pose a dynamic adaptive boosting model to learn
taxonomic prediction functions for English and
Chinese. Xu et al. (2016b) link Chinese enti-
ties with DBpedia types based on cross-lingual
links between Chinese and English entities. Other
approaches can be found in Wu et al. (2016);
Mahdisoltani et al. (2015). These methods take
advantages of languages with richer resources but
are constrained by cross-lingual links.

To capture linguistic regularities of is-a rela-
tions, deep learning approaches map the vectors of
entities to the vectors of their hypernyms. Fu et al.
(2014) design piecewise linear projection models
to learn Chinese semantic hierarchies based on
word embeddings (Mikolov et al., 2013). Wang
and He (2016) improve this approach by adding an
iterative update strategy and a pattern-based vali-
dation mechanism. Wang et al. (2017) design a
transductive learning approach by considering the
semantics of both is-a and not-is-a relations, lin-
guistic rules and the unlabeled data jointly. In this
work, we further propose a word embedding based
model that consider the word formation of UGCs
to improve the prediction results.

2.2 Non-taxonomic Relation Extraction

Unlike the case of is-a relations, the task of ex-
tracting non-taxonomic relations from UGCs has
rarely been addressed. A possible cause is that
harvesting relations from short texts is more chal-
lenging. The pioneer work Nastase and Strube
(2008) extracts relations by lexical pattern match-
ing and inference. Pasca (2017) studies how to de-
compose Wikipedia categories into attribute-value
pairs. YAGO (Suchanek et al., 2007) uses reg-
ular expression based matching to harvest rela-
tions. While patterns in English are more regular,
enumerating patterns for Chinese requires a large
amount of human labor. In our work, we solve
this problem by graph mining, which has high pre-
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cision and requires minimal human intervention.
Note that our work is also similar to open rela-
tion extraction (Etzioni et al., 2011) due to the un-
known number of relation types. The difference
is that our work focuses on UGCs which are very
short phrases rather than sentences.

3 General Framework

In Wikipedia, each entity e is associated with a
collection of UGCs Cat(e). We first learn a pre-
diction model f(e, c) to distinguish is-a relations
from not-is-a relations where c ∈ Cat(e), and ex-
tract all is-a relations (Section 4). For example, we
can obtain is-a relations “(Tim Berners-Lee, is-a,
Londoner)” and “(Tim Berners-Lee, is-a, Winner
of Turing Award)”, as shown in Figure 1.

After that, we mine non-taxonomic relations
from Wikipedia UGCs (Section 5). Our algorithm
first makes a single pass over all categories to mine
significant category patterns (Section 5.1). For ex-
ample, the pattern “[E]获得者(Winner of [E])” is
extracted, which frequently appears in UGCs and
may refers to a type of relation where “[E]” is
a placeholder for entities. Candidate relation in-
stances for such patterns are obtained by a graph
clique mining algorithm (Section 5.2). The in-
stances extracted based on the previous pattern are
“(Tim Berners-Lee, Turing Award)”, “(Albert Ein-
stein, Nobel Prize for Physics)”, etc. Finally, the
extracted “raw” instances are mapped to canoni-
calized triples (Section 5.3). In this step, a relation
predicate “win-prize” is defined for the pattern and
these pairs are mapped to “win-prize” relations.

4 Mining Is-a Relations

In this section, we introduce how to learn f(e, c)
and extract is-a relations from UGCs.

4.1 Training Data Generation

The training of f(e, c) requires positive and neg-
ative entity-category pairs. To avoid the time-
consuming labeling process, we generate the train-
ing set automatically. The first part is borrowed
from Fu et al. (2014), containing 1,391 positive
pairs and 4,294 negative pairs. However, the num-
ber of positive pairs is not sufficient for our pro-
pose. We design a heuristic rule to generate more
positive pairs from Wikipedia categories. We treat
a pair (e, c) as positive if the following two condi-
tions hold:

• The category c matches the pattern “pre-
modifier +的+ head word” or the head words
of e and c are the same3.

• The head word of a category name is a noun
and is not in a Chinese thematic lexicon ex-
tended from the dictionary used in Li et al.
(2015), containing 184 thematic words (e.g.,
“军事(Military)”, “娱乐(Entertainment)”.

In total, we sample 5,000 pairs to add to our train-
ing set. The TP rate is 98.7%, estimated over 300
pairs, indicating the effectiveness of rules.

4.2 Projection-based Model Prediction

Except for the previous pattern, other Chinese is-
a relations can not be directly extracted by lexical
matching. Inspired by Wang et al. (2017), we em-
ploy projection models to learn the semantics of
is-a and not-is-a relations.

A projection model is a linear model that maps
the embedding vector of a word to the vector of
another where the two words satisfy a particular
relation (Fu et al., 2014). In Wikipedia, most cate-
gory names are relatively long and fine-grained,
making it difficult to learn the embeddings pre-
cisely. We find that given a pair (e, c), if the head
word of category c is a valid hypernym of e, so
it is for c itself, e.g., “英格兰计算机科学家(CS
scientist in England)” for “Tim Berners-Lee”. De-
note ~v(e) as the embedding vector of entity e, with
the dimensionality as n. Let ch be the head word
of c. For each pair in the positive training set
(e, c) ∈ D+, assume there is a positive projection
model such that M+~v(e) + B+ ≈ ~v(ch) where
M+ is an n × n projection matrix and B+ is an
n × 1 bias vector. Similarly, for pairs in nega-
tive training set (e

′
, c
′
) ∈ D−, we learn a negative

model M−~v(e
′
) +B− ≈ ~v(c′h). Note that we do

not impose explicit connections between two mod-
els because the semantics of Chinese is-a and not-
is-a relations are very complicated and difficult to
model (Fu et al., 2014; Wang and He, 2016). In
our work, we let the algorithms to learn represen-
tations of is-a/not-is-a relations.

This approach learns is-a and not-is-a relation
representations implicitly and does not require
deep NLP analysis on UGCs, which is suitable to
deal with the flexible expressions in Chinese. In

3The head word of a category name is the root word in
the dependency parsing tree. “的” is an auxiliary word in
Chinese, usually appearing between adjectives and nouns.
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the training phase, we aim to minimize the objec-
tive function for positive projection learning:

J(M+,B+) =
∑

(e,c)∈D+

‖M+~v(e) +B+ − ~v(ch)‖2F

+
λ

2
‖M+‖2F +

λ

2
‖B+‖2F

where λ > 0 gives an additional Tikhonov
smoothness effect on the projection matrices
(Golub et al., 1999). For negative model, we have

J(M−,B−) =
∑

(e,c)∈D−
‖M−~v(e) +B− − ~v(ch)‖2F

+
λ

2
‖M−‖2F +

λ

2
‖B−‖2F

After model training, for an unlabeled pair
(e, c), if the category c is the correct hypernym
of the entity e, the vector ~v(ch) will be close to
M+~v(e)+B+ and far away from M−~v(e)+B−.
Denote d+(e, c) and d−(e, c) as:

d+(e, c) = ‖M+~v(e) +B+ − ~v(ch)‖2

d−(e, c) = ‖M−~v(e) +B− − ~v(ch)‖2
The prediction score is calculated as follows:

s(e, c) = tanh(d−(e, c)− d+(e, c))

where s(e, c) ∈ (−1, 1). High prediction score
means a large probability of the existence of an
is-a relation between e and c.

4.3 Collective Prediction Refinement
As indicated in Fu et al. (2013); Levy et al. (2015),
some categories naturally serve as “prototypical
hypernyms”, regardless of the entities. To encode
this assumption into our method, we refine the pre-
vious prediction results by collective inference.

Consider the category “伦敦人(Londoner)” in
Figure 1, which can be literally translated as “伦
敦(London)人(person)”. “人(person)” is the “pro-
totypical hypernym” here. Other categories whose
head words are “人(person)” such as “哥本哈
根人(Copenhagen person4, people from Copen-
hagen)” are likely to be conceptual categories, too.

Denote H as the head word set of all Wikipedia
UGCs. For each h ∈ H , let Dh = {(e, c)} be the
collection of unlabeled pairs (i.e., pairs not in the
training set) where the head word of category c is
h. D+

h is the collection of positive pairs with h as

4Literal translation.

the head word of c in the training set (generated
based on Section 4.1). We define the unnormal-
ized global prediction score g̃(h) for each h ∈ H:

g̃(h) = ln(1 + |Dh|+ |D+
h |)
|D+

h |+
∑

(e,c)∈Dh
s(e, c)

|Dh|+ |D+
h |

In this formula, each unlabeled data instance
(e, c) ∈ Dh has the weight of s(e, c) and each
training data instance (e, c) ∈ D+

h has the weight

of 1.
|D+
h |+

∑
(e,c)∈Dh s(e,c)

|Dh|+|D+
h |

is the average predic-

tion score for categories with the head word h.
ln(1 + |Dh|+ |D∗h|) gives a larger impact to g̃(h)
when the head word h appears more frequently
in Wikipedia categories. This heuristic setting
is inspired by transductive learning which takes
both training and unlabeled data into considera-
tion (Chapelle et al., 2006). It is also similar to
the prior probability feature (Fu et al., 2013).

We normalize the global prediction score g(h)
as follows:

g(h) =
g̃(h)

maxh′∈H |g̃(h
′)|

The prediction function f(e, c) for the entity e and
the category c with the head word h is defined in a
combination of s(e, c) and g(h):

f(e, c) = βs(e, c) + (1− β)g(h)

where β ∈ (0, 1) is a tuning parameter that con-
trols the relative importance of the two scores.

We predict there is an is-a relation between en-
tity e and category c ∈ Cat(e) if at least one of
the two conditions holds:

• (e, c) meets the two conditions in Section 4.1.

• f(e, c) > θ where θ is a threshold.

Finally, we regard ch as a valid hypernym of
e if c is predicted as a hypernym of e and ch is
also a Wikipedia concept. This step (called hy-
pernym expansion) increases the number of hyper-
nyms and hence the number of is-a relations.5

5 Mining Non-taxonomic Relations

In this section, we present our approach to extract
non-taxonomic relations from Wikipedia UGCs.

5We do not extract all the entity-head word pairs (e, ch) as
is-a relations because word segmentation, tagging and pars-
ing errors may occur when we extract head words by NLP
tools. We observe that if ch is also a Wikipedia concept, the
head word extraction process is most probably correct.
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5.1 Single-pass Category Pattern Miner
This module automatically learns important cate-
gory patterns that appear frequently in Wikipedia
and have a probability to represent certain seman-
tic relations. Formally, a category pattern p is
an ordered sequence of common words and entity
tags. For example, the pattern of the category “图
灵奖获得者(Winner of Turing Award)” is “[E]获
得者(Winner of [E])”. Define Rp = {(ep, cp)} as
the collection of entity pairs such that in Wikipedia
page ep, a category containing cp matches the pat-
tern p6. cp is in the place of “[E]”. Consider
the previous example. In Wikipedia page “Tim
Berners-Lee”, there is a category “Winner of Tur-
ing Award” that matches the pattern “Winner of
[E]”. “Turing Award” is the “[E]” here. Thus we
have ep =“Tim Berners-Lee” and cp =“Turing
Award” as an entity pair inRp. We can see thatRp
is the collection of all candidate relation instances
that may have the relation that p represents.

Let Lp be the number of common words in
pattern p. We define the support of the pattern
supp(p) as follows:

supp(p) = |Rp| · ln(1 + Lp)

where ln(1 + Lp) gives larger support values to
longer patterns because longer patterns tend to be
more specific and may contain richer semantics.

In the implementation, we employ a CRF-based
Chinese NER tagger (Qiu et al., 2013) and a dic-
tionary consisting of all Wikipedia entities to rec-
ognize the entities and obtain these patterns. This
step processes all the categories within a single
pass and calculates their support values. It keeps
top-k highest support patterns as the input of the
next step, together with the matched entity pairs.

5.2 Graph-based Raw Relation Extractor
In this part, for each top-k highest support pat-
tern p, we select a subset of pairs R∗p from Rp as
seed relation instances for an underlying relation
that the pattern p may represent. After that, we
filter out low quality patterns and extract relation
instances R

′
p from Rp as the final result.

5.2.1 Seed Relation Instance Extraction
To select seed relation instances R∗p, we pro-
pose an unsupervised graph mining approach. Let
Gp = (Cp, Lp,Wp) be a weighted, undirected

6Without ambiguity, we use ep to represent both the
Wikipedia page with the title as ep and the entity ep itself.

graph whereCp, Lp andWp denote vertices, edges
and edge weights, respectively. The vertices cor-
respond to the matched entities in categories for
pattern p, i.e., Cp = {cp|(ep, cp) ∈ Rp}. The edge
weights reflect the semantic similarities among en-
tities in Cp. Because the link structure in Chinese
Wikipedia is relatively sparse (Wang et al., 2016),
we estimate the similarity between entities cp and
c
′
p semantically as follows:

sim(cp, c
′
p) =

∑
c∈Cat(cp)

∑
c
′∈Cat(c′p)

cos(~v(ch), ~v(c
′
h))

|Cat(cp)| · |Cat(c′p)|

where cos(·) is a cosine function to compute the
similarity of two words in the embedding space.

Given a similarity threshold τ , iff sim(cp, c
′
p) >

τ , we have (cp, c
′
p) ∈ Lp and w(cp, c

′
p) =

sim(cp, c
′
p). In this way, entities in Cp are inter-

connected if they are similar in semantics.
In this paper, we model the problem of mining

R∗p from Rp as a Maximum Edge Weight Clique
Problem (MEWCP) (Alidaee et al., 2007), which
detects a maximum edge weight clique C∗p from
Cp in Rp to form R∗p. Recall that in an undirected
graph with edge weights, a maximum edge weight
clique is a clique in which the sum of edge weights
in the clique is the largest among all the cliques.

To produce a solution for MEWCP, several al-
gorithms have been proposed in the optimization
research community, e.g., unconstrained quadratic
programming (Alidaee et al., 2007) and the
branch-and-cut algorithm (Sørensen, 2004). How-
ever, they suffer from high computational com-
plexity due to the NP-Hardness of the problem
(Alidaee et al., 2007). In this paper, we introduce
an approximate algorithm based on Monte Carlo
methods. The general procedure is shown in Al-
gorithm 1. It starts with an empty graph G∗p to
store the clique. In each iteration, it selects an edge
(cp, c

′
p) from Gp with the probability proportional

to its weight w(cp, c
′
p). After a particular edge

(cp, c
′
p) is chosen, the algorithm adds the edge to

G∗p, and removes the edge and other edges that do
not connect with any nodes in C∗p from Gp. This
process iterates until no more edges in Gp can be
added to G∗p. Thus, the vertices in G∗p form the
desired clique C∗p .

Because it is a random, approximate algorithm,
the average runtime complexity depends on the in-
put graph structure. We can see that the worst-
case runtime complexity is O(|Lp|2). We run it k
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Algorithm 1 Algorithm for MEWCP
Input: Graph Gp = (Cp, Lp,Wp).
Output: Maximum edge weight clique C∗p .

Initialize temp graphG∗p = (C∗p , L
∗
p) withC∗p =

∅ and L∗p = ∅;
while Lp 6= ∅ do

Sample (cp, c
′
p) from Lp with prob ∝

w(cp, c
′
p);

Cp = Cp \ {cp, c′p}, C∗p = C∗p ∪ {cp, c
′
p};

Lp = Lp \ {(cp, c′p)}, L∗p = L∗p ∪ {(cp, c
′
p)};

for each (c̃p, c̃
′
p) ∈ Lp do

if c̃p /∈ C∗p and c̃
′
p /∈ C∗p then

Cp = Cp \ {c̃p, c̃′p};
Lp = Lp \ {(c̃p, c̃′p)};

end if
end for

end while
return Maximum edge weight clique C∗p ;

times and produce multiple results. We select the
clique with largest edge weights as the maximum
edge weight clique for Gp. The seed relation in-
stance collection is defined asR∗p = {(ep, cp)|cp ∈
C∗p , (ep, cp) ∈ Rp}. Thus the total runtime com-
plexity is O(k|Lp|2). In this way, the NP-hard
problem is effectively solved in quadratic time.

5.2.2 Relation Extraction and Filtering
After the seed relation instances R∗p are detected,
we employ a confidence score to quantify the qual-
ity of pattern p. Intuitively, if pattern p represents
entity pairs with the same clear semantic relation,
the size of R∗p and the sum of edge weights in C∗p
will be sufficiently large. Here, we define the con-
fidence score of pattern p as follows:

conf(p) =
ln(1 + |R∗p|)
|R∗p| · (|R∗p| − 1)

∑

cp,c
′
p∈C∗p ,cp 6=c

′
p

sim(cp, c
′
p)

Based on the formula, patterns with low con-
fidence scores can be filtered. For the remaining
patterns, given each (ep, cp) ∈ Rp, we add it to
the final extracted relation instance collection R

′
p

if (ep, cp) ∈ R∗p or it is similar enough to entity
pairs in R∗p. Denote γ as a parameter that controls
the precision-recall trade-off. The criteria is:

∑
c
′
p∈C∗p

sim(cp, c
′
p)

|C∗p |
>
γ
∑
c
′
p,c
′′
p ∈C∗p ,c

′
p 6=c
′′
p
sim(c

′
p, c
′′
p )

|R∗p| · (|R∗p| − 1)

In general, our method detects most probably
correct pairs as “seeds” and extract other pairs that
are similar enough to seeds. Because it is difficult
to ensure high precision for short text relation ex-
traction, we do not use iterative extraction method
to avoid “semantic drift” (Carlson et al., 2010).

5.3 Relation Mapping

The final step is to map R
′
p to relation triples with

a proper relation predicate. Based on category pat-
terns, we have three types of mappings:

Direct Verbal Mapping If the head word of the
pattern is a verb, we can use it as the relation pred-
icate. For example, in “[E]出生([E] births)”, “出
生(born in)” is expressed as a verb in Chinese and
is taken as a predicate.

Direct Non-verbal Mapping If the category
pattern does not contain a verb but expresses a
semantic relation by one/many non-verbs, we de-
fine the relation predicate and map the entity pairs
to relation triples by logical rules. For example,
in the pattern “[E]获得者(Winner of [E])”, “获
得者(winner)” is a noun that indicates the “得
奖(win-prize)” relation.

Indirect Mapping Similar to Suchanek et al.
(2007), a few patterns do not describe relations be-
tween entity pairs, but should be mapped to other
relations indirectly7. In “[E]军事([E] military)”,
it indicates that the entity is related to the topic
“军事(military)”. Thus, we define a new relation
predicate “话题(topic-of)” and establish the rela-
tions between entities and “军事(military)”.

As seen, the only manual work in our approach
is to define relation predicates for direct non-
verbal mappings and indirect mappings. In our
work, such logical mapping rules are required for
only a couple of relation types. Therefore, the pro-
posed approach needs very minimal human work.

6 Experiments

In this section, we conduct experiments to evalu-
ate our method and compare it with state-of-the-art
approaches. We also present the overall extraction
performance to make the convincing conclusion.

7There are also a few is-a relations that are generated by
indirect mapping. For example, the pattern “[E]单曲([E] dig-
ital single)” infers that the entity that is associated with the
category is a song. However, most of the cases are related to
non-taxonomic relations.
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6.1 Data Source and Experimental Settings

The data source is downloaded from the Chi-
nese Wikipedia dump of the version January 20th,
20178. Because some Wikipedia pages are not
related to entities, we use heuristic rules to fil-
ter out disambiguation, redirect, template and list
pages. Finally, we obtain 0.6M entities and 2.4M
entity-category pairs. The open-source toolkit Fu-
danNLP (Qiu et al., 2013) is employed for Chinese
NLP analysis. The word embeddings are trained
via a Skip-gram model using a large corpus from
Wang and He (2016) and set to 100 dimensions.

6.2 Is-a Relation Extraction

Test Set Generation We randomly select 2,000
entity-category pairs and ask multiple human an-
notators to label the relations (i.e., is-a and not-
is-a). We discard all the pairs that have inconsis-
tent labels across different annotators and obtain a
dataset of 1,788 pairs. 30% of the data are used
for parameter tuning and the rest for testing. The
dataset is publicly available for research.9

Parameter Analysis Two parameters are re-
quired to be tuned in our method, i.e., β and θ. We
vary the value of β from 0.1 to 0.9. With a fixed
value of β, we change the value of θ to achieve the
best performance over the development set. Fig-
ure 2(a) illustrates the maximum F-measure. Ex-
perimental results show our method is generally
not very sensitive to the selection of β. When
β = 0.7, it has the highest performance, indicat-
ing a good balance between the local and global
prediction scores. Additionally, Figure 2(b) illus-
trates the precision-recall curve with respect to the
change of θ when β = 0.7. The highest F-measure
is achieved when we set θ = 0.05.

Comparative Study We set up the following
strong baselines to compare our method with
state-of-the-art approaches. The experimental re-
sults are shown in Table 1. To represent entity-
category pairs with word embedding based fea-
tures, we implement several state-of-the-art meth-
ods: the concat model ~v(e)⊕~v(ch), the sum model
~v(e)+~v(ch) and the diff model ~v(e)−~v(ch) (Ba-
roni et al., 2012; Roller et al., 2014; Mirza and

8http://download.wikipedia.com/zhwiki/20170120/
9There exist a few public datasets for Chinese is-a rela-

tions (Fu et al., 2013, 2014). But they aim to learn is-a re-
lations between short concepts/terms and are not suitable for
evaluating our work. We focus on understanding (relatively
long) categories for entities.
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Figure 2: Parameter analysis.

Method Precision Recall F1
Concat Model 79.5% 64.2% 67.2%
Sum Model 80.9% 70.1% 72.6%
Diff Model 78.3% 69.0% 71.5%
Piecewise Projection 78.9% 72.3% 75.5%
Our Method (w/o Exp) 89.2% 88.1% 88.7%
Our Method 89.8% 88.3% 89.0%

Table 1: Performance comparison over test set.

Tonelli, 2016). l2-regularized logistic regression
is trained to make the prediction due to the high
performance in previous research. This approach
achieves the highest F-measure of 72.6%. We
also test the piecewise projection model proposed
in Wang and He (2016) over Chinese Wikipedia,
which is state-of-the-art for predicting is-a rela-
tions between Chinese words. It has a slight im-
provement in performance. As seen, our method
without the hypernym expansion step (i.e., “Our
Method (w/o Exp)” in Table 1) increases the F-
measure by 13.2% (with p < 0.01) compared to
Wang and He (2016). The full implementation of
our method has the F-measure of 89.0%, which
shows the effectiveness of our approach.

Overall Results In total, we extract 1.17M is-a
relations from Chinese Wikipedia categories, con-
sisting 412K entities and 113K distinct categories.
In Figure 3(a), we present how many entities have
a particular number of hypernyms. In average,
each entity has 2.84 hypernyms. We can see that
this distribution fits in a semi-log line, defined by

2583



0 10 20 30 40 50
20

25

210

215

220

Number of Hypernyms per Entity

N
um

be
r o

f E
nt

iti
es

(a) Distribution of number of hy-
pernyms per entity

20 25 210
20

25

210

215

Number of Entities per Hypernym

N
um

be
r o

f H
yp

er
ny

m
s

(b) Distribution of number of enti-
ties per hypernym

Figure 3: Distributional analysis on is-a relations.

Category Pattern Relation Predicate
[E]校友(Alumni) 毕业(graduated-from)
[E]队教练(Coach) 执教(coach-team)
[E]省市镇 位于(located-in)
(City/Town in Province)
[E]获得者(Winner) 获奖(win-prize)

Table 2: Manually defined relation mappings.

a log scale on the y-axis and a linear scale on the
x-axis. Similarly, each hypernym has 10.35 enti-
ties in average, with the distribution illustrated in
Figure 3(b). The number of entities per hypernym
follows the power-law distribution with a long tail.

6.3 Non-taxonomic Relation Extraction

Detailed Steps We first run the single-pass pat-
tern miner and extract the category patterns with
top-500 highest support values. This is because
only fewer than 20 entities are matched for the
rest of the patterns. For each of these patterns, we
fix τ = 0.7 and run the MEWCP algorithm three
times to ensure the high reliability of the seed re-
lation instances, and select top-250 most confident
category patterns. To determine the value of γ, we
carry out a preliminary experiment, which samples
200 entity pairs to estimate the accuracy. It shows
that even we set γ to a relatively low value (i.e.,
0.2), the accuracy is over 90%. Finally, 26 rela-
tion types are created automatically based on di-
rect verb mapping. We design the mapping rules
and relation predicates for the remaining 16 rela-
tion types manually, with examples in Table 2.

Evaluation To evaluate the correctness of ex-
tracted relations, we carry out two experimental
tests: accuracy test and coverage test. Follow-
ing Suchanek et al. (2007), in the accuracy test,
we randomly sample 200 relation instances for
each relation type and ask human annotators to
label. We discard the results if human annota-
tors disagree. The coverage test is to determine
whether the extracted relations already exist in
Chinese knowledge bases. Low coverage score
means these relations are not present in existing
Chinese knowledge bases. In the experiments, we
take CN-DBpedia V2.0 (Xu et al., 2017) as the
ground truth knowledge base. Up till February
2017, it contains 41M explicit semantic relations
of 9M entities, excluding entity summaries, syn-
onyms, etc. We use the CN-DBpedia API10 to ob-
tain relations for each entity and report the cover-
age of relation r as:

cov(r) =
#Matched extractions in CN-DBpedia

#Correct extractions generated by our approach

For fair comparison, because relations in dif-
ferent knowledge base systems may express dif-
ferently, we ask human annotators to determine
whether the relations extracted by our approach
and CN-DBpedia match or not. In Table 3, we
present the size, accuracy and coverage values
of eight non-taxonomic relations, each with over
three thousand relation instances.

From the experimental results, we can see that
the accuracy is over 90% for all the eight rela-
tions. Especially the accuracy values of some re-
lations are over 98% or even equal to 100%. This
means it is reliable to extract relations from Chi-
nese UGCs based category pattern mining. The
results of the coverage tests present a large vari-
ance among different relations. While some re-
lations such as “born-in” have a relatively high
coverage in CN-DBpedia, other relation instances
that we extract are rarely present in the knowl-
edge base. Overall, the average coverage is ap-
proximately 21.1%. This means although the Chi-
nese knowledge base is relatively large in size, it
is far from complete. Furthermore, most relations
in Chinese knowledge bases are extracted from in-
foboxes, in the form of attribute-value pairs (Fang
et al., 2016; Niu et al., 2011; Wang et al., 2013).
Thus, the knowledge harvested from UGCs can
be an important supplementary for these systems.

10http://knowledgeworks.cn:20313/cndbpedia/api/entityAVP
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Relation Size Accu. Cov. Relation Size Accu. Cov.
毕业(graduated-from) 44,118 98.0% 22.9% 位于(located-in) 29,460 97.2% 8.5%
建立(established-in) 20,154 95.0% 31.5% 出生(born-in) 11,671 98.3% 41.4%
成员(member-of) 8,445 96.0% 4.2% 启用(open-in) 8,956 98.2% 21.6%
逝世(died-in) 5,597 100.0% 18.4% 得奖(win-prize) 3,262 90.0% 27.3%

Table 3: Size, accuracy and coverage values of eight extracted relation types.

Type Category Pattern Example
Member pattern [E]成员/总统 中国科学院成员

Member/President of [E] Member of Chinese Academy of Sciences
Verb-NP pattern [E]+Verb+(的)+Noun Phrase 1990年建立的组织

Organization founded in 1990
Verb pattern [E]+Verb 1980年出生1980 births

Table 4: Category patterns that we design for CN-WikiRe.

Currently, we only focus on Chinese Wikipedia
categories. We will study how to extend our ap-
proach to UGCs for other knowledge sources, es-
pecially domain-specific sources in the future.

Overall Results In summary, our approach ex-
tracts 1.52M relations, including 1.17M is-a rela-
tions and 0.36M others. The estimated accuracy
values of is-a, other and all relations are 92.2%,
97.4% and 93.6% respectively. The accuracy val-
ues are estimated over random samples of 500 re-
lations.

Comparison Harvesting non-taxonomic rela-
tions from UGCs is non-trivial with no stan-
dard evaluation frameworks available. Further-
more, the significant difference between English
and Chinese makes it difficult to compare our
method with similar research. Pasca (2017) fo-
cuses on modifier in categories and is not directly
comparable to our work. In YAGO (Suchanek
et al., 2007), relations in categories are extracted
by handcrafting regular expressions. They extract
nine non-taxonomic relations, with accuracy val-
ues of around 90%-98%. Our approach avoids the
manual work to a large extent and harvests more
types of relations with a comparable accuracy.

Next we compare our work with Nastase and
Strube (2008), which heavily relies on preposi-
tions in patterns such as “Verb in/of” and “Mem-
ber/CEO/President of” to discover relations. In
Chinese, prepositions are usually expressed im-
plicitly and hence these patterns are not directly
applicable. We implement a variant for Chinese
(denoted as CN-WikiRe). The patterns that we
used in CN-WikiRe are shown in Table 4. In the
experiments, we extract 165,048 non-taxonomic
relation instances using CN-WikiRe, containing

631 relation types. Although the number of re-
lation types may seem large at the first glance,
only 14% of them are actual relation predicates,
with the rest being either incorrect or uninforma-
tive. The reasons are twofold: i) word segmenta-
tion and POS tagging for Chinese short texts still
suffer from low accuracy and ii) not all verbs ex-
tracted by CN-WikiRe can serve as relation predi-
cates (e.g., “传导(transmit)”, “缩小(shrink)”). We
sample 500 relations from the collection where the
extracted verbs are labeled as real relation predi-
cates. The accuracy is 58.6%, much lower than our
method. Furthermore, the partially explicit and
implicit patterns (see (Nastase and Strube, 2008))
do not have their counterparts in Chinese. There-
fore, our method is superior to existing systems.

7 Conclusion and Future Work

We propose a weakly supervised framework to
extract relations from Chinese UGCs. For is-a
relations, we introduce a word embedding based
method and refine prediction results using collec-
tive inference. To extract non-taxonomic relations,
we design a graph mining technique to harvest re-
lation types and category patterns with minimal
human supervision. Future work includes: i) im-
proving our work for short text knowledge ex-
traction and ii) designing a general framework for
cross-lingual UGC relation extraction.
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Cäcilia Zirn, and Anas Elghafari. 2010. Wikinet:
A very large scale multi-lingual concept network.
In Proceedings of the International Conference on
Language Resources and Evaluation.

Xing Niu, Xinruo Sun, Haofen Wang, Shu Rong,
Guilin Qi, and Yong Yu. 2011. Zhishi.me - weav-
ing chinese linking open data. In Proceedings of the

2586



10th International Semantic Web Conference. pages
205–220.

Marius Pasca. 2017. German typographers vs. german
grammar: Decomposition of wikipedia category la-
bels into attribute-value pairs. In Proceedings of the
Tenth ACM International Conference on Web Search
and Data Mining. pages 315–324.

Simone Paolo Ponzetto and Roberto Navigli. 2009.
Large-scale taxonomy mapping for restructuring
and integrating wikipedia. In Proceedings of the
21st International Joint Conference on Artificial In-
telligence. pages 2083–2088.

Simone Paolo Ponzetto and Michael Strube. 2007. De-
riving a large-scale taxonomy from wikipedia. In
Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence. pages 1440–1445.

Likun Qiu and Yue Zhang. 2014. ZORE: A syntax-
based system for chinese open relation extraction.
In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing. pages
1870–1880.

Xipeng Qiu, Qi Zhang, and Xuanjing Huang. 2013.
Fudannlp: A toolkit for chinese natural language
processing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics. pages 49–54.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of the 25th Inter-
national Conference on Computational Linguistics.
pages 1025–1036.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics. page 2389–2398.

Michael M. Sørensen. 2004. New facets and a branch-
and-cut algorithm for the weighted clique prob-
lem. European Journal of Operational Research
154(1):57–70.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web. pages 697–706.

Chengyu Wang and Xiaofeng He. 2016. Chinese
hypernym-hyponym extraction from user generated
categories. In Proceedings of the 26th Interna-
tional Conference on Computational Linguistics.
pages 1350–1361.

Chengyu Wang, Junchi Yan, Aoying Zhou, and Xi-
aofeng He. 2017. Transductive non-linear learning
for chinese hypernym prediction. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics.

Chengyu Wang, Rong Zhang, Xiaofeng He, and Aoy-
ing Zhou. 2016. Error link detection and correction
in wikipedia. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowl-
edge Management. pages 307–316.

Zhigang Wang, Juanzi Li, Shuangjie Li, Mingyang
Li, Jie Tang, Kuo Zhang, and Kun Zhang. 2014.
Cross-lingual knowledge validation based taxonomy
derivation from heterogeneous online wikis. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence. pages 180–186.

Zhigang Wang, Juanzi Li, Zhichun Wang, Shuangjie
Li, Mingyang Li, Dongsheng Zhang, Yao Shi, Yong-
bin Liu, Peng Zhang, and Jie Tang. 2013. Xlore:
A large-scale english-chinese bilingual knowledge
graph. In Proceedings of the ISWC 2013 Posters &
Demonstrations Track. pages 121–124.

Tianxing Wu, Guilin Qi, Haofen Wang, Kang Xu, and
Xuan Cui. 2016. Cross-lingual taxonomy alignment
with bilingual biterm topic model. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intel-
ligence. pages 287–293.

Wentao Wu, Hongsong Li, Haixun Wang, and
Kenny Qili Zhu. 2012. Probase: a probabilistic tax-
onomy for text understanding. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data. pages 481–492.

Bo Xu, Chenhao Xie, Yi Zhang, Yanghua Xiao, Haixun
Wang, and Wei Wang. 2016a. Learning defining fea-
tures for categories. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence. pages 3924–3930.

Bo Xu, Yong Xu, Jiaqing Liang, Chenhao Xie, Bin
Liang, Wanyun Cui, and Yanghua Xiao. 2017. Cn-
dbpedia: A never-ending chinese knowledge extrac-
tion system. In Advances in Artificial Intelligence:
From Theory to Practice - 30th International Con-
ference on Industrial Engineering and Other Appli-
cations of Applied Intelligent Systems. pages 428–
438.

Bo Xu, Yi Zhang, Jiaqing Liang, Yanghua Xiao,
Seung-won Hwang, and Wei Wang. 2016b. Cross-
lingual type inference. In Proceedings of 21st Inter-
national Conference on Database Systems for Ad-
vanced Applications. pages 447–462.

2587



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2588–2597
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Improving Slot Filling Performance with Attentive Neural Networks on
Dependency Structures

Lifu Huang1∗, Avirup Sil2, Heng Ji1, Radu Florian2

1 Rensselaer Polytechnic Institute, 2 IBM T.J. Watson Research Center
1{huangl7,jih}@rpi.edu, 2{avi,raduf}@us.ibm.com

Abstract

Slot Filling (SF) aims to extract the values
of certain types of attributes (or slots, such
as person:cities of residence) for a given
entity from a large collection of source
documents. In this paper we propose an
effective DNN architecture for SF with the
following new strategies: (1). Take a regu-
larized dependency graph instead of a raw
sentence as input to DNN, to compress the
wide contexts between query and candi-
date filler; (2). Incorporate two attention
mechanisms: local attention learned from
query and candidate filler, and global at-
tention learned from external knowledge
bases, to guide the model to better se-
lect indicative contexts to determine slot
type. Experiments show that this frame-
work outperforms state-of-the-art on both
relation extraction (16% absolute F-score
gain) and slot filling validation for each
individual system (up to 8.5% absolute F-
score gain).

1 Introduction

The goal of Slot Filling (SF) is to extract
pre-defined types of attributes or slots (e.g.,
per:cities of residence) for a given query entity
from a large collection of documents. The slot
filler (attribute value) can be an entity, time expres-
sion or value (e.g., per:charges). The TAC-KBP
slot filling task (Ji et al., 2011a; Surdeanu and Ji,
2014) defined 41 slot types, including 25 types for
person and 16 types for organization.

One critical component of slot filling is rela-
tion extraction, namely to classify the relation be-
tween a pair of query entity and candidate slot

∗ This work was carried out during an internship at IBM
Research.

filler into one of the 41 types or none. Most pre-
vious studies have treated SF in the same way as
within-sentence relation extraction tasks in ACE 1

or SemEval (Hendrickx et al., 2009). They created
training data based on crowd-sourcing or distant
supervision, and then trained a multi-class classi-
fier or multiple binary classifiers for each slot type
based on a set of hand-crafted features.

Although Deep Neural Networks (DNN) such
as Convolutional Neural Networks (CNN) and Re-
current Neural Networks (RNN) have achieved
state-of-the-art results on within-sentence relation
extraction (Zeng et al., 2014; Liu et al., 2015;
Santos et al., 2015; Nguyen and Grishman, 2015;
Yang et al., 2016; Wang et al., 2016), there are lim-
ited studies on SF using DNN. Adel and Schütze
(2015) and Adel et al. (2016) exploited DNN for
SF but did not achieve comparable results as tradi-
tional methods. In this paper we aim to answer
the following questions: What is the difference
between SF and ACE/SemEval relation extraction
task? How can we make DNN work for SF?

We argue that SF is different and more chal-
lenging than traditional relation extraction. First, a
query and its candidate filler are usually separated
by much wider contexts than the entity pairs in tra-
ditional relation extraction. As Figure 1 shows, in
ACE data, for 70% of relations, two mentions are
embedded in each other or separated by at most
one word. In contrast, in SF, more than 46% of
〈query, filler〉 entity pairs are separated by at least
7 words. For example, in the following sentence:

E1. “Arcandorquery owns a 52-percent stake
in Europe’s second biggest tourism group
Thomas Cook, the Karstadt chain of depart-
ment stores and iconic shops such as the
KaDeWefiller in what used to be the com-
mercial heart of West Berlin.”,

1http://www.itl.nist.gov/iad/mig/tests/ace/
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Here, Arcandor and KaDeWe are far separated
and it’s difficult to determine the slot type as
org:subsidiaries based on the raw wide contexts.

Figure 1: Comparison of the Percentage by the #
of Words between two entity mentions in ACE05
and SemEval-2010 Task 8 relations, and between
query and slot filler in KBP2013 Slot Filling.

In addition, compared with relations defined in
ACE (18 types) and SemEval (9 types), slot types
are more fine-grained and heavily rely on indica-
tive contextual words for disambiguation. Yu
et al. (2015) and Yu and Ji (2016) demonstrate
that many slot types can be specified by contex-
tual trigger words. Here, a trigger is defined as the
word which is related to both the query and can-
didate filler, and can indicate the type of the target
slot. Considering E1 again, owns is a trigger word
between Arcandor and KaDeWe, which can in-
dicate the slot type as org:subsidiaries. Most pre-
vious work manually constructed trigger lists for
each slot type. However, for some slot types, the
triggers can be implicit and ambiguous.

To address the above challenges, we propose the
following new solutions:

• To compress wide contexts, we model the
connection of query and candidate filler using
dependency structures, and feed dependency
graph to DNN. To our knowledge, we are the
first to directly take dependency graphs as in-
put to CNN.

• Motivated by the definition of trigger, we de-
sign two attention mechanisms: a local atten-
tion and a global attention using large exter-
nal knowledge bases (KBs), to better capture
implicit clues that indicate slot types.

2 Architecture Overview

Figure 2 illustrates the pipeline of a SF system.
Given a query and a source corpus, the system

retrieves related documents, identifies candidate
fillers (including entities, time, values, and titles),
extracts the relation between query and each can-
didate filler occurring in the same sentence, and
finally determines the filler for each slot. Relation
extraction plays a vital role in such a SF pipeline.
In this work, we focus on relation extraction com-
ponent and design a neural architecture.

Given a query, a candidate filler, and a sentence,
we first construct a regularized dependency graph
and take all 〈governor, dependent〉 word pairs as
input to Convolutional Neural Networks (CNN).

Moreover, We design two attention mecha-
nisms: (1) Local Attention, which utilizes the
concatenation of Query and Candidate Filler vec-
tors to measure the relatedness of each input bi-
gram (we set filter width as 2) to the specific query
and filler. (2) Global attention: We use pre-
learned slot type representations to measure the re-
latedness of each input bigram with each slot type
via a transformation matrix. These two attention
mechanisms will guide the pooling step to select
the information which is related to query and filler
and can indicate slot type.

3 Regularized Dependency Graph based
CNN

3.1 Regularized Dependency Graph
Dependency parsing based features, especially the
shortest dependency path between two entities,
have been proved to be effective to extract the most
important information for identifying the relation
between two entities (Bunescu and Mooney, 2005;
Zhao and Grishman, 2005; GuoDong et al., 2005;
Jiang and Zhai, 2007). Several recent studies also
explored transforming a dependency path into a
sequence and applied Neural Networks to the se-
quence for relation classification (Liu et al., 2015;
Cai et al., 2016; Xu et al., 2015).

However, for SF, the shortest dependency path
between query and candidate filler is not always
sufficient to infer the slot type due to two reasons.
First, the most indicative words may not be in-
cluded in the path. For example, in the following
sentence:

E2. Survivors include two sons and daughters-in-
law, Troyfiller and Phyllis Perry, Kennyquery
and Donna Perry, all of Bluff City.

the shortest dependency path between Kenny and
Troy is: “Troy←conj Perry←conj Kenny”, which
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Figure 2: Overview of the Architecture.

does not include the most indicative words: sons
and daughters for their per:siblings relation. In
addition, the relation between query and candi-
date filler is also highly related to their entity
types, especially for disambiguating slot types
such as per:country of birth per:state of birth
and per:city of birth. Entity types can be inferred
by enriching query and filler related contexts. For
example, in the following sentence:

E3. Merkelquery died in the southern German
city of Passaufiller in 1967.

we can determine the slot type as city related by
incorporating rich contexts (e.g., “city”).

To tackle these problems, we propose to reg-
ularize the dependency graph, incorporating the
shortest dependency path between query and can-
didate filler, as well as their rich contextual words.

Given a sentence s including a query q and can-
didate filler f , we first apply the Stanford Depen-
dency Parser (Manning et al., 2014) to generate
all dependent word pairs: 〈governor, dependent〉,
then discover the shortest dependency path be-
tween query and candidate filler based on Breadth-
First-Search (BFS) algorithm. The regularized de-
pendency graph includes words on the shortest de-
pendency path, as well as words which can be con-
nected to query and filler within n hops. In our
experiments, we set n = 1. Figure 3 shows the
dependency parsing output for E1 mentioned in
Section 1, and the regularized dependency graph
with the bold circled nodes. We can see that,
the most indicative trigger owns can be found in
both the shortest dependency path of Arcandor

Figure 3: Regularized Dependency Graph for
Query Arcandor and Filler KaDeWe in E1.

and KaDeWe, and the context words of Arcan-
dor. In addition, the context words, such as shops,
can also infer the type of candidate filler KaDeWe
as an Organization.

3.2 Graph based CNN

Previous work (Adel et al., 2016) split an input
sentence into three parts based on the positions of
the query and candidate filler and generate a fea-
ture vector for each part using a shared CNN. To
compress the wide contexts, instead of taking the
raw sentence directly as input, we split the reg-
ularized dependency graph into three parts: query
related subgraph, candidate filler related subgraph,
and the dependency path between query and filler.
Each subgraph will be taken as input to a CNN, as
illustrated in Figure 2. We now describe the details
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of each part as follows.

Input layer: Each subgraph or path G in
the regularized dependency graph is represented
as a set of dependent word pairs G =
{〈g1, d1〉, 〈g2, d2〉, ...〈gn, dn〉}. Here, gi, di denote
the governor and dependent respectively. Each
word is represented as a d-dimensional pre-trained
vector. For the word which does not exist in the
pre-trained embedding model, we assign a ran-
dom vector for it. Each word pair 〈gi, di〉 is con-
verted to a R2×d matrix. We concatenate the ma-
trices of all word pairs and get the input matrix
M ∈ R2n×d.

Convolution layer: For each subgraph, M ∈
R2n×d is the input of the convolution layer, which
is a list of linear layers with parameters shared by
filtering windows with various size. We set the
stride as 2 to obtain all word pairs from the input
matrix M . For each word pair pin = 〈vgi , vdi〉,
we compute the output vector pout of a convolu-
tion layer as:

pout = tanh(W · pin + b)

where pin is the concatenation of vectors for the
words vgi and vdi , W denotes the convolution
weights, and b is the bias. In our work all three
convolution layers share the same W and b.

K-Max Pooling Layer: we follow Adel et al.
(2016) and use K-max pooling to select K values
for each convolution layer. Later we will incorpo-
rate attention mechanisms into K-max pooling.

Fully Connected Layer: After getting the high-
level features based on the (attentive) pooling
layer for each input subgraph, we flatten and con-
catenate these three outputs as input to a fully con-
nected layer. This layer connects each input to ev-
ery single neuron it contains, and learns non-linear
combinations based on the whole input.

Output Layer: It takes the output of the fully
connected layer as input to a softmax regression
function to predict the type. We use negative log-
likelihood as loss function to train the parameters.

4 Attention Strategies for SF

4.1 Local Attention

The basic idea of attention mechanism is to assign
a weight to each position of a lower layer when
computing the representations for an upper layer,

so that the model can be attentive to specific re-
gions (Bahdanau et al., 2014). In SF, the indica-
tive words are the most meaningful information
that the model should pay attention to. Wang et al.
(2016) applied attention from the entities directly
to determine the most influential parts in the in-
put sentence. Following the same intuition, we
apply the attention from the query and candidate
filler to the convolution output instead of the input,
to avoid information vanishing during convolution
process (Yin et al., 2016).

Figure 4: Local Attention.

Figure 4 illustrates our approach to incorporate
local attention. We first concatenate the vector of
query q and candidate filler f using pre-trained
embeddings v = [vq, vf ],∈ R2d. For q or f that
includes multiple words, we average the vectors of
all individual words. For each convolution output
F , which is a feature map ∈ RK̂×N , where N is
the number of word pairs from the input, and K̂ is
the number of filters, we define the attention simi-
larity matrix A ∈ RN×1 as:

Ai = cosine(L · v, F [:, i])

where L ∈ RK̂×2d is the transformation matrix
between the concatenated vector v and convolu-
tion output. F [:, i] denotes the vector of column i
in F . Then we use the attention matrixA to update
each column of the feature map F , and generate an
updated attention feature map F

′
as follows:

F
′
[:, i] = F [:, i] ·A[i]

4.2 Global Attention
Considering E1 in Section 1 again, the most dis-
criminating word owns is not only related to the
query and filler, but more specific to the type
org:subsidiaries. Local attention aims to identify
the query and filler related contexts. In order to de-
tect type-indicative parts, we design global atten-
tion, using pre-learned slot type representations.
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Wang et al. (2016) explored relation type atten-
tion with automatically learned type vectors from
training data. However, in most cases, the training
data is not balanced and some relation types can-
not be assigned high-quality vectors with limited
data. Thus, we designed two methods to generate
pre-learned slot type representations.

First, we compose pre-trained lexical word em-
beddings of each slot type name to directly gen-
erate type representations. For example, for the
type per:date of birth, we average the vectors of
all single tokens (person, birth, date) within the
type name as its representation.

Another new method is to take advantage of the
large size of facts from external knowledge base
(KB) to represent slot types. We use DBPedia as
the target KB and manually map KB relations to
slot types. For example, per:alternate names can
be mapped to alternativeNames, birthName and
nickName in DBPedia. Thus for each slot type,
we collect many triples: 〈query, slot, filler〉 and
use TransE (Bordes et al., 2013), which models
slot types as translations operating on the embed-
dings of query and filler, to derive a representation
for each slot type. Compared with the first lexical
based slot type representation induction approach,
TransE jointly learns entity and relation represen-
tations and can better capture the correlation and
differentiation among various slot types. Later, we
will show the impact of these two types of slot type
representations in Section 5.2.

Next we use the pre-learned slot type represen-
tations to guide the pooling process. Formally, let
R ∈ Rd×r be the matrix of all slot type vectors,
where d is the vector dimension size and r is the
number of slot types. Let F ∈ RK̂×N be a con-
volution output, which is the same as Section 4.1.
We define the attention weight matrix S as:

Si,j = cosine(F [:, i],W ·R[:, j])

where W ∈ RK̂×d is the transformation matrix
for pre-learned slot type representations and con-
volution output. Given the weight matrix S, we
generate the attention feature map F

′′
as follows:

F
′′
[:, i] = F [:, i] ·max

j
{S[i, j]}

where S[i, :] denotes the similarity scores between
column i in F with all slot type vectors, and
max{S[i, :]} is the max value among all similar-
ity scores for column i in F .

Figure 5: Global Attention.

We apply local attention to each convolution
output of each subgraph, then take the concatena-
tion of three flattened attentive pooling outputs to
a fully connected layer and generate a robust fea-
ture representation. Similarly, another feature rep-
resentation is generated based on global attention.
We concatenate these two features to the softmax
layer to get the predicted types.

5 Experiments

5.1 Data

For model training, Angeli et al. (2014) created
some high-quality clean annotations for SF based
on crowd-sourcing2. In addition, Adel et al. (2016)
automatically created a larger size of noisy train-
ing data based on distant supervision, including
about 1,725,891 positive training instances for 41
slot types. We manually assessed the correctness
of candidate filler identification and their slot type
annotation, and extracted a subset of their noisy
annotations and combined it with the clean anno-
tations. Ultimately, we obtain 23,993 positive and
3,000 negative training instances for all slot types.

We evaluate our approach in two settings: (1)
relation extraction for all slot types, given the
boundaries of query and candidate fillers. We use a
script3 to generate a test set (4892 instances) from
KBP 2012/2013 slot filling evaluation data sets
with manual assessment. (2) apply our approach
to re-classify and validate the results of slot fill-
ing systems. We use the data from the KBP 2013
Slot Filling Validation (SFV) shared task, which
consists of merged responses returned by 52 runs
from 18 teams submitted to the Slot Filling task.

We used the May-2014 English Wikipedia
dump to learn word embeddings based on the Con-
tinuous Skip-gram model (Mikolov et al., 2013).

2http://nlp.stanford.edu/software/mimlre-2014-07-17-
data.tar.gz

3http://cistern.cis.lmu.de.

2592



Table 1 shows the hyper-parameters that we use to
train embeddings and our model.

Parameter Parameter Name Value
d Word Embedding Size 50
λ Initial Learning Rate 0.1
K̂ # of Filters in Convolution Layer 500
h Hidden Unit Size in Fully

Connected Layer
1000

kp Max Pooling Size 3

Table 1: Hyper-parameters.

5.2 Relation Extraction
We compare with several existing state-of-the-art
slot filling and relation extraction methods on slot
filling data sets. Besides, we also design several
variants to demonstrate the effectiveness of each
component in our approach. Table 2 presents the
detailed approaches and the features used by these
methods.

We report scores with Macro F1 and Micro F1.
Macro F1 is computed from the average precision
and recall of all types while Micro F1 is computed
from the overall precision and recall, which is
more useful when the size of each category varies.
Table 3 shows the comparison results on relation
extraction.

We can see that by incorporating the shortest
dependency path or regularized dependency graph
into neural networks, the model can achieve more
than 13% micro F-score gain over the previously
widely adopted methods by state-of-the-art sys-
tems for SemEval relation classification. It con-
firms our claim that SF is a different and more
challenging task than traditional relation classifi-
cation and also demonstrates the effectiveness of
dependency knowledge for SF.

In addition, by incorporating local or global at-
tention mechanism into the GraphCNN, the per-
formance can be further improved, which proves
the effectiveness of these two attention mecha-
nisms. Our method finally achieves absolute 16%
F-score gain by incorporating the regularized de-
pendency graph and two attention mechanisms.

To better quantify the contribution of different
attention mechanisms on each slot type, we fur-
ther compared the performances on each single
slot type. Table 4 shows the gain/loss percentage
of the Micro F1 by adding local attention or global
attention into GraphCNN for each slot type. We
can see that both attentions yield improvement for
most slot types.

5.3 Slot Filling Validation
In TAC-KBP 2013 Slot Filling Validation
(SFV) (Ji et al., 2011b) task, there are 100
queries. We first retrieve the sentences from the
source corpus (about 2,099,319 documents) and
identify the query and candidate filler using the
offsets generated by each response, then apply
our approach to re-predict the slot type. Figure 6
shows the F-scores based on our approach and the
original system. For a system which has multiple
runs, we select one for comparison. We can see
that our approach consistently improves the per-
formance of almost all SF systems in an absolute
gain range of [-0.18%, 8.48%]. With analysis of
each system run, we find that our approach can
provide more gains to the SF systems which have
lower precision.

Figure 6: Comparison on Individual System

Previous studies (Tamang and Ji, 2011; Ro-
driguez et al., 2015; Zhi et al., 2015; Viswanathan
et al., 2015; Rajani and Mooney, 2016a; Yu
et al., 2014a; Rajani and Mooney, 2016b) for SFV
trained supervised classifiers based on features
such as confidence score of each response and sys-
tem credibility. For comparison, we developed a
new SFV approach: a new SVM classifier based
on a set of features (docId, filler string, original
predicted slot type and confidence score, new pre-
dicted slot type confidence score based on our neu-
ral architecture) for each response to take advan-
tage of the redundant information from various
system runs. Table 5 compares our SFV perfor-
mance against previous reported scores on judging
each response as true or false. We can see that our
approach advances state-of-the-art methods.

5.4 Detailed Analysis

Significance Test: Table 3 shows the results
of multiple variants of our approach. To demon-
strate the difference between the results of these
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Method Description Features

Previous
Methods

FCM (Yu et al.,
2014b)

A factor-based compositional embedding model by de-
riving sentence-level and substructure representations

word embedding, dependency
parse, WordNet, name tagging

CR-CNN (Santos
et al., 2015)

Applying a pairwise ranking loss function over CNNs word embedding, word posi-
tion embedding

Context-CNN (Adel
et al., 2016)

Splitting each sentence into three parts based on query
and filler positions, and apply a CNNs to each part

word embedding

Our
Methods

DepCNN Applying CNNs to the shortest dependency path be-
tween query and filler

word embedding, dependency
parse

GraphCNN DepCNN + applying CNNs to both query and filler re-
lated contextual graphs

word embedding, dependency
parse

GraphCNN+L incorporating query and filler information as local at-
tention into the GraphCNN

word embedding, dependency
parse

GraphCNN+G1 incorporating slot type representations learned from
type names as global attention into the GraphCNN

word embedding, dependency
parse

GraphCNN+G2 incorporating slot type representations learned from
external KB as global attention into the GraphCNN

word embedding, dependency
parse, knowledge base

GraphCNN+L+G2 incorporating both local and KB based global atten-
tions into the GraphCNN

word embedding, dependency
parse, knowledge base

Table 2: Approach Descriptions for Multi-Class Relation Classification

Method Micro F1 Macro F1

Previous
Methods

FCM 41.13 12.68
CR-CNN 41.61 -
ContextCNN 41.31 29.01

Variants
of Our
Methods

DepCNN 54.91 36.63
GraphCNN 55.63 36.74
GraphCNN+L 56.29 37.12
GraphCNN+G1 56.18 36.87
GraphCNN+G2 56.81 38.15

Our
Method

GraphCNN+L+G2 57.39 38.26

Table 3: Relation Extraction Component Perfor-
mance on Slot Filling Data Set (%).

approaches are not random, we randomly sample
10 subsets (each contains 500 instances) from the
testing dataset, and conduct paired t-test between
each of these two approaches over these 10 data
sets to check whether the average difference in
their performances is significantly different or not.
Table 6 shows the two-tailed P values. The differ-
ences are all considered to be statistically signifi-
cant while all p-values are less than 0.05.

Impact of Training Data Size: We examine the
impact of the size of training data on the perfor-
mance for each slot type. Table 4 shows the distri-
bution of training data and the F-score of each sin-
gle type. We can see that, for some slot types, such
as per:date of birth and per:age, the entity types
of their candidate fillers are easy to learn and dif-
ferentiate from other slot types, and their indica-
tive words are usually explicit, thus our approach
can get high f-score with limited training data (less
than 507 instances). In contrast, for some slots,
such as org:location of headquarters, their clues

are implicit and the entity types of candidate fillers
are difficult to be inferred. Although the size of
training data is larger (more than 1,433 instances),
the f-score remains quite low. One possible so-
lution is to incorporate fine-grained entity types
from existing tools into the neural architecture.

Impact of Wide Context Distribution: We
further compared the performance and distri-
bution of instances with wide contexts across
all slot types. A context is considered as
wide if the query and candidate filler are sep-
arated with more than 7 words. The last col-
umn of Table 4 shows the performance by in-
corporating regularized dependency graph (Con-
textCNN v.s. GraphCNN). We can see that,
for most slot types with wide contexts, such as
per:states of residence and per:employee of, the
f-scores are improved significantly while for some
slots such as per:date of birth, the f-scores de-
crease because most date phrases do not exist in
our pre-trained embedding model.

Error Analysis: Both of the relation extraction
and SFV results showed that, more than 58% clas-
sification errors are spurious. Besides, we also ob-
served many misclassifications that are caused by
conflicting clues. There may be several indicative
words within the contexts, but only one slot type is
labeled, especially between per:location of death
and per:location of residence. For example, in the
following sentence:

E4. Billy Maysquery, a beloved and parodied
pitchman who became a pop-culture figure
through his commercials for cleaning prod-
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Slot Type Impact of Attention (%) Training Data
Distribution (%)

F1
(%)

Wide Context
Distribution (%)

Impact of Depen-
dency Graph (%)Local Global-KB

state of death 9.8 -0.4 0.9 41.8 66.7 44.2
date of birth 7.3 121.3 1.3 84.1 20.0 -81.9
age 4.1 -5.3 1.3 98.5 15.9 28.5
per:alternate names -2.0 21.2 1.5 36.6 41.5 62.0
origin -0.9 7.8 1.7 61.5 29.3 137.3
country of birth 16.7 12.0 1.9 61.5 55.6 162.5
city of death 1.1 3.3 1.9 61.3 70.3 24.4
state of headq. 9.7 -5.1 3.1 51.7 54.8 95.7
cities of residence 4.5 5.7 3.5 57.3 77.0 40.5
states of residence -4.3 2.3 3.8 50.5 45.9 175.8
country of headq. 5.6 -0.8 5.3 41.5 54.4 146.3
city of headq. 1.6 -6.9 6.7 30.3 54.9 39.3
employee of 14.9 4.9 7.3 65.9 54.9 132.5
countries of residence 37.7 8.6 7.4 47.4 47.2 134.9

Table 4: Comparison Analysis for Each Slot Type.

Methods Precision
(%)

Recall
(%)

F-score
(%)

Random 28.64 50.48 36.54
Voting 42.16 70.18 52.68
Linguistic Indicators 50.24 70.69 58.73
SVM 56.59 48.72 52.36
MTM (Yu et al., 2014a) 53.94 72.11 61.72
Our Approach 70.46 64.07 67.11

Table 5: Overall Performance for SFV: all the
Baseline Systems are from Yu et al. (2014a).

Method 1 Method 2 P Value
DepCNN GraphCNN 0.0165
GraphCNN GraphCNN+L 0.0007
GraphCNN GraphCNN+G1 0.0160
GraphCNN GraphCNN+G2 <0.0001
GraphCNN+L GraphCNN+L+G2 0.0009
GraphCNN+G2 GraphCNN+L+G2 0.0010

Table 6: Statistical Significance Test.

ucts like Orange Glo, OxiClean and Kaboom,
died Sunday at his home in Tampafiller, Fla.,

the correct slot type is per:city of death
while our approach mistakenly labeled it as
per:city of residence with clue words like home.
In addition, as we mentioned before, slot typing
heavily relies on the fine-grained entity type
of candidate filler, especially for the location
(including city, state, country) related slot types.
When the context is not specified enough, we can
only rely on the pre-trained embeddings of can-
didate fillers, which may not be as informative as
we hope. Such cases will benefit from introducing
additional gazetteers such as Geonames 4.

4http://www.geonames.org/

6 Related Work

One major challenge of SF is the lack of labeled
data to generalize a wide range of features and pat-
terns, especially for slot types that are in the long-
tail of the quite skewed distribution of slot fills (Ji
et al., 2011a). Previous work has mostly focused
on compensating the data needs by constructing
patterns (Sun et al., 2011; Roth et al., 2014b),
automatic annotation by distant supervision (Sur-
deanu et al., 2011; Roth et al., 2014a; Adel et al.,
2016), and constructing trigger lists for unsuper-
vised dependency graph mining (Yu and Ji, 2016;
Yu et al., 2016). Some work (Rodriguez et al.,
2015; Zhi et al., 2015; Viswanathan et al., 2015;
Hong et al., 2015; Rajani and Mooney, 2016a;
Yu et al., 2014a; Rajani and Mooney, 2016b; Ma
et al., 2015) also attempted to validate slot types
by combining results from multiple systems.

Our work is also related to dependency path
based relation extraction. The effectiveness of de-
pendency features for relation classification has
been reported in some previous work (Bunescu
and Mooney, 2005; Zhao and Grishman, 2005;
GuoDong et al., 2005; Jiang and Zhai, 2007;
Neville and Jensen, 2003; Ebrahimi and Dou,
2015; Xu et al., 2015; Ji et al., 2014). Liu et al.
(2015), Cai et al. (2016) and Xu et al. (2015)
applied CNN, bidirectional recurrent CNN and
LSTM to CONLL relation extraction and demon-
strated that the most important information has
been included within the shortest paths between
entities. Considering that the indicative words
may not be included by the shortest dependency
path between query and candidate filler, we enrich
it to a regularized dependency graph by adding
more contexts.
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7 Conclusions and Future Work

In this work, we discussed the unique challenges
of slot filling compared with tradition relation ex-
traction tasks. We designed a regularized depen-
dency graph based neural architecture for slot fill-
ing. By incorporating local and global attention
mechanisms, this approach can better capture in-
dicative contexts. Experiments on relation extrac-
tion and Slot Filling Validation data sets demon-
strate the effectiveness of our neural architecture.
In the future, we will combine additional rules,
patterns, and constraints with DNN techniques to
further improve slot filling.
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Abstract

One weakness of machine-learned NLP
models is that they typically perform
poorly on out-of-domain data. In this
work, we study the task of identifying
products being bought and sold in on-
line cybercrime forums, which exhibits
particularly challenging cross-domain ef-
fects. We formulate a task that represents
a hybrid of slot-filling information extrac-
tion and named entity recognition and an-
notate data from four different forums.
Each of these forums constitutes its own
“fine-grained domain” in that the forums
cover different market sectors with differ-
ent properties, even though all forums are
in the broad domain of cybercrime. We
characterize these domain differences in
the context of a learning-based system: su-
pervised models see decreased accuracy
when applied to new forums, and stan-
dard techniques for semi-supervised learn-
ing and domain adaptation have limited ef-
fectiveness on this data, which suggests
the need to improve these techniques. We
release a dataset of 1,938 annotated posts
from across the four forums.1

1 Introduction

NLP can be extremely useful for enabling scien-
tific inquiry, helping us to quickly and efficiently
understand large corpora, gather evidence, and test
hypotheses (Bamman et al., 2013; O’Connor et al.,

1Dataset and code to train models available at
https://evidencebasedsecurity.org/forums/

TITLE: [ buy ] Backconnect bot
BODY: Looking for a solid backconnect bot .

If you know of anyone who codes them please let
me know

(a) File 0-initiator4856

TITLE: Exploit cleaning ?
BODY: Have some Exploits i need fud .

(b) File 0-initiator10815

Figure 1: Example posts and annotations from
Darkode, with annotated product tokens under-
lined. The second example exhibits jargon (fud
means “fully undetectable”), nouns that could be
a product in other contexts (Exploit), and multiple
lexically-distinct descriptions of a single service.
Note that these posts are much shorter than the av-
erage Darkode post (61.5 words).

2013). One domain for which automated analy-
sis is particularly useful is Internet security: re-
searchers obtain large amounts of text data perti-
nent to active threats or ongoing cybercriminal ac-
tivity, for which the ability to rapidly characterize
that text and draw conclusions can reap major ben-
efits (Krebs, 2013a,b). However, conducting auto-
matic analysis is difficult because this data is out-
of-domain for conventional NLP models, which
harms the performance of both discrete models
(McClosky et al., 2010) and deep models (Zhang
et al., 2017). Not only that, we show that data from
one cybercrime forum is even out of domain with
respect to another cybercrime forum, making this
data especially challenging.

In this work, we present the task of identify-
ing products being bought and sold in the market-
place sections of these online cybercrime forums.
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Words Products Annotated Annotators Inter-annotator agreement
Forum Posts per post per post posts per post 3-annotated all-annotated

Darkode 3,368 61.5 3.2 660/100/100 3/8/8 0.62 0.66
Hack Forums 51,271 58.9 2.2 758/140 3/4 0.58 0.65

Blackhat 167 174 3.2 80 3 0.66 0.67
Nulled 39,118 157 2.3 100 3 0.77 -

Table 1: Forum statistics. The left columns (posts and words per post) are calculated over all data,
while the right columns are based on annotated data only. Note that products per post indicate product
mentions per post, not product types. Slashes indicate the train/development/test split for Darkode and
train/test split for Hack Forums. Agreement is measured using Fleiss’ Kappa; the two columns cover
data where three annotators labeled each post and a subset labeled by all annotators.

We define a token-level annotation task where, for
each post, we annotate references to the product or
products being bought or sold in that post. Hav-
ing the ability to automatically tag posts in this
way lets us characterize the composition of a fo-
rum in terms of what products it deals with, iden-
tify trends over time, associate users with particu-
lar activity profiles, and connect to price informa-
tion to better understand the marketplace. Some
of these analyses only require post-level informa-
tion (what is the product being bought or sold in
this post?) whereas other analyses might require
token-level references; we annotate at the token
level to make our annotation as general as possi-
ble. Our dataset has already proven enabling for
case studies on these particular forums (Portnoff
et al., 2017), including a study of marketplace ac-
tivity on bulk hacked accounts versus users selling
their own accounts.

Our task has similarities to both slot-filling in-
formation extraction (with provenance informa-
tion) as well as standard named-entity recogni-
tion (NER). Compared to NER, our task features
a higher dependence on context: we only care
about the specific product being bought or sold
in a post, not other products that might be men-
tioned. Moreover, because we are operating over
forums, the data is substantially messier than clas-
sical NER corpora like CoNLL (Tjong Kim Sang
and De Meulder, 2003). While prior work has
dealt with these messy characteristics for syntax
(Kaljahi et al., 2015) and for discourse (Lui and
Baldwin, 2010; Kim et al., 2010; Wang et al.,
2011), our work is the first to tackle forum data
(and marketplace forums specifically) from an in-
formation extraction perspective.

Having annotated a dataset, we examine super-
vised and semi-supervised learning approaches to
the product extraction problem. Binary or CRF

classification of tokens as products is effective, but
performance drops off precipitously when a sys-
tem trained on one forum is applied to a differ-
ent forum: in this sense, even two different cy-
bercrime forums seem to represent different “fine-
grained domains.” Since we want to avoid having
to annotate data for every new forum that might
need to be analyzed, we explore several methods
for adaptation, mixing type-level annotation (Gar-
rette and Baldridge, 2013; Garrette et al., 2013),
token-level annotation (Daume III, 2007), and
semi-supervised approaches (Turian et al., 2010;
Kshirsagar et al., 2015). We find little improve-
ment from these methods and discuss why they fail
to have a larger impact.

Overall, our results characterize the challenges
of our fine-grained domain adaptation problem in
online marketplace data. We believe that this new
dataset provides a useful testbed for additional
inquiry and investigation into modeling of fine-
grained domain differences.

2 Dataset and Annotation

We consider several forums that vary in the nature
of products being traded:

• Darkode: Cybercriminal wares, including ex-
ploit kits, spam services, ransomware pro-
grams, and stealthy botnets.

• Hack Forums: A mixture of cyber-security
and computer gaming blackhat and non-
cybercrime products.

• Blackhat: Blackhat Search Engine Optimiza-
tion techniques.

• Nulled: Data stealing tools and services.

Table 1 gives some statistics of these forums.
These are the same forums used to study prod-
uct activity in Portnoff et al. (2017). We collected
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all available posts and annotated a subset of them.
In total, we annotated 130,336 tokens; accounting
for multiple annotators, our annotators considered
478,176 tokens in the process of labeling the data.

Figure 1 shows two examples of posts from
Darkode. In addition to aspects of the annotation,
which we describe below, we see that the text ex-
hibits common features of web text: abbreviations,
ungrammaticality, spelling errors, and visual for-
matting, particularly in thread titles. Also, note
how some words that are not products here might
be in other contexts (e.g., Exploits).

2.1 Annotation Process

We developed our annotation guidelines through
six preliminary rounds of annotation, covering 560
posts. Each round was followed by discussion and
resolution of every post with disagreements. We
benefited from members of our team who brought
extensive domain expertise to the task. As well
as refining the annotation guidelines, the develop-
ment process trained annotators who were not se-
curity experts. The data annotated during this pro-
cess is not included in Table 1.

Once we had defined the annotation standard,
we annotated datasets from Darkode, Hack Fo-
rums, Blackhat, and Nulled as described in Ta-
ble 1.2 Three people annotated every post in the
Darkode training, Hack Forums training, Blackhat
test, and Nulled test sets; these annotations were
then merged into a final annotation by majority
vote. The development and test sets for Darkode
and Hack Forums were annotated by additional
team members (five for Darkode, one for Hack Fo-
rums), and then every disagreement was discussed
and resolved to produce a final annotation. The au-
thors, who are researchers in either NLP or com-
puter security, did all of the annotation.

We preprocessed the data using the tokenizer
and sentence-splitter from the Stanford CoreNLP
toolkit (Manning et al., 2014). Note that many
sentences in the data are already delimited by line
breaks, making the sentence-splitting task much
easier. We performed annotation on the tokenized
data so that annotations would be consistent with
surrounding punctuation and hyphenated words.

Our full annotation guide is available with our
data release.3 Our basic annotation principle is

2The table does not include additional posts that were la-
beled by all annotators in order to check agreement.

3https://evidencebasedsecurity.org/
forums/annotation-guide.pdf

to annotate tokens when they are either the prod-
uct that will be delivered or are an integral part of
the method leading to the delivery of that product.
Figure 1 shows examples of this for a deliverable
product (bot) as well as a service (cleaning). Both
a product and service may be annotated in a sin-
gle example: for a post asking to hack an account,
hack is the method and the deliverable is the ac-
count, so both are annotated. In general, methods
expressed as verbs may be annotated in addition to
nominal references.

When the product is a multiword expression
(e.g., Backconnect bot), it is almost exclusively a
noun phrase, in which case we annotate the head
word of the noun phrase (bot). Annotating single
tokens instead of spans meant that we avoided hav-
ing to agree on an exact parse of each post, since
even the boundaries of base noun phrases can be
quite difficult to agree on in ungrammatical text.

If multiple different products are being bought
or sold, we annotate them all. We do not annotate:

• Features of products

• Generic product references, e.g., this, them

• Product mentions inside “vouches” (reviews
from other users)

• Product mentions outside of the first and last
10 lines of each post4

Table 1 shows inter-annotator agreement ac-
cording to our annotation scheme. We use the
Fleiss’ Kappa measurement (Fleiss, 1971), treat-
ing our task as a token-level annotation where
every token is annotated as either a product or
not. We chose this measure as we are inter-
ested in agreement between more than two annota-
tors (ruling out Cohen’s kappa), have a binary as-
signment (ruling out correlation coefficients) and
have datasets large enough that the biases Krip-
pendorff’s Alpha addresses are not a concern. The
values indicate reasonable agreement.

2.2 Discussion
Because we annotate entities in a context-sensitive
way (i.e., only annotating those in product con-
text), our task resembles a post-level information

4In preliminary annotation we found that content in the
middle of the post typically described features or gave in-
structions without explicitly mentioning the product. Most
posts are unaffected by this rule: 96% of Darkode, 77% of
Hack Forums, 84% of Blackhat, and 93% of Nulled posts are
less than 20 lines. However, the cutoff still substantially re-
duced annotator effort on the tail of very long posts.
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extraction task. The product information in a post
can be thought of as a list-valued slot to be filled
in the style of TAC KBP (Surdeanu, 2013; Sur-
deanu and Ji, 2014), with the token-level annota-
tions constituting provenance information. How-
ever, we chose to anchor the task fully at the to-
ken level to simplify the annotation task: at the
post level, we would have to decide whether two
distinct product mentions were actually distinct
products or not, which requires heavier domain
knowledge. Our approach also resembles the fully
token-level annotations of entity and event infor-
mation in the ACE dataset (NIST, 2005).

3 Evaluation Metrics

In light of the various views on this task and its dif-
ferent requirements for different potential applica-
tions, we describe and motivate a few distinct eval-
uation metrics below. The choice of metric will
impact system design, as we discuss in the follow-
ing sections.

Token-level accuracy We can follow the ap-
proach used in token-level tasks like NER and
compute precision, recall, and F1 over the set of
tokens labeled as products. This most closely
mimics our annotation process.

Type-level product extraction (per post) For
many applications, the primary goal of the extrac-
tion task is more in line with KBP-style slot filling,
where we care about the set of products extracted
from a particular post. Without a domain-specific
lexicon containing full synsets of products (e.g.,
something that could recognize that hack and ac-
cess are synonymous), it is difficult to evaluate this
in a fully satisfying way. However, we approxi-
mate this evaluation by comparing the set of prod-
uct types5 in a post with the set of product types
predicted by the system. Again, we consider preci-
sion, recall, and F1 over these two sets. This met-
ric favors systems that consistently make correct
post-level predictions even if they do not retrieve
every token-level occurrence of the product.

Post-level accuracy Most posts contain only
one product, but our type-level extraction will nat-
urally be a conservative estimate of performance
simply because there may seem to be multiple

5Two product tokens are considered the same type if after
lowercasing and stemming they have a sufficiently small edit
distance: 0 if the tokens are length 4 or less, 1 if the lengths
are between 5 and 7, and 2 for lengths of 8 or more

“products” that are actually just different ways
of referring to one core product. Roughly 60%
of posts in the two forums contain multiple an-
notated tokens that are distinct beyond stemming
and lowercasing. However, we analyzed 100 of
these multiple product posts across Darkode and
Hack Forums, and found that only 6 of them were
actually selling multiple products, indicating that
posts selling multiple types of products are actu-
ally quite rare (roughly 3% of cases overall). In the
rest of the cases, the variations were due to slightly
different ways of describing the same product.

In light of this, we also might consider ask-
ing the system to extract some product reference
from the post, rather than all of them. Specifically,
we compute accuracy on a post-level by checking
whether the first product type extracted by the sys-
tem is contained in the annotated set of product
types.6 Because most posts feature one product,
this metric is sufficient to evaluate whether we un-
derstood what the core product of the post was.

3.1 Phrase-level Evaluation

Another axis of variation in metrics comes from
whether we consider token-level or phrase-level
outputs. As noted in the previous section, we did
not annotate noun phrases, but we may actually be
interested in identifying them. In Figure 1, for ex-
ample, extracting Backconnect bot is more useful
than extracting bot in isolation, since bot is a less
specific characterization of the product.

We can convert our token-level annotations
to phrase-level annotations by projecting our
annotations to the noun phrase level based on
the output of an automatic parser. We used the
parser of Chen and Manning (2014) to parse all
sentences of each post. For each annotated token
that was given a nominal tag (N*), we projected
that token to the largest NP containing it of length
less than or equal to 7; most product NPs are
shorter than this, and when the parser predicts
a longer NP, our analysis found that it typically
reflects a mistake. In Figure 1, the entire noun
phrase Backconnect bot would be labeled as a
product. For products realized as verbs (e.g.,
hack), we leave the annotation as the single token.

Throughout the rest of this work, we will evalu-
ate sometimes at the token-level and sometimes at

6For this metric we exclude posts containing no products.
These are usually posts that have had their content deleted or
are about forum administration.
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the NP-level7 (including for the product type eval-
uation and post-level accuracy); we will specify
which evaluation is used where.

4 Models

We consider several baselines for product ex-
traction, two supervised learning-based methods
(here), and semi-supervised methods (Section 5).

Baselines One approach takes the most fre-
quent noun or verb in a post and classifies all oc-
currences of that word type as products. A more
sophisticated lexical baseline is based on a prod-
uct dictionary extracted from our training data:
we tag the most frequent noun or verb in a post
that also appears in this dictionary. This method
fails primarily in that it prefers to extract common
words like account and website even when they do
not occur as products. The most relevant off-the-
shelf system is an NER tagging model; we retrain
the Stanford NER system on our data (Finkel et al.,
2005). Finally, we can tag the first noun phrase of
the post as a product, which will often capture the
product if it is mentioned in the title of the post.8

We also include human performance results.
We averaged the results for annotators compared
with the consensus annotations. For the phrase
level evaluation, we apply the projection method
described in Section 3.1.

Binary classifier/CRF One learning-based ap-
proach to this task is to employ a binary SVM
classifier for each token in isolation. We also ex-
perimented with a token-level CRF with a binary
tagset, and found identical performance, so we de-
scribe the binary classifier version.9 Our features
look at both the token under consideration as well
as neighboring tokens, as described in the next
paragraph. A vector of “base features” is extracted
for each of these target tokens: these include 1)
sentence position in the document and word posi-
tion in the current sentence as bucketed indices; 2)
word identity (for common words), POS tag, and
dependency relation to parent for each word in a
window of size 3 surrounding the current word; 3)
character 3-grams of the current word. The same
base feature set is used for every token.

7Where NP-level means “noun phrases and verbs” as de-
scribed in Section 3.1.

8Since this baseline fundamentally relies on noun phrases,
we only evaluate it in the noun phrase setting.

9We further experimented with a bidirectional LSTM tag-
ger and found similar performance as well.

Our token-classifying SVM extracts base fea-
tures on the token under consideration as well as
its syntactic parent. Before inclusion in the final
classifier, these features are conjoined with an in-
dicator of their source (i.e., the current token or
the parent token). Our NP-classifying SVM ex-
tracts base features on first, last, head, and syntac-
tic parent tokens of the noun phrase, again with
each feature conjoined with its token source.

We weight false positives and false negatives
differently to adjust the precision/recall curve
(tuned on development data for each forum), and
we also empirically found better performance by
upweighting the contribution to the objective of
singleton products (product types that occur only
once in the training set).

Post-level classifier As discussed in Section 3,
one metric we are interested in is whether we can
find any occurrence of a product in a post. This
task is easier than the general tagging problem:
if we can effectively identify the product in, e.g.,
the title of a post, then we do not need to identify
additional references to that product in the body
of the post. Therefore, we also consider a post-
level model, which directly tries to select one to-
ken (or NP) out of a post as the most likely prod-
uct. Structuring the prediction problem in this way
naturally lets the model be more conservative in its
extractions, since highly ambiguous product men-
tions can be ignored if a clear product mention is
present. Put another way, it supplies a useful form
of prior knowledge, namely that each post has ex-
actly one product in almost all cases.

Our post-level system is formulated as an in-
stance of a latent SVM (Yu and Joachims, 2009).
The output space is the set of all tokens (or noun
phrases, in the NP case) in the post. The latent
variable is the choice of token/NP to select, since
there may be multiple correct choices of product
tokens. The features used on each token/NP are
the same as in the token classifier.

We trained all of the learned models by subgra-
dient descent on the primal form of the objective
(Ratliff et al., 2007; Kummerfeld et al., 2015). We
use AdaGrad (Duchi et al., 2011) to speed conver-
gence in the presence of a large weight vector with
heterogeneous feature types. All product extrac-
tors in this section are trained for 5 iterations with
`1-regularization tuned on the development set.

2602



Token Prediction
Tokens Products Posts

P R F1 P R F1 Acc.
Freq 41.9 42.5 42.2 48.4 33.5 39.6 45.3
Dict 57.9 51.1 54.3 65.6 44.0 52.7 60.8

NER 59.7 62.2 60.9 60.8 62.6 61.7 72.2
Binary 62.4 76.0 68.5 58.1 77.6 66.4 75.2

Post 82.4 36.1 50.3 83.5 56.6 67.5 82.4
Human∗ 86.9 80.4 83.5 87.7 77.6 82.2 89.2

NP Prediction
NPs Products Posts

P R F1 P R F1 Acc.
Freq 61.8 28.9 39.4 61.8 50.0 55.2 61.8
Dict 57.9 61.8 59.8 71.8 57.5 63.8 68.0
First 73.1 34.2 46.7 73.1 59.1 65.4 73.1
NER 63.6 63.3 63.4 69.7 70.3 70.0 76.3

Binary 67.0 74.8 70.7 65.5 82.5 73.0 82.4
Post 87.6 41.0 55.9 87.6 70.8 78.3 87.6

Human∗ 87.6 83.2 85.3 91.6 84.9 88.1 93.0

Table 2: Development set results on Darkode.
Bolded F1 values represent statistically-significant
improvements over all other system values in the
column with p < 0.05 according to a bootstrap re-
sampling test. Our post-level system outperforms
our binary classifier at whole-post accuracy and
on type-level product extraction, even though it is
less good on the token-level metric. All systems
consistently identify product NPs better than they
identify product tokens. However, there is a sub-
stantial gap between our systems and human per-
formance.

4.1 Basic Results

Table 2 shows development set results on Dark-
ode for each of the four systems for each metric
described in Section 3. Our learning-based sys-
tems substantially outperform the baselines on the
metrics they are optimized for. The post-level sys-
tem underperforms the binary classifier on the to-
ken evaluation, but is superior at not only post-
level accuracy but also product type F1. This
lends credence to our hypothesis that picking one
product suffices to characterize a large fraction of
posts. Comparing the automatic systems with hu-
man annotator performance we see a substantial
gap. Note that our best annotator’s token F1 was
89.8, and NP post accuracy was 100%; a careful,
well-trained annotator can achieve very high per-
formance, indicating a high skyline.

The noun phrase metric appears to be generally
more forgiving, since token distinctions within
noun phrases are erased. The post-level NP system
achieves an F-score of 78 on product type identi-
fication, and post-level accuracy is around 88%.
While there is room for improvement, this system

is accurate enough to enable analysis of Darkode
with automatic annotation.

Throughout the rest of this work, we focus on
NP-level evaluation and post-level NP accuracy.

5 Domain Adaptation

Table 2 only showed results for training and evalu-
ating within the same forum (Darkode). However,
we wish to apply our system to extract product oc-
currences from a wide variety of forums, so we
are interested in how well the system will general-
ize to a new forum. Tables 3 and 4 show full re-
sults of several systems in within-forum and cross-
forum evaluation settings. Performance is severely
degraded in the cross-forum setting compared to
the within-forum setting, e.g., on NP-level F1, a
Hack Forums-trained model is 14.6 F1 worse at
the Darkode task than a Darkode-trained model
(61.2 vs. 75.8). Differences in how the systems
adapt between different forums will be explored
more thoroughly in Section 5.4.

In the next few sections, we explore several pos-
sible methods for improving results in the cross-
forum settings and attempting to build a more
domain-general system. These techniques gen-
erally reflect two possible hypotheses about the
source of the cross-domain challenges:

Hypothesis 1: Product inventories are the pri-
mary difference across domains; context-based
features will transfer, but the main challenge is not
being able to recognize unknown products.

Hypothesis 2: Product inventories and stylistic
conventions both differ across domains; we need
to capture both to adapt models successfully.

5.1 Brown Clusters

To test Hypothesis 1, we investigate whether addi-
tional lexical information helps identify product-
like words in new domains. A classic semi-
supervised technique for exploiting unlabeled tar-
get data is to fire features over word clusters or
word vectors (Turian et al., 2010). These fea-
tures should generalize well across domains that
the clusters are formed on: if product nouns occur
in similar contexts across domains and therefore
wind up in the same cluster, then a model trained
on domain-limited data should be able to learn that
that cluster identity is indicative of products.

We form Brown clusters on our unlabeled data
from both Darkode and Hack Forums (see Table 1
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System
Eval data Darkode Hack Forums Blackhat Nulled Avg

P R F1 P R F1 P R F1 P R F1 F1

Trained on Darkode
Dict 55.9 54.2 55.0 42.1 39.8 40.9 37.1 36.6 36.8 52.6 43.2 47.4 45.0
Binary 73.3 78.6 75.8 51.1 50.2 50.6 55.2 58.3 56.7 55.2 64.0 59.3 60.6
Binary + Brown Clusters 75.5 76.4 76.0 52.1 55.9 48.1 59.7 57.1 58.4 60.0 61.1 60.5 60.8
Binary + Gazetteers 73.1 75.6 74.3 52.6 51.1 51.8 − − − − − − −

Trained on Hack Forums
Dict 57.3 44.8 50.3 50.0 52.7 51.3 45.0 44.7 44.8 51.1 43.6 47.1 48.4
Binary 67.0 56.4 61.2 58.0 64.2 61.0 62.4 60.8 61.6 71.0 68.9 69.9 63.4
Binary + Brown Clusters 67.2 52.5 58.9 59.3 64.7 61.9 61.9 59.6 60.7 73.1 67.4 70.2 62.9
Binary + Gazetteers 67.8 64.1 †65.9 59.9 61.3 60.6 − − − − − − −

Table 3: Test set results at the NP level in within-forum and cross-forum settings for a variety of different
systems. Using either Brown clusters or gazetteers gives mixed results on cross-forum performance: only
one of the improvements (†) is statistically significant with p < 0.05 according to a bootstrap resampling
test. Gazetteers are unavailable for Blackhat and Nulled since we have no training data for those forums.

for sizes). We use Liang (2005)’s implementation
to learn 50 clusters.10 Upon inspection, these clus-
ters do indeed capture some of the semantics rele-
vant to the problem: for example, the cluster 110
has as its most frequent members service, account,
price, time, crypter, and server, many of which are
product-associated nouns. We incorporate these as
features into our model by characterizing each to-
ken with prefixes of the Brown cluster ID; we used
prefixes of length 2, 4, and 6.

Tables 3 and 4 show the results of incorporat-
ing Brown cluster features into our trained mod-
els. These features do not lead to statistically-
significant gains in either NP-level F1 or post-level
accuracy, despite small improvements in some
cases. This indicates that Brown clusters might
be a useful feature sometimes, but do not solve the
domain adaptation problem in this context.11

5.2 Type-level Annotation

Another approach following Hypothesis 1 is to
use small amounts of supervised data, One cheap
approach for annotating data in a new domain
is to exploit type-level annotation (Garrette and
Baldridge, 2013; Garrette et al., 2013). Our token-
level annotation standard is relatively complex to
learn, but a researcher could quite easily provide a
few exemplar products for a new forum based on
just a few minutes of reading posts and analyzing
the forum.

Given the data that we’ve already annotated,
we can simulate this process by iterating through

10This value was chosen based on dev set experiments.
11We could also use vector representations of words here,

but in initial experiments, these did not outperform Brown
clusters. That is consistent with the results of Turian et al.
(2010) who showed similar performance between Brown
clusters and word vectors for chunking and NER.

Darkode Hack Forums Blackhat Nulled
Trained on Darkode

Dict 59.3 39.7 43.5 54.6
Post 89.5 66.9 75.8 79.0

+Brown 89.5 66.9 69.3 84.8
+Gaz 87.5 72.1 − −

Trained on Hack Forums
Dict 48.9 53.6 50.0 53.4
Post 78.1 78.6 74.1 81.3

+Brown 82.2 81.6 77.4 82.5
+Gaz 79.1 †83.8 − −

Table 4: Test set results at the whole-post level
in within-forum and cross-forum settings for a va-
riety of different systems. Brown clusters and
gazetteers give similarly mixed results as in the
token-level evaluation; † indicates statistically sig-
nificant gains over the post-level system with p <
0.05 according to a bootstrap resampling test.

our labeled data and collecting annotated prod-
uct names that are sufficiently common. Specifi-
cally, we take all (lowercased, stemmed) product
tokens and keep those occurring at least 4 times in
the training dataset (recall that these datasets are
≈ 700 posts). This gives us a list of 121 products
in Darkode and 105 products in Hack Forums.

To incorporate this information into our system,
we add a new feature on each token indicating
whether or not it occurs in the gazetteer. At train-
ing time, we use the gazetteer scraped from the
training set. At test time, we use the gazetteer
from the target domain as a form of partial type-
level supervision. Tables 3 and 4 shows the re-
sults of incorporating the gazetteer into the sys-
tem. Gazetteers seem to provide somewhat consis-
tent gains in cross-domain settings, though many
of these individual improvements are not statisti-
cally significant, and the gazetteers can sometimes
hurt performance when testing on the same do-
main the system was trained on.
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System
Test Darkode Hack Forums Blackhat Nulled

% OOV Rseen Roov % OOV Rseen Roov % OOV Rseen Roov % OOV Rseen Roov
Binary (Darkode) 20 78 62 41 64 47 42 69 46 30 72 45
Binary (HF) 50 76 40 35 75 42 51 70 38 33 83 32

Table 5: Product token out-of-vocabulary rates on development sets (test set for Blackhat and Nulled) of
various forums with respect to training on Darkode and Hack Forums. We also show the recall of an NP-
level system on seen (Rseen) and OOV (Roov) tokens. Darkode seems to be more “general” than Hack
Forums: the Darkode system generally has lower OOV rates and provides more consistent performance
on OOV tokens than the Hack Forums system.
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Figure 2: Token-supervised domain adaptation
results for two settings. As our system is trained
on an increasing amount of target-domain data (x-
axis), its performance generally improves. How-
ever, adaptation from Hack Forums to Darkode is
much more effective than the other way around,
and using domain features as in Daume III (2007)
gives little benefit over naı̈ve use of the new data.

5.3 Token-level Annotation

We now turn our attention to methods that might
address Hypothesis 2. If we assume the domain
transfer problem is more complex, we really want
to leverage labeled data in the target domain rather
than attempting to transfer features based only on
type-level information. Specifically, we are in-
terested in cases where a relatively small num-
ber of labeled posts (less than 100) might provide
substantial benefit to the adaptation; a researcher
could plausibly do this annotation in a few hours.

We consider two ways of exploiting labeled
target-domain data. The first is to simply take
these posts as additional training data. The sec-
ond is to also employ the “frustratingly easy” do-
main adaptation method of Daume III (2007). In
this framework, each feature fired in our model
is actually fired twice: one copy is domain-
general and one is conjoined with the domain la-

bel (here, the name of the forum).12 In doing
so, the model should gain some ability to separate
domain-general from domain-specific feature val-
ues, with regularization encouraging the domain-
general feature to explain as much of the phe-
nomenon as possible. For both training methods,
we upweight the contribution of the target-domain
posts in the objective by a factor of 5.

Figure 2 shows learning curves for both of these
methods in two adaptation settings as we vary the
amount of labeled target-domain data. The system
trained on Hack Forums is able to make good use
of labeled data from Darkode: having access to 20
labeled posts leads to gains of roughly 7 F1. In-
terestingly, the system trained on Darkode is not
able to make good use of labeled data from Hack
Forums, and the domain-specific features actually
cause a drop in performance until we include a
substantial amount of data from Hack Forums (at
least 80 posts). We are likely overfitting the small
Hack Forums training set with the domain-specific
features.

5.4 Analysis

In order to understand the variable performance
and shortcomings of the domain adaptation ap-
proaches we explored, it is useful to examine
our two initial hypotheses and characterize the
datasets a bit further. To do so, we break down
system performance on products seen in the train-
ing set versus novel products. Because our sys-
tems depend on lexical and character n-gram fea-
tures, we expect that they will do better at predict-
ing products we have seen before.

Table 5 confirms this intuition: it shows product
out-of-vocabulary rates in each of the four forums
relative to training on both Darkode and Hack Fo-
rums, along with recall of an NP-level system on
both previously seen and OOV products. As ex-
pected, performance is substantially higher on in-

12If we are training on data from k domains, this gives rise
to up to k + 1 total versions of each feature.
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vocabulary products. OOV rates of a Darkode-
trained system are generally lower on new forums,
indicating that that forum has better all-around
product coverage. A system trained on Darkode
is therefore in some sense more domain-general
than one trained on Hack Forums.

This would seem to support Hypothesis 1.
Moreover, Table 3 shows that the Hack Forums-
trained system achieves a 21% error reduction
on Hack Forums compared to a Darkode-trained
system, while a Darkode-trained system obtains
a 38% error reduction on Darkode relative to a
Hack Forums-trained system; this greater error
reduction means that Darkode has better cover-
age of Hack Forums than vice versa. Darkode’s
better product coverage also helps explain why
Section 5.3 showed better performance of adapt-
ing Hack Forums to Darkode than the other way
around: augmenting Hack Forums data with a
few posts from Darkode can give critical knowl-
edge about new products, but this is less true if
the forums are reversed. Duplicating features and
adding parameters to the learner also has less of a
clear benefit when adapting from Darkode, when
the types of knowledge that need to be added are
less concrete.

Note, however, that these results do not tell the
full story. Table 5 reports recall values, but not
all systems have the same precision/recall trade-
off: although they were tuned to balance precision
and recall on their respective development sets,
the Hack Forums-trained system is slightly more
precision-oriented on Nulled than the Darkode-
trained system.13 In fact, Table 3 shows that
the Hack Forums-trained system actually performs
better on Nulled, largely due to better performance
on previously-seen products. This indicates that
there is some truth to Hypothesis 2: product cov-
erage is not the only important factor determining
performance.

6 Conclusion

We present a new dataset of posts from cybercrime
marketplaces annotated with product references, a
task which blends IE and NER. Learning-based
methods degrade in performance when applied to

13While a hyperparameter controlling the precision/recall
tradeoff could theoretically be tuned on the target domain, it
is hard to do this in a robust, principled way without having
access to a sizable annotated dataset from that domain. This
limitation further complicates the evaluation and makes it dif-
ficult to set up apples-to-apples comparisons across domains.

new forums, and while we explore methods for
fine-grained domain adaption in this data, effective
methods for this task are still an open question.

Our datasets used in this work are avail-
able at https://evidencebasedsecurity.org/

forums/ Code for the product extractor can be
found at https://github.com/ccied/ugforum-

analysis/tree/master/extract-product
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Abstract
In this paper, we propose a new model
that is capable of recognizing overlapping
mentions. We introduce a novel notion of
mention separators that can be effectively
used to capture how mentions overlap with
one another. On top of a novel multigraph
representation that we introduce, we show
that efficient and exact inference can still
be performed. We present some theoret-
ical analysis on the differences between
our model and a recently proposed model
for recognizing overlapping mentions, and
discuss the possible implications of the
differences. Through extensive empirical
analysis on standard datasets, we demon-
strate the effectiveness of our approach.

1 Introduction

Named entity recognition (NER), or in general
the task of recognizing entity mentions1 in a text,
has been a research topic for many years (Mc-
Callum and Li, 2003; Nadeau and Sekine, 2007;
Ratinov and Roth, 2009; Ling and Weld, 2012).
However, as noted by Finkel and Manning (2009),
many previous works ignored overlapping men-
tions, although they are quite common. Figure
1 illustrates some examples of overlapping men-
tions adapted from existing datasets. For example,
the location mention Pennsylvania appears within
the mention of type organization a Pennsylvania
radio station. In practice, overlapping mentions
have been found in many existing datasets across
different domains (Doddington et al., 2004; Kim
et al., 2003; Suominen et al., 2013). Developing
algorithms that can effectively and efficiently ex-
tract overlapping mentions can be crucial for the

1As noted in (Florian et al., 2004), mention recognition
is more general than NER, where a mention can be either
named, nominal, or pronominal.

At issue is the liability of a Pennsylvania
:::::::::

GPE

radio station

::::::::::::::::::::
ORG

under the federal wiretap statute.

CAT expression directed by the IL2
::
DNA

regulatory region

:::::::::::::::
DNA

or by a multimer of the NF-AT
::::
PROT

-binding site

:::::::::::::
DNA

was lower.

Figure 1: Examples of overlapping mentions.

performance of many downstream tasks such as
relation extraction (Mintz et al., 2009; Gupta and
Andrassy, 2016), event extraction (Lu and Roth,
2012; Li et al., 2013; Nguyen et al., 2016), coref-
erence resolution (Chang et al., 2013; Lu et al.,
2016), question answering (Mollá et al., 2007),
and equation parsing (Roy et al., 2016).

Overlapping mention recognition is non-trivial,
as existing methods that model mention recogni-
tion as a sequence prediction problem – e.g., us-
ing linear-chain conditional random fields (CRF)
(Lafferty et al., 2001) – have difficulties in han-
dling overlapping mentions (Alex et al., 2007).
Finkel and Manning (2009) proposed to use a tree-
based constituency parsing model to handle nested
entities.2 Due to the tree structured representa-
tion used, the resulting algorithm has a time com-
plexity that is cubic in n for its inference proce-
dure with n being the number of words in the
sentence. This effectively makes the algorithm
less scalable compared to models such as linear-
chain CRF where the complexity is linear in n.
Lu and Roth (2015) proposed an alternative ap-
proach which shows a time complexity that is lin-
ear in n. Their method differs from the conven-

2We note that nested entities are only one of the two kinds
of overlapping entities, the other kind being crossing entities,
where two entities overlap but neither is contained in another.
However, it is extremely rare, and there is only one occur-
rence of crossing entity in our datasets.
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tional sequence labeling approach, in that a hyper-
graph representation was used in their model.

In this work, we make an observation that there
exists an efficient model for recognizing overlap-
ping mentions while still regarding the problem
as a sequence labeling problem. As opposed to
the conventional approach where we assign labels
to natural language words, in our new approach
we assign labels to the gaps between words, mod-
eling the mention boundaries instead of model-
ing the role of words in forming mentions. Fur-
thermore, while these gap-based labels can be
modeled using conventional graphical models like
linear-chain CRFs, we also propose a novel multi-
graph representation to utilize such gap-based la-
bels efficiently. To the best of our knowledge, this
is the first structured prediction model utilizing a
gap-based annotation scheme to predict overlap-
ping structures.

In this paper we make the following major con-
tributions:
• We propose a set of mention separators

which can be collectively used to define all
possible mention combinations together with
a novel multigraph representation, on top of
which efficient and exact inference can be
performed.
• Theoretically, we show that unlike a recently

proposed state-of-the-art model that we com-
pare against, our model does not exhibit the
spurious structures issue in its learning pro-
cedure. On the other hand, it still maintains
the same inference time complexity as the
previous model.
• Empirically, we show that our model is able

to achieve higher F1-scores compared to pre-
vious models in multiple datasets.

We believe our proposed approach and the novel
representations can be applied in other research
problems involving predicting overlapping struc-
tures, and we hope this work can inspire further
research along such a direction.

2 Related Work
NER or mention detection is normally regarded
as a chunking task similar to base noun phrase
chunking (Kudo and Matsumoto, 2001; Shen and
Sarkar, 2005), and hence the entities or mentions
are usually represented in a similar way, using
BILOU (Beginning, Inside, Last, Outside, Unit-
length mention) or the simpler BIO annotation
scheme (Ratinov and Roth, 2009). As a chunking

task, it is commonly modeled using sequence la-
beling models, such as the linear-chain CRF (Laf-
ferty et al., 2001), which has time complexity
O(nT 2) with n being the number of words in the
sentence and T the number of mention types.

On the task of recognizing mentions that may
overlap with one another, one of the earliest works
that attempted to regard this task as a structured
prediction task was by McDonald et al. (2005).
They represented entity mentions as top-k predic-
tions with positive score from a structured multil-
abel classification model. Their model has a time
complexity of O(n3T ).

Alex et al. (2007) proposed a cascading ap-
proach using multiple linear-chain CRF models,
each handling a subset of all the possible mention
types, where the models which come later in the
pipeline have access to the predictions of the mod-
els earlier in the pipeline. This results in the time
complexity of roughly O(nT ) depending on how
the pipeline was designed.

Finkel and Manning (2009) later proposed a
constituency parser to handle nested entities by
converting each sentence into a tree, and each
mention is represented as one of the subtrees.
Their model has the standard time complexity
for a constituency parser with binary grammar:
O(n3 |G|), where |G| is the size of the grammar,
which in this case is proportional to T in the best
case, and T 3 in the worst case. They showed
that their model outperforms a semi-CRF baseline
(Sarawagi and Cohen, 2004) in terms of F1-score.

Recently, Lu and Roth (2015) proposed a
hypergraph-based model called mention hyper-
graph that is able to handle overlapping mentions
with a linear time complexity O(nT ). The model
was shown to achieve competitive results com-
pared to previous models on standard datasets. As
we will be making extensive comparisons against
this previous state-of-the-art model, we will de-
scribe this approach in the next section.

3 Mention Hypergraph

In the mention hypergraph model of Lu and Roth
(2015), nodes and directed hyperedges3 are used
together to encode mentions and their combina-
tions. The following five types of nodes are used
at the position k of a sentence:
• Ak denotes all mentions starting at k or later,

3For brevity, in this paper we may also use edge to refer
to hyperedge in some discussions.
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A0 A1 A2 A3

E0 E1 E2 E3

T0 T1 T2 T3

I0 I1 I2 I3
X X X X

X X X X

the [human [TCF-1]2 protein]1

A1 A2

E1 E2

T1 T2

I1 I2 I3

X X

Figure 2: (left) An example mention hypergraph
encoding two overlapping mentions. (right) An
example of spurious structure.

• Ek denotes all mentions starting at k,
• Tk

t denotes all mentions (type t) starting at k,
• Ikt denotes all mentions (type t) covering k,
• X denotes the end of a mention (leaf node).
Different hyperedges connecting these nodes

are used to represent how the semantics of a node
is composed from those of its child nodes.

Specifically, each Ak is connected to Ak+1 and
Ek through the hyperedge Ak → (Ak+1,Ek), de-
noting the fact that the set of mentions that start
at k or later is the union of the set of mentions
that start at k + 1 or later and the set of men-
tions that start at k. Each Ek is connected to
Tk

1,T
k
2, . . . ,T

k
T through a hyperedge, denoting

the fact that the mentions that start at k must be
one of the T types. Each Tk

t can be connected to
Ikt through an edge (denoting there is a mention of
type t that starts at the k-th token) or to X through
another edge (denoting there are no mentions of
type t that start at the k-th token). Each Ikt can
be connected to Ik+1

t (denoting there is a mention
continuing to the next token), to X (denoting there
is a mention ending here), or to both (with a single
hyperedge, denoting the two cases above occur at
the same time, a case of overlapping mentions).

In this mention hypergraph, each possible men-
tion is represented as a path from a T-node to the
X-node through a sequence of I-nodes (each de-
noting the words which are part of the mention),
and the set of all mentions present in a given sen-
tence forms a hyperpath from the root node A0 to
the leaf node X. Figure 2 shows how the men-
tion hypergraph represents the two mentions in
the phrase “the human TCF-1 protein”, which are
“TCF-1” and “human TCF-1 protein”. The edges
T1 − I1 and T2 − I2 respectively denote that the
words “human” and “TCF-1” are the beginning of
a mention, and the edges from the I-nodes to the
X-node define the end of the mentions. We remark
that any mention hypergraph which encodes the

mentions in a sentence, like this example, forms a
hyperpath from the root node A0 to the leaf node
X, where a hyperpath is defined as a subgraph of
a hypergraph with the property that each node has
exactly one outgoing (hyper)edge except the last
node, and the root node is connected to all nodes.

We refer the readers to Lu and Roth (2015) for
more details on the model.

3.1 Spurious Structures
Mention hypergraph is trained by maximizing the
likelihood of the training data, similar to training
a linear-chain CRF. Recall that the likelihood of
the training data can be calculated by taking the
score of the correct structures and divide it by the
normalization term, which is the total score of all
possible structures. Lu and Roth (2015) used a
dynamic programming algorithm to calculate the
normalization term. However, the normalization
term calculated this way contains additional terms,
which we call the spurious structures. This leads
to the following:

Theorem 3.1. Let Z ′ be the normalization term
as calculated using forward-backward algorithm
on mention hypergraph, and let Z be the true nor-
malization term. Then we have Z ′ > Z.

Due to space limitation, we provide a proof
sketch here. We refer the reader to the supplemen-
tal material for the details on spurious structures.

Proof sketch. First note that Z ′ includes all possi-
ble hyperpaths, so Z ′ ≥ Z. Next, due to the pres-
ence of a node with multiple parents (e.g., node
I2 in Figure 2 (left)), Z ′ includes the score of that
node multiple times with different children, which
results in a subgraph which is not a hyperpath. For
example, Z ′ includes the score4 of the structure
shown in Figure 2 (right), where node I2 has two
children, and so it is not a hyperpath. Since Z is
the sum of all hyperpaths, this structure is not part
of Z, but it is included in Z ′, so Z ′ > Z.

Later we will see how this issue may affect the
model’s performance in predicting mentions.

4 Mention Separators

We now describe the mention separators which
can be used to encode overlapping mentions in a
sentence. Traditional encoding schemes that asso-
ciate labels to words, such as BIO scheme, attach
the semantics of the labels to the role of the words

4Note that structure scores exp(w ·f) are always positive.
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w w w [w w] w w] [w
X S E ES

w -w w -[w w]-w w]-[w
C CS EC ECS

Figure 3: An illustration of the 8 mention separa-
tors. The opening bracket ([), closing bracket (]),
and dash (-) respectively refer to S, E, and C.

in forming mentions. For example, the label B in
BIO scheme denotes the role of the word it is at-
tached to, which is the first word of a mention.

This BIO scheme cannot be used directly to en-
code overlapping mentions, since they only en-
code whether a word is part of a mention and pos-
sibly their position in the mention. We notice that
by encoding the mention boundaries instead, we
can represent overlapping mentions. This can be
accomplished by assigning what we call mention
separators to the gaps between two words.

At each gap, we consider eight possible types
of mention separators based on the combination
of the following three cases:
1. A mention is starting at the next word (S)
2. A mention is ending at the previous word (E)
3. A mention is continuing to the next word (C)

Therefore, for each token, the possible combina-
tions of cases are as follows: ECS, EC, CS, C, ES,
E, S, and X, where Xmeans none of the three cases
applies. For example, the separator EC means
there is a mention ending at the current token and
another mention (overlapping) continuing to the
next token. Note that there might be more than
just two mentions involved here. Figure 3 shows
an illustration of these separators, and Figure 4a
shows how they can be used to encode the exam-
ple in Figure 2.

Now we prove that the following theorem holds:

Theorem 4.1. For any combination of mentions in
a sentence, there is exactly one sequence of men-
tion separators that encodes it.

Proof. Consider the gap between any two adja-
cent words in the sentence. The combination of
mentions present in the sentence uniquely defines
what mention separator is associated with this gap.
If there is a mention starting at the next word,
then case S applies. Similarly, if there is a men-
tion ending at the previous word, case E applies.
And finally, if there is a mention covering both
words, case C applies. By combining the cases,
we get the corresponding mention separator for
this gap. In this way, each gap in the sentence has

a unique mention separator, which in turn defines
the unique sequence of mention separators.

Note that the converse of Theorem 4.1 is not
true, as multiple mention combinations might en-
code to the same sequence of mention separators.

Now we describe two ways the mention separa-
tors can be used to encode overlapping mentions.

STATE-based The first is by directly using
these mention separators to replace the standard
mention encoding scheme (e.g., BIO encoding)
in standard linear-chain CRF. So we assign each
mention separator to a state in a linear-chain CRF
model. Since this model encodes the gap between
words and also the gap before the first word and
after the last word, a sentence with n words is
modeled by a sequence of n + 1 mention sepa-
rators. Since each sequence of mention separa-
tors can only encode mentions of the same type,
we support multiple types by using multiple se-
quences, one for each mention type.

EDGE-based Now, we propose a novel way
of utilizing these mention separators. Since
the mention separators encode the gaps between
words, it is more intuitive to assign the mention
separators to the edges of a graphical model, as
opposed to the states, as described in the previous
paragraph. To do this, we need to define the states
of the models in such a way that all possible se-
quences of mention separators are accounted for.
For this purpose we assign two states to each word
at position k:
• Ik: word at k is part of a mention,
• Ok: word at k is not part of any mentions.
Next we define the edges between the states ac-

cording to the eight possible mention separators
between adjacent words. More specifically, each
mention separator is mapped to an edge connect-
ing one state in the current position to another state
in the next position depending on whether the sep-
arator defines current and next word as part of an
mention, so in total we have eight edges between
two positions in the model. Some mention sep-
arators may connect the same two states, for ex-
ample, the ES and C separator both connect Ik to
Ik+1 since in both cases the current word and the
next word are part of a mention. In those cases,
we simply define multiple edges between the pair
of states. The resulting graph, where there can
be multiple edges between two states, is known
in graph theory literature as a multigraph5.

5In this work, the multigraph representation can also be
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Figure 4: Our mention separator model with the EDGE representation encoding two phrases.
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Figure 5: The full graph in EDGE-based model.

The first I- and O-nodes in the sentence are con-
nected to the root node, and the last I- and O-
nodes are connected to the unique leaf node X.

Figure 4a shows how the EDGE-based model
encodes the two mentions “human TCF-1 protein”
and “TCF-1” in the phrase “the human TCF-1 pro-
tein”, and Figure 4b shows the encoding of the
phrase found in the second example in Figure 1.
Note how each edge maps to a distinct mention
separator visualized in the text in red.

Figure 5 shows the full graph of our EDGE-
based model, in a format similar to the trellis graph
for linear-chain CRFs in Figure 6. We remark that
the EDGE-based model can be seen as an exten-
sion of linear-chain CRFs, with additional seman-
tics attached to the edges. Also note that this graph
encodes only one mention type. To support multi-
ple types, similar to the STATE-based approach we
can use multiple chains, one for each type.

Note that the edges in our EDGE-based repre-
sentations are directed, with nodes on the left serv-
ing as parents to the nodes on the right. Such di-
rected edges will be helpful when performing in-
ference, to be discussed in the next section.

We remark that the way we utilize multigraph
in the EDGE-based model can also be applied to
the discontiguous mention model (DMM) by Muis
and Lu (2016). In fact, it can be shown that the
number of canonical structures as calculated in the
supplementary material of DMM paper matches
the number of possible paths in our multigraph-
based model, as the transition matrix in DMM
corresponds to the number of possible transitions
from one position to the next position, which is

regarded as a lattice where edges are associated with labels.

B B B B

I I I I

O O O O

R X

the [human TCF-1 protein]1

Figure 6: A linear-chain CRF model encoding a
mention in BIO scheme.

encoded in our multigraph-based model as edges
between adjacent positions. See the supplemental
material for more discussion on this.

4.1 Training, Inference and Decoding

We follow the log-linear approach to define our
model, using regularized log-likelihood in training
data D as our objective function, as follows:

LD(w)=
∑

(x,y)∈D

[∑

e∈y
w · f(e)− logZw(x)

]
−λ||w||2

(1)

Here, (x,y) is a training instance consisting
of the sentence x and the correct output y, w is
the weight vector, f(e) is the feature vector de-
fined over the edge e, Zw(x) is the normalization
term, and λ is the l2-regularization parameter. The
objective function is then optimized until conver-
gence using L-BFGS (Liu and Nocedal, 1989).

We note the mention hypergraph model also de-
fines the objective in a similar manner. For both
of our models, the inference is done based on a
generalized inside-outside algorithm. Both mod-
els involve directed structures, on top of which
the inference algorithm first calculates the inside
score for each node from the leaf node to root,
and then the outside score from the root to the leaf
node, in very much the same way as how infer-
ence is done in a classic graphical model. Specifi-
cally, for our EDGE-based model, the inside scores
are calculated using a bottom-up (right-to-left) dy-
namic programming procedure, where we calcu-
late the inside score at each node by summing up
the scores associated with each path connecting
the current node to one of its child nodes. Each
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ACE-2004 ACE-2005 GENIA
Train (%) Dev (%) Test (%) Train (%) Dev (%) Test (%) Train (%) Dev (%) Test (%)

# sentence 6,799 829 879 7,336 958 1,047 14,836 1,855 1,855
w/ o.l. 2,685 (39) 293 (35) 373 (42) 2,686 (37) 341 (36) 330 (32) 3,199 (22) 366 (20) 448 (24)

# mentions 22,207 2,511 3,031 24,687 3,217 3,027 46,473 5,014 5,600
o.l. 10,170 (46) 1,091 (43) 1,418 (47) 9,937 (40) 1,192 (37) 1,184 (39) 8,337 (18) 915 (18) 1,217 (22)
o.l. (s) 5,431 (24) 624 (25) 780 (26) 5,044 (20) 600 (19) 638 (21) 4,613 (10) 479 (10) 634 (11)

Table 1: Statistics of the datasets used in the experiments. w/ o.l.: sentences containing overlapping
mentions; o.l.: overlapping mentions; o.l. (s): overlapping mentions with the same type.

such path score is defined as the product of the in-
side score stored in that child node and the score
defined over the edge connecting them. The com-
putation of the outside scores can be done in an
analogous manner from left to right. It can be ver-
ified that the time complexity of this inference pro-
cedure for our model is O(nT ), which is the same
as the mention hypergraph model. Note that, how-
ever, both of our models do not have the spurious
structures issue, as for any path in these models
there are no nodes with multiple incoming edges.

During decoding, we perform MAP inference
using a max-product procedure that is analogous
to how the Viterbi decoding algorithm is used in
conventional tree-structured graphical models to
find out the highest-scoring subgraph, from which
we extract mentions through the process that we
call the interpretation process. As noted in previ-
ous section, there could be multiple mention com-
binations that correspond to the same sequence of
mention separators, which presents an ambiguity
during the interpretation process. For these am-
biguous cases, we implemented the same inter-
pretation process as that was done in the mention
hypergraph model, which is by resolving ambigu-
ous structures as nested mentions. For other cases,
there is exactly one way to interpret the structure.
For example, in Figure 4b, although there is only
one gap marked as starting position (S) and two
gaps marked as ending position (EC and E), the
interpretation is clear that the two mentions here
are “IL2” and “IL2 regulatory region”.

5 Experiments

5.1 Datasets
To assess our model’s capability in recognizing
overlapping mentions and make comparisons with
previous models, we looked at datasets where
overlapping mentions are explicitly annotated.
Following the previous work (Lu and Roth, 2015),
our main results are based on the standard ACE-
2004 and ACE-2005 datasets (Doddington et al.,
2004). We also additionally looked at the GE-

NIA dataset (Kim et al., 2003), which was used
in the previous works (Finkel and Manning, 2009;
Lu and Roth, 2015).

For ACE datasets, we used the same splits as
used in our previous work (Lu and Roth, 2015),
published on our website6. For GENIA, we used
GENIAcorpus3.02p7 that comes with POS tags
for each word (Tateisi and Tsujii, 2004). Follow-
ing previous works (Finkel and Manning, 2009;
Lu and Roth, 2015), we first split the last 10% of
the data as the test set. Next we used the first 80%
and the subsequent 10% for training and develop-
ment, respectively. We made the same modifica-
tions as described by Finkel and Manning (2009)
by collapsing all DNA, RNA, and protein subtypes
into DNA, RNA, and protein, keeping cell line and
cell type, and removing other mention types, re-
sulting in 5 mention types. The statistics of each
dataset are shown in Table 1. We can see overlap-
ping mentions are common in such datasets.

For more details on the dataset preprocessing,
please refer to the supplemental material.

5.2 Features

For models that fall under the edge-based
paradigm (mention hypergraph and our model),
we define features over the edges in the models.
Features are defined as string concatenations of in-
put features – information extracted over the in-
puts (such as current word and POS tags of sur-
rounding words) and output features – structured
information extracted over the output structure.
We carefully defined the input and output features
in a way that allows us to make use of the iden-
tical set of features for both our mention sepa-
rator model and the baseline mention hypergraph
model, in order to make a proper comparison. We
also followed Lu and Roth (2015) to add the addi-
tional mention penalty feature for our model and
all baseline approaches so that we are able to tune
F1-scores on the development set. Roughly speak-

6http://statnlp.org/research/ie#mention-hypergraph
7http://geniaproject.org/genia-corpus/pos-annotation
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ACE-2004 ACE-2005
ACE-2004 ACE-2005

(F1 optimized) (F1 optimized)
P R F1 w/s P R F1 w/s P R F1 P R F1

LCRF (single) 70.6 41.7 52.5 40.2 66.0 45.0 53.5 41.2 66.2 47.7 55.4 62.1 48.9 54.7
LCRF (multiple) 78.6 44.5 56.9 119.4 76.2 46.8 58.0 118.7 69.9 55.1 61.6 66.5 55.3 60.4
Lu and Roth (2015) 81.2 45.9 58.6 472.5 78.6 46.9 58.7 516.6 72.5 55.7 63.0 66.3 57.3 61.5
This work (STATE) 78.0 51.2 61.8 50.5 75.3 51.7 61.3 52.1 71.2 58.0 64.0 67.6 58.4 62.7
This work (EDGE) 79.5 51.1 62.2 251.5 75.5 51.7 61.3 253.3 72.7 58.0 64.5 69.1 58.1 63.1

Table 2: Main results (on ACE).

ing, the weight of this feature controls how confi-
dent the model should be in predicting more men-
tions. In other words, this is a way to balance the
precision and recall of the model.

When defining the input features for both our
model and the mention hypergraph model, we im-
plemented the features used by previous works in
each dataset based on the descriptions in their pa-
pers: we followed Lu and Roth (2015) for the fea-
tures used in ACE datasets, and Finkel and Man-
ning (2009) for features used in GENIA dataset.
In general, they include surrounding words, sur-
rounding POS tags, bag-of-words, Brown clusters
(for GENIA only), and orthographic features. See
the supplemental material for more details.

5.3 Experimental Setup

We trained each model in the training set, then
tuned the l2-regularization parameter based on the
development set. For GENIA experiments, we
also tuned the number of Brown clusters. Fol-
lowing Lu and Roth (2015), we also used each
development set to tune the mention penalty to
optimize the F1-score and report the scores on
the corresponding test sets separately. Similar
to Finkel and Manning (2009), as another base-
line model we also trained a standard linear-chain
CRF using the BILOU scheme. Although this
model does not support overlapping mentions, it
gives us a baseline to see the extent to which our
model’s ability to recognize overlapping mentions
can help the overall performance. There is also a
simple extension8 of this linear-chain CRF model
that can support overlapping mentions of differ-
ent types by considering each type separately us-
ing multiple chains, one for each type. We call
this multiple-chain variant LCRF (multiple) and
the earlier standard approach LCRF (single). In

8We also tried a more elaborate encoding scheme based
on BIO scheme Tang et al. (2013), originally designed for
discontiguous mentions, but is supposed to be able to also
recognize overlapping mentions of the same type. However,
the result is very similar to LCRF (multiple), perhaps due to
the invalid structures issue noted by Muis and Lu (2016).

all models, we also implement the mention penalty
feature, adapted accordingly so that increasing the
feature weight will increase the number of men-
tions predicted by the model. See supplemental
material for more details.

We implemented all models using Java, and also
made additional comparisons on running time by
running them under the same machine. In addi-
tion, we also analyzed the convergence rate for dif-
ferent models.

6 Results and Discussion
6.1 Results on ACE

Table 2 shows the results on the ACE datasets,
and these are our main results. Following pre-
vious works (Finkel and Manning, 2009; Lu and
Roth, 2015), we report standard precision (P ),
recall (R) and F1-score percentage scores. The
highest results (F1-score) and those results that are
not significantly different from the highest results
are highlighted in bold (based on bootstrap resam-
pling test (Koehn, 2004), where p > 0.01). For
ACE datasets, we make comparisons with the two
versions of the linear-chain CRF baseline: LCRF
(single) which does not support overlapping men-
tions at all and LCRF (multiple) which does not
support overlapping mentions of the same type, as
well as our implementation of the mention hyper-
graph baseline (Lu and Roth, 2015).

From such empirical results we can see that our
proposed model using mention separators consis-
tently yields significantly better results (p < 0.01)
than the mention hypergraph model across these
two datasets, under two setups (whether to op-
timize F1-score or not). Specifically, when the
state-based approach is used (STATE), our ap-
proach is able to obtain a much higher recall, re-
sulting in improved F1-score. Empirically, we
found this approach was also faster than the LCRF
baseline approach in terms of the number of words
processed each second (w/s) during decoding,
which is expected, since STATE uses fewer num-

2614



P R F1 w/s
LCRF (single) 77.1 63.3 69.5 81.6
LCRF (multiple) 75.9 66.1 70.6 175.8
Finkel and Manning (2009) 75.4 65.9 70.3 -
Lu and Roth (2015) 74.2 66.7 70.3 931.9
This work (STATE) 74.0 67.7 70.7 110.8
This work (EDGE) 75.4 66.8 70.8 389.2

Table 3: Results on GENIA.

ber of tags.9 The edge-based approach (EDGE)
using our proposed multigraph representation is
able to achieve a significant speedup in compar-
ison with the state-based approach. Although this
model is still about 50% slower than the mention
hypergraph model10, but it yielded a significantly
higher F1-score (up to 3.6 points higher on ACE-
2004 before optimizing F1-score). These results
largely confirm the effectiveness of our proposed
mention separator model and the usefulness of the
multigraph representation for learning the model.

And as expected, the LCRF baselines yields rel-
atively lower results compared to the other mod-
els, since it cannot predict overlapping mentions.11

However, such results give us some idea on how
much performance increase we can gain by prop-
erly recognizing overlapping mentions by looking
at the results of LCRF (single), which in this case
can be up to 9.7 points in F1-score in ACE-2004.
We can also see the gain from recognizing over-
lapping mentions of the same type by looking at
the results of LCRF (multiple), which can be up to
5.3 points in F1-score in ACE-2004.

6.2 Results on GENIA

Table 3 shows the results of running the models
with F1-score tuning on GENIA dataset. All mod-
els include Brown clustering features learned from
PubMed abstracts. Besides the mention hyper-
graph baseline, we also make comparisons with
the system of Finkel and Manning (2009) that can
also support overlapping mentions.

We see that the mention hypergraph model
matches the performance of the constituency
parser-based model of Finkel and Manning
(2009), while our models based on mention sepa-
rators yield significantly higher scores (p < 0.05)
than all other baselines (except LCRF (multiple),
which we will discuss shortly). There are two ob-

9There are eight tags in STATE and nine in LCRF.
10Though both models have the same time complexity,

they differ by a constant factor.
11LCRF (single) cannot predict any overlapping mentions,

while LCRF (multiple) cannot predict overlapping mentions
of the same type.

% Lu and Roth (2015) This work (EDGE)

P R F1 P R F1

ACE-2004 O 42 72.5 52.4 60.8 72.1 55.3 62.6
Ø 58 72.5 65.0 68.6 74.1 65.5 69.5

ACE-2005 O 32 68.1 52.6 59.4 70.4 55.0 61.8
Ø 68 64.1 65.1 64.6 67.2 63.4 65.2

GENIA O 24 76.3 60.8 67.7 76.5 60.3 67.4
Ø 76 73.1 70.7 71.9 74.8 71.3 73.0

Table 4: Results on different types of sentences.

servations worth mentioning: (1) the absolute dif-
ference of F1-scores of our models and the base-
line models in GENIA is much smaller compared
to that in ACE datasets, and (2) the LCRF (mul-
tiple) model in GENIA dataset can achieve higher
scores compared to other more complex baseline
models, although LCRF (multiple) does not sup-
port overlapping mentions of the same type. We
suspect that these two observations are due to the
small proportion of overlapping mentions in GE-
NIA (18%, as compared to >40% in ACE datasets,
see Table 1). To investigate this, we conduct a few
more sets of experiments.

6.3 Further Experiments

On different types of sentences: As these
datasets consist of both overlapping and non-
overlapping mentions, to further understand the
model’s effectiveness in recognizing overlapping
mentions (and non-overlapping mentions), we per-
formed some additional experiments on the men-
tion hypergraph model and our model.12 Specifi-
cally, we split the test data into two portions, one
that consists of only sentences that contain over-
lapping mentions (O) and those which do not (Ø).
The results are shown in Table 4.

We can see that in ACE datasets, our model
achieves higher F1-scores compared to the men-
tion hypergraph for both portions, but it achieves
slightly lower results in GENIA dataset for the
portion that contains overlapping mentions. We
believe that our models learn parameters so as
to obtain an optimal overall performance, and
since the proportion of the overlapping mentions
in GENIA is much smaller compared to that in
ACE datasets, it learns to focus more on the non-
overlapping mentions. This is supported by the
fact that the difference of F1-score between the
mention hypergraph model and our model in GE-
NIA is larger compared to the difference in ACE

12We also performed this on other models. Due to space
constraint, we do not include the results here. See the supple-
mental material for more details.
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Figure 7: Objective vs. training iterations.

P R F1 w/s
LCRF (single) 84.2 83.5 83.8 148.6
LCRF (multiple) 91.5 78.2 84.3 283.4
Ratinov and Roth (2009) - - 83.7 -
Lu and Roth (2015) 91.1 77.0 83.5 1169.7
This work (STATE) 91.1 78.2 84.2 116.3
This work (EDGE) 91.3 78.2 84.3 554.0

Table 5: Results on CoNLL-2003 (without opti-
mizing F1-score).

datasets (1.1 points in GENIA, compared to 0.9
and 0.6 points in ACE).

These results also lead to the interesting empir-
ical finding that our model appears to be able to
do well also on recognizing non-overlapping men-
tions. This motivates us to conduct the next set of
experiments.

On data without overlapping mentions: We
also performed one additional set of experiments,
on the standard CoNLL-2003 dataset (Tjong
Kim Sang and De Meulder, 2003), which has no
overlapping mentions.

The results (without optimizing F1-score) are
shown in Table 5. We see that our models based
on mention separators outperform baseline mod-
els such as the Illinois NER system where external
resources are not used (Ratinov and Roth, 2009),
and a linear-chain CRF model, although the linear-
chain CRF baseline models some interactions be-
tween distinct mention types and our models do
not. Such results also suggest that modeling the
interactions between distinct mention types may
not be crucial to get a good performance in men-
tion recognition. This is further corroborated by
the result of LCRF (multiple), which is higher than
the result of LCRF (single) by about 0.5 points.

When comparing our model against the mention
hypergraph model, we note that our model con-
sistently yields a higher recall. We speculate this
is due to the fact that as our model does not ex-
hibit the issue of spurious structures we discussed
in Section 3.1, it is more confident in making its
predictions.

On convergence: We also empirically analyzed
the convergence properties of the two models.
Empirically, as illustrated in Figure 7 which shows
how the objective improves when the training pro-
gresses on ACE-2004, GENIA, and CoNLL-2003,
we found that our EDGE-based model requires sig-
nificantly less iterations to converge than the men-
tion hypergraph on the former two datasets which
contain overlapping mentions. We believe it is
possible that this slower convergence is due to the
spurious structures issue in mention hypergraphs,
which causes the objective function to be more
complex to optimize. However, some further anal-
yses on the convergence issue and the impact of
different ways of exploiting features (over differ-
ent hyperedges) for the hypergraph-based models
are needed.

7 Conclusion and Future Work

We proposed the novel mention separators for
mention recognition where mentions may overlap
with one another. We also proposed two ways
these mention separators can be utilized to en-
code overlapping mentions, where one of them
utilizes a novel multigraph-based representation.
We showed that by utilizing mention separators,
we can get better recognition results compared to
previous models, and by utilizing the multigraph
representation, we can maintain a good inference
speed, albeit still slower than the mention hyper-
graph model. We also performed theoretical anal-
ysis on the model and showed that our model does
not present the spurious structures issue associ-
ated with a previous state-of-the-art model, while
still keeping the same inference time complexity.

Future work includes further investigations on
how to apply the multigraph approach to other
structured prediction tasks, as well as applications
of the proposed model in other related NLP tasks
that involve the prediction of overlapping struc-
tures, such as equation parsing (Roy et al., 2016).

The code used in this paper is available at
http://statnlp.org/research/ie/.
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Abstract

We propose a novel deep learning model
for joint document-level entity disam-
biguation, which leverages learned neural
representations. Key components are en-
tity embeddings, a neural attention mech-
anism over local context windows, and a
differentiable joint inference stage for dis-
ambiguation. Our approach thereby com-
bines benefits of deep learning with more
traditional approaches such as graphical
models and probabilistic mention-entity
maps. Extensive experiments show that
we are able to obtain competitive or state-
of-the-art accuracy at moderate computa-
tional costs.

1 Introduction

Entity disambiguation (ED) is an important stage
in text understanding which automatically re-
solves references to entities in a given knowledge
base (KB). This task is challenging due to the in-
herent ambiguity between surface form mentions
such as names and the entities they refer to. This
many-to-many ambiguity can often be captured
partially by name-entity co-occurrence counts ex-
tracted from entity-linked corpora.

ED research has largely focused on two types
of contextual information for disambiguation: lo-
cal information based on words that occur in a
context window around an entity mention, and,
global information, exploiting document-level co-
herence of the referenced entities. Many state-
of-the-art methods aim to combine the benefits of
both, which is also the philosophy we follow in
this paper. What is specific to our approach is that
we use embeddings of entities as a common repre-
sentation to assess local as well as global evidence.

In recent years, many text and language under-
standing tasks have been advanced by neural net-
work architectures. However, despite recent work,
competitive ED systems still largely employ man-
ually designed features. Such features often rely
on domain knowledge and may fail to capture all
relevant statistical dependencies and interactions.
The explicit goal of our work is to use deep learn-
ing in order to learn basic features and their com-
binations from scratch. To the best of our knowl-
edge, our approach is the first to carry out this pro-
gram with full rigor.

2 Contributions and Related Work

There is a vast prior research on entity disam-
biguation, highlighted by (Ji, 2016). We will focus
here on a discussion of our main contributions in
relation to prior work.
Entity Embeddings. We have developed a sim-
ple, yet effective method to embed entities and
words in a common vector space. This fol-
lows the popular line of work on word embed-
dings, e.g. (Mikolov et al., 2013; Pennington et al.,
2014), which was recently extended to entities and
ED by (Yamada et al., 2016; Fang et al., 2016;
Zwicklbauer et al., 2016; Huang et al., 2015).
In contrast to the above methods that require
data about entity-entity co-occurrences which of-
ten suffers from sparsity, we rather bootstrap en-
tity embeddings from their canonical entity pages
and local context of their hyperlink annotations.
This allows for more efficient training and alle-
viates the need to compile co-linking statistics.
These vector representations are a key component
to avoid hand-engineered features, multiple dis-
ambiguation steps, or the need for additional ad
hoc heuristics when solving the ED task.
Context Attention. We present a novel atten-
tion mechanism for local ED. Inspired by mem-
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ory networks of (Sukhbaatar et al., 2015) and in-
sights of (Lazic et al., 2015), our model deploys
attention to select words that are informative for
the disambiguation decision. A learned combi-
nation of the resulting context-based entity scores
and a mention–entity prior yields the final local
scores. Our local model achieves better accu-
racy than the local probabilistic model of (Ganea
et al., 2016), as well as the feature-engineered lo-
cal model of (Globerson et al., 2016). As an added
benefit, our model has a smaller memory footprint
and it’s very fast for both training and testing.

There have been other deep learning approaches
to define local context models for ED. For in-
stance (Francis-Landau et al., 2016; He et al.,
2013) use convolutional neural networks (CNNs)
and stacked denoising auto-encoders, respectively,
to learn representations of textual documents and
canonical entity pages. Entities for each mention
are locally scored based on cosine similarity with
the respective document embedding. In a similar
local setting, (Sun et al., 2015) embed mentions,
their immediate contexts and their candidate en-
tities using word embeddings and CNNs. How-
ever, their entity representations are restrictively
built from entity titles and entity categories only.
Unfortunately, the above models are rather ’black-
box’ (as opposed to ours which reveals the atten-
tion focus) and were never extended to perform
joint document disambiguation.

Collective Disambiguation. Last, a novel deep
learning architecture for global ED is proposed.
Mentions in a document are resolved jointly, us-
ing a conditional random field (Lafferty et al.,
2001) with parametrized potentials. We suggest to
learn the latter by casting loopy belief propagation
(LBP) (Murphy et al., 1999) as a rolled-out deep
network. This is inspired by similar approaches in
computer vision, e.g. (Domke, 2013), and allows
us to backpropagate through the (truncated) mes-
sage passing, thereby optimizing the CRF poten-
tials to work well in conjunction with the inference
scheme. Our model is thus trained end-to-end with
the exception of the pre-trained word and entity
embeddings. Previous work has investigated dif-
ferent approximation techniques, including: ran-
dom graph walks (Guo and Barbosa, 2016), per-
sonalized PageRank (Pershina et al., 2015), inter-
mention voting (Ferragina and Scaiella, 2010),
graph pruning (Hoffart et al., 2011), integer linear
programming (Cheng and Roth, 2013), or ranking

SVMs (Ratinov et al., 2011). Mostly connected to
our approach is (Ganea et al., 2016) where LBP
is used for inference (but not learning) in a prob-
abilistic graphical model and (Globerson et al.,
2016) where a single round of message passing
with attention is performed. To our knowledge,
we are one of the first to investigate differentiable
message passing for NLP problems.

3 Learning Entity Embeddings

In a first step, we propose to train entity vectors
that can be used for the ED task (and potentially
for other tasks). These embeddings compress the
semantic meaning of entities and drastically re-
duce the need for manually designed features or
co-occurrence statistics.

Entity embeddings are bootstrapped from word
embeddings and are trained independently for
each entity. A few arguments motivate this deci-
sion: (i) there is no need for entity co-occurrence
statistics that suffer from sparsity issues and/or
large memory footprints; (ii) vectors of entities in
a subset domain of interest can be trained sepa-
rately, obtaining potentially significant speed-ups
and memory savings that would otherwise be pro-
hibitive for large entity KBs;1 (iii) entities can be
easily added in an incremental manner, which is
important in practice; (iv) the approach extends
well into the tail of rare entities with few linked
occurrences; (v) empirically, we achieve better
quality compared to methods that use entity co-
occurrence statistics.

Our model embeds words and entities in the
same low-dimensional vector space in order to ex-
ploit geometric similarity between them. We start
with a pre-trained word embedding map x :W →
Rd that is known to encode semantic meaning of
words w ∈ W; specifically we use word2vec pre-
trained vectors (Mikolov et al., 2013). We extend
this map to entities E , i.e. x : E → Rd, as de-
scribed below.

We assume a generative model in which words
that co-occur with an entity e are sampled from
a conditional distribution p(w|e) when they are
generated. Empirically, we collect word-entity co-
occurrence counts #(w, e) from two sources: (i)
the canonical KB description page of the entity
(e.g. entity’s Wikipedia page in our case), and (ii)
the windows of fixed size surrounding mentions of
the entity in an annotated corpus (e.g. Wikipedia

1Notably useful with (limited memory) GPU hardware.
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hyperlinks in our case). These counts define a
practical approximation of the above word-entity
conditional distribution, i.e. p̂(w|e) ∝ #(w, e).
We call this the ”positive” distribution of words
related to the entity. Next, let q(w) be a generic
word probability distribution which we use for
sampling ”negative” words unrelated to a specific
entity. As in (Mikolov et al., 2013), we choose a
smoothed unigram distribution q(w) = p̂(w)α for
some α ∈ (0, 1). The desired outcome is that vec-
tors of positive words are closer (in terms of dot
product) to the embedding of entity e compared to
vectors of random words. Let w+ ∼ p̂(w|e) and
w− ∼ q(w). Then, we use a max-margin objec-
tive to infer the optimal embedding for entity e:

J(z; e) := Ew+|e Ew−
[
h
(
z;w+, w−

)]

h(z;w, v) := [γ − 〈z,xw − xv〉]+ (1)

xe := arg min
z:‖z‖=1

J(z; e)

where γ > 0 is a margin parameter and [·]+ is
the ReLU function. The above loss is optimized
using stochastic gradient descent with projection
over sampled pairs (w+, w−). Note that the en-
tity vector is directly optimized on the unit sphere
which is important in order to obtain qualitative
embeddings.

We empirically assess the quality of our entity
embeddings on entity similarity and ED tasks as
detailed in Section 7 and Appendix A. The tech-
nique described in this section can also be applied,
in principle, for computing embeddings of general
text documents, but a comparison with such meth-
ods is left as future work.

4 Local Model with Neural Attention

We now explain our local ED approach that uses
word and entity embeddings to steer a neural atten-
tion mechanism. We build on the insight that only
a few context words are informative for resolving
an ambiguous mention, something that has been
exploited before in (Lazic et al., 2015). Focusing
only on those words helps reducing noise and im-
proves disambiguation. (Yamada et al., 2016) ob-
serve the same problem and adopt the restrictive
strategy of removing all non-nouns. Here, we as-
sume that a context word may be relevant, if it is
strongly related to at least one of the entity candi-
dates of a given mention.
Context Scores.

Let us assume that we have computed a
mention–entity prior p̂(e|m) (procedure detailed
in Section 6). In addition, for each mention m,
a pruned candidate set Γ(m) of at most S entities
has been identified. Our model, depicted in Fig-
ure 1, computes a score for each e ∈ Γ(m) based
on the K-word local context c = {w1, . . . , wK}
surrounding m, as well as on the prior. It is a
composition of differentiable functions, thus it is
smooth from input to output, allowing us to easily
compute gradients and backpropagate through it.

Each word w ∈ c and entity e ∈ Γ(m) is
mapped to its embedding via the pre-trained map
x (cf. Section 3). We then compute an unnormal-
ized support score for each word in the context as
follows:

u(w) = max
e∈Γ(m)

x>e Axw (2)

where A is a parameterized diagonal matrix. The
weight is high if the word is strongly related to
at least one candidate entity. We often observe
that uninformative words (e.g. similar to stop
words) receive non-negligible scores which add
undesired noise to our local context model. As a
consequence, we (hard) prune to the top R ≤ K
words with the highest scores2 and apply a soft-
max function on these weights. Define the reduced
context:

c̄ = {w ∈ c|u(w) ∈ topR(u)} (3)

Then, the final attention weights are explicitly

β(w) =

{
exp[u(w)]∑
v∈c̄ exp[u(v)] . if w ∈ c̄

0 otherwise.
(4)

Finally, we define a β-weighted context-based
entity-mention score via

Ψ(e, c) =
∑

w∈c̄
β(w) x>e Bxw (5)

where B is another trainable diagonal matrix. We
will later use the same architecture for the unary
scores of our global ED model.
Local Score Combination.

We integrate these context scores with the
context-independent scores encoded in p̂(e|m).

2We implement this in a differentiable way by setting the
lowest K-R attention weights in u to −∞ and applying a
vanila softmax on top of them. We used the layers Threshold
and TemporalDynamicKMaxPooling from Torch nn package,
which allow subgradient computation.
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Figure 1: Local model with neural attention. Inputs: context word vectors, candidate entity priors and
embeddings. Outputs: entity scores. All parts are differentiable and trainable with backpropagation.

Our final (unnormalized) local model is a combi-
nation of both Ψ(e, c) and log p̂(e|m):

Ψ(e,m, c) = f(Ψ(e, c), log p̂(e|m)) (6)

We find a flexible choice for f to be important and
superior to a naı̈ve weighted average combination
model. We therefore use a neural network with
two fully connected layers of 100 hidden units and
ReLU non-linearities, which we regularize as sug-
gested in (Denton et al., 2015) by constraining the
sum of squares of all weights in the linear layer.
We use standard projected SGD for training. The
same network is also used in Section 5.

Prediction is done independently for each
mention mi and context ci by maximizing the
Ψ(e,mi, ci) score.

Learning the Local Model.

Entity and word embeddings are pre-trained as
discussed in Section 3. Thus, the only learnable
parameters are the diagonal matrices A and B,
plus the parameters of f . Having few parameters
helps to avoid overfitting and to be able to train
with little annotated data. We assume that a set of
known mention-entity pairs {(m, e∗)} with their
respective context windows have been extracted
from a corpus. For model fitting, we then utilize
a max-margin loss that ranks ground truth entities
higher than other candidate entities. This leads us

to the objective:

θ∗ = arg min
θ

∑

D∈D

∑

m∈D

∑

e∈Γ(m)

g(e,m), (7)

g(e,m) := [γ −Ψ(e∗,m, c) + Ψ(e,m, c)]+

where γ > 0 is a margin parameter and D is a
training set of entity annotated documents. We
aim to find a Ψ (i.e. parameterized by θ) such
that the score of the correct entity e∗ referenced
by m is at least a margin γ higher than that of
any other candidate entity e. Whenever this is not
the case, the margin violation becomes the experi-
enced loss.

5 Document-Level Deep Model

Next, we address global ED assuming document
coherence among entities. We therefore intro-
duce the notion of a document as consisting of
a set of mentions m = m1, . . . ,mn, along with
their context windows c = c1, . . . cn. Our goal
is to define a joint probability distribution over
Γ(m1) × . . . × Γ(mn) 3 e. Each such e selects
one candidate entity for each mention in the docu-
ment. Obviously, the state space of e grows expo-
nentially in the number of mentions n.
CRF Model.

Our model is a fully-connected pairwise condi-
tional random field, defined on the log scale as

g(e,m, c)=

n∑

i=1

Ψi(ei) +
∑

i<j

Φ(ei, ej) (8)
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Figure 2: Global model: unrolled LBP deep network that is end-to-end differentiable and trainable.

The unary factors are the local scores Ψi(ei) =
Ψ(ei, ci) described in Eq. (5). The pairwise factors
are bilinear forms of the entity embeddings

Φ(e, e′) =
2

n− 1
x>e Cxe′ , (9)

where C is a diagonal matrix. Similar to (Ganea
et al., 2016), the above normalization helps bal-
ancing the unary and pairwise terms across docu-
ments with different numbers of mentions.

The function value g(e,m, c) is supposedly
high for semantically related sets of entities that
also have local support. The goal of a global
ED prediction method is to perform maximum-a-
posteriori on this CRF to find the set of entities e
that maximize g(e,m, c).
Differentiable Inference.

Training and prediction in binary CRF models
as the one above is NP-hard. Therefore, in learn-
ing one usually maximizes a likelihood approxi-
mation and during operations (i.e. in prediction)
one may use an approximate inference procedure,
often based on message-passing. Among many
challenges of these approaches, it is worth point-
ing out that weaknesses of the approximate infer-
ence procedure are generally not captured during
learning. Inspired by (Domke, 2011, 2013), we
use truncated fitting of loopy belief propagation
(LBP) to a fixed number of message passing iter-
ations. Our model directly optimizes the marginal
likelihoods, using the same networks for learn-
ing and prediction. As noted by (Domke, 2013),
this method is robust to model mis-specification,
avoids inherent difficulties of partition functions
and is faster compared to double-loop likelihood
training (where, for each stochastic update, infer-
ence is run until convergence is achieved).

Our architecture is shown in Figure 2. A neural
network with T layers encodes T message pass-
ing iterations of synchronous max-product LBP3

3Sum-product and mean-field performed worse in our ex-
periments.

which is designed to find the most likely (MAP)
entity assignments that maximize g(e,m, c). We
also use message damping, which is known to
speed-up and stabilize convergence of message
passing. Formally, in iteration t, mentionmi votes
for entity candidate e ∈ Γ(mj) of mention mj

using the normalized log-message mt
i→j(e) com-

puted as:

mt+1
i→j(e) = max

e′∈Γ(mi)

{
Ψi(e

′) + Φ(e, e′)

+
∑

k 6=j
mt
k→i(e

′)} . (10)

Herein the first part just reflects the CRF poten-
tials, whereas the second part is defined as

mt
i→j(e) = log[δ · softmax(mt

i→j(e)) (11)

+ (1− δ) · exp(mt−1
i→j(e))]

where δ ∈ (0, 1] is a damping factor. Note that,
without loss of generality, we simplify the LBP
procedure by dropping the factor nodes. The mes-
sages at first iteration (layer) are set to zero.

After T iterations (network layers), the beliefs
(marginals) are computed as:

µi(e) = Ψi(e) +
∑

k 6=i
mT
k→i(e) (12)

µi(e) =
exp[µi(e)]∑

e′∈Γ(mi)
exp[µi(e′)]

(13)

Similar to the local case, we obtain accuracy
improvement when combining the mention-entity
prior p̂(e|m) with marginal µi(e) using the same
non-linear combination function f from Equa-
tion 6 as follows:

ρi(e) := f(µi(e), log p̂(e|mi)) (14)

The learned function f for global ED is non-
trivial (see Figure 3), showing that the influence
of the prior tends to weaken for larger µ(e),
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Figure 3: Non-linear scoring function of the belief
and mention prior learned with a neural network.
Achieves a 1.7% improvement on AIDA-B dataset
compared to a weighted average scheme.

whereas it has a dominating influence whenever
the document-level evidence is weak. We also ex-
perimented with the prior integrated directly in-
side the unary factors Ψi(ei), but results were
worse because, in some cases, the global entity
interaction is not able to recover from strong in-
correct priors (e.g. country names have a strong
prior towards the respective countries as opposed
to national sports teams).

Parameters of our global model are the diago-
nal matrices A,B,C and the weights of the f net-
work. As before, we find a margin based objective
to be the most effective and we suggest to fit pa-
rameters by minimizing a ranking loss4 defined as:

L(θ) =
∑

D∈D

∑

mi∈D

∑

e∈Γ(mi)

h(mi, e) (15)

h(mi, e) = [γ − ρi(e∗i ) + ρi(e)]+ (16)

Computing this objective is trivial by running
T times the steps described by Eqs. (10), (11),
followed in the end by the step in Eq. (13).
Each step is differentiable and the gradient of the
model parameters can be computed on the result-
ing marginals and back-propagated over messages
using chain rule.

At test time, marginals ρi(e) are computed
jointly per document using this network, but pre-
diction is done independently for each mentionmi

by maximizing its respective marginal score.

6 Candidate Selection

We use a mention-entity prior p̂(e|m) both as a
feature and for entity candidate selection. It is

4Optimizing a marginal log-likelihood loss function per-
formed worse.

Method
Metric

NDCG@1 NDCG@5 NDCG@10 MAP

WikiLinkMeasure (WLM) 0.54 0.52 0.55 0.48
(Yamada et al., 2016)

d = 500 0.59 0.56 0.59 0.52

our (canonical pages)
d = 300 0.624 0.589 0.615 0.549

our (canonical&hyperlinks)
d = 300 0.632 0.609 0.641 0.578

Table 1: Entity relatedness results on the test set
of (Ceccarelli et al., 2013). WLM is a well-known
similarity method of (Milne and Witten, 2008).

Dataset Number
mentions

Number
docs

Mentions
per doc

AIDA-train 18448 946 19.5
AIDA-A (valid) 4791 216 22.1
AIDA-B (test) 4485 231 19.4

MSNBC 656 20 32.8
AQUAINT 727 50 14.5
ACE2004 257 36 7.1

WNED-CWEB 11154 320 34.8
WNED-WIKI 6821 320 21.3

Gold
recall

-
96.9%
98.2%
98.5%
94.2%
90.6%
91.1%
92%

Table 2: Statistics of ED datasets. Gold recall is
the percentage of mentions for which the entity
candidate set contains the ground truth entity. We
only train on mentions with at least one candidate.

computed by averaging probabilities from two in-
dexes build from mention entity hyperlink count
statistics from Wikipedia and a large Web cor-
pus (Spitkovsky and Chang, 2012). Moreover, we
add the YAGO dictionary of (Hoffart et al., 2011),
where each candidate receives a uniform prior.

Candidate selection, i.e. construction of Γ(e), is
done for each input mention as follows: first, the
top 30 candidates are selected based on the prior
p̂(e|m). Then, in order to optimize for memory
and run time (LBP has complexity quadratic in
S), we keep only 7 of these entities based on the
following heuristic: (i) the top 4 entities based on
p̂(e|m) are selected, (ii) the top 3 entities based on
the local context-entity similarity measured using
the function from Eq. 5 are selected.5. We refrain
from annotating mentions without any candidate
entity, implying that precision and recall can be
different in our case.

In a few cases, generic mentions of persons
(e.g. ”Peter”) are coreferences of more specific
mentions (e.g. ”Peter Such”) from the same docu-
ment. We employ a simple heuristic to address this
issue: for each mention m, if there exist mentions
of persons that contain m as a continuous subse-

5We have used a simpler context vector here computed by
simply averaging all its constituent word vectors.
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Methods AIDA-B
Local models
prior p̂(e|m) 71.9

(Lazic et al., 2015) 86.4
(Globerson et al., 2016) 87.9
(Yamada et al., 2016) 87.2

our (local, K=100, R=50) 88.8
Global models

(Huang et al., 2015) 86.6
(Ganea et al., 2016) 87.6

(Chisholm and Hachey, 2015) 88.7
(Guo and Barbosa, 2016) 89.0
(Globerson et al., 2016) 91.0
(Yamada et al., 2016) 91.5

our (global) 92.22 ± 0.14

Table 3: In-KB accuracy for AIDA-B test set.
All baselines use KB+YAGO mention-entity in-
dex. For our method we show 95% confidence
intervals obtained over 5 runs.

quence of words, then we consider the merged set
of the candidate sets of these specific mentions as
the candidate set for the mention m. We decide
that a mention refers to a person if its most proba-
ble candidate by p̂(e|m) is a person.

7 Experiments

7.1 ED Datasets
We validate our ED models on some of the most
popular available datasets used by our predeces-
sors6. We provide statistics in Table 2.

• AIDA-CoNLL dataset (Hoffart et al., 2011)
is one of the biggest manually annotated ED
datasets. It contains training (AIDA-train),
validation (AIDA-A) and test (AIDA-B) sets.

• MSNBC (MSB), AQUAINT (AQ) and
ACE2004 (ACE) datasets cleaned and up-
dated by (Guo and Barbosa, 2016)7

• WNED-WIKI (WW) and WNED-CWEB
(CWEB): are larger, but automatically ex-
tracted, thus less reliable. Are built from the
ClueWeb and Wikipedia corpora by (Guo and
Barbosa, 2016; Gabrilovich et al., 2013).

7.2 Training Details and (Hyper)Parameters
We explain training details of our approach. All
models are implemented in the Torch framework.
Entity Vectors Training & Relatedness Eval-
uation. For entity embeddings only, we use

6TAC-KBP datasets used by (Yamada et al., 2016; Glober-
son et al., 2016; Sun et al., 2015) are no longer available.

7Available at: bit.ly/2gnSBLg

Global methods MSB AQ ACE CWEB WW
prior p̂(e|m) 89.3 83.2 84.4 69.8 64.2

(Fang et al., 2016) 81.2 88.8 85.3 - -
(Ganea et al., 2016) 91 89.2 88.7 - -

(Milne and Witten, 2008) 78 85 81 64.1 81.7
(Hoffart et al., 2011) 79 56 80 58.6 63
(Ratinov et al., 2011) 75 83 82 56.2 67.2

(Cheng and Roth, 2013) 90 90 86 67.5 73.4
(Guo and Barbosa, 2016) 92 87 88 77 84.5

our (global) 93.7
± 0.1

88.5
± 0.4

88.5
± 0.3

77.9
± 0.1

77.5
± 0.1

Table 4: Micro F1 results for other datasets.

Wikipedia (Feb 2014) corpus for training. En-
tity vectors are initialized randomly from a 0-
mean normal distribution with standard deviation
1. We first train each entity vector on the en-
tity’s Wikipedia canonical description page (title
words included) for 400 iterations. Subsequently,
Wikipedia hyperlinks of the respective entities are
used for learning until validation score (described
below) stops improving. In each iteration, 20 pos-
itive words, each with 5 negative words, are sam-
pled and used for optimization as explained in Sec-
tion 3. We use Adagrad (Duchi et al., 2011) with
a learning rate of 0.3. We choose embedding size
d = 300, pre-trained (fixed) Word2Vec word vec-
tors8, α = 0.6, γ = 0.1 and window size of 20
for the hyperlinks. We remove stop words before
training. Since our method allows to train the em-
bedding of each entity independently of other en-
tities, we decide for efficiency reasons (and with-
out loss of generality) to learn only the vectors of
all entities appearing as mention candidates in all
the test datasets described in Sec. 7.1, a total of
270000 entities. Training of those takes 20 hours
on a single TitanX GPU with 12GB of memory.

We test and validate our entity embeddings on
the entity relatedness dataset of (Ceccarelli et al.,
2013). It contains 3319 and 3673 queries for the
test and validation sets. Each query consist of one
target entity and up to 100 candidate entities with
gold standard binary labels indicating if the two
entities are related. The associated task requires
ranking of related candidate entities higher than
the others. Following previous work, we use dif-
ferent evaluation metrics: normalized discounted
cumulative gain (NDCG) and mean average pre-
cision (MAP). The validation score used during
learning is then the sum of the four metrics showed
in Table 1. We perform candidate ranking based
on cosine similarity of entity pairs.

8By Word2Vec authors: http://bit.ly/1R9Wsqr
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Table 5: Effects of two of the hyper-parameters.
Left: A low T (e.g.5) is already sufficient for accu-
rate approximate marginals. Right: Hard attention
improves accuracy of a local model with K=100.

Local and Global Model Training. Our local and
global ED models are trained on AIDA-train (mul-
tiple epochs), validated on AIDA-A and tested
on AIDA-B and other datasets mentioned in Sec-
tion 7.1. We use Adam (Kingma and Ba, 2014)
with learning rate of 1e-4 until validation accuracy
exceeds 90%, afterwards setting it to 1e-5. Vari-
able size mini-batches consisting of all mentions
in a document are used during training. We re-
move stop words. Hyper-parameters of the best
validated global model are: γ = 0.01,K =
100, R = 25, S = 7, δ = 0.5, T = 10. For the
local model, R = 50 was best. Validation accu-
racy is computed after each 5 epochs. To regular-
ize, we use early stopping, i.e. we stop learning if
the validation accuracy does not increase after 500
epochs. Training on a single GPU takes, on aver-
age, 2ms per mention, or 16 hours for 1250 epochs
over AIDA-train.

By using diagonal matrices A,B,C, we keep
the number of parameters very low (approx. 1.2K
parameters). This is necessary to avoid overfit-
ting when learning from a very small training set.
We also experimented with diagonal plus low-rank
matrices, but encountered quality degradation.

7.3 Entity Similarity Results

Results for the entity similarity task are shown in
Table 1. Our method outperforms the well es-
tablished Wikipedia link measure and the method
of (Yamada et al., 2016) using less information
(only word - entity statistics). We note that the
best result on this dataset was reported in the un-
published work of (Huang et al., 2015). Their en-
tity embeddings are trained on many more sources
of information (e.g. KG links, relations, entity
types). However, our focus was to prove that
lightweight trained embeddings useful for the ED
task can also perform decently for the entity sim-

Freq
gold

entity

Number
mentions

Solved
correctly

0 5 80.0 %
1-10 0 -

11-20 4 100.0%
21-50 50 90.0%
> 50 4345 94.2%

p̂(e|m)
gold

entity

Number
mentions

Solved
correctly

≤ 0.01 36 89.19%
0.01 - 0.03 249 88.76%
0.03 - 0.1 306 82.03%
0.1 - 0.3 381 86.61%
> 0.3 3431 96.53%

Table 6: ED accuracy on AIDA-B for our best sys-
tem splitted by Wikipedia hyperlink frequency and
mention prior of the ground truth entity, in cases
where the gold entity appears in the candidate set.

ilarity task. We emphasize that our global ED
model outperforms Huang’s ED model (Table 3),
likely due to the power of our local and joint neu-
ral network architectures. For example, our at-
tention mechanism clearly benefits from explicitly
embedding words and entities in the same space.

7.4 ED Baselines & Results

We compare with systems that report state-of-the-
art results on the datasets. Some baseline scores
from Table 4 are taken from (Guo and Barbosa,
2016). The best results for the AIDA datasets are
reported by (Yamada et al., 2016) and (Globerson
et al., 2016). We do not compare against (Per-
shina et al., 2015) since, as noted also by (Glober-
son et al., 2016), their mention index artificially
includes the gold entity (guaranteed gold recall),
which is not a realistic setting.

For a fair comparison with prior work, we use
in-KB accuracy and micro F1 (averaged per men-
tion) metrics to evaluate our approach. Results are
shown in Tables 3 and 4. We run our system 5
times, each time we pick the best model on the
validation set, and report results on the test set for
these models. We obtain state of the art accuracy
on AIDA which is the largest and hardest (by the
accuracy of the p̂(e|m) baseline) manually created
ED dataset . We are also competitive on the other
datasets. It should be noted that all the other meth-
ods use, at least partially, engineered features. The
merit of our proposed method is to show that, with
the exception of the p̂(e|m) feature, a neural net-
work is able to learn the best features for ED with-
out requiring expert input.

To gain further insight, we analyzed the accu-
racy on the AIDA-B dataset for situations where
gold entities have low frequency or mention prior.
Table 6 shows that our method performs well in
these harder cases.
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Mention Gold entity
p̂(e|m)
of gold
entity

Attended contextual words

Scotland Scotland national
rugby union team 0.034

England Rugby team squad Murrayfield Twickenham national play Cup
Saturday World game George following Italy week Friday selection

dropped row month

Wolverhampton Wolverhampton
Wanderers F.C. 0.103

matches League Oxford Hull league Charlton Oldham Cambridge
Sunderland Blackburn Sheffield Southampton Huddersfield Leeds

Middlesbrough Reading Coventry Darlington Bradford Birmingham
Enfield Barnsley

Montreal Montreal Canadiens 0.021
League team Hockey Toronto Ottawa games Anaheim Edmonton Rangers
Philadelphia Caps Buffalo Pittsburgh Chicago Louis National home Friday

York Dallas Washington Ice

Santander Santander Group 0.192 Carlos Telmex Mexico Mexican group firm market week Ponce debt
shares buying Televisa earlier pesos share stepped Friday analysts ended

World Cup FIS Alpine
Ski World Cup 0.063 Alpine ski national slalom World Skiing Whistler downhill Cup events

race consecutive weekend Mountain Canadian racing

Table 7: Examples of context words selected by our local attention mechanism. Distinct words are sorted
decreasingly by attention weights and only words with non-zero weights are shown.

7.5 Hyperparameter Studies
In Table 5, we analyze the effect of two hyper-
parameters. First, we see that hard attention (i.e.
R < K) helps reducing the noise from uninfor-
mative context words (as opposed to keeping all
words when R = K).

Second, we see that a small number of LBP it-
erations (hard-coded in our network) is enough to
obtain good accuracy. This speeds up training and
testing compared to traditional methods that run
LBP until convergence. An explanation is that a
truncated version of LBP can perform well enough
if used at both training and test time.

7.6 Qualitative Analysis of Local Model
In Table 7 we show some examples of context
words attended by our local model for correctly
solved hard cases (where the mention prior of the
correct entity is low). One can notice that words
relevant for at least one entity candidate are chosen
by our model in most of the cases.

7.7 Error Analysis
We analyse some of the errors made by our model
on the AIDA-B dataset. We mostly observe three
situations: i) annotation errors, ii) gold entities
that do not appear in mentions’ candidate sets, or
iii) gold entities with very low p(e|m) prior whose
mentions have an incorrect entity candidate with
high prior. For example, the mention ”Italians”
refers in some specific context to the entity ”Italy
national football team” rather than the entity rep-
resenting the country. The contextual information
is not strong enough in this case to avoid an in-
correct prediction. On the other hand, there are

situations where the context can be misleading,
e.g. a document heavily discussing about cricket
will favor resolving the mention ”Australia” to the
entity ”Australia national cricket team” instead of
the gold entity ”Australia” (naming a location of
cricket games in the given context).

8 Conclusion

We have proposed a novel deep learning architec-
ture for entity disambiguation that combines entity
embeddings, a contextual attention mechanism, an
adaptive local score combination, as well as un-
rolled differentiable message passing for global in-
ference. Compared to many other methods, we do
not rely on hand-engineered features, nor on an ex-
tensive corpus for entity co-occurrences or related-
ness. Our system is fully differentiable, although
we chose to pre-train word and entity embeddings.
Extensive experiments show the competitiveness
of our approach across a wide range of corpora. In
the future, we would like to extend this system to
perform nil detection, coreference resolution and
mention detection.

Our code and data are publicly available:
http://github.com/dalab/deep-ed
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Abstract

The goal of Open Information Extrac-
tion (OIE) is to extract surface rela-
tions and their arguments from natural-
language text in an unsupervised, domain-
independent manner. In this paper, we pro-
pose MinIE, an OIE system that aims to
provide useful, compact extractions with
high precision and recall. MinIE ap-
proaches these goals by (1) representing
information about polarity, modality, attri-
bution, and quantities with semantic anno-
tations instead of in the actual extraction,
and (2) identifying and removing parts that
are considered overly specific. We con-
ducted an experimental study with several
real-world datasets and found that MinIE
achieves competitive or higher precision
and recall than most prior systems, while
at the same time producing shorter, seman-
tically enriched extractions.

1 Introduction

Open Information Extraction (OIE) (Banko et al.,
2007) is the task of generating a structured,
machine-readable representation of information
expressed in natural language text in an unsuper-
vised, domain-independent manner. In contrast to
traditional IE systems, OIE systems do not require
an upfront specification of the target schema (e.g.,
target relations) or access to background knowl-
edge (e.g., a knowledge base). Instead, extractions
are (usually) represented in the form of surface
subject-relation-object triples. OIE serves as input
for deeper understanding tasks such as relation ex-
traction (Riedel et al., 2013; Petroni et al., 2015),
knowledge base construction (Dong et al., 2014),
question answering (Fader et al., 2014), word anal-
ogy (Stanovsky et al., 2015), or information re-

trieval (Löser et al., 2012).
Consider, for example, the sentence “Superman

was born on Krypton.” An OIE system aims to
extract the triple (Superman, was born on, Kryp-
ton), which most of the available systems will cor-
rectly produce. As another example, consider the
more involved sentence “Pinocchio believes that
the hero Superman was not actually born on beau-
tiful Krypton”, and the corresponding extractions
of various systems in Table 1, extractions 1–6. Al-
though most of the extractions are correct, they are
often overly specific in that their constituents con-
tain specific modifiers or even complete clauses.
Such extractions severely limit the usefulness of
OIE results (e.g., they are often pruned in relation
extraction tasks). The main goals of OIE should
be (i) to provide useful, compact extractions and
(ii) to produce extractions with high precision and
recall. The key challenge in OIE is how to achieve
both goals simultaneously. In fact, most of the
available systems (often implicitly) focus on either
compactness (e.g., ReVerb (Fader et al., 2011))
or precision/recall (e.g., ClausIE (Del Corro and
Gemulla, 2013)).

We propose MinIE, an OIE system that aims to
address and trade-off both goals. MinIE is built
on top of ClausIE, a state-of-the-art OIE system
that achieves high precision and recall, but of-
ten produces overly-specific extractions. To gen-
erate more useful and semantically richer extrac-
tions, MinIE (i) provides semantic annotations
for each extraction, (ii) minimizes overly-specific
constituents, and (iii) produces additional extrac-
tions that capture implicit relations. Table 1 shows
the output of (variants of) MinIE for the example
sentence. Note that MinIE’s extractions are signif-
icantly more compact but retain correctness.

MinIE’s semantic annotations represent infor-
mation about polarity, modality, attribution, and
quantities. The idea of using annotations has al-
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Pinocchio believes that the hero Superman was not actually born on beautiful Krypton.

OLLIE 1 (Pinocchio, believes that, the hero [...] beautiful Krypton)
2 (Superman, was not actually born on, beautiful Krypton)
3 (Superman, was not actually born on beau. Krypton in, the hero)

ClausIE 4 (Pinocchio, believes, that the hero [...] beautiful K.)
5 (the hero Superman, was not born, on beautiful Krypton)
6 (the hero Superman, was not born, on beautiful Krypton actually)

Stanford OIE No extractions

MinIE-C(om- 7 (Superman, was born actually on, beautiful Krypton)
plete) A.: fact. (– [not], CT), attrib. (Pinocchio, +, PS [believes])

8 (Superman, was born on, beautiful Krypton)
A.: fact. (– [not], CT), attrib. (Pinocchio, +, PS [believes])

9 (Superman, ”is”, hero)
A.: fact. (+, CT)

MinIE-S(afe) 10 (Superman, was born on, beautiful Krypton)
A.: fact. (– [not], CT), attrib. (Pinocchio, +, PS [believes]), relation (was actually born on)

11 (Superman, ”is”, hero)
A.: fact. (+, CT)

MinIE-D(ic- 12 (Superman, was born on, Krypton)
tionary) A.: fact. (– [not], CT), attrib. (Pinocchio, +, PS [bel.]), rel. (was act. born on), argument (beau. K.)
MinIE-A(gg- 13 (Superman, ”is”, hero)
ressive) A.: fact. (+, CT)

A annotation; + positive polarity, – negative polarity; PS possibility, CT certainty; fact. factuality; attrib. attribution;

Table 1: Example extractions and annotations from various OIE systems

ready been explored by OLLIE (Mausam et al.,
2012) for capturing the context of an extraction.
MinIE follows OLLIE, but adds semantic anno-
tations that make the extraction itself more com-
pact and useful (as opposed to capturing context).
For example, MinIE detects negations in the rela-
tion, removes them from the extraction, and adds a
“negative polarity” (-) annotation. In fact, MinIE
treats surface relations such as was born on and
was not born on as equivalent up to polarity. The
absence of negative evidence is a major concern
for relation extraction and knowledge base con-
struction tasks—e.g., addressed by using a local
closed world assumption (Dong et al., 2014) or
negative sampling (Riedel et al., 2013; Petroni
et al., 2015)—and MinIE’s annotations can help
to alleviate this problem.

In addition to the semantic annotations, MinIE
minimizes its extractions by identifying and re-
moving parts that are considered overly specific.
In general, such minimization is inherently limited
in scope due to the absence of domain knowledge.
Thus MinIE does not and cannot correctly mini-
mize all its extractions in all cases. Instead, MinIE
supports multiple minimization modes, which dif-
fer in their aggressiveness and effectively control
the usefulness-precision trade-off. In particular,

MinIE’s complete mode (C) does not perform any
minimizations. MinIE’s safe mode (S) only per-
forms minimizations that are considered univer-
sally safe. MinIE’s dictionary mode (D) makes use
of corpus-level statistics to inform the minimiza-
tion process. Finally, MinIE’s aggressive mode
(A) only keeps parts that are considered univer-
sally necessary. The use of corpus-level statis-
tics by MinIE-D is inspired by the pruning tech-
niques of ReVerb, although we use these statistics
for minimization instead of pruning (see Sec. 2).
Tab. 1 shows the output of MinIE’s various modes.

We conducted an experimental study with sev-
eral real-world datasets and found that the vari-
ous modes of MinIE produced much shorter ex-
tractions than most prior systems, while simul-
taneously achieving competitive or higher preci-
sion (depending on the mode being used). MinIE
sometimes fell behind prior systems in terms of
the total number of extractions. We found that in
almost all of these cases, MinIE became competi-
tive once redundant extractions were removed.

2 Related work

OIE was introduced by Banko et al. (2007).
Since then, many different OIE systems have been
proposed. Earlier systems—e.g., Fader et al.
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(2011)—relied mostly on shallower NLP tech-
niques such as POS tagging and chunking, while
later systems often use dependency parsing in ad-
dition (Gamallo et al., 2012; Wu and Weld, 2010).
Most OIE systems represent extractions in the
form of triples, although some also produce n-ary
extractions (Akbik and Löser, 2012; Del Corro and
Gemulla, 2013) or nested representations (Bast
and Haussmann, 2013; Bhutani et al., 2016).
Some systems focus on non-verb-mediated rela-
tions (Yahya et al., 2014). MinIE is based on the
state-of-the-art OIE system ClausIE (Del Corro
and Gemulla, 2013).

A general challenge in OIE is to avoid both un-
informative and overly-specific extractions. Re-
Verb (Fader et al., 2011) proposed to avoid overly-
specific relations by making use of lexical con-
straints: relations that occur infrequently in a
large corpus were considered overly-specific and
pruned. MinIE’s dictionary mode also makes use
of the corpus frequency of constituents. In con-
trast to ReVerb, MinIE uses frequency to inform
minimization (instead of to prune) and applies it to
subjects and arguments as well. Perhaps the clos-
est system in spirit to MinIE is Stanford OIE (An-
geli et al., 2015), which uses aggressive minimiza-
tion. Stanford OIE deletes all subconstituents con-
nected by certain typed dependencies (e.g., amod).
For some dependencies (e.g., prep or dobj), it uses
a frequency constraint along the lines of ReVerb.
MinIE differs from Stanford OIE in that it (i) sepa-
rates out polarity, modality, attribution, and quan-
tities; (ii) uses a different, more principled (and
more precise) approach to minimization.

Annotated OIE extractions were introduced by
OLLIE (Mausam et al., 2012), which uses two
types of annotations: attribution (the supplier of
information) and clause modifier (a clause modi-
fying the triple). MinIE extends OLLIE’s attribu-
tion by additional semantic annotations for polar-
ity, modality, and quantities. Such annotations are
not provided by prior OIE systems. CSD-IE (Bast
and Haussmann, 2013) introduced the notion of
nested facts (termed “minimal” in their paper) and
produce extractions with “pointers” to other ex-
tractions. NestIE (Bhutani et al., 2016) takes up
this idea. OLLIE’s clause modifier has a similar
purpose. MinIE currently does not handle nested
extractions.

Another line of research explores the integra-
tion of background knowledge into OIE (Nakas-

hole et al., 2012; Moro and Navigli, 2012, 2013).
In general, OIE systems should use background
knowledge when available, but remain open when
not. MinIE currently does not use background
knowledge, although it allows providing domain-
dependent dictionaries.

3 Overview

The goal of MinIE is to provide minimized, se-
mantically annotated OIE extractions. While the
techniques employed here can potentially be in-
tegrated into any OIE system, we built MinIE on
top of ClausIE. We chose ClausIE because (i) it
separates the identification of the extractions from
the generation of propositions, (ii) it detects clause
types, which are also useful for MinIE, and (iii) it
is a state-of-the-art OIE system with high preci-
sion and recall.

As ClausIE, MinIE focuses on extractions ob-
tained from individual clauses (with the exception
of attribution; Sec. 5.3). Each clause consists of
one subject (S), one verb (V) and alternatively an
indirect object (Oi), a direct object (O), a comple-
ment (C) and one or more adverbials (A). ClausIE
identifies the clause type, which indicates which
constituents are obligatory or optional from a syn-
tactic point of view. Quirk et al. (1985) identified
seven clause types for English: SV, SVA, SVC,
SVO, SVOO, SVOA, and SVOC, where letters re-
fer to obligatory constituents and each clause can
be accompanied by additional optional adverbials.

MinIE consists of three phases. (1) Each input
sentence is run through ClausIE and a separate ex-
tractor for implicit facts (Sec. 4.2). We rewrite
ClausIE’s extractions to make relations more in-
formative (Sec. 4.1). We refer to the resulting ex-
tractions as input extractions. (2) MinIE then de-
tects information about polarity (Sec. 5.1), modal-
ity (Sec. 5.2), attribution (Sec. 5.3), and quan-
tities (Sec. 5.4) and represents it with semantic
annotations. (3) To further minimize the result-
ing annotated extractions, MinIE provides vari-
ous minimization modes (Sec. 6) with increas-
ing levels of aggressiveness: MinIE-C(omplete),
MinIE-S(afe), MinIE-D(ictionary), and MinIE-
A(ggressive). The modes differ in the amount of
minimizations being applied. The result of this
phase is a minimized extraction.

Finally, MinIE outputs each minimized extrac-
tion along with its annotations. Semantic annota-
tions (such as polarity) are crucial to correctly rep-
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resent the extraction, whereas other annotations
(such as original relation) provide additional in-
formation about the minimization process.

4 Input Extractions

We first describe how MinIE obtains meaningful
input extractions.

4.1 Enriching Relations

As mentioned before, MinIE uses ClausIE as its
underlying OIE system. The relations extracted by
ClausIE consist of only verbs and negation parti-
cles (cf. Tab. 1). Fader et al. (2011) argue that such
an approach can lead to uninformative relations.
For example, from the sentence “Faust made
a deal with the Devil”, ClausIE extracts triple
(Faust, made, a deal with the Devil), whereas the
extraction (Faust, made a deal with, the Devil)
has a more informative relation and a shorter ar-
gument. Indeed, the relation made is highly poly-
semous (49 synsets in WordNet), whereas made a
deal with is not. MinIE aims to produce informa-
tive relations by deciding which constituents of the
input sentence should be pushed into the relation.
Our goal is to retain only one of the constituents
of the input clause in the argument of the extrac-
tion whenever possible, while simultaneously re-
taining coherence. In particular, our approach uses
the clause types detected by ClausIE to ensure
that MinIE never removes obligatory constituents
from a clause (which would lead to incoherent ex-
tractions); it instead may opt to move such con-
stituents to the relation. Our approach is inspired
by the syntactic patterns of ReVerb—which is
similar to our handling of the SVA and SVO clause
types—but, in contrast, applies to all clause types.
Note that the relations produced in this step may
sometimes be considered overly specific; they will
be minimized further in subsequent steps.

SVA. If the adverbial is a prepositional com-
plement, we push the preposition into the rela-
tion. For example, we rewrite (Superman, lives,
in Metropolis) to (Superman, lives in, Metropolis).
This allows us to distinguish live in from relations
such as live during, live until, live through, and so
on.

SVOiO, SVOC. We generally push the indirect
object (SVOiO) or direct object (SVOC) into the
relation. In both cases, the verb requires two addi-
tional constituents: we use the first one to enrich
the relation and the second one as an argument.

For example, we rewrite (Superman, declared, the
city safe) to (Superman, declared the city, safe).
As this example indicates, this rewrite is some-
what unsatisfying; further exploration is an inter-
esting direction for future work.

SVOA. If the adverbial consists of a single ad-
verb, we push it to the relation and use the object
as an argument. This approach retains coherence
because such adverbials are “fluent”, i.e., they do
not have a fixed position. Otherwise, we pro-
ceed as in SVOC, but additionally push the starting
preposition (if present) of the adverbial to the rela-
tion. For example, (Ana, turned, the light off) be-
comes (Ana, turned off, the light), and (The door-
man, leads, visitors to their destination) becomes
(The doorman, leads visitors to, their destination).

Optional adverbials. If the clause contains op-
tional adverbials, ClausIE creates one extraction
without any optional adverbial and one additional
extraction per optional adverbial. The former ex-
tractions are processed as above. The latter ex-
tractions are treated as if the adverbial were oblig-
atory. For example, the extraction (Faust, made, a
deal with the Devil) becomes (Faust, made a deal
with, the Devil). Here the actual clause type is
SVO, but we process it as if it were SVOA.

Infinitive forms. If the argument starts with
a to-infinitive verb, we move it to the relation.
For example, (Superman, needs, to defeat Lex) be-
comes (Superman, needs to defeat, Lex).

4.2 Implicit Extractions

ClausIE produces non-verb-mediated extractions
from appositions and possessives. We refer to
these extractions as implicit extractions. MinIE
makes use of additional implicit extractors. In par-
ticular, we use the patterns of FINET (Del Corro
et al., 2015) to detect explicit type mentions.
For example, if the sentence contains “president
Barack Obama”, we obtain (Barack Obama, is,
president). We also include certain patterns in-
volving named entities: pattern ORG IN LOC for
extraction (ORG, is IN, LOC); pattern “Mr.” PER
for (PER, is, male) (similarly, Ms. or Mrs.); and
pattern ORG POS? NP PER for (PER, is NP of,
ORG) from RelNoun (Pal and Mausam, 2016).
Apart from providing additional high-quality ex-
tractions, we use implicit extractions as a signal
for minimization (Sec. 6.2). The extractors above
have thus been included both to increase recall and
to be able to provide more effective minimizations.
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Sentence Factuality

S. does live in Metropolis. (+, CT)
S. does not live in M. (– [not], CT)

S. does probably live in M. (+, PS [probably])
S. probably does not live in M. (– [not], PS [probably])

Table 2: Factuality examples. MinIE extracts
triple (Superman; does live in; Metropolis) from
each sentence but the factuality annotations differ.

5 Semantic Annotations

Once input extractions have been created, MinIE
detects information about polarity (Sec. 5.1),
modality (Sec. 5.2), attribution (Sec. 5.3), and
quantities (Sec. 5.4) and represents it using se-
mantic annotations. Our focus is on simple, rule-
based methods that are both domain-independent
and (considered) safe to use in that they do not
harm the accuracy of the extraction.

5.1 Polarity

MinIE annotates each extraction with information
about its factuality. Following Saurı́ and Puste-
jovsky (2012), we represent the factuality of an
extraction with two pieces of information: polar-
ity (+ or -) and modality (CT or PS; for certainty
or possibility, resp.). Tab. 2 lists some examples.

The polarity indicates whether or not a triple oc-
curred in negated form. In order to assign a po-
larity value to a triple, we aim to detect whether
the relation indicates a negative polarity. If so, we
assign negative polarity to the whole triple. We
detect negations using a small lexicon of negation
words (e.g., no, not, never, none). If a word from
the lexicon is detected, it is dropped from the re-
lation and the triple is annotated with negative po-
larity (-) and the negation word. In Tab. 2, the ex-
tractions from sentences 2 and 4 are annotated as
negative.

We found that this simple approach successfully
spots many negations present in the input rela-
tions. Note that whenever a negation is present but
not detected, MinIE still produces correct results
because such negations are retained in the triple.
For example, if a negations occurs in the subject or
argument of the extraction, MinIE does not detect
it. E.g., from sentence “No people were hurt in
the fire”, MinIE extracts (Q1 people, were hurt in;
fire) with quantity Q1=no (see Sec. 5.4). This ex-
traction is correct, but can be further minimized to
(people; were hurt in; fire) with a negative polarity

annotation. We consider such advanced minimiza-
tions too dangerous to use.

Generally, negation detection is a hard prob-
lem and involves questions such as negation scope
resolution, focus detection, and double nega-
tion (Blanco and Moldovan, 2011). MinIE does
not address these problems, but restricts attention
to the simple, safe cases.

5.2 Modality

The modality indicates whether the triple is a cer-
tainty (CT) or a possibility (PS) according to the
clause in which it occurs. We proceed similarly as
for the detection of negations and consider a triple
certain unless we find evidence of possibility.

To find such evidence, MinIE searches the re-
lation for (1) modal verbs such as may or can, (2)
possibility-indicating words, and (3) certain infini-
tive verb phrases. For (2) and (3), we make use
of a small domain-independent lexicon. Our lex-
icon is based on the lexicon of Saurı́ and Puste-
jovsky (2012) and the words in the corresponding
WordNet synsets. It mainly contains adverbs such
as probably, possibly, maybe, likely and infinitive
verb phrases such as is going to, is planning to,
or intends to. Whenever words indicating possi-
bility are detected, we remove these words from
the triple and annotate the triple as possible (PS)
along with the words just removed. For example,
sentences 3 and 4 in Tab. 2 are annotated PS with
the possibility-indicating word probably.

5.3 Attribution

The attribution of a triple is the supplier of infor-
mation given in the input sentence, if any. We
adapt our attribution annotation from the notion
of source of Saurı́ and Pustejovsky (2012), i.e.,
the attribution consists of a supplier of information
(as in OLLIE) and an additional factuality (polar-
ity and modality). The factuality is independent
from the factuality of the extracted triple; it indi-
cates whether the supplier expresses a negation or
a possibility. Tab. 1 shows some examples.

We extract attributions from subordinate clauses
and from “according to” patterns.

Subordinate clauses. MinIE searches for ex-
tractions that contain entire clauses as arguments.
We then compare the relation against a domain-
independent dictionary of relations indicating at-
tributions (e.g., say or believe).1 If we find a

1As with modality, the dictionary is based on Saurı́ and
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match, we create an attribution annotation and use
the subject of the extraction as the supplier of in-
formation. Each entry in the attribution dictionary
is annotated with a modality. For example, rela-
tions such as know, say, or write express certainty,
whereas relations such as believe or guess express
possibility. If the relation is modified by a nega-
tion word, we mark the attribution with negative
polarity (e.g., never said that). After the attribu-
tion has been established, we run ClausIE on the
main clause and add the attribution to each ex-
tracted triple.

“according to” adverbial patterns. We search
for adverbials that start with according to and take
whatever follows as the supplier with factuality (+,
CT). The remaining part of the clause is processed
as before.

5.4 Quantities

A quantity is a phrase that expresses an amount
(or the absence) of something. It either modifies
a noun phrase (e.g., 9 cats) or is an independent
complement (e.g., I have 3). Quantities include
cardinals (9), determiners (all) or phrases (almost
10). If we detect a quantity, we replace it by a
placeholder Q and add an annotation with the orig-
inal quantity. The goal of this step is to unify ex-
tractions that only differ in quantities. For exam-
ple, the phrases 9 cats, all cats and almost about
100 cats are all rewritten to Q cats, only the quan-
tity annotation differs.

We detect quantities by looking for numbers
(NER types such as NUMBER or PERCENT) or
words expressing quantities (such as all, some,
many). We then extend these words via relevant
typed dependencies, such as quantity modifiers
(quantmod) and adverbial modifiers (advmod).

6 Minimization

After adding semantic annotations, MinIE mini-
mizes extractions by dropping additional words.
Since such minimization is risky, MinIE employs
various minimization modes with different levels
of aggressiveness, which effectively control the
minimality-precision trade-off.

MinIE represents each constituent of an anno-
tated extraction by its words, its dependency struc-
ture, its POS tags, and its named entities (de-
tected by a named-entity recognizer). In general,
each mode defines a set of stable subconstituents,

Pustejovsky (2012) plus WordNet synonyms.

which will always be fully retained, and subse-
quently searches for candidate words to drop out-
side of the stable subconstituents. Whenever a
word is dropped from a constituent, we add an an-
notation with the original, unmodified constituent.

In all of MinIE’s modes, noun sequences (which
include the head) and named entities (from NER)
are considered stable subconstituents. MinIE’s
minimization can be augmented with domain
knowledge by providing information about addi-
tional stable subconstituents (e.g., collocations).

6.1 Complete Mode (MinIE-C)
MinIE’s complete mode (MinIE-C) prunes all the
extractions that contain subordinate clauses but
does not otherwise modify the annotated extrac-
tions. The rationale is that extractions containing
subordinate clauses are almost always overly spe-
cific. MinIE-C serves as a baseline.

6.2 Safe Mode (MinIE-S)
MinIE’s safe mode only drops words which we
consider universally safe to drop. We first drop
all constituents that are covered by the implicit ex-
tractions discussed in Sec. 4.2 (e.g., “Mr.” before
persons). We then drop all determiners, posses-
sive pronouns, adverbs modifying the verb in the
relation, as well as adjectives and adverbs modi-
fying words tagged as PERSON by the NER. An
exception to these rules is given by named entities,
which we consider as stable subconstituents (e.g.,
we do not drop “Mr.” in (Joe, cleans with, Mr.
Muscle)).

Note that this procedure cannot be considered
safe when used on input extractions. We consider
it safe, however, when applied to annotated extrac-
tions. In particular, all determiners, pronouns, and
adverbs indicating negation, modality, or quanti-
ties are already processed and captured in annota-
tions. The safe mode thus only performs simple
rewrites such as the great city to great city, his car
to car, had also to had, and the eloquent president
Mr. Barack Obama to Barack Obama.

6.3 Dictionary Mode (MinIE-D)
Our dictionary mode uses a dictionary D of stable
constituents. We first discuss how the dictionary
is being used and subsequently how we construct
it. An example is given in Fig. 1.

MinIE-D first performs all the minimizations of
the safe mode and then searches for maximal noun
phrases of the form P ≡ [adverbial|adjective]+
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[noun+|ner]. For each instance of P , we drop a
certain subset of its words. For example, a suitable
minimization for very infamous cold war symbol
(i.e., the Berlin wall) is cold war symbol, i.e., we
consider cold as essential to the meaning of the
constituent and very infamous as overly specific.
The decision of what is considered essential and
what overly specific is informed by dictionary D.
Note that in order to minimize mistakes, we con-
sider for dropping only words in instances of pat-
tern P . In particular, we do not touch subcon-
stituents that contain prepositions because these
are notoriously difficult to handle (e.g., we do not
want to minimize Bill of Rights to Bill).

Our goal is to retain phrases occurring in D,
even if they occur in different order or with ad-
ditional modifiers. We proceed as follows for each
instance I of P . We first mark all nouns modify-
ing the root (or the named entity) as stable. After-
wards, we create a set of potentially stable sub-
constituents (PSS). Each PSS is queried against
dictionary D. If it occurs in D, all of its words
are marked as stable. Once all PSS have been
processed, we drop all words from I that are not
marked stable. In our example, if {cold war} ∈
D, we obtain cold war symbol.

To generate the set of PSS, we enumerate all
syntactically valid subconstituents of I . For ex-
ample, infamous symbol or cold infamous war are
syntactically valid, whereas very symbol or very
cold war are not. Conceptually,2 we enumerate all
subsequences of I and check whether (1) at least
one noun (or named entity) is retained, and (2)
whenever an adverb or adjective is not retained,
neither are its modifiers. For each such subse-
quence, we generate all permutations of adverbial
and adjective modifiers originating from the same
dependency node, and each result as a PSS. This
step ensures that the order of modifiers in I does
influence whether or not a word is marked stable.
The set of PSS for very infamous cold war symbol
contains 22 entries.

The construction of dictionary D is inspired by
the lexical constraint of Fader et al. (2011): Our
assumption is that everything sufficiently frequent
in a large corpus is not overly specific. To ob-
tain D, we process the entire corpus using the safe
mode and include all frequent (e.g., frequency ≥
10) subjects, relations, and arguments into D. Ap-

2We generate both instances of P as well as the set of PSS
directly from the dependency structure of the constituent.

very infamous cold war symbol
RB JJ JJ NN NN

initially: (stable) (stable)
ultimately: (stable) (stable) (stable)

advmod

amod

amod

nn

head word

PSS include: cold war symbol, cold symbol, cold war,
infamous war symbol, infamous symbol, . . .

Figure 1: Illustration of PSS generation in MinIE-
D. Initially stable words are marked blue. Entries
in dictionary D are printed in bold face.

plications can extend the dictionary using suitable
collocations, either from domain-dependent dic-
tionaries or by using methods to automatically ex-
tract collocations from a corpus (Gries, 2013).

6.4 Aggressive Mode (MinIE-A)
All previous modes aimed to be conservative.
MinIE-A proceeds the other way around: all
words for which we are not sure if they need to
be retained are dropped. For every word in a
constituent of an annotated extraction, we drop
all adverbial, adjective, possessive, and temporal
modifiers (along with their modifiers). We also
drop prepositional attachments (e.g., man with ap-
ples becomes man), quantities modifying nouns,
auxiliary modifiers to the main verb (e.g., have
escalated becomes escalated), and all compound
nouns that have a different named-entity type than
their head word (e.g., European Union official be-
comes official). In most cases, after applying these
steps, only a single word, named entity, or a se-
quence of nouns remains for subject and argument
constituents.

7 Experimental Study

The goal of our experimental study was to investi-
gate the differences in the various modes of MinIE
w.r.t. precision, recall, and extraction length as
well as to compare it with popular prior methods.

7.1 Experimental Setup
Source code, dictionaries, datasets, extractions, la-
bels, and labeling guidelines are made available.3

Datasets. We used (1) 10,000 random sen-
tences from the New York Times Corpus (NYT-

3http://dws.informatik.uni-mannheim.
de/en/resources/software/minie/
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10k) (Sandhaus, 2008), (2) a random sample
of 200 sentences from the same corpus (NYT),
and (3) a random sample of 200 sentences from
Wikipedia (Wiki). NYT and Wiki were used in
the evaluation of ClausIE and NestIE.4

Methods. We used ClausIE, OLLIE, and Stan-
ford OIE as baseline systems. We adapted the
publicly available version of ClausIE to Stanford
CoreNLP 3.8.0 and implemented MinIE on top.
For MinIE-D, we built dictionary D from the en-
tire NYT and Wikipedia corpus, respectively.

Labeling. Labelers provided two labels per ex-
traction of NYT and Wiki: one for the triple (with-
out attribution) and one for the attribution. A
triple is labeled as correct if it is entailed by its
corresponding clause; here factuality annotations
are taken into account but attribution errors are ig-
nored. For example, all triples except #3 of Tab. 1
are considered correct. An attribution is incorrect
if there is an attribution in the sentence which is
neither present in the triple nor in the attribution
annotation. In Tab. 1, the attribution is incorrect
for extractions #2, #3, #5, and #6. Attribution is
labeled only when the fact triple is labeled correct.
See the labeling guidelines for further details.

Overall, there were more than 9,400 distinct ex-
tractions on NYT and Wiki. Each extraction was
labeled by two independent labelers. We treat an
extraction as correct if both labelers labeled it as
correct. The inter-annotator agreement was mod-
erate (NYT: Cohen’s κ = 0.53, 78% of labels
agree; Wiki: κ = 0.5, 79% of labels agree).

Measures. For each system, we measured
the total number of extractions, the total number
of correct triples (recall), the fraction of correct
triples out of all extractions (factual precision),
and the fraction of correct triples that have correct
attributions (attribution precision). We also deter-
mined the mean word count per triple (µ) and its
standard deviation (σ) as a proxy for minimality.
Finally, as some systems produced a large number
of redundant extractions, we also report the num-
ber of non-redundant extractions. For simplicity,
we consider a triple t1 redundant if it appears as
subsequence in some other triple t2 produced by
the same extractor from the same sentence (e.g.,
extraction #5 in Tab. 1 is redundant given extrac-

4We did not use the OIE benchmark of Stanovsky and
Dagan (2016) because it treats an extraction as correct if the
heads of each constituent match the ones of a gold extraction.
This is not suitable for us because it does not account for
minimization (which does not change grammatical heads).

tion #6).

7.2 Extraction Statistics
In our first experiment, we used the larger but un-
labeled NYT-10k dataset. The goal of this exper-
iment was to investigate the total number of re-
dundant and non-redundant extractions produced
by each system and how frequently semantic an-
notations were produced (Tab. 3). For MinIE, we
show the fraction of negative polarity and possi-
bility annotations for triples only (i.e., we exclude
the attribution polarity annotations).

In terms of number of extractions, MinIE (all
modes) and Stanford OIE were roughly on par;
OLLIE fell behind and ClausIE went ahead. The
reason why ClausIE has more extractions than
MinIE is that different (partly redundant) extrac-
tions from ClausIE may lead to the same mini-
mized extraction. This is also also the reason why
extraction numbers drop in the more aggressive
modes of MinIE. We also determined the num-
ber of non-redundant extractions produced by each
system and found that most systems produced only
a moderate number of redundant extractions. A
notable exception is Stanford OIE, which pro-
duced many extraction variants by dropping dif-
ferent subsets of words.

We observed that all modes of MinIE achieved
significantly smaller extractions than ClausIE (its
underlying OIE system), and that the average
extraction length indeed dropped as we used
more aggressive modes. Only MinIE-A produced
shorter extractions than Stanford OIE. The main
reason for the short extraction length of Stanford
OIE is its aggressive creation of short redundant
extractions (at the cost of precision; see below).
We also found that to further minimize the extrac-
tions of MinIE-D, it is often necessary to minimize
subjects and objects with prepositional modifiers
(which MinIE currently avoids).

Only OLLIE and MinIE make use of annota-
tions. The fraction of extracted attribution anno-
tations was significantly smaller for OLLIE than
for MinIE, mainly because OLLIE’s attribution
detection is limited to the ccomp dependency re-
lation. Our results also indicate that MinIE fre-
quently provides semantic annotations (with the
notable exception of negative polarity).

7.3 Precision
In our second experiment, we compared the pre-
cision and recall of the various systems on the
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OLLIE ClausIE Stanford MinIE-C MinIE-S MinIE-D MinIE-A

# non-redundant extr. 20,557 36,173 16,350 37,465 37,093 36,921 36,474
# with redundant extr. 24,316 58,420 43,360 47,637 45,492 45,318 42,842

µ± σ 9.9± 5.8 10.9± 7.0 6.6± 3.0 8.3± 4.9 7.2± 4.2 7.0± 4.1 4.7± 1.9
with attributions 6.8% - - 10.8% 10.8% 10.7% 10.8%

with negative polarity - - - 3.8% 3.7% 3.7% 3.8%
with possibility - - - 10.1% 9.9% 10.0% 9.7%

with quantity - - - 17.6% 17.8% 17.8% 1.9%

Table 3: Results on the unlabeled NYT-10k dataset (µ=avg. extraction length, σ=standard deviation)

OLLIE ClausIE Stanford MinIE-C MinIE-S MinIE-D MinIE-A

NYT
# non-redundant (correct/total) 246/414 505/821 178/342 581/785 574/781 569/777 439/753

# w/ redundant (correct/total) 302/497 792/1300 530/1052 727/970 690/924 681/916 505/860
factual prec. (0.61) (0.61) (0.5) (0.75) (0.75) (0.74) (0.59)

attr. prec. (0.9) - - (0.94) (0.93) (0.93) (0.93)

Wiki
# non-redundant (correct/total) 229/479 424/704 217/398 500/666 489/661 486/669 401/658

# w/ redundant (correct/total) 284/565 628/1002 651/1519 635/851 602/816 593/816 474/783
factual prec. (0.50) (0.63) (0.43) (0.75) (0.74) (0.73) (0.61)

attr. prec. (0.97) - - (0.97) (0.96) (0.96) (0.97)

Table 4: Results on the labeled NYT and Wiki datasets

smaller NYT and Wiki datasets. Our results are
summarized in Tab. 4.

We found that Stanford OIE had the lowest fac-
tual precision and recall for non-redundant extrac-
tions throughout; it produced many incorrect and
many redundant extractions (e.g., Stanford OIE
produced 400 extractions from five sentences on
NYT). For MinIE, the factual precision dropped as
expected when we use more aggressive modes. In-
terestingly, the drop in precision between MinIE-
C and MinIE-D was quite low, even though ex-
tractions get shorter. The aggressive minimization
of MinIE-A led to a more severe drop in preci-
sion. Surprisingly to us, even MinIE’s aggressive
mode achieved precision comparable to ClausIE
and higher than Stanford OIE. Note that MinIE-
C, MinIE-S, and MinIE-D had higher precision
than ClausIE. Reasons include that MinIE pro-
duces additional high-precision implicit extrac-
tions and breaks up very long and thus error-prone
extractions.We also tried enriching the dictionary
of MinIE-D with WordNet and Wiktionary collo-
cations; the precision was almost the same.

As for attribution precision, most of the sen-
tences in our samples did not contain attribu-
tions; these numbers thus have low accuracy. OL-
LIE and MinIE achieved similar results, even
though MinIE additionally annotated attributions
with factuality information.

Errors. For all modes, errors in dependency
parsing transfer over to errors in MinIE, which we
believe was the main source of error in MinIE-C
and MinIE-S. For MinIE-D, we sometimes drop
adjectives which in fact form collocations (e.g.,
“assistant director”) with the noun they are mod-
ifying. This happens when the collocation is not
present in the dictionary; better collocation dictio-
naries may address this problem. Another source
of error stems from the NER (e.g., the first word
of the entity Personal Ensign was not recognized).

8 Conclusions

We believe that the use of minimized extractions
with semantic annotations are a promising direc-
tion for OIE. The techniques presented here can
be seen as a step towards this goal, but there are
still many open questions. Important directions
include additional annotation types (e.g., tempo-
ral/spatial), use of background knowledge, better
handling of collocations, the use of nested repre-
sentations, and multilingual OIE.
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Abstract

This paper addresses the problem of ex-
tracting keyphrases from scientific articles
and categorizing them as corresponding to
a task, process, or material. We cast the
problem as sequence tagging and intro-
duce semi-supervised methods to a neu-
ral tagging model, which builds on re-
cent advances in named entity recognition.
Since annotated training data is scarce in
this domain, we introduce a graph-based
semi-supervised algorithm together with a
data selection scheme to leverage unanno-
tated articles. Both inductive and trans-
ductive semi-supervised learning strate-
gies outperform state-of-the-art informa-
tion extraction performance on the 2017
SemEval Task 10 ScienceIE task.

1 Introduction

As a research community grows, more and more
papers are published each year. As a result there
is increasing demand for improved methods for
finding relevant papers and automatically under-
standing the key ideas in those papers. However,
due to the large variety of domains and extremely
limited annotated resources, there has been rel-
atively little work on scientific information ex-
traction. Previous research has focused on unsu-
pervised approaches such as bootstrapping (Gupta
and Manning, 2011; Tsai et al., 2013), where
hand-designed templates are used to extract sci-
entific keyphrases, and more templates are added
through bootstrapping.

Very recently a new challenge on Scientific
Information Extraction (ScienceIE) (Augenstein
et al., 2017)1 provides a dataset consisting of 500

1SemEval (Task 10)https://scienceie.github.
io/index.html

Computer Science:
This paper addresses the task of [named en-
tity recognition]Task, using [conditional random
fields]Process. Our method is evlauated on the [ConLL
NER Corpus]Material.

Physics:
[Local field effects] Process on spontaneous emission
rates within [nanostructure photonics material]Material

for example are familiar, and have been well used.

Material Science:
The [Kelvin probe force microscopy technique]
Process allows [detection of local EWF]Task be-
tween an [atomic force micorscopy]Material and [metal
surface]Material.

Figure 1: Annotated ScienceIE examples.

scientific paragraphs with keyphrase annotations
for three categories: TASK, PROCESS, MATERIAL

across three scientific domains, Computer Science
(CS), Material Science (MS), and Physics (Phy),
as in Figure 1. This dataset enables the use of
more advanced approaches such as neural network
(NN) models. To that end, we cast the keyphrase
extraction task as a sequence tagging problem,
and build on recent progress in another informa-
tion extraction task: Named Entity Recognition
(NER) (Lample et al., 2016; Peng and Dredze,
2015). Like named entities, keyphrases can be
identified by their linguistic context, e.g. re-
searchers ”use” methods. In addition, keyphrases
can be associated with different categories in dif-
ferent contexts. For example, ‘semantic parsing’
can be labeled as a TASK in one article and as
a PROCESS in another. Scientific keyphrases dif-
fer in that they can include both noun phrases
and verb phrases and in that non-standard “words”
(equations, chemical compounds, references) can
provide important cues.

Since the scale of the data is still small for su-
pervised training of neural systems, we introduce
semi-supervised methods to the neural tagging
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model in order to take advantage of the large quan-
tity of unlabeled scientific articles. This is par-
ticularly important because of the differences in
keyphrases across domains. Our semi-supervised
learning algorithm uses a graph-based label prop-
agation scheme to estimate the posterior proba-
bilities of unlabeled data. It additionally extends
the training objective to leverage the confidence of
the estimated posteriors. The new training treats
low confidence tokens as missing labels and com-
putes the sentence-level score by marginalizing
over them.

Our experiments show that our neural tagging
model achieves state-of-the-art results in the Se-
mEval Science IE task. We further show that both
inductive and transductive semi-supervised strate-
gies significantly improve the performance. Fi-
nally, we provide in-depth analysis of domain dif-
ferences as well as analysis of failure cases.

The key contributions of our work include:
i) achieving state of the art in scientific infor-
mation extraction SEMEVAL Task 10 by ex-
tending recent advances in neural tagging mod-
els; ii) introducing a semi-supervised learning al-
gorithm that uses graph-based label propagation
and confidence-aware data selection, iii) explor-
ing different alternatives for taking advantage of
large, multi-domain unannotated data including
both unsupervised embedding initialization and
semi-supervised model training.

2 Related Work

There has been growing interest in research on au-
tomatic methods to help researchers search and
extract useful information from scientific litera-
ture. Past research has addressed citation sen-
timent (Athar and Teufel, 2012b,a), citation net-
works (Kas, 2011; Gabor et al., 2016; Sim et al.,
2012; Do et al., 2013; Jaidka et al., 2014), summa-
rization (Abu-Jbara and Radev, 2011) and some
analysis of research community (Vogel and Ju-
rafsky, 2012; Anderson et al., 2012; Luan et al.,
2012, 2014b; Levow et al., 2014). However, due
to scarce hand-annotated data resources, previ-
ous work on information extraction (IE) for sci-
entific literature is very limited. Gupta and Man-
ning (2011) first proposed a task that defines sci-
entific terms for 474 abstracts from the ACL an-
thologhy (Bird et al., 2008) into three aspects:
domain, technique and focus and apply template-
based bootstrapping to tackle the problem. Based

on this study, Tsai et al. (2013) improve the per-
formance by introducing hand-designed features
from NER (Collins and Singer, 1999) to the boot-
strapping framework. QasemiZadeh and Schu-
mann (2012) compile a dataset of scientific terms
into 7 fine-grained categories for 171 abstracts of
ACL anothology. Similar to our work, very re-
cently Augenstein and Søgaard (2017) also eval-
uated on ScienceIE dataset, but use multi-task
learning to improve the performance of a super-
vised neural approach. Instead, we introduce
a semi-supervised neural tagging approach that
leverages unlabeled data.

Neural tagging models have been recently in-
troduced to tagging problems such as NER. For
example, Collobert et al. (2011) use a CNN over
a sequence of word embeddings and apply a CRF
layer on top. Huang et al. (2015) use hand-crafted
features with LSTMs to improve performance.
There is currently great interest in using character-
based embeddings in neural models. (Chiu and
Nichols, 2016; Lample et al., 2016; Ballesteros
et al., 2015; Ma and Hovy, 2016). Our approach
also takes advantage of neural tagging models and
character-based embeddings for IE in scientific ar-
ticles.

Previous work on semi-supervised learning for
neural models has mainly focused on transfer
learning (Dai and Le, 2015; Luan et al., 2014a;
Harsham et al., 2015) or initializing the model
with pre-trained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014; Levy and Gold-
berg, 2014; Luan et al., 2016b, 2015, 2016a). In
our work, we use pre-training but also use more
powerful methods including graph-based semi-
supervision (Subramanya and Bilmes, 2011; Liu
and Kirchhoff, 2013, 2015, 2016a,b) and a method
for leveraging partially labeled data (Kim et al.,
2015). We show that the combination of these
techniques gives better results than any one alone.

3 Problem Definition and Data

The purpose of this work is to extract phrases that
can answer questions that researchers usually face
when reading a paper: What TASK has the paper
addressed? What PROCESS or method has the pa-
per used or compared to? What MATERIALS has
the paper utilized in experiments? While these
fundamental concepts are important in a wide vari-
ety of scientific disciplines, the terms that are used
in specific disciplines can be substantially differ-
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ent. For example, MATERIALS in computer sci-
ence might be a text corpus, while they would be
physical materials in physics or materials science.

Data We use the SemEval 2017 Task 10 Sci-
enceIE dataset. Fig. 1 provides examples that il-
lustrate the variation in domains, but also show
that there are common cues such as “the task of”,
“using”, “technique,” etc. A challenge with this
dataset is that the size of the training data is very
small. It is built from ScienceDirect open access
publications and consists of 500 journal articles,
but only one paragraph of each article is manu-
ally labeled. Therefore, we use a large amount of
external data to leverage the continuous-space rep-
resentation of language in neural network model.
We explore the effect of pre-training word embed-
ding with two different external resources: i) a
data set of Wikipedia articles as a general English
resource, and ii) a data set of 50k Computer Sci-
ence papers from ACM.2

Tagging Problem Formulation The task re-
quires detecting the exact span of a keyphrase. In
order to be able to distinguish spans of two consec-
utive keyphrases of the same type, we assign labels
to every word in a sentence, indicating position in
the phrase and the type of phrase. We formulate
the problem as an IOBES (Inside, Outside, Begin-
ning, End and Singleton) tagging problem where
every token is labeled either as: B, if it is at the
beginning of a keyphrase; E, if it ends the phrase;
I, if it is inside a keyphrase but not the first or last
token; S, if it is a single-word keyphrase; or O, oth-
erwise. For example, “named entity recognition”
in first sentence of Fig. 1 is labeled as “B-Task I-
task E-task”.

4 Neural Architecture Model

We introduce an end-to-end model to categorize
scientific keyphrases, building on a neural named
entity recognition model (Lample et al., 2016) and
adding a feature-based embedding.

4.1 Model

We develop a 3-layer hierarchical neural model
to tag tokens of the documents (details of the to-
kenization is in Sec. 6). (1) The token repre-
sentation layer concatenates three components for

2Due to the difficulty of data collection, experiments with
external data from the other two domains is left to future
work.

each token: a bi-directional character-based em-
bedding, a word embedding, and an embedding as-
sociated with orthographic and part-of-speech fea-
tures. (2) The token LSTM layer uses a bidirec-
tional LSTM to incorporate contextual cues from
surrounding tokens to derive intermediate token
embeddings. (3) The CRF tagging layer models
token-level tagging decisions jointly using a CRF
objective function to incorporate dependencies be-
tween tags.
Character-Based Embedding. The embedding
for a token is derived from its characters as the
concatenation of forward and backward represen-
tations from a bidirectional LSTM. The charac-
ter lookup table is initialized at random. The ad-
vantage of building a character-based embedding
layer is that it can handle out-of-vocabulary words
and equations, which are frequent in this data, all
of which are mapped to “UNK” tokens in the Word
Embedding Layer.
Word Embedding. Words from a fixed vocab-
ulary (plus the unknown word token) are mapped
to a vector space, initialized using Word2vec pre-
training with different combinations of corpora.
Feature Embedding. We map features to a vec-
tor space: capitalization (all capital, first capital,
all lower, any capital but first letter) and Part-of-
Speech tags.3 We randomly initialize feature vec-
tors and train them together as other parameters.
Token LSTM Layer We apply a bidirectional
LSTM at the token level taking the concatenated
character-word-feature embedding as input. The
token representation obtained by stacking the for-
ward and backward LSTM hidden states is passed
as input to a linear layer that project the dimension
to the size of label type space and is used as input
to CRF layer.
CRF Layer Keyphrase categorization is a task
where there is strong dependencies across out-
put labels (e.g., I-TASK cannot follow B-Process).
Therefore, instead of making independent tag-
ging decisions for each output, we model them
jointly using conditional random field (Lafferty
et al., 2001). For an input sentence x =
(x1, x2, x3, . . . , xn), we consider P to be the ma-
trix of scores output by the bidirectional LSTM
network. P is of size n×m, where n is the num-
ber of tokens in a sentence, and m is the number
of distinct tags. Pt,i corresponds to the score of

3Dependency features were investigated but did not lead
to performance gains.
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Figure 2: Label propagation. Gray nodes indicates labeled
data while white nodes are unlabeled. Bold font word indi-
cates the current token. The assumption is if two instances
are similar according to the graph, the output labels should
be similar.

the i-th tag of the t-th word in a sentence. We use
a first-order Markov Model and define a transition
matrix T where Ti,j represents the score from tag
i to tag j. We also add y0 and yn as the start and
end tags of a sentence. Therefore T becomes a
square matrix of dimension m+ 2.
Given one possible output y, and neural network
parameters θ we define the score as

φ(y;x, θ) =
n∑

t=0

Tyt,yt+1 +
n∑

t=1

Pt,yt (1)

The probability of sequence y is obtained by ap-
plying a softmax over all possible tag sequences

pθ(y|x) =
exp(φ(y;x, θ))∑

y′∈Y exp(φ(y′;x, θ))
(2)

where Y denotes all possible tag sequences. The
normalization term is efficiently computed using
the forward algorithm.

Supervised Training During training, we max-
imize the log-probability L(Y ;X, θ) of the cor-
rect tag sequence given the corpus {X,Y }. Back-
propagation is done based on a gradient computed
using sentence-level scores.

5 Semi-supervised Learning

We develop a semi-supervised algorithm that ex-
tends self-training by estimating the labels of un-
labeled data and then using those labels for re-
training. Specifically, we use a graph-based al-
gorithm to estimate the posterior probabilities of
unlabeled data and develop a new CRF training to
take the uncertainty of the estimated labels into ac-
count while optimizing the objective function.

5.1 Graph-based Posterior Estimates

Our semi-supervised algorithm uses the following
steps to estimate the posterior. It first constructs
a graph of tokens based on their semantic similar-
ity, then uses the CRF marginal as a regularization
term to do label propagation on the graph. The
smoothed posterior is then used to either interpo-
late with the CRF marginal or as an additional fea-
ture to the neural network.
Graph Construction Vertices in the graph cor-
respond to tokens, and edges are distance between
token features which capture semantic similarity.
The total size of the graph is equal to the num-
ber of tokens in both labeled data Vl and unlabeled
data Vu. The tokens are modelled with a concate-
nation of pre-trained word embeddings (with di-
mension d) of 5-gram centered by the current to-
ken, the word embedding of the closest verb, and
a set of discrete features including part-of-speech
tags and capitalization (43 and 4 dimension one-
hot features). The resulting feature vector with
dimension of 5d + d + 43 + 4 is then projected
down to 100 dimensions using PCA. We define
the weight wuv of the edge between nodes u and
v as follows: wuv = de(u, v) if v ∈ K(u) or u ∈
K(v), where K(u) is the set of k-nearest neigh-
bors of u and de(u, v) is the Euclidean distance
between any two nodes u and v in the graph. An
example of our graph is in Fig. 2.

For every node i in the graph, we compute
the marginal probabilities {qi} using the forward-
backward algorithm. Let θi represent the estimate
of the CRF parameters after the n-th iteration,
we compute the marginal probabilities p̃(j,t) =

p(yjt |x; θi) over IOBES tags for every token posi-
tion t in sentence j in labeled and unlabeled data.
Label Propagation We use prior-regularized
measure propagation (Liu and Kirchhoff, 2014;
Subramanya and Bilmes, 2011) to propagate la-
bels from the annotated data to their neighbors in
the graph. The algorithm aims for the label distri-
bution between neighboring nodes to be as similar
to each other as possible by optimizing an objec-
tive function that minimizes the Kullback-Leibler
distances between: i) the empirical distribution ru
of labeled data and the predicted label distribution
qu for all labeled nodes in the graph; ii) the distri-
butions qu and qv for all nodes u in the graph and
their neighbors v; iii) the distributions qu and the
CRF marginals p̃u for all nodes. The third term
regularizes the predicted distribution toward the
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Figure 3: Lattice representation of ULM. Dashed box is
the uncertain token which is going to be marginalized over.
Arrows and grey nodes are paths to be summed over during
training. When all tokens are confident, the score of only one
path is calculated.

CRF prediction if the node is not connected to a
labeled vertex, ensuring the algorithm performs at
least as well as standard self-training.

Posterior Estimates We develop two strategies
to estimate the new posteriors p̂(yt|x; θ), which
can then be used in the CRF training.

The first strategy (called GRAPHINTERP) is
the commonly used approach (Subramanya et al.,
2010; Aliannejadi et al., 2014) that interpolates the
smoothed posterior {q} with CRF marginals p:

p̂(yt|x; θ) = αp(yt|x; θ) + (1− α)q(y) (3)

where α is a mixing coefficient.
A second strategy introduced here (called

GRAPHFEAT) uses the smoothed posterior {q} as
features and learns it with other parameters in the
neural network. Given a sentence {x1, . . . , xn},
let Q = {q1, . . . , qn} be the predicted label distri-
bution from the graph. We then use Q as a feature
input to neural network as P̃ = P +MQ where
P is the n ×m matrix output by the bidirectional
LSTM network as in Eq. 1, and M is m×m ma-
trix and is learned together with other parameters
of neural network. We modify Eq. 1 by replacing
Pt,yt with P̃t,yt . Note that GRAPHFEAT can only
be done in a transductive way since it requires out-
put Q from the graph at test time.

5.2 CRF training with Uncertain Labels

A standard approach to self-training is to make
hard decisions for labeling tokens based on the
estimated posteriors and retrain the model. How-
ever, the estimated posteriors in our task are noisy
due to the difficulty and variety of the ScienceIE
task. Instead, we extend the CRF training to lever-
age the confidence of the estimated posteriors.
The new CRF training (called Uncertain Label

Marginalizing (ULM)) treats low confidence to-
kens as missing labels and computes the sentence-
level score by marginalizing over them. A similar
idea has been previously used in treating partially
labeled data (Kim et al., 2015).

Specifically, given a sentencexwe define a con-
strained lattice Y(x), where at each position t the
allowed label types Y(xt) are:

Y(xt) =
{
{yt}, if p(yt|x; θ) > η

All label types, otherwise
(4)

where η is the confidence threshold, yt is the pre-
diction of posterior decoding and p(yt|x; θ) is its
CRF token marginal. The new neural network pa-
rameters θ are estimated by maximizing the log-
likelihood of pθ(Y(xk)|xk) for every input sen-
tence xk, where

pθ(Y(xk)|xk) =
∑

yk∈Y(xk) exp(φ(y
k;xk, θ))

∑
y′∈Y exp(φ(y′;x, θ))

where yk is an instance sequence of lattice Y(x),
and k is the sentence index in the training set. Ex-
treme cases are when all tokens are uncertain then
the likelihood would be equal to 1, when all to-
kens of a sequence are confident, it would be equal
to Eq. 2 where only one possible sequence, as in
Fig. 3.
Inductive and Transductive Learning The
semi-supervised training process is summarized as
follow: It first computes marginals over the un-
labeled data given a set of CRF parameters. It
then uses the marginals as a regularization term
for label propagation. The smoothed posteriors
from the graph are then interpolated with the CRF
marginal in GRAPHINTERP or used as an addi-
tional feature in GRAPHFEAT. It then uses the
estimated labels for the unlabeled data combined
with the labeled data to retrain the CRF using ei-
ther the hard decision CRF training objective as
Eq. 2 or the ULM data selection objective.

In the inductive setting, we only use the unla-
beled data from the development set for the semi-
supervision. In the transductive setting we also use
the unlabeled data of the test set to construct the
graph. In both cases, the parameters are tuned only
on the dev set.

6 Experimental Setup
Data The SemEval ScienceIE (SE) corpus con-
sists of 500 journal articles; one paragraph of each
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Span Level Classification (dev) Classification (test) Identification

Gupta et.al.(unsupervised) - 9.8 6.4
Tsai et.al. (unsupervised) - 11.9 8.0
MULTITASK 45.5 - -
Best Non-Neural SemEval+ - 38 51
Best Neural SemEval+ - 44 56
NN-CRF(supervised) 48.1 40.2 52.1
NN-CRF(semi) 51.9 45.3 56.9
NN-CRF(semi)∗ 52.1 46.6 57.6

Table 1: Overall span-level F1 results for keyphrase identification (SemEval Subtask A) and classification (SemEval Subtask
B). ∗ indicates tranductive setting. + indicates not documented as either transductive or inductive. - indicates score not reported
or not applied.

Model P R F1

NN-CRF(supervised) 46.2 48.2 47.2

No features 44.2 46.1 45.1
No bi-LSTM 45.2 44.7 44.9
No CRF 36.7 38.2 37.4
No char 45.7 46.2 45.9

Table 2: Ablation study showing impact of neural network
configurations of our NN-CRF(supervised) model on the dev
set.

article is randomly selected and annotated. The
complete unlabeled articles and their metadata are
provided together with the labeled data. The train-
ing data consists of 350 documents; 50 are kept for
development and 100 for testing. The 500 articles
come from 82 different journals evenly distributed
in three domains. We manually labeled 82 journal
names in the dataset into the three domains and do
analysis based on the domain partitions. The 500
full articles contains 2M words and is 30 times the
size of the annotated data.

Additionally, we use two external resources for
pretraining word embeddings: i) WIKI, as for
Wikipedia articles, specifically a full Wikipedia
dump from 2012 containing 46M words, and
ii) ACM, a collection of CS papers, containing
108M words.

Comparisons We compare our system with two
template matching baselines and the state-of-the-
art on the SemEval Science IE task. The first
baseline (Gupta and Manning, 2011) is an un-
supervised method to extract keyphrases by ini-
tially using seed patterns in a dependency tree, and
then adding to seed patterns through bootstrap-
ping. The second baseline (Tsai et al., 2013) im-
proves the work of Gupta and Manning (2011) by
adding Named Entity Features and use different
set of seed patterns.

Implementation details All parameters are
tuned on the dev set performance, the best pa-
rameters are selected and fixed for model switch-
ing and semi-supervised systems. The word em-
bedding dimension is 250; the token-level hidden
dimension is 100; the character-level hidden di-
mension is 25; and the optimization algorithm is
SGD with a learning rate of 0.05. For building
the graph, the best pre-trained embeddings for the
supervised system (Sec. 7.2) are used in each do-
main. Two special tokens BOS and EOS are added
when pre-training, indicating the begin and end of
a sentence. The number of the graph vertices is
2M in tranductive setting and 1.4M in inductive
setting. The ULM parameter η in Eq. 4 is tuned
from 0.1 to 0.9, the best η is 0.4. The best pa-
rameters of label propagation are µ = 10−6 and
ν = 10−5. The interpolation parameter α in Eq. 3
is tuned from 0.1 to 0.9, the best α is 0.3. We do
iteration of semi-supervised learning until we ob-
tain the best result on the dev set, which is mostly
achieved in the second round.

We use Stanford CoreNLP (Manning et al.,
2014) tokenizer to tokenize words. The tokenizer
is augmented with a few hand-designed rules to
handle equations (e.g. “fs(B,t)=Spel(t)S” is a sin-
gle token) and other non-standard word phenom-
ena (Cu40Zn, 20MW/m2) in scientific literature.
We use Approximate Nearest Neighbor Searching
(ANN)4 to calculate the k-nearest neighbors. For
all experiments in this paper, k = 10.
Setup We evaluate our system in both inductive
and transductive settings. The systems with a ∗

superscript in the table are transductive. The in-
ductive setting uses 400 full articles in ScienceIE
training and dev sets, while the transductive set-
ting uses 500 full articles including the test set. In
both settings parameters are tuned over the dev set.

4https://www.cs.umd.edu/˜mount/ANN/
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7 Experimental Results

We evaluate our NN-CRF model in both super-
vised and semi-supervised settings. We also per-
form ablations and try different variants to best un-
derstand our model.

7.1 Best Case System Performance

Table 1 reports the results of our neural sequence
tagging model NN-CRF in both supervised and
semi-supervised learning (ULM and graph-based),
and compares them with the baselines and the
state-of-the-art (best SemEval System (Augen-
stein et al., 2017)).

Augenstein and Søgaard (2017) use a multi-task
learning strategy to improve the performance of
supervised keyphrase classification, but they only
report dev set performance on SemEval Task 10,
we also include their result here and refer it as
MULTITASK. We report results for both span
identification (SemEval SubTask A) and span clas-
sification into TASK, PROCESS and MATERIAL

(SemEval Subtask B).5

The results show that our neural sequence tag-
ging models significantly outperforms the state
of the art and both baselines. It confirms that
our neural tagging model outperforms other non-
neural and neural models for the SemEval Scien-
ceIE challenge6. It further shows that our system
achieves significant boost from semi-supervised
learning using unlabeled data. Table 5 shows the
detailed analysis of the system across different cat-
egories.

7.2 Supervised Learning

Impact of Neural Model Components Table 2
provides the results of an ablation study on the dev
set showing the impact of different components of
our NN-CRF on the Scientific IE task. For the ba-
sic model, the word embeddings are initialized by
word2vec trained on the 350 full journal articles
in the SE training set together with Wikipedia and
ScienceIE data. The feature layer, character layer,
and bi-LSTM word layers all improves the perfor-
mance. Moreover, we observe a large improve-
ment (20.6% relative) in the scientific IE task by
adding the CRF layer.
Initialization Table 3 reports our NN-CRF

performance when pretrained on different do-
5The evaluation script is provided by the challenge, with

a modification to report 3 decimal precision results.
6Best SemEval Numbers from https://scienceie.github.io/

Dev Test
Initialization MS Phy CS MS Phy CS

SE 49.4 39.4 45.0 42.9 33.0 30.5
+wiki 52.9 40.5 47.9 46.1 39.2 31.0
+ACM 50.3 39.8 49.5 42.2 37.8 34.2
+wiki+ACM 50.5 40.3 48.9 43.1 37.9 34.4

Table 3: F1 score on the dev and test sets for using different
sources of data for pretraining.

mains. We explore different word embedding pre-
training with ScienceIE training set alone (SE),
and adding other external resources including
Wikipedia (wiki) and Computer Science articles
(ACM). All alternatives use word2vec. Compared
with using SE alone, introduction of all external
data sources improve performance. Moreover, we
observe that with the introduction of the ACM
dataset, the performance on the CS domain is in-
creased significantly in both the dev and test sets.
Adding Wikipedia data benefits all three domains,
with more significant improvement on the MS and
Physics domains.

Based on these observations, we select the best
model on each domain according to the dev set and
use the combined result as our best suprevised sys-
tem (called NN-CRF(supervised)). The F1 score
improves from 39.4 to 40.2 when applying model
switching strategy. The best model on the dev set
is used for each domain: for MS and physics do-
main, we pretrain word embeddings with the SE
and Wiki, and for the CS domain, we pretrain with
the SE and ACM.

7.3 Semi-Supervision Learning

Table 4 reports the results of the semi-supervised
learning algorithms in different settings. In par-
ticular we ablate incorporating the graph-based
methods of computing the posterior and CRF
training (ULM vs. hard decision). The table shows
incorporating graph-based methods for computing
posterior and ULM for CRF training outperforms
their counterparts.

For computing the posterior, we explore two
different strategies of the graph-based meth-
ods: i) GRAPHINTERP that interpolates the
smoothed posterior from label propagation with
CRF marginals; For inductive setting, GRAPHIN-
TERP only uses un-annotated data from the dev set
and uses the best model for decoding at test time.
For transductive setting, GRAPHINTERP∗ uses un-
annoated data from test set to build the graph as
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Posterior Training Dev Test

- - 50.2 42.9
- ULM 51.3 44.4
GRAPHINTERP - 50.9 43.3
GRAPHINTERP ULM 51.9 45.3
GRAPHINTERP* - 50.7 44.0
GRAPHINTERP* ULM 51.8 45.7
GRAPHFEAT* - 51.4 44.9
GRAPHFEAT* ULM 52.1 46.6

Table 4: F1 scores of semi-supervised Learning ap-
proaches; * shows transductive models.

Span Level T P M K

Best SemEval 19 44 48 55
supervised 13.3 40.5 43.7 52.1
ULM+GRAPHINTERP 17.0 45.4 49.4 56.9
ULM+GRAPHFEAT* 17.2 46.5 50.7 57.6

Token Level T P M K

supervised 29.6 56.0 59.3 70.8
ULM+GRAPHINTERP 40.0 60.7 61.2 77.0
ULM+GRAPHFEAT* 40.1 62.8 63.4 78.1

Table 5: F1 score results on the test set for different cat-
egories: T indicates TASK, P indicates PROCESS, M is MA-
TERIAL and K is Keyword identification (SubTask A). * is
transductive model.

well, and tune the parameters on the dev set. ii)
GRAPHFEAT uses the smoothed posterior from la-
bel propagation as additional feature to neural net-
work and only has transductive setting.

As expected, the transductive approaches con-
sistently outperform inductive approaches on the
test set. With around the same performance on
dev set, GRAPHINTERP* seems to generalize bet-
ter on test set with 1.6% relative improvement over
GRAPHINTERP. We observe higher improvement
with GRAPHFEAT* compared to GRAPHINTERP.
This is mainly because automatically learning the
weight matrix M between neural network scores
and graph outputs adds more flexibility compared
to tuning an interpolation weight α. The perfor-
mance is further improved by applying data selec-
tion through modifying the objective to ULM. The
best inductive system is ULM+GRAPHINTERP

with 5.6% relative improvement over pure Self-
Training that makes hard decisions, and the best
transductive system is ULM+GRAPHFEAT* with
8.6% relative improvement.

7.4 Category and Span Analysis

Table 5 details the performance of our method on
the three categories at the span and token level.
We observe significant improvement by using

ULM+GRAPHINTERP and ULM+GRAPHFEAT

over best SemEval and our best supervised sys-
tem on all three categories at both token and span
levels. We further observe that systems’ per-
formance on TASK classification is much lower
than PROCESS and MATERIAL. This is in part
because TASK is much less frequent than the
other types. In addition, TASK keyphrases of-
ten include verb phrases while the other two do-
mains mainly consists of noun phrases. An anal-
ysis of confusion patterns show that the most
frequent type confusions are between PROCESS

and MATERIAL. However, we observe that
ULM+GRAPHFEAT* can greatly reduce the con-
fusion, with 3.5% relative improvement of PRO-
CESS and 3.6% relative improvement of PROCESS

over ULM+GRAPHINTERP on token level.

7.5 Error Analysis

We provide examples of typical errors that our sys-
tem makes in Table 6. As described in the previ-
ous subsection, TASK is the hardest type to iden-
tify with our system. Row 1 shows a failure to
detect the verb phrase following ‘to’ as part of the
TASK, but detect ‘enantiopure products’ as MA-
TERIAL. The system prefers to predict PROCESS

or MATERIAL since those classes have more sam-
ples than TASK. Row 2 illustrates the problem
of identifying general terms as keyphrases due to
similar context, such as ‘receptors’ and ‘drug ac-
tion’. A third common error involves incorrectly
labeling adjectives, such as ‘neighbouring’ in Row
3, which leads to span errors. Another common
cause of error is insufficient context: in the last
example, a larger context is needed to determine
whether ‘SWE’ is a PROCESS or MATERIAL.

8 Conclusion

This paper casts the scientific information extrac-
tion task as a sequence tagging problem and in-
troduces a hierarchical LSTM-CRF neural tag-
ging model for this task, building on recent results
in NER. We introduced a semi-supervised learn-
ing algorithm that incorporates graph-based label
propagation and confidence-aware data selection.
We show the introduction of semi-supervision sig-
nificantly outperforms the performance of the su-
pervised LSTM-CRF tagging model. We addi-
tionally show that external resources are useful
for initializing word embeddings. Both induc-
tive and transductive semi-supervised strategies
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Error types Annotation and System Output

Verb phrases A key requirement in aiming to [achieve [enantiopure products]Material ]Task is therefore a
means to [quantitate [the enantiometric excess]Process]Task.

General terms Since the [receptors]Material in human biology mostly consist of [chiral molecules]Material,
[drug action]Process mostly involves a specified enantiometric form.

Falsely predicted adjec-
tives

It has been shown that the most efficient forms of energy transfer between the two occurs when
there is a [neighbouring carotenoid species]Material.

Lack of context Other models use [SWEs ]Material
Process but focus on the use of multi resolution grids or irregular

mesh.

Table 6: Common errors, where blue means golden label our system misses, red means falsely predicted results, and green
means correctly predicted spans.

achieve state-of-the-art performance in SemEval
2017 ScienceIE task. We also conducted a detailed
analysis of the system and point out common error
cases.

In our experiments, we observe that including
in-domain data only for semi-supervised learning
has slightly better performance than using cross-
domain data. Reducing the amount of in-domain
data hurts performance. Therefore, adding more
in-domain unlabeled data may help when com-
bined with selection schemes such as the ULM al-
gorithms proposed here. It would be useful to as-
sess the impact of matched unlabeled data for the
physics and material science domain. Other future
work includes leveraging global context, informa-
tion of citation network.
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Abstract

In domain-specific NER, due to insuffi-
cient labeled training data, deep models
usually fail to behave normally. In this pa-
per, we proposed a novel Neural Inductive
TEaching framework (NITE) to transfer
knowledge from existing domain-specific
NER models into an arbitrary deep neu-
ral network in a teacher-student training
manner. NITE is a general framework that
builds upon transfer learning and multiple
instance learning, which collaboratively
not only transfers knowledge to a deep stu-
dent network but also reduces the noise
from teachers. NITE can help deep learn-
ing methods to effectively utilize existing
resources (i.e., models, labeled and unla-
beled data) in a small domain. The experi-
ment resulted on Disease NER proved that
without using any labeled data, NITE can
significantly boost the performance of a
CNN-bidirectional LSTM-CRF NER neu-
ral network nearly over 30% in terms of
F1-score.

1 Introduction

Domain-specific Named Entity Recognition
(DNER), which aims to identify domain specific
entity mentions and their categories, plays an
important role in domain document classification,
retrieval and content analysis. It is also a foun-
dation for further level of complex information
extraction tasks, serves as cornerstone in the
knowledge computing process of transforming
data into machine readable knowledge (Zhuang
et al., 2017). Domain-specific NER is a challeng-
ing problem. For example, in biomedical domain,
the number of unseen biomedical entity mentions
(such as disease names, chemical names), their

abbreviations or acronyms, as well as multiple
names of the same entity is growing fast with
the rapid increase of biomedical literatures and
clinical records. However, the performance of
a learning based NER system relies heavily on
data annotation, which is quite expensive. The
situation is even worse in domain-specific NER
systems, since their data annotation requires the
engage of domain experts. Therefore, in many
special domains, only trained models or APIs
are available, while their training data are private
and inaccessible. On the other hand, due to
insufficient labeled training data, deep models
usually fail to behave normally in such domain,
and state-of-the-art methods in these domains
are usually dominated by rule based deductive
methods or shallow model with hand-crafted
features. However, the way of pre-defining useful
domain specific hand-crafted features or rules are
usually unavailable to the public.

In this paper, we proposed a novel Neural In-
ductive TEaching framework (NITE) to transfer
knowledge from existing models into an arbitrary
deep neural network. The idea of NITE is mainly
borrowed from Transfer learning (Pan and Yang,
2010) where previously learned knowledge can
aid current situation and solve problems with bet-
ter solutions. In NITE, existing NER models be-
have like inefficient teachers to teach a deep neu-
ral network (we called student network) to iden-
tify named entities by giving it concrete exam-
ples. The knowledge transferred from these mod-
els is their posterior distributions on unlabeled
data. These teachers are inefficient because they
transfer not only useful information, but also er-
rors to the student. The inputs of student network
can be twofold, one is a small proportion from
human labeled ground truth data (optional, like
text book), and another is a large proportion from
teachers, which is always noisy and less trustable.
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In such case, a student is overwhelmed and often
inferior to the teachers, therefore in NITE, we in-
troduced Multiple Instance Learning (MIL) trick
(Dietterich et al., 1997; Babenko, 2008) to reduce
the input noise during the model training.

In summary, NITE is a general framework that
can help deep learning methods to make the best
use of existing resources (i.e., models, labeled
and unlabeled data). The experiment results on
Disease NER (DNER) proved that without using
any labeled data, NITE can significantly boost the
performance of a CNN-bidirectional LSTM-CRF
NER neural network (Ma and Hovy, 2016), which
trained on NCBI training dataset nearly over 30%
in terms of F1-score. It also outperformed the
teacher model, which proved the correctness of
our hypothesis.

2 Neural Inductive Teaching Framework

In this section we will define our NITE framework
step by step, and apply it to Disease NER.

2.1 Inductive Teaching

Inductive teaching means teaching student by ex-
amples, our inductive teaching method builds
upon teacher-student models (Ba and Caruana,
2014) and knowledge distillation (Hinton et al.,
2015). The main idea of our method is to transfer
discriminative knowledge from well-trained exist-
ing models (teachers) to a new and more capable
model (student). The student learns by imitating
the teachers’ behaviors, and the teaching process
can be defined as follows:

Let x = {w1, w2, . . . , w|x|} be an input sen-
tence of |x| words, where wk is the kth word in
x. If lk is the corresponding 3-dimensional one
hot IOB (In-Out-Begin) vector for wk, then the
NER labeling sequence of x can be defined as
y = {l1, l2, . . . , l|x|}.

For a given sentence xi, we further define
the posterior distribution of a teacher as yfti =
ft(yi|xi), while the posterior distribution of a stu-
dent network can be defined as yfsi = fs(yi|xi; θ),
where θ is the parameters of the student network.
During training, we measure the similarity be-
tween yft and yfs with KL-divergence, and min-
imize their difference. Therefore, for a given xi,
we optimize:

min
θ

n∑

i=1

DKL(ft(yi|xi)||fs(yi|xi; θ)) (1)

, where DKL(P ||Q) =
∑

j Pj log
Pj
Qj

is the
KL-divergence. This equation can be optimized
through stochastic gradient descent over shuffled
mini-batches with the Adadelta (Zeiler, 2012) up-
date rule.

2.2 Multiple Instance Learning

Multiple Instance Learning is an effective train-
ing method that can help to train a supervised
model to alleviate the wrong label problem (Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012). Instead of predicting labels for each indi-
vidual training sample, the objective of MIL is to
predict the labels (positive or negative) of the un-
seen bags, where each bag contains a fixed number
of instances (samples). The standard MIL assump-
tion assumes that a bag is positively labeled if at
least one instance in a bag is positive, and is nega-
tively labeled if all instances in a bag are negative.
MIL is generally used in training a binary classi-
fier, to apply MIL in NITE, we redefine the label
of a bag as the quality (correctness) of its contain-
ing samples. Thus, in NITE, a bag is positively
labeled if at least one instance in it is labeled cor-
rectly. Furthermore, it is inappropriate to evaluate
the correctness of IOB label (i.e., lk) of each word
(i.e., wk), since the IOB sequence yi of a sentence
xi is generated dependently. Therefore, we choose
sentence xi as our MIL instance, and the correct-
ness of xi is evaluated by the likelihood probabil-
ity of all words with correct BIO tags. In general,
our MIL can be formally defined as follows:

Randomly allocate training samples in a mini-
batch B intoM bags, i.e., B = {B1, B2, . . . , BM}
with their corresponding labels {z1, z2, . . . , zM},
where zm ∈ {−1, 1}. For bag Bm, it contains K
instances, i.e., Bm = {x1, x2, . . . , xK}, where xi
is a sentence with its posterior evaluation yfsi .

During the training, given a bag Bm, if zm = 1,
which means Bm is a positive bag. In order to
reduce the noise, our MIL learner will select the
most correct instance yfsi∗ , which has the maximum
likelihood among all other instances (i.e., sen-
tence) in the bag Bm. That is P (zm = 1|Bm) =
P (yfsi∗ ) = argmax

i
{P (yfsi |xi)}, where 1 ≤ i ≤

K,xi ∈ Bm. If zm = −1, which means Bm
is a negative bag, in order to better detect such
negative bags, our MIL learner should select the
most violated instance for learning, which is also
the instance with maximum likelihood. Thus, the
bag label z (which indicates the sentence is labeled
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correctly or incorrectly) is actually integrated out,
since no matter what the value z is, MIL in NITE
will always select the instance with the highest
likelihood probability. Finally the MIL in NITE
can be summarized as:

P (zm|Bm) = P (yfsi∗ ) = arg max
i=1:K

{P (yfsi |xi)}
(2)

In summary, MIL in NITE can be regarded as
a mechanism for posterior selection, or regulariza-
tion on posterior distribution of a student network.
Therefore, MIL only affects the model training,
and it will not affect the testing process.

2.3 Teacher Model & Student Network
Theoretically, the teacher model of NITE can be
any existing well-trained model, while the student
network can be an arbitrary deep neural network.
In this paper, we focus on domain-specific NER,
and more specifically on Disease NER, which is
a small but typical domain that is suffering from
insufficient labeled training data.

There are many existing DNER systems, and
the most well-known systems are BANNER (Lea-
man et al., 2008), and DNorm (Leaman et al.,
2013). BANNER is an open-source biomedical
NER system implemented using conditional ran-
dom fields (CRFs) (Lafferty et al., 2001). While,
DNorm uses supervised semantic indexing, is
trained with pairwise learning to rank, to score
the mentions returned by BANNER. Therefore,
DNorm can be regarded as an extension of BAN-
NER, and the whole system depends on hand-
crafted features such as word spelling features and
orthographic features. DNorm is the state-of-the-
art DNER system, and therefore we adopt DNorm
as our teacher model.

For the student network, we are looking for
state-of-the-art solutions in general NER. There
are many studies on applying complex deep learn-
ing models on general NER or other sequence
labeling tasks. Without any feature engineering
trick, deep models have achieved comparable or
better performances than many other traditional
methods. More recently, Ma and Hovy (2016)
proposed a method that concatenated CNN, bidi-
rectional LSTM, and CRF successively to form an
end to end deep NER model (CLC for short). CLC
achieved state-of-the-art performance in general
NER, and therefore we take the CLC as our stu-
dent network, Fig. 1 shows the overall architecture
of our student network.

tumor ais ofkind disease

word
embedding

char
embedding

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

CRF CRF CRF CRF CRF CRF

Figure 1: the Flowchart of the Student Network

As shown in Fig. 1, the character-level embed-
dings are generated by CNN layers, then are con-
catenated with pre-trained word embeddings, and
finally fed into the bidirectional LSTM layer. The
bidirectional LSTM is efficient to capture syntac-
tic and semantic information both preceding and
following simultaneously. Its output vectors are
fed into the CRFs layer for IOB sequence label-
ing. It uses maximum conditional likelihood es-
timation to choose parameters during the finally
CRFs training process, and its likelihood can be
given as follows:

P (yfsi |xi) = arg max
y∈Y(xi)

P (y|xi) (3)

, where Y(xi) denotes the set of possible label se-
quences for xi. Eq. 3 can be solved efficiently by
adopting the Viterbi algorithm.

Fig. 2 shows the whole NITE-NER training pro-
cess. For each training iteration, training sam-
ples in a mini-batch are randomly allocated into
M bags, and then fed into the student network
fs. For bag Bm, the student network will gener-
ate posterior evaluation yfsi for each input instance
xi ∈ Bm respectively. Then the MIL module will
select the best sample yfti∗ from all K instances ac-
cording to Eq. 3 and 2. Finally, NITE will retrieve
posterior evaluation yfti∗ from the teacher, and up-
date θ based on Eq. 1.

3 Experiments

In this section we designed several experiments to
testify our hypothesis of inductive teaching as well
as evaluate our NITE framework.

3.1 Training Corpus
Although NITE is a supervised learning frame-
work, the discriminative knowledge of student net-
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Figure 2: The training process of NITE-NER.

work is learned indirectly from the teacher mod-
els, therefore NITE can be trained without any la-
beled data.

To evaluate the efficiency of the NITE frame-
work, we trained two DNER models on NCBI dis-
ease corpus (Doğan et al., 2014; Islamaj Dogan
and Lu, 2012). One is the well-known DNorm
model, which is the state-of-the-art method in
disease NER. Another one is the bi-directional
LSTM-CNN-CRF NER neural network i.e., CLC
(Ma and Hovy, 2016), which has the state-of-the-
art performance in general NER task. The CLC
architecture also serves as our student network.

The NCBI disease corpus is a widely used data
corpus with disease name and related concept an-
notations in biomedical research field. The cor-
pus is an extension of the AZDC corpus (Leaman
et al., 2009) which was annotated only with dis-
ease mentions. The detailed characteristics of the
NCBI disease corpus as well as how we partition
the data are shown in Table 1.

3.2 Experiment Setup

The experiment’s setup is as follows:
Our NITE-DNER is trained without any labeled

data, we randomly sampled 2,000 unlabeled ab-
stracts of biomedical literature from PubMed as
our training data. The DNorm model is served as
the teacher model in the NITE framework.

In student network, we initialized charac-
ter embeddings with uniform samples from

[−
√

3
d ,+

√
3
d ], where we set the dimension d =

NCBI Train Validate Test
# of documents 593 100 100
# of sentences 5661 791 961
# of disease 5148 791 961
Specific Disease 2959 409 556
Disease Class 781 127 121
Modifier 1292 218 264
Composite Mention 116 37 20

Table 1: The description of the NCBI corpus as
training, validating and testing sets for the recog-
nition of disease named entity

30. We use 30 filters with window length 3
in CNN and 200 hidden states in bi-directional
LSTM. In training procedure we set initial learn-
ing rate η0 = 0.015 with decay rate ρ = 0.05, the
learning rate is updated as ηt = η0/(1.0 + ρn),
where n is the number of epochs. We use a fixed
dropout rate 0.5 at CNN and both input and output
vectors of bi-directional LSTM to mitigate over-
fitting. For MIL we set the bag size K = 5 with
mini-batch size 30. We implemented neural net-
works on a GeForce GTX 1080 using Theano.

3.3 Results and Discussion

We evaluated all three DNER methods on the
NCBI test set in terms of precision, recall and F1-
score. All the measurements are based on exact
location of extracted disease mentions in the given
test sentences.

Method CLC-DNER DNorm NITE
Labels NCBI NCBI -
Remark Student only Teacher only S+T+MIL
Precision 79.20 80.50 85.40
Recall 51.73 75.70 75.07
F1-score 62.58 78.06 79.91

Table 2: Performance comparisons.

The experiment results are presented in Table 2.
As shown in Table 2, although the complex CLC
network is the state-of-the-art method in general
NER, it behaves poorly in domain-specific NER
task due to insufficient labeled training data. How-
ever, with the help of our NITE framework, its
performance is significantly boosted, and reached
the comparable level of DNorm. This proved that
knowledge transfer in NITE is efficient and impor-
tant in training a deep model of domain-specific
NER.
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3.4 Conclusion

In this paper, we proposed a general framework,
NITE, and demonstrated its efficiency in transfer-
ring DNER knowledge into an end to end deep
NER model. Although we only proposed a so-
lution for DNER, it could be easily applied to
other domain-specific NER problems (e.g., chem-
ical, gene, and protein) or even applications other
than NER. The experiment results suggested that
NITE can be very helpful on training a deep model
when other resources are available. For future
work, a NITE architecture with more than one
teacher could be considered. Moreover, as men-
tioned in (Zhou et al., 2017), crowd knowledge
can be used to reshape deep learning features. Our
framework can also incorporate crowd knowledge
easily, in which the teachers can be human crowds,
and then the NITE can employs active learning
(Olsson, 2009) or lifelong machine learning (Chen
and Liu, 2016) to progressively polishing the stu-
dent model.
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Abstract

RLIE-DQN is a recently proposed Re-
inforcement Learning-based Information
Extraction (IE) technique which is able to
incorporate external evidence during the
extraction process. RLIE-DQN trains a
single agent sequentially, training on one
instance at a time. This results in sig-
nificant training slowdown which is unde-
sirable. We leverage recent advances in
parallel RL training using asynchronous
methods and propose RLIE-A3C. RLIE-
A3C trains multiple agents in parallel and
is able to achieve upto 6x training speedup
over RLIE-DQN, while suffering no loss
in average accuracy.

1 Introduction

Extracting information about an event (or entity)
involves multiple decisions, as one first needs to
identify documents relevant to the event, extract
relevant information from those documents, and
finally reconcile various values obtained for the
same relation of the event from different sources
(Ahn, 2006). Search based methods for Infor-
mation Extraction have been increasingly investi-
gated (West et al., 2014); (Hegde and Talukdar,
2015); (Zhang et al., 2016); (Bing et al., 2017).

(Kanani and McCallum, 2012) combine search
and Information Extraction (IE) using Reinforce-
ment Learning (RL), with the goal of selecting
good actions while staying within resource con-
straints, but don’t optimze for extraction accuracy.
More recently, (Narasimhan et al., 2016) proposed
a RL-based approach to model the IE process out-
lined above. We shall refer to this approach as
RLIE-DQN in this paper. RLIE-DQN trains an RL

∗Research carried out during an internship at the Indian
Institute of Science, Bangalore.

agent using Deep Q-Network (DQN) (Mnih et al.,
2015) to select optimal actions to query for docu-
ments and also reconcile extracted values.

DQN trains a single agent sequentially, up-
dating parameters based on one instance at a
time. Each such instance is sampled from the en-
tire training data, also called the experience re-
play. Such sequential experience replay-based
training results in slow learning, while requiring
high memory and computation resources. In order
to overcome this challenge, A3C (Asynchronous
Advantage Actor-Critic), an asynchronous deep
RL training algorithm, has been proposed recently
(Mnih et al., 2016). A3C trains multiple RL agents
in parallel, each of which estimates gradients lo-
cally, and asynchronously updates globally shared
parameters. Recent work has explored applica-
tions for A3C in varied domains (Fernando et al.,
2017), (Mirowski et al., 2016).

In this paper, we propose RLIE-A3C which uses
A3C-based parallel asynchronous agents for train-
ing. This is in contrast to the sequential DQN
training in RLIE-DQN. Differences between the
training regimes of the two methods are shown in
Figure 1. Through experiments on multiple real-
world datasets, we find that RLIE-A3C achieves
upto 6x training speedup compared to RLIE-DQN,
while suffering no loss in accuracy. To the best
of our knowledge, this is the first application of
asynchronous deep RL methods in IE (and also
in NLP), and we hope this paper will foster fur-
ther adoption and research into such methods in
the NLP community. RLIE-A3C code is available
at https://github.com/adi-sharma/RLIE A3C

2658



Figure 1: Left: DQN-based sequential learning framework used in RLIE-DQN (Narasimhan et al.,
2016), as discussed in Section 2. At each time step, the agent looks at a specific instance from the
training data. Right: A3C-based parallel learning framework in RLIE-A3C (proposed approach). The
parallel agents look at different parts of the training data, estimate parameter update statistics locally, and
then perform asynchronous updates on the globally shared parameters (θt) at time step t. See Section 3
for details. Due to the asynchronous parallel updates, RLIE-A3C achieves significant training speedup
without loss in accuracy, as we shall see in Section 4.

Figure 2: Sample state transition in the MDP of
RLIE-DQN (and also RLIE-A3C). In each transi-
tion, two actions are carried out: (1) reconcile new
values with current values,; and (2) issue query to
retrieve other relevant documents and extract val-
ues from those documents. Please see Section 2
for details.

2 RLIE-DQN: Information Extraction
using Reinforcement Learning

We first present a brief overview of RLIE-DQN
(Narasimhan et al., 2016). Given a document to
extract information about an event, RLIE-DQN is-
sues a search query to retrieve other documents
related to the event, extracts event information
from those documents, and finally reconciles val-
ues extracted from the documents. If confidence
in the extracted values are low, then RLIE-DQN
repeats this process with additional queries. This
way, RLIE-DQN incorporates evidences from ex-
ternal sources to improve information extraction

(IE) from a given source document.

RLIE-DQN models the task as a Markov De-
cision Process (MDP) in order to reconcile newly
extracted information selectively and dynamically.
The MDP describes the environment in which the
RL agent learns to make decisions. The MDP is
represented using a tuple 〈S,A,R, T 〉, where S is
the set of states, A = {ad, aq} is the set of actions,
R(s, a) is the reward for taking action a ∈ A from
state s ∈ S, and T (s

′ |s, (ad, aq)) is the state tran-
sition function. Here, ad is the reconciliation ac-
tion, while aq is the query action. Based on ad,
the agent may accept extracted values for one or
all relations, reject all newly extracted values or
stop (episode ends).

A sample state transition in RLIE-DQN’s MDP
is shown in Figure 2. State representation con-
sists of many details such as confidence scores of
current and newly extracted relation values, con-
text statistics from which the extractions are per-
formed, etc. But for better readability, only the
set of current and new values are shown for the
states in this figure. Each transition consists of
two actions: reconcile decision and query. The RL
agent uses the reconcile action (ad) to update value
of the ShooterName relation from Paul Kiska to
Kevin Wardzala. The agent uses the query ac-
tion (aq) to issue a new query (”Cleveland shoot-
ing” + ”injured”) to retrieve other relevant docu-
ments and extract new values 3 and 1 for relations
NumKilled and NumWounded, respectively. The
transitions stop whenever ad is a stop decision.
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The reward function at each state, is the cum-
mulative difference of current and previous ex-
tracted accuracies, summed over all relations.
Also, a negative reward per step is added to the
reward in order to penalize the agent for longer
episodes, since issuing queries to a search engine
is expensive.
Deep Q-Learning (DQN): Let Q(s, a) be the
measure of long-term cumulative reward obtained
by taking action a from state s. The RL agent
makes use ofQ(s, a) to select the next action from
a from state s. Q-learning (Watkins and Dayan,
1992) is a popular technique to estimate this func-
tion, in which the function for optimal Q-value
is estimated using the Bellman equation (Sutton
and Barto, 1998) Qi+1(s, a) = E(s,a)[R(s, a) +
γmax

a′
Qi(s

′, a′)|s, a]. Here, R(s, a) is the imme-

diate reward and γ is the discount factor for the
value of future rewards.

For high dimensional state spaces, Deep Q-
Network (DQN) (Mnih et al., 2013) approximates
Q(s, a) as Q(s, a; θ) using parameters θ of a deep
network. RLIE-DQN used such a DQN-based
agent to learn optimal policy, as shown in Figure 1.

3 Proposed Approach: RLIE-A3C

The DQN-based agent used in RLIE-DQN is se-
quential, as it moves from one instance to another
to update parameters. This can result in signif-
icant training time slowdown, especially in large
data settings. Instead of using experience replay
of the DQN algorithm for stabilizing updates, we
consider a framework with multiple asynchronous
agents, each of which explore different areas of the
environment in parallel.

Asynchronous Advantage Actor-critic (A3C)
(Mnih et al., 2016) is a recently proposed deep RL
algorithm which makes use of parallel agents for
parameter estimation. We replace DQN with A3C
in RLIE-DQN and call the resulting method RLIE-
A3C – our proposed approach (See Figure 1).

At time instant t, RLIE-A3C poses decision
policy πd(ad|st), and query policy πq(aq|st) as
probability distributions over candidate actions ad
and aq, respectively. RLIE-A3C also calculates
the state value function V (st), as an estimate of
the cumulative long-term reward obtained starting
from state st. Owing to the large continuous state
space of the problem, RLIE-A3C approximates
each of these three functions using three sepa-
rate deep neural networks, which are parametrized

by θd, θq, and θv, as πd(ad|st) ≈ πd(ad|st; θd),
πq(aq|st) ≈ πq(aq|st; θd) and V (st) ≈ V (st; θv).
These parameters are updated by agents working
in parallel. Based on the policies, each agent se-
lects the query and decision actions to be per-
formed and updates it’s state accordingly. This is
repeated up to tmax steps or until a terminal state
is reached.
Local Gradient Calculation: The agents estimate
parameter gradients using a local copy of the net-
work parameters, and then perform asynchronous
updates on the globally shared parameters θd, θq,
and θv. Hence, the policy and value functions
are jointly estimated. The policy gradient update
equations calculated over the local copy of net-
work parameters of each parallel RLIE-A3C agent
p are as follows:

dθpx ← dθpx +∇θpx log πd(axi , s;θ
p
x)A(si, axt ; θ

p
v)

+ βx∇θpxH(πx(st; θ
p
x)) (1)

where, x ∈ {d, q} for decision and query. The ad-
vantage function A(st, at; θv) =

∑k−1
i=0 γ

iRt+i +
γkV (st+k; θv) − V (st; θv) above significantly re-
duces the variance of the policy gradient, where
γ is the discount factor and k can vary from state
to state and is upper-bounded by tmax. Since the
gradient updates are accumulated, training stabil-
ity increases. Further, exploration is encouraged
by introducing the entropy regularization term
βx∇θpxH(πx(st; θ

p
x)) in the equation above. Here,

H is the entropy function and βx controls domi-
nance of the entropy term.

The gradient update for the parameters of value
function V is calculated locally by every parallel
agent p as follows:

dθpv ← dθpv + ∂(Gt − V (st; θ
p
v))

2/∂θpv

where Gt = E(s)[
∑∞

k=0 γ
kRt+k+1] is the return.

Global Parameter Update: The parameters θd,
θq and θv are learnt using stochastic gradient
descent with RMSprop (Tieleman and Hinton,
2012). The standard non-centered RMSProp up-
date is used by the parallel agents p to update the
shared parameters asynchronously using the gra-
dients obtained from Equation (1), as follows:

g = αg + (1− α)(dθpx)2 ; θx ← θx − η
dθpx√
g + ε

where x ∈ {d, q, v}, α is the decay factor, η is
the learning rate, ε is the smoothing constant and

2660



Figure 3: Left, Middle Panels: Extraction accuracy of the baseline (RLIE-DQN) and our system (RLIE-
A3C) on the Shooting Incidents and Food Adulteration datasets. Right Panel: Training time comparison
between RLIE-DQN and RLIE-A3C. Overall, we observe that RLIE-A3C results in upto 6x speedup
over RLIE-DQN, without any loss in average extraction accuracy. This is our main result. Please see
Section 4.1 for details.

g is the moving average of element-wise squared
gradients. The pseudo-code for RLIE-A3C can be
found in the Appendix.

4 Experiments and Results

Setup: We compare RLIE-A3C against RLIE-
DQN using the same protocol and hyperparame-
ters as reported in (Narasimhan et al., 2016). Also,
we experiment with the same two datasets used
in that paper: the Gun Violence Archive1 and the
Foodshield EMA database2. The train, dev and
test datasets contain 372, 146 and 146 source ar-
ticles respectively for the Shooting incident cases
and 292, 42 and 148 source articles respectively
for the food adulteration cases. We used the im-
plementation of RLIE-DQN provided by the au-
thors of that system. For more details on the
dataset and other parameters, we refer the reader
to (Narasimhan et al., 2016).

RLIE-A3C: This is our proposed method which
is described in Section 3. For the sake of fair com-
parison, the network, base classifier, and evalua-
tion metrics are same as that of RLIE-DQN. Each
of the three deep networks in RLIE-A3C, one each
for π(ad|s), π(aq|s) and V (s), is built using two
linear layers with 20 hidden units, followed by Re-
LUs. MaxEnt classifier is used as the base extrac-
tor, and the model is evaluated on the entire test
set for 1.6 million steps. The dev set is used to
tune all hyperparameters, which can be found in
the Appendix. For RLIE-A3C, the evaluation is
carried out 50 times after training and the average
accuracy values are taken over the top 5 evalua-
tions, as done in (Mnih et al., 2016).

Figure 4: Evolution of accuracy of RLIE-A3C for
the four relations on test set of the Shooting Inci-
dents dataset. Please see Section 4.1 for details.

4.1 Results and Discussion

Extraction Accuracy: Experimental results com-
paring extraction accuracies of RLIE-DQN and
RLIE-A3C are presented in Figure 33 (left and
middle panels). From this figure, we observe that
there is no loss in average accuracy in transition-
ing from RLIE-DQN to RLIE-A3C (in fact there
is a slight gain in case of the Adulteration dataset).
Please note that, improvement in accuracy is not
our primary goal in the paper – it is the training
time speedup, as discussed next.
Speedup: Training times of RLIE-DQN and
RLIE-A3C over both datasets are compared in the
right panel of Figure 34. From Figure 3, we find
that RLIE-A3C is able to achieve upto 6x training

1
http://www.shootingtracker.com/Main_Page

2
http://www.foodshield.org/member/login/

3The tolerance for all the relation accuracy values for
RLIE-A3C is within ± 1%

4During test, policies learned by RLIE-DQN and RLIE-
A3C are executed. Since this is an identical process for both,
we don’t compare test runtimes in this paper.
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speedup over RLIE-DQN. In other words, RLIE-
A3C is able to achieve significant speedup in train-
ing time over RLIE-DQN, without any loss in av-
erage accuracy. This is our main result.

While RLIE-DQN was implemented in Torch,
RLIE-A3C was implemented in Python using Ten-
sorFlow framework. We note that Torch is known
to be faster than TensorFlow (Bahrampour et al.,
2015). This makes the speedup gains above even
more impressive, and outlines the possibility that
further gains may be possible with a Torch-based
implementation of RLIE-A3C.

Figure 4 shows evolution of test accuracy of
RLIE-A3C for the four relations of the Shooting
Incidents dataset. For this dataset, state value
function of RLIE-A3C converged at 48 minutes.
However, from Figure 4, we observe that accura-
cies converge to the final values much before that.
Why do Asynchronous Methods work? An
asynchronous approach fits more naturally with
the training data, since different parallel agents
look at different events at the same time (see Fig-
ure 1), and the model is able to exploit the regu-
larities between events in the dataset. The gradi-
ent updates to the global network are less biased
and the model is not easily distracted by noise in
the data. The asynchronous parallel model is able
to converge much faster as compared to replay
memory based methods like DQN, as also seen in
(Mnih et al., 2016).

5 Conclusion

In this paper, we proposed RLIE-A3C, an asyn-
chronous deep Reinforcement Learning (RL) al-
gorithm for Information Extraction (IE). In con-
trast to sequential training in previously proposed
RLIE-DQN (Narasimhan et al., 2016), RLIE-A3C
employs asynchronous parallel training. This re-
sults in upto 6x training speedup, without suffer-
ing any loss in average accuracy. We hope that
this first application of asynchronous deep RL al-
gorithms will open up more adoption of such tech-
niques in the NLP community.
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Abstract

In this paper, we utilize the linguistic
structures of texts to improve named en-
tity recognition by BRNN-CNN, a spe-
cial bidirectional recursive network at-
tached with a convolutional network. Mo-
tivated by the observation that named en-
tities are highly related to linguistic con-
stituents, we propose a constituent-based
BRNN-CNN for named entity recogni-
tion. In contrast to classical sequential la-
beling methods, the system first identifies
which text chunks are possible named en-
tities by whether they are linguistic con-
stituents. Then it classifies these chunks
with a constituency tree structure by recur-
sively propagating syntactic and semantic
information to each constituent node. This
method surpasses current state-of-the-art
on OntoNotes 5.0 with automatically gen-
erated parses.

1 Introduction

Named Entity Recognition (NER) can be seen as
a combined task of locating named entity chunks
of texts and classifying which named entity cat-
egory a chunk falls into. Traditional approaches
label each token in texts as a part of a named en-
tity chunk, e.g. “person begin”, and achieve high

performances in several benchmark datasets (Rati-
nov and Roth, 2009; Passos et al., 2014; Chiu and
Nichols, 2016).

Being formulated as a sequential labeling prob-
lem, NER systems could be naturally imple-
mented by recurrent neural networks. These net-
works process a token at a time, taking, for each
token, the hidden features of its previous token
as well as its raw features to compute its own
hidden features. Then they classify each token
by these hidden features. With both forward and
backward directions, networks learn how to prop-
agate the information of a token sequence to each
token. Chiu and Nichols (2016) utilize a varia-
tion of recurrent networks, bidirectional LSTM,
attached with a CNN, which learns character-level
features instead of handcrafting. They accom-
plish state-of-the-art results on both CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003) and
OntoNotes 5.0 (Hovy et al., 2006; Pradhan et al.,
2013) datasets.

Classical sequential labeling approaches take
little information about phrase structures of sen-
tences. However, according to our analysis, most
named entity chunks are actually linguistic con-
stituents, e.g. noun phrases. This motivates us
to focus on a constituent-based approach for NER
where the NER problem is transformed into a
named entity classification task on every node of a
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Algorithm 1 Binarization
1: function BINARIZE(node)
2: n← node.children.length
3: if n > 2 then
4: if HEAD-FINDER(node) 6= node.children[n] then
5: newChild← GROUP(node.children[1..n-1])
6: node.children← [newChild, node.children[n]]
7: else
8: newChild← GROUP(node.children[2..n])
9: node.children← [node.children[1], newChild]

10: newChild.pos← node.pos

11: for child in node.children do
12: BINARIZE(child)

Figure 1: Applying Algorithm 1 to the parse of senator Edward Kennedy.

constituency structure.
To classify constituents and take into account

their structures, we propose BRNN-CNN, a spe-
cial bidirectional recursive neural network at-
tached with a convolutional network. For each
sentence, a constituency parse where every node
represents a meaningful chunk of the sentence, i.e.
a constituent, is first generated. Then BRNN-CNN
recursively computes hidden state features of ev-
ery node and classifies each node by these hidden
features. To capture structural linguistic informa-
tion, bidirectional passes are applied so that each
constituent sees what it is composed of as well as
what is containing it, both in a near-to-far fashion.

Our main contribution is the introduction of a
novel constituent-based BRNN-CNN for named
entity recognition, which successfully utilizes the
linguistic structures of texts by recursive neural
networks. We show that it achieves better scores
than current state-of-the-art on OntoNotes 5.0,
where good parses can be automatically gener-
ated. Additionally, we analyze the effects of only
considering constituents and the effects of con-
stituency parses.

2 Related Work

Collobert et al. (2011) achieved near state-of-
the-art performance on CoNLL-2003 NER with
an end-to-end neural network which had minimal
feature engineering and external data. Chiu and
Nichols (2016) achieved the current state-of-the-
art on both CoNLL-2003 and OntoNotes 5.0 NER
with a sequential bidirectional LSTM-CNN. They
also did extensive studies of additional features
such as character type, capitalization, and Senna
and DBpedia lexicons.

Finkel and Manning (2009) explored training a
parser for an NER-suffixed grammar, jointly tack-
ling parsing and NER. They achieved competitive
results on OntoNotes with a CRF-CFG parser.

Recursive neural networks have been success-
fully applied for parsing and sentiment analysis
on Stanford sentiment treebank (Socher et al.,
2010, 2013a,b; Tai et al., 2015). Their recur-
sive networks, such as RNTN and Tree-LSTM, do
sentiment combinations on phrase structures in a
bottom-up fashion, showing the potential of such
models in computing semantic compositions.
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Figure 2: The bottom-up and top-down hidden layers applied to the binarized tree in Figure 1.

3 Method

For each input sentence, our constituent-based
BRNN-CNN first extracts features from its con-
stituency parse, then recursively classifies each
constituent, and finally resolves conflicting predic-
tions.

3.1 Preparing Constituency Structures

For a sentence and its associated constituency
parse, our system first sets three features for each
node: a POS, a word, and a head. While con-
stituency tags and words should come readily, se-
mantic head words are determined by a rule-based
head finder (Collins, 1999). Additionally, a fourth
feature vector is added to each node to utilize lex-
icon knowledge. The 3-bit vector records if the
constituent of a node matches some phrases in
each of the three SENNA (Collobert et al., 2011)
lexicons of persons, organizations, and locations.

The system then tries to generate more plausible
constituents while preserving linguistic structures
by applying a binarization process which groups
excessive child nodes around the head children.
The heuristic is that a head constituent is usually
modified by its siblings in a near to far fashion.
Algorithm 1 shows the recursive procedure called
for the root node of a parse. Figure 1 shows the
application of the algorithm to the parse of senator
Edward Kennedy. With the heuristic that Edward
modifies the head node Kennedy before senator.
The binarization process successfully adds a new
node Edward Kennedy that corresponds to a per-
son name.

3.2 Computing Word Embeddings

For each word, our network retrieves one embed-
ding from a trainable lookup table initialized by
GloVe (Pennington et al., 2014). However, to cap-
ture the morphology information of a word and
help dealing with unseen words, the network com-
putes another character-level embedding. Inspired
by Kim et al. (2016), the network passes one-
hot character vectors through a series of convolu-
tional and highway layers to generate the embed-
ding. These two embeddings are concatenated as
the final embedding of a word.

3.3 Computing Hidden Features

Given a constituency parse tree, where every node
represents a constituent, our network recursively
computes two hidden state features for every node.

First, for each node iwith left sibling l and right
sibling r, the raw feature vector Ii is formed by
concatenating the one-hot POS vectors of i, l, r,
the head embeddings of i, l, r, the word embed-
ding of i, the lexicon vector of i, and the mean of
word embeddings in the sentence. Then, with the
the set of child nodes C and the parent node p, the
hidden feature vectors Hbot,i and Htop,i are com-
puted by 2 hidden layers:

Hbot,i = ReLU((Ii‖
∑

c∈C
Hbot,c)Wbot+bbot) (1)

Htop,i = ReLU((Ii‖Htop,p)Wtop + btop) (2)

whereW s are weight matrices, bs are bias vectors,
and ReLU(x) = max(0, x). In cases when some
needed neighboring nodes do not exist, or when i
is a nonterminal and does not have a word, zero
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Validation Test
Model Parser Precision Recall F1 Precision Recall F1
BRNN-CNN gold 86.6 87.0 86.77 88.9 88.9 88.92
BRNN gold 87.5 86.7 87.11 89.5 88.3 88.91
BRNN-CNN auto 85.5 84.7 85.08 88.0 86.5 87.21
BRNN auto 86.0 84.7 85.34 88.0 86.2 87.10
Bidirectional Tree-LSTM auto 85.2 84.5 84.84 87.3 86.2 86.74
Sequential Recurrent NN - 83.1 83.7 83.38 84.5 84.4 84.40
Finkel and Manning (2009) gold - - - 84.04 80.86 82.42
Durrett and Klein (2014) - - - - 85.22 82.89 84.04
Chiu and Nichols (2016) - - - - - - 86.41

Table 1: Experiment results on whole dataset. BRNN is BRNN-CNN deprived of character-level em-
beddings. Human-labeled parses and automatically generated parses are indicated by gold and auto
respectively. Finkel and Manning used gold parses in training a joint model for parsing and NER.

Model BC BN MZ NW TC WB
Test set size (# tokens) 32488 23209 17875 49235 10976 18945
Test set size (# entities) 1697 2184 1163 4696 380 1137
Finkel and Manning (2009) 78.66 87.29 82.45 85.50 67.27 72.56
Durrett and Klein (2014) 78.88 87.39 82.46 87.60 72.68 76.17
Chiu and Nichols (2016) 85.23 89.93 84.45 88.39 72.39 78.38
BRNN-CNN-auto 85.98 90.96 84.93 89.18 73.18 80.39

Table 2: F1 scores on different data sources. From left to right: broadcast conversation, broadcast news,
magazine, newswire, telephone conversation, and blogs & newsgroups.

vectors are used as the missing parts of raw or hid-
den features.

Figure 2 shows the applications of the equations
to the binarized tree in Figure 1. The computa-
tions are done recursively in two directions. The
bottom-up direction computes the semantic com-
position of the subtree of each node, and the top-
down counterpart propagates to that node the lin-
guistic structures which contain the subtree. To-
gether, hidden features of a constituent capture its
structural linguistic information.

In addition, each hidden layer can be extended
to a deep hidden network. For example, a 2-layer
top-down hidden network is given by

Htα,i = ReLU((Ii‖Htα,p)Wtα + btα)

Htβ,i = ReLU((Htα,i‖Htβ,p)Wtβ + btβ)

where tα represents the first top-down hidden
layer and tβ represents the second. Our best
model is tuned to have 3 layers for both directions.

3.4 Forming Consistent Predictions
Given hidden features for every node, our network
computes a probability distribution of named en-

tity classes plus a special non-entity class by an
output layer. For each node i with left sibling l
and right sibling r, the probability distribution Oi
is computed by an output layer:

Oi = σ((Hi‖Hl‖Hr)Wout + bout) (3)

where Hx = Hbot,x + Htop,x, x ∈ {i, l, r}, and
σ(x) = (1 + e−x)−1. If a sibling does not exist,
zero vectors are used as its hidden states. Should
deep hidden layers be deployed, the last hidden
layer is used.

Finally, the system makes predictions for a sen-
tence by collecting the constituents whose most
probable classes are named entity classes. How-
ever, nodes whose ancestors are already predicted
as named entities are ignored to prevent predicting
overlapping named entities.

4 Evaluation

We evaluate our system on OntoNotes 5.0 NER
(Hovy et al., 2006; Pradhan et al., 2013) and ana-
lyze it with several ablation studies. The project
sources are publicly available on https://
github.com/jacobvsdanniel/tf_rnn.
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Split Token NE Constituent
Train 1,088,503 81,828 93.3→ 97.3

Validate 147,724 11,066 92.8→ 97.0
Test 152,728 11,257 92.9→ 97.2

Table 3: Dataset statistics for OntoNotes 5.0.

4.1 Training and Tuning

To train the model, we minimize the cross entropy
loss of the softmax class probabilities in Equation
3 by the Adam optimizer (Kingma and Ba, 2014).
Other details such as hyperparameters are docu-
mented in the supplemental materials as well as
the public repository.

4.2 OntoNotes 5.0 NER

OntoNotes 5.0 annotates 18 types of named enti-
ties for diverse sources of texts. Like other pre-
vious work (Durrett and Klein, 2014; Chiu and
Nichols, 2016), we use the format and the train-
validate-test split provided by CoNLL-2012. In
addition, both gold and auto parses are available.

Table 3 shows the dataset statistics. The last
column shows the percentages of named entities
that correspond to constituents of auto parses be-
fore and after binarization.

Table 1 and Table 2 compare our results with
others on the whole dataset and different sources
respectively. The sample mean, standard devia-
tion, and sample count of BRNN-auto and Chiu
and Nichols’ model are 87.10, 0.14, 3 and 86.41,
0.22, 10 respectively. By one-tailed Welch’s T-
test, the former significantly surpasses the latter
with 99% confidence level (0.000489 p-value).

4.3 Analysis of the Approach

The training and validation sets contain 1,236,227
tokens and 92,894 named entities, of which 90,371
correspond to some constituents of binarized auto
parses. This backs our motivation that more than
97% named entities are linguistic constituents, and
52,729 of them are noun phrases.

Essentially, the constituent-based approach fil-
ters out the other 3% named entities that cross
constituent boundaries (Figure 3), i.e. 3% loss
of recall. We dig into this problem by analyzing
a sequential labeling recurrent network (the sixth
model in Table 1). The simple model performs
reasonably well, but its non-constituent predic-
tions are mostly false positive. In fact, it slightly
improves if all non-constituent predictions are re-

Figure 3: Two sample named entities that cross
different branches of syntax parses.

moved in post-processing, i.e., the precision gain
of focusing on constituents is more significant than
the recall loss. This is one advantage of our system
over other sequential models, which try to learn
and predict non-constituent named entities but do
not perform well.

In addition, to analyze the effects of con-
stituency structures, we test our models with dif-
ferent qualities of parses (gold vs. auto in Table 1).
The significant F1 differences suggest that struc-
tural linguistic information is crucial and can be
learned by our model.

5 Conclusion

We have demonstrated a novel constituent-
based BRNN-CNN for named entity recognition
which successfully utilizes constituency struc-
tures and surpasses the current state-of-the-art on
OntoNotes 5.0 NER. Instead of propagating infor-
mation by word orders as normal recurrent net-
works, the model is able to recursively propa-
gate structural linguistic information to every con-
stituent. Experiments show that when a good
parser is available, the approach will be a good
alternative to traditional sequential labeling token-
based NER.

Named entities that cross constituent bound-
aries are analyzed and we find out that a naı̈ve
sequential labeling model has difficulty predict-
ing them without too many false positives. While
avoiding them is one of the strengths of our model,
generating more consistent parses to reduce this
kind of named entities would be one possible di-
rection for future research.
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Abstract

Today when many practitioners run basic
NLP on the entire web and large-volume
traffic, faster methods are paramount to
saving time and energy costs. Recent
advances in GPU hardware have led to
the emergence of bi-directional LSTMs
as a standard method for obtaining per-
token vector representations serving as in-
put to labeling tasks such as NER (often
followed by prediction in a linear-chain
CRF). Though expressive and accurate,
these models fail to fully exploit GPU par-
allelism, limiting their computational ef-
ficiency. This paper proposes a faster al-
ternative to Bi-LSTMs for NER: Iterated
Dilated Convolutional Neural Networks
(ID-CNNs), which have better capacity
than traditional CNNs for large context
and structured prediction. Unlike LSTMs
whose sequential processing on sentences
of length N requires O(N) time even in
the face of parallelism, ID-CNNs permit
fixed-depth convolutions to run in paral-
lel across entire documents. We describe
a distinct combination of network struc-
ture, parameter sharing and training pro-
cedures that enable dramatic 14-20x test-
time speedups while retaining accuracy
comparable to the Bi-LSTM-CRF. More-
over, ID-CNNs trained to aggregate con-
text from the entire document are even
more accurate while maintaining 8x faster
test time speeds.

1 Introduction

In order to democratize large-scale NLP and in-
formation extraction while minimizing our en-
vironmental footprint, we require fast, resource-

efficient methods for sequence tagging tasks such
as part-of-speech tagging and named entity recog-
nition (NER). Speed is not sufficient of course:
they must also be expressive enough to tolerate the
tremendous lexical variation in input data.

The massively parallel computation facilitated
by GPU hardware has led to a surge of success-
ful neural network architectures for sequence la-
beling (Ling et al., 2015; Ma and Hovy, 2016;
Chiu and Nichols, 2016; Lample et al., 2016).
While these models are expressive and accurate,
they fail to fully exploit the parallelism opportu-
nities of a GPU, and thus their speed is limited.
Specifically, they employ either recurrent neural
networks (RNNs) for feature extraction, or Viterbi
inference in a structured output model, both of
which require sequential computation across the
length of the input.

Instead, parallelized runtime independent of the
length of the sequence saves time and energy
costs, maximizing GPU resource usage and min-
imizing the amount of time it takes to train and
evaluate models. Convolutional neural networks
(CNNs) provide exactly this property (Kim, 2014;
Kalchbrenner et al., 2014). Rather than compos-
ing representations incrementally over each token
in a sequence, they apply filters in parallel across
the entire sequence at once. Their computational
cost grows with the number of layers, but not the
input size, up to the memory and threading limita-
tions of the hardware. This provides, for example,
audio generation models that can be trained in par-
allel (van den Oord et al., 2016).

Despite the clear computational advantages of
CNNs, RNNs have become the standard method
for composing deep representations of text. This is
because a token encoded by a bidirectional RNN
will incorporate evidence from the entire input se-
quence, but the CNN’s representation is limited by

2670



the effective input width1 of the network: the size
of the input context which is observed, directly
or indirectly, by the representation of a token at
a given layer in the network. Specifically, in a
network composed of a series of stacked convo-
lutional layers of convolution width w, the num-
ber r of context tokens incorporated into a to-
ken’s representation at a given layer l, is given by
r = l(w − 1) + 1. The number of layers required
to incorporate the entire input context grows lin-
early with the length of the sequence. To avoid this
scaling, one could pool representations across the
sequence, but this is not appropriate for sequence
labeling, since it reduces the output resolution of
the representation.

In response, this paper presents an application
of dilated convolutions (Yu and Koltun, 2016) for
sequence labeling (Figure 1). For dilated convo-
lutions, the effective input width can grow expo-
nentially with the depth, with no loss in resolu-
tion at each layer and with a modest number of
parameters to estimate. Like typical CNN layers,
dilated convolutions operate on a sliding window
of context over the sequence, but unlike conven-
tional convolutions, the context need not be con-
secutive; the dilated window skips over every dila-
tion width d inputs. By stacking layers of dilated
convolutions of exponentially increasing dilation
width, we can expand the size of the effective input
width to cover the entire length of most sequences
using only a few layers: The size of the effective
input width for a token at layer l is now given by
2l+1−1. More concretely, just four stacked dilated
convolutions of width 3 produces token represen-
tations with a n effective input width of 31 tokens
– longer than the average sentence length (23) in
the Penn TreeBank.

Our overall iterated dilated CNN architecture
(ID-CNN) repeatedly applies the same block of di-
lated convolutions to token-wise representations.
This parameter sharing prevents overfitting and
also provides opportunities to inject supervision
on intermediate activations of the network. Simi-
lar to models that use logits produced by an RNN,
the ID-CNN provides two methods for perform-
ing prediction: we can predict each token’s label
independently, or by running Viterbi inference in
a chain structured graphical model.

In experiments on CoNLL 2003 and OntoNotes
1What we call effective input width here is known as the

receptive field in the vision literature, drawing an analogy to
the visual receptive field of a neuron in the retina.

Figure 1: A dilated CNN block with maximum
dilation width 4 and filter width 3. Neurons con-
tributing to a single highlighted neuron in the last
layer are also highlighted.

5.0 English NER, we demonstrate significant
speed gains of our ID-CNNs over various recur-
rent models, while maintaining similar F1 perfor-
mance. When performing prediction using inde-
pendent classification, the ID-CNN consistently
outperforms a bidirectional LSTM (Bi-LSTM),
and performs on par with inference in a CRF
with logits from a Bi-LSTM (Bi-LSTM-CRF). As
an extractor of per-token logits for a CRF, our
model out-performs the Bi-LSTM-CRF. We also
apply ID-CNNs to entire documents, where inde-
pendent token classification is as accurate as the
Bi-LSTM-CRF while decoding almost 8× faster.
The clear accuracy gains resulting from incorpo-
rating broader context suggest that these mod-
els could similarly benefit many other context-
sensitive NLP tasks which have until now been
limited by the computational complexity of exist-
ing context-rich models.2

2 Background

2.1 Conditional Probability Models for
Tagging

Let x = [x1, . . . , xT ] be our input text and y =
[y1, . . . , yT ] be per-token output tags. Let D be
the domain size of each yi. We predict the most
likely y, given a conditional model P (y|x).

This paper considers two factorizations of the
conditional distribution. First, we have

P (y|x) =
T∏

t=1

P (yt|F (x)), (1)

where the tags are conditionally independent given
some features for x. Given these features, O(D)
prediction is simple and parallelizable across the

2Our implementation in TensorFlow (Abadi et al.,
2015) is available at: https://github.com/iesl/
dilated-cnn-ner
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length of the sequence. However, feature extrac-
tion may not necessarily be parallelizable. For
example, RNN-based features require iterative
passes along the length of x.

We also consider a linear-chain CRF model that
couples all of y together:

P (y|x) = 1

Zx

T∏

t=1

ψt(yt|F (x))ψp(yt, yt−1), (2)

where ψt is a local factor, ψp is a pairwise factor
that scores consecutive tags, and Zx is the parti-
tion function (Lafferty et al., 2001). To avoid over-
fitting, ψp does not depend on the timestep t or
the input x in our experiments. Prediction in this
model requires global search using the O(D2T )
Viterbi algorithm.

CRF prediction explicitly reasons about inter-
actions among neighboring output tags, whereas
prediction in the first model compiles this reason-
ing into the feature extraction step (Liang et al.,
2008). The suitability of such compilation de-
pends on the properties and quantity of the data.
While CRF prediction requires non-trivial search
in output space, it can guarantee that certain output
constraints, such as for IOB tagging (Ramshaw
and Marcus, 1999), will always be satisfied. It
may also have better sample complexity, as it im-
poses more prior knowledge about the structure
of the interactions among the tags (London et al.,
2016). However, it has worse computational com-
plexity than independent prediction.

3 Dilated Convolutions

CNNs in NLP are typically one-dimensional, ap-
plied to a sequence of vectors representing tokens
rather than to a two-dimensional grid of vectors
representing pixels. In this setting, a convolutional
neural network layer is equivalent to applying an
affine transformation, Wc to a sliding window of
width r tokens on either side of each token in the
sequence. Here, and throughout the paper, we do
not explicitly write the bias terms in affine trans-
formations. The convolutional operator applied to
each token xt with output ct is defined as:

ct =Wc

r⊕

k=0

xt±k, (3)

where ⊕ is vector concatenation.
Dilated convolutions perform the same opera-

tion, except rather than transforming adjacent in-

puts, the convolution is defined over a wider ef-
fective input width by skipping over δ inputs at a
time, where δ is the dilation width. We define the
dilated convolution operator:

ct =Wc

r⊕

k=0

xt±kδ. (4)

A dilated convolution of width 1 is equivalent to
a simple convolution. Using the same number of
parameters as a simple convolution with the same
radius (i.e. Wc has the same dimensionality), the
δ > 1 dilated convolution incorporates broader
context into the representation of a token than a
simple convolution.

3.1 Multi-Scale Context Aggregation

We can leverage the ability of dilated convolutions
to incorporate global context without losing im-
portant local information by stacking dilated con-
volutions of increasing width. First described for
pixel classification in computer vision, Yu and
Koltun (2016) achieve state-of-the-art results on
image segmentation benchmarks by stacking di-
lated convolutions with exponentially increasing
rates of dilation, a technique they refer to as multi-
scale context aggregation. By feeding the out-
puts of each dilated convolution as the input to the
next, increasingly non-local information is incor-
porated into each pixel’s representation. Perform-
ing a dilation-1 convolution in the first layer en-
sures that no pixels within the effective input width
of any pixel are excluded. By doubling the dila-
tion width at each layer, the size of the effective
input width grows exponentially while the number
of parameters grows only linearly with the number
of layers, so a pixel representation quickly incor-
porates rich global evidence from the entire im-
age.

4 Iterated Dilated CNNs

Stacked dilated CNNs can easily incorporate
global information from a whole sentence or docu-
ment. For example, with a radius of 1 and 4 layers
of dilated convolutions, the effective input width
of each token is width 31, which exceeds the av-
erage sentence length (23) in the Penn TreeBank
corpus. With a radius of size 2 and 8 layers of
dilated convolutions, the effective input width ex-
ceeds 1,000 tokens, long enough to encode a full
newswire document.
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Unfortunately, simply increasing the depth of
stacked dilated CNNs causes considerable over-
fitting in our experiments. In response, we present
Iterated Dilated CNNs (ID-CNNs), which instead
apply the same small stack of dilated convolutions
multiple times, each iterate taking as input the re-
sult of the last application. Repeatedly employing
the same parameters in a recurrent fashion pro-
vides both broad effective input width and desir-
able generalization capabilities. We also obtain
significant accuracy gains with a training objec-
tive that strives for accurate labeling after each it-
erate, allowing follow-on iterations to observe and
resolve dependency violations.

4.1 Model Architecture

The network takes as input a sequence of T vec-
tors xt, and outputs a sequence of per-class scores
ht, which serve either as the local conditional dis-
tributions of Eqn. (1) or the local factors ψt of
Eqn. (2).

We denote the jth dilated convolutional layer of
dilation width δ as D(j)

δ . The first layer in the net-
work is a dilation-1 convolution D(0)

1 that trans-
forms the input to a representation it:

it = D
(0)
1 xt (5)

Next, Lc layers of dilated convolutions of expo-
nentially increasing dilation width are applied to
it, folding in increasingly broader context into the
embedded representation of xt at each layer. Let
r() denote the ReLU activation function (Glorot
et al., 2011). Beginning with ct

(0) = it we define
the stack of layers with the following recurrence:

ct
(j) = r

(
D

(j−1)
2Lc−1ct

(j−1)
)

(6)

and add a final dilation-1 layer to the stack:

ct
(Lc+1) = r

(
D

(Lc)
1 ct

(Lc)
)

(7)

We refer to this stack of dilated convolutions as a
block B(·), which has output resolution equal to
its input resolution. To incorporate even broader
context without over-fitting, we avoid making B
deeper, and instead iteratively apply B Lb times,
introducing no extra parameters. Starting with
bt

(1) = B (it):

bt
(k) = B

(
bt

(k−1)
)

(8)

We apply a simple affine transformationWo to this
final representation to obtain per-class scores for
each token xt:

ht
(Lb) =Wobt

(Lb) (9)

4.2 Training
Our main focus is to apply the ID-CNN an en-
coder to produce per-token logits for the first con-
ditional model described in Sec. 2.1, where tags
are conditionally independent given deep features,
since this will enable prediction that is paralleliz-
able across the length of the input sequence. Here,
maximum likelihood training is straightforward
because the likelihood decouples into the sum of
the likelihoods of independent logistic regression
problems for every tag, with natural parameters
given by Eqn. (9):

1

T

T∑

t=1

logP (yt | ht
(Lb)) (10)

We can also use the ID-CNN as logits for
the CRF model (Eqn. (2)), where the partition
function and its gradient are computed using the
forward-backward algorithm.

We next present an alternative training method
that helps bridge the gap between these two tech-
niques. Sec. 2.1 identifies that the CRF has prefer-
able sample complexity and accuracy since pre-
diction directly reasons in the space of structured
outputs. In response, we compile some of this rea-
soning in output space into ID-CNN feature ex-
traction. Instead of explicit reasoning over output
labels during inference, we train the network such
that each block is predictive of output labels. Sub-
sequent blocks learn to correct dependency viola-
tions of their predecessors, refining the final se-
quence prediction.

To do so, we first define predictions of the
model after each of the Lb applications of the
block. Let ht

(k) be the result of applying the ma-
trix Wo from (9) to bt

(k), the output of block k.
We minimize the average of the losses for each
application of the block:

1

Lb

Lb∑

k=1

1

T

T∑

t=1

logP (yt | ht
(k)). (11)

By rewarding accurate predictions after each
application of the block, we learn a model where
later blocks are used to refine initial predictions.
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The loss also helps reduce the vanishing gradi-
ent problem (Hochreiter, 1998) for deep architec-
tures. Such an approach has been applied in a va-
riety of contexts for training very deep networks
in computer vision (Romero et al., 2014; Szegedy
et al., 2015; Lee et al., 2015; Gülçehre and Bengio,
2016), but not to our knowledge in NLP.

We apply dropout (Srivastava et al., 2014) to the
raw inputs xt and to each block’s output bt

(b) to
help prevent overfitting. The version of dropout
typically used in practice has the undesirable prop-
erty that the randomized predictor used at train
time differs from the fixed one used at test time.
Ma et al. (2017) present dropout with expectation-
linear regularization, which explicitly regularizes
these two predictors to behave similarly. All of our
best reported results include such regularization.
This is the first investigation of the technique’s ef-
fectiveness for NLP, including for RNNs. We en-
courage its further application.

5 Related work

The state-of-the art models for sequence labeling
include an inference step that searches the space
of possible output sequences of a chain-structured
graphical model, or approximates this search with
a beam (Collobert et al., 2011; Weiss et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016; Chiu and
Nichols, 2016). These outperform similar systems
that use the same features, but independent local
predictions. On the other hand, the greedy sequen-
tial prediction (Daumé III et al., 2009) approach
of Ratinov and Roth (2009), which employs lex-
icalized features, gazetteers, and word clusters,
outperforms CRFs with similar features.

LSTMs (Hochreiter and Schmidhuber, 1997)
were used for NER as early as the CoNLL
shared task in 2003 (Hammerton, 2003; Tjong
Kim Sang and De Meulder, 2003). More re-
cently, a wide variety of neural network architec-
tures for NER have been proposed. Collobert et al.
(2011) employ a one-layer CNN with pre-trained
word embeddings, capitalization and lexicon fea-
tures, and CRF-based prediction. Huang et al.
(2015) achieved state-of-the-art accuracy on part-
of-speech, chunking and NER using a Bi-LSTM-
CRF. Lample et al. (2016) proposed two mod-
els which incorporated Bi-LSTM-composed char-
acter embeddings alongside words: a Bi-LSTM-
CRF, and a greedy stack LSTM which uses a
simple shift-reduce grammar to compose words

into labeled entities. Their Bi-LSTM-CRF ob-
tained the state-of-the-art on four languages with-
out word shape or lexicon features. Ma and Hovy
(2016) use CNNs rather than LSTMs to compose
characters in a Bi-LSTM-CRF, achieving state-of-
the-art performance on part-of-speech tagging and
CoNLL NER without lexicons. Chiu and Nichols
(2016) evaluate a similar network but propose a
novel method for encoding lexicon matches, pre-
senting results on CoNLL and OntoNotes NER.
Yang et al. (2016) use GRU-CRFs with GRU-
composed character embeddings of words to train
a single network on many tasks and languages.

In general, distributed representations for text
can provide useful generalization capabilities for
NER systems, since they can leverage unsuper-
vised pre-training of distributed word representa-
tions (Turian et al., 2010; Collobert et al., 2011;
Passos et al., 2014). Though our models would
also likely benefit from additional features such as
character representations and lexicons, we focus
on simpler models which use word-embeddings
alone, leaving more elaborate input representa-
tions to future work.

In these NER approaches, CNNs were used for
low-level feature extraction that feeds into alter-
native architectures. Overall, end-to-end CNNs
have mainly been used in NLP for sentence classi-
fication, where the output representation is lower
resolution than that of the input Kim (2014);
Kalchbrenner et al. (2014); Zhang et al. (2015);
Toutanova et al. (2015). Lei et al. (2015) present
a CNN variant where convolutions adaptively skip
neighboring words. While the flexibility of this
model is powerful, its adaptive behavior is not
well-suited to GPU acceleration.

Our work draws on the use of dilated convolu-
tions for image segmentation in the computer vi-
sion community (Yu and Koltun, 2016; Chen et al.,
2015). Similar to our block, Yu and Koltun (2016)
employ a context-module of stacked dilated convo-
lutions of exponentially increasing dilation width.
Dilated convolutions were recently applied to the
task of speech generation (van den Oord et al.,
2016), and concurrent with this work, Kalchbren-
ner et al. (2016) posted a pre-print describing the
similar ByteNet network for machine translation
that uses dilated convolutions in the encoder and
decoder components. Our basic model architec-
ture is similar to that of the ByteNet encoder, ex-
cept that the inputs to our model are tokens and
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not bytes. Additionally, we present a novel loss
and parameter sharing scheme to facilitate training
models on much smaller datasets than those used
by Kalchbrenner et al. (2016). We are the first to
use dilated convolutions for sequence labeling.

The broad effective input width of the ID-CNN
helps aggregate document-level context. Ratinov
and Roth (2009) incorporate document context in
their greedy model by adding features based on
tagged entities within a large, fixed window of to-
kens. Prior work has also posed a structured model
that couples predictions across the whole docu-
ment (Bunescu and Mooney, 2004; Sutton and
McCallum, 2004; Finkel et al., 2005).

6 Experimental Results

We describe experiments on two benchmark En-
glish named entity recognition datasets. On
CoNLL-2003 English NER, our ID-CNN per-
forms on par with a Bi-LSTM not only when used
to produce per-token logits for structured infer-
ence, but the ID-CNN with greedy decoding also
performs on-par with the Bi-LSTM-CRF while
running at more than 14 times the speed. We also
observe a performance boost in almost all models
when broadening the context to incorporate entire
documents, achieving an average F1 of 90.65 on
CoNLL-2003, out-performing the sentence-level
model while still decoding at nearly 8 times the
speed of the Bi-LSTM-CRF.

6.1 Data and Evaluation

We evaluate using labeled data from the CoNLL-
2003 shared task (Tjong Kim Sang and De Meul-
der, 2003) and OntoNotes 5.0 (Hovy et al., 2006;
Pradhan et al., 2006). Following previous work,
we use the same OntoNotes data split used for
co-reference resolution in the CoNLL-2012 shared
task (Pradhan et al., 2012). For both datasets, we
convert the IOB boundary encoding to BILOU as
previous work found this encoding to result in im-
proved performance (Ratinov and Roth, 2009). As
in previous work we evaluate the performance of
our models using segment-level micro-averaged
F1 score. Hyperparameters that resulted in the
best performance on the validation set were se-
lected via grid search. A more detailed descrip-
tion of the data, evaluation, optimization and data
pre-processing can be found in the Appendix.

6.2 Baselines

We compare our ID-CNN against strong LSTM
and CNN baselines: a Bi-LSTM with local de-
coding, and one with CRF decoding (Bi-LSTM-
CRF). We also compare against a non-dilated
CNN architecture with the same number of con-
volutional layers as our dilated network (4-layer
CNN) and one with enough layers to incorporate
an effective input width of the same size as that
of the dilated network (5-layer CNN) to demon-
strate that the dilated convolutions more effec-
tively aggregate contextual information than sim-
ple convolutions (i.e. using fewer parameters). We
also compare our document-level ID-CNNs to a
baseline which does not share parameters between
blocks (noshare) and one that computes loss only
at the last block, rather than after every iterated
block of dilated convolutions (1-loss).

We do not compare with deeper or more elab-
orate CNN architectures for a number of reasons:
1) Fast train and test performance are highly desir-
able for NLP practitioners, and deeper models re-
quire more computation time 2) more complicated
models tend to over-fit on this relatively small
dataset and 3) most accurate deep CNN architec-
tures repeatedly up-sample and down-sample the
inputs. We do not compare to stacked LSTMs
for similar reasons — a single LSTM is already
slower than a 4-layer CNN. Since our task is se-
quence labeling, we desire a model that maintains
the token-level resolution of the input, making di-
lated convolutions an elegant solution.

6.3 CoNLL-2003 English NER

6.3.1 Sentence-level prediction
Table 1 lists F1 scores of models predicting with
sentence-level context on CoNLL-2003. For mod-
els that we trained, we report F1 and standard
deviation obtained by averaging over 10 random
restarts. The Viterbi-decoding Bi-LSTM-CRF
and ID-CNN-CRF and greedy ID-CNN obtain
the highest average scores, with the ID-CNN-
CRF outperforming the Bi-LSTM-CRF by 0.11
points of F1 on average, and the Bi-LSTM-CRF
out-performing the greedy ID-CNN by 0.11 as
well. Our greedy ID-CNN outperforms the Bi-
LSTM and the 4-layer CNN, which uses the same
number of parameters as the ID-CNN, and per-
forms similarly to the 5-layer CNN which uses
more parameters but covers the same effective in-
put width. All CNN models out-perform the Bi-

2675



Model F1
Ratinov and Roth (2009) 86.82
Collobert et al. (2011) 86.96
Lample et al. (2016) 90.33
Bi-LSTM 89.34 ± 0.28
4-layer CNN 89.97 ± 0.20
5-layer CNN 90.23 ± 0.16
ID-CNN 90.32 ± 0.26
Collobert et al. (2011) 88.67
Passos et al. (2014) 90.05
Lample et al. (2016) 90.20
Bi-LSTM-CRF (re-impl) 90.43 ± 0.12
ID-CNN-CRF 90.54 ± 0.18

Table 1: F1 score of models observing sentence-
level context. No models use character embed-
dings or lexicons. Top models are greedy, bottom
models use Viterbi inference .

LSTM when paired with greedy decoding, sug-
gesting that CNNs are better token encoders than
Bi-LSTMs for independent logistic regression.
When paired with Viterbi decoding, our ID-CNN
performs on par with the Bi-LSTM, showing that
the ID-CNN is also an effective token encoder for
structured inference.

Our ID-CNN is not only a better token encoder
than the Bi-LSTM but it is also faster. Table 2
lists relative decoding times on the CoNLL devel-
opment set, compared to the Bi-LSTM-CRF. We
report decoding times using the fastest batch size
for each method.3

The ID-CNN model decodes nearly 50% faster
than the Bi-LSTM. With Viterbi decoding, the gap
closes somewhat but the ID-CNN-CRF still comes
out ahead, about 30% faster than the Bi-LSTM-
CRF. The most vast speed improvements come
when comparing the greedy ID-CNN to the Bi-
LSTM-CRF – our ID-CNN is more than 14 times
faster than the Bi-LSTM-CRF at test time, with
comparable accuracy. The 5-layer CNN, which
observes the same effective input width as the ID-
CNN but with more parameters, performs at about
the same speed as the ID-CNN in our experiments.
With a better implementation of dilated convolu-
tions than currently included in TensorFlow, we
would expect the ID-CNN to be notably faster than

3For each model, we tried batch sizes b = 2i with i =
0...11. At scale, speed should increase with batch size, as we
could compose each batch of as many sentences of the same
length as would fit in GPU memory, requiring no padding and
giving CNNs and ID-CNNs even more of a speed advantage.

Model Speed
Bi-LSTM-CRF 1×
Bi-LSTM 9.92×
ID-CNN-CRF 1.28×
5-layer CNN 12.38×
ID-CNN 14.10×

Table 2: Relative test-time speed of sentence mod-
els, using the fastest batch size for each model.5

Model w/o DR w/ DR
Bi-LSTM 88.89 ± 0.30 89.34 ± 0.28
4-layer CNN 89.74 ± 0.23 89.97 ± 0.20
5-layer CNN 89.93 ± 0.32 90.23 ± 0.16
Bi-LSTM-CRF 90.01 ± 0.23 90.43 ± 0.12
4-layer ID-CNN 89.65 ± 0.30 90.32 ± 0.26

Table 3: Comparison of models trained with and
without expectation-linear dropout regularization
(DR). DR improves all models.

the 5-layer CNN.
We emphasize the importance of the dropout

regularizer of Ma et al. (2017) in Table 3,
where we observe increased F1 for every model
trained with expectation-linear dropout regulariza-
tion. Dropout is important for training neural net-
work models that generalize well, especially on
relatively small NLP datasets such as CoNLL-
2003. We recommend this regularizer as a sim-
ple and helpful tool for practitioners training neu-
ral networks for NLP.

6.3.2 Document-level prediction
In Table 4 we show that adding document-level
context improves every model on CoNLL-2003.
Incorporating document-level context further im-
proves our greedy ID-CNN model, attaining 90.65
average F1. We believe this model sees greater
improvement with the addition of document-level
context than the Bi-LSTM-CRF due to the ID-
CNN learning a feature function better suited for
representing broad context, in contrast with the Bi-
LSTM which, though better than a simple RNN at
encoding long memories of sequences, may reach
its limit when provided with sequences more than
1,000 tokens long such as entire documents.

We also note that our combination of training
objective (Eqn. 11) and tied parameters (Eqn.

5Our ID-CNN could see up to 18× speed-up with a less
naive implementation than is included in TensorFlow as of
this writing.
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Model F1
4-layer ID-CNN (sent) 90.32 ± 0.26
Bi-LSTM-CRF (sent) 90.43 ± 0.12
4-layer CNN × 3 90.32 ± 0.32
5-layer CNN × 3 90.45 ± 0.21
Bi-LSTM 89.09 ± 0.19
Bi-LSTM-CRF 90.60 ± 0.19
ID-CNN 90.65 ± 0.15

Table 4: F1 score of models trained to predict
document-at-a-time. Our greedy ID-CNN model
performs as well as the Bi-LSTM-CRF.

Model F1
ID-CNN noshare 89.81 ± 0.19
ID-CNN 1-loss 90.06 ± 0.19
ID-CNN 90.65 ± 0.15

Table 5: Comparing ID-CNNs with 1) back-
propagating loss only from the final layer (1-loss)
and 2) untied parameters across blocks (noshare)

8) more effectively learns to aggregate this broad
context than a vanilla cross-entropy loss or deep
CNN back-propagated from the final neural net-
work layer. Table 5 compares models trained to in-
corporate entire document context using the docu-
ment baselines described in Section 6.2.

In Table 6 we show that, in addition to being
more accurate, our ID-CNN model is also much
faster than the Bi-LSTM-CRF when incorporating
context from entire documents, decoding at almost
8 times the speed. On these long sequences, it also
tags at more than 4.5 times the speed of the greedy
Bi-LSTM, demonstrative of the benefit of our ID-
CNNs context-aggregating computation that does
not depend on the length of the sequence.

6.4 OntoNotes 5.0 English NER

We observe similar patterns on OntoNotes as we
do on CoNLL. Table 7 lists overall F1 scores of
our models compared to those in the existing liter-
ature. The greedy Bi-LSTM out-performs the lex-

Model Speed
Bi-LSTM-CRF 1×
Bi-LSTM 4.60×
ID-CNN 7.96×

Table 6: Relative test-time speed of document
models (fastest batch size for each model).

Model F1 Speed
Ratinov and Roth (2009)6 83.45
Durrett and Klein (2014) 84.04
Chiu and Nichols (2016) 86.19 ± 0.25
Bi-LSTM-CRF 86.99 ± 0.22 1×
Bi-LSTM-CRF-Doc 86.81 ± 0.18 1.32×
Bi-LSTM 83.76 ± 0.10 24.44×
ID-CNN-CRF (1 block) 86.84 ± 0.19 1.83×
ID-CNN-Doc (3 blocks) 85.76 ± 0.13 21.19×
ID-CNN (3 blocks) 85.27 ± 0.24 13.21×
ID-CNN (1 block) 84.28 ± 0.10 26.01×

Table 7: F1 score of sentence and document mod-
els on OntoNotes.

icalized greedy model of Ratinov and Roth (2009),
and our ID-CNN out-performs the Bi-LSTM as
well as the more complex model of Durrett and
Klein (2014) which leverages the parallel co-
reference annotation available in the OntoNotes
corpus to predict named entities jointly with en-
tity linking and co-reference. Our greedy model
is out-performed by the Bi-LSTM-CRF reported
in Chiu and Nichols (2016) as well as our own
re-implementation, which appears to be the new
state-of-the-art on this dataset.

The gap between our greedy model and those
using Viterbi decoding is wider than on CoNLL.
We believe this is due to the more diverse set
of entities in OntoNotes, which also tend to be
much longer – the average length of a multi-token
named entity segment in CoNLL is about one to-
ken shorter than in OntoNotes. These long entities
benefit more from explicit structured constraints
enforced in Viterbi decoding. Still, our ID-CNN
outperforms all other greedy methods, achieving
our goal of learning a better token encoder for
structured prediction.

Incorporating greater context significantly
boosts the score of our greedy model on
OntoNotes, whereas the Bi-LSTM-CRF performs
more poorly. In Table 7, we also list the F1
of our ID-CNN model and the Bi-LSTM-CRF
model trained on entire document context. For the
first time, we see the score decrease when more
context is added to the Bi-LSTM-CRF model,
though the ID-CNN, whose sentence model a
lower score than that of the Bi-LSTM-CRF,
sees an increase. We believe the decrease in
the Bi-LSTM-CRF model occurs because of the

6Results as reported in Durrett and Klein (2014) as this
data split did not exist at the time of publication.
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nature of the OntoNotes dataset compared to
CoNLL-2003: CoNLL-2003 contains a partic-
ularly high proportion of ambiguous entities,7

perhaps leading to more benefit from document
context that helps with disambiguation. In this
scenario, adding the wider context may just add
noise to the high-scoring Bi-LSTM-CRF model,
whereas the less accurate dilated model can still
benefit from the refined predictions of the iterated
dilated convolutions.

7 Conclusion

We present iterated dilated convolutional neural
networks, fast token encoders that efficiently ag-
gregate broad context without losing resolution.
These provide impressive speed improvements for
sequence labeling, particularly when processing
entire documents at a time. In the future we hope
to extend this work to NLP tasks with richer struc-
tured output, such as parsing.
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Abstract

For accurate entity linking, we need to cap-
ture various information aspects of an en-
tity, such as its description in a KB, con-
texts in which it is mentioned, and struc-
tured knowledge. Additionally, a linking
system should work on texts from different
domains without requiring domain-specific
training data or hand-engineered features.

In this work we present a neural, mod-
ular entity linking system that learns a
unified dense representation for each en-
tity using multiple sources of information,
such as its description, contexts around
its mentions, and its fine-grained types.
We show that the resulting entity link-
ing system is effective at combining these
sources, and performs competitively, some-
times out-performing current state-of-the-
art systems across datasets, without requir-
ing any domain-specific training data or
hand-engineered features. We also show
that our model can effectively “embed” en-
tities that are new to the KB, and is able to
link its mentions accurately.

1 Introduction

Entity linking, the task of identifying the real-world
entity a mention in text refers to, provides the abil-
ity to ground text to existing knowledge bases, and
thus supports multiple natural language understand-
ing, and knowledge acquisition tasks.

A key challenge for successful entity linking
is the need to capture semantic and background
information at various levels of granularity. For
example, to resolve the mention “India” in “India
plays a match in England today” to the correct en-
tity, India cricket team, one needs to use

∗Work performed while these authors were at UIUC.

mention-level context to identify that the sentence
refers to a sports team (using plays and match),
use document-level context to identify the sport,
and information about the entity to realize that
India cricket team is a sports team and the
string “India” may refer to it. The problem has
been studied extensively by employing a variety
of machine learning, and inference methods, in-
cluding a pipeline of deterministic modules (Ling
et al., 2015), simple classifiers (Cucerzan, 2007;
Ratinov et al., 2011), graphical models (Durrett and
Klein, 2014), classifiers augmented with ILP infer-
ence (Cheng and Roth, 2013), and more recently,
neural approaches (He et al., 2013; Sun et al., 2015;
Francis-Landau et al., 2016).

We present a neural approach to linking1 that
learns a dense unified representation of entities by
encoding the semantic and background informa-
tion from multiple sources – encyclopedic entity
descriptions, entity-type information, and the con-
texts the entity occurs in – thus capturing differ-
ent aspects of the “meaning” of an entity. Hence,
we overcome the shortcomings of several existing
models that do not capture all these aspects. For
example, methods, such as Vinculum (Ling et al.,
2015), do not make use of the local context of the
mention (“plays” and “match”) while others, such
as Berkeley-CNN (Francis-Landau et al., 2016), do
not take entity-types into account. Our proposed
model uses compositional training to ensure that
the learned entity representation captures the vari-
ous information sources available to it, making it
quite modular. Specifically, we introduce encoders
for the different sources of information about the
entity, and encourage the entity embedding to be
similar to all of the encoded representations.

A key requirement for information extraction
systems is their ability to work across texts from

1 The source code and the datasets are available at
https://nitishgupta.github.io/neural-el
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various domains. Some methods (Francis-Landau
et al., 2016; Nguyen et al., 2016; Hoffart et al.,
2011) train parameters on domain-specific linked
data, thus hampering their ability to generalize to
new domains. By only making use of indirect su-
pervision that is available in Wikipedia/Freebase,
we refrain from using domain specific training data,
and produce a domain-independent linking system.
Our comprehensive evaluation on recent entity link-
ing benchmarks reveals that the resulting entity
linker compares favorably to state-of-the-art sys-
tems across datasets, even those that have hand-
engineered features or use dataset-specific train-
ing. We hence show that our model not only lever-
ages all the available information for each entity
effectively, but is also robust to missing informa-
tion, such as entities without links/description in
Wikipedia or with incomplete entity types.

In the real-world, new entities are regularly
added to the knowledge bases, thus, it is impor-
tant for any entity linking system to be extendable
to such entities, especially the ones that do not have
any existing linked mentions. By the virtue of our
model’s modular nature, it can easily incorporate
new entities not present during training. Specifi-
cally, we show that our model can perform accurate
linking for new entities, without having to re-train
the existing entity representations, only using their
description and types.

2 Related Work

Existing approaches for entity linking differ in sev-
eral ways, including the machine learning models,
the types of training data, and the kinds of informa-
tion used about the entities.

Many existing approaches use links and informa-
tion from Wikipedia as the only source of supervi-
sion to build the entity linking system. These ap-
proaches use sparse entity and mention-context rep-
resentations, such as, based on the Wikipedia cate-
gories (Cucerzan, 2007), weighted bag of words in
the entity description and mention context (Kulka-
rni et al., 2009; Ratinov et al., 2011), hand crafted
features based on partial string matches, punctua-
tions in entity name (McNamee et al., 2009), etc.
Heuristics (Mihalcea and Csomai, 2007) or linear
classifiers (Bunescu and Pasca, 2006; Cucerzan,
2007; Ratinov et al., 2011; McNamee et al., 2009)
are used over these features to rank entity candi-
dates for linking. Recently, neural models have
been proposed as a way to support better general-

ization over the sparse features; e.g., using feed-
forward networks on bag-of-words of the entity
context (He et al., 2013), or using entity-class in-
formation from KB (Sun et al., 2015).

Some models ignore the entity’s description on
Wikipedia, but rather, only rely on the context from
links to learn entity representations (Lazic et al.,
2015), or use a pipeline of existing annotators to
filter entity candidates (Ling et al., 2015). Our
model is similar to these approaches by only using
information from Wikipedia; however, we do not
use hand-crafted features, and use multiple sources
of information such as local and document-level
entity context, KB descriptions, and entity types,
to learn explicit entity representation.

Few recent entity linking approaches (Hoffart
et al., 2011; Durrett and Klein, 2014; Nguyen et al.,
2016; Francis-Landau et al., 2016) use manually-
annotated domain specific training data to learn
the linking system. AIDA (Hoffart et al., 2011),
for example, evaluate their system on test set
from CoNLL-YAGO dataset but also train on the
training data from the same dataset. Berkeley-
CNN (Francis-Landau et al., 2016), that uses CNNs
operating over different granularity of entity and
mention contexts, also follows this training regime
and trains separate models for each dataset. Such
approaches can be prohibitive in many applications
as it encourages the model to over-fit to the pecu-
liarities of different datasets and domains.

Other forms of information, apart from descrip-
tions, and context from linked data, are also uti-
lized for linking. Many approaches perform joint
inference over the linking decisions in a docu-
ment (Milne and Witten, 2008; Ratinov et al., 2011;
Hoffart et al., 2011; Globerson et al., 2016), iden-
tify mentions that do not link to any existing en-
tity (NIL) (Bunescu and Pasca, 2006; Ratinov
et al., 2011), and cluster NIL-mentions (Wick et al.,
2013; Lazic et al., 2015) to discover new entities.
Few approaches jointly model entity linking, and
other related NLP tasks to improve linking, such as,
coreference resolution (Hajishirzi et al., 2013), rela-
tional inference (Cheng and Roth, 2013), and joint
coreference with typing (Durrett and Klein, 2014).
In our model, we use fine-grained type information
of the entity as an auxiliary distant supervision to
improve mention-context representation but do not
use intermediate typing decisions for linking.

Many approaches that learn entity embeddings
for other applications have also been proposed,
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Figure 1: Overview of the Model (§ 3): Each entity has a Wikipedia description, linked mentions in
Wikipedia (only one shown), and fine-grained types from Freebase (only one shown). We encode local
and document-level mention contexts (§ 3.1), entity-description (§ 3.2), and fine-grained entity-types
(§ 3.3 & § 3.4). Joint optimization (§ 3.5) over these provides the unified entity representations {ve}.

such as, from the structured KB for KB comple-
tion (Bordes et al., 2011, 2013; Yang et al., 2014;
Lin et al., 2015), or from both structured KBs, and
text for relation extraction (Toutanova et al., 2016;
Verga et al., 2016a). However, since it is not trivial
for these models to incorporate new entities to the
KB, few recent approaches alleviate this issue by
representing entities as a composition of words in
their names (Socher et al., 2013), relations they par-
ticipate in (Verga et al., 2016b), or their types (Das
et al., 2017), but do not use multiple sources of
information jointly. In our work, we use struc-
tured knowledge (types) as well as unstructured
knowledge (description and context) to learn en-
tity embeddings for entity linking, and show that it
extends to new entities.

3 Jointly Embedding Entity Information

Knowledge bases contain different kinds of infor-
mation about entities such as textual description,
linked mentions (in Wikipedia), and types (in Free-
base). For accurate linking, it is often necessary to
combine information from these various sources.
Here, we describe our model that encodes informa-
tion about the set of entities E using dense unified
representation for linking (ve ∈ Rd,∀e ∈ E). In
particular, we use existing mentions in Wikipedia
to encode the context (§ 3.1), textual descriptions
from Wikipedia to encode background information
(§ 3.2), and fine-grained types from Freebase as
structured topical knowledge (§ 3.3). Figure 1 pro-
vides an overview of our model.

3.1 Encoding the Mention Context, C

Consider the example mention in Figure 1 that con-
tains two mentions, “India” and “England”. In
order to disambiguate “India” to the correct entity,
a linking system would need to utilize both the
local context (played and match), and the docu-
ment context (to identify the sport). However, the
model needs to represent context such that the se-
mantics are preserved, e.g. “England” should not
be linked to a sports team even though it shares the
context with “India”. In this section, we describe
how we encode these two types of context, using
a LSTM-based encoder to capture the lexical and
syntactical local-context of a mention (vlocal

m ), and
a feed-forward network to encode the document-
level topical knowledge (vdoc

m ), and combine them
in a single representation for each mention (vm).

Local-Context Encoder Given a mention m in
the sentence s = w1, . . . ,m, . . . , wN , we use
LSTM encoders on the left (w1, . . . ,m) and right
(m, . . . , wN ) contexts of the mention separately,
and then combine it to form the local context
representation of the mention (Fig. 2). More
precisely, we formulate an LSTM as hi, si =
LSTM(ui, hi−1, si−1), ui ∈ Rdw is the input em-
bedding of the i-th token in the sequence, and
hi−1, si−1 ∈ Rl is the previous output and the cell
state of the LSTM, respectively. The left-LSTM
is applied to the sequence (w1, . . . ,m) with the

last output
−→
hlm, while a different right-LSTM is ap-
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Figure 2: Overview of the mention context encoder

plied to the sequence (wN , . . . ,m)2 to produce
←−
hrm.

We concatenate these output [
−→
hlm,
←−
hrm] and pass

it through a single layer feed-forward network3

to produce the local context representation of the
mention (vlocal

m ), where vlocal
m ∈ RDm . Note that

this encoder will produce different representations
for different mentions in the same sentence.

Document-Context Encoder To represent the
document context of a mention m, we use a bag-of-
mention surfaces representation, vD ∈ {0, 1}|VG|,
of the document, similar to Lazic et al. (2015). The
vocabulary VG consists of all mention surfaces seen
in our training data, e.g. USA, Nasser Hussain,
Pearl Jam etc. Such a representation helps cap-
ture the topical and entity coherence information in
the document by utilizing co-occurrence between
entity surface forms. This sparse vector vD of
bag-of-mention surfaces is compressed to a low-
dimensional representation vdoc

m ∈ RDm using a
single layer feed-forward network.

Mention-Context Encoder We combine the lo-
cal (vlocal

m ) and document (vdoc
m ) level context vec-

tors by concatenating them, and passing them
through a single-layer feed-forward network to ob-
tain the mention context embedding vm ∈ Rd. In
order to learn the entity representation ve such that
it encodes all of its mentions’ contexts, we intro-
duce an objective that encourages the context rep-
resentation vm to be similar to ve (where mention
m is a link to entity e), and dissimilar to other can-
didates4. Precisely, we maximize the probability
of predicting the correct entity from the mention-
context vector as Ptext(e|m) = exp (vm·ve)∑

ck∈Cm
exp (vm·vck ) ,

2We reverse the token sequence in the right context so that
right-LSTM starts at the last token and ends at the mention.

3We use rectified linear unit (ReLU) as the non-linear
activation throughout this paper.

4Details on candidate generation in Sec 4

where Cm is the set of candidate entities. Given all
the mentions in Wikipedia, we jointly optimize the
entity representations, and the context encoders by
maximizing the following log-likelihood:

Ltext =
1

M

M∑

i=1

logPtext(em(i) |m(i)) (1)

where m(i) is the ith mention in the linked data,
and em(i) is the entity the mention refers to.

3.2 Encoding Entity Description, D

The textual description about entities in Wikipedia
can provide a useful source of background infor-
mation about the entity, and thus has been used
in many existing linking systems. Given the de-
scription as a sequence of words, we first embed
each word to a dw-dimensional vector resulting
in a sequence of vectors w1, . . . , wn. To encode
this description as a fixed size vector, we use a
Convolution Neural Network (CNN), similar to
Francis-Landau et al. (2016), with global average
pooling, to obtain vedesc ∈ Rd.

In order for the entity representation ve to encode
its description, we use a similar objective as in
the previous section § 3.1, i.e. we maximize the
probability Pdesc(e|vedesc), and learn the parameters
by maximizing the log-likelihood Ldesc, defined
similarly as (1).

3.3 Encoding Fine-Grained Types, E

Fine-grained types provide a source of structured
information that is quite readily available, often
more easily than the description or linked data (e.g.
Freebase contains tens of millions of entities with
types but Wikipedia only contains descriptions for
a few million). These types have been shown to be
quite useful for linking (Ling et al., 2015), since an
accurate prediction of types from the mention, and
its match with the entity types can often resolve
many challenging ambiguities.

Here, we focus on being able to represent the
different types at the entity level, leaving mention-
level type information to the next section. Each
entity has multiple types Te ⊂ T from the type set
T introduced by Ling and Weld (2012). We com-
pute the probability P (t|e) of type t being relevant
to entity e as σ(vt · ve), where σ is the sigmoid
function, ve ∈ Rd is the entity representation, and
vt ∈ Rd is the embedding of type t in T . We maxi-
mize the log-likelihood of the type information to
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jointly learn entity and type representations:

Letype =
1

|E|
∑

e∈E
log

∏

t∈Te
P (t|e)

∏

t′ /∈Te
(1− P (t′|e))

3.4 Type-Aware Context Representation, T

Apart from being able to represent the types of the
entities, it is also important for our linker to be
able to represent the type information at the men-
tion level. In the example in Fig. 1, although the
mention “India” is prominently used to refer to
the country, it is evident from the sentence that it
refers to a Sports Team. The context-encoder cap-
tures this information in an unstructured manner,
thus it will be useful for the encoder to directly
utilize this supervision. This is a similar setup as
Ling et al. (2015) and Shimaoka et al. (2017) that
use noisy distant supervision to train a fine-grained
type predictor for mentions.

In order for the context encoders, and type em-
beddings to directly inform each other, we intro-
duce an objective Lmtype between every vm and vt
if type t belongs to Te for the entity e that m refers
to. This objective is similar to Letype from § 3.3.

3.5 Learning Unified Entity Representations

In the sections above we described different en-
coder models to capture entity-context informa-
tion (local- and document-level), entity-description
from a KB, and fine-grained types in a single entity
representation vector. To learn the entity represen-
tations, and parameters of the encoders, we jointly
maximize the total objective:

{ve},Θ = argmax
{ve},Θ

Ltext + Ldesc + Letype + Lmtype

where {ve} is the set of entity representations, and
Θ is set of parameters for the different encoders.
One advantage of having such a joint, modular ob-
jective is that it is robust to missing information,
i.e. entities with missing mentions, types, or de-
scriptions will still obtain accurate representations
learned using other sources of information.

4 Entity Linking

Given a document, and mentions marked in it for
disambiguation, we perform a two-step procedure
to link them to an entity. First, we find a set of
candidate entities, and their prior scores using a
pre-computed dictionary. We then use our mention-
context encoder to estimate the semantic similarity

of each mention with the vector representations of
each entity candidate, and combine the results from
the two sources for making linking decisions.

A typical KB contains millions of entities, which
makes it prohibitively expensive to compute a sim-
ilarity score between each mention and all entities
in the KB. Prior work has shown that, for a given
mention, aggressively pruning the set of possible
entities to a small subset hurts performance only
negligibly, while making the linker extremely ef-
ficient. For each mention m, we generate a set of
candidate entities Cm = {cj} ⊂ E using Cross-
Wikis (Spitkovsky and Chang, 2012), a dictionary
computed from a Google crawl of the web that
stores the frequency with which a mention links
to a particular entity. To generate Cm we choose
the top−30 entities for each mention string, and
normalize this frequency across the chosen candi-
dates to compute Pprior(e|m). In the literature, such
a dictionary is often built from the anchor links
in Wikipedia (Ratinov et al., 2011; Hoffart et al.,
2011) but Ling et al. (2015) show using CrossWikis
gives improved prior scores and candidate recall.

For each mention m, we use our learned
mention-context encoder from § 3.1 to encode the
mention’s context as vm, and estimate the distribu-
tion over the candidates using Ptext(e|m). We treat
these two pieces of evidence; pre-computed prior
probability, and the context-based probability, as
independent, disjunctive sources of signal, and thus
combine them to compute P (e|m) as:

P (e|m) = Pprior(e|m) + Ptext(e|m)

− (Pprior(e|m) ∗ Ptext(e|m)) (2)

êm = argmax
e∈Cm

P (e|m) (3)

where êm is the predicted entity that the mention
m should be disambiguated to.

5 Evaluation Setup

Here we provide a detailed description of how we
train our models, benchmark datasets, linking sys-
tems we compare to, and the evaluation metrics.

Training Data Our primary source of informa-
tion about the entities is Wikipedia (dump dated
2016/09/20). We use existing links in Wikipedia,
with the anchors as mentions, and links as the true
entity, as input to the context encoder (see § 3.1).
As the description of each entity (§ 3.2), we use
the first 100 tokens of the entity’s Wikipedia page
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(same as Francis-Landau et al. (2016)). To ob-
tain entity types (see § 3.3), we extract the types
for each entity from Freebase and map them to
the 112 fine-grained types introduced by Ling and
Weld (2012). For context and description encoders,
we use pre-trained 300-dimensional case-sensitive
word embeddings by Pennington et al. (2014) as
the first layer that is not updated during training.

Hyper-parameters We perform coarse-grained
tuning of the hyper-parameters using a fraction
of the training data. The vectors for the enti-
ties, types, contexts, and descriptions are of size
d = 200. The size of the local context encoder
LSTM hidden layer l, local context output, and
the document-context encoder output Dm is set to
100(= l = Dm). The document context vocabu-
lary contains |VG| = 1.5 million strings. We use
dropout (Srivastava et al., 2014) with a probability
of 0.4. Additionally, we use word-dropout where
we replace a random subset of tokens (mention-
strings) in the local (document) context with “unk”
(rate of 0.4 and 0.6 for local and document con-
text respectively). We use Adam (Kingma and Ba,
2014) for optimization, with learning rate 0.005
and mini-batches of size 1000.

Existing Approaches We compare our ap-
proach to the following five entity-linking mod-
els: (1) Plato (Lazic et al., 2015), an unsupervised
generative model that uses indirect-supervision
from Wikipedia and an additional corpus of 50
million unlabeled webpages, (2) Wikifier (Rati-
nov et al., 2011), an unsupervised linker that uses
hand-crafted features to rank candidates, (3) Vin-
culum (Ling et al., 2015), a modular, unsupervised
pipeline system, (4) AIDA (Hoffart et al., 2011), a
supervised linker trained on CoNLL data and uses
hand-crafted features, and (5) BerkCNN (Francis-
Landau et al., 2016), a recent neural supervised
approach that has variants that use hand-crafted
features.

Evaluation Setup We evaluate our approach on
the following four datasets: CoNLL-YAGO (Hof-
fart et al., 2011), ACE 2004 (NIST, 2004; Rati-
nov et al., 2011), ACE 2005 (NIST, 2005; Ben-
tivogli et al., 2010), and Wikipedia (Ratinov et al.,
2011). For each of these datasets, we use the stan-
dard test/development splits, but do not use any
information from the training splits. End-to-end
entity linking systems such as Vinculum and Wik-
ifier perform an NER-style F1 evaluation where

CoNLL ACE05 WikiTest Dev

Plato (Sup) 79.7 - - -
Plato (Semi-Sup) 86.4 - - -
AIDA* 81.8 - - -
BerkCNN:Sparse* 74.9 - 83.6 81.5
BerkCNN:CNN* 81.2 86.91 84.5 75.7
BerkCNN:Full* 85.5 - 89.9 82.2

Priors 68.5 70.9 81.1 78.1
Model C 81.4 83.4 83.7 86.1
Model CD 81.0 83.2 85.8 86.1
Model CT 82.3 83.9 86.5 88.2
Model CDT 82.5 85.6 86.8 88.0
Model CDTE 82.9 84.9 85.6 89.0

Table 1: Entity Linking Performance: Accuracy
of existing systems, and variations of our model on
gold mentions. The model using context informa-
tion is labeled C, entity-description as D, context-
typing as T, and entity-type encoding as E. Existing
models marked in Italics* train domain-specific
linkers for each dataset. Our system performs
competitively to these systems, and outperforms
Plato (Sup) that uses the same indirect supervision.

a prediction is only considered correct if the sys-
tem mention boundaries match the gold annota-
tion, and the predicted link is correct (we compare
against these by extracting mentions with Stanford-
NER). On the other hand, systems like Plato, AIDA,
and Berkeley-CNN assume mentions are provided,
and evaluate using the linking accuracy for gold-
mentions. Further, the approaches we compare
here (including ours) do not predict NIL entities
for the datasets evaluated on.

6 Results

In this section we present various experiments to
evaluate the performance of our proposed entity-
linking system. Specifically, we focus on the fol-
lowing questions: (1) how effective is our model in
combining different information on standard link-
ing benchmarks, without requiring domain specific
information (§ 6.1), (2) is our model able to ac-
commodate unseen entities by using their types, or
description, without re-training the entity represen-
tations (§ 6.2), and (3) how does the model perform
on fine-grained mention typing, a task it is not di-
rectly trained for, compared to approaches designed
for the task (§ 6.3). Further, Sec 6.4 presents exam-
ples to show the effect of encoding different kinds
of information in a unified entity representation.
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F1 Accuracy

AIDA 77.8 -
Wikifier 85.1 -
Vinculum 88.5 -

Model C 88.9 93.1
Model CDT 89.8 93.9
Model CDTE 90.7 94.3

Table 2: Results for ACE-2004: F1 is calcu-
lated for predicted mentions, and accuracy on gold-
mentions. Results for Wikifier and AIDA are from
(Ling et al., 2015). All systems use the same men-
tion extraction protocol showing the difference in
F1 is due to linking performance.

6.1 Entity Linking

In Table 1 we present linking accuracy for our
models that vary in the information they use. We
see that the model that only encodes the context-
information, Model C (L = Ltext) consistently per-
forms better than picking the entity with the high-
est prior probability from CrossWikis, indicating
that the model is able to utilize the context across
datasets. On incorporating the description with
context (Model CD) we see improvement in the
performance on ACE-2005, but slight decrease in
CoNLL, suggesting the entity descriptions are not
extremely useful for the latter (it contains rare en-
tities, many short and incomplete sentences, and
specific entities as annotations for metonymic men-
tions, as also observed by Ling et al. (2015)). On
introducing the entity type-aware loss in Model
CT to the context-only model, we see significantly
improved results for all datasets, demonstrating
that explicitly modeling fine-grained types helps
learning a better context encoder and, in turn, type-
aware entity representations. Combining descrip-
tions with this model (Model CDT) shows further
gains in accuracy indicating that our model is able
to exploit complementary information from the two
sources. Finally, on introducing explicit entity-type
encoding, Model CDTE performs the best on two
of the four datasets. As we will see in § 6.2, encod-
ing entity-type information also allows our models
to easily generalize to new entities.

On comparison to existing systems we see
that all our variants outperform Plato’s indirectly-
supervised model trained on Wikipedia, which is
the same information our Model C and CD use.
Their semi-supervised model, that is additionally
trained on 50 million web-pages, performs much

Method Accuracy

Random Guessing 16.7
Random Embeddings 34.0
Entity Description 65.1
Fine-Grained Types 73.7
Description + Types 79.5

Table 3: Cold-Start Entities: Linking new enti-
ties by using different information to learn their
embeddings. Our model is able to jointly utilize
description and type information better.

better. In comparison to AIDA and Berkeley-CNN,
that train separate models on respective datasets,
we perform better than AIDA and Berkeley-CNN’s
sparse and neural model. On combining features
from CNN to the sparse model, the Berkeley-CNN
models for each dataset outperform our model, but
are unlikely to generalize across the datasets5.

In Table 2 we present results for our models on
ACE-2004. Our model outperforms the Wikifier
and Vinculum systems that only use information
from Wikipedia, and AIDA, by a significant margin,
indicating its possible over-fitting to the CoNLL
domain. Hence, it shows our model’s ability to
perform accurate linking across different datasets
without using domain-specific information.

6.2 Cold-Start Entities

In realistic situations, new entities are regularly
added to the knowledge base with little or no linked
data for them. Hence, it is important for any infor-
mation extraction system that learns entity repre-
sentations to be easily extendable for such entities
without needing to be re-trained. In this section,
we consider the use of our approach to this setting.

In particular, for each such new entity, we need
to determine their embedding using only their de-
scription and/or type information. For a new entity
for which only the description is available, we di-
rectly set its embedding to be the output of the
entity-description encoder without any need for
learning. If only fine-grained types are available,
we learn the new entity-embedding by optimizing
the objective Letype. In case both description and
types are available, we jointly maximize the simi-
larity of the entity embedding with the output of the
entity-description, and the type encoders (i.e. opti-
mize Ldesc and Letype). Note that we only learn the
embeddings of each new entity, keeping all other

5Ling et al. (2015) show that AIDA is unable to perform
well on datasets it has not been trained on.
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Models Acc. Macro F1 Micro F1

FIGER 47.4 69.2 65.5
SSIR-LSTM 55.6 75.1 71.7
SSIR-Full 59.6 78.9 75.3
Our Model 57.7 72.8 72.1

Table 4: Typing Prediction: Performance on the
FIGER (GOLD) dataset. Our performance is com-
petitive with FIGER (Ling and Weld, 2012) and
neural-LSTM model of Shimaoka et al. (2017).
Their SSIR-Full model that uses a biLSTM layer,
an attention layer, combined with hand-crafted fea-
tures is state-of-art for this task.

parameters of our model (Model CDTE) fixed.
To evaluate this setting of new entities, we ran-

domly select 1000 rare entities from Wikipedia that
are not used during training. Among all mentions
of these entities in Wikipedia, we only keep the
mentions for which our candidate generation gen-
erates more than one candidate, resulting in 3791
mentions. On average, each mention had 6 candi-
date entities, and further, as priors are not available
in this setting, we only rely on the context proba-
bility for linking, making this a challenging task.

We present the results of using different types of
information about the entity for this data in Table 3.
It is surprising that randomly initialized embed-
dings for these new entities perform better than ran-
dom guessing, suggesting our model is sometimes
able to eliminate the wrong candidates purely based
on their learned embedding, i.e. an entity with a
random embedding has a higher likelihood of being
the correct entity. More importantly, we see that
our model variants that utilize the available entity
information are able to link much more accurately
(47-60% error reduction). Further, using both de-
scription and types results in the best embeddings
for these new entities (∼ 80% accuracy).

6.3 Fine-Grained Typing
Since entity embeddings are trained to be both,
context and type-aware, we evaluate whether they
can be used to predict fine-grained types for men-
tions from context (using vm and vt). Compared to
existing systems trained specifically for this task,
embeddings from our approach (Model CDTE) per-
forms competitively (see Table 4). In particular,
our model performs better than the neural-LSTM
model of Shimaoka et al. (2017), suggesting that
our multi-task linking, and typing loss facilitates
effective encoding of mention contexts.

12th Asian Nations Cup finals are hosted by Lebanon until
this October 29.
Model CD: Lebanon football team
Model CT: Lebanon (correct)
Model CDTE: Lebanon (correct)

Yugoslav midfielder Petrovic scored twice as PSV Eind-
hoven romped to a 6-0 win.
Model CD: Zeljko Petrovic (correct)
Model CT: Vladimir Petrovic
Model CDTE: Zeljko Petrovic (correct)

Ince was clambering over a wall at the Republican stadium
during an under-21 clash.
Model CD: Ince
Model CT: Tom Ince
Model CDTE: Paul Ince (correct)

Table 5: Example predictions by our models:
Model CT (Ex.1) and CD (Ex.2) predict correctly
when correct type prediction or background knowl-
edge is sufficient, respectively. Only Model CDTE
(Ex.3) predicts correctly when combination of con-
text, types, and background knowledge is required.

6.4 Example Predictions

In Table 5 we show the prediction from different
variants of our model for a few example mentions.
In the first example, detecting the type of the men-
tion is crucial, and thus we see both Model CT
and CDTE are able to predict accurately. On the
other hand, predicting the type of the mention is not
especially useful in Example 2, and background
factual knowledge from the entity description is
needed (which models CD and CDTE are able to
encode). Example 3 shows a challenging example
where the appropriate combination of context, type
prediction, and background knowledge is needed,
that our Model CDTE is able to combine.

7 Conclusion

Motivated by the need to provide accurate entity-
linking systems that are able to incorporate mul-
tiple sources of information, and do not require
domain-specific datasets or hand-crafted features,
we presented a novel neural approach to linking.
We proposed a compositional training objective to
learn unified entity embeddings that encode the va-
riety of information available for each entity: its un-
structured textual description, local and document
contexts for its mentions, and sets of fine-grained
types attached to it. The joint formulation allows
the model to fruitfully combine the various sources
of information, providing accurate linking on mul-
tiple datasets, generalization to new entities with
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missing linked data, and the use of entity embed-
dings for related tasks such as type prediction.

There are a number of avenues for future work.
Further research will include encoding more struc-
tured knowledge about the entities, such as their
relations to other entities, to make their representa-
tions semantically richer. We will investigate how
we can use unstructured resources, such as the cor-
pus of unlabeled webpages used by Plato, and noisy
supervision from the Wikilinks corpus (Singh et al.,
2012) in order to further improve the model. We
will also evaluate our approach on substantially var-
ied domains, such as discussion forums, and social
media posts.
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Abstract

Mining biomedical text offers an oppor-
tunity to automatically discover important
facts and infer associations among them.
As new scientific findings appear across
a large collection of biomedical publica-
tions, our aim is to tap into this literature
to automate biomedical knowledge extrac-
tion and identify important insights from
them. Towards that goal, we develop a
system with novel deep neural networks
to extract insights on biomedical litera-
ture. Evaluation shows our system is able
to provide insights with competitive accu-
racy of human acceptance and its relation
extraction component outperforms previ-
ous work.

1 Introduction

Biomedical literature offers a rich set of knowl-
edge sources to discover important facts and find
associations among them. For instance, MED-
LINE contains over 18 million references to arti-
cles published since 1946 and sourced from over
5500 journals worldwide (Simpson and Demner-
Fushman, 2012). Two major processing tasks
performed on the biomedical text are: (1) iden-
tify and classify biomedical entities (NER) into
predefined categories such as proteins, genes,
or diseases, and (2) infer pair-wise relationships
among named entities e.g., protein-protein interac-
tion (Poon et al., 2014), gene-protein, and medical
problem-treatment.

This paper presents a system that processes
biomedical text to extract two specific types of re-
lationships among biomedical entities: (a) cause-
effect and (b) correlation.

This system is motivated by the need to bet-
ter automate biomedical knowledge extraction and

identify important information from them, as new
scientific findings appear across a large collection
of publications. For instance, given user sleep pat-
terns, existing biomedical research can be better
utilized to provide insights: inform about poten-
tial effect (e.g., “diabetes”, “obesity”) due to the
cause (e.g., “sleep disorder”) and suggest appro-
priate treatment.

Since biomedical articles usually have title and
abstract summarizing the contents of the full-text
article, we focus on extracting the two relationship
types from them. Unfortunately, mining this sum-
mary data still poses several key challenges. Sim-
ilar to full-text, this data comprises unstructured
text with domain-specific vocabulary, issues of
synonymy (e.g., “heart attack” vs. “myocardial
infarction”), acronyms, abbreviations and rapidly
evolving terminology due to new scientific discov-
eries. While the titles are short and informative,
they do not contain the key information that would
be contained in the abstract.

Many of these challenges are also applicable
for biomedical relation extraction. Further, iden-
tifying particular relation types is challenging be-
cause relations are expressed as discontinuous
spans of text , and the relation types are typically
application-specific. Finally, there is often little
consensus on how to best annotate relation types
resulting in lack of high quality annotated corpora
for training.

In this study, we develop neural networks
with novel similarity modeling for better causal-
ity/correlation relation extraction, as we map the
extraction task into a representational similarity
measurement task in the vector space. Our ap-
proach innovates in that it explicitly measures both
relational and contextual similarity among repre-
sentations of named entities, entity relations and
contexts. Our system also provides a novel com-
bination of recognizing named entities, predicting
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relationships (insights) between extracted entities,
and ranking the output. We conduct human eval-
uations of the system to show it is able to ex-
tract insights with high human acceptance accu-
racy, and on a SemEval task evaluation its causal-
ity/correlation relation extraction compares favor-
ably against previous state-of-the-art work.

1.1 Contributions
1. We build an end-to-end system to extract in-

sights from biomedical literature.
2. We innovate in similarity measurement model-

ing with deep neural networks for better causal-
ity/correlation relation extraction.

3. Our human evaluation show our system can
achieve competitive acceptance accuracy.

2 Related Work

Most previous work in BioNLP focused on ex-
traction of biomedical concepts (Craven, 1999;
Finkel et al., 2005; Poon and Vanderwende, 2010;
Simpson and Demner-Fushman, 2012; Liu, 2016),
such as drug or protein names. We also con-
duct relation extraction on general named entities,
such as “smoking” or “sleep quality”. Kabiljo
et al. (2009) compared pattern-matching tech-
niques against a baseline regular expression ap-
proach for gene/protein entity extraction. But ex-
isting tools for relation extraction are not as com-
prehensive as entity recognition tools.

Medical dictionaries and resources are heavily
utilized by previous work. For instance, Chen
et al. (2008) extracted disease-drug relation pairs
with MedLEE (Friedman et al., 2004) system for
clinical information extraction of EHR records.
Liu et al. (2015) developed a text-mining system
to search for associations among human diseases,
genes, drugs, metabolites and toxins against large
collections of text-rich biological databases. Pre-
vious research efforts also lead to semantic rep-
resentation program SemRep (Rindflesh and Fisz-
man, 2003), which exploits biomedical domain
knowledge and linguistic analysis of biomedical
text. Other unconventional resource such as web
query logs are also utilized (Paparrizos et al.,
2016) to provide early warnings about the pres-
ence of devastating diseases.

Feature engineering was the dominant approach
in most biomedical relation extraction work with
machine learning techniques (Dogan et al., 2011;
Yala et al., 2016); different sparse features were
explored. For example, word n-gram features,

Algorithm 1 System Overview
1: Input: Biomedical article title and abstract
2: Preprocess the input texts
3: for each sentence of the input do
4: Identify all possible named entities
5: for each named entity pair ( ~A, ~B) do
6: if causality/correlation holds then
7: Extract and Score ( ~A, ~B)
8: end if
9: end for

10: end for
11: Rank all extracted ( ~A, ~B) pairs
12: return top ranked entity pairs

knowledge-based features from medical dictionar-
ies and word position features. Our work instead
propose neural network models that do not require
sparse features as in most previous work.

Recent shift from feature engineering to model
engineering with neural networks has signifi-
cantly improved accuracy on many NLP tasks.
Jagannatha and Yu (2016) adopted an LSTM
model for medical entity detection given patient
EHR records. There are recent work with the
use of deep reinforcement learning on health-
care study (Li, 2017). Our approach is inspired
by recent embedding learning work to jointly
represent texts and knowledge base (Toutanova
et al., 2015, 2016), previous work on embedding
transfer learning (Bordes et al., 2013) and noise-
contrastive estimation (Rao et al., 2016). Lastly
our work models insight extraction as a similar-
ity measurement problem, and is inspired by sim-
ilarity measurement work (He et al., 2016; He and
Lin, 2016) on pairwise word interaction modeling
with deep neural networks.

3 System Overview

We provide a recipe to build a system for biomed-
ical insight extraction and use it as a guide for the
remainder of this paper (Algorithm 1).

To make our discussion concrete, we will use
a sample biomedical article in Example 1. Given
the text, at line 4 of Algorithm 1 we firstly look for
all named entities using a shallow parser and pub-
lic medical dictionaries (see details in Section 4).
Many named entities could be found, for example,
“clinical study”, “sleep disturbances in middle-
aged men” and “diabetes”. Next given any pair
of previously extracted entities within a sentence,
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RESEARCH METHODS: A group of 6,599
initially healthy, nondiabetic middle-aged men
took part in a prospective, population-based
study. The incidence of diabetes during a mean
follow-up of 14.8 years was examined in relation
to self-reported difficulties in falling asleep.
RESULTS: A total of 615 subjects reported ei-
ther difficulties in falling asleep or use of hyp-
notics (seen as makers of sleep disturbances).
Among those, 281 of the men developed diabetes
during the follow-up period. The clinical study
suggests sleep disturbances in middle-aged men
are likely associated with diabetes.

Example 1: Sample Text

at line 6 our neural network-based relation extrac-
tor checks if a valid causality/correlation relation-
ship exists (Section 5). For example, our mod-
els can identify that the entity “sleep disturbances
in middle-aged men” has a correlation relation-
ship with “diabetes” but not with “clinical study”.
Later each valid entity pair is scored via the rank-
ing component at line 7 (Section 6). In the final
step, the system returns top ranked insight(s) to
users: “sleep disturbances in middle-aged men→
diabetes” given this example.

Figure 1 presents the system which consists
of three major neural network-based compo-
nents: (1) a named entity extractor, (2) a causal-
ity/correlation relation extractor, and (3) an insight
ranker. Our system reads in biomedical texts, then
provides insights in the end. We primarily inno-
vate in the relation extraction component. Next,
we describe each of these components in detail.

4 Named Entity Extraction

Named entity extraction in biomedical domain is
challenging due to the domain-specific and rapidly
evolving terminology. For example, “Diabetes
mellitus type 1”, “Type 1 diabetes”, “IDDM”, or
“juvenile diabetes” all express the same concept.
Given frequent evolution of entity naming for new
drugs, diseases or abbreviations, this task becomes
more complicated.

Most existing off-the-shelf biomedical entity
recognizers narrowly focus on specific biomedical
terms. Instead we aim to improve the system recall
by extracting both specific biomedical concepts
such as “gene tmem230” or “prostate cancer” as
well as general noun phrases such as “sleep qual-

Biomedical

Knowledgebase

Shallow Parsing

Contextual
Similarity

Insight Ranker

Modeling

Relational
Similarity
Modeling

Figure 1: Three major components of the system.

ity”, “daily exercises”, or “men with diabetes”.
Thus the scope of the system is broader.

We design an entity extractor by using both
an in-domain medical knowledge base for key-
word matching, and a domain-independent neural
network-based shallow parser for entity boundary
detection. We present the procedure below:
1. We firstly use a large public dictionary,

Metathesaurus of the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004) to
obtain in-domain biomedical terms. UMLS
Metathesaurus is a set of dictionaries provid-
ing large collections of biomedical vocabular-
ies. We extract over 3.3 million of biomedical
terms from UMLS, then utilize the Aho Cora-
sick pattern matching algorithm to create a dic-
tionary lookup tool. Our tool can efficiently lo-
cate all UMLS terms given input texts, since it
has a linear complexity due to its trie tree data
structure.

2. We also use a neural network-based shallow
parser (Collobert et al., 2011) to identify bound-
aries of general noun phrases, which are not
limited to biomedical terms. Usage of shallow
parser is to improve system recall on named en-
tity recognition.

3. Our named entity extraction component aims to
locate all entities of input texts. The result list
is an output concatenation of both step 2 and 3,
and is later provided to the causality/correlation
relation extraction component for further pro-
cessing. If entity overlaps exist, only phrases
with longest matching sequence are extracted.
Our insight extraction system adopts a coarse-

to-fine design approach. First, we focus on im-
proving recall for the entity extraction task. Then
we show how the causality/correlation relation ex-
traction component (Sec. 5) processes extracted
named entities to achieve high precision.

5 Relation Extraction as Similarity
Measurement

We first provide our model design intuition: if
a causality/correlation relationship holds between
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two named entities, then representations of the
two entities should be semantically similar and
close to the representation of the relation in a low-
dimensional vector space. Therefore we map the
causality/correlation relation extraction into a sim-
ilarity measurement task in the vector space.

Our novel approach learns representations of
named entities ( ~A, ~B), context words and the rela-
tion vector ~R, then explicitly measures two aspects
of the similarity: 1) relational similarity between
entities and relation (Sec. 5.2); plus, 2) contextual
similarity between entities and sentence context
(Sec. 5.3).

The intent of our approach is to enforce such
structure of the vector space: as the similarity
among entities, relation and contexts gets stronger,
a fit of all should be observed for better causal-
ity/correlation relation extraction. We develop two
neural network models with such property; both
are utilized in the relation extraction component
of the system.

We define input sentence representation S ∈
R`×d to be a sequence of ` words, each with a
d-dimensional word embedding vector. xt ∈ Rd
denotes the embedding vector of the t-th word
(t ∈ [1, l]) in S. Model details are described in
the following sections.

5.1 Context Modeling

Different words occurring in similar contexts
should have a higher chance to contribute to sim-
ilarity measurement and relation extraction. We
use bidirectional LSTMs (BiLSTM) for context
modeling as a basis for all following models.

LSTM (Hochreiter and Schmidhuber, 1997)
is a special variant of Recurrent Neural Net-
works (Williams and Zipser, 1989). At time step
t, given an input word xt and previous LSTM hid-
den state ht−1, LSTM(xt, ht−1) outputs current
hidden state ht ∈ Rdim. BiLSTM consists of
two LSTMs that run in parallel in opposite direc-
tions. The BiLSTM hidden state hbit ∈ R2dim is a
concatenation of forward LSTM’s hfort and back-
ward LSTM’s hbackt , representing contexts of input
word xt in the sentence. We define concat oper-
ation and output sentence context representation
HS ∈ R`×2dim below:

ht = LSTM(xt, ht−1) (1)

hbit = concat(hfort , hbackt ) (2)

HS [t] = hbit (3)

Function 1 SimiScore( ~A, ~B, ~R)

1: conC = concat( ~A, ~B)
2: entityC =WC · conC
3: relationT =WD · ~R
4: dist =W di · tanh(entityC + relationT )
5: return dist

Context modeling with BiLSTM allows our fol-
lowing model components to be built over con-
texts rather than over individual words. Given
named entity positions of the sentence, we get ~A
and ~B from context HS .

5.2 Relational Similarity Modeling
Relational similarity modeling focuses on inter-
actions between named entities and relations in
the vector space. When the named entity ~A goes
through a transformation process induced by the
relation ~R, our intent of relational similarity mod-
eling is to force the transformed entity to be trans-
lated to the other named entity ~B in the same vec-
tor space so that the relation ~R holds between the
two named entities.

We show the following objective function of our
relational similarity modeling:

~A+ ~B − ~R ' 0 (4)

To model the transformation process in Equa-
tion 4, we need to know how to measure
the similarity of the triplet ( ~A, ~B, ~R). There-
fore we develop a similarity measurement func-
tion SimiScore( ~A, ~B, ~R) with learnable weights
(W ∗), the similarity function takes an input named
entity pair of ( ~A, ~B) and a relation ~R, returns a
similarity score dist ∈ R1 representing how se-
mantically close ( ~A, ~B, ~R) are, as in Function 1.

We utilize a ranking approach during training
to incorporate the constraint of Equation 4 into the
relational similarity model. Our goal is to learn a
function SimiScore(·) so that the positive triplet
( ~A, ~B, ~R+) is assigned a larger score than that of
the negative triplet ( ~A, ~B, ~R−):

SimiScore( ~A, ~B, ~R+) > SimiScore( ~A, ~B, ~R−) (5)

where R+ denotes the positive causal-
ity/correlation relation, R− denotes a non-
causality/non-correlation relation. The ranking
approach maximizes the similarity score between
the entity pair ( ~A, ~B) and a positive relation ~R+

while minimizing the score with the negative ~R−,
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~C : Lung cancer is most likely caused by smoking

Named Entities ( ~A, ~B)

Contextual Similarity

Causality Relation ~R+ Non-Caus. Relation ~R−

Relational Similarity

>

Figure 2: Our causality/correlation relation extrac-
tion component models both relational similarity
(blue) and contextual similarity (red). Thicker ar-
rows indicate stronger similarity between named
entities ( ~A, ~B) and relation ~R/sentence context.

thus ensuring that the positive connection is larger
than the negative one as in Figure 2.

Our relational similarity model and the ranking
training approach facilitate the transformation pro-
cess of ( ~A, ~B) and ~R in the vector space, which
in the end leads to better constraint satisfaction of
objective Equation 4.

The relational similarity model is placed on top
of BiLSTM (Sec 5.1) as part of the system. We
initialize named entities ~A/ ~B as hbiA/h

bi
B from the

BiLSTM model, then initialize relation represen-
tations ~R+/ ~R− as random vectors. During train-
ing both ~R+/ ~R− are updated.

5.3 Contextual Similarity Modeling

Since not all words of a given title/abstract are cre-
ated equal, important context words around named
entities that can better contribute to the causal-
ity/correlation relation extraction deserve more
model focus. We develop a contextual similarity
model that can increase model weights onto im-
portant context words to better utilizing contextual
information.

For example, given a sentence, lung cancer is
most likely caused by smoking, the context words
caused by are important clues to suggest there
exists a causality/correlation relationship between
the two named entities. Clue words that require
model attentions usually include, e.g. lead to, is
associated with, because of, while others are not

obvious, such as promote, reflect, reduce, make.
Our system does not require a manually pre-

pared list of clue words, but an attention mecha-
nism (Bahdanau et al., 2014) is utilized to better
identify them by conducting similarity measure-
ment between context word representation hbit (not
including entity words) and extracted named en-
tities ( ~A, ~B) (from Sec. 4). Resulting similarity
scores of words are accumulated in atten ∈ R`.

mix =W a · concat( ~A, ~B) (6)

E[t] = dotProd(mix, hbit ), ∀t ∈ [1, l] (7)
atten = softmax (E) (8)

where we concatenate both entity representations
( ~A, ~B), apply linear transformation with weights
W a to obtain a representationmix of both entities.
We then use dot product dotProd to measure the
similarity between mix and each context word, fi-
nally normalize the attention weights atten[:] with
softmax . The weights of atten indicate the im-
portance of each context word with respect to both
named entities.

The attention weights should better guide the
focus of the model onto important context words
of the sentence. That is, context words that are
closer to entity representation mix should have
better chances to be clue words. We define
the attention re-weighted sentence representation
attenSen ∈ R2dim:

attenSen = atten�HS (9)

where � represents element-wise multiplication.
Figure 2 illustrates an example where repre-

sentation mix of named entities attends to con-
text words one at a time. Important context clue
words “caused by” should receive higher attention
weights than irrelevant neighbor words.

The re-weighted sentence representation
attenSen is used together with entity representa-
tions ( ~A, ~B) for final prediction.

In summary, both models described in this
section focus on different aspects of similarity
measurement in relation extraction: the contex-
tual similarity model utilizes context information
around named entities, while the relational simi-
larity model focuses on enforcing a transformation
constraint between entities and relation in the vec-
tor space. We adopt both models for better relation
extraction, in the end only pairs of named entities
that are recognized positively by either one of the
models are passed to the next stage of the system.
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Figure 3: Human annotation interface on UHRS platform. Annotators are required to identify and verify
extracted entities and correlation/causality relations from the output of our system for evaluation.

6 Ranking of Extracted Insights

The last major component of our system is to rank
extracted relations ( ~A, ~B, ~R) from the output of
the relation extraction component, as there could
be many extracted relations but not all of them are
important enough as insights of the article. Impor-
tance scores of extracted relations are obtained by
following a set of rules below:

1. We utilize the output classification probability
(∈ [0, 1]) of the relational similarity model as
the base ranking score.

2. We use a multi-perspective convolutional neural
network model (MPCNN) (He et al., 2015) to
measure the similarity (∈ [0, 1]) between the ti-
tle of the article and extracted relation, since the
MPCNN model has competitive performance
on multiple benchmarks for textual similarity
measurement. We compare title text with “ ~A
leads to ~B” of an extracted relation, if the sim-
ilarity score is over a threshold of 0.75, we in-
crease the extracted relation’s ranking score by
15%. If the extracted relation is from the title
text, we also boost its ranking score by 15% be-
cause of its location importance.

Once all extracted relations are scored, our system
only returns the top ranked insights to users.

7 Experiment Setup

Datasets. Experiments are conducted on two
datasets: our own dataset of medical/health publi-
cations annotated on Universal Human Relevance
System (UHRS), a crowdsourcing platform for
end-to-end system evaluation; and SemEval-2010
task 8 dataset for training and evaluation of our re-
lation extraction component:

1. The first dataset consists of 100 publications
from recent biomedical/health journals, which
are then annotated on UHRS to evaluate our
system. In order to ensure high-quality human
annotations, Figure 3 provides an annotation in-
terface on UHRS, which displays instructions,
title/abstract texts of publications and a list of
top ranked extracted insights from the system
output. For fair evaluation the order of extracted
insights is randomized then we ask expert an-
notators with suitable background to verify the
correctness of each.

2. SemEval-2010 Task 8 (Hendrickx et al.,
2009) defines 9 relation types between named
entities: Cause-Effect, Instrument-Agency,
Product-Producer, Content-Container, Entity-
Origin, Entity-Destination, Component-Whole,
Member-Collection and Message-Topic, and a
tenth relation type Other when two named enti-

2696



ties do not have the first 9 relations. SemEval-
2010 dataset consists of 10, 717 sentences,
with 8, 000 for training and 2, 717 for test.
The dataset is human annotated, and each in-
stance provides one sentence which includes
two named entities and a relation type between
the two entities.

Since our system focuses on extracting insights,
we only use Cause-Effect subset of SemEval-
2010 dataset as the positive training/testing ex-
amples and treat the remaining 9 categories data
such as Content-Container, Message-Topic as
negatives. We use this dataset for training and
evaluating our relation extraction component
(Sec. 5) only.

Training. Two loss functions are adopted to train
relation extraction neural network models.

For contextual similarity model (Sec. 5.3), a
hinge loss is used. The training objective is to min-
imize the following loss, summed over examples
〈x, ygold 〉:

losscontextSim(w, x, ygold) =∑

y′ 6=ygold

max(0, 1 + fw(x, y
′)− fw(x, ygold)) (10)

where input x represents an entity pair ( ~A, ~B) plus
its sentence context, ygold is the ground truth la-
bel and y′ is the model predicted label. Both y′

and ygold indicate the relation type with direction-
ality (e.g. directional causality). w represents
weights of contextual similarity model with BiL-
STM, function fw(x, y

′) outputs the model pre-
dicted label value, function fw(x, ygold ) outputs
the model ground truth label value, and n is the
number of training examples.

For relational similarity model (Sec. 5.2), a
Bayesian Personalized Ranking (BPR) loss (Ren-
dle et al., 2009) is used. The label of the rela-
tional similarity model is binary because the BPR
loss ranks positive inputs above negative inputs,
thereby requiring the supervision signal to distin-
guish positives from negatives. Due to BPR loss’s
ranking nature, each training instance of the rela-
tional similarity model include one positive input
(x, ~R+) and one negative input (x, ~R−). Given a
positive correlation/causality input ( ~R+), we gen-
erate negative training examples by matching the
input x with each of the negative relation labels
( ~R−). BPR loss is shown to be better tailored for
ranking tasks empirically (Verga et al., 2016):

lossrelationSim(w, x, ~R+, ~R−) =
∑

~R−

− log(σ(f ′w(x, ~R+)− f ′w(x, ~R−))) (11)

where σ is the sigmoid function, function
f ′w(x, ~R) represents the relational similarity
model with BiLSTM, and outputs a similarity
score for ranking purpose (Sec. 5.2).

In all experiments, we perform optimization us-
ing RMSProp (Tieleman and Hinton, 2012) with
backpropagation (Bottou, 1998) and a learning
rate fixed to 10−4 and a momentum parameter 0.9.

Settings and Preprocessing. We preprocess both
datasets with Stanford CoreNLP toolkit (Man-
ning et al., 2014). We tokenize, lowercase, sen-
tence split and dependency parse all words of both
datasets. We set LSTM hidden state dim = 500.

Two sets of d = 300-dimension word embed-
dings are utilized. The first one is 300-dimension
GloVe word embeddings (Pennington et al., 2014)
trained on 840 billion tokens; for better biomed-
ical/health domain adaptation, we also train sec-
ond word embeddings using the GloVe toolkit on
biomedical research articles with over 1 billion to-
kens. We do not update word embeddings in all
experiments.

During system deployment, we only initialize
input words with the medical word embeddings
if they do not exist in GloVe embeddings’ vocab-
ulary. We also concatenate embeddings of both
input words and their head words on dependency
trees as input for relation extraction models. We
follow the task settings and compute F1-score with
the official evaluation script only on Cause-Effect
subset of SemEval-2010 data, then the best model
based on F1 is selected for final system deploy-
ment. We set a distance limit and do not extract re-
lations between two named entities if the distance
is larger than 15.

8 Evaluation and Results

Human Evaluation of the Entire System. We
firstly provide a full end-to-end evaluation of the
system on UHRS with human annotators.

For each biomedical publication, top 10 candi-
date insights from the system are listed for fur-
ther inspection. The annotators are required to
understand the texts, carefully inspect each in-
sight, finally either accept it if it is one of the ar-
ticle insights or simply reject it. The annotation
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Figure 4: Human evaluation results of the full system and a baseline system on UHRS. We show the
acceptance accuracy for each of the top ten positions given both systems’ output lists. We primarily
focus on the first 1 and 3 positions, namely Precision@1 and Precision@3.

System Ablation Study Precision@1

Full System 63%
- Remove ReRanker (Sec. 6) -5%
- Replace with BiGRU (Sec. 5) -42%

Table 1: Ablation studies on the full system.

task requires understanding of biomedical/health
publications and is non-trivial, therefore the sys-
tem evaluation is completed by five expert anno-
tators, who all hold postgraduate degrees and/or
have biomedical background.

We also provide a baseline system, of which
its relation extraction component is a bidirectional
gated RNN model (BiGRU) (Cho et al., 2014). Bi-
GRU model and the ranking component are major
differences between our full and baseline system.
Since typically only a limited number of key find-
ings is presented in one article, we evaluate the
system with an averaged acceptance accuracy at
top 1 (Precision@1) and top 3 (Precision@3) po-
sitions of the output rank list, which represent on
average the number of extracted insights accepted
by annotators among the first 1 and 3 output.

Figure 4 shows annotation results with accep-
tance accuracies for each of the ten output posi-
tions given biomedical titles and articles. The Pre-
cision@3 of our full system is 50.6%, which is sig-
nificantly better than the baseline system’s 21.3%.
For top 3 extracted insights on the list, our full
system on average have 1.5 insights accepted by
annotators. Furthermore, the acceptance accuracy
Precision@1 of our system is 63% in comparison
to that of the baseline system’s 21%.

Table 1 shows the ablation study on the removal
of the ranking component (Sec. 6) and the replace-
ment of BiGRU model for causality/correlation re-
lation extraction. We observe significant perfor-
mance difference.

Model F1 score?
Tymoshenko and Giuliano (2010) 82.30%
Tratz and Hovy (2010) 87.63%
Rink and Harabagiu (2010) 89.63%
BiGRU 89.89%
Miwa and Bansal (2016) 91.57%
Contextual similarity modeling 90.77%
Relational similarity modeling 92.28%

Table 2: Test results (F1 score) on the Cause-
Effect subset(?) of SemEval-2010 dataset. Re-
sults are grouped as 1) Top 3 participating teams
in SemEval-2010 competition; 2) Baseline Bi-
GRU model; 3) Recent state-of-the-art treeLSTM
model (Miwa and Bansal, 2016); 4) Our work.

Evaluation of Relation Extraction Component.
We also evaluate the relation extraction compo-
nent (Sec. 5) on Cause-Effect subset of SemEval-
2010 dataset. Note our causality/correlation rela-
tion extraction component is not supposed to be
a general purpose one, since our system only fo-
cuses on insight extraction of biomedical/health
literature. We compare our relation extraction
models against previous work on the Cause-
Effect subset of the data, Table 2 shows our
relational similarity model, without the use of
sparse features or external resources such as Word-
Net, outperforms recent state-of-the-art treeLSTM
model (Miwa and Bansal, 2016). It also shows
BiGRU model is reasonably competitive on this
dataset, which is why we use it in our baseline sys-
tem for comparison purpose.

9 Result Analysis and Case Study

Visualization of Contextual Similarity Model.
We show values of attention weights, atten of
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Excess oil , dirt and bacteria cause acne .
0 0 0 0 0 0 0.9962 0 0.0037
The bombing resulted in the deaths of 1318 in Hanoi
0 0 0.0005 0.9579 0.0415 0 0 0 0 0
Ambient vanadium pentoxide dust produces irritation of the eyes ...
0 0 0 0 0.99 0 0 0 0 ...
Electron beam is generated by an explosive emission cathode
0 0 0 0.0053 0.9946 0 0 0 0

Table 3: Visualization of model attention weights atten given four SemEval-2010 test sentences.

Equation 8 and 9 from within the contextual sim-
ilarity model (Sec. 5.3). Given four sentences in
the test set of SemEval-2010 data, the model pre-
dicts that all provided entity pairs (in bold) have
the causality/correlation relation. From Table 3
we observe the model is able to do its expected
job: it can recognize important clues words, such
as “result in”, “produce”, “generated by” and
“cause”; the model produces attention weights
(each ∈ [0, 1]) to tell the importance of clue words
for causality/correlation relation extraction. We
also observe the model tends to focus more on
prepositions of clue words, such as “by” of “gen-
erated by” and “in” of “result in”, this is probably
because we use head words as extra inputs (Sec. 7)
to the model.

Case Study. We lastly provide case study of our
system. We show two biomedical articles’ titles
and abstracts as examples, with only necessary
omissions to remove irrelevant texts due to the
space limit.

Given Case 1, our system outputs the top in-
sight “the slow negative shift of the DC potential
→ increased cortical excitability” with a score of
0.71. Given Case 2, our system outputs top 3 in-
sights: “excessive drinking → skin cancer” with
a score of 0.55, “excessive drinking → alcohol”
with a score of 0.43, and “excessive drinking →
sunburn” with a score of 0.31. The above exam-
ples show that our system can provide reasonable
insights from biomedical text.

10 Conclusion

We build an end-to-end system for insight extrac-
tion on biomedical literature. We develop novel
similarity measurement modeling with deep neu-
ral networks to extract causation/correlation rela-
tions. Our evaluation shows the system is able
to extract insights with competitive human accep-

Case 1: Scalp recorded direct current potential
shifts associated with the transition to sleep in
man. Abstract: Cortical direct current (DC)
potentials are considered to reflect the state of
cortical excitability which may change char-
acteristically from wakefulness to sleep. The
present experiments examined changes in the
scalp recorded DC potential in 10 healthy hu-
mans ... It is reasonable to assume that the slow
negative shift of the DC potential at the transi-
tion from wakefulness to sleep reflects increased
cortical excitability.

Case 2: Alcohol consumption and self-reported
sunburn: a cross-sectional, population-based
survey. Abstract: Heavy drinking has been asso-
ciated with several cancers, including melanoma
and basal cell carcinoma. ... 299,658 adults
reported their use of alcohol in the preceding
month and a history of sunburn in the preceding
year. Approximately 33.5% of respondents re-
ported a sunburn within the past year. ... Exces-
sive drinking is associated with higher rates of
sunburn among American adults. The observed
relationship typifies the high-risk behavior asso-
ciated with excessive drinking and suggests one
pathway linking alcohol use with skin cancer.

Example 2: Case Study

tance accuracy and its relation extraction compo-
nent compares favorably against previous work.
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Abstract

We present experiments that show the
influence of native language on lexical
choice when producing text in another lan-
guage – in this particular case English. We
start from the premise that non-native En-
glish speakers will choose lexical items
that are close to words in their native lan-
guage. This leads us to an etymology-
based representation of documents written
by people whose mother tongue is an Indo-
European language. Based on this repre-
sentation we grow a language family tree,
that matches closely the Indo-European
language tree.

1 Introduction

In second-language writing, vestiges of the native
language such as pronunciation, vocabulary and
grammar are well-attested, and the phenomenon is
called native language interference (Odlin, 1989).
At the lexical level, the choice as well as the
spelling can be indicative of the native language,
through the choice of cognates, true or false
friends – e.g. a writer with native language Ger-
man may choose bloom cognate with blume, while
a French one may choose flower, cognate with
fleur. Misspellings – cuestion instead of question
are also indicative, as the writer will tend to spell
words close to the form from her original language
(Nicolai et al., 2013).

In this paper we also look at native language in-
terference starting from the lexical level, but ab-
stract away from the actual word forms, and focus
instead on the language of the etymological an-
cestors. The hypothesis we investigate is that the
collective evidence of etymological ancestor lan-
guages are indicative of the language of the native
speaker, and that this effect is sufficiently strong

Eng.: flower Eng.: bloom Eng.: blossom
↓ ↓ ↓

Middle Eng.: flourMiddle Eng.: blome Middle Eng.: blosme
↓ ↓ ↓

Anglo Norm.: flur Old Norse: blōm Old Eng.: blostm
↓ ↓ ↓

Latin: florem Proto Ger.: *blōmô Proto Ger.: *blōstama
↓ ↓ ↓

Proto IE: *bhleh3 Proto IE: *bleh3 Proto IE: *bhleh3 − s−

Figure 1: Examples of etymological ancestry from
Wiktionary

to allow us to rebuild an Indo-European language
family tree. We use a corpus of essays written by
English language learners, whose native language
cover the languages from the Indo-European fam-
ily. Etymological information is provided by an et-
ymological dictionary extracted from Wiktionary.

The fact that word etymologies are included in
the native-language interference phenomena could
be used in various ways, i.a.: (i) to influence the
selection of material for language learning, by fo-
cusing on vocabulary closer etymologically to the
native language of the student, thus facilitating
lexical retention; (ii) to reveal lexical choice er-
rors caused by “etymological interference”; (iii)
together with other interference phenomena, for
the automatic corrections of language errors.

2 Related Work

English is a widespread common language for
communication in a variety of fields – science,
news, entertainment, politics, etc. A consequence
is that numerous people learn English as a sec-
ond (or indeed nth language). The study of native
language interference with the learning of English
can be used in multiple ways, including devising
methods to make the learning easier and correct-
ing language errors (Leacock et al., 2014; Gamon,
2010; Dahlmeier and Ng, 2011).
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Massung and Zhai (2016) present an overview
of approaches to the task of natural language iden-
tification (NLI). Various surface indicators hold
clues about a speaker’s native language, that make
their way into language production in a non-native
language. Nagata and Whittaker (2013),Nagata
(2014) find that grammatical patterns from the na-
tive language seep into the production of English
texts. Tsur and Rappoport (2007) verify the hy-
pothesis that lexical choice of non-native speak-
ers is influenced by the phonology of their native
language, and Wong and Dras (2009) propose the
idea that (grammatical) errors are also influenced
by the native language. One could draw the infer-
ence that character n-grams then could be indica-
tive of the native language, and this was shown to
be the case by Ionescu et al. (2014).

The natural language identification task
(Tetreault et al., 2013) attracted 29 participat-
ing teams, which used a variety of features
to accomplish the NLI task as a classification
exercise: n-grams of lexical tokens (words and
POS tags), skip-grams, grammatical information
(dependency parses, parse tree rules, preference
for particular grammatical forms, e.g. active or
passive voice), spelling errors.

Apart from morphological, lexical, grammati-
cal features, words also have an etymological di-
mension. The language family tree itself is drawn
based on the analysis of the evolution of lan-
guages. Language evolution includes, or starts
with, word etymologies. Word etymologies have
been under-used for tasks related to NLI. They
have been used implicitly in work that investi-
gates cognate interference (Nicolai et al., 2013),
and explicitly by (Malmasi and Cahill, 2015) who
use words with Old English and Latin etymolo-
gies as unigram features in building classifiers
for the TOEFL11 dataset. Etymological informa-
tion is obtained from the Etymological WordNet
(de Melo and Weikum, 2010).

We also investigate here the impact of ety-
mological information, but unlike previous work,
we do not extract unigram/n-gram features for
classification, but we look at the collective evi-
dence captured by the etymological “fingerprint”
for each document and set of essays.

3 Etymological fingerprints

To investigate the influence of etymological an-
cestor languages, we represent each essay through

etymological features, based on which we also
built language vectors for each Indo-European lan-
guage represented in the corpus. Essay vectors are
then used to test native language identification po-
tential, and the language vectors are used to grow
a language family tree.

3.1 Word etymologies

Dictionaries customarily include etymological in-
formation for their entries. Wikipedia’s Wik-
tionary has amassed a considerable number of en-
tries that joined this trend. The etymological in-
formation can, and indeed has been extracted and
prepared for machine consumption (de Melo and
Weikum, 2010): Etymological WordNet1 contains
6,031,431 entries for 2,877,036 words (actually,
morphemes) in 397 languages. Because we pro-
cess essays written in English, we use only the
entries that give etymological origins for English
words – 240,656. Figure 1 shows as an example
of the kind of information formalized in the Ety-
mological WordNet the etymological ancestry for
the words flower, blossom, bloom.

3.2 Document/collection modeling

Essay representation After tokenization, POS
tagging and lemmatization, each essay in the
dataset is represented as a vector of etymological
ancestry proportions obtained through the follow-
ing processing steps:

1. for each token that has an entry in the ety-
mological dictionary, we replace it with the
language of its etymological ancestor – e.g.
sight will be replaced by ang (Old English),
vision by lat (Latin) (Table 1 shows the num-
ber of words with etymological ancestors in
the subsets corresponding to each language);

2. compute the proportion of each etymological
language in the essay, and represent the es-
say as a vector of language proportions2. We
experimented with using etymological infor-
mation going back through several ancestry
levels, but using the first level led to the best
results.

ei ∼ 〈pil1 , ..., piln〉 where pilk =
nilk

Ni,etym

1http://www1.icsi.berkeley.edu/
˜demelo/etymwn/

2Using automatically corrected typos (first option of is-
pell) did not change the results significantly.
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nilk is the number of words with etymologi-
cal ancestor lk in the i-th essay, and Ni,etym

is the number of words with etymological in-
formation in essay i.

Language vectors For each subcollection corre-
sponding to one (student native) language Lj , we
build the language vectors by averaging over the
essay vectors in the subcollection:

VLj = 〈pLj l1 , ..., pLj lm〉

where pLj lk =

∑
lang(ei)=Lj

pilk

|{ei|lang(ei)=Lj}|

pLj lk is the proportion of etymological an-
cestor language lk in all essays whose author has
as native language Lj .

The essay and language vectors are filtered by
removing etymological languages whose corre-
sponding values in the language vectors are less
than 10−4.

4 Experiments

We investigate the strength of the etymological
“fingerprint” of individual and collective essays
written by non-native speakers of English, through
two tasks – native language identification and lan-
guage family tree construction. Towards this end,
we work with a collection of essays written by
contributors whose native language is an Indo-
European language. The dataset is described in
Section 4.1. For etymological information we rely
on an etymological dictionary, described briefly in
Section 3.1. Data modeling and the experiments
conducted are described in Section 3.2.

4.1 Data

We used the ICLE dataset (Granger et al., 2009),
consisting of English essays written by non-
native English speakers. We filter out those that
were written by people whose mother tongue is
not from the Indo-European family (i.e. Chinese,
Japanese, Turkish and Tswana). Table 1 shows a
summary of the data statistics, including the num-
ber of words for which we have found ancestors in
the etymological dictionary used. The corpus con-
sists entirely of essays written by students. Two
types of essay writing are present: argumentative
essay writings and literature examination papers.
Table 2 displays a list of topics in the corpus. The
essays should be at least 500 words long and up to

1,000, and contain all the spelling mistakes made
by their authors.

Following Nagata and Whittaker (2013), who
also built the Indo-European family tree based on
n-grams composed of function words and open-
class parts of speech, essays that do not respect
one of the following rules are filtered out: (i) the
writer has only one native language, (ii) the writer
has only one language at home; (iii) the two lan-
guages in (i) and (ii) are the same as the native
language of the subcorpus to which the essay be-
longs. Table 1 shows a summary of the data statis-
tics after filtering, including the number of words
for which we have found ancestors in the etymo-
logical dictionary used.

Native language # essays # tokens (with etym)
Bulgarian 302 226,407 (149,151)
Czech 243 226,895 (148,391)
Dutch 263 264,981 (169,040)
French 347 256,749 (161,136)
German 437 259,967 (170,056)
Italian 392 253,798 (165,500)
Norwegian 317 238,403 (156,764)
Polish 365 263,223 (172,319)
Russian 276 259,510 (167,938)
Spanish 251 225,341 (139,565)
Swedish 355 224,948 (146,143)

Table 1: Statistics on the subset of ICLE dataset
used.

1 Crime does not pay.
2 The prison system is outdated. No civilized society should punish

its criminals: it should rehabilitate them.
3 Most university degrees are theoretical and do not prepare students

for the real world. They are therefore of very little value.
4 A man/woman’s financial reward should be commensurate with

their contribution to the society they live in.
5 The role of censorship in Western society.
6 Marx once said that religion was the opium of the masses. If he

was alive at the end of the 20th century, he would replace religion
with television.

7 All armies should consist entirely of professional soldiers : there
is no value in a system of military service.

8 The Gulf War has shown us that it is still a great thing to fight for
one’s country.

9 Feminists have done more harm to the cause of women than good.
10 In his novel Animal Farm, George Orwell wrote “All men are

equal: but some are more equal than others”. How true is this
today?

11 In the words of the old song “Money is the root of all evil”.
12 Europe.
13 In the 19th century, Victor Hugo said: ”How sad it is to think that

nature is calling out but humanity refuses to pay heed. ”Do you
think it is still true nowadays ?

14 Some people say that in our modern world, dominated by sci-
ence technology and industrialization, there is no longer a place
for dreaming and imagination. What is your opinion ?

Table 2: Topics in the ICLE dataset.

The suitability of the dataset above for NLI was
questioned by Brooke and Hirst (2012). They have
shown that the fact that the corpus consists of sets
of essays on a number of topics causes an overes-
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timation of the results of NLI when random split-
ting, particularly for groups of contributors that
were presented with very different topics – e.g.
students from Asia vs. students from Europe. We
have analyzed the distribution of essays into top-
ics using the essay titles, and observed that con-
tributions from Europe (which are our focus) have
similar distributions across the featured topics.

Growing the language tree To grow the lan-
guage tree from the language vectors built from
the English essays, we use a variation of the
UPMGA – Unweighted Pair Group Method with
Arithmetic Mean – algorithm. Starting with the
language vectors VLj , we compute the distance be-
tween each pair of vectors using a distance met-
ric algorithm. At each step we choose the closest
pair (La, Lb) and combine them in a subtree, then
combine their corresponding sub-collection of es-
says, and build the language vector for the “com-
posite” language La,b, and compute its distance to
the other language vectors.

4.2 Results
We test whether etymological information sur-
faces as native language interference that is de-
tectible through the tasks of native language iden-
tification and reconstruction of the language fam-
ily tree. Table 3 shows results on the multi-class
classification of essays according to the native lan-
guage of the author, in the form of F-score av-
erage results using SVM classification in 5-fold
cross-validation (using Weka’s SMO implementa-
tion3 with polynomial kernel and default param-
eters). The baseline corresponds to the language
distribution in the dataset. We use as additional
comparison point another set of features used to
reconstruct the language family tree – the (closed-
class) word and POS 3grams Nagata and Whit-
taker (2013), such as the NN of; a JJ NN; the JJ
NN. We build all such patterns for the data, and
keep the top 1000 by overall frequency.

Adding etymological features that capture the
distribution of etymological ancestors for each es-
say led to improved results for all languages, vary-
ing from a non-significant improvement of 0.2%
point for Russian, to a significant and high 5.3%
improvement for German. Using only words, the
accuracy is 73.2%, which increases marginally to
73.7 when etymology information is added. Us-
ing a full complement of standard features – word,

3http://www.cs.waikato.ac.nz/ml/weka/

Language Baseline Etym. Patt. both
Bulgarian 8.52% 32.4 51.7 54.3
Czech 6.85% 21.9 53.4 54.4
Dutch 7.41% 11.7 50.4 51.1
French 9.78% 30.0 58.8 62.9
German 12.31% 45.4 47.4 52.7
Italian 11.04% 34.3 66.3 67.3
Norwegian 8.93% 35.5 57.0 59.3
Polish 10.28% 42.5 59.9 62.1
Rusian 7.78% 12.7 46.9 47.1
Spanish 7.07% 24.6 57.9 59.6
Swedish 10.00% 23.1 44.8 45.7
Accuracy 31.7 54.2 56.3

Table 3: 5-fold cross-validation F-scores and ac-
curacy for language classification

lemma and character ngrams (n=1..3) (built fol-
lowing (Lahiri and Mihalcea, 2013)) – gives an
average accuracy (over 5 fold cross-validation) of
85.7%. Adding etymology does not lead to im-
provements when added to this set.

Despite the rather low results when etymology
is used on its own for language identification, the
cumulative evidence leads to a language family
tree that closely matches the gold standard (Figure
2). The tree on top is the gold standard cf. (Na-
gata and Whittaker, 2013; Crystal, 1997). The tree
is grown by computing the euclidean distance be-
tween pairwise vectors, and then iteratively group-
ing together the closest vectors at each step as de-
scribed in Section 4.1.

Spanish   French    Italian            Russian  Bulgarian   Polish   Czech   Norwegian Swedish  German   Dutch

Spanish   French    Italian            Russian  Dutch  Bulgarian   Polish    Norwegian Swedish   Czech    German 

Romance Slavic Germanic

Indo-European family tree

Family tree generated based on etymology distributions in ICLE essays

Figure 2: Language family trees – the gold stan-
dard and the automatically generated one

The two wrongly placed languages in our lan-
guage family tree are Czech and Dutch. Czech
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is grouped with the Germanic languages. Histori-
cally, the country which is now the Czech Repub-
lic has been under German occupation for long pe-
riods of time. We propose the hypothesis that this
has influenced the Czech language at the lexical
level, and our etymological fingerprinting charac-
terizes mostly the lexical aspects of language. We
plan to verify this theory as etymological informa-
tion for Czech and German becomes more read-
ily available in sufficient quantities. We have not
yet found an explanation for the grouping of Dutch
with the Slavic languages. Like mentioned before,
the language vectors we built rely exclusively on
lexical information, and it is possible that Dutch’s
grammatical structure is what defines it best as be-
ing a part of the Germanic language family, as op-
posed to the lexical dimension.

5 Conclusion

In this paper we have shown an exploration of
a novel indicator of native language interference
in second language learning, particularly etymol-
ogy. While cross-linguistically related words
(cognates, false and true friends) have been part of
the repertoire of features for native language iden-
tification and cross-language studies, we have fo-
cused here on the language of etymological ances-
tors of words, and in particular their distribution
in documents. Experiments in recreating the Indo-
European family tree have shown that the com-
position of a document in terms of etymological
languages is indicative of the native language of
the writer to the extent that fundamental charac-
teristics of languages – typological relatedness be-
tween languages – emerge.
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Abstract

Story detection is the task of determining
whether or not a unit of text contains a
story. Prior approaches achieved a max-
imum performance of 0.66 F1, and did
not generalize well across different cor-
pora. We present a new state-of-the-art
detector that achieves a maximum per-
formance of 0.75 F1 (a 14% improve-
ment), with significantly greater general-
izability than previous work. In partic-
ular, our detector achieves performance
above 0.70 F1 across a variety of combi-
nations of lexically different corpora for
training and testing, as well as dramatic
improvements (up to 4,000%) in perfor-
mance when trained on a small, disfluent
data set. The new detector uses two basic
types of features–ones related to events,
and ones related to characters–totaling 283
specific features overall; previous detec-
tors used tens of thousands of features,
and so this detector represents a significant
simplification along with increased perfor-
mance.

1 Motivation

Understanding stories is a long-held goal of both
artificial intelligence and natural language pro-
cessing. Stories can be used for many interest-
ing natural language processing tasks, and much
can be learned from them, including concrete facts
about specific events, people, and things; com-
monsense knowledge about the world; and cul-
tural knowledge about the societies in which we
live. Applying NLP directly to the large and
growing number of stories available electronically,
however, has been limited by our inability to effi-
ciently separate story from non-story text. For the

most part, studies of stories per se has relied on
manual curation of story data sets (Mostafazadeh
et al., 2016), which is, naturally, time-consuming,
expensive, and doesn’t scale. These human-driven
methods pay no attention to the large number of
stories generated daily in news, entertainment, and
social media.

The goal of this work is to build and evaluate a
high performing story detector that is both sim-
ple in design and generalizable across lexically
different story corpora. Our definition of story
can be found in §1.2, and is based on definitions
used in prior work on story detection. Previous
approaches to story detection have relied on tens
of thousands of features (Ceran et al., 2012; Gor-
don and Swanson, 2009), and have used compli-
cated pre-processing pipelines (Ceran et al., 2012).
Moreover these prior systems, while clearly im-
portant advances, did not, arguably, include fea-
tures that captured the “essence” of stories. Fur-
thermore, these prior efforts had poor generaliz-
ability, i.e. when trained on one corpus, the detec-
tors perform poorly when tested on a different cor-
pus. Building on this prior work, we begin to ad-
dress these shortcomings, presenting a new detec-
tor that has many orders of magnitude fewer fea-
tures than used previously, significantly improved
cross corpus performance, and higher F1 on all
training and testing combinations.

1.1 Task

Our goal is to design a system that can automat-
ically decide whether or not a paragraph of text
contains a story. We say a paragraph contains a
story if any portion of it expresses a significant
part of a story, including the characters and events
involved in major plot points. Corpora used in
prior work included Islamic Extremist texts (Ceran
et al., 2012), and personal weblog posts (Gordon
and Swanson, 2009), which were both annotated at
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this level of granularity. In this paper we test com-
binations of new features on both of these corpora.
Once we determined the best-performing feature
set, we ran experiments using those features to
evaluate its generalizability across corpora.

1.2 What is a Story?

Author E.M. Forster said “A story is a narrative of
events arranged in their time sequence” (Forster,
2010). A more precise definition, of our own
coinage, is that a narrative is a discourse pre-
senting a coherent sequence of events which are
causally related and purposely related, concern
specific characters and times, and overall displays
a level of organization beyond the commonsense
coherence of the events themselves. In sum, a
story is a series of events effected by animate ac-
tors. This reflects a general consensus among nar-
ratologists that there are at least two key elements
to stories, namely, the plot (fabula) and the char-
acters (dramatis personae) who move the plot for-
ward (Abbott, 2008). While a story is more than
just a plot carried out by characters–indeed, criti-
cal to ‘storyness’ is the connective tissue between
these elements that can transport an audience to a
different time and place–here we focus on these
two core elements to effect better story detection.

1.3 Outline of the Paper

We begin by discussing prior work on story de-
tection (§2). Then we introduce our new detector
(§3), which relies on simple verb (§3.1) and char-
acter (§3.2) features. We test our detector on two
corpora (§3.3)—one of blog posts and one of Is-
lamist Extremist texts—using an SVM model to
classify each paragraph as to whether or not it con-
tains a story (§3.4). We conduct an array of exper-
iments evaluating different combinations and vari-
ants of our features (§4). We also detail our use
of undersampling for the majority class (§4.1), as
well as our cross validation procedure (§4.2). We
present both the results of the single corpus exper-
iments (§4.3) and the cross-corpus and generaliz-
ability experiments (§4.4). We conclude with a list
of contributions and discussion of future directions
(§5).

2 Related Work

There have been three major contributions to the
study of automatic story detection. In 2009, Gor-
dan and Swanson developed a bag-of-words-based

detector using blog data (Gordon and Swanson,
2009). They annotated a subset of paragraph-sized
posts in the Spinn3r Blog corpus for the presence
of stories, and used this data to train a confidence
weighted linear classifier using all unigrams, bi-
grams, and trigrams from the data. Their best F1

was 0.55. This was an important first step in story
detection, and the annotated corpus of blog stories
is an invaluable resource.

In 2012, Corman et al. developed a semantic-
triplet-based detector using Islamist Extremist
texts (Ceran et al., 2012). They annotated para-
graphs of the CSC Islamic Extremist corpus for
the presence of stories, and used this data to
train an SVM with a variety of features includ-
ing the top 20,000 tf-idf tokens, use of stative
verbs, and agent-verb-patient triplets (“seman-
tic triplets,” discussed in more detail below in
§3.1). Their best performing detector in that study
achieved 0.63 F1. The intent of the semantic
triplet features was to encode the plot and the char-
acters. These features were intended to capture the
action of stories, but the specifics of the implemen-
tation was problematic: each unique agent-verb-
patient triplet has its own element in the feature
vector, and so this detector was sensitive primarily
to the words that appeared in stories, not general-
ized actions or events.

Although Corman’s detector has a higher F1

than Gordon’s, it was not clear which one was ac-
tually better; they were tested on different corpora.
We compared the two detectors by reimplement-
ing both, confirmed the correctness of the reimple-
mentations, and running experiments where each
detector was trained and tested on the corpora
(Eisenberg et al., 2016). After these experiments,
we showed that Corman’s detector had better per-
formance on the majority of experiments. Some of
the results of these experiments are shown in Ta-
ble 2. We also slightly improved the performance
of Corman’s detector to 0.66 F1. In addition we
reported results investigating the generalizability
of the detectors; these results showed that neither
the Gordon nor the Corman detectors generalized
across corpora. We ascribed this problem to the
fact that the features of each detector were closely
tied to the literal words used, and did not attempt
to generalize beyond those specific lexical items.

In terms of domain independence, we surveyed
other discourse related tasks to see how general-
ization across domains has been achieved. For
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example, Braud et al. achieved domain indepen-
dence in the identification of implicit relations be-
tween discourse units by training their system on
both natural and synthetic data, weighting the in-
fluence of the two types (Braud and Denis, 2014).
Jansen et al., as another example, demonstrated
domain independence on the task of non-factoid
question answering by using both shallow and
deep discourse structure, along with lexical fea-
tures, to train their classifiers (Jansen et al., 2014).
Thus, domain independence is certainly possible
for discourse related tasks, but there does not yet
seem to be a one-size-fits-all solution.

3 Developing the Detector

In contrast to focusing on specific lexical items,
our implementation focuses on features which we
believe capture more precisely the essence of sto-
ries, namely, features focusing on (a) events in-
volving characters, and (b) the characters them-
selves.

3.1 Verb Features
Verbs are often used to express events. We use this
fact to approximate event detection in a computa-
tionally efficient but still relatively accurate man-
ner. The first part of each feature vector for a para-
graph comprises 278 dimensions, where each ele-
ment of this portion of the vector represents one of
the 278 verb classes in VerbNet (Schuler, 2005).
The value of each element depends on whether
a verb from the associated verb class is used in
the paragraph. Each element of the vector can
have three values: the first value represents when a
verb from the element’s corresponding verb class
is used in the paragraph and also involves a char-
acter as an argument of the verb. The second value
represents when a verb from the verb class is used,
but there are no characters involved. The third
value represents the situation where no verbs from
the verb class are used in the paragraph.

For clarity, we list the general steps of the verb
feature extraction pipeline:

1. Split each paragraph into tokens, assign part
of speech tags, and split the text into sen-
tences, all using Stanford CoreNLP (Man-
ning et al., 2014).

2. Parse each sentence with OpenNLP (Apache
Foundation, 2017).

3. Label each predicate with its semantic roles
using the SRL from the Story Workbench

(Finlayson, 2008, 2011).
4. Disambiguate the Wordnet sense (Fellbaum,

1998) for each open-class word using the
It Makes Sense WSD system (Zhong and
Ng, 2010), using the Java WordNet Inter-
face (JWI) to load and interact with WordNet
(Finlayson, 2014).

5. Assign one of 278 VerbNet verb classes to
each predicate, based on the assigned Word-
net sense, and using the jVerbnet library to
interact with VerbNet. (Finlayson, 2012).

6. Determine whether the arguments of each
predicate contains characters by using the
Stanford Named Entity Recognizer (Finkel
et al., 2005) and a gendered pronoun list.

We considered an argument to involve a char-
acter if it contained either (1) a gendered pro-
noun or (2) a named entity of type Person or Or-
ganization. We treated organizations as charac-
ters because they often fulfill that role in stories:
for example, in the Extremist stories, organiza-
tions or groups like the Islamic Emirate, Hamas,
or the Jews are agents or patients of important plot
events. The verb features were encoded as a vector
with length 278, each entry representing a differ-
ent VerbNet verb class with three possible values:
the verb class does not appear in the paragraph; the
verb class appears but does not involve characters;
or the verb class appears and a character is either
an agent, patient, or both.

The verb features represent the types of events
that occur in a paragraph, and whether or not char-
acters are involved in those events. This is a gener-
alized version of the semantic triplets that Corman
et al. used for their story detector (Ceran et al.,
2012), where they paired verbs with the specific
tokens in the agent and patient arguments. The dis-
advantage of Corman’s approach was that it led to
phrases with similar meaning being mapped to dif-
ferent features: for example, the sentences “Bob
played a solo” and “Mike improvised a melody”
are mapped to different features by the semantic
triplet based detector, even though the meaning of
the sentences are almost the same: a character is
performing music. On the other hand, in our ap-
proach, when we extract verb feature vectors from
these sentences, both result in the same feature
value, because the verbs played and improvised
belong to the performance VerbNet class, and both
verbs have a character in one of their arguments.
This allow a generalized encoding of the types of
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action that occurs in a text.

3.2 Character Features
Our second focus is on character coreference
chains. Characters, as discussed previously, are
a key element of stories. A character must be
present to drive the action of the story forward. We
hypothesize that stories will contain longer coref-
erence chains than non-stories. To encode this as
a feature, we calculated the normalized length of
the five longest coreference chains, and used those
numbers as the character features. We computed
these values as follows:

1. Extract coreference chains from each para-
graph using Stanford CoreNLP coreference
facility (Clark and Manning, 2016).

2. Filter out coreference chains that do not con-
tain a character reference as defined in the
Verb section above (a named entity of type
Person or Organization, or a gendered pro-
noun).

3. Sort the chains within each paragraph with
respect to the number of references in the
chain.

4. Normalize the chain lengths by dividing the
number of referring expression in each chain
by the number of sentences in the paragraph.

These normalized chain lengths were used to
construct a five-element feature vector for use by
the SVM. We experimented with different num-
bers of longest chains, anywhere from the single
longest to the ten longest chains. Testing on a
development set of 200 Extremist paragraphs re-
vealed using the five longest chains produced the
best result.

3.3 Corpora
As noted, we used two corpora that were annotated
by other researchers for the presence of stories at
the paragraph level. The CSC Islamic Extremist
Corpus comprises 24,009 paragraphs (Ceran et al.,
2012), of which 3,300 were labeled as containing
a story. These texts recount Afghani and Jihadi
activities in the mid-2000’s in a variety of loca-
tion around the world. This corpus was originally
used to train and test Corman’s semantic-triplet-
based story detector. The web blog texts come
from the ICWSM 2009 Spinn3r Dataset (Burton
et al., 2009). The full data set contains 44 mil-
lion texts in many languages. Gordon and Swan-
son (2009) annotated a sample of 4,143 English

texts from the full data set, 201 of which were
identified as containing stories. This corpus was
originally used to train and test Gordon’s bag-of-
words-based detector. Most of the texts in the blog
corpus are no more than 250 characters, roughly a
paragraph. The distribution of texts can be seen in
Table 1.

Corpus Story Non-Story
Extremist 3,300 20,709
Blog 201 3,942

Table 1: Distribution of story paragraphs across
the Extremist and blog corpora.

3.4 SVM Machine Learning

We used the Java implementation of LibSVM
(Chang and Lin, 2011) to train an SVM classifier
with our features. The hyper-parameters for the
linear kernel were γ = 0.5, ν = 0.5, and c = 20.

4 Experiments & Results

The results of our new experiments are shown in
Table 3. We report precision, recall, and F1 rel-
ative to the story and non-story classes. We per-
formed experiments on three feature sets: the verb
features alone (indicated by Verb in the table),
character features alone (indicated by Char), and
all features together (Verb+Char). We conducted
experiments ranging over three corpora: the Ex-
tremist corpus (Ext), the blog corpus (Web), and
the union of the two (Comb). These results may
be compared with the previously best performing
detector, namely, Corman’s semantic triplet based
detector (Ceran et al., 2012), as tested by us in
prior work (Eisenberg et al., 2016), and shown in
Table 2.

Training Testing Prec. Recall F1

Ext Ext 0.77 0.57 0.66
Ext Web 0.23 0.37 0.28
Ext Comb 0.43 0.41 0.32
Web Web 0.66 0.31 0.43
Web Ext 0.59 0.003 0.01
Web Comb 0.59 0.01 0.01
Comb Ext 0.62 0.51 0.43
Comb Web 0.36 0.49 0.30
Comb Comb 0.64 0.47 0.46

Table 2: Results for the Corman semantic triplet
based detector as reported in (Eisenberg et al.,
2016). These results are with respect to the story
class.
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Not Story Story
Features Training Testing Prec. Recall F1 Prec. Recall F1

Verb Ext Ext 0.73 0.81 0.77 0.78 0.70 0.74
Verb Web Web 0.69 0.75 0.72 0.73 0.66 0.69
Char Ext Ext 0.30 0.27 0.21 0.52 0.74 0.55
Char Web Web 0.67 0.68 0.67 0.67 0.65 0.65
Verb+Char Ext Ext 0.73 0.81 0.77 0.79 0.70 0.74
Verb+Char Ext Web 0.68 0.80 0.73 0.75 0.63 0.69
Verb+Char Ext Comb 0.70 0.77 0.73 0.75 0.67 0.71
Verb+Char Web Web 0.71 0.76 0.72 0.74 0.68 0.70
Verb+Char Web Ext 0.50 0.82 0.62 0.50 0.18 0.27
Verb+Char Web Comb 0.53 0.79 0.64 0.60 0.40 0.41
Verb+Char Comb Ext 0.74 0.81 0.77 0.79 0.71 0.75
Verb+Char Comb Web 0.68 0.74 0.70 0.72 0.64 0.67
Verb+Char Comb Comb 0.72 0.81 0.76 0.79 0.68 0.73

Table 3: Results of the new detectors as trained and tested on the Extremist (Ext), weblog (Web), or
combined (Comb) corpora. The feature sets tested include the 278 verb class features (Verb), the nor-
malized length of the five longest coreference chains (Char), and the combination of these two feature
sets (Verb+Char). Undersampling is utilized in each of these experiments.

4.1 Undersampling

In each of the new experiments, we undersam-
pled the non-story class before training (Japkow-
icz, 2000). Undersampling is a technique used to
help supervised machine learning classifiers learn
more about a class that has a significantly smaller
number of examples relative to an alternative. In
our case, non-story labels outnumbered story la-
bels by a factor of 7 overall. Extremist story para-
graphs are only 15.9% of the total annotated para-
graphs in that set, and in the blog corpus stories
were only 4.9% of the paragraphs. To prevent
the detector from being over trained on non-story
paragraphs, we thus reduced the size of the non-
story training data to that of the story data, by ran-
domly selecting a number of non-story texts equal
to the number of story texts for training and test-
ing.

4.2 Cross Validation

We used three versions of cross validation for the
new experiments, one for each experimental con-
dition: training and testing on a single corpus;
training on a single corpus and testing on the com-
bined corpus; or training on the combined corpus
and testing on a single corpus. These procedures
are the same as in our previous work (Eisenberg
et al., 2016). We performed undersampling before
cross validation, so when we are explaining how to
divide up the story and non-story texts into cross
validation folds, this refers to the full set of story
texts and the set of non-story texts that was ran-
domly selected to equal the number of story texts.
For all experiments with cross validation, we use

ten folds.

Train and Test on a Single Corpus: If the
training and testing corpus is the same, divide up
the stories into ten subsets of equal size, and the
undersampled non-stories into ten subsets of equal
size. For each fold of cross validation a different
story set and non-story set (of the same index) are
used as the testing set and the remaining nine are
used for training.

Train on Combined, Test on Single: If the
training is done on the combined corpus, and the
test corpus is either the weblog or Extremist cor-
pus, which we will refer to as the single test cor-
pus, first divide the stories from the single test cor-
pus into ten equal sized sets, and then divide up
that corpus’s non-stories into ten equal sets. For
each fold of cross validation a different story set
and non-story set (of the same index) from the sin-
gle test corpus are used as the testing set and the
remaining nine are used for training. The texts
from the other corpus (the corpus that is not the
single test corpus), are undersampled and added
to all ten folds of training.

Train on Single, Test on Combined: If train-
ing is done on a single corpus, and the test cor-
pus is the combined corpus, first divide the sto-
ries from the single training corpus into ten equal
sized sets, and the undersampled non-stories from
the single training corpus into ten equal sized sets.
For each fold of cross validation a different story
set and non-story set (of the same index) from the
single training corpus are used as the testing set
and the remaining nine are used for training. The
texts from the other corpus (the corpus that is not
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the single training corpus), are undersampled and
added to all ten folds of testing.

4.3 Single Corpus Experiments

For every experiment that used only a single cor-
pus, the best feature set included both the verb
and character features, achieving up to 0.74 F1

when trained and tested on the Extremist cor-
pus. This represents a new state-of-the-art, about
12.6% greater than the performance of Corman’s
detector when trained and tested on the same cor-
pus (0.66 F1).

When the detector uses only verb features it
achieves an F1 of 0.74 on the Extremist corpus,
only 0.002 lower than the detector using all the
features. Interestingly, the detector achieves 0.55
F1 using only the five character features, which is
respectful given such a small feature set. To put
this in perspective, the Corman detector (Ceran
et al., 2012) uses more than 20,000 features, and
achieves an F1 of 0.66. Thus we were able to
achieve 83% of the performance of the Corman
detector with 4,000 times fewer features.

When training and testing on the blog corpus,
the detector using all the features achieved 0.70
F1, a 74% increase from the Corman detector’s
0.425 F1. This is the best performing model on
the blog corpus, from any experiment to date. The
detector using only verb features achieves 0.74 F1,
which is only slightly worse than when both sets of
features are used. When we trained using only the
character features, the system achieves 0.65 F1,
which is still 54% higher than when the Corman
detector is trained and tested on the blog corpus.

In the single corpus experiments, the detectors
that we trained and tested on the Extremist para-
graphs have higher performance than those trained
on the web blogs, except for when we use only
the five character features. A possible reason for
this is the Stanford NER may not be recogniz-
ing the correct named entities in the Extremist
texts, which contain many non-Western names,
e.g., Mujahidin, Okba ibn Nafi, or Wahid. How-
ever, when we include the verb features, the detec-
tors trained on the Extremist texts achieve better
performance. We believe this is partially due to the
greater number of stories in the Extremist corpus,
and their increased grammatical fluency. The Ex-
tremist corpus is actually well written compared
to the blog corpus, the latter of which contains nu-
merous fragmentary and disjointed posts.

4.4 Cross Corpus Experiments

We show the generalizability of our best-
performing detector (that including both verb and
character features) by training it on one corpus and
testing it on another.

When we trained the detector on the Extremist
texts and tested on the blog texts, it scores a 0.68
F1. This is 142% improvement over Corman’s de-
tector in the same setup (0.28 F1), and is a higher
F1 than the previous state-of-the-art on any sin-
gle corpus test. When we trained the detector on
the Extremist corpus and tested on the combined
corpus, it achieved 0.71 F1, which is an 121% in-
crease from Corman’s detector in the equivalent
setup.

For the detector trained on the blog corpus and
tested on the Extremist corpus, the detector that
uses both verbs and character features achieves an
0.27 F1, which is a 2,600% increase over the Cor-
man detector’s 0.01 F1 in this same setup. While
0.27 F1 can by no means be called good per-
formance, it is significantly better than the Cor-
man detector’s performance on this task, and so
demonstrates significantly better generalizability.
As seen in our experiments, detectors trained on
only the blog corpus do not perform as well as de-
tectors trained on the Extremist corpus. We sus-
pect that this is partially due to the disfluent nature
of the blog corpus, which includes many fragmen-
tary sentences, grammatical errors, and slang, all
of which are difficult for the NLP pipeline to han-
dle.

Note that we performed no cross validation in
the above experiments where we trained the de-
tector on the Extremist corpus and tested on the
blog corpus, or vice versa, because in these cases
the training and testing sets have no intersection.

The cross corpus experiment with the largest
percent increase is for the verb and character de-
tector trained on the blog corpus and tested on the
combined corpus. The new detector’s F1 is 0.41, a
4,000% increase from the Corman detector’s 0.01
F1 on this task. Although a 0.41 F1 is also not
good, this is a massive improvement over previ-
ous performance. This is further evidence that our
verb and character feature based detector is sig-
nificantly more generalizable than Corman’s ap-
proach.

The remaining five cross corpus experiments in-
volved the combined corpus. In this case, our
detector out-performed Corman’s detector. Of
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special note is the detector trained on the com-
bined corpus and tested on the Extremist corpus.
It achieved 0.75 F1, which is 0.01 points of F1

higher than our best single corpus detector, which
was trained and tested on the Extremist corpus.
This isn’t a substantial increase in performance,
but it suggests that information gleaned from the
blog corpus does potentially–albeit marginally–
help classification of the Extremist texts.

5 Conclusion

We have introduced a new story detection ap-
proach which uses simple verb and character fea-
tures. This new detector outperforms the prior
state-of-the-art in all tasks, sometimes by orders
of magnitude. Further, we showed that our de-
tector generalizes significantly better across lexi-
cally different corpora. We propose that this in-
crease in performance and generalizability is due
to the more general nature of our features, espe-
cially those related to verb classes. This approach
has additional advantages, for example, the fea-
ture vector is fixed in size and does not grow in an
unbounded fashion as new texts (with new verbs,
agents, and patents) are added to the training data.

In future work we plan to develop richer
character-based features. The current approach
uses only normalized lengths of the five longest
coreference chains, which leaves out important
information about characters that could be use-
ful to story detection. Indeed, our experiments
showed that these character features only add a
small amount of information above and beyond
the verb features. However, when used alone,
the character features still yield reasonable per-
formance, which suggests that more meaningful
character-based features could lead to story detec-
tors with even better performance.
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Abstract

One of the main obstacles for many Dig-
ital Humanities projects is the low data
availability. Texts have to be digitized
in an expensive and time consuming pro-
cess whereas Optical Character Recogni-
tion (OCR) post-correction is one of the
time-critical factors. At the example of
OCR post-correction, we show the adap-
tation of a generic system to solve a spe-
cific problem with little data. The system
accounts for a diversity of errors encoun-
tered in OCRed texts coming from differ-
ent time periods in the domain of litera-
ture. We show that the combination of dif-
ferent approaches, such as e.g. Statisti-
cal Machine Translation and spell check-
ing, with the help of a ranking mecha-
nism tremendously improves over single-
handed approaches. Since we consider
the accessibility of the resulting tool as
a crucial part of Digital Humanities col-
laborations, we describe the workflow we
suggest for efficient text recognition and
subsequent automatic and manual post-
correction.

1 Introduction

Humanities are no longer just the realm of schol-
ars turning pages of thick books. As the worlds
of humanists and computer scientists begin to in-
tertwine, new methods to revisit known ground
emerge and options to widen the scope of research
questions are available. Moreover, the nature of
language encountered in such research attracts the
attention of the NLP community (Kao and Juraf-
sky (2015), Milli and Bamman (2016)). Yet, the
basic requirement for the successful implemen-
tation of such projects often poses a stumbling

block: large digital corpora comprising the textual
material of interest are rare. Archives and individ-
ual scholars are in the process of improving this
situation by applying Optical Character Recog-
nition (OCR) to the physical resources. In the
Google Books1 project books are being digitized
on a large scale. But even though collections of
literary texts like Project Gutenberg2 exist, these
collections often lack the texts of interest to a spe-
cific question. As an example, we describe the
compilation of a corpus of adaptations of Goethe’s
Sorrows of the young Werther which allows for the
analysis of character networks throughout the pub-
lishing history of this work.
The success of OCR is highly dependent on the
quality of the printed source text. Recognition er-
rors, in turn, impact results of computer-aided re-
search (Strange et al., 2014). Especially for older
books set in hard-to-read fonts and with stained
paper the output of OCR systems is not good
enough to serve as a basis for Digital Humanities
(DH) research. It needs to be post-corrected in a
time-consuming and cost-intensive process.
We describe how we support and facilitate the
manual post-correction process with the help of
informed automatic post-correction. To account
for the problem of relative data sparsity, we illus-
trate how a generic architecture agnostic to a spe-
cific domain can be adjusted to text specificities
such as genre and font characteristics by including
just small amounts of domain specific data. We
suggest a system architecture (cf. Figure 1) with
trainable modules which joins general and specific
problem solving as required in many applications.
We show that the combination of modules via a
ranking algorithm yields results far above the per-
formance of single approaches.

1https://books.google.de/, 02.04.2017.
2http://www.gutenberg.org, 14.04.2017.
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Figure 1: Multi-modular OCR post-correction system.

We discuss the point of departure for our research
in Section 2 and introduce the data we base our
system on in Section 4. In Section 5, we illustrate
the most common errors and motivate our multi-
modular, partly customized architecture. Section 6
gives an overview of techniques included in our
system and the ranking algorithm. In Section 7,
we discuss results, the limitations of automatic
post-correction and the influence the amount of
training data takes on the performance of such a
system. Finally, Section 8 describes a way to effi-
ciently integrate the results of our research into a
digitization work-flow as we see the easy accessi-
bility of computer aid as a central point in Digital
Humanities collaborations.

2 Related work

There are two obvious ways to automatically im-
prove quality of digitized text: optimization of
OCR systems or automatic post-correction. Com-
monly, OCR utilizes just basic linguistic knowl-
edge like character set of a language or reading
direction. The focus lies on the image recognition
aspect which is often done with artificial neural
networks (cf. Graves et al. (2009), Desai (2010)).
Post-correction is focused on the correction of er-
rors in the linguistic context. It thus allows for the
purposeful inclusion of knowledge about the text
at hand, e.g. genre-specific vocabulary. Neverthe-
less, post-correction has predominantly been tack-
led OCR system agnostic as outlined below. As
an advantage, post-correction can also be applied
when no scan or physical resource is available.
There have been attempts towards shared datasets
for evaluation. Mihov et al. (2005) released a cor-
pus covering four different kinds of OCRed text
comprising German and Bulgarian. However, in
2017 the corpus was untraceable and no recent re-

search relating to the data could be found.
OCR post-correction is applied in a diversity of
fields in order to compile high-quality datasets.
This is not merely reflected in the homogeneity of
techniques but in the metric of evaluation as well.
While accuracy has been widely used as evalu-
ation measure in OCR post-correction research,
Reynaert (2008a) advocates the use of precision
and recall in order to improve transparency in eval-
uations. Dependent on the paradigm of the applied
technique even evaluation measures like BLEU
score can be found (cf. Afli et al. (2016)).
Since shared tasks are a good opportunity to estab-
lish certain standards and facilitate the compara-
bility of techniques, the Competition on Post-OCR
Text Correction3 organized in the context of IC-
DAR 2017 could mark a milestone for more uni-
fied OCR post-correction research efforts.

Regarding techniques used for OCR post-
correction, there are two main trends to be
mentioned: statistical approaches utilizing error
distributions inferred from training data and lex-
ical approaches oriented towards the comparison
of source words to a canonical form. Combina-
tions of the two approaches are also available.
Techniques residing in this statistical domain
have the advantage that they can model specific
distributions of the target domain if training data
is available. Tong and Evans (1996) approach
post-correction as a statistical language modeling
problem, taking context into account. Pérez-
Cortes et al. (2000) employ stochastic finite-state
automaton along with a modified version of
the Viterbi Algorithm to perform a stochastic
error correcting parsing. Extending the simpler
stochastic context-sensitive models, Kolak and

3https://sites.google.com/view/
icdar2017-postcorrectionocr/home, 3.07.2017.
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Resnik (2002) apply the first noisy channel model,
using edit distance from noisy to corrected text
on character level. In order to train such a model,
manually generated training data is required. Rey-
naert (2008b) suggests a corpus-based correction
method, taking spelling variation (especially in
historical text) into account. Abdulkader and
Casey (2009) introduce an error estimator neural
network that learns to assess error probabilities
from ground truth data which in turn is then
suggested for manual correction. This decreases
the time needed for manual post-correction since
correct words do not have to be considered as
candidates for correction by the human corrector.
Llobet et al. (2010) combine information from
the OCR system output, the error distribution and
the language as weighted finite-state transducers.
Reffle and Ringlstetter (2013) use global as
well as local error information to be able to
fine-tune post-correction systems to historical
documents. Related to the approach introduced by
Pérez-Cortes et al. (2000), Afli et al. (2016) use
statistical machine translation for error correction
using the Moses toolkit on character level. Volk
et al. (2010) merge the output of two OCR systems
with the help of a language model to increase the
quality of OCR text. The corpus of yearbooks of
the Swiss Alpine Club which has been manually
corrected via crowdsourcing (cf. Clematide et al.
(2016)) is available from their website.
Lexical approaches often use rather generic
distance measures between an erroneous word
and a potential canonical lexical item. Strohmaier
et al. (2003) investigate the influence of the
coverage of a lexicon on the post-correction task.
Considering the fact that writing in historical
documents is often not standardized, the success
of such approaches is limited. Moreover, systems
based on lexicons rely on the availability of such
resources. Historical stages of a language – which
constitute the majority of texts in need for OCR
post-correction – often lack such resources or pro-
vide incomplete lexicons which would drastically
decrease performance of spell-checking-based
systems. Ringlstetter et al. (2007) address this
problem by suggesting a way to dynamically
collect specialized lexicons for this task. Taka-
hashi et al. (1990) apply spelling correction
with preceding candidate word detection. Bassil
and Alwani (2012) use Google’s online spelling
suggestions for as they draw on a huge lexicon

based on contents gathered from all over the web.
The human component as final authority has
been mentioned in some of these projects. Visual
support of the post-correction process has been
emphasized by e.g. Vobl et al. (2014) who
describe a system of iterative post-correction
of OCRed historical text which is evaluated in
an application-oriented way. They present the
human corrector with an alignment of image
and OCRed text and make batch correction of
the same error in the entire document possible.
They can show that the time needed by human
correctors considerably decreases.

3 Evaluation metrics

We describe and evaluate our data by means of
word error rate (WER) and character error rate
(CER). The error rates are a commonly used met-
ric in speech recognition and machine translation
evaluation and can also be referred to as length
normalized edit distance. They quantify the num-
ber of operations, namely the number of inser-
tions, deletions and substitutions, that are needed
to transform the suggested string into the manually
corrected string and are computed as follows:

WER =
word insertions + word substitutions + word deletions

# words in the reference

CER =
char insertions + char substitutions + char deletions

# characters in the reference

4 Data

As mentioned in the introduction, errors found in
OCRed texts are specific to time of origin, quality
of scan and even the characteristics of a specific
text. Our multi-modular architecture paves the
way for a solution taking this into account by in-
cluding general as well as specific modules. Thus,
we suggest to include domain specific data as well
as larger, more generic data sets in order to en-
hance coverage of vocabulary and possible error
classes. The data described hereafter constitutes
parallel corpora with OCR output and manually
corrected text which we utilize for training statis-
tical models.

4.1 The Werther corpus

Since our system is developed to help in the
process of compiling a corpus comprising adapta-
tions of Goethe’s The Sorrows Of Young Werther
throughout different text types and centuries, we
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1 Berichtigung der Geschichte des jungen Werthers H. von Breitenbach 1775
2 Schwacher jedoch wohlgemeynter Tritt vor dem Riss, neben oder hinter Herren Pastor Goeze,

gegen die Leiden des jungen Werthers und dessen ruchlose Anhänger
anonymous 1775

3 Lorenz Konau David Iversen 1776
4 Werther der Jude Ludwig Jacobowski 1910
5 Eine rührende Erzählung aus geheimen Nachrichten von Venedig und Cadir (first letter) Joseph Codardo und Rosaura Bianki 1778
6 Afterwerther oder Folgen jugendlicher Eifersucht A. Henselt 1784
7 Der neue Werther oder Gefühl und Liebe Karl P. Bonafont 1804
8 Leiden des modernen Werther Max Kaufmann 1901

Table 1: Werther texts included in our corpus from different authors and times of origin.

collected texts from this target domain. To be
able to train a specialized system, we manually
corrected a small corpus of relevant texts (cf.
Table 2). We use the output of Abbyy Fine Reader
7 for several Werther adaptations (Table 1) all
based on scans of books with German Gothic
lettering.

4.2 The Deutsches Textarchive (DTA) corpus

Even though manual OCR post-correction is a
vital part of many projects, only very little de-
tailed documentation of this process exists. Das
Deutsche Textarchiv (The German Text Archive)
(DTA) is one of the few projects providing de-
tailed correction guidelines along with the scans
and the text corrected within the project (Geyken
et al., 2012). This allows the compilation of a
comprehensive parallel corpus of OCR output and
corrected text spanning a period of four centuries
(17th to 20th) in German Gothic lettering. For
OCR, we use the open source software tesseract4

(Smith and Inc, 2007) which comes with recogni-
tion models for Gothic font.

4.3 Gutenberg data for language modeling

Since the output of our system is supposed to con-
sist of well-formed German sentences, we need
a method to assess the quality of the output lan-
guage. This task is generally tackled by language
modeling. We compiled a collection of 500 ran-
domly chosen texts from Project Gutenberg5 com-
prising 28,528,078 tokens. With its relative close-
ness to our target domain it constitutes the best
approximation of a target language. The language
model is trained with the KenLM toolkit (Heafield,
2011) with an order of 5 on token level and 10 on
character level following De Clercq et al. (2013).

4Considering the open source aspect of our resulting sys-
tem, we decided to use the open source OCR software tesser-
act and move away from Abbyy some time after our project
started: https://github.com/tesseract-ocr.

5Project Gutenberg. Retrieved January 21, 2017, from
www.gutenberg.org.

5 Why OCR post-correction is hard

In tasks like the normalization of historical text
(Bollmann et al., 2012) or social media, one can
take advantage of regularities in the deviations
from the standard form that appear throughout an
entire genre or in case of social media e.g. dialect
region (Eisenstein, 2013). Errors in OCR, how-
ever, depend on the font and quality of the scan as
well as the time of origin which makes each text
unique in its composition of features and errors.
In order to exemplify this claim, we analyzed three
different samples: Lorenz Konau (1776), Werther
der Jude (1910) and a sample from the DTA data.
Figure 2 (a-c) illustrate the point that the qual-
ity of scan is crucial for the OCR success. Fig-
ure 2a shows a text from the 20th century where
the type setting is rather regular and the distances
between letters is uniform as opposed to Figure 2b.
Figure 2c shows how the writing from the back
of the page shines through and makes the script
less readable. Thus, we observe a divergence in
the frequency of certain character operations be-
tween those texts: the percentage of substitutions
range between 74% for Lorenz Konau and 60% for
Werther der Jude and 18% and 30% of insertions,
respectively. The varying percentage of insertions
might be due to the fact that some scans are more
“washed out” than others. Successful insertion of
missing characters, however, relies on the precon-
dition that a system knows a lot of actual words
and sentences in the respective language and can-
not be resolved via e.g. character similarity like in
the substitution from l to t.
Another factor that complicates the correction of
a specific text is the number of errors per word.
Words with an edit distance of one to the cor-
rect version are easier to correct those with more
than one necessary operation. With respect to er-
rors per word our corpus shows significant dif-
ferences in error distributions. Especially in our
DTA corpus the number of words with two or
more character-level errors per word is consider-
ably higher than those with one error. For Werther
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(a) Werther der Jude (1910) (b) Lorenz Konau (1776)
(c) DTA: Blumenbach (1791): Handbuch
der Naturgeschichte

Figure 2: Scans of three different texts from our corpora. Emphasizes differences in quality of scan and
differences in type setting, font and genre (e.g. drama).

der Jude (WER 10.0, CER 2.4) the number of
errors in general is much lower than for Konau
(WER: 34.7, CER: 10.9). These characteristics in-
dicate that subcorpus-specific training of a system
is promising.

6 Specialized multi-modular
post-correction

In order to account for the nature of errors that can
occur in OCR text, we apply a variety of modules
for post-correction. The system proceeds in two
stages and is largely based on an architecture sug-
gested by Schulz et al. (2016) for normalization
of user-generated contents. In the first stage, a set
of specialized modules (Section 6.1) suggest cor-
rected versions for the tokenized6 OCR text lines.
Those modules can be context-independent (work
on just one word at a time) or context-dependent
(an entire text line is processed at a time). The
second stage is the decision phase. After the
collection of various suggestions per input token,
these have to be ranked to enable a decision for
the most probable output token given the context.
We achieve this by assigning weights the differ-
ent modules with the help of Minimal Error Rate
Training (MERT) (Och, 2003).

6.1 Suggestion modules

In the following, we give an outline of techniques
included into our system.

6.1.1 Word level suggestion modules

• Original: the majority of words do not con-
tain any kind of error, thus we want to have

6Tokenizer of TreeTagger (Schmid, 1997).

Figure 3: Irregular type setting in German Gothic
lettering. sind and insgemein are two separate
words but yet written closely together.

the initial token available in our suggestion
pool

• Spell checker: spelling correction sugges-
tion for misspelled words with hunspell7

• Compounder: merges two tokens into one
token if it is evaluated as an existing word by
hunspell

• Word splitter: splits two tokens into two
words using compound-splitter module from
the Moses toolkit (Koehn et al., 2007)

• Text-Internal Vocabulary: extracts high-
frequent words from the input texts and sug-
gests them as correction of words with small
adjusted Levenshtein distance8

The compound and word split techniques react to
the variance in manual typesetting, where the dis-
tances between letters vary. This means that the
word boundary recognition becomes difficult (cf.
Figure 3).
A problem related to the spell-checking approach
is the limited coverage of the dictionary since it
uses a modern German lexicon. Related to this
is the difficulty of out-of-vocabulary words above
average for literature text. Archaic words from
e.g. the 17th century or named entities cannot be
found in a dictionary and can therefore not be cov-
ered with any of the approaches mentioned above.

7https://github.com/hunspell/hunspell.
8OCR-adjusted Levenshtein distance taking frequent sub-

stitution, insertion and deletion patterns learned from training
data into account.
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However, especially named entities are crucial for
the automatic or semi-automatic analysis of narra-
tives e.g. with the help of network analysis. Our
Text-Internal Vocabulary technique is designed to
find frequent words in the input text, following
the assumption that errors would not be regular
enough to distort those frequencies. We compile
a list from those high-frequency words. Subse-
quently, erroneous words can be corrected cal-
culating an OCR-adjusted Levenshtein distance.
In this way misspelled words like Loveuzo could
be resolved to Lorenzo if this name appears fre-
quently. Since the ranking algorithm relies on
a language model which will most probable not
contain those suggestions, we insert the high-
frequency words into the language modeling step.

6.1.2 Sentence level suggestion modules
As has been suggested by Afli et al. (2016), we
include Phrase-based Statistical Machine Trans-
lation (SMT) into our system. We treat the
post-correction as a translation problem translat-
ing from erroneous to correct text. Like in stan-
dard SMT, we train our models on a parallel cor-
pus, the source language being the OCRed text
and the target language being manually corrected
text. We train models on token level as well as
on character-level (unigram). This way, we aim at
correcting frequently mis-recognized words along
with frequent character-level errors. We train four
different systems:

• token level

– domain specific data (cf. Section 4.1)
– general data (cf. Section 4.2)

• character level

– domain specific data (cf. Section 4.1)
– general data (cf. Section 4.2)

The models are trained with the Moses toolkit
(Koehn et al., 2007). Moreover, we use a subse-
quent approach by forwarding the output of the
character-based SMT model to the token-based
SMT.

6.1.3 Additional feature
The information whether a word contains an er-
ror can help to avoid the incorrect alternation of
an initially correct word (overcorrection). In order
to deliver this information to the decision module
without making a hard choice for each word, we

include the information whether a word has been
found either in combination with the word before
or after in a corpus (cf. Section 4.3) into the de-
cision process in form of a feature that will be
weighted along with the other modules. This naive
language modeling approach allows for a context-
relevant decision of the correctness of a word.

6.2 Decision modules: the ranking
mechanism

Since the recognition errors appearing in a text are
hard to pre-classify by nature, we run all modules
on each sentence of the input, returning sugges-
tions for each word. Since the output of some of
our modules are entire sentences, input sentence
and output sentence have to be word-aligned in or-
der to be able to make suggestions on word level.
The word alignment between input and output sen-
tence is done with the Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970), an algo-
rithm originally developed in bioinformatics.
From all corrected suggestions the most proba-
ble well-formed combination has to be chosen.
To solve the combinatorial problem of deciding
which suggestion is the most probable candidate
for a word, the decision module makes use of the
Moses decoder.
As in general SMT, the decoder makes use of a
language model (cf. Section 4.3) and a phrase
table. The phrase table is compiled from all in-
put words along with all possible correction sug-
gestions. In order to assign weights to the single
modules and the language model, we tune on the
phrase tables collected from a run on our devoverall

set, following the assumption that suggestions of
certain modules are more reliable than others and
expect their feature weights to be higher after tun-
ing.

7 Experiments

7.1 Experimental Setup
To guarantee diversity, we split each of texts 1-4
(cf. Table 1) into three parts and combined the
respective parts: 80% train (train), 10% develop-
ment (devSMT ) and 10% test (testinit).

Test setup We introduce two different test sce-
narios. Even though both test sets are naturally
compiled from unseen data, the first test set con-
sists of a self-contained Werther adaptation intro-
ducing new named entities, originating from a dif-
ferent source and thus showing a different error
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set # tokens (OCR) # tokens (corr) WER CER

train 70,159 68,608 15.7 5.5
trainext 133,457 131,901 12.9 4.0
devSMT 12,464 12,304 13.9 3.5
devoverall 13,663 13,396 16.75 4.6
testinit 17,443 17,367 9.4 2.5
testunk 13,286 13,304 31.2 9.2

Table 2: Werther specific parallel corpus of OCR
text and corrected text showing the number of to-
kens before and after post-correction along with
WER and CER

set # tokens (OCR) # tokens (corr) WER CER

train 3,452,922 3,718,712 41.6 13.2
dev 663,376 836,974 30.4 9.1

Table 3: DTA parallel corpus of OCR text and
corrected text showing the number of tokens be-
fore and after post-correction along with WER and
CER

constitution. It constitutes an evaluation in which
no initial manual correction as support for the au-
tomatic correction is included in the workflow. We
henceforth call this unknown set testunk (text 6).

In contrast, the second set contains parts of the
same texts as the training, thus specific vocabulary
might have been introduced already. The results
for this test set give a first indication of the extent
to which pre-informing the system with manually
correcting parts of a text could assist the automatic
correction process. Since this scenario can be de-
scribed as a text-specific initiated post-correction,
we henceforth refer to this test set as testinit.

We further on experiment with an extended
training set trainext (train with texts 7 and 8) to as-
sess the influence of the size of the specific train-
ing set on the overall performance. The sizes of
the datasets before and after correction along with
WER and CER are summarized in Table 2. The
sizes for the general dataset before and after cor-
rection along with WER and CER are summarized
in Table 3.

7.2 Evaluation

In the following we concentrate on the compari-
son of WER and CER before and after automatic
post-correction. As a baseline for our system we
chose the strongest single-handed module (SMT
on character-level trained on Werther data).

training set system testinit testunk
WER CER WER CER

original text 23.5 15.1 36.7 30.0

train baseline 22.0 13.2 26.6 26.3
overall system 4.7 8.0 15.4 19.6

trainext
baseline 21.1 11.7 24.0 20.4
overall system 4.4 7.2 15.2 16.4

Table 4: WER and CER for both test sets be-
fore and after automatic post-correction for the
system trained with the small training set (train)
and the larger training set (trainext). Baselines:
the original text coming from the OCR system
and the character-level SMT system trained on the
Werther data.

Overall performance As indicated previously,
our test sets differ with respect to their similarity
to the training set. The results for both test scenar-
ios for systems trained on our two training sets are
summarized in Table 4. The results from testinit

and testunk show that our system performs con-
siderably better than the baseline and can improve
quality of the OCR output considerably.

For testunk, the system improves the quality by
almost 20 points of WER from 36.7 to 15.4 and
over 10 points in CER from 30.0 to 19.6. For
testinit, our system improves the quality of the
text with a reduction of approximately 20 points of
WER from 23.5 to 4.7 and 7 points in CER from
15.1 to 8.0. It is not surprising that the decrease in
WER is stronger than the decrease in CER. This
is due to the fact that many words contain more
than one error and require more than one charac-
ter level operation to get from the incorrect to the
correct string.

Just slight improvement can be shown by
adding training material to the Werther-specific
parts of the system (cf. trainext row of Table 4).
Merely the CER can be improved whereas the
WER stays about the same. The improvement in
testunk is higher than for testinit.

Module specific analysis Since a WER and
CER evaluation is not expedient for all mod-
ules as they were designed to correct specific
problems and not the entirety of them, we look
into the specialized modules in terms of correct
suggestions contributed to the suggestion pool
and correct suggestions only suggested by one
module (unique suggestions). As the system in-
cluding the extended training set trainext delivered
slightly better results, in the following we will
describe the contribution of the single modules
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testinit testunk
module # overcorrected # corrected # unique correct # overcorrected # corrected # unique correct
SMT Werther token 128 364 10 209 1,089 0
SMT Werther character 235 684 0 700 1,919 0
SMT Werther cascaded 273 697 2 728 1,933 4
SMT DTA token 2,179 229 8 1,627 893 19
SMT DTA character 4121 372 22 3,143 1,530 115
text-internal vocab 3,317 131 16 4,142 244 60
word split 594 3 0 720 45 2
spell check 1,329 219 15 2,819 731 40
compound 222 0 0 169 2 2

overall system 238 2171 - 675 2,642 -

Table 5: Number of overcorrected, corrected and uniquely corrected words per module out of 17,367
tokens in testinit (2,726 erroneous words) and 13,304 tokens in testunk (4,141 erroneous words)

to the overall performance of this system (cf.
Table 5). For testunk the number of corrected
tokens along with the number of overcorrections
is higher than for testinit throughout all modules.
Clearly, for testinit the Werther-specific modules
are strongest. The more general modules prove
useful for testunk. The number of corrected words
increases for the SMT module trained on DTA
data on character-level. The usefulness of the
module extracting specific words (text-internal
vocab) as well as the general SMT model and the
spell checker becomes evident in terms of unique
suggestions contributed by those modules.
The analysis of the output of the individual
modules and their contribution to the overall
system uncovers an issue: those modules that
produce a high number of incorrect suggestions,
thus overcorrecting actually correct input tokens,
are at the same time those modules that are the
only ones producing correct suggestions for some
of the incorrect input words. Consequently, those
uniquely suggested corrections are not chosen
in the decision modules due to an overall weak
performance of this module. These suggestions
are often crucial to the texts like the suggestions
by the special vocabulary module which contain
named entities or words specific to the time
period. For our testunk set, the text-internal
vocabulary module yields around 60 unique sug-
gestions, out of which 15 are names (Friedrich,
Amalia) or words really specific to the text (Auftrit
spelled with one t instead of two).

Challenges In the context of literature OCR
post-correction is a challenging problem since the
texts themselves can be considered non-standard
text. The aim is not to bring the text at hand to an
agreed upon standard form but to digitize exactly
what was contained in the print version. This can
be far from the standard form of a language. In one

of our texts, we find a character speaking German
with a strong dialect. Her speech contains a lot of
words that are incorrect in standard German, how-
ever, the goal is it to preserve this “errors” in the
digital version. Thus, correction merely on the ba-
sis of the OCR text without consulting the printed
version or an image-digitized facsimile, can essen-
tially never be perfect. It follows, that the integra-
tion of automatic post-correction techniques into
the character recognition process could lead to fur-
ther improvements.

7.3 Adaptability

Reusability as a key concept in NLP for DH origi-
nates in the time limitations given in such projects.
Since DH projects do not evolve around the devel-
opment of tools but the analysis performed with
the help this tools in order to answer a specific
question, the tools are expected to be delivered
in an early phase of collaborative projects. From-
scratch development easily exceeds this time lim-
its. We show that our OCR post-correction system
is modular enough to be adjusted to correct texts
from other languages by training it for two other
languages, English and French, with data released
in the OCR post-correction competition organized
in the context of ICDAR 20179. The texts origi-
nate from the the last four centuries and come from
different collections and therefore have been dig-
itized using different OCR systems. The data is
summarized in Table 610.

We adjust our system to the language by retrain-
ing the SMT models and including spell-checkers
for the respective languages. Due to the modular
architecture these adjustments can be made eas-

9https://sites.google.com/view/
icdar2017-postcorrectionocr/home, 3.07.2017.

10The test set does not comply with the official shared task
set since the manually corrected data is not yet available for
the test set. We test on a combination of periodicals and
monographs.
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language trainocr traingold dev1ocr dev1gold dev2ocr dev2gold testocr testgold

English 309,080 282,738 71,049 65,480 13,000 11,966 14,302 12,859

French 805,438 783,371 167,473 163,373 9,566 9,216 12,289 11,780

Table 6: Number of tokens in the English and French corpus provided by the competition on OCR-
postcorrection.

ily and with a low expenditure of time. Since
the datasets are compilation of a variety of texts,
we use all modules but the domain-specific SMT
models. We solely include one token-level and
character-level SMT module for each language.

language system WER CER

English
original 29.4 28.4
SMT Cascaded 22.7 23.6
overall system 22.1 24.5

French
original text 13.3 25.0
SMT Cascaded 9.9 20.0
overall system 8.7 21.5

Table 7: The results reported in word error rate
(WER) and character error rate (CER) for the En-
glish and French test set.

The strongest unique module for these two
languages is the subsequent combination of the
character-level SMT and the token-level SMT
models (Cascaded). For English it performs just
slightly worse on WER and even outperforms the
overall system on the CER. For French, the over-
all system is clearly stronger than the Cascaded
SMT system with more than 1 percent improve-
ment of WER but also performs worse in terms
of CER by 1.5 percent. Generally, the OCR post-
correction system achieves about 25% reduction
of WER for English and over 30% reduction in
WER for French.

8 Digitization workflow

We integrate the automatic OCR process with
tesseract and our automatic post-correction system
into a workflow which results in an hocr file, an
XML format which is readable by PoCoTo (Vobl
et al., 2014) a tool for supporting manual post-
correction of OCRed text through alignment of
image and digitized text. The upload of scans or
images is provided online via a webapplication11.
This shields the user from the technicalities of the

11http://clarin05.ims.uni-stuttgart.de/
ocr/, for access please contact the author.

correction process and provides them with the in-
put for the PoCoTo tool.
The implementation of an easy-to-handle work-
flow is an often underemphasized aspect of DH.
It needs to be intuitive enough to not absorb the
time ion has been saved via automation. Since the
final post-correction step requires that the human
corrector compares the digitized version with the
scan, presenting both next to each other is an ideal
scenario. This functionality is one of the main
strengths of PoCoTo, a visual correction tool, sup-
porting manually initiated correction operations
and batch correction of the same error.

9 Conclusion

We can show that the enhancement of a general,
adaptable architecture by including small but spe-
cific data sets can improve results within a specific
domain. Moreover, the combination of different
techniques for of OCR post-correction is signif-
icantly superior to single techniques. Especially
the integration of SMT models on token level and
character level contributes to the overall success
of the system. Due to the complexity of OCR
post-correction, there cannot be a general solution.
Even though the ranking algorithm achieves large
improvement, further potential lies in the inclusion
of fine-tuned language models since the decision
process highly depends upon it. The intrinsic char-
acteristic of literature as being non-standard com-
plicates the task. However, techniques that focus
on these features like our module that is special-
ized on extracting text-specific vocabulary show
promising results for e.g. named entity correction.
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Abstract

The charge prediction task is to deter-
mine appropriate charges for a given case,
which is helpful for legal assistant systems
where the user input is fact description.
We argue that relevant law articles play an
important role in this task, and therefore
propose an attention-based neural network
method to jointly model the charge pre-
diction task and the relevant article extrac-
tion task in a unified framework. The ex-
perimental results show that, besides pro-
viding legal basis, the relevant articles can
also clearly improve the charge prediction
results, and our full model can effectively
predict appropriate charges for cases with
different expression styles.

1 Introduction

The task of automatic charge prediction is to deter-
mine appropriate charges, such as fraud, larceny
or homicide, for a case by analyzing its textual fact
description. Such techniques are crucial for legal
assistant systems, where users could find similar
cases or possible penalties by describing a case
with their own words. This is helpful for non-legal
professionals to get to know the legal basis of their
interested cases, e.g., cases they or their friends are
involved in, since the massive legal materials and
the lack of knowledge of legal jargons make it hard
for outsiders to do it on their own.

However, predicting appropriate charges based
on fact descriptions is not trivial: (1) The differ-
ences between two charges can be subtle, for ex-
ample, in the context of criminal cases in China,
distinguishing intentional homicide from inten-
tional injury would require to determine, from the
fact description, whether the defendant intended
to kill the victim, or just intended to hurt the vic-

tim, who, unfortunately died of severe injury. (2)
Multiple crimes may be involved in a single case,
which means we need to conduct charge predic-
tion in the multi-label classification paradigm. (3)
Although we can expect an off-the-shelf classifi-
cation model to learn to label a case with corre-
sponding charges through massive training data, it
is always more convincing to make the prediction
with its involved law articles explicitly shown to
the users, as legal basis to support the prediction.
This issue is crucial in countries using the civil law
system, e.g., China (except Hong Kong), where
judgements are made based on statutory laws only.
For example, in Fig. 1, a judgement document in
China always includes relevant law articles (in the
court view part) to support the decision. Even
in countries using the common law system, e.g.,
the United States (except Louisiana), where the
judgement is based mainly on decisions of previ-
ous cases, there are still some statutory laws that
need to be followed when making decisions.

Existing attempts formulate the task of auto-
matic charge prediction as a single-label classi-
fication problem, by either adopting a k-Nearest
Neighbor (KNN) (Liu et al., 2004; Liu and Hsieh,
2006) as the classifier with shallow textual fea-
tures, or manually designing key factors for spe-
cific charges to help text understanding (Lin et al.,
2012), which make those works hard to scale to
more types of charges. There are also works ad-
dressing a related task, finding the law articles that
are involved in a given case. A simple solution
is to convert this multi-label problem into a multi-
class classification task by only considering a fixed
set of article combinations (Liu and Liao, 2005;
Liu and Hsieh, 2006), which can only be applied
to a small set of articles and does not fit to real
applications. Recent improvement takes a two-
step approach by performing a preliminary classi-
fication first and then re-ranking the results with
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word-level and article-level features (Liu et al.,
2015). These efforts advance the applications of
machine learning and natural language process-
ing methods into legal assistance services, how-
ever, they are still in an early stage, e.g., relying
on expert knowledge, using relatively simple clas-
sification paradigms, and shallow textual analysis.
More importantly, related tasks, e.g., charge pre-
diction and relevant article extraction, are treated
independently, ignoring the fact that they could
benefit from each other.

Recent advances in neural networks enable us
to jointly model charge prediction and relevant
article extraction in a unified framework, where
the latent correspondence from the fact descrip-
tion about a case to its related law articles and
further to its charges can be explicitly addressed
by a two-stack attention mechanism. Specifi-
cally, we use a sentence-level and a document-
level Bi-directional Gated Recurrent Units (Bi-
GRU) (Bahdanau et al., 2015) with a stack of fact-
side attention components to model the correla-
tions among words and sentences, in order to cap-
ture the whole story as well as important details of
the case. Given the analysis of the fact description,
we accordingly learn a stack of article-side atten-
tion components to attentively select the most sup-
portive law articles from the statutory laws to sup-
port our charge prediction, which is investigated in
the multi-label paradigm.

We evaluate our model in the context of pre-
dicting charges for criminal cases in China. We
collect publicly available judgement documents
from China’s government website, from which we
can automatically extract fact descriptions, rele-
vant law articles and the charges using simple
rules, as shown in Figure 1. Experimental results
show that our neural network method can effec-
tively predict appropriate charges for a given case,
and also provide relevant law articles as legal ba-
sis to support the prediction. Our experiments also
provide quantitive analysis about the effect of fact-
side and article-side information on charge predi-
cion, and confirm that, apart from providing le-
gal basis, relevant articles also contain useful in-
formation that can help to improve charge pre-
diction in the civil law system. We also exam-
ine our model on the news reports about criminal
cases. Although trained on judgement documents,
our model can still achieve promising performance
on news data, showing a reasonable generalization

ability over different expression styles.

2 Related Work

The charge prediction task aims at finding appro-
priate charges based on the facts of a case. Previ-
ous works consider this task in a multi-class clas-
sification framework, which takes the fact descrip-
tion as input and outputs a charge label. (Liu et al.,
2004; Liu and Hsieh, 2006) use KNN to clas-
sify 12 and 6 criminal charges in Taiwan. How-
ever, except for the inferior scalability of the KNN
method, their word-level and phrase-level features
are too shallow to capture sufficient evidence to
distinguish similar charges with subtle differences.
(Lin et al., 2012) propose to make deeper under-
standing of a case by identifying charge-specific
factors that are manually designed for 2 charges.
This method also suffers from the scalability issue
due to the human efforts required to design and an-
notate these factors for each pair of charges. Our
method, however, employs Bi-GRU and a two-
stack attention mechanism to make comprehensive
understanding of a case without relying on explicit
human annotations.

Within the civil law system, there are some
works focusing on identifying applicable law ar-
ticles for a given case. (Liu and Liao, 2005; Liu
and Hsieh, 2006) convert this multi-label problem
into a multi-class classification problem by only
considering a fixed set of article combinations,
which cannot scale well since the number of pos-
sible combinations will grow exponentially when
a larger set of law articles are considered. (Liu
et al., 2015) instead design a scalable two-step
approach by first using Support Vector Machine
(SVM) for preliminary article classification, and
then re-ranking the results using word level fea-
tures and co-occurence tendency among articles.
We also use SVM to extract top k candidate arti-
cles, but further adopt Bi-GRU and article-side at-
tention to better understand the texts and exploring
the correlation among articles. More importantly,
we optimize the article extraction task within our
charge prediction framework, which not only pro-
vides another view to understand the facts, but also
serves as legal basis to support the final decision.

Another related thread of work is to predict the
overall outcome of a case. The target can be which
party will the outcome side with (Aletras et al.,
2016), or whether the present court will affirm or
reverse the decision of a lower court (Katz et al.,
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Figure 1: An example judgement document excerpt of a criminal case in our dataset. Names are
anonymized as AA and BB. Rectangulars, ellipses and dashed rectangulars refer to the clauses that
usually indicate the beginning of the facts part, the court view part and the decision part, respectively.
Articles and charges are extracted with regular expressions and a charge list.

2016). Our work differs from them in that, instead
of binary outcome (the latter one also contains an
other class), we step further to focus on the de-
tailed results of a case, i.e., the charges, where the
output may contain multiple labels.

We also share similar spirit with the legal ques-
tion answering task (Kim et al., 2014a), which
aims at answering the yes/no questions in the
Japanese legal bar exams, that we all believe that
relevant law articles are important for decisions in
the civil law system. Different from ours, this task
requires participants to extract relevant Japanese
Civil Code articles first, and then use them to an-
swer the yes/no questions. The former phase is of-
ten treated as an information retrieval task, and the
latter phase is considered as a textual entailment
task (Kim et al., 2014b; Carvalho et al., 2016).

In the field of artificial intelligence and law,
there are also works trying to find relevant cases
given the input query (Raghav et al., 2016; Chen
et al., 2013), which is crutial for decision making
in the common law system. Rather than finding
relevant cases, our work focuses on predicting spe-
cific charges, and we also emphasize the impor-
tance of law articles in decision making, which is
important in the civil law system where the deci-
sions are made based solely on statutory laws.

Our work is also related to the task of docu-
ment classification, but mainly differs in that we
also need to automatically identify applicable law
articles to support and improve the charge predic-
tion. Recently, various neural network (NN) ar-
chitectures such as Convolutional Neural Network
(CNN) (Kim, 2014) and Recurrent Neural Net-
work (RNN) have been used for document em-
bedding, which is further used for classification.
(Tang et al., 2015) propose a two-layer scheme,
RNN or CNN for sentence embedding, and an-

other RNN for document embedding. (Yang et al.,
2016) further use global context vectors to at-
tentively distinguish informative words or sen-
tences from non-informative ones during embed-
ding, which we share similar spirit with. But, we
take a more flexible and descriptive two-stack at-
tention mechanism, one stack for fact embedding,
and the other for article embedding which is dy-
namically generated for each instance according
to the fact-side clues as extra guidance. Another
difference is the multi-label nature of our task,
where, rather than optimizing as multiple binary
classification tasks (Nam et al., 2014), we convert
the multi-label target to label distribution during
training with cross entropy as loss function (Ku-
rata et al., 2016), and use a threshold tuned on val-
idation set to produce the final prediction, which
performs better in our pilot experiments.

3 Data Preparation

Our data are collected from China Judgements
Online1, where the Chinese government has been
publishing judgement documents since 2013. We
randomly choose 50,000 documents for training,
5,000 for validation and 5,000 for testing. To en-
sure enough training data for each charge, we only
classify the charges that appear more than 80 times
in the training data, and treat documents with other
charges as negative data. As for law articles, we
consider those in the Criminal Law of the People’s
Republic of China. The resulting dataset contains
50 distinct charges, 321 distinct articles, averagely
383 words per fact description, 3.81 articles per
case, and 3.56% cases with more than one charges.

An example judgement document is shown in
Figure 1, where we highlight the indicator clauses
that we used to divide a document into three pieces

1http://wenshu.court.gov.cn
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and extract fact description, articles, and charges
from each piece, respectively. We use a manually
collected charge list to identify all the charges, and
law articles are extracted by regular expressions2.
The extracted charges and articles are considered
as gold standard charges and articles for the corre-
sponding fact description. We also masked all the
charges in fact descriptions, since although rare,
charge names sometimes may appear in the fact
description part.

Currently, it is hard and expensive to match the
facts related to different defendants with their cor-
responding charges. We therefore only consider
the cases with one defendant, and leave the chal-
lenging multi-defendant cases for future work. Al-
though this simplification may change the real-
world charge distribution, it enables us to automat-
ically build large scale high quality dataset without
relying on annotations from legal practitioners.

4 Our Approach

As depicted in Fig. 2, our approach contains the
following steps: (1) The input fact description is
fed to a document encoder to generate the fact
embedding df , where ufw and ufs are global
word-level and sentence-level context vectors used
to attentively select informative words and sen-
tences. (2) Concurrently, the fact description is
also passed to an article extractor to find top k
relevant law articles. (3) These articles are em-
bedded by another document encoder, and passed
to an article aggregator to attentively select sup-
portive articles, and produce the aggregated article
embedding da. Specifically, three context vectors,
i.e., uaw, uas and uad, are dynamically generated
from df , to produce attention values within the ar-
ticle document encoder and the article aggregator.
(4) Finally, df and da are concatenated and passed
to a softmax classifier to predict the charge distri-
bution for the input case.

4.1 Document Encoder
Intuitively, a sentence is a sequence of words
and a document is a sequence of sentences. The
document embedding problem, therefore, can be
converted to two sequence embedding problems
(Tang et al., 2015; Yang et al., 2016). As shown
in Fig. 3, we can first embed each sentence us-
ing a sentence-level sequence encoder, and then

2The regular expression used to extract law articles:
“第[、零○一二两三四五六七八九十百千0-9]+条(之[一
二两三四五六七八九十])?)”

Figure 2: Overview of Our Model

aggregate them with a document-level sequence
encoder to produce the document embedding d.
While these two encoders can have different ar-
chitectures, we use the same here for simplicity.

Figure 3: Document Encoder Framework

Figure 4: Attentive Sequence Encoder

Bi-GRU Sequence Encoder A challenge in
building a sequence encoder is how to take the
correlation among different elements into consid-
eration. A promising solution is Bi-directional
Gated Recurrent Units (Bi-GRU) (Bahdanau et al.,
2015), which encodes the context of each element
by using a gating mechanism to track the state of
sequence. Specifically, Bi-GRU first uses a for-
ward and a backward GRU (Cho et al., 2014),
which is a kind of RNN, to encode the sequence
in two opposite directions, and then concatenates
the states of both GRUs to form its own states.

Given a sequence [x1,x2, ...,xT ] where xt is
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the input embedding of element t, the state of Bi-
GRU at position t is:

ht = [hft,hbt] (1)

where hft and hbt are the states of the forward and
backward GRU at position t. The final sequence
embedding is either the concatenation of hfT and
hb1 or simply the average of ht.

Attentive Sequence Encoder However, directly
using [hfT ,hb1] for sequence encoding often fails
to capture all the information when the sequence
is long, while using the average of ht also has
the drawback of treating useless elements equally
with informative ones. Inspired by (Yang et al.,
2016), we use a context vector to attentively ag-
gregate the elements, but instead of using a global
context vector, we allow the context vector to
be dynamically generated when extra guidance is
available (see Sec. 4.2).

As shown in Fig. 4, given the Bi-GRU state
sequence [h1,h2, ...,hT ], our attentive sequence
encoder calculates a sequence of attention values
[α1, α2, ..., αT ], where αt ∈ [0, 1] and

∑
t αt = 1.

The final sequence embedding g is calculated by:

g =
T∑

t=1

αtht; αt =
exp(tanh(Wht)

Tu)∑
t exp(tanh(Wht)Tu)

(2)
where W is a weight matrix, and u is the context
vector to distinguish informative elements from
non-informative ones.

By using this sequence encoder for fact em-
bedding, the fact-side attention module actually
contains two components, i.e., the word-level and
sentence-level, using ufw and ufs as their global
context vectors, respectively.

4.2 Using Law Articles
One of the challenges of using law articles to sup-
port charge prediction lies in the fact that statu-
tory laws contain a large number of articles, which
makes applying complex models to these articles
directly time-consuming, and thus hard to scale.
The multi-label nature of relevant article extrac-
tion also requires a model that can output multi-
ple articles. We thus adopt a two-step approach,
specifically, we first build a fast and easy-to-scale
classifier to filter out a large fraction of irrelevant
articles, and retain the top k articles. Then, we
use neural networks to make comprehensive un-
derstanding of the top k articles, and further use

the article-side attention module to select the most
supportive ones for charge prediction.

Top k Article Extractor We treat the relevant
article extraction task as multiple binary classifica-
tions. Specifically, we build a binary classifier for
each article, focusing on its relevance to the input
case, which results in 321 binary classifiers corre-
sponding to the 321 distinct law articles appearing
in our dataset. When more articles are considered,
we can simply add more binary classifiers accord-
ingly, with the existing classifiers untouched.

Similar to the preliminary classification phase
of (Liu et al., 2015), we also use word-based SVM
as our binary classifier, which is fast and performs
well in text classification (Joachims, 2002; Wang
and Manning, 2012). Specifically, we use bag-of-
words TF-IDF features, chi-square for feature se-
lection and linear kernel for binary classification.

Article Encoder Since each law article may
contain multiple sentences, as shown in Fig. 2,
we also use the document encoder described in
Sec. 4.1 to produce an embedding aj , j ∈ [1, k],
for each article in the top k extracted articles.
While using similar architecture, this article en-
coder differs from the fact encoder that, instead of
using global context vectors, its word-level con-
text vector uaw and sentence-level context vector
uas are dynamically generated for each case ac-
cording to its corresponding fact embedding df :

uaw = Wwdf + bw; uas = Wsdf + bs (3)

where W∗ is the weight matrix and b∗ is the bias.
The context vectors, uaw and uas, are used to pro-
duce the word-level and sentence-level attention
values, respectively. Through the dynamic context
vectors, the fact embedding df actually guides our
model to attend to informative words or sentences
with respect to the facts of each case, rather than
just selecting generally informative ones.

Attentive Article Aggregator The article ag-
gregator aims to find supportive articles for charge
prediction from the top k extractions, and accord-
ingly produce an aggregated article embedding.
Although the order of the top k extracted articles
is not fully reliable, (Vinyals et al., 2016) sug-
gests that it is still beneficial to use a bi-directional
RNN to embed the context of each element even
in a set, where the order does not exist. In our
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task, bi-directional RNN can help to utilize the co-
occurrence tendency of relevant articles.

Specifically, we use the attentive sequence en-
coder in Sec. 4.1 to produce the aggregated arti-
cle embedding da. Again, to guide the attention
with fact descriptions, we dynamically generate
the article-level context vector uad by:

uad = Wddf + bd (4)

The attention values produced by the attentive
sequence encoder can be seen as the relevance of
each article to the input case, which can be used to
rank and filter the top k articles. The results can be
shown to users as legal basis for charge prediction.

4.3 The Output

To make the final charge prediction, we first con-
catenate the document embedding df and the ag-
gregated article embedding da, and feed them to
two consecutive full connection layers to generate
a new vector d′, which is then passed to a soft-
max classifier to produce the predicted charge dis-
tribution. We use the validation set to determine a
threshold τ , and consider all the charges with out-
put probability higher than τ as positive predic-
tions. The input to the first full connection layer
can also be only df or da, which means we use
only fact or article to make the prediction.

The loss function for training is cross entropy:

Loss = −
N∑

i=1

L∑

l=1

yillog(oil) (5)

where N is the number of training data, L is the
number of charges, yil and oil are the target and
predicted probability of charge l for case i. The
target charge distribution yi is produced by setting
positive labels to 1

mi
and negative ones to 0, where

mi is the number of positive labels in case i.

Supervised Article Attention We can also uti-
lize the gold-standard law articles naturally in the
judgement documents to supervise the article at-
tention during training. Specifically, given the top
k articles, we want the article attention distribution
α ∈ Rk to simulate the target article distribution
t ∈ Rk, where tj = 1

k′ if article j belongs to the
gold-standard articles and tj = 0 otherwise. Here
k′ is the number of gold-standard articles in the
top k extractions. We, again, use cross entropy,

and the loss function is:

Loss = −
N∑

i=1

(
L∑

l=1

yillog(oil)+β
k∑

j=1

tijlog(αij))

(6)
where β is the weight of the article attention loss.

5 Experiments

5.1 Experimental Setup
We use HanLP3 for Chinese word segmentation
and POS tagging. Word embeddings are trained
using word2vec (Mikolov et al., 2013) on judge-
ment documents, web pages from several legal fo-
rums and Baidu Encyclopedia. The resulting word
embeddings contain 573,353 words, with 100 di-
mension. We randomly initialize a 50-d vector
for each POS tag, which is concatenated with the
word embedding as the final input. Each GRU in
the Bi-GRU is of size 75, the two full connection
layers are of size 200 and 150. The relevant arti-
cle extractor generates top 20 articles, the weight
of the article attention loss (β in Eq. 6) is 0.1, and
prediction threshold τ is 0.4. We use Stochastic
Gradient Descent (SGD) for training, with learn-
ing rate 0.1, and batch size 8.

We compare our full model with two variations:
without article attention supervision and only us-
ing facts for charge prediction. The latter one is
similar to the state-of-art document classification
model (Yang et al., 2016), but adapted to the multi-
label nature of our problem. We also implement
an SVM model, which is effective and scales well
in many fact-description-related tasks in the field
of artificial intelligence and law (Liu et al., 2015;
Aletras et al., 2016). Specifically, the SVM model
takes bag-of-words TF-IDF features as input, and
uses chi-square to select top 2,000 features.

5.2 Charge Prediction Results
The charge distribution is imbalanced, and the top
5 charges take more than 60% of the cases. There-
fore, we evaluate the charge prediction task us-
ing precision, recall and F1, in both micro- and
macro-level. The macro-precision/recall are cal-
culated by averaging the precision and recall of
each charge, and the micro-precision/recall are av-
eraged over each prediction.

As shown in Table 1, the basic SVM fact
model, which only takes fact descriptions as in-
put, indeed proves to be a strong baseline. By

3https://github.com/hankcs/HanLP
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Model Precision Recall F1
(Micro-/Macro-)

SVM fact 93.94/79.53 77.66/49.54 85.03/61.05
SVM art 82.12/42.90 61.23/39.56 70.15/41.16

SVM fact art 91.77/71.33 72.10/45.85 80.76/55.82
NN fact 91.30/83.32 87.39/74.99 89.31/78.94
NN art 90.09/81.50 86.10/69.62 88.05/75.10

NN fact art 90.79/83.07 88.42/75.73 89.59/79.23
NN fact supv art 91.80/82.44 88.67/78.62 90.21/80.48
SVM fact gold art 98.97/94.58 95.39/83.21 97.15/88.53
NN fact gold art 98.78/95.26 98.24/95.57 98.51/95.42

Table 1: Charge prediction results. Left and
right side of the slash refer to micro and macro
statistics, respectively. gold art refers to using
gold standard articles mentioned in judgements
(marked in blue in Fig. 1), which is the upper
bound for article-related modules.

contrast, our corresponding neural network model
(NN fact), which also only uses facts for pre-
diction, outperforms SVM fact by about 4% in
micro-F1. Since NN fact benefits from the pre-
trained word embeddings, the two-level Bi-GRU
architecture, and the fact-side attention module, it
can attentively recognize informative expressions
from the description and better capture the under-
lying correspondence from fact descriptions to ap-
propriate charges, even when there is less over-
lap in the words used among cases with the same
charge, or when there are limited data (i.e., infre-
quent charges). This may explain that NN mod-
els have more balanced performance over different
charges, leading to more prominent improvements
over SVM ones in macro metrics, which usually
have a strong bias towards frequent charges.

When we use both facts and extracted relevant
law articles (that are admittedly noisy), the SVM
version (SVM fact art) drops by around 5%
than SVM fact, showing that the SVM model
cannot benefit from the extracted, thus noisy,
relevant articles in such a straightforward way.
However, our NN version (NN fact article)
can still learn from the noisy article extractions
through attentively aggregating those extracted ar-
ticles even without direct guidance, thus improves
NN fact by around 0.4%. Furthermore, if we
use the gold standard articles during training as su-
pervision for the article attention (our full model,
NN fact supv art), the results can be fur-
ther improved, achieving 90.21% and 80.48% in
micro- and macro-F1, respectively. The improve-
ments made by using relevant law articles actually
indicates the nature of the civil law system that

judgements are made based on statutory laws.
However, if we only use the extracted rele-

vant articles to make prediction (SVM art and
NN art4), the performance becomes worse. Even
with the proved-helpful attentive aggregator, the
model performs worst among all NN variants
(though still better than SVM fact). This indi-
cates that it is necessary to consider both facts and
relevant law articles for charge prediction, and, the
fact that NN fact outperforms NN art also indi-
cates that although the judgments are made based
on the statutory laws in the civil law system, the
logic employed by the court when making deci-
sions, to some extent, may be implicitly captured
through massive fact-charges paris.

Now the question is: how much improve-
ment can we have if we can make full use of
the relevant law articles within the civil law
system? Let us consider an ideal situation
where we can access both fact descriptions and
gold standard law articles during testing, which
could be considered as an upper bound sce-
nario. The SVM version (SVM fact gold art)
significantly outperforms SVM fact art by
more than 30% in macro-F1. And the
NN version (NN fact gold art) outperforms
NN fact supv art by over 8%. These compar-
isons confirm again that law articles play an im-
portant role for automatic judgement prediction,
but the extracted relevant articles inevitably con-
tain noise, which should be properly handled, e.g.,
using an attentively aggregation mechanism to dis-
till valuable evidence to support charge prediction.

Case Study We study the model outputs and
find certain star-like confusion patterns among the
charges. For example, intentional injury is of-
ten confused with multiple charges like intentional
homicide (when the victim is dead, the difference
is whether the defendant intends to kill or just
hurt the victim) and picking quarrels and provok-
ing troubles (there may also exist injuries here).
These charges usually share some similar fact de-
scriptions, e.g., how the injuries are caused, and
since intentional injury appears more frequently
than the others, SVM fact thus outputs inten-
tional injury in most situations, and fails to distin-
guish these charges. However, by using Bi-GRU
and the attention mechanism, NN fact can at-

4 NN art uses fact embeddings to attentively aggregate
relevant articles, but only use the aggregated article embed-
ding da, without fact embedding df , for charge prediction.
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β Prec@1 MAP Charge F1
0 60.94 61.61 89.59/79.23

0.01 81.06 78.00 89.77/79.48
0.1 87.90 83.39 90.21/80.48
0.5 91.44 86.95 89.93/79.67
1 92.66 88.24 89.83/78.66

Table 2: Refined Article Extraction Performance

tend to important details of the facts and signifi-
cantly improves the performance on these charges.
When the direct supervision for articles is avail-
able, NN fact supv art can enhance the inter-
action between certain pairs of fact descriptions
and law articles, which helps to capture the sub-
tle differences among similar charges, and further
improves the performance on these situations.

5.3 Article Extraction Results

We also evaluate our SVM article extractor, which
achieves 77.60%, 88.96%, 94.21% and 96.53% re-
call regarding the top 5, 10, 20 and 30 articles,
respectively. Although simple, the SVM extrac-
tor can obtain over 94% recall for top 20 arti-
cles, which is good enough for further refinement.
However, the micro-F1 of the extractor is only
61.08% in the test set, which will lead to severe
error propagation problem if we use the prediction
results of the extractor directly. Therefore, we de-
sign the article attention mechanism to handle the
noise in the top 20 articles.

Table 2 shows the re-ranking results of our ar-
ticle attention module (column 2-3) and the corre-
sponding charge prediction performances (column
4), under different weights for article attention (β
in Eq. 6). Prec@1 refers to top 1 precision, and
MAP refers to mean average precision. We can see
that, even if there is no supervision over the article
attention (β = 0), our model still has reasonable
performance on re-ranking the k articles. When
the attention supervision is employed, the extrac-
tion quality improves significantly, and keeps in-
creasing as β goes up. However, the charge pre-
diction performance does not always increase with
the article extraction quality, and the best perfor-
mance is achieved when β = 0.1. This is not sur-
prising, since there exists a tradeoff between the
benefits of more accurate article extraction and the
less model capacity left for charge classification
due to the increased emphasis on the article extrac-
tion performance. The promising article extraction
results also confirm the ability of our model to pro-
vide legal basis for the charge prediction.

Model Precision Recall F1
SVM fact 100.00 40.20 57.34
NN fact 87.14 59.80 70.93

NN fact art 87.18 66.67 75.56
NN fact supv art 90.00 70.59 79.12

Table 3: Performance (micro statistics) on News

5.4 Performance on News Data

There are usually clear differences between the ex-
pressions used by legal practitioners and people
without legal background, thus it is important to
see how our model will perform on fact descrip-
tions written by non-legal professionals.

We create a news dataset by asking 3 law school
students to annotate the appropriate charges for
100 social news reports about criminal cases from
two news websites5, with 262 words on average
and 25 distinct charges. The κ value is 0.83, indi-
cating good consistency. The annotators are asked
to have a disscussion to achieve an aggreement on
inconsistent annotations. The results are shown in
Table 3, where we only report micro statistics due
to the relatively small size of the dataset compared
with the number of distinct charges.

We can see that, SVM fact suffers a signifi-
cant drop in F1 on the news data, confirming the
gap between the expressions used by legal prac-
titioners and non-legal professionals, given the
BOW nature of SVM fact. Although SVM fact
cannot generalize well, the patterns learned by
SVM fact are reliable in themselves, leading to
a high precision. It is not surprising that our
NN models also suffer from the expression differ-
ences, but due to the effectiveness of our NN archi-
tecture, with about 10%∼15% less absolute drop
in F1, and NN fact supv art can still achieve
79.12% in F1. For example, the word暴打 (beat
up) is seldom used in judgement documents, mak-
ing it hard for SVM fact to correctly utilize 暴
打 as an indicator for injury related charges, but,
our NN models can associate it with its near-
synonymy殴打 (hit), which is a formal expression
in judgement documents. Furthermore, the clear
improvements from NN fact to NN fact art,
and further to NN fact supv art prove again
the importance of relevant law articles in support-
ing the charge prediction, even in news domain.
The reasonable performance on news data also
shows that our method do have the ability to help
non-legal professionals.

5http://news.cn and http://people.com.cn
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6 Conclusion

In this paper, we propose an attention-based neu-
ral network framework that can jointly model the
charge prediction task and the relevant article ex-
traction task, where the weighted relevant articles
can serve as legal basis to support the charge pre-
diction. The experimental results on judgement
documents of criminal cases in China show the ef-
fectiveness of our model on both charge prediction
and relevant article extraction. The comparison of
different variants of our model also indicates the
importance of law articles in making judicial de-
cisions in the civil law system. By experiment-
ing on news data, we show that, although trained
on judgement documents, our model also has rea-
sonable generalization ability on fact descriptions
written by non-legal professionals. While promis-
ing, our model still cannot explicitly handle multi-
defendant cases, and there is also a clear gap be-
tween our model and the upper bound improve-
ment that relevant articles can achieve. We will
leave these challenges for future work.
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Abstract

Duplicate documents are a pervasive prob-
lem in text datasets and can have a strong
effect on unsupervised models. Meth-
ods to remove duplicate texts are typically
heuristic or very expensive, so it is vital
to know when and why they are needed.
We measure the sensitivity of two latent
semantic methods to the presence of dif-
ferent levels of document repetition. By
artificially creating different forms of du-
plicate text we confirm several hypotheses
about how repeated text impacts models.
While a small amount of duplication is tol-
erable, substantial over-representation of
subsets of the text may overwhelm mean-
ingful topical patterns.

1 Introduction

Different discussions of the same subject tend to
use similar words. Unsupervised models such as
latent semantic analysis (LSA) (Deerwester et al.,
1990) and latent Dirichlet allocation (LDA) (Blei
et al., 2003) look for these statistical signatures
of topicality in the form of repeated word co-
occurrences. These methods have become increas-
ingly popular because they are powerful and easy
to apply to large unlabeled datasets. The appar-
ent ease-of-use of LSA and LDA, however, makes
it easy to overlook potential problems in text cor-
pora. In this work, we focus on measuring the im-
pact of one such issue: duplicate text.

Latent semantic methods look for patterns of
repetition. But when text is repeated exactly, sta-
tistical methods that look for patterns may be di-
verted from more meaningful semantic groups:
verbatim repetition looks, to the algorithm, more
topical than actual topics. If not accounted for, re-
peated text can change measures of fitness to over-

value fit on repeated texts, or even “leak” held out
data that is duplicated in the training data. At best,
duplication may cause us to overestimate the ex-
pressiveness and reliability of models. At worst,
models skewed by text duplication may invalidate
any conclusions drawn from them, and, by exten-
sion, the method itself.

Text replication is a persistent and difficult
problem in natural language corpora. In social
media settings, partial duplication due to quota-
tion and threading is ubiquitous. Of the 20k posts
in the 20 Newsgroups corpus (Lang, 1995), 1151
are exact duplicates, and 25% of the remaining to-
kens are quoted text from other newsgroup mes-
sages.1 In literary corpora, different versions of
the same document may also conflict: text files
for Hamlet may differ slightly due to publisher
information, line numbers, editorial changes be-
tween Shakespeare’s folios, and footnotes. Re-
moving exactly identical duplicates of texts is pos-
sible through direct lexicographic matching, but
for lexical near-duplicates and partial textual over-
lap, we may need more careful heuristics to detect
duplicates, forcing researchers to make judgments
about what text to remove and what to keep.

Evaluating what level of duplication is “safe”
can therefore not only reduce the risk of false
conclusions but also save great amounts of work
spent identifying and removing duplication. In
this work, we investigate the effect of text dupli-
cation on LSA and LDA by experimentally am-
plifying the magnitude of text duplication in a
variety of corpora. We look both at how mod-
els shift to over-represent repeated text and how
that shift affects the model representation of doc-
uments without repetition. To account for the va-
riety of types of duplication, we look at exact du-

1Computed using scikit-learn’s 20 News-
groups API: http://scikit-learn.org/stable/
datasets/twenty_newsgroups.html
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plication of whole documents as well as repetition
of a text segment across many documents. Finally,
we recommend what aspects of text deduplication
one should focus on to successfully reduce nega-
tive effects, with different suggestions depending
on the chosen model. 2

2 Previous Work

Text duplication and reuse is a well-established
problem in textual corpora. The web is filled
with pages of near-duplicate content (Broder et al.,
1997; Manku et al., 2007), journalistic reuse
is common practice with the dissemination of
information from news agencies to newspapers
(Clough et al., 2002; Smith et al., 2013), and
plagiarism is prevalent in student submissions
(Clough et al., 2003). However, past work has fo-
cused on the identification of reuse instead of the
effects that duplication has on semantic models.

The detection of text reuse relies on the abil-
ity to measure similarity between documents or
passages. In general, these techniques measure
the similarity of textual content, though other sim-
ilarity metrics for reuse identification have been
proposed (Bär et al., 2012). These measures can
fall into two general groups: global and local.
Global techniques measure the similarities of en-
tire texts. These techniques are especially used
for near-duplicate detection. A common approach
of this form is fingerprinting (Potthast and Stein,
2008). This method involves transforming a doc-
ument into a smaller representation (e.g. a set
of n-grams) to measure similarity cheaply. Local
techniques measure similarity at a finer granular-
ity (e.g. paragraphs or sentences). In this setting,
reuse may be mixed with text derived from other
sources. These techniques often involve two steps:
one aligning texts with some method (Lee, 2007;
Smith et al., 2013)m and one scoring similarity of
aligned sequences, e.g. based on cosine similarity
of the bag-of-words vector. All of these techniques
require choices of hyperparameters such as simi-
larity threshold and n-gram size that affect what
the technique considers duplicate text. Our work
focuses on understanding what types of document
deduplication are important so that practitioners
can make better-informed choices about how to
calibrate these models.

2Code for our experiments can be found at
https://github.com/heraldicsandfox/
semantic-text-duplication.

While it is possible to evaluate semantic models
as features in a downstream supervised task, they
are harder to evaluate intrinsically as unsupervised
models of data exploration. For LDA, it is stan-
dard to consider held-out likelihood of a test set
as a measure of model fit (Wallach et al., 2009b).
One can also use human evaluations to judge the
interpretability of topic summaries (Chang et al.,
2009), though this measure can also be approxi-
mated with automated evaluations based on corpus
statistics (Aletras and Stevenson, 2013; Lau et al.,
2014; Mimno et al., 2011). One can also evaluate
individual topics based on how much they diverge
from corpus-wide distributional expectations (Al-
Sumait et al., 2009).

Because LSA does not yield semantically
meaningful dimensions, intrinsic approaches to
evaluation are focused on the spatial aspects of
the model’s word embedding into the real do-
main. Word similarity tasks are perhaps the most
common evaluation, which compare human “gold
standard” judgments of word pair similarity to dis-
tances between the corresponding word vectors
(Finkelstein et al., 2001; Bruni et al., 2012; Hill
et al., 2016). However, the vagueness of defi-
nitions of “similarity” and the contextual depen-
dency of similarity have cast doubt on these as
gold standards of evaluation (Faruqui et al., 2016).
Solving word analogies using vector arithmetic is
also sometimes used to evaluate neural word em-
beddings, but LSA does not tend to produce this
structure well (Pennington et al., 2014; Mikolov
et al., 2013).

3 Theorized Impact

The fundamental problem with repeated text
in a distributional semantic model is the over-
representation of specific word co-occurrences to
a model. To understand this, we consider the ma-
trix factorization representation of these models.
Borrowing notation from Arora et al. (2013), we
consider a corpus with M documents and vocab-
ulary size V over which we want to learn a K-
dimensional representation of each document and
vocabulary term. We can build an M × V matrix
C to represent our corpus, where Cdi is a function
of the frequency of term i in document d. Both
LSA and LDA represent factorizations of this ma-
trix into two rank-K matrices, C = WAT , where
W is an M × K matrix and A is a V × K ma-
trix. In the case of LSA, we apply tf-idf weighting
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to C before producing a truncated singular value
decomposition C = UΣAT , with Σ a diagonal
matrix of dimension K×K, and U and A column-
orthogonal matrices. We can reduce this to the fac-
torization above by multiplying Σ with one of the
two outer matrix factors, e.g. W = UΣ . LDA
performs a non-negative matrix factorization on a
smoothed stochastic version of C, producing row-
stochastic matrices W and A.

Duplicate text implies that more rows in C will
contain a particular signature of word frequencies.
This implies that a low-rank matrix factorization
will increasingly devote representative power to
this particular textual signature in order to mini-
mize loss in its representation. We expect to ob-
serve two principal effects:

• As text is repeated more, to optimize model
fit on the data, one or more topics/dimensions
will converge to model the repeated text.

• Text that is not exactly or near-exactly re-
peated (or singular text) will be modeled less
effectively both in terms of model fit and in-
terpretability.

These effects are based on the incentive of the
model to overfit repeated text: topics and dimen-
sions modeling solely the repeated text will leave
less representational power for the remaining text,
and combinations of repeated and singular text
will likely yield less coherent topics.

4 Evaluation Methods

We quantitatively examine several aspects of mod-
els with varying forms and degrees of duplica-
tion to determine the magnitude of the change
produced by repeated text. It is important to
note that our goal is simply to measure the dif-
ference between models, and not to make norma-
tive statements about the quality of topics. Indeed,
many measures of topic quality such as word intru-
sion (Chang et al., 2009) and word co-occurrence
(Newman et al., 2010; Mimno et al., 2011; Lau
et al., 2014) may improve as a result of degener-
ate, single-document topics: most documents are
internally coherent, so a single document’s word
distribution may appear to be a sensible topic.

Loss The first aspect is model loss. As stated
in Section 3, as a segment of text is repeated
more, we anticipate that the fit over documents
containing repeated text will improve, while the

fit over documents not containing repeated text
will worsen. To evaluate this for LSA, we exam-
ine the Frobenius norm of the difference between
the reconstruction WAT and C for the rows corre-
sponding to documents with and without repeated
text. For LDA, we estimate the perplexity of both
the training data and held-out data without repeti-
tions from the same corpus.

Concentration Secondly, we examine compo-
nent (e.g. topic/dimension) concentration. Rep-
etition of a document amplifies the co-occurrence
between the terms contained in the document. As
this signal grows stronger, we expect models to
begin “memorizing” these words. We anticipate
that affected models will develop a simpler la-
tent representation for the repeated document, one
concentrated over a small number of components.
For example, if a model is devoting topic k to a
repeated document, then instances of that docu-
ment should have a high proportion of topic k.
Concentration measurements relate to loss, but fo-
cuses specifically on the document-component or
document-topic patterns, while loss also includes
information about the topic-word dynamics.

The effect of components converging to a sin-
gle piece of repeated text should be easily ob-
served by examining how close topics are to the
unigram language model induced by the repeated
text. If we repeat multiple documents indepen-
dently, however, we may also expect to see dis-
tinct components correlated with disjoint subsets
of the repeated texts. To account for this, we eval-
uate component concentration separately for docu-
ments with repeated text and without repeated text.

For LDA, we examine the entropy of document
vectors. Information entropy represents the expec-
tation of the representation length of a given out-
come as a function of the probability distribution
over outcomes:

Ed =
�

k

θdk log θdk

where θdk is the probability of a token generated
in document d having topic k. Entropy is inverse
to concentration: the entropy of text should lower
as the text is repeated more, as all of their topi-
cal mass would be concentrated in topics converg-
ing to modeling duplicate texts. Conversely, doc-
uments not containing repeated text may also have
their entropy increase as text repetition increases,
as topics will less adequately fit to the behavior of
the singular documents.
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In LSA, entropy is not as directly applicable:
vectors in W = UΣ can be arbitrarily real-
numbered. However, we still want to access a sim-
ilar basic concept, the amount a vector representa-
tion of a document is concentrated in a few dimen-
sions. So, we examine the absolute dispersion of
each row vector d in W :

Dd =
�

k

|dk|
�d�1

log
|dk|
�d�1

where dk is the kth component of d. Abso-
lute dispersion measures the entropy of the L1-
normalized masses of the vectors in W .

Expressivity The final aspect is expressivity of
topics. If one topic converges to the unigram lan-
guage model of repeated documents, the result-
ing model has effectively lost one topic worth of
expressive power by focusing on overly-specific
themes. Someone looking to learn generalized se-
mantic corpus patterns from a topic model will
therefore have one fewer topic of interest avail-
able. The frequency of terms in the repeated text
may also overwhelm the most probable terms in
many of the topics, again reducing the ability to
interpret these topics or to understand their con-
tent through a summarized representation. While
expressivity in the form of topic summaries makes
little sense for LSA, using LDA models, we may
examine topic summaries, obtained as the top s
most probable terms of a topic where s is a fixed
parameter. We may select the same number of
terms s from the most probable in a unigram lan-
guage model of the repeated text, and determine
what proportion of the tokens obtained from con-
catenating topic similarities are the top terms of
the repeated text language model.

5 Experimental Setup

Data We use two corpora: a sample of arti-
cles from the New York Times Annotated Cor-
pus (Sandhaus, 2008) and a collection of Reuters
newswires from the Spanish Language News Text
Corpus (REUSL) (Graff, 1995). We choose news
corpora because they provide well-curated text
with repeated subjects but few exact document-
level duplicates, though quotes and templated text
may still cause text duplication. We can use these
as a testbed for general duplication behaviors we
see across a variety of corpora. Text is lower-cased
and tokenized to only include tokens of three or

more characters, allowing for contractions or hy-
phenations as single tokens. New York Times arti-
cles average 494.5 words in length, while Reuters
newswires average 201.5 words.

To ensure our experiments are the only cause
of exact duplication of text in our corpora, we
use strict methods of text deduplication. When
two or more documents have more than 70% uni-
gram overlap, we remove all but the longest doc-
ument. In addition, we delete 7-grams that ap-
pear in more than 10 documents based upon ex-
isting thresholds for plagiarism detection (Citron
and Ginsparg, 2015). To account for stopwords,
we remove all terms appearing in more than 80%
of documents. Finally, we remove documents with
fewer than 7 tokens after processing. We perform
this process on a random sample of 30,000 docu-
ments from each corpus to ensure we may obtain
a sample of 25,000 curated documents for each of
our two corpora. We also produce 10% samples of
these corpora, containing 2,500 documents each,
to measure the effect of corpus size.

Text Duplication Treatments We use our dedu-
plicated news corpora to construct datasets with
artificial text duplication. We examine two differ-
ent duplication scenarios: exact document dupli-
cation and template string duplication.

In exact document duplication, we randomly
sample p% of the documents in the dataset and in-
clude c copies of each sampled document in our
final corpus along with one copy each of the re-
maining documents, which we refer to as singu-
lar documents. To test the extremes of this effect,
we also perform single document tests for large c
with only one repeated document. From these syn-
thetically duplicative corpora, we can determine
whether effects are triggered by the sheer volume
of duplicated text or if they are influenced by the
diversity of the copied documents.

In template string duplication, rather than du-
plicating the sampled p% of documents, we
prepend a fixed string to each document in the p%
sample, producing what we refer to as templated
documents or texts. As repeated text may be lex-
ically similar or different from the non-repeated
text of the corpus, we consider two different types
of prepended string. The first is a randomly-
sampled document from the deduplicated corpus
but not included in the training set (Sampled Tem-
plate), simulating repeated text that is lexically
similar to the document content. The second is
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Figure 1: Training perplexity with LDA models
trained on the REUSL 25k corpus with 80 top-
ics. Perplexity decreases significantly for the du-
plicated documents with repetition, but the effect
on singular documents is negligible with repeated
proportion of the corpus smaller than 0.1.
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Figure 2: Perplexity from duplicating a single
document remains largely unaffected for singu-
lar documents until the number of repetitions is
c = 4096, when duplicate texts outnumber singu-
lar texts. There is also a subtle inflection point for
smaller numbers of topics K at c = 256, approx-
imately 1/10th of the corpus, but this effect is not
visible with more topics.

the first 100 words of the classic Lorem Ipsum
filler text (Lorem Template), simulating repeated
text with little lexical overlap with the documents.
Because we are investigating bag-of-words mod-
els, we do not worry about grammatical errors in
the nearly-duplicated text, so the segmentation of
this repeated prefix should not be a concern.

Training We analyze two types of semantic
models: LSA and LDA. LSA models are trained
using tf-idf weighting on word-document matri-
ces using custom Python code.3 LDA models are
trained using Mallet (McCallum, 2002) with fixed
hyperparameters α = 50/K and β = 0.01 for
ease of comparison. To compute perplexity, we
use log likelihood estimates from Mallet’s built-in
left-to-right estimation (Wallach et al., 2009a).

6 Results

Because of the exponential combination of differ-
ent experimental settings available, it would be un-
feasible to examine all our metrics for all data. In-
stead, we focus our analysis on specific examples

3Code uses scipy, numpy, and scikit-learn.
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Figure 3: Model loss for LSA models with 80
components. Loss for duplicated documents de-
creases as the number of repetitions c increases.
The frequency of replication affects loss at a much
smaller scale for singular documents.

that we believe demonstrate the effects seen in the
rest of the corpus. We use smaller sets of 2.5k
documents for examining the effect of heavy du-
plication and sets of 25k documents otherwise.

6.1 Loss

We begin with the case of exact document dupli-
cation. In Figure 1, the perplexity of LDA de-
creases substantially as documents are duplicated.
This reduction is due to better fit to the dupli-
cated documents. As fit improves in duplicated
documents, however, we do not see a meaning-
fully worse fit for singular documents. These doc-
uments increase in perplexity, but the increase is
not significant at low levels of duplication, such as
when c = 2 or p = 0.001. In the single document
case in Figure 2, this effect is emphasized: like-
lihood on singular documents remains level even
with heavy repetition in short corpora. The sheer
volume of duplicated text does not by itself dam-
age model fit, likely because the duplicated text
can be easily modeled by a single topic.

This effect is not solely due to LDA’s spe-
cific probabilistic model. We see a similar pat-
tern in LSA. In Figure 3, we see that loss for
duplicated documents decreases as duplication in-
creases. However, the amount of decay depends
on the proportion of the corpus replicated: the
smaller the proportion size, the more dramatic the
decay. In contrast, the loss for singular documents
increases only slightly with more copies, though
more for higher proportions of duplication.

To gain a better understanding of how dupli-
cation affects LSA, we look at the effects of re-
peating a single document an extreme number of
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Figure 4: Held-out data perplexity (in thousands) for different the NYT 25k corpus with varying numbers
of topics K. Increasing the proportion of repetition for exact duplicate documents does not increase test
perplexity. With repeated corpus proportion p = 0.001, however, repeating documents exactly 4 times
(but not 2 or 8 times) significantly improves perplexity, potentially because it induces a new topic to
model it. Held-out data contained no repeated documents.
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Figure 5: LSA model loss for the NYT 2.5k corpus
with one duplicated document. Model loss for sin-
gular documents is again unaffected by repetition,
while loss for the duplicated document quickly
falls to zero as repetition increases. The fall in loss
signals the start of model “memorization.”

times. From Figure 5, we see that the loss of sin-
gular documents does not meaningfully change as
the number of copies increases. We can observe
the steep decline in loss for duplicated documents
as the signal of when the top K components be-
gin to “memorize” the duplicated document. The
more components K, the fewer repetitions need
for the overfitting to begin.

In the LDA case, we may also look at held out
perplexity. Figure 4 shows that the fit for held-
out test data is not generally significantly affected
by increased repetition. There is a pattern within
the data, in which repeating documents 4 times
seems to produce better perplexity for singular
documents than 2 or 8, significantly so for a small
fraction of the corpus. A theory for this is that at a
sufficient level of repetition, LDA fits the repeated
text to its own topic instead of trying to conflate
it with other document contents, producing better
topics. However, additional repetition further sat-
urates these topics and adds noise to the meaning-
ful co-occurrence signal.

Figure 6 demonstrates that, as before, perplex-
ity is significantly higher as template repetition in-
creases when there is a small number of topics
K = 5. However, as the number of topics in-
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Figure 6: LDA training perplexity for REUSL
2.5k with different types of templated text repe-
tition. The effect of duplication is prominent for
small numbers of topics but diminishes with more
topics to sufficiently model the missing text. With
the fraction of the corpus that contains duplicates
p = 0.1, the perplexity of template documents is
below that of untemplated texts.

creases, this disparity ceases to be significant. In-
terestingly, however, with high enough proportion
p of documents containing templates, the perplex-
ity drops below that of documents not containing
the duplicates at all numbers of topics.

For LSA, templated repetition has no apparent
effect on the loss of untemplated texts. How-
ever, the effect for templated texts is less straight-
forward. Figure 7 shows that for proportions
p = 0.1 and p = 0.01 the loss of templated
texts is smaller than for untemplated texts for all
K component sizes. For proportion p = 0.001,
though, templated loss is only smaller than un-
templated loss when K is large, while templated
loss is never significantly lower than untemplated
loss for p = 0.0001. Lorem Template and Sam-
ple Template also exhibit different behaviors tem-
plated texts when p = 0.001 and K is large: loss
is is significantly smaller for Lorem Template and
has a larger drop in loss from K = 80 to K = 160.
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Figure 7: LSA loss of templated text for the
REUSL 25k corpus. Higher levels of templating
p result in smaller model loss for templated texts
than for untemplated texts. For p = 0.001, tem-
plated loss becomes smaller than untemplated loss
for K = 160 but more dramatically for the Lorem
Template.
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Figure 8: Entropy for LDA with 80 topics de-
creases for duplicated documents as the frequency
of those documents increases, has little initial ef-
fect on the entropy of the singular documents.

This may indicate that LSA is able to more ef-
fectively model templated text when the templates
have a distinctively different language model than
the original documents.

6.2 Concentration

We expect the effect of duplication on entropy will
be inversely correlated with its effect on model
loss. As we increase the proportion of the cor-
pus that is repeated, the model will devote more
resources to duplicate text, leaving less modeling
power for the remaining text. We therefore ex-
pect dispersion to increase with p for duplicate
documents and decrease with p for singular docu-
ments. In Figure 8, the first effect clearly holds for
LDA, but the second does not: there is a negligible
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Figure 9: Absolute dispersion for LSA with 80
components increases slightly when first produc-
ing duplicates (c = 2), but falls off for smaller
proportions of repetition p = 0.01 and p = 0.001
at higher frequencies. Increasing c has a compar-
atively small effect on the absolute dispersion of
singular documents.
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Figure 10: When a single document in the short
corpora is repeated enough to comprise the major-
ity of the corpus, the LDA entropy decreases over
singular documents.

change in entropy with the number of repetitions
of documents. Figure 9 shows a subtler version of
the same effect for LSA. Notably, the decrease in
absolute dispersion for repeated documents is only
visible in the short corpora.

We can examine the extreme effects of the
change in component concentration for singular
documents by looking at its behavior in the sin-
gle document treatment. In Figure 10, we see that
while entropy remains level for repetitions com-
prising smaller portions of the corpus, eventually
the entropy drops for both repeated and singu-
lar documents. This may be because most top-
ics describe the repeated document, leaving few
to model the remaining singular documents.

For LSA, absolute dispersion remains level for
all repetitions tested for the single document treat-
ment. This result highlights a key difference be-
tween LDA topics and LSA components: while
changing the number of topics in LDA influences
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Figure 11: LDA entropy for the REUSL 25k cor-
pus with Sample Template and Lorem Template
treatments. With few topics, templated documents
have lower entropy than untemplated documents,
but with many topics, their entropy is higher. In
the mid range of topics for Lorem Template, higher
proportions of sampled text p produce higher en-
tropy, but for Sample Template, lower p produces
higher entropy.

the prior to raise or lower entropy over topics, the
components of LSA are fixed. Increasing the num-
ber of components increases dimensionality, but
never alters preexisting dimensions.

The effect is more subtle when templated text
is repeated within documents. Figure 11 shows
that with K = 20 LDA topics, if we apply the
Sample Template to a small fraction of documents
(p = 0.001), it produces a higher entropy than
corpora with larger template inclusion proportion
p. This is not surprising: though the template text
and the original document are similar in style, with
high probability they will still have different top-
ics, which the model will have trouble fitting well
without more observations. The Lorem Template
has the reverse effect: the language is sufficiently
disjoint from the content of the documents that
few topics or even a single topic can model the
repeated text fully, leading to low entropy. When
the language model of duplicated text is disjoint
from that of the text of interest, the template can
be modeled by one or a few topics or components
without significantly affecting other text.

6.3 Expressivity
Quantitative analyses of model fit and topic uncer-
tainty are helpful in analyzing the effect of differ-
ent settings, but do not necessarily tell us whether
topics from corpora with repeated documents are
useful. Analysis of expressivity helps us fill in

some of the gaps in our explanations above as to
what is happening at the individual topic level. In
Figure 12, we see that for a moderate number of
topics, increased repetition of documents impacts
a substantial portion of the top-ranked words, or
most probable terms of topics. The saturation ef-
fect has some relation to the number of repeated
documents. With a single document repeated, as
in Figure 13, as the number of topics increases,
the ratio of top-ranked words belonging to the un-
igram language model drops. We also notice that
with few topics, there is a clear “saturation point”
where the topic begins to be represented more,
which remains level until half the short corpora
are represented by the duplicate document. The
pattern overwhelmingly shows that single texts are
easily fit by single topics.

In the case of the Lorem Template input, where
little textual overlap exists between the template
and original text, a few topics quickly fill in the
repeated text, producing a limited effect on most
topics. In Table 1, the number of topics containing
“lorem” and “ipsum” remains small as the num-
ber of topics grows. Regardless of topic count of
proportion, topics containing “lorem ipsum” are
entirely broken Latin: the top probable terms of
an example 320-topic model with p = 0.1 are
est justo donec iaculis sit ipsum quam lorem tris-
tique sed amet eget pharetra curabitur fringilla
non consequat mattis nec nascetur, a direct sam-
ple of words from the template text.

7 Conclusion

The presence of duplicated strings, either docu-
ments or duplicated text within documents, is a se-
rious but not insurmountable problem. Duplicate
text can substantially alter the dimensions learned
by distributional semantic models. The effect of
duplication depends on several factors: the num-
ber of distinct repeated strings, the similarity of
repeated strings to the rest of the corpus, and the

Proportion 5 10 20 40 80 160 320
0.001 0 0 0 0 0 0.2 0.8
0.01 0 0 0.2 0.56 1 1 1
0.1 1 1 1 1 1.78 2.3 3

Table 1: As the number of total topics increases,
the average number of topics fitting the Lorem
Template duplicate text remains stable, only ris-
ing above 1 with repeated proportion of the corpus
p = 0.1 and at least 80 topics.
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Figure 12: With 80-topic LDA models of our
larger datasets, we see that increased repetition
leads to significant increases in the amount of rep-
resentation of repeated text in the top keys of top-
ics.
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Figure 13: Top keys of LDA topics for only a
single repeated document remain concentrated in
only a few topics in models with K > 5, negligi-
bly impacting the top keys of remaining topics.

number of repetitions. We find that different algo-
rithms are affected in different ways, but that there
are methods to alleviate the effect of duplication
without exhaustively removing all duplicated doc-
uments. We provide the following specific conclu-
sions and recommendations:

LDA accommodates low rates of document du-
plication for many documents. We find that
with more frequent repetition, the algorithm is
able to sequester repeated text into small num-
bers of topics if certain conditions hold. To handle
this case, the model must have many topics avail-
able relative to the number of repeated strings, and
the language of the repeated text must be suffi-
ciently distinct. If these conditions are met, re-
peated text will affect a small number of topics
that can be identified by their similarity to specific
documents, or automatically based on lower than
expected inter-document variability within a topic
(Mimno and Blei, 2011) or distance from specific
corpus-word or document-word distributions (Al-
Sumait et al., 2009). We therefore suggest train-
ing a model first with slightly more topics than
desired, then evaluating if there are any signs of
repeated texts overwhelming several topics due to
low coherence or corpus statistics. If no such in-
dications occur, or if the duplication remains in
one or two topics, then there is no need to modify
the corpus or retrain the model, as the duplicate-

capturing topic may be ignored.

LSA permits high rates of document duplica-
tion so long as few unique texts are repeated.
Repeating one document will likely only affect
one or a few components regardless of how many
repetitions occur. However, if there are many dif-
ferent repeated documents, more components will
be used to model them, which worsens the model
fit more as the number of unique repeated texts in-
creases. In this case, it may be preferable to look
for near-duplicate documents more aggressively
and worry less about exact duplicates. Unigram-
count-based deduplication may be appropriate in
this case, using a simple threshold of cosine sim-
ilarity between the vectors of unigram counts be-
tween two documents to deduplicate.

Repeated text templates for LSA and LDA are
sequestered by the model so long as they do
not overlap heavily with topics of interest. In
a topic model, it may be easy to identify the tem-
plated text based upon it appearing in one topic.
However, if there is a concern that there is sys-
tematic use of text templates in documents (such
as page headers or publication information) that
may be too close to the language model, the n-
gram removal approach inspired by Citron and
Ginsparg (2015) is an expensive but straightfor-
ward way to ensure these strings are detected and
deleted. The combination of unigram dedupli-
cation, n-gram deletion, and the inherent ability
of semantic models to separate co-occurring text
should reduce the negative effects of text duplica-
tion.
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Abstract

A document outlier is a document that sub-
stantially deviates in semantics from the
majority ones in a corpus. Automatic iden-
tification of document outliers can be valu-
able in many applications, such as screen-
ing health records for medical mistakes. In
this paper, we study the problem of mining
semantically deviating document outliers
in a given corpus. We develop a generative
model to identify frequent and character-
istic semantic regions in the word embed-
ding space to represent the given corpus,
and a robust outlierness measure which is
resistant to noisy content in documents.
Experiments conducted on two real-world
textual data sets show that our method can
achieve an up to 135% improvement over
baselines in terms of recall at top-1% of
the outlier ranking.

1 Introduction

The technology today has made it unprecedent-
edly easy to collect and store documents in an
increasing number of domains. Automatic text
analysis (e.g. document clustering, summariza-
tion, topic modeling) becomes more useful and de-
manded as the corpus size grows. Some trending
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any copyright notation hereon.

domains (e.g. health records) call for a new analyt-
ical task, mining outlier documents: given a cor-
pus, identify a small number of documents which
substantially deviate from the semantic focuses of
the given corpus. Outlier documents can provide
valuable insights or imply potential errors. For
example, an outlier health record from records of
the same disease could indicate a new variation of
the disease if it has an abnormal symptom descrip-
tion, or a medical error if it has an abnormal treat-
ment description. A previous study (Hauskrecht
et al., 2013) uses structured data in health records
to show the importance of this application, and
points out that further improvement should be
achieved by leveraging text data.

Existing work has studied a related albeit
different task, novel document detection (Ka-
siviswanathan et al., 2012, 2013; Zhang et al.,
2002, 2004), where one aims to identify from a
document stream if a newly arriving document
is novel or redundant. In other words, this task
assumes all the previous documents are known
to be “normal”, and only checks if a new docu-
ment is novel. In our task, no document is known
to be normal, and there could be multiple out-
liers in the corpus. Outlier detection (Chandola
et al., 2009; Hodge and Austin, 2004) is a popu-
lar topic in data mining but few focus on text data.
A study (Guthrie, 2008) identifies anomalous text
segments in a document, but mainly based on writ-
ing styles. We focus on studying semantically de-
viating documents.

The problem of detecting outlier documents has
its unique challenges. First, different words or
phrases may be used to indicate the same semantic
meaning, which introduces lexical sparsity. Sec-
ond, finding proper words or phrases to charac-
terize the corpus is non-trivial. Semantically fre-
quent words or phrases can still be too general or
too vague. Third, a document can carry extremely
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rich and noisy signals, most of which are not help-
ful to determine whether it is an outlier.

We tackle the problem of mining outlier doc-
uments in the following steps. We leverage
word embedding (Mikolov et al., 2013) to capture
the semantic proximities between words and/or
phrases, in order to solve the sparsity issue. Then
we propose a generative model to identify seman-
tic regions in the embedded space frequently men-
tioned by documents in the corpus. The model
represents each semantic region with a von Mises-
Fisher distribution. We also learn a concentration
parameter for each region with our model, and de-
velop a selection method to identify semantically
specific regions which can better represent the cor-
pus, and filter regions with largely uninformative
words.

As the final step, we design a robust outlierness
measure emphasizing only the words or phrases
in a document relatively close to the semantic fo-
cuses identified, and eliminating the noises and re-
dundant information.

The remaining of the paper is organized as fol-
lows. Section 2 introduces the preprocessing of
data sets and clarifies the notations. Section 3
proposes the methodology to mine outlier docu-
ments. Section 4 describes the experiment setup,
Section 5 presents the results and Section 6 con-
cludes the paper.

2 Preliminaries

In this section, we formalize the problem and then
briefly describe the preprocessing step.

2.1 Notations

The notations used in this study are introduced
here. A document is represented as a sequence
di = (wi1, wi2, · · · , wini), where each wij ∈ V
represents a word or phrase from a given vocabu-
lary V and ni denotes the length of the di. We refer
to a set of documents as a corpus, represented as
D = {di}|D|i=1.

Notice thatwij may refer to a unigram word or a
multi-gram phrase. Although it is nontrivial to ap-
propriately segment a document into a mixed se-
quence of words and phrases, it is not the focus
of our paper. A recently developed phrase min-
ing technique (Liu et al., 2015) is used to extract
quality phrases and segment the documents.

Word embedding provides vectorized represen-
tations of words and phrases to capture their se-

mantic proximity. We assume there is an effective
word embedding technique (e.g. (Mikolov et al.,
2013)), f : V 7→ Rν , where f is the transform-
ing function that takes a word or a phrase as input
and projects it into a ν-dimensional vector as its
distributed representation. The semantic proxim-
ity between two words or phrases w and w′ can be
preserved by the cosine similarity between their
embedded vectors:

CosSim
(
f(w), f(w′)

)
=

f(w) · f(w′)
‖f(w)‖ × ‖f(w′)‖

Problem definition. This work studies how
to effectively rank documents in a corpus based
on how much they deviate from the semantic fo-
cuses of the corpus. Given a set of documents D,
our objective is to design an outlierness measure
Ω : D 7→ R, such that documents with larger out-
lierness Ω(d) semantically deviate more from the
majority of D.

2.2 Preprocessing
We perform several steps of preprocessing to de-
rive the input representation of each document in
a given corpus.

Phrase mining. SegPhrase, a recently developed
phrase-mining method (Liu et al., 2015), is uti-
lized to automatically identify quality phrases in
a corpus. After being trained in one corpus, Seg-
Phrase is also capable of segmenting unseen docu-
ments into chunks of phrases with mixed lengths.
We train SegPhrase on an external corpus De to
obtain the list of quality phrases. Then for each
corpus D given for outlier detection, we employ
the trained SegPhrase to chunk each document
into a sequence of words and quality phrases.

Word embedding. We adopt word embedding
as a preprocessing step to capture the semantic
proximity between words/phrases. Instead of us-
ing the raw text, similar to (Liu et al., 2015), we
use the sequence derived from SegPhrase as in-
put to the word embedding algorithm. In particu-
lar, word2vec (Mikolov et al., 2013) is utilized in
our experiments, but can be seamlessly replaced
by any other embedding results.

We run the embedding algorithm based on the
external corpus De, the same corpus used in
phrase mining. As De is sufficiently large, there
are only few words or phrases in D which never
appear in De, and are simply discarded in the ex-
periments.
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Stop words removal. We remove stop words, as
well as the words or phrases ranked high within a
certain quantile in terms of document frequency1

(DF) in the external corpus De. Such words or
phrases usually carry background noise, and ob-
struct outlier detection.

3 Mining Outlier Documents

Our framework consists of the following steps.
First, we leverage a generative model to identify
semantic “regions” in the word embedding space
frequently mentioned by documents in the given
corpus. Second, we develop a selection method to
further remove semantics regions that are too gen-
eral to properly characterize the given corpus, and
only keep regions both frequent and semantically
specific, denoted as “semantic focuses”. Finally,
we calculate the outlierness measure for each doc-
ument based on the mined semantic focuses. We
design a robust outlierness measure which is less
sensitive to noisy words or phrases in documents.

3.1 Embedded von Mises-Fisher Allocation

We start with a generative model to identify the
frequent semantic regions in the word embedding
space.

Since we use cosine similarity to capture the se-
mantic proximities between two words or phrases,
the magnitude of the embedding vector of each
word can be omitted in this part. We use xij =
f(wij)/‖f(wij)‖ to represent the unit vector with
the same direction as the embedded vector of wij ,
and use X to represent the collection of all xij
where 1 ≤ i ≤ |D| and 1 ≤ j ≤ ni.

In order to characterize a semantic region in the
embedded space, we introduce von Mises-Fisher
(vMF) distribution. The von Mises-Fisher (vMF)
distribution is prevalently adopted in directional
statistics, which studies the distribution of normal-
ized vectors on a spherical space. The probability
density function of the vMF distribution is explic-
itly instantiated by the cosine similarity. It is an
ideal distribution for our task because we use co-
sine similarity to measure the semantic proximity.
Moreover, as we will see later, it empowers us to
characterize how specific each semantic region is,
which is helpful in further identification of seman-
tic focuses for outlier detection.

1Document frequency of a word (or phrase) is defined as
number of documents where this word or phrase appears.

We first introduce the formalization of the von
Mises-Fisher distribution.

Von Mises-Fisher (vMF) distribution. A ν-
dimensional unit random vector x (i.e. x ∈ Rν
and ‖x‖ = 1) follows a von Mises-Fisher distri-
bution vMF(·|µ, κ) if the probability density func-
tion follows:

p(x) = Cν(κ) exp
(
κµ>x

)

where Cν(κ) = κν/2−1
/

(2π)ν/2Iν/2−1(κ); and
Iν/2−1(·) is the modified Bessel function of the
first kind; (ν/2− 1) is the order.

The two parameters in the vMF distribution are
the mean directionµ and the concentration param-
eter κ respectively, where µ ∈ Rν , ‖µ‖ = 1 and
κ > 0. The distribution concentrated around the
mean direction µ, and is more concentrated if the
concentration parameter κ is larger.

Embedded von Mises-Fisher allocation. We
propose a generative model by regarding each doc-
ument as a bag of normalized embedded vectors,
analogous to the bag-of-word representation of
documents utilized in typical topic model (e.g.,
LDA (Blei et al., 2001)). The major difference
is that the data to be generated is now a bag-of-
normalized-embedded-vectors for each document,
and should be generated from a mixed vMF distri-
bution instead of a mixed multinomial distribution.

A formalized description of the model is sum-
marized as follows:

µt ∼ vMF(·|µ0, C0), t = 1, 2, · · · , T
κt ∼ logNormal(·|m0, σ

2
0), t = 1, 2, · · · , T

πi ∼ Dirichlet(·|α), i = 1, 2, · · · , |D|
zij ∼ Categorical(·|πi), j = 1, 2, · · · , |di|
xij ∼ vMF(·|µzij , κzij ), j = 1, 2, · · · , |di|

where T > 0 is an integer indicating the number
of semantic regions, namely the number of vMF
distributions in our mixture model.

We regularize the vMF parameters by the fol-
lowing prior distributions. We assume the mean
direction µt of each vMF distribution is gener-
ated from a prior vMF distribution vMF(·|µ0, C0),
while the concentration parameter κt is generated
from a log-normal prior logNormal(·|m0, σ

2
0). A

similar design is also adopted in (Gopal and Yang,
2014).

Parameter inference. We infer the parameters
by Gibbs sampling. Because both the von Mises-
Fisher distribution and the Dirichlet distribution
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have conjugate priors, we can integrate out pa-
rameters µt and πi and develop a collapsed Gibbs
sampler of zij :

P (zij = t|Z−ij ,X,κ;α,m0, σ
2
0,µ0, C0)

∝
(
n−ijit + 1 +α(t)

)
Cν(κt)Cν

(∥∥C0µ0 + κtx
−ij
·t
∥∥)

Cν

(∥∥∥∥C0µ0 + κt
(
x−ij·t + xij

)∥∥∥∥
)

where n−ijit =
∑|di|

j′ δ(zij′ = t) − δ(zij = t)
is the number of words in the i-th document be-
ing assigned to the t-th von Mises-Fisher distri-
bution without taking wij into account; x−ij·t =∑|D|

i′
∑|di|

j′ xi′j′δ(zi′j′ = t) − δ(zij = t) is the
sum of word vectors assigned to semantic region
t without counting wij . Here δ(·) is the indicator
function.

We can also derive a collapsed Gibbs sampler
for concentration parameters κt’s:

P (κt|Z,X,κ−t;α,m0, σ
2
0,µ0, C0)

∝ Cn·tν (κt)

Cν
(
‖C0µ0 + κtx·t‖

) logNormal(κt|m0, σ
2
0)

where n·t is the number of words in semantic re-
gion t.

While sampling zij is relatively trivial, sam-
pling κt is not straightforward. Similar difficulty
is also mentioned in (Gopal and Yang, 2014). We
employ a Metropolis-Hasting algorithm with an-
other log-normal distribution centered at the cur-
rent κt value as the proposal distribution.

After obtaining a sample from the posterior dis-
tribution of zij’s and κt’s, we can easily obtain
the MAP estimate of mean directions µt’s and the
mixing distribution of each documents πi:

µ̂t =
C0µ0 + κtx·t
‖C0µ0 + κtx·t‖

, π̂i =
nit +α(t)

ni· +
∑

tα
(t)

Discussions. We notice that there are some topic
models (Das et al., 2015; Batmanghelich et al.,
2016) proposed for similar data, where words are
represented as embedding vectors. Our model is
proposed independently for the purpose of identi-
fying semantic focuses, which serves the task of
outlier detection. Existing models may lack sig-
nals for the following outlier detection steps and
hence cannot be directly plugged in. However, it
is possible to adapt certain models to the outlier
detection task.

3.2 Identifying Semantic Focuses

The semantic regions learned from the Embedded
vMF Allocation model provide a set of candidates
frequently mentioned by documents in the corpus.
However, not all of them are semantic focuses of
the corpus — some are too general to distinguish
outlier and normal document.

We notice that uninformative semantic regions
(e.g. a semantic region containing {“percent”, “av-
erage”, “compare”, ...}) tend to have more scat-
tered distribution over embedded vectors, possi-
bly because of the diverse context of their usage.
In contrast, corpus-specific semantic regions are
more concentrated, (e.g. a semantic region con-
taining {“drugs”, “antidepressant”, “prescription”,
...}). Modeling semantic regions by vMF distri-
butions provides us with a parsimonious signal to
characterize how concentrated a semantic region
is, i.e. the concentration parameter κt. This al-
lows us to simply filter unqualified semantic re-
gions with too small concentration parameters and
obtain high-quality semantic focuses. Let a binary
variable φt (t = 1, 2, · · · , T ) indicate whether the
t-th vMF distribution is a semantic focus. Sup-
pose a user specifies a threshold parameter 0 ≤
β ≤ 1. We can determine φt by estimating
the log-normal distribution that generates all κt’s,
logNormal(m̂, σ̂2), where

m̂ =
1

T

∑

t

log(κt), σ̂
2 =

1

T

∑

t

(
log(κt)− m̂

)2

Set F̂κ(·) to be its cumulative distribution func-
tion. We assign φt = 1 for semantic regions with
κt ≥ F−1κ (β), and filter all the other semantic re-
gions as φt = 0.

Although parameter β needs to be set manu-
ally, our experiments suggest the performance is
not quite sensitive to its value.

3.3 Document Outlierness

In this subsection, we start with a straightforward
definition of outlierness based on the mined se-
mantic focuses. Then we present several refine-
ments to improve its robustness.

Baseline outlierness measure. A straightfor-
ward intuition is to assume outlier documents av-
eragely have fewer words or phrases drawn from
semantic focuses. To estimate this, we first need to
calculate the probability of each word being drawn
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from the semantic focuses.

P
(
φzij = 1|xij ,πi

)
=

∑
t φtπ

(t)
i vMF(xij |µt, κt)∑

t π
(t)
i vMF(xij |µt, κt)

It is then possible to estimate the expected percent-
age of words not drawn from semantic focuses in
each document as the outlierness:

Ωsf(di) = 1− 1

|di|

|di|∑

j=1

P (φzij = 1|xij ,πi) (1)

However, due to the noisiness in text data,
this assumption oversimplifies the characteriza-
tion of outlier documents. In practice, we ob-
serve the following two issues: lexically general
words/phrases, and noisy content in documents.

Penalizing lexically general words and phrases.
Not all words or phrases close to semantic focuses
are strong indicators of normal documents. Gen-
eral words (e.g. “science”) can happen to be se-
mantically close to a semantic focus, but are not as
specific as most other words close to it (e.g. “medi-
cal research”). Therefore, we utilize a background
corpusDbg to calculate the specificity of the word.
Assuming the actual mention of the word can be
chosen from either the general background, or
a corpus-specific vocabulary, we write down the
probability that a word is corpus-specific to be:

P
(
λij |wij

)
=

nd(wij)/|D|
nd(wij)/|D|+ ndbg(wij)/|Dbg|

where nd(w) = |{di|w ∈ di, di ∈ D}| is the
number of documents in D containing word w;
ndbg(w) = |{di|w ∈ di, di ∈ Dbg}| is the num-
ber of documents containing word w in the back-
ground corpus Dbg; λij is a binary random vari-
able indicating whether wij is specific enough.

For each word, we define the word is orthodox
if the word is not only semantically close to a se-
mantic focus of the corpus, but also sufficiently
specific. We then define the probability that a word
or phrase wij in document di is orthodox as:

P (ϕij |xij ,πiwij) = P
(
φzij |xij ,πi

)
P
(
λij |wij)

where ϕij = 1 indicates that wij (or equivalently
xij) is orthodox.

Now, we can define a second outlierness mea-
sure as the expected percentage of words that are
not orthodox.

Ωe(di) = 1− 1

|di|

|di|∑

j=1

P (ϕij |xij ,πi, wij) (2)
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Figure 1: Comparison of a normal document and
an outlier document in a news corpus (“Health”
topic).

Noisy content in documents. We present the
second issue of normal documents with an exam-
ple. We compare a normal document in a corpus of
New York Times news articles with tag “Health”,
to another document originally from another cor-
pus, but with its outlierness calculated with regard
to the semantic focuses of the “Health” corpus.

In Figure 1(a), we show the distribution of in-
ferred orthodox probability P (ϕij = 1|xij , wij)
by ranking the words or phrases according to their
probability value. We can observe that the outlier
document barely has any words or phrases surely
orthodox, while the normal document has 5% of
words or phrases with a probability no less than
0.8 to be orthodox. However, if we simply take
the average, these two documents become indis-
tinguishable as the average is substantially domi-
nated by the “tail” where most words or phrases
in either documents are clearly not orthodox. Let
nϕi be a random variable indicating the true num-
ber of orthodox words or phrases in document
di. Since nϕi follows a Poisson-Binomial distri-
bution, we can plot the probability distribution of
nϕi normalized by the length of the document, as
shown in Figure 1(b). It can be observed that
the difference between the normalized expecta-
tion E[nϕi ]/di of two documents is insignificant.
Therefore, the measure described in Equation (2)
will be unable to tell the difference between these
two documents.

This example illustrates why the strategy of tak-
ing the average over the whole document can make
mistakes, and also provides an important insight.
As long as a document has a (potentially small)
portion of words or phrases that are highly certain
to be orthodox, it should not be considered as an
outlier. Based on the above observation, we pro-
pose a third outlierness measure.
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Orthodox quantile outlierness. We define a
quantile-based outlierness definition to rank doc-
ument outliers. Notice that the distribution of ran-
dom variable nϕi follows a Poisson-Binomial dis-
tribution, which is the total number of success tri-
als when one tosses a coin for each word or phrase
in the document to determine whether it is ortho-
dox with probability P (ϕij |xij , wij).

Moreover, we define the first 1
1−θ -quantile of

the Poisson-Binomial distribution of nϕi as:

qθ(n
ϕ
i ) = sup

q
{q : P (nϕi ≥ q) ≥ θ} (3)

where 0 < θ < 1 is a given parameter close to 1.
Intuitively, it measures the maximum lower bound
of nϕi we can guarantee with confidence θ.

Based on Equation (3), we can give a formal-
ized definition of our proposed outlierness:

Ωθ-q(di) = 1− qθ(n
ϕ
i ) + 1

|di|+ 1
(4)

where the 1
1−θ -quantile is normalized by the doc-

ument length with a smoothing constant. The
cumulative probability distribution of a Poisson-
Binomial distribution can be efficiently calculated
by dynamic programming (Chen and Liu, 1997).

The advantage of the last proposed outlierness
measure is that it emphasizes more on the highly
orthodox words or phrases and eliminates the
noise from a number of relatively uncertain ones.

4 Experiment Setup

4.1 Data Sets

New York Times News (NYT). We collected
41,959 news article published in 2013 from The
New York Times API2. Each article is assigned
with a unique label indicating in which section the
article is published, such as Arts, Travel, Sports,
and Health. There are totally 9 section labels in
our collected data set. We treat papers in each sec-
tion as a corpus D. Thereby we have a set of cor-
pora D = {Ds}, without overlapping documents.
We also have an external news data setDe crawled
from Google news, with 51,114 news article pub-
lished in 2015 without any label information.

ArnetMiner Paper Abstracts (ARNET). We
employ abstracts of papers published in the field

2http://developer.nytimes.com/docs

Table 1: Data set statistics.
Data set Corpus D External corpus De

Avg. |D| Avg. |d| |De| Avg. |d|
NYT 4,662.11 592.66 52,114 471.63

ARNET 2,930.60 137.21 11,463 152.17

of computer science up to 2013, collected by Ar-
netMiner (Tang et al., 2008), and assign each pa-
per into a field, according to Wikipedia3. We use
papers from a set of domains to serve as an exter-
nal corpusDe, while papers in other domains form
different corpora D = {Ds}. Each domain (e.g.,
data mining, computational biology, and computer
graphics) forms a corpus Ds respectively. Again,
notice that the corpora do not have overlapping
documents with each other.

A summary is presented in Table 1.

Benchmark generation. Since we do not have
true labels for outliers in a corpus, we use injec-
tion method to generate outlier detection bench-
mark. For each data set, we randomly select a cor-
pus Ds ∈ D and mark all of its document as “nor-
mal documents”. We then randomly select another
corpus D′s ∈ D, D′s 6= Ds, to inject ω documents
from D′s into Ds and mark them as outliers. We
confine ω to be a small integer less than 1% of the
size of |Ds|. More concretely, ω is an integer uni-
formly sampled from (0, 0.01|Ds|].

For each data set, we randomly generate 10 out-
lier detection benchmarks, and evaluate the overall
performance by the average performance on all the
benchmarks.

4.2 Methods Evaluated
We compare the performances of the following
methods.

Cosine similarity based. We characterize each
document as a vector, and use the negative aver-
age cosine similarity between each document and
the corpus as outlierness. We use two different
ways to vectorize documents: TF-IDF weighted,
and paragraph2vec (Le and Mikolov, 2014). The
two methods are denoted as TFIDF-COS and P2V-
COS respectively.

KL divergence based. We represent each doc-
ument as a probability distribution, and the entire
corpus as another probability distribution. Then
we use the KL-divergence between each document
and the entire corpus as the outlierness. We also

3https://en.wikipedia.org/wiki/List_
of_computer_science_conferences
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use two different ways to calculate the probability
distribution. The first is to estimate the unigram
distribution for each document and the entire cor-
pus respectively, denoted as UNI-KL. The other is
to first perform LDA on the entire corpus with 10
topics, and then infer topical allocation distribu-
tion of each document and the entire corpus. This
method is represented as TM-KL.

Our method Our quantile based method is de-
noted as VMF-Q. We also provide two baselines
derived from our own method as an ablation anal-
ysis. One method abandons the quantile based
outlierness but use the expected orthodox percent-
age as Equation (2), denoted as VMF-E. The other
method further removes the penalty on lexical gen-
eral words and phrases, using Equation (1), de-
noted as VMF-SF.

4.3 Evaluation Measures

In most outlier detection applications, people are
more concerned with recall. We measure the per-
formance by recall at a certain percentage. More
specifically, we compute the recall of outlier de-
tection if the user checks a certain percentage r
of the top-ranked documents in the output results.
Since in our benchmark generation, the percent-
age of outliers does not exceed 1%. Therefore, the
perfect results for any r ≥ 1% should be 1.0.

We choose r to be 1%, 2%, and 5% respectively
and evaluate different methods with recall at top-r
(percentage). We also report the performance in
terms of mean average precision (MAP).

4.4 Parameter Configurations

All benchmark data sets are preprocessed as de-
scribed in Section 2. In the NYT data set we re-
move words or phrases within top 20% with re-
spect to document frequency, while in the ARNET
data set we remove the top 10%. The document
frequency is calculated based on a background
corpus Dbg, which is the same as the external cor-
pus of NYT. Word embedding are trained on the
external data set De using code of Mikolov et
al. (Mikolov et al., 2013) with default parameter
configurations, where the embedded vector length
is set to 200. For paragraph2vec, we learn the
length-100 vectors for each document along with
the external data set to guarantee sufficient train-
ing data.

For the prior vMF distribution, we setC0 = 0.1,
a sufficiently small number so the prior distribu-

Table 2: Performance comparison of different out-
lier document detection methods. All results are
shown as percents.
Data set Method MAP Rcl@1%Rcl@2%Rcl@5%

NYT

TFIDF-COS 05.03 04.73 06.72 14.72
P2V-COS 22.07 23.45 44.64 66.18
UNI-KL 10.28 11.92 16.32 31.34
TM-KL 14.51 16.50 16.50 24.67
VMF-SF 33.70 31.03 44.45 62.60
VMF-E 36.57 35.91 49.41 67.56
VMF-Q 41.88 56.99 63.29 79.23

ARNET

TFIDF-COS 08.99 15.40 18.75 30.23
P2V-COS 07.39 10.51 14.78 24.14
UNI-KL 07.46 14.13 22.26 39.40
TM-KL 10.09 12.04 15.37 20.24
VMF-SF 10.69 12.05 22.58 44.51
VMF-E 10.51 12.67 25.92 45.37
VMF-Q 19.74 22.40 34.40 53.87

tion is close to a uniform distribution. µ0 is set
as a normalized all-1 vector. We also set m0 =
log(100), and σ2 = 0.01. The total number for
Gibbs sampling is set to be 50 times of the total
count of zij’s (i.e. η = 50). The number of vMF
distributions T is set to 20 in the NYT data set and
10 in the ARNET data set respectively, due to the
smaller sizes of corpora in the ARNET data set.

To determine semantic focuses, we set threshold
parameter β = 0.55 for both data sets. The confi-
dence parameter θ in outlierness calculation is set
to 0.95 in both data sets. Our experiments later
will show the performance is relatively robust to
different configurations of both parameters.

5 Results

We present the experimental results in this section.

Performance comparison. Table 2 shows per-
formance of different outlier document detection
methods. It can be observed that our method out-
performs all the baselines in both data sets. In both
data sets, VMF-Q can achieve a 45% to 135% in-
crease from baselines in terms of recall by exam-
ining the top 1% outliers. Generally, performances
of most methods are lower in the ARNET data set
comparing to NYT, potentially because the rela-
tively short document lengths and more technical
terminologies in ARNET.

Ablation analysis. Both refinements of the out-
lierness measure benefits the performance. Specif-
ically, by changing the average based outlierness
to quantile based outlierness, the recall@1% can
be improved by 50-75%, and the recall@5% can
also be improved by more than 17%.
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Figure 2: Performance of outlier document detec-
tion with different parameter configurations.
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Figure 3: Crowd evaluation to compare different
outlier detection methods on two corpora in NYT
data set.

Sensitivity studies of parameters. We study
if our proposed method is sensitive to the confi-
dence parameter θ and filtering threshold param-
eter β. We compare the performance of VMF-Q
by varying each parameter on both data sets. Fig-
ure 2(a) and 2(b) show that the performance is not
very sensitive to different values of θ, as long as
θ is sufficiently large (close to 1). Figure 2(c)
and 2(d) show that the performance is relatively
stable when β is between 0.5 and 0.7, but drops a
little when β is set to larger value.

Human judgments. We compare VMF-Q
to VMF-E and P2V-COS respectively by crowd-
sourcing, without artificially inserting “outliers”.
We conduct this experiments on two corpora in
NYT data sets with topic “Health” and “Art” re-
spectively. To compare two methods, we ran-
domly select pairs of documents di and dj such
that both are ranked as top-10% outliers by at least
one method, but their orders in the two rankings

disagree. We conduct the experiments on Crowd-
Flower. Online crowd workers are given di and
dj as well as other documents in the corpus, and
are asked to judge which one of di and dj deviates
more from the corpus. For each corpus, we select
200 pairs of documents.

Before taking the questions, each crowd worker
needs to go through at least 10 “test questions”
which we know the correct answer. These ques-
tions are constructed by taking one document from
the corpus as di and another document not from
the corpus as dj . Therefore, the one not from
the corpus should be the answer. A crowd worker
needs to achieve no less than 80% of accuracy to
be eligible to work on actual questions, and the
accuracy needs to be maintained over 80% during
the work, which is measured by “test questions”
hidden in actual questions. Each question is an-
swered by 3 workers. The final answer is deter-
mined by majority voting.

Figure 3 presents the results. On both corpora,
there are significantly more workers tend to agree
with VMF-Q comparing to P2V-COS, with sig-
nificance level α = 0.05. This further verifies
that our method VMF-Q can achieve better perfor-
mance than the P2V-COS baseline. On the other
hand, on both data sets we can still observe more
workers favoring VMF-Q than VMF-E, but the
difference is not as large as the difference between
VMF-Q and P2V-COS.

Case study. We also conduct a case study to
show how our proposed method outperforms other
baselines. Table 3 shows two pairs of documents
in “Health” corpus of NYT data set. The left
two columns show some comparing methods and
their higher ranked outlier documents. The row of
“Crowds” shows the outlier document chosen by
human workers from the crowdsourcing platform,
with a consensus of opinions from multiple work-
ers.

In the first document pair, document A is about
gun control policy and is substantially irrelevant to
“Health” topic, while document B is about lung in-
fection cases. Document A is a significant outlier,
and VMF-Q and VMF-E also agree with our intu-
ition. However, paragraph2vec (P2V) ranks doc-
ument B higher, probably because it tries to sum-
marize the entire document.

In the second document pair, document B is
clearly not an outlier as the story is about a new
book of AIDS. In comparison, document A dis-
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Table 3: Case study of documents in “Health” corpus of NYT data set. We present several pairs of
documents and how different methods rank the pair. The “Outlier” column indicates the document
ranked higher in the outlier document ranking generated by the corresponding methods, and the row
“Crowds” shows the ranking given by human evaluators.

Method Outlier Document A Document B
P2V-COS Doc B CHICAGO (AP) States with the most gun con-

trol laws have the fewest gun-related deaths, ac-
cording to a study that suggests sheer quantity
of measures might make a difference ...

A prominent Scottish bagpiping school has
warned pipers around to world to clean their
instruments regularly after one of its longtime
members nearly died of a lung infection ...

VMF-E Doc A
VMF-Q Doc A
Crowds Doc A

P2V-COS Doc B ATLANTA There’s more evidence that U.S.
births may be leveling off after years of de-
cline. The number of babies born last year only
slipped a little, ...

Young men in a state prison for juveniles and
professors of library science from the Univer-
sity of South Carolina have joined forces to fight
AIDS with a graphic novel ...

VMF-E Doc B
VMF-Q Doc A
Crowds Doc A

cussing U.S. population is an outlier. However, a
great part of document B is about the content of the
book, which confuses baselines P2V and VMF-
E, as both methods tend to summarize the entire
document and highly relevant words like “AIDS”
are overwhelmed by the majority of the document.
The only method that agrees with human annota-
tors is VMF-Q.

6 Conclusion

In this paper, we propose a novel task of detecting
document outliers from a given corpus. We pro-
pose a generative model to identify semantic fo-
cuses of a corpus, each represented as a vMF dis-
tribution in the embedded space. We also design
a document outlierness measure. We experimen-
tally verify the effectiveness of our methods. We
hope this work provides insights for further stud-
ies on outlier document texts in specific domains,
and in more challenging settings such as detecting
outliers from crowdsourced data.
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Abstract

Explaining underlying causes or effects
about events is a challenging but valu-
able task. We define a novel problem of
generating explanations of a time series
event by (1) searching cause and effect
relationships of the time series with tex-
tual data and (2) constructing a connect-
ing chain between them to generate an ex-
planation. To detect causal features from
text, we propose a novel method based on
the Granger causality of time series be-
tween features extracted from text such
as N-grams, topics, sentiments, and their
composition. The generation of the se-
quence of causal entities requires a com-
monsense causative knowledge base with
efficient reasoning. To ensure good in-
terpretability and appropriate lexical usage
we combine symbolic and neural repre-
sentations, using a neural reasoning algo-
rithm trained on commonsense causal tu-
ples to predict the next cause step. Our
quantitative and human analysis show em-
pirical evidence that our method success-
fully extracts meaningful causality rela-
tionships between time series with textual
features and generates appropriate expla-
nation between them.

1 Introduction

Producing true causal explanations requires deep
understanding of the domain. This is beyond the
capabilities of modern AI. However, it is possible
to collect large amounts of causally related events,
and, given powerful enough representational vari-
ability, to construct cause-effect chains by select-
ing individual pairs appropriately and linking them
together. Our hypothesis is that chains composed

Figure 1: Example of causal features for Face-
book’s stock change in 2013. The causal features
(e.g., martino, k-rod) rise before the Facebook’s
rapid stock rise in August.

of locally coherent pairs can suggest overall cau-
sation.

In this paper, we view causality as (common-
sense) cause-effect expressions that occur fre-
quently in online text such as news articles or
tweets. For example, “greenhouse gases causes
global warming” is a sentence that provides an
‘atomic’ link that can be used in a larger chain.
By connecting such causal facts in a sequence, the
result can be regarded as a causal explanation be-
tween the two ends of the sequence (see Table 1
for examples).
This paper makes the following contributions:
• we define the problem of causal explanation

generation,
• we detect causal features of a time series event

(CSPIKES) using Granger (Granger, 1988)
method with features extracted from text such
as N-grams, topics, sentiments, and their com-
position,
• we produce a large graph called CGRAPH of lo-

cal cause-effect units derived from text and de-
velop a method to produce causal explanations
by selecting and linking appropriate units, using
neural representations to enable unit matching
and chaining.

2758



Table 1: Examples of generated causal expla-
nation between some temporal causes and target
companies’ stock prices.

party cut7−−→ budget cuts lower7−−−−→ budget bill decreas7−−−−−→ republi-
cans caus7−−−→ obama leadto7−−−−→ facebook polls caus7−−−→ facebook’s
stock ↓

The problem of causal explanation generation
arises for systems that seek to determine causal
factors for events of interest automatically. For
given time series events such as companies’ stock
market prices, our system called CSPIKES detects
events that are deemed causally related by time
series analysis using Granger Causality regres-
sion (Granger, 1988). We consider a large amount
of text and tweets related to each company, and
produces for each company time series of values
for hundreds of thousands of word n-grams, topic
labels, sentiment values, etc. Figure 1 shows an
example of causal features that temporally causes
Facebook’s stock rise in August.

However, it is difficult to understand how the
statistically verified factors actually cause the
changes, and whether there is a latent causal struc-
ture relating the two. This paper addresses the
challenge of finding such latent causal structures,
in the form of causal explanations that connect the
given cause-effect pair. Table 1 shows example
causal explanation that our system found between
party and Facebook’s stock fall (↓).

To construct a general causal graph, we extract
all potential causal expressions from a large cor-
pus of text. We refer to this graph as CGRAPH.
We use FrameNet (Baker et al., 1998) semantics
to provide various causative expressions (verbs,
relations, and patterns), which we apply to a
resource of 183, 253, 995 sentences of text and
tweets. These expressions are considerably richer
than previous rule-based patterns (Riaz and Girju,
2013; Kozareva, 2012). CGRAPH contains
5,025,636 causal edges.

Our experiment demonstrates that our causal-
ity detection algorithm outperforms other baseline
methods for forecasting future time series values.
Also, we tested the neural reasoner on the infer-
ence generation task using the BLEU score. Addi-
tionally, our human evaluation shows the relative
effectiveness of neural reasoners in generating ap-
propriate lexicons in explanations.

2 CSPIKES: Temporal Causality
Detection from Textual Features

The objective of our model is, given a target time
series y, to find the best set of textual features
F = {f1, ..., fk} ⊆ X , that maximizes sum of
causality over the features on y, where X is the
set of all features. Note that each feature is itself a
time series:

arg max
F

C(y,Φ(X, y)) (1)

where C(y, x) is a causality value function be-
tween y and x, and Φ is a linear composition func-
tion of features f . Φ needs target time series y as
well because of our graph based feature selection
algorithm described in the next sections.

We first introduce the basic principles of
Granger causality in Section 2.1. Section 2.2 de-
scribes how to extract good source features F =
{f1, ..., fk} from text. Section 2.3 describes the
causality function C and the feature composition
function Φ.

2.1 Granger Causality

The essential assumption behind Granger causal-
ity is that a cause must occur before its effect, and
can be used to predict the effect. Granger showed
that given a target time series y (effect) and a
source time series x (cause), forecasting future tar-
get value yt with both past target and past source
time series E(yt|y<t, x<t) is significantly power-
ful than with only past target time seriesE(yt|y<t)
(plain auto-regression), if x and y are indeed a
cause-effect pair. First, we learn the parameters
α and β to maximize the prediction expectation:

E(yt|y<t, xt−l) =

m∑

j=1

αjyt−j +

n∑

i=1

βixt−i (2)

where i and j are size of lags in the past obser-
vation. Given a pair of causes x and a target y,
if β has magnitude significantly higher than zero
(according to a confidence threshold), we can say
that x causes y.

2.2 Feature Extraction from Text

Extracting meaningful features is a key compo-
nent to detect causality. For example, to predict
future trend of presidential election poll of Don-
ald Trump, we need to consider his past poll data
as well as people’s reaction about his pledges such
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as Immigration, Syria etc. To extract such “good”
features crawled from on-line media data, we pro-
pose three different types of features: Fwords,
Ftopic, and Fsenti.
Fwords is time series of N-gram words that re-

flect popularity of the word over time in on-line
media. For each word, the number of items (e.g.,
tweets, blogs and news) that contains the N-gram
word is counted to get the day-by-day time series.
For example, xMichael Jordan = [12, 51, ..] is a
time series for a bi-gram word Michael Jordan.
We filter out stationary words by using simple
measures to estimate how dynamically the time se-
ries of each word changes over time. Some of the
simple measures include Shannon entropy, mean,
standard deviation, maximum slope, and number
of rise and fall peaks.
Ftopic is time series of latent topics with re-

spect to the target time series. The latent topic is
a group of semantically similar words as identi-
fied by a standard topic clustering method such as
LDA (Blei et al., 2003). To obtain temporal trend
of the latent topics, we choose the top ten frequent
words in each topic and count their occurrence in
the text to get the day-by-day time series. For ex-
ample, xhealthcare means how popular the topic
healthcare that consists of insurance, obamacare
etc, is through time.
Fsenti is time series of sentiments (positive or

negative) for each topic. The top ten frequent
words in each topic are used as the keywords, and
tweets, blogs and news that contain at least one of
these keywords are chosen to calculate the senti-
ment score. The day-by-day sentiment series are
then obtained by counting positive and negative
words using OpinionFinder (Wilson et al., 2005),
and normalized by the total number of the items
that day.

2.3 Temporal Causality Detection

We define a causality function C for calculating
causality score between target time series y and
source time series x. The causality function C
uses Granger causality (Granger, 1988) by fitting
the two time series with a Vector AutoRegressive
model with exogenous variables (VARX) (Hamil-
ton, 1994): yt = αyt−l + βxt−l + εt where εt
is a white Gaussian random vector at time t and
l is a lag term. In our problem, the number of
source time series x is not single so the predic-
tion happens in the k multi-variate features X =

(f1, ...fk) so:

yt = αyt−l + β(f1,t−l + ...+ fk,t−l) + εt (3)

where α and β is the coefficient matrix of the tar-
get y and source X time series respectively, and
ε is a residual (prediction error) for each time se-
ries. β means contributions of each lagged feature
fk,t−l to the predicted value yt. If the variance of
βk is reduced by the inclusion of the feature terms
fk,t−l ∈ X , then it is said that fk,t−l Granger-
causes y.

Our causality function C is then C(y, f, l) =
∆(βy,f,l) where ∆ is change of variance by the
feature f with lag l. The total Granger causality
of target y is computed by summing the change of
variance over all lags and all features:

C(y,X) =
∑

k,l

C(y, fk, l) (4)

We compose best set of features Φ by choos-
ing top k features with highest causality scores for
each target y. In practice, due to large amount of
computation for pairwise Granger calculation, we
make a bipartite graph between features and tar-
gets, and address two practical problems: noisi-
ness and hidden edges. We filter out noisy edges
based on TFIDF and fill out missing values using
non-negative matrix factorization (NMF) (Hoyer,
2004).

3 CGRAPH Construction

Formally, given source x and target y events that
are causally related in time series, if we could find
a sequence of cause-effect pairs (x 7→ e1), (e1 7→
e2), ... (et 7→ y), then e1 7→ e2, ... 7→ et might be
a good causal explanation between x and y. Sec-
tion 3 and 4 describe how to bridge the causal gap
between given events (x, y) by (1) constructing a
large general cause-effect graph (CGRAPH) from
text, (2) linking the given events to their equivalent
entities in the causal graph by finding the internal
paths (x 7→ e1, ...et 7→ y) as causal explanations,
using neural algorithms.

CGRAPH is a knowledge base graph where
edges are directed and causally related between
entities. To address less representational variabil-
ity of rule based methods (Girju, 2003; Blanco
et al., 2008; Sharp et al., 2016) in the causal graph
construction, we used FrameNet (Baker et al.,
1998) semantics. Using a semantic parser such
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Table 2: Example (relation, cause, effect) tuples in different categories (manually labeled): general,
company, country, and people. FrameNet labels related to causation are listed inside parentheses. The
number of distinct relation types are 892.

Relation Cause 7→ Effect

G
en

er
al causes (Causation) the virus (Cause) aids (Effect)

cause (Causation) greenhouse gases (Cause) global warming (Effect)
forced (Causation) the reality of world war ii (Cause) the cancellation of the olympics (Effect)

C
om

pa
ny heats (Cause temperature change) microsoft vague on windows (Item) legislation battle (Agent)

promotes (Cause change of position on a scale) chrome (Item) google (Agent)
makes (Causation) twitter (Cause) love people you ’ve never met facebook (Effect)

C
ou

nt
ry developing (Cause to make progress) north korea (Agent) nuclear weapons (Project)

improve (Cause to make progress) china (Agent) its human rights record (Project)
forced (Causation) war with china (Cause) the japanese to admit , in july 1938 (Effect)

Pe
op

le

attracts (Cause motion) obama (Agent) more educated voters (Theme)
draws (Cause motion) on america ’s economic brains (Goal) barack obama (Theme)

made (Causation) michael jordan (Cause) about $ 33 million (Effect)

as SEMAFOR (Chen et al., 2010) that produces
a FrameNet style analysis of semantic predicate-
argument structures, we could obtain lexical tu-
ples of causation in the sentence. Since our goal
is to collect only causal relations, we extract total
36 causation related frames1 from the parsed sen-
tences.

Table 3: Number of sentences parsed, number of
entities and tuples, and number of edges (KB-KB,
KBcross) expanded by Freebase in CGRAPH.

# Sentences # Entities # Tuples # KB-KB # KBcross

183,253,995 5,623,924 5,025,636 470,250 151,752

To generate meaningful explanations, high cov-
erage of the knowledge is necessary. We collect
six years of tweets and NYT news articles from
1989 to 2007 (See Experiment section for details).
In total, our corpus has 1.5 billion tweets and 11
million sentences from news articles. The Table 3
has the number of sentences processed and num-
ber of entities, relations, and tuples in the final
CGRAPH.

Since the tuples extracted from text are very
noisy 2, we constructed a large causal graph by
linking the tuples with string match and filter out
the noisy nodes and edges based on some graph
statistics. We filter out nodes with very high de-
gree that are mostly stop-words or auto-generated
sentences. Too long or short sentences are also fil-
tered out. Table 2 shows the (case, relation, effect)
tuples with manually annotated categories such as
General, Company, Country, and People.

1Causation, Cause change, Causation scenario, Cause
benefit or detriment, Cause bodily experience, etc.

2SEMAFOR has around 62% of accuracy on held-out set.

4 Causal Reasoning

To generate a causal explanation using CGRAPH,
we need traversing the graph for finding the path
between given source and target events. This
section describes how to efficiently traverse the
graph by expanding entities with external knowl-
edge base and how to find (or generate) appropri-
ate causal paths to suggest an explanation using
symbolic and neural reasoning algorithms.

4.1 Entity Expansion with Knowledge Base

A simple choice for traversing a graph are the
traditional graph searching algorithms such as
Breadth-First Search (BFS). However, the graph
searching procedure is likely to be incomplete
(low recall), because simple string match is in-
sufficient to match an effect to all its related en-
tities, as it misses out in the case where an entity
is semantically related but has a lexically different
name.

To address the low recall problem and generate
better explanations, we propose the use of knowl-
edge base to augment our text-based causal graph
with real-world semantic knowledge. We use
Freebase (Google, 2016) as the external knowl-
edge base for this purpose. Among 1.9 billion
edges in original Freebase dump, we collect its
first and second hop neighbours for each target
events.

While our CGRAPH is lexical in nature, Free-
base entities appear as identifiers (MIDs). For en-
tity linking between two knowledge graphs, we
need to annotate Freebase entities with their lex-
ical names by looking at the wiki URLs. We re-
fer to the edges with freebase expansion as KB-KB
edges, and link the KB-KB with our CGRAPH us-
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ing lexical matching, referring as KBcross edges
(See Table 3 for the number of the edges).

4.2 Symbolic Reasoning
Simple traversal algorithms such as BFS are infea-
sible for traversing the CGRAPH due to the large
number of nodes and edges. To reduce the search
space k in et 7→ {e1t+1, ...e

k
t+1}, we restricted our

search by depth of paths, length of words in en-
tity’s name, and edge weight.

Algorithm 1 Backward Causal Inference. y is tar-
get event, d is depth of BFS, l is lag size,BFSback
is Breadth-First search for one depth in backward
direction, and

∑
lC is sum of Granger causality

over the lags.

1: S← y, d = 0
2: while (S = ∅) or (d > Dmax) do
3: {e1−d, ...ek−d} ← BFSback(S)
4: d = d+ 1, S← ∅
5: for j in {1, ..., k} do
6: if

∑
lC(y, ej−d, l) < ε then S← ej−d

For more efficient inference, we propose a back-
ward algorithm that searches potential causes (in-
stead of effects) {e1t , ...ekt } ←[ et+1 starting from
the target node y = et+1 using Breadth-first search
(BFS). It keeps searching backward until the node
eji has less Granger confident causality with the
target node y (See Algorithm 4 for causality calcu-
lation). This is only possible because our system
has temporal causality measure between two time
series events. See Algorithm 1 for detail.

4.3 Neural Reasoning
While symbolic inference is fast and straightfor-
ward, the sparsity of edges may make our infer-
ence semantically poor. To address the lexical
sparseness, we propose a lexically relaxed reason-
ing using a neural network.

Inspired by recent success on alignment task
such as machine translation (Bahdanau et al.,
2014), our model learns the causal alignment be-
tween cause phrase and effect phrase for each
type of relation between them. Rather than
traversing the CGRAPH, our neural reasoner uses
CGRAPH as a training resource. The encoder, a
recurrent neural network such as LSTM (Hochre-
iter and Schmidhuber, 1997), takes the causal
phrase while the decoder, another LSTM, takes the
effectual phrase with their relation specific atten-
tion.

A submarine driver Soviet nuclear secrets

Figure 2: Our neural reasoner. The encoder takes
causal phrases and decoder takes effect phrases by
learning the causal alignment between them. The
MLP layer in the middle takes different types of
FrameNet relation and locally attend the cause to
the effect w.r.t the relation (e.g., “because of”, “led
to”, etc).

In original attention model (Bahdanau et al.,
2014), the contextual vector c is computed by ci =
aij∗hj where hj is hidden state of causal sequence
at time j and aij is soft attention weight, trained
by feed forward network aij = FF (hj , si−1) be-
tween input hidden state hj and output hidden
state si−1. The global attention matrix a, how-
ever, is easy to mix up all local alignment patterns
of each relation.

For example, a tuple, (north korea (Agent)
developing7−−−−−−−−−−−−−−−−−→

(Cause to make progress)
nuclear weapons (Project)),

is different with another tuple, (chrome (Item)
promotes7−−−−−−−−−−−−−−−−−−→

(Cause change of position)
google (Agent)) in terms of

local type of causality. To deal with the local
attention, we decomposed the attention weight aij
by relation specific transformation in feed forward
network:

aij = FF (hj , si−1, r)

where FF has relation specific hidden layer and
r ∈ R is a type of relation in the distinct set of
relations R in training corpus (See Figure 2).

Since training only with our causal graph may
not be rich enough for dealing various lexical
variation in text, we use pre-trained word em-
bedding such as word2vec (Mikolov and Dean,
2013) trained on GoogleNews corpus3 for initial-
ization. For example, given a cause phrase weapon
equipped, our model could generate multiple ef-
fect phrases with their likelihood: ( result7−−−→

0.54
war),

(
force7−−−→
0.12

army reorganized), etc, even though there

are no tuples exactly matched in CGRAPH.

3https://code.google.com/archive/p/word2vec/
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Table 4: Examples of Fwords with their temporal
dynamics: Shannon entropy, mean, standard devi-
ation, slope of peak, and number of peaks.

entropy mean STD max slope #-peaks

#lukewilliamss 0.72 22.01 18.12 6.12 31
happy thanksgiving 0.40 61.24 945.95 3423.75 414

michael jackson 0.46 141.93 701.97 389.19 585

We trained our neural reasoner in either forward
or backward direction. In prediction, decoder in-
ferences by predicting effect (or cause) phrase in
forward (or backward) direction. As described in
the Algorithm 1, the backward inference continue
predicting the previous causal phrases until it has
high enough Granger confidence with the target
event.

5 Experiment

Data. We collect on-line social media from
tweets, news articles, and blogs. Our Twitter data
has one million tweets per day from 2008 to 2013
that are crawled using Twitter’s Garden Hose API.
News and Blog dataset have been crawled from
2010 to 2013 using Google’s news API. For target
time series, we collect companies’ stock prices in
NASDAQ and NYSE from 2001 until present for
6,200 companies. For presidential election polls,
we collect polling data of the 2012 presidential
election from 6 different websites, including USA
Today , Huffington Post, Reuters, etc.

Features. For N-gram word features Fword,we
choose the spiking words based on their temporal
dynamics (See Table 4). For example, if a word
is too frequent or the time series is too burst, the
word should be filtered out because the trend is too
general to be an event. We choose five types of
temporal dynamics: Shannon entropy, mean, stan-
dard deviation, maximum slope of peak, and num-
ber of peaks; and delete words that have too low
or high entropy, too low mean and deviation, or
the number of peaks and its slope is less than a
certain threshold. Also, we filter out words whose
frequency is less than five. From the 1, 677, 583
original words, we retain 21, 120 words as final
candidates for Fwords including uni-gram and bi-
gram words.

For sentiment Fsenti and topic Ftopic features,
we choose 50 topics generated for both politicians
and companies separately using LDA, and then
use top 10 words for each topic to calculate sen-

(a) y
lag=3←−−−− rf1, ..., rfk

(b) y
lag=3−−−−→ rf1, ..., rfk

Figure 3: Random causality analysis on
Googles’s stock price change (y) and randomly
generated features (rf ) during 2013-01-01 to
2013-12-31. (a) shows how the random features
rf cause the target y, while (b) shows how the tar-
get y causes the random features rf with lag size
of 3 days. The color changes according to causal-
ity confidence to the target (blue is the strongest,
and yellow is the weakest). The target time series
has y scale of prices, while random features have
y scale of causality degree C(y, rf) ⊂ [0, 1].

timent score for this topic. Then we can analyze
the causality between sentiment series of a specific
topic and collected time series.

Tasks. To show validity of causality detector,
first we conduct random analysis between target
time series and randomly generated time series.
Then, we tested forecasting stock prices and elec-
tion poll values with or without the detected tex-
tual features to check effectiveness of our causal
features. We evaluate our reasoning algorithm
for generation ability compared to held-out cause-
effect tuples using BLEU metric. Then, for some
companies’ time series, we describe some qual-
itative result of some interesting causal text fea-
tures found with Granger causation and explana-
tions generated by our reasoners between the tar-
get and the causal features. We also conducted hu-
man evaluation on the explanations.

5.1 Random Causality Analysis

To check whether our causality scoring function
C detects the temporal causality well, we con-
duct a random analysis between target time se-
ries and randomly generated time series (See Fig-
ure 3). For Google’s stock time series, we regu-
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larly move window size of 30 over the time and
generate five days of time series with a random
peak strength using a SpikeM model (Matsubara
et al., 2012)4. The color of random time series rf
changes from blue to yellow according to causal-
ity degree with the target C(y, rf). For example,
blue is the strongest causality with target time se-
ries, while yellow is the weakest.

We observe that the strong causal (blue) features
are detected just before (or after) the rapid rise of
Google’ stock price on middle October in (a) (or
in (b)). With the lag size of three days, we observe
that the strength of the random time series gradu-
ally decreases as it grows apart from the peak of
target event. The random analysis shows that our
causality function C appropriately finds cause or
effect relation between two time series in regard
of their strength and distance.

5.2 Forecasting with Textual Features

Table 5: Forecasting errors (RMSE) on Stock
and Poll data with time series only (SpikeM and
LSTM) and with time series plus text feature (ran-
dom, words, topics, sentiment, and composition).

Time Series Time Series + Text
Step SpikeM LSTM Crand Cwords Ctopics Csenti Ccomp

St
oc

k 1 102.13 6.80 3.63 2.97 3.01 3.34 1.96
3 99.8 7.51 4.47 4.22 4.65 4.87 3.78
5 97.99 7.79 5.32 5.25 5.44 5.95 5.28

Po
ll 1 10.13 1.46 1.52 1.27 1.59 2.09 1.11

3 10.63 1.89 1.84 1.56 1.88 1.94 1.49
5 11.13 2.04 2.15 1.84 1.88 1.96 1.82

We use time series forecasting task as an eval-
uation metric of whether our textual features are
appropriately causing the target time series or not.
Our feature composition function Φ is used to ex-
tract good causal features for forecasting. We test
forecasting on stock price of companies (Stock)
and predicting poll value for presidential election
(Poll). For stock data, We collect daily closing
stock prices during 2013 for ten IT companies5.
For poll data, we choose ten candidate politicians 6

in the period of presidential election in 2012.
For each of stock and poll data, the future trend

of target is predicted only with target’s past time

4SpikeM has specific parameters for modeling a time se-
ries such as peak strength, length, etc.

5Company symbols used: TSLA, MSFT, GOOGL,
YHOO, FB, IBM, ORCL, AMZN, AAPL and HPO

6Name of politicians used: Santorum, Romney, Pual,
Perry, Obama, Huntsman, Gingrich, Cain, Bachmann

Table 6: Beam search results in neural reason-
ing. These examples could be filtered out by
graph heuristics before generating final explana-
tion though.

Cause7→Effect in CGRAPH Beam Predictions

the dollar’s
caus7−−−→ against the yen

[1]
caus7−−−→ against the yen

[2]
caus7−−−→ against the dollar

[3]
caus7−−−→ against other currencies

without any exercise
caus7−−−→ news article

[1]
leadto7−−−−→ a difference

[2]
caus7−−−→ the risk

[3]
make7−−−→ their weight

series or with target’s past time series and past
time series of textual features found by our system.
Forecasting only with target’s past time series uses
SpikeM (Matsubara et al., 2012) that models a time
series with small number of parameters and simple
LSTM (Hochreiter and Schmidhuber, 1997; nne,
2015) based time series model. Forecasting with
target and textual features’ time series use Vector
AutoRegressive model with exogenous variables
(VARX) (Hamilton, 1994) from different compo-
sition function such as Crandom, Cwords, Ctopics,
Csenti, and Ccomposition. Each composition func-
tion except Crandom uses top ten textual features
that causes each target time series. We also tested
LSTM with past time series and textual features
but VARX outperforms LSTM.

Table 5 shows root mean square error (RMSE)
for forecasting with different step size (time steps
to predict), different set of features, and different
regression algorithms on stock and poll data. The
forecasting error is summation of errors over mov-
ing a window (30 days) by 10 days over the period.
Our Ccomposition method outperforms other time
series only models and time series plus text mod-
els in both stock and poll data.

5.3 Generating Causality with Neural
Reasoner

The reasoner needs to predict the next effect
phrase (or previous cause phrase) so the model
should be evaluated in terms of generation task.
We used the BLEU (Papineni et al., 2002) met-
ric to evaluate the predicted phrases on held out
phrases in our CGRAPH . Since our CGRAPH has
many edges, there may be many good paths (ex-
planations), possibly making our prediction di-
verse. To evaluate such diversity in prediction, we
used ranking-based BLEU method on the k set of
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Table 7: BLEU ranking. Additional word rep-
resentation +WE and relation specific alignment
+REL help the model learn the cause and effect
generation task especially for diverse patterns.

B@1 B@3A B@5A

S2S 10.15 8.80 8.69
S2S + WE 11.86 10.78 10.04
S2S + WE + REL 12.42 12.28 11.53

predicted phrases by beam search. For example,
B@k means BLEU scores for generating k num-
ber of sentences and B@kA means the average of
them.

Table 6 shows some examples of our beam
search results when k = 3. Given a cause phrase,
the neural reasoner sometime predicts semanti-
cally similar phrases (e.g., against the yen, against
the dollar), while it sometimes predicts very di-
verse phrases (e.g., a different, the risk).

Table 7 shows BLEU ranking results with dif-
ferent reasoning algorithms: S2S is a sequence
to sequence learning trained on CGRAPH by de-
fault, S2S+WE adds word embedding initializa-
tion, and S2S+REL+WE adds relation specific at-
tention. Initializing with pre-trained word embed-
dings (+WE) helps us improve on prediction. Our
relation specific attention model outperforms the
others, indicating that different type of relations
have different alignment patterns.

5.4 Generating Explanation by Connecting

Evaluating whether a sequence of phrases is rea-
sonable as an explanation is very challenging task.
Unfortunately, due to lack of quantitative evalua-
tion measures for the task, we conduct a human
annotation experiment.

Table 8 shows example causal chains for the rise
(↑) and fall (↓) of companies’ stock price, contin-
uously produced by two reasoners: SYBM is sym-
bolic reasoner and NEUR is neural reasoner.

We also conduct a human assessment on the ex-
planation chains produced by the two reasoners,
asking people to choose more convincing expla-
nation chains for each feature-target pair. Table 9
shows their relative preferences.

6 Related Work

Prior works on causality detection (Acharya,
2014; Anand, 2014; Qiu et al., 2012) in time series

data (e.g., gene sequence, stock prices, tempera-
ture) mainly use Granger (Granger, 1988) ability
for predicting future values of a time series us-
ing past values of its own and another time series.
(Hlaváčková-Schindler et al., 2007) studies more
theoretical investigation for measuring causal in-
fluence in multivariate time series based on the
entropy and mutual information estimation. How-
ever, none of them attempts generating explana-
tion on the temporal causality.

Previous works on text causality detection use
syntactic patterns such as X verb7−−→ Y , where the
verb is causative (Girju, 2003; Riaz and Girju,
2013; Kozareva, 2012; Do et al., 2011) with ad-
ditional features (Blanco et al., 2008). (Kozareva,
2012) extracted cause-effect relations, where the
pattern for bootstrapping has a form of X∗ verb7−−→

Z∗

Y from which terms X∗ and Z∗ was learned. The
syntax based approaches, however, are not robust
to semantic variation.

As a part of SemEval (Girju et al., 2007), (Mirza
and Tonelli, 2016) also uses syntactic causative
patterns (Mirza and Tonelli, 2014) and supervised
classifier to achieve the state-of-the-art perfor-
mance. Extracting the cause-effect tuples with
such syntactic features or temporality (Bethard
et al., 2008) would be our next step for better
causal graph construction.

(Grivaz, 2010) conducts very insightful anno-
tation study of what features are used in human
reasoning on causation. Beyond the linguistic
tests and causal chains for explaining causality in
our work, other features such as counterfactuality,
temporal order, and ontological asymmetry remain
as our future direction to study.

Textual entailment also seeks a directional re-
lation between two given text fragments (Da-
gan et al., 2006). Recently, (Rocktäschel et al.,
2015) developed an attention-based neural net-
work method, trained on large annotated pairs
of textual entailment, for classifying the types
of relations with decomposable attention (Parikh
et al., 2016) or sequential tree structure (Chen
et al., 2016). However, the dataset (Bowman
et al., 2015) used for training entailment deals
with just three categories, contradiction, neutral,
and entailment, and focuses on relatively simple
lexical and syntactic transformations (Kolesnyk
et al., 2016). Our causal explanation generation
task is also similar to future scenario genera-
tion (Hashimoto et al., 2014, 2015). Their scoring

2765



Table 8: Example causal chains for explaining the rise (↑) and fall (↓) of companies’ stock price. The
temporally causal feature and target are linked through a sequence of predicted cause-effect tuples
by different reasoning algorithms: a symbolic graph traverse algorithm SYMB and a neural causality
reasoning model NEUR.

SY
M

B medals match7−−−−→ gold and silver medals
swept7−−−→ korea

improving7−−−−−−→ relations widened7−−−−−→ gap widens7−−−−→ facebook ↑
excess match7−−−−→excess materialism cause7−−−→people make films make7−−−→money

changed7−−−−−→ twitter turned7−−−−→facebook ↓
clinton match7−−−−→president clinton raised7−−−−→antitrust case match7−−−−→government’s antitrust case against microsoft match7−−−−→microsoft beats7−−−→apple ↓

N
E

U
R

google forc7−−−→ microsoft to buy computer company dell announces recall of batteries cause7−−−→ microsoft ↑
the deal make7−−−→ money rais7−−→ at warner music and google with protest videos things caus7−−−→ google ↓
party cut7−−→ budget cuts lower7−−−→ budget bill decreas7−−−−→ republicans caus7−−−→ obama leadto7−−−−→ facebook polls caus7−−−→ facebook ↓
company forc7−−−→ to stock price leadto7−−−−→ investors increas7−−−−→ oracle s stock increas7−−−−→ oracle ↑

Table 9: Human evaluation on explanation chains
generated by symbolic and neural reasoners.

Reasoners SYMB NEUR

Accuracy (%) 42.5 57.5

function uses heuristic filters and is not robust to
lexical variation.

7 Conclusion

This paper defines the novel task of detecting
and explaining causes from text for a time series.
First, we detect causal features from online text.
Then, we construct a large cause-effect graph us-
ing FrameNet semantics. By training our relation
specific neural network on paths from this graph,
our model generates causality with richer lexical
variation. We could produce a chain of cause and
effect pairs as an explanation which shows some
appropriateness. Incorporating aspects such as
time, location and other event properties remains
a point for future work. In our following work,
we collect a sequence of causal chains verified by
domain experts for more solid evaluation of gen-
erating explanations.
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Abstract

Recent years have witnessed the prolif-
eration of Massive Open Online Courses
(MOOCs). With massive learners being
offered MOOCs, there is a demand that
the forum contents within MOOCs need
to be classified in order to facilitate both
learners and instructors. Therefore we in-
vestigate a significant application, which
is to associate forum threads to subti-
tles of video clips. This task can be re-
garded as a document ranking problem,
and the key is how to learn a distinguish-
able text representation from word se-
quences and learners’ behavior sequences.
In this paper, we propose a novel cascade
model, which can capture both the latent
semantics and latent similarity by mod-
eling MOOC data. Experimental results
on two real-world datasets demonstrate
that our textual representation outperforms
state-of-the-art unsupervised counterparts
for the application.

1 Introduction

With the rapid development of Massive Open On-
line Courses (MOOCs), more and more learners
participate in MOOCs (Anderson et al., 2014).
Due to the lack of effective management, most
of the discussion forums within MOOCs are over-
loaded and in chaos (Huang et al., 2014). There-
fore, a key problem is how to manage the forum
contents.

To manage the forum contents, threads of fo-
rums can be regarded as documents and be classi-
fied to groups. There are several straightforward
methods, such as defining sub-forums accord-
ing to weeks and asking learners to tag threads.
However their effectiveness is limited (Rossi and

Gnawali, 2014), because learners have few incen-
tives to tag threads. Recently, machine learning
solutions have been proposed, e.g., content-related
thread identification (Wise et al., 2016), confusion
classification (Agrawal et al., 2015) and sentiment
classification (Ramesh et al., 2015). However they
are developed for specific research problems and
cannot be applied to our problem. Moreover, they
require labeling data which needs domain experts
to label data for different courses.

We observe that the video clips of a MOOC
would have many well-formed subtitles composed
by instructors. Moreover, within MOOC settings,
the course contents can be broken down to knowl-
edge points, and each video clip just corresponds
to a knowledge point. Consequently, we pro-
pose to fulfill the application, which is to asso-
ciate threads to subtitles of video clips, i.e., thread-
subtitle matching. By this way, the relevant videos
to the threads can be recommended to learners,
and the chaotic threads in discussion forums can
also be well grouped.

However, it is challenging to identify the rele-
vant video clips for threads without labeling data.
To address this issue, we regard it as a document
ranking problem based on the calculation of sim-
ilarity between documents. The key problem of
this task is to learn a textual representation, which
can cluster similar documents and meanwhile dis-
tinguish irrelevant ones.

Intuitively, Bag-of-words model (BOW) can
be utilized to calculate the similarity between
threads and subtitles (Salton and Buckley, 1988).
However, BOW cannot effectively capture se-
mantics of words and documents. In addition,
recently-studied semantic word embeddings, e.g.,
Word2Vec (Mikolov et al., 2013), can capture the
semantics. Para2Vec (Le and Mikolov, 2014) can
capture the similarity to some degree, but not ex-
plicitly model the latent similarity of documents.
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Since the latent similarity is crucial to determine
whether a document can be associated to the right
target, in our task, the document representation is
expected to preserve both the latent semantics and
similarity.

In this paper, we leverage two kinds of se-
quential information: 1) word sequence of sub-
titles and forum contents, and 2) clickstream log
of learning behaviors. Specifically, different from
conventional representation learning tasks, e.g.
Word2Vec and Para2Vec, we consider the click-
stream data, which reflects the relationship be-
tween thread and video’s subtitle. For instance, if a
user watches a video and then clicks a thread in fo-
rums, the video would be relevant to the thread. In
order to learn representations from the two types
of data, we propose a novel cascade model.

Our basic idea is to jointly model three com-
ponents: 1) word-word coherence, 2) document-
document coherence, and 3) word-document co-
herence. The three components are cascaded for
learning the low-dimensional word embeddings.
Then the learned embeddings are used to calculate
similarities between threads and subtitles.

To summarize, our contributions include:

• We study an application-oriented research
problem, which is how to capture the latent
similarity when learning text representation.

• We propose a novel cascade model to learn
the document representation from heteroge-
neous sequential data: 1) word sequence and
2) learners’ clickstream.

• We collect two real-world MOOC datasets
and conduct thorough experiments. The re-
sults demonstrate that our proposed model
outperforms the state-of-the-art unsupervised
counterparts on the application.

2 Related Work

MOOC data has attracted extensive research at-
tention and many interesting research problems
have been studied. For example, dropout predict-
ing (Qiu et al., 2016), sentiment analysis of learn-
ing gains (Ramesh et al., 2015), instructor inter-
vention (Chaturvedi et al., 2014) and answer rec-
ommendation (Jenders et al., 2016), etc. Partic-
ularly, (Agrawal et al., 2015) considers a similar
task as ours, which is to recommend video clips to
threads. But its solution is designed for the spe-
cific task and needs labeling data. Our solution is

an unsupervised learning method and the learned
embeddings have other applications, e.g. thread
retrieval.

How to represent text is a fundamental research
problem in the field of information retrieval.
Existing approaches can be generally classified
into unsupervised methods and supervised meth-
ods (Tang et al., 2015). Although supervised em-
beddings can obtain good performance in specific
tasks, such as using deep neural network (Mikolov
et al., 2010; Kim, 2014), they need human efforts
to get labels. Unsupervised word embeddings usu-
ally leverage various levels of textual information.
For example, Word2Vec learns word embeddings
based on word coherence. Para2Vec utilizes word
and document coherence to learn their embed-
dings. Particularly, Hierarchical Document Vector
(HDV) (Djuric et al., 2015) leverages both stream-
ing documents and their contents to achieve better
representation, which is similar to our proposed
model. However, HDV regards the documents as
the context of words, which cannot learn the la-
tent similarity, since it fails to explicitly reflect the
relationship between document and word. In or-
der to model the heterogeneous MOOC data, we
develop a cascade representation model. To our
knowledge, (Jiang et al., 2017) also proposes an
unsupervised learning model (called NOSE) for
the task of thread-subtitle matching within MOOC
settings. However, NOSE needs to build a het-
erogeneous textual network beforehand and may
suffer from heterogeneous issue, which our model
can avoid.

Recently, representation learning has been ap-
plied to many tasks, such as network embed-
ding (Grover and Leskovec, 2016) and location
embedding (Feng et al., 2017). In this paper, we
focus on learning representation of words and doc-
uments in MOOCs.

3 Cascade Model

Based on our observation, we utilize two kinds of
sequential information: 1) word sequences of sub-
titles and threads, and 2) clickstream of learning
behaviors. In this paper, we regard the subtitles
or threads consistently as documents. Particularly,
we discover that the log of learners’ clickstream,
i.e., the click records of watching videos, reading
threads and posting threads in a chronological or-
der, can reflect the document-level latent seman-
tics. An intuitive explanation is that a learner who
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jumps from videos to threads may look for fur-
ther relevant information from forums when s/he
is watching a video, or s/he wants to review the
relevant videos when s/he reads a thread.

However, learning from the log of clickstream
data merely guarantees that similar documents are
close enough in the embedding space, while dif-
ferent documents cannot be scattered. To address
this issue, we attempt to strengthen the relation-
ship between words and their affiliated documents.
Thus, words within the same documents would be
gathered and otherwise scattered in the embedding
space. Consequently, the latent similarity can be
embodied by word embeddings.

Based on the aforementioned idea, we can
model the data by three components: 1) latent se-
mantics at word level, 2) latent similarity at docu-
ment level, and 3) latent similarity between words
and documents. To integrate all the three kinds
of information into a uniform learning framework,
we propose a novel cascade model, as shown in
Fig. 1. L1, L2 and L3 correspond to the log-
likelihood of three components respectively. For-
mally, we aim at minimizing the log-likelihood
function:

L = L1 + L2 + L3 (1)

Note that L3 not only learns the latent similarity,
but also builds a connection between words and
documents. In this way, our learned word embed-
dings can be adopted to our task without learning
classifiers by labeling data.

3.1 Word-level Latent Semantics
As to the part of L1, corresponding to the
red/bottom part of Fig. 1, we leverage the
Word2Vec model to learn the semantics of words.
In this paper, we take the Continuous bag-of-
words (CBOW) architecture. The objective func-
tion is to minimize the log-likelihood:

L1 = −
T∑

t=1

logP(wt|wt−cw : wt+cw) (2)

where cw is the context window length used in
word sequence, and wt−cw : wt+cw is the sub-
sequence (wt−cw , . . . , wt+cw ) excluding wt itself.
The probability P(wt|wt−cw : wt+cw) is defined

by the softmax function exp(v̄Tvwt )∑W
w=1 exp(v̄Tvw)

, where

vwt is the vector representation of word wt, and
v̄ is averaged vector representation of the sub-
sequence. Two methods can be employed to calcu-

Figure 1: The architecture of proposed model
which is cascaded by three parts: L1, L2 and L3.

lating L1: hierarchical softmax and negative sam-
pling (Mikolov et al., 2013).

3.2 Document-level Latent Similarity
Similar to L1, we adopt the CBOW architecture
for calculating L2, as shown by the green/top part
of Fig. 1. The objective function is to minimize
the log-likelihood:

L2 = −
M∑

m=1

logP(dm|dm−cd : dm+cd) (3)

where M is the number of documents, cd
is the context window length used in click-
streams, and dm−cd : dm+cd is the sub-sequence
(dm−cd , . . . , dm+cd) excluding dm itself. The
probability P(dm|dm−cd : dm+cd) is also the soft-
max function. Methods of hierarchical softmax
and negative sampling can be employed to approx-
imate the log-likelihood function.

3.3 Document-Word Latent Similarity
To learn the latent similarity, we make use of the
relationship between words and documents, and
then similar documents can be clustered, while
different documents are scattered. Therefore, we
propose the third component, L3, shown in the
middle part of Fig. 1. Different from L1 and
L2, we employ negative sampling of documents
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to calculate its approximation, because there are
numerous threads in MOOC forums. Given a
pair (wt, dm), representing that word wt appears
in document dm, L3 is denoted as:

L3 =
∑

wt

(
− log σ(vTdmvwt) +

C∑

c=1

log σ(vTdcvwt)

)

(4)
where σ(x) is the sigmoid function and C is the
number of sampled negative documents.

3.4 Model Training
We adopt stochastic gradient descent (SGD) to
minimize L. As to the components of L1 and
L2, we exploit the training methods proposed
in (Mikolov et al., 2013) to the two kinds of se-
quences, i.e., words and documents, respectively.
For training L3, given the pair (wt, dm), we calcu-
late the gradients:

∂L3

∂vdj
=
(
σ(vTdjvwt)− 1(j = m)

)
vwt , (5)

∂L3

∂vwt
=
(
σ(vTdjvwt)− 1(j = m)

)
vdj , (6)

where dj represents both the positive and nega-
tive samples, as dj ∈ {di} ∪ {dc ∼ Pn(w)|c =
1, . . . , C}. Pn(w) is the noise distribution and we
set it as unigram distribution raised to 3/4th power,
which is the same as Word2Vec. 1(x) is an indi-
cator function defined as:

1(x) =

{
1 if x is true,
0 otherwise.

(7)

The time complexity of updatingL isO(T log T+
M logM +TC) when using hierarchical softmax
method for L1 and L2, or O((2T + M)C) when
using negative sampling method. Based on the
complexity analysis, our cascade model is efficient
enough and can be applied to MOOC datasets.

4 Experiment

Data Sets We collect the sequential data of two
MOOCs from Coursera1 and China University
MOOC2 respectively. The former is an interdis-
cipline course called People and Network, and

1https://www.coursera.org, which is an educational tech-
nology company that offers MOOCs worldwide.

2http://www.icourse163.org, which is a leading MOOCs
platform in China.

the second is called Introduction to MOOC. From
both courses, we collect subtitles of video clips,
forum contents and learners’ log of clickstream.
Table 1 shows the statistical information of the two
MOOCs.

For evaluation, we invite the teaching assistants
(TAs) of respective courses to label test samples
in advance. Note that our model is unsupervised.
Therefore, labeled data (thread-subtitle matching
pairs) are only used for evaluation, and we do not
utilize dev dataset.

Experimental Setting We compare our embed-
dings with unsupervised rivals and the labels are
only used for evaluation. To ensure fair compar-
ison, we represent documents with their averaged
word embeddings. Note that in the training phase,
we represent each thread/subtitle with a vector, in
order to make the words within a document clus-
tered and close to each other. We evaluate the fol-
lowing methods.

• Bag-of-words(BOW): the classical text rep-
resentation.

• Word2Vec: word embeddings which lever-
ages word-level coherence and we adopt the
CBOW architecture.

• Para2Vec: paragraph embeddings which con-
siders document-level context information.
We also adopt CBOW framework.

• Hierarchical Document Vector(HDV): the
latest word embeddings with a hierarchical
architecture for modeling streaming docu-
ments and their contents.

• Cascade Document Representation (CDR):
our proposed model which captures both the
latent semantics and latent similarity.

We use the hype-parameters recommended by
previous literatures. For all the evaluated base-
lines, we use the same parameter setting. Thus
it is fair to make comparison. The window size
set in all baselines is 5 by default. The number of
negative samples is empirically set as 5. The size
of hidden layer is set as 100 for all the methods.
We utilize the Precision@K (denoted by P@K) as
metric. If the retrieved top-K subtitles hit at least
one ground-truth label, we regard it as true; oth-
erwise, it is false. In our experiments, we run 10
times and report the average result for each case.
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Course Name #active users #video clips #threads #posts #words #clicks
People and Network 10,807 60 219 1,206 121,142 31,096
Introduction to MOOC 3,949 19 557 7,177 480,495 45,642

Table 1: Statistics of two MOOC datasets.

Model
People and Network Introduction to MOOC
P@1 P@3 P@5 P@1 P@3 P@5

BOW 0.437 0.718 0.806 0.449 0.811 0.909
Word2Vec 0.485 0.699 0.816 0.453 0.826 0.890
Para2Vec 0.408 0.612 0.728 0.504 0.823 0.894
HDV 0.466 0.621 0.777 0.496 0.819 0.913
CDR 0.505 0.689 0.786 0.520 0.854 0.941

Table 2: Result of thread-subtitle matching.

Result Firstly we use all the data to learn word
embeddings by models. Then the learned word
vectors are utilized to calculate the similarity be-
tween threads and subtitles, and rank the subti-
tles. Table 2 reports the results of thread-subtitle
matching. We can notice that there are some
anomalies in P@3 and P@5 results. It may be
for the reason of dataset. In the first MOOC (peo-
ple and network), video subtitles contain relatively
less words, and therefore it is hard to get effec-
tive representations. Overall, the proposed mod-
els can achieve better performance than baselines,
and we highlight the Precision@1 results. Com-
pared to HDV which also considers the streaming
documents, our model is better at every task. This
indicates our model can effectively capture the la-
tent similarity.

We investigate the effect of number of dimen-
sions, i.e., the size of the neural network’s hid-
den layer. From Fig.2, we find that CDR can
achieve better performance than baselines with
various numbers of dimensions. In addition, the
optimal results can be obtained when the dimen-
sion is set as 100 or 200 in both datasets.

5 Conclusion

In this paper, we propose an approach to solve
a significant problem: how to learn distinguish-
able representations from word sequences in doc-
uments and clickstreams of learners. To model the
heterogeneous data, we develop a cascade model
which can jointly learn the latent semantics and
latent similarity without labeling data. We con-
duct experiments on two real datasets, and the re-
sults demonstrate the effectiveness of our model.

(a) People and Network (b) Introduction to MOOC

Figure 2: P@1 of different dimensions.

Moreover, our model is not limited to MOOC
data. For instance, we can adopt the proposed al-
gorithm to streaming documents, e.g. webpage
click streams, since our method can model the
document-document sequences. We leave this as
the future work.
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Abstract

Websites’ and mobile apps’ privacy poli-
cies, written in natural language, tend to
be long and difficult to understand. Infor-
mation privacy revolves around the fun-
damental principle of notice and choice,
namely the idea that users should be able
to make informed decisions about what
information about them can be collected
and how it can be used. Internet users
want control over their privacy, but their
choices are often hidden in long and con-
voluted privacy policy documents. More-
over, little (if any) prior work has been
done to detect the provision of choices
in text. We address this challenge of en-
abling user choice by automatically iden-
tifying and extracting pertinent choice lan-
guage in privacy policies. In particular, we
present a two-stage architecture of classi-
fication models to identify opt-out choices
in privacy policy text, labelling common
varieties of choices with a mean F1 score
of 0.735. Our techniques enable the cre-
ation of systems to help Internet users to
learn about their choices, thereby effectu-
ating notice and choice and improving In-
ternet privacy.

1 Introduction

Website privacy policies are long, verbose docu-
ments that are often difficult to understand. It has
been shown that an average Internet user would
require an impractical amount of time to read the
privacy policies of online services that they use
and would not properly understand them (McDon-
ald and Cranor, 2008). Although Internet users
are concerned about their privacy and would like
to be informed about the privacy controls they

can exercise, they are not willing or able to find
these choices in policy text. Choices for privacy
controls, which are the most actionable pieces of
information in these documents, are frequently
“hidden in plain sight” among other information.
However, the nature of the text and the vocabulary
used to present choices provide us with an oppor-
tunity to automatically identify choices, a goal that
we focus upon in this paper.

We define a choice instance as a statement in a
privacy policy that indicates that the user has dis-
cretion over aspects of their privacy. An example
(which notably features a hyperlink) is the follow-
ing:

If you would like more information on
how to opt out of information collec-
tion practices, go to www.aboutads.
info.1

Some examples of choices offered to users include
opt-outs or controls for the sharing of personal
information with third parties, receiving targeted
ads, or receiving promotional emails. Analyzing
these choice instances in aggregate will help to un-
derstand how notice and choice is implemented in
practice, which is of interest to legal scholars, pol-
icy makers and regulators. Furthermore, extracted
choice options can be presented to users in more
concise and usable notice formats (Schaub et al.,
2015), such as a browser plug-in or a privacy based
question answering system.

For this paper, we treat the identification of
choice instances as a binary classification prob-
lem, in which we label each sentence in the pri-
vacy policy text as containing a choice instance or
not. We use the OPP-115 Corpus (Wilson et al.,
2016) for training and evaluation of our models.

1http://www.nurse.com/privacy/ (last up-
dated on July 13, 2015)
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We further annotate a second dataset2 and de-
velop a composite model architecture to automati-
cally identify and label different types of opt-out
choices offered in privacy policies. We primar-
ily focus on extracting opt-out instances with hy-
perlinks because these are some the most com-
mon and useful choices described in privacy poli-
cies. Moreover, these choice expressions are ac-
tionable: the first step of the action to be taken
(i.e., following a hyperlink) is clearly represented
in the text of these instances.

The work presented in this paper has been con-
ducted in the context of the ‘Usable Privacy Pol-
icy’ project, which combines crowdsourcing, ma-
chine learning and natural language processing to
overcome the limitations of today’s approach to
‘notice and choice’ in privacy (Sadeh et al., 2013).

2 Related Work

The Federal Trade Commission identifies “Notice
and Choice” as one of the core principles of in-
formation privacy protection under the Fair Infor-
mation Practice Principles (Federal Trade Com-
mission, 2000). However, privacy policies, being
long, complicated documents full of legal jargon,
are sub-optimal for communicating information
to individuals (Cranor, 2012; Cate, 2010; Schaub
et al., 2015; Reidenberg et al., 2015). Antón et al.
(2002) conducted a study in which they identi-
fied multiple privacy-related goals in accordance
with Fair Information Practices, which included
‘Choice/Consent’ as one of the protection goals.

The potential for the application of NLP and in-
formation retrieval techniques to legal documents
has been recognized by law practitioners (Mahler,
2015), with multiple efforts applying NLP tech-
niques to legal documents. Bach et al. (2013) use
a multi-layer sequence learning model and integer
linear programming to learn logical structures of
paragraphs in legal articles. Galgani et al. (2012)
present a hybrid approach to summarization of le-
gal documents, based on creating rules to com-
bine different types of statistical information about
text. Early work on automatically extracting anno-
tations from privacy policies includes that of Am-
mar et al. (2012). Montemagni et al. (2010) in-
vestigate the peculiarities of the language in legal
text with respect to that in ordinary text by apply-
ing shallow parsing. Ramanath et al. (2014) in-

2Available for download at https://www.
usableprivacy.org/data

troduce an unsupervised model for the automatic
alignment of privacy policies and show that Hid-
den Markov Models are more effective than clus-
tering and topic models. Liu et al. (2016a) mod-
elled the language of vagueness in privacy policies
using deep neural networks.

Many of these efforts consider legal documents
as a whole, and they focus less on identifying spe-
cific attributes of data practices such as choices.
We focus on choices in the present work because
of their potential to present Internet users with en-
gaging, directly actionable information.

3 Approach

We used the OPP-115 Corpus to train and eval-
uate our models for identifying opt-out choices.
The corpus consists of 115 website privacy poli-
cies and annotations (created by law students) for
data practices that appear in them. A data prac-
tice is a statement about how a website user’s
personal information is collected, processed or
shared. Each data practice consists of a selection
of a category (i.e., a theme associated with the
practice, such as “First Party Collection/Use”), a
set of values for attributes specific to the category,
and text spans from the policy associated with the
value selections (Wilson et al., 2016). The at-
tributes representing choice instances are present
in multiple categories of data practices, namely
“First Party Collection/Use,” “Third Party Shar-
ing/Collection,” “User Access, Edit and Deletion,”
“Policy Change,” and “User Choice/Control.” The
dataset contains annotations for different types of
user choice instances, namely “opt-in,” “opt-out,”
“opt-out link,” “opt-out via contacting company,”
“deactivate account,” “delete account (full),” and
“delete account (partial).”

3.1 Dataset Refinement

We treated the problem of extracting choice in-
stances as a binary classification problem where
we labeled sentences from a privacy policy as con-
taining a choice instance (positive) or not (nega-
tive). We focused specifically on opt-out choices,
as they are among the most common choices of-
fered to Internet users and because opting out is
notoriously difficult for users (Leon et al., 2012).
All sentences that contained an opt-out user choice
(as specified by the OPP-115 annotations) were
considered positive, and the rest were considered
negative. This resulted in a gold standard set of
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Figure 1: Active learning with relabelling.

labeled sentences with 251 positive instances and
approximately 12K negative instances.

Differences between our problem formulation
and the OPP-115 annotation scheme led to the
need for a few label adjustments. Opt-out text
spans which crossed sentence boundaries resulted
in positive labels for all involved sentences, al-
though often only one of the sentences in a span
was positive. Additionally, during the OPP-115
annotation procedure, the fact that hyperlinks were
not shown to annotators meant that some choice
instances were not correctly identified. This re-
sulted in noisy labels in our derived dataset.

The unbalanced distribution of the opt-out la-
bels allowed us to manually verify and correct la-
bels in the positive class. However, correcting
errors in the much larger negative class (of 12K
instances) was a challenge, since comprehensive
manual verification was infeasible. Instead, we
adopted a semi-automated, iterative relabelling ap-
proach with active learning. We randomly divided
the dataset into train (70%) and test (30%) sets.
We trained a binary logistic regression classifier
using bag of n-gram features on the training data,
and then used it to classify the test data. This was
essentially a weak classifier, since it was trained
on noisy (unverified) data. We manually examined
the false positives and false negatives as given by
this model and relabelled incorrectly labelled in-
stances, thus reducing noise in the dataset. Per-
forming multiple iterations of this approach, each
time with a different train and test set, resulted
in a much cleaner dataset (Figure 1). Following
this refinement, the model F1 scores improved and
were also more accurate. For all our experiments
thereon, we used this refined version of the dataset
for training and evaluation.

3.2 Coarse-Grained Classification
We divided the dataset into train and test sets of
85 and 30 privacy policies, respectively. We ex-
perimented with a variety of features for coarse-
grained classification, to separate positive and
negative instances:

Stemmed Unigrams and Bigrams. We re-
moved most stop words from the feature set, al-
though some were retained for the modal verb and
opt-out features (described below). Bigrams are
important to capture pertinent phrases such as “opt
out.”

Relative Location in the Document. This was
a ratio between the number of sentences appearing
before the sentence instance and the total number
of sentences in the privacy policy.

Topic Model Features. We represented the
OPP-115 segment (roughly, a paragraph) contain-
ing the sentence instance as a topic distribution
vector using latent Dirichlet allocation (Blei et al.,
2003) and non-negative matrix factorization (Xu
et al., 2003) with 8 and 10 topics, respectively.
Previous work on vocabulary intersections of ex-
pert annotations and topic models for data prac-
tices in privacy policies (Liu et al., 2016b) inspired
us to take this approach.

Modal Verbs and Opt-Out specific phrases.
We observed vocabulary cues in positive instances
that suggested a domain-independent “vocabulary
of choice”. Many positive instances were impera-
tive sentences and contained modal words such as
may, might, or can. We also identified key phrases
in the training set such as unsubscribe and opt-out
that were indicative of opt-out choices.

Syntactic Parse Tree Features. We obtained
constituency parse trees for sentences using the
Stanford Parser (Manning et al., 2014) and ex-
tracted production rules and non-terminals as fea-
tures. We included the maximum depth and aver-
age depth of the parse tree as features, as these are
indications of specificity.

We used logistic regression classification for the
coarse-grained classification stage. Model hyper-
parameters were tuned based on 5-fold cross vali-
dation on the training set. The final parameters for
the best performing model had the inverse L2 reg-
ularization constant set at C=1.3 and class-weights
of 1.5 and 1 for positive and negative class, respec-
tively.

3.3 Fine-Grained Classification

We also developed a fine-grained model to differ-
entiate between varieties of opt-out instances. For
training data, we annotated a set of 125 positive
instances to assign two additional labels to each of
them; these were Party Offering Choice and Pur-
pose. Party Offering Choice could be one of First
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Figure 2: Two-Tier Classification Model.

Annotation # Instances

TH,AD 52
FI,CM 19
FI,AD 15
FI,SH 6

TH,AN 4
BR,CK 2
TH,SH 2
FI,CK 1
TH,CK 1

Table 1: Distribution of different annotation types.

Party (FI), Third Party, (TH), or Browser (BR).
Purpose could be one of Advertisement (AD),
Data Sharing (DS), Communications (CM), An-
alytics (AN) or Cookies (CK). Table 1 shows the
distribution of these annotations. To predict these
labels, we trained eight binary logistic regression
classifiers, one for each of the preceding values. If
multiple classifiers in a label set returned positive,
we selected the prediction with the higher log like-
lihood. The features we used for these classifiers
were:

Stemmed Unigrams and Bigrams. We col-
lected bags of n-grams from the sentence under
consideration and its containing segment.

Anchor Text. The anchor text of the hyperlink
in the sentence.

Hyperlink URL Tokens. We split the URL by
punctuation (such as ‘/’ and ‘.’) and extracted to-
kens.

Privacy Policy URL Tokens. We also ex-
tracted tokens from the policy URL as features.

URL Similarity Measure. We calculated the
Jaccard index between the vocabulary of the pol-
icy URL and the hyperlink URL. This feature is
used to identify whether the hyperlink was to a
first-party page or a third-party page.

Figure 2 illustrates the overall architecture of
our system. We first use the coarse-grained step
to identify the presence of an opt-out instance,
and then use the fine-grained step to ascertain key
properties of an opt-out choice if one is present.

4 Results and Discussion

This work is one of the first efforts to automati-
cally detect the provision of choices in text. For
the coarse-grained task, we consider a simple
baseline that labels sentences as positive if they
contain one or more opt-out specific words, which
come from a vocabulary set that we identified by
examining positive instances in the training set.
The F1 of the baseline was 0.554.

We performed ablation tests excluding one fea-
ture at a time from the coarse-grained classifier.
The results of these tests are presented in Table 2
as precision, recall, and F1 scores for the positive
class, i.e., the opt-out class. Using the F1 scores
as the primary evaluation metric, it appears that all
features help in classification. The unigram, topic
distribution, nonterminal, and modal verb and opt-
out phrase features contribute the most to perfor-
mance. Including all the features results in an F1
score of 0.735. Ablation test without unigram fea-
tures resulted in the lowest F1 score of 0.585, and
by analyzing features with higher logistic regres-
sion weights, we found n-grams such as unsub-
scribe to have intuitively high weights. We also
found the production rule “S→SBAR, VP” to have
a high weight, indicating that presence of subordi-
nate clauses (SBARs) help in classification.

For an additional practical evaluation, we cre-
ated a second dataset of sentences from the pri-
vacy policies of the 180 most popular websites
(as determined by Alexa rankings. We selected
only those sentences that contained hyperlinks,
since they are associated with particularly action-
able choices in privacy policy text. We used our
model (as trained on the OPP-115 Corpus) to la-
bel the 3,842 sentences in this set, and then man-
ually verified the 124 positive predictions, observ-
ing perfect precision. Although we were unable to
measure recall using this method, the high preci-
sion suggests the robustness of the model and the
practical applicability of this approach to tools for
Internet users.

The results for the opt-out type classification
are shown in Table 3. Because of data sparsity,
we show performance figures for only the top two
most frequent label combinations. These results
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Features/Models Precision Recall F1

All 0.862 0.641 0.735
All - Unigrams 0.731 0.487 0.585
All - Bigrams 0.885 0.590 0.708
All - Rel. Location 0.889 0.615 0.727
All - Topic Models 0.852 0.590 0.697
All - Productions 0.957 0.564 0.710
All - Nonterminals 0.913 0.538 0.677
All - Max. Depth 0.857 0.615 0.716
All - Avg. Depth 0.857 0.615 0.716

Phrase Inclusion - Baseline 0.425 0.797 0.554
Paragraph Vec. - 50 Dimensions 0.667 0.211 0.320
Paragraph Vec. - 100 Dimensions 0.667 0.158 0.255

Table 2: Results of ablation tests for the coarse-
grained classifier.

Precision Recall F1

FI, CM 0.947 0.947 0.947
TH, AD 0.905 0.977 0.940

Table 3: Fine-grained classifier results.

also demonstrate a practical level of performance
for Internet user-oriented tools.

5 Conclusion

We presented an approach to the problem of au-
tomatically identifying privacy choices in privacy
policy text. Our experiments show that a two-
stage supervised learning procedure is appropriate
for this task. Our approach is to initially iden-
tify choices offered by the text and then to de-
termine their properties. Using ablation tests, we
showed that a mixture of feature types can im-
prove upon the performance of a baseline bag-of-
words model. Planned future work for this project
will include the creation of a browser plug-in to
present opt-out hyperlinks to Internet users.
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Abstract

In this paper, we present a novel approach
to infer significance of various textual ed-
its to documents. An author may make
several edits to a document; each edit
varies in its impact to the content of the
document. While some edits are surface
changes and introduce negligible change,
other edits may change the content/tone
of the document significantly. In this pa-
per, we perform an analysis of the human
perceptions of edit importance while re-
viewing documents from one version to
the next. We identify linguistic features
that influence edit importance and model it
in a regression based setting. We show that
the predicted importance by our approach
is highly correlated with the human per-
ceived importance, established by a Me-
chanical Turk study.

1 Introduction

In collaborative content authoring, multiple au-
thors make changes to the same document, which
results in the final version being significantly dif-
ferent from the base draft. Often there is a need
to review the edits made to the original document,
which can be a long and arduous task. Tools like
Microsoft Word (mic) and Adobe Acrobat (ado)
provide reviewers with a list of edits, in the form of
insertions and deletions. While helpful, these tools
do not differentiate between the different types of
edits, or consider the varying impact of edits. For
instance, change from numeric ‘18’ to word ‘eigh-
teen’ may be a minor change and less crucial for
the author to review, as compared to an edit that

All authors have equal contribution in this paper.
This work was done as part of an internship at Adobe

Research

alters the facts of the document. Thus, in our
work, we focus on automatically inferring the im-
pact/change introduced by edits, and predict the
perceived importance of such edits by authors.
In this paper, we perform a linguistic analysis
of how humans evaluate the significance of edits
while reviewing documents. Our algorithm as-
signs scores to edits between two versions of a
document, which indicate the significance of the
specified edit as perceived by the reviewer. We
demonstrate the efficacy of our approach by com-
paring our algorithm generated edit importance
scores with the human perceived ground truth im-
portance, established through a Mechanical Turk
survey.

2 Related Work

There has been significant amount of work on
defining the importance of a keyword or a sentence
in the context of document summarization (Mi-
halcea and Tarau, 2004). Some prior work has also
been done on inferring the type of edits between
Wikipedia versions. Bronner et al. (Bronner and
Monz, 2012) proposed a supervised approach to
classify Wikipedia edits as factual or fluency. Dax-
enberger et al. (Daxenberger and Gurevych, 2013)
propose an approach to classify these edits into
a 21-category taxonomy. However, none of the
the prior work studies the impact or significance
of the edit to the content of the document. They
do not take the context of the change into account,
neither do they study how edits are perceived by
reviewers and the significance associated to each
edit type. To the best of our knowledge, there is
no prior work that evaluates the importance of an
edit between document versions as perceived by
human reviewers, which is the novel contribution
of our work here.
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3 Discussion on types of edits

Before trying to automatically infer the impor-
tance of individual edits, we first identified the
broad categories of textual edits made by authors.
Bronner et al. (Bronner and Monz, 2012) broadly
classify text edits into two categories, namely,
Factual Edits and Fluency Edits. Factual edits re-
fer to those that modify, add or delete information
in the document while fluency edits mainly deal
with changes in writing styles or paraphrasing. To
obtain finer granularity edit categories, we sub-
classified factual edits into Information Modify, In-
formation Delete and Information Insert. To fur-
ther classify fluency changes, we looked at linguis-
tic literature (Honeck, 1971) and identified sub-
categories of paraphrase changes. Based on this,
fluency edits were further classified into Lexical
Paraphrase (change of textual elements by syn-
onymous words/phrases/numbers) and Transfor-
mational Paraphrase (change in the structure of
the sentence, e.g. active to passive voice).
For the purpose of this paper, we assume these edit
categories to be exhaustive and consequently clas-
sify all changes as belonging to one of these.

4 Data and Annotation

Due to the unavailability of an appropriately
annotated dataset, we performed an online survey
on Amazon Mechanical Turk1 to capture people’s
perception of edit importance. To achieve this,
we used an available corpus of news articles2.
We created newer versions for these articles by
manually introducing multiple changes to each
article. Fig 1 provides statistics for the types of
edits (based on the discussion in the previous
section) across this entire corpus of 52 article
pairs. There are a total of 523 changed sentence
pairs in the document corpus, and an average of
1.2 edits per sentence pair.

For annotation of edit importance, we asked
Mechanical Turk workers to assign an importance
score to each pair of changed sentences. We
first provide each turker with the initial (original)
version of a news article. After the turker finishes
reading the article, he is presented with a list of
sentences that were changed between the initial
and the final version, along with the changed
sentences. The worker classifies each of these

1https://www.mturk.com/mturk/
2http://literacynet.org/cnnsf/archives.html

Figure 1: Number of edits of each type as a per-
centage of the total number of edits in the entire
document corpus

Figure 2: Steps in training a supervised model to
scores sentences

sentence pairs as belonging to one of the follow-
ing importance classes (a) Very Important, (b)
Moderately Important, (c) Important, (d) Neutral,
(e) Not necessary for review. To avoid intro-
ducing biases based on our own notions of edit
importance, we provide only a brief description
of the task and encourage annotators to follow
their own intuitions of importance. Each sentence
pair is annotated by 3 annotators and the final
importance score is calculated as the mean of the
three scores.

5 Solution Description

This section describes the methodology followed
to obtain importance scores for text edits to doc-
uments. Fig 2 shows the overall workflow of the
proposed approach.

The input to the algorithm is a corpus of doc-
uments D, which consists of pairs of documents
(d, d′) corresponding to the initial and final doc-
ument versions respectively. We use the sen-
tence alignment module proposed by Zhang et
al. (Zhang and Litman, 2014) to obtain the mapped
pairs of sentences (s, s′), where s represents a sen-
tence in the first version d and s′ is its modified
variant in d′.
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5.1 Classification of Edits
The first step of the algorithm is to determine the
number and types of the various edits between
each sentence pair (s, s′). In this module, we as-
sign an edit type label, as discussed in Section 3,
to all edits between a pair of sentences.
Our analysis of the document corpus revealed that
most text edits to sentences do not significantly
change the structure of the sentence. Thus, a
simple heuristic based approach can be used to
identify edit types. We use the Stanford Parser
to extract the POS tag sequences of the two sen-
tences, with words backed off to their named en-
tities wherever possible. We identify the longest
common subsequence between these to obtain a
word to word mapping for the sentence pair. If
the ratio of the LCS and the mean of the sen-
tence lengths (original and the modified) is above
a threshold, we assume that the sentence struc-
ture is preserved. A simple word comparison be-
tween the similarly tagged words reveals instances
of Information-Modify and Lexical changes; addi-
tions and deletions are identified as Information-
Insert and Information-Delete respectively. In
case the structure of the sentence is not preserved,
the above heuristic fails, and we tag the sentence
pair as Transformational Paraphrase. For such
sentence pairs, we employ the method outlined by
Bronner et al. (Bronner and Monz, 2012) and train
a supervised classifier to differentiate between fac-
tual and fluency edits, without bothering about the
subtype.
Following the outlined heuristic, we were able to
correctly classify 92% of all edits in the document
corpus, without using the supervised classifier.

5.2 Feature Extraction
Next, we extract linguistic features for supervised
modeling of edit importance. We hypothesized
that the importance of edits would be affected
by both the nature of the edits, characterized by
the aforementioned categories, as well as the
relevance of the sentence to the content of the
document. Thus, we chose features that capture
both these aspects and have divided them into
two groups, namely, change-related features and
relevance-related features.

5.2.1 Change-related features
These set of features account for the factual dif-
ferences between sentence pairs caused due to the

edits. The complete list of such features is as fol-
lows:

• One-hot feature for type of edits identified in
the Edit Classification module. We conjec-
tured that different types of changes will have
different perceived importance. For example,
factual changes may be more important for
the author to review compared to paraphras-
ing changes.

• One-hot feature for the POS tags and Named
Entities whose count changes between the
initial and the final version of the sentences.
We also include one-hot features for those
tags whose corresponding word changes be-
tween the two versions. These aim to capture
the importance associated with deletion, in-
sertion or modification of specific POS tags
and Named Entities.

• One-hot features for the following depen-
dency tuples that change between the two
versions, with lexical items backed off to
POS tags: (gov,typ, dep), (gov, typ), (typ,
dep), (gov, dep).

• Count for the number of edits between the
two versions.

• Absolute difference in the Flesch Kinkaid
readability scores of the two sentences. We
hypothesized that human perception of de-
gree of change may be correlated with the
change in ease of readability of content.

5.2.2 Relevance-related features
These features aim to score the sentences where
the edit occurred. We conjectured that edit im-
portance must also depend on the relevance of the
underlying sentence to the content of the docu-
ment. For instance, in an article about the monar-
chy in the United Kingdom, an edit that occurs in
a sentence discussing the Queen may potentially
be more important than one that provides generic
facts about the country. The features we consider
are :

• TextRank Score: We use the TextRank al-
gorithm (Mihalcea and Tarau, 2004) to ex-
tract keywords from the document along with
the PageRank score attached to them. Each
sentence is scored based on the cumulative

2782



scores of all keywords that occur in it. Ex-
plicitly, the score of a particular sentence is
calculated as:

Score(s) =

∑
w∈W∩SKeywordScore(w)

|S|
(1)

where S is the set of words in the sentence
and W is the set of keywords extracted by
the TextRank algorithm.

• Position of the sentence in the document:
The importance of sentence position has been
studied in (Edmundson, 1969). We expect
more important sentences to have a higher
edit importance score attached to them.

We train a ridge regression model with the
model parameters tuned using cross validation
on the training data. We report the Spearman ρ
correlation (Spearman, 1904) of the predicted
edit importance scores with the human annotated
scores on the test data.

6 Experiments and Results

In this section, we discuss the various experiments
performed, and the results obtained. Baselines:
To the best of our knowledge, our work is the first
that attempts to infer importance/impact of text ed-
its between document versions. Thus, we did not
have established baselines to compare against. In-
stead we use the following features as baselines:

• Sentence Order - Sentences are ordered ac-
cording to their position in the document,
with the first sentence assigned most impor-
tance. This is also the order in which a re-
viewer would normally view edits.

• Readability Score - Sentence edit impor-
tance scores are calculated as being pro-
portional to the change in their readability
scores.

• Text Rank - We expect sentences with higher
TextRank score to have higher edit impor-
tance attached to them.

Table 1 outlines the Spearman ρ correlation of our
model and the above baselines with human judg-
ments. We are able to achieve significant improve-
ment over the baselines using the full set of fea-
tures. An interesting observation was that sen-
tence position correlates poorly with the human

Approach Spearman ρ
Sentence Position 0.067
Readability Score 0.306

Text Rank 0.208
Proposed Approach 0.979

Table 1: Spearman ρ of the predicted impor-
tance score with the human annotated importance
scores.

Feature Spearman ρ
Type of Change 0.47907

Readability Score 0.311989
Change in POS tags 0.978821

Change in NE 0.189176
Change in Dependency Tuples 0.96417

Sentence Position 0.06846
Text Rank 0.209058

Table 2: Performance of each feature group in iso-
lation. Numbers reflect the performance (Spear-
man ρ) of the model when using only the specified
feature group, relative to the performance when
using all features.

annotated importance scores. This indicates that
the order/position of sentences has negligible ef-
fect on the perceived significance. Both readabil-
ity score and TextRank have reasonable influence
on edit importance, though neither of them is able
to match the performance of the full set of fea-
tures.
Contribution of feature groups

In order to gain better insight into individual fea-
ture performance, we look more closely at the per-
formance of each feature group in isolation. Table
2 shows the performance of the model when us-
ing only a specific feature group, relative to the
performance when using all features. This pro-
vides us with a number of interesting insights.
First, it is evident that change-related features con-
tribute more to edit importance than relevance-
related features.
According to our results, humans perceive change
in number and types of POS tags to be the most
significant indicator of edit importance. For fur-
ther insight, we looked at the coefficient values of
individual POS tags in the ridge regression model
trained using only POS tags as features. Our in-
vestigations revealed that change in proper nouns,
nouns, present participle verbs and modal are most
highly correlated with edit importance. Contrary
to our expectation, modification of named entities
does not significantly influence edit importance.
This may be due to the fact that named entity
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changes occur in only a small subset of sentences,
and hence cannot be good predictors of edit im-
portance when used as a feature by themselves.

7 Conclusion and Future Work

In this paper we present a novel approach to infer
the importance of text edit between two document
versions. We present an empirical analysis of the
relevance of various linguistic features for the task
of scoring edit importance and model it using a
regression model. AMT is used to collect human
annotated data for edit importance, and a compar-
ison against those establish the superiority of our
proposed approach over several baselines.
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Abstract

We model the problem of disfluency detec-
tion using a transition-based framework,
which incrementally constructs and labels
the disfluency chunk of input sentences us-
ing a set of transition actions without syn-
tax information. Compared with sequence
labeling methods, it can capture non-local
chunk-level features; compared with joint
parsing and disfluency detection methods,
it is free for noise in syntax. Experiments
show that our model achieves state-of-the-
art F-score on both the commonly used
English Switchboard test set and a set of
in-house annotated Chinese data.

1 Introduction

Disfluency detection is the task of recognizing
non-fluent word sequences in spoken language
transcripts (Zayats et al., 2016; Wang et al., 2016;
Wu et al., 2015). As shown in Figure 1, stan-
dard annotation of disfluency structure (Shriberg,
1994) indicates the reparandum (words that are
discarded, or corrected by the following words),
the interruption point (+) marking the end of the
reparandum, the associated repair, and an optional
interregnum after the interruption point (filled
pauses, discourse cue words, etc.).

Ignoring the interregnum, disfluencies can be
categorized into three types: restarts, repetitions,
and corrections, based on whether the repair is
empty, the same as the reparandum or different,
respectively. Table 1 gives a few examples. In-
terregnums are easy to detect as they often consist
of fixed phrases (e.g. “uh”, “you know”). How-
ever, reparandums are more difficult to detect, be-
cause they can be in arbitrary form. Most previ-

*Email corresponding.

I want a flight [ to Boston + {um} to Denver ]

RM IM RP

Figure 1: Sentence with disfluencies annotated in
English Switchboard corpus. RM=Reparandum,
IM=Interregnum, RP=Repair. The preceding RM
is corrected by the following RP.

Type Annotation
repair [ I just + I ] enjoy working
repair [ we want + {well} in our area we want ] to
repetition [it’s + {uh} it’s ] almost like
restart [ we would like + ] let’s go to the

Table 1: Different types of disfluencies.

ous disfluency detection work focuses on detect-
ing reparandums.

The main challenges of detecting reparandums
include that they vary in length, may occur in dif-
ferent locations, and are sometimes nested. For
example, the longest reparandum in our training
set has fifteen words. Hence, it is very important
to capture long-range dependencies for disfluency
detection. Since there is large parallelism between
the reparandum chunk and the following repair
chunk (for example, in Figure 1, the reparandum
begins with to and ends before another occurrence
of to), it is also useful to exploit chunk-level rep-
resentation, which explicitly makes use of resulted
infelicity disfluency chunks.

Common approaches take disfluency detection
as a sequence labeling problem, where each sen-
tential word is assigned with a label (Zayats et al.,
2016; Hough and Schlangen, 2015; Qian and Liu,
2013; Georgila, 2009). These methods achieve
good performance, but are not powerful enough
to capture complicated disfluencies with longer
spans or distances. Another drawback of these ap-
proaches is that they are unable to exploit chunk-
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level features. Semi-CRF (Ferguson et al., 2015)
is used to alleviate this issue to some extent. Semi-
CRF models still have their inefficiencies because
they can only use the local chunk information lim-
ited by the markov assumption when decoding.

A different line of work (Rasooli and Tetreault,
2013; Honnibal and Johnson, 2014; Wu et al.,
2015) adopts transition-based parsing models for
disfluency detection. This line of work can be seen
as a joint of disfluency detection and parsing. The
main advantage of the joint models is that they can
capture long-range dependency of disfluencies as
well as chunk-level information. However, they
introduce additional annotated syntactic structure,
which is very expensive to produce, and can cause
noise by significantly enlarging the output search
space.

Inspired by the above observations, we inves-
tigate a transition-based model without syntactic
information. Our model incrementally constructs
and labels the disfluency chunks of input sentences
using an algorithm similar to transition-based de-
pency parsing. As shown in Figure 2, the model
state consists of four components: (i)O, a conven-
tional sequential LSTM (Hochreiter and Schmid-
huber, 1997) to store the words that have been la-
beled as fluency. (ii) S, a stack LSTM to represent
partial disfluency chunks, which captures chunk-
level information. (iii) A, a conventional sequen-
tial LSTM to represent history of actions. (iiii)
B, a Bi-LSTM to represent words that have not
yet been processed. A sequence of transition ac-
tions are used to consume input tokens and con-
struct the output from left to right. To reduce
error propagation, we use beam-search (Collins
and Roark, 2004) and scheduled sampling (Ben-
gio et al., 2015), respectively.

We evaluate our model on the commonly used
English Switchboard test set and a in-house an-
notated Chinese data set. Results show that our
model outperforms previous state-of-the-art sys-
tems. The code is released1.

2 Background

For a background, we briefly introduce transition-
based parsing and its extention for joint disfluency
detection. An arc-eager transition-based parsing
system consists of a stack σ containing words be-
ing processed, a buffer β containing words to be
processed and a memory A storing dependency

1https://github.com/hitwsl/transition disfluency

TOP

et=max{0,W[st;bt;ot;at]+d}

A

DELOUT

denverto

O

want a flight

B

Bi-LSTM Subtraction

DEL

S

DEL

to boston

btstatot

Figure 2: model state when processing the sen-
tence “want a flight to boston to denver”.

arcs which have been generated. There are four
types of transition actions (Nivre, 2008)

• Shift : Remove the front of the buffer and
push it to the stack.

• Reduce : Pop the top of the stack.

• LeftArc : Pop the top of the stack, and link
the popped word to the front of the buffer.

• RightArc : Link the front of the buffer to the
top of the stack, remove the front of the buffer
and push it to the stack.

Many neural network parsers have been con-
structed under this framework, such as (Dyer et al.,
2015), who use different LSTM structure to repre-
sent information from σ to β.

For disfluency detection, the input is a sentence
with disfluencies from automatic speech recogni-
tion (ASR). We denote the word sequence aswn1 =
(w1, ..., wn). The output of the task is a sequence
of binary tags denoted as Dn

1 = (d1, ..., dn),
where each di corresponds to the wordwi, indicat-
ing whether wi is a disfluent word or not. Hence
the task can be modeled as searching for the best
sequenc D∗ given the stream of words wn1

D∗ = argmaxDP (D
n
1 |wn1 )

Wu et al. (2015) proposes a statistical transition-
based disfluency detection model, which performs
disfluency detection and parsing jointly by aug-
menting the Shift-Reduce algorithm with a binary
classifier transition (BCT) action:
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• BCT : Classify whether the current word is
disfluent or not. If it is, remove it from the
buffer, push it into the stack which is similar
to Shift and then mark it as disfluent. Other-
wise the original parser transition actions will
be used.

Disfluency detection and parsing are jointly opti-
mized

(D∗, T ∗) = argmaxD,T

n∏

i=1

P (di|wi1, T i−11 )

×P (T i1|wi1, T i−11 , di),

where T i1 is the partial tree after word wi is con-
sumed, di is the disfluency tag of wi. P (T i1|.) is
the parsing model and P (di1|.) is the disfluency
model used to predict the disluency tags on the
contexts of partial trees that have been built.

3 Our Transition-Based Model

The BCT model serves as a state-of-the-art
transition-based baseline. However, it requires
that the training data contains both syntax trees
and disfluency annotations, which reduces the
practicality of the algorithm. Also, BCT does not
explicitly make use of resulting infelicity disflu-
ency chunks. Being a discrete model, the perfor-
mance relies heavily on manual feature engineer-
ing.

To address the constraints above, we apply a
transition-based neural model for disfluency de-
tection that does not use any syntax information.
Our transition-based method incrementally con-
structs and labels the disfluency chunk of input
sentences by performing a sequence of actions.
The task is modeled as

(D∗, T ∗) = argmaxD,T

n∏

i=1

P (di, T
i
1|wi1, T i−11 ),

where T i1 is the partial model state after word wi
is consumed. di is the disfluency tag of wi.

3.1 Transition-Based Disfluency Detection
Our model incrementally constructs and labels the
disfluency chunks of input sentences, where a state
is represented by a tuple (O, S, A, B):

• output (O) : the output is used to represent
the words that have been labeled as fluent.

• stack (S) : stack is used to represent the par-
tially constructed disfluency chunk.

• action (A) : action is used to represent the
complete history of actions taken by the tran-
sition system.

• buffer (B) : buffer is used to represent the
sentences that have not yet been processed.

Given an input disfluent sentence, the stack,
output and action are initially empty and the buffer
contains all words of the sentence, a sequence of
transition actions are used to consume words in the
buffer and build the output sentence:

• OUT: which moves the first word in the buffer
to the output and clears out the stack if it is
not empty.

• DEL: which moves the first word in the buffer
to the stack.

Search Algorithm
Based on the transition system, the decoder
searches for an optimal action sequence for a given
sentence. The system is initialized by pushing
all the input words and their representations (of
§3.3) onto B in the reverse order, such that the
first word is at the top of B, and S, O and A each
contains an empty-stack token.

At each step, the system computes a composite
representation of the model states (as determined
by the current configurations of B, S, O, and
A), which is used to predict an action to take.
Decoding completes when B is empty (except
for the empty-stack symbol), regardless of the
state of S. Since each token in B is either moved
directly to O or S every step, the total number
of actions equals to the length of input sentence.
Table 2 shows the sequence of operations required
to process the sentence “want a flight to boston to
denver”.

As shown in Figure 2, the model state represen-
tation at time t, which is written as et, is defined
as:

et = max{0,W [st; bt; ot; at] + d},

where W is a learned parameter matrix, st is the
representation of S, bt is the representation of B,
ot is the representation of O, at is the representa-
tion ofA, d is a bias term. (W [st; bt; ot; at]+d) is
passed through a component-wise rectified linear
unit (ReLU) for nonlinearity (Glorot et al., 2011).
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Step Action Output Stack Buffer

0 [] [] [a, flight, to, boston, to, denver]
1 OUT [a] [] [flight, to, boston, to, denver]
2 OUT [a, flight] [] [to, boston, to, denver]
3 DEL [a, flight] [to] [boston, to, denver]
4 DEL [a, flight] [to, boston] [to, denver]
5 OUT [a, flight, to] [] [denver]
6 OUT [a, flight, to, denver] [] []

Table 2: Segmentation process of a flight to boston to denver

Finally, the model state et is used to compute
the probability of the action at time t as:

p(zt|et) =
exp(gTztet + qzt)∑

z′∈A(S,B) exp(g
T
z′et + qz′)

,

where gz is a column vector representing the em-
bedding of the transition action z, and qz is a bias
term for action z. The set A(S,B) represents the
valid actions that may be taken given the current
state. Since et = f(st, bt, at, ot) encodes infor-
mation about all previous decisions made by the
transition system, the probability of any valid se-
quence of transition actions z conditioned on the
input can be written as:

p(z|w) =
|z|∏

t=1

p(zt|et)

We then have

(D∗, T ∗) = argmaxD,T

|z|∏

i=1

P (di, T
i
1|wi1, T i−11 )

= argmaxD,T

|z|∏

t=1

p(zt|et),

where the disfluency detection task is merged into
the transition-based system.

Beam Search
The mainly drawback of greedy search is error
propagation. An incorrect action will have a neg-
ative influence to its subsequent actions, leading
to an incorrect output sequence. One way to re-
duce error propagation is beam-search. Because
the number of actions taken always equals to the
number of input sentence for every valid path, it is
straightforward to use beam search. We use beam-
search for both training and testing. The early up-
date strategy from Collins and Roark (2004) is ap-
plied for training. In particular, each training se-
quence is decoded, and we keep track of the lo-
cation of the gold path in the beam. If the gold

path falls out of the beam at step t, decoding pro-
cess is stopped and parameter update is performed
using the gold path as a positive example, and
beam items as negative examples. We also use the
global optimization method (Andor et al., 2016;
Zhou et al., 2015) to train our beam-search model.

Scheduled Sampling
Scheduled sampling (Bengio et al., 2015) can also
be used to reduce error propagation. The train-
ing goal of the greedy baseline is to maximize the
likelihood of each action given the current model
state, which means that the correct action is taken
at each step. Doing inference, the action predicted
by the model itself is taken instead. This discrep-
ancy between training and inference can yield er-
rors that accumulate quickly along the searching
process. Scheduled sampling is used to solve the
discrepancy by gently changing the training pro-
cess from a fully guided scheme using the true pre-
vious action, towards a less guided scheme which
mostly uses the predicting action instead. We take
the action gaining higher p(zt|et) with a certain
probability p, and a probability (1−p) for the cor-
rect action when training.

3.2 State Representation
For better capturing non-local context informa-
tion, we use LSTM structures to represent differ-
ent components of each state, including buffer, ac-
tion, stack, and output. In particular, we exploit
LSTM-Minus (Wang and Chang, 2016) to model
the buffer segment, conventional LSTM to model
the action and ouptut segment, and stack LSTM
(Dyer et al., 2015) to model the stack segments,
which demonstrates highly effectively in parsing
task.

Buffer Representation
In order to construct more informative represen-
tation, we use a Bi-LSTM to represent the buffer
following the work of Wang and Chang (2016),
where the subtraction between a unidirectional
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boston to denverto

hb(to) hb(denver)hf(to) hf(denver)

O
want a flight to boston

S
to denver

B

hb(to)hb(denver) hf(to) hf(denver)bb = - - bf =

Figure 3: Illustration for learning buffer represen-
tation based on a Bi-LSTM, hf (*) and hb(*) indi-
cate the hidden vectors of forward and backward
LSTM respectively.

LSTM hidden vectors is utilized to represent a
segment’s information. We perform a similar
method in a Bi-LSTM to obtain the representa-
tion of the buffer. The forward and backward
subtractions for the buffer can be described as
bf = hf (l) − hf (f) and bb = hb(f) − hb(l),
respectively, where hf (f) and hf (l) are the
hidden vectors of the first and the last words in the
forward LSTM, respectively. Similarly, hb(f) and
hb(l) are the hidden vectors of the first and the last
words in the backward LSTM, respectively. Then
these subtractions are concatenated as the repre-
sentation of the buffer bt = bf ⊕ bb. As illustrated
in Figure 3, the forward and backward subtrac-
tions for buffer are bf = hf (to) − hf (denver)
and bb = hb(denver) − hb(to), respectively.
Here to is the first word in buffer and denver is
the last. Then bf and bb are concatenated as the
representation of buffer.

Action Representation
We represent an action awith an embedding ea(a)
from a looking-up table Ea , and apply a conven-
tional LSTM to represent the complete history of
actions taken by the transition system. Once an ac-
tion a is taken, the embedding ea(a) will be added
to the right-most position of the LSTM.

Stack Representation
We use a stack LSTM (Dyer et al., 2015) to rep-
resent partial disfluency chunk. The stack LSTM
tries to augment the conventional LSTM with a

“stack pointer”. For a conventional LSTM, new
inputs are always added in the right-most position;
but in a stack LSTM, the current location of the
stack pointer determines which cell in the LSTM
provides ct−1 and ht−1 when computing the new
memory cell contents. In addition to adding ele-
ments to the end of the sequence, the stack LSTM
provides a pop operation which moves the stack
pointer to the previous element. Thus, the LSTM
can be understood as a stack implemented so that
contents are never overwritten, When the action
OUT is taken, the stack is cleared by moving the
stack pointer to the initial position. When the ac-
tion DEL is taken, the representation of the buffer
will be added directly to the stack LSTM.

Output Representation
We use a conventional LSTM to represent the out-
put. When the action OUT is taken, the repre-
sentation of the buffer will be added directly to
the right-most position of the LSTM. Because the
words in the output are a continuous subsequence
of the final output sentence with disfluencies re-
moved, the LSTM representation can be seen as a
pseudo language model and thus has the ability to
keep the generated sentence grammatical, which
is very important for disfluency detection.

3.3 Token Embeddings
We use four vectors to represent each input token:
a learned word embedding w; a fixed word em-
bedding w̃; a learned POS-tag embedding p; and
a hand-crafted feature representation d. The four
vectors are concatenated, transformed by a matrix
V and fed to a rectified layer to learn a feature
combination:

x = max{0, V [w̃;w; p; d] + b},

where V means vector concatenation.
Following the work of Wang et al. (2016), we

extract two types of hand-crafted discrete features
(as shown in Table 3) for each token in a sentence,
and incorporate them into our neural networks
by translating them into a 0-1 vector d. The
dimension of d is 78, which equals to the number
of discrete features. For a token xt, di fires if xt
matches the i-th pattern of the feature templates.
The duplicate features indicate whether xt has a
duplicated word/POS-tag in certain distance. The
similarity features indicate whether the surface
string of xt resembles its surrounding words.
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duplicate features
Duplicate(i, wi+k),−15 ≤ k ≤ +15 and k 6= 0: if wi equals wi+k, the value is 1, others 0
Duplicate(pi, pi+k),−15 ≤ k ≤ +15 and k 6= 0: if pi equals pi+k, the value is 1, others 0
Duplicate(wiwi+1, wi+kwi+k+1),−4 ≤ k ≤ +4 and k 6= 0: if wiwi+1 equals wi+kwi+k+1,

the value is 1, others 0
Duplicate(pipi+1, pi+kpi+k+1), −4 ≤ k ≤ +4 and k 6= 0: if pipi+1 equals pi+kpi+k+1,

the value is 1, others 0
similarity features
fuzzyMatch(wi, wi+k), k ∈ {−1,+1}:

similarity = 2 ∗ num same letters/(len(wi) + len(wi+k)).
if similarity > 0.8, the value is 1, others 0

Table 3: Discrete features used in our transition-based neural networks. p-POS tag. w-word.

4 Experiments

4.1 Settings

Dataset. Our training data include the Switch-
board portion of the English Penn Treebank (Mar-
cus et al., 1993) and a in-house Chinese data
set. For English, two annotation layers are pro-
vided: one for syntactic bracketing (MRG files),
and the other for disfluencies (DPS files). The
Switchboard annotation project was not fully com-
pleted. Because disfluency annotation is cheaper
to produce, many of the DPS training files do
not have matching MRG files. Only 619,236 of
the 1,482,845 tokens in the DPS disfluency de-
tection training data have gold-standard syntac-
tic parses. To directly compare with transition-
based parsing methods (Honnibal and Johnson,
2014; Wu et al., 2015), we also use the subcor-
pus of PARSED/MRG/SWBD. Following the ex-
periment settings in Charniak and Johnson (2001),
the training subcorpus contains directories 2 and 3
in PARSED/MRG/SWBD and directory 4 is split
into test, development sets and others. Follow-
ing Honnibal and Johnson (2014), we lower-case
the text and remove all punctuations and partial
words2. We also discard the ‘um’ and ‘uh’ to-
kens and merge ‘you know’ and ‘i mean’ into sin-
gle tokens. Automatic POS-tags generated from
pocket crf (Qian and Liu, 2013) are used as POS-
tag in our experiments.

For Chinese experiments, we collect 25k spo-
ken sentences from meeting minutes, which are
transcribed using the iflyrec toolkit3, and annotate
them with only disfluency annotations according
to the guideline proposed by Meteer et al. (1995).

2words are recognized as partial words if they are tagged
as ‘XX’ or end with ‘-’

3the iflyrec toolkit is available at http://www.iflyrec.com/

4.2 Neural Network Training

Pretrained Word Embeddings. Following
Dyer et al. (2015) and Wang et al. (2016), we use
a variant of the skip n-gram model introduced
by Ling et al. (2015), named “structured skip
n-gram”, to create word embeddings. The AFP
portion of English Gigaword corpus (version 5) is
used as the training corpus. Word embeddings for
Chinese are trained on Chinese baike corpus. We
use an embedding dimension of 100 for English,
300 for chinese.
Hyper-Parameters. Both the Bi-LSTMs and
the stack LSTMs have two hidden layers and
their dimensions are set to 100. Pretrained word
embeddings have 100 dimensions and the learned
word embeddings have also 100 dimensions.
Pos-tag embeddings have 12 dimensions. The
dimension of action embeddings is set to 20.

4.3 Performance On English Swtichboard

We build two baseline systems using CRF and
Bi-LSTM, respectively. The hand-crafted dis-
crete features of CRF refer to those in Ferguson
et al. (2015). For the Bi-LSTM model, the token
embedding is the same with our transition-based
method. Table 4 shows the result of our model on
both the development and test sets. Beam search
improves the F-score form 87.1% to 87.5%, which
is consistent with the finding of Buckman et al.
(2016) on the LSTM parser of (Dyer et al., 2015)
(improvements by about 0.3 point). Scheduled
sampling achieves the same improvements com-
pared to beam-search. Because of high training
speed, we conduct subsequent experiments based
on scheduled sampling.

We compare our transition-based neural model
to five top performing systems. Our model out-
performs the state-of-the-art, achieving a 87.5% F-
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Method Dev Test
P R F1 P R F1

CRF 93.9 78.3 85.4 91.7 75.1 82.6
Bi-LSTM 94.1 79.3 86.1 91.7 80.6 85.8
greedy 91.4 83.7 87.4 91.1 83.3 87.1
+beam 93.6 83.6 88.3 92.8 82.7 87.5
+schedualed 92.3 84.3 88.1 91.1 84.1 87.5

Table 4: Experiment results on the development
and test data of English Switchboard data.

Method P R F1
Our 91.1 84.1 87.5
Attention-based (Wang et al., 2016) 91.6 82.3 86.7
Bi-LSTM (Zayats et al., 2016) 91.8 80.6 85.9
semi-CRF (Ferguson et al., 2015) 90.0 81.2 85.4
UBT (Wu et al., 2015) 90.3 80.5 85.1
M3N (Qian and Liu, 2013) - - 84.1

Table 5: Comparison with previous state-of-the-
art methods on the test set of English Switchboard.

score as shown in Table 5. It achieves 2.4 point im-
provements over UBT (Wu et al., 2015), which is
the best syntax-based method for disfluency detec-
tion. The best performance by linear statistical se-
quence labeling methods is the semi-CRF method
of Ferguson et al. (2015), achieving a 85.4% F-
score leveraging prosodic features. Our model ob-
tains a 2.1 point improvement compared to this.
Our model also achieves 0.8 point improvement
over the neural attention-based model (Wang et al.,
2016), which regards the disfluency detection as a
sequence-to-sequence problem. We attribute the
success to the strong ability to learn global chunk-
level features and the good state representation
such as the stack-LSTM.

4.4 Result On DPS Corpus

As described in section 3.1, to directly compare
with the transition-based parsing methods (Hon-
nibal and Johnson, 2014; Wu et al., 2015), we
only use MRG files, which are less than the DPS
files. In fact, many methods, such as Qian and
Liu (2013), have used all the DPS files as train-
ing data. We are curious about the performance
of our system using all the DPS files. Following
the experimental settings of Johnson and Charniak
(2004), the corpus is split as follows: main train-
ing consisting of all sw[23]*.dps files, develop-
ment training consisting of all sw4[5-9]*.dps files
and test training consisting of all sw4[0-1]*.mrg
files. Table 6 shows the result on the DPS files.

Method P R F1
Our 93.1 83.5 88.1
Bi-LSTM 92.4 82.0 86.9
M3N∗ (Qian and Liu, 2013) 90.6 78.7 84.2
CRF 91.8 77.2 83.9

Table 6: Test result of our transition-based model
using DPS files for training.

Method
Dev Test

P R F1 P R F1
Our 68.9 40.4 50.9 77.2 37.7 50.6
Bi-LSTM 60.1 41.3 48.9 65.3 38.2 48.2
CRF 73.7 33.5 46.1 77.7 32.0 45.3

Table 7: performance on Chinese annotated data

The result of M3N∗ comes from our experiments
with the toolkit4 released by Qian and Liu (2013),
which use the same data set and pre-processing.
Our model achieves a 88.1% F-score by using
more training data, obtaining 0.6 point improve-
ment compared with the system training on MRG
files. The performance is far better than the se-
quence labeling methods that use DPS files for
training.

4.5 Performance on Chinese
Table 7 shows the results of Chinese disfluency
detection. Our model obtains a 2.4 point im-
provement compared with the baseline Bi-LSTM
model and a 5.3 point compared with the baseline
CRF model. The performance on Chinese is much
lower than that on English. Apart from the smaller
training set, the main reason is that the proportion
of repair type disflueny is much higher.

5 Analysis

5.1 Ablation Tests
As described in section 3.1, the sate representa-
tion has four components. We explicitly compare
the impact of different parts. As shown in Table 8,
the F-score decreases most heavily without stack,
which indicates that it is very necessary to cap-
ture chunk-level information for disfluency detec-
tion and our model can model it effectively. The
results also show that output, which can be seen as
a pseudo language model, has important influence
on model performance. Seen from the result, his-
tory of actions represented in action is also useful
for predicting at each step. The F-score decreases

4The toolkit is available at
https://code.google.com/p/disfluency-detection/downloads.
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Method P R F1
ALL 91.1 84.1 87.5
- stack 93.5 80.6 86.5
- action 91.6 83.0 87.1
- output 89.0 84.4 86.7
- Bi-LSTM 93.6 81.4 87.1

Table 8: Results of feature ablation experiments
on English Switchboard test data. “- Bi-LSTM”
means using unidirectional LSTM for buffer

about 0.4 point, which shows that Bi-LSTM can
capture more information compared to simple uni-
directional LSTM.

5.2 Repetitions vs Non-repetitions
Repetition disfluencies are easier to detect and
even some simple hand-crafted features can han-
dle them well. Other types of reparandums such
as repair are more complex (Zayats et al., 2016;
Ostendorf and Hahn, 2013). In order to bet-
ter understand model performances, we evalu-
ate our model’s ability to detect repetition vs.
non-repetition (other) reparandum. The results
are shown in Table 9. All the three mod-
els achieve high score on repetition reparan-
dum. Our transition-based model is much bet-
ter in predicting non-repetitions compared to CRF
and Bi-LSTM. We conjecture that our transition-
based structure can capture more of the reparan-
dum/repair “rough copy” similarities by learning
represention of both chunks and global state.

6 Related Work

Common approaches take disfluency detection as
a sequence labeling problem, where each senten-
tial word is assigned with a label (Georgila, 2009;
Qian and Liu, 2013). These methods achieve good
performance, but are not powerful enough to cap-
ture complicated disfluencies with longer spans or
distances. Another drawback is that they have no
ability to exploit chunk-level features. There are
also works that try to use recurrent neural network
(RNN), which can capture dependencies at any
length in theory, on disfluency detection problem
(Zayats et al., 2016; Hough and Schlangen, 2015).
The RNN method treats sequence tagging as clas-
sification on each input token. Hence, it also has
no power to exploit chunk-level features. Some
works (Wang et al., 2016) regard the disfluency
detection as a sequence-to-sequence problem and
propose a neural attention-based model for it. The

Method Repetitions Non-repetitions Either
CRF 93.8 61.4 82.6
Bi-LSTM 93.1 65.3 85.8
OUR 93.3 68.7 87.5

Table 9: F-score of different types of reparandums
on English Switchboard test data.

attention-based model can capture a global repre-
sentation of the input sentence by using a RNN
when encoding. It can strongly capture long-range
dependencies and achieves good performance, but
are also not powerful enough to capture chunk-
level information. To capture chunk-level infor-
mation, Ferguson et al. (2015) try to use semi-CRF
for disfluency detection, and reports improved re-
sults. Semi-CRF models still have their inefficien-
cies because they can only use the local chunk in-
formation limited by the markov assumption when
decoding.

Many syntax-based approaches (Lease and
Johnson, 2006; Rasooli and Tetreault, 2013; Hon-
nibal and Johnson, 2014; Wu et al., 2015) have
been proposed which jointly perform dependency
parsing and disfluency detection. The main advan-
tage of joint models is that they can capture long-
range dependency of disfluencies. However, it re-
quires that the training data contains both syntax
trees and disfluency annotations, which reduces
the practicality of the algorithm. The performance
relies heavily on manual feature engineering.

Transition-based framework has been widely
exploited in a number of other NLP tasks, includ-
ing syntactic parsing (Zhang and Nivre, 2011; Zhu
et al., 2013), information extraction (Li and Ji,
2014) and joint syntactic models (Zhang et al.,
2013, 2014).

Recently, deep learning methods have been
widely used in many nature language processing
tasks, such as name entity recognition (Lample
et al., 2016), zero pronoun resolution (Yin et al.,
2017) and word segmentation (Zhang et al., 2016).
The effectiveness of neural features has also been
studied for this framework (Zhou et al., 2015;
Watanabe and Sumita, 2015; Andor et al., 2016).
We apply the transition-based neural framework to
disfluency detection, which to our knowledge has
not been investigated before.
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7 Conclusion

We introduced a transition-based model for dis-
fluency detection, which does not use any syntax
information, learning represention of both chunks
and global contexts. Experiments showed that
our model achieves the state-of-the-art F-scores on
both the commonly used English Switchboard test
set and a in-house annotated Chinese data set.
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Abstract

We propose an approach to N -best list re-
ranking using neural sequence-labelling
models. We train a compositional model
for error detection that calculates the prob-
ability of each token in a sentence being
correct or incorrect, utilising the full sen-
tence as context. Using the error detec-
tion model, we then re-rank the N best
hypotheses generated by statistical ma-
chine translation systems. Our approach
achieves state-of-the-art results on error
correction for three different datasets, and
it has the additional advantage of only us-
ing a small set of easily computed features
that require no linguistic input.

1 Introduction

Grammatical Error Correction (GEC) in non-
native text attempts to automatically detect and
correct errors that are typical of those found in
learner writing. High precision and good coverage
of learner errors is important in the development of
GEC systems. Phrase-based Statistical Machine
Translation (SMT) approaches to GEC have at-
tracted considerable attention in recent years as
they have been shown to achieve state-of-the-art
results (Felice et al., 2014; Junczys-Dowmunt and
Grundkiewicz, 2016). Given an ungrammatical in-
put sentence, the task is formulated as “translat-
ing” it to its grammatical counterpart. Using a par-
allel dataset of input sentences and their corrected
counterparts, SMT systems are typically trained
to correct all error types in text without requir-
ing any further linguistic input. To further adapt
SMT approaches to the task of GEC and tackle
the paucity of error-annotated learner data, previ-
ous work has investigated a number of extensions,
ranging from the addition of further features into

the decoding process (Felice et al., 2014) via re-
ranking the SMT decoder’s output (Yuan et al.,
2016) to neural-network adaptation components to
SMT (Chollampatt et al., 2016a).

In this paper, we propose an approach to N -best
list re-ranking using neural sequence-labelling
models. N -best list re-ranking allows for fast ex-
perimentation since the decoding process remains
unchanged and only needs to be performed once.
Crucially, it can be applied to any GEC system
that can produce multiple alternative hypotheses.
More specifically, we train a neural compositional
model for error detection that calculates the prob-
ability of each token in a sentence being correct
or incorrect, utilising the full sentence as context.
Using the error detection model, we then re-rank
the N best hypotheses generated by the SMT sys-
tem. Detection models can be more fine-tuned to
finer nuances of grammaticality and acceptability,
and therefore better able to distinguish between
correct and incorrect versions of a sentence.

Our approach achieves state-of-the-art results
on GEC for three different datasets, and it has the
additional advantage of using only a small set of
easily computed features that require no linguis-
tic information, in contrast to previous work that
has utilised a large set of features in a supervised
setting (Hoang et al., 2016; Yuan et al., 2016).

2 Previous work

The first approaches to GEC primarily treat the
task as a classification problem over vectors of
contextual lexical and syntactic features extracted
from a fixed window around the target token. A
large body of work has investigated error-type-
specific models, and in particular models targeting
preposition and article errors, which are among the
most frequent ones in non-native English learner
writing (Chodorow et al., 2007; De Felice and Pul-
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man, 2008; Han et al., 2010; Tetreault et al., 2010;
Han et al., 2006; Tetreault and Chodorow, 2008;
Gamon et al., 2008; Gamon, 2010; Rozovskaya
and Roth, 2010; Rozovskaya et al., 2012; Dale and
Kilgarriff, 2011; Leacock et al., 2014). Core com-
ponents of one of the top systems in the CoNLL
2013 and 2014 shared tasks on GEC (Ng et al.,
2013, 2014) include Averaged Perceptron clas-
sifiers, native-language error correction priors in
Naive Bayes models, and joint inference frame-
works capturing interactions between errors (e.g.,
noun number and verb agreement errors) (Ro-
zovskaya et al., 2012, 2014, 2011; Rozovskaya
and Roth, 2011). The power of the classification
paradigm comes from its ability to generalise well
to unseen examples, without necessarily requir-
ing error-annotated learner data (Rozovskaya and
Roth, 2016).

One of the first approaches to GEC as an SMT
task is the one by Brockett et al. (2006), who gen-
erate artificial data based on hand-crafted rules
to train a model that can correct countability er-
rors. Dahlmeier and Ng (2011) focus on correct-
ing collocation errors based on paraphrases ex-
tracted from parallel corpora, while Dahlmeier and
Ng (2012a) are the first to investigate a discrim-
inatively trained beam-search decoder for full-
sentence correction, focusing on five different er-
ror types: spelling, articles, prepositions, punc-
tuation insertion, and noun number. Yoshimoto
et al. (2013) utilise SMT to tackle determiner and
preposition errors, while Yuan and Felice (2013)
use POS-factored, phrase-based SMT systems,
trained on both learner and artificially generated
data to tackle determiner, preposition, noun num-
ber, verb form, and subject–verb agreement errors.
The SMT approach has better capacity to correct
complex errors, and it only requires parallel cor-
rected sentences as input.

Two state-of-the-art systems in the 2014
CoNLL shared task on correction of all errors re-
gardless of type use SMT systems: Felice et al.
(2014) use a hybrid approach that includes a
rule-based and an SMT system augmented by a
large web-based language model and combined
with correction-type estimation to filter out error
types with zero precision. Junczys-Dowmunt and
Grundkiewicz (2016) investigate parameter tuning
based on the MaxMatch (M2) scorer, the shared-
task evaluation metric (Dahlmeier and Ng, 2012b;
Ng et al., 2014), and experiment with different op-

timisers and interactions of dense and sparse fea-
tures.

Susanto et al. (2014) and Rozovskaya and Roth
(2016) explore combinations of SMT systems and
classifiers, the latter showing substantial improve-
ments over the CoNLL state of the art. Chol-
lampatt et al. (2016a) integrate a neural net-
work joint model that has been adapted using
native-language-specific learner text as a feature
in SMT, while Chollampatt et al. (2016b) inte-
grate a neural network global lexicon model and
a neural network joint model to exploit continuous
space representations of words rather than discrete
ones, and learn non-linear mappings. Yuan and
Briscoe (2016) present a Neural Machine Transla-
tion (NMT) model and propose an approach that
tackles the rare-word problem in NMT.

Yuan et al. (2016) and Mizumoto and Mat-
sumoto (2016) employ supervised discriminative
methods to re-rank the SMT decoder’s N -best
list output based on language model and syntac-
tic features respectively. Hoang et al. (2016) also
exploit syntactic features in a supervised frame-
work, but further extend their approach to generate
new hypotheses. Our approach is similar in spirit,
but differs in the following aspects: inspired by
the work of Rei and Yannakoudakis (2016) who
tackle error detection rather than correction within
a neural network framework, we develop a neu-
ral sequence-labelling model for error detection to
calculate the probability of each token in a sen-
tence as being correct or incorrect; using the error
detection model, we propose a small set of features
that require no linguistic processing to re-rank the
N best hypotheses. We evaluate our approach
on three different GEC datasets and achieve state-
of-the-art results, outperforming all previous ap-
proaches to GEC.

3 Datasets

We use the First Certificate in English (FCE)
dataset (Yannakoudakis et al., 2011), and the NUS
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) that was used in the CoNLL GEC
shared tasks. Both datasets are annotated with
the language errors committed and suggested cor-
rections from expert annotators. The former con-
sists of upper-intermediate learner texts written by
speakers from a number of different native lan-
guage backgrounds, while the latter consists of es-
says written by advanced undergraduate university
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students from an Asian language background. We
use the public FCE train/test split, and the NUCLE
train/test set used in CoNLL 2014 (the test set has
been annotated by two different annotators).

We also use the publicly available Lang-8 cor-
pus (Mizumoto et al., 2012; Tajiri et al., 2012)
and the JHU FLuency-Extended GUG corpus (J-
FLEG) (Napoles et al., 2017). Lang-8 contains
learner English from lang-8.com, a language-
learning social networking service, which has
been corrected by native speakers. JFLEG is a
newly released corpus for GEC evaluation that
contains fluency edits to make the text more
native-like in addition to correcting grammatical
errors, and contains learner data from a range of
proficiency levels.

We use Lang-8 and the FCE and CoNLL train-
ing sets to train our neural sequence-labelling
model, and test correction performance on JFLEG,
and the FCE and CoNLL test sets. For JFLEG,
we use the 754 sentences on which Napoles et al.
(2017) have already benchmarked four leading
GEC systems. As our development set, we use a
subset of the FCE training data.

4 Neural sequence labelling

We treat error detection as a sequence labelling
task and assign a label to each token in the input
sentence, indicating whether it is correct or incor-
rect in context. These binary gold labels can be
automatically extracted from the manual error an-
notation available in our data (see Section 3). Sim-
ilarly to Rei and Yannakoudakis (2016), we con-
struct a bidirectional recurrent neural network for
detecting writing errors. The system receives a se-
ries of tokens [w1...wT ] as input, and predicts a
probability distribution over the possible labels for
each token.

Every token wt is first mapped to a token rep-
resentation x̃t, which is also optimised during
training. These embeddings are composed to-
gether into context-specific representations using
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997):

−→
ht = LSTM(x̃t,

−−→
ht−1) (1)

←−
ht = LSTM(x̃t,

←−−
ht+1) (2)

ht = [
−→
ht ;
←−
ht ] (3)

where x̃t is the token representation at position
t,
−→
ht is the hidden state of the forward-moving

LSTM,
←−
ht is the hidden state of the backward-

moving LSTM, and ht is the concatenation of
both hidden states. A feedforward hidden layer
with tanh activation is then used to map the rep-
resentations from both directions into a more suit-
able combined space, and allow the model to learn
higher-level features:

dt = tanh Wdht (4)

where Wd is a weight matrix. Finally, a softmax
output layer predicts the label distribution for each
token, given the input sequence:

P (yt|w1...wT ) = softmax Wodt (5)

where Wo is an output weight matrix.
We also make use of the character-level archi-

tecture proposed by Rei et al. (2016), allowing the
model to learn morphological patterns and capture
out-of-vocabulary words. Each individual char-
acter is mapped to a character embedding and a
bidirectional LSTM is used to combine them to-
gether into a character-based token representation.
This vector m, constructed only from individual
characters, is then combined with the regular to-
ken embedding xt using an adaptive gating mech-
anism:

z = σ
(
Wz1 · tanh(Wz2xt + Wz3m)

)
(6)

x̃t = z · xt + (1− z) ·m (7)

where Wz1 , Wz2 and Wz3 are weight matrices, z is
a dynamically calculated gating vector, and x̃t is
the resulting token representation at position t.

We optimise the model by minimising cross-
entropy between the predicted label distributions
and the annotated labels. In addition to training
the error detection objective, we make use of a
multi-task loss function and train specific parts of
the architecture as language models. This provides
the model with a more informative loss function,
while also encouraging it to learn more general
compositional features and acting as a regulariser
(Rei, 2017). First, two extra hidden layers are con-
structed:

−→mt = tanh
−→
Wm
−→
ht (8)
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Figure 1: Error detection network architecture that
is repeated for all the words in a sentence (illustra-
tion for the word “cat”).

←−mt = tanh
←−
Wm
←−
ht (9)

where
−→
Wm and

←−
Wm are direction-specific weight

matrices, used for connecting a forward or back-
ward LSTM hidden state to a separate layer. The
surrounding tokens are then predicted based on
each hidden state using a softmax output layer:

P (wt+1|w1...wt) = softmax
−→
Wq
−→mt (10)

P (wt−1|wt...wT ) = softmax
←−
Wq
←−mt (11)

During training, the following cost function is
minimised, which combines the error detection
loss function with the two language modeling ob-
jectives:

E =−
T∑

t=1

log P (yt|wt...wT )

− γ

T−1∑

t=1

log P (wt+1|w1...wt)

− γ
T∑

t=2

log P (wt−1|wt...wT )

(12)

where γ is a weight that controls the importance of
language modeling in relation to the error detec-
tion objective. Figure 1 shows the error detection
network architecture.

4.1 Experimental settings

All digits in the text are replaced with the char-
acter ‘0’. Tokens that occur less than 2 times
in the training data share an out-of-vocabulary
(OOV) token embedding, whereas the character-
level component still operates over the original to-
kens. The model hyperparameters are tuned based
on F0.5 on the FCE development set (Section 3)
and γ is set to 0.1.1 The model is optimised us-
ing Adam (Kingma and Ba, 2015), and training
is stopped when F0.5 does not improve on the de-
velopment set over 5 epochs. Token representa-
tions have size 300 and are initialised with pre-
trained word2vec embeddings trained on Google
News (Mikolov et al., 2013). The character rep-
resentations have size 50 and are initialised ran-
domly. The LSTM hidden layers have size 200 for
each direction.

4.2 Error detection performance

Rei and Yannakoudakis (2016)’s error detection
framework uses token-level embeddings, bidirec-
tional LSTMs for context representation, and a
multi-layer architecture for learning more com-
plex features. They train their model on the
public FCE training set, and benchmark their re-
sults on the FCE and CoNLL test sets (Baseline
LSTMFCE). We also train and test our detection
model on the same data and evaluate the effec-
tiveness of our approach (LSTMFCE). In Table 1,
we can see that our architecture achieves a higher
performance on both FCE and CoNLL, and par-
ticularly for FCE (7% higher F0.5) and CoNLL
test annotation 2 (around 2% higher F0.5). When
we use a larger training set that also includes the
CoNLL training data and the public Lang-8 cor-
pus (see Section 3), performance improves even
further (LSTM), particularly for CoNLL test an-
notation 1 (at least 8% higher F0.5 compared to
LSTMFCE). We use this model in the experiments
reported in the following sections.

5 Statistical machine translation

SMT attempts to identify the 1-best correction hy-
pothesis c∗ of an input sentence s that maximises
the following:

c∗ = arg max
c

pLM(c) p(s|c) (13)

1Lower γ values tend to give better error detection results
as this essentially prioritises the error detection objective.
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FCE test set CoNLL test set annotation 1 CoNLL test annotation 2
System P R F0.5 P R F0.5 P R F0.5

Baseline LSTMFCE 46.10 28.50 41.10 15.40 22.80 16.40 23.60 25.10 23.90
LSTMFCE 58.88 28.92 48.48 17.68 19.07 17.86 27.62 21.18 25.88
LSTM 79.10 21.19 51.14 54.51 8.69 26.53 69.60 7.91 27.18

Table 1: Token-level error detection performance of our detection models (LSTMFCE and LSTM) on
FCE and the two CoNLL 2014 test set annotations. Baseline LSTMFCE and LSTMFCE are trained only
on the public FCE training set.

A Language Model (LM) is used to estimate the
correction hypothesis probability pLM(c) from a
corpus of correct English, and a translation model
to estimate the conditional p(s|c) from a paral-
lel corpus of corrected learner sentences. State-
of-the-art SMT systems are phrase-based (Koehn
et al., 2003) in that they use phrases as “trans-
lation” units and therefore allow many-to-many
“translation” mappings. The translation model is
decomposed into a phrase-translation probability
model and a phrase re-ordering probability model,
and the 1-best correction hypothesis is of the fol-
lowing log-linear form (Och and Ney, 2002):

c∗ = arg max
c

exp

K∑

i=1

λi hi(c, s) (14)

where h represents a feature function (e.g., phrase-
translation probability) and λ the feature weight.

In this work, we employ two SMT systems:
Yuan et al. (2016)2 and Junczys-Dowmunt and
Grundkiewicz (2016). We apply our re-ranking
approach to each SMT system’s N -best list us-
ing features derived from the neural sequence-
labelling model for error detection described in
the previous section, improve each of the SMT
systems, and achieve state-of-the-art results on all
three GEC datasets: FCE, CoNLL and JFLEG.

5.1 N -best list re-ranking

For each SMT system, we generate the list of all
the 10 best candidate hypotheses. We then use the
following set of features (tuned on the FCE de-
velopment set, see Section 3) to assign a score to
each candidate, and determine a new ranking for
each SMT model:

Sentence probability: Our error detection
model outputs a probabilty indicating whether a

2Yuan et al. (2016) propose a supervised N -best list re-
ranking approach; however, we only use their baseline SMT
system.

token is likely to be correct or incorrect in context.
We therefore use as a feature the overall sentence
probability, calculated based on the probability of
each of its tokens being correct:

∑
w

log P (w)

Levenshtein distance: We first use Levenshtein
distance (LD) to identify which tokens in the orig-
inal/source sentence have been corrected by the
candidate hypothesis. We then identify the tokens
that our detection model predicts as incorrect (i.e.,
the probability of being incorrect is greater than
0.5). These give us two different sets of annota-
tions for the source sentence: tokens in the source
sentence that the candidate hypothesis identifies as
incorrect; and tokens in the source sentence that
the error detection model identifies as incorrect.
We then convert these annotations to binary se-
quences – i.e., 1 if the token is identified as in-
correct, and 0 otherwise – and use as a feature the
LD between those binary representations. More
specifically, we would like to select the candidate
sentence that has the smallest LD from the binary
sequence created by the detection model: 1

LD

True and false positives: Given the binary se-
quences described above, we also use as a feature
the ratio of true positives (TP) to false positives
(FP) by treating the error detection model as the
“gold standard”. Specifically, we count how many
times the candidate hypothesis agrees or not with
the detection model on the tokens identified as in-
correct: TP

FP
We use a linear combination of the above three

scores together with the overall score (i.e., original
rank) given by the SMT system (we do not include
any other SMT features) to re-rank each SMT sys-
tem’s 10-best list in an unsupervised way. The new
1-best correction hypothesis c∗ is then the one that
maximises:

c∗ = arg max
c

K∑

i=1

λi hi(c) (15)

2799



FCE test set CoNLL test set JFLEG
P R F0.5 GLEU P R F0.5 GLEU P R F0.5 GLEU

Baseline
CAMB16SMT 63.27 31.95 52.90 70.15 45.39 21.82 37.33 64.90 65.56 29.12 52.44 46.10
Our work
CAMB16SMT + LSTM 65.03 32.45 54.15 70.72 49.58 21.84 39.53 65.68 65.86 30.56 53.50 46.74
CAMB16SMT + LSTMcamb 64.25 36.13 55.60 71.76 51.09 25.30 42.44 66.42 65.41 32.97 54.66 47.72
Oracle 80.53 49.62 71.60 78.54 68.77 35.90 58.13 70.42 73.45 38.03 61.92 50.64

Baseline
AMU16SMT (reported) − − − − 61.27 27.98 49.49 − − − 43.20 41.70
AMU16SMT (replicated) 46.94 13.75 31.66 63.73 61.15 27.84 49.34 68.23 69.22 18.56 44.77 41.98
Our work
AMU16SMT (replicated) + LSTM 40.67 17.36 32.06 63.57 58.79 30.63 49.66 68.26 60.68 22.65 45.43 42.65
AMU16SMT (replicated) + LSTMcamb 43.34 19.88 35.07 64.78 59.88 32.16 51.08 68.69 64.12 25.06 48.88 43.26
Oracle 71.54 26.69 53.54 69.52 76.47 35.97 62.41 71.18 79.10 27.47 57.49 45.00

Other baselines
VT16SMT + classifiers − − − − 60.17 25.64 47.40 − − − − −
NUS16SMT+NNJM − − − − − − 44.27 − − − 52.70 46.30
NUS16SMT + re-ranker − − − − 50.35 23.84 41.19 − − − − −
CAMB16NMT − − 53.49 71.16 − − 39.90 65.59 − − 50.80 47.20

Table 2: Using the neural sequence-labelling model for error detection (‘+ LSTM’ or ‘+ LSTMcamb’) to
re-rank the 10-best lists of two SMT systems – Yuan et al. (2016) (CAMB16SMT) and Junczys-Dowmunt
and Grundkiewicz (2016) (AMU16SMT).

where h represents the score assigned to candidate
hypothesis c according to feature i; λ is a param-
eter that controls the effect feature i has on the fi-
nal ranking; and K = 4 as we have four different
features (three features presented in this section,
plus the original score output by the SMT system).
λs are tuned on the FCE development set and are
set to 1, except for the sentence probability feature
which has λ = 1.5.3

6 Evaluation

We evaluate the effectiveness of our re-ranking ap-
proach on three different datasets: FCE, CoNLL
2014 and JFLEG. We report F0.5 using the shared
task’s M2 scorer (Dahlmeier and Ng, 2012b), and
GLEU scores (Napoles et al., 2015). The latter
is based on a variant of BLEU (Papineni et al.,
2002) that is designed to reward correct edits and
penalise ungrammatical ones. As mentioned in
Section 5, we re-rank the 10-best lists of two
SMT systems: Yuan et al. (2016) (CAMB16SMT)
and Junczys-Dowmunt and Grundkiewicz (2016)
(AMU16SMT). The results are presented in Table
2.

We replicate the AMU16SMT system to obtain
the 10-best output, and report results using this

3We experimented with a small set of values (from 0 to 2
with increments of .1), though not exhaustively.

version (AMU16SMT (replicated)). Compared to the
original results on CoNLL reported in their paper
(AMU16SMT (reported)), we obtain slightly lower
performance.4 We can see that AMU16SMT is
the current state of the art on CoNLL, with an
F0.5 of 49.49. On the other hand, CAMB16SMT
generalises better on FCE and JFLEG: 52.90 and
52.44 F0.5 respectively. The lower performance of
AMU16SMT can be attributed to the fact that it is
tuned for the CoNLL shared task.

The current state of the art on FCE is a neural
machine translation system, CAMB16NMT (Yuan
and Briscoe, 2016), which is also the best model
on JFLEG in terms of GLEU. The rest of the base-
lines we report are: Rozovskaya and Roth (2016),
who explore combinations of SMT systems and
classifiers (VT16SMT + classifiers); Chollampatt
et al. (2016a), who integrate a neural network
joint model that has been adapted using native-
language-specific learner text as a feature in SMT
(NUS16SMT+NNJM); and Hoang et al. (2016), who
perform supervised N -best list re-ranking using a
large set of features, and further extend their ap-
proach to generate new hypotheses (NUS16SMT +
re-ranker).5

4The differences are likely to be caused by different ver-
sions of the NLTK tokeniser and/or Moses.

5We note that Napoles et al. (2017) use an updated version
of GLEU to evaluate AMU16SMT (reported), NUS16SMT+NNJM
and CAMB16NMT on JFLEG. We therefore also use this up-
dated version throughout all GLEU evaluations on JFLEG.
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CAMB16SMT + LSTMcamb

Ablated feature F0.5 GLEU
None 55.60 71.76
Sentence probability 54.13 70.65
Levenshtein distance 55.42 71.78
True/false positives 55.14 71.75

Table 3: Ablation tests on the FCE test set when
removing one feature of the re-ranking system at a
time.

When using our LSTM detection model to re-
rank the 10-best list (+ LSTM), we can see that
performance improves across all three datasets
for both SMT systems. F0.5 performance of
CAMB16SMT on FCE improves from 52.90 to
54.15, on CoNLL from 37.33 to 39.53, and on JF-
LEG from 52.44 to 53.50 (the latter demonstrat-
ing that the detection model also helps with flu-
ency edits). This improved result is also better
than the state of the art CAMB16NMT on FCE.6

When looking at AMU16SMT, we can see that re-
ranking (+ LSTM) further improves the best re-
sult on CoNLL from 49.34 (replicated) to 49.66
F0.5, and there is a similar level of improvement
for both FCE and JFLEG.

As a further experiment, we re-train our er-
ror detection model on the same training data as
CAMB16SMT (+ LSTMcamb). More specifically,
we use the Cambridge Learner Corpus (CLC)
(Nicholls, 2003), a collection of learner texts of
various proficiency levels, written in response to
exam prompts and manually annotated with the
errors committed (around 2M sentence pairs). In
Table 2, we can see that the detection model fur-
ther improves performance across all datasets and
SMT systems. Compared to just doing SMT
with CAMB16SMT, re-ranking improves F0.5 from
52.90 to 55.60 on FCE (performance increases
further even though CAMB16SMT’s training set
includes a large set of FCE data), from 37.33 to
42.44 on CoNLL, and from 52.44 to 54.66 on
JFLEG. The largest improvement is on CoNLL
(5%), which is likely because CoNLL is not in-
cluded in the training set. AMU16SMT (replicated)
is specifically tuned for CoNLL; nevertheless, the
detection model also improves F0.5 on CoNLL
from 49.34 to 51.08. Re-ranking using a small
set of detection-based features produces state-of-

6We note that CAMB16NMT outperforms the re-ranking
approach by Yuan et al. (2016).

the-art results on all three datasets (we note that
CAMB16SMT generalises better across all).

We next run ablation tests to investigate the
extent to which each feature contributes to per-
formance. Results obtained on the FCE test
set after excluding each of the features of the
‘CAMB16SMT + LSTMcamb’ re-ranking system
are presented in Table 3. Overall, all features have
a positive effect on performance, though the sen-
tence probability feature does have the biggest im-
pact: its removal is responsible for a 1.47 and 1.11
decrease of F0.5 and GLEU respectively. A similar
pattern is observed on the other datasets too.

6.1 Oracle
To calculate an upper bound per SMT system per
dataset, we calculate character-level LD between
each candidate hypothesis in the 10-best list and
the gold corrected sentence. We then calculate an
oracle score by selecting the candidate hypothe-
sis that has the smallest LD. Essentially the or-
acle is telling us the maximum performance that
can be obtained with the given 10-best list on each
dataset. For datasets for which we have more than
one annotation available, we select the oracle that
gives the highest F0.5.

In Table 2, we can see that, overall,
CAMB16SMT has a higher oracle performance
compared to AMU16SMT. More specifically, the
maximum attainable F0.5 on FCE is 71.60, on
CoNLL 58.13, and on JFLEG 61.92. This shows
empirically that the 10-best list has great potential
and should be exploited further. AMU16SMT
has a lower oracle performance overall, though
again this can be attributed to the fact that it is
specifically tuned for CoNLL.

6.2 N -best list size
Next, we examine performance as the N -best list
varies in size, ranging from 1 to 10 (Table 4). We
observe a positive effect: the larger the size, the
better the model for all datasets. F0.5 does not
seem to have reached a plateau with n < 10,
which suggests that increasing the size of the list
further can potentially lead to better results. We
do, however, observe that large improvements are
obtained when increasing the size from 1 to 3, sug-
gesting that, most of the time, better alternatives
are identified within the top 3 candidate hypothe-
ses. This, however, is not the case for the ora-
cle (Foracle

0.5 ), which consistently increases as n gets
larger.
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CAMB16SMT

FCE test set CoNLL test set JFLEG
N-best list F0.5 Foracle

0.5 F0.5 Foracle
0.5 F0.5 Foracle

0.5

1 52.90 52.90 37.33 37.33 52.44 52.44
2 54.28 62.10 39.87 47.03 53.04 55.64
3 54.96 65.93 41.00 51.12 53.24 57.69
4 55.18 68.05 41.83 53.13 53.47 58.93
5 55.33 69.47 42.12 54.80 54.01 59.66
6 55.43 70.24 42.49 55.53 54.18 60.34
7 55.48 70.74 42.60 56.54 54.45 61.14
8 55.47 71.00 42.63 57.04 54.47 61.28
9 55.51 71.27 42.65 57.23 54.64 61.55
10 55.60 71.60 42.44 58.13 54.66 61.92

Table 4: Re-ranking performance using
LSTMcamb as the N -best list varies in size
from 1 to 10 for CAMB16SMT and its oracle.

6.3 Error type performance

In Table 5, we can see example source sentences,
together with their corrected counterparts (refer-
ence), 1-best candidates by CAMB16SMT and 1-
best candidates by CAMB16SMT + LSTMcamb.
Re-ranking seems to fix errors such as subject–
verb agreement (“the Computer help” to “the com-
puter helps”) and verb form (“I recommend you to
visit” to “I recommend visiting”). In this section,
we perform an analysis of performance per type to
get a better understanding of where the strength of
the re-ranking detection model comes from.

Until recently, GEC performance per error type
was only analysed in terms of recall, as sys-
tem output is not annotated. Recently, however,
Bryant et al. (2017) proposed an approach to
automatically annotating GEC output with error
type information, which utilises a linguistically-
enhanced alignment to automatically extract the
edits between pairs of source sentences and their
corrected counterparts, and a dataset-independent
rule-based classifier to classify the edits into er-
ror types. Human evaluation showed that the pre-
dicted error types were rated as “Good” or “Ac-
ceptable” 95% of the time. We use their pub-
licly available code to analyse per-error-type per-
formance before and after re-ranking.

Table 6 presents the performance for a sub-
set of error types that are affected the most
before and after re-ranking CAMB16SMT on
the FCE test set. The error types are inter-
preted as follows: Missing error; Replace er-
ror; Unnecessary error. The largest improve-
ment is observed in replacement errors referring
to possessive nouns (R:NOUN:POSS) and verb

Source
I work with children an the Computer help my Jop bat affeted to
CAMB16SMT

I work with children and the Computer help my Jop bat affeted to
CAMB16SMT + LSTMcamb

I work with children and the computer helps my Jop bat affeted to
Reference

I work with children and the computer helps me in my job but affects it too
Source

It takes 25 minutes that is convenient to us
CAMB16SMT

It takes 25 minutes that is convenient for us
CAMB16SMT + LSTMcamb

It takes 25 minutes , which is convenient for us
Reference

It takes 25 minutes , which is convenient for us
Source

I recommend to visit
CAMB16SMT

I recommend you to visit
CAMB16SMT + LSTMcamb

I recommend visiting
Reference

I recommend visiting it
Source

Especially youngsters misuse this kind of invention
CAMB16SMT

Especially youngsters misuse this kind of invention
CAMB16SMT + LSTMcamb

In particular , youngsters misuse this kind of invention
Reference

Especially youngsters misuse this kind of invention

Table 5: Source sentences along with gold
corrections (reference), 1-best candidates by
CAMB16SMT and by CAMB16SMT + LSTMcamb.

agreement (R:VERB:SVA); and in unnecessary
errors referring to adverbs (U:ADV), determin-
ers (U:DET), pronouns (U:PRON), and verb tense
(U:VERB:TENSE).

The LSTM architecture allows the network to
learn advanced composition rules and remem-
ber dependencies over longer distances (e.g.,
R:VERB:SVA improves from 58.38 to 69.40).
The network’s language modelling objectives al-
low it to learn better and more general com-
positional features (e.g., U:ADV improves from
13.51 to 22.73), while the character-level archi-
tecture facilitates modelling of morphological pat-
terns [e.g., replacement errors referring to verb
form (R:VERB:FORM) improve from 53.62 to
58.06]. Between M, R, and U errors, the largest
improvement is observed in U, for which there is
at least 5% improvement in F0.5.7

Overall, re-ranking improves F0.5 across error
types; however, there is a small subset that is

7U improves from 38.44 to 43.77; M from 43.43 to
45.40; R from 53.25 to 55.33.
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CAMB16SMT CAMB16SMT + LSTMcamb

Type F0.5 F0.5

M:ADV 25.00 31.25
M:VERB 25.42 29.85
R:NOUN:NUM 56.60 62.50
R:NOUN:POSS 35.71 55.56
R:OTHER 34.99 38.75
R:PRON 26.88 33.33
R:VERB:FORM 53.62 58.06
R:VERB:SVA 58.38 69.40
R:VERB:TENSE 31.94 36.29
U:ADV 13.51 22.73
U:DET 46.27 55.30
U:NOUN 10.10 15.72
U:PREP 47.62 53.40
U:PRON 30.77 39.33
U:PUNCT 51.22 58.38
U:VERB:TENSE 28.41 41.67
M:PREP 43.69 39.43
M:VERB:FORM 50.00 38.46
R:ADJ 45.45 37.67
R:CONTR 50.00 27.78
R:WO 53.63 48.74

Table 6: Error-type performance before and af-
ter re-ranking on the FCE test set (largest impact
highlighted in bold; bottom part of the table dis-
plays negative effects on performance).

negatively affected (Table 6, bottom part); for
example, performance on missing errors refer-
ring to verb form (M:VERB:FORM) drops from
50.00 to 38.46, and on replace contraction errors
(R:CONTR) from 50.00 to 27.78. Importantly,
such an analysis allows us to examine the strengths
and weaknesses of the models, which is key for the
deployment of GEC systems.

7 Conclusion

To the best of our knowledge, no prior work has in-
vestigated the impact of detection models on cor-
rection performance. We proposed an approach
to N -best list re-ranking using a neural sequence-
labelling model that calculates the probability of
each token in a sentence being correct or incor-
rect in context. Detection models can be more
fine-tuned to finer nuances of grammaticality, and
therefore better able to distinguish between correct
and incorrect versions of a sentence. Using a lin-
ear combination of a small set of features derived
from the detection model output, we re-ranked the
N -best list of SMT systems and achieved state-of-
the-art results on GEC on three different datasets.
Our approach can be applied to any GEC system
that produces multiple alternative hypotheses. Our

results demonstrate the benefits of integrating de-
tection approaches with correction systems, and
how one can complement the other.
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Abstract

In a controlled experiment of sequence-to-
sequence approaches for the task of sen-
tence correction, we find that character-
based models are generally more effec-
tive than word-based models and models
that encode subword information via con-
volutions, and that modeling the output
data as a series of diffs improves effec-
tiveness over standard approaches. Our
strongest sequence-to-sequence model im-
proves over our strongest phrase-based
statistical machine translation model, with
access to the same data, by 6 M2 (0.5
GLEU) points. Additionally, in the data
environment of the standard CoNLL-2014
setup, we demonstrate that modeling (and
tuning against) diffs yields similar or
better M2 scores with simpler models
and/or significantly less data than previous
sequence-to-sequence approaches.

1 Introduction

The task of sentence correction is to convert a
natural language sentence that may or may not
have errors into a corrected version. The task is
envisioned as a component of a learning tool or
writing-assistant, and has seen increased interest
since 2011 driven by a series of shared tasks (Dale
and Kilgarriff, 2011; Dale et al., 2012; Ng et al.,
2013, 2014).

Most recent work on language correction has
focused on the data provided by the CoNLL-2014
shared task (Ng et al., 2014), a set of corrected es-
says by second-language learners. The CoNLL-
2014 data consists of only around 60,000 sen-
tences, and as such, competitive systems have
made use of large amounts of corrected text with-
out annotations, and in some cases lower-quality

crowd-annotated data, in addition to the shared
data. In this data environment, it has been sug-
gested that statistical phrase-based machine trans-
lation (MT) with task-specific features is the
state-of-the-art for the task (Junczys-Dowmunt
and Grundkiewicz, 2016), outperforming word-
and character-based sequence-to-sequence models
(Yuan and Briscoe, 2016; Xie et al., 2016; Ji et al.,
2017), phrase-based systems with neural features
(Chollampatt et al., 2016b,a), re-ranking output
from phrase-based systems (Hoang et al., 2016),
and combining phrase-based systems with classi-
fiers trained for hand-picked subsets of errors (Ro-
zovskaya and Roth, 2016).

We revisit the comparison across translation ap-
proaches for the correction task in light of the Au-
tomated Evaluation of Scientific Writing (AESW)
2016 dataset, a correction dataset containing over
1 million sentences, holding constant the training
data across approaches. The dataset was previ-
ously proposed for the distinct binary classifica-
tion task of grammatical error identification.

Experiments demonstrate that pure character-
level sequence-to-sequence models are more ef-
fective on AESW than word-based models and
models that encode subword information via con-
volutions over characters, and that representing
the output data as a series of diffs significantly in-
creases effectiveness on this task. Our strongest
character-level model achieves statistically sig-
nificant improvements over our strongest phrase-
based statistical machine translation model by 6
M2 (0.5 GLEU) points, with additional gains
when including domain information. Further-
more, in the partially crowd-sourced data envi-
ronment of the standard CoNLL-2014 setup in
which there are comparatively few professionally
annotated sentences, we find that tuning against
the tags marking the diffs yields similar or su-
perior effectiveness relative to existing sequence-
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to-sequence approaches despite using significantly
less data, with or without using secondary mod-
els. All code is available at https://github.
com/allenschmaltz/grammar.

2 Background and Methods

Task We follow recent work and treat the task
of sentence correction as translation from a source
sentence (the unedited sentence) into a target sen-
tence (a corrected version in the same language as
the source). We do not make a distinction between
grammatical and stylistic corrections.

We assume a vocabulary V of natural language
word types (some of which have orthographic er-
rors). Given a sentence s = [s1 · · · sI ], where
si ∈ V is the i-th token of the sentence of length
I , we seek to predict the corrected target sentence
t = [t1 · · · tJ ], where tj ∈ V is the j-th token of
the corrected sentence of length J . We are given
both s and t for supervised training in the standard
setup. At test time, we are only given access to se-
quence s. We learn to predict sequence t (which
is often identical to s).

Sequence-to-sequence We explore word and
character variants of the sequence-to-sequence
framework. We use a standard word-based model
(WORD), similar to that of Luong et al. (2015), as
well as a model that uses a convolutional neural
network (CNN) and a highway network over char-
acters (CHARCNN), based on the work of Kim
et al. (2016), instead of word embeddings as the
input to the encoder and decoder. With both of
these models, predictions are made at the word
level. We also consider the use of bidirectional
versions of these encoders (+BI).

Our character-based model (CHAR+BI) follows
the architecture of the WORD+BI model, but the
input and output consist of characters rather than
words. In this case, the input and output sequences
are converted to a series of characters and whites-
pace delimiters. The output sequence is converted
back to t prior to evaluation.

The WORD models encode and decode over
a closed vocabulary (of the 50k most frequent
words); the CHARCNN models encode over an
open vocabulary and decode over a closed vocab-
ulary; and the CHAR models encode and decode
over an open vocabulary.

Our contribution is to investigate the impact
of sequence-to-sequence approaches (including
those not considered in previous work) in a series

of controlled experiments, holding the data con-
stant. In doing so, we demonstrate that on a large,
professionally annotated dataset, the most effec-
tive sequence-to-sequence approach can signifi-
cantly outperform a state-of-the-art SMT system
without augmenting the sequence-to-sequence
model with a secondary model to handle low-
frequency words (Yuan and Briscoe, 2016) or an
additional model to improve precision or inter-
secting a large language model (Xie et al., 2016).
We also demonstrate improvements over these
previous sequence-to-sequence approaches on the
CoNLL-2014 data and competitive results with Ji
et al. (2017), despite using significantly less data.

The work of Schmaltz et al. (2016) applies
WORD and CHARCNN models to the distinct bi-
nary classification task of error identification.

Additional Approaches The standard formula-
tion of the correction task is to model the output
sequence as t above. Here, we also propose mod-
eling the diffs between s and t. The diffs are pro-
vided in-line within t and are described via tags
marking the starts and ends of insertions and dele-
tions, with replacements represented as deletion-
insertion pairs, as in the following example se-
lected from the training set: “Some key points are
worth<del> emphasiz </del><ins> emphasiz-
ing </ins> .”. Here, “emphasiz” is replaced with
“emphasizing”. The models, including the CHAR

model, treat each tag as a single, atomic token.
The diffs enable a means of tuning the model’s

propensity to generate corrections by modifying
the probabilities generated by the decoder for the
4 diff tags, which we examine with the CoNLL
data. We include four bias parameters associated
with each diff tag, and run a grid search between 0
and 1.0 to set their values based on the tuning set.

It is possible for models with diffs to output
invalid target sequences (for example, inserting a
word without using a diff tag). To fix this, a deter-
ministic post-processing step is performed (greed-
ily from left to right) that returns to source any
non-source tokens outside of insertion tags. Diffs
are removed prior to evaluation. We indicate mod-
els that do not incorporate target diff annotation
tags with the designator –DIFFS.

The AESW dataset provides the paragraph con-
text and a journal domain (a classification of the
document into one of nine subject categories) for
each sentence.1 For the sequence-to-sequence

1The paragraphs are shuffled for purposes of obfuscation,
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GLEU M2

Model Dev Test Dev Test

No Change 89.68 89.45 00.00 00.00

SMT–DIFFS+M2 90.44 − 38.55 −
SMT–DIFFS+BLEU 90.90 − 37.66 −
WORD+BI–DIFFS 91.18 − 38.88 −
CHAR+BI–DIFFS 91.28 − 40.11 −
SMT+BLEU 90.95 90.70 38.99 38.31
WORD+BI 91.34 91.05 43.61 42.78
CHARCNN 91.23 90.96 42.02 41.21
CHAR+BI 91.46 91.22 44.67 44.62

WORD+DOM 91.25 − 43.12 −
WORD+BI+DOM 91.45 − 44.33 −
CHARCNN+BI+DOM 91.15 − 40.79 −
CHARCNN+DOM 91.35 − 43.94 −
CHAR+BI+DOM 91.64 91.39 47.25 46.72

Table 1: AESW development/test set correction results.
GLEU and M2 differences on test are statistically significant
via paired bootstrap resampling (Koehn, 2004; Graham et al.,
2014) at the 0.05 level, resampling the full set 50 times.

models we propose modeling the input and output
sequences with a special initial token representing
the journal domain (+DOM).2

3 Experiments

Data AESW (Daudaravicius, 2016; Daudaravi-
cius et al., 2016) consists of sentences taken from
academic articles annotated with corrections by
professional editors used for the AESW shared
task. The training set contains 1,182,491 sen-
tences, of which 460,901 sentences have edits. We
set aside a 9,947 sentence sample from the orig-
inal development set for tuning (of which 3,797
contain edits), and use the remaining 137,446 sen-
tences as the dev set3 (of which 53,502 contain ed-
its). The test set contains 146,478 sentences.

The primary focus of the present study is con-
ducting controlled experiments on the AESW
dataset, but we also investigate results on the
CoNLL-2014 shared task data in light of recent
neural results (Ji et al., 2017) and to serve as a
baseline of comparison against existing sequence-
to-sequence approaches (Yuan and Briscoe, 2016;
Xie et al., 2016). We use the common sets
of public data appearing in past work for train-
ing: the National University of Singapore (NUS)
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) and the publicly available Lang-8

so document-level context is not available.
2Characteristics of the dataset preclude experiments with

additional paragraph context features. (See Appendix A.)
3The dev set contains 13,562 unique deletion types,

29,952 insertion types, and 39,930 replacement types.

data (Tajiri et al., 2012; Mizumoto et al., 2012).
The Lang-8 dataset of corrections is large4 but
is crowd-sourced5 and is thus of a different na-
ture than the professionally annotated AESW and
NUCLE datasets. We use the revised CoNLL-
2013 test set as a tuning/dev set and the CoNLL-
2014 test set (without alternatives) for testing. We
do not make use of the non-public Cambridge
Learner Corpus (CLC) (Nicholls, 2003), which
contains over 1.5 million sentence pairs.

Evaluation We follow past work and use the
Generalized Language Understanding Evaluation
(GLEU) (Napoles et al., 2016) and MaxMatch
(M2) metrics (Dahlmeier and Ng, 2012).

Parameters All our models, implemented with
OpenNMT (Klein et al.), are 2-layer LSTMs with
750 hidden units. For the WORD model, the word
embedding size is also set to 750, while for the
CHARCNN and CHAR models we use a char-
acter embedding size of 25. The CHARCNN
model has a convolutional layer with 1000 fil-
ters of width 6 followed by max-pooling, which
is fed into a 2-layer highway network. Additional
training details are provided in Appendix A. For
AESW, the WORD+BI model contains around 144
million parameters, the CHARCNN+BI model
around 79 million parameters, and the CHAR+BI

model around 25 million parameters.

Statistical Machine Translation As a baseline
of comparison, we experiment with a phrase-based
machine translation approach (SMT) shown to
be state-of-the-art for the CoNLL-2014 shared
task data in previous work (Junczys-Dowmunt and
Grundkiewicz, 2016), which adds task specific
features and the M2 metric as a scorer to the
Moses statistical machine translation system. The
SMT model follows the training, parameters, and
dense and sparse task-specific features that gener-
ate state-of-the-art results for CoNLL-2014 shared
task data, as implemented in publicly available
code.6 However, to compare models against the
same training data, we remove language model
features associated with external data.7 We exper-

4about 1.4 million sentences after filtering
5derived from the Lang-8 language-learning website
6SRI International provided access to SRILM (Stol-

cke, 2002) for running Junczys-Dowmunt and Grundkiewicz
(2016)

7We found that including the features and data associ-
ated with the large language models of Junczys-Dowmunt
and Grundkiewicz (2016), created from Common Crawl text
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iment with tuning against M2 (+M2) and BLEU
(+BLEU). Models trained with diffs were only
tuned with BLEU, since the tuning pipeline from
previous work is not designed to handle removing
such annotation tags prior to M2 scoring.

4 Results and Analysis: AESW

Table 1 shows the full set of experimental results
on the AESW development and test data.

The CHAR+BI+DOM model is stronger than the
WORD+BI+DOM and CHARCNN+DOM models
by 2.9 M2 (0.2 GLEU) and 3.3 M2 (0.3 GLEU),
respectively. The sequence-to-sequence models
were also more effective than the SMT models,
as shown in Table 1. We find that training with
target diffs is beneficial across all models, with an
increase of about 5 M2 points for the WORD+BI

model, for example. Adding +DOM information
slightly improves effectiveness across models.

We analyzed deletion, insertion, and replace-
ment error types. Table 2 compares effec-
tiveness across replacement errors. We found
the CHARCNN+BI models were less effective
than CHARCNN variants in terms of GLEU and
M2, and the strongest CHARCNN models were
eclipsed by the WORD+BI models in terms of
the GLEU and M2 scores. However, Table 2
shows CHARCNN+DOM is stronger on lower fre-
quency replacements than WORD models. The
CHAR+BI+DOM model is relatively strong on ar-
ticle and punctuation replacements, as well as er-
rors appearing with low frequency in the training
set and overall across deletion and insertion error
types, which are summarized in Table 3.

Errors never occurring in training The com-
paratively high Micro F0.5 score (18.66) for the
CHAR+BI+DOM model on replacement errors
(Table 2) never occurring in training is a result of
a high precision (92.65) coupled with a low re-
call (4.45). This suggests some limited capacity
to generalize to items not seen in training. A se-
lectively chosen example is the replacement from
“discontinous” to “discontinuous”, which never
occurs in training. However, similar errors of low
edit distance also occur once in the dev set and
never in training, but the CHAR+BI+DOM model

filtered against the NUCLE corpus, hurt effectiveness for the
phrase-based models. This is likely a reflection of the do-
main specific nature of the academic text and LaTeX holder
symbols appearing in the text. Here, we conduct controlled
experiments without introducing additional domain-specific
monolingual data.

never correctly recovers many of these errors, and
many of the correctly recovered errors are minor
changes in capitalization or hyphenation.

Error frequency About 39% of the AESW
training sentences have errors, and of those sen-
tences, on average, 2.4 words are involved in
changes in deletions, insertions, or replacements
(i.e., the count of words occurring between diff
tags) per sentence. In the NUCLE data, about 37%
of the sentences have errors, of which on aver-
age, 5.3 words are involved in changes. On the
AESW dev set, if we only consider the 9545 sen-
tences in which 4 or more words are involved in a
change (average of 5.8 words in changes per sen-
tence), the CHAR+BI model is still more effective
than SMT+BLEU, with a GLEU score of 67.21
vs. 65.34. The baseline GLEU score (No Change)
is 60.86, reflecting the greater number of changes
relative to the full dataset (cf. Table 1).

Re-annotation The AESW dataset only pro-
vides 1 annotation for each sentence, so we per-
form a small re-annotation of the data to gauge
effectiveness in the presence of multiple annota-
tions. We collected 3 outputs (source, gold, and
generated sentences from the CHAR+BI+DOM

model) for 200 randomly sampled sentences, re-
annotating to create 3 new references for each
sentence. The GLEU scores for the 200 original
source, CHAR+BI+DOM, and original gold sen-
tences evaluated against the 3 new references were
79.79, 81.72, and 84.78, respectively, suggesting
that there is still progress to be made on the task
relative to human levels of annotation.

5 Results and Analysis: CoNLL

Table 4 shows the results on the CoNLL dev set,
and Table 5 contains the final test results.

Since the CoNLL data does not contain enough
data for training neural models, previous works
add the crowd-sourced Lang-8 data; however,
this data is not professionally annotated. Since
the distribution of corrections differs between the
dev/test and training sets, we need to tune the pre-
cision and recall.

As shown in Table 4, WORD+BI effectiveness
increases significantly by tuning the weights8 as-
signed to the diff tags on the CoNLL-2013 set9.

8In contrast, in early experiments on AESW, tuning
yielded negligible improvements.

9The single model with highestM2 score was then run on
the test set. Here, a single set is used for tuning and dev.
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Replacement Error Type (out of 39,930) – Frequency relative to training

Model Punctuation Articles Other
> 100 [5, 100] [2, 5) 1 0

Raw frequency in dev 11507 1691 6788 8974 2271 1620 7079
Number of unique instances 371 367 215 2918 1510 1242 5819

SMT+BLEU 56.03 16.41 44.57 36.17 39.46 31.93 0.00

WORD+BI 56.13 18.58 55.38 44.33 18.79 6.38 0.77
WORD+BI+DOM 56.87 19.16 59.02 44.57 19.70 4.42 2.01

CHARCNN+DOM 55.64 13.37 57.34 41.83 28.99 16.74 7.09

CHAR+BI 58.71 28.40 55.34 44.59 28.98 24.48 14.14
CHAR+BI+DOM 58.93 27.64 59.32 46.08 32.82 26.48 18.66

Table 2: Micro F0.5 scores on replacement errors on the dev set. Errors are grouped by ‘Punctuation’, ‘Article’, and ‘Other’.
‘Other’ errors are further broken down based on frequency buckets on the training set, with errors grouped by the frequency in
which they occur in the training set.

Deletions Insertions Replacements

SMT+BLEU 46.56 31.48 42.21

WORD+BI 47.75 38.31 46.02
WORD+BI+DOM 47.78 39.00 47.29

CHARCNN+DOM 48.30 39.57 46.24

CHAR+BI 49.05 37.17 48.55
CHAR+BI+DOM 50.20 42.51 50.39

Table 3: Micro F0.5 scores across error types

Precision Recall F0.5

WORD+BI–DIFFS 65.36 6.19 22.45
WORD+BI, before tuning 72.34 0.97 4.60
WORD+BI, after tuning 46.66 15.35 33.14

Table 4: M2 scores on the CoNLL-2013 set.

Note that we are tuning the weights on this same
CoNLL-2013 set. Without tuning, the model very
rarely generates a change, albeit with a high pre-
cision. After tuning, it exceeds the effective-
ness of WORD+BI–DIFFS. The comparatively low
effectiveness of WORD+BI–DIFFS is consistent
with past sequence-to-sequence approaches utiliz-
ing data augmentation, additional annotated data,
and/or secondary models to achieve competitive
levels of effectiveness.

Table 5 shows that WORD+BI is within 0.2 M2

of Ji et al. (2017), despite using over 1 million
fewer sentence pairs, and exceeds the M2 scores
of Xie et al. (2016) and Yuan and Briscoe (2016)
without the secondary models of those systems.
We hypothesize that further gains are possible uti-
lizing the CLC data and moving to the charac-
ter model. (The character model is omitted here
due to the long training time of about 4 weeks.)

Data M2

Yuan and Briscoe (2016) CLC∗ 39.90

Xie et al. (2016) NUCLE, Lang-8,
Common Crawl LM

40.56

Ji et al. (2017) NUCLE, Lang-8,
CLC∗

41.53

WORD+BI–DIFFS NUCLE, Lang-8 35.73
WORD+BI NUCLE, Lang-8 41.37

Table 5: M2 scores on the CoNLL-2014 test set and data
used for recent sequence-to-sequence based systems. Results
for previous works are those reported by the original authors.
∗CLC is proprietary.

Notably, SMT systems (with LMs) are still more
effective than reported sequence-to-sequence re-
sults, as in Ji et al. (2017), on CoNLL.10

6 Conclusion

Our experiments demonstrate that on a large,
professionally annotated dataset, a sequence-to-
sequence character-based model of diffs can lead
to considerable effectiveness gains over a state-
of-the-art SMT system with task-specific fea-
tures, ceteris paribus. Furthermore, in the crowd-
sourced environment of the CoNLL data, in which
there are comparatively few professionally anno-
tated sentences in training, modeling diffs enables
a means of tuning that improves the effectiveness
of sequence-to-sequence models for the task.

10For reference, the reported M2 results of the carefully
optimized SMT system of Junczys-Dowmunt and Grund-
kiewicz (2016) trained on NUCLE and Lang-8, with param-
eter vectors averaged over multiple runs, with a Wikipedia
LM is 45.95 and adding a Common Crawl LM is 49.49. We
leave to future work the intersection of a LM for the CoNLL
environment and more generally, whether these patterns hold
in the presence of additional monolingual data.
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Abstract

Stylistic variations of language, such as
formality, carry speakers’ intention be-
yond literal meaning and should be con-
veyed adequately in translation. We pro-
pose to use lexical formality models to
control the formality level of machine
translation output. We demonstrate the
effectiveness of our approach in empiri-
cal evaluations, as measured by automatic
metrics and human assessments.

1 Introduction

Automatically analyzing and generating natural
language requires capturing not only what is said,
but also how to say it. Consider the sentences
“anybody hurt?” and “is someone wounded?”.
The first one is less formal than the second one,
and carries information beyond its literal meaning,
such as the situation in which it might be used.
Such differences in formality have been identi-
fied as an important dimension of style (Trudgill,
1992) or tone (Halliday, 1978) variation.

In this paper, we build on prior computational
work that has focused on analyzing formality of
texts (Lahiri and Lu, 2011; Brooke and Hirst,
2013; Pavlick and Nenkova, 2015; Pavlick and
Tetreault, 2016) with a different aim: modeling
formality for the purpose of controlling style in
applications that generate language, with a focus
on machine translation. Human translators trans-
late a document for a specific audience (Nida and
Taber Charles, 1969), and often ask what is the
expected tone of the content when taking a new
translation job. We design a machine translation
system that operates under similar conditions and
explicitly takes an expected level of formality as
input. While ultimately we would like systems
to preserve the formality of the source, this is a

challenging task that requires not only automati-
cally inferring the formality of the source, but also
understanding how formality differs across lan-
guages and cultures. As a first step, we therefore
limit our study to the scenario where the expected
output formality is given to the MT system as an
additional input.

We first select a formality model providing
the most accurate scores on intrinsic formality
datasets. We compare existing lexical formality
models and novel variants based on inducing for-
mality dimensions or subspaces in vector space
models. We then turn to machine translation and
show that a lexical formality model can have a
positive impact when used to control the formal-
ity of machine translation output. When the ex-
pected formality matches the reference, we obtain
improvement of translation quality evaluated by
automatic metrics (BLEU). A human assessment
also verified the effectiveness of our proposed sys-
tem in generating translations at diverse levels of
formality.

2 Formality-Sensitive MT

Our goal is to provide systems with the ability
to generate language across a range of formality
style. We propose a Formality-Sensitive Ma-
chine Translation (FSMT) scenario where the
system takes two inputs: (1) text in the source
language to be translated, and (2) a desired for-
mality level capturing the intended audience of the
translation. We propose to implement it as n-best
re-ranking within a standard phrase-based MT ar-
chitecture. Unlike domain adaptation approaches,
which aim to produce domain-specific or poten-
tially formality-specific systems, our goal is to ob-
tain a single system trained on diverse data which
can adaptively produce output for a range of styles.

We therefore introduce a formality-scoring fea-
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ture for re-ranking. For each translation hypothe-
sis h, given the formality level ` as a parameter:

f(h; `) = |Formality(h)− `|

where Formality(h) is the sentence-level formal-
ity score for h. f(h; `), along with standard model
features, is fed into a standard re-ranking model.
When training the re-ranking model, the parame-
ter ` is set to the actual formality score of the ref-
erence translation for each instance. At test time,
` is provided by the user. The re-scoring weights
help promote candidate sentences whose formality
scores approach the expected level.

3 Formality Modeling

The FSMT system requires quantifying the for-
mality level of a sentence. Following prior work,
we define sentence-level formality based on lexi-
cal formality scores (Brooke et al., 2010; Pavlick
and Nenkova, 2015). We conduct an empiri-
cal comparison of existing techniques that can be
adapted as lexical formality models, and intro-
duce a sentence-level formality scheme based on
weighted average.

3.1 Lexical Formality

State-of-the-art lexical formality models (Brooke
et al., 2010; Brooke and Hirst, 2014) are based on
vector space models of word meaning, and a set of
pre-selected seed words that are representative of
formal and informal language.

SimDiff Brooke et al. (2010) proposed to
score the formality of a word w by comparing its
meaning to that of seed words of known formal-
ity using cosine similarity. Intuitively, w is more
likely formal if it is semantically closer to formal
seed words than to informal seed words. Formally,
given a formal word set Sf and an informal word
set Si, SimDiff scores a word w by

score(w) =
1

|Sf |
∑

v∈Sf
cos(ew, ev)−

1

|Si|
∑

v∈Si
cos(ew, ev)

Turning this difference into a formality score re-
quires further manipulation. A neutral word r has
to be manually selected to anchor the midpoint of
the formality score range. In other words, the final
formality score for r is enforced to be zero:

Formality(w) =
score(w)− score(r)

normalizer(w, r)

The neutral word is typically selected from func-
tion words. We select “at” because it appears in
nearly every document and appears with nearly
equivalent probabilities in formal/informal cor-
pora. Finally, a normalizer which is maximized
among the whole vocabulary ensures that scores
cover the entire [−1, 1] range.

Instead of using cosine diff as the score function
score(w), other standard techniques can be also
applied under this framework.

SVM As an alternative to the model proposed by
Brooke and Hirst (2014), we propose to train an
Support Vector Machine (SVM) model to find a hy-
perplane that separates formal and informal words
and define the score function as the distance to the
hyperplane.

Formality Subspace Another category of meth-
ods consists in identifying a subspace that captures
formality within the original vector space. Lexical
scores can then simply be obtained by projecting
word representations onto the formality subspace.
One example is training a Principal Component
Analysis (PCA) model on word representations of
all seeds. This method is based on the assumption
that representative formal/informal words princi-
pally vary along the direction of formality. Al-
ternatively, inspired by DENSIFIER (Rothe et al.,
2016), we can learn a subspace that aims at sepa-
rating words in Sf vs. words in Si and grouping
words in the same set.

3.2 From Word to Sentence Formality

While previous work scored sentence by averag-
ing word scores (Brooke and Hirst, 2014; Pavlick
and Nenkova, 2015), we propose a weighted aver-
age scheme for word sequences W to downgrade
the formality contribution of neutral words:

Formality(W ) =∑
wi∈W |Formality(wi)| · Formality(wi)∑

wi∈W |Formality(wi)|

3.3 Evaluation

Before evaluating our FSMT framework, we eval-
uate the formality models at the sentence level.
Lahiri (2015) and Pavlick and Tetreault (2016)
collected 5-way human scores for 11,263 sen-
tences in the genres of blog, email, answers and
news. Following Pavlick and Tetreault (2016), we
averaged human scores for each sentence as the
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gold standard. As in prior work, the score quality
was evaluated by the Spearman correlation.

A large mixed-topic corpus is required to train
vector space models. As suggested by Brooke
et al. (2010), we used the ICWSM 2009 Spinn3r
dataset (English tier-1) which consists of about
1.6 billion words (Burton et al., 2009). We
also compared the term-document association
model Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990) and the term-term association
model word2vec (W2V) (Mikolov et al., 2013).
We used the same 105 formal seeds and 138 in-
formal seeds as Brooke et al. (2010).

Followed Brooke et al. (2010), to achieve best
performance, we used a small dimensionality (10)
for training LSA and word2vec. In practice, we
normalized the LSA word vectors to make them
have unit length for SVM and PCA, but did not ap-
plied it to word2vec. This suggests that the magni-
tude of LSA word vectors is harmful for formality
modeling.

We also compared formality models based on
word representations to a baseline that relies on
unigram models to compare word statistics in cor-
pora representative of formal vs. informal lan-
guage (Pavlick and Nenkova, 2015). This method
requires language examples of diverse formality.
Conversational transcripts are generally consid-
ered as casual text, so we concatenated corpora
such as Fisher (Cieri et al., 2004), Switchboard
(Godfrey et al., 1992), SBCSAE (Bois et al., 2000-
2005), CallHome1, CallFriend2, BOLT SMS/Chat
(Song et al., 2014) and NPS Chatroom (Forsyt-
hand and Martell, 2007). As the formal counter-
part, we extracted comparable size of text from
Europarl (Koehn, 2005). This results in 30 Mil-
lion tokens of formal corpora (1.1M segments) and
29 Million tokens of informal corpora (2.7M seg-
ments).

Table 1 shows that all models based on the vec-
tor space achieve similar performance in terms
of Spearman’s ρ (except SVM-W2V which yields
lower performance). The baseline method based
on unigram models was outperformed by 0.1+
point. So we select DENSIFIER-LSA as a repre-
sentative for our FSMT system.

1https://catalog.ldc.upenn.edu/
LDC97S42

2https://talkbank.org/access/CABank/
CallFriend/

LSA W2V
SimDiff 0.660 0.654
SVM 0.657 0.585
PCA 0.656 0.663
DENSIFIER 0.664 0.644
baseline 0.540

Table 1: Sentence-level formality quantifying
evaluation (Spearman’s ρ) among different mod-
els with different vector spaces.

4 Evaluation of the FSMT System

Set-up We evaluate this approach on a French
to English translation task. Two parallel French-
English corpora are used: (1) MultiUN (Eisele and
Chen, 2010), which is extracted from the United
Nations website, and can be considered to be for-
mal text; (2) OpenSubtitles2016 (Lison and Tiede-
mann, 2016), which is extracted from movie and
TV subtitles, covers a wider spectrum of styles,
but overall tends to be informal since it primarily
contains conversations. Each parallel corpus was
split into a training set (100M English tokens), a
tuning set (2.5K segments) and a test set (5K seg-
ments). Two corpora are then concatenated, such
that training, tuning and test sets all contained a
diversity of styles.
Moses (Koehn et al., 2007) is used to build

our phrase-based MT system. We followed the
standard training pipeline with default param-
eters.3 Word alignments were generated us-
ing fast align (Dyer et al., 2013), and sym-
metrized using the grow-diag-final-and heuris-
tic. We used 4-gram language models, trained
using KenLM (Heafield, 2011). Model weights
were tuned using batch MIRA (Cherry and Foster,
2012).

We used constant size n=1000 for n-best lists
in all experiments. The re-ranking is a log-linear
model trained using batch MIRA. 4 We report re-
sults averaged over 5 random tuning re-starts to
compensate for tuning noise (Clark et al., 2011).

FSMT In order to evaluate the impact of dif-
ferent input formality (e.g. low/neutral/high) on
translation quality, ideally, we would like to have
three human reference translations with different

3http://www.statmt.org/moses/?n=Moses.
Baseline

4https://github.com/moses-smt/
mosesdecoder/tree/master/scripts/
nbest-rescore
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Desired Informal Neutral Formal
formality test set test set test set

None (baseline) 39.74 40.17 47.97
low 40.27 39.65 47.76

neutral 38.70 40.46 47.84
high 37.58 39.53 47.97

Table 2: Translation quality (BLEU scores) on in-
formal/neutral/formal sentence sets given different
desired formality levels (-0.4, 0.0, 0.4). Best re-
sults with statistical significance are highlighted.

formality for each source sentence. Since such ref-
erences are not available, we construct three sets of
test data where instances are divided according to
the formality level of the available reference trans-
lation. The formality distribution in the tuning set
shows that 97% reference translations fall into the
range of [−0.6, 0.6]. We therefore set three for-
mality bins – informal [−1,−0.2), neutral formal-
ity [−0.2, 0.2], and formal (0.2, 1] – and split the
test set into these bins. We use DENSIFIER-LSA
and training setting described above to translate
the entire test set three times, with three different
formality levels: low (-0.4), neutral (0) and high
(0.4).

4.1 Automatic Evaluation

We first report standard automatic evaluation re-
sults using the BLEU score to compare FSMT out-
put given different desired formality level on each
bins (See Table 2).

The best BLEU scores for each formality level
are obtained when the level of formality given as
input to the MT system matches the nature of the
text being translated, as can be seen in the scores
along the diagonal in Table 2. Comparing with
the baseline system, which produces the top trans-
lation from each n-best list, translation quality
improves by +0.5 BLEU on informal text, +0.3
BLEU on neutral text, and remains constant on
formal text. The impact increases with the dis-
tance to formal language increases. This can be
explained by the fact that more formal sentences
tend to be longer, and the impact of alternate lex-
ical choice for a small number of words per sen-
tence is smaller in longer sentences. In addition,
the formal sentences are mostly drawn from UN
data which is sufficiently different from the other
genres in the heterogeneous training corpus that
the informal examples do not affect baseline per-

formance on formal data.

4.2 Human Assessment

Automatic evaluation is limited to comparing out-
put to a single reference: lower BLEU scores
conflate translation errors and stylistic mismatch.
Therefore, we conduct a human study of the for-
mality vs. the quality.

We conducted a manual evaluation of the out-
put of our FSMT system taking low/high formality
levels (-0.4/0.4) as parameters. 42 translation pairs
were randomly selected and were annotated by 15
volunteers. For each pair of segments, the volun-
teers were asked to select the segment that would
be more appropriate in a formal setting (e.g., a job
interview) than in a casual setting (e.g., chatting
with friends). A default option of “neither of them
is more formal or hard to say” was also available.

By majority voting, 20 pairs were annotated as
“N”, indicating the two translations has no dis-
tinctions w.r.t. formality. For example, “A: how
can they do this” vs. “B: how can they do that”.
Given that the translations were restricted to the n-
best list, not all sentences could be translated into
stylistically different language.

Of the remaining 21 pairs where annotators
judged one output more formal than the other, in
all but one case the translation produced by our
FSMT system with high formality level parameter
was judged to be more formal. Overall this indi-
cates that our formality scoring and ranking pro-
cedure are effective.

To determine whether re-ranking based on for-
mality might have a detrimental effect on quality,
we also had annotators rate the fluency and ade-
quacy of the segments. Inspired by Graham et al.
(2013), annotators were first asked to assess flu-
ency without a reference and separately adequacy
with a reference. Both assessments used a sliding
scale. Each segment was evaluated by an average
of 7 annotators. After rescaling the ratings into
the [0, 1] range, we observed a 0.75 level of flu-
ency for informal translations and 0.70 for formal
ones. This slight difference fits our expectation
that more casual language may feel more fluent
while more formal language may feel more stilted.
The adequacy ratings were 0.65 and 0.64 for infor-
mal and translations respectively, indicating that
adjusting the level of formality had minimal effect
on the adequacy of the result.

Some examples are listed in Table 3. Occa-
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` Examples Comments
-0.4 ... and then he ran away . –
0.4 ... and then he escaped . annotated as more formal

-0.4 anybody hurt ? –
0.4 is someone wounded ? annotated as more formal

-0.4 he shot himself in the middle of it . –
0.4 he committed suicide in the middle of it . annotated as more formal

-0.4 to move things forward . –
0.4 in order to move the process forward. annotated as more formal

-0.4 how do you do ? annotated as more formal
0.4 how are you? –

-0.4 oh , val , you should get the phone . missing words
0.4 oh , val , you should have the phone (of pete) . –

-0.4 i believe you’ve solved the case , lieutenant . additive words
0.4 you solved the case , lieutenant . –

REF right by checkout .
-0.4 right next to the body . incorrect word choice
0.4 right next to the fund . incorrect word choice

Table 3: Examples of variant translations to the same French source segment using low/high output
formality levels (-0.4/0.4) as parameters. In general the variations lie on the direction of formality as
expected, but occasionally translation errors occur.

sionally, the n-best list had no translation hy-
potheses with diverse formality, so the FSMT sys-
tem dropped necessary words, appended inessen-
tial words, or selected improper or even incorrect
words to fit the target formality level. In the case
of ’how do you do’, the translation that was meant
to be more casual was rated more formal. Because
the system measures formality on the lexical level,
it was not able to recognize this idiomatically for-
mal phrase made up of words that are not inher-
ently formal. Despite these issues, most of the out-
put were formality-variant translations of the same
French source segment, as expected.

5 Conclusion

We presented a framework for formality-sensitive
machine translation, where a system produces
translations at a desired formality level. Our evalu-
ation shows the effectiveness of this system in con-
trolling language formality without loss in transla-
tion quality.
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Abstract

Attentional sequence-to-sequence models
have become the new standard for ma-
chine translation, but one challenge of
such models is a significant increase in
training and decoding cost compared to
phrase-based systems. Here, we focus on
efficient decoding, with a goal of achiev-
ing accuracy close the state-of-the-art in
neural machine translation (NMT), while
achieving CPU decoding speed/through-
put close to that of a phrasal decoder.

We approach this problem from two an-
gles: First, we describe several techniques
for speeding up an NMT beam search de-
coder, which obtain a 4.4x speedup over
a very efficient baseline decoder with-
out changing the decoder output. Sec-
ond, we propose a simple but powerful
network architecture which uses an RNN
(GRU/LSTM) layer at bottom, followed
by a series of stacked fully-connected lay-
ers applied at every timestep. This ar-
chitecture achieves similar accuracy to a
deep recurrent model, at a small frac-
tion of the training and decoding cost.
By combining these techniques, our best
system achieves a very competitive ac-
curacy of 38.3 BLEU on WMT English-
French NewsTest2014, while decoding at
100 words/sec on single-threaded CPU.
We believe this is the best published ac-
curacy/speed trade-off of an NMT system.

1 Introduction

Attentional sequence-to-sequence models have
become the new standard for machine transla-
tion over the last two years, and with the un-
precedented improvements in translation accuracy

comes a new set of technical challenges. One of
the biggest challenges is the high training and de-
coding costs of these neural machine translation
(NMT) system, which is often at least an order
of magnitude higher than a phrase-based system
trained on the same data. For instance, phrasal MT
systems were able achieve single-threaded decod-
ing speeds of 100-500 words/sec on decade-old
CPUs (Quirk and Moore, 2007), while Jean et al.
(2015) reported single-threaded decoding speeds
of 8-10 words/sec on a shallow NMT system. Wu
et al. (2016) was able to reach CPU decoding
speeds of 100 words/sec for a deep model, but
used 44 CPU cores to do so. There has been re-
cent work in speeding up decoding by reducing
the search space (Kim and Rush, 2016), but little
in computational improvements.

In this work, we consider a production sce-
nario which requires low-latency, high-throughput
NMT decoding. We focus on CPU-based de-
coders, since GPU/FPGA/ASIC-based decoders
require specialized hardware deployment and lo-
gistical constraints such as batch processing. Ef-
ficient CPU decoders can also be used for on-
device mobile translation. We focus on single-
threaded decoding and single-sentence processing,
since multiple threads can be used to reduce la-
tency but not total throughput.

We approach this problem from two angles: In
Section 4, we describe a number of techniques
for improving the speed of the decoder, and ob-
tain a 4.4x speedup over a highly efficient base-
line. These speedups do not affect decoding re-
sults, so they can be applied universally. In Sec-
tion 5, we describe a simple but powerful network
architecture which uses a single RNN (GRU/L-
STM) layer at the bottom with a large number of
fully-connected (FC) layers on top, and obtains
improvements similar to a deep RNN model at a
fraction of the training and decoding cost.
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2 Data Set

The data set we evaluate on in this work is WMT
English-French NewsTest2014, which has 380M
words of parallel training data and a 3003 sen-
tence test set. The NewsTest2013 set is used
for validation. In order to compare our archi-
tecture to past work, we train a word-based sys-
tem without any data augmentation techniques.
The network architecture is very similar to Bah-
danau et al. (2014), and specific details of layer
size/depth are provided in subsequent sections.
We use an 80k source/target vocab and perform
standard unk-replacement (Jean et al., 2015) on
out-of-vocabulary words. Training is performed
using an in-house toolkit.

3 Baseline Decoder

Our baseline decoder is a standard beam search
decoder (Sutskever et al., 2014) with several
straightforward performance optimizations:

• It is written in pure C++, with no heap allo-
cation done during the core search.

• A candidate list is used to reduce the out-
put softmax from 80k to ~500. We run word
alignment (Brown et al., 1993) on the training
and keep the top 20 context-free translations
for each source word in the test sentence.

• The Intel MKL library is used for matrix mul-
tiplication, as it is the fastest floating point
matrix multiplication library for CPUs.

• Early stopping is performed when the top
partial hypothesis has a log-score of δ = 3.0
worse than the best completed hypothesis.

• Batching of matrix multiplication is applied
when possible. Since each sentence is de-
coded separately, we can only batch over the
hypotheses in the beam as well as the input
vectors on the source side.

4 Decoder Speed Improvements

This section describes a number of speedups that
can be made to a CPU-based attentional sequence-
to-sequence beam decoder. Crucially, none of
these speedups affect the actual mathematical
computation of the decoder, so they can be applied
to any network architecture with a guarantee that
they will not affect the results.1

1Some speedups apply quantization which leads to small
random perturbations, but these change the BLEU score by
less than 0.02.

The model used here is similar to the original
implementation of Bahdanau et al. (2014). The
exact target GRU equation is:

dij = tanh(Wahi−1 + Vaxi)·tanh(Uasj)

αij =
edij

∑
j′ e

dij′

ci =
∑

j

αijsj

ui = σ(Wuhi−1 + Vuxi + Uuci + bu)

ri = σ(Wrhi−1 + Vrxi + Urci + br)

ĥi = σ(ri�(Whhi−1) + Vhxi + Uhci + bh)

hi = uihi−1 + (1− ui)ĥi

Where W∗, V∗, U∗, b∗ are learned parameters, sj
is the hidden vector of the jth source word, hi−1 is
the previous target recurrent vector, xi is the target
input (e.g., embedding of previous word).

We also denote the various hyperparameters: b
for the beam size, r for the recurrent hidden size, e
is the embedding size, |S| for the source sentence
length, and |T | for the target sentence length, |E|
is the vocab size.

4.1 16-Bit Matrix Multiplication
Although CPU-based matrix multiplication li-
braries are highly optimized, they typically only
operate on 32/64-bit floats, even though DNNs can
almost always operate on much lower precision
without degredation of accuracy (Han et al., 2016).
However, low-precision math (1-bit to 7-bit) is dif-
ficult to implement efficiently on the CPU, and
even 8-bit math has limited support in terms of
vectorized (SIMD) instruction sets. Here, we use
16-bit fixed-point integer math, since it has first-
class SIMD support and requires minimal changes
to training. Training is still performed with 32-bit
floats, but we clip the weights to the range [-1.0,
1.0] the relu activation to [0.0, 10.0] to ensure
that all values fit into 16-bits with high precision.
A reference implementation of 16-bit multiplica-
tion in C++/SSE2 is provided in the supplemen-
tary material, with a thorough description of low-
level details.2

A comparison between our 16-bit integer imple-
mentation and Intel MKL’s 32-bit floating point
multiplication is given in Figure 1. We can see
that 16-bit multiplication is 2x-3x faster than 32-
bit multiplication for batch sizes between 2 and 8,
which is the typical range of the beam size b. We

2Included as ancillary file in Arxiv submission, on right
side of submission page.
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are able to achieve greater than a 2x speedup in
certain cases because we pre-process the weight
matrix offline to have optimal memory layout,
which is a capability BLAS libraries do not have.

Figure 1: Single-threaded matrix multiplication using our

16-bit fixed-point vs. Intel MKL’s 32-bit float, averaged over

10,000 multiplications. Both use the AVX2 instruction set.

4.2 Pre-Compute Embeddings
In the first hidden layer on the source and target
sides, xi corresponds to word embeddings. Since
this is a closed set of values that are fixed af-
ter training, the vectors V xi can be pre-computed
(Devlin et al., 2014) for each word in the vocabu-
lary and stored in a lookup table. This can only be
applied to the first hidden layer.

Pre-computation does increase the memory cost
of the model, since we must store r × 3 floats per
word instead of e. However, if we only compute
the k most frequently words (e.g., k = 8, 000),
this reduces the pre-computation memory by 90%
but still results in 95%+ token coverage due to the
Zipfian distribution of language.

4.3 Pre-Compute Attention
The attention context computation in the GRU can
be re-factored as follows:

Uci = U(
∑

j

αijsj) =
∑

j

αij(Usj)

Crucially, the hidden vector representation sj is
only dependent on the source sentence, while aij
is dependent on the target hypothesis. Therefore,
the original computation Uci requires total |T |× b
multiplications per sentence, but the re-factored
versionUsj only requires total |S|multiplications.
The expectation over α must still be computed at
each target timestep, but this is much less expen-
sive than the multiplication by U .

4.4 SSE & Lookup Tables
For the element-wise vector functions use in
the GRU, we can use vectorized instructions
(SSE/AVX) for the add and multiply func-
tions, and lookup tables for sigmoid and tanh.

Reference implementations in C++ are provided in
the supplementary material.

4.5 Merge Recurrent States
In the GRU equation, for the first target hidden
layer, xi represents the previously generated word,
and hi−1 encodes the hypothesis up to two words
before the current word. Therefore, if two par-
tial hypotheses in the beam only differ by the last
emitted word, their hi−1 vectors will be identi-
cal. Thus, we can perform matrix multiplication
Whi−1 only on the unique hi−1 vectors in the
beam at each target timestep. For a beam size of
b = 6, we measured that the ratio of unique hi−1
compared to total hi−1 is approximately 70%, av-
eraged over several language pairs. This can only
be applied to the first target hidden layer.

Words/Sec. Speedup
Type (Single-Threaded) Factor

Baseline 95 1.00x
+ 16-Bit Mult. 248 2.59x
+ Pre-Comp. Emb. 311 3.25x
+ Pre-Comp. Att. 342 3.57x
+ SSE & Lookup 386 4.06x
+ Merge Rec. 418 4.37x

Table 1: Decoding speeds on an Intel E5-2660 CPU, pro-

cessing each sentence independently.

4.6 Speedup Results
Cumulative results from each of the preceding
speedups are presented in Table 1, measured
on WMT English-French NewsTest2014. The
NMT architecture evaluated here uses 3-layer 512-
dimensional bidirectional GRU for the source, and
a 1-layer 1024-dimensional attentional GRU for
the target. Each sentence is decoded indepen-
dently with a beam of 6. Since these speedups
are all mathematical identities excluding quantiza-
tion noise, all outputs achieve 36.2 BLEU and are
99.9%+ identical.

The largest improvement is from 16-bit matrix
multiplication, but all speedups contribute a sig-
nificant amount. Overall, we are able to achieve
a 4.4x speedup over a fast baseline decoder. Al-
though the absolute speed is impressive, the model
only uses one target layer and is several BLEU
behind the SOTA, so the next goal is to maxi-
mize model accuracy while still achieving speeds
greater than some target, such as 100 words/sec.
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Words/Sec
System BLEU (Single-Threaded)

Basic Phrase-Based MT (Schwenk, 2014) 33.1 -
SOTA Phrase-Based MT (Durrani et al., 2014) 37.0 -
RNN Search, 1-Layer Att. GRU, w/ Large Vocab (Jean et al., 2015) 34.6 †
Google NMT, 8-Layer Att. LSTM, Word-Based (Wu et al., 2016) 37.9 [
Google NMT, 8-Layer Att. LSTM, WPM-32k (Wu et al., 2016) 39.0‡ [
Convolutional Seq-to-Seq (Gehring et al., 2017) 40.5 -
Transformer Network (Vaswani et al., 2017) 41.0 -

(S1) Trg: 1024-AttGRU 36.2 418
(S2) Trg: 1024-AttGRU + 1024-GRU 36.8 242
(S3) Trg: 1024-AttGRU + 3-Layer 768-FC-Relu + 1024-FC-Tanh 37.1 271
(S4) Trg: 1024-AttGRU + 7-Layer 768-FC-Relu + 1024-FC-Tanh 37.4 229
(S5) Trg: 1024-AttGRU + 7-Layer 768-FC-Relu + 1024-GRU 37.6 157
(S6) Trg: 1024-AttGRU + 15-Layer 768-FC-Relu + 1024-FC-Tanh 37.3 163
(S7) Src: 8-Layer LSTM, Trg: 1024-AttLSTM + 7-Layer 1024-LSTM§ 37.8 28

(E1) Ensemble of 2x Model (S4) 38.3 102
(E2) Ensemble of 3x Model (S4) 38.5 65

Table 2: Results on WMT English-French NewsTest2014. Models (S1)-(S6) use a 3-layer 512-dim bidirectional GRU for

the source side. The CPU is an Intel Haswell E5-2660. † Reported as ~8 words/sec on one CPU core. [ Reported as ~100

words/sec, parallelized across 44 CPU cores. § Reproduction of Google NMT, Word-Based.

5 Model Improvements

In NMT, like in many other deep learning tasks,
accuracy can be greatly improved by adding more
hidden layers, but training and decoding time in-
crease significantly (Luong et al., 2014; Zhou
et al., 2016; Wu et al., 2016). Several past
works have noted that convolutional neural net-
works (CNNs) are significantly less expensive
than RNNs, and replaced the source and/or tar-
get side with a CNN-based architecture (Gehring
et al., 2016; Kalchbrenner et al., 2016). However,
these works have found it is difficult to replace the
target side of the model with CNN layers while
maintaining high accuracy. The use of a recurrent
target is especially important to track attentional
coverage and ensure fluency.

Here, we propose a mixed model which uses
an RNN layer at the bottom to both capture full-
sentence context and perform attention, followed
by a series of fully-connected (FC) layers ap-
plied on top at each timestep. The FC layers
can be interpreted as a CNN without overlapping
stride. Since each FC layer consists of a single ma-
trix multiplication, it is 1/6th the cost of a GRU
(or 1/8th an LSTM). Additionally, several of the
speedups from Section 4 can only be applied to the
first layer, so there is strong incentive to only use
a single target RNN.

To avoid vanishing gradients, we use ResNet-

style skip connections (He et al., 2016). These al-
low very deep models to be trained from scratch
and do not require any additional matrix multi-
plications, unlike highway networks (Srivastava
et al., 2015). With 5 intermediate FC layers, target
timestep i is computed as:

hBi = AttGRU(hBi−1, xi, S)

h1i = relu(W 1hBi )

h2i = relu(W 2h1i )

h3i = relu(W 3h2i + h1i )

h4i = relu(W 4h3i )

h5i = relu(W 5h4i + h3i )

hTi = tanh(WTh5i ) or GRU(hTi−1, h
5
i )

yi = softmax(V hTi )

Where xi is the target input embedding, S is the
set of source hidden vectors used for attention, and
V is the target output vocabulary matrix. The su-
perscripts hB and hT simply denote the “bottom”
and “top” hidden layers, while the numbered lay-
ers hn represent the intermediate fully-connected
layers.

We follow He et al. (2016) and only use skip
connections on every other FC layer, but do not
use batch normalization. The same pattern can be
used for more FC layers, and the FC layers can be
a different size than the bottom or top hidden lay-
ers. The top hidden layer can be an RNN or an
FC layer. It is important to use relu activations
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(opposed to tanh) for ResNet-style skip connec-
tions. The GRUs still use tanh.

5.1 Model Results
Results using the mixed RNN+FC architecture are
shown in Table 2, using all speedups. We have
found that the benefit of using RNN+FC layers on
the source is minimal, so we only perform ablation
on the target. For the source, we use a 3-layer 512-
dim bidi GRU in all models (S1)-(S6).

Model (S1) and (S2) are one and two layer base-
lines. Model (S4), which uses 7 intermediate FC
layers, has similar decoding cost to (S2) while
doubling the improvement over (S1) to 1.2 BLEU.
We see minimal benefit from using a GRU on the
top layer (S5) or using more FC layers (S6). In
(E1) and (E2) we present 2 and 3 model ensembles
of (S4), trained from scratch with different random
seeds. We can see that the 2-model ensemble im-
proves results by 0.9 BLEU, but the 3-model en-
semble has little additional improvment. Although
not presented here, we have found these improve-
ment from decoder speedups and RNN+FC to be
consistent across many language pairs.

All together, we were able to achieve a BLEU
score of 38.3 while decoding at 100 words/sec on
a single CPU core. As a point of comparison, Wu
et al. (2016) achieves similar BLEU scores on this
test set (37.9 to 38.9) and reports a CPU decoding
speed of ~100 words/sec (0.2226 sents/sec), but
parallelizes this decoding across 44 CPU cores.
System (S7), which is our re-implementation of
Wu et al. (2016), decodes at 28 words/sec on one
CPU core, using all of the speedups described in
Section 4. Zhou et al. (2016) has a similar com-
putational cost to (S7), but we were not able to
replicate those results in terms of accuracy.

Although we are comparing an ensemble to a
single model, we can see ensemble (E1) is over 3x
faster to decode than the single model (S7). Addi-
tionally, we have found that model (S4) is roughly
3x faster to train than (S7) using the same GPU re-
sources, so (E1) is also 1.5x faster to train than a
single model (S7).
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Abstract

In translation, considering the document
as a whole can help to resolve ambiguities
and inconsistencies. In this paper, we pro-
pose a cross-sentence context-aware ap-
proach and investigate the influence of his-
torical contextual information on the per-
formance of neural machine translation
(NMT). First, this history is summarized
in a hierarchical way. We then integrate
the historical representation into NMT in
two strategies: 1) a warm-start of en-
coder and decoder states, and 2) an aux-
iliary context source for updating decoder
states. Experimental results on a large
Chinese-English translation task show that
our approach significantly improves upon
a strong attention-based NMT system by
up to +2.1 BLEU points.

1 Introduction

Neural machine translation (NMT) has been
rapidly developed in recent years (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Bah-
danau et al., 2015; Tu et al., 2016). The encoder-
decoder architecture is widely employed, in which
the encoder summarizes the source sentence into
a vector representation, and the decoder generates
the target sentence word by word from the vector
representation. Using the encoder-decoder frame-
work as well as gating and attention techniques,
it has been shown that the performance of NMT
has surpassed the performance of traditional sta-
tistical machine translation (SMT) on various lan-
guage pairs (Luong et al., 2015).

The continuous vector representation of a sym-
bol encodes multiple dimensions of similarity,
equivalent to encoding more than one meaning of

∗Corresponding Author: Zhaopeng Tu

a word. Consequently, NMT needs to spend a
substantial amount of its capacity in disambiguat-
ing source and target words based on the context
defined by a source sentence (Choi et al., 2016).
Consistency is another critical issue in document-
level translation, where a repeated term should
keep the same translation throughout the whole
document (Xiao et al., 2011; Carpuat and Simard,
2012). Nevertheless, current NMT models still
process a documents by translating each sentence
alone, suffering from inconsistency and ambigu-
ity arising from a single source sentence. These
problems are difficult to alleviate using only lim-
ited intra-sentence context.

The cross-sentence context, or global context,
has proven helpful to better capture the meaning
or intention in sequential tasks such as query sug-
gestion (Sordoni et al., 2015) and dialogue model-
ing (Vinyals and Le, 2015; Serban et al., 2016).
The leverage of global context for NMT, how-
ever, has received relatively little attention from
the research community.1 In this paper, we pro-
pose a cross-sentence context-aware NMT model,
which considers the influence of previous source
sentences in the same document.2

Specifically, we employ a hierarchy of Recur-
rent Neural Networks (RNNs) to summarize the
cross-sentence context from source-side previous
sentences, which deploys an additional document-
level RNN on top of the sentence-level RNN en-
coder (Sordoni et al., 2015). After obtaining the
global context, we design several strategies to inte-
grate it into NMT to translate the current sentence:

• Initialization, that uses the history represen-
1To the best of our knowledge, our work and Jean et al.

(2017) are two independently early attempts to model cross-
sentence context for NMT.

2In our preliminary experiments, considering target-side
history inversely harms translation performance, since it suf-
fers from serious error propagation problems.
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tation as the initial state of the encoder, de-
coder, or both;

• Auxiliary Context, that uses the history rep-
resentation as static cross-sentence context,
which works together with the dynamic intra-
sentence context produced by an attention
model, to good effect.

• Gating Auxiliary Context, that adds a gate to
Auxiliary Context, which decides the amount
of global context used in generating the next
target word at each step of decoding.

Experimental results show that the proposed ini-
tialization and auxiliary context (w/ or w/o gat-
ing) mechanisms significantly improve translation
performance individually, and combining them
achieves further improvement.

2 Approach

Given a source sentence xm to be translated,
we consider its K previous sentences in the
same document as cross-sentence context C =
{xm−K , ...,xm−1}. In this section, we first model
C, which is then integrated into NMT.

…

sentence RNN

xm-K xm-1

document RNN

Figure 1: Summarizing global context with a hier-
archical RNN (xk is the k-th source sentence).

2.1 Summarizing Global Context
As shown in Figure 1, we summarize the represen-
tation of C in a hierarchical way:

Sentence RNN For a sentence xk in C, the
sentence RNN reads the corresponding words
{x1,k, ..., xn,k, . . . , xN,k} sequentially and up-
dates its hidden state:

hn,k = f(hn−1,k, xn,k) (1)

where f(·) is an activation function, and hn,k is the
hidden state at time n. The last state hN,k stores
order-sensitive information about all the words in
xk, which is used to represent the summary of the
whole sentence, i.e. Sk ≡ hN,k. After processing

each sentence in C, we can obtain all sentence-
level representations, which will be fed into docu-
ment RNN.

Document RNN It takes as input the se-
quence of the above sentence-level representations
{S1, ..., Sk, ..., SK} and computes the hidden state
as:

hk = f(hk−1, Sk) (2)

where hk is the recurrent state at time k, which
summarizes the previous sentences that have been
processed to the position k. Similarly, we use the
last hidden state to represent the summary of the
global context, i.e. D ≡ hK .

2.2 Integrating Global Context into NMT

We propose three strategies to integrate the history
representation D into NMT:

Initialization We useD to initialize either NMT
encoder, NMT decoder or both. For encoder, we
useD as the initialization state rather than all-zero
states as in the standard NMT (Bahdanau et al.,
2015). For decoder, we rewrite the calculation
of the initial hidden state s0 = tanh(WshN ) as
s0 = tanh(WshN +WDD) where hN is the last
hidden state in encoder and {Ws,WD} are the cor-
responding weight metrices.

Auxiliary Context In standard NMT, as shown
in Figure 2 (a), the decoder hidden state for time i
is computed by

si = f(si−1, yi−1, ci) (3)

where yi−1 is the most recently generated target
word, and ci is the intra-sentence context sum-
marized by NMT encoder for time i. As shown
in Figure 2 (b), Auxiliary Context method adds
the representation of cross-sentence context D to
jointly update the decoding state si:

si = f(si−1, yi−1, ci, D) (4)

In this strategy, D serves as an auxiliary informa-
tion source to better capture the meaning of the
source sentence. Now the gated NMT decoder has
four inputs rather than the original three ones. The
concatenation [ci, D], which embeds both intra-
and cross-sentence contexts, can be fed to the de-
coder as a single representation. We only need
to modify the size of the corresponding parame-
ter matrix for least modification effort.
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Figure 2: Architectures of NMT with auxiliary context integrations. act. is the decoder activation func-
tion, and σ is a sigmoid function.

Gating Auxiliary Context The starting point
for this strategy is an observation: the need
for information from the global context differs
from step to step during generation of the target
words. For example, global context is more in de-
mand when generating target words for ambiguous
source words, while less by others. To this end, we
extend auxiliary context strategy by introducing a
context gate (Tu et al., 2017a) to dynamically con-
trol the amount of information flowing from the
auxiliary global context at each decoding step, as
shown in Figure 2 (c).

Intuitively, at each decoding step i, the context
gate looks at decoding environment (i.e., si, yi−1,
and ci), and outputs a number between 0 and 1 for
each element in D, where 1 denotes “completely
transferring this” while 0 denotes “completely ig-
noring this”. The global context vector D is then
processed with an element-wise multiplication be-
fore being fed to the decoder activation layer.

Formally, the context gate consists of a sigmoid
neural network layer and an element-wise mul-
tiplication operation. It assigns an element-wise
weight to D, computed by

zi = σ(Uzsi−1 +Wzyi−1 + Czci) (5)

Here σ(·) is a logistic sigmoid function, and
{Wz, Uz, Cz} are the weight matrices, which are
trained to learn when to exploit global context
to maximize the overall translation performance.
Note that zi has the same dimensionality asD, and
thus each element in the global context vector has
its own weight. Accordingly, the decoder hidden
state is updated by

si = f(si−1, yi−1, ci, zi ⊗D) (6)

3 Experiments

3.1 Setup

We carried out experiments on Chinese–English
translation task. As the document information is
necessary when selecting the previous sentences,
we collect all LDC corpora that contain document
boundary. The training corpus consists of 1M
sentence pairs extracted from LDC corpora3 with
25.4M Chinese words and 32.4M English words.
We chose the NIST05 (MT05) as our development
set, and NIST06 (MT06) and NIST08 (MT08) as
test sets. We used case-insensitive BLEU score
(Papineni et al., 2002) as our evaluation metric,
and sign-test (Collins et al., 2005) for calculating
statistical significance.

We implemented our approach on top of an
open source attention-based NMT model, Nema-
tus4 (Sennrich and Haddow, 2016; Sennrich et al.,
2017). We limited the source and target vocab-
ularies to the most frequent 35K words in Chi-
nese and English, covering approximately 97.1%
and 99.4% of the data in the two languages re-
spectively. We trained each model on sentences
of length up to 80 words in the training data with
early stopping. The word embedding dimension
was 600, the hidden layer size was 1000, and the
batch size was 80. All our models considered the
previous three sentences (i.e., K = 3) as cross-
sentence context.

3The LDC corpora indexes are: 2003E07, 2003E14,
2004T07, 2005E83, 2005T06, 2006E24, 2006E34, 2006E85,
2006E92, 2007E87, 2007E101, 2007T09, 2008E40,
2008E56, 2009E16, 2009E95.

4Available at https://github.com/EdinburghNLP/nematus.
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# System MT05 MT06 MT08 Ave. 4
1 MOSES 33.08 32.69 23.78 28.24 –
2 NEMATUS 34.35 35.75 25.39 30.57 –
3 +Initenc 36.05 36.44† 26.65† 31.55 +0.98
4 +Initdec 36.27 36.69† 27.11† 31.90 +1.33
5 +Initenc+dec 36.34 36.82† 27.18† 32.00 +1.43
6 +Auxi 35.26 36.47† 26.12† 31.30 +0.73
7 +Gating Auxi 36.64 37.63† 26.85† 32.24 +1.67
8 +Initenc+dec+Gating Auxi 36.89 37.76† 27.57† 32.67 +2.10

Table 1: Evaluation of translation quality. “Init” denotes Initialization of encoder (“enc”), decoder
(“dec”), or both (“enc+dec”), and “Auxi” denotes Auxiliary Context. “†” indicates statistically significant
difference (P < 0.01) from the baseline NEMATUS.

3.2 Results

Table 1 shows the translation performance in terms
of BLEU score. Clearly, the proposed approaches
significantly outperforms baseline in all cases.

Baseline (Rows 1-2) NEMATUS significantly
outperforms Moses – a commonly used phrase-
based SMT system (Koehn et al., 2007), by 2.3
BLEU points on average, indicating that it is a
strong NMT baseline system. It is consistent with
the results in (Tu et al., 2017b) (i.e., 26.93 vs.
29.41) on training corpora of similar scale.

Initialization Strategy (Rows 3-5) Initenc and
Initdec improve translation performance by around
+1.0 and +1.3 BLEU points individually, prov-
ing the effectiveness of warm-start with cross-
sentence context. Combining them achieves a fur-
ther improvement.

Auxiliary Context Strategies (Rows 6-7) The
gating auxiliary context strategy achieves a sig-
nificant improvement of around +1.0 BLEU point
over its non-gating counterpart. This shows that,
by acting as a critic, the introduced context gate
learns to distinguish the different needs of the
global context for generating target words.

Combining (Row 8) Finally, we combine the
best variants from the initialization and auxiliary
context strategies, and achieve the best perfor-
mance, improving upon NEMATUS by +2.1 BLEU
points. This indicates the two types of strategies
are complementary to each other.

3.3 Analysis

We first investigate to what extent the mis-
translated errors are fixed by the proposed system.

We randomly select 15 documents (about 60 sen-
tences) from the test sets. As shown in Table 2,
we count how many related errors: i) are made by
NMT (Total), and ii) fixed by our method (Fixed);
as well as iii) newly generated (New). About
Ambiguity, while we found that 38 words/phrases
were translated into incorrect equivalents, 76% of
them are corrected by our model. Similarly, we
solved 75% of the Inconsistency errors including
lexical, tense and definiteness (definite or indefi-
nite articles) cases. However, we also observe that
our system brings relative 21% new errors.

Errors Ambiguity Inconsistency All
Total 38 32 70
Fixed 29 24 53
New 7 8 15

Table 2: Translation error statistics.

Hist. 这不等于明着提前告诉贪官们
赶紧转移罪证吗 ?

Input 能否遏制和震慑腐官 ?

Ref. Can it inhibit and deter corrupt offi-
cials?

NMT Can we contain and deter the enemy?

Our Can it contain and deter the corrupt
officials?

Table 3: Example translations. We italicize some
mis-translated errors and highlight the correct
ones in bold.

Case Study Table 3 shows an example. The
word “腐官” (corrupt officials) is mis-translated
as “enemy” by the baseline system. With the help
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of the similar word “贪官” in the previous sen-
tence, our approach successfully correct this mis-
take. This demonstrates that cross-sentence con-
text indeed helps resolve certain ambiguities.

4 Related Work

While our approach is built on top of hierarchi-
cal recurrent encoder-decoder (HRED) (Sordoni
et al., 2015), there are several key differences
which reflect how we have generalized from the
original model. Sordoni et al. (2015) use HRED to
summarize a single representation from both the
current and previous sentences, which limits it-
self to (1) it is only applicable to encoder-decoder
framework without attention model, (2) the rep-
resentation can only be used to initialize decoder.
In contrast, we use HRED to summarize the pre-
vious sentences alone, which provides additional
cross-sentence context for NMT. Our approach is
more flexible at (1) it is applicable to any encoder-
decoder frameworks (e.g., with attention), (2) the
cross-sentence context can be used to initialize ei-
ther encoder, decoder or both.

While both our approach and Serban et al.
(2016) use Auxiliary Context mechanism for in-
corporating cross-sentence context, there are two
main differences: 1) we have separate parameters
to better control the effects of the cross- and intra-
sentence contexts, while they only have one pa-
rameter matrix to manage the single representa-
tion that encodes both contexts; 2) based on the
intuition that not every target word generation re-
quires equivalent cross-sentence context, we intro-
duce a context gate (Tu et al., 2017a) to control the
amount of information from it, while they don’t.

At the same time, some researchers propose to
use an additional set of an encoder and attention
to model more information. For example, Jean
et al. (2017) use it to encode and select part of
the previous source sentence for generating each
target word. Calixto et al. (2017) utilize global
image features extracted using a pre-trained con-
volutional neural network and incorporate them in
NMT. As additional attention leads to more com-
putational cost, they can only incorporate limited
information such as single preceding sentence in
Jean et al. (2017). However, our architecture is
free to this limitation, thus we use multiple pre-
ceding sentences (e.g. K = 3) in our experiments.

Our work is also related to multi-source (Zoph
and Knight, 2016) and multi-target NMT (Dong

et al., 2015), which incorporate additional source
or target languages. They investigate one-to-
many or many-to-one languages translation tasks
by integrating additional encoders or decoders
into encoder-decoder framework, and their exper-
iments show promising results.

5 Conclusion and Future Work

We proposed two complementary approaches to
integrating cross-sentence context: 1) a warm-
start of encoder and decoder with global con-
text representation, and 2) cross-sentence context
serves as an auxiliary information source for up-
dating decoder states, in which an introduced con-
text gate plays an important role. We quantita-
tively and qualitatively demonstrated that the pre-
sented model significantly outperforms a strong
attention-based NMT baseline system. We release
the code for these experiments at https://
www.github.com/tuzhaopeng/LC-NMT.

Our models benefit from larger contexts, and
would be possibly further enhanced by other doc-
ument level information, such as discourse rela-
tions. We propose to study such models for full
length documents with more linguistic features in
future work.
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Abstract

Training a POS tagging model with cross-
lingual transfer learning usually requires
linguistic knowledge and resources about
the relation between the source language
and the target language. In this pa-
per, we introduce a cross-lingual transfer
learning model for POS tagging without
ancillary resources such as parallel cor-
pora. The proposed cross-lingual model
utilizes a common BLSTM that enables
knowledge transfer from other languages,
and private BLSTMs for language-specific
representations. The cross-lingual model
is trained with language-adversarial train-
ing and bidirectional language modeling
as auxiliary objectives to better represent
language-general information while not
losing the information about a specific tar-
get language. Evaluating on POS datasets
from 14 languages in the Universal De-
pendencies corpus, we show that the pro-
posed transfer learning model improves
the POS tagging performance of the tar-
get languages without exploiting any lin-
guistic knowledge between the source lan-
guage and the target language.

1 Introduction

Bidirectional Long Short-Term Memory
(BLSTM) based models (Graves and Schmid-
huber, 2005), along with word embeddings and
character embeddings, have shown competitive
performance on Part-of-Speech (POS) tagging
given sufficient amount of training examples
(Ling et al., 2015; Lample et al., 2016; Plank
et al., 2016; Yang et al., 2017).

Given insufficient training examples, we can
improve the POS tagging performance by cross-

lingual POS tagging, which exploits affluent POS
tagging corpora from other source languages. This
approach usually requires linguistic knowledge or
resources about the relation between the source
language and the target language such as paral-
lel corpora (Täckström et al., 2013; Duong et al.,
2013; Kim et al., 2015a; Zhang et al., 2016), mor-
phological analyses (Hana et al., 2004), dictionar-
ies (Wisniewski et al., 2014), and gaze features
(Barrett et al., 2016).

Given no linguistic resources between the
source language and the target language, transfer
learning methods can be utilized instead. Trans-
fer learning for cross-lingual cases is a type of
transductive transfer learning, where the input do-
mains of the source and the target are different
(Pan and Yang, 2010) since each language has its
own vocabulary space. When the input space is
the same, lower layers of hierarchical models can
be shared for knowledge transfer (Collobert et al.,
2011; Kim et al., 2015b; Yang et al., 2017), but
that approach is not directly applicable when the
input spaces differ.

Yang et al. (2017) used shared character em-
beddings for different languages as a cross-lingual
transfer method while using different word em-
beddings for different languages. Although the ap-
proach showed improved performance on Named
Entity Recognition, it is limited to character-level
representation transfer and it is not applicable
for knowledge transfer between languages without
overlapped alphabets.

In this work, we introduce a cross-lingual trans-
fer learning model for POS tagging requiring no
cross-lingual resources, where knowledge transfer
is made in the BLSTM layers on top of word em-
beddings and character embeddings. Inspired by
Kim et al. (2016)’s multi-task slot-filling model,
our model utilizes a common BLSTM for repre-
senting language-generic information, which al-
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Figure 1: Model architecture: blue modules share parameters
for all the languages and red modules have different param-
eters for different languages. wi and ei denote the i-th word
vector and the i-th character vector composition, respectively.
hcfi , hcbi , hpfi , and hpbi denote the i-th hidden outputs of the
forward common LSTM, the backward common LSTM, the
forward private LSTM, and the backward private LSTM, re-
spectively. hci and hpi denote the concatenated output of the
common BLSTM and the private BLSTM, respectively. Vio-
let circles represent target labels that are predicted with differ-
ent parameters for different languages, where the inputs are
output summation of the common BLSTM and the private
BLSTM. The model is trained with three objectives denoted
with red boxes.

lows knowledge transfer from other languages,
and private BLSTMs for representing language-
specific information. The common BLSTM is
additionally encouraged to be language-agnostic
with language-adversarial training (Chen et al.,
2016) so that the language-general representations
to be more compatible among different languages.

Evaluating on POS datasets from 14 different
target languages with English as the source lan-
guage in the Universal Dependencies corpus 1.4
(Nivre et al., 2016), the proposed model showed
significantly better performance when the source
language and the target language are in the same
language family, and competitive performance
when the language families are different.

2 Model

Cross-Lingual Training Figure 1 shows the
overall architecture of the proposed model. The
baseline POS tagging model is similar to Plank
et al. (2016)’s model, and it corresponds to having
only word+char embeddings, common BLSTM,
and Softmax Output in Figure 1. Given an input

word sequence, a BLSTM is used for the character
sequence of each word, where the outputs of the
ends of the character sequences from the forward
LSTM and the backward LSTM are concatenated
to the word vector of the current word to supple-
ment the word representation. These serve as an
input to a BLSTM, and an output layer are used
for POS tag prediction.

For the cross-lingual transfer learning, the char-
acter embedding, the BLSTM with the character
embedding (Yang et al., 2017),1 and the common
BLSTM are shared for all the given languages
while word embeddings and private BLSTMs have
different parameters for different languages.

The outputs of the common BLSTM and
the private BLSTM of the current language are
summed to be used as the input to the softmax
layer to predict the POS tags of given word se-
quences. The loss function of the POS tagging can
be formulate as:

Lp = −
S∑

i=1

N∑

j=1

pi,j log (p̂i,j) , (1)

where S is the number of sentences in the current
minibatch,N is the number of words in the current
sentence, pi,j is the label of the j-th tag of the i-th
sentence in the minibatch, and p̂i,j is the predicted
tag. In addition to this main objective, two more
objectives for improving the transfer learning are
described in the following subsections.

Language-Adversarial Training We encour-
age the outputs of the common BLSTM to be
language-agnostic by using language-adversarial
training (Chen et al., 2016) inspired by domain-
adversarial training (Ganin et al., 2016; Bousmalis
et al., 2016). First, we encode a BLSTM output
sequence as a single vector using a CNN/MaxPool
encoder, which is implemented the same as a CNN
for text classification (Kim, 2014). The encoder is
with three convolution filters whose sizes are 3, 4,
and 5. For each filter, we pass the BLSTM output
sequence as the input sequence and obtain a single
vector from the filter output by using max pool-
ing, and then tanh activation function is used for
transforming the vector. Then, the vector outputs
of the three filters are concatenated and forwarded
to the language discriminator through the gradient
reversal layer. The discriminator is implemented

1We also tried isolated character-level modules but the
overall performance was worse.
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as a fully-connected neural network with a single
hidden layer, whose activation function is Leaky
ReLU (Maas et al., 2013), where we multiply 0.2
to negative input values as the outputs.

Since the gradient reversal layer is below the
language classifier, the gradients minimizing lan-
guage classification errors are passed back with
opposed sign to the sentence encoder, which ad-
versarially encourages the sentence encoder to be
language-agnostic. The loss function of the lan-
guage classifier is formulated as:

La = −
S∑

i=1

li log l̂i, (2)

where S is the number of sentences, li is the lan-
guage of the i-th sentence, and l̂i is the softmax
output of the tagging. Note that though the lan-
guage classifier is optimized to minimize the lan-
guage classification error, the gradient from the
language classifier is negated so that the bottom
layers are trained to be language-agnostic.

Bidirectional Language Modeling Rei (2017)
showed the effectiveness of the bidirectional lan-
guage modeling objective, where each time step of
the forward LSTM outputs predicts the word of the
next time step, and each of the backward LSTM
outputs predicts the previous word. For example,
if the current sentence is “I am happy”, the forward
LSTM predicts “am happy <eos>” and the back-
ward LSTM predicts “<bos> I am”. This objec-
tive encourages the BLSTM layers and the embed-
ding layers to learn linguistically general-purpose
representations, which are also useful for specific
downstream tasks (Rei, 2017). We adopted the
bidirectional language modeling objective, where
the sum of the common BLSTM and the private
BLSTM is used as the input to the language mod-
eling module. It can be formulated as:

Ll = −
S∑

i=1

N∑

j=1

log (P (wj+1|fj))+

log (P (wj−1|bj)) ,
(3)

where fj and bj represent the j-th outputs of the
forward direction and the backward direction, re-
spectively, given the output sum of the common
BLSTM and the private BLSTM.

All the three loss functions are added to be op-
timized altogether as:

L = ws (Lp + λLa + λLl) , (4)

where λ is gradually increased from 0 to 1 as
epoch increases so that the model is stably trained
with auxiliary objectives (Ganin et al., 2016). ws
is used to give different weights to the source lan-
guage and the target language. Since the source
language has a larger train set and we are focusing
on improving the performance of the target lan-
guage, ws is set to 1 when training the target lan-
guage. For the source language, instead, it is set as
the size of the target train set divided by the size
of the source train set.

3 Experiments

For the evaluation, we used the POS datasets from
14 different languages in Universal Dependencies
corpus 1.4 (Nivre et al., 2016). We used English
as the source language, which is with 12,543 train-
ing sentences.2 We chose datasets with 1k to 14k
training sentences. The number of tag labels dif-
fers for each language from 15 to 18 though most
of them are overlapped within the languages.

Table 1 shows the POS tagging accuracies of
different transfer learning models when we limited
the number of training sentences of the target lan-
guages to be the same as 1,280 for fair comparison
among different languages. The remainder train-
ing examples of the target languages are still used
for both language-adversarial training and bidirec-
tional language modeling since the objectives do
not require tag labels. Training with only the train
sets in the target languages (c) showed 91.61% on
average. When bidirectional language modeling
objective is used (c, l), the accuracies were signifi-
cantly increased to 92.82% on average. Therefore,
we used the bidirectional language modeling for
all the transfer learning evaluations.

With transfer learning, the three cases of us-
ing only the common BLSTM (c), using only
the private BLSTMs (p), and using both (c, p)
were evaluated. They showed better average ac-
curacies than target only cases, but they showed
mixed results. However, our proposed model
(c, p, l + a), which utilizes both the common
BLSTM with language-adversarial training and
the private BLSTMs, showed the highest average
score, 93.26%. For all the Germanic languages,
where the source language also belongs to, the
accuracies are significantly higher than those of

2The accuracies of English POS tagging are 94.01 and
94.33 for models without the bidirectional language model-
ing and with it, respectively.
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Target only Source (English)→ Target
Language Family Language c c,l c,l p,l c,p,l c,l+a c,p,l+a

Germanic

Swedish 93.26 94.31 94.36 94.39 94.51 94.38 94.63
Danish 92.13 93.41 93.34 93.76 94.05 93.74 94.26
Dutch 83.24 84.73 85.20 84.92 84.85 84.99 85.83
German 89.27 90.69 90.06 90.40 90.01 90.14 90.71
Avg 89.47 90.78 90.74 90.87 90.86 90.82 91.36

Slavic

Slovenian 93.06 93.79 93.83 94.06 94.20 93.93 94.06
Polish 91.30 91.30 91.69 92.11 91.86 91.77 92.11
Slovak 86.53 89.56 90.11 89.88 89.98 90.40 90.01
Bulgarian 93.45 95.27 95.33 95.50 95.52 95.25 95.65
Avg 91.09 92.48 92.74 92.89 92.89 92.84 92.95

Romance

Romanian 93.20 94.09 94.22 94.17 94.05 93.91 94.20
Portuguese 94.23 95.18 95.42 95.15 95.55 95.36 95.51
Italian 93.80 95.95 95.79 95.61 95.84 95.70 95.92
Spanish 91.94 93.34 93.34 93.31 93.29 92.94 93.44
Avg 93.29 94.64 94.69 94.56 94.68 94.48 94.77

Indo-Iranian Persian 93.91 94.63 94.68 94.79 94.78 94.49 94.83
Uralic Hungarian 93.20 93.27 94.40 94.66 94.69 94.29 94.45

Total Avg 91.61 92.82 92.98 93.05 93.08 92.95 93.26

Table 1: POS tagging accuracies (%) when setting the numbers of the tag-labeled training examples of the target languages
to be the same as 1,280 (The remaining training examples are still used for the language modeling and the adversarial training.)
c: using common BLSTM, p: using private BLSTMs, l: bidirectional language modeling objectives, a: language-adversarial
training. (Underlined scores denote that the differences between the highest score of the other models and those scores are
statistically insignificant with McNemar’s χ2 test with p-value < 0.05.)

other transfer learning models. For the languages
belonging to Slavic, Romance, or Indo-Iranian,
our model shows competitive performance with
the highest average accuracies among the com-
pared models. Since languages in the same fam-
ily are more likely to be similar and compatible,
it is expected that the gain from the knowledge
transfer to the languages in the same family to be
higher than transferring to the languages in dif-
ferent families, which was shown in the results.
This shows that utilizing both language-general
representations that are encouraged to be more
language-agnostic and language-specific represen-
tations effectively helps improve the POS tagging
performance with transfer learning.

Table 2 shows the results when using 320 tag-
labeled training sentences. In this case, transfer
learning methods still show better accuracies than
target-only approaches on average. However, the
performance gain is weakened compared to us-
ing 1,280 labeled training sentences and there are
some mixed results. In several cases, just utiliz-
ing private BLSTMs without the common BLSTM
showed better accuracies than utilizing the com-
mon BLSTM.

When training with only 32 tag-labeled sen-
tences, which is an extremely low-resourced set-
ting, transfer learning methods still showed bet-
ter accuracies than target-only methods on aver-
age. However, not using the common BLSTM

in transfer learning models showed better perfor-
mance than using it on average.3 The main rea-
son would be that we are not given a sufficient
number of labeled training sentences to train both
the common BLSTM and the private BLSTMs. In
this case, just having private BLSTMs without the
common BLSTM can show better performance.
We also evaluated the opposite cases, which use all
the tag-labeled training sentences in the target lan-
guages, and they showed mixed results. For exam-
ple, the accuracy of German with the target only
model is 93.31% while that of the proposed model
is 93.04%. This is expected since transfer learning
is effective when the target train set is small.

An extension of this work is utilizing multiple
languages as the source languages. Since we have
four languages for each of Germanic, Slavic, and
Romance language families, we evaluated the per-
formance of those languages using the other lan-
guages in the same families as the source lan-
guages expecting that languages in the same lan-
guage family are more likely to be helpful each
other. For the efficiency, we performed multi-task
learning for multiple languages rather than differ-
entiating the targets from sources. When we tried
to use 1,280, 320, and 32 tag-labeled training sen-
tences for each language in the multi-source set-
tings, the results showed noticeably better per-

3The results in detail are shown in the first authors disser-
tation Kim (2017).
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Target only Source (English)→ Target
Language Family Language p p,l p,l c,l p,c,l c,l+a p,c,l+a

Germanic

Swedish 87.43 90.49 91.02 90.45 90.48 90.72 90.70
Danish 86.42 90.00 90.74 90.69 90.02 90.16 90.79
Dutch 76.76 82.24 82.61 82.46 82.10 82.58 82.15
German 86.25 88.95 89.10 88.69 88.93 88.08 89.68
Avg 84.22 87.92 88.37 88.07 87.88 87.88 88.33

Slavic

Slovenian 87.02 89.97 90.29 90.00 90.32 89.58 90.59
Polish 82.10 84.13 85.21 85.41 85.30 85.46 85.50
Slovak 76.22 81.03 82.95 83.40 82.68 82.70 83.17
Bulgarian 87.32 92.81 92.68 92.07 92.30 92.20 92.39
Avg 83.16 86.98 87.78 87.72 87.65 87.48 87.91

Romance

Romanian 88.67 91.44 91.44 90.87 91.22 90.85 91.37
Portuguese 90.66 93.73 93.55 93.90 93.81 93.58 94.20
Italian 89.78 93.99 93.82 93.27 93.46 93.51 94.00
Spanish 85.91 91.07 90.59 90.59 91.07 90.17 90.88
Avg 88.76 92.56 92.35 92.16 92.39 92.03 92.61

Indo-Iranian Persian 90.64 92.40 91.98 91.97 92.12 92.18 91.83
Uralic Hungarian 89.14 90.65 91.45 91.48 90.91 91.52 90.72

Total Avg 86.02 89.49 89.82 89.66 89.62 89.52 89.86

Table 2: POS tagging accuracies (%) with 320 tag-labeled training examples for each target language. All the training
examples are still used for the other objectives.

formance than the results of using English as a
single source language. Considering that utiliz-
ing 1,280*3=3,840, 320*3=960, or 32*3=96 tag
labels from three other languages showed better
results than using 12,543 English tag labels as
the source, we can see that the knowledge trans-
fer from multiple languages can be more help-
ful than that from single resource-rich source lan-
guage. We also tried to use Wasserstein distance
(Arjovsky et al., 2017) for the adversarial training
in the multi-source settings, but there were no sig-
nificant differences on average.4

Implementation Details All the models were
optimized using ADAM (Kingma and Ba, 2015)5

with minibatch size 32 for total 100 epochs and
we picked the parameters showing the best accu-
racy on the development set to report the score on
the test set. The dimensionalites of all the BLSTM
related layers follow Plank et al. (2016)’s model.
Each word vector is 128 dimensional and each
character vector is 100 dimensional. They are ran-
domly initialized with Xavier initialization (Glorot
and Bengio, 2010). For stable training, we use gra-
dient clipping, where the threshold is set to 5. The
dimensionality of each hidden output of LSTMs
is 100, and the hidden outputs of both forward
LSTM and backward LSTM are concatenated,
thereby the output of each BLSTM for each time
step is 200. Therefore, the input to the common
BLSTM and the private BLSTM is 128+200=328

4The extended work in detail are shown in Kim (2017).
5learning rate=0.001, β1 = 0.9, β2 = 0.999, ε = 1e− 8.

dimensional. The inputs and the outputs of the
BLSTMs are regularized with dropout rate 0.5
(Pham et al., 2014). For the consistent dropout
usages, we let the dropout masks to be identical
for all the time steps of each sentence (Gal and
Ghahramani, 2016). For all the BLSTMs, for-
get biases are initialized with 1 (Jozefowicz et al.,
2015) and the other biases are initialized with 0.
Each convolution filter output for the sentence en-
coding is 64 dimensional, and the three filter out-
puts are concatenated to represent each sentence
with a 192 dimensional vector.

4 Conclusion

We introduced a cross-lingual transfer learn-
ing model for POS tagging which uses sepa-
rate BLSTMs for language-general and language-
specific representations. Evaluating on 14 differ-
ent languages, including the source language im-
proved tagging accuracies in almost all the cases.
Specifically, our model showed noticeably better
performance when the source language and the
target languages belong to the same language fam-
ily, and competitively performed with the highest
average accuracies for target languages in differ-
ent families.
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and Jérôme Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.

In 2014 14th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pages 285–
290.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 412–418.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In Annual Meeting of the As-
sociation for Computational Linguistics (ACL).
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Abstract

In this paper we propose a model to
learn multimodal multilingual representa-
tions for matching images and sentences
in different languages, with the aim of
advancing multilingual versions of image
search and image understanding. Our
model learns a common representation for
images and their descriptions in two dif-
ferent languages (which need not be paral-
lel) by considering the image as a pivot be-
tween two languages. We introduce a new
pairwise ranking loss function which can
handle both symmetric and asymmetric
similarity between the two modalities. We
evaluate our models on image-description
ranking for German and English, and on
semantic textual similarity of image de-
scriptions in English. In both cases we
achieve state-of-the-art performance.

1 Introduction

In recent years there has been a significant amount
of research in language and vision tasks which
require the joint modeling of texts and images.
Examples include text-based image retrieval, im-
age description and visual question answering.
An increasing number of large image descrip-
tion datasets has become available (Hodosh et al.,
2013; Young et al., 2014; Lin et al., 2014) and
various systems have been proposed to handle the
image description task as a generation problem
(Bernardi et al., 2016; Mao et al., 2015; Vinyals
et al., 2015; Fang et al., 2015). There has also
been a great deal of work on sentence-based im-
age search or cross-modal retrieval where the ob-
jective is to learn a joint space for images and text
(Hodosh et al., 2013; Frome et al., 2013; Karpathy

et al., 2014; Kiros et al., 2015; Socher et al., 2014;
Donahue et al., 2015).

Previous work on image description generation
or learning a joint space for images and text has
mostly focused on English due to the availabil-
ity of English datasets. Recently there have been
attempts to create image descriptions and mod-
els for other languages (Funaki and Nakayama,
2015; Elliott et al., 2016; Rajendran et al., 2016;
Miyazaki and Shimizu, 2016; Specia et al., 2016;
Li et al., 2016; Hitschler et al., 2016; Yoshikawa
et al., 2017).

Most work on learning a joint space for images
and their descriptions is based on Canonical Cor-
relation Analysis (CCA) or neural variants of CCA
over representations of image and its descriptions
(Hodosh et al., 2013; Andrew et al., 2013; Yan
and Mikolajczyk, 2015; Gong et al., 2014; Chan-
dar et al., 2016). Besides CCA, a few others learn
a visual-semantic or multimodal embedding space
of image descriptions and representations by opti-
mizing a ranking cost function (Kiros et al., 2015;
Socher et al., 2014; Ma et al., 2015; Vendrov et al.,
2016) or by aligning image regions (objects) and
segments of the description (Karpathy et al., 2014;
Plummer et al., 2015) in a common space. Re-
cently Lin and Parikh (2016) have leveraged visual
question answering models to encode images and
descriptions into the same space.

However, all of this work is targeted at mono-
lingual descriptions, i.e., mapping images and de-
scriptions in a single language onto a joint em-
bedding space. The idea of pivoting or bridging
is not new and language pivoting is well explored
for machine translation (Wu and Wang, 2007; Firat
et al., 2016) and to learn multilingual multimodal
representations (Rajendran et al., 2016; Calixto
et al., 2017). Rajendran et al. (2016) propose a
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Two men  playing soccer on fielda

zwei  männer   kämpfen    um einen fussball

Joint space

Figure 1: Our multilingual multimodal model with
image as pivot

model to learn common representations between
M views and assume there is parallel data avail-
able between a pivot view and the remaining M−1
views. Their multimodal experiments are based on
English as the pivot and use large parallel corpora
available between languages to learn their repre-
sentations.

Related to our work Calixto et al. (2017) pro-
posed a model for creating multilingual multi-
modal embeddings. Our work is different from
theirs in that we choose the image as the pivot and
use a different similarity function. We also pro-
pose a single model for learning representations
of images and multiple languages, whereas their
model is language-specific.

In this paper, we learn multimodal representa-
tions in multiple languages, i.e., our model yields
a joint space for images and text in multiple lan-
guages using the image as a pivot between lan-
guages. We propose a new objective function in
a multitask learning setting and jointly optimize
the mappings between images and text in two dif-
ferent languages.

2 Dataset

We experiment with the Multi30k dataset, a mul-
tilingual extension of Flickr30k corpus (Young
et al., 2014) consisting of English and German
image descriptions (Elliott et al., 2016). The
Multi30K dataset has 29k, 1k and 1k images in
the train, validation and test splits respectively, and
contains two types of multilingual annotations: (i)
a corpus of one English description per image and
its translation into German; and (ii) a corpus of
five independently collected English and German
descriptions per image. We use the independently
collected English and German descriptions to train
our models. Note that these descriptions are not

translations of each other, i.e., they are not paral-
lel, although they describe the same image.

3 Problem Formulation

Given an image i and its descriptions c1 and c2

in two different languages our aim is to learn a
model which maps i, c1 and c2 onto same com-
mon space RN (where N is the dimensionality of
the embedding space) such that the image and its
gold-standard descriptions in both languages are
mapped close to each other (as shown in Figure 1).
Our model consists of the embedding functions fi

and fc to encode images and descriptions and a
scoring function S to compute the similarity be-
tween a description–image pair.

In the following we describe two models: (i) the
PIVOT model that uses the image as pivot between
the description in both the languages; (ii) the PAR-
ALLEL model that further forces the image de-
scriptions in both languages to be closer to each
other in the joint space. We build two variants
of PIVOT and PARALLEL with different similarity
functions S to learn the joint space.

3.1 Multilingual Multimodal Representation
Models

In both PIVOT and PARALLEL we use a deep
convolutional neural network architecture (CNN)
to represent the image i denoted by fi(i) = Wi ·
CNN(i) where Wi is a learned weight matrix and
CNN(i) is the image vector representation. For
each language we define a recurrent neural net-
work encoder fc(ck) = GRU(ck) with gated recur-
rent units (GRU) activations to encode the descrip-
tion ck.

In PIVOT, we use monolingual corpora from
multiple languages of sentences aligned with im-
ages to learn the joint space. The intuition of this
model is that an image is a universal represen-
tation across all languages, and if we constrain
a sentence representation to be closer to image,
sentences in different languages may also come
closer. Accordingly we design a loss function as
follows:

losspivot = ∑
k

[
∑
(ck ,i)

(
∑
c′k

max{0,α−S(ck, i)+S(c′k, i)}

+∑
i′

max{0,α−S(ck, i)+S(ck, i
′)}
)]

(1)
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where k stands for each language. This loss
function encourages the similarity S(ck, i) between
gold-standard description ck and image i to be
greater than any other irrelevant description c′k by
a margin α. A similar loss function is useful for
learning multimodal embeddings in a single lan-
guage (Kiros et al., 2015). For each minibatch, we
obtain invalid descriptions by selecting descrip-
tions of other images except the current image of
interest and vice-versa.

In PARALLEL, in addition to making an im-
age similar to a description, we make multiple
descriptions of the same image in different lan-
guages similar to each other, based on the assump-
tion that these descriptions, although not parallel,
share some commonalities. Accordingly we en-
hance the previous loss function with an additional
term:

losspara = losspivot + ∑
(c1,c2)

(
∑
c′1

max{0,α−S(c1,c2)

+S(c′1,c2)}+∑
c′2

max{0,α−S(c1,c2)+S(c1,c′2)}
) (2)

Note that we are iterating over all pairs of descrip-
tions (c1,c2), and maximizing the similarity be-
tween descriptions of the same image and at the
same time minimizing the similarity between de-
scriptions of different images.

We learn models using two similarity functions:
symmetric and asymmetric. For the former we use
cosine similarity and for the latter we use the met-
ric of Vendrov et al. (2016) which is useful for
learning embeddings that maintain an order, e.g.,
dog and cat are more closer to pet than animal
while being distinct. Such ordering is shown to
be useful in building effective multimodal space
of images and texts. An analogy in our setting
would be two descriptions of an image are closer
to the image while at the same time preserving the
identity of each (which is useful when sentences
describe two different aspects of the image). The
similarity metric is defined as:

S(a,b) =−||max(0,b−a)||2 (3)

where a and b are embeddings of image and de-
scription.

We call the symmetric similarity variants of
our models as PIVOT-SYM and PARALLEL-SYM,
and the asymmetric variants PIVOT-ASYM and
PARALLEL-ASYM.

4 Experiments and Results

We test our model on the tasks of image-
description ranking and semantic textual similar-
ity. We work with each language separately. Since
we learn embeddings for images and languages in
the same semantic space, our hope is that the train-
ing data for each modality or language acts com-
plementary data for the another modality or lan-
guage, and thus helps us learn better embeddings.

Experiment Setup We sampled minibatches of
size 64 images and their descriptions, and drew
all negative samples from the minibatch. We
trained using the Adam optimizer with learning
rate 0.001, and early stopping on the validation
set. Following Vendrov et al. (2016) we set the
dimensionality of the embedding space and the
GRU hidden layer N to 1024 for both English and
German. We set the dimensionality of the learned
word embeddings to 300 for both languages, and
the margin α to 0.05 and 0.2, respectively, to learn
asymmetric and symmetric similarity-based em-
beddings.1 We keep all hyperparameters constant
across all models. We used the L2 norm to miti-
gate over-fitting (Kiros et al., 2015). We tokenize
and truecase both English and German descrip-
tions using the Moses Decoder scripts.2

To extract image features, we used a convolu-
tional neural network model trained on 1.2M im-
ages of 1000 class ILSVRC 2012 object classifi-
cation dataset, a subset of ImageNet (Russakovsky
et al., 2015). Specifically, we used VGG 19-layer
CNN architecture and extracted the activations of
the penultimate fully connected layer to obtain
features for all images in the dataset (Simonyan
and Zisserman, 2015). We use average features
from 10 crops of the re-scaled images.3

Baselines As baselines we use monolingual
models, i.e., models trained on each language sep-
arately. Specifically, we use Visual Semantic Em-
beddings (VSE) of Kiros et al. (2015) and Order
Embeddings (OE) of Vendrov et al. (2016). We

1We constrain the embeddings of descriptions and images
to have non-negative entries when using asymmetric similar-
ity by taking their absolute value.

2https://github.com/moses-smt/mosesdecoder/
tree/master/scripts

3We rescale images so that the smallest side is 256 pixels
wide, we take 224 × 224 crops from the corners, center, and
their horizontal reflections to get 10 crops for the image.
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System Text to Image Image to Text
R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr

VSE (Kiros et al., 2015) 23.3 53.6 65.8 5 31.6 60.4 72.7 3
OE (Vendrov et al., 2016) 25.8 56.5 67.8 4 34.8 63.7 74.8 3
PIVOT-SYM 23.5 53.4 65.8 5 31.6 61.2 73.8 3
PARALLEL-SYM 24.7 53.9 65.7 5 31.7 62.4 74.1 3
PIVOT-ASYM 26.2 56.4 68.4 4 33.8 62.8 75.2 3
PARALLEL-ASYM 27.1 56.2 66.9 4 31.5 61.4 74.7 3

Table 1: Image-description ranking results of
English on Flickr30k test data.

System Text to Image Image to Text
R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr

VSE (Kiros et al., 2015) 20.3 47.2 60.1 6 29.3 58.1 71.8 4
OE (Vendrov et al., 2016) 21.0 48.5 60.4 6 26.8 57.5 70.9 4
PIVOT-SYM 20.3 46.4 59.2 6 26.9 56.6 70.0 4
PARALLEL-SYM 20.9 46.9 59.3 6 28.2 57.7 71.3 4
PIVOT-ASYM 22.5 49.3 61.7 6 28.2 61.9 73.4 3
PARALLEL-ASYM 21.8 50.5 62.3 5 30.2 60.4 72.8 3

Table 2: Image-description ranking results of
German on Flickr30k test data.

Image Descriptions Image Rank

OE PIVOT PARALLEL

2 Menschen auf der Straße mit Megafon 141 37 6

two people in blue shirts are outside with a bullhorn 85 7 3

ein Verkäufer mit weißem Hut und blauem Hemd , verkauft Kartoffeln oder
ähnliches an Männer und Frauen

36 1 3

at an outdoor market , a small group of people stoop to buy potatoes from a
street vendor , who has his goods laid out on the ground

24 2 2

Table 3: The rank of the gold-standard image when using each German and English descriptions as a
query on models trained using asymmetric similarity.

use a publicly available implementation to train
both VSE and OE.4

4.1 Image-Description Ranking Results

To evaluate the multimodal multilingual embed-
dings, we report results on an image-description
ranking task. Given a query in the form of a de-
scription or an image, the task its to retrieve all im-
ages or descriptions sorted based on the relevance.
We use the standard ranking evaluation metrics of
recall at position k (R@K, where higher is bet-
ter) and median rank (Mr, where lower is better)
to evaluate our models. We report results for both
English and German descriptions. Note that we
have one single model for both languages.

In Tables 1 and 2 we present the ranking re-
sults of the baseline models of Kiros et al. (2015)
and Vendrov et al. (2016) and our proposed PIVOT

and PARALLEL models. We do not compare
our image-description ranking results with Calixto
et al. (2017) since they report results on half of val-
idation set of Multi30k whereas our results are on
the publicly available test set of Multi30k. For En-
glish, PIVOT with asymmetric similarity is either
competitive or better than monolingual models

4https://github.com/ivendrov/order-embedding

and symmetric similarity, especially in the R@10
category it obtains state-of-the-art. For German,
both PIVOT and PARALLEL with the asymmetric
scoring function outperform monolingual models
and symmetric similarity. We also observe that
the German ranking experiments benefit the most
from the multilingual signal. A reason for this
could be that the German description corpus has
many singleton words (more than 50% of the vo-
cabulary) and English description mapping might
have helped in learning better semantic embed-
dings. These results suggest that the multilingual
signal could be used to learn better multimodal
embeddings, irrespective of the language. Our re-
sults also show that the asymmetric scoring func-
tion can help learn better embeddings. In Table 3
we present a few examples where PIVOT-ASYM

and PARALLEL-ASYM models performed better
on both the languages compared to baseline order
embedding model even using descriptions of very
different lengths as queries.

4.2 Semantic Textual Similarity Results

In the semantic textual similarity task (STS), we
use the textual embeddings from our model to
compute the similarity between a pair of sen-
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Model VF 2012 2014 2015
Shared Task Baseline − 29.9 51.3 60.4
STS Best System − 87.3 83.4 86.4
GRAN (Wieting et al., 2017) − 83.7 84.5 85.0
MLMME (Calixto et al., 2017) VGG19 − 72.7 79.7
VSE (Kiros et al., 2015) VGG19 80.6 82.7 89.6
OE (Vendrov et al., 2016) VGG19 82.2 84.1 90.8
PIVOT-SYM VGG19 80.5 81.8 89.2
PARALLEL-SYM VGG19 82.0 81.4 90.4
PIVOT-ASYM VGG19 83.1 83.8 90.3
PARALLEL-ASYM VGG19 84.6 84.5 91.5

Table 4: Results on Semantic Textual Similarity
Image datasets (Pearson’s r × 100 ). Our systems
that performed better than best reported shared
task scores are in bold.

tences (image descriptions in this case). We eval-
uate on video task from STS-2012 and image
tasks from STS-2014, STS-2015 (Agirre et al.
2012, Agirre et al. 2014, Agirre et al. 2015).
The video descriptions in the STS-2012 task are
from the MSR video description corpus (Chen and
Dolan, 2011) and the image descriptions in STS-
2014 and 2015 are from UIUC PASCAL dataset
(Rashtchian et al., 2010).

In Table 4, we present the Pearson correla-
tion coefficients of our model predicted scores
with the gold-standard similarity scores provided
as part of the STS image/video description tasks.
We compare with the best reported scores for the
STS shared tasks, achieved by MLMME (Cal-
ixto et al., 2017), paraphrastic sentence embed-
dings (Wieting et al., 2017), visual semantic em-
beddings (Kiros et al., 2015), and order embed-
dings (Vendrov et al., 2016). The shared task base-
line is computed based on word overlap and is
high for both the 2014 and the 2015 dataset, indi-
cating that there is substantial lexical overlap be-
tween the STS image description datasets. Our
models outperform both the baseline system and
the best system submitted to the shared task. For
the 2012 video paraphrase corpus, our multilin-
gual methods performed better than the monolin-
gual methods showing that similarity across para-
phrases can be learned using multilingual sig-
nals. Similarly, Wieting et al. (2017) have re-
ported to learn better paraphrastic sentence em-
beddings with multilingual signals. Overall, we
observe that models learned using the asymmet-
ric scoring function outperform the state-of-the-
art on these datasets, suggesting that multilingual

S1 S2 GT Pred

Black bird standing on
concrete.

Blue bird standing on
green grass.

1.0 4.2

Two zebras are playing. Zebras are socializing. 4.2 1.2

Three goats are being
rounded up by a dog.

Three goats are chased
by a dog

4.6 4.5

A man is folding paper. A woman is slicing a
pepper.

0.6 0.6

Table 5: Example sentences with gold-standard
semantic textual similarity score and the predicted
score using our best performing PARALLEL-
ASYM model.

sharing is beneficial. Although the task has noth-
ing to do German, because our models can make
use of datasets from different languages, we were
able to train on significantly larger training dataset
of approximately 145k descriptions. Calixto et al.
(2017) also train on a larger dataset like ours, but
could not exploit this to their advantage. In Table 5
we present the example sentences with the highest
and lowest difference between gold-standard and
predicted semantic textual similarity scores using
our best performing PARALLEL-ASYM model.

5 Conclusions

We proposed a new model that jointly learns mul-
tilingual multimodal representations using the im-
age as a pivot between languages. We introduced
new objective functions that can exploit similari-
ties between images and descriptions across lan-
guages. We obtained state-of-the-art results on
two tasks: image-description ranking and seman-
tic textual similarity. Our results suggest that
exploiting multilingual and multimodal resources
can help in learning better semantic representa-
tions.
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Abstract

Source dependency information has been
successfully introduced into statistical
machine translation. However, there
are only a few preliminary attempts for
Neural Machine Translation (NMT), such
as concatenating representations of source
word and its dependency label together. In
this paper, we propose a novel attentional
NMT with source dependency represen-
tation to improve translation performance
of NMT, especially on long sentences.
Empirical results on NIST Chinese-to-
English translation task show that our
method achieves 1.6 BLEU improvements
on average over a strong NMT system.

1 Introduction

Neural Machine Translation (NMT) (Kalch-
brenner and Blunsom, 2013; Bahdanau et al.,
2014; Sutskever et al., 2014) relies heavily on
source representations, which encode implicitly
semantic information of source words by neural
networks (Mikolov et al., 2013a,b). Recently,
several research works have been proposed to
learn richer source representation, such as multi-
source information (Zoph and Knight, 2016; Firat
et al., 2016), and particularly source syntactic
information (Eriguchi et al., 2016; Li et al., 2017;
Huadong et al., 2017; Eriguchi et al., 2017), thus
improving the performance of NMT.

In this paper, we enhance source representations
by dependency information, which can capture
source long-distance dependency constraints for
word prediction. Actually, source dependency
information has been shown greatly effective in

∗Kehai Chen was an internship research fellow at NICT
when conducting this work.

†Corresponding author.

Statistical Machine Translation (SMT) (Garmash
and Monz, 2014; Kazemi et al., 2015; Hadiwinoto
et al., 2016; Chen et al., 2017; Hadiwinoto
and Ng, 2017). In NMT, there has been a
quite recent preliminary exploration (Sennrich and
Haddow, 2016), in which vector representations of
source word and its dependency label are simply
concatenated as source input, achieving state-of-
the-art performance in NMT (Bojar et al., 2016).

In this paper, we propose a novel NMT
with source dependency representation to improve
translation performance. Compared with the
simple approach of vector concatenation, we
learn the Source Dependency Representation
(SDR) to compute dependency context vectors
and alignment matrices in a more sophisticated
manner, which has the potential to make full use
of source dependency information. To this end,
we create a dependency unit for each source word
to capture long-distance dependency constraints.
Then we design an Encoder with convolutional
architecture to jointly learn SDRs (Section 3) and
source dependency annotations, thus computing
dependency context vectors and hidden states by
a novel double-context based Decoder for word
prediction (Section 4). Empirical results on NIST
Chinese-to-English translation task show that the
proposed approach achieves significant gains over
the method by Sennrich and Haddow (2016), and
thus delivers substantial improvements over the
standard attentional NMT (Section 5).

2 Background

An NMT model consists of an Encoder process
and a Decoder process, and hence it is often
called Encoder-Decoder model (Sutskever et al.,
2014; Bahdanau et al., 2014). Typically, each
unit of source input xj ∈ (x1, . . . , xJ) is firstly
embedded as a vector Vxj , and then represented as
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Figure 1: The CNN architecture for learning SRD.

an annotation vector hj by

hj = fenc(Vxj , hj−1), (1)

where fenc is a bidirectional Recurrent Neural
Network (RNN) (Bahdanau et al., 2014). These
annotation vectors H = (h1, . . . , hJ) are used to
generate the target word in the Decoder.

An RNN Decoder is used to compute the target
word yi probability by a softmax layer g:

p(yi|y<i, x) = g(ŷi−1, si, ci), (2)

where ŷi−1 is the previously emitted word, and si
is an RNN hidden state for the current time step:

si = ϕ(ŷi−1, si−1, ci), (3)

and the context vector ci is computed as a
weighted sum of these source annotations hj :

ci =
J∑

j=1

αijhj , (4)

where the normalized alignment weight αij is
computed by

αij =
exp(eij)∑J
k=1 exp(eik)

, (5)

where eij is an alignment which indicates how
well the inputs around position j and the output
at the position i match:

eij = f(si−1, hj). (6)

where f is a feedforward neural network.

3 Source Dependency Representation

In order to capture source long-distance depen-
dency constraints, we extract a dependency unit
Uj for each source word xj from dependency
tree, inspired by a dependency-based bilingual
composition sequence for SMT (Chen et al.,
2017). The extracted Uj is defined as the
following:

Uj = 〈PAxj , SIxj , CHxj 〉, (7)

where PAxj , SIxj , CHxj denote the parent,
siblings and children words of source word xj
in a dependency tree. Take x2 in Figure 2
as an example, the blue solid box U2 denotes
its dependency unit: PAx2 = 〈x3〉, SIx2 =
〈x1, x4, x7〉 and CHx2 = 〈ε〉 (no child), that is, U2

= 〈x3, x1, x4, x7, ε〉.
We design a simplified neural network follow-

ing Chen et al. (2017)’s Convolutional Neural
Network (CNN) method, to learn the SDR for
each source dependency unit Uj , as shown in
Figure 1. Our neural network consists of an input
layer, two convolutional layers, two pooling layers
and an output layer:

• Input layer: the input layer takes words of a
dependency unitUj in the form of embedding
vectors n×d, where n is the number of
words in a dependency unit and d is vector
dimension of each word. In our experiments,
we set n to 10,1 and d is 620. For dependency
units shorter than 10, we perform “/” padding
at the ending of Uj . For example, the padded
U2 is 〈x3, x1, x4, x7, ε, /, /, /, /, /〉.

1We find that 99% of all the source dependency units
contain no more than 10 words. So if the length is more than
10, the extra words are abandoned; if the length is less than
10, the rest positions are padded with “/”.
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• Convolutional layer: the first convolution
consists of one 3×d convolution kernels (the
stride is 1) to output an (n-2)×d matrix;
the second convolution consists of one 3×d
convolution kernels to output a n−2

2 ×d
matrix.

• Max-Pooling layer: the first pooling layer
performs row-wise max over the two con-
secutive rows to output a n−2

4 ×d matrix; the
second pooling layer performs row-wise max
over the two consecutive rows to output a
n−2
8 ×d matrix.

• Output layer: the output layer performs
row-wise average based on the output of
the second pooling layer to learn a compact
d-dimension vector VUj for Uj . In our
experiment, the output of the output layer is
1× d-dimension vector.

It should be noted that the dependency unit
is similar to the source dependency feature of
Sennrich and Haddow (2016) and the SDR
is the same to the source-side representation
of Chen et al. (2017). In comparison with
Sennrich and Haddow (2016), who concatenate
the source dependency labels and word together
to enhance the Encoder of NMT, we adapt a
separate attention mechanism together with a
CNN dependency Encoder. Compared with Chen
et al. (2017), which expands the famous neural
network joint model (Devlin et al., 2014) with
source dependency information to improve the
phrase pair translation probability estimation for
SMT, we focus on source dependency information
to enhance attention probability estimation and to
learn corresponding dependency context and RNN
hidden state for improving translation.

4 NMT with SDR

In this section, we propose two novel NMT mod-
els SDRNMT-1 and SDRNMT-2, both of which
can make use of source dependency information
SDR to enhance Encoder and Decoder of NMT.

4.1 SDRNMT-1
Compared with standard attentional NMT, the
Encoder of SDRNMT-1 model consists of a
convolutional architecture and an bidirectional
RNN, as shown in Figure 2. Therefore, the
proposed Encoder can not only learn composition-
al representations for dependency units but also

greatly tackle the sparsity issues associated with
large dependency units.

Motivated by (Sennrich and Haddow, 2016),
we concatenate the Vxj and VUj as input of the
Encoder, as shown in the black dotted box in
Figure 2. Source annotation vectors are learned
based on the concatenated representation with
dependency information:

hj = fenc(Vxj : VUj , hj−1), (8)

where “:” denotes the operation of vectors
concatenation. Finally, these learned annotation
vectors are as the input of the standard NMT
Decoder to jointly learn alignment and translation.
The only difference between our method and (Sen-
nrich and Haddow, 2016)’s method is that they
only use dependency label representation instead
of VUj .

4.2 SDRNMT-2

In SDRNMT-1, a single annotation, learned over
concatenating word representation and SDR, is
used to compute the context vector and the RNN
hidden state for the current time step. To relieve
more translation performance for NMT from the
SDR, we propose a double-context mechanism, as
shown in Figure 3.

First, the Encoder of SDRNMT-2 consists of
two independent annotations hj and dj :

hj = fenc(Vxj , hj−1),

dj = fenc(VUj , dj−1),
(9)

where H = [h1, · · · , hJ ] and D = [d1, · · · , dJ ]
encode source sequential and long-distance depen-
dency information, respectively.

The Decoder learns the corresponding align-
ment matrices and context vectors over the H
and D, respectively. That is, according to eq.(6),
given the previous hidden state ssi−1 and sdi−1, the
current alignments esi,j and edi,j are computed over
source annotation vectors hj and dj , respectively:

esi,j = f(ssi−1 + hj),

edi,j = f(sdi−1 + dj).
(10)

According to eq.(5), we further compute the
current alignment α̃:

α̃i,j =
exp(λesi,j + (1− λ)edi,j)∑J
j=1 exp(λe

s
i,j + (1− λ)edi,j)

, (11)
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where λ is a hyperparameter2 to control the
importance of H and D. Note that compared with
the original alignment model only depending on
the sequential annotation vectorsH , the alignment
weight α̃i,j jointly compute statistic over source
sequential annotation vectors H and dependency
annotation vectors D.

The current context vector csi and cdi are
compute by eq.(4), respectively:

csi =

J∑

j=1

α̃i,jhj , and cdi =
J∑

j=1

α̃i,jdj . (12)

The current hidden state ssi and sdi are computed
by eq.(3), respectively:

ssi = ϕ(ssi−1, yi−1, c
s
i ),

sdi = ϕ(sdi−1, yi−1, c
d
i ).

(13)

Finally, according to eq.(2), the probabilities
for the next target word are computed using two
hidden states ssi and sdi , the previously emitted
word ŷi−1, the current sequential context vector
csi and dependency context vector cdi :

p(yi|y<i, x, T ) = g(ŷi−1, ssi , s
d
i , c

s
i , c

d
i ). (14)

5 Experiment

5.1 Setting up
We carry out experiments on Chinese-to-English
translation. The training dataset consists of 1.42M

2λ can be tuned according to a subset FBIS of training
data and be set as 0.6 in the experiments.

sentence pairs extract from LDC corpora.3 We
use the Stanford dependency parser (Chang et al.,
2009) to generate the dependency tree for Chinese.
We choose the NIST 2002 (MT02) and the NIST
2003-2008 (MT03-08) datasets as the validation
set and test sets, respectively. Case-insensitive 4-
gram NIST BLEU score (Papineni et al., 2002) is
used as an evaluation metric, and signtest (Collins
et al., 2005) is as statistical significance test.

The baseline systems include the standard
Phrase-Based Statistical Machine Translation
(PBSMT) implemented in Moses (Koehn
et al., 2007) and the standard Attentional NMT
(AttNMT) (Bahdanau et al., 2014), where only
source word representation is utilized. We also
compare with a state-of-the-art syntax enhanced
NMT method (Sennrich and Haddow, 2016). For
a fair comparison, we only utilize dependency
information for (Sennrich and Haddow, 2016),
called Sennrich-deponly. We try our best to
re-implement the baseline methods on Nematus
toolkit 4 (Sennrich et al., 2017).

For all NMT systems, we limit the source and
target vocabularies to 30K, and the maximum
sentence length is 80. The word embedding
dimension is 620,5 and the hidden layer dimension

3LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

4https://github.com/EdinburghNLP/nematus
5For SDRNMT-1, the 360 dimensions are from Vxj and

the 260 dimensions are from VUj .
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System Dev (MT02) MT03 MT04 MT05 MT06 MT08 AVG
PBSMT 33.15 31.02 33.78 30.33 29.62 23.53 29.66
AttNMT 36.31 34.02 37.11 32.86 32.54 25.44 32.40
Sennrich-deponly 36.68 34.51 38.09 33.37 32.96 26.96 32.98
SDRNMT-1 36.88 34.98* 38.14 34.61 33.58 27.06 33.32
SDRNMT-2 37.34 35.91** 38.73* 34.18** 33.76** 27.64* 34.04

Table 1: Results on NIST Chinese-to-English Translation Task. “*” indicates statistically significant
better than “Sennrich-deponly” at p-value < 0.05 and “**” at p-value < 0.01. AVG = average BLEU
scores for test sets.

is 1000, and all the layers use the dropout training
technique (Hinton et al., 2012). We shuffle
training set before training and the mini-batch size
is 80. Training is conducted on a single Tesla P100
GPU. All NMT models train for 15 epochs using
ADADELTA (Zeiler, 2012), and the train time is 6
days, which is 25% slower than the standard NMT.

5.2 Results and Analyses
Table 1 shows the translation performances on
test sets measured in BLEU score. The AttNMT
significantly outperforms PBSMT by 2.74 BLEU
points on average, indicating that it is a strong
baseline NMT system. The baseline Sennrich-
deponly improves the performance over the
AttNMT by 0.58 BLEU points on average. This
indicates that the proposed source dependency
constraint is beneficial for improving the perfor-
mance of NMT.

Moreover, SDRNMT-1 gains improvements of
0.92 and 0.34 BLEU points on average than the
AttNMT and Sennrich-deponly. These show that
the proposed SDR can more effectively capture
source dependency information than vector con-
catenation. Especially, the proposed SDRNMT-
2 outperforms the AttNMT and Sennrich-deponly
on average by 1.64 and 1.03 BLEU points. These
verify that the proposed double-context method is
effective for word prediction.

5.3 Effect of Translating Long Sentences
We follow (Bahdanau et al., 2014) to group
sentences of similar lengths all the test sets
(MT03-08), for example, “40” indicates that
the length of sentences is between 30 and 40,
and compute a BLEU score per group. As
demonstrated in Figure 4, the proposed models
outperform other baseline systems, especially in
translating long sentences. These results show that
the proposed models can effective encode long-
distance dependencies to improve translation.

25
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10 20 30 40 50 60 70 80 80+
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EU
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PBSMT
AttNMT
Sennrich-deponly
SDSNMT-1
SDSNMT-2

Figure 4: Translation qualities for different
sentence lengths.

6 Conclusion and Future Work

In this paper, we explored the source dependency
information to improve the performance of NMT.
We proposed a novel attentional NMT with source
dependency representation to capture source long-
distance dependencies. In the future, we will try
to exploit a general framework for utilizing richer
syntax knowledge.
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Abstract

In the logic approach to Recognizing
Textual Entailment, identifying phrase-to-
phrase semantic relations is still an un-
solved problem. Resources such as the
Paraphrase Database offer limited cover-
age despite their large size whereas unsu-
pervised distributional models of meaning
often fail to recognize phrasal entailments.
We propose to map phrases to their visual
denotations and compare their meaning in
terms of their images. We show that our
approach is effective in the task of Recog-
nizing Textual Entailment when combined
with specific linguistic and logic features.

1 Introduction and Related Work

Recognizing Textual Entailment (RTE) is a chal-
lenging task that was described as the best way
of testing an NLP system’s semantic capacity
(Cooper et al., 1994). In this task, given a text
T and a hypothesis H, the objective is to recognize
whether T implies H (yes), whether T contradicts
H (no) or otherwise (unk). For example, given:

(T) Some men walk in the tall and green grass.
(H) Some people walk in the field.

the system needs to recognize that T implies H
(yes). Although humans can easily solve these
problems, machines face great difficulties (Dagan
et al., 2013). RTE has been approached from dif-
ferent perspectives, ranging from purely statistical
systems (Lai and Hockenmaier, 2014; Zhao et al.,
2014) to purely logical (Bos et al., 2004; Abzian-
idze, 2015; Mineshima et al., 2015) and hybrid
systems (Beltagy et al., 2013).

We evaluate our idea on top of a logic system
since they generally offer a high precision and in-
terpretability, which is useful to our purposes. In

this approach, there are two main challenges. The
first challenge is to model the logical semantic
composition of sentences guided by the syntax and
logical words (e.g. most, not, some, every). The
second challenge is to introduce lexical knowledge
that describes the relationship between words or
phrases (e.g. men→ people, tall and green grass
→ field).

Whereas the relationship men → people can
be found in high precision ontological resources
such as WordNet (Miller, 1995), phrasal relations
such as tall and green grass→ field are not avail-
able in databases such as the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013) despite their
large size. Moreover, although unsupervised dis-
tributional similarity models have an infinite do-
main (given a compositional function on words),
they often fail to identify entailments (e.g. guitar
has a high similarity to piano but they do not en-
tail each other). To address these issues, Roller
et al. (2014) investigated supervised methods to
identify word-to-word hypernym relations given
word vectors whereas Beltagy et al. (2016) pro-
posed a mechanism to extract phrase pairs from
T and H and train a classifier to identify para-
phrases in unseen T-H problems. Our approach
is largely inspired by their work and our intention
is to increase the performance of these phrase and
sentence level entailment classifiers using multi-
modal features.

Our assumption is that the same concept ex-
pressed using different phrase forms is mapped to
similar visual representations since humans tend
to ground the meaning of phrases into the same
visual denotation. In a similar line, Kiela and Bot-
tou (2014) proposed a simple yet effective con-
catenation of pre-trained distributed word repre-
sentations and visual features, whereas Izadinia
et al. (2015) suggests a tighter parametric integra-
tion using a set of hand annotated phrasal entail-
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ment relations; however, their work was limited
to recognizing word or phrase relations, ignoring
the additional challenges that come in RTE which
we show is critical. Young et al. (2014) and Lai
and Hockenmaier (2014) did tackle sentence-level
RTE using visual denotations. However, their ap-
proach is only applicable to those RTE problems
whose words or phrases appear in the FLICKR30K
corpus, which is a considerable limitation. Lai
and Hockenmaier (2017) extended the approach
to also recognize unseen phrasal semantic rela-
tions using a neural network augmented with con-
ditional probabilities estimated from visual deno-
tations. Instead, our approach is much simpler and
similarly effective.

Our contribution is a method to judge phrase-
to-phrase semantic relations using an asymmetric
similarity scoring function between their sets of
visual denotations. We identify the conditions in
which this function contributes to sentence-level
RTE and show empirically its benefit. Our ap-
proach is simpler than previous methods and it
does not require annotated phrase relations. More-
over, this approach is not limited to specific cor-
pora or evaluation datasets and it is potentially lan-
guage independent.

2 Methodology

We formulate our framework in terms of a classi-
fier gθ : T × H → {yes, no,unk} that outputs
an entailment judgment for any text T ∈ T and
hypothesis H ∈ H. There are three key issues
in designing an effective classifier that uses visual
denotations: i) to discern when it is appropriate to
use visual denotations to recognize phrasal entail-
ments, ii) to extract candidate phrase pairs and iii)
to map those phrases into visual denotations1 and
measure their semantic similarity in terms of their
associated images.

Textual and Logic Features The first issue is
to understand the linguistic and logic limitations
of visual denotations in recognizing phrasal entail-
ments. From our observations, the linguistic phe-
nomena that make visual denotations ineffective
are word-to-word verb relations (e.g. laughing and
crying) since their associated images may depict
different actions with similar entities (e.g. pictures
of a baby crying are similar to those of a baby
laughing); antonym relations between any word

1We approximate the visual denotations of a phrase by
obtaining the images associated to that phrase.

in a phrase pair (e.g. similar images for big car
and small vehicle); and words that denote people
of different gender (e.g. boy versus lady, man ver-
sus woman) as they often display high visual sim-
ilarity compared to other entities. The logic phe-
nomena we identified signal sentences with small
differences in critical words, phrases or structures,
as in the presence of negations (e.g. images of no
cat still display cats), passive-active constructions
and subject-object case mismatches (e.g. images
of boy eats apple and apple eats boy are similar)
between T and H.

These logic phenomena can be easily detected
from logic formulas with the aid of the variable
unification during the theorem proving process.
For instance, using event semantics (Davidson,
1967; Parsons, 1990), an active sentence a boy
eats an apple and its corresponding passive sen-
tence an apple is eaten by a boy can be composi-
tionally mapped to the same logical formula, i.e.,
∃e∃x∃y(boy(x)∧apple(y)∧ eat(e)∧ (subj(e) =
x) ∧ (obj(e) = y)), while a boy eats an apple
and an apple eats a boy are mapped to different
formulas. When trying to prove the formula cor-
responding to H from the formula corresponding
to T, one needs to unify the variables contained in
these formulas, so that the non-logical predicates
such as boy, apple and eat in T and H are aligned
by taking into account logical signals.

Extract candidate phrase pairs between T and
H The second issue is to find candidate phrase
pairs between T and H for which we compare
their visual denotations. In our running example
(see Figure 1), a desirable candidate phrase pair
would be tall and green grass and field. We use
a tree mapping algorithm (Martı́nez-Gómez and
Miyao, 2016) that finds node correspondences be-
tween the syntactic trees of T and H. The search
is carried out bottom-up, guided by an ensemble
of cost functions. This ensemble rewards word or
phrase correspondences that are equal or if a lin-
guistic relationship (i.e. synonymy, hypernymy,
etc.) holds between them according to WordNet.
This tree mapping implicitly defines hierarchical
phrase pair correspondences between T and H.
We only select those phrase pairs for which both
phrases have less than 6 words. We believe that
discerning the entailment relation between longer
phrases should be left to the logic prover and the
compositional mechanism of meaning.
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Figure 1: Phrase-image mappings for the phrase pair tall and green grass and field in one RTE problem.

Visual Features At this stage it remains to mea-
sure the semantic relation between the candidate
phrase pairs (extracted with the tree mapping algo-
rithm described above) using their visual denota-
tions (see Figure 1 for a schematic diagram2). For
this purpose, we select the phrase pairs (t, h) with
highest and lowest similarity score. We define the
similarity score as the average cosine similarity
between the best image correspondences. That is:

score(t, h) =
1

|Ih|
∑

ihl ∈Ih

max
itk∈It

f(itk, i
h
l ) (1)

where It = {it1, . . . , itn} are the n images associ-
ated with phrase t from T and Ih = {ih1 , . . . , ihn}
are the n images for phrase h from H, for 1 ≤
l, k ≤ n. Note the asymmetry in Eq. 1 which cap-
tures semantic subsumptions (a picture of river is
among the pictures of body of water). The func-
tion f returns the cosine similarity between two
images:

f(itk, i
h
l ) = cos(vvv(itk),vvv(i

h
l )) =

vvv(itk) ·vvv(ihl )
||vvv(itk)|| · ||vvv(ihl )||

(2)

where v(i) is the vector representation of an im-
age i. We obtain these vector representations con-
catenating the activations of the first 7 layers of
GoogLeNet (Szegedy et al., 2015) as it is common
practice (Kiela and Bottou, 2014).

Given the phrases with the highest and lowest
2 Due to copyright, images in this paper are a subset of

Google Image Search results for which we have a publishing
license. Nevertheless, they are faithful representatives.

similarity score,3 we extract four features from
each pair. The first feature is the similarity score
itself. The other three features capture statistics of
the relationship f(It × Ih) between the two sets
of visual denotations It and Ih. This relationship
f(It × Ih) is defined as the the matrix of image
cosine similarities:
f(It × Ih) =


f(it1, i
h
1) f(it1, i

h
2) · · · f(it1, i

h
n)

f(it2, i
h
1) f(it2, i

h
2) · · · f(it2, i

h
n)

...
...

. . .
...

f(itn, i
h
1) f(itn, i

h
2) · · · f(itn, i

h
n)




(3)

Specifically, these three features are:
• max f(It × Ih) returns the cosine similarity

between the two most similar images. This
feature is robust against polysemic phrases
(at least one image associated to pupil is simi-
lar to at least one image associated to student)
and hypernymy.
• averagef(It × Ih) returns the average simi-

larity across all image pairs and aims to mea-
sure the visual denotation overlap between
both phrases in the pair.
• min f(It×Ih) returns the similarity between

the two most different images and gives a no-
tion of how different the meanings of the two
phrases can be.

3 If there are no candidate phrase pairs, the T-H problem
is ignored. If there is only one phrase pair, such a pair is used
as the pair with highest and lowest score.
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All features above are concatenated into a fea-
ture vector which is paired with the T-H entailment
gold label to train the classifier.

3 Experiments

Our system is independent from the logic back-
end but we use ccg2lambda (Martı́nez-Gómez
et al., 2016)4 for its high precision and capabilities
to solve word-to-word divergences using WordNet
and VerbOcean (Chklovski and Pantel, 2004).

We evaluate our system on the SemEval-2014
version of the SICK dataset (Marelli et al., 2014)
with train/trial/test splits of 4, 500/500/4, 927 T-
H pairs and a yes/no/unk label distribution of
.29/.15/.56. We chose SICK for its relatively
limited vocabulary (2, 409 words) and short sen-
tences. The average T and H sentence length was
10.6 where 3.6 to 3.8 words appeared in T and
not in H or vice versa. We used scipy’s Random
Forests (Breiman, 2001) as our entailment classi-
fier with 500 trees and feature value standardiza-
tion, trained and evaluated on those T-H pairs for
which ccg2lambda outputs unknown (around
71% of the problems).

Using the tree mapping algorithm,5 we obtained
an average of 9.8 phrase pairs per T-H problem.
We obtained n = 30 images for every phrase using
Google Image Search API which we consider as
our visual denotations. The images and their vec-
tor representations were obtained between Sept.
2016 and Feb. 2017 using the image miner and
the feature extractor of Kiela (2016).6

Our main baseline is ccg2lambda when us-
ing only WordNet and VerbOcean to account for
word-to-word lexical divergences. ccg2lambda
is augmented with a classifier c that uses either
text and logic features t or image features from
10, 20, or 30 images (10i, 20i or 30i). On the
training data (Table 1), ccg2lambda obtains an
accuracy of 82.89%. Using our classifier with all
features, we carried out 10 runs of a 10-fold cross-
validation on the training data and we obtained
an accuracy (standard deviation) of 84.14 (0.06),
84.30 (0.14) and 84.28 (0.11) when using 10, 20
and 30 images, respectively. Thus, no significant
differences in accuracy were observed for differ-
ent numbers of images. When using only text
and logic features (c-t), the accuracy dropped

4 https://github.com/mynlp/ccg2lambda
5 https://github.com/pasmargo/t2t-qa
6 https://github.com/douwekiela/mmfeat

System Accuracy Std.
ccg2lambda 82.89 −
ccg2lambda, c-t-10i 84.14 0.06
ccg2lambda, c-t-20i 84.30 0.14
ccg2lambda, c-t-30i 84.28 0.11

ccg2lambda, c-t 76.60 0.03
ccg2lambda, c-20i 82.85 0.08

Table 1: Results (accuracy and standard devia-
tion) of the classifier c in a cross-validation on the
training split of SICK dataset using text and logic
features t for 10i, 20i and 30i images.

System Prec. Rec. Acc.
ccg2lambda + images 90.24 71.08 84.29
ccg2lambda, only text 96.95 62.65 83.13

L&H, text + images − − 82.70
L&H, only text − − 81.50

Illinois-LH, 2014 81.56 81.87 84.57
Yin & Schütze, 2017 − − 87.10

Baseline (majority) − − 56.69

Table 2: Results on the test split of SICK dataset
using precision, recall and accuracy. The system
“ccg2lambda + images” uses text and logics
features and 20 images per phrase: c-t-20i.

to 76.60 (0.03); when using only image features
(c-20i), the accuracy dropped to 82.85%. These
results show that using visual denotations to rec-
ognize phrasal entailments contributes to improve-
ments in accuracy and that the interaction with text
and logic features produces further gains.

On the test data, we obtained 1.1% higher accu-
racy (84.29 versus 83.13) over the ccg2lambda
baseline with a standard deviation of 0.07% over
10 runs (see Table 2) when using the setting
c-t-20i. As a comparison, Lai and Hocken-
maier (2017) obtain a similar accuracy increase
when using visual denotations (1.2%) with a sub-
stantially more complex approach that requires
training on the SNLI dataset (Bowman et al.,
2015), a much larger corpus.

The best SemEval-2014 system obtained an ac-
curacy of 84.57 (Lai and Hockenmaier, 2014)
and other heavily engineered, finely-tuned sys-
tems (Beltagy et al., 2016; Yin and Schütze, 2017)
reported up to 3% points of accuracy improvement
since then. Thus, our results are still below the
state of the art.
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Figure 2: True positive, ID: 4012; gold: yes.

Figure 3: False positive, ID: 1215; gold: unk.

Figure 4: False negative, ID: 1318; gold: yes.

4 Error analysis

We had an average of 126 true positives (gold la-
bel yes, system label yes) and 81 false positives
(gold label unk, system label yes) in our cross-
validation over the training data. Figure 2 shows
an example of a true positive where the tree map-
ping algorithm extracted the phrase pair kangaroo
that is little and baby kangaroo. The image sim-
ilarity features showed a high score causing the
classifier to correctly produce the judgment yes.
Figure 3 shows a false positive where the extracted
phrase pair was marsh and river and for which
the image similarity is unfortunately high. These
cases are common when comparing people (boy
and man) or scenery (such as beach and desert).

Figure 4 shows a false negative (gold label yes,
system label unk) where the candidate phrase pair
was plastic sword and toy weapon. In this case,
there was only one image with a plastic sword
within the images associated to toy weapon which
may have caused the cosine similarities to be low.

5 Discussion and Conclusion

In this paper we have evaluated our method on the
SICK dataset which was originally created from
image captions. For that reason, the proportion
of concepts with good visual denotations might be
higher than in typically occurring RTE problems.
Our future work is to assess the applicability of
our approach into other RTE problems such as the
RTE challenges, SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017) datasets and fur-
ther investigate what syntactic or semantic units
can be best represented using visual denotations.

Another issue is the use of a commercial im-
age search API as a black box to retrieve images.
These search engines may include heuristics that
map similar phrases or keywords into the same
canonical form and that are difficult to control ex-
perimentally. However, we believe that our ap-
proach is still valid for a variety of image search
mechanisms and it is generally useful to resolve
lexical ambiguity at a high coverage.

We identified the conditions in which visual de-
notations are effective for sentence-level RTE and
devised a simple scoring function to assess phrasal
semantic subsumption, which may serve as the ba-
sis for more elaborated strategies. Our system is
independent on the semantic parser but the en-
tailment recognition mechanism requires a theo-
rem prover that displays remaining sub-goals. The
system and instructions are available at https:
//github.com/mynlp/ccg2lambda
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Abstract

Manual data annotation is a vital compo-
nent of NLP research. When designing
annotation tasks, properties of the anno-
tation interface can lead to unintentional
artefacts in the resulting dataset, biasing
the evaluation. In this paper, we explore
sequence effects where annotations of an
item are affected by the preceding items.
Having assigned one label to an instance,
the annotator may be less (or more) likely
to assign the same label to the next. Dur-
ing rating tasks, seeing a low quality item
may affect the score given to the next item
either positively or negatively. We see
clear evidence of both types of effects us-
ing auto-correlation studies over three dif-
ferent crowdsourced datasets. We then
recommend a simple way to minimise se-
quence effects.

1 Introduction

NLP research relies heavily on annotated datasets
for training and evaluation. The design of the an-
notation task can influence the decisions made by
annotators in subtle ways: besides the actual fea-
tures of the instance being annotated, annotators
are also influenced by factors such as the user in-
terface, wording of the question, and familiarity
with the task or domain.

When collecting NLP annotations, care is usu-
ally taken to ensure that the annotations are of high
quality, through careful design of label sets, anno-
tation guidelines and training of annotators (Hovy
et al., 2006), methods for aggregating annotations
(Passonneau and Carpenter, 2014), and intuitive
user interfaces (Stenetorp et al., 2012).

Crowdsourcing has emerged as a cheaper, faster
alternative to expert NLP annotations (Snow et al.,

2008; Callison-Burch and Dredze, 2010; Graham
et al., 2017), although it entails additional effort
to filter out unskilled or opportunistic workers,
e.g. through the collection of redundant repeated
judgements for each instance, or including some
trap questions with known answers (Callison-
Burch and Dredze, 2010; Hoßfeld et al., 2014).
In most annotation exercises, the order of pre-
sentation of instances is randomised to remove
bias due to similarities in topic, style and vocabu-
lary (Koehn and Monz, 2006; Bojar et al., 2016).

When crowdsourcing judgements, the normal
practise (as used in the datasets we analyse) is for
the item ordering to be randomised in creating a
“HIT” (i.e. a single collection of items presented
to a crowdworker for judgement), and then to have
each HIT annotated by multiple workers, for qual-
ity control purposes. The order of items is gen-
erally fixed across all annotators of an individual
HIT (Snow et al., 2008; Graham et al., 2017).

In this paper, we show that worker scores are
affected by sequence bias, whereby the order of
presentation can affect individuals’ assessment of
an item. Since all workers see the instances in the
same order, this affects any other inferences made
from the data, including aggregated assessment
or inferences about individual annotators (such as
their overall quality or individual thresholds).

Possible explanations for sequence effects in-
clude:

Gambler’s fallacy: Once annotators have de-
veloped an idea of the distribution of scores/labels,
they can come to expect even small sequences to
follow the distribution. In particular, in binary
annotation tasks, if they expect that True (1) and
False (0) items are equally likely, then they believe
the sequence 00000 (100% False and 0% True) is
less likely than the sequence 01010 (50% False
and 50% True). So if they assign 0 to an item,
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they may approach the next item with a prior belief
that it is more likely to be a 1 than a 0. Chen et al.
(2016) showed evidence for the gambler’s fallacy
in decisions of loan officers, asylum judges, and
baseball umpires.

Sequential contrast effects: A high quality
item may raise the bar for the next item. On the
other hand, a bad item may make the next item
seem better in comparison (Kenrick and Gutierres,
1980; Hartzmark and Shue, to appear)

Assimilation and anchoring: The annotator
uses their score of the previous item as an anchor,
and adjusts the score of the current item from this
anchor, based on perceived similarities and differ-
ences with the previous item. If they focus on
similarities between the previous and current in-
stance, the annotations show an assimilation ef-
fect (Geiselman et al., 1984; Damisch et al., 2006).
Anchoring effects may decrease as people gain ex-
perience and expertise in the task (Wilson et al.,
1996).

2 Methodology

We test whether the annotation of an instance
is correlated with the annotation on previous in-
stances, conditioned on control variables such as
the gold standard (i.e. expert annotations1), based
on the following linear model:

Yi,t = β0 + β1Yi,t−1 + β2Gold + η (1)

where Yi,t is the annotation given by an annota-
tor i to an instance t, and η is white Gaussian
noise with zero mean. We use linear regression for
continuous data and logistic regression for binary
data.2 If there is no dependence between consecu-
tive instances, and annotators assign labels/scores
based only on the aspects of the current instance,
then the data can be explained from the gold score
(learning a positive β2 value) and bias term (β0),
with β1 set to zero. When we use the ground truth
as a control, if β1 is non-zero, it is evidence of
mistakes being made by annotators due to sequen-
tial bias. A positive value of β1 can be explained
by priming or anchoring, and a negative value with
sequential contrast effects or the gambler’s fallacy.
Accordingly, we test the statistical significance of

1For the Machine Translation dataset described in Sec-
tion 3.3, we use the mean of at least fifteen crowd workers as
a proxy for expert annotations.

2η is not included in the case of logistic regression

Task All Good Moderate

RTE −0.102 −0.169∗ −0.192∗∗
TEMPORAL 0.198 −0.567∗∗∗ −0.511∗∗∗

Table 1: Autocorrelation coefficient β1 for RTE
and TEMPORAL data. Stars denote statistical sig-
nificance: ∗ = 0.05, ∗∗ = 0.01, and ∗∗∗ = 0.001.

the β1 6= 0 to determine whether sequencing ef-
fects are present in crowdsourced text corpora.

3 Experiments

We analyse several influential datasets that have
been constructed through crowdsourcing, includ-
ing both binary and continuous annotation tasks:
recognising textual entailment, event ordering, af-
fective text analysis, and machine translation eval-
uation.

3.1 Recognising Textual Entailment (RTE)
and Event Temporal Ordering

First, we examine the recognising textual en-
tailment (“RTE”) and event temporal ordering
(“TEMPORAL”) datasets from Snow et al. (2008).
In the RTE task, annotators are presented with two
sentences, and are asked to judge whether the sec-
ond text can be inferred from the first. With the
TEMPORAL dataset, they are shown two sentences
describing events, and asked to indicate which of
the two events occurred first. Both datasets in-
clude both expert annotations and crowdsourced
annotations constructed using Amazon Mechani-
cal Turk (“MTurk”). On MTurk, each RTE HIT
contains 20 instances, and each TEMPORAL HIT
contains 10 instances, which the workers see in
sequential order. For both tasks, each HIT was an-
notated by 10 workers.

Results We use logistic regression on worker la-
bels against labels on the previous instance in the
current HIT, with the expert judgements as a con-
trol variable. We also add an additional control,
namely the percentage of True labels assigned by
the worker overall, which accounts for the overall
annotator bias. To calculate this, we use scores by
the worker excluding the current score, to avoid
giving the model any information about the cur-
rent instance.

As shown in Table 1, over all workers (“All”),
we find a small negative autocorrelation for both
the RTE and TEMPORAL tasks. One possibility
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is that this is biased by opportunistic workers who
assign the same label to all instances in the HIT,
for which we would not expect any sequential bias
effects. When we exclude these workers (“Moder-
ate”), the autocorrelation increases, and is highly
statistically significant. We also show results for
workers with at least 60% accuracy when com-
pared to expert annotations (“Good”), and observe
a similar effect.

3.2 Affective text analysis

In the affective text analysis task (“AFFECTIVE”),
annotators are asked to rate news headlines for
anger, disgust, fear, joy, sadness, and surprise on
a continuous scale of 0–100. Besides these emo-
tions, they are asked to rate sentences for (emo-
tive) valence, i.e., how strongly negative or posi-
tive they are (−100 to +100). In this dataset, there
are 100 headlines divided into 10 HITs, with 10
workers annotating each HIT (Snow et al., 2008).
We test for autocorrelation of scores of each as-
pect individually, controlling for the expert scores
and worker correlation with the expert scores. We
also look separately at datasets of good and bad
workers, based on whether the correlation with the
expert annotations is greater than 0.5.

Results For individual emotions, we do not ob-
serve any significant autocorrelation (p ≥ 0.05).
As there are only 1000 annotations per emotion,
we also look at results when combining data for
all aspects. Though we find a statistically sig-
nificant negative autocorrelation for scores of the
full dataset, this disappears when we filter out bad
workers (Table 2). Given the difficulty of this
very subjective task, it is likely that many of work-
ers considered ‘bad’ might have simply found this
task too difficult or arbitrary, and thus become
more prone to sequence effects.

3.3 Machine Translation Adequacy

When evaluating machine translation (“MT”), we
tend to focus on adequacy: the extent to which the
meaning of the reference translation is captured in
the MT output. In the method of Graham et al.
(2015) — the current best-practise, as adopted by
WMT (Bojar et al., 2016) — annotators are asked
to judge the adequacy of translations using a 100-
point sliding scale which is initialised at the mid
point. There are 3 marks on the scale dividing it
into 4 quarters to aid workers with internal cali-
bration. They are given no other instructions or

All Good Bad

β1 −0.03∗ −0.01 −0.04∗
β2 0.45∗∗∗ 0.66∗∗∗ 0.23∗∗∗

Table 2: Autocorrelation coefficient β1 for the AF-
FECTIVE dataset.

guidelines.
In this paper, we base our analysis on the ade-

quacy dataset of Graham et al. (2015), on Spanish-
English newswire data from WMT 2013 (Bojar
et al., 2013). The dataset consists of 12 HITS of
100 sentence pairs each; each HIT is annotated by
at least 15 workers.

HITs are designed to include quality control
items to filter out poor quality scores. In addi-
tion to 70 MT system translations, each HIT con-
tains degraded versions of 10 of these translations,
10 reference translations by a human expert cor-
responding to 10 of these translations, and repeats
of another 10 translations. Good workers are as-
sumed to give high scores to the references, simi-
lar scores to the pair of repeats, and high scores to
the MT system translations when compared to cor-
responding degraded translations. Workers who
submitted scores of clearly bad quality were re-
jected. For the remaining workers, the Wilcoxon
rank-sum test is used to test whether the score dif-
ference between the repeat judgements is less than
the score difference between translations and the
corresponding degraded versions. We divide these
workers into “good” and “moderate” based on the
threshold of p < 0.05.

To eliminate differences due to different internal
scales, every individual worker’s scores are stan-
dardised by subtracting the mean and dividing by
the standard deviation of their scores. Following
Graham et al. (2015), we use the average of stan-
dardised scores of at least 15 good workers as the
ground truth.

We refer to the final dataset as “MTadeq”.

Results As this is a (practically) continuous out-
put, we use a linear regression model, whereby
the current score is predicted based on the previ-
ous score, with the mean of all worker scores as
control. We also controlled for worker correlation
with mean score, and position of the sentence in
the HIT, but these were not significant and did not
affect the autocorrelation. As seen in Table 3, we
see a small but significant positive autocorrelation
for good workers. The bias is much stronger with
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Good Moderate Bad

β1 0.030∗∗∗ 0.037∗∗∗ 0.192∗∗∗

β2 0.741 0.661 0.256
N items 48216 24696 17738

Table 3: MTadeq dataset: Autocorrelation coeffi-
cient β1, showing sequence bias of good, moderate
and bad workers.

Position Good Moderate Bad

1st Tertile 0.044∗∗∗ 0.063∗∗∗ 0.179∗∗∗

2nd Tertile 0.032∗∗∗ 0.034∗∗∗ 0.173∗∗∗

3rd Tertile 0.015∗∗ 0.014∗ 0.225∗∗∗

Table 4: MTadeq dataset: Regression coefficient
β1 of adequacy scores with the previous score. We
also show results for translations in the first, sec-
ond or third tertile based on the position of the sen-
tence of the HIT

bad (rejected) workers.
An interesting question is whether the bias

changes as workers annotate more data, which
could be ascribed to learning through the task, cal-
ibrating their internal scales, or becoming fatigued
on a monotonous task. Each HIT consists of 100
sentences, and we divide the dataset into 3 equal
groups based on the position of sentence in the
HIT. As shown in Table 4, for good and moderate
workers, the bias is stronger in the first group of
sentences annotated, decreases in the second, and
is much smaller in the last. This could be because
workers are familiarising themselves with the task
earlier on, and calibrating their scale. There is no
such trend with bad quality scores, possibly be-
cause the workers are not putting in sufficient ef-
fort to produce accurate scores.

Next we assess the impact of the bias in the
worst case situation. We discretize scores into low,
middle and high based on equal-frequency bin-
ning, and divide the dataset into 3 groups based
on the score assigned to the previous sentence. As
shown in Table 5 we can see that the sentences in
the “low” partition and the “high” partition have
a difference of 0.18, which is highly significant;3

moreover, this difference is likely to be sufficiently
large to alter the rankings of systems in an evalua-
tion. The bias remains even when we increase the
number of workers and use the average score, as
all workers scored the translations in the same or-
der. This shows that the mean is also affected by

3p < 0.001 using Welch’s two-sample t-test

N All Low Middle High H − L

1 0.01 −0.09 0.05 0.08 0.18∗∗∗

5 0.00 −0.05 −0.02 0.08 0.14∗∗∗

10 −0.00 −0.05 −0.04 0.09 0.13∗∗∗

15 −0.00 −0.05 −0.02 0.07 0.12∗∗∗

Table 5: MTadeq dataset: Translations following a
low quality translation receive a lower score than
those following a good translation: “All” is the
mean score of all sentences in the dataset, where
each sentence score is calculated as the average
of N (standardised) worker scores. “Low”, “Mid-
dle”, and “High” are mean scores of sentences
where the previous sentence annotated is of low,
medium and high quality, resp. “H− L” is the dif-
ference between the average high and low scores.

sequence bias.
Thus, it is theoretically possible to exploit se-

quence bias to artificially deflate (or inflate) a spe-
cific system’s computed score by ordering a HIT
such that the system’s output is seen consistently
immediately after a bad (or good) output.

4 Discussion and Conclusions

We have shown significant sequence effects across
several independent crowdsourced datasets: a neg-
ative autocorrelation in the RTE and TEMPO-
RAL datasets, and a positive autocorrelation in the
MTadeq dataset. The negative autocorrelation can
be attributed either to sequential contrast effects or
the gambler’s fallacy. These effects were not sig-
nificant for the AFFECTIVE dataset, perhaps due to
the nature of the annotation task, whereby annota-
tions of one emotion are separated by six other an-
notations, thus limiting the potential for sequenc-
ing effects. It is also possible that the dataset is too
small to obtain statistical significance.

MT judgements are subjective, and when peo-
ple are asked to rate them on a continuous scale,
they need time to calibrate their scale. We show
that the sequential bias decreases for better work-
ers as they annotate more sentences in the HIT,
indicating a learning effect. Since the ordering
of the systems is random, system scores obtained
by averaging scores of all sentences translated by
the system would be unbiased, assuming a suffi-
ciently large sample of sentences. Thus we do not
expect sequential bias to have a marked effect on
system rankings or other macro-level conclusions
on the basis of this data. However, the scores of in-
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dividual translations remain biased, which augurs
poorly for the use of these annotations at the sen-
tence level, such as when used in error analysis or
for training automatic metrics.

Sequence problems can be easily addressed by
adequate randomisation — providing each indi-
vidual worker with a separate dataset that has
been randomised, such that no two workers see
the same ordered data. In this way sequence bias
effects can be considered as independent noise
sources, rather than a systematic bias, and conse-
quently the aggregate results over several workers
will remain unbiased.

This study has shown that sequence bias is real,
and can distort evaluation and annotation exercises
with crowd-workers. We limited our scope to bi-
nary and continuous responses, however it is likely
that sequence effects are prevalent for multinomial
and structured outputs, e.g., in discourse and pars-
ing, where priming is known to have a significant
effect (Reitter et al., 2006). Another important
question for future work is whether sequence bias
is detectable in expert annotators, not just crowd
workers.
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Abstract

First-order factoid question answering as-
sumes that the question can be answered
by a single fact in a knowledge base (KB).
While this does not seem like a challeng-
ing task, many recent attempts that ap-
ply either complex linguistic reasoning or
deep neural networks achieve 65%–76%
accuracy on benchmark sets. Our ap-
proach formulates the task as two machine
learning problems: detecting the entities in
the question, and classifying the question
as one of the relation types in the KB. We
train a recurrent neural network to solve
each problem. On the SimpleQuestions
dataset, our approach yields substantial
improvements over previously published
results — even neural networks based on
much more complex architectures. The
simplicity of our approach also has prac-
tical advantages, such as efficiency and
modularity, that are valuable especially in
an industry setting. In fact, we present a
preliminary analysis of the performance of
our model on real queries from Comcast’s
X1 entertainment platform with millions
of users every day.

1 Introduction

First-order factoid question answering (QA) as-
sumes that the question can be answered by a
single fact in a knowledge base (KB). For ex-
ample, “How old is Tom Hanks” is about the
[age] of [Tom Hanks]. Also referred to as simple
questions by Bordes et al. (2015), recent attempts
that apply either complex linguistic reasoning or
attention-based complex neural network architec-
tures achieve up to 76% accuracy on benchmark
sets (Golub and He, 2016; Yin et al., 2016). While

it is tempting to study QA systems that can handle
more complicated questions, it is hard to reach rea-
sonably high precision for unrestricted questions.
For more than a decade, successful industry ap-
plications of QA have focused on first-order ques-
tions. This bears the question: are users even in-
terested in asking questions beyond first-order (or
are these use cases more suitable for interactive
dialogue)? Based on voice logs from a major en-
tertainment platform with millions of users every
day, Comcast X1, we find that most existing use
cases of QA fall into the first-order category.

Our strategy is to tailor our approach to first-
order QA by making strong assumptions about
the problem structure. In particular, we assume
that the answer to a first-order question is a sin-
gle property of a single entity in the KB, and de-
compose the task into two subproblems: (a) de-
tecting entities in the question and (b) classify-
ing the question as one of the relation types in
the KB. We simply train a vanilla recurrent neu-
ral network (RNN) to solve each subproblem (El-
man, 1990). Despite its simplicity, our approach
(RNN-QA) achieves the highest reported accu-
racy on the SimpleQuestions dataset. While recent
literature has focused on building more complex
neural network architectures with attention mech-
anisms, attempting to generalize to broader QA,
we enforce stricter assumptions on the problem
structure, thereby reducing complexity. This also
means that our solution is efficient, another criti-
cal requirement for real-time QA applications. In
fact, we present a performance analysis of RNN-
QA on Comcast’s X1 entertainment system, used
by millions of customers every day.

2 Related work

If knowledge is presented in a structured form
(e.g., knowledge base (KB)), the standard ap-
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proach to QA is to transform the question and
knowledge into a compatible form, and perform
reasoning to determine which fact in the KB an-
swers a given question. Examples of this approach
include pattern-based question analyzers (Bus-
caldi et al., 2010), combination of syntactic pars-
ing and semantic role labeling (Bilotti et al.,
2007, 2010), as well as lambda calculus (Berant
et al., 2013) and combinatory categorical gram-
mars (CCG) (Reddy et al., 2014). A downside of
these approaches is the reliance on linguistic re-
sources/heuristics, making them language- and/or
domain-specific. Even though Reddy et al. (2014)
claim that their approach requires less supervision
than prior work, it still relies on many English-
specific heuristics and hand-crafted features. Also,
their most accurate model uses a corpus of para-
phrases to generalize to linguistic diversity. Lin-
guistic parsers can also be too slow for real-time
applications.

In contrast, an RNN can detect entities in the
question with high accuracy and low latency.
The only required resources are word embeddings
and a set of questions with entity words tagged.
The former can be easily trained for any lan-
guage/domain in an unsupervised fashion, given
a large text corpus without annotations (Mikolov
et al., 2013; Pennington et al., 2014). The lat-
ter is a relatively simple annotation task that ex-
ists for many languages and domains, and it can
also be synthetically generated. Many researchers
have explored similar techniques for general NLP
tasks (Collobert et al., 2011), such as named entity
recognition (Lu et al., 2015; Hammerton, 2003),
sequence labeling (Graves, 2008; Chung et al.,
2014), part-of-speech tagging (Huang et al., 2015;
Wang et al., 2015), chunking (Huang et al., 2015).

Deep learning techniques have been studied ex-
tensively for constructing parallel neural networks
for modeling a joint probability distribution for
question-answer pairs (Hsu et al., 2016; Yang
et al., 2014; He et al., 2015; Mueller and Thya-
garajan, 2016) and re-ranking answers output by
a retrieval engine (Rao et al., 2016; Yang et al.,
2016). These more complex approaches might be
needed for general-purpose QA and sentence sim-
ilarity, where one cannot make assumptions about
the structure of the input or knowledge. How-
ever, as noted in Section 1, first-order factoid ques-
tions can be represented by an entity and a relation
type, and the answer is usually stored in a struc-

tured knowledge base. Dong et al. (2015) sim-
ilarly assume that the answer to a question is at
most two hops away from the target entity. How-
ever, they do not propose how to obtain the target
entity, since it is provided as part of their dataset.
Bordes et al. (2014) take advantage of the KB
structure by projecting entities, relations, and sub-
graphs into the same latent space. In addition to
finding the target entity, the other key information
to first-order QA is the relation type correspond-
ing to the question. Many researchers have shown
that classifying the question into one of the pre-
defined types (e.g., based on patterns (Zhang and
Lee, 2003) or support vector machines (Buscaldi
et al., 2010)) improves QA accuracy.

3 Approach

(a) From Question to Structured Query. Our
approach relies on a knowledge base, containing a
large set of facts, each one representing a binary
[subject, relation, object] relationship. Since we
assume first-order questions, the answer can be re-
trieved from a single fact. For instance, “How old
is Sarah Michelle Gellar?” can be answered by the
fact:

[Sarah Michelle Gellar,bornOn,4/14/1977]

The main idea is to dissect a first-order factoid
natural-language question by converting it into a
structured query: {entity “Sarah Michelle Gellar”,
relation: bornOn}. The process can be modular-
ized into two machine learning problems, namely
entity detection and relation prediction. In the
former, the objective is to tag each question word
as either entity or not. In the latter, the objective is
to classify the question into one of the K relation
types. We modeled both using an RNN.

We use a standard RNN architecture: Each
word in the question passes through an embed-
ding lookup layer E, projecting the one-hot vector
into a d-dimensional vector xt. A recurrent layer
combines this input representation with the hid-
den layer representation from the previous word
and applies a non-linear transformation to com-
pute the hidden layer representation for the cur-
rent word. The hidden representation of the final
recurrent layer is projected to the output space of k
dimensions and normalized into a probability dis-
tribution via soft-max.

In relation prediction, the question is classified
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into one of the 1837 classes (i.e., relation types in
Freebase). In the entity detection task, each word
is classified as either entity or context (i.e., k = 2).

Given a new question, we run the two RNN
models to construct the structured query. Once
every question word is classified as entity (de-
noted by E) or context (denoted by C), we can ex-
tract entity phrase(s) by grouping consecutive en-
tity words. For example, for question “How old is
Michelle Gellar”, the output of entity detection is
[C C C E E], from which we can extract a sin-
gle entity “Michelle Gellar”. The output of rela-
tion prediction is bornOn. The inferred struc-
tured query q becomes the following:
{entityText: “michelle gellar”, relation: bornOn}
(b) Entity Linking. The textual reference to the
entity (entityText in q) needs to be linked to an ac-
tual entity node in our KB. In order to achieve that,
we build an inverted index Ientity that maps all n-
grams of an entity (n ∈ {1, 2, 3}) to the entity’s
alias text (e.g., name or title), each with an associ-
ated TF -IDF score. We also map the exact text
(n =∞) to be able to prioritize exact matches.

Following our running example, let us demon-
strate how we construct Ientity. Let us assume
there is a node ei in our KB that refers to the
actress “Sarah Michelle Gellar”. The alias of
this entity node is the name, which has three un-
igrams (“sarah”, “michelle”, “gellar”), two bi-
grams (“sarah michelle”, “michelle gellar”) and a
single trigram (i.e., the entire name). Each one
of these n-grams gets indexed in Ientity with TF -
IDF weights. Here is how the weights would
be computed for unigram “sarah” and bigram
“michelle gellar” (⇒ denotes mapping):

Ientity(“sarah”)⇒ {node : ei,

score : TF -IDF (“sarah”, “sarah michelle gellar”)}
Ientity(“michelle gellar”)⇒ {node : ei,

score : TF -IDF (“michelle gellar”,

“sarah michelle gellar”)}
This is performed for every n-gram (n ∈
{1, 2, 3,∞}) of every entity node in the KB. As-
suming there is an entity node, say ej , for the ac-
tress “Sarah Jessica Parker”, we would end up cre-
ating a second mapping from unigram “sarah”:

Ientity(“sarah”)⇒ {node : ej ,

score : TF -IDF (“sarah”, “sarah jessica parker”)}
In other words, “sarah” would be linked to both ei
and ej , with corresponding TF -IDF weights.

Once the index Ientity is built, we can link en-
tityText from the structured query (e.g., “michelle
gellar”) to the intended entity in the KB (e.g., ei).
Starting with n = ∞, we iterate over n-grams
of entityText and query Ientity, which returns all
matching entities in the KB with associated TF -
IDF relevance scores. For each n-gram, retrieved
entities are appended to the candidate set C. We
continue this process with decreasing value of n
(i.e., n ∈ {∞, 3, 2, 1})

Early termination happens if C is non-empty
and n is less than or equal to the number of to-
kens in entityText. The latter criterion is to avoid
cases where we find an exact match but there are
also partial matches that might be more relevant:
For “jurassic park”, for n = ∞, we get an exact
match to the original movie “Jurassic Park”. But
we would also like to retrieve “Jurassic Park II”
as a candidate entity, which is only possible if we
keep processing until n = 2.
(c) Answer Selection. Once we have a list of can-
didate entitiesC, we use each candidate node ecand
as a starting point to reach candidate answers.

A graph reachability index Ireach is built for
mapping each entity node e to all nodes e′ that are
reachable, with the associated path p(e, e′). For
the purpose of the current approach, we limit our
search to a single hop away, but this index can be
easily expanded to support a wider search.

Ireach(ei)⇒
{node:ei1 , text:The Grudge, path:[actedIn]}
{node:ei2 , text:4/14/1977, path:[bornOn]}
{node:ei3 , text:F. Prinze, path:[marriedTo]}

We use Ireach to retrieve all nodes e′ that are reach-
able from ecand, where the path from is consistent
with the predicted relation r (i.e., r ∈ p(ecand, e

′)).
These are added to the candidate answer setA. For
example, in the example above, node ei2 would
have been added to the answer set A, since the
path [bornOn] matches the predicted relation in
the structured query. After repeating this process
for each entity in C, the highest-scored node in A
is our best answer to the question.

4 Experimental Setup

Data. Evaluation of RNN-QA was carried out on
SimpleQuestions, which uses a subset of Freebase
containing 17.8M million facts, 4M unique enti-
ties, and 7523 relation types. Indexes Ientity and
Ireach are built based on this knowledge base.
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SimpleQuestions was built by (Bordes et al.,
2014) to serve as a larger and more diverse fac-
toid QA dataset.1 Freebase facts are sampled in a
way to ensure a diverse set of questions, then given
to human annotators to create questions from, and
get labeled with corresponding entity and relation
type. There are a total of 1837 unique relation
types that appear in SimpleQuestions.

Training. We fixed the embedding layer based
on the pre-trained 300-dimensional Google News
embedding,2 since the data size is too small for
training embeddings. Out-of-vocabulary words
were assigned to a random vector (sampled from
uniform distribution). Parameters were learned
via stochastic gradient descent, using categori-
cal cross-entropy as objective. In order to han-
dle variable-length input, we limit the input to
N tokens and prepend a special pad word if in-
put has fewer.3 We tried a variety of configura-
tions for the RNN: four choices for the type of
RNN layer (GRU or LSTM, bidirectional or not);
depth from 1 to 3; and drop-out ratio from 0 to
0.5, yielding a total of 48 possible configurations.
For each possible setting, we trained the model on
the training portion and used the validation portion
to avoid over-fitting. After running all 48 experi-
ments, the most optimal setting was selected by
micro-averaged F-score of predicted entities (en-
tity detection) or accuracy (relation prediction) on
the validation set. We concluded that the opti-
mal model is a 2-layer bidirectional LSTM (BiL-
STM2) for entity detection and BiGRU2 for rela-
tion prediction. Drop-out was 10% in both cases.

5 Results

End-to-End QA. For evaluation, we apply the re-
lation prediction and entity detection models on
each test question, yielding a structured query
q = {entityText: te, relation: r} (Section 3a).
Entity linking gives us a list of candidate entity
nodes (Section 3b). For each candidate entity
ecand, we can limit our relation choices to the set
of unique relation types that some candidate en-
tity ecand is associated with. This helps eliminate
the artificial ambiguity due to overlapping rela-

175910/10845/21687 question-answer pairs for train-
ing/validation/test is an order of magnitude larger than com-
parable datasets. Vocabulary size is 55K as opposed to
around 3K for WebQuestions (Berant et al., 2013).

2word2vec.googlecode.com
3Input length (N ) was set to 36, the maximum number of

tokens across training and validation splits.

tion types as well as the spurious ambiguity due to
redundancies in a typical knowledge base. Even
though there are 1837 relation types in Freebase,
the number of relation types that we need to con-
sider per question (on average) drops to 36. The
highest-scored answer node is selected by find-
ing the highest scored entity node e that has an
outward edge of type r (Section 3c). We follow
Bordes et al. (2015) in comparing the predicted
entity-relation pair to the ground truth. A ques-
tion is counted as correct if and only if the entity
we select (i.e., e) and the relation we predict (i.e,
r) match the ground truth.

Table 1 summarizes end-to-end experimental
results. We use the best models based on valida-
tion set accuracy and compare it to three prior ap-
proaches: a specialized network architecture that
explicitly memorizes facts (Bordes et al., 2015), a
network that learns how to convolve sequence of
characters in the question (Golub and He, 2016),
and a complex network with attention mechanisms
to learn most important parts of the question (Yin
et al., 2016). Our approach outperforms the state
of the art in accuracy (i.e., precision at top 1) by
11.9 points (15.6% relative).

Model P@1
Memory Network (2015) 63.9
Char-level CNN (2016) 70.9

Attentive max-pooling (2016) 76.4
RNN-QA (best models) 88.3

naive ED 58.9
naive RP 4.1

naive ED and RP 3.7

Table 1: Top-1 accuracy on test portion of Simple-
Questions. Ablation study on last three rows.

Last three rows quantify the impact of each
component via an ablation study, in which we re-
place either entity detection (ED) or relation pre-
diction (RP) models with a naive baseline: (i) we
assign the relation that appears most frequently in
training data (i.e., bornOn), and/or (ii) we tag the
entire question as an entity (and then perform the
n-gram entity linking). Results confirm that RP
is absolutely critical, since both datasets include
a diverse and well-balanced set of relation types.
When we applied the naive ED baseline, our re-
sults drop significantly, but they are still compa-
rable to prior results. Given that most prior work
do not use the network to detect entities, we can
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deduce that our RNN-based entity detection is the
reason our approach performs so well.
Error Analysis. In order to better understand
the weaknesses of our approach, we performed a
blame analysis: Among 2537 errors in the test set,
15% can be blamed on entity detection — the rela-
tion type was correctly predicted, but the detected
entity did not match the ground truth. The reverse
is true for 48% cases.4 We manually labeled a
sample of 50 instances from each blame scenario.
When entity detection is to blame, 20% was due
to spelling inconsistencies between question and
KB, which can be resolved with better text nor-
malization during indexing (e.g., “la kings” refers
to “Los Angeles Kings”). We found 16% of the
detected entities to be correct, even though it was
not the same as the ground truth (e.g., either “New
York” or “New York City” is correct in “what can
do in new york?”); 18% are inherently ambigu-
ous and need clarification (e.g., “where bin laden
got killed?” might mean “Osama” or “Salem”).
When blame is on relation prediction, we found
that the predicted relation is reasonable (albeit dif-
ferent than ground truth) 29% of the time (e.g.,
“what was nikola tesla known for” can be classi-
fied as profession or notable for).

RNN-QA in Practice. In addition to matching the
state of the art in effectiveness, we also claimed
that our simple architecture provides an efficient
and modular solution. We demonstrate this by
applying our model (without any modifications)
to the entertainment domain and deploying it to
the Comcast X1 platform serving millions of cus-
tomers every day. Training data was generated
synthetically based on an internal entertainment
KB. For evaluation, 295 unique question-answer
pairs were randomly sampled from real usage logs
of the platform.

We can draw two important conclusions from
Table 2: First of all, we find that almost all
of the user-generated natural-language questions
(278/295∼95%) are first-order questions, support-
ing the significance of first-order QA as a task.
Second, we show that even if we simply use an
open-sourced deep learning toolkit (keras.io)
for implementation and limit the computational re-
sources to 2 CPU cores per thread, RNN-QA an-
swers 75% of questions correctly with very rea-
sonable latency.

4In remaining 37% incorrect answers, both models fail, so
the blame is shared.

Error Count
Correct 220

Incorrect entity 16
Incorrect relation 42

Not first-order question 17
Total Latency 76±16 ms

Table 2: Evaluation of RNN-QA on real questions
from X platform.

6 Conclusions and Future work

We described a simple yet effective approach for
QA, focusing primarily on first-order factual ques-
tions. Although we understand the benefit of ex-
ploring task-agnostic approaches that aim to cap-
ture semantics in a more general way (e.g., (Ku-
mar et al., 2015)), it is also important to acknowl-
edge that there is no “one-size-fits-all” solution as
of yet.

One of the main novelties of our work is to de-
compose the task into two subproblems, entity de-
tection and relation prediction, and provide solu-
tions for each in the form of a RNN. In both cases,
we have found that bidirectional networks are ben-
eficial, and that two layers are sufficiently deep to
balance the model’s ability to fit versus its ability
to generalize.

While an ablation study revealed the importance
of both entity detection and relation prediction, we
are hoping to further study the degree of which im-
provements in either component affect QA accu-
racy. Drop-out was tuned to 10% based on valida-
tion accuracy. While we have not implemented at-
tention directly on our model, we can compare our
results side by side on the same benchmark task
against prior work with complex attention mecha-
nisms (e.g., (Yin et al., 2016)). Given the proven
strength of attention mechanisms, we were sur-
prised to find our simple approach to be clearly
superior on SimpleQuestions.

Even though deep learning has opened the po-
tential for more generic solutions, we believe that
taking advantage of problem structure yields a
more accurate and efficient solution. While first-
order QA might seem like a solved problem, there
is clearly still room for improvement. By revealing
that 95% of real use cases fit into this paradigm,
we hope to convince the reader that this is a valu-
able problem that requires more attention.
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Abstract

Despite their ubiquity, word embeddings
trained with skip-gram negative sampling
(SGNS) remain poorly understood. We find
that vector positions are not simply deter-
mined by semantic similarity, but rather oc-
cupy a narrow cone, diametrically opposed
to the context vectors. We show that this ge-
ometric concentration depends on the ratio
of positive to negative examples, and that
it is neither theoretically nor empirically
inherent in related embedding algorithms.

1 Introduction

It is generally assumed that the geometry of word
embeddings is determined by semantic relatedness.
Vectors are assumed to be distributed throughout
a K-dimensional space, with specific regions de-
voted to specific concepts. We find that vectors
trained with the skip-gram with negative sampling
(SGNS) algorithm (Mikolov et al., 2013) are not
only influenced by semantics but are also strongly
influenced by the negative sampling objective. In
fact, far from spanning the possible space, they
exist only in a narrow cone in RK . Nevertheless,
SGNS vectors have become a foundational tool in
NLP and perform as well or better than numerous
methods with similar objectives (Turian et al., 2010;
Dhillon et al., 2012; Pennington et al., 2014; Luo
et al., 2015) with respect to evaluations of intrinsic
and extrinsic quality (Schnabel et al., 2015).

SGNS works by training two sets of embeddings:
the “official” word embeddings and a second set of
context embeddings, with one K-dimensional vec-
tor in each set for each word in the vocabulary. The
objective tries to make the word vector and con-
text vector closer for a pair of words that actually
occur together than for randomly sampled “nega-
tive” words. Following training, the word vectors

are typically saved; the context vectors are deleted.
Any difference between these two sets of vectors is
puzzling, since the sliding window used in training
is symmetrical: a word and its context word reverse
roles almost immediately. Indeed, the superficially
similar GloVe algorithm (Pennington et al., 2014)
also defines word and context vectors and by de-
fault returns the mean of these two vectors.

Previous work has analyzed what the algorithm
might be doing in theory, as an approximation to
a matrix factorization (Levy and Goldberg, 2014).
Other work has considered the empirical effects
of some of the more arbitrary-seeming algorithmic
choices (Levy et al., 2015). But we still have rel-
atively little understanding of how the algorithm
actually determines parameter values.
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Figure 1: SGNS word vectors and their context vectors
projected using PCA (left) and t-SNE (right). t-SNE provides
a more readable layout, but masks the divergence between
word and context vectors.

In this work we measure geometric properties
of SGNS-trained word vectors and their context
vectors. Although the word vectors appear to span
K-dimensional space, we find that the SGNS ob-
jective results in vectors that are narrowly clustered
in a single orthant, and can be made non-negative
without significant loss. Figure 1 shows two vi-
sualizations of SGNS vectors and context vectors.
The context vectors mirror the “official” word vec-
tors, with the angle between vectors effectively
controlled by the number of negative samples. We

2873



show that this effect is due to negative sampling
and not the general embedding objective. We note
that this relationship between vectors is effectively
hidden by the commonly-used t-SNE projection
(van der Maaten and Hinton, 2008).

2 Word embeddings with SGNS

The SGNS algorithm defines two sets of param-
eters, K-dimensional word vectors wi and con-
text vectors ci for each word i. We define a
weight between a word i and a context word j

as σij =
exp(wTi cj)

1+exp(wTi cj)
. For each observed pair i, j

we sample S “negative” context words from a mod-
ified unigram distribution p(w)0.75. The stochastic
gradient update for one parameter wik is then

d`

dwik
= (1− σij)cjk +

S∑

s=1

−σiscsk, (1)

suppressing for clarity a learning rate parameter λ.
A symmetrical update is performed for the context
word parameters cj and cs, substituting wi for c.
This update has been shown to be equivalent to the
gradient of a factorization of a pointwise mutual
information matrix (Levy and Goldberg, 2014).

The impact of the update is to push the vectorwi

closer to the context vector of the observed context
word cj and away from the context vectors of the
negatively sampled words. The amount of change
at any given update is dependent on the degree
to which the current model predicts the “correct”
source of the context word, whether from the real
data distribution or the negative sampling distribu-
tion. If the model is infinitely certain that the real
word is real (σij = 1.0) and the fake words are
fake (σis = 0.0 ∀s), it will make no change to the
current parameters.

3 Results

We first present a series of empirical observa-
tions based on vectors trained from a corpus of
Wikipedia articles that is commonly distributed
with word embedding implementations.1 We then
evaluate the sensitivity of these properties to differ-
ent algorithmic parameters. We make no assertion
that these are optimal (or even particularly good)
vectors, only that they are representative of the
properties of the algorithm.

1http://mattmahoney.net/dc/text8.zip
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Figure 2: SGNS-trained vectors mostly point in the same
direction, towards a mean vector ŵ.

To determine whether observed properties are
due to SGNS specifically or to embeddings in gen-
eral, we compare SGNS-trained vectors to vectors
trained by the GloVe algorithm (Pennington et al.,
2014). The choice of GloVe as a comparison is
due to its popularity and superficial similarity to
SGNS.2 We begin by examining one set of em-
beddings from each algorithm, both with K = 50
dimensions, a vocabulary of ≈ 70k words, and
context window 5. We then evaluate sensitivity to
negative samples, window size, and dimension.

Embeddings are sensitive to word frequency
(Hellrich and Hahn, 2016). Following Zipf’s law,
words in natural language tend to sort into ranges
of frequent words (the majority of tokens) and rare
words (the majority of types), with a large class
of intermediate-frequency terms in the middle. As
a result, the large majority of interactions are be-
tween frequent terms or between frequent and in-
frequent terms. Interactions between infrequent
terms are rare, no matter how large the corpus.
We define four categories of words by ranked fre-
quency: the top 100 words (ultra-high frequency),
the 100–500th ranked words (high frequency), the
500–5000th ranked words (moderate frequency)
and the remaining (low frequency) words.

SGNS vectors are arranged along a primary
axis. Our first observation is that SGNS-trained
vectors all point in roughly the same direction. We
can define a mean vector w̄ by averaging the vec-
tors of the complete vocabulary w. We sample a
balanced set of 400 total words with 100 each from
the four frequency categories. Figure 2 shows the

2We make no attempt in this work to compare the quality
of SGNS and GloVe vectors, nor should the omission of other
algorithms be attributed to anything but space constraints.
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Figure 3: Almost all combinations of words have negative
inner products for SGNS, unlike GloVe.

distribution of inner products between these 400
sampled words and their mean vector ŵ. All vec-
tors have a large, positive inner product with the
mean, indicating that they are not evenly dispersed
through the space. Furthermore, the frequency cat-
egory of words has relatively little effect on the
inner product, with the exception of the rare words,
which have slightly less positive inner products. As
a comparison, the vectors trained by GloVe show a
clear relationship with word frequency, with low-
frequency words opposing the frequency-balanced
mean vector.

This result does not depend on a specific mean
vector. Using the global mean vector rather than the
frequency-balanced mean vector reverses the order
of frequency categories within each plot, but does
not change their overall shape. SGNS vector inner
products are all positive, with low-frequency words
the most positive. GloVe inner products become
positive for low-frequency words and negative for
high-frequency words.

The inner product between vectors is used by the
algorithm during training, but in practice vectors
are often normalized to have unit length before use.
It is possible that the apparent pattern shown in Fig-
ure 2 may be an artifact of differing average lengths
between words of different frequencies. After nor-
malizing SGNS vectors to length 1.0, the lowest
and highest frequency words are most similar to the

mean vector, with the moderate-frequency words
showing the greatest deviation. Normalization does
not change the relative order for GloVe vectors.

SGNS vectors point away from context vectors.
It is possible that vectors could have a positive
inner product with the mean vector but be mutu-
ally orthogonal. Figure 3 shows the distribution
of inner products wT

i cj for pairs of words divided
by frequency for SGNS and GloVe. Almost all
interactions have similar, negative inner products
for SGNS, while GloVe interactions are sensitive
to frequency and vary more widely. We note that
the high-frequency words in GloVe appear to form
a cohesive cluster between themselves (positive
inner products) that points away from the lower
frequency words (negative inner products), while
infrequent words are more dispersed and have no
clear pattern relative to each other.

SGNS vectors are mostly non-negative. Not
only do SGNS vectors occupy a narrow region of
embedding space, it appears that the vectors can
be rotated to fall mostly within the positive orthant.
For each column of the matrix of vectors w we
can compute the dimension-wise mean w̄k. Mul-
tiplying w by a diagonal matrix of the signs of
the means diag(sign(w̄k)) flips each dimension
so that its mean is positive. Figure 4 shows the
resulting positive-mean histogram for 12 of the 50
dimensions trained by SGNS (the remaining dimen-
sions are similar). Some dimensions have medians
close to 0.0, but most skew positive.

Indeed, it is possible to simply drop all remain-
ing negative values without radically changing
the properties of the vectors. Embeddings are of-
ten evaluated based on word similarity prediction
(Schnabel et al., 2015). Using only positive en-
tries, Spearman rank correlation drops from 0.283
to .276 on the SIMLEX word similarity task and
from 0.556 to 0.542 on the MEN task. Subtracting
the global mean vector has similarly little impact,
reducing SIMLEX correlation to 0.271 and increas-
ing MEN correlation to 0.575. This property may
help explain why sparse (Faruqui et al., 2015) and
non-negative (Luo et al., 2015) embeddings do not
lose significant performance.

SGNS context vectors point away from the
word vectors. What then is the geometry of the
context vectors c? The two sets of vectors appear to
present a noisy mirror image of each other. Figure
5 shows the distribution of inner products between
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Figure 5: SGNS context vectors point away from the mean
vector ŵ, GloVe context vectors do not.

the context vectors and the same mean vector ŵ
used in Figure 2. These inner products are negative,
indicating that the context vectors point in the op-
posite direction from the word vectors. In contrast,
the GloVe context vectors have essentially the same
relationship to the mean of the word vectors as the
word vectors themselves. This property explains
why it is common to output the mean of wi and
ci for each word for GloVe but not for SGNS: in
Glove these two vectors are essentially noisy copies
of one another, while in SGNS the two vectors are
pointing almost in the opposite direction.

Positive and negative weights come to equilib-
rium. Eq. 1 balances two terms, a positive inter-
action term 1.0 − σij between a word and a con-
text word and negative interaction terms 0.0− σis
between a word and one of S randomly sampled
words. These terms can be viewed as a “label”
minus an expectation, as in the gradient for lo-
gistic regression. Since there is no 1/S term to
balance the number of random samples, one might

expect that the “power” of the sampled context
terms might overwhelm the true interaction term.
In practice, these samples appear to find an equi-
librium that effectively balances out the number of
random samples after a short burn-in phase. We
recorded a moving average of positive and negative
weights for an ultra-frequent word (the) and a mod-
erately frequent word (tuesday). In both cases, the
mean of the values for positive samples starts at 0.5
and for the negative samples at -0.5. The positive
values converge toward S = 5 times the mean of
the values for negative samples: 0.581 vs. -0.182
for the and 0.693 vs. -0.138 for tuesday.
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Figure 6: The number of negative samples affects the inner
product between vectors and the mean vector. Results are
indistinguishable across 10 initializations for each value.

The negative objective is optimized when each
model vector points away from the context vectors.
The positive objective, in contrast, is maximized
when word and context vectors for related words
are pointing in the same direction. The negative
force acts to repel the vectors, the positive force
acts to pull them together.

During the crucial early phases of the algorithm,
negative samples have more weight than positive
samples: when inner products are near zero, both
types of samples will have values of σij and σis
close to 0.5, so negative samples will “count” S
times more than positive. The early phases of the
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algorithm will focus on pushing the two sets of
vectors apart into separate regions of the latent
space. Once vectors and context vectors separate,
inner products will become negative, so σij and σis
will move closer to 0.0.

The balance between positive and negative sam-
ples consistently affects the geometry of the vec-
tors, and is not sensitive to random initialization.
We varied the number of negative samples from
S = 1 to S = 15, and ran 10 trials for each value
with different random initializations. As shown in
Figure 6, as we increase S, the average inner prod-
uct between vectors and the mean vector within
each model increases.

SGNS vectors are concentrated and point away
from their context vectors, and changing the num-
ber of negative samples appears to affect this prop-
erty. We now consider whether other factors could
also cause this behavior.

Effect of window size Both SGNS and GloVe
operate over word co-occurrences within a sliding
window centered around each token in the corpus.
This window size parameter has an effect on the
semantics of vectors, so it is important to consider
whether it has an effect on the geometry of vectors.
Simply setting an equal window size for SGNS and
GloVe does not, however, guarantee that the two
algorithms are seeing equivalent data, because each
pair is weighted linearly by token distance in SGNS
and by 1/distance in GloVe. Figure 7 shows av-
erage inner products for each frequency with the
global mean vector for 10 trials each at window
size 5, 10, 15, 20 with K = 50. Increasing window
size leads to greater divergence between high- and
low-frequency words for word and context vectors,
but does not change their pattern. GloVe results are
similarly unchanged.

Effect of vector size As with window size, the di-
mensionality K of the word vectors can affect their
ability to represent semantic relationships. Figure 8
shows an increase in inner product with the global
mean as we increase K (10 trials each, window
size 15), but the effect is small relative to that of
the number of negative samples S. GloVe inner
products change by less than 0.05.

4 Conclusion

SGNS vectors encode semantic relatedness, but
their arrangement is much more strongly influenced
by the negative sampling objective than is usually
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Figure 7: SGNS word and context vectors face in opposite
directions regardless of window size.
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Figure 8: As vector size increases SGNS vectors shift toward
the mean vector w̄. (GloVe vectors change by < 0.05.)

assumed. We find that vectors lie on a narrow
primary axis that is effectively non-negative. Users
should not interpret relationships between vectors
without recognizing this geometric context.

In this work we have deliberately restricted our-
selves to describing the geometric properties of
vectors. We see several areas for further work.
First, there are likely to be theoretical reasons why
the observed concentration of SGNS vectors in a
narrow cone does not appear to affect performance
relative to algorithms that do not have this property.
Second, measuring the interplay between positive
and negative objectives may provide insight into al-
gorithmic choices that are now poorly understood,
such as the effect of reducing the occurrence of
frequent words in the corpus and the sampling dis-
tribution of negative examples. Finally, we suggest
that in addition to theoretical analysis, more work
should be done to understand the actual working of
algorithms on real data.
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Abstract

We show that small and shallow feed-
forward neural networks can achieve near
state-of-the-art results on a range of un-
structured and structured language pro-
cessing tasks while being considerably
cheaper in memory and computational re-
quirements than deep recurrent models.
Motivated by resource-constrained envi-
ronments like mobile phones, we show-
case simple techniques for obtaining such
small neural network models, and investi-
gate different tradeoffs when deciding how
to allocate a small memory budget.

1 Introduction

Deep and recurrent neural networks with large net-
work capacity have become increasingly accurate
for challenging language processing tasks. For ex-
ample, machine translation models have been able
to attain impressive accuracies, with models that
use hundreds of millions (Bahdanau et al., 2014;
Wu et al., 2016) or billions (Shazeer et al., 2017)
of parameters. These models, however, may not
be feasible in all computational settings. In partic-
ular, models running on mobile devices are often
constrained in terms of memory and computation.

Long Short-Term Memory (LSTM) mod-
els (Hochreiter and Schmidhuber, 1997) have
achieved good results with small memory foot-
prints by using character-based input representa-
tions: e.g., the part-of-speech tagging models of
Gillick et al. (2016) have only roughly 900,000
parameters. Latency, however, can still be an is-
sue with LSTMs, due to the large number of ma-
trix multiplications they require (eight per LSTM
cell): Kim and Rush (2016) report speeds of
only 8.8 words/second when running a two-layer
LSTM translation system on an Android phone.

Feed-forward neural networks have the poten-
tial to be much faster. In this paper, we show that
small feed-forward networks can achieve results at
or near the state-of-the-art on a variety of natural
language processing tasks, with an order of mag-
nitude speedup over an LSTM-based approach.

We begin by introducing the network model
structure and the character-based representations
we use throughout all tasks (§2). The four tasks
that we address are: language identification (Lang-
ID), part-of-speech (POS) tagging, word segmen-
tation, and preordering for translation. In order
to use feed-forward networks for structured pre-
diction tasks, we use transition systems (Titov and
Henderson, 2007, 2010) with feature embeddings
as proposed by Chen and Manning (2014), and in-
troduce two novel transition systems for the last
two tasks. We focus on budgeted models and ab-
late four techniques (one on each task) for improv-
ing accuracy for a given memory budget:

1. Quantization: Using more dimensions and
less precision (Lang-ID: §3.1).

2. Word clusters: Reducing the network size to
allow for word clusters and derived features
(POS tagging: §3.2).

3. Selected features: Adding explicit feature
conjunctions (segmentation: §3.3).

4. Pipelines: Introducing another task in a
pipeline and allocating parameters to the aux-
iliary task instead (preordering: §3.4).

We achieve results at or near state-of-the-art with
small (< 3 MB) models on all four tasks.

2 Small Feed-Forward Network Models

The network architectures are designed to limit the
memory and runtime of the model. Figure 1 illus-
trates the model architecture:
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1. Discrete features are organized into groups
(e.g., Ebigrams), with one embedding matrix
Eg ∈ RVg×Dg per group.

2. Embeddings of features extracted for each
group are reshaped into a single vector and
concatenated to define the output of the em-
bedding layer as h0 = [XgEg | ∀g].

3. A single hidden layer, h1, with M rectified
linear units (Nair and Hinton, 2010) is fully
connected to h0.

4. A softmax function models the probability of
an output class y: P (y) ∝ exp(βTy h1 + by),
where βy ∈ RM and by are the weight vector
and bias, respectively.

Memory needs are dominated by the embedding
matrix sizes (

∑
g VgDg, where Vg and Dg are the

vocabulary sizes and dimensions respectively for
each feature group g), while runtime is strongly
influenced by the hidden layer dimensions.

Hashed Character n-grams Previous applica-
tions of this network structure used (pretrained)
word embeddings to represent words (Chen and
Manning, 2014; Weiss et al., 2015). However,
for word embeddings to be effective, they usu-
ally need to cover large vocabularies (100,000+)
and dimensions (50+). Inspired by the success of
character-based representations (Ling et al., 2015),
we use features defined over character n-grams in-
stead of relying on word embeddings, and learn
their embeddings from scratch.

We use a distinct feature group g for each n-
gram length N , and control the size Vg directly
by applying random feature mixing (Ganchev and
Dredze, 2008). That is, we define the feature value
v for an n-gram string x as v = H(x) mod Vg,
where H is a well-behaved hash function. Typical
values for Vg are in the 100-5000 range, which is
far smaller than the exponential number of unique
raw n-grams. A consequence of these small fea-
ture vocabularies is that we can also use small fea-
ture embeddings, typically Dg=16.

Quantization A commonly used strategy for
compressing neural networks is quantization, us-
ing less precision to store parameters (Han et al.,
2015). We compress the embedding weights (the
vast majority of the parameters for these shal-
low models) by storing scale factors for each em-
bedding (details in the supplementary material).
In §3.1, we contrast devoting model size to higher

⨁

There was no queue at the ...

no

eu
at

⨁⨁

Ebigrams

que
ueu

eue
Etrigrams

⨁

h0

h1
P(y)

qu

ue

Figure 1: An example network structure for a model using
bigrams of the previous, current and next word, and trigrams
of the current word. Does not illustrate hashing.

precision and lower dimensionality versus lower
precision and more network dimensions.

Training Our objective function combines the
cross-entropy loss for model predictions relative to
the ground truth with L2 regularization of the bi-
ases and hidden layer weights. For optimization,
we use mini-batched averaged stochastic gradient
descent with momentum (Bottou, 2010; Hinton,
2012) and exponentially decaying learning rates.
The mini-batch size is fixed to 32 and we perform
a grid search for the other hyperparameters, tun-
ing against the task-specific evaluation metric on
held-out data, with early stopping. Full feature
templates and optimal hyperparameter settings are
given in the supplementary material.

3 Experiments

We experiment with small feed-forward networks
for four diverse NLP tasks: language identifica-
tion, part-of-speech tagging, word segmentation,
and preordering for statistical machine translation.

Evaluation Metrics In addition to standard
task-specific quality metrics, our evaluations also
consider model size and computational cost. We
skirt implementation details by calculating size as
the number of kilobytes (1KB=1024 bytes) needed
to represent all model parameters and resources.
We approximate the computational cost as the
number of floating-point operations (FLOPs) per-
formed for one forward pass through the network
given an embedding vector h0. This cost is dom-
inated by the matrix multiplications to compute
(unscaled) activation unit values, hence our metric
excludes the non-linearities and softmax normal-
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ization, but still accounts for the final layer log-
its. To ground this metric, we also provide indica-
tive absolute speeds for each task, as measured on
a modern workstation CPU (3.50GHz Intel Xeon
E5-1650 v3).

3.1 Language Identification

Recent shared tasks on code-switching (Molina
et al., 2016) and dialects (Malmasi et al., 2016)
have generated renewed interest in language iden-
tification. We restrict our focus to single language
identification across diverse languages, and com-
pare to the work of Baldwin and Lui (2010) on pre-
dicting the language of Wikipedia text in 66 lan-
guages. For this task, we obtain the input h0 by
separately averaging the embeddings for each n-
gram length (N = [1, 4]), as summation did not
produce good results.

Table 1 shows that we outperform the low-
memory nearest-prototype model of Baldwin and
Lui (2010). Their nearest neighbor model is the
most accurate but its memory scales linearly with
the size of the training data.

Moreover, we can apply quantization to the em-
bedding matrix without hurting prediction accu-
racy: it is better to use less precision for each
dimension, but to use more dimensions. Our
subsequent models all use quantization. There
is no noticeable variation in processing speed
when performing dequantization on-the-fly at in-
ference time. Our 16-dim Lang-ID model runs at
4450 documents/second (5.6 MB of text per sec-
ond) on the preprocessed Wikipedia dataset.

Relationship to Compact Language Detector
These techniques back the open-source Com-
pact Language Detector v3 (CLD3)1 that runs
in Google Chrome browsers.2 Our experimental
Lang-ID model uses the same overall architecture
as CLD3, but uses a simpler feature set, less in-
volved preprocessing, and covers fewer languages.

3.2 POS Tagging

We apply our model as an unstructured classifier
to predict a POS tag for each token independently,
and compare its performance to that of the byte-
to-span (BTS) model (Gillick et al., 2016). BTS
is a 4-layer LSTM network that maps a sequence
of bytes to a sequence of labeled spans, such as
tokens and their POS tags. Both approaches limit

1github.com/google/cld3
2As of the date of this writing in 2017.

Model Micro F1 Size
Baldwin and Lui (2010): NN 90.2 -
Baldwin and Lui (2010): NP 87.0 -
Small FF, 6 dim 87.3 334 KB
Small FF, 16 dim 88.0 800 KB
Small FF, 16 dim, quantized 88.0 302 KB

Table 1: Language Identification. Quantization allows trad-
ing numerical precision for larger embeddings. The two mod-
els from Baldwin and Lui (2010) are the nearest neighbor
(NN) and nearest prototype (NP) approaches.

Model Acc. Wts. MB Ops.
Gillick et al. (2016) 95.06 900k - 6.63m
Small FF 94.76 241k 0.6 0.27m

+Clusters 95.56 261k 1.0 0.31m
1
2 Dim. 95.39 143k 0.7 0.18m

Table 2: POS tagging. Embedded word clusters improves ac-
curacy and allows the use of smaller embedding dimensions.

model size by using small input vocabularies: byte
values in the case of BTS, and hashed character n-
grams and (optionally) cluster ids in our case.

Bloom Mapped Word Clusters It is well
known that word clusters can be powerful features
in linear models for a variety of tasks (Koo et al.,
2008; Turian et al., 2010). Here, we show that
they can also be useful in neural network mod-
els. However, naively introducing word cluster
features drastically increases the amount of mem-
ory required, as a word-to-cluster mapping file
with hundreds of thousands of entries can be sev-
eral megabytes on its own.3 By representing word
clusters with a Bloom map (Talbot and Talbot,
2008), a key-value based generalization of Bloom
filters, we can reduce the space required by a fac-
tor of∼15 and use 300KB to (approximately) rep-
resent the clusters for 250,000 word types.

In order to compare against the monolingual
setting of Gillick et al. (2016), we train models
for the same set of 13 languages from the Univer-
sal Dependency treebanks v1.1 (Nivre et al., 2016)
corpus, using the standard predefined splits.

As shown in Table 2, our best models are 0.3%
more accuate on average across all languages than
the BTS monolingual models, while using 6x
fewer parameters and 36x fewer FLOPs. The clus-
ter features play an important role, providing a
15% relative reduction in error over our vanilla
model, but also increase the overall size. Halv-

3For example, the commonly used English clusters from
the BLLIP corpus is over 7 MB – people.csail.mit.
edu/maestro/papers/bllip-clusters.gz
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Transition
SPLIT ([σ], [i|β])→ ([σ|i], [β])
MERGE ([σ], [i|β])→ ([σ], [β])

Table 3: Segmentation Transition system. Initially all
characters are on the buffer β and the stack σ is empty:
([], [c1c2...cn]). In the final state the buffer is empty and the
stack contains the first character for each word.

ing all feature embedding dimensions (except for
the cluster features) still gives a 12% reduction in
error and trims the overall size back to 1.1x the
vanilla model, staying well under 1MB in total.
This halved model configuration has a throughput
of 46k tokens/second, on average.

Two potential advantages of BTS are that it does
not require tokenized input and has a more accu-
rate multilingual version, achieving 95.85% accu-
racy. From a memory perspective, one multilin-
gual BTS model will take less space than separate
FF models. However, from a runtime perspective,
a pipeline of our models doing language identi-
fication, word segmentation, and then POS tag-
ging would still be faster than a single instance of
the deep LSTM BTS model, by about 12x in our
FLOPs estimate.4

3.3 Segmentation
Word segmentation is critical for processing Asian
languages where words are not explicitly sep-
arated by spaces. Recently, neural networks
have significantly improved segmentation accu-
racy (Zhang et al., 2016; Cai and Zhao, 2016; Liu
et al., 2016; Yang et al., 2017; Kong et al., 2015).
We use a structured model based on the transition
system in Table 3, and similar to the one proposed
by Zhang and Clark (2007). We conduct the seg-
mentation experiments on the Chinese Treebank
6.0 with the recommended data splits. No exter-
nal resources or pretrained embeddings are used.
Hashing was detrimental to quality in our prelim-
inary experiments, hence we do not use it for this
task. To learn an embedding for unknown charac-
ters, we cast characters occurring only once in the
training set to a special symbol.

Selected Features Because we are not using
hashing here, we need to be careful about the
size of the input vocabulary. The neural network
with its non-linearity is in theory able to learn
bigrams by conjoining unigrams, but it has been

4Our calculation of BTS FLOPs is very conservative and
favorable to BTS, as detailed in the supplementary material.

Model Accuracy Size
Zhang et al. (2016) 95.01 −
Zhang et al. (2016)-combo 95.95 −
Small FF, 64 dim 94.24 846KB
Small FF, 256 dim 94.16 3.2MB
Small FF, 64 dim, bigrams 95.18 2.0MB

Table 4: Segmentation results. Explicit bigrams are useful.

Transition Precondition
APPEND ([σ|i|j], [β])→ ([σ|[ij]], [β])
SHIFT ([σ], [i|β])→ ([σ|i], [β])
SWAP ([σ|i|j], [β])→ [σ|j], [i|β]); i < j

Table 5: Preordering Transition system. Initially all words are
part of singleton spans on the buffer: ([], [[w1][w2]...[wn]]).
In the final state the buffer is empty and the stack contains a
single span.

shown that explicitly using character bigram fea-
tures leads to better accuracy (Zhang et al., 2016;
Pei et al., 2014). Zhang et al. (2016) suggests
that embedding manually specified feature con-
junctions further improves accuracy (‘Zhang et al.
(2016)-combo’ in Table 4). However, such embed-
dings could easily lead to a model size explosion
and thus are not considered in this work.

The results in Table 4 show that spending our
memory budget on small bigram embeddings is
more effective than on larger character embed-
dings, in terms of both accuracy and model size.
Our model featuring bigrams runs at 110KB of
text per second, or 39k tokens/second.

3.4 Preordering

Preordering source-side words into the target-side
word order is a useful preprocessing task for statis-
tical machine translation (Xia and McCord, 2004;
Collins et al., 2005; Nakagawa, 2015; de Gispert
et al., 2015). We propose a novel transition sys-
tem for this task (Table 5), so that we can repeat-
edly apply a small network to produce these per-
mutations. Inspired by a non-projective parsing
transition system (Nivre, 2009), the system uses
a SWAP action to permute spans. The system is
sound for permutations: any derivation will end
with all of the input words in a permuted order,
and complete: all permutations are reachable (use
SHIFT and SWAP operations to perform a bubble
sort, then APPEND n − 1 times to form a single
span). For training and evaluation, we use the
English-Japanese manual word alignments from
Nakagawa (2015).

2882



Model FRS Size
Nakagawa (2015) 81.6 -
Small FF 75.2 0.5MB
Small FF + POS tags 81.3 1.3MB
Small FF + Tagger input fts. 76.6 3.7MB

Table 6: Preordering results for English→ Japanese. FRS (in
[0, 100]) is the fuzzy reordering score (Talbot et al., 2011).

Pipelines For preordering, we experiment with
either spending all of our memory budget on re-
ordering, or spending some of the memory budget
on features over predicted POS tags, which also
requires an additional neural network to predict
these tags. Full feature templates are in the supple-
mentary material. As the POS tagger network uses
features based on a three word window around the
token, another possibility is to add all of the fea-
tures that would have affected the POS tag of a
token to the reorderer directly.

Table 6 shows results with or without using
the predicted POS tags in the preorderer, as well
as including the features used by the tagger in
the reorderer directly and only training the down-
stream task. The preorderer that includes a sep-
arate network for POS tagging and then extracts
features over the predicted tags is more accurate
and smaller than the model that includes all the
features that contribute to a POS tag in the re-
orderer directly. This pipeline processes 7k to-
kens/second when taking pretokenized text as in-
put, with the POS tagger accounting for 23% of
the computation time.

4 Conclusions

This paper shows that small feed-forward net-
works are sufficient to achieve useful accuracies
on a variety of tasks. In resource-constrained en-
vironments, speed and memory are important met-
rics to optimize as well as accuracies. While
large and deep recurrent models are likely to be
the most accurate whenever they can be afforded,
feed-foward networks can provide better value in
terms of runtime and memory, and should be con-
sidered a strong baseline.
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Abstract

We propose a novel LSTM-based deep
multi-task learning framework for aspect
term extraction from user review sen-
tences. Two LSTMs equipped with ex-
tended memories and neural memory op-
erations are designed for jointly handling
the extraction tasks of aspects and opin-
ions via memory interactions. Sentimental
sentence constraint is also added for more
accurate prediction via another LSTM.
Experiment results over two benchmark
datasets demonstrate the effectiveness of
our framework.

1 Introduction

The aspect-based sentiment analysis (ABSA) task
is to identify opinions expressed towards specific
entities such as laptop or attributes of entities such
as price (Liu, 2012a). This task involves three sub-
tasks: Aspect Term Extraction (ATE), Aspect Po-
larity Detection and Aspect Category Detection.
As a fundamental subtask in ABSA, the goal of
the ATE task is to identify opinionated aspect ex-
pressions. One of most important characteristics
is that opinion words can provide indicative clues
for aspect detection since opinion words should
co-occur with aspect words. Most publicly avail-
able datasets contain the gold standard annotations
for opinionated aspects, but the ground truth of
the corresponding opinion words is not commonly
provided. Some works tackling the ATE task ig-
nore the consideration of opinion words and just
focus on aspect term modeling and learning (Jin

∗The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14203414). We thank Lidong Bing and Piji Li for their
helpful comments on this draft and the anonymous reviewers
for their valuable feedback.

et al., 2009; Jakob and Gurevych, 2010; Toh and
Wang, 2014; Chernyshevich, 2014; Manek et al.,
2017; San Vicente et al., 2015; Liu et al., 2015;
Poria et al., 2016; Toh and Su, 2016; Yin et al.,
2016). They fail to leverage opinion information
which is supposed to be useful clues.

Some works tackling the ATE task con-
sider opinion information (Hu and Liu, 2004a,b;
Popescu and Etzioni, 2005; Zhuang et al., 2006;
Qiu et al., 2011; Liu et al., 2012b, 2013a,b, 2014)
in an unsupervised or partially supervised manner.
Qiu et al. (2011) proposed Double Propagation
(DP) to collectively extract aspect terms and opin-
ion words based on information propagation over
a dependency graph. One drawback is that it heav-
ily relies on the dependency parser, which is prone
to generate mistakes when applying on informal
online reviews. Liu et al. (2014) modeled relation
between aspects and opinions by constructing a bi-
partite heterogenous graph. It cannot perform well
without a high-quality phrase chunker and POS
tagger reducing its flexibility. As unsupervised or
partially supervised frameworks cannot take the
full advantages of aspect annotations commonly
found in the training data, the above methods lead
to deficiency in leveraging the data. Recently,
Wang et al. (2016) considered relation between
opinion words and aspect words in a supervised
model named RNCRF. However, RNCRF tends to
suffer from parsing errors since the structure of the
recursive network hinges on the dependency parse
tree. CMLA (Wang et al., 2017a) used a multi-
layer neural model where each layer consists of
aspect attention and opinion attention. However
CMLA merely employs standard GRU without ex-
tended memories.

We propose MIN (Memory Interaction Net-
work), a novel LSTM-based deep multi-task learn-
ing framework for the ATE task. Two LSTMs
with extended memory are designed for handling
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the extraction tasks of aspects and opinions. The
aspect-opinion relationship is established based on
neural memory interactions between aspect ex-
traction and opinion extraction where the global
indicator score of opinion terms and local posi-
tional relevance between aspects and opinions are
considered. To ensure that aspects are from sen-
timental sentences, MIN employs a third LSTM
for sentimental sentence classification facilitating
more accurate aspect term extraction. Experiment
results over two benchmark datasets show that our
framework achieves superior performance.

2 Model

2.1 Overview

Let an input review sentence with T word tokens
and the corresponding distributed representations
be w = {w1, ..., wT } and x = {x1, ..., xT } re-
spectively. The ATE task is treated as a sequence
labeling task with BIO tagging scheme and the set
of aspect tags for the word wt is yAt ∈ {B, I,O},
where B, I,O represent beginning of, inside and
outside of the aspect span respectively. Commonly
found training data contains gold annotations for
aspect terms and opinionated sentences, but the
gold standard of opinion words are usually not
available.

In our multi-task learning framework, three
tasks are involved: (1) aspect term extraction
(ATE), (2) opinion word extraction and (3) sen-
timental sentence classification. We design a task-
specific LSTM, namely, A-LSTM, O-LSTM and
S-LSTM, for tackling each of the above tasks re-
spectively. The first component of our proposed
framework consists of A-LSTM and O-LSTM
where we equip LSTMs with extended operational
memories and some operations are defined over
the memories for task-level memory interactions.
The second component is to determine if a review
sentence is sentimental. This is achieved by em-
ploying a vanilla LSTM, namely, S-LSTM.

2.2 Model Description

The first component of our framework MIN
is composed of A-LSTM and O-LSTM. Both
LSTMs have extended memories for task-level
memory interactions. A-LSTM involves a large
aspect memory HA

t ∈ Rnm×dimAh and an opin-
ion summary vectormO

t ∈ RdimOh whereHA
t con-

tains nm pieces of aspect hidden states of dimen-
sion dimA

h and mO
t is distilled from HO

t . As for

O-LSTM, similarly, an opinion memory HO
t ∈

Rnm×dimOh and an aspect-specific summary vector
mA
t ∈ RdimAh are included.
We use the aspect term annotations in the

training data for training A-LSTM. As there is
no ground truth available for opinion words in
the training data, sentiment lexicon and high-
precision dependency rules are introduced to find
potential opinion words. Commonly used opin-
ion words can be found in some general sentiment
lexicons. To find opinion words, not in sentiment
lexicons, in a sentence, we build a small rule setR
composed of dependency relations with high con-
fidence, e.g., amod, nsubj, and determine if wt
directly depends on the gold aspect word through
the dependencies in R. If so, wt will be treated
as a potential opinion word. Then such opinion
words are used as training data for O-LSTM.

In the memory-enhanced A-LSTM and O-
LSTM, we manually design three kinds of op-
erations: (1) READ to select nm pieces of as-
pect (opinion) hidden states from the past mem-
ories and build HA

t (HO
t ); (2) DIGEST to distill

an aspect (opinion)-specific summary mA
t (mO

t )
from HA

t (HO
t ) where influences of opinion terms

and relative positions of inputs are considered; (3)
INTERACT to perform interaction between A-
LSTM and O-LSTM using the task specific sum-
maries (i.e., mA

t and mO
t ).

Consider the work flow of A-LSTM for as-
pect term extraction. Since opinion words and as-
pect terms should co-occur, the goal of A-LSTM
participating in memory interactions is to acquire
opinion summaries from O-LSTM (i.e., mO

t ) for
better aspect prediction. First of all, MIN will
READ nm pieces of opinion memories which
are most related to wt from O-LSTM. Syntax
structure could be used but syntactic parsers are
not effective for processing short informal review
sentences. Therefore, MIN selects memory seg-
ments temporally related to wt. Precisely, the
opinion memory at the time step t is HO

t =
[hOt−1; ...;h

O
t−nm ] where hOt−i is the (t − i)-th hid-

den state from O-LSTM. Since the linear context
contains most of the parent nodes and the child
nodes of wt on the dependency parse tree, treat-
ing the corresponding memory segments as rele-
vant segments to wt is reasonable.

Then MIN will DIGEST the collected opinion
memories HO

t in the A-LSTM. As different mem-
ory segments are not of equal importance for the
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current decision and the same segment in differ-
ent memories (i.e., different HO

t ) also makes a
difference, MIN leverages two kind of weights to
summarize the collected content. The first weight
is the indicator score of being opinion terms de-
noted as vI ∈ Rnm , which is used to measure
how much opinion information the word wt−i
(i = 1, .., nm) holds. We adopt Euclidean dis-
tance between distributed representations of wt−i
and opinion words. It is obvious that computing
the distance between xt−i and each opinion word
is expensive. Thus, we run an off-the-shelf clus-
tering algorithm over opinion words in the train-
ing set and then use the produced nc centroids to
estimate the indicator score vIi of wt−i being an
opinion word:

vIi =

nc∑

j=1

1

||xt−i − cj ||2
(1)

where xt−i is the distributed representation of
wt−i and cj is the centroid vector representation
of j-th cluster. This weighting scheme ensures
that wt−i is assigned a high score as long as xt−i
is close to a particular centroid. The aspect de-
cision of wt is also affected by relative position
between wt−i and wt. Thus, MIN employs the
second weight vP to explicitly model their posi-
tional relevance and the initial weight for the i-th
segment vPi is calculated as below:

vPi =
nm − i+ 1∑nm

k=1 k
(2)

where nm is the number of hidden state in HO
t .

This position-aware weight enables that the closer
the word wt−i is to the current input, the more the
corresponding memory segment will contribute to
the current decision. To better capture the local po-
sitional relevance, we make the initialized vP as
learnable parameters. Combining the above two
weights helps to utilize each active memory seg-
ment according to the importance for prediction
and mO

t , the summary of HO
t is generated:

mO
t = (HO

t )
>(
vI � vP
||vI ||2

) (3)

where � denotes element-wise multiplication and
|| ∗ ||2 is Euclidean norm of vectors. From Equa-
tion 3,mO

t is dominated by the associated memory
segment of wt−i that obtains the high combined
weights.

In the last operation INTERACT, A-LSTM
communicates with O-LSTM by acquiring mO

t

from O-LSTM and incorporating the summary
into the memory update. The update process is
as follows:

iAt = σ(WA
i xt + UAi [H

A
t [1] : m

O
t ]) + bAi )

fAt = σ(WA
f xt + UAf [H

A
t [1] : m

O
t ]) + bAf )

ĉAt = tanh(WA
c xt + UAc [H

A
t [1] : m

O
t ]) + bAc )

oAt = σ(WA
o xt + UAo [H

A
t [1] : m

O
t ]) + bAo )

cAt = iAt � ĉAt + cAt−1 � fAt
hAt = tanh(cAt )� oAt

(4)

where WA
∗ , UA∗ and bA∗ are weight parameters

of the A-LSTM and σ is the sigmoid activation
function. [:] denotes vector concatenation oper-
ation. mO

t can be seen as the summary of the
opinion indicator in the left context of wt and
HA
t [1] is the most immediate hidden memory of

A-LSTM. MIN blends the opinion summary from
O-LSTM with the memory from A-LSTM. The
co-occurrence relation between aspects and opin-
ion words is modeled by such “memory fusion”
strategy. Since opinion words can appear on both
sides of wt, memory segments corresponding to
the right context (i.e., “future” memory) should be
included. Hence, we conduct bi-directional train-
ing for A-LSTM.

The work flow of memory interaction and the
update process of the internal memories in O-
LSTM are kept same with those in A-LSTM ex-
cept the DIGEST operation. Specifically, we set
mA
t , the task-specific summary of A-LSTM, as

hAt .
The second component of MIN is a generic

LSTM called S-LSTM for discriminating senti-
mental sentences and non-sentimental sentences.
The design and the process of the memory update
in this component are similar to that in Jozefow-
icz et al. (2015). In sentences not conveying any
sentimental meanings, some words like food, ser-
vice tend to be misclassified as aspect terms since
they are commonly used in user reviews. To avoid
this kind of error, we add a constraint that an as-
pect term should come from sentimental sentence.
Specifically, S-LSTM learns the sentimental rep-
resentation hST of the sentence and then feeds it in
aspect prediction as a soft constraint:

P (yAt |xt) = softmax(WA
fc([h

A
t : hST ])) (5)

where WA
fc denotes the weight matrix of the fully-

connected softmax layer.
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On the whole, our proposed MIN framework
has three LSTMs and each of them is differen-
tiable. Thus, our MIN framework can be ef-
ficiently trained with gradient descent. For A-
LSTM and O-LSTM, we use the token-level
cross-entropy error between the predicted distribu-
tion P (yTt |xt) and the gold standard distribution
P (yT ,gt |xt) as the loss function (T ∈ {A,O}):

Loss(T ) = − 1

N ∗ T
N∑

i=1

T∑

t=1

P (Y T ,gi,t |Xi,t)�

log[P (Y Ti,t |Xi,t)]

(6)

For S-LSTM, sentence-level cross entropy error
are employed to calculate the corresponding loss:

Loss(S) = − 1

N

N∑

i=1

P (Y S,g
i |Xi)� log[P (Y S

i |Xi)]

(7)
Then, losses from different LSTMs are combined
to form the training objective of the MIN frame-
work:

J(θ) = Loss(A) + Loss(O) + Loss(S) (8)

.

#TRAIN/#TEST Sentences #TRAIN/#TEST Aspects
D1 3045/800 2358/654
D2 2000/676 1743/622

Table 1: Statistics of datasets.

3 Experiment

3.1 Dataset

We conduct experiments on two benchmark
datasets from SemEval ABSA challenge (Pontiki
et al., 2014, 2016) as shown in Table 1. D1 (Se-
mEval 2014) contains reviews from the laptop do-
main and D2 (SemEval 2016) contains reviews
from the restaurant domain. In these datasets, as-
pect terms have been labeled and sentences con-
taining at least one golden truth aspect are re-
garded as sentimental sentences. As gold stan-
dard annotations for opinion words are not pro-
vided, we select words with strong subjectivity
from MPQA1 as potential opinion words. Apart
from the common opinion words in the sentiment
lexicon, we also treat words, which directly de-
pend on gold standard aspect terms through high-
precision dependency rules, as opinion words.

1http://mpqa.cs.pitt.edu/

3.2 Experiment Design
To evaluate the proposed MIN framework, we per-
form comparison with the following two groups of
methods:
(1) CRF based methods:

• CRF: Conditional Random Fields with basic
feature templates2 and word embeddings.

• Semi-CRF: First-order semi-Markov condi-
tional random fields (Sarawagi et al., 2004)
and the feature template in Cuong et al.
(2014) is adopted.

• IHS RD (Chernyshevich, 2014),
NLANGP (Toh and Su, 2016): Best
systems in ATE subtask in SemEval ABSA
challenges (Pontiki et al., 2014, 2016).

• DLIREC (Toh and Wang, 2014),
AUEB (Xenos et al., 2016): Top-ranked
CRF-based systems in ATE subtask in
SemEval ABSA challenges (Pontiki et al.,
2014, 2016).

• WDEmb (Yin et al., 2016): Enhanced CRF
with word embeddings, linear context em-
beddings and dependency path embeddings.

(2) Neural Network based methods

• LSTM: Vanilla bi-directional LSTM with
pre-trained word embeddings3.

• RNCRF (Wang et al., 2016): Dependency
Tree based Recursive Neural Network with
CRF extractor4.

For datasets in the restaurant domain, we
train word embeddings of dimension 200 with
word2vec (Mikolov et al., 2013) on Yelp reviews5.
For those in laptop domain, we use pre-trained
glove.840B.300d6.

2http://sklearn-crfsuite.readthedocs.io/en/latest/
3As we use our own implementation of LSTM, the re-

ported results are different from those in (Liu et al., 2015)
4Specifically, we list the result of RNCRF over D1 with-

out opinion annotations for fair comparison. As no result is
provided for RNCRF-no-opinion over D2, we report the cor-
responding performance of the full model. See their follow-
ing works (Wang et al., 2017a,b). Also, CMLA (Wang et al.,
2017a) reports better results than RNCRF but we do not com-
pare with it. The reason is that CMLA introduces the gold
standard opinion labels in the training data while such labels
are not available for our experiments

5https://www.yelp.com/dataset challenge
6https://nlp.stanford.edu/projects/glove/
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D1 D2

CRF 74.01% 69.56%
Semi-CRF 68.75% 66.35%
IHS RD 74.55% -
DLIREC 73.78% -
NLANGP - 72.34%
AUEB - 70.44%
WDEmb 75.16% -
LSTM 75.25% 71.26%
RNCRF 77.26% 69.74%
Our Work 77.58% 73.44%

Table 2: Experiment results

The hyper-parameters are selected via ten-fold
cross validation. The dimension of hidden repre-
sentations are 100, 20, 40 for A-LSTM, O-LSTM
and S-LSTM respectively. The dropout rate for
O-LSTM and S-LSTM is 0.4. The size of the as-
pect (opinion) memory nm is 4. The batch size is
set to 32. As for initialization of network parame-
ters, we adopt the strategy that the initial weights
are sampled from the uniform distribution (Glorot
and Bengio, 2010). We employ ADAM (Kingma
and Ba, 2014) as optimizer and the default settings
of ADAM are used.

To better reveal the capability of the proposed
MIN, we train 5 models with the same group of
hyper-parameters and report the average F1 score
over the testing set.

3.3 Results and Analysis

Table 2 depicts experiment results. Compared
to the best systems in SemEval challenge, MIN
achieves 3.0% and 1.1% absolute gains on D1 and
D2 respectively. Besides, our MIN outperforms
WDEmb, a strong CRF-based system benefiting
from several kinds of useful word embeddings,
by 2.1% on D1. With memory interactions and
consideration of sentimental sentence, our MIN
boosts the performance of vanilla bi-directional
LSTM (+2.0% and +1.7% respectively). It vali-
dates the effectiveness of the manually designed
memory operations and the proposed memory in-
teraction mechanism. MIN also outperforms the
state-of-the-art RNCRF on each dataset suggest-
ing that memory interactions can be an alterna-
tive strategy instead of syntactic parsing. To fur-
ther study the impact of each element in MIN, we
conduct ablation experiments. As shown in Ta-
ble 3, removing bi-directionality decreases the ex-
traction performances (-2.0% and -1.0%). The soft

sentimental constraint proves to be useful since
MIN is 1.5% and 1.0% superior than the frame-
work without S-LSTM on D1 and D2 respec-
tively. O-LSTM brings in the largest performance
gains on D2 compared with ablated framework
(i.e., MIN without O-LSTM), verifying our pos-
tulation that aspect-opinion “interaction” is more
effective than only considering aspect terms. We
also observe that the contribution of O-LSTM is
less significant than that of bi-directionality on D1

(+1.6% vs +2.0%). This is reasonable since using
opinion words as adjective modifiers placed after
the aspects is common in English.

D1 D2

MIN without bi-directionality 75.59% 71.87%
MIN without S-LSTM 76.04% 72.55%
MIN without O-LSTM 75.97% 71.80%
MIN 77.58% 73.44%

Table 3: Ablation experiment results.

4 Conclusions

We propose Memory Interaction Network (MIN),
a multi-task learning framework, to detect aspect
terms from the online user reviews. Compared
with previous studies, our MIN has following fea-
tures:

• Co-occurrence pattern between aspects and
opinions is captured via memory interactions,
where the neural memory operations are de-
signed to summarize task-level information
and perform interactions.

• A novel LSTM unit with extended memories
is developed for memory interactions.
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Abstract

We investigate the compositional struc-
ture of message vectors computed by a
deep network trained on a communication
game. By comparing truth-conditional
representations of encoder-produced mes-
sage vectors to human-produced refer-
ring expressions, we are able to identify
aligned (vector, utterance) pairs with the
same meaning. We then search for struc-
tured relationships among these aligned
pairs to discover simple vector space
transformations corresponding to nega-
tion, conjunction, and disjunction. Our
results suggest that neural representations
are capable of spontaneously developing
a “syntax” with functional analogues to
qualitative properties of natural language.1

1 Introduction

The past year has seen a renewal of interest in end-
to-end learning of communication strategies be-
tween pairs of agents represented with deep net-
works (Wagner et al., 2003). Approaches of this
kind make it possible to learn decentralized poli-
cies from scratch (Foerster et al., 2016; Sukhbaatar
et al., 2016), with multiple agents coordinating
via learned communication protocol. More gener-
ally, any encoder–decoder model (Sutskever et al.,
2014) can be viewed as implementing an analo-
gous communication protocol, with the input en-
coding playing the role of a message in an arti-
ficial “language” shared by the encoder and de-
coder (Yu et al., 2016). Earlier work has found that
under suitable conditions, these protocols acquire
simple interpretable lexical (Dircks and Stoness,
1999; Lazaridou et al., 2016) and sequential struc-
ture (Mordatch and Abbeel, 2017), even without
natural language training data.

1 Code and data are available at http://github.
com/jacobandreas/rnn-syn.
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Figure 1: Overview of our task. Given a dataset of referring
expression games, example human expressions, and their as-
sociated logical forms, we compute explicit denotations both
for the original task and in other possible tasks—giving rise to
a truth-conditional representation of the natural language. We
train a recurrent encoder–decoder model to solve the same
tasks directly, and use the decoder to generate comparable
truth-conditional representations of neural encodings.

One of the distinguishing features of natural
language is compositionality: the existence of op-
erations like negation and coordination that can be
applied to utterances with predictable effects on
meaning. RNN models trained for natural lan-
guage processing tasks have been found to learn
representations that encode some of this composi-
tional structure—for example, sentence represen-
tations for machine translation encode explicit fea-
tures for certain syntactic phenomena (Shi et al.,
2016) and represent some semantic relationships
translationally (Levy et al., 2014). It is thus nat-
ural to ask whether these “language-like” struc-
tures also arise spontaneously in models trained
directly from an environment signal. Rather than
using language as a form of supervision, we pro-
pose to use it as a probe—exploiting post-hoc sta-
tistical correspondences between natural language
descriptions and neural encodings to discover reg-
ular structure in representation space.

To do this, we need to find (vector, string)
pairs with matching semantics, which requires
first aligning unpaired examples of human–human
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communication with network hidden states. This
is similar to the problem of “translating” RNN rep-
resentations recently investigated in Andreas et al.
(2017). Here we build on that approach in order to
perform a detailed analysis of compositional struc-
ture in learned “languages”. We investigate a com-
munication game previously studied by FitzGerald
et al. (2013), and make two discoveries: in a model
trained without any access to language data,

1. The strategies employed by human speakers
in a given communicative context are surpris-
ingly good predictors of RNN behavior in the
same context: humans and RNNs send mes-
sages whose interpretations agree on nearly
90% of object-level decisions, even outside
the contexts in which they were produced.

2. Interpretable language-like structure natu-
rally arises in the space of representations.
We identify geometric regularities corre-
sponding to negation, conjunction, and dis-
junction, and show that it is possible to lin-
early transform representations in ways that
approximately correspond to these logical
operations.

2 Task

We focus our evaluation on a communication
game due to FitzGerald et al. (2013) (Figure 1,
top). In this game, the speaker observes (1) a
world W of 1–20 objects labeled with with at-
tributes and (2) a designated target subsetX of ob-
jects in the world. The listener observes only W ,
and the speaker’s goal is to communicate a rep-
resentation of X that enables the listener to accu-
rately reconstruct it. The GENX dataset collected
for this purpose contains 4170 human-generated
natural-language referring expressions and corre-
sponding logical forms for 273 instances of this
game. Because these human-generated expres-
sions have all been pre-annotated, we treat lan-
guage and logic interchangeably and refer to both
with the symbol e. We write e(W ) for the expres-
sion generated by a human for a particular world
W , and JeKW for the result of evaluating the logi-
cal form e against W .

We are interested in using language data of this
kind to analyze the behavior of a deep model
trained to play the same game. We focus our anal-
ysis on a standard RNN encoder–decoder, with the
encoder playing the role of the speaker and the

decoder playing the role of the listener. The en-
coder is a single-layer RNN with GRU cells (Cho
et al., 2014) that consumes both the input world
and target labeling and outputs a 64-dimensional
hidden representation. We write f(W ) for the
output of this encoder model on a world W . To
make predictions, this representation is passed to
a decoder implemented as a multilayer perceptron.
The decoder makes an independent labeling deci-
sion about every object in W (taking as input both
f and a feature representation of a particular object
Wi). We write JfKW for the full vector of decoder
outputs on W . We train the model maximize clas-
sification accuracy on randomly-generated scenes
and target sets of the same form as in the GENX
dataset.

3 Approach

We are not concerned with the RNN model’s raw
performance on this task (it achieves nearly per-
fect accuracy). Instead, our goal is to explore
what kinds of messages the model computes in
order to achieve this accuracy—and specifically
whether these messages contain high-level seman-
tics and low-level structure similar to the referring
expressions produced by humans. But how do we
judge semantic equivalence between natural lan-
guage and vector representations? Here, as in An-
dreas et al. (2017), we adopt an approach inspired
by formal semantics, and represent the meaning of
messages via their truth conditions (Figure 1).

For every problem instance W in the dataset,
we have access to one or more human messages
e(W ) as well as the RNN encoding f(W ). The
truth-conditional account of meaning suggests that
we should judge e and f to be equivalent if they
designate the same set of of objects in the world
(Davidson, 1967). But it is not enough to com-
pare their predictions solely in the context where
they were generated—testing if JeKW = JfKW—
because any pair of models that achieve perfect ac-
curacy on the referring expression task will make
the same predictions in this initial context, regard-
less of the meaning conveyed.

Instead, we sample a collection of alternative
worlds {Wi} observed elsewhere in the dataset,
and compute a tabular meaning representation
rep(e) = {JeKWi

} by evaluating e in each world
Wi. We similarly compute rep(f) = {JfKWi

},
allowing the learned decoder model to play the
role of logical evaluation for message vectors. For
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Theory Objects Worlds Tables

A
ll

Random 0.50 0.00 0.00
Literal 0.74 0.27 0.05
Human 0.92 0.63 0.35

Table 1: Agreement with predicted model behavior for the
high-level semantic correspondence task, computed for ob-
jects (single entries in tabular representation), worlds (rows),
and full tables. Referring expressions e generated by humans
in a single communicative context are highly predictive of
how learned representations f will be interpreted by the de-
coder across multiple contexts.

logically equivalent messages, these tabular rep-
resentations are guaranteed to be identical, so the
sampling procedure can be viewed as an approxi-
mate test of equivalence. It additionally allows us
to compute softer notions of equivalence by mea-
suring agreement on individual worlds or objects.

4 Interpreting the meaning of messages

We begin with the simplest question we can an-
swer with this tool: how often do the messages
generated by the encoder model have the same
meaning as messages generated by humans for the
same context? Again, our goal is not to evaluate
the performance of the RNN model, but instead
our ability to understand its behavior. Does it send
messages with human-like semantics? Is it more
explicit? Or does it behave in a way indistinguish-
able from a random classifier?

For each scene in the GENX test set, we com-
pute the model-generated message f and its tabu-
lar representation rep(f), and measure the extent
to which this agrees with representations produced
by three “theories” of model behavior (Figure 2):
(1) a random theory that accepts or rejects ob-
jects with uniform probability, (2) a literal the-
ory that predicts membership only for objects that
exactly match some object in the original target
set, and (3) a human theory that predicts accord-
ing to the most frequent logical form associated
with natural language descriptions of the target set
(as described in the preceding section). We eval-
uate agreement at the level of individual objects,
worlds, and full tabular meaning representations.

Results are shown in Table 1. Model behavior
is well explained by human decisions in the same
context: object-level decisions can be predicted
with close to 90% accuracy based on human judg-
ments alone, and a third of message pairs agree
exactly in every sampled scene, providing strong
evidence that they carry the same semantics.

These results suggest that the model has learned
a communication strategy that is at least super-
ficially language-like: it admits representations
of the same kinds of communicative abstractions
that humans use, and makes use of these abstrac-
tions with some frequency. But this is purely
a statement about the high-level behavior of the
model, and not about the structure of the space
of representations. Our primary goal is to deter-
mine whether this behavior is achieved using low-
level structural regularities in vector space that can
themselves be associated with aspects of natural
language communication.

5 Interpreting the structure of messages

For this we turn to a focused investigation of three
specific logical constructions used in natural lan-
guage: a unary operation (negation) and two bi-
nary operations (conjunction and disjunction). All
are used in the training data, with a variety of
scopes (e.g. all green objects that are not a tri-
angle, all the pieces that are not tan arches).

Because humans often find it useful to specify
the target set by exclusion rather than inclusion,
we first hypothesize that the RNN language might
find it useful to incorporate some mechanism cor-

✔

everything but the blue squares
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human	theory

random	theory
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initial	obs.

decoder	pred.
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Figure 2: Evaluating theories of model behavior. First, the
encoder is run on an initial world (a), producing a represen-
tation whose meaning we would like to understand (see Fig-
ure 1). We then observe the behavior of the decoder holding
this representation fixed but replacing the underlying world
representation with alternatives like (b). We compare the true
decoder output to a number of theories of its behavior. The
random theory (d) outputs a random decision for every object.
The literal theory (e) predicts that the decoder will output a
positive label only on those objects that exactly match some
object in the initial observation. The human theory (f) assigns
labels according to the logical semantics of the utterance pro-
duced by a human presented with the initial observation.
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Theory Objects Worlds Tables

N
eg

. Random 0.50 0.00 0.00
Literal 0.50 0.12 0.03

Negation 0.97 0.81 0.45
D

is
j. Random 0.50 0.00 0.00

Literal 0.58 0.09 0.01
Disjunction 0.92 0.54 0.19

C
on

j. Random 0.50 0.00 0.00
Literal 0.81 0.19 0.01

Conjunction 0.90 0.56 0.37

Table 2: Agreement with predicted model behavior for nega-
tion, conjunction, and disjunction tasks (top to bottom). Eval-
uation is performed on transformed message vectors as de-
scribed in Section 5. We discover a robust linear transforma-
tion of message vectors corresponding to negation, as well as
evidence of structured representations of binary operations.

responding to negation, and that messages can be
predictably “negated” in vector space. To test this
hypothesis, we first collect examples of the form
(e, f, e′, f ′), where e′ = ¬e, rep(e) = rep(f),
and rep(e′) = rep(f ′). In other words, we find
pairs of pairs of RNN representations f and f ′ for
which the natural language messages (e, e′) serve
as a denotational certificate that f ′ behaves as a
negation of f . If the learned model does not have
any kind of primitive notion of negation, we ex-
pect that it will not be possible to find any kind of
predictable relationship between pairs (f, f ′). (As
an extreme example, we could imagine every pos-
sible prediction rule being associated with a differ-
ent point in the representation space, with the cor-
respondence between position and behavior essen-
tially random.) Conversely, if there is a first-class
notion of negation, we should be able to select an
arbitrary representation vector f with an associ-
ated referring expression e, apply some transfor-
mation N to f , and be able to predict a priori how
the decoder model will interpret the representation
Nf—i.e. in correspondence with ¬e.

Here we make the strong assumption that the
negation operation is not only predictable but lin-
ear. Previous work has found that linear opera-
tors are powerful enough to capture many hier-
archical and relational structures (Paccanaro and
Hinton, 2002; Bordes et al., 2014). Using ex-
amples (f, f ′) collected from the training set as
described above, we compute the least-squares
estimate N̂ = argminN

∑ ||Nf − f ′||22 . To
evaluate, we collect example representations from
the test set that are equivalent to known logical
forms, and measure how frequently model behav-
iors rep(Nf) agree with the logical predictions
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Figure 3: Principal components of structured message trans-
formations discovered by our experiments. (a) Negation:
black and white dots show raw message vectors denotation-
ally equivalent to the provided logical cluster label (Sec-
tion 3). Red dots show the result of transforming black dots
with the estimated negation operationN . (b) The correspond-
ing experiment for disjunction using the transformation M .

rep(¬e)—in other words, how often the linear
operator N actually corresponds to logical nega-
tion. Results are shown in the top portion of Ta-
ble 2. Correspondence with the logical form is
quite high, resulting in 97% agreement at the level
of individual objects and 45% agreement on full
representations. We conclude that the estimated
linear operator N̂ is analogous to negation in nat-
ural language. Indeed, the behavior of this opera-
tor is readily visible in Figure 3: predicted negated
forms (in red) lie close in vector space to their true
values, and negation corresponds roughly to mir-
roring across a central point.

In our final experiment, we explore whether the
same kinds of linear maps can be learned for the
binary operations of conjunction and disjunction.
As in the previous section, we collect examples
from the training data of representations whose de-
notations are known to correspond to groups of
logical forms in the desired relationship—in this
case tuples (e, f, e′, f ′, e′′, f ′′), where rep(e) =
rep(f), rep(e′) = rep(f ′), rep(e′′) = rep(f ′′) and
either e′′ = e ∧ e′ (conjunction) or e′′ = e ∨ e′
(disjunction). Since we expect that our operator
will be symmetric in its arguments, we solve for
M̂ = argminM

∑ ||Mf +Mf ′ − f ′′||22.
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Results are shown in the bottom portions of
Table 2. Correspondence between the behavior
predicted by the contextual logical form and the
model’s actual behavior is less tight than for nega-
tion. At the same time, the estimated operators
are clearly capturing some structure: in the case of
disjunction, for example, model interpretations are
correctly modeled by the logical form 92% of the
time at the object level and 19% of the time at the
denotation level. This suggests that the operations
of conjunction and disjunction do have some func-
tional counterparts in the RNN language, but that
these functions are not everywhere well approxi-
mated as linear.

6 Conclusions

Building on earlier tools for identifying neural
codes with natural language strings, we have pre-
sented a technique for exploring compositional
structure in a space of vector-valued representa-
tions. Our analysis of an encoder–decoder model
trained on a reference game identified a number
of language-like properties in the model’s repre-
sentation space, including transformations corre-
sponding to negation, disjunction, and conjunc-
tion. One major question left open by this analy-
sis is what happens when multiple transformations
are applied hierarchically, and future work might
focus on extending the techniques in this paper to
explore recursive structure. We believe our exper-
iments so far highlight the usefulness of a deno-
tational perspective from formal semantics when
interpreting the behavior of deep models.
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Abstract

Learning word embeddings has received
a significant amount of attention recently.
Often, word embeddings are learned in an
unsupervised manner from a large collec-
tion of text. The genre of the text typi-
cally plays an important role in the effec-
tiveness of the resulting embeddings. How
to effectively train word embedding mod-
els using data from different domains re-
mains a problem that is underexplored. In
this paper, we present a simple yet effec-
tive method for learning word embeddings
based on text from different domains. We
demonstrate the effectiveness of our ap-
proach through extensive experiments on
various down-stream NLP tasks.

1 Introduction

Recently, the learning of distributed representa-
tions for natural language words (or word embed-
dings) has received a significant amount of atten-
tion (Mnih and Hinton, 2007; Turian et al., 2010;
Mikolov et al., 2013a,b,c; Pennington et al., 2014).
Such representations were shown to be able to cap-
ture syntactic and semantic level information asso-
ciated with words (Mikolov et al., 2013a). Word
embeddings were shown effective in tasks such as
named entity recognition (Sienčnik, 2015), sen-
timent analysis (Li and Lu, 2017) and syntactic
parsing (Durrett and Klein, 2015). One common
assumption made by most of the embedding meth-
ods is that, the text corpus is from one single do-
main; e.g., articles from bioinformatics. How-
ever, in practice, there are often text corpora from
multiple domains; e.g., we may have text collec-
tions from broadcast news or Web blogs, whose
words are not necessarily limited to bioinformat-
ics. Can these corpora from different domains help

learn better word embeddings, so as to improve the
downstream NLP applications in a target domain
like bioinformatics? Our answer is yes, because
despite the domain differences, these additional
domains do introduce more text data converying
useful information (i.e., more words, more word
co-occurrences), which can be helpful for consoli-
dating the word embeddings in the target bioinfor-
matics domain.

In this paper, we propose a simple and easy-
to-implement approach for learning cross-domain
word embeddings. Our model can be seen as
a regularized skip-gram model (Mikolov et al.,
2013a,b), where the source domain information is
selectively incorporated for learning the target do-
main word embeddings in a principled manner.

2 Related Work

Learning a continuous representation for words
has been studied for quite a while (Hinton et al.,
1986). Many earlier word embedding meth-
ods employed the computationally expensive neu-
ral network architectures (Collobert and Weston,
2008; Mikolov et al., 2013c). Recently, an ef-
ficient method for learning word representations,
namely the skip-gram model (Mikolov et al.,
2013a,b) was proposed and implemented in the
widely used word2vec toolkit. It tries to use the
current word to predict the surrounding context
words, where the prediction is defined over the
embeddings of these words. As a result, it learns
the word embeddings by maximizing the likeli-
hood of predictions.

Domain adaptation is an important research
topic (Pan et al., 2013), and it has been consid-
ered in many NLP tasks. For example, domain
adaptation is studied for sentiment classification
(Glorot et al., 2011) and parsing (McClosky et al.,
2010), just to name a few. However, there is very
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little work on domain adaptation for word embed-
ding learning. One major reason preventing peo-
ple from using text corpora from different domains
for word embedding learning is the lack of guid-
ance on which kind of information is worth learn-
ing from the source domain(s) for the target do-
main. In order to address this problem, some pi-
oneering work has looked into this problem. For
example, Bollegala et al. (2015) considered those
frequent words in the source domain and the target
domain as the “pivots”. Then it tried to use the piv-
ots to predict the surrounding “non-pivots”, mean-
while ensuring the pivots to have the same em-
bedding across two domains. Embeddings learned
from such an approach were shown to be able to
improve the performance on a cross-domain sen-
timent classification task. However, this model
fails to learn embeddings for many words which
are neither pivots nor non-pivots, which could be
crucial for some downstream tasks such as named
entity recognition.

3 Our Approach

Let us first state the objective of the skip-gram
model (Mikolov et al., 2013a) as follows:

LD =
∑

(w,c)∈D
#(w, c)

(
log σ(w · c)

+

k∑

i=1

Ec′i∼P (w)[log σ(−w · c′i)]
)

(1)

where D refers to the complete text corpus from
which we learn the word embeddings. The word
w is the current word, c is the context word, and
#(w, c) is the number of times they co-occur in
D. We use w and c to denote the vector represen-
tations forw and c, respectively. The function σ(·)
is the sigmoid function. The word c′i is a “nega-
tive sample” sampled from the distribution P (w) –
typically chosen as the unigram distribution U(w)
raised to the 3/4rd power (Mikolov et al., 2013b).

In our approach, we first learn for each word
w an embedding ws from the source domain Ds.
Next we learn the target domain embeddings as
follows:

L′Dt = LDt +
∑

w∈Dt∩Ds
αw · ||wt −ws||2 (2)

whereDt refers to the target domain, and wt is the
target domain representation for w. Such an regu-

larized objective can still be optimized using stan-
dard stochastic gradient descent. Note that in the
above formula, the regularization term only con-
siders words that appear in both source and target
domain, ignoring words that only appear in either
the source or the target domain only.

Our approach is inspired by the recent
regularization-based domain adaptation frame-
work (Lu et al., 2016). Here, αw measures the
amount of transfer across the two domains when
learning the representation for word w. If it is
large, it means we require the embeddings of word
w in the two domains to be similar. We define αw
as follows:

αw = σ(λ · φ(w)) (3)

where λ is a hyper-parameter to decide the scaling
factor of the significance function φ(·), which al-
lows the user to control the degree of “knowledge
transfer” from source domain to target domain.

How do we define the significance function
φ(w) that controls the amount of transfer for the
word w? We first define the frequency of the word
w in the dataset D as fD(w), the number of times
the word w appears in the domain D. Based on
this we can define the normalized frequency for
the word w as follows:

FD(w) =
fD(w)

maxw′∈Dk fD(w
′)

(4)

where Dk ⊂ D consists of all except for the top k
most frequent words from D1.

We define the function φ(·) based on the fol-
lowing metric that is motivated by the well-known
Sørensen-Dice coefficient (Sørensen, 1948; Dice,
1945) commonly used for measuring similarities:

φ(w) =
2 · FDs(w) · FDt(w)
FDs(w) + FDt(w)

(5)

Why does such a definition make sense? We
note that the value of φ(w) would be high only
if both both FDs(w) and FDt(w) are high – in
this case the word w is a frequent word across dif-
ferent domains. Intuitively, these are likely those
words whose semantics do not change across the
two domains, and we should be confident about
making their embeddings similar in the two do-
mains. On the other hand, domain-specific words

1In all our experiments, we empirically set k to 20.
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Enwik9 PubMed Gigaword (EN) Yelp IMDB Tweets (EN) Tweets (ES) Eswiki
# tokens 124.3M 124.9M 135.6M 38.9M 29.0M 162.8M 69.4M 102.8M
# sents – 5,000,000 5,400,000 2,376,079 1,230,465 16,185,356 6,785,697 3,684,670

Table 1: Statistics for datasets used for embedding learning in all experiments.

tend to be more frequent in one domain than the
other. In this case, the resulting φ(w) will also
have a lower score, indicating a smaller amount of
transfer across the two domains. While other user-
defined significance functions are also possible, in
this work we simply adopt such a function based
on the above simple observations. We will vali-
date our assumptions with experiments in the next
section.

4 Experiments

We present extensive evaluations to assess the ef-
fectiveness of our approach. Following recent ad-
vice by Nayak et al. (2016) and Faruqui et al.
(2016), to assess the quality of the learned word
embeddings, we considered employing the learned
word embeddings as continuous features in several
down-stream NLP tasks, including entity recogni-
tion, sentiment classification, and targeted senti-
ment analysis.

We have used various datasets from different
domains for learning cross-domain word embed-
dings under different tasks. We list the data statis-
tics in Table 1.

4.1 Baseline Methods
We consider the following baseline methods when
assessing the effectiveness of our approach.

• DISCRETE: only discrete features (such as
bag of words, POS tags, word n-grams and
POS tag n-grams, depending on the actual
down-stream task) were considered. All fol-
lowing systems include both these base fea-
tures and the respective additional features.

• SOURCE: we train word embeddings from
the source domain as additional features.

• TARGET: we train word embeddings from
the target domain as additional features.

• ALL: we combined the data from two do-
mains to form a single dataset for learning
word embeddings as additional features.

• CONCAT: we simply concatenate the learned
embeddings from both source and target do-
mains as additional features.

Method GENIA ACE
P R F1 P R F1

DISCRETE 71.1 63.9 67.3 64.5 52.3 57.7
SOURCE 71.1 62.3 66.4 63.5 57.3 60.3
TARGET 71.6 64.5 67.9 63.3 57.1 60.0
ALL 71.2 61.8 66.1 64.6 57.2 60.7
CONCAT 71.5 64.1 67.6 63.5 57.7 60.5
DARep 71.4 61.5 66.1 62.4 54.5 58.2
This work 72.4 65.4 68.7 64.5 58.9 61.6

Table 2: Results on entity recognition.

• DARep: we use the previous approach of
Bollegala et al. (2015) for learning cross-
lingual word representations as additional
features.

4.2 Entity Recognition
Our first experiment was conducted on entity
recognition (Tjong Kim Sang and De Meulder,
2003; Florian et al., 2004), where the task is to ex-
tract semantically meaning entities and their men-
tions from the text.

For this task, we built a standard entity recogni-
tion model using conditional random fields (Laf-
ferty et al., 2001). We used the standard fea-
tures which are commonly used for different meth-
ods, including word unigrams and bigrams, bag-
of-words features, POS tag window features, POS
tag unigrams and bigram features. We conducted
two sets of experiments on two different datasets.
The first dataset is the GENIA dataset (Ohta et al.,
2002), a popular dataset used in bioinformatics,
and the second is the ACE-2005 dataset (Walker
et al., 2006), which is a standard dataset used for
various information extraction tasks.

For the GENIA dataset which consists of 10,946
sentences, we used Enwik9 as the source domain
and PubMed as the target domain for learning
word embeddings. We set the dimension of word
representations as 50.

For the experiments on ACE, we selected the
BN subset of ACE2005, which consists of 4,460
CNN headline news and share a similar domain
with Gigaword. We used Enwik9 as the source
domain and Gigaword as the target domain. We
followed a procedure similar to GENIA for exper-
iments.

To tune our hyperparameter λ, we first split the
last 10% of the training set as the development
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Figure 1: Results on sentiment classification. Left: Yelp (source) to IMDB (target). Right: IMDB
(source) to Yelp (target).

portion. We then trained a model using the re-
maining 90% as the training portion and used the
development portion for development of the hy-
perparameter λ. After development, we re-trained
the models using the original training set2.

We report the results in Table 2. From the re-
sults we can observe that the embeddings learned
using our algorithm can lead to improved perfor-
mance when used in this particular down-stream
NLP task. We note that in such a task, many en-
tities consist of domain-specific terms, therefore
learning good representations for such words can
be crucial. As we have discussed earlier, our reg-
ularization method enables our model to differen-
tiate domain-specific words from words which are
more general in the learning process. We believe
this mechanism can lead to improved learning of
representations for both types of words.

4.3 Sentiment Classification

The second task we consider is sentiment classi-
fication, which is essentially a text classification
task, where the goal is to assign each text docu-
ment a class label indicating its sentiment polarity
(Pang et al., 2002; Liu, 2012).

This is also the only task presented in the pre-
vious DARep work by Bollegala et al. (2015). As
such, we largely followed Bollegala et al. (2015)
for experiments. Instead of using the dataset they
used which only consists of 2,000 reviews, we
considered two much larger datasets – IMDB and
Yelp 2014 – for such a task, which was previously
used in a sentiment classification task (Tang et al.,
2015). IMDB dataset (Diao et al., 2014) is crawled
from the movie review site IMDB3 which con-
sists of 84,919 reviews. Yelp 2014 dataset consists

2We selected the optimal value for the hyper-parameter
λ from the set λ ∈ {0.1, 1, 5, 10, 20, 30, 50} for all experi-
ments in this paper.

3http://www.imdb.com

of 231,163 online reviews provided by the Yelp
Dataset Challenge4.

Following Bollegala et al. (2015), for this task
we simply learned the word embeddings from the
training portion of the review datasets themselves
only. No external data was used for learning word
embeddings. As Bollegala et al. (2015) only eval-
uated on a small dataset in their paper for such
a task, to understand the effect of varying the
amount of training data, we also tried to train our
model on datasets with different sizes. We con-
ducted two sets of experiments: we first used the
Yelp dataset as the source domain and IMDB as
the target domain, and then we switched these two
datasets in our second set of experiments. Fig-
ure 1 shows the F1 measures for different word
embeddings when different amounts of training
data were used. We also compared with the pre-
vious approach for domain adaptation (Lu et al.,
2016) which only employs discrete features. We
can observe that when the dataset becomes large,
our learned word embeddings are shown to be
more effective than all other approaches. When
the complete training set is used, our model sig-
nificantly outperforms DARep (p < 0.05 for both
directions with bootstrap resampling test (Koehn,
2004)). DARep appears to be effective when the
training dataset is small. However, as the train-
ing set size increases, there is no significant im-
provement for such an approach. As we can also
observe from the figure, our approach consistently
gives better results than baseline approaches (ex-
cept for the second experiment when 20% of the
data was used). Furthermore, when the amount
of training data increases, the differences between
our approach and other approaches generally be-
come larger.

Such experiments show that our model works

4https://www.yelp.com/dataset challenge
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Model English Spanish
P. R. F1 P. R. F1

DISCRETE 44.8 37.0 40.5 46.0 39.8 42.7
SOURCE 44.1 36.3 39.8 46.1 40.5 43.1
TARGET 46.5 39.1 42.5 46.5 40.8 43.4
ALL 45.4 37.0 40.8 46.4 40.7 43.3
CONCAT 46.7 39.3 42.7 46.6 41.0 43.6
DARep 46.2 39.8 42.8 46.2 40.9 43.4
This work 46.9 39.9 43.1 46.6 41.4 43.9

Table 3: Results on targeted sentiment analysis.

well when different amounts of data are available,
and our approach appears to be more competitive
when a large amount of data is available.

4.4 Targeted Sentiment Analysis

We also conducted experiments on targeted senti-
ment analysis (Mitchell et al., 2013) – the task of
jointly recognizing entities and their sentiment in-
formation. We used the state-of-the-art system for
targeted sentiment analysis by Li and Lu (2017)
whose code is publicly available 5, and used the
data from (Mitchell et al., 2013) which consists
of 7,105 Spanish tweets and 2,350 English tweets,
with named entities and their sentiment informa-
tion annotated. Note that the model of Li and
Lu (2017) is a structured prediction model that
involves latent variables. The experiments here
therefore allow us to assess the effectiveness of
our approach on such a setup involving latent vari-
ables. We follow Li and Lu (2017) and report
precision (P.), recall (R.) and F1-measure (F1)
for such a targeted sentiment analysis task, where
the prediction is regarded as correct if and only if
both the entity’s boundary and its sentiment infor-
mation are correct. Also, unlike previous experi-
ments, which are conducted on English only, these
experiments additionally allow us to assess our ap-
proach’s effectiveness when a different language
other than English is considered.

For the English task, we used Enwik9 as the
source domain for learning word embeddings, and
our crawled English tweets as the target domain.
For the Spanish task, we used Eswiki as the source
domain, and we also crawled Spanish tweets as the
target domain. See Table 1 for the statistics. Sim-
ilar to the experiments conducted for entity recog-
nition, we split the first 80% of the data for train-
ing, the next 10% for development and the last
10% for evaluation. We tuned the hyper-parameter
λ using the development set and re-trained the em-
beddings on the dataset combining the training and

5Available at http://statnlp.org/research/st/.

the development set, which are then used in fi-
nal evaluations. Results are reported in Table 3,
which show our approach is able to achieve the
best results across two datasets in such a task, and
outperforms DARep (p < 0.05). Interestingly,
the concatenation approach appears to be competi-
tive in this task, especially for the Spanish dataset,
which appears to be better than the DARep ap-
proach. However, we note such an approach does
not capture any information transfer across differ-
ent domains in the learning process. In contrast,
our approach learns embeddings for the target do-
main by capturing useful cross-domain informa-
tion and therefore can lead to improved modeling
of embeddings that are shown more helpful for this
specific down-stream task.

5 Conclusion and Future Work

In this paper, we presented a simple yet effec-
tive algorithm for learning cross-domain word em-
beddings. Motivated by the recent regularization-
based domain adaptation framework (Lu et al.,
2016), the algorithm performs learning by aug-
menting the skip-gram objective with a simple reg-
ularization term. Our work can be easily extended
to multi-domain scenarios. The method is also
flexible, allowing different user-defined metrics to
be incorporated for defining the function control-
ling the amount of domain transfer.

Future work includes performing further in-
vestigations to better understand and to visual-
ize what types of information has been trans-
ferred across domains and how such informa-
tion influence different types of down-stream
NLP tasks. It is also important to under-
stand how such an approach will work on
other types of models such as neural networks
based NLP models. Our code is available at
http://statnlp.org/research/lr/.
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Abstract

Recent efforts in bioinformatics have
achieved tremendous progress in the ma-
chine reading of biomedical literature, and
the assembly of the extracted biochem-
ical interactions into large-scale models
such as protein signaling pathways. How-
ever, batch machine reading of literature
at today’s scale (PubMed alone indexes
over 1 million papers per year) is unfea-
sible due to both cost and processing over-
head. In this work, we introduce a focused
reading approach to guide the machine
reading of biomedical literature towards
what literature should be read to answer
a biomedical query as efficiently as pos-
sible. We introduce a family of algorithms
for focused reading, including an intuitive,
strong baseline, and a second approach
which uses a reinforcement learning (RL)
framework that learns when to explore
(widen the search) or exploit (narrow it).
We demonstrate that the RL approach is
capable of answering more queries than
the baseline, while being more efficient,
i.e., reading fewer documents.

1 Introduction

The millions of academic papers in the biomedi-
cal domain contain a vast amount of information
that may lead to new hypotheses for disease treat-
ment. However, scientists are faced with a prob-
lem of “undiscovered public knowledge,” as they
struggle to read and assimilate all of this informa-
tion (Swanson, 1986). Furthermore, the literature
is growing at an exponential rate (Pautasso, 2012);
PubMed1 has been adding more than a million pa-
pers per year since 2011. We have surpassed our

1http://www.ncbi.nlm.nih.gov/pubmed

ability to keep up with and integrate these findings
through manual reading alone.

Large ongoing efforts, such as the BioNLP task
community (Nédellec et al., 2013; Kim et al.,
2012, 2009) and the DARPA Big Mechanism Pro-
gram (Cohen, 2015), are making progress in ad-
vancing methods for machine reading and as-
sembly of extracted biochemical interactions into
large-scale models. However, to date, these meth-
ods rely either on the manual selection of relevant
documents, or on the processing of large batches
of documents that may or may not be relevant to
the model being constructed.

Batch machine reading of literature at this scale
poses a new, growing set of problems. First, access
to some documents is costly. The PubMedCentral
(PMC) Open Access Subset2 (OA) is estimated3 to
comprise 20%4 of the total literature; the remain-
ing full-text documents are only available through
paid access. Second, while there have been great
advances in quality, machine reading is still not
solved. Updates to our readers requires reprocess-
ing the documents. For large document corpora,
this quickly becomes the chief bottleneck in infor-
mation extraction for model construction and anal-
ysis. Finally, even if we could cache all reading
results, the search for connections between con-
cepts within the extracted results should not be
done blindly. At least in the biology domain, the
many connections between biological entities and
processes leads to a very high branching factor,
making blind search for paths intractable.

To effectively read at this scale, we need to in-
corporate methods for focused reading: develop
the ability to pose queries about concepts of in-
terest and perform targeted, incremental search

2https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

3https://tinyurl.com/bachman-oa
4This includes 5% from PMC author manuscripts.
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through the literature for connections between
concepts while minimizing reading documents
that are likely irrelevant.

In this paper we present what we believe is the
first algorithm for focused reading. We make the
following contributions:
(1) Present a general framework for a family of
possible focused reading algorithms along with a
baseline instance.
(2) Cast the design of focused reading algorithms
in a reinforcement learning (RL) setting, where the
machine decides if it should explore (i.e., cast a
wider net) or exploit (i.e., focus reading on a spe-
cific topic).
(3) Evaluate our focused reading policies in terms
of search efficiency and quality of information ex-
tracted. The evaluation demonstrates the effective-
ness of the RL method: this approach found more
information than the strong baseline we propose,
while reading fewer documents.

2 Related Work

The past few years have seen a large body of
work on information extraction (IE), particularly
in the biomedical domain. This work is too vast
to be comprehensively discussed here. We re-
fer the interested reader to the BioNLP commu-
nity (Nédellec et al., 2013; Kim et al., 2012, 2009,
inter alia) for a starting point. However, most of
this work focuses on how to read, not on what to
read given a goal. To our knowledge, we are the
first to focus on the latter task.

Reinforcement learning has been used to
achieve state of the art performance in several
natural language processing (NLP) and informa-
tion retrieval (IR) tasks. For example, RL has
been used to guide IR and filter irrelevant web
content (Seo and Zhang, 2000; Zhang and Seo,
2001). More recently, RL has been combined with
deep learning with great success, e.g., for improv-
ing coreference resolution (Clark and Manning,
2016). Finally, RL has been used to improve the
efficiency of IE by learning how to incrementally
reconcile new information and help choose what
to look for next (Narasimhan et al., 2016), a task
close to ours. This serves as an inspiration for the
work we present here, but with a critical differ-
ence: Narasimhan et al. (2016) focus on slot filling
using a pre-existing template. This makes both the
information integration and stopping criteria well-
defined. On the other hand, in our focused reading

mTOR Cellular 
Apoptosis

+ (Positive)

Figure 1: Example of a graph edge encoding the
relation extracted from the text: mTOR triggers
cellular apoptosis.

domain, we do not know ahead of time which new
pieces of information are necessarily relevant and
must be taken in context.

3 Focused Reading

Here we consider focused reading for the biomed-
ical domain, and we focus on binary promo-
tion/inhibition interactions between biochemical
entities. In this setting, the machine reading (or
IE) component constructs a directed graph, where
vertices represent participants in an interaction
(e.g., protein, gene, or a biological process), and
edges represent directed activation interactions.
Edge labels indicate whether the controller entity
has a positive (promoting) or negative (inhibitory)
influence on the controlled participant. Figure 1
shows an example edge in this graph.

We use REACH5, an open source IE sys-
tem (Valenzuela-Escárcega et al., 2015), to extract
interactions from unstructured biomedical text and
construct the graph above. We couple this IE sys-
tem with a Lucene6 index of biomedical publica-
tions to retrieve papers based on queries about par-
ticipant mentions in the text (as discussed below).

Importantly, we essentially use IE as a black
box (thus, our method could potentially work with
any IE system), and focus on strategies that guide
what the IE system reads for a complex informa-
tion need. In particular, we consider the com-
mon scenario where a biologist (or other model-
building process) queries the literature on:

How does one participant (source) affect
another (destination), where the connec-
tion is typically indirect?

This type of queries is common in biology, where
such direct/indirect interactions are observed in
experiments, but the explanation of why these de-
pendencies exist is unclear.

Algorithm 1 outlines the general focused read-
ing algorithm for this task. In the algorithm,

5https://github.com/clulab/reach
6https://lucene.apache.org
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S,D,A, and B represent individual participants,
where S and D are the source and destination en-
tities in the initial user query. G is the interaction
graph that is iteratively constructed during the fo-
cused reading procedure, with V being the set of
vertices (biochemical entities), and E the set of
edges (promotion/inhibition interactions). Σ is the
strategy that chooses which two entities/vertices to
be used in the next information retrieval iteration.
Q is a Lucene query automatically constructed in
each iteration to retrieve new papers to read.

Algorithm 1 Focused reading framework
1: procedure FOCUSEDREADING(S,D)
2: G← {{S,D}, ∅}
3: repeat
4: Σ ← ENDPOINTSTRATEGY(G)
5: (A,B)← CHOOSEENDPOINTS(Σ , G)
6: Q← CHOOSEQUERY(A,B,G)
7: (V,E)← LUCENE+REACH(Q)
8: EXPAND(V,E,G)
9: until ISCONNECTED(S,D) OR STOPCONDITIONMET(G)

10: end procedure

The algorithm initializes the search graph as
containing the two unconnected participants as
vertices: {S,D} (line 2). The algorithm then en-
ters into its central loop (lines 3 through 9). The
loop terminates when one or more directed paths
connecting S to D are found, or when a stopping
condition is met: either G has not changed since
the previous run through the loop, or after exceed-
ing some number of iterations through the loop (in
this work, ten).

At each pass through the loop the algorithm
grows the search graph as follows:

1. The graphG is initialized with two nodes, the
source and destination in the user’s informa-
tion need, and no edges (because we have not
read any papers yet).

2. Given the current graph, choose a strategy,
Σ , for selecting which entities to query next:
exploration or exploitation (line 4). In gen-
eral, exploration aims to widen the search
space by adding many more nodes to the
graph, whereas exploitation aims to narrow
the search by focusing on entities in a spe-
cific region of the graph.

3. Using strategy Σ , choose the next entities to
attempt to link: (A,B) (line 5).

4. Choose a query, Q: again, using explo-
ration or exploitation, following the same
intuition as with the entity choice strategy
(line 6). Here exploration queries retrieve a

wider range of documents, while exploitation
queries are more restrictive.

5. Run the Lucene query to retrieve papers and
process the papers using the IE system. The
result of this call is a set of interactions, sim-
ilar to that in Figure 1 (line 7).

6. Add the new interaction participant entities
(vertices V ) and directed influences (edges
E) to the search graph (line 8).

7. If the source and destination entities are con-
nected in G, stop: the user’s information
need has been addressed. Otherwise, con-
tinue from step 2.

The central loop performs a bidirectional search
in which each iteration expands the search hori-
zon outward from S and D. Algorithm 1 repre-
sents a family of possible focused reading algo-
rithms, differentiated by how each of the functions
in the main loop are implemented. In this work,
ISCONNECTED stops after a single path is found,
but a variant could consider finding multiple paths,
paths of some length, or incorporate other criteria
about the properties of the path. We next consider
particular choices for the inner loop functions.

4 Baseline Algorithm and Evaluation

The main functions that affect the search behav-
ior of Algorithm 1 are ENDPOINTSTRATEGY and
CHOOSEQUERY. Here we describe a baseline
focused reading implementation in which END-
POINTSTRATEGY and CHOOSEQUERY aim to
find any path between S and D as quickly as pos-
sible.

For ENDPOINTSTRATEGY, we follow the intu-
ition that some participants in a biological graph
tend to be connected to more participants than oth-
ers, and therefore more likely to yield interactions
providing paths between participants in general.
Our heuristic is therefore to choose new partici-
pants to query that currently have the most inward
and outgoing edges (i.e., highest vertex degree) in
the current state ofG (disallowing choosing an en-
tity pair used in a previous query).

Now that we have our candidate participants
(A,B), our next step is to formulate how we will
use these participants to retrieve new papers. Here
we consider two classes of query: (1) we restrict
our query to only retrieve papers that simultane-
ously mention bothA andB, therefore more likely
retrieving a paper with a direct link betweenA and
B (exploit), or (2) we retrieve papers that mention
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Baseline RL Query Policy
# IR queries 573 433 25% decrease

Unique papers read 26,197 19,883 24% decrease
# Paths recovered (out of 289) 189 (65%) 198 (68%) 3% increase

Table 1: Results of the baseline and RL Query Policy for the focused reading of biomedical literature.

either A or B, therefore generally retrieving more
papers that will introduce more new participants
(explore). For our baseline, where we are trying to
find a path between S and D as quickly as possi-
ble, we implement a greedy CHOOSEQUERY: first
try the conjunctive exploitation query; if no docu-
ments are retrieved, then “relax” the search to the
disjunctive exploration query.

To evaluate the baseline, we constructed a data
set based on a collection of papers seeded by a
set of 132 entities that come from the Univer-
sity of Pittsburgh DyCE7 model, a biomolecular
model of pancreatic cancer (Telmer et al., 2017).
Using these entities, we retrieved 70,719 papers
that mention them. We processed all papers us-
ing REACH, extracting all of the interactions men-
tioned, and converted them into a single graph.
The resulting graph consisted of approximately
80,000 vertices, 115,000 edges, and had an aver-
age (undirected) vertex degree of 24. We will refer
to this graph as the REACH graph, as it represents
what can be retrieved by REACH from the set of
70K papers. Next, we identified which pairs of
the original 132 entities are connected by directed
paths in DyCE. A total of 789 pairs were found.
We used 289 of these entity pairs as testing queries
(i.e., generating queries that aim to explain how a
given pair is connected according to the literature).
The other 500 pairs were held out to train the RL
method described below.

We ran this baseline focused reading algorithm
on each of the 289 pairs of participants, in each
case attempting to recover a directed path from
one to the other. The results are summarized in
the middle column of Table 1. By issuing 573
queries, the baseline read 26,197 papers out of the
total 70,719 papers (37% of the corpus), in order
to recover 189 of the 289 paths (65%).

5 Reinforcement Learning for Focussed
Reading

We analyzed the baseline’s behavior in the evalua-
tion to identify the conditions under which it failed
to find paths. From this, we found that some of
the failures could be avoided had we used a dif-

7Dynamic Cell Environment model of pancreatic cancer.

ferent strategy for CHOOSEQUERY, i.e., the base-
line chose to exploit when it should have explored
more. The conditions for making different choices
depend on the current state of G, and earlier query
behavior can affect later query opportunities, mak-
ing this an iterative decision making problem and
a natural fit for a RL formulation.

Inspired by this observation, we consider RL for
finding a better policy for CHOOSEQUERY. We’ll
refer to an instance of the focused reading algo-
rithm with a learned CHOOSEQUERY policy as the
RL Query Policy. All other focus reading function-
ality is the same as in the baseline. For actions,
we consider a simple binary action choice: exploit
(conjunctive query) or explore (disjunctive query).
We represent the state of the search using a set of
features that include: (f1) the current iteration of
the search; (f2) the number of times a participant
has been used in previous queries; (f3) whether the
participants are chosen from the same connected
component in G; (f4) the vertex degree of partici-
pants; and (f5) the search iteration in which a par-
ticipant was introduced. With the goal of recov-
ering paths as quickly as possible, we provide a
reward of +1 if the algorithm successfully finds
a path, a reward of −1 if the search fails to find
a path, and assess a “living reward” of −0.05 for
each step during the search, to encourage trying to
finish the search as quickly as possible.

We trained the RL Query Policy using the
SARSA (Sutton and Barto, 1998) RL algorithm.
As the number of unique states is large, we used a
linear approximation of the q-function. Once the
policy converged during training, we then fixed the
linear estimate of the q-function and used this as a
fixed policy for selecting queries. We trained the
RL Query Policy on the separate set of 500 entity
pairs, and evaluated it on the same data set of 289
participant pairs used to evaluate the baseline. Ta-
ble 1 summaries the results of both the baseline
and the RL Query Policy. The Query Policy re-
sulted in a 25% decrease in the number of queries
that were run, leading to a 24% drop in the num-
ber of papers that were read, while at the same
time increasing the number of paths recovered by
3%. We tested the statistical significance of the
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All − Iteration − Query − Same − Ranks (f4) − Particip.
features number (f1) counts (f2) component (f3) intro. (f5)

Paths found 198 199 200 201 202 196
Papers read 19,883 20,918 20,531 20,463 27,708 17,936

Queries made 433 484 484 467 469 403

Table 2: Ablation test on the features used to represent the RL state.

Empty query Ungrounded Low yield
results participant(s) from IE

Error cause 12 4 2

Table 3: Error analysis on 18 queries that failed
under the RL algorithm.

difference in results between the baseline and RL
policy by performing a bootstrap resampling test.
Our hypotheses were that the policy reads fewer
papers, makes fewer queries and finds more paths.
The resulting estimated p-values for fewer papers
and fewer queries was found to be near 0, and
< 0.003 for finding more paths. An ablation study
of the state features found that features (f2) and
(f5) had the largest impact on number of papers
read; both model the history of the reading task
(see the next section for details). This highlights
that the RL model is indeed learning to model the
entire iterative process.

6 Analysis
Feature Ablation Test: We performed an abla-
tion test on the features that encode the RL state.
The results are summarized in Table 2. Similar to
Section 5, we grouped the features into five dif-
ferent groups, and we measured the impact of re-
moving one feature group at a time. Overall, the
amount of paths found doesn’t have a significant
amount of variance, but the efficiency of the search
(amount of papers read and number of queries
made) depends on several feature groups. For ex-
ample, features (f1), (f2), and (f4) have a large ef-
fect on both the number of papers read and the
number of queries made. Removing the feature
(f5) actually reduces the number of papers read by
approximately 2K with a minimal reduction in the
number of paths found, which suggests that this
task could benefit from feature selection.

RL Policy Error Analysis: Lastly, we analyzed
the execution trace of eighteen (20% of the errors)
of the searches that failed to find a path under RL.
The results are summarized in Table 3. The table
shows that the main source of failures is receiv-
ing no results from the information retrieval query,
i.e., when the IR system returns zero documents
for the chosen query. This is typically caused by

over-constrained queries. The second most com-
mon source of failures was ungrounded partici-
pants, i.e., when at least one of the selected par-
ticipants that form the query could not be linked
to our protein knowledge base. This is generally
caused by mistakes in our NER sequence model,
and also tends to yield no results from the IR com-
ponent. Finally, the low yield from IE situation ap-
pears when the the information produced through
machine reading in one iteration is scarce and adds
no new components to the interaction graph, again
resulting in a stop condition.

7 Discussion and future work

We introduced a framework for the focused read-
ing of biomedical literature, which is necessary to
handle the data overload that plagues even ma-
chine reading approaches. We have presented a
generic focused reading algorithm, an intuitive,
strong baseline algorithm that instantiates it, and
formulated an RL approach that learns how to
efficiently query the paper repository that feeds
the machine reading component. We showed that
the RL-based focused reading is more efficient
than the baseline (i.e., it reads 24% fewer papers),
while answering 7% more queries.

There are many exciting directions in which
to take this work. First, more of the focused
reading algorithm can be subject to RL, with the
CHOOSEENDPOINTS policy being the clear next
candidate. Second, we can expand focused read-
ing to efficiently search for multiple paths between
S and D. Finally, we will incorporate additional
biological constraints (e.g., focus on pathways that
exist in specific species) into the search itself.
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Abstract

Traditional supervised learning makes the
closed-world assumption that the classes
appeared in the test data must have ap-
peared in training. This also applies to text
learning or text classification. As learning
is used increasingly in dynamic open envi-
ronments where some new/test documents
may not belong to any of the training
classes, identifying these novel documents
during classification presents an important
problem. This problem is called open-
world classification or open classification.
This paper proposes a novel deep learning
based approach. It outperforms existing
state-of-the-art techniques dramatically.

1 Introduction

A key assumption made by classic supervised text
classification (or learning) is that classes appeared
in the test data must have appeared in training,
called the closed-world assumption (Fei and Liu,
2016; Chen and Liu, 2016). Although this as-
sumption holds in many applications, it is violated
in many others, especially in dynamic or open en-
vironments. For example, in social media, a classi-
fier built with past topics or classes may not be ef-
fective in classifying future data because new top-
ics appear constantly in social media (Fei et al.,
2016). This is clearly true in other domains too,
e.g., self-driving cars, where new objects may ap-
pear in the scene all the time.

Ideally, in the text domain, the classifier should
classify incoming documents to the right existing
classes used in training and also detect those doc-
uments that don’t belong to any of the existing
classes. This problem is called open world classi-
fication or open classification (Fei and Liu, 2016).
Such a classifier is aware what it does and does

not know. This paper proposes a novel technique
to solve this problem.

Problem Definition: Given the training data
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi
is the i-th document, and yi ∈ {l1, l2, . . . , lm} =
Y is xi’s class label, we want to build a model
f(x) that can classify each test instance x to one of
them training or seen classes inY or reject it to in-
dicate that it does not belong to any of them train-
ing or seen classes, i.e., unseen. In other words,
we want to build a (m + 1)-class classifier f(x)
with the classes C = {l1, l2, . . . , lm, rejection}.

There are some prior approaches for open clas-
sification. One-class SVM (Schölkopf et al., 2001;
Tax and Duin, 2004) is the earliest approach.
However, as no negative training data is used, one-
class classifiers work poorly. Fei and Liu (2016)
proposed a Center-Based Similarity (CBS) space
learning method (Fei and Liu, 2015). This method
first computes a center for each class and trans-
forms each document to a vector of similarities
to the center. A binary classifier is then built us-
ing the transformed data for each class. The deci-
sion surface is like a “ball” encircling each class.
Everything outside the ball is considered not be-
longing to the class. Our proposed method outper-
forms this method greatly. Fei et al. (2016) further
added the capability of incrementally or cumula-
tively learning new classes, which connects this
work to lifelong learning (Chen and Liu, 2016) be-
cause without the ability to identify novel or new
things and learn them, a system will never be able
to learn by itself continually.

In computer vision, Scheirer et al. (2013) stud-
ied the problem of recognizing unseen images that
the system was not trained for by reducing open
space risk. The basic idea is that a classifier should
not cover too much open space where there are
few or no training data. They proposed to re-
duce the half-space of a binary SVM classifier
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Figure 1: Overall Network of DOC

with a positive region bounded by two parallel
hyperplanes. Similar works were also done in a
probability setting by Scheirer et al. (2014) and
Jain et al. (2014). Both approaches use probabil-
ity threshold, but choosing thresholds need prior
knowledge, which is a weakness of the methods.
Dalvi et al. (2013) proposed a multi-class semi-
supervised method based on the EM algorithm. It
has been shown that these methods are poorer than
the method in (Fei and Liu, 2016).

The work closest to ours is that in (Bendale and
Boult, 2016), which leverages an algorithm called
OpenMax to add the rejection capability by uti-
lizing the logits that are trained via closed-world
softmax function. One weak assumption of Open-
Max is that examples with equally likely logits
are more likely from the unseen or rejection class,
which can be examples that are hard to classify.
Another weakness is that it requires validation ex-
amples from the unseen/rejection class to tune the
hyperparameters. Our method doesn’t make these
weak assumptions and performs markedly better.

Our proposed method, called DOC (Deep Open
Classification), uses deep learning (Goodfellow
et al., 2016; Kim, 2014). Unlike traditional clas-
sifiers, DOC builds a multi-class classifier with a
1-vs-rest final layer of sigmoids rather than soft-
max to reduce the open space risk. It reduces the
open space risk further for rejection by tightening
the decision boundaries of sigmoid functions with
Gaussian fitting. Experimental results show that
DOC dramatically outperforms state-of-the-art ex-
isting approaches from both text classification and
image classification domains.

2 The Proposed DOC Architecture

DOC uses CNN (Collobert et al., 2011; Kim,
2014) as its base and augments it with a 1-vs-
rest final sigmoid layer and Gaussian fitting for

classification. Note: other existing deep mod-
els like RNN (Williams and Zipser, 1989; Schus-
ter and Paliwal, 1997) and LSTM (Hochreiter and
Schmidhuber, 1997; Gers et al., 2002) can also
be adopted as the base. Similar to RNN, CNN
also works on embedded sequential data (using 1D
convolution on text instead of 2D convolution on
images). We choose CNN because OpenMax uses
CNN and CNN performs well on text (Kim, 2014),
which enables a fairer comparison with OpenMax.

2.1 CNN and Feed Forward Layers of DOC

The proposed DOC system (given in Fig. 1) is a
variant of the CNN architecture (Collobert et al.,
2011) for text classification (Kim, 2014)1. The
first layer embeds words in document x into dense
vectors. The second layer performs convolution
over dense vectors using different filters of var-
ied sizes (see Sec. 3.4). Next, the max-over-time
pooling layer selects the maximum values from
the results of the convolution layer to form a k-
dimension feature vector h. Then we reduce h to
a m-dimension vector d = d1:m (m is the number
of training/seen classes) via 2 fully connected lay-
ers and one intermediate ReLU activation layer:

d =W ′(ReLU(Wh+ b)) + b′, (1)

where W ∈ Rr×k, b ∈ Rr, W ′ ∈ Rm×r, and
b′ ∈ Rm are trainable weights; r is the output
dimension of the first fully connected layer. The
output layer of DOC is a 1-vs-rest layer applied to
d1:m, which allows rejection. We describe it next.

2.2 1-vs-Rest Layer of DOC

Traditional multi-class classifiers (Goodfellow
et al., 2016; Bendale and Boult, 2016) typically
use softmax as the final output layer, which does
not have the rejection capability since the prob-
ability of prediction for each class is normalized
across all training/seen classes. Instead, we build
a 1-vs-rest layer containing m sigmoid functions
for m seen classes. For the i-th sigmoid function
corresponding to class li, DOC takes all examples
with y = li as positive examples and all the rest
examples y 6= li as negative examples.

The model is trained with the objective of sum-
mation of all log loss of the m sigmoid functions

1https://github.com/alexander-rakhlin/
CNN-for-Sentence-Classification-in-Keras
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on the training data D.

Loss =
m∑

i=1

n∑

j=1

−I(yj = li) log p(yj = li)

−I(yj 6= li) log(1− p(yj = li)),

(2)

where I is the indicator function and p(yj =
li) = Sigmoid(dj,i) is the probability output from
ith sigmoid function on the jth document’s ith-
dimension of d.

During testing, we reinterpret the prediction of
m sigmoid functions to allow rejection, as shown
in Eq. 3. For the i-th sigmoid function, we check if
the predicted probability Sigmoid(di) is less than
a threshold ti belonging to class li. If all pre-
dicted probabilities are less than their correspond-
ing thresholds for an example, the example is re-
jected; otherwise, its predicted class is the one
with the highest probability. Formally, we have

ŷ =

{
reject, if Sigmoid(di) < ti,∀li ∈ Y;
argmaxli∈Y Sigmoid(di), otherwise.

(3)

Note that although multi-label classification
(Huang et al., 2013; Zhang and Zhou, 2006;
Tsoumakas and Katakis, 2006) may also leverage
multiple sigmoid functions, Eq. 3 forbids multi-
ple predicted labels for the same example, which
is allowed in multi-label classification. DOC is
also related to multi-task learning (Huang et al.,
2013; Caruana, 1998), where each label li is re-
lated to a 1-vs-rest binary classification task with
shared representations from CNN and fully con-
nected layers. However, Eq. 3 performs classifi-
cation and rejection based on the outputs of these
binary classification tasks.

Comparison with OpenMax: OpenMax builds
on the traditional closed-world multi-class classi-
fier (softmax layer). It reduces the open space for
each seen class, which is weak for rejecting unseen
classes. DOC’s 1-vs-rest sigmoid layer provides a
reasonable representation of all other classes (the
rest of seen classes and unseen classes), and en-
ables the 1 class forms a good boundary. Sec. 3.5
shows that this basic DOC is already much better
than OpenMax. Below, we improve DOC further
by tightening the decision boundaries more.

2.3 Reducing Open Space Risk Further

Sigmoid function usually uses the default prob-
ability threshold of ti = 0.5 for classification of

Figure 2: Open space risk of sigmoid function and
desired decision boundary di = T and probability
threshold ti.

each class i. But this threshold does not con-
sider potential open space risks from unseen (re-
jection) class data. We can improve the bound-
ary by increasing ti. We use Fig. 2 to illustrate.
The x-axis represents di and y-axis is the predicted
probability p(y = li|di). The sigmoid function
tries to push positive examples (belonging to the
i-th class) and negative examples (belonging to
the other seen classes) away from the y-axis via
a high gain around di = 0, which serves as the de-
fault decision boundary for di with ti = 0.5. As
demonstrated by those 3 circles on the right-hand
side of the y-axis, during testing, unseen class ex-
amples (circles) can easily fill in the gap between
the y-axis and those dense positive (+) examples,
which may reduce the recall of rejection and the
precision of the i-th seen class prediction. Obvi-
ously, a better decision boundary is at di = T ,
where the decision boundary more closely “wrap”
those dense positive examples with the probability
threshold ti � 0.5 .

To obtain a better ti for each seen class i-th, we
use the idea of outlier detection in statistics:

1. Assume the predicted probabilities p(y =
li|xj , yj = li) of all training data of each
class i follow one half of the Gaussian dis-
tribution (with mean µi = 1), e.g., the three
positive points in Fig. 2 projected to the
y-axis (we don’t need di). We then artifi-
cially create the other half of the Gaussian
distributed points (≥ 1): for each existing
point p(y = li|xj , yj = li), we create a mir-
ror point 1 + (1 − p(y = li|xj , yj = li) (not
a probability) mirrored on the mean of 1.

2. Estimate the standard deviation σi using both
the existing points and the created points.
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3. In statistics, if a value/point is a certain num-
ber (α) of standard deviations away from the
mean, it is considered an outlier. We thus set
the probability threshold ti = max(0.5, 1 −
ασi). The commonly used number for α is 3,
which also works well in our experiments.

Note that due to Gaussian fitting, different class
li can have a different classification threshold ti.

3 Experimental Evaluation

3.1 Datasets
We perform evaluation using two publicly avail-
able datasets, which are exactly the same datasets
used in (Fei and Liu, 2016).

(1) 20 Newsgroups2 (Rennie, 2008): The 20
newsgroups data set contains 20 non-overlapping
classes. Each class has about 1000 documents.

(2) 50-class reviews (Chen and Liu, 2014): The
dataset has Amazon reviews of 50 classes of prod-
ucts. Each class has 1000 reviews. Although prod-
uct reviews are used, we do not do sentiment clas-
sification. We still perform topic-based classifica-
tion. That is, given a review, the system decides
what class of product the review is about.

For every dataset, we keep a 20000 frequent
word vocabulary. Each document is fixed to 2000-
word length (cutting or padding when necessary).

3.2 Test Settings and Evaluation Metrics
For a fair comparison, we use exactly the same set-
tings as in (Fei and Liu, 2016). For each class in
each dataset, we randomly sampled 60% of docu-
ments for training, 10% for validation and 30% for
testing. Fei and Liu (2016) did not use a valida-
tion set, but the test data is the same 30%. We use
the validation set to avoid overfitting. For open-
world evaluation, we hold out some classes (as un-
seen) in training and mix them back during testing.
We vary the number of training classes and use
25%, 50%, 75%, or 100% classes for training and
all classes for testing. Here using 100% classes
for training is the same as the traditional closed-
world classification. Taking 20 newsgroups as an
example, for 25% classes, we use 5 classes (we
randomly choose 5 classes from 20 classes for 10
times and average the results, as in (Fei and Liu,
2016)) for training and all 20 classes for testing
(15 classes are unseen in training). We use macro
F1-score over 5 + 1 classes (1 for rejection) for

2http://qwone.com/˜jason/20Newsgroups/

Table 1: Macro-F1 scores for 20 newsgroups
% of seen classes 25% 50% 75% 100%

cbsSVM 59.3 70.1 72.0 85.2
OpenMax 35.7 59.9 76.2 91.9

DOC (t = 0.5) 75.9 84.0 87.4 92.6
DOC 82.3 85.2 86.2 92.6

Table 2: Macro-F1 scores for 50-class reviews
% of seen classes 25% 50% 75% 100%

cbsSVM 55.7 61.5 58.6 63.4
OpenMax 41.6 57.0 64.2 69.2

DOC (t = 0.5) 51.1 63.6 66.2 69.8
DOC 61.2 64.8 66.6 69.8

evaluation. Please note that examples from unseen
classes are dropped in the validation set.

3.3 Baselines

We compare DOC with two state-of-the-art meth-
ods published in 2016 and one DOC variant.

cbsSVM: This is the latest method published in
NLP (Fei and Liu, 2016). It uses SVM to build
1-vs-rest CBS classifiers for multiclass text classi-
fication with rejection option. The results of this
system are taken from (Fei and Liu, 2016).

OpenMax: This is the latest method from com-
puter vision (Bendale and Boult, 2016). Since it
is a CNN-based method for image classification,
we adapt it for text classification by using CNN
with a softmax output layer, and adopt the Open-
Max layer3 for open text classification. When all
classes are seen (100%), the result from softmax
is reported since OpenMax layer always performs
rejection. We use default hyperparameter values
of OpenMax (Weibull tail size is set to 20).

DOC(t = 0.5): This is the basic DOC (t =
0.5). Gaussian fitting isn’t used to choose each ti.

Note that (Fei and Liu, 2016) compared with
several other baselines. We don’t compare with
them as it was shown that cbsSVM was superior.

3.4 Hyperparameter Setting

We use word vectors pre-trained from Google
News4 (3 million words and 300 dimensions). For
the CNN layers, 3 filter sizes are used [3, 4, 5]. For
each filter size, 150 filters are applied. The dimen-
sion r of the first fully connected layer is 250.

3https://github.com/abhijitbendale/
OSDN

4https://code.google.com/archive/p/
word2vec/
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3.5 Result Analysis
The results of 20 newsgroups and 50-class reviews
are given in Tables 1 and 2, respectively. From the
tables, we can make the following observations:

1. DOC is markedly better than OpenMax and
cbsSVM in macro-F1 scores for both datasets
in the 25%, 50%, and 75% settings. For the
25% and 50% settings (most test examples
are from unseen classes), DOC is dramati-
cally better. Even for 100% of traditional
closed-world classification, it is consistently
better too. DOC(t = 0.5) is better too.

2. For the 25% and 50% settings, DOC is also
markedly better than DOC(t = 0.5), which
shows that Gaussian fitting finds a better
probability threshold than t = 0.5 when
many unseen classes are present. In the 75%
setting (most test examples are from seen
classes), DOC(t = 0.5) is slightly better
for 20 newsgroups but worse for 50-class re-
views. DOC sacrifices some recall of seen
class examples for better precision, while t =
0.5 sacrifices the precision of seen classes for
better recall. DOC(t = 0.5) is also worse
than cbsSVM for 25% setting for 50-class re-
views. It is thus not as robust as DOC.

3. For the 25% and 50% settings, cbsSVM is
also markedly better than OpenMax.

4 Conclusion

This paper proposed a novel deep learning based
method, called DOC, for open text classification.
Using the same text datasets and experiment set-
tings, we showed that DOC performs dramatically
better than the state-of-the-art methods from both
the text and image classification domains. We also
believe that DOC is applicable to images.

In our future work, we plan to improve the cu-
mulative or incremental learning method in (Fei
et al., 2016) to learn new classes without training
on all past and new classes of data from scratch.
This will enable the system to learn by self to
achieve continual or lifelong learning (Chen and
Liu, 2016). We also plan to improve model per-
formance during testing (Shu et al., 2017).
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Abstract

Portmanteaus are a word formation phe-
nomenon where two words are com-
bined to form a new word. We pro-
pose character-level neural sequence-to-
sequence (S2S) methods for the task of
portmanteau generation that are end-to-
end-trainable, language independent, and
do not explicitly use additional phonetic
information. We propose a noisy-channel-
style model, which allows for the incorpo-
ration of unsupervised word lists, improv-
ing performance over a standard source-
to-target model. This model is made pos-
sible by an exhaustive candidate genera-
tion strategy specifically enabled by the
features of the portmanteau task. Ex-
periments find our approach superior to
a state-of-the-art FST-based baseline with
respect to ground truth accuracy and hu-
man evaluation.

1 Introduction

Portmanteaus (or lexical blends Algeo (1977)) are
novel words formed from parts of multiple root
words in order to refer to a new concept which
can’t otherwise be expressed concisely. Portman-
teaus have become frequent in modern-day social
media, news reports and advertising, one popu-
lar example being Brexit (Britain + Exit). Petri
(2012). These are found not only in English but
many other languages such as Bahasa Indone-
sia Dardjowidjojo (1979), Modern Hebrew Bat-
El (1996); Berman (1989) and Spanish Piñeros
(2004). Their short length makes them ideal for
headlines and brandnames (Gabler, 2015). Unlike
better-defined morphological phenomenon such as
inflection and derivation, portmanteau generation

∗* denotes equal contribution

Figure 1: A sketch of our BACKWARD, noisy-
channel model. The attentional S2S model with
bidirectional encoder gives P (x|y) and next-
character model gives P (y), where y (spime) is
the portmanteau and x = concat(x(1), “;”,x(2))
are the concatenated root words (space and time).

is difficult to capture using a set of rules. For
instance, Shaw et al. (2014) state that the com-
position of the portmanteau from its root words
depends on several factors, two important ones
being maintaining prosody and retaining charac-
ter segments from the root words, especially the
head. An existing work by Deri and Knight (2015)
aims to solve the problem of predicting portman-
teau using a multi-tape FST model, which is data-
driven, unlike prior approaches. Their methods
rely on a grapheme to phoneme converter, which
takes into account the phonetic features of the lan-
guage, but may not be available or accurate for
non-dictionary words, or low resource languages.

Prior works, such as Faruqui et al. (2016), have
demonstrated the efficacy of neural approaches for
morphological tasks such as inflection. We hy-
pothesize that such neural methods can (1) pro-
vide a simpler and more integrated end-to-end
framework than multiple FSTs used in the previ-
ous work, and (2) automatically capture features
such as phonetic similarity through the use of char-
acter embeddings, removing the need for explicit

2917



grapheme-to-phoneme prediction. To test these
hypotheses, in this paper, we propose a neural S2S
model to predict portmanteaus given the two root
words, specifically making 3 major contributions:

• We propose an S2S model that attends to the
two input words to generate portmanteaus,
and an additional improvement that lever-
ages noisy-channel-style modelling to incor-
porate a language model over the vocabulary
of words (§2).
• Instead of using the model to directly pre-

dict output character-by-character, we use the
features of portmanteaus to exhaustively gen-
erate candidates, making scoring using the
noisy channel model possible (§3).
• We curate and share a new and larger dataset

of 1624 portmanteaus (§4).

In experiments (§5), our model performs better
than the baseline Deri and Knight (2015) on both
objective and subjective measures, demonstrating
that such methods can be used effectively in a mor-
phological task.

2 Proposed Models

This section describes our neural models.

2.1 Forward Architecture
Under our first proposed architecture, the input se-
quence x = concat(x(1), “;”,x(2)), while the out-
put sequence is the portmanteau y. The model
learns the distribution P (y|x).

The network architecture we use is an atten-
tional S2S model (Bahdanau et al., 2014). We
use a bidirectional encoder, which is known to
work well for S2S problems with similar token
order, which is true in our case. Let

−−−−→
LSTM

and
←−−−−
LSTM represent the forward and reverse en-

coder; eenc() and edec() represent the character
embedding functions used by encoder and decoder
The following equations describe the model:

h
−→enc
0 =

−→
0 , h

←−enc
|x| =

−→
0

h
−→enc
t =

−−−−→
LSTM(henct−1, eenc(xt))

h
←−enc
t =

←−−−−
LSTM(henct+1, eenc(xt))

henct = h
−→enc
t + h

←−enc
t

hdec0 = henc|x|

hdect = LSTM(hdect−1, [concat(edec(yt−1), ct−1)])

pt = softmax(Whs[concat(hdect , ct)] + bs)

The context vector ct is computed using dot-
product attention over encoder states. We choose
dot-product attention because it doesn’t add extra
parameters, which is important in a low-data sce-
nario such as portmanteau generation.

ati = dot(hdect , henci ), αt = softmax(at)

ct =

i=|x|∑

i=1

αtih
enc
i

In addition to capturing the fact that port-
manteaus of two English words typically sound
English-like, and to compensate for the fact that
available portmanteau data will be small, we pre-
train the character embeddings on English lan-
guage words. We use character embeddings learnt
using an LSTM language model over words in
an English dictionary,1 where each word is a se-
quence of characters, and the model will predict
next character in sequence conditioned on previ-
ous characters in the sequence.

2.2 Backward Architecture
The second proposed model uses Bayes’s rule to
reverse the probabilities P (y|x) = P (x|y)P (y)

P (x) to
get argmaxy P (y|x) = argmaxy P (x|y)P (y).
Thus, we have a reverse model of the probabil-
ity P (x|y) that the given root words were gen-
erated from the portmanteau and a character lan-
guage model model P (y). This is a probability
distribution over all character sequences y ∈ A∗,
where A is the alphabet of the language. This way
of factorizing the probability is also known as a
noisy channel model, which has recently also been
shown to be effective for neural MT (Hoang et al.
(2017), Yu et al. (2016)). Such a model offers two
advantages

1. The reverse direction model (or alignment
model) gives higher probability to those port-
manteaus from which one can discern the
root words easily, which is one feature of
good portmanteaus.

2. The character language model P (y) can be
trained on a large vocabulary of words in the
language. The likelihood of a word y is fac-
torized as P (y) = Π

i=|y|
i=1 P (yi|yi−11 ), where

yij = yi, yi+1 . . . yj , and we train a LSTM to
maximize this likelihood.

1 Specifically in our experiments, 134K words from the
CMU dictionary (Weide, 1998).
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3 Making Predictions

Given these models, we must make predictions,
which we do by two methods

Greedy Decoding: In most neural sequence-
to-sequence models, we perform auto-
regressive greedy decoding, selecting the
next character greedily based on the prob-
ability distribution for the next character at
current time step. We refer to this decoding
strategy as GREEDY.

Exhaustive Generation: Many portmanteaus
were observed to be concatenation of a prefix
of the first word and a suffix of the second.
We therefore generate all candidate outputs
which follow this rule. Thereafter we score
these candidates with the decoder and output
the one with the maximum score. We refer to
this decoding strategy as SCORE.

Given that our training data is small in size, we
expect ensembling (Breiman, 1996) to help reduce
model variance and improve performance. In this
paper, we ensemble our models wherever men-
tioned by training multiple models on 80% sub-
samples of the training data, and averaging log
probability scores across the ensemble at test-time.

4 Dataset

The existing dataset by Deri and Knight (2015)
contains 401 portmanteau examples from
Wikipedia. We refer to this dataset as DWiki.
Besides being small for detailed evaluation, DWiki
is biased by being from just one source. We
manually collect DLarge, a dataset of 1624 distinct
English portmanteaus from following sources:

• Urban Dictionary2

• Wikipedia

• Wiktionary

• BCU’s Neologism Lists from ’94 to ’12.

Naturally, DWiki ⊂ DLarge. We define DBlind =
DLarge−DWiki as the dataset of 1223 examples not
from Wikipedia. We observed that 84.7% of the
words inDLarge can be generated by concatenating
prefix of first word with a suffix of the second.

2Not all neologisms are portmanteaus, so we manually
choose those which are for our dataset.

Model Attn Ens Init Search Matches Distance

BASELINE - - - - 45.39% 1.59

FORWARD

X × × GREEDY 22.00% 1.98
X × X GREEDY 28.00% 1.90
X × × BEAM 13.25% 2.47
X × X BEAM 15.25% 2.37
X × × SCORE 30.25% 1.64
X × X SCORE 32.88% 1.53
X X X SCORE 42.25% 1.33
X X × SCORE 41.25% 1.34
× × X SCORE 6.75% 3.78
× × × SCORE 6.50% 3.76

BACKWARD

X × × SCORE 37.00% 1.53
X × X SCORE 42.25% 1.35
X X X SCORE 48.75% 1.12
X X × SCORE 46.50% 1.24
× × X SCORE 5.00% 3.95
× × × SCORE 4.75% 3.98

Table 1: 10-Fold Cross-Validation results, DWiki.
Attn, Ens, Init denote attention, ensembling, and
initializing character embeddings respectively.

5 Experiments

In this section, we show results comparing var-
ious configurations of our model to the base-
line FST model of Deri and Knight (2015)
(BASELINE). Models are evaluated using exact-
matches (Matches) and average Levenshtein edit-
distance (Distance) w.r.t ground truth.

5.1 Objective Evaluation Results

In Experiment 1, we follow the same setup as Deri
and Knight (2015). DWiki is split into 10 folds.
Each fold model uses 8 folds for training, 1 for val-
idation, and 1 for test. The average (10 fold cross-
validation style approach) performance metrics on
the test fold are then evaluated. Table 1 shows the
results of Experiment 1 for various model config-
urations. We get the BASELINE numbers from
Deri and Knight (2015). Our best model obtains
48.75% Matches and 1.12 Distance, compared to
45.39% Matches and 1.59 Distance using BASE-
LINE.

For Experiment 2, we seek to compare our best
approaches from Experiment 1 to the BASELINE
on a large, held-out dataset. Each model is trained
on DWiki and tested on DBlind. BASELINE was
similarly trained only on DWiki , making it a fair
comparison. Table 2 shows the results3. Our best
model gets Distance of 1.96 as compared to 2.32
from BASELINE.

We observe that the Backward architecture per-
forms better than Forward architecture, confirm-
ing our hypothesis in §2.2. In addition, ablation
results confirm the importance of attention, and

3For BASELINE (Deri and Knight, 2015), we use
their trained model from http://leps.isi.edu/fst/
step-all.php
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Model Attn Ens Init Search Matches Distance

BASELINE - - - - 31.56% 2.32

FORWARD

X × X SCORE 25.26% 2.13
X × × SCORE 24.93% 2.32
X X × SCORE 31.23% 1.98
X X X SCORE 28.94% 2.04

BACKWARD

X × X SCORE 25.75% 2.14
X × × SCORE 25.26% 2.17
X X × SCORE 31.72% 1.96
X X X SCORE 32.78% 1.96

Table 2: Results on DBlind (1223 Examples). In
general, BACKWARD architecture performs better
than FORWARD architecture.

Figure 2: Attention matrices while generat-
ing slurve from slider;curve, and bennifer from
ben;jennifer respectively, using Forward model. ;
and . are separator and stop characters. Darker
cells are higher-valued

initializing the word embeddings. We believe this
is because portmanteaus have high fidelity towards
their root word characters and its critical that the
model can observe all root sequence characters,
which attention manages to do as shown in Fig. 2.

5.1.1 Performance on Uncovered Examples
The set of candidates generated before scoring
in the approximate SCORE decoding approach
sometimes do not cover the ground truth. This
holds true for 229 out of 1223 examples inDBlind.
We compare the FORWARD approach along with a
GREEDY decoding strategy to the BASELINE ap-
proach for these examples.

Both FORWARD+GREEDY and the BASELINE

get 0 Matches on these examples. The Distance
for these examples is 4.52 for BASELINE and 4.09
for FORWARD+GREEDY. Hence, we see that one
of our approaches (FORWARD+GREEDY) outper-
forms BASELINE even for these examples.

5.2 Significance Tests
Since our dataset is still small relatively small
(1223 examples), it is essential to verify whether
BACKWARD is indeed statistically significantly
better than BASELINE in terms of Matches.

Input FORWARD BACKWARD GROUND TRUTH

shopping;marathon shopparathon shoathon shopathon
fashion;fascism fashism fashism fashism
wiki;etiquette wikiquette wiquette wikiquette

clown;president clowident clownsident clownsident

Table 3: Example outputs from different models
(Refer to appendix for more examples)

Judgement Percentage of total
Much Better (1) 29.06

Better (2) 29.06
Worse (3) 25.11

Much Worse (4) 16.74

Table 4: AMT annotator judgements on whether
our system’s proposed portmanteau is better or
worse compared to the baseline

In order to do this, we use a paired bootstrap4

comparison (Koehn, 2004) between BACKWARD

and BASELINE in terms of Matches. BACKWARD

is found to be better (gets more Matches) than
BASELINE in 99.9% (p = 0.999) of the subsets.

Similarly, BACKWARD has a lower Distance
than BASELINE by a margin of 0.2 in 99.5% (p =
0.995) of the subsets.

5.3 Subjective Evaluation and Analysis

On inspecting outputs, we observed that often out-
put from our system seemed good in spite of high
edit distance from ground truth. Such aspect of an
output seeming good is not captured satisfactorily
by measures like edit distance. To compare the
errors made by our model to the baseline, we de-
signed and conducted a human evaluation task on
AMT.5 In the survey, we show human annotators
outputs from our system and that of the baseline.
We ask them to judge which alternative is better
overall based on following criteria: 1. It is a good
shorthand for two original words 2. It sounds bet-
ter. We requested annotation on a scale of 1-4.
To avoid ordering bias, we shuffled the order of
two portmanteau between our system and that of
baseline. We restrict annotators to be from Anglo-
phone countries, have HIT Approval Rate > 80%
and pay 0.40$ per HIT (5 Questions per HIT).

As seen in Table 4, output from our system was
labelled better by humans as compared to the base-
line 58.12% of the time. Table 3 shows outputs
from different models for a few examples.

4We average across M = 1000 randomly chosen subsets
of DBlind, each of size N = 611 (≈ 1223/2)

5We avoid ground truth comparison because annotators
can be biased to ground truth due to its existing popularity.
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6 Related Work

Özbal and Strapparava (2012) generate new words
to describe a product given its category and prop-
erties. However, their method is limited to hand-
crafted rules as compared to our data driven ap-
proach. Also, their focus is on brand names.
Hiranandani et al. (2017) have proposed an ap-
proach to recommend brand names based on
brand/product description. However, they con-
sider only a limited number of features like mem-
orability and readability. Smith et al. (2014) de-
vise an approach to generate portmanteaus, which
requires user-defined weights for attributes like
sounding good. Generating a portmanteau from
two root words can be viewed as a S2S problem.
Recently, neural approaches have been used for
S2S problems (Sutskever et al., 2014) such as MT.
Ling et al. (2015) and Chung et al. (2016) have
shown that character-level neural sequence mod-
els work as well as word-level ones for language
modelling and MT. Zoph and Knight (2016) pro-
pose S2S models for multi-source MT, which have
multi-sequence inputs, similar to our case.

7 Conclusion

We have proposed an end-to-end neural system to
model portmanteau generation. Our experiments
show the efficacy of proposed system in predict-
ing portmanteaus given the root words. We con-
clude that pre-training character embeddings on
the English vocabulary helps the model. Through
human evaluation we show that our model’s pre-
dictions are superior to the baseline. We have
also released our dataset and code6 to encourage
further research on the phenomenon of portman-
teaus. We also release an online demo 7 where our
trained model can be queried for portmanteau sug-
gestions. An obvious extension to our work is to
try similar models on multiple languages.
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Abstract

The diagnosis of serious mental health
conditions such as schizophrenia is based
on the judgment of clinicians whose train-
ing takes many years and cannot be easily
formalized into objective measures. How-
ever, clinical research suggests there are
disturbances in aspects of the language
use of patients with schizophrenia, which
opens a door for the use of NLP tools
in schizophrenia diagnosis and progno-
sis. Using metaphor-identification and
sentiment-analysis algorithms to automat-
ically generate features, we create a clas-
sifier that, with high accuracy, can predict
which patients will develop (or currently
suffer from) schizophrenia. To our knowl-
edge, this study is the first to demonstrate
the utility of automated metaphor identifi-
cation algorithms for detection or predic-
tion of disease.

1 Introduction

Schizophrenia is a severe mental disorder that has
a devastating impact on those who suffer from
it, as well as on their families and communities.
Schizophrenia is characterized by psychotic be-
haviors (hallucinations, delusions, thought disor-
ders, movement disorders), flat affect and anhedo-
nia, and trouble with focusing and executive func-
tioning, among other symptoms (American Psy-
chiatric Association, 2013). It afflicts over 21 mil-
lion people worldwide, and is associated with a
100-150 percent increase in early mortality (Goff
et al., 2005; World Health Organization, 2016;
Simeone et al., 2015). As a result, diagnosis and
treatment of schizophrenia has important public
health consequences. Unfortunately, practition-
ers who are qualified to diagnose and treat seri-
ous mental health issues such as schizophrenia are

in chronically short supply, and their accumulated
knowledge cannot be easily formalized into repro-
ducible metrics (Patel et al., 2007).

However, clinical research into the symptoms
and mechanisms of schizophrenia suggests that
disturbances in language use, and especially in
metaphor use and affect, characterize schizophre-
nia. This suggests that automated NLP meth-
ods may have the potential to help in diagnosis
and prognosis of schizophrenia. In this paper, we
work from open-ended transcripts of patients in-
terviewed by non-specialists. We then apply NLP
algorithms for metaphor identification and senti-
ment analysis to automatically generate features
for a classifier that, with high accuracy, can pre-
dict which patients will develop schizophrenia and
which patients would currently be diagnosed with
schizophrenia by psychiatrists.

2 Background & Related work

2.1 NLP and Computational Psychiatry

Several recent studies have proven that NLP text-
analysis techniques can be successfully applied
to predict mental illness. Vincze et al. (2016)
use linguistic and demographic features to pre-
dict whether a speech transcript was produced by
an individual with mild cognitive impairment or
by a healthy control. To our knowledge, Elvevåg
et al. (2007) were the first to use automated NLP
methods to predict whether or not patients suffered
from schizophrenia. The technical specifics of
their method are unclear, as the paper was intended
for a clinical audience, but they use a k-nearest
neighbors algorithm in a feature space made up of
n-gram features and distributional semantic fea-
tures to classify 26 schizophrenia patients and 25
healthy controls. They achieve classification accu-
racy of 78.4% on this task. Mota et al. (2012) em-
ploy a graph-based method to classify transcripts
taken from interviews with eight patients with
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schizophrenia, eight healthy controls, and eight
manic patients, achieving both precision and recall
of 0.875. Bedi et al. (2015) apply semantic co-
herence measures and measures based on part-of-
speech tags to predict whether 34 youths at risk of
psychosis would have a psychotic episode within
2.5 years of being interviewed (five of whom did
transition within the study period). They correctly
classify 100% of participants.

2.2 Metaphor, Affect and Schizophrenia
Mental-health clinicians have long had intuitions
that schizophrenia patients differ from healthy in-
dividuals in their use of metaphor. A survey by
Kuperberg (2010) of over 50 years of observa-
tions in the schizophrenia literature concludes that
schizophrenia patients “may use common words
in an idiosyncratic or bizarre manner.” Particularly
colorful (and metaphorical) examples of bizarre
speech recorded by Andreasen (1986) include pa-
tients who referred to watches as “time vessels”
and to gloves as “hand shoes.”

Billow et al. (1997) carried out the first exper-
imental exploration of this phenomenon. They
measure the metaphor production of patients with
schizophrenia and healthy controls during free re-
sponses to a structured interview. They find that
patients with schizophrenia produce comparable
rates of felicitous, coherent metaphors as healthy
controls, but produce deviant metaphorical speech
with significantly greater frequency.

It is not clear what could account for these dif-
ferences in metaphor production, but neuroscien-
tific studies of patients with schizophrenia offer
some clues. Research shows that schizophrenia
is associated with dysfunction of the amygdala,
a brain structure responsible for regulating emo-
tion (Rasetti et al., 2009). Other work demon-
strates impairments in emotion perception and
production in patients with schizophrenia (Vask-
inn et al., 2008) and even demonstrates that face
emotion recognition deficits are a predictor of psy-
chosis onset (Corcoran et al., 2015). Based on
these findings, and recognizing the important role
that metaphor plays in emotional language (see
(Kövecses, 2003)), Elvevåg et al. (2011) hypoth-
esize that metaphor production disturbances in pa-
tients with schizophrenia are deeply tied to “emo-
tional” language (i.e., language with high affective
polarity). However, it should be noted in this re-
gard that most work on metaphor processing has
focused on cortical regions involved (Chen et al.,
2008; Schmidt et al., 2010; Benedek et al., 2014).

2.3 Sentiment Analysis & Metaphor
Detection Algorithms

Sentiment analysis is a natural-language process-
ing task that involves determining, for given text,
whether the text conveys a positive or negative
sentiment, and how positive or negative the sen-
timent is. The book by Liu (2015) gives a compre-
hensive overview of sentiment analysis.

Metaphor detection is the task of determin-
ing whether a given word, phrase, or passage
is being used metaphorically or literally. It is
an emerging field in NLP, with research still
in relatively early stages. A variety of differ-
ent machine-learning and statistical methods have
been applied to the task, including clustering
(Birke and Sarkar, 2006; Shutova et al., 2010;
Li and Sporleder, 2010; Shutova and Sun, 2013);
topic models (Bethard et al., 2009; Li et al., 2010;
Heintz et al., 2013); topical structure and image-
ability analysis (Strzalkowski et al., 2013); seman-
tic similarity graphs (Sporleder and Li, 2009), and
feature-based classifiers (Gedigian et al., 2006; Li
and Sporleder, 2009; Turney et al., 2011; Dunn,
2013a,b; Hovy et al., 2013; Mohler et al., 2013;
Neuman et al., 2013; Tsvetkov et al., 2013, 2014;
Klebanov et al.). Metaphor detection methods
differ in how they define the task of metaphor
detection–for instance, some algorithms seek to
determine whether a phrase (such as sweet vic-
tory) is metaphorical (Krishnakumaran and Zhu,
2007; Turney et al., 2011; Tsvetkov et al., 2014;
Bracewell et al., 2014; Gutiérrez et al., 2016),
while others attempt to tag metaphoricity at the
level of the utterance (Dunn, 2013a), or at the level
of individual tokens in running text (Klebanov
et al.; Schulder and Hovy, 2014; Do Dinh and
Gurevych, 2016). For a recent review, see Shutova
(2015). For our purposes, we decided that token-
level metaphor detection offered the most appro-
priate level of granularity, and we chose the algo-
rithm of (Do Dinh and Gurevych, 2016) because
of its state-of-the-art performance at this task at
the time we began this project.

3 Data

3.1 First-Episode Schizophrenia Transcripts
Our main data set1 consists of interviews with
17 patients who have suffered a first episode of
schizophrenia (denoted by 1EP+) and 15 healthy

1Patient data are confidential and can only be used via a
Data-Sharing Agreement with authors Corcoran and Corlett;
please contact these authors for more information.
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controls (denoted by 1EP-). Healthy controls were
obtained from the same source population as pa-
tients with schizophrenia in the metropolitan New
York City region, using web-based advertising
on Craigslist, as well as by posting of flyers in
and around the region. Participants engaged in
open-ended interviews lasting approximately one
hour, during which they were encouraged to ex-
press themselves narratively. Participants were
queried on four topics, for which interviewers pro-
vided clarifying questions if they were not sponta-
neously discussed. The four discussion topics, as
well as details of interviewer training and partici-
pant selection criteria, are discussed in more detail
in the supplementary materials as well as in (Ben-
David et al., 2014). Independent transcribers tran-
scribed the interviews. Participants were matched
for socioeconomic characteristics and education
level. The average age of the 1EP- cohort was 35,
and the average age of the 1EP+ cohort was 39.
However, the 1EP- cohort was 47% male, while
the 1EP+ cohort was 76% male. We refer to this
data set as 1EP.

3.2 Prodromal Psychosis Transcripts

We use the data set introduced by Bedi et al.
(2015) of transcripts from 34 youths at clinical
high risk (CHR) for psychosis, based on the Struc-
tured Interview for Prodromal Syndromes (Miller
et al., 2003). Demographic details are provided
in Bedi et al. (2015). There were no significant
differences for age, gender, ethnicity or medica-
tion usage between CHR converters vs. CHR non-
converters. Notably, all CHR participants were
ascertained using gold-standard clinical measures
for which the researchers obtained excellent inter-
rater reliability with other CHR programs in North
America. Open-ended baseline interviews were
collected from the participants using the same pro-
tocol as above. Participants were then assessed
quarterly for 2.5 years to determine whether they
had transitioned to psychosis. Five of the partic-
ipants suffered a first episode of psychosis within
the assessment period (denoted by CHR+); the re-
mainder did not (denoted by CHR-).

4 Experiments

The review of the literature in §2.2 suggests that
a constellation of disturbances in metaphor use
and extremeness/lability of sentiment may charac-
terize schizophrenia. In order to assess whether
these phenomena can truly distinguish patients

with schizophrenia from healthy controls or to
predict future schizophrenic episodes, we pro-
duce five features. Four of these features are de-
rived from sentiment scores produced by a senti-
ment analysis algorithm, and one is derived from
metaphor tags produced by a metaphor identifica-
tion algorithm.

4.1 Feature Set

Metaphoricity We hope to detect the alteration
in metaphor production observed in patients with
schizophrenia by Billow et al. (1997) using an
automated metaphor detection algorithm that tag
word tokens as metaphorical or not. We adapt
the token-level metaphor identification algorithm
of Do Dinh and Gurevych (2016) to our task. In
particular, we use a multilayer perceptron (MLP)
architecture with three layers. The input layer is
comprised of the concatenation of the word em-
beddings for each token and the two tokens be-
fore and after (not including non-content tokens,
and padded with a randomly created embedding
at sentence beginnings and endings). The vector
for each token is composed of the word’s 300-
dimensional Word2Vec skip-gram negative sam-
pling word embedding 2, concatenated with a one-
hot binary vector that indicates the token’s part of
speech. The hidden layer has ten fully connected
hidden units with the hyperbolic tangent activation
function. The output node classifies a token as lit-
eral or metaphorical using the softmax activation
function.

Training is accomplished by minimizing a
cross-entropy objective using stochastic gradient
descent; the learning rate is decremented linearly
during each epoch, for a maximum of 100 epochs.
As in Do Dinh and Gurevych (2016), the MLP is
trained on the VU Amsterdam Metaphor Corpus
(VUAMC), a subset of the BNC where each token
has been annotated as metaphorical or not (Steen
et al., 2010), using cross-validation with an 80%-
20% train-test split to optimize the regularization
and learning rate parameters.

We then measure the percentage of all tokens
labeled metaphorical by the metaphor identifica-
tion algorithm in each transcript, denoting it by
Met. We present an example text tagged by this
algorithm in figure 1. Notably, the algorithm mis-
takenly tags the adverbially used preposition up in
ended up as metaphorical; Do Dinh and Gurevych

2http://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/
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We ended up going to different high schools
...and then at home we also ran in different
social circles and things like that.

Figure 1: Sample sentence from one of the tran-
scripts in the 1ep data set. Tokens in bold was
tagged metaphorical by the token-level metaphor
detection algorithm.

(2016) cite this as one of the common failure
modes of their algorithm, along with failure to de-
tect metaphors that are only clearly metaphorical
from a large amount of surrounding context.

Sentiment We posit that the sentiment scores
produced by automated sentiment analysis algo-
rithms should be able to detect disturbances in the
production of emotional language, particularly in
regard to metaphor. To this end, we create two fea-
tures that summarize the distribution of sentiment
scores in each transcript. In order to obtain token-
and phrase-level sentiment scores, we use the im-
plementation of the Recursive Neural Tensor Net-
work sentiment analysis algorithm (Socher et al.,
2012) that is included in the Stanford CoreNLP
toolkit, with default settings. This implementation
comes pre-trained on the Stanford Sentiment Tree-
bank. Tokens are tagged on an integer scale from
1 (Very Negative) to 5 (Very Positive). For each
transcript, we take the percentage of all token-
level sentiment scores that were either extremely
positive (score of 1) or extremely negative (score
of 5), which we denote by SentTok and similarly
compute the percentage of all phrase-level senti-
ment scores, which we denote by SentPhr. We
also compute sentiment coherence as

1

N

N∑

i=1

|si − si−1|

where the si denotes either the sentiment score for
token i (to compute CohTok), or the sentiment
score for phrase i (to compute CohPhr).

4.2 Classification Algorithms
For all algorithms and data sets, we present re-
sults produced by leave-one-out cross-validation
because of the small number of transcripts avail-
able. We use a radial-basis-function support-
vector classifier and a convex-hull classifier to
classify transcripts based on the variables above.
The convex-hull classifier was previously used by
Bedi et al. (2015). A test point is classified as orig-
inating from a CHR- participant if it lies within

the convex-hull of all the CHR- data points in the
training set; otherwise, it is classified as CHR+.
The intuition behind the convex-hull approach is
that individuals that eventually develop psychosis
do not necessarily do so following a unique path
to conversion, and moreover psychosis itself can-
not be considered a well-defined single condition
(Binbay et al., 2012); thus it is reasonable to hy-
pothesize that the “breakdown” of mental abilities
may occur along different trajectories for individ-
ual CHR+ patients.

5 Results & Discussion

5.1 Statistical Analysis

As predicted, we find that the metaphor identifi-
cation algorithm does indeed tag a significantly
higher proportion of the tokens in the transcripts
of patients with schizophrenia as metaphorical
(6.3%) than in the healthy controls’ transcripts
(5.2%); (t = 3.76, p < .001). No significant dif-
ference was found between the other variables of
interest between patients with schizophrenia and
healthy controls. No significant difference was
found between males and females in metaphor use
frequency (t = 1.105, p = 0.28).

5.2 Classification Performance

First-Episode Schizophrenia Transcripts Ta-
ble 1 shows the performance of classifiers that in-
dividually use each of the five features §4.1 as
predictors, as well as the classifier that uses all
five in tandem (All)3. Baseline represents
the results of a simple majority classifier (because
18 of the 33 transcripts belonged to patients with
schizophrenia, this entails classifying all tran-
scripts as belonging to patients with schizophre-
nia). Because the 1EP set was not balanced for
gender or age, we also present the results of classi-
fying men as having schizophrenia and women as
not having schizophrenia (Gender) as well as the
results of training a classifier on age (Age). Bedi
and Mota represent the classification results at-
tained by applying the features/method of Bedi
et al. (2015) and Mota et al. (2012), respectively.
Using all of the features to train the support-vector
classifier performed better than using any of the
features individually. The accuracy of the classi-
fier based on all the features was significantly bet-
ter than baseline (Fisher’s exact test, p < .005).
Notably, our features outperformed the features

3The All classifier does not use gender or age features.
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suggested by Bedi et al. (2015) and by Mota et al.
(2012).

Prodromal Psychosis Transcripts On the pro-
dromal transcripts, a classifier trained on all the
features once again outperformed classifiers on
any of the features individually, which performed
at or near baseline. Interestingly, the convex-hull
classifier outperformed the support vector classi-
fier on this data. The convex-hull classifier trained
on all five features correctly identified the outcome
of 33 of the 34 CHR patients (97.1% accuracy).
The sole patient who was misclassified belonged
to the CHR+ group. This is comparable to the
100% accuracy of the Bedi et al. (2015) method
and superior to the 79.4% accuracy of the Mota
et al. (2012) method.

In order to explore the relationship between the
two data sets, we also applied the best classifier
trained on the 1EP data to the prodromal data. In-
terestingly, the 1EP classifier tagged 29 of the 34
CHR patients as patients with schizophrenia, in-
cluding all five patients in the CHR+ group. The
hypersensitivity of the 1EP classifier when applied
to the prodromal data suggests that the cues that
discriminate between patients with first-episode
schizophrenia and healthy controls tend to place
CHR patients into the same category as patients
with first-episode schizophrenia. It is worth noting
that the classifier tagged all of the CHR+ patients
as 1EP+. We believe this indicates that our method
would be useful as a tool meant to channel limited
attention and resources toward patients with par-
ticularly high risk (above and beyond the criteria
that currently flag a patient as being CHR).

6 Conclusion

To our knowledge, this study is the first to demon-
strate the utility of automated metaphor iden-
tification algorithms in a public-health setting,

Table 1: Classification performance on 1ep set.
Variables F-score Accuracy
Baseline 0.703 0.563
Gender 0.703 0.656
Age 0.629 0.594
CohTok 0.694 0.531
CohPhr 0.703 0.656
Met 0.789 0.750
SentTok 0.732 0.688
SentPhr 0.718 0.656
All 0.848 0.844
Bedi 0.744 0.688
Mota 0.732 0.688

and particularly for the prediction or detection
of schizophrenia. Our algorithm’s performance
on the task of schizophrenia diagnosis from tran-
scripts outperforms the two existing methods de-
tailed in existing literature.

Our results also contribute to clinical knowl-
edge of the nature of language-use abnormal-
ities in schizophrenia, as they support previ-
ous research which finds that those suffering
from schizophrenia produce more metaphors in
free speech than healthy controls. Previously it
was only possible to measure such disturbances
by labor-intensive and subjective hand-coding of
transcripts for metaphoricity, or by the assessment
of expert clinicians, whose time is limited. This
work breaks new ground by showing that such dis-
turbances can be measured in an automated and
reproducible fashion, using features generated via
machine learning.

Our work is somewhat constrained by the small
sample size available to us. As our data comes
from a vulnerable population, obtaining a larger
data set is challenging, but essential for future
work. In fact, two of the authors are in the pro-
cess of collecting data from a total of 120 CHR in-
dividuals. This would enable a more thorough in-
vestigation of a larger and more sophisticated suite
of linguistic features, and especially a more fine-
grained analysis of the interaction of metaphor and
emotional language in schizophrenia.
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Abstract

We present an analytic study on the lan-
guage of news media in the context of po-
litical fact-checking and fake news detec-
tion. We compare the language of real
news with that of satire, hoaxes, and pro-
paganda to find linguistic characteristics
of untrustworthy text. To probe the feasi-
bility of automatic political fact-checking,
we also present a case study based on
PolitiFact.com using their factuality judg-
ments on a 6-point scale. Experiments
show that while media fact-checking re-
mains to be an open research question,
stylistic cues can help determine the truth-
fulness of text.

1 Introduction

Words in news media and political discourse have
a considerable power in shaping people’s beliefs
and opinions. As a result, their truthfulness is of-
ten compromised to maximize impact. Recently,
fake news has captured worldwide interest, and
the number of organized efforts dedicated solely
to fact-checking has almost tripled since 2014.1

Organizations, such as PolitiFact.com, actively in-
vestigate and rate the veracity of comments made
by public figures, journalists, and organizations.

Figure 1 shows example quotes rated for truth-
fulness by PolitiFact. Per their analysis, one com-
ponent of the two statements’ ratings is the mis-
leading phrasing (bolded in green in the figure).
For instance, in the first example, the statement
is true as stated, though only because the speaker
hedged their meaning with the quantifier just. In
the second example, two correlated events – Brexit

1https://www.poynter.org/2017/there-are-now-114-fact-
checking-initiatives-in-47-countries/450477/

“You cannot get ebola from just riding on a 
plane or a bus.”

Mostly TrueTrue False

-Rated Mostly True by PolitiFact, (Oct. 2014)

“Google search spike suggests many people 
don’t know why they voted for Brexit.”

Mostly FalseTrue False

-Rated Mostly False by PolitiFact, (June 2016)

“There are already more American jobs in the solar industry 
than in coal mining.”

True False

-Rated True by PolitiFact, (May 2014)

“By declaring that Pluto was no longer a planet, the 
(International Astronomical Union) put into place a planetary 
definition that would have even declassified Earth as a 
planet if it existed as far from the sun as Pluto does.”

Half TrueTrue False

-Rated Half True by PunditFact, (July 2015)

Figure 1: Example statements rated by PolitiFact
as mostly true and mostly false. Misleading phras-
ing - bolded in green - was one reason for the in-
between ratings.

and Google search trends – are presented ambigu-
ously as if they were directly linked.

Importantly, like above examples, most fact-
checked statements on PolitiFact are rated as nei-
ther entirely true nor entirely false. Analysis in-
dicates that falsehoods often arise from subtle dif-
ferences in phrasing rather than outright fabrica-
tion (Rubin et al., 2015). Compared to most prior
work on deception literature that focused on bi-
nary categorization of truth and deception, politi-
cal fact-checking poses a new challenge as it in-
volves a graded notion of truthfulness.

While political fact-checking generally focuses
on examining the accuracy of a single quoted
statement by a public figure, the reliability of gen-
eral news stories is also a concern (Connolly et al.,
2016; Perrott, 2016). Figure 2 illustrates news
types categorized along two dimensions: the intent
of the authors (desire to deceive) and the content
of the articles (true, mixed, false).
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Figure 2: Types of news articles categorized based
on their intent and information quality.

In this paper, we present an analytic study char-
acterizing the language of political quotes and
news media written with varying intents and de-
grees of truth. We also investigate graded de-
ception detection, determining the truthfulness on
a 6-point scale using the political fact-checking
database available at PolitiFact.2

2 Fake News Analysis

News Corpus with Varying Reliability To an-
alyze linguistic patterns across different types of
articles, we sampled standard trusted news articles
from the English Gigaword corpus and crawled ar-
ticles from seven different unreliable news sites of
differing types. Table 1 displays sources identified
under each type according to US News & World
Report.3 These news types include:
• Satire: mimics real news but still cues the reader

that it is not meant to be taken seriously
• Hoax: convinces readers of the validity of a

paranoia-fueled story
• Propaganda: misleads readers so that they be-

lieve a particular political/social agenda
Unlike hoaxes and propaganda, satire is intended
to be notably different from real news so that audi-
ences will recognize the humorous intent. Hoaxes
and satire are more likely to invent stories, while
propaganda frequently combines truths, false-
hoods, and ambiguities to confound readers.

To characterize differences between news types,
we applied various lexical resources to trusted and
fake news articles. We draw lexical resources from
prior works in communication theory and stylistic
analysis in computational linguistics. We tokenize

2All resources created for this paper including corpus of
news articles from unreliable sources, collection of Politi-
fact ratings, and compiled Wiktionary lexicons have been
made publicly available at homes.cs.washington.
edu/˜hrashkin/factcheck.html

3www.usnews.com/news/national-news/articles/2016-11-
14/avoid-these-fake-news-sites-at-all-costs

News Source # of # Tokens
Type Doc per Doc.

Trusted Gigaword News 13,995 541

The Onion 14,170 350
Satire The Borowitz Report 627 250

Clickhole 188 303

Hoax American News 6,914 204
DC Gazette 5,133 582

Propaganda The Natural News 15,580 857
Activist Report 17,869 1,169

Table 1: News articles used for analysis in Sec-
tion 2.

the text with NLTK (Bird et al., 2009) and com-
pute per-document count for each lexicon, and re-
port averages per article of each type.

First among these lexicons is the Linguistic In-
quiry and Word Count (LIWC), a lexicon widely
used in social science studies (Pennebaker et al.,
2015). In addition, we estimate the use of strongly
and weakly subjective words with a sentiment lex-
icon (Wilson et al., 2005). Subjective words can be
used to dramatize or sensationalize a news story.
We also use lexicons for hedging from (Hyland,
2015) because hedging can indicate vague, ob-
scuring language. Lastly, we introduce intensi-
fying lexicons that we crawled from Wiktionary
based on a hypothesis that fake news articles try to
enliven stories to attract readers. We compiled five
lists from Wiktionary of words that imply a de-
gree a dramatization (comparatives, superlatives,
action adverbs, manner adverbs, and modal ad-
verbs) and measured their presence.

Discussion Table 2 summarizes the ratio of av-
erages between unreliable news and truthful news
for a handful of the measured features. Ratios
greater than one denote features more prominent
in fake news, and ratios less than one denote fea-
tures more prominent in truthful news. The ratios
between unreliable/reliable news reported are sta-
tistically significant (p < 0.01) with Welsch t-test
after Bonferroni correction.

Our results show that first-person and second-
person pronouns are used more in less reliable
or deceptive news types. This contrasts studies
in other domains (Newman et al., 2003), which
found fewer self-references in people telling lies
about their personal opinions. Unlike that do-
main, news writers are trying to appear indifferent.
Editors at trustworthy sources are possibly more
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LEXICON MARKERS RATIO
EXAMPLE MAXSOURCE TEXT

Swear (LIWC) 7.00 Borowitz Report ... Ms. Rand, who has been damned to eternal torment ... S
2nd pers (You) 6.73 DC Gazette You would instinctively justify and rationalize your ... P
Modal Adverb 2.63 American News ... investigation of Hillary Clinton was inevitably linked ... S
Action Adverb 2.18 Activist News ... if one foolishly assumes the US State Department ... S
1st pers singular (I) 2.06 Activist Post I think its against the law of the land to finance riots ... S
Manner Adverb 1.87 Natural News ... consequences of deliberately engineering extinction. S
Sexual (LIWC) 1.80 The Onion ... added that his daughter better not be pregnant. S
See (LIWC) 1.52 Clickhole New Yorkers ... can bask in the beautiful image ... H
Negation(LIWC) 1.51 American News There is nothing that outrages liberals more than ... H
Strong subjective 1.51 Clickhole He has one of the most brilliant minds in basketball. H
Hedge (Hyland, 2015) 1.19 DC Gazette As the Communist Party USA website claims... H
Superlatives 1.17 Activist News Fresh water is the single most important natural resource P
Weak subjective 1.13 American News ... he made that very clear in his response to her. P

Number (LIWC) 0.43 Xinhua News ... 7 million foreign tourists coming to the country in 2010 S
Hear (LIWC) 0.50 AFP The prime minister also spoke about the commission ... S
Money (LIWC) 0.57 NYTimes He has proposed to lift the state sales tax on groceries P
Assertive 0.84 NYTimes Hofstra has guaranteed scholarships to the current players. P
Comparitives 0.86 Assoc. Press ... from fossil fuels to greener sources of energy P

Table 2: Linguistic features and their relationship with fake news. The ratio refers to how frequently it appears in fake news
articles compared to the trusted ones. We list linguistic phenomena more pronounced in the fake news first, and then those that
appear less in the fake news. Examples illustrate sample texts from news articles containing the lexicon words. All reported
ratios are statistically significant. The last column (MAX) lists compares which type of fake news most prominently used words
from that lexicon (P = propaganda, S = satire, H = hoax)

rigorous about removing language that seems too
personal, which is one reason why this result dif-
fers from other lie detection domains. This find-
ing instead corroborates previous work in written
domains found by Ott et al. (2011) and Rayson
et al. (2001), who found that such pronouns were
indicative of imaginative writing. Perhaps imagi-
native storytelling domains is a closer match to de-
tecting unreliable news than lie detection on opin-
ions.

Our results also show that words that can be
used to exaggerate – subjectives, superlatives, and
modal adverbs – are all used more by fake news.
Words used to offer concrete figures – compara-
tives, money, and numbers – appear more in truth-
ful news. This also builds on previous findings by
Ott et al. (2011) on the difference between superla-
tive/comparative usage.

Trusted sources are more likely to use assertive
words and less likely to use hedging words, in-
dicating that they are less vague about describing
events, as well. This relates to psychology the-
ories (Buller and Burgoon, 1996) that deceivers
show more “uncertainty and vagueness” and “in-
direct forms of expression”. Similarly, the trusted
sources use the hear category words more often,
possibly indicating that they are citing primary
sources more often.

The last column in Table 2 shows the fake news
type that uses the corresponding lexicon most

prominently. We found that one distinctive fea-
ture of satire compared to other types of untrusted
news is its prominent use of adverbs. Hoax sto-
ries tend to use fewer superlatives and compara-
tives. In contrast, compared to other types of fake
news, propaganda uses relatively more assertive
verbs and superlatives.

News Reliability Prediction We study the fea-
sibility of predicting the reliability of the news
article into four categories: trusted, satire, hoax,
or propaganda. We split our collected articles
into balanced training (20k total articles from the
Onion, American News, The Activist, and the Gi-
gaword news excluding ‘APW’, ‘WPB’ sources)
and test sets (3k articles from the remaining
sources). Because articles in the training and test
set come from different sources, the models must
classify articles without relying on author-specific
cues. We also use 20% of the training articles
as an in-domain development set. We trained a
Max-Entropy classifier with L2 regularization on
n-gram tf-idf feature vectors (up to trigrams).4

The model achieves F1 scores of 65% on the
out-of-domain test set (Table 3). This is a promis-
ing result as it is much higher than random, but
still leaves room for improvement compared to the

4N-gram tfidf vectors have acted as competitive means of
cross-domain text-classification. Zhang et al. (2015) found
that for data sets smaller than a million examples, this was
the best model, outperforming neural models.
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Data Sources Random MaxEnt

Dev in-domain 0.26 0.91
Test out-of-domain 0.26 0.65

Table 3: F1 scores of 4-way classification of news
reliability.

performance on the development set consisting of
articles from in-domain sources.

We examined the 50 highest weighted n-gram
features in the MaxEnt classifier for each class.
The highest weighted n-grams for trusted news
were often specific places (e.g., “washington”)
or times (“on monday”). Many of the high-
est weighted from satire were vaguely facetious
hearsay (“reportedly”, “confirmed”). For hoax
articles, heavily weighted features included di-
visive topics (“liberals”, “trump”) and dramatic
cues (“breaking”). Heavily weighted features
for propaganda tend towards abstract generali-
ties (“truth”, “freedom”) as well as specific issues
(“vaccines”, “syria”). Interestingly, “youtube” and
“video” are highly weighted for the propaganda
and hoax classes respectively; indicating that they
often rely on video clips as sources.

3 Predicting Truthfulness

Politifact Data Related to the issue of identify-
ing the truthfulness of a news article is the fact-
checking of individual statements made by public
figures. Misleading statements can also have a va-
riety of intents and levels of reliability depending
on whom is making the statement.

PolitiFact5 is a site led by Tampa Bay Times
journalists who actively fact-check suspicious
statements. One unique quality of PolitiFact is that
each quote is evaluated on a 6-point scale of truth-
fulness ranging from “True” (factual) to “Pants-
on-Fire False” (absurdly false). This scale allows
for distinction between categories like mostly true
(the facts are correct but presented in an incom-
plete manner) or mostly false (the facts are not cor-
rect but are connected to a small kernel of truth).

We collected labelled statements from Poli-
tiFact and its spin-off sites (PunditFact, etc.)
(10,483 statements in total). We analyze a sub-
set of 4,366 statements that are direct quotes by
the original speaker. The distributions of ratings
on the PolitiFact scale for this subset are shown

5www.politifact.com/

More True More False

True Mostly Half Mostly False Pants-
True True False on-fire

6-class 20% 21% 21% 14% 17% 7%

2-class 62% 38%

Table 4: PolitiFact label distribution. PolitiFact
uses a 6-point scale ranging from: True, Mostly
True, Half-true, Mostly False, False, and Pants-
on-fire False.

in Table 4. Most statements are labeled as neither
completely true nor false.

We formulate a fine-grained truthfulness pre-
diction task with Politifact data. We split quotes
into training/development/test set of {2575, 712,
1074} statements, respectively, so that all of each
speaker’s quotes are in a single set. Given a state-
ment, the model returns a rating for how reliable
the statement is (Politifact ratings are used as gold
labels). We ran the experiment in two settings, one
considering all 6 classes and the other considering
only 2 (treating the top three truthful ratings as true
and the lower three as false).

Model We trained an LSTM model (Hochreiter
and Schmidhuber, 1997) that takes the sequence
of words as the input and predicts the Politifact
rating. We also compared this model with Maxi-
mum Entropy (MaxEnt) and Naive Bayes models,
frequently used for text categorization.

For input to the MaxEnt and Naive Bayes mod-
els, we tried two variants: one with the word tf-
idf vectors as input, and one with the LIWC mea-
surements concatenated to the tf-idf vectors. For
the LSTM model, we used word sequences as in-
put and also a version where LSTM output is con-
catenated with LIWC feature vectors before un-
dergoing the activation layer. The LSTM word
embeddings are initialized with 100-dim embed-
dings from GLOVE (Pennington et al., 2014) and
fine-tuned during training. The LSTM was im-
plemented with Theano and Keras with 300-dim
hidden state and a batch size of 64. Training was
done with ADAM to minimize categorical cross-
entropy loss over 10 epochs.

Classifier Results Table 5 summarizes the per-
formance on the development set. We report
macro averaged F1 score in all tables. The LSTM
outperforms the other models when only using text
as input; however the other two models improve
substantially with adding LIWC features, particu-
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2-CLASS 6-CLASS

text + LIWC text + LIWC
Majority Baseline .39 - .06 -
Naive Bayes .44 .58 .16 .21
MaxEnt .55 .58 .20 .21
LSTM .58 .57 .21 .22

Table 5: Model performance on the Politifact val-
idation set.

MODEL FEATURE 2-CLASS 6-CLASS

Majority Baseline .39 .06
Naive Bayes text + LIWC .56 .17
MaxEnt text + LIWC .55 .22
LSTM text + LIWC .52 .19
LSTM text .56 .20

Table 6: Model performance on the Politifact test
set.

larly in the case of the multinomial naive Bayes
model. In contrast, the LIWC features do not im-
prove the neural model much, indicating that some
of this lexical information is perhaps redundant to
what the model was already learning from text.

We report results on the test set in Table 6. We
again find that LIWC features improves MaxEnt
and NB models to perform similarly to the LSTM
model. As in the dev. set results, the LIWC fea-
tures do not improve the LSTM’s performance,
and even seem to hurt the performance slightly.

4 Related Work

Deception Detection Psycholinguistic work in
interpersonal deception theory (Buller and Bur-
goon, 1996) has postulated that certain speech pat-
terns can be signs of a speaker trying to purpose-
fully obscure the truth. Hedge words and other
vague qualifiers (Choi et al., 2012; Recasens et al.,
2013), for example, may add indirectness to a
statement that obscures its meaning.

Linguistic aspects deception detection has been
well-studied in a variety of NLP applications (Ott
et al., 2011; Mihalcea and Strapparava, 2009; Jin-
dal and Liu, 2008; Girlea et al., 2016; Zhou et al.,
2004). In these applications, people purposefully
tell lies to receive an extrinsic payoff. In our
study, we compare varying types of unreliable
news source, created with differing intents and
levels of veracity.

Fact-Checking and Fake News There is re-
search in political science exploring how effective
fact-checking is at improving people’s awareness

(Lord et al., 1979; Thorson, 2016; Nyhan and Rei-
fler, 2015). Prior computational works (Vlachos
and Riedel, 2014; Ciampaglia et al., 2015) have
proposed fact-checking through entailment from
knowledge bases. Our work takes a more lin-
guistic approach, performing lexical analysis over
varying types of falsehood.

Biyani et al. (2016) examine the unique linguis-
tic styles found in clickbait articles, and Kumar
et al. (2016) also characterize hoax documents on
Wikipedia. The differentiation between these fake
news types is also proposed in previous work (Ru-
bin et al., 2015). Our paper extends this work by
offering a quantitative study of linguistic differ-
ences found in articles of different types of fake
news, and build predictive models for graded de-
ception across multiple domains – PolitiFact and
news articles. More recent work (Wang, 2017) has
also investigated PolitiFact data though they inves-
tigated meta-data features for prediction whereas
our investigation is focused on linguistic analysis
through stylistic lexicons.

5 Conclusion

We examine truthfulness and its contributing lin-
guistic attributes across multiple domains e.g., on-
line news sources and public statements. We per-
form multiple prediction tasks on fact-checked
statements of varying levels of truth (graded de-
ception) as well as a deeper linguistic compari-
son of differing types of fake news e.g., propa-
ganda, satire and hoaxes. We have shown that fact-
checking is indeed a challenging task but that var-
ious lexical features can contribute to our under-
standing of the differences between more reliable
and less reliable digital news sources.

6 Acknowledgements

We would like to thank anonymous reviewers for
providing insightful feedback. The research de-
scribed in this paper was conducted under the Lab-
oratory Directed Research and Development Pro-
gram at Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Bat-
telle for the U.S. Department of Energy, the Na-
tional Science Foundation Graduate Research Fel-
lowship Program under Grant No. DGE-1256082,
in part by NSF grants IIS-1408287, IIS-1714566,
and gifts by Google and Facebook.

2935



References
Steven Bird, Ewan Klein, and Edward Loper.

2009. Natural Language Processing with Python.
O’Reilly Media.

Prakhar Biyani, Kostas Tsioutsiouliklis, and John
Blackmer. 2016. ”8 amazing secrets for getting
more clicks”: Detecting clickbaits in news streams
using article informality. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence.
AAAI Press, pages 94–100.

David B. Buller and Judee K. Burgoon. 1996. In-
terpersonal deception theory. Communication The-
ory 6(3):203–242. https://doi.org/10.1111/j.1468-
2885.1996.tb00127.x.

Eunsol Choi, Chenhao Tan, Lillian Lee, Cristian
Danescu-Niculescu-Mizil, and Jennifer Spindel.
2012. Hedge detection as a lens on framing in the
gmo debates: A position paper. In Proceedings
of the Workshop on Extra-Propositional Aspects of
Meaning in Computational Linguistics. Association
for Computational Linguistics, pages 70–79.

Giovanni Luca Ciampaglia, Prashant Shi-
ralkar, Luis M. Rocha, Johan Bollen, Filippo
Menczer, and Alessandro Flammini. 2015.
Computational fact checking from knowl-
edge networks. PLOS ONE 10(6):e0128193.
https://doi.org/10.1371/journal.pone.0128193.

Kate Connolly, Angelique Chrisafis, Poppy
McPherson, Stephanie Kirchgaessner, Ben-
jamin Haas, Dominic Phillips, Elle Hunt, and
Michael Safi. 2016. Fake news: An insidi-
ous trend that’s fast becoming a global problem.
https://www.theguardian.com/media/2016/dec/02/fake-
news-facebook-us-election-around-the-world.
Accessed: 2017-01-30.

Codruta Girlea, Roxana Girju, and Eyal Amir. 2016.
Psycholinguistic features for deceptive role detec-
tion in werewolf. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, pages 417–422.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Ken Hyland. 2015. Metadiscourse. In The Interna-
tional Encyclopedia of Language and Social Inter-
action, John Wiley & Sons, Inc., pages 1–11.

Nitin Jindal and Bing Liu. 2008. Opinion spam and
analysis. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. ACM,
pages 219–230.

Srijan Kumar, Robert West, and Jure Leskovec. 2016.
Disinformation on the web: Impact, characteristics,
and detection of wikipedia hoaxes. In Proceedings

of the 25th International Conference on World Wide
Web. International World Wide Web Conferences
Steering Committee, pages 591–602.

Charles G Lord, Lee Ross, and Mark R Lepper. 1979.
Biased assimilation and attitude polarization: The
effects of prior theories on subsequently considered
evidence. Journal of Personality and Social Psy-
chology 37(11):2098–2109.

Rada Mihalcea and Carlo Strapparava. 2009. The lie
detector: Explorations in the automatic recognition
of deceptive language. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers. Association
for Computational Linguistics, pages 309–312.

Matthew L Newman, James W Pennebaker, Diane S
Berry, and Jane M Richards. 2003. Lying words:
Predicting deception from linguistic styles. Person-
ality and social psychology bulletin 29(5):665–675.

Brendan Nyhan and Jason Reifler. 2015. The effect of
fact-checking on elites: A field experiment on US
state legislators. American Journal of Political Sci-
ence 59(3):628–640.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T.
Hancock. 2011. Finding deceptive opinion spam
by any stretch of the imagination. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, pages 309–319.

James W. Pennebaker, Roger J. Booth, Ryan L. Boyd
Boyd, and Martha E. Francis. 2015. Linguistic In-
quiry and Word Count: LIWC2015. Pennebaker-
Conglomerates, Austin, TX. www.liwc.net.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, pages 1532–1543.

Kathryn Perrott. 2016. ‘Fake news’ on social me-
dia influenced US election voters, experts say.
http://www.abc.net.au/news/2016-11-14/fake-
news-would-have-influenced-us-election-experts-
say/8024660. Accessed: 2017-01-30.

Paul Rayson, Andrew Wilson, and Geoffrey Leech.
2001. Grammatical word class variation within
the british national corpus sampler. Language and
Computers 36(1):295–306.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for ana-
lyzing and detecting biased language. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 1650–1659.

2936



Victoria L. Rubin, Yimin Chen, and Niall J. Conroy.
2015. Deception detection for news: Three types of
fakes. Proceedings of the Association for Informa-
tion Science and Technology 52(1):1–4.

Emily Thorson. 2016. Belief echoes: The persistent
effects of corrected misinformation. Political Com-
munication 33(3):460–480.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
In Proceedings of the ACL 2014 Workshop on Lan-
guage Technologies and Computational Social Sci-
ence. Association for Computational Linguistics,
pages 18–22.

William Yang Wang. 2017. “Liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the Association for Computational
Linguistics Short Papers. Association for Computa-
tional Linguistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 347–354.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems. pages 649–657.

Lina Zhou, Judee K. Burgoon, Jay F. Nunamaker,
and Doug Twitchell. 2004. Automating linguistics-
based cues for detecting deception in text-based
asynchronous computer-mediated communications.
Group Decision and Negotiation 13(1):81–106.

2937



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2938–2944
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Topic-Based Agreement and Disagreement in US Electoral Manifestos

Stefano Menini1,3, Federico Nanni2, Simone Paolo Ponzetto2, Sara Tonelli1

1Fondazione Bruno Kessler, Trento, Italy
2University of Mannheim, Germany

3University of Trento, Italy
{menini, satonelli}@fbk.eu

{federico, simone}@informatik.uni-mannheim.de

Abstract

We present a topic-based analysis of
agreement and disagreement in political
manifestos, which relies on a new method
for topic detection based on key con-
cept clustering. Our approach outperforms
both standard techniques like LDA and a
state-of-the-art graph-based method, and
provides promising initial results for this
new task in computational social science.

1 Introduction

During the last decade, the adoption of natu-
ral language processing (NLP) techniques for the
study of political phenomena has gained consid-
erable momentum (Grimmer and Stewart, 2013),
arguably because of both the availability of parlia-
mentary proceedings (van Aggelen et al., 2017),
electoral manifestos (Volkens et al., 2011) and
campaign debates (Woolley and Peters, 2008), and
the interest of the computational social science
(CSS) community in the potential of text mining
methods for advancing political science research
(Lazer et al., 2009).

Previous work focused on the automatic de-
tection of sentiment expressions in political news
(Young and Soroka, 2012), the identification of
ideological proportions (Sim et al., 2013) and the
scaling on a left-right spectrum of politicians’
speeches (Slapin and Proksch, 2008). More re-
cently, researchers looked at topic-centered ap-
proaches to provide finer-grained analyses, includ-
ing segmentation methods for topic-labeled man-
ifestos (Glavaš et al., 2016), supporting manual
coders in identifying coarse-grained political top-
ics (Zirn et al., 2016), as well as topic-based and
cross-lingual political scaling (Nanni et al., 2016;
Glavaš et al., 2017).

Measuring Agreement. Automatically measur-
ing the level of agreement in political documents
(Gottipati et al., 2013; Menini and Tonelli, 2016)
has the potential of supporting political analyses
such as the comparisons between campaign strate-
gies (Burton et al., 2015), the study of promises
kept and broken after elections (Naurin, 2011),
the formation of coalitions (Debus, 2009) and the
interactions between government and opposition
(Hix and Noury, 2016). However, previous work
relies on the availability of pre-defined topics, in-
cluding supervised methods (Galley et al., 2004;
Hillard et al., 2003), approaches leveraging col-
laboratively generated resources (Gottipati et al.,
2013; Awadallah et al., 2012) or pairwise agree-
ment detection from political debates (Menini and
Tonelli, 2016).

Our Contributions. a) New task: Given a collec-
tion of political documents such as, e.g., electoral
manifestos, we look at ways to perform an auto-
matic, topic-based agreement-disagreement clas-
sification. b) New approach: We first segment the
texts into coarse-grained domains. Next, coarse
domains are used to extract a fine-grained list of
topic-based points of view which, in turn, are used
to perform classification. We achieve this by de-
veloping a novel approach for topic detection on
the basis of key concept clustering techniques: this
is shown to outperform not only LDA-based Topic
Modeling – the de facto standard approach for this
task in CSS (Grimmer and Stewart, 2013) – but
also established unsupervised (k-means) and state-
of-the-art graph-based clustering techniques. c)
Experimental study and resources: We use man-
ifestos from the Comparative Manifesto Project
(Volkens et al., 2011). As in previous works (Zirn
et al., 2016), we focus on a subset consisting of
six U.S. manifestos (Republican and Democrat)
from the 2004, 2008 and 2012 elections. We show

2938



that our method leads to promising results when
measuring the topic-based agreement between the
party manifestos, thus indicating the overall feasi-
bility of the task. Additionally, we release all code
and annotations related to this paper to foster fur-
ther work from the research community.

2 System Overview

We present a new system for measuring the topic-
based agreement of political manifestos. Our ap-
proach consists of four main steps: i) macro-
domain detection, e.g. foreign policy, economy,
welfare, ii) key concept extraction, iii) topic de-
tection as key concept clustering, e.g., energy con-
sumption, new energy solution, petroleum depen-
dence for the topic green economy, and iv) pair-
wise, topic-based agreement detection.

The central component of our pipeline is a new
approach for fine-grained topic detection in po-
litical contents based on key concept clustering.
This is because, among existing methods, super-
vised approaches cannot be applied here due to
the scarce availability of in-domain labeled data,
as well as the already remarked high complexity of
the annotation process (Benoit et al., 2016). More-
over, the application of unsupervised topic detec-
tion techniques like LDA has been shown during
prototyping to produce low-quality topics that are
rather coarse (cf. the results in Section 3).

Similar to LDA-based approaches, we view
each topic as a cluster of words or phrases. How-
ever, given that we are in a domain with topics
built around rather specific lexical cues, we do not
rely on the entire vocabulary of the documents.
Instead, we build clusters that are made up of se-
mantically similar key concepts extracted from the
documents themselves, including both single and
multiwords (i.e. keywords and keyphrases). In
the next paragraph we present an overview of each
component of our system.

1) Domain Detection. We are given as input sen-
tences from a political manifesto. The first step of
our work is to classify them into the seven macro-
domains defined by the Manifesto Project, namely
external relations, freedom and democracy, polit-
ical system, economy, welfare and quality of life,
fabric of society, social groups. To achieve this
goal, we use ClassyMan, a system developed in a
previous work (Zirn et al., 2016), which predicts
the domains and domain shifts between pairs of
adjacent sentences.

2) Key concept Extraction. Next, for each do-
main we process each sentence using Keyphrase
Digger (KD) (Moretti et al., 2015). KD is a rule-
based (hence domain-agnostic) system for key
concept extraction that combines statistical mea-
sures with linguistic information, and which has
shown competitive performance on the SemEval
2010 benchmark (Kim et al., 2010). We set the
tool to extract lemmatized key concepts up to three
tokens. For each key concept, we compute its tf-
idf, considering each domain as a different docu-
ment. The result is a list of key concepts for each
domain, with a score representing their relevance
to the domain.

3) Key concept Clustering. Starting from the flat
lists of key concepts extracted by KD, we adopt
a recursive procedure to merge them into mean-
ingful clusters. First, we build a distributional se-
mantic vector for each key concept by averaging
the embeddings of each word in the key concept
(we use the GloVe embeddings from Pennington
et al. (2014) with 50 dimensions, pre-trained on
Wikipedia). Next, we build a semantic graph rep-
resentation where a) each node consists of a key
concept, b) the weight of each edge is the cosine
distance between their respective embedding vec-
tors and c) edges are directed, pointing to the node
of the key concept with the higher tf-idf. For ties,
we create multiple edges. To direct the nodes we
adopt tf-idf, since we want to weigh the key con-
cepts according to the relevance for the macro-
domain we are processing. This allows us to ob-
tain well-defined groups within the domains.

To reduce the number of weak edges, we set a
cosine similarity threshold of 0.8,1 and we set an
edge between two multi-word keyphrases if they
have at least one word in common (e.g. ethnic mi-
nority, black minority).

Finally, we obtain clusters of semantically re-
lated key concepts from the graph as follows: a)
we extract all groups of key concepts with an edge
directed to the same node and create a first set of
clusters. Then, b) clusters sharing at least 50% of
the key concepts are merged. Next, c) the clusters
purity is improved by removing the less relevant
key concepts. These are identified as those key
concepts whose cosine distance is more than 1.5
times the standard deviation from the centroid of

1We evaluated the clustering output with different thresh-
olds ranging from 0.6 to 0.9. The value of 0.8 is the one
leading to the best accuracy. In Table 1 and 2 we report the
results using this threshold.
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the cluster. At the end of this process, we obtain
for each domain a set of clusters or topics, made
of semantically related key concepts. The number
of clusters is determined dynamically during the
process and does not need to be defined a priori.

4) Statement Extraction. We use the clusters of
key concepts to identify pairs of statements, re-
lated to the same topic, from the Republican (R)
and Democratic (D) manifestos. For each topic,
we first collect the statements from D and R man-
ifestos having among their key concepts one of the
key concepts defining the topic and then we pair
groups of three statements from D with groups of
three statements from R. We use groups of three
statements because it allows us i) to obtain a suffi-
cient number of pairs to perform automatic classi-
fication, and ii) to improve the quality of the man-
ual annotations. We noticed during an initial eval-
uation that annotators focus easier on groups of 3
sentences rather than larger groups and that, on the
other hand, using less than 3 sentences decreases
the chances to obtain at least two statements in
agreement/disagreement within a pair.

5) Agreement Classification. The last step is
the automatic classification of agreement and dis-
agreement between Republicans and Democrats.
To classify pairs of statements, we rely on a su-
pervised machine learning approach with the set
of features used in Menini and Tonelli (2016), in
which a similar task is addressed. The classifica-
tion relies on features related to surface informa-
tion such as lexical overlap and negation, to the
semantic content of the statements (e.g. sentiment)
and to their relation (e.g. entailment).

3 Evaluation

3.1 Topic Extraction

Having a set of manifestos annotated with coarse-
grained domains – using ClassyMan, which
achieved a micro F1-Score of 0.78 across the
seven macro-topics in a 10-fold cross validation
setting – the central step of our pipeline is to detect
clusters of key concepts representing fine-grained
topics in each macro domain. To do that, we adopt
the method described above, that we call here Key
Concept Clusters. We examine its performance in
comparison with two types of baselines.

LDA Baselines. We first employ vanilla LDA,
a common approach for topic detection in CSS
(Grimmer and Stewart, 2013), relying on the as-

sumption that tokens often co-occurring together
in a corpus belong to the same topic. For this task,
we use the Mallet topic model package.2 Given
the fact that our method for key concept cluster-
ing identifies on average 30 topics per domain, we
create a corpus for each domain with all its sen-
tences and we run LDA with 10,000 iterations to
obtain 30 topics. We test LDA by considering all
the tokens in the corpus (Vanilla LDA) and only
the extracted key concepts (Key concept LDA).

Clustering Baselines. The second type of base-
line adopts the same representation of key con-
cepts used in our approach, i.e., we represent can-
didate phrases by averaging the embeddings of
their constituent words. We test two different clus-
tering approaches to group them into topics: the
first uses K-means (with 30 clusters). The second
(Graph-based) builds a fully-connected semantic
relatedness graph by measuring the cosine similar-
ity between all pairs of key concepts: topic cluster-
ing is then obtained by finding all maximal cliques
in the graph using the Bron-Kerbosch algorithm.

Evaluation. In order to assess the overall quality
of the topics produced by each approach, we adopt
the word-intrusion post-hoc evaluation method
(Chang et al., 2009) using the platform presented
in Lauscher et al. (2016). For each approach, we
randomly pick 100 topics and for each topic we
keep two sets of key concepts, respectively the
four and eight top-relevant elements of the clus-
ter.3 Then, we add to these four/eight words a new
word from another topic (i.e. the intruder), and
we shuffle the obtained five/nine words. Finally,
we ask three political science experts to identify
the intruder. The more the topics are coherent, the
easier the intruder is detected. While this type of
post-hoc evaluation is extremely time-consuming
– no less than 45 minutes of work for annotator
for each produced ranking, thus hindering the ex-
perimental assessment of, for instance, the role of
different numbers of topics for each baseline – it is
necessary given the already remarked limits of ex-
isting gold standards manually-created for the task
(Mikhaylov et al., 2012; King et al., 2017).

Results. As shown in Table 1, our system out-
performs the other methods with an accuracy of
0.86 in the word-intrusion task with four key con-

2http://mallet.cs.umass.edu/
3For LDA, Mallet provides already ranked results. For the

other approaches, the most relevant key concepts are the key
concepts closest to the centroid of the cluster.
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Method Acc.@4 Acc.@8
Vanilla-LDA 0.22 0.35
Key concept-LDA 0.29 0.36
Graph-based Clusters 0.46 0.44
k-means Clusters 0.72 0.67
Key concept Clusters 0.86 0.67

Table 1: Topics evaluation: accuracy in word in-
trusion task. The table reports the accuracy values
on the first 4 and 8 key concepts in the clusters.

cepts in each cluster, while it decreases to 0.67 if
we extend the evaluation to include eight key con-
cepts. Besides, inter-annotator agreement (Fleiss’
kappa), reported in Table 2, varies a lot across
the different methods. In particular, the agree-
ment in the intrusion task with four key concepts
is higher for clusters generated with our method
(0.79), while it is very low using LDA (0.32). This
confirms the findings by Chang et al. (2009) that
LDA topics are often difficult to interpret.

If we extend the evaluation to the first eight ele-
ments of each cluster, we notice that the difference
between the agreement with our pipeline (0.62)
and LDA (0.46) decreases. This shows that, with
key concept clusters, increasing the number of key
concepts in a topic affects their interpretation, al-
though there is still an improvement with respect
to the other approaches.

Final Tuning. We next tune clustering to classify
fine-grained topics as in agreement or disagree-
ment. Tuning is performed as to maximize cluster-
ing accuracy while obtaining a sufficient number
of topics shared by both Democrats and Republi-
cans. Since a cosine similarity threshold of 0.8 in
the clustering process leads to clusters that are too
specific, often addressed only by one of the two
parties, we reduce the threshold to 0.7, so that the
topics are likely to be covered by both manifestos.
In addition, we want to compare the agreement fo-
cusing on small clusters, composed by a maximum
of 10 key concepts. To obtain them, we iterate the
clustering process over the key concepts of larger
clusters, progressively increasing the cosine sim-
ilarity threshold until there are no groups larger
than 10 key concepts. We reach this goal with a
threshold of 0.85. Using these settings, the accu-
racy (Acc. @4) of the clusters decreases to 0.74,
but we obtain clusters that allow us to extract a
total of 351 pairs covering 87 fine-grained topics.
Table 3 shows some of the clusters extracted.

Method Kappa@4 Kappa@8
Vanilla LDA 0.32 0.46
Key concept LDA 0.50 0.40
Graph-based Clusters 0.39 0.32
k-means Clusters 0.65 0.61
Key concept Clusters 0.79 0.62

Table 2: Inter-annotator agreement (IAA) eval-
uation (Fleiss’ kappa) in the word intrusion task.
The table reports the IIA on the first 4 and 8 key
concepts in the clusters.

3.2 Agreement Classification

Data Annotation. The statements in the pairs
have been annotated by three scholars of politi-
cal science in terms of agreement, disagreement
or none of the two. The annotation results in 158
pairs in disagreement, 135 in agreement and 58
neither in agreement nor in disagreement, with an
inter-annotator agreement (IAA) of 0.64 (Fleiss’
Kappa). Note that only in three cases the annota-
tors claimed that the meaning of a sentence pair
did not match with the topic detected with our ap-
proach. This additional finding highlights again
the quality of our method for topic detection based
on key concept clustering.

Agreement Classification. Agreement classifica-
tion is carried out using Support Vector Machine
(SVM) tested in two configurations. In the first
setting, we train and test the classifier with 10-
fold cross validation over the manually annotated
pairs from the political manifestos. In the second
configuration, we explore instead a cross-domain
approach: we train the SVM on the 1960 Elec-
tions dataset from Menini and Tonelli (2016) and
use all the pairs in our gold standard of political
manifestos as test set. This experiment is aimed
at assessing the impact of training on comparable
data are from the same domain (i.e., transcript of
political speeches vs. manifestos).

The results of both configurations are shown in
Table 4, where they are compared to a random
baseline. The results show that the set of features
used suits our task, classifying the data with an
accuracy comparable to the performance of hu-
man annotators, if we consider IAA as an upper
bound for the task. We achieve nevertheless re-
sults that are in a lower range than Menini and
Tonelli (2016), thus suggesting that agreement and
disagreement is harder to detect in political mani-
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Macro-domain: External Relations
japan, korea, missile, north korea, south korea, weapon north korea
extremism, renounce terrorism, nuclear terrorism, proliferation, security, terrorism
Macro-domain: Freedom and Democracy
culture, freedom, ideology, religion, society, tolerance, tradition
democracy, discrimination, first amendment rights, freedom, issue, law, rights of citizenship
Macro-domain: Political System
budget, budget act, cost, cut, deficit, shortfall, tax
congressional republican, election, republican, republican platform, romney, vote
Macro-domain: Economy
alternative fuel, electricity, fuel, gas, transportation fuel
bailout, credit, loan, mortgage, payment, savings
Macro-domain: Welfare and Quality of Life
ailment, chronic, disease, health, illness, obesity, treatment of disease
global energy forum, industry, new energy solution, new global energy, solar energy generation
Macro-domain: Fabric of Society
crime, criminal, high-profile criminal conviction, prosecution
religious freedom, religious, religious discrimination
Macro-domain: Social Groups
agricultural agricultural america, agricultural production, agriculture, farm, rural, rural america
hispanic, latino, latino population

Table 3: Examples of key concept clusters extracted for each macro-domain.

Classification Accuracy
Random Baseline 0.54
10-fold cross validation 0.66
1960 Elections training 0.61

Table 4: Results on agreement classification.

festos than in speeches. Finally the accuracy of the
classifier in the cross-domain setting is lower than
the one obtained with in-domain cross-validation,
but still comparable with that of human annotators.

4 Conclusion

In this paper, we presented a system for support-
ing automatic topic-bases analyses of agreement
and disagreement in political manifestos. This ap-
proach goes beyond established approaches for the
task, which are either too coarse-grained or rely
intensively on manual annotations.

Our method can provide insights into agree-
ment and disagreement between parties, covering
several topics of internal and foreign policy. By
examining the results, we find an overall cross-
party agreement of 46% regarding the discussed
issues. However, this agreement varies substan-
tially if we consider the different macro-domains.

For example, while we notice a strong disagree-
ment over the domain political system, especially
for what concerns the responsibilities of previous
administrations, other domains, such as external
relations, present a more balanced ratio of agree-
ment and disagreement between Republicans and
Democrats. The possibility of measuring agree-
ment at a finer level (topics) that is offered by our
approach, shows, for example, that between 2004
and 2012 two opposite positions have been defined
regarding the Middle East. On the contrary, there
has been a general agreement on the role of the
U.S. concerning the relations with Europe.

In the future, we hope that the pipeline pre-
sented in this paper will support political science
researchers in studying topics such as party po-
larization through the analysis and comparison of
electoral manifestos, parliamentary proceedings
and campaign speeches. On the computational
side, we will to extend our approach to cross-
lingual data, in order to enable computer-assisted
political analysis across different languages.

Downloads. The code for topic detection
as key concept clustering process is available
at https://dh.fbk.eu/technologies/
keyphrase-clustering.
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Abstract

We introduce Zipporah, a fast and scal-
able data cleaning system. We propose a
novel type of bag-of-words translation fea-
ture, and train logistic regression models
to classify good data and synthetic noisy
data in the proposed feature space. The
trained model is used to score parallel sen-
tences in the data pool for selection. As
shown in experiments, Zipporah selects a
high-quality parallel corpus from a large,
mixed quality data pool. In particular, for
one noisy dataset, Zipporah achieves a 2.1
BLEU score improvement with using 1/5
of the data over using the entire corpus.

1 Introduction

Statistical machine translation (SMT) systems re-
quire the use of parallel corpora for training the
internal model parameters. Data quality is vital
for the performance of the SMT system (Simard,
2014). To acquire a massive parallel corpus, many
researchers have been using the Internet as a re-
source, but the quality of data acquired from the
Internet usually has no guarantee, and data clean-
ing/data selection is needed before the data is used
in actual systems. Usually data cleaning refers to
getting rid of a small amount of very noisy data
from a large data pool, and data selection refers
to selecting a small subset of clean (or in-domain)
data from the data pool; both have the objective of
improving translation performances. For practi-
cal purposes, it is highly desirable to perform data
selection in a very fast and scalable manner. In
this paper we introduce Zipporah1, a fast and scal-
able system which can select an arbitrary size of
good data from a large noisy data pool to be used
in SMT model training.

1https://github.com/hainan-xv/zipporah

2 Prior Work

Many researchers have studied the data clean-
ing/selection problem. For data selection, there
have been a lot of work on selecting a sub-
set of data based on domain-matching. Duh et
al. (2013) used a neural network based lan-
guage model trained on a small in-domain cor-
pus to select from a larger data pool. Moore and
Lewis (2010) computed cross-entropy between in-
domain and out-of-domain language models to se-
lect data for training language models. XenC
(Rousseau, 2013), an open-source tool, also se-
lects data based on cross-entropy scores on lan-
guage models. Axelrod et al. (2015) utilized part-
of-speech tags and used a class-based n-gram lan-
guage model for selecting in-domain data. There
are a few works that utilize other metrics. Lü et
al. (2007) redistributed different weights for sen-
tence pairs/predefined sub-models. Shah and Spe-
cia (2014) described experiments on quality esti-
mation which, given a source sentence, select the
best translation among several options. The qe-
clean system (Denkowski et al., 2012; Dyer et al.,
2010; Heafield, 2011) uses word alignments and
language models to select sentence pairs that are
likely to be good translations of one another.

For data cleaning, a lot of researchers worked
on getting rid of noising data. Taghipour et al.
(2011) proposed an outlier detection algorithm
which leads to an improved translation quality
when trimming a small portion of data. Cui et al.
(2013) used a graph-based random walk algorithm
to do bilingual data cleaning. BiTextor (Esplá-
Gomis and Forcada, 2009) utilizes sentence align-
ment scores and source URL information to filter
out bad URL pairs and selects good sentence pairs.

In this paper we propose a novel way to eval-
uate the quality of a sentence pair which runs
efficiently. We do not make a clear distinction
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between data selection and data cleaning in this
work, because under different settings, our method
can perform either based on the computed quality
scores of sentence pairs.

3 Method

The method in this paper works as follows: we
first map all sentence pairs into the proposed fea-
ture space, and then train a simple logistic regres-
sion model to separate known good data and (syn-
thetic) bad data. Once the model is trained, it is
used to score sentence pairs in the noisy data pool.
Sentence pairs with better scores are added to the
selected subset until the desired size constraint is
met.

3.1 Features

Since good adequacy and fluency are the major
two elements that constitute a good parallel sen-
tence pair, we propose separate features to address
both of them. For adequacy, we propose bag-of-
words translation scores, and for fluency we use n-
gram language model scores. For notational sim-
plicity, in this section we assume the sentence pair
is French-English in describing the features, and
we will use subscripts f and e to indicate the lan-
guages. In designing the features, we prioritize
efficiency as well as performance since we could
be dealing with corpora of huge sizes.

3.1.1 Adequacy scores

We view each sentence as a bag of words, and de-
sign a “distance” between the sentence pairs based
on a bag-of-words translation model. To do this,
we first generate dictionaries from an aligned cor-
pus, and represent them as sets of triplets. For-
mally,

Df2e = {(wfi , wei , p(wei |wfi)), i = 1, ...,m}.

Given a sentence pair (sf , se) in the noisy data
pool, we represent the two sentence as two sparse
word-frequency vectors vf and ve. For exam-
ple for any French word wf , we have vf [wf ] =
c(wf ,sf )
l(sf )

, where c(wf , sf ) is the number of occur-
rences ofwf in sf and l(sf ) is the length of sf . We
do the same for ve. Notice that by construction,
both vectors add up to 1 and represent a proper
probability distribution on their respective vocab-
ularies. Then we “translate” vf into v′e, based on

the probabilistic f2e dictionary, where

v′e[we] =
∑

wf

vf [wf ]p(we|wf )

For a French word w that does not appear in the
dictionary, we keep it as it is in the translated vec-
tor, i.e. assume there is an entry of (w,w, 1.0) in
the dictionary. Since the dictionary is probabilis-
tic, the elements in v′e also add up to 1, and v′e
represents another probability distribution on the
English vocabulary. We compute the (smoothed)
cross-entropy between ve and v′e,

xent(ve, v′e) =
∑

we

ve[we] log
1

v′e[we] + c
(1)

where c is a smoothing constant to prevent the de-
nominator from being zero, and set c = 0.0001
for all experiments in this paper (more about this
in Section 4).

We perform similar procedures for English-to-
French, and compute xent(vf , v′f ). We define the
adequacy score as the sum of the two:

adequacy(sf , se) = xent(ve, v′e) + xent(vf , v′f )

3.1.2 Fluency scores
We train two n-gram language models with a clean
French and English corpus, and then for each
sentence pair (sf , se), we score each sentence
with the corresponding model, Fngram(sf ) and
Fngram(se), each computed as the ratio between
the sentence negative log-likelihood and the
sentence length. We define the fluency score as
the sum of the two:

fluency(sf , se) = Fngram(sf ) + Fngram(se)

3.2 Synthetic noisy data generation
We generate synthetic noisy data from good data,
and make sure the generated noisy data include
sentence pairs with a) good fluency and bad ad-
equacy, b) good adequacy and bad fluency and c)
bad both.

Respectively, we generate 3 types of “noisy”
sentence pairs from a good corpus: a) shuffle the
sentences in the target language file (each sentence
in the source language would be aligned to a ran-
dom sentence in the target language); b) shuffle the
words within each sentence (each sentence will be
bad but the pairs are good translations in the “bag-
of-words” sense); c) shuffle both the sentences and
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words. We emphasize that, while the synthetic
data might not represent “real” noisy data, it has
the following advantages: 1) each type of noisy
data is equally represented so the classifier has to
do well on all of them; 2) the data generated this
way would be among the hardest to classify, espe-
cially type a and type b, so if a classifier separates
such hard data with good performance, we expect
it to also be able to do well in real world situations.

3.3 Logistic regression feature mapping

Figure 1: newstest09 fr-en data in the feature space

We plot the newstest09 data (original and auto-
generated noisy ones as described in Section
3.2) into the proposed feature space in Figure 1.
We observe that the clusters are quite separable,
though the decision function would not be linear.
We map the features into higher order forms of
(xn, yn) in order for logistic regression to train a
non-linear decision boundary.2 We use n = 8 in
this work since it gives the best classification per-
formance on the newstest09 fr-en corpus.

4 Hyper-parameter Tuning

We conduct experiments to determine the value
of the constant c in the smoothed cross-entropy
computation in equation 1. We choose the new-
stest09 German-English corpus, and shuffle the
sentences in the English file and combine the orig-
inal (clean) corpus with the shuffled (noisy) cor-
pus into a larger corpus, where half of them are
good sentence pairs. We set different values of c
and use the adequacy scores to pick the better half,

2We avoid using multiple mappings of one feature be-
cause we want the scoring function to be monotonic both w.r.t
x and y, which could break if we allow multiple higher-order
mappings of the same feature and they end up with weights
with different signs.

and compute the retrieval accuracy. Table 1 shows
that the best value for c is 0.0001, and we use that
in all experiments.

c accuracy

0.001 0.975
0.0001 0.984
0.00001 0.983

0.000001 0.981

Table 1: Tuning cross-entropy constant c

5 Evaluation

We evaluate Zipporah on 3 language pairs,
French-English, German-English and Spanish-
English. The noisy web-crawled data comes from
an early version of http://statmt.org/
paracrawl. The number of words are (in mil-
lions) 340, 487 and 70 respectively.

To generate the dictionaries for computing the
adequacy scores, we use fast align (Dyer et al.,
2013) to align the Europarl (Koehn, 2005) cor-
pus and generate probabilistic dictionaries from
the alignments. We set the n-gram order to be 5
and use SRILM (Stolcke et al., 2011) to train lan-
guage models on the Europarl corpus and generate
the n-gram scores.

For each language pair, we use scikit-learn (Pe-
dregosa et al., 2011) to train a logistic regression
model to classify between the original and the syn-
thetic noisy corpus of newstest09, and the trained
model is used to score all sentence pairs in the data
pool. We keep selecting the best ones until the de-
sired number of words is reached.

To evaluate the quality, we train a Moses
(Koehn et al., 2007) SMT system on selected data,
and evaluate each trained SMT system on 3 test
corpora: newstest2011 which contains 3003 sen-
tence pairs, and a random subset of the TED-talks
corpus and the movie-subtitle corpus from OPUS
(Tiedemann, 2012), each of which contains 3000
sentence pairs.

Tables 2, 3 and 4 show the BLEU performance
of the selected subsets of the Zipporah system
compared to the baseline, which selects sentence
pairs at random; for comparison, we also give
the BLEU performance of systems trained on Eu-
roparl. The Zipporah system gives consistently
better performance across multiple datasets and
multiple languages than the baseline.3

3We also point out that the performance of the selected
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BLEU newstest11 ted-talk subtitle

num-words rand zipp rand zipp rand zipp

10 million 21.5 24.4 24.0 27.4 12.3 14.9
20 million 22.8 25.1 25.0 27.9 12.8 15.5
50 million 24.3 26.0 27.4 28.8 14.5 15.8

100 million 25.2 26.6 28.3 30.3 15.0 17.3
200 million 26.1 26.7 29.9 30.0 16.4 17.3
340 mil (all) 26.2 30.0 16.7

Europarl 24.4 27.0 14.2

Table 2: BLEU Performance, French-English

BLEU newstest11 ted-talk subtitle

num-words rand zipp rand zipp rand zipp

10 million 13.6 17.6 17.0 22.5 11.4 15.8
20 million 14.8 18.4 18.9 23.7 12.7 16.9
50 million 16.3 19.2 20.8 24.8 13.9 17.8

100 million 16.9 19.5 21.3 25.0 14.0 18.3
200 million 18.0 19.2 22.9 24.2 15.3 17.9
487 mil (all) 18.7 23.5 16.2

Europarl 17.5 21.5 14.5

Table 3: BLEU Performance, German-English

BLEU newstest11 ted-talk subtitle

num-words rand zipp rand zipp rand zipp

10 million 24.2 25.5 25.9 28.3 17.9 19.8
20 million 25.3 26.2 28.2 29.7 19.3 21.2
50 million 26.6 26.5 29.9 30.4 21.3 21.4
70 mil (all) 27.1 30.3 21.8

Europarl 25.4 28.4 19.8

Table 4: BLEU Performance, Spanish-English

In particular, for the Germen-English corpus,
when selecting less than 2% of the data (10 mil-
lion words), on the TED-talk dataset, Zipporah
achieves a 5.5 BLEU score improvement over the
baseline; by selecting less than 4% of the data
(20 million words) the system gives better perfor-
mance than using all data. Peak performance is
achieved when selecting 100 million words, where
an improvement of 2.1 BLEU score over all data
is achieved on the movie-subtitle dataset, despite
only using less than 1/5 of the data.

Figure 2: BLEU performance of Zipporah, qe-
clean and random on TED-talks, French-English

Figure 3: BLEU performance of Zipporah, qe-
clean and random on newstest11, German-English

Figures 2, 3 and 4 compare the result of Zippo-
rah with that of qe-clean (Denkowski et al., 2012;
Dyer et al., 2010; Heafield, 2011) and the random
baseline. We use the same data when running qe-
clean, with Europarl for training and newstest09
for dev. While they both perform comparably and
better than the baseline, Zipporah achieves a bet-
ter peak in all the datasets, and the peak is usu-
ally achieved when selecting a smaller number of
words compared to qe-clean, Another advantage
of Zipporah is it allows the user to select an arbi-

subsets of the Zipporah system can surpass that of Europarl,
although the Europarl corpus acts like an “oracle” in the sys-
tem, upon which the dictionaries and language models for
feature computations are trained.
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Figure 4: BLEU performance of Zipporah, qe-
clean and random on TED-talks, Spanish-English

trary size from the pool.4 We also want to empha-
size that unlike qe-clean, which requires running
word-alignments for all sentence pairs in the noisy
corpus, Zipporah’s feature computation is simple,
fast and can easily be scaled for huge datasets.

6 Conclusion and Future Work

In this paper we introduced Zipporah, a fast data
selection system for noisy parallel corpora. SMT
results demonstrate that Zipporah can select a
high-quality subset of the data and significantly
improve SMT performance.

Zipporah currently selects sentences based on
the “individual quality” only, and we plan in future
work to also consider other factors, e.g. encourage
selection of a subset that has a better n-gram cov-
erage.
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Abstract

Concept maps can be used to concisely
represent important information and bring
structure into large document collections.
Therefore, we study a variant of multi-
document summarization that produces
summaries in the form of concept maps.
However, suitable evaluation datasets for
this task are currently missing. To close
this gap, we present a newly created cor-
pus of concept maps that summarize het-
erogeneous collections of web documents
on educational topics. It was created us-
ing a novel crowdsourcing approach that
allows us to efficiently determine impor-
tant elements in large document collec-
tions. We release the corpus along with
a baseline system and proposed evaluation
protocol to enable further research on this
variant of summarization.1

1 Introduction

Multi-document summarization (MDS), the trans-
formation of a set of documents into a short text
containing their most important aspects, is a long-
studied problem in NLP. Generated summaries
have been shown to support humans dealing with
large document collections in information seek-
ing tasks (McKeown et al., 2005; Maña-López
et al., 2004; Roussinov and Chen, 2001). How-
ever, when exploring a set of documents manually,
humans rarely write a fully-formulated summary
for themselves. Instead, user studies (Chin et al.,
2009; Kang et al., 2011) show that they note down
important keywords and phrases, try to identify re-
lationships between them and organize them ac-
cordingly. Therefore, we believe that the study of

1Available at https://github.com/UKPLab/
emnlp2017-cmapsum-corpus
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Figure 1: Elements of a concept map.

summarization with similarly structured outputs is
an important extension of the traditional task.

A representation that is more in line with ob-
served user behavior is a concept map (Novak
and Gowin, 1984), a labeled graph showing con-
cepts as nodes and relationships between them as
edges (Figure 1). Introduced in 1972 as a teach-
ing tool (Novak and Cañas, 2007), concept maps
have found many applications in education (Ed-
wards and Fraser, 1983; Roy, 2008), for writing
assistance (Villalon, 2012) or to structure infor-
mation repositories (Briggs et al., 2004; Richard-
son and Fox, 2005). For summarization, concept
maps make it possible to represent a summary con-
cisely and clearly reveal relationships. Moreover,
we see a second interesting use case that goes be-
yond the capabilities of textual summaries: When
concepts and relations are linked to correspond-
ing locations in the documents they have been ex-
tracted from, the graph can be used to navigate in a
document collection, similar to a table of contents.
An implementation of this idea has been recently
described by Falke and Gurevych (2017).

The corresponding task that we propose is
concept-map-based MDS, the summarization of a
document cluster in the form of a concept map.
In order to develop and evaluate methods for the
task, gold-standard corpora are necessary, but no
suitable corpus is available. The manual creation
of such a dataset is very time-consuming, as the
annotation includes many subtasks. In particular,
an annotator would need to manually identify all
concepts in the documents, while only a few of
them will eventually end up in the summary.
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Figure 2: Excerpt from a summary concept map on the topic “students loans without credit history”.

To overcome these issues, we present a corpus
creation method that effectively combines auto-
matic preprocessing, scalable crowdsourcing and
high-quality expert annotations. Using it, we can
avoid the high effort for single annotators, allow-
ing us to scale to document clusters that are 15
times larger than in traditional summarization cor-
pora. We created a new corpus of 30 topics, each
with around 40 source documents on educational
topics and a summarizing concept map that is the
consensus of many crowdworkers (see Figure 2).

As a crucial step of the corpus creation, we de-
veloped a new crowdsourcing scheme called low-
context importance annotation. In contrast to tra-
ditional approaches, it allows us to determine im-
portant elements in a document cluster without re-
quiring annotators to read all documents, making
it feasible to crowdsource the task and overcome
quality issues observed in previous work (Lloret
et al., 2013). We show that the approach creates
reliable data for our focused summarization sce-
nario and, when tested on traditional summariza-
tion corpora, creates annotations that are similar to
those obtained by earlier efforts.

To summarize, we make the following contribu-
tions: (1) We propose a novel task, concept-map-
based MDS (§2), (2) present a new crowdsourc-
ing scheme to create reference summaries (§4),
(3) publish a new dataset for the proposed task
(§5) and (4) provide an evaluation protocol and
baseline (§7). We make these resources publicly
available under a permissive license.

2 Task

Concept-map-based MDS is defined as follows:
Given a set of related documents, create a concept
map that represents its most important content,
satisfies a specified size limit and is connected.

We define a concept map as a labeled graph
showing concepts as nodes and relationships be-

tween them as edges. Labels are arbitrary se-
quences of tokens taken from the documents, mak-
ing the summarization task extractive. A concept
can be an entity, abstract idea, event or activity,
designated by its unique label. Good maps should
be propositionally coherent, meaning that every
relation together with the two connected concepts
form a meaningful proposition.

The task is complex, consisting of several inter-
dependent subtasks. One has to extract appropri-
ate labels for concepts and relations and recognize
different expressions that refer to the same concept
across multiple documents. Further, one has to se-
lect the most important concepts and relations for
the summary and finally organize them in a graph
satisfying the connectedness and size constraints.

3 Related Work

Some attempts have been made to automatically
construct concept maps from text, working with
either single documents (Zubrinic et al., 2015;
Villalon, 2012; Valerio and Leake, 2006; Kowata
et al., 2010) or document clusters (Qasim et al.,
2013; Zouaq and Nkambou, 2009; Rajaraman and
Tan, 2002). These approaches extract concept and
relation labels from syntactic structures and con-
nect them to build a concept map. However, com-
mon task definitions and comparable evaluations
are missing. In addition, only a few of them,
namely Villalon (2012) and Valerio and Leake
(2006), define summarization as their goal and try
to compress the input to a substantially smaller
size. Our newly proposed task and the created
large-cluster dataset fill these gaps as they empha-
size the summarization aspect of the task.

For the subtask of selecting summary-worthy
concepts and relations, techniques developed for
traditional summarization (Nenkova and McKe-
own, 2011) and keyphrase extraction (Hasan and
Ng, 2014) are related and applicable. Approaches
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Imagine you want to learn something about students loans without credit history.
How useful would the following statements be for you?

(P1) students with bad credit history - apply for - federal loans with the FAFSA
2 Extremely Important 2 Very Important 2 Moderately Important 2 Slightly Important 2 Not at all Important

(P2) students - encounter - unforeseen financial emergencies
2 Extremely Important 2 Very Important 2 Moderately Important 2 Slightly Important 2 Not at all Important

Figure 3: Likert-scale crowdsourcing task with topic description and two example propositions.

that build graphs of propositions to create a sum-
mary (Fang et al., 2016; Li et al., 2016; Liu et al.,
2015; Li, 2015) seem to be particularly related,
however, there is one important difference: While
they use graphs as an intermediate representation
from which a textual summary is then generated,
the goal of the proposed task is to create a graph
that is directly interpretable and useful for a user.
In contrast, these intermediate graphs, e.g. AMR,
are hardly useful for a typical, non-linguist user.

For traditional summarization, the most well-
known datasets emerged out of the DUC and TAC
competitions.2 They provide clusters of news
articles with gold-standard summaries. Extend-
ing these efforts, several more specialized corpora
have been created: With regard to size, Nakano
et al. (2010) present a corpus of summaries for
large-scale collections of web pages. Recently,
corpora with more heterogeneous documents have
been suggested, e.g. (Zopf et al., 2016) and
(Benikova et al., 2016). The corpus we present
combines these aspects, as it has large clusters of
heterogeneous documents, and provides a neces-
sary benchmark to evaluate the proposed task.

For concept map generation, one corpus with
human-created summary concept maps for student
essays has been created (Villalon et al., 2010). In
contrast to our corpus, it only deals with single
documents, requires a two orders of magnitude
smaller amount of compression of the input and
is not publicly available .

Other types of information representation that
also model concepts and their relationships are
knowledge bases, such as Freebase (Bollacker
et al., 2009), and ontologies. However, they both
differ in important aspects: Whereas concept maps
follow an open label paradigm and are meant to be
interpretable by humans, knowledge bases and on-
tologies are usually more strictly typed and made
to be machine-readable. Moreover, approaches to
automatically construct them from text typically

2duc.nist.gov, tac.nist.gov

try to extract as much information as possible,
while we want to summarize a document.

4 Low-Context Importance Annotation

Lloret et al. (2013) describe several experiments
to crowdsource reference summaries. Workers are
asked to read 10 documents and then select 10
summary sentences from them for a reward of
$0.05. They discovered several challenges, includ-
ing poor work quality and the subjectiveness of the
annotation task, indicating that crowdsourcing is
not useful for this purpose.

To overcome these issues, we introduce a new
task design, low-context importance annotation,
to determine summary-worthy parts of documents.
Compared to Lloret et al.’s approach, it is more
in line with crowdsourcing best practices, as the
tasks are simple, intuitive and small (Sabou et al.,
2014) and workers receive reasonable payment
(Fort et al., 2011). Most importantly, it is also
much more efficient and scalable, as it does not
require workers to read all documents in a cluster.

4.1 Task Design

We break down the task of importance annota-
tion to the level of single propositions. The goal
of our crowdsourcing scheme is to obtain a score
for each proposition indicating its importance in a
document cluster, such that a ranking according to
the score would reveal what is most important and
should be included in a summary. In contrast to
other work, we do not show the documents to the
workers at all, but provide only a description of
the document cluster’s topic along with the propo-
sitions. This ensures that tasks are small, simple
and can be done quickly (see Figure 3).

In preliminary tests, we found that this design,
despite the minimal context, works reasonably on
our focused clusters on common educational top-
ics. For instance, consider Figure 3: One can eas-
ily say that P1 is more important than P2 without
reading the documents.
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We distinguish two task variants:

Likert-scale Tasks Instead of enforcing binary
importance decisions, we use a 5-point Likert-
scale to allow more fine-grained annotations. The
obtained labels are translated into scores (5..1) and
the average of all scores for a proposition is used
as an estimate for its importance. This follows the
idea that while single workers might find the task
subjective, the consensus of multiple workers, rep-
resented in the average score, tends to be less sub-
jective due to the “wisdom of the crowd”. We ran-
domly group five propositions into a task.

Comparison Tasks As an alternative, we use
a second task design based on pairwise compar-
isons. Comparisons are known to be easier to
make and more consistent (Belz and Kow, 2010),
but also more expensive, as the number of pairs
grows quadratically with the number of objects.3

To reduce the cost, we group five propositions into
a task and ask workers to order them by impor-
tance per drag-and-drop. From the results, we de-
rive pairwise comparisons and use TrueSkill (Her-
brich et al., 2007), a powerful Bayesian rank in-
duction model (Zhang et al., 2016), to obtain im-
portance estimates for each proposition.

4.2 Pilot Study

To verify the proposed approach, we conducted
a pilot study on Amazon Mechanical Turk using
data from TAC2008 (Dang and Owczarzak, 2008).
We collected importance estimates for 474 propo-
sitions extracted from the first three clusters4 using
both task designs. Each Likert-scale task was as-
signed to 5 different workers and awarded $0.06.
For comparison tasks, we also collected 5 labels
each, paid $0.05 and sampled around 7% of all
possible pairs. We submitted them in batches of
100 pairs and selected pairs for subsequent batches
based on the confidence of the TrueSkill model.

Quality Control Following the observations of
Lloret et al. (2013), we established several mea-
sures for quality control. First, we restricted our
tasks to workers from the US with an approval
rate of at least 95%. Second, we identified low
quality workers by measuring the correlation of
each worker’s Likert-scores with the average of

3Even with intelligent sampling strategies, such as the ac-
tive learning in CrowdBT (Chen et al., 2013), the number of
pairs is only reduced by a constant factor (Zhang et al., 2016).

4D0801A-A, D0802A-A, D0803A-A

Peer Scoring Pearson Spearman
Modified Pyramid 0.4587 0.4676
ROUGE-2 0.3062 0.3486
Crowd-Likert 0.4589 0.4196
Crowd-Comparison 0.4564 0.3761

Table 1: Correlation of peer scores with manual
responsiveness scores on TAC2008 topics 01-03.

the other four scores. The worst workers (at most
5% of all labels) were removed.

In addition, we included trap sentences, similar
as in (Lloret et al., 2013), in around 80 of the tasks.
In contrast to Lloret et al.’s findings, both an obvi-
ous trap sentence (This sentence is not important)
and a less obvious but unimportant one (Barack
Obama graduated from Harvard Law) were con-
sistently labeled as unimportant (1.08 and 1.14),
indicating that the workers did the task properly.

Agreement and Reliability For Likert-scale
tasks, we follow Snow et al. (2008) and calcu-
late agreement as the average Pearson correlation
of a worker’s Likert-score with the average score
of the remaining workers.5 This measure is less
strict than exact label agreement and can account
for close labels and high- or low-scoring workers.
We observe a correlation of 0.81, indicating sub-
stantial agreement. For comparisons, the majority
agreement is 0.73. To further examine the reliabil-
ity of the collected data, we followed the approach
of Kiritchenko and Mohammed (2016) and simply
repeated the crowdsourcing for one of the three
topics. Between the importance estimates calcu-
lated from the first and second run, we found a
Pearson correlation of 0.82 (Spearman 0.78) for
Likert-scale tasks and 0.69 (Spearman 0.66) for
comparison tasks. This shows that the approach,
despite the subjectiveness of the task, allows us to
collect reliable annotations.

Peer Evaluation In addition to the reliability
studies, we extrinsically evaluated the annotations
in the task of summary evaluation. For each of
the 58 peer summaries in TAC2008, we calcu-
lated a score as the sum of the importance es-
timates of the propositions it contains. Table 1
shows how these peer scores, averaged over the
three topics, correlate with the manual responsive-
ness scores assigned during TAC in comparison

5As workers are not consistent across all items, we create
five meta-workers by sorting the labels per proposition.
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Figure 4: Steps of the corpus creation (with references to the corresponding sections).

to ROUGE-2 and Pyramid scores.6 The results
demonstrate that with both task designs, we obtain
importance annotations that are similarly useful
for summary evaluation as pyramid annotations or
gold-standard summaries (used for ROUGE).

Conclusion Based on the pilot study, we con-
clude that the proposed crowdsourcing scheme al-
lows us to obtain proper importance annotations
for propositions. As workers are not required to
read all documents, the annotation is much more
efficient and scalable as with traditional methods.

5 Corpus Creation

This section presents the corpus construction pro-
cess, as outlined in Figure 4, combining automatic
preprocessing, scalable crowdsourcing and high-
quality expert annotations to be able to scale to
the size of our document clusters. For every topic,
we spent about $150 on crowdsourcing and 1.5h
of expert annotations, while just a single annotator
would already need over 8 hours (at 200 words per
minute) to read all documents of a topic.

5.1 Source Data
As a starting point, we used the DIP corpus
(Habernal et al., 2016), a collection of 49 clusters
of 100 web pages on educational topics (e.g. bul-
lying, homeschooling, drugs) with a short descrip-
tion of each topic. It was created from a large web
crawl using state-of-the-art information retrieval.
We selected 30 of the topics for which we created
the necessary concept map annotations.

5.2 Proposition Extraction
As concept maps consist of propositions express-
ing the relation between concepts (see Figure 1),
we need to impose such a structure upon the plain
text in the document clusters. This could be done
by manually annotating spans representing con-
cepts and relations, however, the size of our clus-
ters makes this a huge effort: 2288 sentences per
topic (69k in total) need to be processed. There-
fore, we resort to an automatic approach.

6Correlations for ROUGE and Pyramid are lower than re-
ported in TAC since we only use 3 topics instead of all 48.

The Open Information Extraction paradigm
(Banko et al., 2007) offers a representation very
similar to the desired one. For instance, from

Students with bad credit history should not lose
hope and apply for federal loans with the FAFSA.

Open IE systems extract tuples of two arguments
and a relation phrase representing propositions:

(s. with bad credit history, should not lose, hope)
(s. with bad credit history, apply for, federal loans
with the FAFSA)

While the relation phrase is similar to a relation
in a concept map, many arguments in these tuples
represent useful concepts. We used Open IE 47,
a state-of-the-art system (Stanovsky and Dagan,
2016) to process all sentences. After removing du-
plicates, we obtained 4137 tuples per topic.

Since we want to create a gold-standard corpus,
we have to ensure that we produce high-quality
data. We therefore made use of the confidence
assigned to every extracted tuple to filter out low
quality ones. To ensure that we do not filter too
aggressively (and miss important aspects in the fi-
nal summary), we manually annotated 500 tuples
sampled from all topics for correctness. On the
first 250 of them, we tuned the filter threshold to
0.5, which keeps 98.7% of the correct extractions
in the unseen second half. After filtering, a topic
had on average 2850 propositions (85k in total).

5.3 Proposition Filtering

Despite the similarity of the Open IE paradigm,
not every extracted tuple is a suitable proposition
for a concept map. To reduce the effort in the sub-
sequent steps, we therefore want to filter out un-
suitable ones. A tuple is suitable if it (1) is a cor-
rect extraction, (2) is meaningful without any con-
text and (3) has arguments that represent proper
concepts. We created a guideline explaining when
to label a tuple as suitable for a concept map and
performed a small annotation study. Three anno-
tators independently labeled 500 randomly sam-

7https://github.com/knowitall/openie
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pled tuples. The agreement was 82% (κ = 0.60).
We found tuples to be unsuitable mostly because
they had unresolvable pronouns, conflicting with
(2), or arguments that were full clauses or propo-
sitions, conflicting with (3), while (1) was mostly
taken care of by the confidence filtering in §5.2.

Due to the high number of tuples we decided
to automate the filtering step. We trained a linear
SVM on the majority voted annotations. As fea-
tures, we used the extraction confidence, length of
arguments and relations as well as part-of-speech
tags, among others. To ensure that the automatic
classification does not remove suitable proposi-
tions, we tuned the classifier to avoid false neg-
atives. In particular, we introduced class weights,
improving precision on the negative class at the
cost of a higher fraction of positive classifications.
Additionally, we manually verified a certain num-
ber of the most uncertain negative classifications
to further improve performance. When 20% of
the classifications are manually verified and cor-
rected, we found that our model trained on 350
labeled instances achieves 93% precision on neg-
ative classifications on the unseen 150 instances.
We found this to be a reasonable trade-off of au-
tomation and data quality and applied the model
to the full dataset.

The classifier filtered out 43% of the proposi-
tions, leaving 1622 per topic. We manually ex-
amined the 17k least confident negative classifi-
cations and corrected 955 of them. We also cor-
rected positive classifications for certain types of
tuples for which we knew the classifier to be im-
precise. Finally, each topic was left with an aver-
age of 1554 propositions (47k in total).

5.4 Importance Annotation

Given the propositions identified in the previous
step, we now applied our crowdsourcing scheme
as described in §4 to determine their importance.
To cope with the large number of propositions,
we combine the two task designs: First, we col-
lect Likert-scores from 5 workers for each propo-
sition, clean the data and calculate average scores.
Then, using only the top 100 propositions8 accord-
ing to these scores, we crowdsource 10% of all
possible pairwise comparisons among them. Us-
ing TrueSkill, we obtain a fine-grained ranking of
the 100 most important propositions.

8We also add all propositions with the same score as the
100th, yielding 112 propositions on average.

For Likert-scores, the average agreement over
all topics is 0.80, while the majority agreement for
comparisons is 0.78. We repeated the data collec-
tion for three randomly selected topics and found
the Pearson correlation between both runs to be
0.73 (Spearman 0.73) for Likert-scores and 0.72
(Spearman 0.71) for comparisons. These figures
show that the crowdsourcing approach works on
this dataset as reliably as on the TAC documents.

In total, we uploaded 53k scoring and 12k
comparison tasks to Mechanical Turk, spending
$4425.45 including fees. From the fine-grained
ranking of the 100 most important propositions,
we select the top 50 per topic to construct a sum-
mary concept map in the subsequent steps.

5.5 Proposition Revision

Having a manageable number of propositions, an
annotator then applied a few straightforward trans-
formations that correct common errors of the Open
IE system. First, we break down propositions with
conjunctions in either of the arguments into sep-
arate propositions per conjunct, which the Open
IE system sometimes fails to do. And second,
we correct span errors that might occur in the ar-
gument or relation phrases, especially when sen-
tences were not properly segmented. As a result,
we have a set of high quality propositions for our
concept map, consisting of, due to the first trans-
formation, 56.1 propositions per topic on average.

5.6 Concept Map Construction

In this final step, we connect the set of important
propositions to form a graph. For instance, given
the following two propositions

(student, may borrow, Stafford Loan)
(the student, does not have, a credit history)

one can easily see, although the first arguments
differ slightly, that both labels describe the con-
cept student, allowing us to build a concept map
with the concepts student, Stafford Loan and credit
history. The annotation task thus involves decid-
ing which of the available propositions to include
in the map, which of their concepts to merge and,
when merging, which of the available labels to
use. As these decisions highly depend upon each
other and require context, we decided to use expert
annotators rather than crowdsource the subtasks.

Annotators were given the topic description and
the most important, ranked propositions. Using
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Corpus Cluster Cluster Size Docs Doc. Size Rel. Std.
This work 30 97,880 ± 50,086.2 40.5 ± 6.8 2,412.8 ± 3,764.1 1.56
DUC 2006 50 17,461 ± 6,627.8 25.0 ± 0.0 729.2 ± 542.3 0.74
DUC 2004 50 6,721 ± 3,017.9 10.0 ± 0.0 672.1 ± 506.3 0.75
TAC 2008A 48 5,892 ± 2,832.4 10.0 ± 0.0 589.2 ± 480.3 0.82

Table 2: Topic clusters in comparison to classic corpora (size in token, mean with standard deviation).

a simple annotation tool providing a visualization
of the graph, they could connect the propositions
step by step. They were instructed to reach a size
of 25 concepts, the recommended maximum size
for a concept map (Novak and Cañas, 2007). Fur-
ther, they should prefer more important proposi-
tions and ensure connectedness. When connect-
ing two propositions, they were asked to keep the
concept label that was appropriate for both propo-
sitions. To support the annotators, the tool used
ADW (Pilehvar et al., 2013), a state-of-the-art ap-
proach for semantic similarity, to suggest possible
connections. The annotation was carried out by
graduate students with a background in NLP after
receiving an introduction into the guidelines and
tool and annotating a first example.

If an annotator was not able to connect 25 con-
cepts, she was allowed to create up to three syn-
thetic relations with freely defined labels, mak-
ing the maps slightly abstractive. On average,
the constructed maps have 0.77 synthetic relations,
mostly connecting concepts whose relation is too
obvious to be explicitly stated in text (e.g. between
Montessori teacher and Montessori education).

To assess the reliability of this annotation step,
we had the first three maps created by two annota-
tors. We casted the task of selecting propositions
to be included in the map as a binary decision task
and observed an agreement of 84% (κ = 0.66).
Second, we modeled the decision which concepts
to join as a binary decision on all pairs of com-
mon concepts, observing an agreement of 95%
(κ = 0.70). And finally, we compared which
concept labels the annotators decided to include in
the final map, observing 85% (κ = 0.69) agree-
ment. Hence, the annotation shows substantial
agreement (Landis and Koch, 1977).

6 Corpus Analysis

In this section, we describe our newly created cor-
pus, which, in addition to having summaries in
the form of concept maps, differs from traditional
summarization corpora in several aspects.

6.1 Document Clusters
Size The corpus consists of document clusters
for 30 different topics. Each of them contains
around 40 documents with on average 2413 to-
kens, which leads to an average cluster size of
97,880 token. With these characteristics, the docu-
ment clusters are 15 times larger than typical DUC
clusters of ten documents and five times larger
than the 25-document-clusters (Table 2). In addi-
tion, the documents are also more variable in terms
of length, as the (length-adjusted) standard devia-
tion is twice as high as in the other corpora. With
these properties, the corpus represents an interest-
ing challenge towards real-world application sce-
narios, in which users typically have to deal with
much more than ten documents.

Genres Because we used a large web crawl
as the source for our corpus, it contains docu-
ments from a variety of genres. To further an-
alyze this property, we categorized a sample of
50 documents from the corpus. Among them,
we found professionally written articles and blog
posts (28%), educational material for parents and
kids (26%), personal blog posts (16%), forum dis-
cussions and comments (12%), commented link
collections (12%) and scientific articles (6%).

Textual Heterogeneity In addition to the vari-
ety of genres, the documents also differ in terms
of language use. To capture this property, we
follow Zopf et al. (2016) and compute, for every
topic, the average Jensen-Shannon divergence be-
tween the word distribution of one document and
the word distribution in the remaining documents.
The higher this value is, the more the language dif-
fers between documents. We found the average di-
vergence over all topics to be 0.3490, whereas it is
0.3019 in DUC 2004 and 0.3188 in TAC 2008A.

6.2 Concept Maps
As Table 3 shows, each of the 30 reference con-
cept maps has exactly 25 concepts and between
24 and 28 relations. Labels for both concepts and
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per Map Token Character
Concepts 25.0± 0.0 3.2± 0.5 22.0± 4.1
Relations 25.2± 1.3 3.2± 0.5 17.1± 2.6

Table 3: Size of concept maps (mean with std).

relations consist on average of 3.2 tokens, whereas
the latter are a bit shorter in characters.

To obtain a better picture of what kind of text
spans have been used as labels, we automatically
tagged them with their part-of-speech and deter-
mined their head with a dependency parser. Con-
cept labels tend to be headed by nouns (82%) or
verbs (15%), while they also contain adjectives,
prepositions and determiners. Relation labels, on
the other hand, are almost always headed by a verb
(94%) and contain prepositions, nouns and parti-
cles in addition. These distributions are very sim-
ilar to those reported by Villalon et al. (2010) for
their (single-document) concept map corpus.

Analyzing the graph structure of the maps, we
found that all of them are connected. They have
on average 7.2 central concepts with more than
one relation, while the remaining ones occur in
only one proposition. We found that achieving a
higher number of connections would mean com-
promising importance, i.e. including less impor-
tant propositions, and decided against it.

7 Baseline Experiments

In this section, we briefly describe a baseline and
evaluation scripts that we release, with a detailed
documentation, along with the corpus.

Baseline Method We implemented a simple ap-
proach inspired by previous work on concept map
generation and keyphrase extraction. For a docu-
ment cluster, it performs the following steps:

1. Extract all NPs as potential concepts.

2. Merge potential concepts whose labels match
after stemming into a single concept.

3. For each pair of concepts co-occurring in a
sentence, select the tokens in between as a
potential relation if they contain a verb.

4. If a pair of concepts has more than one rela-
tion, select the one with the shortest label.

5. Assign an importance score to every concept
and rank them accordingly.

Metric Pr Re F1
Strict Match .0006 .0026 .0010
METEOR .1512 .1949 .1700
ROUGE-2 .0603 .1798 .0891

Table 4: Baseline performance on test set.

6. Find a connected graph of 25 concepts with
high scores among all extracted concepts and
relations.

For (5), we trained a binary classifier to iden-
tify the important concepts in the set of all poten-
tial concepts. We used common features for key-
phrase extraction, including position, frequency
and length, and Weka’s Random Forest (Hall et al.,
2009) implementation as the model. At inference
time, we use the classifiers confidence for a posi-
tive classification as the score.

In step (6), we start with the full graph of all
extracted concepts and relations and use a heuris-
tic to find a subgraph that is connected, satisfies
the size limit of 25 concepts and has many high-
scoring concepts: We iteratively remove the weak-
est concept until only one connected component
of 25 concepts or less remains, which is used the
summary concept map. This approach guarantees
that the concept map is connected, but might not
find the subset of concepts that has the highest to-
tal importance score.

Evaluation Metrics In order to automatically
compare generated concept maps with reference
maps, we propose three metrics.9 As a concept
map is fully defined by the set of its propositions,
we can compute precision, recall and F1-scores
between the two proposition set of generated and
reference map. A proposition is represented as
the concatenation of concept and relation labels.
Strict Match compares them after stemming and
only counts exact and complete matches. Us-
ing METEOR (Denkowski and Lavie, 2014), we
offer a second metric that takes synonyms and
paraphrases into account and also scores partial
matches. And finally, we compute ROUGE-2 (Lin,
2004) between the concatenation of all proposi-
tions from the maps. These automatic measures
might be complemented with a human evaluation.

Results Table 4 shows the performance of the
baseline. An analysis of the single pipeline steps

9For precise definitions of the metrics, please refer to the
published scripts and accompanying documentation.
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revealed major bottlenecks of the method and
challenges of the task. First, we observed that
around 76% of gold concepts are covered by the
extraction (step 1+2), while the top 25 concepts
(step 5) only contain 17% of the gold concepts.
Hence, content selection is a major challenge,
stemming from the large cluster sizes in the cor-
pus. Second, while also 17% of gold concepts
are contained in the final maps (step 6), scores
for strict proposition matching are low, indicat-
ing a poor performance of the relation extraction
(step 3). The propagation of these errors along the
pipeline contributes to overall low scores.

8 Conclusion

In this work, we presented low-context impor-
tance annotation, a novel crowdsourcing scheme
that we used to create a new benchmark corpus for
concept-map-based MDS. The corpus has large-
scale document clusters of heterogeneous web
documents, posing a challenging summarization
task. Together with the corpus, we provide im-
plementations of a baseline method and evaluation
scripts and hope that our efforts facilitate future re-
search on this variant of summarization.
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Jorge J. Villalon. 2012. Automated Generation of Con-
cept Maps to Support Writing. PhD Thesis, Univer-
sity of Sydney, Australia.

Jorge J. Villalon, Rafael A. Calvo, and Rodrigo Mon-
tenegro. 2010. Analysis of a Gold Standard for Con-
cept Map Mining - How Humans Summarize Text
Using Concept Maps. In Proceedings of the 4th In-
ternational Conference on Concept Mapping, pages
14–22, Vina del Mar, Chile.

Xiaohang Zhang, Guoliang Li, and Jianhua Feng. 2016.
Crowdsourced Top-k Algorithms: An Experimen-
tal Evaluation. Proceedings of the Very Large
Databases Endowment, 9(8):612–623.

Markus Zopf, Maxime Peyrard, and Judith Eckle-
Kohler. 2016. The Next Step for Multi-Document
Summarization: A Heterogeneous Multi-Genre Cor-
pus Built with a Novel Construction Approach. In

Proceedings of the 26th International Conference on
Computational Linguistics (COLING), pages 1535–
1545, Osaka, Japan.

Amal Zouaq and Roger Nkambou. 2009. Evaluating
the Generation of Domain Ontologies in the Knowl-
edge Puzzle Project. IEEE Transactions on Knowl-
edge and Data Engineering, 21(11):1559–1572.

Krunoslav Zubrinic, Ines Obradovic, and Tomo
Sjekavica. 2015. Implementation of method for gen-
erating concept map from unstructured text in the
Croatian language. In 23rd International Confer-
ence on Software, Telecommunications and Com-
puter Networks (SoftCOM), pages 220–223, Split,
Croatia.

2961



Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2962–2967
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog

Satwik Kottur1 and José M.F. Moura1 and Stefan Lee2,3 and Dhruv Batra3,4

1Carnegie Mellon University, 2Virginia Tech, 3Georgia Tech, 4Facebook AI Research

Abstract

A number of recent works have pro-
posed techniques for end-to-end learning
of communication protocols among coop-
erative multi-agent populations, and have
simultaneously found the emergence of
grounded human-interpretable language
in the protocols developed by the agents,
learned without any human supervision!

In this paper, using a Task & Talk reference
game between two agents as a testbed, we
present a sequence of ‘negative’ results
culminating in a ‘positive’ one – showing
that while most agent-invented languages
are effective (i.e. achieve near-perfect task
rewards), they are decidedly not inter-
pretable or compositional. In essence, we
find that natural language does not emerge
‘naturally’, despite the semblance of ease
of natural-language-emergence that one
may gather from recent literature. We
discuss how it is possible to coax the
invented languages to become more and
more human-like and compositional by in-
creasing restrictions on how two agents
may communicate.

1 Introduction
One fundamental goal of artificial intelligence
(AI) is the development of goal-driven dialog
agents – specifically, agents that can perceive their
environment (through vision, audition, or other
sensors), and communicate with humans or other
agents in natural language towards a goal.
While historically such agents have been based
on slot filling (Lemon et al., 2006), the domi-
nant paradigm today is neural dialog models (Bor-
des and Weston, 2016; Weston, 2016; Serban
et al., 2016a,b) trained on large quantities of data.

Perhaps somewhat counterintuitively, this current
paradigm treats dialog as a static supervised learn-
ing problem, rather than as the interactive agent
learning problem that it naturally is. Specifi-
cally, a typical pipeline is to collect a large dataset
of human-human dialog (Lowe et al., 2015; Das
et al., 2017a; de Vries et al., 2017; Mostafazadeh
et al., 2017), inject a machine in the middle of a di-
alog from the dataset, and supervise it to mimic the
human response. While this teaches the agent cor-
relations between symbols, it does not convey the
functional meaning of language, grounding (map-
ping physical concepts to words), compositional-
ity (combining knowledge of simpler concepts to
describe richer concepts), or aspects of planning
(why are we having this conversation?).
An alternative paradigm that has a long history
(Winograd, 1971; Kirby et al., 2014) and is wit-
nessing a recent resurgence (Wang et al., 2016;
Foerster et al., 2016; Sukhbaatar et al., 2016; Jorge
et al., 2016; Lazaridou et al., 2017; Havrylov and
Titov, 2017; Mordatch and Abbeel, 2017; Das
et al., 2017b) – is situated language learning. A
number of recent works have proposed reinforce-
ment learning techniques for learning the com-
munication protocols of agents situated in virtual
environments in a completely end-to-end man-
ner – from perceptual input (e.g. pixels) to com-
munication (discrete symbols without any pre-
specified meanings) to action (e.g. signaling in ref-
erence games or navigating in an environment)
– and have simultaneously found the emergence
of grounded human-interpretable (often composi-
tional) language among agents, without any hu-
man supervision or pretraining, simply to succeed
at the task.
In this short paper, we study the following ques-
tion – what are the conditions that lead to the
emergence of human-interpretable or composi-
tional grounded language? Our key finding is that
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(a) World. (b) Q-BOT (left) and A-BOT (right) policy networks.

(c) Task Encoding.

(d) Prediction.
Figure 1: Task & Talk: The testbed for our study is cooperative 2-player game, Task & Talk, grounded in a synthetic world of
objects with 4 shapes × 4 colors × 4 styles. The two agents, Q-BOT and A-BOT, are modeled as neural networks, and their
policies are learned via REINFORCE. We find that the languages invented by the two agents are typically not ‘natural’.

natural language does not emerge ‘naturally’ in
multi-agent dialog, despite independently reported
successful demonstrations in recent literature.
Specifically, in a sequence of ‘negative’ results
culminating in a ‘positive’ one, we find that while
agents always successfully invent communication
protocols and languages to achieve their goals
with near-perfect accuracies, the invented lan-
guages are decidedly not compositional, inter-
pretable, or ‘natural’; and that it is possible to coax
the invented languages to become more and more
human-like and compositional by increasing re-
strictions on how two agents may communicate.
Related work and novelty. The starting point
for our investigation is the recent work of Das
et al. (2017b), who proposed a cooperative refer-
ence game between two agents, where communi-
cation is necessary to accomplish the goal due to
an information asymmetry. Our key contribution
over Das et al. (2017b) is an exhaustive study of
the conditions that must be present before com-
positional grounded language emerges, and subtle
but important differences in execution – tabular Q-
Learning (which does not scale) vs. REINFORCE
(which does), and generalization to novel environ-
ments (not studied in prior work). In the spirit of
Abbeel et al. (2017), we hope our findings shed
more light into the interpretability of languages in-
vented in cooperative multi-agent settings, place
recent work in appropriate context, and inform
fruitful directions for future work.

2 The Task & Talk Game
Our testbed is a reference game (Task & Talk) be-
tween two agents, Q-BOT and A-BOT. The game
is grounded in a synthetic world of objects com-
prised of three attributes – color, style, and shape
– each with four possible values for a total of
4 × 4 × 4 = 64 objects. Fig. 1a shows some ex-
ample instances from this set.
Task & Talk plays out over multiple rounds of dia-
log. At the start, A-BOT is given an instance (e.g.

(green, dotted, square)) unseen by Q-BOT, and Q-
BOT is assigned a task G (unknown to A-BOT)
consisting of two attributes for Q-BOT to discover
from A-BOT (e.g. (color, style)). For two rounds,
Q-BOT and A-BOT exchange utterances from fi-
nite vocabularies VQ and VA, with Q-BOT speak-
ing first. The game culminates in Q-BOT guessing
a pair of attribute values (e.g. (green, dotted)) and
both agents are rewarded identically based on the
accuracy of this prediction.
Note that the Task & Talk game setting involves an
informational asymmetry between the agents – A-
BOT sees the object while Q-BOT does not; sim-
ilarly Q-BOT knows the task while A-BOT does
not. Thus, a two-way communication is neces-
sary for success. Without this asymmetry, A-BOT

could simply convey the target attributes from the
task without Q-BOT having to speak. Such a set-
ting has been widely studies in economics and
game theory as the classic Lewis Signaling (LS)
game (Lewis, 2008). By necessitating dialog be-
tween agents, we are able ground both VA and VQ
in our final setting (Sec. 4.3).

3 Modeling Q-BOT and A-BOT

We formalize Q-BOT and A-BOT as agents oper-
ating in a partially observable world and optimize
their policies using deep reinforcement learning.
States and Actions. Each agent observes its
own input (task G for Q-BOT and object in-
stance I for A-BOT) and the output of the
other agent as a stochastic environment. At
the beginning of round t, Q-BOT observes state
stQ=[G, q1, a1, . . . , qt−1, at−1] and acts by utter-
ing some token qt from its vocabulary VQ. Simi-
larly, A-BOT observes the history and this new ut-
terance as state stA=[I, q1, a1, . . . , qt−1, at−1, qt]
and emits a response at from VA. At the last round,
Q-BOT takes a final action by predicting a pair of
attribute values ŵG = (ŵG1 , ŵ

G
2 ) to solve the task.

Cooperative Reward. Both Q-BOT and A-BOT

are rewarded identically based on the accuracy of
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Q-BOT’s prediction ŵG, receiving a positive re-
ward of R=1 if the prediction matches ground
truth and a negative reward of R=−10 otherwise.
We arrive at these values empirically.
Policy Networks. We model Q-BOT and
A-BOT as operating under stochastic policies
πQ(qt|sQt ; θQ) and πA(at|sAt ; θA) respectively,
which we instantiate as LSTM-based models. We
use lower case characters (e.g. sQt ) to denote the
strings (e.g. Q-BOT’s token at round t), and up-
per case SQt to denote the corresponding vector as
encoded by the model.
As shown in Fig. 1, Q-BOT is modeled with three
modules – speaking, listening, and prediction. The
task G is received as a 6-dimensional one-hot en-
coding over the space of possible tasks and em-
bedded via the listener LSTM. At each round t, the
speaker network models the probability of output
utterances qt ∈ VQ based on the state SQt−1. This is
modeled as a fully-connected layer followed by a
softmax that transforms SQt−1 to a distribution over
VQ. After receiving the reply at from A-BOT, the
listener LSTM updates the state by processing both
tokens of the dialog exchange. In the final round,
the prediction LSTM is unrolled twice to produce
Q-BOT’s prediction based on the final state SQT and
the task G. As before, task G is fed in one-hot to
the prediction LSTM for two time steps, resulting
in a pair of outputs used as the prediction ŵG.
Analogously, A-BOT is modeled as a combination
of a speaker network, a listener LSTM, and an in-
stance encoder. Like in Q-BOT, the speaker net-
work models the probability of utterances at ∈ VA
given the state SAt and the listener LSTM updates
the state SAt based on dialog exchanges. The in-
stance encoder embeds each one-hot attribute vec-
tor via a linear layer and concatenates all three en-
codings to obtain a unified instance representation.
Learning Policies with REINFORCE. We train
these models using the popular REINFORCE
(Williams, 1992) policy gradient algorithm. Note
that while the game is fully-cooperative, we do not
assume full observability of one agent by another,
opting instead to treat one agent as part of the un-
known stochastic environment when updating the
other. During training, we sample 1000 two round
dialog episodes per batch and update policy pa-
rameters with Adam (Kingma and Ba, 2015) based
on these approximate gradients. Our code is pub-
licly available1.

1github.com/batra-mlp-lab/lang-emerge

4 The Road to Compositionality

This section details our key observation – that
while the agents always successfully invent a lan-
guage to solve the game with near-perfect accu-
racies, the invented languages are decidedly not
compositional, interpretable, or ‘natural’ (e.g. A-
BOT ignoring Q-BOT’s utterances and simply en-
coding every object with a unique symbol if the
vocabulary is sufficiently large). In our setting, the
language being compositional simply amounts to
the ability of the agents to communicate the com-
positional atoms of a task (e.g. shape or color) and
an instance (e.g. square or blue) independently.
Through this section, we present a series of set-
tings that get progressively more restrictive to
coax the agents towards adopting a compositional
language, providing analysis of the learned lan-
guages developed along the way. Table 1 summa-
rizes results for all settings. In all experiments,
optimal policies (achieving near-perfect rewards)
were found. For each setting, we provide qualita-
tive analysis of the learned languages and report
their ability to generalize to unseen instances. We
use 80% of the object-instances for training and
the remaining 20% to evaluate these learned poli-
cies. Further, greedy argmax policies are used at
evaluation time.

4.1 Overcomplete Vocabularies

We begin with the simplest setting where both A-
BOT and Q-BOT are given arbitrarily large vocab-
ularies. We find that when |VA| is greater than
the number of instances (64), the learned policy
simply has A-BOT ignore what Q-BOT asks and
instead convey the instance using a single sym-
bol, e.g. token 1≡(red, square, filled). Notice that
this means no ‘dialog’ is necessary and amounts to
each agent having a codebook that maps symbols
to object instances.
Perhaps as expected, the generalization of this lan-
guage to unseen instances is quite poor (success
rate: 25.6%). The adopted strategy of mapping in-
stances to token pairs fails for test instances con-
taining novel combinations of attributes for which
the agents lack an agreed-upon code from training.
It seems clear that like in human communication
(Nowak et al., 2000), a limited vocabulary that
cannot possibly encode the richness of the world
seems to be necessary for non-trivial dialog to
emerge. We explore such a setting next.
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Setting
Vocab. Memory Gen.(%)
VQ VA A Q Both One

Overcomplete (§4.1) 64 64 3 3 25.6 79.5
Attr-Value (§4.2) 3 12 3 3 38.5 88.4

NoMem-Min (§4.3) 3 4 7 3 74.4 94.9

Table 1: Overview of settings we explore to analyze the lan-
guage learnt by two agents in a cooperative game, Task &
Talk. Last two columns measure generalization in terms of
prediction accuracy of both or at least one of the attribute
pair, on a held-out test set containing unseen instances.

4.2 Attribute & Value Vocabulary
Since our world has 3 attributes (shape/color/
style) and 4+4+4 = 12 possible settings of their
states, one may believe that the intuitive choice of
|VQ| = 3 and |VA| = 12 will be enough to circum-
vent the ‘cheating’ enumeration strategy from the
previous experiment. Surprisingly, we find that the
new language learned in this setting is not only de-
cidedly non-compositional but also very difficult
to interpret! We present two salient observations.
We observe that Q-BOT uses only the first round
to convey the task to A-BOT by encoding tasks in
an order-independent fashion e.g. the (style,color)
and (color,style) tasks are both expressed as the ut-
terance Z in the first round. Consequentially, mul-
tiple rounds of dialog are rended unnecssary and
the second round is inconsistent across instances
even for the same task.
Given the task from Q-BOT in the first round, A-
BOT only needs to identify one of the 4×4=16 at-
tribute pairs for a given task. Rather than ground
its symbols into individual states, A-BOT follows
a ‘set partitioning’ strategy, i.e. A-BOT identifies
a pair of attributes with a unique combinations of
round 1 and 2 utterances (i.e. the round 2 utter-
ance has no meaning independent from round 1).
Thus, symbols are reused across tasks to describe
different attributes (i.e. symbols do not have in-
dividual consistent groundings). This ‘set parti-
tioning’ strategy is consistent with known results
from game theory on Nash equilibria in ‘cheap
talk’ games (Crawford and Sobel, 1982).
This strategy has improved generalization to un-
seen instances because it is able to communicate
the task; however, it fails on unseen attribute value
combinations because it is not compositional.

4.3 Memoryless A-BOT, Minimal Vocabulary
The key problem with the previous setting is that
A-BOT’s utterances mean different things based
on the round of dialog (a1 = 1 is different from
a2 = 1). Essentially, the communication protocol
is overparameterized and we must limit it further.

First, we limit A-BOT’s vocabulary to |VA|=4 to
reduce the number of ‘synonyms’ the agents learn.
Second, we remove A-BOT’s memory by reseting
the state vector SA at each time step, which elim-
inates its ability to enumerate all attribute pairs.
These restrictions result in a learned language
that grounds individual symbols into attributes and
their states. For example, Q-BOT learns that Y →
shape, X → color, and Z → style. Q-BOT does
not however learn to always utter these symbols in
the same order as the task, e.g. asking for shape
first for both (color, shape) and (shape, color).
Notice that this is perfectly valid as Q-BOT can
later re-arrange the attributes in the task desired or-
der. Similarly, A-BOT learns mappings to attribute
values for each attribute query that remain consis-
tent regardless of round (i.e. when asked for color,
1 always means blue).
This is similar to learned languages reported in re-
cent works and is most closely related to Das et al.
(2017b), who solve this problem by taking away
Q-BOT’s state rather than A-BOT’s memory. Their
approach can be interpreted as Q-BOT ‘forgetting’
the task after interacting with A-BOT. However,
this behavior of Q-BOT to remember the task only
during dialog but not while predicting is somewhat
unnatural compared to our setting.
Tab. 2 enumerates the learnt groundings for both
the agents. Given this mapping, we can predict a
plausible dialog between the agents for any unseen
instance and task combination. Notice that this is
possible only due to the compositionality in the
emergent language between the two agents. For
example, consider solving (shape, color) for an in-
stance (red, square, filled) from Fig. 2(b). Q-BOT

queries Y (shape) and X (color) across two rounds,
and receives 2 (square) and 4 (red) as answers.
Intuitively, this consistently grounded and compo-
sitional language has the greatest ability to gen-
eralize among the settings we have explored, cor-
rectly answering 74.4% of the held out instances.
We note that errors in this setting seem to largely
be due to A-BOT giving an incorrect answers de-
spite Q-BOT asking the correct questions to ac-
complish the task. A plausible reason could be
the model approximation error stemming from the
instance encoder as test instances are unseen and
have novel attribute combinations.
Fig. 2(b) shows the dialog for the instance (red,
square, filled) and task (shape, color). Q-BOT

queries Y (shape) and (color) across two rounds,
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Figure 2: (a) Evolution of Language: timeline shows groundings learned by the agents during training, overlaid on the accuracy.
Note that Q-BOT learns encodings for all tasks early (around epoch 20) except (style, color). Improvement in accuracy is
strongly correlated with groundings learnt. (b) Example dialogs for memoryless A-BOT, minimal vocabulary setting (§4.3.

Attributes
color shape style

VA X Y Z

1 blue triangle dotted
2 purple square filled
3 green circle dashed
4 red start solid

(a) A-BOT

Task q1, q2

(color, shape)
Y, X

(shape, color)
(shape, style)

Y, Z
(style, shape)
(color, style) Z, X
(style, color) X, Z

(b) Q-BOT

Table 2: Emergence of compositional grounding for language
learnt by the agents. A-BOT (Tab. 2a) learns consistent map-
ping across rounds, depending on the query attribute. Token
grounding for Q-BOT (Tab. 2b) depends on the task at hand.
Though compositional, Q-BOT does not necessarily query at-
tribute in the order of task, but instead re-arranges accord-
ingly at prediction time as it contains memory.

and receives 2 (square) and 4 (red) as answers.

4.4 Evolution of Language Timeline
To gain further insight into the languages learned,
we create a language evolution plot in Fig. 2.
Specifically, at regular intervals during policy
learning, we construct ‘dialog trees’. A dialog tree
enumerates all plausible dialogs between the two
agents (q1, a1, q2, a2), as a tree. The root node is
q1, and at any node, we go deeper by choosing a
branch based on the next utterance in the dialog.
Since Task & Talk runs for two rounds, our dialog
trees are 4 layers deep with |VA|2|VQ|2 leaves. No-
tice that a single input instance could potentially
result in different dialogs depending on the task.
Hence, we consider (instance, task) pairs and as-
sign each to a leaf by traversing the tree according
to the resulting dialog. At some point in the learn-
ing, the nodes become and stay ‘pure’ (the com-
mon trend among all (instance, task) at the node
stays constant till the end of training), at which
point we can say that the agents have learned this
dialog subsequence.
Construction. After constructing dialog trees at
regular intervals, we identify ‘concepts’ at each
node/leaf using the dialog tree of the completely

trained model, which achieves a perfect accuracy
on train set. A concept is simply the common
trend among all the (instance, task) tuples either
assigned to a leaf or contained within the sub-
tree with a node as root. Next, given a resultant
concept for each of the node/leaf, we backtrack
in time and check for the first occurrence when
only tuples which satisfy the corresponding con-
cept are assigned to that particular node/leaf. In
other words, we compute the earliest time when a
node/leaf is ‘pure’ with respect to its final learned
concept. Finally, we plot these leaves/nodes and
the associated concept with their backtracked time
to get Fig. 2.
Observations. We highlight key observations be-
low: (a) The agents ground most of the tasks ini-
tially at around epoch 20. Specifically, Q-BOT

assigns Y to both (shape, style), (style, shape),
(shape,color) and (color, shape), while (color,
style) is mapped to Z. Hence, Q-BOT learns its first
token very early into the training procedure. (b)
The only other task (style, color) is grounded to-
wards the end (around epoch 170) using X, leading
to an immediate convergence. (c) We see a strong
correlation between improvement in performance
and when agents learn a language grounding. In
particular, there is an improvement from 40% to
80% within a span of 25 epochs where most of the
grounding is achieved, as seen from Fig. 2.

5 Conclusion
In conclusion, we presented a sequence of ‘neg-
ative’ results culminating in a ‘positive’ one –
showing that while most invented languages are
effective (i.e. achieve near-perfect rewards), they
are decidedly not interpretable or compositional.
Our goal is simply to improve understanding and
interpretability of invented languages in multi-
agent dialog, place recent work in context, and in-
form fruitful directions for future work.
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Abstract

Users suffering from mental health con-
ditions often turn to online resources for
support, including specialized online sup-
port communities or general communities
such as Twitter and Reddit. In this work,
we present a framework for supporting and
studying users in both types of communi-
ties. We propose methods for identifying
posts in support communities that may in-
dicate a risk of self-harm, and demonstrate
that our approach outperforms strong pre-
viously proposed methods for identifying
such posts. Self-harm is closely related to
depression, which makes identifying de-
pressed users on general forums a cru-
cial related task. We introduce a large-
scale general forum dataset consisting of
users with self-reported depression diag-
noses matched with control users. We
show how our method can be applied to
effectively identify depressed users from
their use of language alone. We demon-
strate that our method outperforms strong
baselines on this general forum dataset.

1 Introduction

Mental health remains a major challenge in pub-
lic health care. Depression is one of the most
common mental disorders and 350 million peo-
ple are estimated to suffer from depression world-
wide (WHO, 2010). In 2014 an estimated 7% of
all U.S. adults had experienced at least one ma-
jor depressive disorder (2015). Suicide and self-
harm are major related concerns in public men-
tal health. Suicide is one of the leading causes
of death (CDC, 2015), and each suicide case has
major consequences on the physical and emotional

∗ The first two authors contributed equally to this work.

well-being of families and on societies in general.
Therefore identifying individuals at risk of self-
harm and providing support to prevent it remains
an important problem (Ferrari et al., 2014).

Social media is often used by people with men-
tal health problems to express their mental is-
sues and seek support. This makes social media
a significant resource for studying language re-
lated to depression, suicide, and self-harm, as well
as understanding the authors’ reasons for mak-
ing such posts, and identifying individuals at risk
of harm (Coppersmith et al., 2014a). Depression
and suicide are closely related given that depres-
sion is the psychiatric diagnosis most commonly
associated with suicide. Research has demon-
strated that forums are powerful platforms for self-
disclosure and social support seeking around men-
tal health concerns (De Choudhury and De, 2014;
Manikonda and De Choudhury, 2017). Such sup-
port forums are often staffed by moderators who
are mental health experts, trained volunteers, or
more experienced users whose role is to identify
forum posts suggesting that a user is at risk of self-
harm and to provide support.

Studies have shown that self expression and so-
cial support are beneficial in improving the indi-
vidual’s state of the mind (Turner et al., 1983;
Choudhury and Kiciman, 2017) and thus such
communities and interventions are important in
suicide prevention. However, there are often thou-
sands of user posts published in such support fo-
rums daily, making it difficult to manually iden-
tify individuals at risk of self-harm. Addition-
ally, users in acute distress need prompt attention,
and any delay in responding to these users could
have adverse consequences. Therefore, identify-
ing individuals at risk of self-harm in such sup-
port forums is an important challenge. Identifying
signs of depression in general social media, on the
other hand, is also a difficult task that has appli-
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cations for both better understanding the relation-
ship between mental health and language use and
for monitoring a specific user’s state (e.g., in the
context of monitoring a user’s response to clini-
cal care). In this work we propose and evaluate
a framework for performing self-harm risk assess-
ment and for identifying depression in online fo-
rums.

We present a general neural network architec-
ture for combining posts into a representation of
a user’s activity that is used to classify the user.
To address the challenge of depression risk as-
sessment over the general forums, we introduce
a large-scale novel Reddit dataset that is sub-
stantially larger than the existing data and has
a much more realistic number of control users.
The dataset contains over 9,000 users with self-
reported depression diagnoses matched with over
107,000 control users. We apply our approach to
(1) identify the users with depression on a gen-
eral forum like Reddit, and to (2) estimate the
risk of self-harm indicated by posts in a more spe-
cific mental-health support forum. Our methods
perform significantly better on both datasets than
strong existing methods, demonstrating that our
approach can be used both to identify depressed
users and to estimate the risk of self-harm posed
by individual posts.

2 Related Work

There is a growing body of related work analyz-
ing mental health-related discourse and language
usage in social media to better discover and un-
derstand mental health related concerns (Resnik
et al., 2013; De Choudhury et al., 2013; Copper-
smith et al., 2014b,a; Mitchell et al., 2015; Tsug-
awa et al., 2015; Coppersmith et al., 2015a; Al-
thoff et al., 2016; Mowery et al., 2016; Benton
et al., 2017b). To investigate NLP methods for
identifying depression and PTSD users on Twit-
ter, a shared task (Coppersmith et al., 2015b) at
the 2nd Computational Linguistics and Clinical
Psychology Workshop (CLPsych 2015) was intro-
duced where the participants evaluated their meth-
ods on a dataset of about 1800 Twitter users. Other
work has used data from approximately 900 Red-
dit.com users to support self-reported diagnosis
detection (Losada and Crestani, 2016). Previ-
ous work identifying depression and other men-
tal health problems, including the methods par-
ticipating in CLPsych 2015 (e.g. (Resnik et al.,

2015; Preoţiuc-Pietro et al., 2015)) heavily rely
on utilizing features such as LIWC (Pennebaker
et al., 2015), topic modeling, manual lexicons, or
other domain-dependent application-specific fea-
tures. Aside from the effort required to design ef-
fective features, these approaches usually model
the problem with respect to the selected features
and ignore other indicators and signals that can
improve prediction. In contrast, our model only
relies on text and is not dependent on any ex-
ternal or domain-specific features. Previous self-
reported diagnosis detection datasets contained a
limited number of both control users and diag-
nosed users. In contrast to this, we construct a new
dataset with over 9,000 depressed users matched
with a realistic number of control users.

In addition to general studies addressing men-
tal health, related work has also specifically stud-
ied suicide and self-harm through social me-
dia (Jashinsky et al., 2014; Thompson et al.,
2014; Gunn and Lester, 2015; De Choudhury
et al., 2016; Coppersmith et al., 2016). Re-
cently, CLPsych 2016 (Hollingshead and Ungar,
2016) investigated approaches for detecting the
self-harm risk of mental health forum posts (Milne
et al., 2016). Most related work in this area uses
variations of linear classifiers with some sort of
feature engineering; successful methods have em-
ployed: a combination of sparse (bag-of-words)
and dense (doc2vec) representation of the target
forum posts (Kim et al., 2016), a stack of feature-
rich Random Forest and linear Support Vector Ma-
chine (SVM) (Malmasi et al., 2016), an RBF SVM
classifier utilizing similar sets of features (Brew,
2016), and various contextual and psycholinguis-
tic features (Cohan et al., 2016, 2017). In con-
trast to the above works, our model does not use
any general or domain specific feature engineer-
ing; it learns appropriate representations of docu-
ments by considering only their textual content.

Our proposed models consist of a shared archi-
tecture based on a CNN, a merge layer, model-
specific loss functions, and an output layer (as
we will describe in §4). While our model shares
similarities with CNN-based models in prior work
(Kalchbrenner et al., 2014; Kim, 2014; Xiao and
Cho, 2016), it focuses on learning representations
of user’s posts and combining the post represen-
tations into an overall representation of the user’s
activity. In the case of self-harm risk assessment,
we experiment with several loss functions to de-
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termine whether considering the ordinal nature of
self-harm risk labels (i.e., green, amber, red, and
crisis) can improve performance. Evaluation re-
sults suggest that the model variant using this loss
function is more robust than our other variants.

3 Data

3.1 Depression dataset construction.

We created a new dataset to support the task of
identifying forum users with self-reported depres-
sion diagnoses. The Reddit Self-reported Depres-
sion Diagnosis (RSDD) dataset was created by
annotating users from a publicly-available Red-
dit dataset1. Users to annotate were selected by
identifying all users who made a post between
January 2006 and October 2016 matching a high-
precision diagnosis pattern.2 Users with fewer
than 100 posts made before their diagnosis post
were discarded. Each of the remaining diagno-
sis posts was then viewed by three layperson an-
notators to decide whether the user was claim-
ing to have been diagnosed with depression; the
most common false positives included hypotheti-
cals (e.g., “if I was diagnosed with depression”),
negations (e.g., “it’s not like I’ve been diagnosed
with depression”), and quotes (e.g., “my brother
announced ‘I was just diagnosed with depres-
sion’ ”). Only users with at least two positive an-
notations were included in the final group of diag-
nosed users.

A pool of potential control users was identified
by selecting only those users who had (1) never
posted in a subreddit related to mental health, and
(2) never used a term related to depression or men-
tal health. These restrictions minimize the like-
lihood that users with depression are included in
the control group. In order to prevent the diag-
nosed users from being easily identified by the us-
age of specific keywords that are never used by
the control users, we removed all posts by diag-
nosed users that met either one of the aforemen-
tioned conditions (i.e., that was posted in a mental
health subreddit or included a depression term).

For each diagnosed user and potential control
user, we calculated the probability that the user
would post in each subreddit (while ignoring di-
agnosed users’ posts made to mental health sub-
reddits). Each diagnosed user was then greedily
matched with the 12 control users who had the

1https://files.pushshift.io/reddit/
2e.g., “I was just diagnosed with depression.”

smallest Hellinger distance between the diagnosed
user’s and the control user’s subreddit post prob-
ability distributions, excluding control users with
10% more or fewer posts than the diagnosed user.
This matching approach ensures that diagnosed
users are matched with control users who are inter-
ested in similar subreddits and have similar activ-
ity levels, preventing biases based on the subred-
dits users are involved in or based on how active
the users are on Reddit. This yielded a dataset con-
taining 9,210 diagnosed users and 107,274 control
users. On average each user in the dataset has 969
posts (median 646). The mean post length is 148
tokens (median 74).

The Reddit Self-reported Depression Diagno-
sis (RSDD) dataset differs from prior work cre-
ating self-reported diagnoses datasets in several
ways: it is an order of magnitude larger, posts were
annotated to confirm that they contained claims
of a diagnosis, and a realistic number of control
users were matched with each diagnosed user. The
lists of terms related to mental health, subreddits
related to mental health, high-precision depres-
sion diagnosis patterns, and further information
are available3. We note that this dataset has some
(inevitable) caveats: (i) the method only captures a
subpopulation of depressed people (i.e. those with
self-reported diagnosis), (ii) Reddit users may not
be a representative sample of the population as a
whole, and (iii) there is no way to verify whether
the users with self-reported diagnoses are truthful.

3.2 Self-harm assessment.

For self-harm risk assessment we use data from
mental health forum posts from ReachOut.com,
which is a successful Australian support forum
for young people. In addition to providing peer-
support, ReachOut moderators and trained volun-
teers monitor and participate in the forum discus-
sions. The NAACL 2016 Computational Linguis-
tics and Clinical Psychology Workshop (Holling-
shead and Ungar, 2016) released a Triage dataset
containing 65,024 forum posts from ReachOut,
with annotations for 1,227 posts indicating the au-
thor’s risk of self-harm (Milne et al., 2016). The
annotations consist of one of four labels: green
(indicating no action is required from ReachOut’s
moderators), amber (non-urgent attention is re-
quired), red (urgent attention is required), and cri-
sis (a risk that requires immediate attention).

3http://ir.cs.georgetown.edu/data/reddit depression/
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Figure 1: The general neural network architec-
ture shared among our user and post classification
models. Each input (e.g., each of a user’s posts) is
processed by a convolutional network and merged
to create a vector representation of the user’s activ-
ity. This vector representation is passed through
one or more dense layers followed by an output
layer that performs classification. The type of in-
put received, merge operation, and output layer
vary with the specific model.

3.3 Ethical concerns.

Social media data are often sensitive, and even
more so when the data are related to mental
health. Privacy concerns and the risk to the in-
dividuals in the data should always be considered
(Hovy and Spruit, 2016; Šuster et al., 2017; Ben-
ton et al., 2017a). We note that the risks asso-
ciated with the data used in this work are min-
imal. This assessment is supported by previous
work on the ReachOut dataset (Milne et al., 2016),
on Twitter data (Coppersmith et al., 2015b), and
on other Reddit data (Losada and Crestani, 2016).
The RSDD dataset contains only publicly avail-
able Reddit posts. Annotators were shown only
anonymized posts and agreed to make no attempts
to deanonymize or contact them. The RSDD
dataset will only be made available to researchers
who agree to follow ethical guidelines, which in-
clude requirements not to contact or attempt to
deanonymize any of the users. Additionally, for
the ReachOut forum data that was explicitly re-
lated to mental health, the forum’s rules require
the users to stay anonymous; moderators actively
redact any user identifying information.

4 Methodology

We describe a general neural network architecture
for performing text classification over multiple in-
put texts. We propose models based on this ar-
chitecture for performing two tasks in the social
media and mental health domains that we call self-
harm risk classification and detecting depression.
The task of self-harm risk classification is estimat-
ing a user’s current self-harm risk given the user’s
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Figure 2: The convolutional network component
of our architecture. A convolutional layer takes a
series of terms as input (a) and applies l filters to
a k-term sliding window to derive feature values
for each window or region (b); k = 2 and l = 3
shown here. A max pooling layer considers non-
overlapping region sequences of length n (b) and
keeps the highest feature value for the sequence
(c); n = 3 shown here.

post on a mental health support forum and the pre-
vious posts in the thread. The task of detecting
depressions in users is identifying Reddit users
with self-reported depression diagnoses given the
users’ post histories (excluding posts containing
mental health keywords or posted in subreddits re-
lated to mental health).

While both tasks are focused on predicting a
user’s mental health status, they differ in both the
type of classification performed (i.e., estimating
severity on a four point scale vs. boolean classi-
fication) and in the amount of data available. Our
general architecture is based on a two step pro-
cess: (1) identifying relevant features in each in-
put text, and (2) combining the features observed
in the model’s inputs to classify the user.

4.1 Shared Architecture

Our proposed models share a common architec-
ture that takes one or more posts as input, pro-
cesses the posts using a convolutional layer to
identify features present in sliding windows of
text, merges the features identified into a vector
representation of the user’s activity, and uses a se-
ries of dense layers to perform classification on the
merged vector representation. The type of merg-
ing performed and the output layers are properties
of the model variant, which we describe in detail
in the following section. Convolutional networks
have commonly been applied to the task of text
classification, such as by Kim (2014). We use cat-
egorical cross-entropy as a loss function with both
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methods, but also experiment with other loss func-
tions when performing severity classification.

First, the model takes one or more posts as input
and processes each post with a convolutional net-
work containing a convolutional layer and a pool-
ing layer. This process is illustrated with a max
pooling layer in Figure 2. The convolutional layer
applies filters to a sliding window of k terms (a)
and outputs a feature value for each sliding win-
dow region and each filter (b). The same filters are
applied to each window; each filter can be viewed
as a feature detector and the overall process can be
conceptualized as looking for windows of terms
that contain specific features. The features are not
specified a priori through feature engineering, but
instead are learned automatically when the model
is trained. After identifying the features present in
each region (i.e., sliding window), a max pooling
layer considers non-overlapping regions of length
n and keeps the highest feature value for each re-
gion (c). This step eliminates the regions (i.e., slid-
ing windows) that do not contain useful features,
which reduces the size of the convolutional net-
work’s output. The same convolutional network is
applied to each input post, meaning that the model
learns to look for the same set of features in each.

After each input post has been processed by a
convolutional network, the output of each convo-
lutional network is merged to create a represen-
tation of the user’s activity across all input posts.
This representation is processed by one or more
dense layers (i.e., fully connected layers) with
dropout (Srivastava et al., 2014) before being pro-
cessed by a final output layer to perform classifica-
tion. The type of output layer is dependent on the
model variant. Our shared model architecture is
illustrated in Figure 1. The architecture’s hyperpa-
rameters (e.g., the sliding window size k, the num-
ber of convolutional filters used, and type of pool-
ing) also vary among models and are described in
the supplemental material. Both the convolutional
and dense layers use ReLU activations (Nair and
Hinton, 2010) in all model variants.

4.2 Models

4.2.1 Depression detection

Our model for depression detection takes a user’s
posts as input and processes each post with a con-
volutional network. Each convolutional network
performs average pooling to produce its output.
That is, the model considers non-overlapping se-

quences of n posts and keeps the average feature
value across all sequences. These post representa-
tions are then merged with a second convolutional
layer to create a user representation; we found this
approach led to more stable performance than us-
ing a second average pooling or max pooling layer.
The user representation created by the merge step
is then passed to one or more dense layers before
being passed to a dense output layer with a soft-
max activation function to perform classification.
The number of dense layers used is a hyperparam-
eter described in §5. Categorical cross-entropy is
used as the model’s loss function.

4.2.2 Self-harm risk assessment
Our model for self-harm risk classification takes
two inputs: the target post being classified and the
prior posts (if any) in the target post’s thread. The
prior posts provide context and are thus useful for
estimating the risk of self-harm present in the tar-
get post. The two inputs are both processed by a
convolutional network as in user-level classifica-
tion, but in this case the convolutional network’s
outputs correspond to a representation of the tar-
get post and to a representation of the target post’s
context (i.e., the prior posts in the thread). Given
that these two outputs represent different aspects,
they are merged by concatenating them together.
This merged representation is then passed to one
or more dense layers and to an output layer; the
type of output layer depends on the loss function
used. There are four self-harm risk assessment
model variants in total:

Categorical Cross Ent. uses an output layer
with a softmax activation function, and categori-
cal cross-entropy as its loss function. This mirrors
the output layer and loss function used in the user
level classification model.

MSE uses an output layer with a linear activa-
tion function, and mean squared error as its loss
function. The model’s output is thus a single
value; to perform classification, this output value
is rounded to the nearest integer in the interval
[0, t− 1], where t is the number of target classes.

The final two loss functions perform metric
learning rather than performing classification di-
rectly. They learn representations of a user’s ac-
tivity and of the four self-harm risk severity la-
bels; classification is performed by comparing the
euclidean distance between a representation of a
user’s activity (produced by the final layer) and
each of the four severity label representations.
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Method
Convolution

Dense Layers Dropout Class Balance
Size Filters Pool Len.

Reddit Cat. Cross Ent. 3 25 all (avg) 1 w/ 50 dims 0.0 Sampled

ReachOut Cat. Cross Ent. 3 150 3 (max) 2 w/ 250 dims 0.3 Weighted
MSE 3 100 3 (max) 2 w/ 250 dims 0.5 Sampled
Class Metric 3 100 3 (max) 2 w/ 150 dims 0.3 Sampled

Table 1: The hyperparameters used by each model.

Class Metric: Let d be the size of the output
layer and X be the layer’s d-dimensional output.
Class Metric learns a d-dimensional representa-
tion of each class Ci such that ||X − Ci||2 is min-
imized for the correct class i; this is accomplished
with the loss function: Li,p,n = max(0, ||Xi −
Cp||2 − ||Xi − Cn||2 + α) where Cp is the cor-
rect (i.e., positive) class for Xi, Cn is a randomly
chosen incorrect (i.e., negative) class, and α is a
constant to enforce a minimum margin between
classes. Classification is performed by computing
the similarity between Xi and each class Cj .

Class Metric (Ordinal) extends Class Metric
to enforce a margin between ordinal classes as a
function of the distance between classes. Given a
ranked list of classes such that more similar classes
have closer rankings, that is ∀i sim(Ci, Ci±1) >
sim(Ci, Ci±2), we incorporate the class distance
into the margin such that more distant incorrect
class labels must be further away from the correct
class label in the metric space. The loss function
becomes Li,p,n = max(0, ||Xi − Cp||2 − ||Xi −
Cn||2+α|p−n|) where |p−n| causes the margin
to scale with the distance between classes p and n.

5 Experiments

In this section we describe the model hyperparam-
eters used and present our results on the depres-
sion detection and self-harm risk assessment tasks.
To facilitate reproducibility we provide our code
and will provide the Reddit depression dataset to
researchers who sign a data usage agreement4.

5.1 Experimental setup.
The hyperparameters used with our models are
shown in Table 1. The severity risk assessment
models’ hyperparameters were chosen using 10-
fold cross validation on the 947 ReachOut training
posts, with 15% of each fold used as validation

4http://ir.cs.georgetown.edu/data/reddit depression/

data. The depression identification model’s hy-
perparameters were chosen using the Reddit val-
idation set. The depression identification model’s
second convolutional layer (i.e., the layer used to
merge post representations) used filters of length
15, a stride of length 15, and the same number of
filters as the first convolutional layer. All mod-
els were trained using stochastic gradient descent
with the Adam optimizer (Kingma and Ba, 2014).
The hyperparameters that varied across models are
shown in Table 1. The convolution size, number of
convolutional filters, pooling type, pooling length,
and number of dense layers was similar across all
post models. Class balancing was performed with
Categorical Cross Ent. by weighting classes in-
versely proportional to their frequencies, whereas
sampling an equal number of instances for each
class worked best with the other methods.

Addressing limited data. The post classifica-
tion models’ input consists of skip-thought vectors
(Kiros et al., 2015); each vector used is a 7200-
dimensional representation of a sentence. Thus,
the convolutional windows used for post classifi-
cation are over sentences rather than over terms.
This input representation was chosen to mitigate
the effects of the ReachOut dataset’s relatively
small size. The skip-thought vectors were gen-
erated from the the ReachOut forum dataset by
sequentially splitting the posts in the training set
into sentences, tokenizing them, and training skip-
thoughts using Kiros et al.’s implementation with
the default parameters. Sentence boundary detec-
tion was performed using the Punkt sentence tok-
enizer (Kiss and Strunk, 2006) available in NLTK
(Bird et al., 2009). These 2400-dimensional forum
post skip-thought vectors were concatenated with
the 4800-dimensional book corpus skip-thought
vectors available from Kiros et al.. Experiments
on the training set indicated that using only the
ReachOut skip-thought vectors slightly decreased
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performance, while using only the book corpus
skip-thought vectors substantially decreased per-
formance. As input the post models received the
last 20 sentences in each target post and the last 20
sentences in the thread prior to the target post; any
prior sentences are ignored.

5.2 Depression detection.

The data used for depression detection was de-
scribed in §3. We compare our model against
several baselines using MNB and SVM classi-
fiers (Wang and Manning, 2012). Specifically,
we consider two sets of features for the classi-
fiers. The first set of features is the post con-
tent itself represented as sparse bag of words fea-
tures (BoW baselines). The second set of features
(feature-rich baselines) comprises a large set of
features including bag of words features encoded
as sparse weighted vectors, external psycholin-
guistic features captured by LIWC5 (2015), and
emotion lexicon features (Staiano and Guerini,
2014). Since our problem is identifying depres-
sion among users, psycholinguistic signals and
emotional attributes in the text are potentially im-
portant features for the task. These features (as
described in §2) have been also previously used by
successful methods in the Twitter self-reported di-
agnosis detection task (Coppersmith et al., 2015b).
Thus, we argue that these are strong baselines for
our self-reported diagnosis detection task. We ap-
ply count based and tf-idf based feature weighting
for bag of words features. We perform standard
preprocessing by removing stopwords and lower-
casing the input text.6

The data is split into training, validation, and
testing datasets each containing approximately
3,000 diagnosed users and their matched control
users. The validation set is used for tuning devel-
opment and hyperparameter tuning of our models
and the baselines. The reported results are on the
test set. The depression detection models’ input
consisted of raw terms encoded as one-hot vectors.
We used an input layer to learn 50-dimensional
representation of the terms. For each target user,
the CNN received up to 400 posts containing up
to 100 terms; experiments on the validation data
indicated that increasing the maximum number of

5http://liwc.wpengine.com/
6During experimentation, we found tf-idf sparse feature

weighting to be superior than other weighting schemes. Ad-
ditional features such as LDA topics and χ2 feature selection
did not result in any further improvements.

Method Precision Recall F1
BoW - MNB 0.44 0.31 0.36
BoW - SVM 0.72 0.29 0.42
Feature-rich - MNB 0.69 0.32 0.44
Feature-rich - SVM 0.71 0.31 0.44
User model - CNN 0.59 0.45 0.51

Table 2: Performance identifying depressed users
on the Reddit test set. The differences between
the CNN and baselines are statistically significant
(McNemar’s test, p < 0.05).

posts did not significantly improve performance.
Results. The results of identifying depressed

users for our model and baselines are shown in Ta-
ble 2. Our proposed model outperforms the base-
lines by a large margin in terms of recall and F1 on
the diagnosed users (increases of 41% and 16%,
respectively), but performs worse in terms of pre-
cision. As described later in the analysis section,
the CNN identifies language associated with neg-
ative sentiment across a user’s posts.

5.3 Self-harm risk classification.

We train our methods to label the ReachOut posts
and compare them against the top methods from
CLPsych ’16. We use the same experimental pro-
tocol as was used in CLPsych ’16; our methods
were trained on the 947 training posts and evalu-
ated on the remaining 280 testing posts. We used
15% of the 947 training posts as validation data.

We report results using the same metrics used
in CLPsych, which were: the macro-averaged
F1 for the amber, red, and crisis labels (non-
green posts); the macro-averaged F1 of green
posts vs. amber ∪ red ∪ crisis (flagged posts);
and the macro-averaged F1 of green ∪ amber vs.
red∪crisis (urgent posts). The non-green F1 was
used as the official CLPsych metric with the in-
tention of placing emphasis on classification per-
formance for the non-green categories (i.e., those
that required some response). The binary flagged
meta-class was chosen to measure models’ abili-
ties to differentiate between posts that require at-
tention and posts that do not, and the binary urgent
meta-class was chosen to measure their abilities
to differentiate between posts that require quick
responses and posts that do not. In addition to
macro-averaged F1, CLPsych also reported the ac-
curacy for each category. We additionally report
F1 macro-averaged over all classes.
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Method Non-green Flagged Urgent All
F1 F1 Acc. F1 Acc. F1 Acc.

Baseline (Milne et al., 2016) 0.31 0.78 0.86 0.38 0.89 - -
Kim et al. (2016) 0.42 0.85 0.91 0.62 0.91 0.55 0.85
Malmasi et al. (2016) 0.42 0.87 0.91 0.64 0.93 0.55 0.83
Brew (2016) 0.42 0.78 0.85 0.69 0.93 0.54 0.79
Cohan et al. (2016) 0.41 0.81 0.87 0.67 0.92 0.53 0.80
Categorical Cross Ent. 0.50 0.89 0.93 0.70 0.94 0.61 0.89
MSE 0.42 0.80 0.85 0.64 0.93 0.53 0.78
Class Metric 0.46 0.79 0.84 0.70 0.94 0.56 0.80
Class Metric (Ordinal) 0.47 0.88 0.93 0.72 0.93 0.59 0.87

Table 3: Self-harm risk assessment performance on the ReachOut test posts. F1 and accuracy are aggre-
gated as specified by CLPsych ’16. The reported results for the other methods are the official numbers
from (Milne et al., 2016). The differences in performance between the following method pairs are sta-
tistically significant (McNemar’s test, p < 0.05): Categorical Cross Ent. and Class Metric, MSE and
Categorical Cross Ent., MSE and Class Metric (Ordinal), and Class Metric (Ordinal) and Class Metric.

Method Non-green Flagged Urgent All
F1 F1 Acc. F1 Acc. F1 Acc.

Categorical Cross Ent. 0.54 0.87 0.89 0.69 0.91 0.63 0.80
MSE 0.87 0.95 0.96 0.91 0.98 0.89 0.93
Class Metric 0.73 0.90 0.91 0.81 0.94 0.78 0.86
Class Metric (Ordinal) 0.85 0.95 0.96 0.89 0.97 0.88 0.92

Table 4: Self-harm risk assessment performance on the ReachOut training set using 10-fold cross vali-
dation. Categorical Cross Ent. performs substantially worse than on the test set, while MSE performs
substantially better. Class Metric (Ordinal) continues to perform well. The difference in performance
between the following method pairs are statistically significant (McNemar’s test, p < 0.05): Categorical
Cross Ent. and MSE, Categorical Cross Ent. and Class Metric, Categorical Cross Ent. and Class Metric
(Ordinal), MSE and Class Metric, and Class Metric and Class Metric (Ordinal).

Results. The results on the self-harm risk as-
sessment task for our models and for the current
best-performing methods (briefly explained in §2)
are shown in Table 3. We also report a baseline
result which is based on a SVM classifier with
bigram features. When measured by non-green
F1, the official metric of the CLPsych ’16 Triage
Task, our proposed models perform up to 19% bet-
ter than the best existing methods. Similarly, our
models perform up to 11% better when measured
with an F1 macro-averaged across all categories
(i.e., all column) and up to 5% better with mea-
sured accuracy across all categories. Categorical
Cross Ent. performs best in all of these cases,
though the difference between the performance of
Categorical Cross Ent. and Class Metric with an
ordinal margin is not statistically significant.

We also evaluate the performance of our meth-
ods on the training set using 10-fold cross valida-

tion to better observe the performance differences
between our model variants (Table 4). All mod-
els’ perform substantially better on the training set
than on the test set. This is partially explained by
the fact that the models were tuned on the training
set, but the large difference in some cases (e.g.,
the increase in the highest non-green F1 from 0.50
to 0.87) suggest there may be qualitative differ-
ences between the training and testing sets. The
best-performing method on the test set, Categori-
cal Cross Ent., performs the worst on the training
set. Similarly, the worst-performing method on
the test set, MSE, performs the best on the training
set. Class Metric (Ordinal) performs well on both
the testing and training sets, however, suggesting
that it is more robust than the other methods. Fur-
thermore, there is no statistically significant dif-
ference between Class Metric (Ordinal) and the
best-performing method on either dataset.
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Top Phrases

i went to to scare you
my whole to have it
sometimes i my son was
i’m so sorry it wasn’t

Table 5: Example phrases that strongly con-
tributed to a user’s depression classification on the
RSDD dataset.

5.4 Analysis
In this section we analyze the language that
strongly contributed to the identification of de-
pressed users on the Reddit dataset. Note that it
is impossible to show entire Reddit posts without
compromising users’ anonymity; we found that
even when a post is paraphrased, enough informa-
tion remains that it can easily be identified using
a Web search engine. For example, one Reddit
post that strongly contributed to the author’s clas-
sification as a depressed user contained the men-
tion of a specific type of abuse and several com-
ments vaguely related to this type of abuse. We at-
tempted to paraphrase this post, but found that any
paraphrase containing general language related to
both the type of abuse and to the user’s comments
was enough to identify the user. Thus, to protect
the anonymity of the users in our dataset, we do
not publish posts in any form.

Rather than publishing posts, we identify key
phrases in posts from users who were correctly
identified as being depressed. Phrases from eight
self-reported depressed users are shown in Ta-
ble 5; to prevent these phrases from being used
to identify users, we retain only the top phrase
from each user. These phrases were identified
by using the model’s convolutional filter weights
to identify posts in the validation dataset that are
strongly contributing to the model’s classification
decision, and then using the convolutional filter
weights to identify the phrase within each post that
most strongly contributed to the post’s classifica-
tion (i.e., had the highest feature values).

In keeping with the design of our dataset, terms
related to depression or diagnoses are not present.
Instead, the model identifies phrases that often
could be associated with a negative sentiment or
outlook. For example, “my whole” could be part
of a negative comment referring to the poster’s
whole life. It should be noted that the model
makes classification decisions based on the occur-

rence of phrases across many posts by the same
user. Though one can imagine how the phrases
shown here could be used to convey negative sen-
timent, the presence of a single such phrase is not
sufficient to cause the model to classify a user as
depressed.

6 Conclusion

In this work we argued for the close connection
between social media and mental health, and de-
scribed a neural network architecture for perform-
ing self-harm risk classification and depression de-
tection on social media posts. We described the
construction of the Reddit Self-reported Depres-
sion Diagnosis (RSDD) dataset, containing over
9,000 users with self-reported depression diag-
noses matched with over 107,000 similar control
users; the dataset is available under a data us-
age agreement. We applied our classification ap-
proach to the task of identifying depressed users
on this dataset and found that it substantially out-
performed strong existing methods in terms of Re-
call and F1. While these depression detection re-
sults are encouraging, the absolute values of the
metrics illustrate that this is a challenging task
and worthy of further exploration. We also ap-
plied our classification approach to the task of
estimating the self-harm risk posed by posts on
the ReachOut.com mental health support forum,
and found that it substantially outperformed strong
previously-proposed methods.

Our approach and results are significant from
several perspectives: they provide a strong ap-
proach to identifying posts indicating a risk of
self-harm in social media; they demonstrate a
means for large scale public mental health stud-
ies surrounding the state of depression; and they
demonstrate the possibility of sensitive applica-
tions in the context of clinical care, where clini-
cians could be notified if the activities of their pa-
tients suggest they are at risk of self-harm. Fur-
thermore, large-scale datasets such as the one
presented in this paper can provide complemen-
tary information to existing data on mental health
which are generally relatively smaller collections.
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Abstract

Language is increasingly being used to de-
fine rich visual recognition problems with
supporting image collections sourced from
the web. Structured prediction models are
used in these tasks to take advantage of
correlations between co-occurring labels
and visual input but risk inadvertently en-
coding social biases found in web corpora.
In this work, we study data and models as-
sociated with multilabel object classifica-
tion and visual semantic role labeling. We
find that (a) datasets for these tasks con-
tain significant gender bias and (b) mod-
els trained on these datasets further am-
plify existing bias. For example, the ac-
tivity cooking is over 33% more likely
to involve females than males in a train-
ing set, and a trained model further ampli-
fies the disparity to 68% at test time. We
propose to inject corpus-level constraints
for calibrating existing structured predic-
tion models and design an algorithm based
on Lagrangian relaxation for collective in-
ference. Our method results in almost no
performance loss for the underlying recog-
nition task but decreases the magnitude of
bias amplification by 47.5% and 40.5% for
multilabel classification and visual seman-
tic role labeling, respectively.

1 Introduction

Visual recognition tasks involving language, such
as captioning (Vinyals et al., 2015), visual ques-
tion answering (Antol et al., 2015), and visual se-
mantic role labeling (Yatskar et al., 2016), have
emerged as avenues for expanding the diversity
of information that can be recovered from im-
ages. These tasks aim at extracting rich seman-

tics from images and require large quantities of la-
beled data, predominantly retrieved from the web.
Methods often combine structured prediction and
deep learning to model correlations between la-
bels and images to make judgments that otherwise
would have weak visual support. For example, in
the first image of Figure 1, it is possible to pre-
dict a spatula by considering that it is a com-
mon tool used for the activity cooking. Yet such
methods run the risk of discovering and exploiting
societal biases present in the underlying web cor-
pora. Without properly quantifying and reducing
the reliance on such correlations, broad adoption
of these models can have the inadvertent effect of
magnifying stereotypes.

In this paper, we develop a general framework
for quantifying bias and study two concrete tasks,
visual semantic role labeling (vSRL) and multil-
abel object classification (MLC). In vSRL, we use
the imSitu formalism (Yatskar et al., 2016, 2017),
where the goal is to predict activities, objects and
the roles those objects play within an activity. For
MLC, we use MS-COCO (Lin et al., 2014; Chen
et al., 2015), a recognition task covering 80 object
classes. We use gender bias as a running example
and show that both supporting datasets for these
tasks are biased with respect to a gender binary1.

Our analysis reveals that over 45% and 37%
of verbs and objects, respectively, exhibit bias to-
ward a gender greater than 2:1. For example, as
seen in Figure 1, the cooking activity in imSitu
is a heavily biased verb. Furthermore, we show
that after training state-of-the-art structured pre-
dictors, models amplify the existing bias, by 5.0%
for vSRL, and 3.6% in MLC.

1To simplify our analysis, we only consider a gender bi-
nary as perceived by annotators in the datasets. We recog-
nize that a more fine-grained analysis would be needed for
deployment in a production system. Also, note that the pro-
posed approach can be applied to other NLP tasks and other
variables such as identification with a racial or ethnic group.

2979



COOKING
ROLE VALUE
AGENT WOMAN
FOOD MEAT
HEAT STOVE
TOOL SPATULA
PLACE OUTSIDE

COOKING
ROLE VALUE
AGENT WOMAN
FOOD PASTA
HEAT STOVE
TOOL SPATULA
PLACE KITCHEN

COOKING
ROLE VALUE
AGENT MAN
FOOD ∅

HEAT STOVE
TOOL SPATULA
PLACE KITCHEN

COOKING
ROLE VALUE
AGENT WOMAN
FOOD FRUIT
HEAT ∅

TOOL KNIFE
PLACE KITCHEN

COOKING
ROLE VALUE
AGENT WOMAN
FOOD ∅

HEAT STOVE
TOOL SPATULA
PLACE KITCHEN

Figure 1: Five example images from the imSitu visual semantic role labeling (vSRL) dataset. Each im-
age is paired with a table describing a situation: the verb, cooking, its semantic roles, i.e agent, and
noun values filling that role, i.e. woman. In the imSitu training set, 33% of cooking images have man
in the agent role while the rest have woman. After training a Conditional Random Field (CRF), bias is
amplified: man fills 16% of agent roles in cooking images. To reduce this bias amplification our cal-
ibration method adjusts weights of CRF potentials associated with biased predictions. After applying our
methods, man appears in the agent role of 20% of cooking images, reducing the bias amplification
by 25%, while keeping the CRF vSRL performance unchanged.

To mitigate the role of bias amplification when
training models on biased corpora, we propose
a novel constrained inference framework, called
RBA, for Reducing Bias Amplification in predic-
tions. Our method introduces corpus-level con-
straints so that gender indicators co-occur no more
often together with elements of the prediction task
than in the original training distribution. For ex-
ample, as seen in Figure 1, we would like noun
man to occur in the agent role of the cooking
as often as it occurs in the imSitu training set when
evaluating on a development set. We combine
our calibration constraint with the original struc-
tured predictor and use Lagrangian relaxation (Ko-
rte and Vygen, 2008; Rush and Collins, 2012) to
reweigh bias creating factors in the original model.

We evaluate our calibration method on imSitu
vSRL and COCO MLC and find that in both in-
stances, our models substantially reduce bias am-
plification. For vSRL, we reduce the average mag-
nitude of bias amplification by 40.5%. For MLC,
we are able to reduce the average magnitude of
bias amplification by 47.5%. Overall, our calibra-
tion methods do not affect the performance of the
underlying visual system, while substantially re-
ducing the reliance of the system on socially bi-
ased correlations2.

2Code and data are available at https://github.
com/uclanlp/reducingbias

2 Related Work

As intelligence systems start playing important
roles in our daily life, ethics in artificial in-
telligence research has attracted significant in-
terest. It is known that big-data technologies
sometimes inadvertently worsen discrimination
due to implicit biases in data (Podesta et al.,
2014). Such issues have been demonstrated in var-
ious learning systems, including online advertise-
ment systems (Sweeney, 2013), word embedding
models (Bolukbasi et al., 2016; Caliskan et al.,
2017), online news (Ross and Carter, 2011), web
search (Kay et al., 2015), and credit score (Hardt
et al., 2016). Data collection biases have been
discussed in the context of creating image cor-
pus (Misra et al., 2016; van Miltenburg, 2016)
and text corpus (Gordon and Van Durme, 2013;
Van Durme, 2010). In contrast, we show that given
a gender biased corpus, structured models such as
conditional random fields, amplify the bias.

The effect of the data imbalance can be easily
detected and fixed when the prediction task is sim-
ple. For example, when classifying binary data
with unbalanced labels (i.e., samples in the major-
ity class dominate the dataset), a classifier trained
exclusively to optimize accuracy learns to always
predict the majority label, as the cost of mak-
ing mistakes on samples in the minority class can
be neglected. Various approaches have been pro-
posed to make a “fair” binary classification (Baro-
cas and Selbst, 2014; Dwork et al., 2012; Feldman
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et al., 2015; Zliobaite, 2015). For structured pre-
diction tasks the effect is harder to quantify and
we are the first to propose methods to reduce bias
amplification in this context.

Lagrangian relaxation and dual decomposi-
tion techniques have been widely used in NLP
tasks (e.g., (Sontag et al., 2011; Rush and Collins,
2012; Chang and Collins, 2011; Peng et al., 2015))
for dealing with instance-level constraints. Simi-
lar techniques (Chang et al., 2013; Dalvi, 2015)
have been applied in handling corpus-level con-
straints for semi-supervised multilabel classifica-
tion. In contrast to previous works aiming for
improving accuracy performance, we incorporate
corpus-level constraints for reducing gender bias.

3 Visualizing and Quantifying Biases

Modern statistical learning approaches capture
correlations among output variables in order to
make coherent predictions. However, for real-
world applications, some implicit correlations are
not appropriate, especially if they are amplified.
In this section, we present a general framework to
analyze inherent biases learned and amplified by a
prediction model.

Identifying bias We consider that prediction
problems involve several inter-dependent output
variables y1, y2, ...yK , which can be represented
as a structure y = {y1, y2, ...yK} ∈ Y . This
is a common setting in NLP applications, includ-
ing tagging, and parsing. For example, in the
vSRL task, the output can be represented as a
structured table as shown in Fig 1. Modern tech-
niques often model the correlation between the
sub-components in y and make a joint prediction
over them using a structured prediction model.
More details will be provided in Section 4.

We assume there is a subset of output vari-
ables g ⊆ y, g ∈ G that reflects demographic at-
tributes such as gender or race (e.g. g ∈ G =
{man,woman} is the agent), and there is another
subset of the output o ⊆ y, o ∈ O that are co-
related with g (e.g., o is the activity present in an
image, such as cooking). The goal is to identify
the correlations that are potentially amplified by a
learned model.

To achieve this, we define the bias score of a
given output, o, with respect to a demographic

variable, g, as:

b(o, g) =
c(o, g)∑

g′∈G c(o, g
′)
,

where c(o, g) is the number of occurrences of o
and g in a corpus. For example, to analyze how
genders of agents and activities are co-related in
vSRL, we define the gender bias toward man for
each verb b(verb,man) as:

c(verb,man)

c(verb,man) + c(verb,woman)
. (1)

If b(o, g) > 1/‖G‖, then o is positively correlated
with g and may exhibit bias.

Evaluating bias amplification To evaluate the
degree of bias amplification, we propose to com-
pare bias scores on the training set, b∗(o, g), with
bias scores on an unlabeled evaluation set of im-
ages b̃(o, g) that has been annotated by a predic-
tor. We assume that the evaluation set is iden-
tically distributed to the training set. There-
fore, if o is positively correlated with g (i.e,
b∗(o, g) > 1/‖G‖) and b̃(o, g) is larger than
b∗(o, g), we say bias has been amplified. For
example, if b∗(cooking,woman) = .66, and
b̃(cooking,woman) = .84, then the bias of
woman toward cooking has been amplified. Fi-
nally, we define the mean bias amplification as:

1

|O|
∑

g

∑

o∈{o∈O|b∗(o,g)>1/‖G‖}
b̃(o, g)− b∗(o, g).

This score estimates the average magnitude of bias
amplification for pairs of o and g which exhibited
bias.

4 Calibration Algorithm

In this section, we introduce Reducing Bias
Amplification, RBA, a debiasing technique for
calibrating the predictions from a structured pre-
diction model. The intuition behind the algorithm
is to inject constraints to ensure the model pre-
dictions follow the distribution observed from the
training data. For example, the constraints added
to the vSRL system ensure the gender ratio of each
verb in Eq. (1) are within a given margin based on
the statistics of the training data. These constraints
are applied at the corpus level, because comput-
ing gender ratio requires the predictions of all test
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instances. As a result, a joint inference over test
instances is required3. Solving such a giant in-
ference problem with constraints is hard. There-
fore, we present an approximate inference algo-
rithm based on Lagrangian relaxation. The advan-
tages of this approach are:

• Our algorithm is iterative, and at each it-
eration, the joint inference problem is de-
composed to a per-instance basis. This can
be solved by the original inference algo-
rithm. That is, our approach works as a meta-
algorithm and developers do not need to im-
plement a new inference algorithm.

• The approach is general and can be applied in
any structured model.

• Lagrangian relaxation guarantees the solu-
tion is optimal if the algorithm converges and
all constraints are satisfied.

In practice, it is hard to obtain a solution where
all corpus-level constrains are satisfied. However,
we show that the performance of the proposed ap-
proach is empirically strong. We use imSitu for
vSRL as a running example to explain our algo-
rithm.

Structured Output Prediction As we men-
tioned in Sec. 3, we assume the structured output
y ∈ Y consists of several sub-components. Given
a test instance i as an input, the inference problem
is to find

argmax
y∈Y

fθ(y, i),

where fθ(y, i) is a scoring function based on a
model θ learned from the training data. The struc-
tured output y and the scoring function fθ(y, i) can
be decomposed into small components based on
an independence assumption. For example, in the
vSRL task, the output y consists of two types of
binary output variables {yv} and {yv,r}. The vari-
able yv = 1 if and only if the activity v is chosen.
Similarly, yv,r = 1 if and only if both the activity v
and the semantic role r are assigned 4. The scoring
function fθ(y, i) is decomposed accordingly such
that:

fθ(y, i) =
∑

v

yvsθ(v, i) +
∑

v,r

yv,rsθ(v, r, i),

3A sufficiently large sample of test instances must be used
so that bias statistics can be estimated. In this work we use
the entire test set for each respective problem.

4We use r to refer to a combination of role and noun. For
example, one possible value indicates an agent is a woman.

represents the overall score of an assignment, and
sθ(v, i) and sθ(v, r, i) are the potentials of the sub-
assignments. The output space Y contains all fea-
sible assignments of yv and yv,r, which can be rep-
resented as instance-wise constraints. For exam-
ple, the constraint,

∑
v yv = 1 ensures only one

activity is assigned to one image.

Corpus-level Constraints Our goal is to inject
constraints to ensure the output labels follow a
desired distribution. For example, we can set a
constraint to ensure the gender ratio for each ac-
tivity in Eq. (1) is within a given margin. Let
yi = {yiv} ∪ {yiv,r} be the output assignment for
test instance i5. For each activity v∗, the con-
straints can be written as

b∗−γ≤
∑

i y
i
v=v∗,r∈M∑

i y
i
v=v∗,r∈W+

∑
i y
i
v=v∗,r∈M

≤b∗ + γ

(2)
where b∗ ≡ b∗(v∗,man) is the desired gender ra-
tio of an activity v∗, γ is a user-specified margin.
M and W are a set of semantic role-values rep-
resenting the agent as a man or a woman, respec-
tively.

Note that the constraints in (2) involve all the
test instances. Therefore, it requires a joint in-
ference over the entire test corpus. In general,
these corpus-level constraints can be represented
in a form of A

∑
i y
i − b ≤ 0, where each row

in the matrix A ∈ Rl×K is the coefficients of one
constraint, and b ∈ Rl. The constrained inference
problem can then be formulated as:

max
{yi}∈{Y i}

∑

i

fθ(y
i, i),

s.t. A
∑

i

yi − b ≤ 0,
(3)

where {Y i} represents a space spanned by possi-
ble combinations of labels for all instances. With-
out the corpus-level constraints, Eq. (3) can be
optimized by maximizing each instance i

max
yi∈Y i

fθ(y
i, i),

separately.

Lagrangian Relaxation Eq. (3) can be solved
by several combinatorial optimization methods.
For example, one can represent the problem as an

5For the sake of simplicity, we abuse the notations and use
i to represent both input and data index.
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Dataset Task Images O-Type ‖O‖
imSitu vSRL 60,000 verb 212

MS-COCO MLC 25,000 object 66

Table 1: Statistics for the two recognition prob-
lems. In vSRL, we consider gender bias relating
to verbs, while in MLC we consider the gender
bias related to objects.

integer linear program and solve it using an off-
the-shelf solver (e.g., Gurobi (Gurobi Optimiza-
tion, 2016)). However, Eq. (3) involves all test in-
stances. Solving a constrained optimization prob-
lem on such a scale is difficult. Therefore, we con-
sider relaxing the constraints and solve Eq. (3) us-
ing a Lagrangian relaxation technique (Rush and
Collins, 2012). We introduce a Lagrangian multi-
plier λj ≥ 0 for each corpus-level constraint. The
Lagrangian is

L(λ, {yi}) =
∑

i

fθ(y
i)−

l∑

j=1

λj

(
Aj
∑

i

yi − bj
)
,

(4)

where all the λj ≥ 0,∀j ∈ {1, . . . , l}. The solu-
tion of Eq. (3) can be obtained by the following
iterative procedure:

1) At iteration t, get the output solution of each
instance i

yi,(t) = argmax
y∈Y ′

L(λ(t−1), y) (5)

2) update the Lagrangian multipliers.

λ(t)=max

(
0, λ(t−1)+

∑

i

η(Ayi,(t) − b)
)
,

where λ(0) = 0. η is the learning rate for updat-
ing λ. Note that with a fixed λ(t−1), Eq. (5) can
be solved using the original inference algorithms.
The algorithm loops until all constraints are satis-
fied (i.e. optimal solution achieved) or reach max-
imal number of iterations.

5 Experimental Setup

In this section, we provide details about the two vi-
sual recognition tasks we evaluated for bias: visual
semantic role labeling (vSRL), and multi-label
classification (MLC). We focus on gender, defin-
ing G = {man,woman} and focus on the agent

role in vSRL, and any occurrence in text associ-
ated with the images in MLC. Problem statistics
are summarized in Table 1. We also provide setup
details for our calibration method.

5.1 Visual Semantic Role Labeling
Dataset We evaluate on imSitu (Yatskar et al.,
2016) where activity classes are drawn from verbs
and roles in FrameNet (Baker et al., 1998) and
noun categories are drawn from WordNet (Miller
et al., 1990). The original dataset includes about
125,000 images with 75,702 for training, 25,200
for developing, and 25,200 for test. However, the
dataset covers many non-human oriented activities
(e.g., rearing, retrieving, and wagging),
so we filter out these verbs, resulting in 212 verbs,
leaving roughly 60,000 of the original 125,000 im-
ages in the dataset.

Model We build on the baseline CRF released
with the data, which has been shown effective
compared to a non-structured prediction base-
line (Yatskar et al., 2016). The model decomposes
the probability of a realized situation, y, the com-
bination of activity, v, and realized frame, a set of
semantic (role,noun) pairs (e, ne), given an image
i as :

p(y|i; θ) ∝ ψ(v, i; θ)
∏

(e,ne)∈Rf
ψ(v, e, ne, i; θ)

where each potential value in the CRF for subpart
x, is computed using features fi from the VGG
convolutional neural network (Simonyan and Zis-
serman, 2014) on an input image, as follows:

ψ(x, i; θ) = ew
T
x fi+bx ,

where w and b are the parameters of an affine
transformation layer. The model explicitly cap-
tures the correlation between activities and nouns
in semantic roles, allowing it to learn common pri-
ors. We use a model pretrained on the original task
with 504 verbs.

5.2 Multilabel Classification
Dataset We use MS-COCO (Lin et al., 2014),
a common object detection benchmark, for multi-
label object classification. The dataset contains 80
object types but does not make gender distinctions
between man and woman. We use the five asso-
ciated image captions available for each image in
this dataset to annotate the gender of people in the
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images. If any of the captions mention the word
man or woman we mark it, removing any images
that mention both genders. Finally, we filter any
object category not strongly associated with hu-
mans by removing objects that do not occur with
man or woman at least 100 times in the training
set, leaving a total of 66 objects.

Model For this multi-label setting, we adapt a
similar model as the structured CRF we use for
vSRL. We decompose the joint probability of the
output y, consisting of all object categories, c, and
gender of the person, g, given an image i as:

p(y|i; θ) ∝ ψ(g, i; θ)
∏

c∈y
ψ(g, c, i; θ)

where each potential value for x, is computed us-
ing features, fi, from a pretrained ResNet-50 con-
volutional neural network evaluated on the image,

ψ(x, i; θ) = ew
T
x fi+bx .

We trained a model using SGD with learning rate
10−5, momentum 0.9 and weight-decay 10−4, fine
tuning the initial visual network, for 50 epochs.

5.3 Calibration

The inference problems for both models are:

argmax
y∈Y

fθ(y, i) = log p(y|i; θ).

We use the algorithm in Sec. (4) to calibrate the
predictions using model θ. Our calibration tries to
enforce gender statistics derived from the training
set of corpus applicable for each recognition prob-
lem. For all experiments, we try to match gen-
der ratios on the test set within a margin of .05 of
their value on the training set. While we do adjust
the output on the test set, we never use the ground
truth on the test set and instead working from the
assumption that it should be similarly distributed
as the training set. When running the debiasing al-
gorithm, we set η = 10−1 and optimize for 100
iterations.

6 Bias Analysis

In this section, we use the approaches outlined
in Section 3 to quantify the bias and bias amplifi-
cation in the vSRL and the MLC tasks.

6.1 Visual Semantic Role Labeling

imSitu is gender biased In Figure 2(a), along
the x-axis, we show the male favoring bias of im-
Situ verbs. Overall, the dataset is heavily biased
toward male agents, with 64.6% of verbs favoring
a male agent by an average bias of 0.707 (roughly
3:1 male). Nearly half of verbs are extremely bi-
ased in the male or female direction: 46.95% of
verbs favor a gender with a bias of at least 0.7.6

Figure 2(a) contains several activity labels reveal-
ing problematic biases. For example, shopping,
microwaving and washing are biased toward
a female agent. Furthermore, several verbs such
as driving, shooting, and coaching are
heavily biased toward a male agent.

Training on imSitu amplifies bias In Fig-
ure 2(a), along the y-axis, we show the ratio of
male agents (% of total people) in predictions on
an unseen development set. The mean bias ampli-
fication in the development set is high, 0.050 on
average, with 45.75% of verbs exhibiting ampli-
fication. Biased verbs tend to have stronger am-
plification: verbs with training bias over 0.7 in
either the male or female direction have a mean
amplification of 0.072. Several already problem-
atic biases have gotten much worse. For example,
serving, only had a small bias toward females
in the training set, 0.402, is now heavily biased
toward females, 0.122. The verb tuning, origi-
nally heavily biased toward males, 0.878, now has
exclusively male agents.

6.2 Multilabel Classification

MS-COCO is gender biased In Figure 2(b)
along the x-axis, similarly to imSitu, we ana-
lyze bias of objects in MS-COCO with respect
to males. MS-COCO is even more heavily bi-
ased toward men than imSitu, with 86.6% of ob-
jects biased toward men, but with smaller average
magnitude, 0.65. One third of the nouns are ex-
tremely biased toward males, 37.9% of nouns fa-
vor men with a bias of at least 0.7. Some prob-
lematic examples include kitchen objects such as
knife, fork, or spoon being more biased to-
ward woman. Outdoor recreation related objects
such tennis racket, snowboard and boat
tend to be more biased toward men.

6In this gender binary, bias toward woman is 1− the bias
toward man
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(a) Bias analysis on imSitu vSRL
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(b) Bias analysis on MS-COCO MLC

Figure 2: Gender bias analysis of imSitu vSRL and MS-COCO MLC. (a) gender bias of verbs toward
man in the training set versus bias on a predicted development set. (b) gender bias of nouns toward man
in the training set versus bias on the predicted development set. Values near zero indicate bias toward
woman while values near 0.5 indicate unbiased variables. Across both dataset, there is significant bias
toward males, and significant bias amplification after training on biased training data.

Training on MS-COCO amplifies bias In Fig-
ure 2(b), along the y-axis, we show the ratio of
man (% of both gender) in predictions on an un-
seen development set. The mean bias amplifica-
tion across all objects is 0.036, with 65.67% of
nouns exhibiting amplification. Larger training
bias again tended to indicate higher bias amplifi-
cation: biased objects with training bias over 0.7
had mean amplification of 0.081. Again, several
problematic biases have now been amplified. For
example, kitchen categories already biased toward
females such as knife, fork and spoon have
all been amplified. Technology oriented categories
initially biased toward men such as keyboard
and mouse have each increased their bias toward
males by over 0.100.

6.3 Discussion
We confirmed our hypothesis that (a) both the im-
Situ and MS-COCO datasets, gathered from the
web, are heavily gender biased and that (b) mod-
els trained to perform prediction on these datasets
amplify the existing gender bias when evaluated
on development data. Furthermore, across both
datasets, we showed that the degree of bias am-
plification was related to the size of the initial
bias, with highly biased object and verb categories
exhibiting more bias amplification. Our results
demonstrate that care needs be taken in deploying
such uncalibrated systems otherwise they could
not only reinforce existing social bias but actually
make them worse.

7 Calibration Results

We test our methods for reducing bias amplifica-
tion in two problem settings: visual semantic role
labeling in the imSitu dataset (vSRL) and multil-
abel image classification in MS-COCO (MLC). In
all settings we derive corpus constraints using the
training set and then run our calibration method in
batch on either the development or testing set. Our
results are summarized in Table 2 and Figure 3.

7.1 Visual Semantic Role Labeling

Our quantitative results are summarized in the first
two sections of Table 2. On the development
set, the number of verbs whose bias exceed the
original bias by over 5% decreases 30.5% (Viol.).
Overall, we are able to significantly reduce bias
amplification in vSRL by 52% on the develop-
ment set (Amp. bias). We evaluate the under-
lying recognition performance using the standard
measure in vSRL: top-1 semantic role accuracy,
which tests how often the correct verb was pre-
dicted and the noun value was correctly assigned
to a semantic role. Our calibration method results
in a negligible decrease in performance (Perf.). In
Figure 3(c) we can see that the overall distance to
the training set distribution after applying RBA de-
creased significantly, over 39%.

Figure 3(e) demonstrates that across all initial
training bias, RBA is able to reduce bias amplifi-
cation. In general, RBA struggles to remove bias
amplification in areas of low initial training bias,
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(a) Bias analysis on imSitu vSRL without RBA
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(b) Bias analysis on MS-COCO MLC without RBA
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(c) Bias analysis on imSitu vSRL with RBA
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(d) Bias analysis on MS-COCO MLC with RBA
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(e) Bias in vSRL with (blue) / without (red) RBA
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(f) Bias in MLC with (blue) / without (red) RBA

Figure 3: Results of reducing bias amplification using RBA on imSitu vSRL and MS-COCO MLC.
Figures 3(a)-(d) show initial training set bias along the x-axis and development set bias along the y-
axis. Dotted blue lines indicate the 0.05 margin used in RBA, with points violating the margin shown
in red while points meeting the margin are shown in green. Across both settings adding RBA signifi-
cantly reduces the number of violations, and reduces the bias amplification significantly. Figures 3(e)-(f)
demonstrate bias amplification as a function of training bias, with and without RBA. Across all initial
training biases, RBA is able to reduce the bias amplification.
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Method Viol. Amp. bias Perf. (%)
vSRL: Development Set

CRF 154 0.050 24.07
CRF + RBA 107 0.024 23.97

vSRL: Test Set
CRF 149 0.042 24.14
CRF + RBA 102 0.025 24.01

MLC: Development Set
CRF 40 0.032 45.27
CRF + RBA 24 0.022 45.19

MLC: Test Set
CRF 38 0.040 45.40
CRF + RBA 16 0.021 45.38

Table 2: Number of violated constraints, mean
amplified bias, and test performance before and af-
ter calibration using RBA. The test performances
of vSRL and MLC are measured by top-1 seman-
tic role accuracy and top-1 mean average preci-
sion, respectively.

likely because bias is encoded in image statistics
and cannot be removed as effectively with an im-
age agnostic adjustment. Results on the test set
support our development set results: we decrease
bias amplification by 40.5% (Amp. bias).

7.2 Multilabel Classification

Our quantitative results on MS-COCO RBA are
summarized in the last two sections of Table 2.
Similarly to vSRL, we are able to reduce the num-
ber of objects whose bias exceeds the original
training bias by 5%, by 40% (Viol.). Bias amplifi-
cation was reduced by 31.3% on the development
set (Amp. bias). The underlying recognition sys-
tem was evaluated by the standard measure: top-
1 mean average precision, the precision averaged
across object categories. Our calibration method
results in a negligible loss in performance. In Fig-
ure 3(d), we demonstrate that we substantially re-
duce the distance between training bias and bias
in the development set. Finally, in Figure 3(f) we
demonstrate that we decrease bias amplification
for all initial training bias settings. Results on the
test set support our development results: we de-
crease bias amplification by 47.5% (Amp. bias).

7.3 Discussion

We have demonstrated that RBA can significantly
reduce bias amplification. While were not able to
remove all amplification, we have made significant

progress with little or no loss in underlying recog-
nition performance. Across both problems, RBA
was able to reduce bias amplification at all initial
values of training bias.

8 Conclusion

Structured prediction models can leverage correla-
tions that allow them to make correct predictions
even with very little underlying evidence. Yet such
models risk potentially leveraging social bias in
their training data. In this paper, we presented a
general framework for visualizing and quantify-
ing biases in such models and proposed RBA to
calibrate their predictions under two different set-
tings. Taking gender bias as an example, our anal-
ysis demonstrates that conditional random fields
can amplify social bias from data while our ap-
proach RBA can help to reduce the bias.

Our work is the first to demonstrate structured
prediction models amplify bias and the first to
propose methods for reducing this effect but sig-
nificant avenues for future work remain. While
RBA can be applied to any structured predic-
tor, it is unclear whether different predictors am-
plify bias more or less. Furthermore, we pre-
sented only one method for measuring bias. More
extensive analysis could explore the interaction
among predictor, bias measurement, and bias de-
amplification method. Future work also includes
applying bias reducing methods in other struc-
tured domains, such as pronoun reference resolu-
tion (Mitkov, 2014).
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